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ABSTRACT: A generalized expression is given for the similarity of spectra,
based on the normalized integral of a weighted crosscorrelation function. It is
shown that various similarity and dissimilarity criteria previously described in
literature can be written as special cases of this general expression. A new
similarity criterion, based on this generalized expression, is introduced. The
benefits of this criterion are that it properly recognizes shifted but otherwise
similar details in spectra and that the resulting similarity measure is normalized.
Moreover, the criterion can easily be adapted to specific properties of spectra
resulting from various analytical methods. The new criterion is applied to the
classification of a series of crystal structures of cephalosporin complexes, based
on comparison of their calculated powder diffraction patterns. The results are
compared with those obtained using previously described criteria. c© 2001
John Wiley & Sons, Inc. J Comput Chem 22: 273–289, 2001

Keywords: similarity/dissimilarity; structure classification; powder diffraction
pattern; correlation function; pattern comparison

Introduction

M any chemical and physical methods for the
analysis of compounds in solution and/or

the solid state yield one-dimensional spectra or
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Netherlands; e-mail: rdg@sci.kun.nl

diagrams that consist of isolated and/or (partly)
overlapping sharp peaks. Examples of such spectra
are 1D-NMR spectra and powder diffraction pat-
terns. In the case of powder diffraction patterns, the
positions of the peaks are very sensitive to small de-
viations in unit cell parameters. This means that in
the case of crystal structure prediction, or ab initio
structure determination, strongly related structures
may give (calculated) powder diffraction patterns
that look similar from an overall point of view but
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differ significantly on a more local scale. The same
situation may occur for isomorphous compounds
that differ only slightly in unit cell volume or unit
cell shape. These compounds may give experimen-
tal or calculated powder patterns that by visual
inspection are definitely related and recognizable as
isostructural compounds. Unfortunately, in all those
cases the calculation of a reliable and objective mea-
sure of similarity or dissimilarity, even when the
whole pattern is considered, is nontrivial.

A conventional method for the comparison of
powder diffraction patterns is calculating the dif-
ference pattern and quantifying the dissimilarity
between the patterns as the sum of the differences
or the sum of the squared (and weighted) differ-
ences. In the field of Rietveld refinement such “cri-
teria of fit” are known as Rp (R-pattern) and Rwp

(R-weighted pattern).1 Because these measures are
based on a pointwise comparison of patterns, small
shifts in peak positions may result in a large (unde-
sired) increase of the dissimilarity measures.

In the present article, it is shown that there is a
simple relationship between the conventional cri-
terion based on squared differences, the Pearson
product-moment correlation coefficient2 and the
overlap integral described by Lawton and Bartell3—
who define a measure for the similarity of pow-
der diffraction patterns on an absolute scale—when
these criteria are written in terms of the correlation
function. With respect to the correlation function,
the drawback of these criteria is that they only
consider one point (the value at the origin) from
the auto- and crosscorrelation functions and neglect
the information that is present in the remainder
of the auto- and crosscorrelation functions.

Karfunkel, Rohde, Leusen, Gdanitz, and Rihs4

describe a method, that is based on the work of
Stephensen and Binsch,5 in which they not only
compare powder patterns pointwise but compare a
point of one diagram with the neighbourhood of the
corresponding point on the other diagram and vice
versa. As a matter of fact, Stephensen and Binsch
transformed the conventional squared difference
criterion into a criterion based on correlation func-
tions, by introducing this neighborhood concept
in the comparison of patterns. This can easily be
shown by rewriting their so-called “fold” in terms
of auto and crosscorrelation integrals. A drawback
of their criterion is that the resulting values are not
on an absolute scale so that limits for acceptance can
not easily be defined.

Although in principle all the information on the
similarity of two patterns is contained in the cross-
correlation function, an additional function must be

used to extract this similarity information. Such a
function defines the effective neighbourhood and
related weigths in the target pattern that should be
compared with the corresponding point on the ref-
erence pattern. The “fold” used by Karfunkel et al.
contains such a function in the form of matrix F;
however, it will be shown that a more convenient
function can be used for this purpose. This alterna-
tive function is easier to “tune” with respect to the
particular properties of the spectra of interest, be-
cause it contains only one adjustable parameter.

Because powder diffraction patterns, and also
1D-spectra from many other analytical methods, are
on an arbitrary scale, an obvious question is how to
scale the patterns before applying a (dis)similarity
criterion. Karfunkel et al. scale the patterns by
equalizing the total number of counts, which is the
same as normalizing the area under the patterns.
This choice was not based on specific arguments,
although it is clear that for closely related struc-
tures the patterns should have a similar number
of counts. In this article it is shown that on the
basis of crosscorrelation and autocorrelation inte-
grals you should scale the patterns according to
the self-similarities of the patterns. In practice, this
leads to almost the same scaling as proposed by
Karfunkel et al. However, in principle, scaling ac-
cording to self-similarities may lead to a different
sum of counts for each individual pattern.

The similarity and dissimilarity criteria described
above can be written as a special form of a general-
ized expression for similarity, based on normalized
weighted auto and crosscorrelation functions. Us-
ing this generalized expression it can easily be seen
that the various criteria only use a different weight-
ing function and/or different normalization factors.
One of the major advantages of this generalized
form is that it shows how to obtain a similarity mea-
sure on an absolute scale, given a suitable weighting
function. Another advantage is that prescaling of
the patterns becomes unnecessary.

Although the power of a newly proposed sim-
ilarity criterion that is based on this generalized
expression is demonstrated for powder diffraction
patterns corresponding to a series of crystal struc-
tures of cephalosporin complexes, the similarity
concept presented in this article provides a general
method for quantifying the match between spectra
of various physical and chemical techniques for the
analysis of matter. The applicability of the gener-
alized expression for similarity lies in the field of
pattern classification, data base searching and opti-
mization problems. Its recent successful use in the
direct determination of molecular constants from
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rovibronic spectra with genetic algorithms is de-
scribed by Hageman, Wehrens, De Gelder, Meerts,
and Buydens.6

Auto- and Crosscorrelation Functions

A function that describes the similarity (or over-
lap) of two patterns, which are here expressed as
two continuous functions f (x) and g(x), as a func-
tion of the relative shift r between the patterns, is
the correlation function. The maximum and mini-
mum value of the relative shift r is determined by
the interval for which the patterns f (x) and g(x) are
measured or calculated. The autocorrelation func-
tion cff (r) for a given reference pattern f (x) is given
by:

cff (r) =
∫

f (x)f (x+ r) dx (1a)

The integral of cff (r), the autocorrelation integral,
is given by (see Appendix A.1):∫

cff (r) dr =
(∫

f (x) dx
)2

(1b)

This shows that the area under the autocorrela-
tion function cff (r) is equal to the square of the area
under the reference pattern f (x).

Similar expressions can be defined for the auto-
correlation function cgg(r) of target pattern g(x):

cgg(r) =
∫

g(x)g(x+ r) dx (2a)∫
cgg(r) dr =

(∫
g(x) dx

)2

(2b)

It can easily be seen from expressions (1b)
and (2b) that setting the total number of counts for
f (x) and g(x) to the same value also results in setting
the autocorrelation integrals for f (x) and g(x), which
express the self-similarities of the patterns, to the
same value. In this way it is possible to put the auto-
correlation functions for f (x) and g(x) on an absolute
scale (in principle, arbitrarily chosen) and compare
the values of the crosscorrelation function cfg(r) with
the values of the autocorrelation functions cff (r) and
cgg(r).

The crosscorrelation function cfg(r) for patterns
f (x) and g(x) is defined in a similar way by:

cfg(r) =
∫

f (x)g(x+ r) dx (3a)∫
cfg(r) dr =

∫
f (x) dx

∫
g(x) dx (3b)

From (3b) it can be seen that the area under the
crosscorrelation function cfg(r), the crosscorrelation
integral, is always equal to the product of the areas
under the patterns f (x) and g(x). The crosscorrela-
tion function cfg(r) can be normalized by dividing it
by the root of the product of the autocorrelation in-
tegrals [the product of the areas under the patterns
f (x) and g(x)], which makes prescaling of the pat-
terns f (x) and g(x) unnecessary:

c′fg(r) = cfg(r)
/(∫

f (x) dx
∫

g(x) dx
)

(3c)

The integral of c′fg(r) will always be equal to 1.
This means, however, that the crosscorrelation inte-
gral itself is not a measure for the similarity between
f (x) and g(x). It is the shape of the correlation func-
tion cfg(r) [or c′fg(r)] that contains the information on
the similarity between patterns f (x) and g(x). In Fig-
ure 1, two different powder diffraction patterns are
shown (corresponding to entries 2 and 20 of Table II,
which will be explained later) with their corre-
sponding (normalized) auto- and crosscorrelation
functions. The areas under the correlation functions
are the same; however, the different shapes of the
curves clearly reflect the differences and dissimilar-
ity of the patterns.

In the next sections it will be shown that various
similarity and dissimilarity criteria that are decribed
in the literature can be written in terms of auto- and
crosscorrelation functions.

Pointwise Similarity and
Dissimilarity Criteria

A criterion often used for expressing the dissim-
ilarity between two spectra or diagrams is the con-
ventional pointwise criterion that includes the sum
of the squared differences (see, e.g., Harris, John-
ston, and Kariuki7 or Dods, Gruner, and Brumer8).
The difference criterion dfg is given by:

dfg =
∫ (

f (x)− g(x)
)2 dx (4a)

The difference criterion dfg can be rewritten into
an expression that only includes terms that are iden-
tical to the autocorrelation functions for f (x) and g(x)
and the crosscorrelation function for f (x) and g(x) at
r = 0 (see Appendix A.2):

dfg = cff (0)+ cgg(0)− 2cfg(0) (4b)

Therefore, dfg is only based on the values of the
auto and crosscorrelation functions at r = 0 (no
relative shift between the patterns is taken into ac-
count).
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FIGURE 1. (a) Example of two different powder
diffraction patterns corresponding to the
Cefradine/beta-nafthol complex (A2) and the
Cefradine/methyl 3-hydroxybenzoate complex (N20)
(see Table II). (b) Auto- and crosscorrelation functions
corresponding to the powder patterns shown in (a).

Another criterion often used for expressing the
similarity between two patterns or two vectors
is the Pearson product-moment correlation coeffi-
cient rfg:2

rfg =
∫

( f (x)− 〈 f (x)〉)(g(x)− 〈g(x)〉) dx(∫
( f (x)− 〈 f (x)〉)2 dx

∫
(g(x)− 〈g(x)〉)2 dx

)1/2

(5a)
where 〈 f (x)〉 and 〈g(x)〉 are the mean values of
patterns f (x) and g(x), i.e., 〈 f (x)〉 =∑ f (xi)/n and
〈g(x)〉 = ∑ g(xi)/n (n being the number of points xi

at which values for f (xi) and g(xi) are measured or
calculated).

Defining the new patterns f ′(x) = f (x)−〈 f (x)〉 and
g′(x) = g(x)−〈g(x)〉, this expression can also be writ-
ten in terms of auto- and crosscorrelation functions
(see Appendix A.3):

rfg = cf ′g′ (0)
/(

cf ′f ′ (0)cg′g′ (0)
)1/2 (5b)

The value of rfg is independent of the scale of the
patterns f ′(x) and g′(x), and thus independent of the
scale of the patterns f (x) and g(x). rfg can directly
be used to express the similarity between two “un-
scaled” patterns f (x) and g(x).

The most important conclusion is that the Pear-
son product-moment correlation coefficient is also
based on the values of the auto- and crosscorrelation
functions at r = 0 only. However, the terms 〈 f (x)〉
and 〈g(x)〉 in expression (5a) introduce a shift of
the original patterns f (x) and g(x) in the y-direction.
Moreover, a specific scaling is implicitly applied to
f (x) and g(x), while using criterion (5a). When the
values of

∫
f ′(x)2 dx and

∫
g′(x)2 dx are normalized

to 1, by scaling f (x) and g(x), the values of rfg and
cf ′g′ (0) will become the same. This is not the same
as scaling by the total number of counts [setting the
areas under f (x) and g(x) to the same value]. Instead,
for a simple pointwise comparison of patterns based
on the correlation function, cfg(0) divided by the root
of the product of the autocorrelation integrals for
f (x) and g(x) [see expression (3c)] could be used:

c′fg(0) = cfg(0)
/(∫

f (x) dx
∫

g(x) dx
)

(5c)

This criterion can be used for “unscaled” pat-
terns and measures the similarity on the basis of
the crosscorrelation function in point 0, as if the pat-
terns were prescaled according to the total number
of counts. The value of c′fg(0) ranges from 0 to 1.

The Pearson product-moment correlation coeffi-
cient is closely related to the overlap integral Sαβ
that is described by Lawton and Bartell.3 In prin-
ciple, the method they propose is based on peak
positions (lines) deduced from powder diagrams.
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By representing the diffraction peaks by Gaussian
functions they simulate a profile that can be used to
calculate an overlap integral. This overlap integral is
a direct index of how well two patterns match each
other.

It can easily be seen that the overlap integral is
a normalized crosscorrelation function at r = 0 and
is similar to expression (5b), the Pearson product-
moment correlation coefficient, when the simulated
profile, based on lines, is replaced by the whole pat-
tern, calculated or measured [see Appendix A.4].
The only difference is a base-line shift [via the terms
〈 f (x)〉 and 〈g(x)〉], which is not incorporated in the
overlap integral. In other words, if the terms 〈 f (x)〉
and 〈g(x)〉 are removed from expression (5a) one ob-
tains the overlap integral of Lawton and Bartell:

Sαβ = cfg(0)
/(

cff (0)cgg(0)
)1/2 (5d)

To summarize for these pointwise criteria: the
difference criterion can be transformed into a crite-
rion, which includes terms that are identical to the
values of the autocorrelation functions for f (x) and
g(x) and the crosscorrelation function for f (x) and
g(x) at r = 0. The difference criterion is, in principle,
the dissimilarity counterpart of the overlap integral
of Lawton and Bartell if the patterns are scaled ac-
cording to

∫
f 2(x) dx and

∫
g2(x) dx. If a baseline shift

is applied to f (x) and g(x), according to 〈 f (x)〉 and
〈g(x)〉, the overlap integral of Lawton and Bartell is
transformed into the Pearson product-moment cor-
relation coefficient.

Similarity and Dissimilarity Criteria
Including Neighborhoods

The pointwise difference criterion dfg can be ex-
tended to a neighborhood criterion by defining an
expression dfg(r) in analogy with cfg(r) [see Appen-
dix A.5]:

dfg(r) =
∫ (

f (x)− g(x+ r)
)2 dx

= cff (0)+ cgg(0)− 2cfg(r)∫
dfg(r) dr = cff (0)+ cgg(0)− 2

∫
cfg(r) dr (6)

Although the dissimilarity criterion (6) contains
two constants cff (0) and cgg(0) and the same term
as (3b), this criterion is not just the dissimilarity
counterpart of (3b). When f (x) and g(x) are scaled
on the basis of

∫
f (x) dx and

∫
g(x) dx, the sum of the

terms cff (0) and cgg(0) may have a different value for
each different pair of patterns, because these terms

are related to the sum of the squared pattern val-
ues.

It will now be shown that criterion (6) shows
close resemblance to the fold used by Karfunkel
et al.4 Their fold criterion is defined as:

dTFd

where an element of the vector d, d(x) = f (x)− g(x).
The elements of the matrix F are defined as:

Fij = 1
/(

1+ α|i− j|β)
To compare this criterion with the crosscorrela-

tion function we initially assume that all elements
of F are equal to 1. This would mean that we use
equal weigths in the comparison of a point of the
reference pattern with the neighborhood of the cor-
responding point on the target pattern. It can easily
be shown that in that case the fold criterion is a
criterion based on correlation integrals only [see Ap-
pendix A.6]:

dTFd =
∫

cff (r) dr+
∫

cgg(r) dr− 2
∫

cfg(r) dr (7)

where r = i − j. Note the analogy of expression (7)
with expressions (4b) and (6).

If patterns f (x) and g(x) are scaled on the basis of
the total sum of the counts, the fold criterion leads to
the same but opposite results as criterion (3b), which
would mean a fold-value of 0 for any combination
of f (x) and g(x), when all matrix elements of F are
set to 1. Where (3b) is a similarity criterion, (7) is
the corresponding dissimilarity criterion. By intro-
ducing the concept of comparing one point on the
reference pattern with the neighborhood of the cor-
responding point on the target pattern, Karfunkel
et al. transformed the conventional criterion, based
on squared differences, to a correlation integral cri-
terion. It may now be clear that, before calculating
the fold, the scaling of the patterns must be the
procedure proposed by Karfunkel et al. for reasons
related to the normalization of the autocorrelations
integrals, the first and second term of (7). However,
once the original matrix F of Karfunkel et al. is used,
renormalization of the crosscorrelation integral may
be needed, as will be shown now.

Introducing the original matrix F into the expres-
sion for (7) would lead to [see Appendix A.6]:

dTFd =
∫

w(r)cff (r) dr+
∫

w(r)cgg(r) dr

− 2
∫

w(r)cfg(r) dr (8)

where w(r) = 1/(1+ α|r|β) (r = i− j).
The similarity counterpart of (8), expressing the

similarity between the patterns using the same func-

JOURNAL OF COMPUTATIONAL CHEMISTRY 277



DE GELDER, WEHRENS, AND HAGEMAN

tion w(r), would be a weighted crosscorrelation in-
tegral:∫

cw
fg(r) dr =

∫
w(r)

∫
f (x)g(x+ r) dx dr (9a)

and the associated autocorrelation integrals would
include the same function w(r):∫

cw
ff (r) dr =

∫
w(r)

∫
f (x)f (x+ r) dx dr (9b)∫

cw
gg(r) dr =

∫
w(r)

∫
g(x)g(x+ r) dx dr (9c)

An important conclusion is that the fold criterion
of Karfunkel et al. can be seen as a dissimilar-
ity counterpart of a weighted correlation integral∫

cfg(r) dr, as given in (3b) [weighted with the func-
tion w(r)].

If the patterns f (x) and g(x) are scaled on the basis
of the total number of counts, it may be clear from
expressions (9b) and (9c) that the corresponding au-
tocorrelation integrals do not necessarily result in
the same value. On the other hand, it may now be
clear that the matrix F, or a different function w(r),
is needed to extract the similarity information from
the crosscorrelation function. To ensure that the au-
tocorrelation integrals will give identical values, the
weighted crosscorrelation integral

∫
cw

fg(r) dr must be
normalized to obtain a similarity measure Cfg on an
absolute scale:

Cfg =
∫

cw
fg(r) dr

/(∫
cw

ff (r) dr
∫

cw
gg(r) dr

)1/2

(10)

This similarity criterion will yield a value of 1
when patterns f (x) and g(x) are identical and a value
between 0 and 1 for other cases. The correspond-
ing dissimilarity criterion, which can be obtained
from (7) by substituing Cfg, Cff , and Cgg for

∫
cfg(r) dr,∫

cff (r) dr, and
∫

cgg(r) dr, respectively, will yield val-
ues between 0 and 2. In fact, this dissimilarity crite-
rion is a renormalized “fold.”

A Generalized Expression for Similarity
and Dissimilarity

All criteria described before can be summarized
by the following expressions for similarity and dis-
similarity. The generalized expression for the simi-
larity Sfg between patterns f (x) and g(x) is given by:

Sfg =
∫

wfg(r)cfg(r) dr/(∫
wff (r)cff (r) dr

∫
wgg(r)cgg(r) dr

)1/2

(11)

The corresponding generalized expression for
the dissimilarity Dfg is given by:

Dfg = Sff + Sgg − 2Sfg (12)

The function wfg(r) determines the way in which
the similarity information is extracted from the
crosscorrelation function and the functions wff (r)
and wgg(r) determine the normalization of the
weighted crosscorrelation function via the auto-
correlation functions. For obtaining a similarity or
dissimilarity measure on an absolute scale the fol-
lowing condition must hold:

wff (r) = wgg(r) = wfg(r)

To include the neighborhood in the comparison
of points the weighting functions should be defined
for r 6= 0. Both aspects are important and can easily
be combined.

The differences between the various criteria de-
scribed in literature can simply be explained by a
different definition of the weighting functions wff (r),
wgg(r), and wfg(r). In Table I an overview is given of
the various criteria and their corresponding use of
the three weighting functions. From Table I it can
be seen that none of the criteria described in litera-
ture include both the concept of neighborhood and
a correct normalization to obtain a measure on an
absolute scale. To define a similarity measure on an
absolute scale in analogy with the fold of Karfunkel
et al. the generalized similarity measure Sfg could be
used with weighting functions:

wfg(r) = 1
/(

1+ α|r|β)
wff (r) = wgg(r) = wfg(r)

In principle, we now have defined a new crite-
rion, a normalized fold, with different characteris-
tics than the original fold. In the next section it is
shown that the weighting function wfg(r), as defined
for the fold, can be replaced by a simple triangle
function.

Application of the Generalized
Expression for Similarity to Structure
Classification from Powder
Diffraction Patterns

It has been shown that the various criteria for
similarity and dissimilarity described in the lit-
erature can be deduced from the generalized ex-
pressions (11) or (12). To obtain a measure on an
absolute scale, a suitable normalization should be
used, which is easily done by taking identical ex-
pressions for the weighting functions wff (r), wgg(r),
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TABLE I.
(Dis)similarity Criteria and Their Corresponding Weighting Functions.

Criterion Equation Type wfg(r) wff (r) wgg(r)

Difference criterion dfg (4a) and Dfg 1 if r = 0, 1 1
(4b) 0 if r 6= 0

Pearson product moment
correlation coeficient rfga

(5a) and Sfg 1 if r = 0, = wfg(r) = wfg(r)
(5b) 0 if r 6= 0

Overlap integral Lawton and Bartell (5d) Sfg 1 if r = 0, = wfg(r) = wfg(r)
0 if r 6= 0

Fold criterion Karfunkel et al. (8) Dfg 1/(1+ α|r|β ) 1 1
Normalized fold criterion (10) Dfg 1/(1+ α|r|β ) = wfg(r) = wfg(r)
Newly proposed similarity criterion (11) Sfg 1− |r|/l if |r| < l = wfg(r) = wfg(r)

0 if |r| ≥ l

a A mean centering of f(x) and g(x) should be applied first.

and wfg(r) in expressions (11) or (12). The ques-
tion of which similarity (or dissimilarity) criterion
can best be used for a given application now fo-
cusses on the choice of the weighting function wfg(r).
This weighting function defines the neighborhood
and associated weights in the comparison of two
corresponding points on the reference and target
patterns.

The conventional difference criterion, the Pear-
son product-moment correlation coefficient, and the
overlap integral of Lawton and Bartell use a delta
function for wfg(r) and do not incorporate any con-
tributions from the neighborhood of a point. The
fold criterion of Karfunkel et al. includes a weight-
ing function that can be tuned by two parameters α
and β. These two parameters define the shape and
width of the weighting function.

The differences in discriminating power be-
tween the conventional difference criterion, the
overlap integral of Lawton and Bartell, the fold
criterion of Karfunkel et al., and a newly pro-
posed similarity criterion, which is obtained by
using a simple triangle weighting function in the
generalized expression for similarity, was investi-
gated in the classification of 20 crystal structures
of complexes of cephalosporin antibiotics on the
basis of their calculated powder diffraction pat-
terns. From single-crystal X-ray diffraction analy-
ses of these compounds (Kemperman, De Gelder,
Dommerholt, Raemakers–Franken, Klunder, and
Zwanenburg9, 10) it was found that among these 20
complexes six different crystal forms are found. Ten
compounds crystallize in form A, four compounds
in type B, two compounds in form N and the re-
maining four compounds in types C, D, E, and F.
In Table II the crystal data are shown for these 20

complexes. From this table it can be seen that small
differences are present in the cell parameters of
the compounds belonging to the same crystal form.
These small differences give rise to large peak shifts
in the corresponding powder diffraction patterns. In
Figure 2, the simulated powder diffractions patterns
for the different crystal forms are shown. For forms
C, D, E, and F, only one member can be shown.
For forms A, B, and N, two representative members
are shown, clearly illustrating the large peak shifts
resulting from the small differences in unit cell pa-
rameters.

The question is now whether these 20 complexes
can be classified on the basis of their powder pat-
terns using a dedicated similarity criterion. The
different crystal forms should be recognized as dis-
similar, however, the complexes belonging to the
same crystal form should ideally be recognized as
similar compounds, and should somehow be clus-
tered together.

Similarities or dissimilarities [which can be inter-
converted, see (11) and (12)] were calculated with
four criteria (the difference criterion, the overlap
integral of Lawton and Bartell, the fold criterion,
and the newly proposed similarity criterion) for
each pair of patterns. For the parameters α and β

corresponding to the fold criterion, the optimized
values of the authors4 were used (10−7 and 4, respec-
tively). For the newly proposed similarity criterion
the following simple triangle weighting function
was used:

wfg(r)= 1− |r|/l if |r| < l

wfg(r)= 0 if |r| ≥ l

The parameter l defines the width (degrees 2θ )
of the neighborhood taken into account. This func-
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A GENERALIZED EXPRESSION FOR THE SIMILARITY OF SPECTRA

FIGURE 2. Simulated powder diffraction patterns
of the various crystal forms found for complexes of
cephalosporin antibiotics.

tion extracts information from the central part of
the crosscorrelation function with a weight that
decreases proportionally to the distance from the
origin (r = 0). After a number of experiments it was
found that values of l between 0.6 and 3.0 lead to
stable and comparable results for the powder dif-
fractions patterns of the 20 complexes. A value of 0.6
was chosen for further calculations. In Figure 3, the
weighting function of Karfunkel et al. and triangle
weighting function for l = 0.6 and l = 3.0 are shown
for comparison. The effect of the triangle weighting
function on the crosscorrelation function, that was
also shown in Figure 1, is illustrated in Figure 4.

The similarity calculations lead to four (dis)simi-
larity matrices [similarities are eventually converted
to dissimilarities using expression (11)] that are
shown in Table III. Note that only the similarity
matrices obtained with the overlap integral of Law-
ton and Bartell and the newly proposed similarity
criterion, using the triangle weighting function, con-
tain values on an absolute scale (values between 0
and 1).

FIGURE 3. The weighting function of Karfunkel et al.
(solid line), the triangle weighting function with l = 0.6
(dashed line) and l = 3.0 (dotted line).

On the dissimilarity matrices, a clustering algo-
rithm was applied to group the patterns that are
considered to be similar on the basis of the data in
the matrices. A hierarchical agglomerative cluster-
ing method was used for this purpose. Initially, each
object is viewed as a separate cluster; in each subse-
quent step, similar objects are joined according to
a distance criterion, and the distances of the newly
formed cluster to the other clusters or objects are re-
calculated. This process continues until all objects
are joined into one cluster. The criterion that is used
is known as “Ward’s method,”11 where elements or
clusters are joined in such a way that the sum of het-
erogeneities of all clusters (defined as the summed
squared distance of each member of a cluster to the
centroid of that cluster) increases as little as possi-
ble. The method performs best in cases where the
clusters are approximately spherical in shape and
of equal size, and is widely applied. This cluster-

FIGURE 4. Weighted auto- and crosscorrelation
functions (triangle weighting function with l = 0.6) for A2
and N20.
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FIGURE 5. (a) Clustering dendrogram found for the difference criterion. (b) Clustering dendrogram found for the
Lawton and Bartell overlap integral. (c) Clustering dendrogram found for the Fold criterion. (d) Clustering dendrogram
found for the newly proposed similarity criterion.

ing procedure yields the dendrograms as depicted
in Figure 5. Clearly, the results are quite different for
the four (dis)similarity criteria. The newly proposed
similarity criterion, using the triangle weighting
function, leads to the most homogeneous classifica-
tion and is able to seperate the crystal structures into
four groups consisting of 1: only N, 2: only A, 3: four
B’s and one D, and 4: E, C, and F.

To illustrate the stability of the generalized simi-
larity criterion using the simple triangle weighting
function, similarity matrices were calculated for in-
creasing values of the parameter l. The same clus-
tering procedure was applied on the corresponding
similarity matrices, and the resulting dendrograms
are shown in Figure 6. For small values of l (smaller
than 0.6), very inhomogeneous classification den-
drograms are found. For very large values of l
(larger than 3.0) also inhomogeneous classification
dendrograms are found. However, in the range 0.6
to 3.0, similar dendrograms of comparable homoge-
niety are found.

Discussion and Conclusion

The generalized expression for the similarity of
powder diffraction patterns shows that the crite-
ria described in literature all refer to the correlation
function. It also shows that the differences between
the criteria can be explained by different choices of
weighting functions for the auto- and crosscorrela-
tion terms. The nature of the weighting functions

used determines whether a pointwise or neighbor-
hood approach is applied, and whether the resulting
measure for similarity or dissimilarity is on an ab-
solute scale or not.

The importance of a neighborhood approach has
been demonstrated for the classification of crystal
structures on the basis of their calculated powder
diffraction patterns. Including the neighborhoods

FIGURE 6. Clustering dendrograms found for
increasing values of l (only unique dendrograms in the
range l = 0.02 to 3.42 are shown).
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leads to a significant improvement of discriminat-
ing power compared to pointwise approaches, and
makes it possible to recognize closely related struc-
tures. The way in which the neighborhood is taken
into account depends on the shape of the weighting
function used. A simple triangle function leads to
very useful results and performs even better than
the more complex weighting function used by Kar-
funkel et al. It should, however, be emphasized that
we did not try to adapt the parameters defining
the fold weighting function to optimize the classi-
fication of our set of structures. We just took the
function and parameters the authors optimized for
their specific problem.

In our tests we used calculated powder diffrac-
tion patterns as the source of structural information.
In practice, one should like to apply the classifica-
tion procedure on experimentally obtained powder
patterns. In that case, there might be factors like
zero-point shifts, preferred orientation, peak broad-
ening, nonzero background and experimental noise
that may influence the outcome of the classifica-
tion procedure. However, the classification of ex-
perimentally obtained patterns and its associated
problems will be the subject of our further research,
and will not be discussed any further here.

In the introduction it was mentioned that the gen-
eralized expression might also be used for database
searching and optimization problems. For database
searching it is of crucial importance that a measure
for similarity or dissimilarity is defined on an ab-
solute scale. It is necessary to know the numerical
range of the measure to define limits for acceptance
in the selection of subsets of patterns from a data-
base. The newly proposed criterion for similarity
can be used for the purpose of database searching,
because its value always ranges from 0 to 1. The
width of the triangle function can be adapted to
change the search from a strict to a more generous
one. It is up to the user to optimize the settings for
his particular case.

For optimization problems the aspect of normal-
ization, to obtain a measure on an absolute scale,
is less important. The width of the neighborhood,
however, may determine the overall success of an
optimization procedure (see Hageman et al.6) in
which parameters defining a theoretical pattern are
optimized with respect to an experimental spec-
trum. The effect of the inclusion of the neighbor-
hood is a more realistic assesment of the error, and
this may guide the process to the global optimum.
A possible application of the newly proposed sim-
ilarity criterion could be the determination of cell
and/or positional parameters of crystal structures

from powder diffraction data only. In principle, the
criterion allows for a gradual improvement of both
peak positions and peak intensities as was shown
by Hageman et al.

Although this article has focussed on powder
diffraction patterns, which are one-dimensional pat-
terns, it should be emphasized that the generalized
expression for similarity is applicable to other types
of spectra and is not limited to one-dimensional pat-
terns only. If the variables x and r are replaced by
vectors the expression can directly be used in mul-
tidimensional space. Then it can also be applied, for
example, to express the similarity between 2D, 3D,
or 4D-NMR spectra.

Appendix

A.1. The Integral of the
Autocorrelation Function cff (r)

cff (r) =
∫

f (x)f (x+ r) dx∫
cff (r) dr =

∫∫
f (x)f (x+ r) dx dr

=
∫∫

f (x)f (r′) dx dr′ (r = r′ − x)

=
∫

f (x) dx
∫

f (r′) dr′ =
(∫

f (x) dx
)2

A.2. dfg Written as Auto- and
Crosscorrelation Functions

dfg =
∫ (

f (x)− g(x)
)2 dx

=
∫

f 2(x) dx+
∫

g2(x) dx− 2
∫

f (x)g(x) dx

A pointwise comparison of patterns f (x) and g(x)
(neglecting the neighborhoods of points in the pat-
terns) would, speaking in terms of the crosscorre-
lation function cfg(r), be identical to calculating the
crosscorrelation function for patterns f (x) and g(x)
at r = 0:

cfg(0) =
∫

f (x)g(x) dx

Therefore, dfg can be written as:

dfg = cff (0)+ cgg(0)− 2cfg(0)
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A.3. rfg Written as Auto- and
Crosscorrelation Functions

rfg =
∫

( f (x)− 〈 f (x)〉)(g(x)− 〈g(x)〉) dx(∫
( f (x)− 〈 f (x)〉)2 dx

∫
(g(x)− 〈g(x)〉)2 dx

)1/2

Defining the new patterns f ′(x) = f (x) − 〈 f (x)〉
and g′(x) = g(x) − 〈g(x)〉 and considering these
new patterns f ′(x) and g′(x) as vectors f′ and g′
in n-dimensional space (n being the number of
points xi at which values for f ′(xi) and g′(xi) are mea-
sured or calculated) this expression reduces to the
cosine of the angle αf ′g′ between vectors f′ and g′:

rfg = cos(αf ′g′ )

=
∫

f ′(x)g′(x) dx/(∫
f ′2(x) dx

∫
g′2(x) dx

)1/2

= f′ · g′/|f′||g′|
cf ′f ′ (0) =

∫
f ′2(x) dx

cg′g′ (0) =
∫

g′2(x) dx

cf ′g′ (0) =
∫

f ′(x)g′(x) dx

rfg = cf ′g′(0)
/(

cf ′f ′ (0)cg′g′ (0)
)1/2

A.4. The Overlap Integral of Lawton
and Bartell

The overlap integral for peaks i from pattern α

and peaks j from pattern β, defined by Lawton and
Bartell, is expressed as follows:

Sαβ =
∑∑(

Iα(i)
/(
σα(i)a1/2

α

))(
Iβ( j)

/(
σβ ( j)a1/2

β

))
× exp

[−(dα(i)− dβ( j)
)2/4

(
wα(i) ·wβ( j)

)]
where

aα =
∑∑(

Iα(i)/σα(i)
)(

Iα( j)/σα( j)
)

× exp
[−(dα(i)− dα( j)

)2/4
(
wα(i) · wα( j)

)]
aβ =

∑∑(
Iβ(i)/σβ(i)

)(
Iβ( j)/σβ( j)

)
× exp

[−(dβ(i)− dβ( j)
)2/4

(
wβ(i) ·wβ( j)

)]
Iα and Iβ correspond to the diffracted relative

intensities in patterns α and β, σα , and αβ are para-
meters representing the characteristic variations in
these intensities, dα and dβ correspond to the inter-
planar spacings in patterns α and β and wα and wβ

are window parameters describing the windows of
acceptance.

A.5. dfg(r) Written as Auto- and
Crosscorrelation Functions

dfg(r) =
∫ (

f (x)− g(x+ r)
)2 dx

=
∫

f 2(x) dx+
∫

g2(x+ r) dx

− 2
∫

f (x)g(x+ r) dx

= cff (0)+ cgg(0)− 2cfg(r)∫
dfg(r) dr = cff (0)+ cgg(0)− 2

∫
cfg(r) dr

A.6. The Fold Written as Auto- and
Crosscorrelation Integrals

fold = dTFd

where an element of the vector d, d(x) = f (x)− g(x).
The elements of the matrix F are initially set to 1:

Fij = 1

dTFd =
∫∫ (

f (x)− g(x)
)(

f (x+ r)− g(x+ r)
)

dx dr

=
∫∫

f (x)f (x+ r) dx dr

+
∫∫

g(x)g(x+ r) dx dr

−
∫∫

f (x)g(x+ r) dx dr

−
∫∫

f (x+ r)g(x) dx dr

=
∫

cff (r) dr+
∫

cgg(r) dr− 2
∫

cfg(r) dr

where r = i− j.
Introducing the original matrix F into the expres-

sion for the fold leads to:

Fij = 1
/(

1+ α|i− j|β)
dTFd =

∫∫ (
f (x)− g(x)

)
w(r)

× ( f (x+ r)− g(x+ r)
)

dx dr

=
∫∫

w(r)f (x)f (x+ r) dx dr

+
∫∫

w(r)g(x)g(x+ r) dx dr
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−
∫∫

w(r)f (x)g(x+ r) dx dr

−
∫∫

w(r)f (x+ r)g(x) dx dr

=
∫

w(r)cff (r) dr+
∫

w(r)cgg(r) dr

− 2
∫

w(r)cfg(r) dr

where w(r) = 1/(1+ α|r|β ) (r = i− j).
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