updated R. Ghosh, April 1996
Standard Data Files for IN10, IN13, and IN16 consist of several blocks: HEADER - TEXT - PAR1 - PAR2 - SPECT1 - SPECT2 ........ Their format will be resumed in the following, taking into account the ASCII version only. This is justified by the fact that in the future all data files will be stored as text files. In the past, data were stored in binary form, but it is easy to obtain ASCII versions by using SPECTRA. (1) HEADER Line 1: RRRRRRRRRRRRRRRRRRRRRRRRR...RRRRR (80A1) Line 2: Numor (6 characters, stored as I8) Line 3: AAAAAAAAAAAAAAAAAAAAA...AAAA (80A1) Line 4: Number of characters to be read (80 at present) Line 5: Instrument (4 characters), Name of experiment (10 characters) Date and time of creation (18 characters) Attention: 12-hour clock ! In principle, this line is designed to contain even more information (type, version, length of record ...), but this option is practically never used. Line 6: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII...IIIIII (80A1) Line 7: Number of integers to be read (156 at present) The underlying binary file header is composed of 256 sixteen-bit integers (integer*2 array IB with dimension 256). In order to leave space for future extensions, there is a blank region immediately behind the information relevant for the archiving (i.e. the parameters cited above). The data are contained in the field IB(101) - IB(256), or, which is equivalent, MEDPAR(1)-MEDPAR(156). Together with the signification of the parameters we give typical values, taken from recent measurements (IN10: 6816/911, IN13: 13152/911, IN16 is not yet operational). Data structure MEDPAR(1) Total number of subspectra MEDPAR(2) Length of subspectrum (in words) normally: 256, monochr. T scan: 1024 MEDPAR(3) Type of first parameter block 1: TEXT 2: PAR1 3: PAR2 MEDPAR(4) Number of words in this block MEDPAR(5) Type of first parameter block 1: TEXT 2: PAR1 3: PAR2 MEDPAR(6) Number of words in this block MEDPAR(7) Type of first parameter block 1: TEXT 2: PAR1 3: PAR2 MEDPAR(8) Number of words in this block MEDPAR(9)-(16) not yet used - set to zero Accessing and controlling data: MEDPAR(17 - 147) MEDPAR(40) Number of overflows MEDPAR(41) Starting block of overflows MEDPAR(42) Starting block of first parameter set (usually TEXT) MEDPAR(43) Number of bytes in first param. block MEDPAR(44) Number of elements in first block MEDPAR(45) Starting block of second parameter block (usually PAR1) MEDPAR(46) Number of bytes in second block MEDPAR(47) Number of elements in second block MEDPAR(48) Starting block of third parameter block (usually PAR2) MEDPAR(49) Number of bytes in third block MEDPAR(50) Number of elements in third block File length and data format information: MEDPAR(148) Number of first recorded spectrum MEDPAR(149) flag: 1: integer*2 3: integer*4 MEDPAR(150) flag: 0: external memory ok 1: hub ok 2: archived ok 3: not to be transferred MEDPAR(151) Actual file length MEDPAR(152) Initial file length MEDPAR(153) not in use - set to zero MEDPAR(154) Total number of spectra MEDPAR(155) Length of subspectrum (channels) according to scan type 128/256; monochr. T-scan: 1024 MEDPAR(156) Starting point of data read from multichannel memory (2) TEXT Line 24: AAAAAAAAAAAAAAAAAAAAAA...AAA (80A1) Line 25: Number of characters to be read (512 at present) This character string contains a main title (60 characters, taken from the instrument setup), a subtitle (40 characters, taken from 'new' scan parameter setup), the experimentalists' names (20 characters, from Setup), the date and time of the start of the run (20 characters), the date and time of the stop of the run (20 characters, IN10 only), the scan type, the scan unit etc. The order of these parameters in the string is slightly different for IN10 and IN13. Please note that a 12-hour clock is used - there is no difference between a.m. and p.m. ! (3) PAR1 All the parameters in this block are of REAL*4 format Line 33: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...FFF (80A1) Line 34: number of reals to be read (128 at present) IN10 - Doppler scan IN13 IN16 ------------------------------------------------------------------------------------------ 1 measuring time (s) measuring time (s) total measuring time (s) 2 max. Doppler frequency central energy (mmeV) counts in monitor M1 Hz total for param scans 3 min. Doppler frequency half energy range (mmeV) average Doppler frequency Hz Hz 4 chopper freq. (rpm) chopper freq. (rpm) incoming wavelength A 5 scaling factor: mon. 1 scaling factor: mon. 1 scaling factor: mon. 1 6 scaling factor: mon. 2 scaling factor: mon. 2 scaling factor: mon. 2 7 number of channels number of channels number of channels 8 number of detectors NDET number of detectors NDET ------------------------- 9 sample temperature (setp.) number of monitors ------------------------- 10 sample temperature (end) average sample temp. T 11 sample temperature (start) max. deviation from T 12 energy step (micro-eV) standard deviation from T --------------------------------------------------------------------------- IN10 - Doppler scan IN13 IN16 ------------------------------------------------------------------------------------------ 15 scan type: 0: energy 1: sample temperature 2: tilt sample (G1S)theta 3: tilt sample (G2S) 4: sample angle (ThetaS) 5: sample height (ZS) 6: mobile anal. (ThetaA) 7: trumpet (2ThetaA) 8: monochr. (ThetaM) 9: tilt monochr. (GM) 10: Graph.mon.(ThetaD1) 11: tilt Graph.mon. (CD1) 12: defl.chop (ThetaD2) 16 measuring time per step 17 divider factor for scan step 18 number of scan steps (stored: always 256) ------------------------------------------------------------------------------------------ 20 number of detectors 21 number of monitors deflector chopper frequency 22 types of scan: deflector chopper stability 0: energy 1: TEMP1 2: TEMP2 3: monochr. rotation ChiM 4: mon.tilt (cryo-f.) ThetaM2 5: Dopl. tilt ThetaM1 6: tilt gonio sample ChiE1 7: tilt gonio sample ChiE2 8: rotation deflector ThetaG 9: tilt deflector ChiG 10: cabin ang 2ThetaG 11: omega (E1): rotation sample 12: omega (E2): rot. upper flange 13 : Mono_T (monochr.temp.) [0.0] 23 scaling factor: scan param. defl. chopp. windows/cycle 24 number of scan points defl. chopp. window size IN10 - Doppler scan IN13 IN16 ------------------------------------------------------------------------------------------ 25 BG-chopper frequency 26 BG-chopper stability 27 BG-chopper windows/cycle 28 BG-chopper size 29 BG-chopper delay (defl.) ------------------------------------------------------------------------------------------ 30 theta-Graphite mono. (THETAD1) 31 TC1: sample temp. (start) chi-Graphite monochr. (GD1) 32 TC1: regul.temp. (start) Graphite mono. curv. (CD1) 33 TC1: set point (start) reserved for: Graphite mono. x (no coding) 34 TC1: sample temp. (stop) lattice param. Graphite mono 35 TC1: regul.temp. (stop) 2thetaA trumpet (2THETAA) ---------------------- 36 thetaD Graphite defl. chopper (THETAD2) 37 reserved for: tilt-Graphite defl. chopper 38 lattice param. Graph.defl. --------------------------- 40 tilt-monochromator (GM) 41 TC2: sample temp. (start) theta-monochromator (ThetaM) 42 TC2: regul.temp. (start) thetaA-mobile analysator (ThetaA) --------------------------- 43 TC2: set point (start) 44 TC2: sample temp. (stop) theta-sample (ThetaS) IN10 - Doppler scan IN13 IN16 ------------------------------------------------------------------------------------------ 45 TC2: regul.temp. (stop) chi-sample (G1S) 46 chi-sample (G2S) 47 reserved for: x-sample (XS) 48 reserved for: y-sample (YS) 49 sample height (ZS) ------------------------------------------------------------------------------------------ 50 distance focus-defl.chopper 51 theta (G) (deflector) omega ( monochromator) distance defl.chopper-mono. 52 chi (G) (deflector) monochromator tilt chi distance defl.chopper-sample 53 2theta (G) (deflector) deflector direction x av. distance sample-analys. 54 omega (E1) (sample) deflector direction y distance sample-multidet. 55 J (M) (monochromator) w deflector distance sample-single det. --------------------------- 56 chi (M) (tilt mono) deflector tilt chi 57 chi (E1) (sample) deflector curvature r 58 chi (E2) omega multidetector 59 omega (E2) theta analyser 1 60 phi (1) (analyser 1) theta analyser 2 detector delay time T1 61 phi (2) (analyser 2) theta analyser 3 detector open time T2 IN10 - Doppler scan IN13 IN16 ------------------------------------------------------------------------------------------ 662 phi (3) (analyser 3) theta analyser 4 Time delay dop-det. (micro-s) 63 phi (4) (analyser 4) theta analyser 5 Time delay dop-mon.1 (micro-s) 64 phi (6) (analyser 6) omega sample Time delay dop-mon.2 (micro-s) [187.91] [198.22] 65 omega (D) sample tilt 1: chi1 multidetector position (4 fixed positions) 66 DVM reading sample tilt 2: chi2 67 alpha0 monochromator omega secondary spectrometer 68 alpha1 monochromator 69 alpha2 monochromator 70 alpha3 monochromator latt. param. mono. (DMONO) 71 beta0 monochromator monochr. type (version no.) 72 beta1 monochromator alpha0 monochromator 73 beta2 monochromator reference temp. monochr. [0.0] 74 beta3 monochromator Doppler frequency nu 75 coeff. transition temp. standard deviation from nu 76 max. monochr. temp. maximum deviation from nu ---------------------------- 80 latt. param. analyser (DANA) 81 required gamma mono analyser type (version no.) IN10 - Doppler scan IN13 IN16 ------------------------------------------------------------------------------------------ 82 lattice param. monochr. lattice param. CaF2 (28C) alpha0 analyser expan coeff [3.1354] (= Si(111)) [1.115] 83 lattice param. deflect. lattice param. graphite average temp. analyser [3.354] (= PG(002)) [1.6775] (004) 84 lattice param. analyser angle guide-mono.-sample number of dead channels [3.1354] (= Si(111)) [59.7153] 85 TOF mono-det. (mms) dist. monc.-sample (gamma =11) collimation type [23000.] wav=6.27A) [3386.76] 86 TOF mono-mon. 1 (mms) dist. monchr.-defl. (g =11) He flight-boxes [17800.] (wav=6.27A) [1914.5] (O: not used, 1: used) 87 TOF mono-mon.2 (mms) angle y-axis-neutron guide channel correction factor 88 preset time T1 (mms) 2theta deflector no data acquisition 89 preset time T2 (mms) monochr.exp.coeff. beta0 data acquisition active 90 empty (0.0) monochr.exp.coeff. beta1 91 see below analyser temperature ------------------------------ 91 etc (90+NDET+NMON) Sum of counts sum of counts of the detector (monitor) n detectors and monitors ------------------------------ (4) PAR2 The data are in floating point format: Line 61: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...FFF (80A1) Line 62: number of reals to be read (128 at present) This section contains the analyser angles and offsets. The order depends on the instrument. IN10 PAR2(1) - PAR2(NDET) detector angles PAR2(51) - PAR2(50+NDET) corresponding analyser offsets IN13 PAR2(1) - PAR2(32) multidetector angles PAR2(33) - PAR2(35) small angle detector angles PAR2(51) - PAR2(82) corresponding analyser offsets IN16 PAR2(1) - PAR2(20) multidetector tube angles PAR2(21) - PAR2(29) small angle detector angles PAR2(51) - PAR2(70) analyser offsets PAR2(71) - PAR2(90) analyser angles (5) SPECTRA Line 89: SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS...SSS (80A1) Line 90: number of the spectrum NS (stored as I8) number of the remaining spectra NREST (I8) total number of spectra NTOT=NS+NREST (I8) numor NRUN (I8) Line 91: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII...III (80A1) Line 92: number of integers to be read (number of channels) Line 93 Þ : channel content (stored as 10I8) NREST spectra, stored in the same format, follow. For IN10 the last spectrum is the monitor spectrum. IN10/IN16: If the scan is not performed in the Doppler mode, an additional block follows: Monochromator T-scan: hw x S (1024 val.) (project for IN16) Temperature scan: T (K) x S (256 values) Angle scan: theta x S (256 values) S is the scaling factor for the scan parameter, given in PAR1. (IN10: parameter 23, IN16: parameter 17). Normally, one would use S=100 for temperature scans and S=1000 for monochromator T-scans and angle scans. IN16: The last 'spectrum' consists of 256 sample temperature values, recorded at regular intervals (measuring time/256.). To a certain extent, these data should allow to check the temperature stability during the scan.