updated R. Ghosh, April 1996
Standard Data Files for IN10, IN13, and IN16
consist of several blocks:
HEADER - TEXT - PAR1 - PAR2 - SPECT1 - SPECT2 ........
Their format will be resumed in the following, taking into account the
ASCII version only. This is justified by the fact that in the future all data
files will be stored as text files. In the past, data were stored in binary
form, but it is easy to obtain ASCII versions by using SPECTRA.
(1) HEADER
Line 1: RRRRRRRRRRRRRRRRRRRRRRRRR...RRRRR (80A1)
Line 2: Numor (6 characters, stored as I8)
Line 3: AAAAAAAAAAAAAAAAAAAAA...AAAA (80A1)
Line 4: Number of characters to be read (80 at present)
Line 5: Instrument (4 characters),
Name of experiment (10 characters)
Date and time of creation (18 characters)
Attention: 12-hour clock !
In principle, this line is designed to contain even
more information (type, version, length of record ...),
but this option is practically never used.
Line 6: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII...IIIIII (80A1)
Line 7: Number of integers to be read (156 at present)
The underlying binary file header is composed of 256 sixteen-bit integers
(integer*2 array IB with dimension 256). In order to leave space for
future extensions, there is a blank region immediately behind the
information relevant for the archiving (i.e. the parameters cited
above). The data are contained in the field IB(101) - IB(256), or, which is
equivalent, MEDPAR(1)-MEDPAR(156). Together with the signification
of the parameters we give typical values, taken from recent
measurements (IN10: 6816/911, IN13: 13152/911, IN16 is not yet
operational).
Data structure
MEDPAR(1) Total number of subspectra
MEDPAR(2) Length of subspectrum (in words)
normally: 256, monochr. T scan: 1024
MEDPAR(3) Type of first parameter block
1: TEXT 2: PAR1 3: PAR2
MEDPAR(4) Number of words in this block
MEDPAR(5) Type of first parameter block
1: TEXT 2: PAR1 3: PAR2
MEDPAR(6) Number of words in this block
MEDPAR(7) Type of first parameter block
1: TEXT 2: PAR1 3: PAR2
MEDPAR(8) Number of words in this block
MEDPAR(9)-(16) not yet used - set to zero
Accessing and controlling data: MEDPAR(17 - 147)
MEDPAR(40) Number of overflows
MEDPAR(41) Starting block of overflows
MEDPAR(42) Starting block of first parameter set
(usually TEXT)
MEDPAR(43) Number of bytes in first param. block
MEDPAR(44) Number of elements in first block
MEDPAR(45) Starting block of second parameter
block (usually PAR1)
MEDPAR(46) Number of bytes in second block
MEDPAR(47) Number of elements in second block
MEDPAR(48) Starting block of third parameter
block (usually PAR2)
MEDPAR(49) Number of bytes in third block
MEDPAR(50) Number of elements in third block
File length and data format information:
MEDPAR(148) Number of first recorded spectrum
MEDPAR(149) flag: 1: integer*2
3: integer*4
MEDPAR(150) flag: 0: external memory ok
1: hub ok
2: archived ok
3: not to be transferred
MEDPAR(151) Actual file length
MEDPAR(152) Initial file length
MEDPAR(153) not in use - set to zero
MEDPAR(154) Total number of spectra
MEDPAR(155) Length of subspectrum (channels)
according to scan type
128/256; monochr. T-scan: 1024
MEDPAR(156) Starting point of data read from
multichannel memory
(2) TEXT
Line 24: AAAAAAAAAAAAAAAAAAAAAA...AAA (80A1)
Line 25: Number of characters to be read (512 at present)
This character string contains a main title (60 characters, taken from the
instrument setup), a subtitle (40 characters, taken from 'new' scan
parameter setup), the experimentalists' names (20 characters, from
Setup), the date and time of the start of the run (20 characters), the date
and time of the stop of the run (20 characters, IN10 only), the scan type,
the scan unit etc. The order of these parameters in the string is slightly
different for IN10 and IN13. Please note that a 12-hour clock is used -
there is no difference between a.m. and p.m. !
(3) PAR1
All the parameters in this block are of REAL*4 format
Line 33: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...FFF
(80A1)
Line 34: number of reals to be read (128 at present)
IN10 - Doppler scan IN13 IN16
------------------------------------------------------------------------------------------
1 measuring time (s) measuring time (s) total measuring time (s)
2 max. Doppler frequency central energy (mmeV) counts in monitor M1
Hz total for param scans
3 min. Doppler frequency half energy range (mmeV) average Doppler frequency
Hz Hz
4 chopper freq. (rpm) chopper freq. (rpm) incoming wavelength A
5 scaling factor: mon. 1 scaling factor: mon. 1 scaling factor: mon. 1
6 scaling factor: mon. 2 scaling factor: mon. 2 scaling factor: mon. 2
7 number of channels number of channels number of channels
8 number of detectors NDET number of detectors NDET
-------------------------
9 sample temperature (setp.) number of monitors
-------------------------
10 sample temperature (end) average sample temp. T
11 sample temperature (start) max. deviation from T
12 energy step (micro-eV) standard deviation from T
---------------------------------------------------------------------------
IN10 - Doppler scan IN13 IN16
------------------------------------------------------------------------------------------
15 scan type:
0: energy
1: sample temperature
2: tilt sample (G1S)theta
3: tilt sample (G2S)
4: sample angle (ThetaS)
5: sample height (ZS)
6: mobile anal. (ThetaA)
7: trumpet (2ThetaA)
8: monochr. (ThetaM)
9: tilt monochr. (GM)
10: Graph.mon.(ThetaD1)
11: tilt Graph.mon. (CD1)
12: defl.chop (ThetaD2)
16 measuring time per step
17 divider factor for scan step
18 number of scan steps
(stored: always 256)
------------------------------------------------------------------------------------------
20 number of detectors
21 number of monitors deflector chopper frequency
22 types of scan: deflector chopper stability
0: energy
1: TEMP1
2: TEMP2
3: monochr. rotation ChiM
4: mon.tilt (cryo-f.) ThetaM2
5: Dopl. tilt ThetaM1
6: tilt gonio sample ChiE1
7: tilt gonio sample ChiE2
8: rotation deflector ThetaG
9: tilt deflector ChiG
10: cabin ang 2ThetaG
11: omega (E1): rotation sample
12: omega (E2): rot. upper flange
13 : Mono_T (monochr.temp.)
[0.0]
23 scaling factor: scan param. defl. chopp. windows/cycle
24 number of scan points defl. chopp. window size
IN10 - Doppler scan IN13 IN16
------------------------------------------------------------------------------------------
25 BG-chopper frequency
26 BG-chopper stability
27 BG-chopper windows/cycle
28 BG-chopper size
29 BG-chopper delay (defl.)
------------------------------------------------------------------------------------------
30 theta-Graphite mono. (THETAD1)
31 TC1: sample temp. (start) chi-Graphite monochr. (GD1)
32 TC1: regul.temp. (start) Graphite mono. curv. (CD1)
33 TC1: set point (start) reserved for:
Graphite mono. x (no coding)
34 TC1: sample temp. (stop) lattice param. Graphite mono
35 TC1: regul.temp. (stop) 2thetaA trumpet (2THETAA)
----------------------
36 thetaD Graphite defl. chopper
(THETAD2)
37 reserved for:
tilt-Graphite defl. chopper
38 lattice param. Graph.defl.
---------------------------
40 tilt-monochromator (GM)
41 TC2: sample temp. (start) theta-monochromator (ThetaM)
42 TC2: regul.temp. (start) thetaA-mobile analysator
(ThetaA)
---------------------------
43 TC2: set point (start)
44 TC2: sample temp. (stop) theta-sample (ThetaS)
IN10 - Doppler scan IN13 IN16
------------------------------------------------------------------------------------------
45 TC2: regul.temp. (stop) chi-sample (G1S)
46 chi-sample (G2S)
47 reserved for: x-sample (XS)
48 reserved for: y-sample (YS)
49 sample height (ZS)
------------------------------------------------------------------------------------------
50 distance focus-defl.chopper
51 theta (G) (deflector) omega ( monochromator) distance defl.chopper-mono.
52 chi (G) (deflector) monochromator tilt chi distance defl.chopper-sample
53 2theta (G) (deflector) deflector direction x av. distance sample-analys.
54 omega (E1) (sample) deflector direction y distance sample-multidet.
55 J (M) (monochromator) w deflector distance sample-single det.
---------------------------
56 chi (M) (tilt mono) deflector tilt chi
57 chi (E1) (sample) deflector curvature r
58 chi (E2) omega multidetector
59 omega (E2) theta analyser 1
60 phi (1) (analyser 1) theta analyser 2 detector delay time T1
61 phi (2) (analyser 2) theta analyser 3 detector open time T2
IN10 - Doppler scan IN13 IN16
------------------------------------------------------------------------------------------
662 phi (3) (analyser 3) theta analyser 4 Time delay dop-det. (micro-s)
63 phi (4) (analyser 4) theta analyser 5 Time delay dop-mon.1 (micro-s)
64 phi (6) (analyser 6) omega sample Time delay dop-mon.2 (micro-s)
[187.91] [198.22]
65 omega (D) sample tilt 1: chi1 multidetector position
(4 fixed positions)
66 DVM reading sample tilt 2: chi2
67 alpha0 monochromator omega secondary spectrometer
68 alpha1 monochromator
69 alpha2 monochromator
70 alpha3 monochromator latt. param. mono. (DMONO)
71 beta0 monochromator monochr. type (version no.)
72 beta1 monochromator alpha0 monochromator
73 beta2 monochromator reference temp. monochr.
[0.0]
74 beta3 monochromator Doppler frequency nu
75 coeff. transition temp. standard deviation from nu
76 max. monochr. temp. maximum deviation from nu
----------------------------
80 latt. param. analyser (DANA)
81 required gamma mono analyser type (version no.)
IN10 - Doppler scan IN13 IN16
------------------------------------------------------------------------------------------
82 lattice param. monochr. lattice param. CaF2 (28C) alpha0 analyser expan coeff
[3.1354] (= Si(111)) [1.115]
83 lattice param. deflect. lattice param. graphite average temp. analyser
[3.354] (= PG(002)) [1.6775] (004)
84 lattice param. analyser angle guide-mono.-sample number of dead channels
[3.1354] (= Si(111)) [59.7153]
85 TOF mono-det. (mms) dist. monc.-sample (gamma =11) collimation type
[23000.] wav=6.27A) [3386.76]
86 TOF mono-mon. 1 (mms) dist. monchr.-defl. (g =11) He flight-boxes
[17800.] (wav=6.27A) [1914.5] (O: not used, 1: used)
87 TOF mono-mon.2 (mms) angle y-axis-neutron guide channel correction factor
88 preset time T1 (mms) 2theta deflector
no data acquisition
89 preset time T2 (mms) monochr.exp.coeff. beta0
data acquisition active
90 empty (0.0) monochr.exp.coeff. beta1
91 see below analyser temperature
------------------------------
91 etc (90+NDET+NMON)
Sum of counts sum of counts of the
detector (monitor) n detectors and monitors
------------------------------
(4) PAR2
The data are in floating point format:
Line 61: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...FFF
(80A1)
Line 62: number of reals to be read (128 at present)
This section contains the analyser angles and offsets. The order depends
on the instrument.
IN10
PAR2(1) - PAR2(NDET) detector angles
PAR2(51) - PAR2(50+NDET) corresponding analyser offsets
IN13
PAR2(1) - PAR2(32) multidetector angles
PAR2(33) - PAR2(35) small angle detector angles
PAR2(51) - PAR2(82) corresponding analyser offsets
IN16
PAR2(1) - PAR2(20) multidetector tube angles
PAR2(21) - PAR2(29) small angle detector angles
PAR2(51) - PAR2(70) analyser offsets
PAR2(71) - PAR2(90) analyser angles
(5) SPECTRA
Line 89: SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS...SSS (80A1)
Line 90: number of the spectrum NS (stored as I8)
number of the remaining spectra NREST (I8)
total number of spectra NTOT=NS+NREST (I8)
numor NRUN (I8)
Line 91: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII...III (80A1)
Line 92: number of integers to be read (number of channels)
Line 93 Þ : channel content (stored as 10I8)
NREST spectra, stored in the same format, follow. For IN10 the last spectrum is
the monitor spectrum.
IN10/IN16: If the scan is not performed in the Doppler mode, an
additional block follows:
Monochromator T-scan: hw x S (1024 val.)
(project for IN16)
Temperature scan: T (K) x S (256 values)
Angle scan: theta x S (256 values)
S is the scaling factor for the scan parameter, given in PAR1. (IN10:
parameter 23, IN16: parameter 17). Normally, one would use S=100 for
temperature scans and S=1000 for monochromator T-scans and angle
scans.
IN16: The last 'spectrum' consists of 256 sample temperature values,
recorded at regular intervals (measuring time/256.). To a certain extent,
these data should allow to check the temperature stability during the
scan.