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Abstract

The crystallization facility of the TB Structural Genomics Consortium, one of nine NIH-sponsored structural genomics pilot

projects, employs a combinatorial random sampling technique in high-throughput crystallization screening. Although data are still

sparse and a comprehensive analysis cannot be performed at this stage, preliminary results appear to validate the random-screening

concept. A discussion of statistical crystallization data analysis aims to draw attention to the need for comprehensive and valid

sampling protocols. In view of limited overlap in techniques and sampling parameters between the publicly funded high-throughput

crystallography initiatives, exchange of information should be encouraged, aiming to effectively integrate data mining efforts into a

comprehensive predictive framework for protein crystallization.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The National Institutes of Health (NIH) funding for a

substantial Structural Genomics (SG) Initiative (Norvell

and Zapp-Machalek, 2000), under way since fall of 2000,

provides significant public funding to nine P50 Structural
Genomics Centers. One of the main objectives of these

centers is the advancement of high-throughput crystal-

lography, includingmethods for high-throughput protein

crystallization. Two major conclusions can be drawn al-

ready at this early stage from initial communications from

the public efforts. First, it has become obvious that a

bottleneck potentially more significant to high through-

put than protein crystallization is the production of pro-
teins (in particular, ‘‘inherently crystallizable’’ proteins;

Segelke, 2001) and second, that a number of different

crystallization methods can reasonably be adapted to

achieve high throughput. Few reports are yet available on

new crystallization statistics and predictions from the

initiatives, and a distinct probability exists that under

pressure to produce structures (which is the ultimate goal

of a SGCenter), the opportunity to create comprehensive

and consistent crystallization databases through the

centers may be lost. This concern is not entirely un-

founded, as both the omission of negative results and the

lack of the most basic quantity in statistics, the number of

trials, have made the publicly available databases (Bio-

logical Macromolecule Crystallization Database or
BMCD,Gilliland et al., 1994; ProteinData Bank or PDB,

Berman et al., 2000) very difficult to use for the purpose of

rigorous statistical analysis and inference without signif-

icant restructuring and annotation (Hennessy et al.,

2000). This brief report discusses general aspects of ex-

perimental designof crystallization experiments in viewof

statistical analysis and machine learning, interspersed

with implementation and preliminary results obtained at
the crystallization facility of the TB Structural Genomics

Consortium (TBSGC; Goulding et al., 2002), one of the

nine NIH-funded structural genomics pilot projects. A

major objective of the TBSGC crystallization facility has

been tomaximize overall operational efficiency within the

budget constraints of public funding. An overview of our

underlying philosophy and the challenges faced in the first

2 years of the TBSG crystallization facility is provided in a
separate review (Rupp, 2003). Technical implementation

details, including crystallization robotics, crystal recog-

nition, data collection, and structure solution, are pro-

vided in the special literature (Rupp et al., 2002).
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2. High-throughput crystallization

In a high-throughout environment, large numbers of

samples, with limited prior knowledge of each, need to

be processed. A compromise is necessary between effort,

time, and material spent on in-depth physicochemical

analysis of the crystallization process of each specific

protein leading to rational approaches directed toward

improving crystallization (Dale et al., 1999; D�Arcy,
1994), while still achieving high throughput and the re-

quired high overall success rate for the effort. This is a

most distinct difference from academic, strongly hy-

pothesis-driven research, in which the determination of

a single recalcitrant structure may be of utmost impor-

tance, in particular for the unfortunate graduate student

engaged in the project. Many of our efficiency consid-

erations do, however, apply to operations on any scale,
and we believe that the procedures and instrumentation

we have developed and use at the TBSGC crystallization

facility are valuable for academic laboratories as well

(Rupp, 2003).

2.1. Protein crystallization as a sampling problem

Let us conceptualize the ‘‘crystallization space’’ as an
n-dimensional vortex (or hypercube of dimensionality n),

whose bases (axes) are extensive parameters like chemi-

cal components and protein concentration, and intensive

ones like temperature, setup technique, or pH. Crystal-

lization success analysis can then be treated as a sampling

problem of an unknown distribution of success rates in

crystallization (parameter) space. Within one given sys-

tem, the sampling can be done consistently and be sta-
tistically valid, and a variety of machine learning

methods can be used to make inferences about the fre-

quency distribution of successes. Comparing or merging

results from a different sampling space (consortium or

group), however, may be difficult or even impossible. For

example, the crystallization technique employed may be

a more critical parameter (in terms of factorial analysis)

than the reagent basis set; and of the reagents used, the
overlap between the sampling spaces may be poor. Fig. 1

uses Venn diagrams to visualize this problem. In the

extreme case we are faced with a dilemma equivalent to

merging and scaling two diffraction data sets with no or

poor overlap. The varying methods and approaches used

by different consortia and groups will make it quite dif-

ficult to accurately compare success rates. Each of the

approaches appears to work—which is to a degree ex-
pected from general success rate analysis, as we will see

shortly—but consistent data mining will be difficult.

2.2. Sampling strategies in crystallization space

Given the unlimited number of combinations of

components in crystallization recipes, it comes as no

surprise that, historically, crystallization conditions were

often chosen on the basis of what had worked before

and what was available on the reagent shelf. Screening

kits based on previous success analysis have been quite

successful (Jancarik and Kim, 1991), and numerous
variations of this first kit are now commercially avail-

able. In a statistical sense, repeated use of such premixed

‘‘sparse matrix’’ solutions amounts to oversampling of

certain spots in the multidimensional crystallization

Fig. 2. Schematic of simple 3-D crystallization space showing varying

coverage by different sampling protocols using 12 trials each. The large

cube represents fourfold oversampling in a sparse matrix-type experi-

ment. Note that grid screening is not only used to comprehensively

screen for conditions, but also deployed with a rationale to explore

systematic variations of two dimensions considered major factors while

keeping other parameters constant (McPherson, 1982). Grid screening

thus can be viewed as a complete pseudo-factorial on a 2-D subset of

the sample space.

A B

Fig. 1. Venn diagrams representing crystallization scenarios. (A)

Overlap in success space between three different techniques. Circles

have the same diameter, indicating equal overall success rate for each

method. Overlap between hanging- and sitting-drop vapor diffusion

(VD) techniques is presumably large, whereas microbatch may have

fewer conditions in common with either. (B) Hypothetical scenario

representing free interface diffusion microtechnique with higher success

rate but limited overlap with sitting-drop VD technique. Similar dia-

grams can be used to visualize the overlap (or lack thereof) of basis sets

used in different setups.
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space. Reported success rates thus are limited to few
specific combinations of a preselected basis set of re-

agents. Although the success of these screens is dem-

onstrated (and expected, as we will argue shortly), there

are serious shortcomings in this limited approach, af-

fecting comprehensiveness and the predictive power of

statistical analysis.

Probabilities and intuition. While humans excel in

complex visual tasks like pattern (crystal) recognition,
our intuition regarding randomness and conditional

probabilities1 is generally not as well developed. Assume

a sequence of five heads in a row upon the throw of a fair

coin showing either head (H) or tail (T). Although per-

plexing, we can understand that the probability for event

HHHHH is not absurdly unlikely, and, that in the long

run, it may well turn out that the coin is fair, i.e.,

pðHÞ ¼ pðTÞ ¼ 0:50. We may also reason under consid-
eration of a strong prior, namely that a coin showing

only heads is an unlikely proposition. In the case of

limited numbers of crystallization trials and no prior

knowledge about success probabilities, there is very little

to guide us in terms of what presents a true ‘‘hot spot’’ in

crystallization space and what will become insignificant

in the long run.2 Sequential analysis and corresponding

redesign of experiments based on premature analysis of a
limited sample set leads to self-fulfilling prophecies mis-

guiding the search for potential true hot spots in crys-

tallization space. The problem is compounded by the fact

that a significant number of proteins crystallize quite

easily and under multiple different conditions (Segelke,

2001). It is therefore even expected that a not unsub-

stantial success rate can be achieved regardless of which

screening method is used and what reagent basis set is
used. A brief discussion of a Bayesian framework applied

to crystallization data analysis will illustrate this point.

Statistical approaches to sampling. In view of the

above-mentioned limitations, the need for a rigorous

statistical approach to crystallization screening and op-

timization was recognized early by Carter and Carter

(1979), who suggested factorial designs, the use of var-

iance analysis, and response surface optimization (Car-
ter, 1999). Factorial designs attempt to balance the

occurrence of factors and of their pair-wise combina-

tions during the sampling process. Optimal implemen-

tation of such methods suitable for comprehensive
analysis requires specific cocktails to be prepared for

screening and optimization, and unfortunately, when

these advanced concepts were first introduced, avail-

ability of robotics was not as widespread as it is be-

coming now (a major factor contributing to the

widespread popularity of prefabricated kits).

In a seminal paper, Segelke (2001) has assessed var-

ious crystallization screening protocols (Jancarik and
Kim, 1991; McPherson, 1982; Stura et al., 1992) in terms

of sampling efficiency, i.e., finding crystallization con-

ditions with a minimum number of trials (Fig. 2). Based

on formal statistical derivation, Segelke has shown that

random (combinatorial) sampling is most efficient,

particularly when success rates are low or clustered. His

efficiency analysis also allows estimating the number of

trials above which return on investment (time, supplies,
and protein) during further screening diminishes, as in-

dicated by cumulative probabilities (Segelke, 2001, Fig.

4). For the average soluble protein, based on available

frequency and success rate data, we estimate that 288

(3� 96) trials should suffice to find crystallization con-

ditions with high probability. Beyond this point, the

options of protein engineering (examples are discussed

in Dale et al., 1999; Edwards et al., 2000; Waldo et al.,
1999) and search for orthologs should be investigated,

aiming to obtain an inherently more crystallizable var-

iant (Segelke, 2001) of the particular protein.

2.3. Bayesian considerations

In random sampling, coverage of the crystallization

space is achieved by using each crystallization condition
only once. At the same time, in contrast to factorial

designs (Carter, 1999), no assumptions about any suc-

cess rate distributions or about factors specific for a

particular protein are made.3

The omission of prior knowledge or absence of as-

sumptions may seem a serious limitation of the random

screening, but there is good reason not yet to deviate

from the assumption of ignorance. As already indicated
in the discussion of sparse matrix sampling, the inclu-

sion of prior knowledge—either consciously during

analysis or, quite insidiously, inherent in the experi-

mental design—may affect the outcome of the estimate

of the posterior, in our case crystallization success

probabilities. The formal basis for this reasoning is given

by Bayes� theorem, which can be derived from the sum

and product rules of conditional probabilities (for an
introduction see Sivia, 1996). In simplified form and

assuming a constant evidence term,

1 An excellent review describing classical examples of mispercep-

tion of randomness and conditional probabilities is contained in

Bennett (1998). The examples include the well-known jailer�s paradox
and the varying gender probability for offspring given different prior

knowledge of the birth order and the gender of siblings. For an

example demonstrating consequences of focusing on single events

(similar to crystallization successes) without maintaining negative

controls, see http://sprott.physics.wisc.edu/pickover/esp.html.
2 I am particularly skeptical in this context of the proliferation of

crystallization tips, which practically never undergo any serious

statistical validation. One should be aware of ‘‘tips’’ particularly if

they lack clear underlying rationale.

3 Note, however, that the CRYSTOOL protocol (Segelke and

Rupp, 1998) allows easy customization of parameter ranges such as

pH, reagent concentrations, and reagent frequencies once clearly

established trends emerge.
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probðCjD; IÞ / probðDjC; IÞ � probðCjIÞ: ð1Þ
Formula (1) essentially states that the posterior proba-

bility prob(CjD; I) of crystallization success (C), given

our data (D) and prior information (I), depends directly

on the likelihood function prob(DjC; I) and the prior

probability prob(CjI) of crystallization success without
having analyzed the data. It is evident that any prior

assumption, made directly or imposed indirectly through

a suboptimal experimental design, will affect our success
prediction. The most striking point is that the posterior

recovers rather slowly from incorrect but plausible

priors, whereas a uniform prior (or unreasonable prior)

is more effectively overcome by the likelihood function

(i.e., data).4 The proportionality in Eq. (1) also shows

that ‘‘bootstrapping’’ by using the resulting posterior

probability as a prior (directly or through experimental

design changes) and subsequent reanalysis leads to a
much sharper posterior probability distribution func-

tion, i.e., a serious overestimate of our success rate (Sivia,

1996). Both findings are of great relevance to our crys-

tallization experiments and should caution against early

assumptions about success rate distribution in crystalli-

zation space as well as against a premature limitation of

the basis set used in the experiments based on frequency

analysis alone. An interesting project utilizing Bayesian
analysis has been described by Hennessy et al. (2000), but

no recent updates have been made available (http://

www.xtal.pitt.edu/xtalgrow/default.htm).

2.4. Choice of parameter basis set

Most crystallization screen designs tend to preclassify

reagents into one or more groups such as precipitant,
additive, buffer, anddetergent and touse a combinationof

one (or no) reagent from each of these classes. At present

CRYSTOOL (Segelke and Rupp, 1998) uses 90 manually

premixed stock solutions, divided into four groups: pre-

cipitants, buffers, additives, and detergents. About 50

different reagents form the chemical basis set, which can

be expanded or updated if evidence suggests it. From

simple preliminary frequency data (Fig. 3), it appears that
the inclusionof detergents in the reagent basis setmight be

beneficial (as indicated by Cudney et al., 1994).

There has been a great deal of discussion about the

relative virtues of chemicals comprising a basis set. Yet,

whereas drop size, protein concentration, and other

method-determined parameters may be as influential as

the reagents used (Carter, 1999), systematic investiga-

tion of the nonchemical parameters spanning the crys-
tallization space has received less attention. Drop size,

for example, may significantly influence kinetics via

nucleation rates (Bodenstaff et al., 2002). Regardless of
what crystallization design is used, nonoverlap in crucial

parameters, be they reagents or technical parameters,

makes the comparison of results between different re-

search groups rather difficult. This concern also holds

for the protein classes processed, as results for small,

highly soluble proteins will likely indicate overall success

rates different from data including large complexes or

membrane proteins.

2.5. Screening versus optimization

Frequently in the literature, a strong distinction is

made between crystallization screening and optimiza-

tion of crystal growth (for example, Chayen and Sari-

dakis, 2002; Luft et al., 2001). From a chemical point of

view, this distinction is rather arbitrary and mostly af-
fects a change in method-related parameters, but those

can significantly impact overall efficiency. Results from

the TB facility indicate that about 1/3 of diffracting

crystals grow directly out of random screens without

any need for optimization. We expected this result based

on the reasonably large number of trials (288) conducted

for each protein and the assumption that a significant

number of proteins crystallize easily and under multiple
conditions and probably in multiple crystal forms

(Segelke, 2001). The data so far indicate that about half

of the proteins indeed form crystals in more than 5 of

288 different random conditions. We thus argued that it

would be more cost effective to use a single technique

(vapor diffusion in sitting drop IntelliPlates) for

screening and optimization (Rupp, 2003), which enables

us to use the same equipment throughout the process
from screening to harvesting, and to automatically set

up either grid-type or limited random-type optimiza-

tions designed with CRYSTOOL. Consistency in setup

would also avoid possible nonoverlap when transition-

ing between different crystallization techniques.5

However, protein production appears to become the

more serious challenge for achieving high throughput

than crystallization setup itself, despite promising de-
velopments in protein engineering (Edwards et al., 2000;

Waldo et al., 1999). Given 150–300 ll as the lower limit
of protein required for a complete screening in our set-

up, a significant reduction in cost might be possible if

microtechniques were used in combination with inte-

grated micropurification. Excluding proteins which are

unlikely to crystallize from expensive expression and

4 A very convincing demonstration of this behavior of the posterior

probability distribution function is given in Sivia (1996) based on a

simulation of coin tosses.

5 Analysis of 5000 experiments comparing five different sitting- and

hanging-drop vapor diffusion setup techniques (Schick et al., 2001)

indicated that although overall success rate does not significantly differ

for the 11 proteins under 96 conditions tested, significant differences do

exist for specific conditions under different techniques. We are not

aware of any systematic studies conclusively demonstrating overall

superiority of any one of the commonly used techniques (sitting drop,

hanging drop, batch methods, etc.).
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purification scale up would provide cost reduction in

purification and thus provide an overall efficiency gain

despite possible loss or omission of some proteins due to

nontransferability to a different optimization and har-

vesting technique (Fig. 1B). Small droplet sizes, ease of

miniaturization, and absence of additional sealing re-

quirements favor methods like microbatch under oil for

crystallization screening (Chayen, 1998; D�Arcy, 1994;
Luft et al., 2001), while similar considerations make free

interface diffusion microcrystallization based on multi-

layer soft lithography (see www.fluidigm.com; Hansen

et al., 2002) potentially promising. Some commercial

ventures (Stevens, 2000) employ large-scale, advanced

nanodrop setups for both screening and growth, al-

though drop size does significantly affect kinetic pa-

rameters, potentially limiting parameter overlap in
success space. Merits and caveats of nanocrystallization

are discussed in Bodenstaff et al. (2002).

3. Implementation details

3.1. Crystallization cocktail production

As a consequence of de novo cocktail design for each

protein construct, a large number of crystallization

cocktails need to be prepared for random screening and

optimization. We thus implemented customizable ran-

dom screen generation in the computer program CRY-

STOOL (Segelke andRupp, 1998) and interfaced it with a

liquid-handling robot to automatically produce crystal-

lization cocktails in 96-well format (Rupp et al., 2002).

Production of de novo random screens is time consuming

(20–40min per 96-well cocktail block) and thus rate lim-
iting in our high-throughput crystallization process. To

balance the desired comprehensive coverage of the crys-

tallization space with the throughput requirements, one

coulduse eachof the 288-condition randomscreen sets for

more than one protein. Such modest oversampling does

not compromise the validity of random sampling data,

but it allows us to conveniently screen about 10–20 pro-

tein samples per day, substantially exceeding the current
protein production rate.

3.2. Crystallization plate setup

Requirements for dispensing precision, volume, and

speed differ substantially for cocktail production com-

pared to the actual plate setup. While large-volume

(milliliters) handling with modest speed and precision
requirements suffices for cocktail setup, fast and very

accurate (also in geometric terms) dispensing of small

Fig. 3. Reagent frequency distribution in 203 successful random crystallization experiments and pH distribution of crystallization successes (inset).

The detergent LDAO (lauryldimethylamine-N-oxide) and glycerol appear to be effective additives. The distribution of precipitants and salts appears

within expectations, with the notable exception of no reported successes for ammonium sulfate, a popular precipitation agent (McPherson, 1999,

p. 204), although it was included with equal probability in about 800 experiments. The pH distribution, although coarsely sampled, follows the

distribution extracted from PDB data. Note that with only about 200 successful crystallization conditions forming a marginal sample one can expect

that in the long term the frequency distributions will change. The lack of overlapping basis sets makes it unfortunately impossible to compare the

performance of malonate (McPherson, 2001; Vilasenor et al., 2002) with our highest ranked precipitants. In addition, even with the common setup

technique of sitting-drop vapor diffusion, varying factors of potential significance like drop size, incubation temperature, protein set, and experi-

menter skills would make it difficult to compare the data.
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(microliter to nanoliter) volumes is mandatory for
crystallization plate setup. We thus decided, at the ex-

pense of full integration, to separate the plate setup from

the cocktail mixing step. By augmenting a Hydra mul-

tichannel dispenser with a contactless, single-channel

microsolenoid dispensing unit, we developed a relatively

inexpensive robot that can rapidly set up the cocktail

reservoirs and, without rearraying losses, dispense the

protein (500 nl to 1 ll) into drop wells filled with pre-
cipitant aliquots (Krupka et al., 2002).

3.3. Crystallization plate considerations

For simplicity of handling and ease of harvesting we

elected to use the same sitting-drop setup throughout for

screening, optimization, and harvesting. We designed a

suitable, SBS-compliant, 96-well plate for sitting drops,
IntelliPlate, that specifically accommodates the needs of

our high-throughput process. The plate has wide, ele-

vated rims for reliable tape sealing and different well

sizes to accommodate various drop sizes or additional

cryobuffer during harvesting. Polished wells reduce

sticking of crystals and support easy harvesting. Both

well shape and optical properties are optimized toward

automated image acquisition and recognition. A syn-
opsis of our plate imaging and crystal recognition soft-

ware CRYSFIND is provided in the TBSGC facility

review (Rupp, 2003).

4. Analysis of experiments

At the lowest level of crystallization data analysis,
one seeks to make inferences about hot spots in success

rates by simple frequency statistics, resembling the way

the sparse matrix set (Jancarik and Kim, 1991) was as-

sembled. Frequency analysis can be carried out globally

for all proteins or by categorizing proteins into groups

with distinct properties. Important for the long run are

correlations (generalizations) within the phase space and

with known properties of the protein, i.e., priors that
modify our choice of hypothesis (prediction) of where to

find the highest likelihood for success given what we

know already—the classical Bayesian strategy. Techni-

cally we are facing a classification problem in a poorly

sampled space of high dimensionality, with all the as-

sociated difficulties (for a review of statistical learning

methods see, e.g., Hastie et al., 2001). In addition, the

validity of any statistical inference method greatly de-
pends on suitable experimental design and the consis-

tency of the databases. Both points are not trivial and

only rarely explicitly addressed in the crystallization

literature (Carter, 1999; Jurisica et al., 2001; Hennessy

et al., 2000). For such reasons, results from undirected

cluster analysis of the BMCD do not translate directly

into useful crystallization strategies (Farr et al., 1998).

Substantial annotation and restructuring are necessary
to obtain meaningful subgroups and to incorporate the

analysis into a predictive framework (Hennessy et al.,

2000). Memory-based machine learning algorithms like

case-based reasoning have shown promise (Jurisica et al.,

2001), and we are currently exploring the performance

of methods like market basket analysis (MBA), which

essentially answer the question ‘‘what goes with what’’

and work well for even frequency distributions as in the
random sampling case. One of the advantages of MBA

is that the results are presented in the form of clear,

readable association rules, whose meanings are obvious,

and responses can be implemented immediately.6 In the

end, no matter how sophisticated the statistical analysis

and data mining of crystallization space, any of the

techniques will provide a only basis for increasing the

probability of crystallization success (or increasing our
degree of belief in it), but never guarantee success for

any particular protein.

5. Outlook and suggestions for the future

From our initial operation, as limited as the analysis

of results has to be at this time, we still can draw a
number of conclusions and propose some considerations

for future work. The concept of random sampling seems

to perform at least as well other methods (about 1/3 of

the TB proteins received could be crystallized roboti-

cally without any prior assumptions, tips, or tricks), and

of those, about 1/3 diffracted beyond 2.5�AA without need

for optimization. In addition, by consistent random

sampling, we are accumulating comprehensive and valid
samples of the crystallization space with respect to our

reagent basis set and method. The preliminary reagent

frequency distribution for successful conditions varies

from expectations based on the (mostly kit-based) fre-

quency data. Limitations of our preliminary analysis are

the low number of trials, limited overlap with other basis

sets, and use of only one technique (sitting-drop vapor

diffusion). Moreover, simple frequency analysis does not
discriminate uniqueness of successes, correlate multiple

successes, or discriminate data clusters.

To optimally reduce to practice the inferences of

advanced statistical analysis and machine learning will

require a dynamic response through individual cocktail

preparation. In random sampling we are already pro-

ducing de novo cocktails for each sampling experiment,

and the widespread availability of (relatively) affordable
liquid handling robots will help establish this practice.

6 Testimony to the usefulness of MBA was the elimination of an

annotation error in the success rate data base used to extract Fig. 3. Na

formate and DMSO formed a binary group in 12% of the cases with an

86% grouping probability (5.8 times more likely that random), caused

by improper entry of an optimization experiment as a random screen.
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We predict that the dominance of the rigid, kit-based
sampling screens will fade as soon as comprehensive

analysis methods favor screening or optimization strat-

egies that require on-demand cocktail production.

We also believe that open discussion of crystallization

procedures between the groups involved in public high-

throughput data analysis could help to improve data

consistency and to populate databases with sufficient

overlap, allowing a large-scale data mining effort. Dif-
ferent groups use different methods and targets, and

without a fair basis for comparison, it will be rather

difficult to determine the absolute merits of the ap-

proaches. It also appears that integration of micropu-

rification with methods of microcrystallization may

provide an overall increase in efficiency in a high-

throughput environment, despite the transferability is-

sues during scale-up for optimization and harvesting.
Finally, we are not aware of any access capacity of

crystallization robotics being used for systematic large-

scale studies of factors such as temperature, setup

technique, protein clustering, and batch variation. Small

differences in success rate under different setup or envi-

ronmental conditions require large sample sets to be-

come statistically significant, and as a consequence,

systematic studies of such effects are largely absent in the
literature or limited to specific cases. Coordination be-

tween the efforts and the funding of additional projects

that focus on systematic exploration of crystallization

space, without the pressure of operating in production

mode, could be a worthwhile investment.
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