
Analytica Chimica Acta 400 (1999) 413–424

Molecular challenges in modern chemometrics
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Abstract

Since the very beginning of the discipline, chemometrics has mainly focussed on analytical chemical problems such as
calibration. With the growing importance of databases and applications in medicinal and computational chemistry, the domains
of analytical chemistry and chemometrics have been enlarged significantly in recent years. Especially the relation between
molecular structure and function has become of considerable interest. Despite the huge quantities of data that are available
nowadays, it is often difficult to recognise and extract relevant chemical information for the problem at hand. One of the main
obstacles is the definition of an appropriate representation of a molecule. Although a variety of different representations are
used, none are generally applicable.

This paper focuses on the challenges that arise in the chemometrical analysis of molecular structures, the relation between
structure and function and the relation between molecular representation and chemometrical modelling. Exciting opportunities
for further research are illustrated using an example concerning the prediction of co-crystallisation behaviour for small organic
molecules with cephalosporin antibiotics. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main goals in analytical chemistry are accu-
rate identification and quantification, and in the nearly
three decades of the existence of the field of chemo-
metrics, research mainly has concentrated on these
areas. For quantitative analysis multivariate calibra-
tion methods have become indispensable, especially
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as a result of the large amounts of data generated
by modern instruments. Qualitative analysis, mainly
in the context of identification, is performed using
mainly clustering and classification methods. In the
last few years the set of analytical questions, quanti-
tative (‘how much?’) and qualitative (‘what?’) is ex-
tended with questions about localisation (‘where?’)
and molecular structure (‘in what form?’). Examples
of the localised problems can be found in surface anal-
ysis methods, where a location-specific quantification
or classification is required. This necessitates the use
of image processing techniques as well as chemomet-
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rical methods [1]. Questions on molecular structure
are the subject of the present paper and will be re-
ferred to as ‘molecular problems’. For these problems,
it is not only important to know which and how many
molecules are present in the sample, but knowledge
about their conformation(s) will be required, too, to
answer the questions posed. A lot of research has been
devoted to the relation between molecular structure
and function, especially in the fields of pharmaceuti-
cal chemistry and quantitative structure–activity rela-
tionships (QSAR). Techniques that are often used in
these fields include energy minimisation and docking
procedures, and linear regression techniques to pre-
dict behaviour from structure and physico-chemical
properties. In the last decade the interest in molecular
problems has increased enormously, and the huge po-
tential of chemometrical methods in this respect has
already been acknowledged [2].

Three main driving forces can be identified for the
recent increase in attention. First of all, molecular
structure can be determined nowadays both in crys-
talline form and in solution, even for quite large struc-
tures such as proteins. Especially high-resolution mul-
tidimensional NMR techniques are important in this
respect. Second, computational techniques are rou-
tinely being employed to assess the quality of exper-
imental structures and to refine experimental results.
This generally leads to huge amounts of data. In or-
der to be able to interpret these data, the informa-
tion must be condensed, e.g., by means of a cluster
analysis [3,4]. Finally, more and more experimental
and computational results are available to the scien-
tific community in the form of huge data bases, acces-
sible through the internet. The information potential
of these data bases is almost unlimited, but again the
question arises how to make proper use of the data.
In data-mining, simple uni- and bivariate statistics are
often used to formulate conclusions on ensembles of
structures (see, e.g., ref. [5,6]), but clearly multivariate
techniques can yield much more information [7,8].

Standard chemometrical methods cannot always be
applied per se, however. In conventional chemomet-
rics the variance–covariance matrix indicating differ-
ences and similarities between objects and variables
in the data set is the starting point of many analyses.
In molecular problems, there is no clear way to de-
fine such a matrix and the question is whether it is
possible to define chemical similarity in a meaningful

way at all. In the next section this question and the
related issue of representation of chemical structures
will be addressed. Problems with the current state of
affairs will be illustrated using an example in which
complexation behaviour of small organic compounds
is predicted. The paper concludes with a discussion of
opportunities for the wider application of chemometri-
cal techniques, and identifies problems and directions
for future research.

2. Chemical similarity

In order to apply chemometrical techniques to
molecular problems, the concept of chemical similar-
ity takes the place of conventional distance measures
such as Euclidean or Mahalanobis distances. However,
chemical similarity is not a unique and well-defined
concept. In many cases, one would like to relate sim-
ilarity in structure to similarity in chemical properties
or behaviour. However, in the example given later,
several compounds with only minor structural dif-
ferences show quite different properties. Clearly, in
many cases only a small part of a molecule is respon-
sible for properties such as biological activity, and
whether or not similarity measures can reflect is of
crucial importance for database searches to find new,
biologically active compounds [9]. Not surprisingly,
most successful QSAR applications have focussed on
molecules of roughly equal size, preferably with a
common skeleton. The structural difference or simi-
larity between a protein and a small organic molecule
is hardly relevant.

Calculation of adequate similarity measures for
molecules depends on the representation of these
structures [10]. For trained chemists a very concise
representation like a 2D structure or even a line nota-
tion is sufficient to infer chemical properties such as
functional groups and partial charges. For a computer
program, there is not yet a way to automatically de-
rive the desired parameters from a simple 2D graph,
so they must be provided explicitly. Unfortunately,
for many applications it is not clear which parameters
are needed, and in what form they should be cast.
How should one represent molecular shape, for in-
stance? Many representations are in use today, for a
large number of different applications [11]. Examples
of comparisons of various descriptors and prediction
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Table 1
Several molecular representations and their attributesa

Representation Local versus global General versus specific Relative versus absolute Variable versus fixed size

Molecular properties G G A F
Similarities G G R F
Atomic coordinates L G A V
Torsion angles L S A V
CoMFA L G R F

a Molecular properties: dipole, polarisability, etc. Measured or synthetic spectrum-like descriptors fall in this category as well. Atomic
coordinates: Cartesian coordinates for each atom (sometimes excluding H). Torsion angles: using standard values for bond lengths and
bond angles, centre of mass at origin with a random orientation. Substituent lists fall in the same category. CoMFA: methods using a grid
at which properties of interest are sampled. The size of the grid is determined by the largest molecule in the set.

methods can be found in the work of Brown and
Martin [12,13]. Since each representation captures a
different part of the description of the molecule, it is
often not possible to go from one representation to
another. Several representations can be distinguished
according to a number of criteria (Table 1).

2.1. Local versus global approaches

Global descriptors describe properties of molecules
as a whole. Sometimes they are expressed by one num-
ber, e.g., the dipole moment, charge, or the Wiener
topological index, sometimes by a vector or a matrix.
Examples of the latter type are distance matrices, giv-
ing the distance from each atom of the structure to
another, experimental spectra such as IR spectra, or
synthetic spectra. These synthetic spectra may emu-
late measured spectra or may capture completely dif-
ferent information, such as the mass distribution rela-
tive to the centre of mass. In these global descriptors,
all local information, such as the vicinity of groups
or partial charges, is lost. Therefore, these descriptors
usually have a weak performance when trying to pre-
dict molecular properties such as biological activity.
As outlined above, often only a part of the molecule
is responsible for the specific processes taking place.

Local descriptors, on the other hand, contain infor-
mation on properties at different locations within the
molecule. This makes it possible to concentrate on,
e.g., the active site of a molecule only, and therefore,
local descriptors are much more suited for QSAR
modelling. Often, approaches such as comparative
molecular field analysis (CoMFA) are used (see [14]
for an overview of CoMFA and related techniques) in

which properties like electrostatic potential are evalu-
ated in a three-dimensional grid around the molecules
of interest. The values at the grid points are then used
to predict the property of interest, usually by partial
least squares (PLS) [15].

2.2. Relative versus absolute descriptors

Relative descriptors are based on some kind of
alignment of two molecules being compared. An ex-
ample is the amount of overlap for several molecules
attached to the same receptor site (the similarity of
the molecules with respect to shape or charge dis-
tribution), or the RMS deviation relative to a crystal
structure. The alignment may be done with respect
to each other but also with respect to external fac-
tors, e.g., the structure of a binding site, that are not
part of the analysis themselves. Usually, though, the
alignment is performed by identifying key atoms that
should be in the same position, (e.g., for a data set
with a common skeleton), or by overlaying centres
of mass and subsequent rotation. A wrong alignment
may lead to severe errors. The reason why relative
measures are very popular is that they can often be re-
lated directly to a property such as biological activity.
Absolute descriptors, such as atomic coordinates or
internal distance atomic matrices may be able to show
similarities and dissimilarities in a set of molecules,
but often fail to pinpoint the relevant ones.

2.3. General versus specific descriptors

Application-specific descriptors are able to define
the structure of a molecule in a very concise way.
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Examples are torsion angles defining the structure of
the backbone in nucleic acids and proteins, or sub-
stituent lists in a homologous series of compounds.
To what extent the three-dimensional structure can be
coded depends on the descriptors and the rigidity of
the molecules. The price that has to be paid for us-
ing specific descriptors is, of course, generality. Gen-
eral descriptors such as Cartesian coordinates can de-
scribe any chemical structure whereas specific opera-
tors cannot. However, in most QSAR applications the
usefulness of predictive models is limited to a homol-
ogous class of molecules, and the lack of generality is
not necessarily a disadvantage. In most cases where a
more diverse set of molecules is investigated, specific
descriptors are useless.

2.4. Static versus dynamic descriptors

It is evident that molecules are not static entities,
and indeed in some cases the dynamics of the molec-
ular conformations are crucial for the function of the
molecule. No concise representations exist that give
a dynamic account of molecular structure. If dynamic
behaviour is important, one usually performs the anal-
ysis a number of times with different snapshots of the
conformational distribution. Although this is far from
ideal, it has the advantage that the method can be ap-
plied for most of the descriptors currently available.
One of the disadvantages is that the relevant confor-
mation can easily be overshadowed by a large number
of other, irrelevant conformations.

2.5. Fixed-size and variable-size descriptors

For many types of analysis it is important that
all structures under investigation are represented
by the same number of variables. This means that
variable-size descriptors such as atomic coordi-
nates, where the number of parameters increases
with larger molecules, are not useful. Examples of
fixed-size descriptors are spectrum-like descriptors,
and CoMFA-like descriptors. An overview of the
usefulness of several often used representations can
be found in [16], where it was concluded that no
single representation was best overall in a variety of
applications.

Fig. 1. The structure of cephradine.

3. Predicting complexation behaviour

To illustrate the problems that can be encountered
when applying chemometrical methods to molecu-
lar problems, we here present an example in which
the aim is to predict whether or not co-crystallisation
will occur between two compounds. In cases where
large-scale purification and isolation of a compound is
difficult, e.g., because of instability under certain con-
ditions, crystallisation or co-crystallisation often is a
convenient alternative. In this case, the compound of
interest is the antibiotic cephradine (see Fig. 1). The
other compound, the so-called complexing agent, is
used to isolate the cephradine from the reaction mix-
ture by forming a (micro)crystalline material incorpo-
rating the antibiotic. In the solid state, the complexing
agent is present in cavities formed by the cephradine
host molecules [17]. It is known that a range of com-
pounds can act as suitable agents [18]. Naturally, it
is important to find compounds with an optimal com-
plexation efficiency, also satisfying boundary condi-
tions such as a low price and low toxicity. Ideally, a
large database of candidate molecules is evaluated us-
ing a chemometrical model to identify new complex-
ing agents. Due to the large number of candidates and
the sometimes capricious behaviour of seemingly sim-
ilar compounds, chemometrical models offer potential
advantages over human chemical intuition.

Earlier investigations were performed using molec-
ular modelling to identify compounds that would fit
in the cavity created by a related host molecule, the
antibiotic cefadroxil. The shape of the cavity was ob-
tained by removing a guest molecule from the crys-
tal structure of a complex. Next, 1000 compounds
were generated that showed a good fit to the cavity.
Although the original guest molecule was found too,
none of a random selection of 50 of these compounds
showed any form of complexation. Cephradine forms
an even more difficult case than cefadroxil because
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several different crystal structure types were found for
various complexing agents. This feature distinguishes
the problem from the more common situation in which
active molecules should be identified in a data base
that interact with some receptor.

Since the cephradine molecule is a constant fac-
tor, the representation of the candidate compounds is
of crucial importance here, and one of the main re-
sults should be which representation, if any, contains
the most relevant information for the prediction of
complexation behaviour. This question will be tack-
led using both unsupervised and supervised methods.
The former consists of principal component analy-
sis (PCA) [19] and hierarchical clustering methods
[20]; classification methods such as linear discrimi-
nant analysis (LDA) and K-nearest-neighbour (KNN)
classification [15] are used for the latter.

3.1. Experimental

A data set of 99 small organic compounds was con-
structed and the occurrence of co-crystallisation with
the antibiotic cephradine was investigated experimen-
tally. Due to the specific shape of the cavities present in
the cephradine host skeleton, all compounds consisted
of relatively flat aromatic structures with one, two
or three substituted rings. Fifty-five of the molecules
were found to form complexes with cephradine. A few
examples of compounds in the data set are depicted in
Fig. 2.

Two types of variables, calculated with the
semi-empirical program Tsar [21], are used to de-
scribe the organic compounds. First of all, a set of 19
physico-chemical variables such as total dipole, dipole
moments along the three principal axes, molecular
surface area and molecular volume is used to capture
information about shape and other global molecular
characteristics. This data matrix will be indicated as
Xparam. The second type of data set consists of sim-
ilarities. Such a relative representation (cf. Table 1)
may be able to capture implicitly information rele-
vant to whether or not complexation will occur. The
first step in the calculation of these similarities is the
alignment of the molecules with respect to shape.
Centres of mass are overlayed and a full rigid search
is performed using rotation angle–angle increments
of 18◦. A simplex optimisation is used to fine-tune

the optimal alignment. Next, the similarity of the two
molecules with respect to shape, charge, refractiv-
ity and lipophilicity can be calculated. After some
initial experimentation it was decided to generate
similarity matrices for shape and charge distribution.
Two matrices of dimensions 99× 99 called Xshape
and Xcharge, respectively, are obtained in this way.
Alignment on other parameters than the shape of the
molecules in most cases led to substantially worse
models, and in no case to better ones. This lends
support to the hypothesis that for a successful fit of
the guest molecule, shape and charge distribution
should simultaneously match the cavity in the host
molecule. Settings of Tsar remained fixed during all
experiments.

Often, models with too many variables lead to bad
predictions because of overfitting. Especially with the
similarity data this is a real danger since the number
of variables equals the number of objects. Two strate-
gies for decreasing the number of variables (columns)
in the similarity matrices are applied here. The first
is based on chemical considerations and is meant to
build models for more homogeneous subsets of com-
pounds. The second uses a genetic algorithm to find
the set of variables that leads to a minimal prediction
error. The subsets that are obtained can be viewed as
‘reference’ compounds. Such a set, if it can be found,
offers several other advantages. First of all, for new
untested compounds, only a few similarities have to
be calculated to be able to predict whether or not com-
plexes will be formed. Furthermore, it is easier to in-
terpret the similarities in such a small set. This should
make it possible to formulate design constraints, that
new untested compounds should satisfy.

Models are validated with a set of 20 additional, ex-
perimentally tested compounds, not used in the model
building. For each of these test compounds the 19
physico-chemical variables as well as the similarities
with the 99 training set compounds (both Xshape and
Xcharge) were calculated in exactly the same way as
described before.

All analyses were performed on each of the three
individual data matrices as well as on the combined
data matrix (Xall, dimension 99× 217). Statistical
calculations were performed using R1 version 0.63
[22] on a Linux Pentium II machine (266 MHz).

1 The main R site is http://www.ci.tuwien.ac.at/R/contents.html.
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Fig. 2. Examples of compounds in the data set. The compounds in the top row form complexes with cephradine, compounds in the bottom
row do not.

Genetic algorithms for reference compound selection
were performed on SUN workstations using the PGA
Pack library.2

3.2. Results

3.2.1. Data validation
The first step in the analysis of the molecular data

consists of a validation of the data. Data, whether they
are obtained experimental, from a database or by cal-
culations, are never completely error-free, and, un-
fortunately, seldomly validated afterwards (an excep-
tion can be found in, e.g., ref. [23]). It is important
to identify objects that do not conform to the general
trend in the data, especially since they may have a
large (and usually disturbing) influence in the mod-
elling phase. Most multivariate outlier detection meth-
ods obtain a robust estimate of mean and covariance
matrix from a subset of the data, and use these to
calculate Mahalanobis distances for all objects in the
data set [24,25]. Since the Mahalanobis distance can
not be computed from the molecular similarities, mul-
tivariate outlier detection methods were only applied
to the Xparam data set. Three methods were used:
Rousseeuw’s MCD [24] and two methods proposed by
Egan and Morgan, SHV and RHM [25]. Several out-
liers were identified by these methods, most of them
because of energy-minimised conformations that were
not flat. This is a direct result of the composition of
the data set, where attention was focussed in the first

2 This library is available from ftp://ftp.mcs.ano.gov/pub/
pgapack/pgapack.tar.Z.

place on compounds fitting in the cavity. In all cases,
the outlying observations did not form complexes with
cephradine and as such provide valuable negative ex-
amples for statistical models. Since the similarities
with the other compounds in the set, as measured by
row or column means in Xcharge and Xshape, were
not different from the ones of the outlying observa-
tions, it was decided to retain all observations in the
data set.

Although a direct validation of matrices Xshape and
Xcharge is not possible, one would expect them to be
symmetrical around the diagonal. Remarkably, notable
differences exist, indicating that aligning molecule A
with B does not always yield the same results as align-
ing B with A. In one instance in Xcharge, the dif-
ference was found to be as large as 0.67 on a scale
from −1 to 1. Similarities from the lower triangle of
Xcharge are plotted against corresponding similari-
ties in the upper triangle in Fig. 3. The largest de-
viations are found in regions of low similarity. This
could indicate that two non-resembling molecules can
be aligned in several ways, with similar overlap with
respect to shape, but with different charge distribution
overlap.

In favour of this hypothesis is the fact that the
Xshape matrix is much more symmetric, with a mean
difference between the upper and lower triangles of
0.006 and a maximum difference of 0.09. Moreover,
calculating the shape similarity after aligning on
charge distributions also shows significant differences
between upper and lower triangles of the similarity
matrix, clearly indicating that the shape and charge
spaces are not congruent.
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Fig. 3. Asymmetry in the similarity matrix Xcharge. Especially
with very high or very low similarities, the order of the alignment
does not seem very important. With non-similar compounds, align-
ing A on B may give different similarities than aligning B on A.

Although the data calculated by Tsar appear to have
some degree of error, a manual validation showed
that molecules perceived as being very similar from a
chemical point of view indeed show high similarities.

3.2.2. Unsupervised methods
The next step is to apply unsupervised methods like

PCA and hierarchical clustering. The results of the
PCA on the three data matrices and the combined data
matrix are depicted in Fig. 4, where the scores on the
first two PC’s are plotted. Prior to PCA, all matrices
are scaled to zero mean and unit variance. Clearly, the
complexing and non-complexing compounds cannot
be distinguished in this way. Applying other prepro-
cessing techniques yields similar results.

A similar result is obtained with clustering. Again,
the data matrix Xparam is scaled to zero mean and
unit variance and Euclidean distances are calculated;
Xshape and Xcharge are transformed to dissimilarities
by the equation

DSij = Sii + Sjj − Sij − Sji = 2 − Sij − Sji

These dissimilarities are then used as distances in the
clustering algorithm. An added advantage is that the
dissimilarity matrices are symmetrical.

The cluster tree obtained using Ward’s method on
the Xparam data set is shown in Fig. 5. The two main
branches of the cluster tree both contain complex-

ing as well as non-complexing compounds. Ward’s
clustering was found to perform quite well in other
structure–activity applications [12], but several other
clustering methods such as average and complete link-
age show similar plots. Clusterings on Xcharge and
Xshape confirmed that no easy discrimination between
complexing and non-complexing compounds was pos-
sible.

3.2.3. Supervised methods
Supervised methods like k-nearest neighbours

(KNN) and linear discriminant analysis (LDA) were
applied to see if complexation behaviour could be
predicted. In Fig. 6 the results of a LDA leave-one-out
cross-validation (LOOM) are gathered. The broad
bars indicate the number of correct predictions and the
thin bars the erroneous predictions. Clearly, all four
data sets yield unsatisfactory results, with no method
achieving more than 60% correct predictions. Inter-
estingly, the complexing compounds are predicted
slightly better than the non-complexing compounds:
in all cases the thick bars on the left are much higher
than the thin bars on the left whereas for the right bars
the differences are much smaller and even negative in
two cases.

The results of a leave-one-out validation for KNN
are depicted in Fig. 7 as a function of the number of
neighbours considered. For this, the distance matri-
ces mentioned earlier with the unsupervised clustering
analysis are used. The results are slightly better than
the LDA results, which is not surprising given the ap-
parent class overlap in the PCA plots of Fig. 4.

3.2.4. Variable selection
Using chemical considerations, it could be ar-

gued that the complexing compounds form a single,
well-defined group unlike the non-complexing com-
pounds. The latter may have any kind of shape or
charge distribution and is therefore, much more di-
verse in nature. From this it might be concluded that
the similarities with non-complexing compounds may
not contain useful information and may in fact disturb
the analysis. To verify this, the Xshape and Xcharge
similarity matrices are modified in order to remove all
columns associated with non-complexing compounds
(55 columns are retained). Another way to decrease
the inter-class variability is to concentrate on only
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Fig. 4. Scores on the first two PCs for the three data matrices and the combined data matrix. Complexing compounds are indicated by
triangles, non-complexing compounds by circles.

Fig. 5. Clustering according to Ward’s method of Xparam. Euclidean distances are used calculated from the autoscaled data matrix.
Labelled leaves indicate complexing compounds; non-labelled leaves indicate compounds that do not show complexing behaviour.

one class of compounds, e.g., the benzene derivates,
and to remove polycyclic compounds or heterocycles
from the data sets Xshape and Xcharge, leading to
data matrices of size 99× 69. Finally, these two crite-
ria can be combined to retain only columns from the
similarity matrices corresponding to complexing ben-
zene derivates. In that case, only 36 variables remain.

The smaller data sets are indicated with Xshape*
and Xcharge*, respectively. The combination of these
two data sets is indicated by Xchsh*. The results of
the LDA analysis on these data sets are gathered in
Table 2. Again, data matrix Xcharge* appears to con-
tain the most relevant information. Focusing on com-
plexing compounds seems to have a beneficial effect
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Fig. 6. Leave-one-out results for LDA using the four data sets.
The left bars indicate the number of cases that complexation is
predicted; the right bars indicate the number of cases in which no
complexation is predicted. Thick bars indicate correct predictions,
thin bars indicate errors. The sum of each set of four bars equals
99, the number of objects in the data set.

on the predictions, even when also the non-benzene
derivates are predicted with these models. Interest-
ingly enough, the predictions of the benzene derivates
alone are not better than the predictions of the other
compounds. The latter conclusion is also reached
when using Xparam* and Xchsh*.

To assess whether the similarities with an even
smaller set of ‘reference’ compounds could be used to
predict complexation behaviour, a genetic algorithm
(GA) [26–28] was used to select a maximum of 10
columns from data set Xcharge, which seemed to be
the most important data set. For the LDA models, the
LOOM error was used as evaluation function; for the
KNN classification the mean prediction error of five
random subsets of 50 compounds (rows in Xcharge)
was used. Bothk= 1 andk= 3 were used, but since
the results were very similar, only the results fork= 1
are given below. For both the LDA and KNN subset
selection, 10 GA runs were performed, each starting
from a different random initial population. In all LDA
models, success rates of 85% or higher were obtained.
Results for KNN appeared to be even better by ap-
proximately 5%. Whereas the KNN subsets D′-M′
always contained 10 reference compounds, the LDA

Table 2
Prediction results (LOOM success rates in LDA) for complexation
behaviour using several subsetsa

Xcharge∗ Xshape∗ Xchsh∗

A 65.6 61.6 58.6
B 67.7 50.5 50.5
C 70.7 63.6 60.6

a A: only complexing compounds; B: only benzene derivates;
C: only complexing benzene derivates.

subsets were smaller, sometimes containing as few
as two reference compounds. However, seven com-
pounds were selected in five GA runs or more in the
KNN case, whereas in the LDA case no compound
was selected in more than three out of 10 GA runs.

The variable selection results were compared with
the models A–C from Table 2 using the Xcharge* data
set on an independent test set of 20 compounds. For the
LDA prediction of the test set, the columns indicated
by the subsets A–M are scaled using the mean and
variance of the training sets. The prediction results are
displayed in Fig. 8.

From the figure, it is clear that variable selection
based on chemical considerations (A–C) does not im-
prove prediction ability, whereas variable selection
with a GA, on the whole, does. The improvement is
not large, however, and certainly not as large as in-
dicated by the LOOM values: success rates are lower
than the GA LOOM estimates by 20–30%. One pos-
sible cause for this is that the objects in the training
set, in this case the Xcharge* variants, are not quite
representative for the test set. In Fig. 9 it is shown
that for both the Xcharge and Xshape data sets there
are small but systematic differences in column means
in the training and test set for approximately the first
80 compounds, whereas differences can be quite large
for similarities with compounds 80–99. This may in-
dicate that the training set is not quite representative
for the test set. Additional evidence for this hypothe-
sis is given by the fact that no variable selection leads
to a ‘random’3 prediction.

Another reason for the low success rate for the test
set could be that there is a kind of overfitting involved
in the variable selection. The selected columns do
a good job of predicting the training set but little

3 Since the numbers of complexing and non-complexing agents
are approximately equal, a random classification would also lead
to 50% success.
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Fig. 7. Leave-one-out results for KNN prediction with a varying number of neighbours (k). The best predictions are obtained with Xcharge
using one neighbour (71.7% correct).

Fig. 8. Success rates of prediction of an independent test set of 20 compounds with LDA and KNN. Letters A–C refer to the Xcharge*
models from Table 2; letters D–M and D′–M′ refer to ten subsets obtained with genetic algorithms for LDA and KNN, respectively. Each
subset contains at most ten columns from data set Xcharge. Dashed lines indicate LDA and KNN performance, respectively, for the test
set without variable selection.

Fig. 9. Differences in column means between training and test sets for the Xcharge and Xshape data sets. Differences in means are scaled
by the standard deviation of the corresponding columns in the training set.
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predictive ability is achieved. However, the subset
selection with the GA does seem to increase the pre-
dictive ability of both KNN and LDA models. There
appears to be no relation between the number of
reference compounds selected (2–10 with LDA) and
prediction error.

4. Discussion

As the example shows, analysis of a problem in
which molecular structure plays an important role can
be quite different from classical chemometrical prob-
lems. First of all, the representation of the molecules
in the data set is not straightforward. In some cases
such as this one, indirect data are available in the form
of similarities or dissimilarities. The interpretation of,
e.g., a principal component loading or score vector of
such data is unclear.

Second, the data may not contain sufficient infor-
mation to solve the problem. In the example given,
it is expected that molecular shape and charge distri-
bution play an important role in whether or not com-
plexes are formed. However, the similarity data and
the physico-chemical parameters only describe global
characteristics of the molecules. This means that small,
perhaps very important differences in structure may
be overshadowed by apparent similarities (the struc-
tures in Fig. 2 seem to underline this point). Switching
to local descriptors that take into account molecular
structure at a more detailed level has the disadvantage
that we do not know the relevant structure precisely,
at least not the exact conformation of both the guest
molecule and the cavity. To make things even more
complicated, cavities formed by cephradine may vary
to a certain extent in order to adjust to the size and
shape of the guest molecule. Although this is more or
less taken into account implicitly by using a training
set in which all known cavity shapes are represented,
it might lead to difficulties if new complex types are
present in the test set.

In an ideal situation we should therefore, be able to
predict the structure of the host and guest molecules
as well as the role of the solute, and use this knowl-
edge to predict whether or not complexation will
occur. Closely related to this is the issue of flexibil-
ity: molecules are clearly not the rigid structures they
might seem to be from computer representations!

Although in this case most molecules have a quite
rigid basic structure, the flexibility of functional
groups may play an important role.

Finally, for this kind of problem it is very difficult
to define the concept of a ‘representative’ training set.
One usually has to use whatever is available (and in the
example the number of positive examples was roughly
half of the complete set). In many cases a predictive
model then is used to screen a data base of candidate
structures. Such a ‘test set’ is, almost by definition, of
a much wider range than the compounds in the training
set, and the number of expected hits is much lower.

The most positive outcome one can hope for is a
model that gives insight in why some compounds form
complexes and why others do not. Despite all the ob-
jections against local descriptors, these are the only
ones enabling such an interpretation. Therefore, fur-
ther work is concentrating on such matters. The fact
that multivariate outlier detection was able to iden-
tify compounds with less flat shapes indicates that the
combination of several descriptor types may be bene-
ficial.

5. Conclusions

Modern analytical laboratories, whether in industry
or otherwise, are asked to provide answers to a much
wider range of questions than a few years ago. This of
course also has an impact on the chemometrical meth-
ods employed, and one important class of questions
involving chemical structure has been highlighted in
this paper. The main impediments for a successful ap-
plication of chemometrics in this type of research are
the inadequacy of many computer representations of
chemical structures and the inability of chemometrical
methods to fully utilise the information that is con-
tained in these representations.

The important message is that chemistry returns
to chemometrics: whereas in the past in many cases
chemometrics might have resembled just another
branch of applied statistics, the challenges high-
lighted in this paper can only successfully be tackled
with a good knowledge of the underlying chemistry
[29]. Combination of chemometrical methods with
state-of-the-art computational chemistry packages
opens up exciting prospects in QSAR. Modern tech-
niques such as three-way PLS analysis have been



424 R. Wehrens et al. / Analytica Chimica Acta 400 (1999) 413–424

applied to chemical structures in order to find more
easily interpretable representations [30]. With all
these new challenges, the future for chemometrics in
the next millennium looks broad and bright.
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