Hardy User Guide
Version 1.7

Julian Smart and Robert Rae

21st February 1996

Contents

IR [4 T [6o o) o U 41
1.1, DIagramIMING .ccoeeeeieeeieeee e 41
1.2. Hardy and NYPEIEXL........cooviiiiiiiii e 41
I 1Y = T U = oo V=T o 42

P2 S U o] o118 T = Y 43
2.1, SEANtING & SESSION .eiiiiiiiiiiiii i 43
2.2. ENAING @ SESSION ..ceiiiiiiiiiiiiiiiiiiiieeet e 43
2.3. CommaNd liNE OPLIONScevviiiiiiiiiiiiii 43
2.4, HANAY FESOUICES ...coviiiiiiiiiiiiitt ettt 44
2.5, Files used DY Hardycoooiiiiiiiiiiii 45
2.6. Hardy application aSSOCIAtIONScciiiiiiiiiiiiiiiiii 45
2.7. Packaging Hardy fileS ... 46

G T =1 T N o = U o 48
3.1, HAardy CONVENTIONScceviiiiiiiiiiiiiiiii e 48

0 I I V[10 LTI oo Y=o 48
3.1.2. CUISOI PAIEINS ...ttt e e e e e e e e e e e e eenrnaas 48
3.2. Creating CarUS ...cceiiiiiiiiiiiiiiii 48
3.3 BIrOWSING.c.ceiiiiiiiiiiiit ettt 49
3.3.1. Card BrOWSING....cciiiiiiiiiiiiiiii 49
3.3.2. Fle BrOWSING.....ciiiiiiiiiiiiiiii 49
3.4, Ordering YOUE SCIEEIN ...ccuviiiiiiiiiiiiii ettt 50
3.5. Hypertext links, cards and itEMS...........coovviiiiiii 50
3.6. Cards @Nd filES....uuu e 50
T o = 1= (=1 Tt 50

VAR B T= o | = U I o= o LSRR 52
o I O == L4 [o T [= Y o =T | = o PPN 52
A O == i o (o o = PPN 52
R T O == 1] o = 1 PP 52
4.4, SeleCting NOUES GNGA @ICSuuuuuutuuiiiiteiitiiiiitieeebeee bbb bbb bbb bbebbebbbbereebreees 52
4.5. LabelliNg NOUES ANG GICSuuuiuiiiiiiiiiiiiiiiiiitiiiiibebbbbbbbbbb bbb bbb eebeeeerereerreee 53
I] o)1= o A= 1114 o] 1= 53
U1 T T o PP 53
4.8. DElEtiNg NOUES @NT AICS. ... uuuttuuutrtrtrtttiutiiitieuetbeeeeeeeeb bbb bbb bbb bbb bbb bbb sbbb b ebbbbsbbebeebrenes 54
e TR > o 1 U | R 54

F e T I (<Y (0 1o]| o - | TR 55

O Y] 0= 1T G PPN 55
4.10.1. Linking arcs and NOJES 10 CANUSuuuuuuuruuuuniiiiiiiiiiiiriierreiierreerreeeeeeeeeeeeeeereeeee 55

4.10.2. LiNKING CArtdS tO CAITSuuuttitiitiiiiiiiiiiiiiiiiiiiitebbbebebebbebebbebbebeebebbbeebeeeeeeeeeseeeeenees 56

4.10.3. The NYPEriiNKS PANEIuuuuiuiiiiiiiiiiiiiiiiiiiiiibiib bbb reeereene 56

4.11. Diagram EXPaANSION CAITS.uuuuuuuuuuuturttuuutittrueuerebeeaeaeeeee bbb bbb eebeebereerreees 56
4.11.1. Same object, different Cards.........ccoviieiiiiiiiiiii e 57

2 o g1 = 1] = £ TP 57
e T e T VT To o [T | = L PPN 58
o B I e 1 011 oo [T T [o G PPN 58

4.13.2. Printing UNder MS WINGOWSuuuuuuuuiiiiiiiiiiiiiiiiiieiieeiieereeeeneeeeeeeeeeeeeeneeeees 59

4.14. Diagram CAr0 OPLIONSuuuuuuuruuuuetturtuettttaeeeeeaeeeeeeeeeeee bbb bee bbb bbb bbb bbb sesbbbebbebbbbsreenrenes 59
4.15. Diagram €ditiNg SUMIMAIYuuuuuuueueueueununennnneeneneneeeeeeeeeesereeseeeeeeeeee e 60
G|V (oW T (] o Tod 1] o F= 1 PPN 61
G0 O I = A o111 (0 o PP TPTPTRN 61

G T | o1 o101 o] o PPN 62

5. TEXE CAIAS ... 64
5.1, EdItING tEXE CAITS «.ceiiiiiiiiiiiiiiiiieeeee 64
5.2. LINKING tEXE CAITSciiiiiiiiiiiiiiiiiiiee 64
5.3. MOUSE fUNCHONAIILYoovviiiiiiiiiiiiii 64
5.3 LEft DULION. ..ciiiiiiiiiiiiiii 64

5.3.2. RIGNE DULION .ottt 65

6. HYPEITEXT CAIUS ...ttt e eeee e e e eeeee e 66
6.1. HyperteXt DIOCKScooiiiiiiiii 66
6.2. Editing hYPerteXt CArtS..........cuuviiiiiiiiiiiii 66
6.3. MOUSE fUNCLONAIILYcoeiiiiiiiiiiiiiii 66
B.3.1. LEt DULION. ...ciiiiiiiiiiiiiii 66

6.3.2. RIGNE DULION ..oeiiiiiiiiiiiiii 67

7. MEOIA CAIUSeviiiiiiiiiiiteeee ettt e s e s e s s e e s s e e s e nnne e 68
7.1 MEAIa DIOCKS.cciiiiiiiiiiiiiiii 68

7.2. EAItiNg MEAIA CAIAScovviiiiiiiiiiiiii 68

7.3. MOUSE fUNCHONAIILY ...ccoviiiiiiiiiiiiii 68
7.3, LEft DULION. ..cciiiiiiiiiiii 68

7.3.2. RIGNEDULION ittt 69

8. SYMBOIS ... 70
8.1, SYMDBOI PIrOPEITIES ...cciiiiiiiiiiiiiiii e 70

C J I I Y 1= 7= 11T 70

8.1.2. AIC SYMDOIS ...coiiiiiiiiiiiiii 71

8.1.3. AIC @nNOTALIONSceiiiiiiiiiiiiiiiii 71
8.1.4. NOUE SYMDOIScoiiiiiiiiiiiiiiii 71
8.1.5. AttaChMENT POINTS ...eeviiiiiiiiiiiiii 72
8.1.6. DIVIAEA NOUEScoeviiiiiiiiiiiiiii 73
8.1.7. POIYliNe SYMDOIS ...ccoiviiiiiiiiiiiii 73

8.2. SYMDOI TIDrariancoooviiiiiii 73
8.2.1. Appearance and functionalitycccccceiiiiiiii 73
8.2.2. BUHONS ...t 73
8.2.3. Mouse and cursor functionality...........cccccciiiii 74

8.3. SYMDOI DIrariEs ...ccovviiiiiiiiii 75
8.3.1. Appearance and functionalityccccccoiiiiii 75
8.3.2. MENU OPLIONS ...ceeiiiiiiiiiiiiiii it 75
8.3.3. Mouse and cursor funCtionality............cccccciiiiii 75

8.4. Node SYMDOI EAION.........ccviiiiiiiiiiiii 76
8.4.1. Appearance and functionalityccccccciiiiiii 76
8.4.2. MENU OPLIONS ...cceiiiiiiiiiiiiiiiiei e 76
8.4.3. Mouse and cursor funCtionality...........cccccoiiiii 77
8.4.4. Node SymbOol CONSIFAINTSccoviiiiiiiiiiii 78

8.5. ArC SYMDBOI €ITONcciiiiiiiiiiiiiiii 79
8.5.1. Appearance and functionalityccccccciiiiiii 79
8.5.2. MENU OPLIONS ...coeiiiiiiiiiiiiiiiieie e 80
8.5.3. Mouse and cursor funCtionality...........ccccciiiii 80

O, AT LY PES . s 82
9.1. DiIagram CArd LYPES......ceiiiiiiiiiiiiiiiit e 82
9.1.1. NeW diagram tYPES ...cciiiiiiiiiiiiiiiieee 82

LS 0 O O 1= 1= | PPN 82

LS B B I = Lo = 10 4 1 1= PPN 83

LS G T N\ o o [1Y 1= PPN 83

1S I I Y (o 1Y/ 01T PSP TPUPRPPPPTN 83

S T I 1 o1 (o) o 1PN 84

LS BT e | 1 o 1o) o PPN 84

1S I I A O U [£l o T PSP TPRPRUPPPT 84

9.1.2. NOUE tYPE EAITON .eeiiiiiiiiiiiiiiii 84

LS R B 1= 1= | TP 84

S N 11] ¢ 101 PPN 85

S R T = A (=T [0 TN 85

LS I o U1 (o] o 1PN 85

S R T e | 10 o101 1o] o TP 85

L TR IO S TR O U] =0) 85

9.1.3. NOUE IMAGES. ...ceiiiiiiiiiiiieiee et 86
.14, DIOP SILES .eeeiiiiiiiiiiiieee ettt 86
9.1.5. Drop Site QIOccviiiiiiiiiiiiiiiiii 86
9.1.6. Node annotation SYMDOIS..........couiiiiiiiii 87
9.1.7. CONLAINMENT ...eiiiiiiiiiiiii it 87
9.1.8. REGIONS .ottt 87
9.1.9. AIC EYPE EUILON.....ciiiiiiiiiiiiiiiiii 88
LS TN B 1= 1= | TP 88

LS T N 11] ¢ 101 PPN 89

LS TR T = A =T [0 PPN 89

9.1.9.4. AIC CONSLIAINTSuuutiuiiriiiiiiiiitieiieeebeebbebebbbebb bbb b bbb bbebbbeebbebeeenes 89

S TR T Y (o |1 =T 1= PPN 89

LS T I o 1 (o] o 1PN 89

LS R T o | 10 o110] o PPN 90

0.1.0.8. CUISOI ..ttt ittt ettt ettt e et et e e e e e e e e eeae 90

9.1.20. AIC CONSIIAINTS ...eetiiiiiiiiiiiiiii it 90

9.1, 00. AFC IMAIES . ..cittiiiiiiiiii ittt 90
9.1.12. Arc type anNOLALIONSccvviiiiiiiiiiiiiiiii 91
9.1.13. Multi-way arcs and junction SYmbOIScccccciiiiiiiiii 91

9.2. HYPerteXt CArd TYPES ...ceiiiiiiiiiiiiiiiiee et 92
9.2.1. NeW NYPEIMEXE TYPES. ..cciiiiiiiiiiiiii i 92
S N B 1= 1= | PPN 92

0.2.1.2. HYPEIMEXE tYPES ..ottt ettt e e e e e e eeees 93

9.2.2. Hypertext bIOCK MapPingsSccoviiiiiiiiiiiiii 93

9.3, CUSTOM MEBNUS. ...ttt ettt e e ettt e e e e et e e e e b rr e e e e e e e nnrn e 94
9.4. Saving card type definitioNS ... 94
9.5. Editing previously created card type definitionscccccoiiiiiiii 94
10. Differences between the X and WindOws Versions...........ccccceeevvveveeeennee. 96
LO.2. PNEING e 96
10.2. The ClIPDOAIT.....ccoiiieie 96
0 TR 1V 1 I 43T o[- PPRRPR 96
104, TeXt €AIIING ...coeeeieeeeee e 96
11. Programming Hardyooeeeiiiiiiiiiiiiiiiiiieiiiiieiiieteeeeeeeeeeeee et eeeeeees 97
11.1. The Hardy CLIPS €NVIFONMENT.........coiiiiiiiiiiiiiiiee e 97
11.2. Debugging CLIPS COUE.......ccciiiiiiiiii 97
11.3. Diagram and hypertext STTUCIUIES...........covviiiiiiii 98
12. Hardy FUNCEIONS RETEIENCE........ceviiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeee e 100

12.1. Card INOEX FUNCUIONS .. ovuieeieiite ettt ettt e et et e et et e e e e e et r e r e e s eareenreaarennas 100

hardy-Clear-iNAeX...........ooo 100
hardy-get-firSt-Card ... 100
hardy-get-Next-Card ... 100
hardy-get-top-Card ... 101
hardy-l0ad-iINAEX..........oooiiiiii 101
NArdy-SaVe-INEXccooiiiiiii 101
12.2. Card fUNCLONS.coiiiiiiiee e 101
CAI-CIBALEeiiiiiiieiiie ittt 101
CANA-AEIELE ..o 101
card-deselect-all ... 102
Card-fiNd-DY-IHE.......cooiiiiiiiiii 102
CAIA-gEE-CANVAS......eiiiiiiiiiiiiiie ittt 102
CArd-get-TrAMEoiiiiiiiiiii 102
Card-get-firSt-IleIMooiiiiiiii 102
card-get-height ... 102
Card-geT-NEXI-IEEIM ..eiiiiiiiiiiiiii 103
Card-get-SPeCIAl-ItEMoiiiiiiiii 103
card-get-string-attribULE 103
Card-get-TOOIDATcciiiiiiiiiiiii 103
Card-get-WItN......cooiiiiiiiiiii 103
CAIO-0BE-X ettt 103
CAIA-0BT-Y 1ttt 104
CAI-ICONIZE c.ciiiiiiiiiiiiiie e 104
Card-iS-MOAIfIEAciiiiiiiiiiii 104
CANO-IS-SNOWN ...coiiiiiiiiiiiii 104
CArd-IS-VANIO ...coiiiiiiiiiiiii 104
CAIA-IMOVE ..ottt 104
CAIA-QUIT ..eeeiiiiiiiiiiiiii e 104
CArd-SEIECE-All......ooiiiiiiiiiiiii 105
Card-send-COMMEANG..........coiiiiiiiiiiiii 105
CAIA-SEI-ICON. ..ceiiiiiiiiiiii e 105
Card-set-Modified............cooviiiiiiii 105
CArd-SET-STATUS-TEXL....eiiiiiiiiiiiiiie 105
card-set-String-attribDULE ... 105
CAN-SNOW....ciiiiiiiiiiii 106
12.3. HEM FUNCHONS .o 106
IteM-get-firSt-liNK ... 106
IteM-Qet-KING. ... 106

IteM-get-NEXE-IINK ... 106

EEM-GI-YPE e 106

TEEM-GOTO e 107
IEEM-SEE-KING.....co i 107
12.4. LiNK FUNCHONS.....cooiiiii 107
NK-ge-Card-frOmoooiiii 107
NNK-QEL-CAI-T0 ..o 107
NK-Qet-ItEM-TrOM...cc i 107
NK-QEE-IEEM-TO. ... 107
MNK-0EE-KING ... 107
NK-QBI-EY PO e 108
NK-CANTS ... 108
NK-TEEMIS o 108
NNK-SEE-KING ... 108
12.5. Arcimage fUNCLIONSoooiiiiiiii 108
arc-image-change-attaChment ... 108
arc-image-control-poiNt-add ... 109
arc-image-control-POINT-COUNTcoiiiiiiiiiii 109
arc-image-control-POINT-MOVEcoiiiiiiiiiii 109
arc-image-control-pPOINt-FEMOVEcoiiiiiiiiiiii 109
arc-image-CoNtrOl-POINT-Xcciiiiiiiiiiiiiii 109
arc-image-CoNtrol-POINT-Yoiiiiiiiiiiiii 110
AIC-IMAGE-CIEALEeiiiiiiiiiiit it 110
arc-image-get-alignmeNnt-tyPe ... 110
arc-image-get-attachment-from..........ccccoiii 110
arc-image-get-attaChment-10..........cooiiiiii 111
arc-image-get-image-from ... 111
arc-image-get-iMage-10couiiiiiiiiiii 111
ArC-IMAGE-IS-180...eiiiiiiiiiiiiii 111
arc-image-is-SPINE ... 111
AFC-IMAGE-IS-STEIM ...eiiiiiiiiiiii it 111
arc-image-set-alignment-tyPe ... 112
arc-iMage-Set-SPIINEooiiiiiiiiii 112
12.6. Diagram card fUNCLIONSccooiiiiiiiiii 112
diagram-Card-ClEar-CanVASccuiiiiiiiiiiiii 112
AIAgramM-Card-COPY.....cciiiiiiiiiiiiiiiii 112
QIAGIAM-CArT-CULcoiiiiiiiiiiiiiiiii 113
AIagram-Card-CrEatecouiiiiiiiiiiii 113
diagram-card-Create-eXPanSioNcuiiiiiiiiiiiiiiii 113
diagram-card-delete-all-images. ... 113

diagram-card-find-rOOtccoviiiiiiiiii 114

diagram-card-get-firSt-arc-image..........ccccccviiiiiii 114

diagram-card-get-first-arc-00JECt ... 114
diagram-card-get-first-descendantccccccviiiiiii 114
diagram-card-get-first-node-imageccccciiiiii 114
diagram-card-get-first-node-0bjJecCt ... 115
diagram-card-get-grid-SPacingccuuuiiiiiiiiiiii 115
diagram-card-get-Parent-Cardccccccvviiiiiiiiiiiii 115
diagram-card-get-parent-iMage............ccuviiiiiiiiiiii 115
diagram-card-get-Next-arC-iMage............cuuuiiiiiiiiiii 115
diagram-card-get-next-arc-00JECtccccoiiiiiiiii 115
diagram-card-get-next-desCendantccccccvviiiiiiii 116
diagram-card-get-next-Node-iMagecoouviiiiiiiiii 116
diagram-card-get-next-node-0bJEC ... 116
diagram-card-get-print-height..........cccccooiii 116
diagram-card-get-print-Widthcccccoiiii 116
diagram-card-get-SCale ... 116
diagram-card-layout-graph..........cccccoi 116
diagram-card-1ayOUt-trEe...........coiiiiiiiiiii 117
diagram-card-10ad-file...........ccccciiiiii 117
AIagram-Card-PaASTe.........cciiiiiiiiiiii 117
diagram-card-POPUP-IMENUcceiiiiiiiiiiiiiiiiii 117
diagram-card-print-hierarchy...........cccccoooii 117
AIagram-Card-FEATAWccuiiiiiiiiiiiiii 117
diagram-card-Save-bitmapcoiiiiii 118
diagram-card-Save-file ... 118
diagram-card-save-metafileccccccooiii 118
diagram-card-Set-grid-SPacingcccuuiiiiiiiiiiiii 118
diagram-card-set-layout-pParameters ...t 118
diagram-Card-SEt-SCalEcoiiiiiiiiiiii 118
12.7. Diagram 0bject fUNCHONS...........oooiiiiii 119
diagram-object-add-attribute ... 119
diagram-object-delete-attributecccco 119
diagram-object-FOrMat-TEXL.........couiiiiiiiii 119
diagram-object-get-first-attribDULe ... 119
diagram-object-get-firSt-iMage ... 119
diagram-object-get-next-attributecccccc 119
diagram-object-get-Next-IMAGE ... 120
diagram-object-get-string-attributecccccc 120
diagram-object-set-format-StrinNgccccciiiiiiii 120

diagram-object-set-String-attribUteuuiiiii i 120

12.8. Diagram palette fUNCHIONS...........oooiiiiiiii 120

diagram-palette-get-arc-Selection..........ccccccciiiiiiiiii 120
diagram-palette-get-arc-selection-imagecccccciiiiiiiii 121
diagram-palette-get-first-annotation-Selectionccccccciiiiiii 121
diagram-palette-get-next-annotation-selection.............ccccccociiiiiiiii 121
diagram-palette-get-node-SeleCtion..........ccccccviiiiiiiii 121
diagram-palette-SNOWooiiiii 121
diagram-palette-set-annotation-Selectionccccccceiiiiii 121
diagram-palette-Set-arc-SeleCtion...........ccccccviiiiii 122
diagram-palette-set-node-SeleCtion ... 122
12.9. Diagram image fUNCLONS..........oooiiiiiiiii 122
diagram-image-add-annotation ... 122
diagram-image-annotation-get-drop-Site ... 122
diagram-image-annotation-get-logical-nameccccccccciiiiiiiii 123
diagram-image-annotation-get-Namieccccciiiiiiiiii 123
diagram-image-delete. ... 123
diagram-image-delete-annotationccccccviiiiiiiii 123
AIagram-iMAgE-AraW.ccuiiiiiiiiiii 123
diagram-image-araW-tEXL...........ccuiiiiiiiiiiiiii 124
AIAgramM-IMAGE-EIASE.......citiiiiiiiiiiiie 124
diagram-image-get-brush-ColoUr ... 124
diagram-image-get-Card...........ccuuiiiiiiiiiiii 124
diagram-image-get-first-annotationccccccciiiiiiii 125
diagram-image-get-firSt-eXpanSion ... 125
diagram-image-get-height..........cccccccii 125
diagram-image-get-iteM..........coouiiiiiiiiii 125
diagram-image-get-next-annotationcccccvviiiiiiiiii 125
diagram-image-get-Next-eXPanSiON...........cuiiiiiiiiiiiiii 125
diagram-image-get-00jECt...........ooii 125
diagram-image-get-pen-Col0UN ... 126
diagram-image-get-teXt-COIOUN ...ttt 126
diagram-image-get-wWidthccccccciiiii 126
AIAgram-IMAGE-0ET-X . .iiiiiiiiiiiiiiiiii i 126
AIagram-IMAGE-0EI-Y......cciiiiiiiiiiiiii 126
diagram-image-iS-SNOWN............ooiiiii 126
AIagram-IMAJE-IMOVE.ccuiiiiiiiiiiii 127
diagram-image-pending-deleteccccccoi 127
diagram-image-put-to-frONtcooiiiiiiiii 127
AIagram-IMAgE-TESIZEccuviiiiiiiii 127

diagram-image-SEIECTccuiiiiiiiiii 127

diagram-image-Selected ... 127

diagram-image-set-brush-ColOUN ... 128
diagram-image-Set-PEN-COIOUNcciiiiiiiiiiiiii 128
diagram-image-set-shadoW-MOdE. ... 128
diagram-image-Set-tEXt-COIOUNciviiiiiiiiiiii 128
diagram-image-SNOWccooiiiiiiiii 128
diagram-itemM-get-iMage.........cciiiiiiiiiii 128
12.10. Node image fUNCLIONSooiiiiiiiii 129
NOAE-IMAGE-CIEALEoeeiiiiiii e 129
node-image-dupliCate ... 129
NOAE-IMAQE-gEt-CONTAINETcoiiiiiiiiiiieee e 129
node-image-get-firSt-arC-iMage ... 129
node-image-get-first-Child ... 129
node-image-get-firSt-ContaiNer-regioncccciiii 130
NOAE-IMAGE-FEL-PAINENTcoeiiiiiiiiieeee e 130
node-image-get-ContaiNer-PArent..........couuiiiiiiiiiiiii 130
node-image-get-NeXt-arC-iMageccoiiiiiiiiiiii 130
node-image-get-next-Child ... 130
node-image-get-next-CoNtaiNer-regionNcouuuiiiiiiiiiii 131
NOAE-IMAQE-IS-COMPOSITE.....ceiiiiiiiiiiie e 131
NOAE-IMAGE-IS-CONTAINETcoiiiiiiiiiie e 131
NOAE-IMAGE-IS-JUNCHONcooiiiiiiiiii 131
NOAE-IMAGE-OFUEI-AICSoeiiiiiiiiiieeee e 131
12.11. Node ObJeCt fUNCHIONS........ccoiiiiiiiiie 131
node-object-get-first-arc-0bJecCt ... 132
node-object-get-next-arc-0bJeCt ... 132
12.12. Arc annotation fUNCHIONS...........ooiiiiiiiii 132
arc-anNotatioN-gET-NAMIE.........ciiiiiiiiiii 132
12.13. Container region fFUNCLIONS ... 132
container-region-add-NOdE-IMAJEcceviiiiiiiiiiii 132
container-region-remove-NOAe-iMAGEcciviiiiiiiiiiiii 133
12.14. Hypertext card fUNCHIONS...........oooiiiiiiiii 133
NYPEreXt-Card-Create..........oouviiiiiiiii 133
hypertext-card-get-Current-Char...........ccccci 133
hypertext-card-get-Current-liNe..........ccccci 133
hypertext-card-get-first-selection...........ccccco 133
hypertext-card-get-line-1ength ... 134
hypertext-card-get-next-Selection..........ccccc 134
hypertext-card-get-No-lNES ... 134

hypertext-card-get-offSet-POSItION..........cooiiiiiiiiii 134

hypertext-card-get-SPan-teXt ... 134

hypertexXt-card-INSEI-tEXt ..o 134
hypertext-card-10ad-file ... 134
hypertext-card-save-file ... 135
hypertext-card-String-SEarCh ... 135
hypertext-card-translate ... 135
hypertext-card-translator-close-file ... 136
hypertext-card-translator-open-filecccco 136
hypertext-card-translator-OULPUL ... 136
12.15. Hypertext card block fUNCLONS...........cooiiiiiiiii 136
hypertext-bloCK-add ... 136
hypPertexXt-bIOCK-CIRAI ... 137
hypertext-bloCK-get-IteM ... 137
hyperteXt-bIOCK-geT-tEXLooiiiiiei 137
hyperteXt-bIOCK-get-tYPE ...cooo i 137
hypertext-bloCK-SEIECTEdcooviiiii 137
hyperteXt-bloCK-SEt-TYPE......cooiiiiiiii 137
12.16. Hypertext card item fuNCHONSoooiiiiiiii 138
hypertext-item-get-bIOCK ... 138
12.17. Media card fUNCHIONScooiiiiiiii 138
L2.07. 0. EVENES .ottt 138
Media-bloCK-Create ... 138
Media-bloCKk-get-item ... 139
Media-block-get-pOSItIoN............oooiiiiii 139
Media-bloCK-get-type ... 139
Media-bloCK-SEt-TYPE ..o 139
media-item-get-bDIOCK ... 139
Media-Ccard-apPend-TEXL........coii i 139
media-card-apply-family ... 139
media-card-apply-foreground-Colour ... 139
media-card-apply-POiNt-SIZe...........ccooiiiiiiii 140
media-card-apply-Style ... 140
media-card-apply-underline ... 140
media-card-apply-Weight...........ooo 140
Media-Card-Clear............oooiii 140
media-card-clear-all-bIOCKS ... 140
MEIA-CArd-CrEALEceiiiiiii i 141
MEAIA-CAIT-COPY...coiiiiiiieie et 141
MEIA-CANT-CULooeiiiiii i 141

[=To (= or= 1 (o B (=] 1= (YRR 141

media-card-find-StriNg ... 141

media-card-get-Character...........ccccoii 141
media-card-get-SeleCtion-Start ... 142
media-card-get-Selection-eNnd ... 142
media-card-get-first-bDlOCK ... 142
media-card-get-last-poSitioN............coiiiiii 142
media-card-get-line-1ength ... 142
media-card-get-line-for-POSItioN ... 142
media-card-get-next-bloCK ... 142
media-card-get-position-for-linecccco 142
media-card-get-number-of-liNeS ... 143
Media-Card-get-teXt ... 143
Media-Card-iNSErt-tEXL. ... 143
Media-Card-iNSErt-iMagEcooiiiiiii 143
media-card-load-file ... 143
MEIA-CANT-PASTE.....cce i 143
MEIA-CArd-TEAOceeiiiiiiii 143
Mmedia-card-save-file ... 144
media-card-scroll-to-POSItION...........cooiiiiiii 144
Mmedia-card-seleCt-DIOCK. ... 144
Mmedia-card-set-SEIECHION. ... 144
MEdIa-Card-UNOcooiiiiiiiii 144
12.18. Text card fUNCHONS. ...t 144
TEXE-CArd-10A0-MIlE ittt 144
12.19. Diagram Definition fUNCHIONS...........cooiiiiiiiiii 144
hardy-diagram-definition-get-first-arc-type.........ccccoo 144
hardy-diagram-definition-get-next-arc-type.........ccccovi 145
hardy-diagram-definition-get-first-node-type..........ccccoiiiiii 145
hardy-diagram-definition-get-next-node-type.........ccccoiiiiiiii 145
hardy-get-first-diagram-definitioncccccoii 145
hardy-get-next-diagram-definitionccccooiii 145
object-type-get-first-attribute-Nameccccccci 145
object-type-get-next-attribute-Namecccccciiii 146
12.20. Windows printing fUNCHONS...........coooiiii 146
12.20.1. Windows printing event handlers..........cccccoo 146
hardy-preview-all ... 146
hardy-preview-diagram-Card ... 146
hardy-print-all ... 147
hardy-print-diagram-Card ...t 147

hardy-print-diagram-in-DOX............cccco 147

hardy-print-diagram-pagecoooiiiiiiiii 147

hardy-print-get-header-FOoter...........ccccoiii 147
hardy-print-get-info ... 148
hardy-print-header-FOoter ... 148
hardy-print-set-header-fOOter ... 148
hardy-print-Set-info ... 148
hardy-print-Set-title...........oooori i 149
hardy-print-teXt-iN-DOX...........oooi 149
12.21. Miscellaneous fUNCLIONScooiiiiiiiii 149
CONVETt-DItMAP-TO-TTF ..o 149
convert-metafile-to-1tf. ... 149
dde-adVvise-globalcoiiiiiiiiiii 149
hardy-command-int-to-StrNGcooiiiiiiiii 150
hardy-command-String-t0-iNt...........oooiiiiiii 150
hardy-get-Drowser-frame ... 150
hardy-get-top-level-frame...........ooo 150
NArdy-get-VErSiON.........oooiiiiii 150
hardy-path-SEarch.............oo 150
hardy-help-display-bloCK ... 151
hardy-help-display-CoNteNntS ... 151
hardy-help-display-SeCtion ... 151
hardy-help-Keyword-Search...........ccccci 151
hardy-help-load-file ... 151
hardy-send-Command............ooooiiiiiiii 152
hardy-set-aboUt-StrNG..........oooiiiiiiii 152
Nardy-Set-author ... 152
hardy-set-custom-help-file ... 152
hardy-set-help-file.........oo 152
NArdy-Set-NAMEoooiiii 153
NArdy-Set-Title.. ..o 153
ODJECH-IS-VAlIdoooiiiiiiiiiiii 153
0 U PP 153
register-event-handler...........oo 153
12.22. Menu command identifiers ... 158
12.22.1. Hardy main Window COMMANGScceviiiiiiiiiiiiiiii e 158
12.22.2. Generic card COMMANGSccoviiiiiiiiiiii 158
12.22.3. Diagram card COMMANASccooviiiiiiiiiiiii 159
12.22.4. Hypertext card COMMANGS..........ccoviiiiiiiiiiiii 160

12.22.5. TEXt CArd COMIMEANAS ieuiteeitiee e ettt et e et et e e et e e e s e e s enresnreaaeennas 160

13. WXCOOL ClasSs FE CIENCE ... e e eaans 161

13.1. wxApplication iS-a WXODJECT.........ccoviiiiiii 161
WXApplication on-char-NOOK ..o 161
13.2. WwxBItmMap iS-a WXODJECTcooiiiiiiiii 161
WXBIIMAaP DIitmMap-tY P ..o 161
WXBIIMAP AEPEN ... 161
WXBIIMAP filENAME ... 162
WXBIIMAP NEIGhT ... 162
WXBIIMAP WIALN .. 162
WXBIIMAP CIEALE ... 162
13.3. WXBIUSh iS-a WXODJECT.......ccoiiiiiiiiii 162
1T L2211] 1o] o U 163
WXBIUSH STYIE ... 163
(V22 U] o == 163
13.4. WXBULEON 1S-a WXITEIM ... e e e e e e e naeennas 163
WXBULEON DIEMAPD ..o 163
WXBULION CIEALE. iieie et e e e et e e et e e e e et e e e e e aa s e eeetaeeeenens 163
13.5. WXCaNnVas iS-a WXWINOOWoiieiiiieeiiiiiii e e et s e e e e e et e e e e e eenennnnns 164
1T 2= Y= 1S o [164
WXCANVAS CIBALEeieveeeieiii ettt e et e et e ettt e e et s e e e et s e e e et e e ee et e e e eaan s eeeeenaeeenens 164
WXCANVAS SEE-SCIOIDAIS .. .vueiie i e e e e e e e e e 165
(T2 @F= 1Yz TSl (o | 165
(T2 (@F= 1)Y= 1S3 o o - 1 165
(O TN = L o BT = o | 165
WXCANVAS ON-PAINT ... 165
(T2 (OF= 1)Y= TSI o]] 165
13.6. WXChECKBOX IS8 WXITEIMuvuiiii e iiiieiiiie e e et e e e e e et n e e e e e eeenennnas 166
WXCRNECKBOX VAIUEcoeeeiiiiie ettt e et e e e e e e e ettt n e e e e e e e e aean e e ee s 166
WXCRNECKBOX CrEALEieeviiiiii e e ee e ettt e e e e e et es s s e e e e e et e e e e e e e e e ettt e e e e e e e e eeeann e nees 166
13.7. WXChOICE iS-2 WXITEIM ... e e s e e e e e et e e e e e e e eannnnnas 166
WXCRNOICE VAIUBS..... .o ciieeeiiii et e et s e e e e e e et r e e e e e e e e eean e e eees 166
(2@ Lo (oI o] £ (S 166
WXCROICE @PPENA ... 167
WXChOICE fINA-SENG ..o 167
{72 g o (o =T ol 1= - 167
WXChO0ICE Get-SEIECHION ... 167
WXChoice get-String-SeleCtioNcoooiiiii s 167
WXCHOICE SEt-SEIECHONuvveiii e e e e 167
WXChoice Set-String-SEIECHIONcoooi i 167

WXCROICE GEE-SIIING .o 168

13.8. WxClient iS-a WXODJECT ... 168

(2@ =T ol =T 168
WXClIeNt Make-CONNECHIONieiiiieeiiiiie e e e e e e e et e e e e e e e e e e e 168
WXClient oN-make-CONNECHIONuuuuiiiie e e e 168
13.9. wxCommandEVeNnt iS-a WXEVENTuiiiiiiiiiiiiiisie e ee e e e e e et e e e e eeenennas 168
wxCommandEVent get-SEIECION ..o 169
WXCOMMAaNAEVENT iS-SEIECHIONuvieii e 169
13.10. wxConnection is-a WXODJECTcooviiiiiii 169
WXCONNECHION SEIVICE-NAMIEciiieeiiiiiie e e e e e e e ettt e e e e e e e e et e e e e e e e e e et e e e e e eeeeeeenaaeeees 169
(T2 (@do] o] g T=Tod 1] = To AV] 170
WXCONNECHON EXECULE.....uutuuiieeeiieetiitee e e e e e e e ettt e s s e e e e e e e et a e e e e e e e eeetena s e e eeeeeeaennnaaeeees 170
(T2 (@do] o] aT=Tod 1o g e [T o0]] = od A0S 170
WXCONNECHON POKE ... 170
WXCONNECHON FEQUEST ... 170
WXCONNECHON STAM-A0VISEt eeeiieeiiiiie e e e e et e e e e e e e e e 171
WXCONNECHION StOP-AAVISE ... 171
(V2 (@do] a1 aT=Tod 1] g o 4 BT AV L 171
WXCONNECHON ON-EBXECULR.. ...t eeeiieeiiiiee e e e e eee e ettt s e s e e e e e e e et s s e e e e e e eetten e e e e e eeeenennnnaaeees 171
WXCONNECHON ON-POKE ... 171
WXCONNECHON ON-TEAUEST ... 171
WXCONNECHION ON-StAM-A0VISEceeiiieiiii e e e e 172
WXCONNECLION ON-StOP-BAVISEcooiieeeeeeee e 172
13.11. WXCUISOr iS-a WXBIMAP.......cciiiiiiiiiii 172
(O UL =Yoot U] £=To T g = [172
17170 O U =0 P 173
WXCUISOT Y ettt ettt ettt ettt e e et et e e e e e e et e e e eb e r e e e e e e e e nnn e 173
(L@ BT =Yoot £ | (P 173
13.12. wxDatabase iS-a WXODJECT..........coviiiiiiiii 174
WXDAtADASE ClOSE......ciiiieiiiiii e 174
WXDAtADASE CrEALEiieeeiiei i e e e e 174
WXDAtahaSe TEIELEoeeeeeiei e 174
WXDatabhase €ITOr-0CCUIMTE.civeiiieiii i e e e et e e e e e e e e e e et e e e e e e eeern e ees 174
wxDatabase get-database-name ..., 175
wxDatabase get-data-SOUICEoooiiiiii e 175
WXDatabase get-EITOr-COUE........ccoi i 175
WXDatabhase get-EITOr-MESSAGEcoove e 175
wxDatabase get-error-NUMDETcoooiiioee e 175
WXDAtBDASE IS-0PBN ... 175
WXDATADASE OPEIN ... 175

13.13. wxDate iS-8 WXODJECL........cceiiiiiiiiiii 176

T BN (=3 To [0 B 0 aT0) |1 =TT 176

WXDALE AdA-WEEKS ... 176
WXDAE AAU-YEAIS ... 176
WXDAEE CIEALE ...ttt ettt e et e e e 176
WXDAte Create-JUNAN ... 176
WXDALE CrEALE-SHING ..o i e oo 177
WXDALE TOMMAL ... 177
WXDALE GOI-AY ..o 177
WXDate get-day-0f-WEEKccooiii e 177
wxDate get-day-0f-Week-Name ... 177
WXDaAte get-day-0f-Y Acce i 177
wxDate get-days-in-MONTN ... 177
wxDate get-first-day-of-month..........cooooiiii i 178
WXDate get-Julian-adatecoooeiieoeee e 178
WXDALE get-MONTN ... 178
wxDate get-month-ENd ... 178
wXDate get-MONth-NaAIME........ooo oo 178
WXDate get-MONTN-STANTccooiee oo 178
wxDate get-week-0f-Month ... 178
WXDate get-WeEK-Of-YRAIccci i 179
WXDAEE JOE-YEA ...ttt 179
WXDALE GEI-YRAI-ENA ... 179
WXDALE gOt-YEAMSIAIeevvieiii et 179
WXDALE IS-EAP-Y A ..o 179
WXDALEE SBL ...ttt 179
WXDALE SEE-JUNAIN .. 179
WXDALE SEE-AALE. ... 179
WXDALE SEE-TOMMAL ... 180
WXDALE SEE-OPTION ..o 180
WXDAE AAU-GAYS ... 180
WXDALE SUDITACT-AAYS ... 180
WXDALE SUDTIACT. ... 180
WXDALE AUA-SEIF......oeeeeeeeee e 181
WXDaAte SUDLIACE-SEIT ... 181
WXDIALE [..o 181
WXDIAEE B0 oo 181
WXDAEE Q8 ..ttt 181
WXDAEE GO0 . eevvriii et ettt 181
WXDBEE B0 ..eiieeetiiii ettt 181

WXDALEE NEQ .. eeeieeii ettt ettt 182

13.14. WXDC iS-8 WXODJECL.....cceiiiiiiiiiiiiiee 182

WXDC DEGIN-OIAWING ..o 182
WXDIC DIt 182
WXDIC ClBA ... oo 183
WXDC deStroy-Clipping-TEUIONcooe oo 183
WXDC draW-€llIPSE ... 183
WXDC AraW=liNe ... 183
WXDC AraW=-lINES. ... 183
WXDC AraW=POINT ..o 183
WXDC draW=-POIYgON. ... 184
WXDC draw-r€CIANGIE ... oo 184
WXDC draw-rounded-rectangle............ooooiiiiiiiio 184
WXDIC ArAW-TEXE .o 184
WXDC AraW=SPlINE ..o 184
WXDC ENA-GOC ... 184
WXDC €NA-AIAWING ... 184
WXDIC BNA-PAGE oot 185
WXDIC GOE-IMIN=X oo 185
WXDIC GOE-IMIN=Y et 185
WXDIC BT MBXX 11ttt ettt e et e e e 185
WXDIC GOE-MBXY 1ttt ettt ettt 185
WXDC get-text-extent-Neight.........coooii i 185
WXDC get-text-extent-Width ... 185
WXDIC 0K 186
WXDIC STAIM-OOC ..o 186
WXDC SEAIM-PAGE ...ttt 186
WXDC Set-DaCKGIOUNG.ccooeiee e 186
WXDC set-background-mOde.coooiiiiiiii 186
WXDIC SEE-DIUSH ... 186
WXDC SEE-COIOUIMAP ... 186
WXDC SEt-ClIPPING-TEGION ..o 187
WXDIC SEE-TONT. .o 187
WXDC set-10gical-fuNCiONccooiiiiiee e 187
WXDIC SBE-PEIN ..ttt 187
WXDC SEet-1EXI-TOregrOUNGo 187
WXDC set-text-background...........oooooiii 187
13.15. wxDialogBoX iS-a WXPANEIccooiiiiiiiiiii 187
WXDIAIOGBOX MOTAI ... 188
WXDIAIOGBOX CrEALE ... i oo 188

wxDialogBox on-Char-NooK ..., 189

WXDIAIOGBOX ON-CIOSE ... 189

WXDIAIOgBOX ON-PAINT......cciieeieieeee e 189
WXDIAIOGBOX ON-SIZE ... 189
13.16. WXEVENL iS-8 WXODJECT.....cciiiiiiiiiiii 189
WXEVENT QEI-EVENT-TYPE .ot e s 189
13.17. wxEVtHandler is-a WXODJECT..........cooiiiiiiiii 190
13.18. WXFONt iS-8 WXODJECT ..o 190
WXFONT POINT-SIZE... oo 190
WXFONE TAMIIY . 190
WXFONT SEYIE L. 190
WXFONT WEIGNT .o 190
(V0o AU T [T [T T o 190
(LTG0 L o] €= = 191
13.19. WXFrame iS-a WXWINGOW...........ccoiiiiiiiiiiiii 191
(T = L0 [T L P 191
WXFrame Create-StatUS-IINE ..o 192
WXFTAMIE ICOMIZE. ... e eee ettt e e e e et e e e e e e e e e ettt e e e e e e e e eaaann e e eees 192
WXFFAME SEE-MENU-DAN ... 192
(T2 = T TR o o o 192
WXFrame Set-STAtUS-TEXE.ttt 192
WXFTAME SEE-LIHE ... e 192
WXFrame Set-1001-Dar.......cooo i 193
WXFFAME ON-GCHVALE ... 193
WXFrame 0N-Char-N0OK.............ooiiiiiiiii e 193
(T2 = T 4T 0) T [0 L 193
WXFrame on-menuU-COMMIBNGcoooiiiiiieieee e 193
WXFrame ON-MENU-SEIECTooi i 193
(V2 = T 4 TSI] T - 194
13.20. wxHelpInstance is-a WXODJECL............ccoviiiii 194
WXHEIPINSIANCE NALIVE ... 194
WXHEIPINSIANCE CrEALE ... 194
wxHelpInstance display-bloCK ..., 194
wxHelpInstance diSplay-CONtENTScooviiii i 194
wxHelpInstance diSplay-SECHONcooviiiiie e 195
wxHelpInstance Keyword-Search...........ooooovi i 195
WXHelpINstance 10ad-file ... 195
13.21. WXGAUQGE iS-a WXITEIM....oeiiiiiiiiiiieeee 195
WXGAUJE VAIUE ... 195
WXGAUGE TANGEeeeeieeetteeee e ettt e e et e e e et e e e b r e e e e e e e e e b a e e e e e e e e e nrn e 195

WXGAUGE CIEALE ... eeeieeetiiiii ettt e ettt e e et e e e et e e b rr e e e e e e e e nrn e 195

wXGauge Set-Dezel-face ... 196

wxGauge set-shadow-Width ... 196
13.22. WXGFroUPBOX iS-8 WXITEIM.....coiiiiiiiiiiii 196
WXGTOUPBOX CIEALEciiieeiiiii ettt ettt e e e e e e e e e e n e 196
13.23. WXICON iS-8 WXBIIMAP......coiiiiiiii 196
WXICON NEIGNT ... 197
WXICON WIEN ... 197
WXICON CIEALEeee ettt ettt e e et e e e e e e e e e 197
13.24. wxKeYEVENt iS-a WXEVENT ... 197
WXKEYEVENT AlE-0OWN ... 198
WXKEYEVENT CONIOI-UOWN ... 198
WXKEYEVENt get-KEY-COUE ... 198
WXKEYEVENT POSTHION-X. et et 198
WXKEYEVENT POSTLION-Y ..o 198
WXKEYEVENT SNIft-0OWN ..o 198
13.25. WXLISIBOX iS-8 WXITEMcoiiiiiiiiiiie 198
WXLISTBOX VBIUES ... 199
WXLISTBOX MUIIPIE .. 199
WXLISTBOX CIEALE ... 199
WXLISTBOX @PPENG ... 199
WXLISTBOX fING-StING ..o 199
WXLISTBOX CIEAN ... 199
WXLISIBOX QEt-SEIECHON ... 200
WXLIStBOX get-StriNg-SEleCHON.......ccoo i 200
WXLISIBOX SEE-SEIECHION ... 200
WXLIStBOX Set-String-SeIECHONccoo i 200
WXLISTBOX NUMDET ... 200
WXLISTBOX AeIOte-IEIM ... 200
WXLISTBOX GEE-SIING. .o 200
WXLIStBOX get-firSt-SEIECHION......cco e 201
WXLISIBOX get-NeXt-SEIECHION.......coo oo 201
13.26. wxMemoryDC is-a WXCanVasDC...........cccoiiiiiiii 201
WXMEMOIYDC CIEALEcevvvviii ettt ettt e e e e e e e 201
WXMEMOIYDC SEIECE-0DJECT ... 201
13.27. WXMENU iS-8 WXWINGOWcoiiiiiiiiiiiiiiieee 201
WXMENU CAlIDACK ... 202
WXIMEBNU CIBALE ...ttt ettt et e e e e e b e e e e e e e e n e 202
WXMENU BPPENG ... 202
WXMENU 8PPENT-SEPAIALON ... 202

T Y L A LU o (=TT 202

T Y (=T A TU o (o] T 203

(V21T LU =T = o = 203
13.28. wxMenuBar iS-a WXWINAOW.........cccvuuuiiiiie e e et e e e e e e e e eeeneennas 203
Y LT U] o T= L od == 1P 203
WXMENUBAT @PPENT ... 203
(V21T 10 == T o] =T ol 203
YT 101 = 7= T o] g =T od o 204
WXMENUBAI €NADIEoeeiiieiii e e e e e e e e 204
13.29. WXMeSSsage iS-a WXITEMcooiiiiiiii 204
WXMESSAGE DIMAD ..o 204
WXIMESSAGE CIEALE.....ceiieetiieii ettt e et e e e e e e e b e e e e e e e e nrn e 204
13.30. wxMetaFile iS-a WXODJECL..........ccovviiiiii 204
13.30.1. EXAMPIE..c 204
wxMetaFile Set-ClIPhoard ... 205
13.31. WXMetaFileDC iS-a WXDC.....uuiiiieiiiieiiie e e e et e e e e e eanannnas 205
Y[= L] =] B T O 11T = Uy = 205
WXMELAFIIEDC CrEALE......eeviieii i e e eei e e e et r e e e e e e e eean e e ees 205
Y= = LT[DT O o (o = 206
13.32. WXMOUSEEVENL iS-8 WXEVENT......cciiiiiiiiiii e e e e e e e e eeaaennas 206
WXMOUSEEVENT DUON ..o 206
WXMOUSEEVENt DULEON-OWNcoiieiiiiii e 206
WXMOUSEEVENt CONIOI-AOWN ... et e e e e 206
WXMOUSEEVENT Aragging....co oo oo 206
WXMOUSEEVENT [EFt-UOWNeii e 206
WXMOUSEEVENT IEFE-UD oo 206
WXMOUSEEVENT iS-DUONeiiiice e 207
WXMouseEvent middle-dOWNuuiiiiiiiii e 207
WXMOUSEEVENT MIdAIE-UP ..o 207
WXMOUSEEVENT POSITION-X .o 207
WXMOUSEEVENT POSITION-Y ..o 207
WXMOUSEEVENT Mght-OWN ... 207
WXMOUSEEVENT MGNE-UP .o 207
WXMOUSEEVENt SNIft-OWN ...t 208
13.33. WXMUIITEXE iS-8 WXTEXE .. eetitiiei e e eii et e et e s e e e e e et s s s e e e e e e e et e e e e e e e eennnnnnes 208
WXMUIITEXE CrEALE....ceiieeeiiiie et e et r e e e e e ettt a e e e e e e e e eaan e e eees 208
13.34. WXODBJECT. ... 208
WXODJECT QONE-CrEATE ... 208
WXOBDJECT .o 208
WXODbject pending-deletecooo oo 209

wxObject add-event-handIers ..o 209

WXODJECT CIBALE ... 209

WXODJECT INIE @RI ..o 209
13.35. WXPANEI iS-2 WXCANVEASuvvuiiieeiiiieiiiiii s e e e eeeeetiies s s e e e e e eeatiaa s s s e e e e eeeaatan s s e e eeeeeannnnnns 209
(V2= T T I =T T (o= 210
WXPANE] CrBALE eeiieeeeiici e e e e e et r e e e e e e e eeaa e e ee s 210
(V0= Va1 o g oo 1 4 . = o 210
WXPanel set-DUttON-TONT..........coooiii e 211
WXPaNel set-1abel-foNtcooiiiiii 211
WXPanel set-label-POSItioNcooooiiiiiee s 211
WXPANEL NEW-IINE... ..o e e e e e e e e araa e e e s 211
13.36. WXItEM iS-8 WXWINUOWceviviiiiie e eeceeeiiie s e e s e e e e e e et e s e e e e e e eeaaann e e e e e e e eennnnnnns 211
WXItEM get-label 211
(V2 (=T e B oto 0 g = T Lo 211
WXItEM Set-efaUltoooviiii e 212
WXIEEM SEE-IADEL ... e 212
13.37. WXPEN iS-8 WXODJECT.....cciiiiiiiiiii 212
(T2 =T T oo o 1 212
WX P I Sy IO o 212
(T Rd=] o o T T 212
13.38. WXPOSISCrPtDC iS-a WXDCoooiiiiiiiiiieiieee 212
WXPOSESCHPtDC filENAME ... 213
WXPOSESCHPIDC INTEIACHVE ... 213
WXPOSESCHPIDC WINAOW ... 213
WXPOSESCHPIDC CrEALE ... 213
13.39. WXPHNEIDC IS8 WXDIC.....uvviiiii e e eei et e e et s s e e e e e et s s s e e e e e eeaaaan e s e e e eeeennnnnnas 213
(T2 101 C=T T @ [o 213
(T2 11 (=T 0T O [1Y 213
(VO 11 (T T @ 1= o o o T 213
(VO 11T T O o] (T = od 1) 214
(T2 11 €=T 4 I T @R T T [0 214
(T2 1L C=T ol (= = 214
13.40. WXRAAIOBOX iS-a WXITEIMuviiiii ettt e e e e et e e e e e e e eeennnnas 214
WXRadioBOX Major-dimMeENSION........cooiiiiiiee e 214
WXRAAIOBOX VAIUESooeeiiieiii e e e e e e et n e e e e e e e et e e e e 214
TR = Lo 0] 20 ol £t | (U 214
WXRAAIOBOX gEt-SEIECHION......coe i 215
WXRAAIOBOX SEt-SEIECHONt iiiiieeiiiici e 215
13.41. wxRecordSet is-a WXODJECTcovviiiiiiiii 215
WXRECOrASEt dat@baSE......uuuiiieiiieeeiii s e e 215

WXRECOIASEE TYPR ..o 215

R 0) (0 Y= A e (=T | (=TT 216

WXRECOIASEL AeIBTE ... 216
WXRECOIASEt EXECULE-SOI ..o 216
WXRecordSet get-Char-data ... 216
WXRECOIASEt get-COl-NAMIEo 217
WXRECOIASEL Get-COl-TY PO ..o 217
WXRECOrASEt get-COIUMNS ... 217
WXRECOrdSet get-0ata-SOUICEScooei i 218
WXRECOIASEt get-EITOI-COUEcoi i 218
WXRECOrdSet get-filter ..o 218
wxRecordSet get-float-data ..o 218
WXRecordSet get-foreign-Keys ... 218
WXRECOrdSet get-iNt-Aataloooeeieeeeee e 219
WXRecordSet get-NUMDEI-COISoooiiiiioee e 219
wxRecordSet get-numMber-fields ... 219
WXRecordSet get-NUMDEI-ParamS.......cooooiioeeeee e 219
WXRecordSet get-NUMDEI-TECOIAS.coooiiii oo 220
WXReCOrdSet get-primary-KeYScoooo oo 220
WXRECOIASEt get-reSUI-SEL......cco i 220
WXRecordSet get-table-Name..........coooii i 220
WXRecordSet get-tables..........ooooi i 220
WXRECOIASEE QOO ... 221
WXRECOIASET iS-DOT ... 221
WXRECOrdSet iS-field-Tirtycoooeeeee e 221
WXRecordSet is-field-null ... 221
WXRecordSet is-Col-nullable.........cooo i 221
WXRECOIASET IS-BO0F ...t 221
WXRECOIASEE IS-0PBN ... 221
WXRECOIASEL IMOVE ... 221
WXRECOIASEt MOVE-TIFST. ..o 222
WXRECOIASE MOVE-IAST ... 222
WXRECOIASEL MOVE-NEXL. ..o 222
WXRECOIASET MOVE-PIEV ..o 222
WXRECOIASEL QUETY ..o 222
WXRecordSet set-table-Name. ... 222
Specify the name of the table you want to use. 13.42. wxServer is-a wxObject................. 222
WXSEIVEL SEIVICE-NAITIE ... 222
WXSEIVEE CIBALEiieiieieiiieei ettt e ettt e ettt e e e e et e e b rr e e e e e e e enr e 223
WXSEIVEr ON-aCCePt-CONNECTIONcoeii e 223

R YY) Sy [0 [T G ISTr= 1Y) 41 (=Y 1 T 223

AT 1o [T 0 01T T 223

(V25 T [T 0 T 223
(T2 eS To [T 7= L1 = 223
(TS o [T ol Lo (P 223
13,44, WXTEXE IS-A WXITEIM ... e e e e e e e e e e eaenennas 224
(T 2= AR = | 10T 224
(T IS Aol == 1P 224
WXTEXE SEE-VAIUE.eceeieeeiiie ettt e e s e e e e e et e e e e e e e e e ettt r e e e e e e e eeeannnaneees 225
13.45. WXTextWindow iS-a WXWINCOW.uuuiiieeriieiiiiiess e e eeeeeiee s s e e e e eeetn e eeeeeeaenennns 225
WXTEXEWINAOW ClEAN ... eeeiieiiii et e e e e e e et e e e e e e e e eean e e e e s 225
WXTEXTWINAOW COPY it 225
(V2= AT/ T T [1 Ao | 225
WXTEXEWINAOW CrEALE......uuteii i e e eeieeiiiiis e e e ettt s e e et e e e e e e ettt e e e e e e e e e eaan e e ees 225
WXTeXtWINAOW diSCArd-ditS..........cuuuueiiiiieiiieeiee e 226
WXTEXIWINAOW GEE-CONTENTS ... 226
WXTEXtWINAOW 10Q0-TIlE ...uvveii e 226
WXTeXtWINAOW MOIfIEdiiiiieieece e e 226
WXTEXEWINAOW PASTE ... 226
WXTEXtWINAOW SAVE-TIE ...uveeii i 226
WXTeXtWINAow Set-editableoouviiiiiieiiee e 227
WXTEXEWINAOW WIITE .ot e e e et e s e e e e e e e et a e e e e e e e e aeaan e e ees 227
13.46. WXTImer iS-a WXODJECTcoiiiiiiiiii 227
(LT TG o LT (U 227
(T2 1=] = o 227
WX TIMIEE SO .ot 227
13.47. WXTOOIBAr iS-8 WXPANEL........coiiiiiiiieiiiie e e e 227
WXTOOIBAr Create-DUONSoociiieee e e 228
VD e To1 7= Tao] 11T o1 = 11T o 228
WXTOOIBAr FOWS-0r-COIUMNS......ciiiieiiieie e e e e e e e et e e e e e e et e e e e e e e e eeean e e ees 228
WXTOOIBAr @d0-SEPAIALON......ooe oo 228
(T2 e o] 2 7= U= To Lo K o o 228
g e T0] | = T= T el [T T 1o Lo 228
WXTOOIBAI CrEALE......cceieieiiiieie e e e e et e e e e et ettt e e e e e e e e e e et e e e e e e e e eaeann e eeees 229
WXTOOIBAr Create-tO0ISuueiii i e e e e e 229
WXTOOIBAr €nable-t00l..........oiii i 229
WXTooIBar get-max-height ... 229
WXTO0OIBar get-max-Width ..o 230
WXTOooIBar get-tool-Client-datacoooeeeiiie 230
WXTO0OIBar get-to0l-enabled ... 230

WXTooIBar get-tool-1oNg-help ... 230

WXTO00IBar get-tool-Short-help ... 230

WXTOOIBAr Qet-T00I-STALE ... 230
WXTOOIBAT [AYOUL ... 230
WXTOOIBAI ON-PAINT.....coiiieeeeeeee e 230
WXTO0OIBar set-default-SiZe.........ccoooiiii i 231
WXTOOIBAr SE-MANGINS ... 231
WXTO00IBar set-tool-1ong-help ... 231
WXTooIBar set-tool-short-help ..., 231
WXTOOIBAr tOGGIE-T00]o 231
13.48. wxWindow is-a WXEVIHANAIET ... 231
WXWWINAOW X it 231
WXWINOW Y e 232
WXWINAOW WIATN ... 232
WXWINAOW NEIGNT. ... 232
WXWINAOW Clent-Width..........coooiiii 232
WXWINAOW ClIeNt-NeIgNt ... 232
WXWINAOW CEINIIE ... 232
WXWINAOW ENADIE.... .o 232
WXWindow find-window-by-name ... 232
wxWindow find-window-by-label ..., 233
WXWINAOW TIE e 233
WXWINAOW GEI-NAMIE ... 233
WXWINAOW GEE-PAIENT ... 233
WXWINAOW MaKe-MOal.........cooeiiieeeeee 233
WXWINAOW POPUD-MIENU. ...t 233
WXWINAOW SEE-CUMSON ...t 233
WXWINAOW SEE-TOCUS ... 234
WXWINAOW SEE-SIZE ... 234
WXWINAOW SEE-ClIENT-SIZE ..o 234
WXWINAOW SNOW ... 234

14. WXCLIPS fUNCLION QrOUPSceiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeesesesseseseesesseseeeseeeees 235
14.1. HOW tO USE thiS referenCe........cooviiiiiiii 235
14.2. APPLICALION ..o 235
BPPCTEALEeeete ettt 236
app-get-Show-frame-0N-iNit.........ccccooi 236
APP-ON-INIT e 236
app-Set-ShoW-frame-0N-iNit..........cccccoiiiiiiiii 236
LA BIMAP i 236

DItMAP-CIEALE ... 237

Ditmap-delete.......coo 237

DItMAP-get-COlOUMMAPccoiiiiiiiieee 237
bitmap-get-height..........oooo 237
DItMAaP-Get-WIdth ... 237
bitmap-load-from-file..........ooo 237
LA BIUSN ..o 238
DrUSN-Create ... 238
Prush-delete ... 238
ST = 11 (o] PP UUPPPPTPTPT 238
DULLON-Create ... 238
button-create-from-DItMap ... 239
FA.B. CBINVAS ...ttt ettt ettt e e et e e e ettt e e et e e e e n s 239
(022 1 g1V 7= TS o1 ST L TP 239
CANVAS-FEE-UCiiiiiiiiiiiiiii it 240
CANVAS-FEL-SCIOI-PAGE-X....eiiiiiiiiiiiiiiiiii 240
CANVAS-FEL-SCIOI-PAGE-Y...ceiiiiiiiiiiiiii 240
CANVAS-FEL-SCIOI-POS-X..ceiiiiiiiiiiiiiiiiii 240
CANVAS-FEL-SCIOI-POS-Y...ciiiiiiiiiiiiiii 240
CANVAS-FEL-SCIOI-TANGE-X «.iiiiiiiiiiiiiiiiii 240
CaANVAS-FELt-SCIOI-TANGE-Y «.oiiiiiiiiiiiiiii 240
canvas-get-SCroll-piXelS-Per-UNit-X ... 241
canvas-get-SCroll-piXelS-Per-UNt-X ... 241
CANVAS-ON-ChAT ...t 241
CANVAS-0N-SCIOIl ...oiiiiiiiiiiiiiiii 241
CaANVAS-SEL-SCIOIDAISciiiiiiiiiii 241
CANVAS-SEL-SCIOI-PAGE-X...ciiiiiiiiiiiiiiii 241
CaANVAS-SEE-SCIOl-PAGE-Yciiiiiiiiiiiiii 242
CANVAS-SEE-SCIOl-POS-X...eiiiiiiiiiiiiiiiiii 242
CANVAS-SEE-SCIOI-POS-Y ..ceiiiiiiiiiiiiii 242
CANVAS-SEL-SCIOI-TANGE-X...cciiiiiiiiiiiiiiiii 242
CaANVAS-SELE-SCIOl-FANGE-Y...cciiiiiiiiiiiii 242
CANVAS-SCIONl ..coiiiiiiiiiiiiiii 242
CANVAS-VIEW-STAI-X...eeiiiiiiiiiiiieiie ettt 242
CANVAS-VIEW-STAN-Yeeiiiiiiiiiiieiee ettt 243
L14.7. ChECKDOX ..o 243
ChECK-DOX-CrEateoeiiiiiiiiiiiii 243
CheCK-DOX-SEL-VAIUE........coiiiiiiiiiii 243
CheCK-DOX-gL-VaIUEcooiiiiiiii 243
L14.8. ChOICE ..o 243

(o] a0 (o7 BT o3 (=T (=P 243

CROICE-APPENTeiiiiiiiiiiiii 244

ChOICE-fINA-SEING ...ceiiiiiiiiiiii 244
o3 o (ot =T 244
ChOICE-get-SEIECTION.iiiiiiiiiiiiiiii 244
ChoiCe-get-StriNg-SelECHIONccviiiiiiii 244
Lol a0 (ot ST =] =] =Y o Ao o P 245
Ch0iCe-Set-StriNG-SEIECHIONccviiiiiiiii 245
ChOICE-gEE-SIIING ...eeiiieiiiiii it 245
o3 o [t o 11] 0] o = P 245
TR = o 245
Lo =T) o 1= L= P 245
Lol [1=T o) g F= (SR oo] 1= Tod 1T o I 245
0 R o) [11 246
o0] 0] 0| Tt Y- L= 246
o0] 0] = o 246
COIOUM-GIBEN ..ttt 246
o0] 0] 8 o] 1T 246
I I O o T 1 =T T I =Y =T o 246
command-event-get-SeleCtion ... 247
comMMAaNd-eVEeNt-iIS-SEIECHONii i e eae 247
I o @ o] = o1 1 [o 247
Lodo]] = Tod 110 = Vo V7[R 247
Lodo]] = Tox 1T0] g Bod (== = 247
Lod0]] 1= Tod 110 g B = (=T o U (PR 248
oo]] 1= Tod 110 ETe [1SToto] o1 g V=T ! 248
CONNECHION-POKEceiiiiiiiiiiiiiiii i 248
CONNECHON-TEOUESTcoiiiiiiiiiiiiiiiieee e 248
oo]] g 1=Tod 1T g By v= 1 2= Lo 1Y = 248
CONNECHION-SOP-AAVISEceviiiiiiiiiiiiiiiiii 249
I T O U =0 PP 249
(010 [(S{0) ol (L= (PP UPT PR 249
o1 1 6o o (= 1= (= P 250
CUISOr-10ad-fromM-file i e 250
I B I - = o - 1 - 250
[0 Fo Y= o= TS o [0 1= P 250
JAtADASE-CrEALE.eviiii i e e e e e et e e e e e e aaaaae 251
JatabaSE-UEIELE. ... e 251
database-IrOr-0CCUITEAcceiiiiiii e e e e e e e e e e e eeaea e e e e eeeeenes 251
database-get-database-Namecccccciiiii 251

database-get-data-SOUICEuuuiii e e e e et n e e e eeeenes 251

database-get-Error-COUEoouuiiiiii e e e e e et e e e eeeeae 251

database-get-EITOr-MESSATE.ciitiiiiiiiiii it 252
database-get-error-NUMDET e e e e e e eeae 252
(o Fo Y= o F= LT [T 1= o P 252
[0 Fo Y= o F= LY=o o 1= o AP 252
L1405, DAE...ccccee e 252
Lo Fo Y (== Lo (o B 4o 11 £ 252
AtE-A00-WEEKS ... e e aaan 252
[0 Fo Y L= o [0 BN PR 252
[0 oY oo (== = P 253
date-Create-jJUlian ... 253
ALE-CrEALE-SINNG .. .eieiiiiiiiiiiiiii 253
[0 Eo =0 (=] 1] (= 253
[0 Fo = (0] 2T P 253
[0 Fo Y=o = T - | P 253
date-get-day-Of-WEEKcoiiiiici e e e e 254
date-get-day-0f-WEEK-NAMEcoiiiiiiiiei e e e e e eeeeaes 254
date-get-day-Of-YRar ... 254
date-get-dayS-iN-MONTN.........oooi e e e e e e e aaaae 254
date-get-first-day-0f-monthccccoii 254
date-get-JUlIAN-08LE........ccie e e e e e e e e e e e ar e e e e eeenn 254
Lo Fo Y=o = ot a0 1 o P 254
date-get-MONtN-ENA ... 255
date-get-MONTN-NAMIE ... e e et e e e e e e e eata e e e eeeeenes 255
date-get-MONTN-STAI ..o e e e et eaeeeae 255
date-get-week-0f-MONtN ... 255
date-get-Week-0f-Y ar ... 255
[0 Fo =0 =) o= P 255
Lo Eo Y (=T o (=) G =TT =Y T PP 255
Lo Eo oo (=] =TT) - o P 255
ALE-IS-1EAP-YEAN......ciiiiiiiiiiiiii 256
[0 Fo Y (oS T o] o oW =]] T - L= P 256
[0 Eo Y CC TS =] 11 =V o 256
ALE-SEE-UALEo a e e aaaan 256
[0 Fo o TS =T (o] = | 256
[0 Fo Y (=TT =] o] o 1o) o 257
AE-A0U-TAYS.ciiiiiiiiiiiii i 257
date-SUDTIACT-JAYSccoviiiiiiiiiiii 257
[0 o STt o 1 >V P 257

[0 Fo Y (SRr= 1o [0 = <Y | T 257

0 o= 257
L0 o= =T o [P 258
0 oY =0 = 258
L0 oY <o =T P 258
0 oY < =T P 258
L0 oY (< =T PP 258
14.16. DEVICE CONEXL ...ceiiiiiiiiiiiiee e 258
AC-DEGIN-AraWING ...ceeiiiiiiiiiiiii i 258
AC-DIIt o 259
UC-CIEAN . 259
AC-AEIBLE .o 259
dc-destroy-ClipPiNg-TEION.cviiiiiiiii 259
AC-AraW=-€llIPSE ..coviiiiiiiiiii i 260
AC-AraW=-lINE.....coiiiiiiiiiiii 260
AC-AraW=lINES ...ceeiiiiiiiiiii i 260
AC-AraW=POINT....eeiiiiiiiiiiiii 260
AC-AraW=-POIYGON ...oeiiiiiiiiiiiii 260
AC-AraW=-reCLANGIEciiiiiiiiiii 260
de-draw-rounded-reCtangle ... 261
AC-ArAW-TEXE i 261
AC-AraW=-SPIINEcooiiiiiiiiiiii i 261
AC-ENA-UOC ...ccoiiiiiiiiiiiiiii 261
AC-ENA-AraWINGciiiiiiiiiiiii i 261
C-ENA-PAGE ...coiiiiiiiiiiii 261
Lo (om0 =T o 1 261
AC-GEE-MIN-Y it 262
Lo (om0 o] 1= 0 G 262
AC-gRE-MABX-Y ittt 262
de-get-text-extent-height..........cooo 262
de-get-text-exXtent-Widthoiiii e 262
o o o] 262
AC-STANM=UOC ...eevviiiiiiiiiiiiie 262
C-STAM-PAGE ...eeeiiiiiiiiii i 263
dC-Set-DACKGrOUNGcoiiiiiiiiiiiiii 263
Lo (oY= & o= Tod (o[£ 10 o B T Yo [2 263
AC-SEE-DIUSN ..o 263
AC-SEE-COIOUIMAPceiiiiiiiiiiiiii 263
dC-SEt-ClIPPING-TEUION ...eiiiiiiiiiiiiiiiiii 263

Lo [oRE oY= 0] | AT 263

Lo (ot ST=) ol (o o= | {1] ox 1T o I 264

AC-SEBE-PEIN .t 264
dC-SEt-TEXI-TOrEgrOUNGcoiviiiiiiiiiiii 264
de-set-text-backgroUnd ... 264
1427, DIAlog DOX...coeiiiiieiiieeeee e 264
IAI0G-DOX-CIEALE........cciiiiiiiiiiiiiii 265
dialog-boX-Create-fromM-rESOUICEcouviiiiiiiiii 265
dialog-boX-iS-MOTAlcccoiiiiiiiiiii 265
dialog-boX-Set-MOAAlcccoiiiiiiiiii 265
T =T o | O PUEPRR 266
EVENT-gET-EVENT-TYPE ...t 266
I TR o 0 | PP 266
(0] 11 101 £ =T L= P 266
L0 11T L1 1= P 266
O T = 0 T PP 266
L= T ST o (== = 267
framME-Create-StAtUS-lINEuuuiiiiiiiiiiiiiii bbb eeeereeees 268
L= T LS [0 T 2= 268
FraME-IS-ICONMIZEAe e e e e e e 268
L= L ST o Bt P 268
fraME-SEE-MENU-DATcciieee e e e e e e e aaeennes 268
framE-SEt-TO0I-DANo 268
L= T LSS o o 269
r MBSO - SATUSTEXE. ... vttt bbb bbb bbbbeeeeee 269
L= L ST ST 1P 269
I O o 1= o O PUEPR 269
NEIP-Create ... 269
REIP-AEIELE ... 269
help-display-BIOCK............ooo 269
help-diSplay-CONENTS........coooiiii 270
help-disSplay-SECHON ... 270
help-keyword-Search ... 270
help-10ad-file.........oooii 270
I o LV | 1] o 1T 1 270
111 o o T o 270
111 o Ko 0] = 270
11 o 0 TN 270
1Y o B = (=T o 271
hWNA-SENA-MESSAGEcooiiiiiiiii 271

LT T B T 1Y AP 271

RWNA-QUIL. ... 271

i B - 10 Lo [PPSR 271
JAUQGE-CTEALE ... iieetii ettt e ettt e e et e et e et e n e e e e n e e e e e e e e e e e e 271
QAUGE-SEE-VAIUB ..ottt 272
gauge-set-bezel-face.......cccooo 272
gauge-set-shadow-Width............ccccoii 272

I 14T OO PUEPRR 272
grid-adjust-SCrolIDAIScoiiiiiiiiiii 272
Ord-APPENA-COISoeiiiiiiiiiiiiii 273
OFA-APPENA-TOWS......eiiiiiiiiiiiii e 273
OHA-CIEAI-GrId ...ccoviiiiiiiiiiii 273
OFIO-CrEALEeeiiiiiiieiieee e 273
OFA-CrEatE-gridcoviiiiiiiiiiiiii 273
Ord-delete-ColS......ccooviiiiiiiiiii 273
OFA-AEIETE-TOWSooiiiiiiiiiiiiii 274
grid-get-cell-aligNmENtooiiiiiiiii 274
grid-get-cell-background-Colour............cccccoii 274
grid-get-Cell-DitMapooviiii 274
Orid-get-Cell-teXt-COIOUNciiiiiiiiiiiiii 274
Orid-get-Cell-ValUEcooiiiiiiiii 274
grid-get-column-Width ... 274
Orid-get-CUISOI-COIUMIN.....cciiiiiiiiiiiiii 275
OFIA-0EE-CUISOI-TOW ...ceiiiiiiiiiiiiiiiiiei ettt 275
OFIA-0EE-TOWS ..ceiiiiiiiiiiiiiiii ettt 275
OMA-0EE-COIS....coiiiiiiiiiiiii 275
grid-get-editable ... 275
grid-get-label-alignment ... 275
grid-get-label-background-COIOUr ... 275
grid-get-label-SiZe ... 275
grid-get-label-text-ColOUN ... 276
grid-get-label-value............ccooo 276
grid-get-row-height ... 276
OFA-EE-SCIOl-POS-X...ceiiiiiiiiiiiiiiiiii 276
Ord-gEE-SCIOI-POS-Y ..cceiiiiiiiiiiiiiii 276
Ord-gEe-TEXI-ITEIM L.iiiiiiiiiiii i 276
OHA-INSEIT-COISoeiiiiiiiiiiiiii 276
OFIA-INSEIT-TOWSceiiiiiiiiiiie ettt 277
OFA-0ON-ACHVALE.......ciiiiiiiiiiiiii 277
OF-0ON-PAINT ...ceiiiiiiiiii 277

OFA-0N-SIZE i 277

grid-set-Cell-aligNMmENtooiiiiiiiii 277

grid-set-cell-background-COIOUN ... 277
grid-Set-Cell-DItMAPcooiiiiiiii 277
Orid-Set-Cell-tEXE-COIOULccevviiiiiiiiiiiiii 278
grid-set-Cell-teXt-TONT........coiiiiiii 278
Ord-SEL-CeII-VAIURoooiiiiiiiiiiii 278
grid-set-ColumMN-WIdthoooiiiiiiiiii 278
Ord-SEt-IVIAEI-PEN....coiiiiiiiiiii 278
grid-set-editable. ... 278
OFA-SEE-GIIO-CUISOT ...eiiiiiiiiiiiiiiiiie 278
grid-set-label-alignmEeNnt ... 279
grid-set-label-background-ColoUr............ccccccciiiii 279
Orid-Set-label-SIZEcoooiiiiiiii 279
grid-Set-label-teXt-COIOUNcciiiiiiii 279
grid-set-label-teXt-TONT..........ooiiiiii 279
grid-set-label-ValUe ... 279
Orid-SEt-TOW-NEIGNT......coiiiiiiiii 280
grid-update-diMENSIONSccoiiiiiiiiiiiiii 280
14.25. GrOUPDOX...ccoiiiiiii 280
OFOUP-DOX-CIBALEeiiiiiiiiiiiiiiii it 280
I T 112 O PUEPRR 280
REMI-DACK ... 280
REMI-CANCEL ... 281
NtMI-ClEAr-CaChe ... 281
REMI-CrEAtE .. 281
NEMI-Qet-CUITENT-UNT ... 281
NEMI-ON-SIZE....co 281
EMI-0PEN-flE. ..o 281
NEMI-TESIZE. 281
tMI-SAVE-filE ... 282
REMI-OPEN-UIT ..o 282
Opens a URL (not yet functioning).14.27. ICON ... 282
ICON=CIBALE ... 282
ICON-0EIBTE. ... 282
ICON-QEL-NEIGNT. ... 282
ICON-QEE-WILLN ... 282
ICON-10ad-froOM-ile ..o 282
14.28. Instance table ... 283
instance-table-add-eNntry ... 283

instance-table-delete-entry ... 283

instance-table-get-iNStanCe ... 283

T14.29. KBY BVENT ...ttt ettt e et et nn 283
Key-event-alt-dOWN ... 284
Key-event-CoNtrol-dOWN..........cooiiiiiiiii 284
Key-event-get-KeY-COUEoooiiiiiiii 284
KEY-BVENT-POSITION-X ..coeiiiiiiiiiiiieeeeee 284
KEY-BVENT-POSILION-Y ..o 284
key-event-shift-dOWN...........oooiii 284

14.30. LIStDOX oo 284
SE-DOX-Create. ... 284
SE-DOX-8PPENG ... 285
SE-DOX-FING-SIING ..o 285
ST-DOX-ClEAN ... 285
[ISt-DOX-get-SEIECHON.....cciiiiiiiii 285
liSt-bOX-get-StriNg-SeleCtion ... 285
[SE-DOX-IS-SEIECIOUo 286
[ISE-DOX-SEt-SEIECHIONcoeiiiiiiii 286
[iSt-DOX-Set-StriNG-SelECHIONcooeiiiiiii 286
SE-DOX-NUMDET ... 286
SE-DOX-0EIELE ... 286
SE-DOX-gO-SIING ..o 286
[iSt-DOX-get-firSt-SElECHION ..o 286
[ISt-DOX-get-NeXt-SEIECHIONcoeiiiiiiii 287

14.31. MemMOry deVICE CONTEXLcciiiiiiiiiiiiiie et 287
MEMONY-UC-CIEALEceiiiiiiiiiee e 287
MEMOrY-dC-SEleCt-0DJECL. ..o 287

LTA.32. MENU e 287
IMENU-CTEATEeeteeeeet ettt ettt e e et r e e e e e e e e e e e e n e e e e n e e e nraeeeennes 288
MENU-BPPENT ... 288
MENU-8PPENT-SEPATALONceeeiiiiiiiiie it 288
MENU-DIEAK ..o 288
MENU-CRECK. ... 288
MeENU-enable ... 288

14.33. MENU DA .o 289
MENU-DAI-CIEALEceiiiiiiii i 289
MENU-Dar-create-froM-rESOUICEccoiiiiiiiiii 289
MENU-DAr-apPeNdccooiiiiiii 289
MENU-DAI-CRECKcooiiiiiiii 289
MENU-DAr-CheCKed. ... 289

(ST LU oY= T =T =1 o] [T 290

LA.34. IMBSSAGE ... e eeeeeettiee e ettt ettt et e e e n s 290

MNESSAGE-CIEALE ... eeeteieieeri e ettt et e e e e e et e e e e e e e e e eenas 290
message-create-from-bitmap ... 290
14.35. Metafile ... 290
14.35. 1. EXAMPIE..coii 290
Metafile-delete........ooo 291
metafile-set-cliphoard ... 291
14.36. Metafile deViCe CONEXL..........couiiiiiiiii 291
Metafile-dC-Create..........ooo i 291
MEtafile-dC-ClOSEcoooiii 291
LA4.37. IMOUSE BVENT ...ceeiiiii ettt ettt e et e e e e e e et e e n e e e e e e eennnaaas 292
MOUSE-EVENT-DULION......cooiiiiiiiii 292
MOUSE-EVENt-DULON-OWN ..o 292
MOUSE-EVENE-CONTIOI-AOWN. ..ottt 292
MOUSE-EVENT-AraAgGINGceeieiieieieiei e 292
MOUSE-EVENt-IEft-dOWN ..o 292
MOUSE-EVENT-EfE-UP....coiiiii 292
MOUSE-EVENT-IS-DULION ..o 293
Mouse-event-MiddIE-dOWN ... 293
MOUSE-EVENE-MIAAIE-UD ...coiiiiiiiie 293
MOUSE-EVENT-POSITION-X ..ceiiiiiiiiiiiiiie et 293
MOUSE-EVENT-POSITION-Y ..coiiiiiiiiiiieiee e 293
MOUSE-EVENt-NIGNT-0OWN ...oooeiiiiiiii 293
MOUSE-EVENT-TIGNT-UD...cciiiiiiiiee e 293
MOUSE-eVeNt-Shift-dOWN...........oooiii 293
14.38. MUII-INE TEXE ..o 294
MUILIEEXE-CIEALE ... 294
MUILIEEXE-COPY ..o 294
MUILIEEXE-CUL. ... 294
MUti-teXt-get-iNSertioN-POINt............coiiiiii 294
Multi-text-get-last-pPOSItioN ... 295
Mmulti-text-get-line-1ength ... 295
multi-text-get-line-1ength ... 295
multi-text-get-number-of-liNes ... 295
MUILEEXE-GET-VAIUE ..o 295
MUILIEEXE-SET-VAIUE ..o 295
MUIEEXE-PASTE ... 295
MUIti-teXt-POSIION-tO-ChATccoiiiiiiiii 296
MUItI-teXt-POSIION-TO-INE......coiiiiiii 296

1L = B (=T 0 410V 296

MUILEEXE-TEPIACE ... 296

MUti-teXt-Set-INSErtioN-POINT...........coiiiiiii 296
MUILI-tEXE-SEE-SEIECHION ... 296
MUIti-teXt-SNOW-POSITION ..o 296
MUILIEEXE-WITEE ... 296
MUILI-tEXE-XY-T0-POSITION.....coeiiiiiiiiii i 297
14.39. ODJECL...cci i 297
ODJECE-IBLE.....coiiiiiiiiiiii 297
OB ECt-gOt-EY P . 297
L1440, PANEL ..o 297
PANEI-CIEALE ... 297
PaNEl-Create-froM-TESOUICE.ccciiiiiiii e 298
PANEl-SEt-DUON-TONT......cooiiiii 298
panel-set-label-foNt..........ooo 298
panel-set-label-POSItION............oooiiiiiii 298
PANEI-NEW-TINE ... 298
1447, Panel lBIM ..o 299
panel-item-get-Command-EVENTcooiiiiiiiiiii 299
panel-item-get-1abel..........oooo 299
panel-item-set-default ... 299
panel-item-set-label ... 299
LTAA2. PN 299
PEN-CIEALEeietei ittt e e et eanas 299
PEN-AEIETE ... 300
14.43. POSISCIPt dEVICE CONEXL......ciiiiiiiiiiiiiieeee e 300
POSESCHPL-AC-CIEALE ... 300
14.44, Printer deViCe CONTEXL........cciiiiiiiiiiiiiie e 300
PHNTEN-AC-CrEALE ... 300
14.45. RAIODOX ...ccooiiiiiiii 300
FAIO-DOX-CIEALEcoeiiiiiiiiieie e 300
radio-bOX-get-SEIECHIONcccoiiiii 301
radio-DOX-SEt-SEIECHIONcooviiiiiii 301
L14.4B. RECOIUSEL ... 301
FECONASEI-CIEALEcoeiiiiiiii e 301
FECOIASEt-AeIBTE. ..o 302
FeCOrdSet-eXECULE-Slccoiiiiiiii i 302
recordset-get-char-data ... 302
recordset-get-Col-Name. ... 302
reCOrdset-get-Col-tYPe ..o 302

reCOrdset-get-ColUMNScooiiiiiii 303

recordset-get-database. ... 303

FECOrdSet-get-Oata-SOUICESccieiiiiiieiiiee et 303
FECOrdSet-get-EITOr-COUEcciiiiiiiii i 303
recordset-get-filter ... 304
recordset-get-float-data ... 304
recordset-get-foreign-Keys ... 304
recordset-get-iNt-datal ... 305
recordset-get-NUMDEI-COIS...........oiiiiiieii et 305
recordset-get-nUmDBEr-fIeldS ... 305
recordset-get-NUMDBDEr-PAramMScc.uvreriieeeiiiirrreee e e e e e e e s 305
recordset-get-NUMDEI-TECOITS.c.urriiiiee et 305
recordset-get-primary-KeYs ... 305
FECOrdSet-get-reSUM-SEL. ... 306
recordset-get-table-Name...........ooo 306
reCordset-get-tables. ... 306
FECOTASEI-gOLO ... 306
recordset-iS-DOf ... 306
recordset-iS-fileld-airty ... 307
recordset-is-field-NUll ... 307
recordset-is-Col-nullable..............o 307
FECOIASEL-IS-EOT .. 307
FECONASEI-IS-OPBN ..o 307
FECOIASEI-MOVE ... 307
FeCOrdSet-MOVE-IrST......coiiiii 307
FeCOrdSet-MOVE-ASt ..o 307
FECOIASEI-MOVE-NEXL.....ciiiiiiiiiieee e 308
FECOIASEI-MOVE-PIEY ...cooiiiiiiiiii e 308
FECOTASEI-QUETY ...t 308
recordset-set-table-name........... 308
LA AT SBIVET ..ottt e e 308
1S VT o ST LR 308
LTAAB. SHUBK .o 309
K] o =T ot 1= = L= PPN 309
S o =T Yo Y= [= PPN 309
S o= el T V(UL PPN 309
LA, TEXE .o 309
() o (<= (TP 310
L2 (ST Y= 111 = PPN 310
LE22 T [AV | UL PPN 310

TA.50. TOXE WINTOW....cvneetietei et eee et et et et et et et e e e e ettt e e e e e et e e e e e e e ea s e s seasenresnreeeenns 310

L) YT 0T o) Ao [T Y T 311

1E22 (Y] a0 01V o o)Y PPN 311
LE (1Y o 011 o] I | P 311
LESX T T T [0 o] £ (P 311
tEXE-WINAOW-AISCAITd-EaITS. .. . uutiiiiiiiiiiiiiiibiibiiibbibb bbb eeebeeeeeeee 312
TEXE-WINOOW-gET-CONTENTSuuuuiiitiiiiiiiiiiitbibbbbbbbbbbbbb bbb bbbeebeeeeeeee 312
teXt-WiNdOW-get-INSEItiON-POINTuuuiiiiiiiiiiiiiiiiiii bbb 312
teXt-WINAOW-get-1ast-POSITION.uuuuiiiiiiiiiiiiiiiiiiiiii bbb 312
teXt-WiNdOW-get-lNE-1ENGLNui i 312
teXt-WiNdOW-get-liNE-1ENQGLNuuiiiiiiiii e 312
text-Window-get-NUMDEr-0f-lINESuuiiiiiiiiiiiiiiiii e 312
tEXt-WINAOW-10AA-TIl ... e 313
teXt-WINAOW-MOIfIEAcoieeeiiee e e e e e 313
(T T T [0 o] o X - T 313
(E T a0 (01T o= 1] = PPN 313
teXt-WIiNAOW-POSItION-t0-ChATuuuiiiiiiiiiiiiiiiiiiii bbb 313
tEXt-WINAOW-POSITION-T0-lINE.... ... uutiiiiiiiiiiiiiiiiiiiibbibb bbb eeeeerees 313
()T o (01T =T 4T 1V 313
TEXE-WINAOW-TEPIACE vttt bbbbeebbeeee 313
tEXE-WINAOW-SNOW-POSITIONuttiiiiiiiiiiiiiibiiiibbbbibbeibb bbb eeeebeeeeneee 314
tEXE-WINAOW-SAVE-TIEcceeeeeec e e e e 314
teXt-WindoOW-Set-editableuuuiiiiiiiiiii 314
teXt-WiNAOW-SEt-INSEIrtION-POINTuuuuiiiiiiiiiiiiiiiiiiiiiieee bbb 314
TEXE-WINOOW-SET-SEIECHION. .. .uuuiiiiiiiiiiiiiittb bbbt beeeeeeees 314
(YT o [0 Y (P 314
tEXE-WINAOW-XY-T0-POSITIONtuttttitiitiiiiiiiiiiitebbeibbbibbbbbbbebbbbbeeebbee bbb bbebbebbeeeeeeeeeeeree 314
LA5L TIMEL e 315
L[1=T T 1= L= P 315
L1 T[] =] (P 315
L8 L1 XS - o P 315
L1147 1 (0] o PPN 315
Iy o T 1 o > T 315
froTo] oot er= To [0 BTt o= L= (o] PPN 315
ftaTo]] o =T gr=To (o T (oo) PPN 315
froTo] [o FoT Tt (== o (0o] PPN 316
1000 o= 1o 1= - 1= 2P 316
froTo] [oo gl et == (=T (oo] PPN 316
t00IDAr-ENADIE-TO0N. .. . ueiiiiiiiiiiiiitit et 317
toolbar-get-max-NEIght..............uuiiiiii 317

toolbar-get-MaxX-Widthuuiiii e 317

toolbar-get-to0l-ClIeNt-data..........cccoiiieiice e 317

t00Ibar-get-to0I-ENADIET.uuiiiiiiiiiiii ittt 317
toolbar-get-tool-IoNG-NelP..........uuiiiiiiiiiii 317
toolbar-get-to0l-SNOM-NEIP.uu it 317
froTo]] o FoT gl 1<) (0 To] BT =L =PRI 317
fEaTo]] o =T F= N0 | PPN 318
fCaTo]] e =T glo] g o= 11 o | PPN 318
t00IDAr-SEt-OEfAUIT-SIZEuiiiiiiiiiiiiiiiiiii bbb 318
froTo]] o Fo T gEsT=Y ol g F= T {11 PPN 318
t00Ibar-Set-t00l-IONG-NEIP .. .uuiiiiiiiiiiiiiii b 318
t00Ibar-Set-t00l-SNOIM-NEIPuiiiiiiiiiiiiiit bbb 318
fteTo]] o F=T g (oo o] = (oo PPN 318
L4533 WINAOW. ..o 319
WINAOW-add-CallDacKccoooiiiiieee e 319
(VL1 o [0 Yo =T o = 319
(VL1 Lo [0 Yo o = 319
(VL1 [0 1T 1= Y 319
(VL1 To [0 Y= o F= o[T 319
17171 Lo [1T 320
WINAOW-GEE-NAITIE ... 320
WINAOW-Get-NEXE-CRIlA ..o 320
WINAOW-GEE-PAIEINT ... 320
WINAOW-GBE-X oot 320
WINAOW-GBE-Y i 320
WINAOW-GEE-WIALN ... 321
WINAOW-GEE-NEIGNT ... 321
WINAOW-get-ClIeNt-WIth ..o 321
WINAOW-get-Client-height ... 321
(VL1 o Lo T St o T 1 o 321
WINAOW-MAKE-MOTAL.......coi i 321
VLo [olV T o o] o 18] e B 1 T=] o1V TP 321
WINAOW-TEITESN ... e e e e 322
WINAOW-remove-CallDack. ... 322
WINOOW-SEE-CUISOT ..ottt 322
WINAOW-SEE-TOCUS ..o 322
(VL1 To [0 LT S =T] = 322
WINAOW-SEE-SIZE-NINTS ... 322
WINAOW-SEE-ClIENT-SIZE......co oo 323
1T Lo Lo Y] T 1 323

TA.54. MISCEIIANEOUScuieiiie ettt ettt et et et et et e e e e e et r e e e eaeeareerseaaens 323

DEGIN-DUSY-CUISON ... 323
DIl ... 323
CRIN 1 323
ClEAN-WINAOWSoiiiiiiiiiiiiiii 324
ClEAr-IHE-WINAOW.......cciiiiiiiiiiiiiii 324
ClEAI-TESOUITESeiiiiiiiiiii ettt 324
COPY-TIIB e 324
AEDUGMSY i 324
QIF-EXISTS ..t 324
ENA-DUSY-CUISO......coiiiiiiiiiiiii 324
L (ST o] U (PP 325
[E= o s (] a0 B (11 o PPN 325
FIE-EXISES .ttt b bbb bbb e b rnrn e 325
1T S= [T ox (o] PPN 325
fINA-WINAOW-DY-1ADEIuiiiiiiiiiiiiiiii bbb 326
fIN-WINAOW-DY-NAME.... .ttt eereeree 326
[0 = L (0T 11 o PPN 326
QEL-ACHIVE-WINAOWceiiiiiiiiiiiiiiiii 326
OEI-CROICE. ...t 326
QeL-ElaPSEA-TIME ..ottt 327
QELIAE-WINUOW ...coiiiiiiiiiiiiiiiiiii e 327
OEI-0S-VEISION. ...ceiiiiiiiiiiiii ittt 327
QEE-PIALTOIM ..o 327
[0 o (ST 0B of TP 328
QEELEXE-TIOM=USET ..ceiiiiiiiiiiiiiii e 328
[0Ad-TESOUICE-TIlE....ccciiii e 328
[ONG-TO-SIING ..o 328
make-metafile-placeable.............cc 328
MCI=SENU-SIIING ..o 329
MESSAGE-DOX ... i it 330
MKAIN 330
10 PP 330
FEAA-SIING .. 330
FEEUMN-TESUIT ... 331
FINIT 331
K] LoV o L= YT o [0 1PN 331
ST o o] o o 331
L] T o PPN 331

LS 1] T o] o PPN 332

S L] o (o 0= | TP 332

S 0] o (o o] oo [P TTPPPTTN 332

S 0] Lo R (o s 1] o To PPN 332
5301 oo I o {1 1T PPN 332
gL o 0 o = TR 332
WXCIIPS-0DECT-EXISTS ..o 332
11L=1 o TP 333

15. WXCLIPS classes DY Categoryuuuiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeieeeeeeeeeeeeeeeeee 334
15.1. Managed WINAOWScooiiiiiiiiiiie 334
15.2. SUDWINAOWS.cooiiiiiiiiii e 334
15.3. PAnel lIEIMS ..o 334
15.4. ConvenienCe dialogs........ccoviiiiiiiiiii 335
15.5. DEVICE CONTEXLS ...coeiiiiiiiiiie et 335
15.6. Graphics device INtErfaCe. ... 336
LS. 7 BVBNES o 336
15.8. Interprocess COMMUNICALIONceviiiiiiiiiiiiii 337
15.9. Database ClaSSeS.......cooviiiiiiiiii 337
15.20. File TUNCHONS. ..o 337
15.11. Time-related fuNCHONS. ... 337
15.12. NOISY fUNCLIONS ..o 338
15.13. Operating System fUNCHONScooviiiiiiii 338
15.14. wxCLIPS environment fUNCLIONS...........cooviiiiiiiii 338
15.15. Data fUNCLIONS.......cooiiiiii 338
16. TOPIC OVEIVIEWS ...coeiiiiiiiiiiiiieeeeeeeeeeee ettt eeee ettt ettt e et eeeee et e e e e eeeeeseeeneneenees 340
16.2. WINAOW SEYIES ... 340
16.2.1. WXFrame SEYIEScooiiiiiiie 340
16.1.2. WXDIalogBOX SLYIES ...ccoiiiiiiiiiiii 340
16.1.3. WXIEM SEYIES ..o 341
16.1.4. WXBULION SEYIES ..o 341
16.1.5. WXGAUQE SIYIES....ccoiiiiiiiiie 341
16.1.6. WXGIOUPBOX SEYIES ...ccooiiiiiiiiiiic 341
16.2.7. WXLISIBOX SEYIES....cciiiiiiiiiii 341
16.1.8. WXMESSAQGE SIYIES ...ccoiiiiiiiiiiie 341
16.2.9. WXRAIOBOX......ccciiiiiiiiiiii 342
16.2.10. WXSHAEr StYIES .o 342
16.1.11. WXTeXtWXMUIITEXE STYIEScoeviiiiiii 342
16.1.12. WXTeXtWINAOW SEYIESccooviiiiiiii 342

16.1.13. WXPANEI SLYIES ..o 342

16.1.14. WXCANVAS SIYIES ...coooiiiiiiiii 343

16.1.15. WXTOOIBAr SIYIES.....ccoiiiiiiiiii 343
16.2. Interprocess COMMUNICAtION OVEIVIEWccuiiiiiiiiiiiiiiiie 343
T I - - = 1 1] (] 344
16.2.2. CONNECLION OVEIVIEWciieeiiiiiieeeeeeee ettt s s e e e e e e et s s e e e e e e eeataa s e e e e e e e eeannnn e eeees 344
16.2.3. EXAMPIES ..o 345
16.3. DEVICE CONEXE OVEIVIEW.uiieiiiieeeeieeiiiies s e e e ee e ettt s s e e e e e e eatta e s s e e eeeeeeaann s e eeeeeeennnnnnns 346
16.4. Dialog DOX OVEIVIEWccoiiiiiiiiiiiiiieee 346
GRS T e To] o =T o 1YY 4T 347
16.5.1. Differences in toolbar types.........ovviiiii 348
16.6. Database ClaSSES OVEIVIEWciiveiiiieeiieie e e s e et e e e e e e et s e e e e e e eaeeennas 349
16.6.1. Procedures for writing an ODBC application.............ccccccciiiiiiiiiii, 349
16.6.2. EXAMPIES ..o 350
16.6.3. DAtabasSE OVEIVIEW.cccieeiiiiii e e e et e e e e e e e e e et s e e e e e e e e eaean e e ee s 352
16.6.4. RECOIASET OVEIVIEW. .. .cciieeiiieiieee e e e e e ettt e s e e e et e ettt s s e e e e e e e eataa s e e e e e e e e eaaann e e eeees 352
16.6.5. ODBC SQL data tyPeSceeiiiiiiiiiiiieeeeeee e 352
16.6.6. A selection of SQL COMMANGScovvviiiiiiieiiieecr e 353
N TNt O =T 1 = 353

BT T2 1 5T ¢ P 353
16.6.6.3. SEIECT ..coeiiiiiiiiiiiii 353
16.6.6.4. UPALEcooiiiiiiiiiiiiiiiiii 354

G 1 T 0 AV YT 354
16.7.1. The appearance and behaviour of a gridccccciiiii 355
16.7.2. EXAMPIE o 356
16.8. WXCOOL OVEIVIEWiieeeieeeiiiiee e e e e ettt s s e e e e e e ettt s s e e e e e e eaata e e s e e eeeeeetaan s e e eeeeeennnnnnns 357
16.8.1. What iS WXCOOL? ..ccoiiiiiiiii 357
16.8.2. How to use the WXCOOL class referenceccccccvviiiiiiiiiiii 357
16.8.3. INSTANCE CIEALION.t ieiiieeeiieie ees 358
GRS R T I o1 J TSP 358
16.8.5. WXCOOL event handling ... 359
16.8.6. Implementation detailS ... 359
16.9. RESOUICE OVEIVIEWeeiieeeiiiie s e e e eeeeeettte s s e e e e e e eaattan e e e e e e eeeattan s e seeeeeeessannaaeeeeeeennnnnnns 359
(€ (011 1= | Y2 P PP PP P PPPPPPPPPPPPP 361
Y o 361
BIt lIST e 361
L0711 0= Vo - 361
L= 01V 1P 361
DDE ... 361

1= 0 PP 361
L 361
LT T - 362
Y = 1= 362
OPEN LOOK. ..cciiiiiiiiiiiiiiii 362
=TT 362
LS EST 0 0] o= PP 362
S = LU T T 362

1. Introduction

Hardy is a tool that has been designed and developed by the Atrtificial Intelligence Applications
Institute at The University of Edinburgh, primarily for diagramming applications. It runs on Unix
workstations under Motif or Open Look, and on PCs under Windows 3.1.

In this manual, the Windows version of Hardy is referred to as Hardy for Windows.

1.1. Diagramming

The idea behind Hardy is very simple. The diagram is a fundamental tool that is essential to many
analysis and design activities. Diagrams provide an intuitive way of expressing relationships
between concepts which most people can relate to, unlike most formal languages and notations.
However, though diagrams are often easily drawn with pencil and paper, any subsequent
modification normally means that the whole diagram has to be re-drawn, with all the usual
problems of consistency checking, etc. Some support for diagramming can be provided by
conventional computer-based drawing tools, but these suffer from two main draw-backs.

Firstly, tools are not normally specific to the type of diagram required; for example, when an
image is erased or moved, there is no knowledge of what other images are related to it, so any
links to and from the image remain where they were. Secondly, in most cases the diagram cannot
be directly processed---the diagram must first be translated by hand to a different representation.
In those tools that overcome these shortcomings, the types of diagram and means of
customisation provided are limited; in addition, high costs are normally associated with them.

Hardy allows the user to build a diagram type (such as a dataflow diagram type) or to use a type
already provided by someone else. The user may then select a type and rapidly produce
diagrams, which consist essentially of a number of nodes linked by arcs. When constructing a
diagram, arcs will follow nodes when they are moved, and values may be entered for node and
arc attributes that are specified in the diagram type.

Once created, diagrams can be output in a variety of formats which allow the underlying system
model to be processed by another program, so that Hardy can be used, for instance, as a
knowledge capture tool feeding directly into a Knowledge Based System, or transformed into a
document with mixed text and graphics, so that (for example) the documentation of organisational
procedures becomes much less arduous. Hardy can also be used to display diagrams generated
by other programs.

To achieve a greater degree of customisation, Hardy supports an Application Programmer's
Interface. This allows the card type designer to intercept events such as selecting a menu item or
clicking on a diagram node and implement specialised layout algorithms or animate particular
scenarios.

1.2. Hardy and hypertext

The diagramming capabilities of Hardy are built on top of a hypertext framework in which each
diagram has its own card (window), and cards may be linked together to form a tree or network.
The user may browse through this network, either by following hypertext links or by viewing the
index tree and clicking on a card title.

Diagrams have a habit of being hierarchical, with a node on a high-level diagram representing an
entire diagram at a lower level. Hardy supports this type of organisation though expansion cards.
A diagram card with its expansion cards will all be treated as a single unit, being held in one file,
for instance.

1.3. Manual conventions
In this document, the following conventions will be used.
A term will be italicised when first used, as in hypertext card, above.

The names of particular files will be shown using a "teletype" face, as in di agr ans. def . The
same face will also be used for particular function names, as in di agr am car d-fi nd-r oot .

Button labels will be shown in bold face, for instance OK, and the notation Menu: Entry will refer
to the entry Entry on the menu Menu.

42

2. Running Hardy

To run Hardy, you require a serial number, which may be obtained from AlAl if you are an
academic user, or have otherwise arranged with AIAI to use Hardy.

This serial number should be entered into Hardy using the Tools: Preference menu. Click on the
Serial number button, enter the number, and restart Hardy.

2.1. Starting a session

It is normally useful to tell Hardy the type of cards and symbols you expect to use during a
session so that they are immediately available. This is done through a file which contains
information on all the definitions needed. Its default name is di agr ans. def so, before running
Hardy, this file should be in your working directory or you should tell the system which alternative
file you require.

This can be done either by specifying it on the command line through the -def flag followed by the
full name of the file required (see Command line options (page 43)), or by specifying it as a
resource in W N. | NI under Windows or in . har dyr ¢ under X (see Hardy resources (page 44)).

If Hardy cannot find the diagram definition file, however it is specified, it will give you a warning.
Under Open Look, other messages may also appear warning that it cannot load certain fonts.
This is normal: Hardy is just searching for a font which is not available.

2.2. Ending a session

To exit from Hardy, use the File: Exit Hardy menu from the control window.
2.3. Command line options

Many system defaults can be over-ridden by giving options on the command line. For instance, to
specify an initial hypertext index file, use the -f option followed by the file name, or to specify the
directories in which to search for files, use the -path option followed by the full directory name.

These are Hardy's command line options for both UNIX and Windows, unless stated otherwise:

-block filename
Specify a block type definition file(see hypertext cards (page 66)).
-clips filename
Specify a CLIPS filename to batch.
-def filename
Use the specified global diagram definition file, instead of the default di agr ans. def in
the current directory. This file mentions all the diagram definition files which should be
loaded on running.
-dir directory
Change to the given directory before loading CLIPS and other files. Useful to avoid
specifying directories in CLIPS application code.
-h Print a screen summarising the command line options (UNIX only).
-help Print the list of recognised command line options (UNIX only).
-load filename
Specify a CLIPS filename to load (file must contain constructs only).
-mdi Run in MDI (Multiple Document Interface) mode (Windows only).
In this mode, child windows are constrained by the main window. This is the default
under Windows. NOTE: this option has been withdrawn from version 1.76.
-nobanner Suppress the opening screen, regardless of initialisation file setting.

-path path
Add the given path to Hardy's path search list. This enables Hardy to find files which are
not in the current directory or whose absolute path name is incorrect, perhaps due to
transfer of files between UNIX and PC. This switch may be used repeatedly to add more
than one path.

-Pprinter
Substitute printer with a printer name to use as the default printer.

-port integer
Specify a port number if Hardy is used as a DDE server.

-sdi Run in SDI (Single Document Interface) mode (Windows only).
In this mode, windows are not constrained by the main window. NOTE: this option has
been withdrawn from version 1.76.

-server Use as a DDE server.

-version Display the current version number.

2.4. Hardy resources

Under Windows, Hardy resources should be held in the Hardy section of the file W N. I NI .in the
form name = value.

Under X, they should be in the file . har dyr ¢ in your home directory in the form hardy.name =
value

An example of a W N. | NI entry is as follows:

[har dy]
definitionList=c:\diagrans\diagrans. def

For . har dyr c, the equivalent is the line:
har dy. defini tionLi st=/user/11/jacs/ di agrans/ di agr ans. def

Below are some of Hardy's resource names for use in both UNIX and Windows versions, unless
otherwise stated.

definitionList = filename (di agr ans. def)
List of diagram definition files.

objectBitmapSize = integer (32)
Size in pixels of node/arc images on diagram symbol palette.

annotationBitmapSize = integer (32)
Size in pixels of annotation images on diagram symbol palette.

libraryBitmapSize = integer (32)
Size in pixels of images on symbol library palette.

showLinkPanelOnCreate = boolean (0)
If 1, show the hyperlink panel when a diagram card is created.

showToolBarOnCreate = boolean (1)
If 1, show the toolbar when a diagram card is created.

showPaletteOnCreate = boolean (1)
If 1, show the symbol palette when a diagram card is created.

showErrors = boolean (1)
If 1, route error messages to the Development Window.

displayCategories = boolean (0)
If 1, card types will be requested by the system as category then type.

clickToSelect = boolean (0)
If O, clicking on an object will follow any hyperlink present, shift-clicking will select it. If 1,
clicking will select, shift-clicking will follow the hyperlink.

mdi = boolean (1) Windows only
If 1, run Hardy in MDI (Multiple Document Interface) mode. In this mode, child windows
are constrained by the main window. This is the default under Windows.

HARDYStart = boolean (1) Windows only
If 1, the audio file hyst art . wav will be played when the system is started.

HARDYEXxit = boolean (1) Windows only
If 1, the audio file hyexi t . wav will be played when the system is exited.

Standard defaults are shown in brackets.

2.5. Files used by Hardy

Apart from the executable file, har dy, the system will look for certain files in your working
directory when it is started. The most important of these are:

1. diagrans. def -- alist of diagram type files,
2. resources file -- contains your preferred settings for various system values (. har dyr ¢
under X or W N. I NI under Windows). See Hardy resources (page 44).

Other information must also be available between Hardy sessions. Hardy uses files for this
purpose, distinguishing several different types of file, each holding different but related types of
information. Standard filename extensions are used to identify these files.

Definition list file (di agr ans. def),

Symbol library files (. sl b),

Card collection index files (. i nd),

Diagram and hypertext definition files (. def),

Diagram card files (. di a),

Hypertext card files (. hyp),

Text card files (. t xt).

Hardy package files (. hpk). These are explained in Packaging Hardy files (page 46).

NGO~ R

2.6. Hardy application associations

Just as you can associate file extensions with programs in MS Windows, you can associate
particular application-defined file extensions with Hardy command lines. The appropriate
command line will be invoked when Hardy encounters a file which isn't an index file, and for
which there is an entry in Hardy's association list.

This means that instead of invoking a specific Hardy application or document with a command
line like this:

45

hardy -dir c:\hardy\tree -clips treeload.clp -f deno.tre
you could instead use:

hardy deno.tre

or, if no application main file needs to be specified,

hardy tre

which will put Hardy into the required application state.

What is the nature of demo.tre? Well, it could be a normal index file, or it could be an application-
specific file, unrecognised by Hardy. In the latter case, the application code should register an
OnLoadFile event handler which will be called when Hardy finds the application association and
after it has executed the associated command line. If there is no OnLoadFile event handler,
Hardy will assume the file is a normal index file.

You can edit the associations by selecting the Preferences dialog and clicking on the
Associations button. The Hardy Application associations dialog will appear, with a list of
applications (initially empty). To add an application association, click on Add, and fill in the
Extension, Name and Command fields. Click on a listbox item or Ok to register the extension.

The values of the dialog fields should be filled in as follows:

Extension: this is a short file extension unique to the application, such as 'tre' or 'btk'.
Name: the name of the application, e.g. Tree Drawing Demo.

Command: the Hardy command line that will be executed by Hardy to activate the
application. It should not include an index-loading command (-f) since this index loading
will be done automatically by Hardy if necessary. An example:

-dir {HARDYDI R}\tree -clips treeload.clp

Note the { HARDYDI R} keyword which will be substituted by the Hardy directory as
determined by the HARDY environment variable, or hardy installation directory, or
har dy directory under the user's UNIX home directory.

To delete an assocation, press the Delete button. Unfortunately the entry will not be deleted in
win.ini (or other) initialisation file unless further items are added: edit the initialisation file by hand
if necessary.

Under Windows, it's a good idea to use the File Manager to associate the .hpk extension (see
next section) with the runhardy.exe program. You can also edit win.ini to do this. This will allow
double clicking on a Hardy package file to run or reset Hardy and load the appropriate files. It will
also allow World Wide Web browsers to do the right thing when you click on a .hpk file.

If when trying to use the associations, Hardy does not seem to be loading the application
properly, check that the index filename has the correct extension. Hardy needs the extension to
be correct for it to load the required definition files properly.

2.7. Packaging Hardy files

Because a single application or document may use several files, maintaining and distributing
such files can become inconvenient. Hardy provides a 'composite’ file type with extension . hpk

46

which packages several Hardy or user files into one file. Hardy recognises the extension and
unpacks the files into the standard Hardy area before executing the associated command line
contained in the package file (if any). The standard Hardy area is determined by the HARDY
environment variable, or if this is undefined, the Hardy installation directory under Windows or,
under UNIX, the directory har dy under the user's home directory.

As mentioned above, under MS Windows you can associate the .hpk extension with the program
runhardy.exe to allow invocation of Hardy when double-clicking on a .hpk file from the File
Manager or Web browser. The reason why you need to associate the extension with
runhardy.exe instead of hardy.exe is that only one copy of Hardy can run at a time under
Windows, and runhardy.exe will communicate with Hardy by DDE if it is already running.

If the .hpk file is identified as residing in a temporary directory (such as TEMP or /tmp), it will be
deleted after unpacking.

To create your own .hpk files, invoke the Package tool from the Hardy Tools menu. In the HPK
Filename text box, enter the full pathname of the package file to be created, with .hpk extension.

In the Current root directory text box, enter the path to be subtracted from the real file path
when storing in the package file. So if your application is stored in the directory

c: \ hardy\ apps\t est, you might enter the directory c: \ har dy\ apps. In this case, the
package file will contain files such ast est\ | oad. cl p. This allows unpacking into a directory
relative to the user's standard Hardy data directory instead of replicating your original directory
structure.

Use the Add button to add files to the list, and Delete to remove them. Check the Load checkbox
for a file which is to be designated the application file to load immediately (if any).

Enter an optional comment into the Comment text box, and in Association, enter an association
string of the same syntax used in the Association list as invoked from the Preferences dialog. For
example:

btk,Bl TKit,-dir {HARDYDIR}\thing -clips load.clp

This consists of an extension, an application name, and a Hardy command line. You should not
put a -f switch on this command line since an index or application main file will be invoked
automatically if appropriate. You can use the keyword { HARDYDI R} to stand in for the user's
current Hardy directory, where files are unpacked to.

When you have entered the details of the package file, you can save these details as a package
file list (.pfl extension) for later loading. Press the Generate button to generate the Hardy
package file.

47

3. Using Hardy

3.1. Hardy conventions

Hardy uses the keyboard, mouse and cursor in a regular way, so that you get similar effects from
doing similar things anywhere in the system.

3.1.1. Mouse conventions

Generally, Hardy uses the left mouse button only, with the right button being used to provide
short-cuts for common operations. We never use other buttons even if they exist.

With each mouse button, we can do three basic things:

1. Click on -- move the cursor to where you want it, then depress and immediately release
the button.

2. Double-click on -- move the cursor to where you want it, then depress and immediately
release the button twice in rapid succession.

3. Click-and-drag -- move the cursor to where you want it, then depress the button and
move the mouse, dragging the cursor to the new screen position, then release the
button.

These operations may be modified by the control and the shift keys, so that control-click means:
move the cursor to where you want it, then depress and immediately release the mouse button
while holding down the control key.

We'll talk about "pressing" a button when we mean:
move the cursor over the button and click on it
and "choosing" a menu entry will mean:

move the cursor over the menu, depress the button to open the menu and keep it depressed,
then move the cursor down to the menu entry required, and then release the button.

3.1.2. Cursor patterns
Six different cursors are used by Hardy, as follows:

pointer normal default pattern,

text pointer used when entering text,

hand used when you can move items around in a window,

cross-hairs used in a window when something has been selected and can be "dropped"
onto the window,

bulls-eye when you move an arc from one point to another on a node,

hourglass/stopwatch used whenever a noticeable delay is expected, such as when
loading a file.

3.2. Creating cards

Start Hardy without specifying any command line options, etc. The main control window will
appear with the menus File, Cards, Tools and Help. Initially, there will be nothing on the canvas.

To create your first card, select the Cards: Create top card entry. A choice of card types is
presented; try the Text card option since this is the simplest. Select it and press the OK button. A
new window appears with a blank text subwindow.

Now you can try making use of hypertext. There are four menus, File, Edit, Hyperlinks and Help
on this new card. Goto the Hyperlinks menu of the new card and select the Link new card
option. Again, choose a text card. Another new card appears, linked to the original one. Link
another card to the new one. Link a further card to the original card. The set of cards you've built
up is shown as a tree in the control window. The first card is called the Top Card since it's at the
top or root of the hypertext 'tree’.

You can use the File: Open file menu entry to associate a text file with the last card you created.
3.3. Browsing
There are two ways in which the term Browsing is used in Hardy.

Card browsing gives the user an overview of cards in the current index.

File browsing gives detail on various kinds of Hardy file on disk, and allows loading
these at will without having to know which tool to invoke first.

3.3.1. Card browsing

Although the tree of cards is shown in the control window, you may not know which card is which
by now, because the cards all have the same title. The title of a card can be changed with the
File: Card title menu entry.The changed titles are not shown immediately in the control window.
You can ask for the tree to be redrawn by going back to the control window and selecting the
Cards: Draw tree entry. Clicking on a title in this tree index gets you directly to the relevant card.

You can also search on card titles using the Cards: Search item.The Card Search dialog allows
entry of a search string (or the ™" wildcard to find all cards), and pressing Search causes all
matching titles to be displayed. Clicking on a title in the index tree brings the corresponding card
to the front of the stack.

Press OK to quit from Card Search.

3.3.2. File browsing

Instead of loading files individually from different tools and menus, it is possible to use the File
browser. This is accessible from the File: Browse files menu on the control window. The file
browser dialog shows a list of files, information about each file, and a list of directories so the user
can navigate around the disk.

Single clicking on a file in the Files displays information about it in the Description area, and
double clicking loads this file. Note that almost all Hardy file types are supported in the file
browser, although it is not always possible to load displayed files since a specific diagram file, for
example, might rely on a diagram type being already loaded. The user will be warned if an
attempt is made to load a file whose type is not present.

There are checkboxes to allow selective browsing, and a Show detail checkbox to toggle between
high detail mode (which can be slow) or lower detail mode (faster).

49

A restricted version of the file browser is available from other tools, such as the diagram card.
The diagram card file browser allows browsing of files whose types match the type of that card.

3.4. Ordering your screen

The screen may be getting a bit cluttered by now. To hide cards, select the File: Quit card option
on a card's File menu. This gets rid of the physical window, while keeping a record of the card in
the hypertext index. (This is very different from the File: Delete option, which erases the card
completely from Hardy's memory.) When you refer to a hidden card from another card, or from
the control window, the card will spring into life again. This means that a hypertext index can
consist of hundreds of cards without becoming totally unworkable on the screen. You need to
keep visible only the cards you are working with at any given time.

If you delete a card, its links with other cards will disappear. Sometimes this means that cards are
‘orphaned'’: they have no parents from which the user can get to the child. These can be linked up
again by using the Cards: Find orphans option, choosing one of them, and selecting that card
by using the Hyperlinks: Select card option. You can then go to another card and choose the
Hyperlinks: Link card to selection option.

3.5. Hypertext links, cards and items

So far, links between information have always involved cards. However, linking a card with
another card is only a special case of linking an item with an item. Hardy considers a card to
contain a number of items, and these items may be linked with other items in the same or a
different card.

The items in a diagram card are nodes and arcs. In a hypertext card, items are blocks of text.
3.6. Cards and files

Hardy uses files to save information from one session to another. Several different types of file
are involved (see Files used by Hardy (page 45)). For instance, every card has a file associated
with it which will have to be saved individually if the card has been changed. (The exception is
any diagram expansion card which is always a 'descendant' of a diagram card. Expansion card
contents are saved with the ancestor diagram card, so that an entire hierarchy is stored in one
file.) In addition, the main hypertext index which contains pointers to the card files and the links
between cards will need to be updated. These files may be saved through the File: Save
optionon each card and on the main Hardy window.

Before saving a diagram to a file, Hardy will make a backup of any file with the same name by
copying it to a file with a . bak extension. If for any reason Hardy crashes, leaving your diagram
file in an unloadable state, or you need to get back to the previous version for some other reason,
this backup file is available for editing, etc.

Index files can also be recovered if you forget to save the them. Each card is designed to be able
to load a card file independently of the main index (assuming it's of an appropriate type).
Therefore you can reconstruct a hypertext index manually, creating new cards and loading them
with the appropriate files. This also means that you can import card contents from other sessions.

If you try to exit Hardy without saving the index fileafter changes have been made to it, or without

saving changed cards,you will usually be asked if you want to save the changes. The same goes
for individual cards which are being deleted.

3.7. Preferences

50

You can set some system values to suit yourself and save them between sessions to give the
default behaviour that you want. You can, for instance, say whether or not you want to show the
hyperlinks panel on every card, or what file you want to use to hold your list of diagram files.

These "preferences" are set through the Preferences dialog box which is opened from the
"Preferences" entry on the "Tools" menu of the main control window.

To alter the default diagram definition list, select the text entry area labelled "Default definition
list" by clicking on it, then type in the name of the file you want to use.

You can also set the sizes of the images used in library and diagram card palettes, again by
selecting the text entry area associated with the bitmap in question and changing the contents to
the value (in pixels) that you want.

The other preferences have boolean values which correspond to the state of the buttons
associated with them: if the button is depressed the value is true, if the button is not depressed
the value is false.

Once you have set all the values to be what you want, you press the OK button, whereupon the
system will accept the values and dismiss the dialog box. The dialog box can be dismissed
without changing any values by pressing Cancel.

These values are held between sessions in the files . har dyr ¢ under Unix,or W N. I NI under
Windows (see Hardy resources (page 44)).

51

4. Diagram cards

4.1. Creating new diagrams

New diagrams are created through the Cards: Create top card menu item of the control window,
or the Hyperlinks: Link new card menu option of an existing card. If you then select the
particular diagram type you wish to use (see Creating new diagrams (page 82)), a new diagram
card will appear, together with a floating symbol palette.

The symbol palette is used for selecting the node and arc types that are available to you for this
type of diagram card.

A panel showing all the hyperlinkages to and from the card may be displayed on the right side of
the card. You can toggle this to be shown or hidden by using theHyperlinks: Toggle link panel
display menu option. Similarly, you can save space on the card by hiding the toolbar that
appears at the top of the card below the menu bar through theHyperlinks: Toggle toolbar option
on the same menu. This toolbar gives easy access to some of the most used text formatting and
diagram layout facilities that are on the Layout menu (see Layout (page 54)).

4.2. Creating nodes

You add a node to the diagram by choosing the one you want from the selection in the symbol
palette. To help you tell which is which, the name of the symbol below the cursor is shown in the
status line at the bottom of the diagram card as you move over the symbol palette. When you've
found the one you're after, click on the image in the palette, then move your cursor back into the
diagram card where it will change its shape to cross-hairs (a large addition sign. This means that
you can now place a node on the diagram by clicking where you want it.

Move the node to a different place on the card by holding down the left button over the shape,
dragging the mouse to the new position, and releasing the button.

You can add more of these nodes by continuing to click where you want them. You can always
tell that clicking will drop something on to the window from the cross-hairs cursor pattern.

You can label nodes so as to tell them apart. See Object attributes (page 53).

4.3. Creating arcs

An arc can be drawn between one node and one or more other nodes. Basically, this is done
using the right mouse button by clicking-and-dragging from the source node to the destination
node where the button is released. (You can draw an arc from a node back to itself: in this case,
you'll be asked to confirm that that was what you really meant.) Most of the time this is all that is
necessary, however there are cases in which there is more than one type of arc that can join the
nodes. There are two ways of telling Hardy which arc you want: either you can select the correct
arc symbol from the diagram symbol palette before you join the nodes, or you can wait until after
you've asked the system to join the nodes when it will pop-up a dialog box showing you which
arcs might be suitable. You then select the node you want and press the OK button to dismiss the
dialog box. The arc will follow the nodes correctly if you how move one of them.

4.4. Selecting nodes and arcs

Nodes and arcs may be selected by holding down the shift key and left-clicking over them.
Selection handles are shown around the shape to indicate that it is selected. The shape may be
deselected with the same operation. You can have more than one object selected at a time.

A selected node may be resized by clicking-and-dragging on one of its selection handles; if shift
is also held down while a corner handle is moved, the shape will go back to its original
proportions.

Various other operations may be done on selected objects using the card's Edit menu. Arcs may
be divided into segments by selecting the arc (shift left click) and choosing the Edit: Add control
point menu option. A line or spline arc's control points, except for the start and end points, may
be dragged with the mouse to make the arc bend. Lines and splines always start off with no
intermediate control points (giving a straight line).

4.5. Labelling nodes and arcs

Nodes and arcs can have more than one label if they have more than one text region. Nodes only
have more than one text region if they are composite symbols (made up from more than one
basic shape (see Node symbols (page 71)). All arcs have three text regions: one at its start, one
at its middle, and one at its end. There will be one label for each text region. Each label has its
own specified appearance (its colour, font family and size, etc) and its own text string which is
held in one of the node's attributes. To change the label, you need to change the value of the
attribute holding its text (see Object attributes (page 53)).

4.6. Object attributes

An attribute is a defined component of the node which can be given a text string as its value by
the user through the Attribute Editor.

You open the the Attribute Editor by control-left-clicking on the node so that a window pops-up
with a list of all the node's attributes.The node label is usually called 'label' or ‘name'. The value of
the selected attribute name is shown in the text entry area below the list of attributes.

Under Unix only, you can now position the cursor in the text entry area by clicking, then type in
characters directly from the keyboard. To delete the character before the cursor use the Back
Space key; to delete the one after it use the Delete key.

Otherwise, you must press the Edit button below the text area whereupon a editor window will
appear. Which editor is used depends on your value for the EDITOR environment variable. When
you have made your changes and dismissed your editor, you must press the OK button on the
dialog box that also popped up so as to tell Hardy that you have finished with the editor. After you
have made all the changes you want, press the OK button and Hardy will accept them and
dismiss the Attribute Editor. Or you can abandon all your changes and leave the attribute values
unaltered by pressing Cancel.

You can add a further attribute to the node by pressing the Add attribute button. This will ask for
the name of the attribute and add it to the list. You can then give it a value as before. And you can
remove an attribute that isn't required by selecting it from the list and pressing the Delete
attribute button. As before, no changes are made to your diagram until you press OK, and you
can always throw all your changes away by pressing Cancel.

Arcs have attributes in exactly the same way as nodes, and exactly the same Attribute Editor is
used to change them.

4.7. Multi-way arcs
As well as being able to join one node to another node, you can join one node to several others

(of the same type) with a single multi-way arc. You can do this in two different ways. Either you
select all of the destination nodes then right-drag from the source node to any one of the

53

destination nodes, or you can connect an additional node to an existing multi-way set-up, by first
selecting thejunction symbol then right-dragging from the common source node to the new node,
as usual, to create a new connection from the existing junction symbol to the new node.

If, for aesthetic purposes, you want to alter the way the multi-way arc is shown, you can move the
junction symbol around by first selecting it, then left-dragging it as though it were a node symbol.

4.8. Deleting nodes and arcs

There are two ways of deleting images:you can either select the shape(s) and use the Edit: Cut
menu entry, or you can right click on the image and select the pop-up menu's Delete Image item.
You can clear the whole card by using the Edit: Select all menu item followed by Edit: cut.

The major advantage of using Edit: Cut is that the images deleted are actually copied into an
internal buffer (and, under Windows, the Clipboard), so you can still change your mind and
replace the image by selecting the Edit: Paste menu entry.Edit: Paste will add the contents of
the clipboard back into the diagram. The same buffer is used by Edit: Copy which copies the
selected objects into the buffer but doesn't delete their images from the diagram. This cut-and-
paste mechanism will also work for copying images from one card to another of the same type.
Again, you can copy the entire card easily by using Edit: Select all.

The entire card will be deleted if you use the File: Delete card menu entry, but this cannot be
undone.

4.9. Layout

The Layout menu provides several options to help create neat diagrams. To use the Align
vertically option, select several nodes and then choose the option. The first node selected is
taken to be the one which the others should be aligned with, in the vertical direction. The Align
horizontally option does the same thing in the horizontal direction.

The Straighten lines option acts on a selected multiline, i.e. a line which has had control points
inserted. It will attempt to align the segments of the line horizontally and vertically, according to
the direction each segment is already tending towards.

The To front option places the selected image at the front of the diagram, so that it will be
displayed on top of any overlapping images. Similarly, the To back option places the selected
image at the back of the diagram, so that it will be fully or partially obscured by any overlapping
images.

Hardy can also automatically layout a group of nodes as a tree with the Layout: Format tree
option. The selected node is taken as the root of the tree and the nodes connected to it will be
arranged as a tree on its right hand side. The format of this tree can be altered by using the
Diagram Card Options dialog box which is opened through the card'sFile: Options menu entry.
See Diagram card options (page 59).

The Layout: Apply definition menu option lets you update a displayed card if you have, in the
meantime, changed its Diagram Type definition,and existing values of the various properties of
the displayed objects will be updated as appropriate. The Layout: Zoom option allows you to
change the scale of the entire diagram. Reducing the scale will allow you to view a larger diagram
area and, hence, more objects for the same physical size of card on your screen.

If you have any doubts about whether or not your new layout has been properly displayed, use
the Edit: Refresh display menu entry to carry out a full re-display of the card.

4.9.1. Arc attachment points

Some diagram types may be defined so that arc images stay attached to a particular side of a
node image (or vertex in the case of triangles, diamonds and other polyline symbols), depending
on where you place the start and end points of an arc when creating it. Nodes which impose this
behaviour on arcs have their Use attachments toggle switched on from the Diagram Type
Manager.

Circles, ellipses and rectangles have four attachment points, one at each point of the compass,
triangles and diamonds have three and four respectively, one at each vertex. When you create a
new arc by sweeping from one node to another, the nearest attachment point for each node is
found and used. When another arc is drawn, all arcs on the same attachment point are spaced
out evenly. Note that this spacing is not performed if the node's attachment mode is not switched
on.

It may be that the arc spacing that Hardy chooses causes arcs to overlap untidily. You can order
the arcs on a particular attachment point by selecting the arc and, while holding down the left
mouse button, dragging the endpoint to a new preferred position by the attachment point. The
cursor changes to a bullseye during this operation. If the attachment point itself is wrong, the right
mouse button may be used to drag the endpoint to the correct attachment point on the same
node. Again, the cursor changes to a bullseye.

4.9.2. The toolbar

Each diagram card can have a toolbar displayed at the top below the menu bar. You can save
space on the card by hiding this toolbar through the card's Hyperlinks: Toggle toolbar menu
entry. The toolbar is used to give easy access to some of the most used layout and formatting
facilities which are mostly otherwise available through menu options and image properties.

Left justify text (Edit: Format text).

Centre text (Edit: Format text).

No centring or justification (Edit: Format text).

Fit images to contents.

Don't fit images to contents.

Vertically align selected images on left .

Vertically align selected images on centre (Layout: Align vertically).
Vertically align selected images on right.

Horizontally align selected images on top

10. Horizontally align selected images on centre (Layout: Align horizontally).
11. Horizontally align selected images on bottom

12. Straighten lines (Layout: Straighten lines).

13. Format tree (Layout: Format tree).

14. Choose font (Edit: Change font).

CoNoGh~wWNE

4.10. Hyperlinks

You can hyperlink individual nodes, arcs and cards to other cards. This helps you organise your
diagram by allowing you to set up a hierarchy which can give you a top-down view of it,
presenting only as much detail at any level as is appropriate.

4.10.1. Linking arcs and nodes to cards

55

You can link a node or arc to an existing card or to a new card.

To link the object to a new card, right click on the image and choose the Hyperlink to new card
option. This will ask you to specify what type of card you want (see Creating new diagrams (page
52)), and construct a new card of this type which will be linked to the object in question. You will
see the new card reflected in the display of the index tree in the control window, and, if the object
was a node, you'll probably see its boundary highlighted to tell you that it is linked to another card
(though this property can be switched on or off).

An alternative way of linking an object to a new card is to select the object you want to link, then
select the Hyperlinks: Link new card option and proceed as before.

Left clicking on the image will now take you to the new card in subsequent browsing, as would
clicking on the appropriate item on the card's link panel.

If you want to link the object to an existing card, you should select the card by its Hyperlinks:
Select card menu entry, then right-click on the object to pop-up the menu so you can chose the
Hyperlink to selection entry. Alternatively, you can select the object then use the Hyperlinks:
Link card to selection entry on the card.

4.10.2. Linking cards to cards

One card can be linked directly to another card by selecting the card itself through the
Hyperlinks: Select card menu entry. This will work even when there are no nodes or arcs
present on the card. You can then link it to a new card by using the Hyperlinks: Link new card
option and proceeding as above, or link it to an existing card by using the Hyperlinks: Link card
to selection entry on the card you want.

4.10.3. The hyperlinks panel

All links to and from a card or any items on the card can be shown in the Hyperlinks panel which
may be displayed on the righthand side of the card. However, as it takes up quite a lot of space
on the card, you can hide it through the card's Hyperlinks: Toggle link panel display menu
entry. The same menu entry will show it if it is already hidden.

You can display any card listed in the panels by left-clicking on its entry.

The default order of links in the Links panel may not be appropriate, especially for applications
such as on-line manuals. Use the Hyperlinks: Order links option, to bring up the Order Items
dialog box. Press on the Source titles in the desired order. The Destination list shows the new
order.

4.11. Diagram expansion cards

In some cases a complex diagram will need several cards. If you create separate diagram cards
in the normal way, each diagram will be saved in a separate file. This may be acceptable if the
diagrams are only conceptually related, but may not be good enough if you wish to display the
same node or arc on more than one diagram, but only have to type in the attributes for one node
or arc. The way this is achieved is explained in same object, different card (page 57), below.

First, how can we expand a top-level diagram so we can show more detail? If you have a node
which you wish to expand, select it and use theEdit: New expansion option. This creates a new
expansion card whose title is the name of the node, and which can be reached by clicking on the

56

node. Alternatively, if there is no node you wish to expand, select nothing and again choose the
Edit: New expansion option. This will link a new expansion card to the existing card so that,
conceptually, the whole card, rather than an image, is linked to the expansion.

Now when you save the top-level diagram card, all its associated expansion cards are saved as
well in the one file. For this reason, expansion cards don't have their own file saving option.

An expansion card is accessed in the same way as any other linked card, either via the index tree
in the control window, by left-clicking on an item, or by selecting an entry in the hyperlinks panel.

4.11.1. Same object, different cards

Returning to the question of having the same image on multiple cards. You will require this when
you need to ensure that changing the attributes of one image changes the attributes of the
other(s).

You can achieve this for nodes by selecting the node on one card, going to another, and there
selecting the Edit: Duplicate image for same objectmenu entry. This will not make a duplicate
node---it merely creates a new image for the existing, selected node. There is an underlying
concept of node and arc for which the visual representation is a 'handle’. When an entirely new
node image is created, a node is also created. When a node image is deleted, the node is only
deleted if there are no other images for this node still in existence.

You can copy an arc image in a similar way by selecting the arc image, then linking up two nodes
on the destination card. Instead of selecting an arc type, use the bottom option in the pop-up
menu Use selected arc object. This makes a new image for the same selected arc.

You can prove that these images refer to the same underlying object by changing the label text.
All related images will have their labels changed to reflect the new text.

IMPORTANT NOTE: this will not work across diagram files, since all diagram files are stand-
alone and cannot reference other files. Only cards in the same hierarchy of diagrams can be
used.

4.12. Containers

Some nodes can be set-up to be containers. These are nodes which can contain other nodes (of
specified types) so that, if you move the container node, its contents are moved with it. This can
look the same as having nodes super-imposed on each other, but their behaviour is different.

There are two special things that you can do with containers.

1. You can move nodes into and out of the container .
2. You can split a container into sub-containers which you can then split further if you
want.

You move nodes in and out of containers in the same way as you move them normally. However,
if you move a node that was outside a container across the container's boundary, a dialog box
will be popped-up to ask you whether or not you want it inside the container. If you prefer, you
can leave a node sitting over the container: it will look the same as if it were inside but it won't
move when the container moves. Similarly, when you move a node that is contained in a
container across the container boundary, you will be queried to check whether or not you really
want it to be moved outside the container.

57

To sub-divide a container (or a sub-container), you control-right-click on it and a menu will pop-up
with entries that allow you to split the container into two: either horizontally (so the sub-containers
lie beside each other), or vertically (so the sub-containers lie above and below each other). (Other
menu entries let you change the appearance of the container's boundary. See Symbol properties

(page 70).)
4.13. Printing diagrams

Under the UNIX and X environment, Encapsulated PostScript (EPS) output is provided. An entire
hierarchy of diagrams may be printed to EPS files in one shot using the File: Print hierarchy to
files menu option. See also Differences between the X and Windows 3.1 versions (page 96) on
platform-specific features for recommended ways of printing out diagrams under Windows.

4.13.1. Printing under X

The diagram/expansion card File: Print PostScript option pops-up a Printer Settings dialog box
which lets you change the default settings.

Printer Command: the printer command, e.g. | pr.
Printer Options: any command line options for your printer, e.g. - PE17.
Portrait: if on, will print in portrait mode. If off, will print to landscape mode.

Print to file: if on, will prompt for a filename to print to. If off, the printer command will be
invoked with the printer options appended. Note that the preview toggle over-rides this
option if on.

Preview only: if on (the default), the ghost vi ew program is invoked to preview the
PostScript output. Obviously ghostview needs to be installed and in your path.
Previewing allows you to adjust the scaling and translation without wasting too many
trees.

X/Y Scaling: scales the image.
X/Y Translation: translates the image.

To include a diagram in a LaTeX file, first print it to a PostScript file. Of the many possible ways of
including the file in your LaTeX document, the preferred technique is to use a macro package
such as psbox to scale and position the image based on its size. This is possible since Hardy
outputs EPS files which contain size (‘bounding box') information. To use psbox, put the following
statement near the top of your document:

\'i nput psbox.tex
You may then uses commands such as the following:
\ begi n{figure}
$$\ psboxt o(0. 9\t ext wi dt h; Ocm) { scr eendunp. ps} $$
\ capti on{ Exanpl e Hardy sessi on under X}\I abel {screendunp}
\end{fi gure}

The dollar signs centre the image. The "0. 9\ t ext wi dt h; Ocni' indicates that the image is to be
90% of the normal width of the text on the page, but scaled proportionally in the vertical

58

dimension. A non-zero value sets that dimension, possibly distorting the image. To omit
dimensions, use the psbox macro instead (see documentation for the psbox package).

4.13.2. Printing under MS Windows

Hardy for Windows provides the same printing facilities as described above (see Printing under X
(page 58)) for X through theFile: Print PostScript and File: Print hierarchy to file options. If
you have a word processor which can scale EPS images (such as LaTeX), you could include an
EPS diagram in a document. A better alternative may be to use the Edit: Copy option.

Using the clipboard

Windows 3 has the concept of a clipboard, viewed using the clipboard viewer. Applications may
exchange data using the clipboard. Types of data that may be exchanged include bitmaps and
metafiles, which are 'recordings' of the drawing commands used to build up a picture, and are
easily scaled without losing resolution, unlike a bitmap.

Hardy for Windows has an option in the diagram card Edit menu for copying a metafile version of
the diagram to the clipboard. The user-defined scaling factor (set from the options dialog box
called from File: Options) will affect the size of the diagram passed to the clipboard. You may
then paste the image into another application for editing or printing out. For example, importing
into the drawing program Corel Draw splits up the diagram into its component shapes, ready for
fine-tuning. Importing into Windows Paintbrush makes it into a bitmap, and this may be the
easiest and cheapest way of printing out a Hardy for Windows diagram.

4.14. Diagram card options

The File: Options menu pops-up a small window with some options that apply to that diagram
card.

1. Label Arcs with abbreviation If on, will cause arcs to be labelled with the abbreviation
stored in the arc definition. Useful on monochrome displays and non-colour printers.

2. Snap to grid If on, images will be positioned to the nearest grid line (conceptual, not
visible) so that images are easier to align neatly. The default is on.

3. Colour If on, colour is used; if off, non-white colours will be painted in black. This
applies to printing too.

4. Quick edit mode By default off, this inhibits diagram redraws when simple edit
operations are performed. With quick edit mode off, the whole diagram will be redrawn if
one node is moved, which can be slow for large diagrams.

5. Scale Enter a new number between 0 and 1 to scale the diagram. This currently has
no effect on printing.

6. Grid spacing The grid spacing determines the coarseness of image positioning, if the
shap to grid option is on. The default is 10 pixels.

7. Printfile Allows the user to change the filename used for printing this diagram to
PostScript.

8. Auto-layout options These are for use with the Layout: Format tree menu of a

59

diagram card. They allow values to be set for the left and top margins, the width and
height, and the X and Y spacing between nodes.

4.15. Diagram editing summary

The following is an alphabetical summary of common diagramming operations.

Bending an arc Select the arc, add control point(s) with the Edit: Add control pointoption,
drag control points. Turn the curve into a straight line by deleting all but two control
points.

Copying images Select images on a diagram card of the same type, go to the destination
card and select the Edit: Copy images(s) option. The images will be copied (with new
underlying node and arc objects). An alternative is to select the source card with
Hyperlinks: Select card before the copy operation, in which case the whole card is
copied.

Creating an arc Holding down the right mouse button, drag from the start node to the end
node. Choose an arc type from the pop-up menu.

Creating a diagram card Either select Cards: Create top card on the main control window,
or select Hyperlinks: Link new card on a particular card. Choose an appropriate
diagram card.

Creating a node Select a node symbol on the floating diagram symbol palette, move the
cursor to where you want the node to be positioned, and click the left mouse button.

Deleting an image Either select the image(s) and choose the Edit: Cut option, or right-click
on the image and choose the Delete image option.

Editing attributes Same as for Labelling an image. Press on the Edit button to use a text
editor for editing large attribute values.

Expanding a node Select the node, choose the Edit: New expansion option. A new
expansion card is created. Expanding without selecting a hode causes the new card to
be linked to the original card, rather than to an image within it.

Labelling an image Pop-up the attribute editing window by using control-left-click.

Linking an image to a new card Right-click on the image and select the Link new card
option. Left-click on the image to go to the card subsequently.

Loading a diagram |If you have saved an associated Hardy index file, use the -f option on
the command line (see above) or use the File: Open file option on the control window.
Otherwise, create a card of the appropriate diagram type, and select the File: Open
option, entering the filename.

Maximising card space Use the Hyperlinks: Toggle link panel display option and resize
the card to fill the screen. Note that, unless you start in the middle of the canvas, (see
Scrolling around below), you may have to move your diagram around node by node to
extend up or left.

Moving node(s) Select a node or nodes, and drag one to the desired position. If more than
one image is selected, all selected images will be moved.

Printing/previewing Choose the File: Print PostScript option, set Preview only for a

60

preview or switch it off to print to the printer, set Print to file if that's wanted as well,
then press OK. Enter any printer command options in the Printer Options text item.
Change the scaling and/or translation to fit the picture to a page.

Resizing a node Select image and drag control points. Dragging a corner point and holding
down shift retains the proportions.

Saving a diagram Select the File: Save file option, enter filename (not path). Also choose
the control window's File: Save file option to save the Hardy index file (with a pointer to
the diagram file).

Scaling diagrams Either choose the File: Options menu item in the Control Window and
enter a new number for the scaling factor, or choose the Layout: Zoom item for the
card.

Scrolling around Left-click click on the up and down arrows of the scroll bars, or drag the
scroll bar. (Under Windows, dragging the scroll bar is slow since the diagram is
repeatedly redrawn. Under X, bitmaps are used for scrolling which makes it much
faster.)

Selecting an image Shift left click; same for deselecting. Select multiple images by left-
dragging on the canvas and releasing when the rubber band encompasses all desired
images. Deselect all selected images by left-clicking on the canvas.

Wrapping label text Select image(s), choose Edit: Format text option.

4.16. Mouse functionality

4.16.1. Left button

1. Click on node -- the name of the node is displayed in the card's status line. If a current
annotation is selected that is legal for the node, it is dropped onto the node at the mouse
position.

2. Click on arc -- the name of the arc is displayed in the card's status line.

3. Click on a position in the canvas away from a node or arc -- if a node is currently
selected on the floating palette (indicated by the cross-hairscursor), a new node is
placed on the canvas at the mouse position.

4. Click-and-drag a node -- the node moves to the new mouse position. If the final position
of the node is over a container which can contain it, the user will be asked whether or
not the node should be placed insidethe container or simply left on top of it.

5. Click-and-drag a selected arc label -- the label moves to the new mouse position.

6. Click-and-drag a node selection handle -- the node image is rescaled, based on the
direction of movement of the mouse.

7. Click-and-drag a divided node division control handle -- the division is moved to the new
mouse position.

8. Click-and-drag on the selection handle of an arc at the end where it meets a node for a
diagram type that defines arc attachment points -- the bullseye cursor appears and the
handle may be moved to a different position at the same attachment point.

9. Click-and-drag on the canvas away from a node or arc -- a rubberband box appears
which the user can drag so that it surrounds card items, i.e. nodes and arcs. When the
user releases the mouse button, the rubberband box disappears and the surrounded
nodes and arcs are selected and their selection handles are displayed.

10. Shift-click on a node or arc -- if the node or arc was not already selected, its selection
handles are displayed, and the name of the node or arc is shown in the card's status

61

11.

12.

4.16.2.

line. If the node or arc was already selected, it becomes deselected and its selection
handles disappear.

Control-click on a node or arc -- if the node or arc type has defined attributes, an Object
Attribute Editor dialog box appears which allows attribute values to be set or changed.
See Object attributes (page 53).

Click on a card title in the Links or Reverse Linksscrolling lists -- the selected card is
opened.

Right button

Click on a node or arc -- a Node or Arc Action Menu containing a list of useful actions
appears. Selecting an entry causes the appropriate action to be performed. An Action
Menu provides a short cut for accessing popular actions as an alternative to first
selecting the node or arc and then selecting an entry in one of the diagram card menus.
The actions available are:

Edit attributes;
Hyperlink to selection;
Hyperlink to new card;
Unlink item;

Delete image.

arwdPE

Control-click on a divided node -- the Divided Object Properties dialog box pops up. See
Divided nodes (page 73).

Control-click on a container -- a menu pops up with four entries:

1. Split horizontally -- the region of the container node image in which the cursor
is positioned will be split into two sub-regions lying alongside each other.

2. Split vertically -- the region of the container node image in which the cursor is
positioned will be split into two sub-regions lying above and below each other.

3. edit left edge -- this allows the image properties of the left edge of the sub-
region of the container node image in which the cursor is positioned to be
tailored. The Division Properties dialog box appears, see Symbol properties
(page 70).

4. edit top edge -- this allows the image properties of the top edge of the sub-
region of the container node image in which the cursor is positioned to be
tailored. The Division Properties dialog box appears, see Symbol properties
(page 70).

Click-and-drag a node or node annotation -- the outline of an arc is drawn from the node
or node annotation following the mouse. If the node or node annotation has attachment
points, the arc will come from the nearest attachment point to the initial mouse position.

If the mouse button is released over a node or node annotation and there is a single
legal link in the diagram type definition between the initial node and this one, then that
arc is drawn.If more than one type of link is legal between the nodes, the currently
selected arc in the floating palette will be used to resolve the ambiguity if possible,
otherwise a dialogue is entered into with the user to specify which type of arc is
intended. When a legal arc has been drawn, the status line of the diagram card says:

"Li nked a start node type namet 0 a end node type nanewi th a arctype name".

If the mouse button is released over a node and there is not a legal link in the diagram
type definition between the initial node and this one, then the status line of the diagram

62

card says:
"No | egal arcs from a start node type namet o a end node type name".

If the mouse button is released over one of several selected nodes, and there is a legal

multi-way arc between the nodes, a multi-way arc is drawn between the initial node and
all the selected nodes. If Auto dog-leg is set in the Junction Editor, an extra control point
will be inserted and the connections will be constrained to the horizontal and vertical.

If the mouse button is released over the canvas away from a node, no arc is created.
Click-and-drag the selection handle of an arc that is attached to a hode which has

multiple attachment points defined for it -- the handle will follow the mouse so it can be
moved to a different attachment point of the node, where the button is released.

63

5. Text cards

The text card is the simplest form of card provided by Hardy. It consists of a text subwindow
which displays the contents of a file.

5.1. Editing text cards

When a text card is first created, there is no file associated with it. Open a file with the File: Open
file option; if you edit the file later, you can use the File: Save file or File: Save as... options to
save the file.

Text card files are edited through the Edit: Run editor option. This uses the EDITOR
environment variable to allow you to specify your favourite editor. Under Unix, you must save the
file and exit the editor to return control to Hardy; under Windows, a child process returns control
to the parent immediately. Alternatively, under Unix only, the subwindow can be used to edit the
text directly.

As with any card, the title may be changed using the File: Card title option.

To get back to the main Hardy control window, if it's buried under a pile of other windows, use the
File: Goto control window option.

To delete the card, use theFile: Delete card option. Remember that the difference between
quitting (File: Quit card) and deleting a card is that quitting is merely getting rid of the physical
display for the card, not deleting the actual card representation in the hypertext index. If you have
many new cards, you may wish to quit some of them to avoid a build up of windows. Deleting, on
the other hand, deletes the card from the hypertext index, although it does not in general delete
any file which may be associated with that card.

5.2. Linking text cards

As a text card doesn't contain any items, you can only link the entire text card to other items or
other items to the entire text card.

To link a new card to the current text card, choose Hyperlinks: Link new card and choose a
card type to create when prompted. You will now get to the linked card by clicking on the relevant
title in the link panel display.

The default order of links in the Links panel may not be correct, especially for applications such
as on-line manuals. Use the Hyperlinks: Order links option, and press on the Source titles in the
desired order. The Destination list shows the new order.

If the Links panel on the right-hand-side of the card is required, select the Hyperlinks: Toggle
link panel display option. Use the same option again to hide it.

5.3. Mouse functionality

5.3.1. Left button

1. Click on a position in the text subwindow -- under X only, the text editor cursor will be
positioned at the click.

2. Click on a card title in the Links or Reverse Links scrolling lists -- the selected card is
opened.

5.3.2. Right button

No use is made of the right mouse button.

65

6. Hypertext cards

The hypertext card is similar to the text card, in that it may display plain text files and has some of
the same menu options.

However, it has the following distinguishing features:

Text blocks may be marked with the mouse, and given different font and colour
attributes. A text block is a hypertext item, in the same sense that a diagram node or arc
is an item, and may be linked with other cards and items.

The text is not directly editable, unlike the text card under X, although a text editor may
still be invoked.

The hypertext card has the concept ofhypertext types in the same sense as diagram
types (see Diagram card types (page 82)). Each hypertext card is an instance of a user-
defined type, although you can access a default type of hypertext card by creating a
card called simply "Hypertext card".

Hypertext cards have the concept of hypertext sections. You may define a new section
by marking a block using a section block style. The Goto menu allows you to walk
sequentially through the sections, and to go to the first section.

6.1. Hypertext blocks

Although the hypertext card may display ordinary text, it will most often be used to mark blocks of
text and associate them with other cards and items. This causes codes to be stored in the text.
These are interpreted specially by Hardy, and are in LaTeX compatible format.

To mark a new block, drag the mouse holding the left button down from the top left of the
intended block to the bottom right (this may require some practice). Remember that you should
drag a bounding box that doesn't extend beyond the text characters you wish to include: the box
should be just inside the characters at the edge of the block. For instance, if selecting the word
'thing', the bounding box should start at the top left of the letter 't', and stop at the bottom right of
the letter 'g'.

The selected block will go cyan (colour displays) or reverse video (monochrome displays). Any
selected block, whether new or old, will use this highlighting. A block will only be remembered by
Hardy if you choose a style for it with the Style menu. This allows you to set font and colour
attributes for the block. Once the style has been set, the block is a Hardy hypertext item and can
be linked with other cards and items in the usual way. You may remove a block by selecting it
(shift-left click) and choosing the Edit: Clear block menu item. Blocks without a style set will
simply be forgotten when deselected (shift-left click).

6.2. Editing hypertext cards

Apart from adding and clearing blocks, running the editor from the Edit: Run editor menu entry is
the only way of editing a hypertext card's contents. You do this in exactly the same way as you do
for a text card (see Editing text cards (page 64)). Be sure that you don't disturb the embedded
block codes. It will be more convenient to do as much editing as possible before marking blocks.

6.3. Mouse functionality

6.3.1. Left button

Click on a block within the text canvas -- the corresponding card to which the block is
hyperlinked will be selected and displayed, if one exists. If the block is not hyperlinked,
no action results.

Click-and-drag within the canvas -- will define and select a block specified by its top left
corner being at the initial click position and its bottom right being at the release position.
This block is 'temporary' until it has had a style set through the Style menu. A block will
always contain a piece of continuous text.

Shift-click on a 'temporary' block within the canvas -- the block is deselected and its
highlight is removed.

Shift-click on a block with a set style -- if the block was not already selected, it becomes
selected; if the block was already selected, it becomes deselected.

Click on an entry in either the Links or Reverse Links list boxes -- the corresponding
card is selected and displayed.

6.3.2. Right button

1.

Click on a block with a set style -- a menu appears, presenting some of the most used
actions associated with blocks for easy access.

67

7. Media cards

The media card is similar to the text card, in that it may display plain text files and has some of
the same menu options. However, it has the following distinguishing features:

Text blocks may be marked with the mouse, and given different font and colour
attributes. A text block is a hypertext item, in the same sense that a diagram node or arc
is an item, and may be linked with other cards and items.

The text is not directly editable, unlike the text card under X, although a text editor may
still be invoked.

The media card has the concept of media types in the same sense as diagram types
(see Diagram card types (page 82)). Each hypertext card is an instance of a user-
defined type, although you can access a default type of media card by creating a card
called simply "Media card".

Please note that the media card is experimental and may not be present in public distributions of
Hardy.

7.1. Media blocks

Although the media card may display ordinary text, it will most often be used to mark blocks of
text and associate them with other cards and items.

To mark a new block, drag the mouse holding the left button down.

The selected block will go cyan (colour displays) or reverse video (monochrome displays). Any
selected block, whether new or old, will use this highlighting. A block will only be remembered by
Hardy if you choose a style for it with the Style menu. This allows you to set font and colour
attributes for the block. Once the style has been set, the block is a Hardy hypertext item and can
be linked with other cards and items in the usual way.

You may also mark text up using the default font attributes, accessed by via the items at the top
of the Style menu. Marking up in this way is purely visual and does not create a hypertext block.

Currently, only one block may have a given start or end point, and blocks may not overlap.
Eventually it is intended to remove at least the first restriction. Blocks may not currently be

cleared once created, except by clearing all blocks, or by deleting the text and reinserting it.
Bitmaps may not be used as blocks.

7.2. Editing media cards

You may edit the text directly. Blocks will move around with the text; but if you delete text at the
start or end of the block, you may delete the block markers and cause the block to disappear.

Pictures may be inserted into the media card by selecting the Edit: Insert Image menu item. A

pictures is stored as a reference to the bitmap filename, so this file should be present in the same
place when you load the media file.

7.3. Mouse functionality

7.3.1. Left button

1. Leftclick in the media card to set the caret position, where text is inserted.

2. Control-left click on a block within the text canvas -- the corresponding card to which the
block is hyperlinked will be selected and displayed, if one exists. If the block is not
hyperlinked, no action results.

3. Click-and-drag within the canvas -- this will select an area of text, for later marking with a
font or block style. A block will always contain a piece of continuous text.

4, Shift-left click on a block to select it.

5. Click on an entry in either the Links or Reverse Links list boxes -- the corresponding
card is selected and displayed.

7.3.2. Right button

1. Click on a block with a set style -- a menu appears, presenting some of the most used
actions associated with blocks for easy access.

69

8. Symbols

Symbols are used to construct the images that are displayed on a diagram card. There are two
main types of symbol, node symbols and arc symbols, and a further type for arc annotations
(such as arrowheads). All the symbols that are recognised for a particular type of diagram will be
gathered together and presented as a floating palette. Within the palette the symbols are divided
into Node symbols and Arc symbols. Annotation symbols may also be shown separately.

A basic range of symbols is provided by Hardy in the Standard Symbol Library for use when
designing new diagram types. You can also construct new shapes when you require by using the
Node Symbol Editor and the Arc Symbol Editor (see Node symbol editor (page 76) and Arc
symbol editor (page 79) respectively). New symbols may also be held in symbol libraries for later
use in exactly the same way as for the standard symbols. Symbol libraries are organised by the
Symbol Librarian (see Symbol librarian (page 73).

Generally, symbols are used in two different ways. The first, and more general, is the symbol that
is available in a symbol library. At this level, the symbol has got a defined shape, colour and other
general properties. It is then available for customising for use in the displayed image of a
particular type of node or arc in a particular type of diagram. Its shape cannot be changed, but its
colour, etc, properties may be over-ridden and other specialist properties can be added. This will
be done through the Node Type Editor or the Arc Type Editor (see Node type editor (page 84)
and Arc type editor (page 88), respectively).

8.1. Symbol properties

Symbols are made up of simple parts, largely lines and areas. Every line will have a width (in
pixels), a style (solid, dashed, etc), and a colour.

Areas are more complicated. They can be primitives,normally provided through the Standard
Symbol Library, or they can be composites made up from primitives or other composites. A
primitive symbol has an outline with exactly the same properties as other lines (width, style, and
colour), and an area with a colour property (termed the fill colour) bounded by the outline. A
composite symbol will be made up from simpler symbols; its properties are the properties of its
individual sub-symbols.

8.1.1. Metafiles

There are some shapes which would be (at best!) very difficult to construct from other standard
symbols. In order to allow arbitrary shapes to be used, Hardy supports the use of metafiles.
Metafiles let you add new primitive symbols to your repertoire.

Metafiles define drawings in terms of pens (for outlines), brushes (for "fill"* areas), and shapes. As
their contents are all relative to a starting position, the shape may be placed wherever it's
required and it can be scaled without loss of resolution. When a metafile is imported into Hardy
from an external package for use as a node or arc symbol, selected pen and brush instructions
can be intercepted in such a way that the metafile-defined symbol will have the same outline and
fill properties as any other symbol.

This is done using the Metafile Colour Assignment dialog box which is opened from the Node
Symbol Editor when editing a symbol which has been defined through a metafile. The different
operations involved in defining the shape are shown in the list box labelled Operations. Each pen
and brush operation is uniquely identified so that it may be distinguished and added to the lists of
Outline operations (pens only) and Fill operations (brushes only) by selecting it and pressing the
Add button. Only these selected pens and brushes will be altered if the symbol's outline or fill

characteristics are changed later.

The Clear buttons will clear any entries in the relevant list boxes.

8.1.2. Arc symbols

If we look at arc symbols, we see that they are basically lines which may carry annotations
(arrowheads, etc). If present, arc annotations are treated as part of the arc symbol and will share
common properties, i.e. changing the colour of the arc will change the colour of the annotation.
(Arc annotations have additional properties: see Arc annotations (page 71).)

Every arc has a width (in pixels), a style (solid, dashed, etc), and a colour.

Arcs have three regions: their start, middle and end regions. Annotations and labels are usually
placed in one or other of these. Each region will support only a single label, though several
annotations can appear there.

8.1.3. Arc annotations

Arc annotations are symbols such as arrowheads that are used to decorate arcs. New symbols
may be imported through metafiles (see Metafiles (page 70)). They can either be part of an arc
symbol, or they can be added incrementally to a particular arc symbol as required when a
diagram is being constructed. Annotations may be placed in one of the start, middle or end
regions of the arc, and several annotations can appear in the same region.

Arc annotations can be customised by setting parameters which control their size and their
position on the arc. Size is the length of the annotation image in pixels. Position has three
separate aspects:

1. thereis the gap, in pixels, allowed between one annotation and the next one in the
same region;

2. there is the X offset of the annotation from the start of the arc. This is specified as a
fraction: 0.0 means the start, 0.5 the middle, and 1.0 the end.

3. thereis the Y offset between the mid-point of the annotation symbol and the arc: a
positive offset moves the annotation above the arc, a negative one moves it below.
This is specified in pixels.

8.1.4. Node symbols

Node symbols are primitive or composite shapes. A primitive shape has an outline and an
enclosed area. The outline can be specified in terms of its width (in pixels), style (solid, dashed,
etc), and colour.The enclosed area will have a colour: its fill colour. Two special types of primitive
symbol are provided: divided nodes and polyline symbols. These have additional special
properties (see Divided nodes (page 73) and Polyline symbols (page 73)).

Composite symbols are made up from other symbols, selected from existing Symbol Libraries
and glued together using the Node Symbol Editor(see Node symbol editor (page 76)). A
composite symbol will reflect the properties of its sub-symbols. These can be changed as a
whole, i.e. the composite is treated as though it had a single outline and a single enclosed area
like a primitive, or sub-symbols can be selected and treated individually.

71

As well as the general display properties, node symbols have additional properties reflecting their
behaviour.

1. Use attachments -- this controls where arcs will attach to the node symbol. If
attachments are not used, arcs will appear as though they were connected to the centre
of the node symbol; if attachments are used, arcs will appear as though they were
connected to the nearest defined attachment point. See Atachment points (page 72) for
further details.

If the attachment point chosen by the system is not the one you want, you can move the
connection by selecting the arc and right-click-and-dragging the appropriate arc
selection handle to a different attachment point of the same node.

2. Space attachments -- if attachments are in use, they may be spaced or not. If
attachments are not spaced, all arcs will appear as though they were connected directly
to attachment points; if they are spaced, the arcs will automatically separate themselves
at each attachment point where two or more join.

If the ordering at any particular attachment point is not what you want, you can select the
arc and left-click-and-drag the appropriate selection handle to a different position at the
same attachment point.

3. Shadow -- if shadowing is set, the symbol will have a "shadow" of the same shape in
black and offset slightly.

4. Fixed width -- if this is set, the width of the symbol cannot be changed once it is in use.

5. Fixed height -- if this is set, the height of the symbol cannot be changed once it is in use.

Additional properties hold if the symbol has been defined through a metafile (see Metafiles (page
70)).

8.1.5. Attachment points

A node symbol may have attachment points defined (see Node symbols (page 71)) to which arcs
can be connected. These rotate with the symbol when necessary.

The symbols provided in the Standard Symbol Library have pre-defined attachment points:

1. divided rectangles have a control point in the centre of their top and bottom edges, and a
further control point in the centre of the vertical edges of each region,

2. polyline Symbols (triangles and diamonds) have attachment points at each of their
vertices,

3. other primitive symbols have attachment points in the centre of each edge of their
bounding box,

4. composite symbols have attachment points at each attachment point of their component
sub-symbols, and additional attachment points in the centre of each edge of the overall
bounding box.

The user may define the attachment points for symbols that are imported as metafiles, and may
define additional attachment points for standard symbols. This is accomplished through the
Attachment Point Editor which is invoked from the Attachment points... button of the Node
Symbol Properties dialog box.

The dimensions of the symbol (its bounding box, in pixels) are shown in the message area, and

72

the identifiers of all current user defined attachment points are displayed in the Attachment points
list box. Pressing the New button generates a new unique identifier which is entered into the
Attachment points list and selected. Alternatively you can select an existing identifier in the list. In
either case, the currently selected identifier will be shown together with its position as X and Y
offsets (in pixels) from the symbol's reference point. These values can now be changed: selecting
another entry, or pressing New again or OK, will accept them.

You can remove an entry by selecting it in the list and then pressing Delete.

8.1.6. Divided nodes

Divided node symbols are supplied by the Standard Symbol Library for efficiency. They provide
rectangular shapes with more than one text regionso that more than one label can be displayed.
This means there are two differences between these and normal primitive symbols.

You can alter the position of the divisions between the different regions by selecting the symbol.
This will display its selection handles, and you will see an extra handle at the middle of each
division. You can left-drag these to move the divisions to new positions within the existing
rectangle. Note that you can't move one division past another.

You can tailor the appearance of these divisions through the Divided Object Properties dialog box
which is invoked by control-right-clicking on a divided object in the Node Symbol Editor (see Node
symbol editor (page 76)). This shows the line colour and style for each of the divisions (top one
first), and these can be altered in the usual way.

8.1.7. Polyline symbols

A polyline symbol is a primitive used for constructing polygonal node symbols. Standard polyline
symbols are supplied through the triangle and diamond symbols which can be modified to
produce most other shapes needed.

Unlike the other standard node symbols, polyline symbols have control points at each of their
vertices. These will be displayed when the symbol is selected, and can be moved around by left-
dragging on them. Additional control points may be added to or deleted from polyline symbols in
the Node Symbol Editor through the Edit: Add control point and Edit: delete control point
menu items. Combining the number of control points with their positions allows you to define
arbitrary polygonal shapes.

Every legal polyline symbol must have at least one control point.

8.2. Symbol librarian

8.2.1. Appearance and functionality

Symbols are organised in libraries which are managed by the Symbol Librarian. The Symbol
Librarian may be invoked from the Tools: Show symbol librarian menu of the Control Window.

The Symbol libraries list box displays the names of all libraries which are currently open. The
Standard library, containing the primitive symbols, is always available.

8.2.2. Buttons

73

The buttons are arranged in two groups, one providing general facilities, the other providing
facilities for individual symbol libraries.

General

1. OK -- the Symbol Librarian and any open Symbol Libraries are dismissed. If changes
have been made to any Symbol Libraries and these have not been saved, the user is
asked whether these changes should be saved.

2. Load library -- open and load a Symbol Library from disk using a File Selector dialog
box with the filter initialised to * . sl b. Add its name to the end of the Symbol Libraries
list.

3. Save library -- save the contents of the currently selected Symbol Library to its
associated disk file. If no disk file is defined for the library, the File Selector dialog box
will appear.

4. Load list -- open and load the Symbol Libraries whose names are specified in
di agr ans. def . Display their names in the Symbol Libraries list box.

5. Save list -- save the names of the Symbol Libraries given in the Symbol Libraries list
box into the definition list file (di agr ans. def).

6. Help -- for Hardy under X, the wxHelp program is started and information on the Symbol
Librarian is displayed. Under Windows, the Windows Help system is started at the
appropriate place in the Hardy manual.

Symbol libraries
1. New -- create a new Symbol Library, add it to the list of loaded Symbol Libraries, and
make it the current selection.
Edit name -- change the name of the currently selected Symbol Library.

2.
3. Show -- display the currently selected Symbol Library.
4. Delete -- delete the currently selected Symbol Library from the list.

8.2.3. Mouse and cursor functionality

Left button

1. Clicking on an entry in the Symbol Libraries list box selects the Symbol Library with that
name.

2. Double-clicking on an entry in the Symbol Libraries list box selects that Symbol Library
and proceeds as though the Show button had been pressed.

Right button

No use is made of the right mouse button.

Cursor

No special cursor pattern is used.

74

8.3. Symbol libraries

8.3.1. Appearance and functionality

A Symbol Library is opened from the Load library or Show buttons of the Symbol Librarian, or by
Double-clicking on an entry in its Symbol libraries list box.

The name of the Symbol Library is displayed in the title bar. The status line is used to display the
name of a symbol.

The Standard Library is provided with the system. The user cannot add further symbols to it, or
delete symbols from it.

8.3.2. Menu options

The Symbol Library has two menus -- File and Help.

File menu

1. File: Edit selected symbol -- if a symbol is selected in the Symbol Library, the Arc or
Node Symbol Editor is opened as appropriate, see Node symbol editor (page 76)and
Arc symbol editor (page 79), and the symbol is read in so that it can be altered.

2. File: Delete selected symbol -- if a symbol is selected in the Symbol Library and the
user confirms that the symbol should be deleted, it is deleted.

3. File: Load symbol from metafile -- a symbol definition is read into the Symbol Library
from a file specified by the File Selector dialog box and named through the Symbol
Name dialog box.

The name of the new symbol is entered into the text entry area labelled Name of new
symbol. The checkboxes allow the properties of the symbol to be set: whether it is a
node symbol or an arc annotation symbol, and whether the symbol should be rotated or
not when it is used as an arc annotation.

4. File: Exit symbol library -- the Symbol Library is dismissed.

Help menu
1. Help: Help on symbol library -- for Hardy under X, the wxHelp program is started and

information on the Symbol Library is displayed. Under Windows, the Windows Help
system is started at the appropriate place in the Hardy manual.

8.3.3. Mouse and cursor functionality

Left button

1. Clicking on an unselected symbol in the palette selects that symbol. Clicking on a
selected symbol deselects that symbol.

75

Right button

1. Clicking on a symbol in the library palette causes the same action as File: Edit selected
symbol, opening the appropriate Symbol Editor for that symbol. See Node symbol editor
(page 76) and Arc symbol editor (page 79). This has no effect for symbols held in the
Standard Symbol Library.

Cursor

The cursor takes standard default patterns in the Symbol Library. However, when a node or arc
symbol is selected in the library, the cursor in the Node or Arc Symbol Editor canvas will change
to the cross-hair pattern. This indicates that selecting any position on the Symbol Editor canvas
will add the selected symbol to the Symbol Editor (see Node symbol editor (page 76)and Arc
symbol editor (page 79)).

As the cursor is moved over the palette, the name of the symbol under the cursor is shown in the
status line.

8.4. Node symbol editor

8.4.1. Appearance and functionality

The Node Symbol Editor allows the diagram type designer to create new node symbols from
existing symbols and to modify existing symbols. It is invoked from the Tools: Show symbol
editor menu of the Control Window, or by right-clicking on a node symbol in a (non-Standard)
symbol library. As well as shape, the Node Symbol Editor will support tailoring of node symbol
properties.

The title bar shows the name of the symbol under construction, and the canvas displays the
symbol currently being edited. The list box labelled Objects starts with the entry Conposi te, ifa
new symbol is being created, or the name of the symbol being edited. This is followed by the
names of the different constituent sub-symbols in the same order as they are added to the
canvas. Several names may be selected at once. The lower list box, labelled Constraints, details
the different constraints in the order in which they were invoked.

8.4.2. Menu options

The Node Symbol Editor has three menus -- File, Edit and Help.

File menu

1. File: Add to library -- add the symbol under construction to the selected symbol Library.
If no Symbol Library is selected, the Symbol Librarian is opened so that a selection can
be made. The user is asked to supply a name for the symbol through a Text Entry dialog
box.

2. File: Update -- if the Node Symbol Editor was called from the File: Edit selected
symbol menu of a Symbol Library, the symbol in the Symbol Library is updated and the
Node Symbol Editor is dismissed.

3. File: Exit -- the Node Symbol Editor is dismissed and, if a symbol was being constructed
and has not been saved, the user is asked whether it should be saved or not.

76

Edit menu

1. Edit: Add constraint -- pops up a Choice dialog box of available constraints from which
one can be chosen. A Constraint Properties dialog box then allows the constraint to be
tailored. See Node symbol constraints (page 78).

2. Edit: Edit symbol name -- a Text Entry dialog box is popped up to allow a new name to
be specified for the symbol under construction.

3. Edit: Edit selected object -- a dialog box is popped up which presents information
about the current properties of the object selected in the Objects list box, and allows
them to be changed. See Node symbols (page 71).

4. Edit: Edit selected constraint -- the Constraint Properties dialog box is opened to allow
values of the constraint selected in the Constraints list box to be changed. See Node
symbol constraints (page 78).

5. Edit: Delete selected object -- the object selected in the Objects list box is removed.

6. Edit: Delete selected constraint -- the constraint selected in the Constraints list box is
removed.

7. Edit: Add control point -- if the object selected in the Objects list box is a polyline
object, a further control point is added to produce a shape with one vertex more than the
previous shape.

8. Edit: Delete control point -- if the object selected in the Objects list box is a polyline
object, an arbitrary control point is removed to produce a shape with one vertex fewer
than the previous shape. A polyline object cannot have fewer than one control point.

9. Edit: Make symbol [not] a container -- if the symbol has been imported from a user-
defined library (i.e. not the Standard library), it may be given container properties(see
Containment (page 87)). If the symbol has container properties set, this menu item is
changed to allow them to be unset.

10. Edit: Deselect all --- all current selections are cleared.

11. Edit: Refresh -- clears the canvas and redisplays the symbol under construction.

Help menu
1. Help: Help on node symbol editor -- for Hardy under X, the wxHelp program is started

and information on the Node Symbol Editor is displayed. Under Windows, the Windows
Help system is started at the appropriate place in the Hardy manual.

8.4.3. Mouse and cursor functionality

Left button

1.

Click on item in the Objects list box -- if the entry is not already selected, it is added to
the current selection; if it is already selected, it is now deselected. The composite object
under construction may be selected/deselected in this manner. All selected items will be
highlighted in the list box and have their selection handles displayed in the canvas.
Unselected items are not highlighted in the list box and do not have their selection
handles displayed.

Click on a position in the canvas not on a node or arc when a symbol is selected in a
Symbol Library (indicated by the cross-hairs cursor pattern) -- a copy of the selected
symbol is dropped onto the canvas at the selected point. The symbol in the Symbol
Library is then deselected.

Click-and-drag an item in the canvas -- the entire composite symbol under construction

77

is moved as required. Note that all the current symbols are moved together. Relative
movement is specified by defining suitable constraints.

4. shift-Click on an item in the canvas -- if the item is not already selected, it is added to the
current selection; if it was already selected it is now deselected. All selected items will be
highlighted in the list box and have their selection handles displayed in the canvas.
Unselected items are not highlighted in the list box and do not have their selection
handles displayed.

5. Click-and-drag a selection handle in the canvas -- the corresponding symbol is rescaled
in the direction of the dragging operation.

6. Click-and-drag a divided node symbol division control point in the canvas -- the division
moves to the new position.

7. control-Click-and-drag a polyline control point in the canvas -- the point is moved to the
new position, altering the shape of the symbol.

8. Click on an entry in the Constraints list box -- the appropriate constraint with that name
is selected, the constrained objects are highlighted by displaying their selection handles
in the canvas, and the constraint description is displayed in the status line.

Right button
This provides short-cuts for commonly used menu entries.
1. Click on an item in the canvas -- provides the Edit: Edit selected object facility (see
above).

2. control-Click on an item in the canvas -- opens the Divided Object Properties dialog box
for a composite symbol. See Divided nodes (page 73).

Cursor

=

The hand pattern is used within the canvas to indicate that items may be moved.

2. The cross-hairs pattern is used when a node symbol is selected in a Symbol Library
(see Symbol libraries (page 75)), to indicate that Clicking on a position on the canvas will
place a copy of the symbol there. Once the selected symbol has been placed on the
canvas, the symbol is deselected within the Symbol Library and the cursor reverts to the
normal pattern.

8.4.4. Node symbol constraints

Node symbol constraints are used to specify the relative positioning of sub-symbols within
composite symbols under two different circumstances:

1. when constructing new node symbols through the Node Symbol Editor;
2. when describing drop sites for a particular node type (see Node annotation symbols

(page 87)).

A constraint is always applied to at least two objects, one of which is taken as the reference
relative to which the others are constrained. Normally the reference object is the first one that was
selected selected. When defining drop sites, the reference object is the actual drop site, and the
other object(s) will be the node annotation symbol(s) which will not be specified until a particular
diagram card is constructed. We refer to this as a partially satisfied constraint.

A fixed repertoire of constraints is provided:

78

Above: The Y co-ordinates of the bottom horizontal edges of the bounding boxes of the
constrained objects will be less than the Y co-ordinate of the top horizontal edge of the
bounding box of the constraining object.

Below: The Y co-ordinates of the top horizontal edges of the bounding boxes of the
constrained objects will be greater than the X co-ordinate of the bottom horizontal edge
of the bounding box of the constraining object.

Left of: The X co-ordinates of the right hand vertical edges of the bounding boxes of the
constrained objects will be less than the X co-ordinate of the left hand vertical edge of
the bounding box of the constraining object.

Right of: The X co-ordinates of the left hand vertical edges of the bounding boxes of the
constrained objects will be greater than the X co-ordinate of the right hand vertical edge
of the bounding box of the constraining object.

Centre horizontally: The X co-ordinates of the centres of the bounding boxes of the
constrained objects and the constraining object will be the same.

Centre vertically: The Y co-ordinates of the centres of the bounding boxes of the
constrained objects and the constraining object will be the same.

Centre: The co-ordinates of the centres of the bounding boxes of the constrained objects
and the constraining object will be the same.

Top-aligned: The Y co-ordinates of the top horizontal edges of the bounding boxes of the
constrained objects will be the same as the Y co-ordinate of the top horizontal edge of
the bounding box of the constraining object.

Bottom-aligned: The Y co-ordinates of the bottom horizontal edges of the bounding boxes
of the constrained objects will be the same as the Y co-ordinate of the bottom horizontal
edge of the bounding box of the constraining object.

Top-midaligned: The Y co-ordinates of the centres of the bounding boxes of the
constrained objects will be the same as the Y co-ordinate of the top horizontal edge of
the bounding box of the constraining object.

Bottom-midaligned: The Y co-ordinates of the centres of the bounding boxes of the
constrained objects will be the same as the Y co-ordinate of the bottom horizontal edge
of the bounding box of the constraining object.

Left-aligned: The X co-ordinates of the left hand vertical edges of the bounding boxes of
the constrained objects will be the same as the X co-ordinate of the left hand vertical
edge of the bounding box of the constraining object.

Right-aligned: The X co-ordinates of the right hand vertical edges of the bounding boxes of
the constrained objects will be the same as the X co-ordinate of the right hand vertical
edge of the bounding box of the constraining object.

Left-midaligned: The X co-ordinates of the centres of the bounding boxes of the
constrained objects will be the same as the X co-ordinate of the left hand vertical edge
of the bounding box of the constraining object.

Right-midaligned: The X co-ordinates of the centres of the bounding boxes of the
constrained objects will be the same as the X co-ordinate of the right hand vertical edge
of the bounding box of the constraining object.

Once the required constraint has been chosen, an offset can be given between the reference
points of the constraining and the constrained objects. This is specified as X and Y spacings, in
pixels.

8.5. Arc symbol editor

8.5.1. Appearance and functionality

The Arc Symbol Editor allows the diagram type designer to define and modify the appearance of
arc symbols held in Symbol Libraries. It is invoked from the Tools: Show symbol editor menu of
the Control Window, or by right-clicking on an arc symbol in a (hon-Standard) symbol library.

79

There are three menus -- File, Edit and Help. The canvas displays the current properties of the
arc image. It is initialised to a solid black line.

8.5.2. Menu options

File menu

1. Edit: Add to library -- the arc symbol under construction is added to the currently
selected Symbol Library. If no library is selected, a warning message is shown and the
Symbol Library Manager is opened, if it is not already open, so that a selection can be
made.

2. File: Update -- if the Arc Symbol Editor was called from the File: Edit selected symbol
menu of a Symbol Library, the symbol in the Symbol Library is updated and the Arc
Symbol Editor is dismissed.

3. File: Exit -- the Arc Symbol Editor is dismissed and, if a symbol was being constructed
and has not been saved, the user is asked whether it should be saved or not.

Edit menu

1. Edit: Edit symbol name -- a Text Entry dialog box is popped up to allow a hew name to
be specified for the symbol under construction.

2. Edit: Edit arc properties -- a dialog box is popped up which presents information about
the current properties of the selected arc symbol and allows them to be changed. See
Arc symbols (page 71).

3. Edit: Edit annotation properties -- a dialog box is popped up which presents
information about the current properties of the arc annotations and allows them to be
changed. See Arc annotations (page 71).

4. Edit: Clear symbols -- any arc annotations that have been specified are cleared from
the displayed arc symbol.

5. Edit: Refresh -- clears the canvas and redisplays the symbol under construction.

Help menu
1. Help: Help on Arc Symbol Editor -- for Hardy under X, the wxHelp program is started

and information on the Arc Symbol Editor is displayed. Under Windows, the Windows
Help system is started at the appropriate place in the Hardy manual.

8.5.3. Mouse and cursor functionality

Left button

1. Clicking on the canvas when an arc annotation symbol is selected in a Symbol Library
will place that symbol at the right hand end of the displayed arc symbol. Arbitrary,
multiple annotations may be constructed. When an annotation has been added to the
current symbol, it is deselected in its Symbol Library.

80

Right button

No use is made of the right mouse button.

Cursor

1. The hand cursor is the default within the canvas.
2. The cross-hairs cursor within the canvas indicates that an arc annotation symbol is
currently selected in a Symbol Library.

81

9. Card types

This section is concerned with setting up customised card types.This is done by the Card Type
Designer, and we will reserve the term user throughout this section to refer to a person who
makes use of a type of card that the Card Type Designer has defined. A user doesn't want to see
the diagram type definition, and will be restricted in node and arc repertoire, node shape, etc. by
the decisions you, the card type designer, have made in the card type definition.

Diagram and hypertext type definitions are held in files, usually with the file extension of . def ,
and it is necessary for the definition to be loaded before a diagram of that type can be created or
edited (obviously!). When Hardy starts up, it looks for a definition list file (by default called

di agr anms. def) which contains a list of these filenames, each file containing a card type
definition (see Files used by Hardy (page 45)). The consequence to the user of adding a new
type will be a new menu item in the dialogue requesting a card type selection when the user
comes to create a new card (i.e. an instance of that card type).

Standard types of text card and hypertext card are provided. New types of diagram card (see
Diagram card types (page 82)) and hypertext card (see Hypertext card types (page 92)) can be
created.

The different types of card available can be organised by the card type designer into categories if
required. This allows different types which are in some way related to be presented as a group,
rather than mixed up with other types.

9.1. Diagram card types

9.1.1. New diagram types

You create new diagram types or modify existing ones, through the Hardy Diagram Type
Manager which is accessed from Tools: Show diagram type manager on the Hardy Control
Window.

You'll be presented with three lists. The first allows you to select a diagram type definition to work
with, the second shows you all the node definitions for the selected diagram type, and the third
shows you its arc definitions. As this implies, a diagram type definition consist of the diagram type
name, a list of node definitions, and a list of arc definitions.

The operation of the Diagram Type Manager is controlled by various buttons. To create a new
diagram type, press the New button underneath the Diagram types list, and you'll be asked to
supply a new name for the card type. (You may supply a category for it as well, though this isn't
necessary.) To edit a diagram type, select the diagram type name and press the Edit button.

The buttons are organised into four groups: one for general operations, and one each for the
three lists.

9.1.1.1. General

1. OK --the Diagram Type Manager is dismissed, and, if changes have been made to any
diagram type definitions, you are asked whether these are to be saved or not.

2. Load type -- the File Selector dialog box appears with the filter string setto *. def . You
can select a particular diagram type definition file which will be opened, when its node
and arc types will be listed in the Node typesand Arc types list boxes.

3. Save type -- the File Selector dialog box appears, and you can save the particular

diagram type definition file.

Load list -- the File Selector dialog box appears to allow you to specify the name of the
diagram definition list file. By default, this is di agr ans. def .

Save list -- the File Selector dialog box appears with the filter initialised to * . def to
allow a name for the definition file to be selected.

Custom menu -- a dialog box appears, allowing you to specify, for the selected diagram
type, the title of a custom menu, and to add or delete menu items from this custom
menu. See Custom menus (page 94).

Options -- a dialog box appears, allowing you to specify, for the selected diagram type,
various properties of the diagram type that affect the appearance of a card of that type.
These properties include whether the palette is displayed, the toolbar is displayed, and
which menus are present.

Help -- for X versions of Hardy, the wxHelp program is started and the Hardy manual is
loaded and opened at the section concerning the Diagram Type Manager. For Hardy for
Windows, the Windows Help system is started at the appropriate place in Hardy's
manual.

9.1.1.2. Diagram types

1.

New -- a Diagram Type dialog box appears, allowing you to specify the new diagram
type required in the text entry area, labelled Type. Types may be grouped together by
defining categories and then assigning each type to a particular category. If required, a
category can be selected from the list of existing categories shown in the Categories
choice box, or a new category name can be typed into the Category text input area.
When finished, you should press the OK button to accept your specification, when your
new name will appear in the Diagram types list, and Hardy will select it. Otherwise, you
can abandon the operation by pressing Cancel.

Edit name -- a Text Entry dialog box appears, allowing you to edit the name of the
selected diagram type. The new name replaces the previous name in the existing entry
in the Diagram types list.

Delete -- the selected diagram type is deleted, and the topmost diagram type in the list
becomes selected.

9.1.1.3. Node types

1.

New -- a Text Entry dialog box appears, allowing you to type in the name of the new
node type. An entry with that name then appears in the Node types list and the newly
created entry is selected. The Node Type Editor then appears (see Node type editor
(page 84)), allowing you to edit the properties of the new node type (see Node images
(page 86)).

Edit -- the Node Type Editor appears, showing the information for the selected node
type (see Node type editor (page 84)).

Delete -- the selected node type is deleted, and the topmost entry in the Node types list
becomes selected.

9.1.1.4. Arc types

1.

New -- a Text Entry dialog box appears, allowing you to specify the name of the new arc
type. An entry with that name then appears in the Arc types list and the newly created
entry is selected. The Arc Type Editor then appears(see Arc type editor (page 88)),
allowing you to edit the properties of the new arc type.

Edit -- the Arc Type Editor appears, showing the information for the selected arc type

83

(see Arc type editor (page 88)).
3. Delete -- the selected arc type is deleted and the topmost entry in the Arc types list
becomes selected.

9.1.1.5. Left button

1. Clicking on an item in the Diagram types list selects that diagram type, and its node and
arc types are displayed in the Node types and Arc types lists.

2. Clicking on an item in either the Node types or Arc typeslists selects that item. Any
previous selection in the list will be deselected.

3. Double-click an item in either the Node types or Arc types lists selects that item and
proceeds as though the corresponding Edit button had been pressed. Any previous
selection in the list will be deselected.

9.1.1.6. Right button

No use is made of the right mouse button.

9.1.1.7. Cursor

No special cursor pattern is used.

9.1.2. Node type editor

The Node Type Editor allows you to tailor the properties of a node type. This includes the
displayed symbol shape, scale, colour, etc, as well as the user defined attributes. The Node Type
Editor is invoked by selecting an entry in the Node types list of the Diagram Type Manager.

A text entry area, labelled Name, allows the node type to be named. One list box, labelled
Attributes, allows attributes of the node to be defined and edited. The other list, labelled Text
regions, allows individual text regions to be selected so that the format and contents of the text
string displayed in the region may be modified.

The preview canvas displays the current appearance of the node and is not directly editable. You
can load a symbol into the editor either by selecting the symbol you require from a symbol library
(see Symbol libraries (page 75)) and then clicking on the preview canvas. Alternatively, to modify
an existing symbol, you can right-click on the symbol in a library (not the standard symbol library)
to open the editor with the symbol loaded. Changing the properties of the node will change its
appearance in the preview canvas.

Buttons are organised into three groups: one for general operations and one each for the
Attributes and Text regions lists.

9.1.2.1. General

1. OK --the Node Type Editor is dismissed and, if changes have been made to node
definitions, you will be asked whether these should be saved or not.

2. Image properties -- pops up a dialog box which allows the properties of the displayed
image to be altered (see Node images (page 86)).

3. Drop sites -- if the symbol in the preview canvas has partially satisfied constraints(see

Node symbol constraints (page 78)), the Drop Sites dialog box appears (see Drop sites
(page 86)).

Containment -- the Containment dialog box is opened, see Containers (page 57),
allowing the node to become a container.

Symbol librarian -- invokes the Symbol Librarian (see Symbol librarian (page 73)).
Help -- for X versions of Hardy, the wxHelp program is started and the Hardy manual is
loaded and opened at the section concerning the Node Type Editor. For Hardy for
Windows, the Windows Help system is started at the appropriate place in Hardy's
manual.

9.1.2.2. Attributes

New -- a Text Entry dialog box appears allowing a new attribute name to be specified.
Edit -- a Text Entry dialog box appears, allowing you to edit the name of the selected
attribute. The new name replaces the previous name in the existing entry in the
Attributes list.

Delete -- deletes the currently selected attribute.

9.1.2.3. Text regions

1.

Edit -- if an entry is selected in the Text regions area, the Region Properties dialog box
will be opened, allowing the properties of the selected text region to be tailored. See
Regions (page 87).

9.1.2.4. Left button

1.

Click on any point in the preview canvas to replace the symbol currently being displayed
with the node symbol currently selected in a Symbol Library. The Symbol Library symbol
will then be deselected. If no Symbol Library has a currently selected node symbol, ho
action results.

Click-and-drag a symbol in the preview canvas to change the displayed position of the
symbol.

Click on an item within the Attributes list box selects that item.

Double-click on an item within the Attributes list box selects that item and proceeds as
though the Edit button had been pressed.

Click on an item within the Text regions list box selects that item. The name of the
selected region is shown in the preview canvas.

Double-click on an item within the Text regions list box selects that item and proceeds
as though the Edit button had been pressed.

9.1.2.5. Right button

No use is made of the right mouse button.

9.1.2.6. Cursor

85

1. The hand pattern is the default cursor in the preview canvas.
2. The cross-hairs pattern in the preview canvas indicates that a symbol is currently
selected in a Symbol Library.

9.1.3. Node images

The node images specified for a particular diagram type are based on symbols held in some
symbol library (see Symbol libraries (page 75)), but tailored specially for that diagram type
through the Node Image Properties dialog box that is invoked by pressing the Image properties
button of the Node Type Editor.

In addition to the basic properties that it already has, see Node symbols (page 71), when a node
symbol is used in a diagram type it has additional features:

1. Abbreviation format string -- determines how abbreviated references to the node (e.g. in
the status line) should be written. See Format string (page Error! Bookmark not
defined.).

2. Width -- the default width of the node in pixels when it is first placed on to a diagram
card. If the fixed width property is also set (see Node symbols (page 71)), the width will
always be this value.

3. Height -- the default height of the node in pixels when it is first placed on to a diagram
card. If the fixed height property is also set (see Node symbols (page 71)), the width will
always be this value.

4. whether or not attachments are used -- see Attachment points (page 72).

5. whether or not connected arcs are equally spaced at attachment points -- see

Attachment points (page 72).

whether or not the Node Image should be highlighted if it is hyperlinked to another Item.

whether or not the symbol should be displayed on the Symbol Palette -- this will prevent

the user from creating particular symbols which you may need to control.

No

9.1.4. Drop sites

Drop sites may be defined for node symbols by establishing partially satisfied constraints (see
Node symbol constraints (page 78)) which will be fully satisfied by node annotation symbols (see
Node annotation symbols (page 87)) which can be "dropped" onto the node symbol when a
particular diagram card is being constructed.

Drop sites are established or modified for a node symbol through the Drop Sites dialog box which
is invoked from the Drop sites button of the Node Type Editor. This will show you the names of
all existing drop sites for that node type in the Drop sites list.

To add a new drop site, press the New button to open the Drop Site Editor (see Drop site editor
(page 86)). Its name will be added to the list on exit. To modify an existing drop site, select its
entry in the list, press the Edit button, and the Drop Site Editor will again be opened. If you want
to throw a defined drop site away, select it in the list and press Delete.

9.1.5. Drop site editor
The Drop Site Editor allows you to name a drop site and its associated symbol, and to define its

constraints. It is invoked from the New and Edit buttons of the Drop Sites dialog box (see Drop
sites (page 86)).

86

The drop site name is specified in the Drop site name text entry area. You specify the node
annotation symbol associated with the drop site by selecting a hode symbol in a symbol library,
then pressing the Assign new symbol button. The name of the symbol will be shown in the label
of theAnnotation name area. This is a logical name that you can specify by typing it in.

The range of partially satisfied constraints, previously defined for the node symbol through the
Node Symbol Editor (see Node symbol editor (page 76)), is displayed in the Available constraints
list box. You build up the particular combination of constraints that you want, shown in the Drop
sites constraints list box. by using theAdd --> and Delete buttons. The Add --> button adds the
currently selected entry in theAvailable constraints list to the end of the Drop sites constraints list.
The Delete button deletes the currently selected entry from theDrop sites constraints list.

The Edit symbol properties button will open the Node Annotation Symbol Properties dialog box
to allow you to tailor the properties of the annotation symbol (see Node annotation symbols (page
87)).

9.1.6. Node annotation symbols

A node annotation is a hode symbol which is associated with a particular node type. It may be
"dropped" onto a node at a defined drop site when a particular diagram is being built. Arcs may
be connected to this symbol, and it can have attachment points in the same way as to any other
node symbol.

The Node Annotation Symbol Properties dialog box allows you to tailor a node annotation symbol
for a particular node type. It is invoked from the Edit symbol properties button of the Drop Site
Editor.

As well as the usual properties governing the appearance of the symbol (see Node symbols
(page 71)), you can specify whether or not attachments are used, and whether or not arcs to
attachment points should be equally spaced.

9.1.7. Containment

Containers are nodes which can contain other nodes of specified types (see Containers (page
57)). The Containment dialog box allows you to set the container properties for a particular node
type. It is invoked from the Containment button of the Node Type Editor Editor.

The box labelled Available nodes allows you to choose from the recognised node types for the
diagram or the "*" wild card, signifying any type. Once you have selected a type you want, press
the Add button and it will be added to the end of the Containable nodes list which displays the
different types of node that may be contained in this type of container node. If you want to change
your mind and delete an entry, select it in the Containable nodes list, press Delete, and it will
disappear from the list.

9.1.8. Regions

Labels are displayed in text regions, one label per region. Each label needs two parts: the text
string to be displayed, and formatting information to determine how it looks. The text of an item's
label is usually held as one of the item's attributes (see Object attributes (page 53)). The
formatting information for the region is stored and altered through the Region Properties dialog
box which is invoked by selecting the region from the Text regions list of the Node Type Editor

87

and then pressing its Edit button.

The text entry area labelled Format string allows the text region format string to be specified (see
below). The text entry area labelled Point size accepts an integer specifying the text size. Choice
boxes labelled Format mode, Text colour, Font family, Font style, and Font weight allow choices
to be made from the range of values supported by Hardy.

The format string

The format string is a simple way of specifying the label for a region of a node or arc. In particular,
it allows you to display the values of an item's attributes in its image.

The format string may contain literal text and control characters (introduced by a "%" character)
as follows:

1. %n-- inserts the "%" character,
2. Y% -- inserts a new line,

3. 9% - 99 --inserts a node or arc attribute, where the number corresponds to the
position of the attribute in the attribute list as displayed in the node or arc type dialogue.

By convention, the first attribute is used to hold an item's label, so the default format string is %4.
A more complex example might be Nane: %% Val ue: %2. The % control character may also
be inserted in arc and node attributes, for example to prevent overlapping by adding some
manual formatting.

9.1.9. Arc type editor

The Arc Type Editor allows you to tailor the properties of an arc type. This includes the displayed
line shape, permitted annotations, scale, colour, etc, as well as user defined attributes. The Arc
Type Editor is invoked through the New and Edit buttons of the Arc types scrolling list of the
Diagram Type Manager.

Arc attributes and text regions (labels) are treated in the same way as for nodes in the Node Type
Editor (see Node type editor (page 84)), with an arc always having three regions defined: Start,
Middle, and End. These are displayed in the Text regions list. Two additional lists, Arc constraints
and Arc images, allow arc constraints and arc images to be specified and selected.

The displayed image of the arc in the preview canvas, labelled Arc image followed by its name,
will reflect its current image properties and the current choice of annotations. It is not directly
editable, but changing the properties of the arc will change its appearance in the preview canvas.

If a Junction Symbol has been selected through the Junction Editor (see Multi-way arcs and
junction symbols (page 91)), it will be displayed separately in the preview canvas and labelled
Junction image.

Buttons are arranged in five groups, a general group for the editor and one each for the
Attributes, Text regions, Arc constraints, and Arc images list boxes.

9.1.9.1. General

88

OK -- the Arc Type Editor is dismissed, and, if changes have been made to arc
definitions and these have not already been saved, you will be asked whether they are
to be saved or not.

Junction editor -- pops up the Junction Editor dialog box, see Multi-way arcs and
junction symbols (page 91), to allow a junction symbol to be chosen and given
appropriate properties. If a Junction Symbol is chosen, it will be displayed in the preview
canvas.

Symbol librarian -- opens the Symbol Librarian.

Help -- for X versions of Hardy, the wxHelp program is started and the Hardy manual is
loaded and opened at the section concerning the Arc Type Editor. For Hardy for
Windows, the Windows Help system is started at the appropriate place in Hardy's
manual.

9.1.9.2. Attributes

New -- a Text Entry dialog box appears, allowing a new attribute to be specified.
Edit -- a Text Entry dialog box appears, allowing you to edit the name of the selected
attribute. The new name replaces the previous name in the existing entry in the
Attributes scrolling list.

Delete -- deletes the currently selected attribute.

9.1.9.3. Text regions

1.

Edit -- if an entry is selected in the Text regions area, the Region Properties dialog box
will be opened, allowing the properties of the selected text region to be tailored. See
Regions (page 87).

9.1.9.4. Arc constraints

1.

New -- an Arc Constraint dialog box appears allowing a new constraint to be specified
(see Arc constraints (page 90)). The choice boxes in this dialog box contain all the
nodes types defined for this diagram type.

Delete -- deletes the currently selected constraint.

9.1.9.5. Arc images

1.

New -- a Text Entry dialog box appears, allowing a name to be given for the new image.
When a name has been specified, the Arc Image Properties dialog box appears (see Arc
images (page 90)).

Edit -- the Arc Image Properties dialog box appears (see Arc images (page 90)),
allowing you to edit the properties of the arc symbol for the currently selected arc type.
Delete -- deletes the currently selected arc symbol.

9.1.9.6. Left button

1.

Click on a point in the preview canvas, if a node annotation symbol is currently selected
in any Symbol Library, places that symbol on the nearest text region of the arc symbol
currently being displayed. Any annotation symbol already at that site will be replaced.
The Symbol Library symbol will then be deselected. If no Symbol Library has a currently
selected arc annotation symbol, no action results.

89

2. Click on an item within the Attributes list box selects that item.

3. Double-click on an item within the Attributes list box selects that item and proceeds as
though the Edit button had been pressed.

4. Click on an item within the Text regions list box selects that item. The name of the
selected region is shown in the preview canvas.

5. Double-click on an item within the Text regions list box selects that item and proceeds

as though the Edit button had been pressed.

Click on an item within the Arc constraints list box selects that item.

Click on an item within the Arc images list box selects that item.

Double-click on an item within the Arc images list box selects that item and proceeds as

though the Edit button had been pressed.

© N

9.1.9.7. Right button

No use is made of the right mouse button.

9.1.9.8. Cursor

No special cursor pattern is used.

9.1.10. Arc constraints

The Arc Constraints dialog box allows you to specify between which types of node the arc is
legal. It is invoked from the New button of the Arc constraints area of the Arc Type Editor.

The two boxes allow you to choose from the types of node that are defined for the diagram type
or the "*"wild card, signifying any type. They are labelled Constrain from and Constrain to, in the
expected manner. When you have chosen a type for each end, press the OK button to dismiss
the dialog box.

9.1.11. Arc images

The Arc Image Properties dialog box allows you to tailor the image properties of an arc type
symbol, such as its line width, style, colour, etc. The Arc Image Properties dialog box is invoked
by selecting an entry in the Arc images scrolling list in the Arc Type Editor and pressing the Edit
button. This dialog box will also appear when a new Arc Image is being defined, after specifying
the Arc Image's name.

In addition to the basic properties that it already has, see Arc symbols (page 71), when an arc
symbol is used in a diagram type, it has additional features:

1. Abbreviation format string,

2. whether the arc is drawn as a straight line or a spline curve and, if it is a straight line,
whether it should be drawn as a spline if it connects one node to the same node.

3. whether annotations are divisible or not, i.e. presented in a separate section on the
diagram symbol palette.

4. whether or not the symbol should be displayed on the Symbol Palette.

Pressing the Annotation properties... button opens the Arc Type Annotation Properties dialog
box, see Arc type annotations (page 91), allowing high-level properties of any arc annotations to
be set.

90

9.1.12. Arc type annotations

The Arc Type Annotation Properties dialog box is invoked from the Annotation properties...
button of the Arc Image Properties dialog box. It allows allows properties of arc annotations to be
set for a particular type of arc.

Each entry corresponds to an annotation specified for the region, and consists of:
1. its symbol name,

2. acheckbox indicating whether the annotation will always be present on the arc or
whether it will be added incrementally by the user as desired, and

3. atext entry area allowing a logical name to be given to the annotation.

9.1.13. Multi-way arcs and junction symbols

Multi-way arcs allow you to connect one node to several others with the same arc type and have
the diagram display the result as a single leg emerging from the source node, joining it to a multi-
way junction symbol. The destination nodes are then all joined to this junction symbol. This can
result in tidier diagrams, particularly if some grid constraints are applied to the arc segments .

A junction symbol is a node symbol which has been specially selected for the role using the
Junction Editor dialog box, invoked from the Junction editor button of the Arc Type Editor.

This allows you to specify several important properties:

1. selecting the junction symbol -- there is a message at the foot of the dialog box, asking
you to select the node symbol that you want from some symbol library. (You do this in
the usual way, opening the Symbol Librarian if necessary from the Arc Type Editor or
the Control Window's Tools menu.) Once the symbol is selected, you will see the cross-
hairs cursor pattern when you move into the preview window of the Arc Type Editor.
Clicking here will "drop" the selected symbol onto the preview window and the label
Junction symbol followed by the nhame of the symbol will be shown below it.

2. changing the junction symbol -- press the Clear Junction button, and the current
junction symbol image displayed in the Arc Type Editor preview window is cleared.

3. size -- you can specify the height and width of the displayed symbol, in pixels.

4. two-way arcs -- you can decide whether or not the junction symbol should appear when
the source node is connected to a single destination node.

5. grid geometry -- if auto dog-leg is set, an extra control point will be added to each leg
connecting the junction symbol to the destination nodes. Hardy will then alter these arcs
so that they are horizontally and vertically aligned. (as though Layout: Straighten lines
had been selected.)

6. specifying attachment points -- this uses the numbered identifiers of the junction
symbol's attachment points to specify finer detail for tidier diagrams:

Input: the attachment point id used for connecting the input (source) node,

One output: the attachment point id used for connecting the output node when
there is only one (a two-way arc),

Two outputs (1): the attachment point id to be used for connecting the first of
more than one output arcs (a multi-way arc),

Two outputs (2): the attachment point id to be used for connecting the second of

91

more than one output arcs,
Three outputs: the attachment point id to be used for connecting the third and
subsequent output arcs.

Pressing the OK button accepts the current values and dismisses the dialog box.

9.2. Hypertext card types

As for diagrams, it is possible to create hypertext card types which modify the default capabilities
of the standard hypertext card. Differences between one type and another all relate to alternative
styles for marking-up text blocks and the use of custom menus.The text is marked-up by selecting
blocks of text---phrases, sentences, paragraphs, etc---and associating block types with them.
Each block type is mapped onto a particular style which allows the block to be distinguished from
the surrounding text in terms of its font, colour, etc. To understand the process of building a new
card type, please read the chapter on creating a new diagram type first (Creating new diagrams

(page 52)).

9.2.1. New hypertext types

The Hardy Hypertext Type Manager, accessed from the Tools: Show hypertext type manager
menu item of the Hardy Control Window, allows the default capabilities of the standard hypertext
card to be modified so that the user can create different hypertext card types.

The Hypertext Type Manager presents you with a list of currently defined hypertext types and a
selection of buttons, many of which are identical to those of the Diagram Type Manager (see New
diagram types (page 82)).

To create a new type, press the New button, and enter a name for the hypertext type. To alter the
name of an existing type, select the one you want from the Hypertext types list and press the Edit
name button and you'll be asked for the new name. You can also change its category (see New
diagram types (page 82)) if you want to, though this isn't necessary. You can delete a type by
selecting the entry you want to remove from the list, then pressing the Delete button.

The actual work of defining the hypertext type is done through altering hypertext block
mappings.You open the Block Mappings dialog box by pressing the Edit block mappings button
(see Hypertext block mappings (page 93)).

The buttons are arranged in two groups, one group providing general facilities, the other dealing
with facilities for the type currently selected in the Hypertext types list box.

9.2.1.1. General

1. OK -- the Hypertext Type Manager is dismissed and, if changes have been made to any
hypertext type definitions and these have not been saved, the user is asked whether
these should be saved or not.

2. Load type -- the File Selector dialog box appears with the filter string set to *. def . The
user can select the hypertext type definition file to open, and this is then loaded and
displayed in the Hypertext types list box.

3. Save type -- the File Selector dialog box appears, and the user can specify a file name
for saving the hypertext type definition file.

4. Load list -- the File Selector dialog box appears to allow the user to specify the name of
the hypertext definition list file. By default, this is di agr ans. def .

5. Save list -- the File Selector dialog box appears with the filter initialised to *. def to

92

allow a name for the definition file to be selected.

6. Custom menu -- if a hypertext type is currently selected in the Hypertext types list box,
a dialog box appears, allowing the user to specify for that hypertext type the title of a
custom menu, and to add or delete menu items from this custom menu. See Custom
menus (page 94).

7. Help -- for X versions of Hardy, the wxHelp program is started and the Hardy manual is
loaded and opened at the section concerning the Hypertext Type Manager. For Hardy
for Windows, the Windows Help system is started at the appropriate place in Hardy's
manual.

9.2.1.2. Hypertext types

1. New -- a Text Entry dialog box appears, allowing the user to type in the name of a new
hypertext type. An entry with that name then appears in the Hypertext types scrolling list,
and the newly created hypertext type is selected.

2. Edit name -- a Text Entry dialog box appears, allowing the user to change the name of
the selected hypertext type. An entry of that name then appears in the Hypertext types
scrolling list, replacing the previous entry.

3. Edit block mappings -- if a hypertext type is selected in the Hypertext types scrolling
list, a Block Mapping dialog box appears (see Hypertext block mappings (page 93)
below), allowing the user to alter the mappings between block types and their displayed
styles.

4. Delete -- the selected hypertext type is deleted from the hypertext type definition list and
the corresponding entry is removed from the Hypertext types list box.

9.2.2. Hypertext block mappings

The block type mapping defines how the type identifier of a text block is interpreted in terms of
text colour and style. Using different block type mappings on the same hypertext files results in
the same text being displayed differently. When a hypertext type is first created, the default block
styles are given. You may wish to modify these for your own application. Note that the block type
identifier must be unique for each block type mapping.

A block type can have the following characteristics:

font family (Swiss, Roman, Modern or Default),

point size (such as 10, 12, 24),

style (Normal, Italic or Default),

weight (Normal, Bold, Light or Default),

colour (such as BLACK, RED, FOREST GREEN, BLUE, CYAN or Default).
A block may, in fact, have some of the attributes specified as Default, which means "use
whatever was specified before this block". The point size value representing the default is -1.
When a block ends, the attributes revert to their previous values. This means that a block need
only change one or two attributes, such as colour or weight. Blocks may be nested: for example,
within an Italic block, a word could be highlighted in RED. If the RED block type specified
"Default” for text style, the block would be RED and ltalic.

An additional characteristic is whether or not it supports sections. If sections are supported by a

93

particular hypertext type, cards of this type will be able to move backwards and forwards using
the Goto: Top, Goto: Next section, and Goto: Previous sectionmenu options.

The Block Mapping dialog box allows the user to alter the mappings between hypertext block
types and their displayed styles. It is invoked from the Edit block mappings button of the
Hypertext Type Manager, see Hypertext type manager (page 92).

The names of the different block styles are listed in the Blocks area. The type id corresponding to
the currently selected block is shown in the Block type area. Details of the text font and other
characteristics are shown and may be altered in the other areas.

To add a new block type name, press the Add button. A Text Entry dialog box will appear,
allowing you to type in the name required. An entry with that name will appear in the Blocks list
and that entry will be selected. You can alter the name of a type by selecting it in the Blocks list,
then pressing the Change name button. The Text Entry dialog box will appear, allowing you to
edit the selected name. The new name will replace the old name in the existing entry in the list.
To delete a type, select the one you want to remove from the Blocks list, press Delete, and the
entry will disappear from the list.

9.3. Custom menus

Diagram types and hypertext types may have a extra menu added to the card's menu bar. This
supports an interface to foreign code which intercepts particular mouse and menu events for the
card type. You specify your menu requirements using the Custom Menu dialog box which is
invoked by pressing the Custom menu button of either the Diagram Type Manager or the
Hypertext Type Manager. This lets you specify the menu name and add or delete menu entries.

The menu title is specified in the area labelled Menu title and the selectable names of the menu
entries are shown in the Menu items list. To add a new entry, type its name into the Menu item
name area and press the Add button. What you typed will now be added to the end of the Menu
items list and Menu item name will be cleared. To change the hame of an entry, select the name
you want to change in the Menu items list, type the new name into Menu item name, and press
the Save name button. What you typed will now replace the selected entry in the list. To remove
an entry, select the name you want removed from the Menu items list and press the Delete
button. The selected entry will be removed from the list.

Pressing OK commits to the current settings and dismisses the dialog box.

9.4. Saving card type definitions

Once you have finished defining or changing a card type, go to the type manager (the Diagram
Type Manager or the Hypertext Type Manager as appropriate) and press the Save type button to
save the currently selected type. You will be prompted for file names if any files are needed that
you haven't referred to before.

To update the definitions list file, use the Save list button of the type manager.

9.5. Editing previously created card type definitions

Assuming the type definition is available from the type manager (the Diagram Type Manager or
the Hypertext Type Manager as appropriate), select it in the Diagram types list (by clicking on its
name), then press the Edit name button to change its name, or the Delete button to delete the
whole type completely from the type index. (The file will remain on the disk.)

To edit an existing node or arc typein the Diagram Type Manager, make selections in the same

94

way as above, but using the Node types or Arc types lists instead.

NOTE that it can be dangerous to change diagram type settings when a diagram of that type is
being edited, and it is possible to get Hardy to crash this way. For many settings, however, old
diagram files will continue to work correctly using the new definitions. However, this should be

done with caution.

The Layout: Apply definitions menu option of a diagram card does let you update a displayed
card if you have, in the meantime, changed its Diagram Type definition; existing values of various
properties of the displayed items will be updated where possible.

95

10. Differences between the X and Windows versions

Since the X and Windows windowing systems have differences in philosophy and design, some
specific features are necessary for each platform. These have been kept to a minimum to avoid
inconsistency.

10.1. Printing

Under X, the only form of printing is to PostScript files or printers. Hardy for Windows provides the
same options, but will also support copying diagrams to the Windows clipboard though the Edit:
Copy option.

10.2. The clipboard

Hardy for Windows has an option in the diagram card Edit: Copy menu for copying a metafile
version of the diagram to the clipboard. See Clipboard (page Error! Bookmark not defined.).

10.3. MDI mode

Under Windows, MDI (Multiple Document Interface) is a style used by most modern applications
where child windows are constrained by the top level window. For applications which allow many
documents to be open at once, it is more convenient to hide all windows when the top level
window is iconised than to have to close many windows individually. The application effectively
has its own desktop, on which document windows may be placed and iconised. The menu bar for
each window is always placed on the top level window, and changes according to which child
window is currently activated.

In addition, MDI applications have an extra menu called Window, with standard Cascade, Tile
Arrange icons and Next options, and a list of MDI child windows which can be activated.

Hardy supports MDI mode under Windows (in fact it's the default) using the - ndi command line
switch. The switch - sdi selects SDI (Single Document Interface) mode, for those who dislike the
MDI style. Hardy is probably uniqgue amongst Windows applications to offer this choice! In MDI,
the hypertext tree browser is displayed in a separate child window; this is now synonymous with
the control window, taking on the top level window menu bar (main menu). You can get to the
main menu by activating the browser window or using the Goto control window menu item from
a card's File menu.

10.4. Text editing

Plain text cards cannot be edited directly under Windows. A separate text editor must be invoked,
and the file read back into the card explicitly.

11. Programming Hardy

Hardy has a built-in language based on NASA's CLIPS 6.0. For detailed information on CLIPS,
please refer to the CLIPS user and reference manuals. This chapter describes the simple CLIPS
development environment included with Hardy, and lists the Hardy-specific CLIPS functions; the
function reference may be viewed on-line from the CLIPS help menu by selecting.

After the Hardy specific functions, a separate section lists CLIPS functions relevant to lower-level
construction and manipulation of windows and other interface components. This reference is also
accessible from the CLIPS help menu as Interface functions reference.

11.1. The Hardy CLIPS environment

Hardy comes with a cut-down version of the embeddable expert system shell, CLIPS. There are
new Hardy-specific functions which may be called from CLIPS, allowing Hardy to be tailored to a
greater degree than by using the diagram type manager alone.

The Tools menu on the control window has a Show Development window option. Selecting this
displays the Hardy CLIPS development window consisting of a menu bar, a command prompt,
and a text output window. Some CLIPS operations may be achieved using the menu such as
loading a CLIPS definition file, and all may be accessed from the command prompt. To execute
an arbitrary CLIPS command, type in the command and press the Do button. The command is
echoed on the text output window, and any results of the executed command are also displayed.

The end user will normally not use the Hardy CLIPS window. When your CLIPS code has been
debugged, it can be loaded at runtime using the -clips filename command line option. Any
function calls in the file will also be executed (for example to register Hardy event handlers, or
load further definitions).

To load functions, you may use the File: Batch or File: Load menu options. The Load option
checks constructs such as functions, printing out error messages; however, only construct
definitions are allowed, so functions cannot be executed from a file. The Batch option allows both
construct definitions and the use of these constructs (e.g. to register interest in a Hardy event);
however, construct error messages are not given. The -clips command line switch uses the
batch method.

It is strongly recommended that you use at least two CLIPS files: a small loader and one or more
constructs file. The loader loads the main file or files, and then calls the appropriate event handler
registration functions.

For example:

(load "constructs. clp")
(regi ster-event-handl er NodeLeftd ick "KADS I nference" node-Ileft-click)

This is very much quicker than having all the code in the top-level batch file.
Also, you may wish to execute the command (unwat ch al |), or put it early on in your program.
This cuts down on the amount of information CLIPS displays on the window, which can be time

consuming.

11.2. Debugging CLIPS code

At present, there are few facilities for debugging CLIPS code. For trying out small code
fragments, you can type in one command at a time in the text input panel. Once one or more

functions have been written, print statements at important points in the code are probably the best
way to proceed. A single-stepping facility may be incorporated in later versions of Hardy. This
might be emulated for now by placing dummy read-string statements in the code to prevent the
code proceeding until the user allows it.

Also, typing (wat ch al I) makes CLIPS show a trace of function calls and execution of other
CLIPS constructs. The (dri bbl e-on fil e) command writes CLIPS error messages and other
output that would normally be written to the development window, into a file. (dri bbl e- of f)
flushes and closes the dribble file.

Type errors in early versions of Hardy tended to be fatal, since Hardy could not check that an
identifier referred to an existing object of a different type (such as a node object instead of a node
image). Type checking is now performed on all objects, so such mistakes should be more readily
identifiable.

A common error is forgetting a closing bracket. This may not cause any error message when a
file is loaded into CLIPS, but the definitions or function calls after the error will not be made, and
so code will not appear to be working. It may be convenient to put a print statement at the end of
a file you are debugging: if all is well, a message will be printed; otherwise, there may be a
problem with brackets.

Another thing to watch out for is non-reentrant loops. All the CLIPS for Hardy functions whose
names contain get-first- cannot be used within a loop which already makes use of this function.
To get around this, first build a list of identifiers using the get-first- and get-next-functions and
the CLIPS mv-append function, and iterate through this list instead. For example,

(bind ?id (diagramcard-get-first-node ?card))
(bind ?list (mv-append))
(while (> ?id -1) do

(bind ?list (mv-append ?list ?id))

(bind ?id (diagram card-get-next-node))

The following oop can now call other functions which use
get-first-card-node

(bind ?counter 1)

(while (> ?counter (length ?list)) do

(bind ?elenment (nth ?counter ?list))

)

(bind ?counter (+ ?counter 1))

)

11.3. Diagram and hypertext structures

The specialized Hardy CLIPS functions manipulate various structures essential to Hardy, which
must be understood before any code can be written.

Most accessible structures are referred to in CLIPS code by integer identifiers, except for named
node, arc and other types (as opposed to instances of structures of that type) which are referred
to by name. For example, a node image of type "Knowledge Role" may have identifer 187.

A Hardy diagram card has an integer identifier, retrievable via the arguments of an event handler
function or by other means. There are two sorts of diagram card: top-level, and expansion. The
top-level card is the one first created, and has menu options for file saving and loading. For
simple diagrams, this type may be all that is required. An expansion card is a diagram card which
'hangs off' the top-level diagram card or another expansion card, and may be used to build up a

98

hierarchical diagram. Only one file is used to save a hierarchy of diagrams. Most operations may
be done on diagram cards without worrying whether it is an expansion or the top-level diagram
card.

A Hardy diagram consists of an underlying network of nodes and arcs (referred to generically as
objects). They are visually represented by node and arc images. The distinction is necessary to
accommodate multiple images for one object (for example, the same node appearing on different
cards). Usually, there will be only one image for each node or arc. At present there are no
functions to allow creating additional images for existing objects. When an image is created, an
underlying object is automatically created, the id of which can be retrieved from the image if
required. Objects are associated with the top-level card, whereas images are associated with the
card on which they are displayed.

Node and arc objects have string attributes, some of which are hard-wired (such as "type") and
some of which are defined by the user in the diagram type manager. One or more of the user-
definable attributes may be used in the image label, determined by a user-supplied format string.
The user-definable attributes may be set and retrieved via CLIPS or by the user.

The hypertext structure is based on the concept of the hypertext item. Each type of card has its
own idea of what corresponds to an item --- for the diagram card, each image is conceptually an
item and therefore contains an item structure. ltems may be linked to other items by hypertext
links (or hyperlinks). A card always has at least one item, called the special item, so that a card
which either does not support the concept of items (e.g. the text card), or has no appropriate
items, may still be linked to another card or item.

Using the appropriate functions, items may be retrieved from images, and any links attached to
the items may be traversed, to access other connected items, cards or images. For convenience,
there are functions to manipulate expansion cards (which are cards linked to image items via
special links) without needing to access the items and traverse the links explicitly.

For further information and some simple examples, please refer the Hardy Software Development
Kit and the accompanying Frequently Asked Questions document.

99

12. Hardy Functions Reference

This section specifies the functions that provide the functionality of Hardy at a card and item level.
Display functionality is specified in Interface functions reference (page 235).

This section is presented in five parts based on the card index and the different available card
types, with miscellaneous functionality being gathered together at the end.

In the definitions below, function names and parameter names are shown in bold face, with types
being shown in italics. The types used are as follows:

1. double is a double-precision floating point number.
2. longis a long integer.

3. string is a double-quoted ASCII string.

4. word is an unquoted string.

Functions involving diagram images, objects and hypertext items will use the diagram card
identifier, an integer, to ensure uniqueness.

Parameters can be optional, in which case the defaults are specified.

Function names are constructed by appending an 'action’ to an 'object’, for instance card-get-
string-attribute and diagram-image-get-width.

There is an implicit type hierarchy which allows some functions to be general purpose, so card-
get-special-item can refer to all card types, whereas diagram-card-find-root operates on
diagram cards only. Similarly, a diagram-object can be used for node-objects and arc-objects,
and diagram-image can be used for node-images and arc-images.

Note: In Windows NT or WIN32s versions of Hardy, integer identifiers can be negative. So when
validating integer identifiers, test for values of zero or -1, rather than for values less than zero.

12.1. Card index functions

hardy-clear-index
long (hardy-clear-index)

Clears the hypertext index, with no user confirmation. Returns 1 if successful, O otherwise.

hardy-get-first-card

long (hardy-get-first-card)

Gets the first card in the index. Returns -1 if there are no cards, or a card id otherwise. Use
hardy-get-next-card for retrieving further cards.

hardy-get-next-card

long (hardy-get-next-card)

Gets the next card in the index. Returns -1 if there are no more cards, or a card id otherwise. Use

hardy-get-first-card to start iterating through cards.

Note that if you perform an operation that deletes a card during an iteration through the index, this
function could give an error. A possible solution is to put all card ids in a list, iterate through this
list, and use card-is-valid to check if the card still exists.

hardy-get-top-card

long (hardy-get-top-card)

Returns the id of the top card, or -1 if none.

hardy-load-index
long (hardy-load-index string file)

Loads the hypertext index from the specified file, returning 1 if successful, O otherwise.

hardy-save-index

long (hardy-save-index string file)

Saves the hypertext index in the specified file, returning 1 if successful, 0O otherwise.
12.2. Card functions

The following functions apply to any card.

card-create

long (card-create long parent_id, string card_type, optional long iconic = 0, optional long x = -
1, optional long y = -1, optional long width = -1, optional long height = -1, optional long window
= 0)

Creates a new card and returns the id, or -1 if the call failed. parent_id may be zero (no parent) or
a valid parent card id. card_type should be a string: the only valid value at present is "Text card"
(diagram cards are created using diagram-card-create).

If iconic is 1, the card will be created in iconic (minimized) form.

The position and size arguments are optional; if they are omitted or take the value -1, their values
will be given defaults.

window may contain the identifier of the frame to display the card in. If window is present and

non-zero, the card is not already displayed in a window, and the card that is already displayed in
window is of the same type, then the card will be displayed in this window.

card-delete

long (card-delete long card_id, optional long warn = 1)

101

Deletes the given card; returns 1 for success and 0 for failure.

If warn is 1 (the default), the user will be asked for confirmation before deleting, otherwise the
card will be deleted silently.

card-deselect-all

long (card-deselect-all long card_id)

Deselects all images on the given card; returns 1 for success and 0 for failure.

card-find-by-title

long (card-find-by-title string name, optional long substring=1)

Finds card for first matching title.name may be a substring (if substring is 1). This function is
useful for testing against cards which have been created manually and whose id is, therefore, not
known.

card-get-canvas

long (card-get-canvas long card_id)

Returns the id for the canvas of a card, if the card currently has a physical window. The canvas is
the main subwindow of a card, such as the diagram editing canvas of a diagram card.
card-get-frame

long (card-get-frame long card_id)

Returns the frame identifier associated with the card, returning O if there is no frame. This allows,
for example, a card frame to be used as a parent for a dialog box.

card-get-first-item

long (card-get-first-item long card_id)

Gets the first hypertext item associated with the given card. Returns -1 for end of list. Further
items are returned by calls of card-get-next-item.

card-get-height

long (card-get-height long card_id)

Returns the height of the card's window.

102

card-get-next-item
long (card-get-next-item)

Following a call of card-get-first-itemwhich returns the first hypertext item associated with a
specified card, this gets the next hypertext item for that card. Returns -1 for end of list.

card-get-special-item
long (card-get-special-item long card_id)

Returns the "special" hypertext item for the given card. The "special" item always exists, even for
empty cards, for the purpose of linking one card to another.

card-get-string-attribute
string (card-get-string-attribute long card_id, string attribute_name)
Get the value of the given string attribute associated with the card. attribute_name may be one of:

diagram-type: for diagram or expansion cards only, returns user-defined diagram type;
filename;

print-file (diagram or expansion cards only);

title;

type: returns "Text card", "Diagram card", "Hypertext card" or "Diagram expansion".

agrwNRE

card-get-toolbar
long (card-get-toolbar long card_id)

Returns the toolbar id for the card, if the card currently has a physical window and if there is a
toolbar associated with the card. Returns 0 otherwise.

Note that you should only perform window or toolbar operations on this id if it has been created
by a wxCLIPS operation (i.e., is not a Hardy-created toolbar).

card-get-width

long (card-get-width long card_id)

Returns the width of the card's window.

card-get-x
long (card-get-x long card_id)

Returns the x coordinate of the top left corner of the card's window.

103

card-get-y
long (card-get-y long card_id)

Returns the y coordinate of the top left corner of the card's window.

card-iconize

long (card-iconize long card_id, optional long iconic = 1)

Iconizes or restores the given card, if it has a physical window associated with it. If iconic is 1, the
card will be iconized. If O, it will be restored.

card-is-modified

long (card-is-modified long card_id)

Returns 1 if the given card has been modified and needs to be saved, O otherwise.

card-is-shown

long (card-is-shown long card_id)

Returns 1 if the given card is displayed on the screen (i.e. has a physical window associated with
it), O otherwise. See also card-show.

card-is-valid

long (card-is-valid long card_id)

Returns 1 if the card exists, 0 otherwise.

card-move
long (card-move long card_id, long X, long y)

Moves the given card to the specified position on the screen. Returns 1 if successful, 0 otherwise.

card-quit
long (card-quit long card_id, optional longquit_level=0)

Quits the given card, i.e. deletes the physical window associated with the card, but does not
delete the card from the hypertext index. Returns 1 if successful, O otherwise.

Action depends on value of quit_level:

0: full user prompting,

104

1. if the card has a filename, save and quit without prompting,
2: don't save anything and quit without prompting.
card-select-all
long (card-select-all long card_id)

Selects all images on the given card. Returns 1 if successful, O otherwise.

card-send-command

long (card-send-command long card_id, long command_id)

Sends a menu command identifier to the card, which must be displayed. command_id is an
internal identifier that can be obtained from an equivalent string form using hardy-command-int-

to-string (page Error! Bookmark not defined.).

This function can be used in custom code to provide features that the default user interface
normally provides.

See Menu command identifiers (page 158) for a list of identifiers you can use in conjunction with
this function.

card-set-icon

long (card-set-icon long card_id, long icon_.id)

Sets the icon for a card, where icon_id is a valid icon created with a wxCLIPS function.

card-set-modified
long (card-set-modified long card_id, optional long modified = 1)

Sets the card 'modified’ flag, to 1 by default.

card-set-status-text

long (card-set-status-text long card_id, string text)

Sets the status line of the given card to display the given text (only if the card has a status line---
all diagram cards do, text cards currently do not). Use the empty string (") to clear the status line.
Returns 1 if successful, 0 otherwise.

card-set-string-attribute

long (card-set-string-attribute long card_id, string attribute, string value)

Sets the attribute of the given card to the given value. Returns 1 if successful, 0 otherwise.

105

The attribute parameter may be one of the following:
1. filename,
2. print-file (diagram card only),
3. title.
card-show
long (card-show long card_id, optional long iconic = 0, optional long window=0)
Shows the given card. If the card is being displayed, it is brought to the fore. If it is not being
displayed, it is given a new physical window, its contents loaded, and it is brought to the fore (or
iconised if there is a second argument which is non-zero).
window may contain the identifier of the frame to display the card in. If window is present and

non-zero, the card is not already displayed in a window, and the card that is already displayed in
window is of the same type, then the card will be displayed in this window.

12.3. Item functions

The following functions apply to hypertext items.

item-get-first-link

long (item-get-first-link long card_.id, long item_id)

Gets the first link associated with the item. Returns -1 for end of list. Further links are returned by
calls of item-get-next-link.

item-get-kind

string (item-get-kind long card_.id, long item_id)

Gets the kind of the item. The 'kind' is a way of labelling an item without deriving a new C++
class, and is currently unused.

item-get-next-link

long (item-get-next-link)

Following a call of item-get-first-link which returns the first link associated with a specified item,
this gets the next link for that item. Returns -1 for end of list.

item-get-type

string (item-get-type long card_id, long item_id)

Gets the type of the item. A type refers to the item's C++ class, and may currently be "Default
item" or "Diagram item".

106

item-goto
long (item-goto long card_id, long item_id, optional long iconic = 0)

Highlight the item on the given card, optionally iconising the card if a new physical window needs
to be created for the card. item_id can be -1 to use the special item.

Returns the id of the top card, or -1 if none.

item-set-kind
long (item-set-kind long card_id, long item_id, string kind)

Sets the kind of the item. This string value is not used by Hardy but might be used by an
application for some purpose.

12.4. Link functions

The following functions apply to hyperlinks.

link-get-card-from
long (link-get-card-from long link_id)

Returns the card owning the item pointed from by the link, or -1 if unsuccessful.

link-get-card-to
long (link-get-card-to long link_id)

Returns the card owning the item pointed to by the link, or -1 if unsuccessful.

link-get-item-from
long (link-get-item-from long link_id)

Returns the item pointed from by the link, or -1 if unsuccessful.

link-get-item-to
long (link-get-item-to long link_id)

Returns the item pointed to by the link, or -1 if unsuccessful.

link-get-kind

string (link-get-kind long link_id)

107

Gets the kind of the link. The 'kind' is a way of labelling a link without deriving a new C++ class,
and may currently be "Expansion”, for an expansion link, or the empty string.
link-get-type

string (link-get-type long link_id)

Gets the type of the link. A type refers to the link's C++ class, and may currently be one of
"Default link" and "Expansion link".

link-cards

long (link-cards long from_card, long to_card)

Creates a default hyperlink between the two cards, returning the link id if successful or -1 if
unsuccessful.

link-items

long (link-items long from_card, long from_item,long to_card, long to_item)

Creates a hyperlink between the two items, returning the link id if successful or -1 if unsuccessful.

link-set-kind
long (link-set-kind long link_id, string kind)

Sets the kind of the link. This string value is not used by Hardy but might be used by an
application for some purpose (such as providing 'typed' links).

12.5. Arc image functions

The following functions apply to arc images.

arc-image-change-attachment

long (arc-image-change-attachment long card_id, long image_id,long end, long attachment,
long position=-1)

This function allows the programmer to change the attachment point at which the arc enters or
leaves the node. Attachment points start from zero and are either hard-wired or defined in the
symbol editor. For example, rectangles, circles and ellipses have four attachment points, starting
from the top and going clockwise from zero to three.

If the final position argument is given (and more than -1), the function can change the position of
the arc relative to the arcs connected at the same attachment point. If zero, the arc will be drawn
at the first position. If a very large number, it will be drawn at the last position.

Note that these attachment points are only valid if the node image has attachments switched on

108

(from the symbol editor or node type editor).
If end is 1, the 'to' end of the arc is acted on. If end is O, the 'from' end is acted on.

attachment should be a valid attachment point. After the function is called, the arc will be redrawn
at the given attachment point.

position, if supplied, specifies the position of the arc relative to other arcs connected to the node
at this attachment point.

arc-image-control-point-add

long (arc-image-control-point-add long card_id, long image_id)

Adds a control point to the arc image (between the middle two points). If the arc image is
selected, the application must deselect it before calling this function (and select it again if
necessary).

arc-image-control-point-count

long (arc-image-control-point-count long card_id, long image_id)

Counts the number of control points in the arc image. This number will be at least two (one for
each end).

arc-image-control-point-move

long (arc-image-control-point-move long card_id, long image_id, long point_id,double X,
double y)

Moves the given control point to an absolute position on the canvas. If the arc image is selected,
the application must deselect it before calling this function (and select it again if necessary). The
application must redraw the arc image after this function is called.

The point id must be between 1 and the number of control points in the line. The coordinate
system has an origin at the top left of the canvas.

arc-image-control-point-remove

long (arc-image-control-point-remove long card_id, long image_id)

Removes an abitrary control point from the arc image. If the arc image is selected, the application
must deselect it before calling this function (and select it again if necessary).
arc-image-control-point-x

double (arc-image-control-point-x double card_id, long image_id, long point_id)

Gets the X position of the control point.

109

The point id must be between 1 and the number of control points in the line. The coordinate
system has an origin at the top left of the canvas.

arc-image-control-point-y
double (arc-image-control-point-y double card_id, long image_id, long point_id)
Gets the Y position of the control point.

The point id must be between 1 and the number of control points in the line. The coordinate
system has an origin at the top left of the canvas.

arc-image-create

long (arc-image-create long card_id, string arc_type,long from_node, long to_node,optional
long from_attachment, optional long to_attachment, optional string alternative_image)
Creates a new arc and arc image between the given node images. The new arc is stored at the
root of the diagram hierarchy; the arc image is associated with the displaying card and its id is
returned if the operation is successful. The arc_type parameter must be a valid arc type for this
diagram type, as defined interactively using the Diagram Type Manager. The optional attachment
points refer to where the arc should be attached at the node image end-points; usually the
attachment option will not have been activated in the diagram type manager so these will have no
effect.

The optional parameter alternative_image can specify an alternative image name if the arc
definition has more than one image definition defined.

Returns -1 if unsuccessful.

Unlike with node-image-create, the arc image is drawn immediately and no further operation is
required to make it visible.

arc-image-get-alignment-type

string (arc-image-get-alignment-type long card_id, long image_id,long end)

Gets the alignment type for a particular end of the line.

end should be 1 for the arc image end, 0 for the arc image start.

The returned type will be ALIGN_TO_NEXT_HANDLE or ALIGN_NONE.

See also arc-image-set-alignment-type (page Error! Bookmark not defined.).

arc-image-get-attachment-from
long (arc-image-get-attachment-from long card_id, long arc_image_id)

Given a diagram card id and the id of an arc image on that card, retrieves the attachment point of
the node image at the ‘from' end of the arc. Returns -1 on failure.

110

The value of the attachment point depends on the type of node, whether attachment mode is on
for this node, and where the arc has been drawn from. By default, the value is zero, which if
attachment mode is off means that the arc is drawn from the centre of the node. For a rectangle,
circle or ellipse, there are four attachment points numbered zero to three clockwise, at the main
points of the compass. A polyline's attachment points are at its vertices.
arc-image-get-attachment-to

long (arc-image-get-attachment-to long card_id, long arc_image_id)

Given a diagram card id and the id of an arc image on that card, retrieves the attachment point of
the node image at the 'to' end of the arc. Returns -1 on failure.

The value of the attachment point depends on the type of node, whether attachment mode is on
for this node, and where the arc has been drawn to. By default, the value is zero, which if
attachment mode is off means that the arc is drawn from the centre of the node. For a rectangle,
circle or ellipse, there are four attachment points numbered zero to three clockwise, at the main
points of the compass. A polyline's attachment points are at its vertices.
arc-image-get-image-from

long (arc-image-get-image-from long card_id, long arc_image_id)

Given a diagram card id and the id of an arc image on that card, retrieves the id of the node
image at the 'from' end of the arc. Returns -1 on failure.

arc-image-get-image-to

long (arc-image-get-image-to long card_id, long arc_image_id)

Given a diagram card id and the id of an arc image on that card, retrieves the id of the node
image at the 'to' end of the arc. Returns -1 on failure.

arc-image-is-leg

long (arc-image-is-leg long card_id, long image_id)

Returns 1 if the arc image is a leg joining a junction image to a node image, otherwise 0.

arc-image-is-spline
long (arc-image-is-spline long card_id, long arc_image_id)

Returns 1 if the image is a spline, or 0 if the image is a line.

arc-image-is-stem

long (arc-image-is-stem long card_id, long image_id)

111

Returns 1 if the arc image is a stem joining a from node image to a junction image, otherwise 0.

The junction image can be found from a stem or leg by following the from and to pointers in the
normal way. Similarly, if the junction image is known, the arc images can be determined.

arc-image-set-alignment-type

long (arc-image-set-alignment-type long card_id, long image_id,long end, string type)

Sets the alignment type for a particular end of the line.

end should be 1 for the arc image end, 0 for the arc image start.

type can be ALIGN_TO_NEXT_HANDLE or ALIGN_NONE. If the former, the point at which the
arc image hits the node image is calculated by looking at the next handle (control point) along.
Depending on the attachment point, the x or y coordinate is set to the same position as the next

handle.

This only applies if attachment mode is on, and the attached node image is rectangular. The
alignment position is bounded by the size of node image.

See also arc-image-get-alignment-type (page Error! Bookmark not defined.).

arc-image-set-spline
long (arc-image-set-spline long card_id, long arc_image_id,long is_spline)

Sets the arc image to be a spline (is_spline is 1) or a line (is-spline is 0). Returns 1 if successful,
0 otherwise.

12.6. Diagram card functions

The following functions apply to diagram cards.

diagram-card-clear-canvas
long (diagram-card-clear-canvas long card_id)
Clears the canvas associated with the given diagram card. This does not delete any images, it

merely blanks the canvas: calling diagram-card-redraw will bring back the diagram. Use
diagram-card-delete-all-images to actually destroy all diagram images.

diagram-card-copy
long (diagram-card-copy long card_id)
Copies the selected images of the card card_id into the Hardy clipboard buffer (and onto the

Windows clipboard if running under Windows), if the cards are of the same diagram type. Returns
1 if successful, 0 otherwise.

112

The function diagram-card-paste may be used to paste the clipboard buffer contents onto
another card. The function diagram-card-cut copies and then deletes the selected images.

diagram-card-cut

long (diagram-card-cut long card_id)

Copies the selected images of the card card_id into the Hardy clipboard buffer (and onto the
Windows clipboard if running under Windows), and then deletes the selected images from the

card if the cards are of the same diagram type. Returns 1 if successful, 0 otherwise.

The function diagram-card-paste may be used to paste the clipboard buffer contents onto
another card. The function diagram-card-copy will copy without deleting the selected images.

diagram-card-create

long (diagram-card-create long parent_id, string diagram_type, optional long iconic=0,
optional long x = -1, optional long y = -1, optional long width = -1, optional long height = -1,
optional long window=0)

Creates a new diagram card and returns the id, or -1 if the call failed.parent_id may be zero (no
parent) or a valid parent card id. diagram_type should be a valid diagram type, as defined using
the interactive Diagram Type Manager.

If iconic is 1, the card will initially be shown in the iconic state.

The position and size arguments are optional; if they are omitted or take the value -1, their values
will be given defaults.

window may contain the identifier of the frame to display the card in. If window is present and

non-zero, the card is not already displayed in a window, and the card that is already displayed in
window is of the same type, then the card will be displayed in this window.

diagram-card-create-expansion

long (diagram-card-create-expansion long parent_id, long image_id, optional longwindow=0)
Creates a new diagram expansion card and returns the id, or -1 if the call failed.parent_id must
be a valid parent card id. image_id should be a valid node or arc image id to be expanded, or -1
to signify the card should be linked to the parent card itself and not an image within it.

window may contain the identifier of the frame to display the card in. If window is present and

non-zero, the card is not already displayed in a window, and the card that is already displayed in
window is of the same type, then the card will be displayed in this window.

diagram-card-delete-all-images

long (diagram-card-delete-all-images long card_id)

Attempts to delete all the images on the canvas of the given diagram card. It may fail if images
are connected to expansion cards. Returns 1 if successful, O otherwise.

113

diagram-card-find-root

long (diagram-card-find-root long card_id)

Given a diagram card id, finds the id of the diagram card at the base of the diagram hierarchy (not
necessarily of the whole hypertext hierarchy). This may or may not be the same as card_id.
Returns -1 for failure.

For example, if a callback provides a diagram id which is that of an expansion card somewhere in

the hierarchy, supplying the id to this function will return the root of the hierarchy (not the 'top
card’, which is something else entirely!).

diagram-card-get-first-arc-image

long (diagram-card-get-first-arc-image long card_id optional long arc_id optional long
selected)

Given a diagram card id, retrieves the id of the first arc image on the card (or another card on the
same hierarchy). Further arc images are accessed by calls to diagram-card-get-next-arcimage.
Returns -1 on failure.

arc_id may be omitted or zero to all return arc images for this card regardless of arc object; or a
valid arc object id to restrict the images to those belonging to the arc object.

If selected is 1, the images returned will be those currently selected, in the order in which they
were selected. If zero, all arc images will be returned.

diagram-card-get-first-arc-object

long (diagram-card-get-first-arc-object long card_id)

Given a diagram card id, retrieves the id of the first arc (not arc image) on the card (or root of this
card). Further arcs are accessed by calls to diagram-card-get-next-arc-object. Returns -1 on
failure.

diagram-card-get-first-descendant

long (diagram-card-get-first-descendant long card_id)

Get the first expansion card (always a diagram card) of a card. Returns -1 if no expansion cards.
Used with diagram-card-get-next-descendant, allows iteration on all expansion cards which are
descendants from a given root card, without having to follow the hypertext links attached to
diagram images.

diagram-card-get-first-node-image

long (diagram-card-get-first-node-image long card_id optional long node_id optional long
selected)

114

Given a diagram card id, retrieves the id of the first node image on the card. Further node images
are accessed by calls to diagram-card-get-next-node-image. Returns -1 on failure.

node_id may be omitted or zero to all return node images for this card regardless of node object;
or a valid node object id to restrict the images to those belonging to the node object.

If selected is 1, the images returned will be those currently selected, in the order in which they
were selected. If zero, all node images will be returned.
diagram-card-get-first-node-object

long (diagram-card-get-first-node-object long card_id)

Given a diagram card id, retrieves the id of the first node (not node image) on the card (or root of
this card). Further cards are obtained by calling diagram-card-get-next-node-object. Returns -1
on failure.

diagram-card-get-grid-spacing

long (diagram-card-get-grid-spacing long card_id)

Returns the current grid spacing for the card; a value of zero means that snap-to-grid is switched
off.

diagram-card-get-parent-card

long (diagram-card-get-parent-card long card_id)

If the card is an expansion card, returns the id of the parent diagram card. Otherwise returns -1.

diagram-card-get-parent-image

long (diagram-card-get-parent-image long card_id)

If the card is an expansion card, returns the id of the connected node or arc image on the parent
diagram card. Otherwise returns -1.

diagram-card-get-next-arc-image

long (diagram-card-get-next-arc-image)

Following a call of diagram-card-get-first-arc-image for a specified card, retrieves the id of the
next node image on the card. Returns -1 on failure or to signify no more images.
diagram-card-get-next-arc-object

long (diagram-card-get-next-arc-object)

115

Following a call of diagram-card-get-first-arc-object for a specified diagram card id, this
retrieves the id of the next arc (not arc image) on the card (or root of this card). Returns -1 on
failure or to signify no more arcs.

diagram-card-get-next-descendant

long (diagram-card-get-next-descendant)

Following a call of diagram-card-get-first-descendant for a specified node, get the next
expansion card for that node Returns -1 if no more expansion cards.
diagram-card-get-next-node-image

long (diagram-card-get-next-node-image)

Following a call of diagram-card-get-first-node-image for a specified card, retrieves the id of the
next node image on the card. Returns -1 on failure or to signify no more images.
diagram-card-get-next-node-object

long (diagram-card-get-next-node-object)

Following a call of diagram-card-get-first-card-nodeObject for a specified card, retrieves the id

of the next node on the card (or root of this card). Returns -1 on failure or to signify no more
nodes.

diagram-card-get-print-height

long (diagram-card-get-print-height long card_.id)

Returns the height of the diagram card's Postscript image in points. This call must be made after
a call to diagram-card-print-hierarchy, which calculates the print size.
diagram-card-get-print-width

long (diagram-card-get-print-width long card_id)

Returns the width of the diagram card's Postscript image in points. This call must be made after a
call to diagram-card-print-hierarchy, which calculates the print size.
diagram-card-get-scale

double (diagram-card-get-scale long card_id)

Returns the scaling factor for the card.

diagram-card-layout-graph

116

long (diagram-card-layout-graph long card_id)

Lay out the given diagram using a simple graph layout algorithm. The current layout parameters,
set through diagram-card-set-layout-parameters, are used.

diagram-card-layout-tree

long (diagram-card-layout-tree long card_id, long image_id, long orientation)

Lay out the given diagram as a tree, using the given image as root. The current layout
parameters, set through diagram-card-set-layout-parameters, are used.

If orientation is 1, the layout is top to bottom, otherwise it is left to right.

diagram-card-load-file
long (diagram-card-load-file long card_id, string filename)

Loads the given diagram file onto the given card. Returns 1 for success, 0 for failure.

diagram-card-paste

long (diagram-card-paste long card_id)

Copies images from the Hardy clipboard buffer onto the card card_id, if the diagram types of
buffer and card match. The clipboard buffer should have been filled with diagram-card-copy or

diagram-card-cut prior to this operation. Returns 1 if successful, O otherwise.

The function diagram-card-copy will copy without deleting the selected images. The function
diagram-card-cut copies and then deletes the selected images.
diagram-card-popup-menu

long (diagram-card-popup-menu long card_id, long menu_id, double x, double y)

Popups up a menu previously created using menu-create in wxCLIPS.

diagram-card-print-hierarchy

long (diagram-card-print-hierarchy long card_id)

Prints the diagram card hierarchy to separate PostScript files, prompting for filenames if
necessary.

diagram-card-redraw

long (diagram-card-redraw long card_id)

117

Redraws the entire diagram, returning 1 for success, 0 otherwise.

diagram-card-save-bitmap

long (diagram-card-save-bitmap long card_id, string filename)

For Windows version only: saves the diagram in a Windows RGB-encoded bitmap (usual
extension .BMP). Returns 1 if successful, 0 otherwise.

diagram-card-save-file

long (diagram-card-save-file long card_id, string file)

Saves the diagram on the given card in the specified file, returning 1 if successful, 0 otherwise.

diagram-card-save-metafile
long (diagram-card-save-metafile long card_id, string filename,optional double scale = 1.0)

For Windows version only:saves the diagram in a Windows metafile (usual extension .wmf).
Returns 1 if successful, 0 otherwise.

The optional scale parameter defaults to 1.0, and is used to reduce or enlarge the metafile.

A metafile is a 'recording’ of the graphics functions used to draw a picture. Its chief merits are its
scaleability, and its economy of disk space for many types of picture. Metafiles may be included
in RTF (Rich Text Format) files to allow programmatic construction of word processor documents
containing text and pictures.

diagram-card-set-grid-spacing

long (diagram-card-set-grid-spacing long card_id long grid_spacing)

Sets the grid spacing for the card; a value of zero switches snap-to-grid off.

diagram-card-set-layout-parameters

long (diagram-card-set-layout-parameters long card_id, double left_margin, double
right_margin,double width, double height, double spacing_x, double spacing_y)

Sets layout parameters used by auto-layout functions.

diagram-card-set-scale
long (diagram-card-set-scale long card_id, float scale)

Sets the scaling factor for the card. 1.0 is 100 per cent. Note that factors above 1 can cause
scrolling problems under MS Windows (vertical and horizontal lines get left behind).

118

12.7. Diagram object functions

The following functions apply to diagram objects (diagram nodes or arcs).

diagram-object-add-attribute
void (diagram-object-add-attribute long card_id, long object_id,string attribute)

Adds a new attribute name to the user-defined attributes section of an object (hode or arc), and
initialises it with the empty string("").

This should not be called whilst the user is still editing attributes.

diagram-object-delete-attribute
void (diagram-object-delete-attribute long card_id, long object_id,string attribute)

Deletes the named user-defined attribute from an object (node or arc). This does not just delete
an attribute value value, it deletes the attribute itself.

This should not be called whilst the user is still editing attributes.

diagram-object-format-text

long (diagram-object-format-text long card_id, long object_id)

Formats the visible text of the node or arc object, for all images associated with this object. The
format string specified in the diagram definition is used, and all images redrawn. Returns 1 if
successful, 0 otherwise.

diagram-object-get-first-attribute

string (diagram-object-get-first-attribute long card_id, long object_id)

Get the first attribute name from the object on the given card. Further attribute names are
obtained by callingdiagram-object-get-next-attribute. Returns the empty string if no attribute.
diagram-object-get-first-image

long (diagram-object-get-first-image long card_.id, long object_id)

Given a diagram card id and a node or arc object id, retrieves the id of the first image belonging
to the object. (Node and arc objects may have more than one image associated with them.) The
card id may be any card in the hierarchy since all nodes and arcs are associated with the top card

in the hierarchy. Further image ids are obtained by calling diagram-object-get-next-image.
Returns -1 on failure.

diagram-object-get-next-attribute

119

string (diagram-object-get-next-attribute)

Following a call of diagram-object-get-first-attribute for a specified object, get the next attribute
name from the object. Returns the empty string if no further attributes.
diagram-object-get-next-image

long (diagram-object-get-next-image)

Following a call of diagram-object-get-first-image for a specified object, retrieves the id of the
next image belonging to the object. (Node and arc objects may have more than one image
associated with them.) Returns -1 on failure or to signify no more images.
diagram-object-get-string-attribute

string (diagram-object-get-string-attribute long card_id, long object_id, string attribute)
Given a diagram card id, node or arc object id and string attribute name, returns the value of the
attribute if found, the empty string if not found. The only attribute you may rely on is type; any
others depend on the attributes defined in the particular diagram definition.
diagram-object-set-format-string

long (diagram-object-set-format-string long card_id, long object_id, string format_string)
Sets the format string for the object. Normally, the format string for a node or arc type is set in the
diagram type manager; this function allows the programmer to dynamically change the format
string on a per-object basis. You may wish to show more or less information on an image
depending on the context.

If the local format string is the same as the object type format string, it will not be written to file for
that object, to save space and time.

diagram-object-set-string-attribute

long (diagram-object-set-string-attribute long card_id, long object_id, string attribute, string
value)

Sets the object (node or arc) attribute to the given value.attribute may be one of the attributes
named in the node or arc type definition. Do not try to set an image attribute directly; you may
obtain the object for an image usingdiagram-image-get-object.

Returns 1 for success, 0 for failure.

12.8. Diagram palette functions

The following functions apply to a diagram palette.

diagram-palette-get-arc-selection

120

string (diagram-palette-get-arc-selection long card_id)

Returns the type of the arc symbol selected on the diagram card palette, or the empty string if no
arc symbol was selected or the palette was not displayed.
diagram-palette-get-arc-selection-image

string (diagram-palette-get-arc-selection-image long card_id)

Returns the image definition type of the arc symbol selected on the diagram card palette, or the
empty string if no arc symbol was selected or the palette was not displayed.

For each arc type, there are one or more arc image definitions: usually there is only one, with the
name 'Default". If there are several arc image definitions for an arc type, each will be displayed
on the palette, and this function will distinguish between them.
diagram-palette-get-first-annotation-selection

string (diagram-palette-get-first-annotation-selection long card_id, string type)

Gets the first selected annotation symbol on the diagram palette.type may be one of "Both",
"Node" or "Arc", to get different kinds of annotation selection. The function returns the first
annotation name or the empty string.

diagram-palette-get-next-annotation-selection generates any further ones, as several
annotation images may be selected at once.
diagram-palette-get-next-annotation-selection

string (diagram-palette-get-next-annotation-selection long card_id)

Returns the name of the next selected annotation symbol for the diagram type from the palette,
following a call ofdiagram-palette-get-next-annotation-selection, or the empty string.
diagram-palette-get-node-selection

string (diagram-palette-get-node-selection long card_id)

Returns the type of the node symbol selected on the diagram card palette, or the empty string if
no node symbol was selected or the palette was not displayed.

diagram-palette-show

long (diagram-palette-show long card_id long show=1)

If the card is currently visible, shows or hides the palette.

diagram-palette-set-annotation-selection

121

long (diagram-palette-set-annotation-selection long card_id, string annotation_name, long
select)

Toggles the named annotation symbol on the diagram palette on or off, depending on the value of
select: 1 for on, O for off. Returns 1 if the function succeeds, 0 otherwise.

diagram-palette-set-arc-selection

long (diagram-palette-set-arc-selection long card_id, string type_name, string image_def,
long flag)

Toggles the given arc symbol on the diagram palette on or off, depending on the value of select:
1 for on, O for off. Returns 1 if the function succeeds, 0 otherwise.

type_name is the arc type name, and image_def is the image definition for the arc. Normally
image_def would be "Default" since most arc definitions only have one image definition.
diagram-palette-set-node-selection

long (diagram-palette-set-node-selection long card_id, string type_name, long select)

Toggles the given node symbol on the diagram palette on or off, depending on the value of
select: 1 for on, O for off. Returns 1 if the function succeeds, 0 otherwise.

12.9. Diagram image functions

The following functions apply to a diagram image (a hode or arc image).

diagram-image-add-annotation

long (diagram-image-add-annotation long card_id, long image_id, string annotation_name,
string dropsite_name)

Adds an annotation to the given node or arc image, returning an id if successful or -1 if
unsuccessful.

For node images, annotations are additional node-like children of a composite node image. Legal
annotation symbols are defined in the Drop Site Editor, and their names and drop sites can be
used in this function.

For arc images, annotations are usually arrow-heads that can be added at three drop sites,
"Start", "Middle" and "End", in the order defined in the Arc Type Editor. The annotation name in
this case is the logical or displayed name for the annotation, which is the same as the physical
name (such as "Normal arrowhead") unless overridden in the Arc Type Editor.

See also diagram-image-delete-annotation.

diagram-image-annotation-get-drop-site

string (diagram-image-annotation-get-drop-site long card_id,long image_id, long

122

annotation_id)

Gets the drop site name for the given annotation, or the empty string if the call fails.

diagram-image-annotation-get-logical-name

string (diagram-image-annotation-get-logical-name long card_id,long image_id, long
annotation_id)

Gets the logical name of the given annotation, or the empty string if the call fails.

The logical name is the same as the name for a node annotation. For an arc annotation, the
logical name is the same as the name unless the logical name for the annotation has been
changed in the Annotation Properties dialog in the Arc Type Editor. All logical names for a
physical arc annotation are listed in the status line when the cursor is moved over the annotation
in the diagram card symbol palette.

The logical name is used to reflect a notational convention for a particular arc, even though the
underlying arc annotation symbol may be used several times in different contexts.

See also diagram-image-annotation-get-name.

diagram-image-annotation-get-name
string (diagram-image-annotation-get-name long card_id, long image_id, long annotation_id)
Gets the name of the given annotation, or the empty string if the call fails.

See also diagram-image-annotation-get-logical-name.

diagram-image-delete

long (diagram-image-delete long card_id, long image_id)

Erases and deletes the given image. Note that if quick edit mode is on, damaged areas will not be
redrawn automatically. Returns 1 if successful, 0 otherwise.
diagram-image-delete-annotation

long (diagram-image-delete-annotation long card_id, long image_id, long annotation_id)

Deletes an annotation from a node or arc image.

diagram-image-draw
long (diagram-image-draw long card_id, long image_id)

Draws the image, returning 1 if successful, 0 otherwise.

123

diagram-image-draw-text

long (diagram-image-draw-text long card_id, long image_id,string text, optional string
region_name)

Draws text in the image. This is a lower-level operation than diagram-object-format-textsince it
is on a per-image basis and does not use the format string as defined in the Diagram Type
Manager. This may be useful for displaying text that the format string will not allow, such as user-
defined attribute values.

region_name (default value "0") names the text region of the image for images that have multiple
text regions, such as composites, divided rectangle images, and arcs.

Simple images, such as ellipses and rectangles, have one region called "0".

Divided rectangles have as many regions as the number of divisions and, for a divided rectangle
that is not part of a composite, the naming is "0", "1", "2" and so on.

Arc images always have three regions called "Start", "Middle" and "End".
Composite node images have a region "0", butdiagram-image-draw-text can be used for the
components: the text regions of the components are named automatically. For a given node type,

see the node type editor for a list of text regions and a visual indication of where these regions
are on the composite.

diagram-image-erase

long (diagram-image-erase long card_id, long image_id)

Erases the given image. Note that if quick edit mode is on, damaged areas will not be redrawn
automatically. Returns 1 if successful, O otherwise.

diagram-image-get-brush-colour
string (diagram-image-get-brush-colour long diagram_id, long image_id)
Gets the brush (fill) colour for the given image. The colour is a wxWindows colour string such as

"BLACK" (see wxWindows documentation). Returns a colour string if successful, the empty string
otherwise.

diagram-image-get-card

long (diagram-image-get-card long card_id, long image_id)

Given the id of a card somewhere in the hierarchy, and the id of a node or arc image on one of
the cards in the hierarchy, get the id of the card on which the image appears. Returns -1 if

unsuccessful.

This may be needed, for example, when retrieving arc images from arc objects, in order to find
the level at which the connection is taking place.

124

diagram-image-get-first-annotation

long (diagram-image-get-first-annotation long card_id, long image_id)

Returns the id of the first annotation for a node image (another node image) or an arc image (an
annotation image) or -1 if no annotation is present. Together with diagram-image-get-next-
annotation, this allows iteration through all annotations of an image.
diagram-image-get-first-expansion

long (diagram-image-get-first-expansion long card_id, long image_id)

Get the first expansion card (always a diagram card) from the given image on the given card.
Further expansion cards are obtained by calling diagram-image-get-next-expansion. Returns -1
if no expansion cards.

diagram-image-get-height

double (diagram-image-get-height long card_id, long image_id)

Returns the floating-point value of the image height, or rather the height of the bounding box
enclosing the image.

diagram-image-get-item

long (diagram-image-get-item long card_id, long image_id)

Returns the hypertext item corresponding to the given image on the given card, or -1 if
unsuccessful.

diagram-image-get-next-annotation

long (diagram-image-get-next-annotation)

Returns the id of the next annotation for a node (another node image) or an arc (an annotation
image) image, or -1 if no further annotations exist. Together with diagram-image-get-first-
annotation, this allows iteration through all annotations of an image.
diagram-image-get-next-expansion

long (diagram-image-get-next-expansion)

Following a call of diagram-image-get-first-expansion for an image on a specified card, get the
next expansion card. Returns -1 on failure or if no more expansion cards.
diagram-image-get-object

long (diagram-image-get-object long card_id, long image_id)

125

Gets the id of the node or arc object corresponding to the given node or arc image id. Returns -1
on failure.

diagram-image-get-pen-colour

string (diagram-image-get-pen-colour long diagram_id, long image_id)

Gets the pen (outline) colour for the given image. The colour is a wxWindows colour string such
as "BLACK" (see wxWindows documentation). Returns a colour string if successful, the empty
string otherwise.

diagram-image-get-text-colour

string (diagram-image-get-text-colour long diagram_id, long image_id, optional string
region_name = "0")

Gets the text colour for the given image. The colour is a wxWindows colour string such as
"BLACK" (see wxWindows documentation).

The optional parameter region_name identifies the text region, for composite images or images
(such as divided rectangles) that have multiple text regions.

Returns a colour string if successful, an empty string otherwise.

diagram-image-get-width

double (diagram-image-get-width long card_id, long image_id)

Returns the floating-point value of the image width, or rather the width of the bounding box
enclosing the image.

diagram-image-get-x

double (diagram-image-get-x long card_id, long image_id)

Returns the floating-point value of the image x coordinate (at the centre of the image).

diagram-image-get-y
double (diagram-image-get-y long card_id, long image_id)

Returns the floating-point value of the image y coordinate (at the centre of the image).

diagram-image-is-shown
long (diagram-image-is-shown long card_id, long image_id)

Returns 1 if the image is visible, 0 otherwise.

126

diagram-image-move

long (diagram-image-move long card_id, long image_id,double x, double y)

Moves the centre of the image to the given position and redraws it. Note that if quick edit mode is
on, damaged areas will not be redrawn automatically. Returns 1 if successful, O otherwise.
diagram-image-pending-delete

long (diagram-image-pending-delete long card_id, long image_id)

Returns 1 if the diagram image is about to be deleted by Hardy.

This function is occasionally necessary when you need to determine, from within an arc deletion
event, whether a node attached to that arc can be safely deleted by the custom code. If the
current arc image is being deleted automatically because a node is being deleted, then calling
this function will determine that it is not safe to delete the node image, because the node image
would be deleted twice.

Important note: if the node image to be tested is potentially part of a composite, you should check
if there is a parent node image, and if so, whether there is a deletion pending on that, and so on.
diagram-image-put-to-front

long (diagram-image-put-to-front long card_id, long image_id, optional long front = 1)

Puts the image to the front (if front = 1) or back (if front = 0) of the canvas.

diagram-image-resize

long (diagram-image-resize long card_id, long image_id, double width, double height)
Resizes the image to the given width and height, and redraws it. Note that if quick edit mode is
on, damaged areas will not be redrawn automatically. Returns 1 if successful, O otherwise.
diagram-image-select

long (diagram-image-select long card_id, long image_id, long flag)

Selects and redraws the image if flag is 1, deselects if flag is 0. Note that other parts of the
diagram may be damaged if an image is deselected, since control points are erased. If quick edit
mode is on, the application must call diagram-card-redraw to refresh the diagram.
diagram-image-selected

long (diagram-image-selected long card_id, long image_id)

Returns 1 if the node or arc image is selected, 0 otherwise.

127

diagram-image-set-brush-colour

long (diagram-image-set-brush-colour long diagram_id, long image_id, string colour)
Sets the brush (fill) colour for the given image, and redraws the image. The colour is a
wxWindows colour string such as "BLACK" (see wxWindows documentation). Returns 1 if
successful, 0 otherwise.

diagram-image-set-pen-colour

long (diagram-image-set-pen-colour long diagram_id, long image_id, string colour)
Sets the pen (outline) colour for the given image, and redraws the image. The colour is a
wxWindows colour string such as "BLACK" (see wxWindows documentation). Returns 1 if
successful, 0 otherwise.

diagram-image-set-shadow-mode

long (diagram-image-set-shadow-mode long card_id, long image_id, long shadow =
1,optional long offset_x = 0, optional long offset_y = 0)

Sets the shadow mode (1 for shadow, O for no shadow) for the given image. Optional shadow
offsets can be given; 0 for an offset means assume the default.

diagram-image-set-text-colour

long (diagram-image-set-text-colour long diagram_id, long image_id, string colour, optional
string region_name = "0")

Sets the text colour for the given image, and redraws the image. The colour is a wxWindows
colour string such as "BLACK" (see wxWindows documentation).

The optional parameter region_name identifies the text region, for composite images or images
(such as divided rectangles) that have multiple text regions.

Returns 1 if successful, 0 otherwise.

diagram-image-show

long (diagram-image-show long card_id, long image_id, long show)

If show is TRUE, the image will be in the visible state (the default). If show is FALSE, the image
will be in the invisible state, and not drawn or sensitive to mouse events. The function works
recursively for composite images.

diagram-item-get-image

long (diagram-item-get-image long card_id, long image_id)

128

Returns the diagram node or arc image corresponding to the given hypertext item on the given
card, or -1 if unsuccessful (for example if the item is not on a diagram card).

12.10. Node image functions

The following functions apply to a diagram node image.

node-image-create

long (node-image-create long card_id, string node_type)

Creates a new node and node image. The new node is stored at the root of the diagram
hierarchy; the node image is associated with the displaying card and its id is returned if the
operation is successful. The node_type parameter must be a valid node type for this diagram
type, as defined interactively using the Diagram Type Manager. Returns -1 if unsuccessful. Note
that the image is not drawn automatically immediately after creation, to give your application a
chance to move it somewhere appropriate using diagram-image-move.

Use node-image-duplicate if you wish to create a new image for an existing node object.

node-image-duplicate
long (node-image-duplicate long card_id, long node_id)

Creates a new node image for the existing node object. Give the destination card and node object
id. Returns -1 if unsuccessful.

Note that the image is not drawn automatically immediately after creation, to give your application
a chance to move it somewhere appropriate using diagram-image-move.
node-image-get-container

long (node-image-get-container long card_id, long image_id)

Returns the id of the container this node is in, otherwise -1.

node-image-get-first-arc-image

long (node-image-get-first-arc-image long card_id, long image_id)

Given a diagram card id and node image id, retrieves the id of the first arc image associated with
the node. Calling node-image-get-next-arcimage will generate any further arc images. Returns -1
on failure.

node-image-get-first-child

long (node-image-get-first-child long card_id, long image_id)

Given a diagram card id and composite node image id, retrieves the id of the first child of the

129

image. Returns -1 on failure or to signify no more images. Further child images are generated by
calls of node-image-get-next-child.

node-image-get-first-container-region

long (node-image-get-first-container-region long card_id, long image_id)

Returns the id of the first container region belonging to the given container node image, or -1 if
the image is not a container. Further container regions are generated bynode-image-get-next-
container-region.

A container image has one or more container regions, each of which can contain other node
images (subject to constraints defined in the Node Type Editor). The user may split existing
container regions into further regions (using control-right click to bring up the container region
menu).

A container region is a hode image in its own right, with a single corresponding node object of
type Container region. This means that a container region may be linked by arcs to other nodes.
node-image-get-parent

long (node-image-get-parent long card_id, long image_id)

Returns the id of the parent node image of this node image, or zero if there is none, or if the
parent is a container region of a different node.

node-image-get-container-parent

long (node-image-get-container-parent long card_id, long image_id)

Returns the id of the container region which is a parent of this node image, or zero if there is
none. By implication, the node image and the parent belong to separate node objects.
node-image-get-next-arc-image

long (node-image-get-next-arc-image)

Following a call of node-image-get-first-arc-image for a specified node image on a card,
retrieves the id of the next arc image associated with that node image. Returns -1 on failure or to
signify no more images.

node-image-get-next-child

long (node-image-get-next-child)

Returns the ID of the next child of the composite, or -1 if no further child images are present.

Together with node-image-get-first-child, this allows iteration through all child images of a
composite.

130

node-image-get-next-container-region

long (node-image-get-next-container-region)

Returns the id of the next container region belonging to the given container node image or -1 if
there are no further regions. The node image is specified by the last call ofnode-image-get-first-
container-region.

node-image-is-composite

long (node-image-is-composite long card_id, long image_id)

Returns 1 if node is a composite, otherwise 0.

A composite image is an image that has, or is capable of having, one or more child images. This
includes container nodes.

node-image-is-container

long (node-image-is-container long card_id, long image_id)

Returns 1 if node is a container, otherwise 0.

A container is a node image that has been defined in the Node Type Editor or Node Symbol
Editor to accept certain types of contained node images, which form a composite relationship with
the container.

node-image-is-junction

long (node-image-is-junction long card_id, long image_id)

Returns 1 if the image is a junction image, otherwise 0. This test must be used when traversing
node images since junction images have fewer properties than normal.

A junction is an image used in multiway arcs, with some properties similar to ordinary node
images, but with no corresponding node object, and it is never a composite. It is usually

represented by a ‘'metafile’ symbol that can be rotated according to the direction of the multiway
arc.

node-image-order-arcs

long (node-image-order-arcs long card_id, long image_id, long attachment, multifield
arc_images)

Reorders the arc images linked to this hode image at this specific attachment point, according to
the ordering of the list of arc images. Any arc images not explicitly mentioned in the list will be
appended.

12.11. Node object functions

The following functions apply to a diagram node object.

131

node-object-get-first-arc-object

long (node-object-get-first-arc-object long card_id, long image_id)

Given a diagram card id and node object id, retrieves the id of the first arc object associated with
the node. Calling node-object-get-next-arc-object generates any further arc objects. Returns -1
on failure.

Note that there are no functions to retrieve the 'to' node and 'from' node from an arc object,
because there may be several connections between nodes for the same arc object (for instance,
an arc may be represented at several levels of a diagram, between different nodes). To retrieve

the nodes at either end of an arc, get the arc image(s), then the 'to' and 'from' node images, and
then the nodeobjects from these.

node-object-get-next-arc-object

long (node-object-get-next-arc-object)

Following a call of node-object-get-first-arc-object for a specified diagram card and node,
retrieves the id of the next arc object associated with the node. Returns -1 on failure or to signify
no more objects.

Note that there are no functions to retrieve the 'to' node and 'from' node from an arc object,
because there may be several connections between nodes for the same arc object (for instance,
an arc may be represented at several levels of a diagram, between different nodes). To retrieve

the nodes at either end of an arc, get the arc image(s), then the 'to' and 'from' node images, and
then the nodeobjects from these.

12.12. Arc annotation functions

The following functions apply to a diagram arc image annotation.

arc-an notation-get-name

string (arc-annotation-get-name long card_id, long annotation_id)
Returns the symbol name as used in the Arc Symbol Editor.

12.13. Container region functions

The following functions apply to a diagram container image.

container-region-add-node-image

long (container-region-add-node-image long card_id, long container_id,long
contained_image_id, double x, double y)

Moves contained_image _id into container_id if legal, moving the contained node to the given
coordinates.

132

See node-image-get-first-container-region for an explanation of container regions.

container-region-remove-node-image

long (container-region-remove-node-image long card_id, long container_id, long
contained_image_id, double x, double y)

Moves contained_image_id out of container_id, without deleting contained_image_id. The
contained node is moved to the given coordinates.

See node-image-get-first-container-region for an explanation of container regions.
12.14. Hypertext card functions

The following functions are relevant to hypertext cards.

hypertext-card-create

long (hypertext-card-create long parent_id, string hypertext_type, optional long iconic = 0)
Creates a new hypertext card and returns the id, or -1 if the call failed. parent_id may be zero (no
parent) or a valid parent card id. hypertext_type should be a valid hypertext type, as defined using

the interactive Hypertext Type Manager.

If iconic is 1, the card will be shown in the iconic state.

hypertext-card-get-current-char

int (hypertext-card-get-current-char long card_id)

Gets the current character position for a successful search operation, or the character position
calculated by hypertext-card-get-offset-position.

hypertext-card-get-current-line

int (hypertext-card-get-current-line long card_id)

Gets the current line number for a successful search operation, or the line number calculated by
hypertext-card-get-offset-position.

hypertext-card-get-first-selection

long (hypertext-card-get-first-selection long card_id)

Get the first selected block for a given a hypertext card id. Returns -1 if no more selected blocks.

hypertext-card-get-next-selection can be used to get the next selection.

133

hypertext-card-get-line-length
int (hypertext-card-get-line-length long card_id, long line_no)

Gets the number of characters in the given line, or -1 if the line was not found.

hypertext-card-get-next-selection
long (hypertext-card-get-next-selection)
Given a hypertext card id, get the next selected block. Returns -1 if no more selected blocks.

Use hypertext-card-get-first-selection to get the first selection.

hypertext-card-get-no-lines
int (hypertext-card-get-no-lines long card_id)

Gets the number of lines currently displayed in the hypertext card.

hypertext-card-get-offset-position

long (hypertext-card-get-offset-position long card_id, long line_pos,long char_pos, long
offset)

Given a position in the text and an offset from it, calculates the position in terms of line number
and character position and returns 1 if successful.

hypertext-card-get-current-line and hypertext-card-get-current-char can be used to find the
position.
hypertext-card-get-span-text

string (hypertext-card-get-span-text long card_id, long linel,long charl, long line2, long
char2,optional long convert_new_lines)

Gets the text between the two positions, optionally converting newlines to spaces (the default if
the final parameter is omitted).

hypertext-card-insert-text

int (hypertext-card-insert-text long card_id, long line, long char,string text)

Inserts the given text at the given line and character position.

Warning: This function has not been tested extensively and probably contain bugs.

hypertext-card-load-file

134

long (hypertext-card-load-file long card_id, string filename)

Loads the given hypertext (or plain) file onto the given hypertext card. Returns 1 for success, 0 for
failure.

hypertext-card-save-file
long (hypertext-card-save-file long card_id, string file)

Saves the hypertext file on the given hypertext card in the specified file, returning 1 if successful,
0 otherwise.

hypertext-card-string-search

long (hypertext-card-string-search long card_.id, string search_string,optional long line_pos,
optional long char_pos)

Search for the given string from the given position, returning 1 if successful.

hypertext-card-get-current-line and hypertext-card-get-current-char can be used to retrieve
the position of the matching text.

The search start position may be omitted, in which case the start position is taken to be the
position of the previous match plus one.

The search is case-independent.

hypertext-card-translate
long (hypertext-card-translate long card_id, word func)
Starts the translation process for a hypertext card. func must be a function that takes four integer
arguments: the card id, the event type, the current block type (if appropriate) and the current
block id (if appropriate).
The event type is one of:

1. Start of block

2. End of block

3. Start of file

4. End of file

5. Double newline (which often means a paragraph break)
The callback function is responsible for opening and closing the file at the start and end of file,
and outputting appropriate codes (such as HTML codes) at the start and end of blocks. Note that

the block type passed is always -1 at the end of a block, so the programmer must maintain a
stack of block types if he or she wishes to make use of the block type at the end of the block.

135

Use the function hypertext-card-translator-output (page Error! Bookmark not defined.) to output
text, hypertext-card-translator-open-file (page Error! Bookmark not defined.) to open a file, and
hypertext-card-translator-close-file (page Error! Bookmark not defined.) to close a file. Up to
two output streams may be opened.

hypertext-card-translator-close-file
long (hypertext-card-translator-close-file long card_id, long which_file)

Closes the translation output stream, identified by the number which_file.

hypertext-card-translator-open-file
long (hypertext-card-translator-open-file long card_id, long which_file, string filename)

Opens the translation output stream (identified by the number which_file).

hypertext-card-translator-output
long (hypertext-card-translator-output long card_id, long which_file, string text)
Outputs text on the translation output stream identified by the number which_file.

If which_file is -1, all open streams will be used.

12.15. Hypertext card block functions

The following functions are relevant to hypertext blocks.

hypertext-block-add

long (hypertext-block-add long card_id, long linel, long charl,long line2, long char2,long
block_type)

Marks the given span of text as a block of the given type.

Note that if block type has the value of 9999, the block will be a selection with no hypertext block
or item. If the user deselects this selection (for example with shift-left click), the block will
disappear without a trace. Subsequently setting a selection block type to a valid type identifier will
turn the selection into a proper hypertext block.

The following values of block_type are recognised as standard:

hyBLOCK_NORMAL
hyBLOCK_RED
hyBLOCK_BLUE
hyBLOCK_GREEN
hyBLOCK_LARGE_HEADING
hyBLOCK_SMALL_HEADING
hyBLOCK_ITALIC

NogakrwdhE

136

8. hyBLOCK_BOLD
9. hyBLOCK_INVISIBLE_SECTION

10. hyBLOCK_LARGE_VISIBLE_SECTION
11. hyBLOCK_SMALL_VISIBLE_SECTION
12. hyBLOCK_SMALL_TEXT

13. hyBLOCK_RED_ITALIC

14. hyBLOCK_TELETYPE

hypertext-block-clear
long (hypertext-block-clear long card_id, long block_id)

Clears the current block, returning 1 if successful. This deletes the hypertext item and links.

hypertext-block-get-item
long (hypertext-block-get-item long card_id, long block_id)
Given a hypertext card id and block id (not hyperitem id), get the Hardy hyperitem associated with

the block. There may not be a hyperitem associated with the block if the user has made an initial,
temporary selection. A Hardy hyperitem is not created until the block type has been set.

hypertext-block-get-text
string (hypertext-block-get-text long card_id, long block_id)

Given a hypertext card id and block id (not hyperitem id), get the plain text within the block (up to
a limit of 1000 characters).

hypertext-block-get-type

long (hypertext-block-get-type long card_id, long block_id)

Given a hypertext card id and block id (not hyperitem id), get the block's type (the hnumber used to
identify the mapping to text colours and styles).

hypertext-block-selected

long (hypertext-block-selected long card_id, long block_id)

Given a hypertext card id and block id, return 1 if the block is selected or 0 if it is not.

hypertext-block-set-type
long (hypertext-block-set-type long card_id, long block_id, long type_id)
Given a hypertext card id and block id (not hyperitem id), sets the block's type (the number used

to identify the mapping to text colours and styles), deselects the block if selected, and
‘recompiles’ and displays the file. Recompilation involves scanning the entire file in order to

137

resolve block scope and compute actual font and colour information, and is necessary if the text
attributes change in any way (including selection/deselection). The display position may change
as a side effect of this call, and any other call involving recompilation.

12.16. Hypertext card item functions

The following functions are relevant to hypertext card items.

hypertext-item-get-block

long (hypertext-item-get-block long card_id, long item_id)

Given a hypertext card id and hyperitem id, get the block associated with the item. There may not
be a block associated with the item if the item is the special item (used for card linking without
using an explicit item).

12.17. Media card functions

The following functions are relevant to media cards. The media card is an experimental card
which will eventually replace the hypertext card: it is editable and has more features than the
hypertext card. It is based on a set of media classes written by Matthew Flatt of Rice University.
Note that this facility will not be included in distributions of Hardy outside AlAI until early 1996.
Media cards allow mark up using either standard attributes such as weight, family, style and
underlining, or attributes that are combined into font mappings in the same way as the hypertext

card. Blocks are associated with the latter but not the former.

Some media card functions accept a position, a single integer representing a character index in
the buffer. A position can be converted into a line number and character position within that line.

12.17.1. Events
These are the media card events you can intercept.

Event Description

BlockLeftClick Called when a block is left-clicked. Takes card, block id, position, shift (1 or 0),
control (1 or 0). Return 0 to veto default event processing, 1 otherwise.

BlockRightClick Called when a block is right-clicked. Takes card, block id, position, shift (1 or 0),
control (1 or 0). Return 0 to veto default event processing, 1 otherwise.

CustomMenu Called when a custom menu item is invoked. Takes card and menu item name.

media-block-create

long (media-block-create long card_id, long block_type, optional long start_position=-1,
optional long end_position=-1)

Creates a block of the given type, returning the new block id. start_position and end_position
specify the span of the block; if they are both -1 or absent, the current selection will be used.

138

media-block-get-item
long (media-block-get-item long card_id, long block_id)

Returns the hypertext item for the given block id.

media-block-get-position
long (media-block-get-position long card_id, long block_id)

Returns the start position of the block.

media-block-get-type
long (media-block-get-type long card_id, long block_id)

Returns the type id of the block.

media-block-set-type
long (media-block-set-type long card_id, long block_id, long block_type)

Sets the type of the block. Currently does not redraw the block in the new style.

media-item-get-block
long (media-item-get-block long card_id, long item_id)

Gets the block corresponding to the hypertext item.

media-card-append-text
long (media-card-append-text long card_id, string text)

Appends the given text at the end of the card's contents.

media-card-apply-family
long (media-card-apply-family long card_.id, string family, long from=-1, long to=-1)

Applies the given family to the current selection (if the from and to parameters are omitted or are -
1) or to the given span of text.

family may be one of wxSWISS, wxROMAN, wxDECORATIVE and wxMODERN.

media-card-apply-foreground-colour

139

long (media-card-apply-foreground-colour long card_id, string colour, long from=-1, long to=-
1)

Applies the given colour to the current selection (if the from and to parameters are omitted or are
-1) or to the given span of text.

media-card-apply-point-size
long (media-card-apply-point-size long card_id, long size, long from=-1, long to=-1)

Applies the given point size to the current selection (if the from and to parameters are omitted or
are -1) or to the given span of text.

media-card-apply-style
long (media-card-apply-style long card_id, string style, long from=-1, long to=-1)

Applies the given font style to the current selection (if the from and to parameters are omitted or
are -1) or to the given span of text.

style may be one of WxXNORMAL, wxITALIC.

media-card-apply-underline
long (media-card-apply-underline long card_id, long underline, long from=-1, long to=-1)

Applies underlining to the current selection (if the from and to parameters are omitted or are -1) or
to the given span of text.

underline may be 1 for underlining, 0 for no underlining.

media-card-apply-weight
long (media-card-apply-weight long card_id, string weight, long from=-1, long to=-1)

Applies normal or bold weight to the current selection (if the from and to parameters are omitted
or are -1) or to the given span of text.

weight may be wxNORMAL or wxBOLD.

media-card-clear
long (media-card-clear long card_id)

Clears the contents of the card.

media-card-clear-all-blocks

long (media-card-clear-all-blocks long card_id)

140

Clears the blocks from the card, leaving a plain text file with no styles or graphic images.

media-card-create

long (media-card-create long parent_id, string media_type, optional long iconic = 0)
Creates a new media card and returns the id, or -1 if the call failed. parent_id may be zero (no
parent) or a valid parent card id. hypertext_type should be a valid media type, as defined using

the interactive Media Type Manager.

If iconic is 1, the card will be shown in the iconic state.

media-card-copy
long (media-card-copy long card_id)

Copies the selected text to the clipboard.

media-card-cut
long (media-card-cut long card_id)

Copies the selected text to the clipboard, and then clears the selection.

media-card-delete
long (media-card-delete long card_id, long from=-1, long to=-1)

Deletes the current selection (if the from and to parameters are omitted or are -1), or given span
of text if the parameters are specified.

media-card-find-string

long (media-card-find-string long card_id, string text, long from=-1, long to=-1, long
case_sensitive=1, long direction=1) Finds the given text, starting the search from the beginning
if from is absent or -1, and continuing until the end if to if is absent or -1.

case_sensitive should be 1 to be case sensitive, 0 to be case insensitive. direction should be 1 to
search forward, -1 to search backward.

The return value is the text start position if the text was found, or -1 if the text was not found.

media-card-get-character
long (media-card-get-character long card_id, long position)

Returns the ASCII code of the character at the given position.

141

media-card-get-selection-start
long (media-card-get-selection-start long card_id)

Returns the position of the start of the selection, or the cursor position if there is no selection.

media-card-get-selection-end
long (media-card-get-selection-end long card_id)

Returns the position of the end of the selection, or -1 if there is no selection.

media-card-get-first-block

long (media-card-get-first-block long card_id)

Returns the first block id (not necessarily the first in the card, but first from the point of view of
getting all blocks).

media-card-get-last-position

long (media-card-get-last-position long card_id)

Returns the position of the last element in the card. This will never be less than zero.

media-card-get-line-length
long (media-card-get-line-length long card_id, long line)

Returns the length of the given line (starting from zero).

media-card-get-line-for-position
long (media-card-get-line-for-position long card_id, long position)

Returns the number of the line on which position appears.

media-card-get-next-block
long (media-card-get-next-block long card_id)
Returns the next block id (not necessarily the next in the card, but next from the point of view of

getting all blocks).

media-card-get-position-for-line

142

long (media-card-get-position-for-line long card_id, long line)

Returns the start position for the given line.

media-card-get-number-of-lines
long (media-card-get-number-of-lines long card_id)

Returns the total number of lines in the text card.

media-card-get-text
string (media-card-get-text long card_id, longstart, longend)

Returns the text between the given positions.

media-card-insert-text
long (media-card-insert-text long card_id, stringtext, longpos=-1)

Inserts text at the given position, or at the cursor if pos is -1.

media-card-insert-image
long (media-card-insert-image long card_id, stringfilename, longpos=-1)

Inserts a Windows bitmap at the given position, or at the cursor if pos is -1.

media-card-load-file
long (media-card-load-file long card_id, stringfilename)

Loads a file into the media card. Can be a plain text file or a media file (usual extension .med).

media-card-paste
long (media-card-paste long card_id)

Pastes the contents of the clipboard (if there is any and it is textual) into the media card.

media-card-redo
long (media-card-redo long card_id)

Redoes the last media card command (except for block operations).

143

media-card-save-file
long (media-card-save-file long card_id, stringfilename)

Saves the media file.

media-card-scroll-to-position
long (media-card-scroll-to-position long card_id, longposition)

Scrolls to the given position.

media-card-select-block
long (media-card-select-block long card_id, longblock, longselect=1)

Selects the given block if select is 1, deslects if select is 0.

media-card-set-selection
long (media-card-set-selection long card_id, longfrom, longto)

Sets the text between the given positions.

media-card-undo

long (media-card-undo long card_id)

Undoes the last media card command (except for block operations).
12.18. Text card functions

These functions may be used with text cards.

text-card-load-file

long (text-card-load-file long card_id, string file)

Loads the specified text file onto the given text card. Returns 1 if successful, O otherwise.
12.19. Diagram Definition functions

The following functions access diagram definition information.

hardy-diagram-definition-get-first-arc-type

string (hardy-diagram-definition-get-first-arc-type string name)

144

For the given diagram type, gets the first arc name in the diagram definition's list of arc types.

Returns the empty string if none are found.

hardy-diagram-definition-get-next-arc-type
string (hardy-diagram-definition-get-next-arc-type)
Gets the next arc name in the diagram definition's list of arc types.

Returns the empty string if no more are found.

hardy-diagram-definition-get-first-node-type
string (hardy-diagram-definition-get-first-node-type string name)
For the given diagram type, gets the first node name in the diagram definition's list of node types.

Returns the empty string if none are found.

hardy-diagram-definition-get-next-node-type
string (hardy-diagram-definition-get-next-node-type)
Gets the next node name in the diagram definition's list of node types.

Returns the empty string if no more are found.

hardy-get-first-diagram-definition
string (hardy-get-first-diagram-definition)
Gets the first name in the list of diagram definitions currently loaded.

Returns the empty string if there are none loaded.

hardy-get-next-diagram-definition
string (hardy-get-next-diagram-definition)
Gets the next name in the list of diagram definitions currently loaded.

Returns the empty string when there are no more.

object-type-get-first-attribute-name

string (object-type-get-first-attribute-name string diagram_def_namestring
object_type name optional string node_or_arc)

145

Gets the first attribute name of an object (node or arc) type definition. If node_or_arc is "any", this
function will search for either a node or arc of the given name. Otherwise, you can specify "node"
or "arc" to be more specific.

object-type-get-next-attribute-name

string (object-type-get-next-attribute-name)

Gets the next attribute name of an object (node or arc) type definition.
12.20. Windows printing functions

The following functions and event handlers enable Windows printing to be manipulated.

12.20.1. Windows printing event handlers

OnPreparePrinting: called before any pages are printed. The function takes no
arguments. The function should return 1 (processed) or 0 (default processing should be
done).

OnPrintPage: called when each page should be printed. Takes page number (integer),
device context (integer), page width in pixels (integer), page height in pixels (integer),
page width in mm (integer), page height in mm (integer). The function should return 1
(processed) or 0 (default processing should be done).

OnGetPagelnfo: called to get information from the application. Takes a name and an
integer value. Return -1 to allow default processing; otherwise: if the name is
HASPAGE, return 1 if the document has this page (given by the second argument), or O
to finish printing. If the name is MINPAGE, MAXPAGE, PAGEFROM, PAGETO, return
an appropriate value. See the printing demo in the HARDY SDK for more details.

hardy-preview-all

long (hardy-preview-all long Page From, long Page_To)

Invokes Windows previewing for the given page range, for all diagram cards if no custom printing
functionality is defined, or for whatever pages the application defines by intercepting the
OnPrintPage event handler.

If the page range values are both -1, the entire document will be previewed. Unlike with printing,

flow of program control continues immediately after the preview window appears, so be careful
not to call the function again.

hardy-preview-diagram-card
long (hardy-preview-diagram-card long card)
Invokes Windows previewing for the given diagram card. Unlike with printing, flow of program

control continues immediately after the preview window appears, so be careful not to call the
function again.

146

hardy-print-all

long (hardy-print-all long prompt, long page_from, long page_to)

Invokes Windows printing for the given page range, for all diagram cards if no custom printing
functionality is defined, or for whatever pages the application defines by intercepting the

OnPrintPage event handler.

If prompt is 1, the standard print dialog box is shown; otherwise, the document will be printed
immediately. If the page range values are both -1, the entire document will be printed.

Unlike with previewing, flow of program control stops until printing has finished (or the user
cancels the dialog box).

hardy-print-diagram-card

long (hardy-print-diagram-card long card, long prompt)

Invokes Windows printing for the given diagram card.

If prompt is 1, the standard print dialog box is shown; otherwise, the diagram will be printed
immediately.

hardy-print-diagram-in-box

long (hardy-print-diagram-in-box long card, double x, double y, double width, double height)
This function should be used from within an OnPrintPage event handler to scale and position the
given diagram on the page. The x, y coordinate represents the top left of the bounding box to
contain the diagram. The units are in device units (pixels). It should not be called from outside
OnPrintPage since it implicitly references the current print or preview device context.
hardy-print-diagram-page

long (hardy-print-diagram-page long card, long page_num)

This function should be used from within an OnPrintPage event handler to call the default
diagram printing code for this page. It should not be called from outside OnPrintPage since it
implicitly references the current print or preview device context.
hardy-print-get-header-footer

string (hardy-print-get-header-footer long field)

This function should be used to get the value of a header or footer field, used when printing a
standard diagram page or printing the headers and footers with hardy-print-header-footer (page

Error! Bookmark not defined.).

field should be an integer between 1 and 6, referencing the left, middle and right fields of the
header and footer respectively.

147

hardy-print-get-info
double (hardy-print-get-info string name)
Returns information according to the name argument passed. The value of name can be:

TEXTSCALE: returns an appropriate scaling factor for printing text. It sets the scaling for
the printer or preview device context, and returns the scaling factor. Note that the factor
returned does not include the adjustment made for scaling for a preview device context.
LEFTMARGIN: returns the value of the left margin setting, in millimetres.
RIGHTMARGIN: returns the value of the right margin setting, in millimetres.
TOPMARGIN: returns the value of the top margin setting, in millimetres.
BOTTOMMARGIN: returns the value of the bottom margin setting, in millimetres.
HEADERRULE: returns 1 or O for header rule on or off.

FOOTERRULE: returns 1 or O for footer rule on or off.

hardy-print-header-footer

long (hardy-print-header-footer long page_num)

This function should be used from within an OnPrintPage event handler to call the default header
and footer printing code for this page. It should not be called from outside OnPrintPage since it
implicitly references the current print or preview device context.

You can use hardy-print-set-info (page Error! Bookmark not defined.) and hardy-print-set-
header-footer (page Error! Bookmark not defined.) to change the look of headers and footers
for this page.

hardy-print-set-header-footer

long (hardy-print-set-header-footer string text, long field)

This function should be used to set a header or footer field, used when printing a standard
diagram page or printing the headers and footers with hardy-print-header-footer (page Error!

Bookmark not defined.).

field should be an integer between 1 and 6, referencing the left, middle and right fields of the
header and footer respectively.

hardy-print-set-info
long (hardy-print-set-info string name, float value)
Sets printing information according to the name argument passed. The value of name can be:

LEFTMARGIN: sets the value of the left margin setting, in millimetres.
RIGHTMARGIN: sets the value of the right margin setting, in millimetres.
TOPMARGIN: sets the value of the top margin setting, in millimetres.
BOTTOMMARGIN: sets the value of the bottom margin setting, in millimetres.
HEADERRULE: 1 or O for header rule on or off.

148

FOOTERRULE: 1 or O for footer rule on or off.
Note that margin settings are only used automatically when printing a diagram page or headers
and footers. For custom pages, these margins must be taken into account by the custom code.
hardy-print-set-title
long (hardy-print-set-title string title)
This function should be used to set the current page title (used when printing a standard diagram
page).
hardy-print-text-in-box

long (hardy-print-text-in-box string text, double x, double y, double width, double height, string
how)

This function should be used from within an OnPrintPage event handler to format text within the
given bounding box using the current device context scaling and font. The X, y coordinate
represents the centre of the bounding box to contain the text.

The how parameter should be one of CENTREHORIZ, CENTREVERT, CENTREBOTH and
NONE to determine how the text should be formatted.

The units are in device units (pixels). This function should not be called from outside OnPrintPage
since it implicitly references the current print or preview device context.

12.21. Miscellaneous functions

The following are miscellaneous Hardy functions.

convert-bitmap-to-rtf

long (convert-bitmap-to-rtf string bitmap-file, string output-file)

Converts an existing RGB-encoded Windows bitmap file to RTF format for inclusion in an RTF
document.

convert-metafile-to-rtf

long (convert-metafile-to-rtf string metafile-file, string output-file)

Converts an existing placeable Windows metafile file to RTF format for inclusion in an RTF
document.

dde-advise-global

long (dde-advise-global char * item, char * data)

Sends a DDE ADVISE message to all connections currently using Hardy as a server. The client

149

can process these messages (or ignore them). If Hardy were to be used as a user interface to
some other client package, the client could call Hardy functions through the DDE interface (or via
a program called DDEPIPE which allows non-DDE aware UNIX applications to access DDE
programs using simple commands). The client could wait for ADVISE messages back (for
example when a custom menu item was selected), and then do further processing or call
additional Hardy functions.

hardy-command-int-to-string

long (hardy-command-int-to-string long command_id)

Converts an integer command identifier into a command name, such as HardyExit or
DiagramCut.

hardy-command-string-to-int

long (hardy-command-string-to-int string command_name)

Converts a command name, such as HardyExit or DiagramCult, into the integer identifier form.

hardy-get-browser-frame
long (hardy-get-browser-frame)

Returns the integer id of the Hardy card browser frame, which can then be passed to GUI
functions such as window-show.

This is only different from the top level frame if Hardy is running under Windows MDI mode,
where the top level frame encloses other frames and the browser window is a separate child
frame.

hardy-get-top-level-frame

long (hardy-get-top-level-frame)

Returns the integer id of the top level Hardy frame, which can then be passed to GUI functions
such as window-show.

hardy-get-version

double (hardy-get-version)

Returns a floating-point number representing the version of Hardy that the application code is
currently running under.

hardy-path-search

string (hardy-path-search string filename)

150

Searchs the current Hardy path list for the given file, and if it exists, returns the full pathname.
Hardy builds up a list of paths as files become known to it; so sometimes Hardy will load files that
do not have absolute paths, which CLIPS programs would not find without this function.

Returns the empty string if the file is not found.

hardy-help-display-block

long (hardy-help-display-block long block_id)

The given block is displayed. It is best to call hardy-help-load-file before this call. It is probably
better to use section humbers than block numbers, unless a block other than a section must be

displayed.

The value 1 is returned if successful, otherwise 0.

hardy-help-display-contents
long (hardy-help-display-contents)
The contents (first section) is displayed. It is best to call hardy-help-load-file before this call.

The value 1 is returned if successful, otherwise 0.

hardy-help-display-section
long (hardy-help-display-section long section)

The given section (numbered 1 upwards) is displayed. It is best to call hardy-help-load-file
before this call.

The value 1 is returned if successful, otherwise 0.

hardy-help-keyword-search

long (hardy-help-keyword-search string keyword)

Performs a keyword search on section titles. If more than one matching title is found, the search

dialog is displayed; otherwise, that section is displayed.

hardy-help-load-file

long (hardy-help-load-file string file)

If wxHelp is not currently running, it is executed. The named file is then loaded if it is an absolute
path, or found in the current directory, or found in a directory mentioned in the WXHELPFILES or

PATH directories.

If the file is already loaded into wxHelp, it is not reloaded, and therefore this function can (and
should) always be called before attempting to display a section or block, since the user may have

151

loaded another file.

Note that there is no function to quit the help system programmatically; wxHelp will be closed
when Hardy closes, except under Windows where there is only one copy of wxHelp active at a
time.

The value 1 is returned if successful, otherwise 0.

hardy-send-command

long (hardy-send-command long command_id)

Sends a menu command identifier to the Hardy main window. command_id is an internal
identifier that can be obtained from an equivalent string form using hardy-command-int-to-string

(page Error! Bookmark not defined.).

This function can be used in custom code to provide features that the default user interface
normally provides.

See Menu command identifiers (page 158) for a list of identifiers you can use in conjunction with
this function.

hardy-set-about-string

long (hardy-set-about-string string about_string)

Sets the text for the 'About box' invoked from the main window's Help menu.

hardy-set-author
long (hardy-set-author string author)

Sets the custom author name.

hardy-set-custom-help-file

long (hardy-set-custom-help-file string file)

Sets the filename for the custom help file. The hame should have no extension (so an appropriate
format will be used for the platform). This is the file used in the main window's Help menu.
hardy-set-help-file

long (hardy-set-help-file string file)

Sets the filename for the normal Hardy help file. The name should have no extension (so an

appropriate format will be used for the platform). This is the file used in the Hardy-specific menus
and dialog boxes; it might be overidden for a heavily customised version of the tool.

152

hardy-set-name
long (hardy-set-name string name)

Sets the custom tool name (default is "Hardy").

hardy-set-title
long (hardy-set-title string title)

Sets the custom tool title (default is "Hardy"). Used in the main window title bar.

object-is-valid
long (object-is-valid long card_id, long object_id)
Given a card id and an object id (a diagram node, arc or image id), returns 1 if the object exists
and 0 otherwise.
quit
long (quit int quit_level)
Quits from Hardy, return 1 if successful, O otherwise.
Action depends on value of quit_level:
0: full user prompting,
1: save everything and quit without prompting,
2: don't save anything and quit without prompting.
register-event-handler
long (register-event-handler string event_type,string context, word function_name)
Registers interest in a given Hardy event for the given card type.context may be one of:
"Toplevel",
"Text card",

any valid diagram type,
any valid hypertext type.

PwnPE

The function name specifies a valid function whose arguments, when called by Hardy, will vary
according to the event type, but which will usually start with the card id.

Top level events recognised:

Exit Called when Hardy is about to exit, after all cards and the index have been saved
(assuming the user did not veto these saves). The function has no arguments but
returns an integer, which is 0 to veto the exit command or 1 to confirm the exit.

CustomMenu When the user selects a custom menu item on the top level control window,

153

the named function will be called with one argument: the menu item string that the user
selected. At present there is no user interface to edit the top-level custom menu; edit
diagrams.def with a text editor and insert (for example):

custom(cust om nenu_nane = "&Cust om opti ons",
custom nenu_strings = ["&First itent, "&Second item']).

OnCreateMenuBar Register this event to create a custom main menu. The function is called
with no arguments, and should create and return a wxCLIPS menu bar, or zero to allow
the default menu bar to be created.

OnCreateToolBar Register this event to create a custom main window toolbar (Windows
only). The function is called with the frame identifier, and should create and return a
panel or canvas, or zero to allow the default toolbar to be created. The initial height of
the returned window will be used to determine sizing, and the width will be made to fit
the main window.

OnHardylnit Called after Hardy initialisation has taken place. It is called with no arguments,
and must return 1 for Hardy to continue running. Returning O terminates the session.
Depending on the underlying window system, it may or may not be possible to minimize
or hide the main window at this point. If your custom code needs to start running on
startup, use this event to start it, rather than at CLIPS loading time which will not allow
the initialisation to terminate.

OnMenuCommand Called when the user selects an option on the main window. It is called
with an integer identifier representing the command, and the function should return 0 to
veto normal processing, or 1 to perform the default action.

OnPreparePrinting See Windows printing event handlers (page 146).

OnPrintPage See Windows printing event handlers (page 146).

OnGetPagelnfo See Windows printing event handlers (page 146).

For diagram cards, the event type may be:

AddArcAnnotation Called when the user adds an annotation to an arc, with arguments card
id, node image id, annotation id, annotation name, drop site name. If the user function
returns 0, the annotation is vetoed. Returning 1 lets the annotation addition take place.

AddNodeAnnotation Called when the user adds an annotation to a node, with arguments
card id, node image id, annotation id, annotation name, drop site name. If the user
function returns 0, the annotation is vetoed. Returning 1 lets the annotation addition take
place.

ArcLeftClick Called when the arc is left-clicked, with arguments card id, arc image id, X, vy,
shift pressed (1 or 0), control pressed (1 or 0). If the user function returns 0, the default
left click action is not performed. Returning 1 lets the default behaviour take place.

ArcMoveControlPoint Called when a control point is moved on this arc, or an attached
node is moved. The callback is invoked with the argumentscard id, arc type, arc image
id, control point, X, y. The control point id is an integer greater than or equal to zero.

ArcRightClick Called when the arc is right-clicked, with arguments card id, arc image id, X,
y, shift pressed (1 or 0), control pressed (1 or 0). If the user function returns 0, the
default right click action is not performed. Returning 1 lets the default behaviour take
place.

AttributesUpdated When the user has finished editing attributes for a node or arc, this is
called with arguments card id, object id and object type. Note that this is only called,
once, when the user closes the standard attribute editor, and not at any time.

AttributeModifiedPre This is called as a 'daemon’ just before an attribute is changed, either
by the user or programmatically. If the value is the same as the old, the function will not
be called. The function is called with arguments card id, object id, attribute name, old
value, new value. If the function returns 0, the modification will be vetoed: the function
must return 1 to allow the update.

154

AttributeModifiedPost This is called as a 'daemon’ just after an attribute is changed, either
by the user or programmatically. If the value is the same as the old, the function will not
be called. The function is called with arguments card id, object id, attribute name, old
value, new value. The function should return no value.

ContainerAddPost This is called after a node image has been added to a division. The
function is called with arguments card id, parent image id, child image id, division image
id.

ContainerAddPre This is called when a node image is about to be added to a division. The
function should return 0 to veto, or 1 to allow the containment operation. The function is
called with arguments card id, parent image id, child image id, division image id.

ContainerRemovePost This is called after a node image has been removed from a division.
The function is called with arguments card id, parent image id, child image id, division
image id.

ContainerRemovePre This is called when a node image is about to be removed from a
division. The function should return 0 to veto, or 1 to allow the containment operation.
The function is called with arguments card id, parent image id, child image id, division
image id.

CreateCard After diagram card creation, the named function is called with one argument:
the card id. Note that this does not get called when a card is loaded, only when the card
is created interactively.

CustomMenu When the user selects a custom menu item, the named function will be called
with two arguments: the card id and the menu item string that the user selected. Use the
diagram type manager to specify a custom menu for a particular diagram type.

DeleteArcAnnotation Called when the user deletes an arc annotation, with arguments card
id, arc image id, annotation id. If the user function returns 0, the annotation deletion is
vetoed. Returning 1 lets the annotation deletion take place.

DeleteCard Just before diagram card deletion, the named function is called with one
argument: the card id. The function should return an integer, 0 to veto the delete (may
be overriden by Hardy) and 1 to continue.

DeleteNodeAnnotation Called when the user deletes a node annotation, with arguments
card id, arc image id, annotation id. If the user function returns 0, the annotation deletion
is vetoed. Returning 1 lets the annotation deletion take place.

CanvasLeftClick Called when the mouse is left-clicked on the card canvas. The function's
arguments are card id, X, y, shift pressed (1 or 0), control pressed (1 or 0). Return O to
veto normal processing, 1 otherwise.

CanvasRightClick Called when the mouse is mouse-clicked on the card canvas. The
function's arguments are card id, X, y, shift pressed (1 or 0), control pressed (1 or 0).
Return 0 to veto normal processing, 1 otherwise.

CreateNodelmage After node image creation, the named function is called with three
arguments: card id, image id, node type. Note that this does not get called when a
diagram is loaded, only when images are created interactively.

CreateNodelmagePre After node image creation, the named function is called with three
arguments: card id, image id, node type. The difference between this function and
CreateNodelmage is that the function must return O or 1. If O is returned, Hardy deletes
the image, otherwise normal processing continues. Note that this does not get called
when a diagram is loaded, only when images are created interactively.

CreateArclmage After arc image creation, the named function is called with three
arguments: card id, image id, arc type. Note that this does not get called when a
diagram is loaded, only when images are created interactively.

CreateArclmagePre After arc image creation, the named function is called with three
arguments: card id, image id, arc type. The difference between this function and
CreateArcimage is that the function must return 0 or 1. If O is returned, Hardy deletes the
image, otherwise normal processing continues. Note that this does not get called when a
diagram is loaded, only when images are created interactively.

DeleteNodelmage Just before node image deletion, the function is called with arguments
card id, image id, node type. Arcs are not accessible at this point.

155

DeleteNodelmage Just before node image deletion, the function is called with arguments
card id, image id, node type. Arcs are still accessible at this point.

DeleteNodelmagePost Just after node image deletion, the function is called with arguments
card id, image id, node type. image id is invalid at this point.

DeleteArcimage Just before arc image deletion, the function is called with arguments card
id, image id, arc type.

DeleteArcimagePost Just after arc image deletion, the function is called with arguments
card id, image id, arc type. image id is invalid at this point.

LoadDiagram When a diagram has just been loaded, the function is called with the card id
as argument.

NodeMovePre Called when the node is moved but before it is redrawn, with arguments card
id, node image id, X, y, old x, old y. Returning 1 lets the default behaviour take place;
returning O vetoes the move.

NodeMovePost Called when the node is moved, after it is redrawn, with arguments card id,
node image id, X, y, old x, old y. Return 1 from this function.

NodeLeftClick Called when the node is left-clicked, with arguments card id, node image id,
X, Y, shift pressed (1 or 0), control pressed (1 or 0). If the user function returns 0, the
default left click action is not performed. Returning 1 lets the default behaviour take
place.

NodeRightClick Called when the node is right-clicked, with arguments card id, node image
id, X, y, shift pressed (1 or 0), control pressed (1 or 0). If the user function returns 0, the
default right click action is not performed. Returning 1 lets the default behaviour take
place.

OnCreateMenuBar Register this event to create a custom card menu. The function is called
with the card identifier, and should create and return a wxCLIPS menu bar, or zero to
allow the default menu bar to be created.

OnCreateToolBar Register this event to create a custom card toolbar (Windows only). The
function is called with the Hardy card identifer and wxCLIPS frame identifier, and should
create and return a panel or canvas, or zero to allow the default toolbar to be created.
The initial height of the returned window will be used to determine sizing, and the width
will be made to fit the card window.

OnMenuCommand Called when the user selects an option on the card. It is called with a
card id, and an integer identifier representing the command. The function should return O
to veto normal processing, or 1 to perform the default action.

RightDragCanvasToCanvas Called when the mouse is right-dragged from somewhere on
the canvas, and released on another part of the canvas. The function's arguments are
card id, initial x, initial y, final x, final y, shift pressed (1 or 0), control pressed (1 or 0).

RightDragCanvasToNode Called when the mouse is right-dragged from somewhere on the
canvas, and released on a node image. The function's arguments are card id, node
image id, node attachment, x, y, shift pressed (1 or 0), control pressed (1 or 0).

RightDragNodeToCanvas Called when the mouse is right-dragged from a node image, and
released on the canvas. The function's arguments are card id, node image id, node
attachment, x, vy, shift pressed (1 or 0), control pressed (1 or 0). x and y represent the
position of the mouse when released.

RightDragNodeToNode Called when the mouse is right-dragged from a node image and
released on another node image. The function's arguments are card id, first node image
id, first node attachment, second node image id, second node image attachment, X, v,
shift pressed (1 or 0), control pressed (1 or 0). x and y represent the position of the
mouse when released. This function must return 1 to let processing continue, or 0 to
override normal Hardy behaviour.

SaveDiagram When a diagram is about to be saved, the function is called with the card id
as argument. If the function returns 1, saving continues; if 0 is returned, saving is
aborted.

SelectNodelmage Called after a node image has been selected or deselected, either by the
user or programmatically. The function is called with three arguments: card id, image id,
selection flag (0 or 1). No value need be returned.

156

SelectArclmage Called after an arc image has been selected or deselected, either by the
user or programmatically. The function is called with three arguments: card id, image id,
selection flag (0 or 1). No value need be returned.

For hypertext cards, the event types may be:

CreateCard After hypertext card creation, the named function is called with one argument:
the card id. Note that this does not get called when a card is loaded, only when the card
is created interactively.

DeleteCard Just before hypertext card deletion, the named function is called with one
argument: the card id. The function should return an integer, 0 to veto the delete (may
be overriden by Hardy) and 1 to continue.

BlockLeftClick Called when a block is left-clicked, with arguments card id, block id,
character position, line number, shift pressed (1 or 0) and control pressed (1 or 0). If the
user function returns 0, the default left click action is not performed. Returning 1 lets the
default behaviour take place. A block id of -1 indicates a click on unmarked text.

BlockRightClick Called when a block is right-clicked, with arguments card id, block id,
character position, line number, shift pressed (1 or 0), control pressed (1 or 0). If the
user function returns 0, the default left click action is not performed. Returning 1 lets the
default behaviour take place. A block id of -1 indicates a click on unmarked text.

CustomMenu When the user selects a custom menu item, the named function will be called
with two arguments: the card id and the menu item string that the user selected. Use the
hypertext type manager to specify a custom menu for a particular hypertext type.

OnCreateMenuBar Register this event to create a custom card menu. The function is called
with the card identifier, and should create and return a wxCLIPS menu bar, or zero to
allow the default menu bar to be created.

OnMenuCommand Called when the user selects an option on the card. It is called with the
card id, and an integer identifier representing the command. The function should return O
to veto normal processing, or 1 to perform the default action.

OnCreateToolBar Register this event to create a custom card toolbar (Windows only). The
function is called with the Hardy card identifer and wxCLIPS frame identifier, and should
create and return a panel or canvas, or zero to allow the default toolbar to be created.
The initial height of the returned window will be used to determine sizing, and the width
will be made to fit the card window.

For media cards, the event type may be:

CustomMenu When the user selects a custom menu item, the named function will be called
with two arguments: the card id and the menu item string that the user selected. Use the
diagram type manager to specify a custom menu for a particular diagram type.

OnCreateMenuBar Register this event to create a custom card menu. The function is called
with the card identifier, and should create and return a wxCLIPS menu bar, or zero to
allow the default menu bar to be created.

OnCreateToolBar Register this event to create a custom card toolbar (Windows only). The
function is called with the Hardy card identifer and wxCLIPS frame identifier, and should
create and return a panel or canvas, or zero to allow the default toolbar to be created.
The initial height of the returned window will be used to determine sizing, and the width
will be made to fit the card window.

OnMenuCommand Called when the user selects an option on the card. It is called with a
card id, and an integer identifier representing the command. The function should return 0
to veto normal processing, or 1 to perform the default action.

BlockLeftClick Called when a block is left-clicked. Takes card, block id, position, shift (1 or
0), control (1 or 0). Return 0O to veto default event processing, 1 otherwise.

BlockRightClick Called when a block is right-clicked. Takes card, block id, position, shift (1
or 0), control (1 or 0). Return 0 to veto default event processing, 1 otherwise.

CustomMenu Called when a custom menu item is invoked. Takes card and menu item

157

name.
12.22. Menu command identifiers

Most of the menu commands that the user can issue have names which can be used by custom
code which replaces the default menu bars. When responding to the OnMenuCommand event for
the main window or cards, custom code can call hardy-send-command (page Error! Bookmark
not defined.) or card-send-command (page Error! Bookmark not defined.) to invoke standard
functionality. These functions, and the OnMenuCommand event handler, take integer command
arguments, so you will need to use hardy-command-int-to-string (page Error! Bookmark not
defined.) and hardy-command-string-to-int (page Error! Bookmark not defined.) to send or test
commands.

In order to avoid confusion with Hardy integer identifiers, please note that replacement main
window or card menu bar integer identifiers should start from at least 800.

The following sections list the menu command names.

12.22.1. Hardy main window commands

HardyBrowseFiles
HardyClearindex
HardyConfigure
HardyDeselectAllltems
HardyDrawTree

HardyExit

HardyFindOrphans
HardyHelpAbout
HardyHelpContents
HardyHelpSearch
HardyLoadApplication
HardylLoadFile

HardyPrint

HardyPrintPreview
HardyPrintSetup
HardySaveFile
HardySaveFileAs
HardySearchCards
HardyShowArcSymbolEditor
HardyShowDevelopmentWindow
HardyShowDiagramManager
HardyShowHypertextManager
HardyShowNodeSymbolEditor
HardyShowPackageTool
HardyShowSymbolLibrarian
HardyViewTopCard

12.22.2. Generic card commands

CardDeleteAllLinks
CardGotoControlWindow

158

CardDelete
CardDeleteLink
CardEditTitle
CardEditFilename
CardLinkNewCard
CardLinkToSelection
CardOpenFile
CardOrderLinks
CardSaveFile
CardSaveFileAs
CardSelectltem
CardToggleLinkPanel
CardQuit

12.22.3. Diagram card commands

DiagramAddAnnotation
DiagramAddControl
DiagramApplyDefinition
DiagramBrowse
DiagramChangeFont
DiagramClearAll
DiagramCopy
DiagramCopyDiagram
DiagramCopySelection
DiagramCopyToClipboard
DiagramCut
DiagramDeleteAnnotation
DiagramDeleteControl
DiagramDeselectAll
DiagramDuplicateSelection
DiagramEditOptions
DiagramFormatGraph
DiagramFormatText
DiagramFormatTree
DiagramGotoRoot
DiagramHelp
DiagramHorizontalAlign
DiagramHorizontalAlignTop
DiagramHorizontalAlignBottom
DiagramNewExpansion
DiagramPaste
DiagramPrint
DiagramPrintAll
DiagramPrintEPS
DiagramPrintPreview
DiagramRefresh
DiagramSaveBitmap
DiagramSaveMetafile
DiagramSelectAll
DiagramStraighten

159

DiagramToBack
DiagramToFront
DiagramTogglePalette
DiagramToggleToolbar
DiagramVerticalAlign
DiagramVerticalAlignLeft
DiagramVerticalAlignRight
DiagramZoom30
DiagramZoom40
DiagramZoom50
DiagramZoom60
DiagramZoom70
DiagramZoom80
DiagramZoom90
DiagramZoom100

12.22.4. Hypertext card commands

HypertextClearAllBlocks
HypertextClearBlock
HypertextClearSelection
HypertextDeleteLinks
HypertextEditOptions
HypertextHelp
HypertextNextSection
HypertextPreviousSection
HypertextRunEditor
HypertextTop

12.22.5. Text card commands

TextCopy
TextCut
TextHelp
TextPaste
TextRunEditor

160

13. wxCOOL class reference
See also wxCOOL overview (page 357)
This is the reference for the wxCOOL classes. With these functions, it is possible to create

special-purpose user interfaces independent of platform. Currently these capabilities are
supported under MS Windows, Open Look and Motif, except where stated.

13.1. wxApplication is-a wxObject

[Not yet implemented.

One object of this class can be created, and its implementation depends upon the C++
application hosting the wxCLIPS environment.

wxApplication on-char-hook
bool (on-char-hook wxKeyEvent event)

Under Windows only, all key strokes going to a dialog box or frame can be intercepted before
being passed on for normal processing. This function takes the window id and event id, and
should return 1 to override further processing, or 0 to do default processing. If the function returns
0, the on-char-hook message will be sent to the active window. See also Key event (page 283).

13.2. wxBitmap is-a wxObject

A bitmap is a rectangular array of pixels, possibly in colour. A bitmap can be created in memory,
or loaded from an XBM file under X, or BMP file under Windows.

A bitmap can be drawn on a canvas by selecting it into a wxMemoryDC (page 201) object and
using dc-blit (page Error! Bookmark not defined.). Bitmaps can also be used to create buttons;
see button-create-from-bitmap (page Error! Bookmark not defined.).

wxBitmap bitmap-type

string bitmap-type

Indicates the type of bitmap file the bitmap is being loaded from.
May be one of:

wWxBITMAP_TYPE_BMP: Windows BMP (the default under Windows).
WXBITMAP_TYPE_XBM: X monochrome bitmap (the default under X).
WXBITMAP_TYPE_GIF: GIF bitmap (only under X).

WXBITMAP_TYPE_XPM: XPM colour bitmap (under Windows and X if wxCLIPS has
been compiled to include this option).

wxBITMAP_TYPE_RESOURCE: Windows resource bitmap; unlikely to be used since
the resources compiled into wxCLIPS cannot be changed from CLIPS.

wxBitmap depth

long depth

The depth of the bitmap (number of bits per pixel). Optionally intialize this if creating an in-
memory bitmap; omitting it makes the depth default to the current display depth of the screen.
wxBitmap filename

string filename

If this slot is initialized on creation, the wxBitmap will be created from the given file. The slot
bitmap-type must also be initialized, to indicate the type of bitmap file.

Defaults to the empty string.

wxBitmap height
long height

The height of the bitmap. Intialize this if creating an in-memory bitmap.

wxBitmap width
long width

The width of the bitmap. Intialize this if creating an in-memory bitmap.

wxBitmap create
void (create)

Creates a bitmap in memory, either blank or from an existing bitmap file. The programmer can
draw into the bitmap by selecting it into a memory device context, for later drawing on an output
device context such as a canvas device context.

The method of bitmap construction depends on the slots that are initialized when the instance is
created. Here are some examples:

; Load froma BWP file
(rmake-instance [my-bitmap] of wxBitmap

(filenane "aiai.bm") (bitmap-type "wxBl TMAP_TYPE_BMWP"))
; Create a 'blank' bitmap

(rmake-instance [my-bitmap] of wxBitmap
(width 100) (height 100))

13.3. wxBrush is-a wxObject

A brush is a an object that can be set for a device context (page 258) and determines the fill
colour and style for subsequent drawing operations.

See also wxPen (page 212).

162

wxBrush colour
string colour
The colour of the brush. It may be a wxWindows colour string such as "BLACK", "WHITE",
"CYAN" etc.
wxBrush style
symbol style
The style of the brush. It may be one of:
wxSOLID (the default)
WXTRANSPARENT
wxBDIAGONAL_HATCH
wWXxCROSSDIAG_HATCH
wxFDIAGONAL_HATCH
wxCROSS_HATCH
WXxHORIZONTAL_HATCH
wWXVERTICAL_HATCH
wxBrush create
void (create)
Creates a brush for use in a device context. A brush must be set to fill graphic shapes.
The following slots must be initialized:
colour is a wxWindows colour string such as "BLACK", "CYAN").
style may be a value such as wxSOLID or wxTRANSPARENT (see style (page Error!
Bookmark not defined.) for complete list).
13.4. wxButton is-a wxltem
A wxButton is a rectangular control which can be placed on a wxPanel (page 209) to invoke a
command.
wxButton bitmap

wxBitmap bitmap

The bitmap associated with a wxButton, if being used as a bitmap button.

wxButton create

void (create)

163

Creates a label or bitmap button on the given panel. If the bitmap slot is initialized, the button will
be created from the bitmap. Otherwise, a text button will be created, using label for the label.

The following slots may be used in initializing a wxButton instance:

parent: should be a wxPanel or wxDialogBox.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this button.
label: for a text label button, must be a string.

bitmap: for a bitmap label button, must be a wxBitmap.

When the button is pressed, the on-command message will be sent to the wxButton; if there is no
default handler, it will be passed to the wxButton's parent, and then to the parent's parent. See
wxCommandEvent (page 168) for a list of event types associated with wxCommandEvent.

13.5. wxCanvas is-a wxWindow

A subwindow used for drawing arbitrary graphics. It must be the child of a wxFrame (page 191).

wxCanvas dc
wxCanvasDC dc

The device context handle belonging to the canvas. The device context must be retrieved before
anything can be drawn on the canvas. If your drawing function is parameterized by a device
context, you will be able to pass other types of device context to your drawing routine, such as
PostScript and Windows metafile device contexts.

wxCanvas create
bool (canvas-create)
Creates a canvas for drawing graphics on. The following slots may be initialized.

parent: should be a wxFrame.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this canvas.
style: may be absent or a string style: see below.

The value of style can be a bit list of the following values:

wxBORDER Gives the canvas a thin border (Windows 3 and Motif only).

WXRETAINED Gives the canvas a wxWindows-implemented backing store, making repainting
much faster but at a potentially costly memory premium (XView and Motif only).

WXBACKINGSTORE Gives the canvas an X-implemented backing store (XView and Motif

164

only). The X server may choose to ignore this request, whereas wxRETAINED is
always implemented under X.

wxCanvas set-scrollbars

bool (set-scrollbars long x-unit-size long y-unit-size
long x-length long y-length long x-page-length long y-page-length)

Set the scrollbars for the given canvas. The first argument pair specifies the number of pixels per
logical scroll unit, that is, the number of pixels to scroll when a scroll arrow is clicked. If either is
zero or less, that scrollbar will not appear. The second pair specifies the size of the virtual canvas
in logical scroll units. The third pair of arguments specify the number of scroll units per page, that
is, the amount to scroll by when the scrollbar is page-scrolled (usually by clicking either side of
the scrollbar handle).

wxCanvas scroll

bool (scroll long x-position long y-position)

Scroll the canvas programmatically to the given scroll position. To convert from pixel position to
scroll position, divide the pixel position by the scroll unit size you passed to set-scrollbars (page
Error! Bookmark not defined.).

wxCanvas on-char

void (on-char wxKeyEvent event)

Allows interception of key events. See also wxKeyEvent (page 197).

wxCanvas on-event
void (on-event wxMouseEventevent)

Allows interception of mouse events. See also wxMouseEvent (page 206).

wxCanvas on-paint
void (on-paint)

Override this handler to respond to paint events (sent when the canvas needs repainting).

wxCanvas on-size
void (on-size long width longheight)

The function is called with the canvas width and height when the canvas is resized.

165

13.6. wxCheckBox is-a wxltem

A wxCheckBox is a small box with a label, and can be in one of two states. It must be the child of
a wxPanel (page 209).

wxCheckBox value
bool value

The value of the checkbox (TRUE or FALSE).

wxCheckBox create
void (create)
Creates a checkbox on the given panel. The following slots may be initialized.

parent: should be a wxPanel or wxDialogBox.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this item.

label: may be absent or a string name to label this item.

style: reserved for future use.

value: TRUE or FALSE.

13.7. wxChoice is-a wxltem

A wxChoice item is similar to a single-selection wxListBox (page 198) but normally only the
current selection is displayed. It must be the child of a wxPanel (page 209).

wxChoice values
multifield values

List of string values for initializing the wxChoice item.

wxChoice create
bool (wxChoice create)

Creates a choice item on the given panel. A choice consists of a list of strings, one of which may
be selected and displayed at any one time. The following slots may be initialized.

parent: should be a wxPanel or wxDialogBox.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.

166

window-name: may be absent or a string name to identify this item.

label: may be absent or a string name to label this item.

style: reserved for future use.

values: a multifield list of strings.
Note that under Motif, it is recommended that the values are passed in this function, rather than
using append, because of the nature of Motif. Otherwise, things are likely to be messed up.
wxChoice append

bool (append string item)

Appends the string item to the choice.

wxChoice find-string
long (find-string string item)

Searches for the given string and if found, returns the position ID of the string.

wxChoice clear
bool (clear)

Clears all the strings from the choice item.

wxChoice get-selection
long (get-selection)

Get the ID of the string currently selected.

wxChoice get-string-selection
string (get-string-selection)

Get the string currently selected.

wxChoice set-selection
bool (set-selection long item-id)

Sets the choice selection to the given item ID (numbered from zero).

wxChoice set-string-selection

bool (set-string-selection string item)

167

Sets the selection by passing the appropriate item string.

wxChoice get-string

string (get-string long item-id)

Gets the string associated with the given item ID.
13.8. wxClient is-a wxObiject

See also Interprocess communication overview (page 343)

[Not yet tested.

A client object represents the client side of a DDE conversation.

wxClient create

void (create)

Creates a client object. You should override the on-make-connection handler to return an object
of class derived from wxConnection, since various members of wxConnection must be overridden

to intercept messages.

A connection is not made until make-connection (page Error! Bookmark not defined.) is called.

wxClient make-connection
wxConnection (make-connection string host string service string topic)

Makes a connection to a server, returning an object of a user-defined derivative of wxConnection
(page 169)if successful.

host is ignored under Windows, and should contain a valid internet host name under X.
service is a DDE service identifier (under X should contain a socket identifier).

topic is a topic name for this connection.

wxClient on-make-connection

wxConnection (on-make-connection)

Should be overridden to return an object of the appropriate wxConnection class, whenever a
connection is made. The base wxConnection class cannot be used because various members of

wxConnection must be overridden in order to respond to messages from the server.

13.9. wxCommandEvent is-a wxEvent

168

A wxCommandEvent is passed to a message handler when a panel item command is issued
(usually by a user action).

The command event types are as follows:

WXEVENT_TYPE_BUTTON_COMMAND
WXEVENT_TYPE_CHECKBOX_COMMAND
WXEVENT_TYPE_CHOICE_COMMAND
WXEVENT_TYPE_LISTBOX_COMMAND
WXEVENT_TYPE_TEXT_COMMAND
WXEVENT_TYPE_TEXT_ENTER_COMMAND
WXEVENT_TYPE_MULTITEXT_COMMAND
WXEVENT_TYPE_MENU_COMMAND
WXEVENT_TYPE_SLIDER_COMMAND
WXEVENT_TYPE_RADIOBOX_COMMAND
WxEVENT_TYPE_SET_FOCUS
WXEVENT_TYPE_KILL_FOCUS

wxCommandEvent get-selection

long (get-selection)

Returns the identifier selection corresponding to the selected item, for example a listbox or menu
item.

wxCommandEvent is-selection

bool (is-selection)

Returns 1 if the event was a selection event, 0 otherwise.

13.10. wxConnection is-a wxObject

[Not yet tested. [

See also Connection overview (page 344)

A wxConnection object has no creation function, since it is implicitly created when a connection is
requested (one object at each side of the connection).

A connection object is used for initiating DDE commands and requests using functions such as
execute, and it also has message handlers associated with it to respond to commands from the
other side of the connection.

wxConnection service-name

string service-name

Service name variable.

169

wxConnection advise
bool (advise string item string data)

Called by a server application to pass data to a client (for example, when a spreadsheet cell has
been updated, and the client is interested in this value).

item is the name of the item, and data is a string representing the item's data.

Returns TRUE if successful, FALSE otherwise.

wxConnection execute
bool (wxConnection execute string data)

Called by a client application to execute a command in the server. Note there is no item in this
command.

data is a string representing the item's data.
Returns TRUE if successful, FALSE otherwise.

To get a result from a server, you need to call request explicitly, since execute doesn't return
data.

wxConnection disconnect

bool (disconnect)

Called by a client or server application to terminate this connection. After this call, the connection
object is no longer valid.

Returns TRUE if successful, FALSE otherwise.

wxConnection poke

bool (poke string item string data)

Called by a client application to poke data into the server.

item is the name of the item, and data is a string representing the item's data.

Returns TRUE if successful, FALSE otherwise.

wxConnection request
string (request string item)
Called by a client application to request data from a server.

item is the name of the requested data item.

170

Returns a string representing the data if successful, the empty string otherwise.

wxConnection start-advise
bool (start-advise string item)

Called by a client application to indicate interest in a particular piece of data in a server. The client
connection should then recieve OnAdvise messages when the data is updated in the server.

item is the name of the data item of interest.

Returns TRUE if the advise loop is allowed, FALSE otherwise.

wxConnection stop-advise
bool (stop-advise string item)

Called by a client application to indicate a termination of interest in a particular piece of data in a
server.

item is the name of the data item of interest.

Returns TRUE if successful, FALSE otherwise.

wxConnection on-advise
bool (on-advise string topic string item string data)

Called on the client side of the connection, when the server side sends an advise message. Used
for advising the client of a change in server data. Override this to intercept such messages.

wxConnection on-execute

bool (on-execute string topic string data)

Called on the server side of the connection, when the client side sends an execute message.
Used for implementing commands on the server side. Override this to implement command
execution; you might wish to store the last result(s) to be returned when the client sends a
request message.

wxConnection on-poke

bool (on-poke string topic string item string data)

Called on the server side of the connection, when the client side sends a poke message. Used for
poking data into a server. Override this to intercept such messages.

wxConnection on-request

171

string (on-request string topic string item)

Called on the server side of the connection, when the client side sends a request message. Used
for getting information from a server. Override this to intercept such messages and return data
back to the client.

wxConnection on-start-advise
bool (on-start-advise string topic string item)

Called on the server side of the connection, when the client side wishes to start an advise loop for
the given topic and item. The server should respond with TRUE to accept this advise loop,
FALSE otherwise.

wxConnection on-stop-advise
bool (on-stop-advise string topic string item)

Called on the server side of the connection, when the client side wishes to stop an advise loop for
the given topic and item. The server should respond with TRUE to terminate this advise loop,
FALSE otherwise.

13.11. wxCursor is-a wxBitmap

A cursor is a small bitmap used for representing the mouse pointer. It can be set for a particular
subwindow, using wxWindow set-cursor (page Error! Bookmark not defined.), as a cue for what
operations are possible in this window at this point in time.

wxCursor cursor-name
string cursor-name
A stock cursor name, one of the following:

WXCURSOR_ARROW
WXxCURSOR_BULLSEYE
WXCURSOR_CHAR
WXCURSOR_CROSS
WXCURSOR_HAND
WXCURSOR_IBEAM
WXCURSOR_LEFT_BUTTON
WXCURSOR_MAGNIFIER
WXxCURSOR_MIDDLE_BUTTON
WXCURSOR_NO_ENTRY
WXCURSOR_PAINT_BRUSH
WXxCURSOR_PENCIL
WXCURSOR_POINT_LEFT
WXCURSOR_POINT_RIGHT
WXCURSOR_QUESTION_ARROW
WXCURSOR_RIGHT _BUTTON

172

WXCURSOR_SIZENESW
WXCURSOR_SIZENS
WXCURSOR_SIZENWSE
WXCURSOR_SIZEWE
WXCURSOR_SIZING
WXCURSOR_SPRAYCAN
WXCURSOR_WAIT

WXCURSOR_WATCH

WXxCURSOR_BLANK
WXCURSOR_CROSS_REVERSE (X only)
WXxCURSOR_DOUBLE_ARROW (X only)
WXxCURSOR_BASED_ARROW_UP (X only)
WXxCURSOR_BASED_ARROW_DOWN (X only)

wxCursor X

long x

The cursor hotspot x position (used only when loading a cursor from a file).

wxCursor y

longy

The cursor hotspot y position (used only when loading a cursor from a file).

wxCursor create
void (create)

Creates either a stock cursor (if cursor-name is non-nil) or a cursor loaded from a disk file (if
filename and bitmap-type are non-nil).

Under X, the permitted cursor types in bitmap-type are:
WXBITMAP_TYPE_XBM Load an X bitmap file
Under Windows, the permitted types are:

WXBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h).
WXBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as specified in the .rc
file).

WXBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h). Specify x and y slot
values.

Examples:

; Create a stock cursor
(bind ?cursor (nake-instance (gensynt)

173

of wxCursor (cursor-nane "wWxCURSOR _PENCIL")))

; Create a cursor froma .cur file
(bi nd ?cursor (nake-instance (gensynt)
of wxCursor (filenane "figure.cur") (bitmap-type
"wxBI TMAP_TYPE_CUR'")))

; Create a cursor froma .ico file
(bi nd ?cursor (nake-instance (gensynt)
of wxCursor (filenanme "figure.icor") (bitmap-type
"wxBlI TMAP_TYPE_CUR")

(x 10) (y 10)))

13.12. wxDatabase is-a wxObject

See also Database classes overview (page 349)

[Not yet implemented. |

Every database object represents an ODBC connection. The connection may be closed and
reopened.

wxDatabase close

bool (close)

Resets the statement handles of any associated recordset objects, and disconnects from the
current data source.

wxDatabase create

long (database-create)

Creates a new ODBC database handle. The constructor of the first wxDatabase instance of an
application initializes the ODBC manager.

wxDatabase delete

bool (delete)

Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase error-occurred
bool (error-occurred)

Returns 1 if the last action caused an error.

174

wxDatabase get-database-name
string (get-database-name)

Returns the name of the database associated with the current connection.

wxDatabase get-data-source
string (get-data-source)

Returns the name of the connected data source.

wxDatabase get-error-code
string (wxDatabase get-error-code)
Returns the error code of the last ODBC function call. This will be a string containing one of:

SQL _ERROR General error.

SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.

SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained
from the ODBC manager.

wxDatabase get-error-message
string (get-error-message)

Returns the last error message returned by the ODBC manager.

wxDatabase get-error-number
long (get-error-number)

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase is-open
bool (is-open)

Returns 1 if a connection is open.

wxDatabase open

175

bool (open string datasource optional long exclusive = 1 optional string readonly = 1
optional string username = "ODBC" optional string password = "")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readonly are not used.

13.13. wxDate is-a wxObject

A class for manipulating dates.

[Not yet implemented.

wxDate add-months
bool (add-months long months)

Adds the given number of months to the date, returning TRUE if successful.

wxDate add-weeks
bool (add-weeks long weeks)

Adds the given number of weeks to the date, returning TRUE if successful.

wxDate add-years
bool (add-years long years)

Adds the given number of months to the date, returning TRUE if successful.

wxDate create
void (create)

Constructs a date object, initialized to zero. You are responsible for deleting this object when you
have finished with it.

void (create long month long day long year)

Constructs a date object with the specified date. You are responsible for deleting this object when
you have finished with it.

month is a number from 1 to 12.
day is a number from 1 to 31.

year is a year, such as 1995, 2005.

wxDate create-julian

176

bool (create-julian long julian)

Constructor taking an integer representing the Julian date.

wxDate create-string
bool (wxDate create-string string date)

Constructor taking a string representing a date. This must be either the string TODAY, or of the
form MM DY YYYY or MMt DD- YYYY. For example:

(rmake-instance (gensynt) (date-string "11/26/1966"))

wxDate format
string (format)

Formats the date into a string according to the current display type.

wxDate get-day
long (get-day)

Returns the numeric day (in the range 1 to 365).

wxDate get-day-of-week
long (get-day-of-week)

Returns the integer day of the week (in the range 1 to 7).

wxDate get-day-of-week-name
string (day-of-week-name)

Returns the name of the day of week.

wxDate get-day-of-year
long (get-day-of-year)

Returns the day of the year (from 1 to 365).

wxDate get-days-in-month

long (get-days-in-month)

177

Returns the number of days in the month (in the range 1 to 31).

wxDate get-first-day-of-month
long (get-first-day-of-month)

Returns the day of week that is first in the month (in the range 1 to 7).

wxDate get-julian-date
long (get-julian-date)

Returns the Julian date.

wxDate get-month
long (get-month)

Returns the month number (in the range 1 to 12).

wxDate get-month-end

long (get-month-end)

Returns a new date representing the day that is last in the month. The new date must be deleted
when it is finished with.

wxDate get-month-name

string (get-month-name)

Returns the name of the month.

wxDate get-month-start

wxDate (get-month-start)

Returns a new date representing the first day of the month. The new date must be deleted when
it is finished with.

wxDate get-week-of-month

long (get-week-of-month)

Returns the week of month (in the range 1 to 6).

178

wxDate get-week-of-year
long (get-week-of-year)

Returns the week of year (in the range 1 to 52).

wxDate get-year
long (get-year)

Returns the year as an integer (such as '1995").

wxDate get-year-end

wxDate (get-year-end)

Returns a new date the date representing the last day of the year. Delete the new date when you
have finished with it.

wxDate get-year-start

wxDate (get-year-start)

Returns a new date the date representing the first day of the year. Delete the new date when you
have finished with it.

wxDate is-leap-year

bool (is-leap-year)

Returns TRUE if the year of this date is a leap year.

wxDate set
bool (set)

Sets the date to current system date.

wxDate set-julian
bool (set-julian long julian)

Sets the date to the given Julian date.

wxDate set-date

179

bool (set-date long month long day long year)
Sets the date to the given date.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

wxDate set-format
bool (set-format string format)
Sets the current format type.

format should be one of:

WxDAY Format day only.

WXMONTH Format month only.

wxMDY Format MONTH, DAY, YEAR.

wxFULL Format day, month and year in US style: DAYOFWEEK, MONTH, DAY, YEAR.

WXEUROPEAN Format day, month and year in European style: DAY, MONTH, YEAR.

wxDate set-option
bool (set-option string option long enable=1)
Enables or disables an option for formatting. option may be one of:

wxNO_CENTURY The century is not formatted.
WXDATE_ABBR Month and day names are abbreviated to 3 characters when formatting.

wxDate add-days
wxDate (add-days long days)

Adds an integer number of days to the date, returning a new date object.

wxDate subtract-days
wxDate (subtract-days long days)

Subtracts an integer number of days from the date, returning a new date object.

wxDate subtract

long (subtract long datel long date2)

180

Subtracts one date from another, return the number of intervening days.

wxDate add-self
bool (add-self long days)

Adds an integer number of days to the date, returning TRUE if successful.

wxDate subtract-self
bool (subtract-self long days)

Subtracts an integer number of days from the date, returning TRUE if successful.

wxDate le
bool (lelong date)

Compare two dates, returning TRUE if the current date object is earlier than date.

wxDate leq

bool (leq long date)

Function to compare two dates, returning TRUE if the current date object is earlier or equal to
date.

wxDate ge

bool (ge long date)

Function to compare two dates, returning TRUE if the current date object is later than date.

wxDate geq

dboollong (geq long date)

Function to compare two dates, returning TRUE if the current date object is later than or equal to
date.

wxDate eq

bool (eq long date)

Function to compare two dates, returning TRUE if the current date object is equal to date.

181

wxDate neq
bool (neq long date)

Function to compare two dates, returning TRUE if the current date object is not equal to date.

13.14. wxDC is-a wxObject

See also Overview (page 346)

A wxDC (device context) is an abstraction of a surface that can be drawn onto.

The following functions can be used with any device context identifier, with the exception of blit

which must not be used with a PostScript device context, and get-text-extent-width, get-text-
extent-height which do not function correctly on PostScript or metafile device contexts.

wxDC begin-drawing
bool (begin-drawing)

Bracket a series of drawing primitives in begin-drawing and end-drawing to optimize drawing
under Windows, and also if drawing to a panel or dialog box context, for which these calls are
mandatory. The calls may be nested.

wxDC blit

bool (blit double dest-x double dest-y double width double height wxDC source-dc double
source-x double source-y string logical-op = "wxCOPY")

Block-copies the given area from a source device context to a destination device context (the
current object). This operation is not available to PostScript and Windows Metafile destination
device contexts.

The argument logical-op sets the current logical function for the canvas. This determines how a
source pixel from the source device context combines with a destination pixel in the current
device context. It will most commonly be "wxCOPY", which simply draws with the current source
pixels.

The possible values and their meaning in terms of source and destination pixel values are as
follows:

wx AND src AND dst

WXAND_| NVERT (NOT src) AND dst
WXAND REVERSE src AND (NOT dst)

wx CLEAR 0

wx COPY src

WX EQUI V (NOT src) XOR dst

wx| NVERT NOT dst

wx NAND (NOT src) OR (NOT dst)
WX NOR (NOT src) AND (NOT dst)
wxNO_OP dst

wx OR src OR dst

182

WX OR | NVERT (NOT src) OR dst

wxOR_REVERSE src OR (NOT dst)
wx SET 1

wWxSRC_| NVERT NOT src

WX XOR src XOR dst

The most commonly used is wxCOPY. The others combine the current colour and the
background using a logical operation. wxXOR is commonly used for drawing rubber bands or
moving outlines, since drawing twice reverts to the original colour.

wxDC clear

bool (wxDC clear)

Clears the device context using the background colour.

wxDC destroy-clipping-region
bool (destroy-clipping-region)

Destroys the current clipping region.

wxDC draw-ellipse

bool (draw-ellipse double x double y double width double height)

Draws an ellipse. The outline and filling attributes are determined by the pen and brush settings
respectively.

wxDC draw-line

bool (draw-line double x1 double y1 double x2 double y2)

Draws a line between the given points.

wxDC draw-lines

bool (draw-lines multifield list)

Draws lines between the given points. list is a multifield, which can be created by a call to mv-
append and a list of arguments. The list must contain an even number of floating-point values,
interpreted in pairs as the points determining the multiline.

wxDC draw-point

bool (dc-draw-point double x double y)

Draws a point.

183

wxDC draw-polygon

bool (draw-polygon multifield list)

Draws a (possibly filled) polygon. list is a multifield, which can be created by a call to mv-append
and a list of arguments. The list must contain an even number of floating-point values, interpreted
in pairs as the points determining the polygon. The outline and filling attributes are determined by
the pen and brush settings respectively.

wxDC draw-rectangle

bool (draw-rectangle double x double y double width double height)

Draws a rectangle. The outline and filling attributes are determined by the pen and brush settings
respectively.

wxDC draw-rounded-rectangle

bool (draw-rounded-rectangle double x double y double width double height double radius)
Draws a rounded rectangle, with corners with a specified radius (optional). The outline and filling
attributes are determined by the pen and brush settings respectively.

wxDC draw-text

bool (dc-draw-text string text double x double y)

Draw text at the given position, using the font set by set-font (page Error! Bookmark not
defined.), and using the colours set by set-text-foreground (page Error! Bookmark not
defined.) and set-text-background (page Error! Bookmark not defined.) respectively.

wxDC draw-spline

bool (draw-spline multifield list)

Draws a spline curve. list is a multifield, which can be created by a call to mv-append and a list of
arguments. The list must contain an even number of floating-point values, interpreted in pairs as
the points determining the spline shape.

wxDC end-doc

bool (end-doc)

Ends a document (such as a PostScript or Windows printer document).

wxDC end-drawing

184

bool (end-drawing)

Bracket a series of drawing primitives in begin-drawing and end-drawing to optimize drawing
under Windows, and also if drawing to a panel or dialog box context, for which these calls are
mandatory. The calls may be nested.

wxDC end-page

bool (end-page)

Ends a page.

wxDC get-min-x
double (get-min-x)

Returns the minimum X value drawn so far on the device context.

wxDC get-min-y
double (get-min-y)

Returns the minimum Y value drawn so far on the device context.

wxDC get-max-x
double (get-max-x)

Returns the maximum X value drawn so far on the device context.

wxDC get-max-y
double (get-max-y)

Returns the maximum Y value drawn so far on the device context.

wxDC get-text-extent-height
double (get-text-extent-height string text)

Returns the height of the text as drawn on this device context, in logical units.

wxDC get-text-extent-width
double (get-text-extent-width string text)

Returns the width of the text as drawn on this device context, in logical units.

185

wxDC ok

bool (ok)

Returns TRUE if the device context is OK (usually meaning, it has been initialised correctly), and
FALSE otherwise.

wxDC start-doc

bool (start-doc string message)

Starts a document (such as a PostScript or Windows printer document) using the given string for
any associated message box (the message is not in fact currently used).

wxDC start-page

bool (start-page)

Starts a page.

wxDC set-background
bool (set-background long brush)

Sets the background brush.

wxDC set-background-mode

bool (set-background-mode string mode)

Sets the mode for drawing text background.

mode may be wxSOLID (use the text background colour) or WxTRANSPARENT (do not fill the
background).

wxDC set-brush

bool (set-brush wxBrush brush)

Sets the current brush for the device context. brush is a wxBrush (page 162) object, or nil t select
any existing brush out of the device context.

wxDC set-colourmap

bool (set-colourmap wxColourMap cmap)

186

Sets the colourmap for the device context. If cmap is nil, the original colourmap is restored so that
it is safe to delete the device context (or colourmap).

wxDC set-clipping-region

bool (set-clipping-region double x1 double y1 double x2 double y2)

Sets a rectangular clipping region, outside which drawing operations have no effect.

wxDC set-font

bool (set-font long font)

Sets the current font for the device context. font is a wxFont (page 190) object, or nil to select any
existing font out of the device context.

wxDC set-logical-function

bool (set-logical-function string logical-function)

Sets the current logical function for the device context. The logical function determines how pixels
are changed by the drawing functions, and may be one of wxCOPY, wxXOR, wxINVERT,
wxOR_REVERSE and wxAND_REVERSE.

wxDC set-pen

bool (set-pen long pen)

Sets the current pen for the device context. pen is a wxPen (page 212) object, or nil to select any
existing pen out of the device context.

wxDC set-text-foreground

bool (set-text-foreground string colour)

Sets the colour for the text foreground, effective when draw-text (page Error! Bookmark not
defined.) is used. colour is a capitalized name from the list defined in the wxWindows manual.
wxDC set-text-background

bool (set-text-background string colour)

Sets the colour for the text background, effective when draw-text (page Error! Bookmark not
defined.) is used. colour is a capitalized name from the list defined in the wxWindows manual.

13.15. wxDialogBox is-a wxPanel

See also Overview (page 346)

187

A dialog box is essentially a wxPanel (page 209) with its own wxFrame (page 191), and therefore
shares some functions and behaviour with both of these objects.

Any panel item can be created as a child of a dialog box, and also the dialog box can be created
modal, so that the flow of program control halts until the dialog box is dismissed.

The following event handlers are valid for the panel class:

on-command Override this to intercept panel item commands (such as button presses). See
wxCommandEvent (page 168) for a list of event types associated with
wxCommandEvent.

on-event Called with a wxMouseEvent (page 206) identifier. This can only be guaranteed
only when the dialog box is in user edit mode (to be implemented).

on-paint Called with no arguments when the dialog box receives a repaint event from the
window manager.

on-size The function is called with the window width and height.

wxDialogBox modal
bool modal

Initialize to TRUE if the dialog box is to be modal, FALSE otherwise. The default is FALSE.

wxDialogBox create
void (create)
The following slots may be initialized if not loading from a resource.

parent: should be a wxFrame or wxDialogBox.

title: a title for the dialog box caption.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this dialog box.
modal: TRUE if the dialog is to be modal, FALSE otherwise (the default).
style: may be absent or a string style: see below.

The following slots should be initialized if loading from a resource (see Resource overview (page
359) for further details).

parent: should be a wxFrame.
resource: the string name of the resource.

The value of style can be a bit list of the following values:

WxCAPTION Puts a caption on the dialog box (under XView and Motif this is mandatory).

WXSTAY_ON_TOP Stay on top of other windows (Windows only).

WXSYSTEM_MENU Display a system menu (manadatory under XView and Motif).

wWXTHICK_FRAME Display a thick frame around the window (manadatory under XView and
Motif).

188

WXVSCROLL Give the dialog box a vertical scrollbar (XView only).
WXDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION, wxSYSTEM_MENU
and wxTHICK_FRAME

The default value for style is wxDEFAULT_DIALOG_STYLE.

If modal is TRUE, when the show message is sent to the dialog box object, the flow of control will
stop until the show message has been called again with a FALSE parameter. Otherwise, if modal
is FALSE, flow of control will immediately return to the program when the dialog box has been
shown.

wxDialogBox on-char-hook

bool (on-char-hook wxKeyEvent event)

Under Windows only, all key strokes going to a dialog box or frame can be intercepted before
being passed on for normal processing. This handler takes the event object, and should return
TRUE to override further processing, or FALSE to do default processing. See also wxKeyEvent
(page 197).

wxDialogBox on-close

bool (on-close)

The function is called when the user dismisses the dialog box. If the handler returns TRUE, the
window is automatically deleted (possibly terminating the application). A return value of FALSE
forbids automatic deletion.

wxDialogBox on-paint

void (on-paint)

Override this handler to respond to paint events (sent when the dialog box needs repainting).
Normally, a dialog box's items repaint themselves, but for special purposes, you may wish to
draw on the dialog box device context.

wxDialogBox on-size

void (on-size long width longheight)

The function is called with the dialog box width and height when the user resizes the frame.
13.16. wxEvent is-a wxObject

wxEvent is an 'abstract class' from which other event classes, such as mouse, key and command

events, are derived.

wWXxEvent get-event-type

189

string (get-event-type)
Returns the event type.
13.17. wxEvtHandler is-a wxObject

wxEvtHandler is an 'abstract class' for classes which have event handlers, such as wxCanvas or
wxFrame. This class has yet to be documented.

13.18. wxFont is-a wxObject

A font is an object that can be set for a device context (page 258) to determine the characteristics
of text drawn with draw-text (page Error! Bookmark not defined.). It can also be used to set
panel item fonts.

wxFont point-size

long point-size

The point size of the font. The default is 10.

wxFont family

symbol family

The family of the font. May be one of WwxROMAN, wxSCRIPT, wxDECORATIVE, wxSWISS,
WXMODERN. The default is wxSWISS.

wxFont style

symbol style

The style of the font. May be one of WxXNORMAL, wxITALIC, wxSLANT. The default is
WXNORMAL.

wxFont weight

symbol weight

The weight of the font. May be one of WxXNORMAL, wxLIGHT, wxBOLD. The default is
WXNORMAL.

wxFont underlined

bool underlined

Whether the font is underlined (Windows only). May be TRUE of FALSE. The default is FALSE.

190

wxFont create
void (create)
Creates a font for use in a device context. The following slots can be used to initialize the font.

point-size gives the font point size.

family may be one of WwxROMAN, wxSCRIPT, wxDECORATIVE, wxSWISS,
WXxMODERN, wxDEFAULT.

style may be one of WXNORMAL, WxITALIC, wxSLANT.

weight may be one of wxBOLD, wxLIGHT, wxXNORMAL.

underlined may be 1 or 0.

13.19. wxFrame is-a wxWindow

A wxFrame is a window containing text, canvas or panel subwindows. It normally has decorations
added by the window manager, such as a system menu, a thick frame, and resize handles. When
a wxWindows or wxCLIPS application initializes, a top-level frame must be returned to the system
for successful start-up. When a top-level frame and all its children are deleted, the application
terminates.

Usually an application will need to override the on-close handler in case the window manager
sends the application a close message. If the handler returns TRUE, the frame is deleted by the
system (possibly terminating the application).

See wxWindow (page 231) for message handlers in addition to the ones documented here.

wxFrame create
void (create)
The following slots may be initialized.

parent: should be a wxFrame.

title: a title for the dialog box caption.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this dialog box.
style: may be absent or a string style: see below.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

wxICONIZE Display the frame iconized (minimized) (Windows only).

wWxCAPTION Puts a caption on the frame (under XView and Motif this is mandatory).

WXDEFAULT_FRAME Defined as a combination of wxMINIMIZE_BOX, wxMAXIMIZE_BOX,
WXTHICK_FRAME, wxSYSTEM_MENU and wxCAPTION.

wxMDI_CHILD Specifies a Windows MDI (multiple document interface) child frame.

WXMDI_PARENT Specifies a Windows MDI (multiple document interface) parent frame.

WXMINIMIZE Identical to wxICONIZE.

WXMINIMIZE_BOX Displays a minimize box on the frame (Windows only).

WXMAXIMIZE Displays the frame maximized (Windows only).

191

WXMAXIMIZE_BOX Displays a maximize box on the frame (Windows only).

wxSDI Specifies a normal SDI (single document interface) frame.

WXSTAY_ON_TOP Stay on top of other windows (Windows only).

WXSYSTEM_MENU Displays a system menu (manadatory under XView and Motif).

wWXTHICK_FRAME Displays a thick frame around the window (manadatory under XView and
Motif).

The function show must be called before a new frame is visible.

wxFrame create-status-line
bool (create-status-line optional long n=1)

Creates a status line at the bottom of the frame. Use set-status-text (page Error! Bookmark not
defined.) to write to the status line.

n is a number from 1 to 5 for the number of status areas to create.

wxFrame iconize
bool (iconize optional bool minimize)

Minimizes the frame if the second argument is TRUE or absent, restores the frame otherwise.

wxFrame set-menu-bar

bool (set-menu-bar wxMenuBar menu-bar)

Associates a menu bar with the frame. See wxMenuBar (page 203). You should not call this more
than once for any given frame, and you should also not delete the wxMenuBar object once it has
been assigned to a frame. It will be deleted when the wxFrame object is deleted.

wxFrame set-icon

bool (set-icon wxlcon icon)

Sets the icon of a frame. See wxlcon (page 196).

wxFrame set-status-text
bool (set-status-text string text, optional long i=0)

Sets the text for the status line (previously created with create-status-line (page Error!
Bookmark not defined.)).

i is a number from 0 to 4 for the number of the status area to write to.

wxFrame set-title

192

bool (set-title string text)

Set the title of a frame.

wxFrame set-tool-bar
bool (set-tool-bar long toolbar)

Tells the MDI frame to manage the subwindow as a toolbar. Use in Windows MDI mode only.

wxFrame on-activate

void (on-activate bool active)

Called the frame is activated or deactivated. Under Windows, you may need to intercept this
message and set the focus for a subwindow, or the subwindow may not receive character events.
By default, wxWindows will set the focus for the first subwindow of a frame.

wxFrame on-char-hook

bool (on-char-hook wxKeyEvent event)

Under Windows only, all key strokes going to a dialog box or frame can be intercepted before
being passed on for normal processing. This handler takes the event object, and should return
TRUE to override further processing, or FALSE to do default processing. See also wxKeyEvent
(page 197).

wxFrame on-close

bool (on-close)

The function is called when the user dismisses the frame. If the handler returns TRUE, the
window is automatically deleted (possibly terminating the application). A return value of FALSE
forbids automatic deletion.

wxFrame on-menu-command

void (on-menu-command long menu-item)

Called with the menu item identifier. Test the menu item identifier and perform an appropriate
action.

wxFrame on-menu-select

void (on-menu-select long menu-item)

Called with a menu item identifier, when the cursor travels over the menu item (but the user does
not click). Test the menu item identifier and perform an appropriate action.

193

wxFrame on-size
void (on-size long width longheight)

The function is called with the frame width and height when the user resizes the frame. The
application should define appropriate subwindow resizing behaviour in this handler, if appropriate.

The default handler performs child window resizing behaviour if there is only one child window.
Otherwise, it gives up.

13.20. wxHelpinstance is-a wxObject

[Not yet implemented. |

A 'help instance' is created to manage on-line help associated with one or more files. wxCLIPS
supports both Windows Help under MS Windows, and wxHelp under all platforms.

Windows Help (.hlp) files may be created using a number of tools, such as Tex2RTF. wxHelp
(.xIp) files can be created with a text editor or a tool such as Tex2RTF.

wxHelp is very limited in its capabilities and should only be used on platforms with no native help.
Consider using HTML files instead (although you cannot currently access HTML files from your
application).

wxHelplnstance native

bool native

If TRUE, the native help system will be invoked (such as WinHelp under MS Windows). If FALSE,
wxHelp will be invoked.

wxHelpinstance create

void (create)

Creates a help instance. If native is TRUE, the native help system will be invoked (such as
WinHelp under MS Windows). If FALSE, wxHelp will be invoked.

wxHelplnstance display-block

bool (display-block long blocklid)

Displays the help file at the given block identifier (system dependent).

wxHelplnstance display-contents

bool (display-contents string filename)

194

Displays the contents of the help file currently loaded.

wxHelplnstance display-section
bool (display-section long section)

Displays the help file at the given section (system dependent).

wxHelplnstance keyword-search
bool (keyword-search string keyword)

Positions the help file at a section matching the given string.

wxHelpinstance load-file
bool (load-file string filename)

Attempts to load the given file into the help instance. Use a function like display-contents to
display the file.

13.21. wxGauge is-a wxltem

A gauge is used for displaying a quantity, for example amount of processing done. It must be a
child of a wxPanel or wxDialogBox.

wxGauge value

long value

The current value of the gauge. The default is 1.

wxGauge range
long range

The range of the gauge. The default is 100.

wxGauge create

void (create)

Creates a gauge item on the given panel. The following slots may be initialized.
parent: should be a wxPanel or wxDialogBox.
X: may be absent or -1 to denote default layout, or zero/positive integer.

y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.

195

height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this item.

label: may be absent or a string name to label this item.

style: a bit list of values (see below).

value: TRUE or FALSE.

range: indicates the maximum value of the gauge.

style is a bit list of the following:
WXGA HORIZONTAL The item will be created as a horizontal gauge.
WXGA VERTICAL The item will be created as a vertical gauge.

WXGA_PROGRESSBAR Under Windows 95, the item will be created as a horizontal
progress bar.

wxGauge set-bezel-face
bool (set-bezel-face long width)

Set the bezel parameter of the gauge (takes effect under Windows version only).

wxGauge set-shadow-width

bool (set-shadow-width long width)

Set the shadow width of the gauge (takes effect under Windows version only).
13.22. wxGroupBox is-a wxltem

A wxGroupBox is a box drawn around one or more controls. Available under Windows only.

wxGroupBox create
void (create)
Creates a group box. The following slots may be initialized.

parent: should be a wxPanel or wxDialogBox.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this item.

label: may be absent or a string name to label this item.

style: reserved for future use.

13.23. wxlcon is-a wxBitmap

An icon is a small bitmap which can be used to decorate a minimized frame. There are platform-
specific ways of creating an icon.

196

wxlcon height
long height

Height of the icon in pixels.

wxlcon width
long width

Width of the icon in pixels.

wxlcon create
void (create)

Loads an icon from a file or resource. Under X, the argument must be the filename of a valid XBM
(X bitmap) file. Under Windows, the argument must be a icon filename, or the name of an icon
resource compiled into the current executable.

Use wxFrame set-icon (page Error! Bookmark not defined.) to set the icon of a frame.

Under X, the permitted icon types in the bitmap-type are:

WXBITMAP_TYPE_BMP Load a Windows bitmap file (if USE_IMAGE_LOADING_IN_X
is enabled in wx_setup.h).

WXBITMAP_TYPE_GIF Load a GIF bitmap file (if USE_IMAGE_LOADING_IN_X is
enabled in wx_setup.h).

WXBITMAP_TYPE_XBM Load an X bitmap file.
WXBITMAP_TYPE_XPM Load an XPM (colour pixmap) file. Only available if
USE_XPM_IN_X is enabled in wx_setup.h.

Under Windows, the permitted types are:

WXBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h).

WXBITMAP_TYPE_ICO_RESOURCE Load a Windows resource (as specified in the .rc
file).

Examples:

; Under X

(bind ?icon (nake-instance (gensynt)
(bi t map-type wxBlI TMAP_TYPE XBM
(filenane "icon.xbn')))

; Under W ndows

(bind ?icon (nake-instance (gensynt)
(bi tmap-type wxBl TMAP_TYPE | CO
(filenane "icon.ico")))

13.24. wxKeyEvent is-a wxEvent

197

A key event identifier is passed to a window's on-char or on-char-hook handler. The key code,
position and state of shift/control/alt can be examined by calling the following functions.
wxKeyEvent alt-down

bool (alt-down)

Returns TRUE if alt was pressed.

wxKeyEvent control-down
bool (control-down)

Returns TRUE if control was pressed.

wxKeyEvent get-key-code

string (get-key-code)

Returns a string corresponding to the internal wxWindows key code, such as "WXK_BACK",
"WXK_F1" or "WXK_RETURN".

wxKeyEvent position-x

double (position-x)

Gets the x position of the mouse pointer at the moment the key was pressed.

wxKeyEvent position-y
double (event-position-y)

Gets the y position of the mouse pointer at the moment the key was pressed.

wxKeyEvent shift-down

bool (shift-down)

Returns TRUE if shift was pressed.

13.25. wxListBox is-a wxItem

A wxListBox displays a choice of strings. It must be the child of a panel or dialog box. In a single-

selection listbox, only one choice may be highlighted. In a multiple-selection listbox, several may
be highlighted.

198

wxListBox values
multifield values

List of string values for initializing the wxListBox item.

wxListBox multiple
bool multiple

Initalize to TRUE for a multi-selection listbox, FALSE for a single-selection listbox.

wxListBox create
void (create)
Creates a list box item on the given panel or dialog box. The following slots may be initialized.

parent: should be a wxPanel or wxDialogBox.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this item.

label: may be absent or a string name to label this item.

style: see below.

values: a multifield list of strings.

multiple: TRUE for a multiple-selection listbox, FALSE otherwise.

style is a bit list of some of the following:
WXNEEDED_SB Create scrollbars if needed.

WXALWAYS_SB Create scrollbars immediately.
WXHSCROLL Create horizontal scrollbar if contents are two wide (Windows only).

wxListBox append
bool (append string item optional string client-data)

Append a string to the list box, with an optional client data string.

wxListBox find-string
long (find-string string item)

Find the string in the list box and return the integer position if found, -1 if not.

wxListBox clear

199

bool (clear)

Clear all strings from the list box.

wxListBox get-selection
long (get-selection)

Get the position of the selection (for single-selection list boxes only).

wxListBox get-string-selection
string (get-string-selection)

Get the selected string (for single-selection list boxes only).

wxListBox set-selection

bool (set-selection long item-pos bool flag=TRUE)

Set a selection by item position.

If flag is TRUE, the item will be selected, otherwise it will be deselected (multiple-selection
listboxes only).

wxListBox set-string-selection

bool (set-string-selection string item)

Set a selection by string.

wxListBox number
long (number)

Return the number of items in the list box.

wxListBox delete-item
bool (delete-item long item-pos)

Delete an item in the list box.

wxListBox get-string

string (get-string long item-pos)

200

Return the string at the given position.

wxListBox get-first-selection
long (get-first-selection)

Get the first selection position in a multi-selection list box (-1 for no more selections).

wxListBox get-next-selection

long (get-next-selection)

Get the next selection position in a multi-selection list box (-1 for no more selections).
13.26. wxMemoryDC is-a wxCanvasDC

A memory device context is used for drawing into, or copying from, a bitmap. See also the
wxBitmap (page 161) object.

wxMemoryDC create
void (create)

Create a memory device context using the current display depth. No slots need to be initialized.

wxMemoryDC select-object
bool (select-object wxBitmap bitmap)

Makes this device context the drawing surface for the given bitmap (see wxBitmap (page 161)).

Deleting the memory device context disassociates the bitmap, freeing it to be used with another
memory device context. To draw a bitmap on a device context that supports bitmap drawing (i.e.
not a Metafile or PostScript device context), using code like the following:

7o, Wility function for drawing a bitmap
(deffunction drawbitmap (?dc ?bitmap ?x ?y)
(bind ?nem dc (nake-instance (gensynt) of wxMenoryDC))
(send ?nem dc sel ect-object ?bitmap)
; Blit the nmenory device context onto the destination device context
(send ?dc blit ?x ?y (send ?bitnap get-w dth) (send ?bitmap get-
hei ght)
?mem dc 0.0 0.0)
(send ?nem dc del ete)

)

If bitmap is nil, the existing bitmap (if any) will be selected out of the device context. This might be
necessary if you wish to delete the bitmap before deleting the device context (for example, for
reusing the same device context for different bitmaps).

13.27. wxMenu is-a wxWindow

201

The menu is used as a component of a wxMenuBar (page 203) or as a popup menu. For a menu
bar, create menus, append menu items (strings, separators or further menus), and finally append
the menu to the menu bar.

A menu or menu bar string may contain an ampersand, which is taken to mean 'underline the

next character and use it as the hotkey'. This gives the user the opportunity to use keystrokes to
access menus and items.

wxMenu callback

symbol callback

This slot should be initialized if creating a popup menu. The name represents a function that will

be called with the wxMenu instance and wxCommandEvent instance when the user selects an

item. Use wxCommandEvent get-selection to retrieve the selected menu item id.

wxMenu create

void (create)

Create a menu and returns the menu's ID. The following slots may be initialized.
callback: should be present if creating a popup menu (i.e. not a menubar menu). It will
be called with the wxMenu instance and wxCommandEvent instance when the user
selects an item. Use wxCommandEvent get-selection to retrieve the selected menu item
id.

wxMenu append

bool (append long item-id

string item-string optional wxMenu submenu optional string help-string optional bool

checkable)

Append a string or submenu to the menu, passing the integer ID by which the menu item will be

referenced, a string to be displayed, an optional pullright menu, and an optional flag for specifying

whether this menu item can be checked.

A help string can be supplied, in which case the string will be shown on the first field of the status

line (if any) in the frame containing the menu bar, when the mouse pointer moves over the menu

item.

wxMenu append-separator

bool (append-separator)

Append a menu separator.

wxMenu break

202

bool (break)

Inserts a column break into the menu.

wxMenu check
bool (check long item-id bool check)

Check (check = TRUE or uncheck check = FALSE the given menu item. MS Windows only.

wxMenu enable

bool (enable long item-id bool enable)

Enable (enable = TRUE or disable enable = FALSE the given menu item.
13.28. wxMenuBar is-a wxWindow

A menu bar is a standard user interface element which places the main commands of an
application along the top of a wxFrame (page 266).

The menu bar must be assigned to a frame using wxFrame set-menu-bar (page Error!
Bookmark not defined.). Once this is done, the menu bar must not be deleted by the
application: it will be deleted when the frame is deleted.

A menu or menu bar string may contain an ampersand, which is taken to mean 'underline the
next character and use it as the hotkey'. This gives the user the opportunity to use keystrokes to
access menus and items.

See also wxMenu (page 201).

wxMenuBar create
void (create)

Creates a menu bar.

wxMenuBar append
bool (append long menu-id string title)

Appends a menu to a menu bar.

wxMenuBar check
bool (check long item-id bool check)

Checks (check = TRUE) or unchecks (check = FALSE) the given menu item. MS Windows only.

203

wxMenuBar checked
bool (checked long item-id)

Returns TRUE if the menu item is checked, FALSE otherwise.

wxMenuBar enable

bool (enable long item-id bool enable)

Enables (enable = TRUE) or disables (enable = FALSE) the given menu item.
13.29. wxMessage is-a wxltem

A wxMessage is a simple piece of text, or a bitmap, on a panel or dialog box.

wxMessage bitmap
wxMessage bitmap

The bitmap associated with a wxMessage, if being used as a bitmap message.

wxMessage Create

long (create)

Creates a label or bitmap message item on the given panel.

The following slots may be used in initializing a wxButton instance:
parent: should be a wxPanel or wxDialogBox.
X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
window-name: may be absent or a string name to identify this message.
label: for a text label message, must be a string.

bitmap: for a bitmap label message, must be a wxBitmap.

13.30. wxMetaFile is-a wxObject

[Not yet implemented.

A metafile is the Windows vector format. Currently, the only way of creating a Windows metafile is
to close a metafile device context, and the only valid operations are to delete the metafile and to
place it on the clipboard.

These functions are only available under Windows.

13.30.1. Example

Below is a example of metafle, metafile device context and clipboard use. Note the way the

204

metafile dimensions are passed to the clipboard, making use of the device context's ability to
keep track of the maximum extent of drawing commands.

(bind ?dc (meke-instance (gensynt) of wxMetaFil eDC))
(if (send ?dc ok) then

; Do some draw ng

(bind ?nf (send ?dc cl ose))

(if (neq ?nf nil) then

; Pass nmetafile to the clipboard

(send ?nd set-clipboard (send ?dc get-max-x) (send ?dc get-max-

y))
(send ?nf del ete)

)
)
)

(send ?dc del ete)
wxMetaFile set-clipboard
bool (wxMetaFile set-clipboard long width long height)
Places the metafile on the clipboard, returning TRUE for success and FALSE for failure.
The metafile should be deleted immediately after this operation.
13.31. wxMetaFileDC is-a wxDC
A metafile device context is used for creating a metafile. The programmer should create the
metafile device context, close it to return a metafile, delete the device context, use the metafile
&r;etzac;irrg/ valid thing to do with it currently is to place it on the clipboard, and then delete the

These functions are only available under Windows.

See also wxMetaFile (page 204).

wxMetaFileDC filename
string filename

Filename if creating this metafile device context as disk-based.

wxMetafileDC create
void (create)
Creates a metafile device context.

filename is the file to be used if creating a disk-based metafile. Usually this will be zero or
absent, and an in-memory metafile will be created.

205

wxMetaFileDC close
wxMetaFile (close)

Closes the metafile device context and returns a metafile (or nil if the function failed). The device
context should no longer be used after this call is made, and it should be deleted.

See wxMetaFile (page 204).

13.32. wxMouseEvent is-a wxEvent

A mouse event identifier is passed to the canvas on-event handler. The state of the mouse
buttons (and some keys) can be examined by calling the following functions.

wxMouseEvent button

bool (button long button)

Returns TRUE if the given button is changing state. button may be 1, 2 or 3 (left, middle and right
buttons respectively).

wxMouseEvent button-down

bool (button-down)

Returns TRUE if the event is a mouse button down event.

wxMouseEvent control-down
bool (control-down)

Returns TRUE if the control key is down.

wxMouseEvent dragging
bool (dragging)

Returns TRUE if the event is a dragging event (holding a mouse button down and moving).

wxMouseEvent left-down
bool (left-down)

Returns TRUE if the left mouse button is down.

wxMouseEvent left-up

206

bool (left-up)

Returns TRUE if the left mouse button is up.

wxMouseEvent is-button
bool (is-button)

Returns TRUE the event is a button press or release.

wxMouseEvent middle-down
bool (middle-down)

Returns TRUE if the middle mouse button is down.

wxMouseEvent middle-up
bool (middle-up)

Returns TRUE if the middle mouse button is up.

wxMouseEvent position-x
double (position-x)

Returns the mouse x-position.

wxMouseEvent position-y
double (position-y)

Returns the mouse y-position.

wxMouseEvent right-down
bool (right-down)

Returns TRUE if the right mouse button is down.

wxMouseEvent right-up
bool (right-up)

Returns TRUE if the right mouse button is up.

207

wxMouseEvent shift-down
bool (shift-down)

Returns TRUE if the shift key is down.

13.33. wxMultiText is-a wxText

A multi-line text item is able to show several lines of text, unlike the single line wxText (page 224)
item. It must be the child of a panel or dialog box.

wxMultiText create
long (create)

Creates a multi-line text item on the given panel or dialog box. The following slots may be
initialized.

parent: should be a wxPanel or wxDialogBox.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this item.

label: may be absent or a string name to label this item.

style: see below.

value: a string for initializing the value of the multi-text.

The style parameter can be a bit list of the following:

WXHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical
scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView.

WXREADONLY The text is read-only (not XView).

13.34. wxObject

wxObject is an 'abstract class' from which other wxCOOL classes are derived.

wxObject dont-create

symbol dont-create

Set on creation when it is not desireable for the usual underlying object creation to occur.
Specifically, used when creating objects to wrap wxCLIPS integer identifiers for panel items

created when loading in a dialog or panel resource. See wx_item.clp, wxPanel handler create-
child-objects.

wxObiject id

208

long id

The integer identifier of the underlying wxCLIPS object.

wxObject pending-delete
bool pending-delete

TRUE if the object is about to be deleted (an internal setting to avoid double deletion).

wxObject add-event-handlers
void (add-event-handlers)

All classes should override (but still call) this handler in order to add callbacks for this instance.
The wxObject version adds an OnDelete callback that will be called for all instances.

wxObject create
void (create)

For wxObiject, this is a no-operation that must be redefined by derived classes to perform per-
instance initialization.

wxObject init after
void (init after)

This handler is implemented to call the create handler after the slot initialization phase is
complete. create is also defined for wxObject, as an no-operation, and must be redefined by each
major subclass to do the construction for the instance.

13.35. wxPanel is-a wxCanvas

A panel is a subwindow for placing panel items, such as the wxButton (page 163) and wxText
(page 224) item. Its parent must be a wxFrame (page 191). A panel inherits most properties from
canvas, except for scrollbar functionality.

Note that a wxDialogBox (page 187) may be used in a similar way to a panel.
The following event handlers are valid for the panel class:

on-default-action Override this to intercept double clicks in listboxes.

on-command Override this to intercept panel item commands (such as button presses). See
wxCommandEvent (page 168) for a list of event types associated with
wxCommandEvent.

on-event Called with a wxMouseEvent (page 206) identifier. This can only be guaranteed
only when the panel is in user edit mode (to be implemented).

on-paint Called with no arguments when the panel receives a repaint event from the window
manager.

on-size The function is called with the window width and height.

209

wxPanel resource

string resource

Th_e name of the resource the panel or dialog is to be loaded from, if any. Initially the empty
string.

wxPanel create

void (create)

Creates a panel.

The following slots may be initialized if not loading from a resource.

parent: should be a wxFrame.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this pane;.
style: may be absent or a string style: see below.

The following slots should be initialized if loading from a resource (see Resource overview (page
359) for further details).

parent: should be a wxFrame.
resource: the string name of the resource.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

WXABSOLUTE_POSITIONING A hint to the windowing system not to try native Windowing
system layout (Motif only). This is the recommended style for all Motif panels
and dialog boxes.

WXBORDER Draws a thin border around the panel.

WXVSCROLL Gives the dialog box a vertical scrollbar (XView only).

void (on-default-action wxItem item)

A panel receives this message in response to a double click in a listbox.

wxPanel on-command
void (on-command wxlItem item wxCommandEvent command-event)
A panel or dialog box receives this message in response to a command (such as a button press),

if the item has not overriden on-command. See wxCommandEvent (page 168) for a list of event
types associated with wxCommandEvent.

210

wxPanel set-button-font

bool (set-button-font wxFont font)

Sets the font used for panel or dialog box item buttons (or contents). See also set-label-font (page
Error! Bookmark not defined.).

wxPanel set-label-font

bool (set-label-font wxFont font)

Sets the font used for panel or dialog box item labels. See also set-button-font (page Error!
Bookmark not defined.).

wxPanel set-label-position

bool (set-label-position string position)

Change the current label orientation for panel items: position may be wxVERTICAL or
WXHORIZONTAL.

wxPanel new-line

bool (new-line)

Insert a new line, that is, make subsequent panel items appear at the start of the next line.
13.36. wxItem is-a wxWindow

A panel item is a control (or widget) that can be placed on a wxPanel (page 209) or wxDialogBox
(page 187) to accept user input, and display information.

The following functions apply to panel items, which include wxButton (page 163), wxCheckbox
(page 166), wxChoice (page 166), wxMessage (page 204), wxText (page 224), wxMultiText
(page 208), wxSlider (page 223).

wxltem get-label

string (get-label)

Get the item's label.

wxltem on-command
void (on-command wxlItem item wxCommandEvent command-event)
An item receives this message in response to a command (such as a button press). If this handler

is not overriden, then on-command is sent to the item's parent panel. It is usually more
convenient to override this handler for a panel rather than per panel item.

211

See wxcommandevent (page 168) for a list of event types associated with wxCommandEvent.

wxItem set-default
bool (set-default)

Make this item the default.

wxItem set-label

bool (set-label string label)

Set the item's label.

13.37. wxPen is-a wxObiject

A pen is used to control the colour and style of subsequent drawing operations on a device
context (page 258).

wxPen colour
string colour

The colour for initializing the wxPen.

wxPen style
symbol style

The style for initializing the wxPen. May be one of wxSOLID, wxDOT, wxLONG_DASH,
WXSHORT_DASH, wxXTRANSPARENT.

wxPen create
void (create)

Creates a pen for use in a device context. A pen is used for the outlines of graphic shapes. A
brush must be set to fill the shapes.

The following slots may be initialized.
colour is a wxWindows colour string such as "BLACK", "CYAN".
width specifies the width of the pen.

style may be one of wxSOLID, wxDOT, wxLONG_DASH, wxSHORT_DASH,
WXTRANSPARENT.

13.38. wxPostScriptDC is-a wxDC

A wxPostScriptDC is used for drawing into a postscript file.

212

wxPostScriptDC filename
string filename

The filename associated with the device context.

wxPostScriptDC interactive
bool interactive

TRUE if the creation of the device context should pop up a printer dialog.

wxPostScriptDC window
wxWindow window

Initialize this to the parent window for any dialogs the device context will pop up. Defaults to nil.

wxPostScriptDC create

void (create)

Creates a postscript device context. The following slots may be initialized.
filename is the file to be used for printing to.
interactive may be TRUE to popup up a printer dialog, or FALSE otherwise.
window is a parent window for the printer dialog.

13.39. wxPrinterDC is-a wxDC

A wxPrinterDC is used for drawing onto a Windows printer.

wxPrinterDC device
string device

The device name for this device context. Defaults to the empty string.

wxPrinterDC driver
string driver

The driver name for this device context. Defaults to the empty string.

wxPrinterDC filename

string filename

213

The filename associated with the device context, if printing to a file.

wxPrinterDC interactive
bool interactive

TRUE if the creation of the device context should pop up a printer dialog.

wxPrinterDC window
wxWindow window

Initialize this to the parent window for any dialogs the device context will pop up. Defaults to nil.

wxPrinter create
void (create)
Creates a printer device context. The following slots may be initialized.
device is the Windows device name (defaults to the empty string).
driver is the Windows printer driver name (defaults to the empty string).
filename is the file to be used for printing to.
interactive may be TRUE to popup up a printer dialog, or FALSE otherwise.
13.40. wxRadioBox is-a wxItem
A radiobox item is a matrix of strings with associated radio buttons. The buttons are mutually
exclusive, so pressing one will deselect the current selection.
wxRadioBox major-dimension
long major-dimension
Specifies the number of rows (if style is wxVERTICAL) or columns (if style is wxHORIZONTAL)
for a two-dimensional radiobox.
wxRadioBox values

multifield values

List of string values for initializing the wxRadioBox labels.

wxRadioBox create

void (create)

214

Creates a radiobox item on the given panel or dialog box. The following slots may be initialized.

parent: should be a wxPanel or wxDialogBox.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this item.

label: may be absent or a string name to label this item.

style: A bit list of values (see below).

values: a multifield list of strings for the radiobox labels.

major-dimension: specifies the number of rows (if style is wxVERTICAL) or columns (if
style is wxHORIZONTAL) for a two-dimensional radiobox.

style may be a bit list of:

WXVERTICAL Lays the radiobox out in columns.
WXHORIZONTAL Lays the radiobox out in rows.

wxRadioBox get-selection
long (get-selection)

Get the ID of the button currently selected.

wxRadioBox set-selection

bool (set-selection long item)

Sets the given button to be the current selection.
13.41. wxRecordSet is-a wxObject

See also Database classes overview (page 349)

[Not yet implemented.

Each recordset represents an ODBC database query. You can make multiple queries at a time by
using multiple recordsets with a database or you can make your queries in sequential order using
the same recordset.

wxRecordSet database

wxDatabase database

The parent database.

wxRecordSet type

215

wxRecordSet type

The initial type of the recordset. Currently there are two possible values of type:
"wxOPEN_TYPE_DYNASET": Loads only one record at a time into memory. The other
data of the result set will be loaded dynamically when moving the cursor. This is the

default type.
"wxOPEN_TYPE_SNAPSHOT": Loads all records of a result set at once. This will need

much more memory, but will result in faster access to the ODBC data.
wxRecordSet create
void (create)

Constructs a recordset object, and appends the recordset object to the parent database's list of
recordset objects, for later destruction when the database is destroyed.

The following slots may be initialized.
database: the parent wxDatabase.
type: the type of recordset, see below.
options: not yet used.
Currently there are two possible values of type:
"wxOPEN_TYPE_DYNASET": Loads only one record at a time into memory. The other
data of the result set will be loaded dynamically when moving the cursor. This is the
default type.
"wxOPEN_TYPE_SNAPSHOT": Loads all records of a result set at once. This will need
much more memory, but will result in faster access to the ODBC data.
wxRecordSet delete
bool (delete)
Deletes the recordset. All data except that stored in user-defined variables will be lost. It also
unlinks the recordset object from the parent database's list of recordset objects.
wxRecordSet execute-sql
bool (execute-sqgl string sql)
Directly executes a SQL statement. The data will be presented as a hormal result set. Note that
the recordset must have been created as a snapshot, not dynaset. Dynasets will be implemented

in the near future.

Examples of common SQL statements are given in A selection of SQL commands (page 353).

wxRecordSet get-char-data

string (get-char-data string-or-long col)

216

Returns the character (string) data for the current record at the specified column. The column can
be a name or an integer position (starting from zero).

wxRecordSet get-col-name

string (get-col-name long col)

Gets the name of the coumn at position col. Returns the empty string if col does not exist.

wxRecordSet get-col-type
string (get-col-type string-or-long col)

Gets the name of the coumn at position col or name col. Returns "SQL_TYPE_NULL" if col does
not exist.

See ODBC SQL data types (page 352) for the possible return values from this function.

wxRecordSet get-columns

long (get-columns optional string table = ")

Returns the columns of the table with the specified name. If no name is given, the internal class
member table will be used. If both names are NULL nothing will happen. The data will be
presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER

1 (VARCHAR) TABLE_OWNER

2 (VARCHAR) TABLE_NAME

3 (VARCHAR) COLUMN_NAME

4 (SMALLINT) DATA TYPE

5 (VARCHAR) TYPE_NAME

6 (INTEGER) PRECISION

7 (INTEGER) LENGTH

8 (SMALLINT) SCALE

9 (SMALLINT) RADIX

10 (SMALLINT) NULLABLE

11 (VARCHAR) REMARKS

217

wxRecordSet get-data-sources

bool (get-data-sources)

Gets the currently-defined data sources via the ODBC manager. The data will be presented as a
normal result set. See the documentation for the ODBC function SQLDataSources for how the
data is organized. The name of the source is at column O.

wxRecordSet get-error-code

string (get-error-code)

Returns the error code of the last ODBC action. This will be a string containing one of:

SQL _ERROR General error.

SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.

SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained
from the ODBC manager.

wxRecordSet get-filter
string (get-filter)

Returns the current filter.

wxRecordSet get-float-data

double (get-float-data string-or-long col)

Returns the floating-point data for the current record at the specified column. The column can be
a name or an integer position (starting from zero).

wxRecordSet get-foreign-keys

bool (get-foreign-keys optional string ftable = "™ optional string ktable ="")

Returns a list of foreign keys in the specified table (columns in the specified table that refer to
primary keys in other tables), or a list of foreign keys in other tables that refer to the primary key

in the specified table.

If ptable contains a table name, this function returns a result set containing the primary key of the
specified table.

If ftable contains a table name, this functions returns a result set of containing all of the foreign
keys in the specified table and the primary keys (in other tables) to which they refer.

218

If both ptable and ftable contain table names, this function returns the foreign keys in the table
specified in ftable that refer to the primary key of the table specified in ptable. This should be one
key at most.

GetForeignKeys returns results as a standard result set. If the foreign keys associated with a
primary key are requested, the result set is ordered by FKTABLE_QUALIFIER,
FKTABLE_OWNER, FKTABLE_NAME, and KEY_SEQ. If the primary keys associated with a
foreign key are requested, the result set is ordered by PKTABLE QUALIFIER,
PKTABLE_OWNER, PKTABLE_NAME, and KEY_SEQ. The following table lists the columns in
the result set.

0 (VARCHAR) PKTABLE_QUALIFIER

1 (VARCHAR) PKTABLE_OWNER

2 (VARCHAR) PKTABLE_NAME

3 (VARCHAR) PKCOLUMN_NAME

4 (VARCHAR) FKTABLE_QUALIFIER

5 (VARCHAR) FKTABLE_OWNER

6 (VARCHAR) FKTABLE_NAME

7 (VARCHAR) FKCOLUMN_NAME

8 (SMALLINT) KEY_SEQ

9 (SMALLINT) UPDATE_RULE

10 (SMALLINT) DELETE_RULE

11 (VARCHAR) FK_NAME

12 (VARCHAR) PK_NAME

wxRecordSet get-int-data

long (get-int-data string-or-long col)

Returns the integer data for the current record at the specified column. The column can be a
name or an integer position (starting from zero).

wxRecordSet get-number-cols

long (get-number-cols)

Returns the number of columns in the result set.

wxRecordSet get-number-fields
long (get-number-fields)

Not implemented.

wxRecordSet get-number-params
long (get-number-params)

Not implemented.

219

wxRecordSet get-number-records
long (get-number-records)

Returns the number of records in the result set.

wxRecordSet get-primary-keys
long (get-primary-keys optional string table ="")
Returns the column names that comprise the primary key of the table with the specified name. If

no name is given the class member tablename will be used. If both names are NULL nothing will
happen. The data will be presented as a normal result set, organized as follows:

0 (VARCHAR)
1 (VARCHAR)
2 (VARCHAR)
3 (VARCHAR)
4 (SMALLINT)
5 (VARCHAR)

TABLE_QUALIFIER
TABLE_OWNER
TABLE_NAME
COLUMN_NAME
KEY_SEQ
PK_NAME

wxRecordSet get-result-set

bool (get-result-set)

Copies the data presented by ODBC into the recordset. Depending on the recordset type all or
only one record(s) will be copied. Usually this function will be called automatically after each
successful database operation.

wxRecordSet get-table-name

string (get-table-name)

Returns the name of the current table.

wxRecordSet get-tables

bool (get-tables)

Gets the tables of a database. The data will be presented as a normal result set, organized as

follows:

0 (VARCHAR)
1 (VARCHAR)
2 (VARCHAR)
3 (VARCHAR)

4 (VARCHAR)

TABLE_QUALIFIER

TABLE_OWNER

TABLE_NAME

TABLE_TYPE (TABLE, VIEW, SYSTEM TABLE, GLOBAL TEMPORARY,
LOCAL TEMPORARY, ALIAS, SYNONYM, or database-specific type)
REMARKS

220

wxRecordSet goto
bool (goto long n)

Moves the cursor to the record with the number n, where the first record has the number O.

wxRecordSet is-bof
TRUE (is-bof)

Returns TRUE if the user tried to move the cursor before the first record in the set.

wxRecordSet is-field-dirty
bool (is-field-dirty string-or-long field)

Returns TRUE if the given field has been changed but not saved yet.

wxRecordSet is-field-null
bool (is-field-null string-or-long field)

Returns TRUE if the given field has no data.

wxRecordSet is-col-nullable
bool (is-col-nullable string-or-long field)

Returns TRUE if the given column may contain no data.

wxRecordSet is-eof
bool (is-eof)

Returns TRUE if the user tried to move the cursor behind the last record in the set.

wxRecordSet is-open
bool (is-open)

Returns TRUE if the parent database is open.

wxRecordSet move

bool (move long rows)

221

Moves the cursor a given number of rows. Negative values are allowed.

wxRecordSet move-first
bool (move-first)

Moves the cursor to the first record.

wxRecordSet move-last
bool (move-last)

Moves the cursor to the last record.

wxRecordSet move-next
bool (move-next)

Moves the cursor to the next record.
wxRecordSet move-prev

bool (move-prev)

Moves the cursor to the previous record.
wxRecordSet query

bool (query string columns string table optional string filter)

Start a query. An SQL string of the following type will automatically be generated and executed:
"SELECT columns FROM table WHERE filter".

wxRecordSet set-table-name

bool (set-table-name string table)

Specify the name of the table you want to use. 13.42. wxServer is-a wxObject
See also Interprocess communication overview (page 343)

A server object represents the server side of a DDE conversation.

wxServer service-name
string service-name

The name of the service (or server).

222

wxServer create

void (create)

Creates a server object, and returns an integer id if successful.

The service-name slot should be initialized with a string identifying this service to potential clients.
Under UNIX, it should contain a valid port number.

wxServer on-accept-connection

wxConnection (on-accept-connection string topic)

Should be overrident to return an instance of the appropriate wxConnection class, or nil to reject
the connection.

13.43. wxSlider is-a wxltem

A slider is a panel item for denoting a range of values. It must be a child of a panel or dialog box.

wxSlider min
int min

The slider minimum value.

wxSlider max
int max

The slider maximum value.

wxSlider value
int value

The value of the slider (set-value and get-value can be called after initialization).

wxSlider create

long (create)

Creates a horizontal slider item on the given panel or dialog box. The following slots may be
initialized.

parent: should be a wxPanel or wxDialogBox.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.

223

height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this item.

label: may be absent or a string name to label this item.

style: a bit list of values (see below).

value: an integer for initializing the value of the sider.

min: the minimum value (zero or greater).

max: the maximum value (1 or greater).

style is a bit list of the following:

wXxHORIZONTAL The item will be created as a horizontal slider.
WXVERTICAL The item will be created as a vertical slider.

13.44. wxText is-a wxltem

A text item is used for displaying and editing a single line of text. It must be a child of a panel or
dialog box. See also wxMultiText (page 208) for multiline text items.

wxText value
string value

The initial value. The handlers put-value and get-value are defined for this slot. set-value is a
synonym for put-value.

wxText create
long (create)

Creates a single-line text item on the given panel or dialog box. The following slots may be
initialized.

parent: should be a wxPanel or wxDialogBox.

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this item.

label: may be absent or a string name to label this item.

style: see below.

value: a string for initializing the value of the text item.

The style parameter can be a bit list of the following:

WXTE_PROCESS_ENTER The callback function will receive the event
WXEVENT_TYPE_TEXT_ENTER_COMMAND. Note that this will break tab
traversal for this panel item under Windows. Single-line text only.

WXTE_PASSWORD The text will be echoed as asterisks. Single-line text only.

WXTE_READONLY The text will not be user-editable.

WXHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical
scrollbar is displayed, and lines will be wrapped. This parameter is ignored

224

under XView. Multi-line text only.

wxText set-value

bool (set-value string value)

Set the text item's string value. A synonym for put-value.
13.45. wxTextWindow is-a wxWindow

To display a lot of text, use this subwindow as the child of a wxFrame (page 191). It is capable of
loading and saving files of ASCII text, and the text can be edited directly.

The following callbacks are valid for the dialog box class:
OnChar (Not XView.) The function is called with the text window identifier, key code, and
key event identifier. If the event is an ASCII keypress, the code will correspond to the
ASCII code; otherwise, the programmer must refer to the constants defined in
conmmon. h, in the wxWindows library.
To invoke default processing, call text-window-on-char (to be implemented).
OnSize The function is called with the text window identifier, width and height.
wxTextWindow clear

bool (clear)

Clears the contents of a text subwindow. Returns TRUE if successful, FALSE otherwise.

wxTextWindow copy
bool (copy)

Copies the selected text to the clipboard.

wxTextWindow cut
bool (cut)

Copies the selected text to the clipboard, then removes the selection.

wxTextWindow create
void (create)
Creates a text subwindow. The following slots may be initialized.

parent: should be a wxFrame.

225

X: may be absent or -1 to denote default layout, or zero/positive integer.
y: may be absent or -1 to denote default layout, or zero/positive integer.
width: may be absent or -1 to denote default width, or a positive integer.
height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this canvas.
style: may be absent or a string style: see below.
style is a bit list of some of the following:
wxBORDER Use this style to draw a thin border in Windows (non-native implementation
only).

WXNATIVE_IMPL Use this style to allow editing under Windows, albeit with a 64K
limitation.

wxTextWindow discard-edits
void (discard-edits)

Discard any edits in the text window.

wxTextWindow get-contents
string (get-contents)

Returns the contents (up to a maximum of 1000 characters).

wxTextWindow load-file
bool (load-file string filename)

Load the file onto the text subwindow, returning TRUE for success, FALSE for failure.

wxTextWindow modified
bool (modified)

Returns TRUE if the text has been modified, FALSE otherwise.

wxTextWindow paste
bool (paste)

Pastes the text (if any) from the clipboard to the text window.

wxTextWindow save-file

bool (save-file string filename)

226

Saves the text in the subwindow to the given file, returning TRUE for success, FALSE for failure.

wxTextWindow set-editable
Bool (set-editable bool editable)

Sets the text window to be editable or read-only.

wxTextWindow write

bool (write string text)

Writes the given string into the text window, at the current cursor point.
13.46. wxTimer is-a wxObject

A timer object can be created to notify the application at regular intervals.

wxTimer create

void (create)

Creates a timer object. Use timer-start to start the timer, and register a Notify callback function to
receive notification.

wxTimer start

bool (start long milliseconds)

Starts the timer, notifying at intervals of duration milliseconds.

wxTimer stop

bool (stop)

Stops the timer.

13.47. wxToolBar is-a wxPanel
See also Overview (page 347)

A toolbar is an array of bitmap buttons, implemented by drawing bitmaps onto a canvas, instead
of using the native button implementation.

Note: under XView, wxToolBar inherits from wxCanvas, not wxPanel, due to limitations in the
XView toolkit.

227

wxToolBar create-buttons

bool create-buttons

Specify TRUE if the enhanced underlying wxButtonBar class is to be used (optimized for
Windows), FALSE for the standard wxToolBar class. The default is TRUE.

wxToolBar orientation

string orientation

Specify wxVERTICAL for vertical layout, or wxHORIZONTAL for horizontal layout. Ignored if
doing manual layout.

wxToolBar rows-or-columns

long rows-or-columns

The maximum number of rows or columns in this toolbar (depends on the value of orientation.
Ignored if doing manual layout.

wxToolBar add-separator

bool (add-separator long id)

Adds a separator between tools: only functional under Windows 95, but harmless under other
platforms.

wxToolBar add-tool

bool (add-tool long id long index wxBitmap bitmapl optional wxBitmap bitmap2 = nil
optional bool is-toggle = FALSE optional double x = -1.0 optional double x = 1.0 optional
long client-data = 0 optional string short-help-string="" optional string long-help-string="")
Adds a tool to the toolbar. Pass at least one bitmap, the bitmap to be displayed when active and
not depressed; and optionally, the bitmap to be displayed when the tool is depressed or toggled.
Under Windows, only one bitmap is necessary, and under X, the second bitmap will be created

automatically as the inverse of the first button if none is supplied.

You can specify whether the tool is allowed to toggle, and pass a position if you are not going to
automatically layout the toolbar with toolbar-layout. You can associate client data with the tool.

short-help-string is only used by Windows 95 versions of wxCLIPS. The string is used to supply

text for a tooltip, a small yellow window that appears as the mouse pointer hovers over the button.

long-help-string specifies a longer help string that can be used by the application.

wxToolBar clear-tools

bool (clear-tools)

228

Clears all the tools from the toolbar.

wxToolBar create
void (create)
Creates a toolbar. The following slots may be initialized.

parent: should be a wxFrame.

X: may be absent or -1 to denote default layout, or zero/positive integer.

y: may be absent or -1 to denote default layout, or zero/positive integer.

width: may be absent or -1 to denote default width, or a positive integer.

height: may be absent or -1 to denote default height, or a positive integer.
window-name: may be absent or a string name to identify this toolbar.

style: may be absent or a string style: see below.

create-buttons: should be 1 (the default) if the toolbar should superimpose the user-
supplied buttons onto a larger 3D button. If 0, the tool will be the same size as the
button, and the toggle state will be represented by inverting the tool (Windows) or adding
a border (X).

orientation: specify wxVERTICAL for vertical layout, or wxHORIZONTAL for horizontal
layout. Ignored if doing manual layout.

rows-or-columns: the maximum number of rows or columns in this toolbar (depends on
the value of orientation. Ignored if doing manual layout.

style may be a bit list of:

wxTB_3DBUTTONS: gives a simple 3D look to the buttons.
Note that absolute tool positioning (or the layout function) does not work for buttonbars under
Windows 95: instead, you can specify the number of rows for the toolbar, and use add-separator
to achieve inter-tool spacing.
wxToolBar create-tools
bool (create-tools)
This should be called when creating Windows 95 buttonbars, after all tools have been added. It
adds the tools to the toolbar. You can also call it for non-Windows 95 toolbars and buttonbars, in
which case it will have no effect.
wxToolBar enable-tool

bool (enable-tool long tool-id bool enable)

Enables the tool (if enable is TRUE) or disables it (if enable is FALSE).

wxToolBar get-max-height

double (get-max-height)

229

Gets the maximum height of the toolbar when it has been automatically laid out.

wxToolBar get-max-width
double (get-max-width)

Gets the maximum width of the toolbar when it has been automatically laid out.

wxToolBar get-tool-client-data
long (get-tool-client-data long tool-id)

Returns the client data associated with the given tool.

wxToolBar get-tool-enabled
bool (get-tool-enabled long tool-id)

Returns TRUE if the tool is enabled, FALSE otherwise.

wxToolBar get-tool-long-help
string (get-tool-long-help long tool-id)

Returns the long help string.

wxToolBar get-tool-short-help
string (get-tool-short-help long tool-id)

Returns the short help string.

wxToolBar get-tool-state
bool (get-tool-state long tool-id)

Returns the tool state (TRUE for toggled on, FALSE for off).

wxToolBar layout
bool (layout)

Lays out all the tools if automatic layout is required.

wxToolBar on-paint

230

void (on-paint)

Calls the default toolbar paint handler. You may wish to call this if you override the default
handler.

wxToolBar set-default-size

bool (set-default-size long width long height)

Sets the width and height of tool buttons (Windows only). The default is 24 by 22.

wxToolBar set-margins
bool (set-margins long x long y)

Sets the width and height of the toolbar margins and spacing, if automatic layout is being used.

wxToolBar set-tool-long-help
bool (set-tool-long-help long tool-id string help-string)

Sets the long help string for this tool.

wxToolBar set-tool-short-help
bool (set-tool-short-help long tool-id string help-string)

Sets the short help string for this tool.

wxToolBar toggle-tool

bool (toggle-tool long tool-id bool toggle)

Toggles the tool on or off.

13.48. wxWindow is-a wxEvtHandler

The wxWindow is an 'abstract' class, used to access the functionality of classes derived from it.
Therefore, please refer to this section when considering other classes.

wxWindow x

long x

The x coordinate of the window.

231

wxWindow y

longy

The window y coordinate.

wxWindow width
long width

The window width.

wxWindow height
long height

The window height.

wxWindow client-width
long client-width

The window client width (space available for contents of this window).

wxWindow client-height
long client-height

The window client height (space available for contents of this window).

wxWindow centre

bool (centre word orientation)

orientation may be wxVERTICAL, wxHORIZONTAL or wxBOTH. Centres the window with
respect to its parent (or desktop).

wxWindow enable

bool (enable bool enable)

If enable is TRUE, enables the window for input. If enable is FALSE, the window is disabled
(greyed out in the case of a panel item).

wxWindow find-window-by-name

wxWindow (find-window-by-name string name)

232

Finds the descendant window for this window.

wxWindow find-window-by-label
wxWindow (find-window-by-label string label)

Finds the descendant window for this window.

wxWindow fit
bool (fit)

Fits the panel, dialog box or frame around its children.

wxWindow get-name
string (get-name)

Gets the window's name (the 'name' parameter passed to a window constructor).

wxWindow get-parent
wxWindow (get-parent)

Gets the window's parent, or nil if there no parent.

wxWindow make-modal
bool (make-modal bool modal)

modal may be TRUE to disable all frames and dialog boxes except this one, or FALSE to enable
all frames and dialogs again.

Has no effect under XView.

wxWindow popup-menu
bool (popup-menu wxMenu menu double x double y)

Pops up a menu on the window, at the given position. The menu will be dismissed (but not
destroyed) when the user makes a selection.

Note that there is a reliability problem with Motif popup menus; they may not pop up after the first
time.

wxWindow set-cursor

233

bool (set-cursor wxCursor cursor)

Sets the cursor for this window.

wxWindow set-focus
bool (set-focus)

Set this window to have the keyboard focus.

wxWindow set-size
bool (set-size long x long y long width long height)

Sets the position and size of the window.

wxWindow set-client-size
bool (set-client-size long width long height)

Sets the client size (available space for child windows) of the window.

wxWindow show
bool (show long show)
If show is TRUE, shows the window. If show is FALSE, the window is hidden. If the window is a

modal dialog box, show = TRUE will start the modal loop, and show = FALSE will terminate the
loop (allowing execution to proceed after the first call to show).

234

14. wxCLIPS function groups

This is the reference for CLIPS windowing and other, miscellaneous functions. With these
functions, it is possible to create special-purpose user interfaces independent of platform.
Currently these capabilities are supported under MS Windows, Open Look and Motif.

14.1. How to use this reference

In the function definitions below, bold words are types, and are not part of CLIPS syntax.
Parameter names are in italics. Types are as follows:

double is a double-precision floating point number.
long is a long integer.

string is a double-quoted ASCII string.

word is an unquoted string.

multifield is a CLIPS multi-field value list.

Parameters can be optional, in which case defaults are assumed.

Some parameters can be bit lists of flags. wxCLIPS mimics the compact C++ syntax by parsing
strings, for example:

(frame-create ... "wxSDI | wxDEFAULT")

Each identifier in such a parameter is translated to an integer value, and all are logical-or'ed
together to produce an integer which is passed to the appropriate wxWindows C++ function.

Note: In Windows NT or WIN32s versions of Hardy, integer identifiers can be negative. So when
validating integer identifiers, test for values of zero or -1, rather than for values less than zero.

Functions are grouped by class: in the underlying C++ library wxWindows, these are actual C++
classes. The functions are used in an object-oriented way, in that long integer identifiers
represent an object, or instance, of a particular class. Some functions operate on several classes
of object; for example, the functions prefixed window operate on classes derived from window,
such as canvas, frame, dialog box, panel item. Similarly, the functions prefixed dc operate on
different kinds of device context.

Most functions either take an integer identifier (checking its type before doing the appropriate
thing) or return a new one.

In C++, the application would derive new classes and override certain member functions, such as
OnClose, to intercept messages or events sent to the window objects. In CLIPS, the same effect
is achieved by registering callback functions for specific events, using window-add-callback (page
Error! Bookmark not defined.).

14.2. Application

One object of class "application’ is always present, and its implementation depends upon the C++
application hosting the wxCLIPS environment.

If an application defines a function called app-on-init, the wxCLIPS user interface can start up the
application from a standard menu item, or straightaway if the -start flag is used on the command
line. This function is not relevant to embedded versions of wxCLIPS.

If app-on-init is defined, it must initialize the main frame and return its integer identifier, or zero if

the application could not be initialized.
The following callbacks are valid for the app class.
OnCharHook Under Windows only, all key strokes going to a dialog box or frame can be
intercepted before being passed on for normal processing. This callback function takes
the window id and event id, and should return 1 to override further processing, or 0 to do

default processing. If the function returns 0, the OnCharHook message will be sent to
the active window. See also Key event (page 283).

app-create

long (app-create)

Returns the identifier of the current application object. If called multiple times, will always return
the same number since there is only one application object, which will have been created before
WXCLIPS is initialized.

app-get-show-frame-on-init

long (app-get-show-frame-on-init long id)

Returns 1 if the application will show the top-level frame automatically on initialization, O
otherwise.

You can pass 0 or a return value from app-create for the id parameter.

app-on-init

long (app-on-init)

If defined, should initialize the application and return the identifer of the top-level frame, or zero if
there is no main window associated with the CLIPS program. If zero is returned, the wxCLIPS

development window will be created if it does not already exist. Under Windows, you may call
show-ide-window (page Error! Bookmark not defined.) from this function.

app-set-show-frame-on-init

void (app-set-show-frame-on-init long id long show)

Called before on-app-init returns, can change the behaviour of wxCLIPS to not force a 'show' of
the main frame. This might be needed if you wish to set the focus for a different window on
initialization. show should be 0 to disable showing, 1 otherwise (the default behaviour).

You can pass 0 or a return value from app-create for the id parameter.

14.3. Bitmap

A bitmap is a rectangular array of pixels, possibly in colour. A bitmap can be created in memory,
or loaded from an XBM file under X, or BMP file under Windows.

236

A bitmap can be drawn on a canvas by selecting it into a memory-dc (page 287) object and using
dc-blit (page Error! Bookmark not defined.). Bitmaps can also be used to create buttons; see
button-create-from-bitmap (page Error! Bookmark not defined.).

bitmap-create

long (bitmap-create float width float height optional int depth)

Creates a bitmap in memory. The programmer can draw into the bitmap by selecting it into a
memory device context, for later drawing on an output device context such as a canvas device
context.

bitmap-delete

long (bitmap-delete long bitmap-id)

Deletes the given bitmap.

bitmap-get-colourmap
long (bitmap-get-colourmap long id)

Gets the colourmap associated with the bitmap; if none, zero will be returned.

bitmap-get-height
long (bitmap-get-height long id)

Gets the height of the bitmap.

bitmap-get-width
long (bitmap-get-width long id)

Gets the width of the bitmap.

bitmap-load-from-file

long (bitmap-load-from-file string file optional word bitmap-type)
Loads a bitmap from a file, and returns a new bitmap identifier.
bitmap-type specifies the type of bitmap to be loaded, and may be one of:

wWxBITMAP_TYPE_BMP: Windows BMP (the default under Windows).
WXBITMAP_TYPE_XBM: X monochrome bitmap (the default under X).
WXBITMAP_TYPE_GIF: GIF bitmap (only under X).

WXBITMAP_TYPE_XPM: XPM colour bitmap (under Windows and X if wxCLIPS has

237

been compiled to include this option).
wxBITMAP_TYPE_RESOURCE: Windows resource bitmap; unlikely to be used since
the resources compiled into wxCLIPS cannot be changed from CLIPS.

Note that whether any of these formats are available depends on how wxCLIPS was compiled.

14.4. Brush

A brush is a an object that can be set for a device context (see canvas-get-dc (page Error!
Bookmark not defined.), device context (page 258)) and determines the fill colour and style for
subsequent drawing operations.

See also pen (page 299).

brush-create

long (brush-create string colour word style)
long (brush-create long colour-value word style)
Creates a brush for use in a device context.

colour is a wxWindows colour string such as "BLACK", "CYAN"), and style may be one of
wxSOLID, wxTRANSPARENT.

colour-value is a value returned from colour-create (page Error! Bookmark not defined.).

A brush must be set to fill graphic shapes.

brush-delete
long (brush-delete long brush-id)
Deletes the given brush.

14.5. Button

A button is a rectangular control which can be placed on a panel (page 297) to invoke a function.

button-create

long (button-create long panel-id string callback string label

optional long x optional long y

optional long width optional long height optional string style optional string name)
Creates a label button on the given panel. The callback may be the empty string (") to denote no
callback, or a word or string for the function name. The function will be called when the button is
pressed, with the button ID as argument. If no position is given, the panel item is placed after the
last item. The value -1 may be passed to denote a default, so that the position may be left
unspecified and the size given.

The style argument is reserved for future use.

238

name gives the button a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

button-create-from-bitmap

long (button-create-from-bitmap long panel-id string callback long bitmap-id

optional long x optional long y

optional long width optional long height optional string style optional string name)
Creates a bitmap button on the given panel. The callback may be the empty string (") to denote
no callback, or a word or string for the function name. The function will be called when the button
is pressed, with the button ID as argument. If no position is given, the panel item is placed after
the last item. The value -1 may be passed to denote a default, so that the position may be left
unspecified and the size given.

The style argument is reserved for future use.

name gives the button a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

14.6. Canvas
A subwindow used for drawing arbitrary graphics. It must be the child of a frame (page 266).
The following callbacks are valid for the canvas class.

OnChar The function is called with the canvas identifier, key code, and key event identifier. If
the event is an ASCII keypress, the code will correspond to the ASCII code; otherwise,
the programmer must refer to the constants defined in conmron. h, in the wxWindows
library. See also Key event (page 283).

OnEvent Called with a canvas identifier and a mouse event (page 292) identifier.

OnScroll Called with a canvas identifier and a command event (page 246) identifier.

OnPaint Called with a canvas identifier when the canvas receives a repaint event from the
window manager.

OnSize The function is called with the window identifier, width and height.

See also window-add-callback (page Error! Bookmark not defined.).

canvas-create

long (canvas-create long parent-id optional long x optional long y
optional long width optional long height optional string style="wxRETAINED" optional
string name)

Creates a canvas for drawing graphics on. parent-id must be a valid frame ID.

The value of style can be a bit list of the following values:

wxBORDER Gives the canvas a thin border (Windows 3 and Motif only).

WXRETAINED Gives the canvas a wxWindows-implemented backing store, making repainting

much faster but at a potentially costly memory premium (XView and Motif only).
WXBACKINGSTORE Gives the canvas an X-implemented backing store (XView and Motif

239

only). The X server may choose to ignore this request, whereas wxRETAINED is
always implemented under X.

name gives the canvas a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

canvas-get-dc

long (canvas-get-dc long canvas-id)

Return the device context handle belonging to the canvas. The device context must be retrieved
before anything can be drawn on the canvas. If your drawing function is parameterized by a
device context, you will be able to pass other types of device context to your drawing routine,
such as PostScript and Windows metafile device contexts.

canvas-get-scroll-page-x

long (canvas-get-scroll-page-x long canvas-id)

Gets the number of lines per horizontal scroll page.

canvas-get-scroll-page-y
long (canvas-get-scroll-page-y long canvas-id)

Gets the number of lines per vertical scroll page.

canvas-get-scroll-pos-x
long (canvas-get-scroll-pos-x long canvas-id)

Gets the horizontal scroll position in scroll units.

canvas-get-scroll-pos-y
long (canvas-get-scroll-pos-y long canvas-id)

Gets the vertical scroll position in scroll units.

canvas-get-scroll-range-x
long (canvas-get-scroll-range-x long canvas-id)

Gets the number of horizontal scroll positions.

canvas-get-scroll-range-y

240

long (canvas-get-scroll-range-y long canvas-id)

Gets the number of vertical scroll positions.

canvas-get-scroll-pixels-per-unit-x
long (canvas-get-scroll-pixels-per-unit-x long canvas-id)

Gets the number of pixels per horizontal scroll unit, as set in canvas-set-scrollbars (page Error!
Bookmark not defined.).

canvas-get-scroll-pixels-per-unit-x
long (canvas-get-scroll-pixels-per-unit-y long canvas-id)

Gets the number of pixels per vertical scroll unit, as set in canvas-set-scrollbars (page Error!
Bookmark not defined.).

canvas-on-char
long (canvas-on-char long panel-id long event-id)

The default implementation of the OnChar callback. Call this to pass intercepted characters
through to the canvas.

canvas-on-scroll
long (canvas-on-scroll long panel-id long event-id)

The default implementation of the OnScroll callback.

canvas-set-scrollbars

long (canvas-set-scrollbars long canvas-id long x-unit-size long y-unit-size
long x-length long y-length long x-page-length long y-page-length)

Set the scrollbars for the given canvas. The first argument pair specifies the number of pixels per
logical scroll unit, that is, the number of pixels to scroll when a scroll arrow is clicked. If either is
zero or less, that scrollbar will not appear. The second pair specifies the size of the virtual canvas
in logical scroll units. The third pair of arguments specify the number of scroll units per page, that
is, the amount to scroll by when the scrollbar is page-scrolled (usually by clicking either side of
the scrollbar handle).

canvas-set-scroll-page-x
void (canvas-set-scroll-page-x long canvas-id long value)

Sets the number of lines per horizontal scroll page.

241

canvas-set-scroll-page-y
void (canvas-set-scroll-page-y long canvas-id long value)

Sets the number of lines per vertical scroll page.

canvas-set-scroll-pos-x
void (canvas-set-scroll-pos-x long canvas-id long value)

Sets the horizontal scroll position.

canvas-set-scroll-pos-y
void (canvas-set-scroll-pos-y long canvas-id long value)

Sets the vertical scroll position.

canvas-set-scroll-range-x
void (canvas-set-scroll-range-x long canvas-id long value)

Sets the number of positions on the horizontal scrollbar.

canvas-set-scroll-range-y
void (canvas-set-scroll-range-y long canvas-id long value)

Sets the number of positions on the vertical scrollbar.

canvas-scroll

long (canvas-scroll long canvas-id long x-position long y-position)

Scroll the canvas programmatically to the given scroll position. To convert from pixel position to
scroll position, divide the pixel position by the scroll unit size you passed to canvas-set-scrollbars
(page Error! Bookmark not defined.).

canvas-view-start-x

long (canvas-view-start-x long canvas-id)

Returns the first visible horizontal scroll position. Note this is in scroll units, not pixel, so to convert

to pixel position you need to multiply this value by the result of canvas-get-scroll-pixels-per-unit-x
(page Error! Bookmark not defined.).

242

canvas-view-start-y
long (canvas-view-start-y long canvas-id)
Returns the first visible vertical scroll position. Note this is in scroll units, not pixel, so to convert to

pixel position you need to multiply this value by the result of canvas-get-scroll-pixels-per-unit-y
(page Error! Bookmark not defined.).

14.7. Checkbox
A checkbox is a small box with a label, and can be in one of two states. It must be the child of a
panel (page 297).
check-box-create
long (check-box-create long panel-id string callback string label

optional long x optional long y

optional long width optional long height optional string style

optional string name)
Creates a checkbox on the given panel. The callback may be the empty string (") to denote no
callback, or a word or string for the function name. The function will be called when the checkbox
is turned on or off, with the checkbox ID as argument. If no position is given, the panel item is
placed after the last item. The value -1 may be passed to denote a default, so that the position
may be left unspecified and the size given.

The style parameter is reserved for future use.

name gives the checkbox a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

check-box-set-value

long (check-box-set-value long check-box-id long value)

Set the check box value (0 or 1).

check-box-get-value

long (check-box-get-value long check-box-id)

Gets the check box value (0 or 1).

14.8. Choice

A choice item is similar to a single-selection listbox (page 284) but normally only the current

selection is displayed. It must be the child of a panel (page 297).

choice-create

243

long (choice-create long panel-id string callback string label

optional long x optional long y optional long width optional long height

optional multifield strings optional string style optional string name)
Creates a choice item on the given panel. A choice consists of a list of strings, one of which may
be selected and displayed at any one time. The callback may be the empty string (") to denote
no callback, or a word or string for the function name. The function will be called when an item in
the choice list is selected, with the choice ID as argument. If no position is given, the panel item is
placed after the last item. The value -1 may be passed to denote a default, so that the position
may be left unspecified and the size given.
strings should be a multifield of strings. Note that under Motif, it is recommended that the values
are passed in this function, rather than using choice-append, because of the nature of Motif (i.e.
horrible). Otherwise, things are likely to be messed up.
The style parameter is reserved for future use.

name gives the choice item a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

choice-append

long (choice-append long choice-id string item)

Append the string item to the choice.

choice-find-string
long (choice-find-string long choice-id string item)

Searches for the given string and if found, returns the position ID of the string.

choice-clear
long (choice-clear long choice-id)

Clears all the strings from the choice item.

choice-get-selection
long (choice-get-selection long choice-id)

Get the ID of the string currently selected.

choice-get-string-selection
string (choice-get-string-selection long choice-id)

Get the string currently selected.

244

choice-set-selection
long (choice-set-selection long choice-id long item-id)

Sets the choice selection to the given item ID (numbered from zero).

choice-set-string-selection
long (choice-set-string-selection long choice-id string item)

Set the selection by passing the appropriate item string.

choice-get-string
string (choice-get-string long choice-id long item-id)

Get the string associated with the given item ID.

choice-number

long (choice-number long choice-id)

Returns the number of strings in the choice item.

14.9. Client

See also Interprocess communication overview (page 343)

A client object represents the client side of a DDE conversation.

To delete a client object, use object-delete.

client-create

long (client-create)

Creates a client object, returning the integer id of the object if successful. No event handlers need

be defined for a client object.

A connection is not made until client-make-connection (page Error! Bookmark not defined.) is

called.

client-make-connection

long (client-make-connection long id string host string service string topic)

Makes a connection to a server, returning the id of the connection if successful.

245

id is the client id returned from client-create.

host is ignored under Windows, and should contain a valid internet host name under X.
service is a DDE service identifier (under X should contain a socket identifier).

topic is a topic name for this connection.

Any connection event handlers should be defined by the application code after this function is
called, assuming the return result is not zero.

14.10. Colour

A colour value is not in fact a class, but a long integer which contains the values of the red, green
and blue components in a colour. A colour value may be passed to pen and brush creation
functions, and also to some Grid (page 272) member functions.

colour-create

long (colour-create long red long green long blue)

long (colour-create long parent-id string name) A colour value may be created either by
passing red, green and blue values, or by passing a colour name such as RED.

colour-red

long (colour-red long colour)

Returns the red component of the colour, a number between 0 and 255.

colour-green
long (colour-green long colour)

Returns the green component of the colour, a number between 0 and 255.

colour-blue

long (colour-blue long colour)

Returns the blue component of the colour, a number between 0 and 255.

14.11. Command event

A command event is associated with each panel item or menu callback. It is not passed to the
callback, so must be retrieved within a callback using panel-item-get-command-event (page

Error! Bookmark not defined.).

The command event types are as follows:

246

WXEVENT_TYPE_BUTTON_COMMAND
WXEVENT_TYPE_CHECKBOX_COMMAND
WXEVENT_TYPE_CHOICE_COMMAND
WXEVENT_TYPE_LISTBOX_COMMAND
WXEVENT_TYPE_TEXT_COMMAND
WXEVENT_TYPE_TEXT_ENTER_COMMAND
WXEVENT_TYPE_MULTITEXT_COMMAND
WXEVENT_TYPE_MENU_COMMAND
WXEVENT_TYPE_SLIDER_COMMAND
WXEVENT_TYPE_RADIOBOX_COMMAND
WXEVENT_TYPE_SET_FOCUS
WXEVENT_TYPE_KILL_FOCUS

command-event-get-selection

long (command-event-get-selection long id)

Returns the identifier selection corresponding to the selected item, for example a listbox or menu
item.

command-event-is-selection

long (command-event-is-selection long id)

Returns 1 if the event was a selection event, 0 otherwise.

14.12. Connection

See also Connection overview (page 344)

A connection object id is used for initiating DDE commands and requests using functions such as
connection-execute, and it also has event handlers associated with it to respond to commands
from the other side of the connection.

connection-advise

long (connection-advise long id string item string data)

Called by a server application to pass data to a client (for example, when a spreadsheet cell has
been updated, and the client is interested in this value).

item is the name of the item, and data is a string representing the item's data.

Returns 1 if successful, 0 otherwise.

connection-create
long (connection-create)

Creates a connection object. Note that if you use the server OnAcceptConnection callback, the

247

object will be created for you. If you use OnAcceptConnectionEx then you must call connection-
create yourself from within that callback.

connection-execute

long (connection-execute long id string data)

Called by a client application to execute a command in the server. Note there is no item in this
command.

data is a string representing the item's data.

Returns 1 if successful, 0 otherwise.

To get a result from a server, you need to call connection-request explicitly, since connection-
execute doesn't return data.

connection-disconnect

long (connection-disconnect long id)

Called by a client or server application to terminate this connection. After this call, the connection
id is no longer valid.

Returns 1 if successful, 0 otherwise.

connection-poke

long (connection-poke long id string item string data)

Called by a client application to poke data into the server.

item is the name of the item, and data is a string representing the item's data.

Returns 1 if successful, 0 otherwise.

connection-request

string (connection-request long id string item)

Called by a client application to request data from a server.
item is the name of the requested data item.

Returns a string representing the data if successful, the empty string otherwise.

connection-start-advise

long (connection-start-advise long id string item)

248

Called by a client application to indicate interest in a particular piece of data in a server. The client
connection should then recieve OnAdvise messages when the data is updated in the server.

item is the name of the data item of interest.

Returns 1 if the advise loop is allowed, 0 otherwise.

connection-stop-advise
long (connection-stop-advise long id string item)

Called by a client application to indicate a termination of interest in a particular piece of data in a
server.

item is the name of the data item of interest.

Returns 1 if successful, 0 otherwise.
14.13. Cursor

A cursor is a small bitmap used for representing the mouse pointer. It can be set for a particular
subwindow, using window-set-cursor, as a cue for what operations are possible in this window at
this point in time.

At present, it is only possible to create a cursor in wxCLIPS from a fixed range of cursor types.

cursor-create
long (cursor-create string stock-cursor-name)
Creates a stock cursor. stock-cursor-name must be one of the following:

WXCURSOR_ARROW
WXCURSOR_BULLSEYE
WXCURSOR_CHAR
WXCURSOR_CROSS
WXCURSOR_HAND
WXxCURSOR_IBEAM
WXCURSOR_LEFT_BUTTON
WXCURSOR_MAGNIFIER
WXxCURSOR_MIDDLE_BUTTON
WXCURSOR_NO_ENTRY
WXCURSOR_PAINT_BRUSH
WxCURSOR_PENCIL
WXCURSOR_POINT_LEFT
WXCURSOR_POINT_RIGHT
WXCURSOR_QUESTION_ARROW
WXCURSOR_RIGHT _BUTTON
WXCURSOR_SIZENESW
WXCURSOR_SIZENS
WXCURSOR_SIZENWSE
WXCURSOR_SIZEWE

249

WXCURSOR_SIZING
WXCURSOR_SPRAYCAN

WXCURSOR_WAIT

WXCURSOR_WATCH

WXxCURSOR_BLANK
WXCURSOR_CROSS_REVERSE (X only)
WXxCURSOR_DOUBLE_ARROW (X only)
WXxCURSOR_BASED_ARROW._UP (X only)
WXxCURSOR_BASED_ARROW_DOWN (X only)

cursor-delete
long (cursor-delete long cursor-id)

Deletes the given cursor.

cursor-load-from-file

long (cursor-load-from-file string filename word bitmap-type optional long hotspot-x
optional long hotspot-y)

Loads a cursor from a file.

hotspot-x and hotspot-y are currently only used under Windows when loading from an icon file, to
specify the cursor hotspot relative to the top left of the image.

Under X, the permitted cursor types in bitmap-type are:
WXBITMAP_TYPE_XBM Load an X bitmap file

Under Windows, the permitted types are:
WXBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h).
WXBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as specified in the .rc
file).
WXBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if

USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h). Specify hotSpotX
and hotSpotY.

14.14. Database

See also Database classes overview (page 349)

Every database object represents an ODBC connection. The connection may be closed and
reopened.

database-close

long (database-close long id)

250

Resets the statement handles of any associated recordset objects, and disconnects from the
current data source.

database-create

long (database-create)

Creates a new ODBC database handle and returns an id. The constructor of the first wxDatabase
instance of an application initializes the ODBC manager.

database-delete

long (database-delete long id)

Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

database-error-occurred
long (database-error-occurred long id)

Returns 1 if the last action caused an error.

database-get-database-name
string (database-get-database-name long id)

Returns the name of the database associated with the current connection.

database-get-data-source
string (database-get-data-source long id)

Returns the name of the connected data source.

database-get-error-code
string (database-get-error-code long id)
Returns the error code of the last ODBC function call. This will be a string containing one of:

SQL _ERROR General error.

SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.

SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained
from the ODBC manager.

251

database-get-error-message
string (database-get-error-message long id)

Returns the last error message returned by the ODBC manager.

database-get-error-number
long (database-get-error-number long id)

Returns the last native error. A native error is an ODBC driver dependent error number.

database-is-open
long (database-is-open long id)

Returns 1 if a connection is open.

database-open

long (database-open long id string datasource optional long exclusive = 1 optional string
readonly = 1 optional string username = "ODBC" optional string password ="")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readonly are not used.

14.15. Date

A class for manipulating dates.

date-add-months
long (date-add-months long date long months)

Adds the given number of months to the date, returning 1 if successful.

date-add-weeks
long (date-add-weeks long date long weeks)

Adds the given number of weeks to the date, returning 1 if successful.

date-add-years

long (date-add-years long date long years)

252

Adds the given number of months to the date, returning 1 if successful.

date-create
long (date-create)

Constructs a date object, initialized to zero. You are responsible for deleting this object when you
have finished with it.

long (date-create long month long day long year)

Constructs a date object with the specified date. You are responsible for deleting this object when
you have finished with it.

month is a number from 1 to 12.
day is a number from 1 to 31.

year is a year, such as 1995, 2005.

date-create-julian
long (date-create-julian long julian)

Constructor taking an integer representing the Julian date.

date-create-string
long (date-create-string string date)

Constructor taking a string representing a date. This must be either the string TODAY, or of the
form MM DY YYYY or MMt DD- YYYY. For example:

(bind ?date (date-create-string "11/26/1966"))

date-delete
long (date-delete long date)

Deletes the date object.

date-format
string (date-format long date)

Formats the date into a string according to the current display type.

date-get-day

253

long (date-get-day long date)

Returns the numeric day (in the range 1 to 365).

date-get-day-of-week
long (date-get-day-of-week long date)

Returns the integer day of the week (in the range 1 to 7).

date-get-day-of-week-name
string (get-day-of-week-name long date)

Returns the name of the day of week.

date-get-day-of-year
long (date-get-day-of-year long date)

Returns the day of the year (from 1 to 365).

date-get-days-in-month
long (date-get-days-in-month long date)

Returns the number of days in the month (in the range 1 to 31).

date-get-first-day-of-month
long (date-get-first-day-of-month long date)

Returns the day of week that is first in the month (in the range 1 to 7).

date-get-julian-date
long (date-get-julian-date long date)

Returns the Julian date.

date-get-month
long (date-get-month long date)

Returns the month number (in the range 1 to 12).

254

date-get-month-end

long (date-get-month-end long date)

Returns a new date representing the day that is last in the month. The new date must be deleted
when it is finished with.

date-get-month-name

string (date-get-month-name long date)

Returns the name of the month.

date-get-month-start

long (date-get-month-start long date)

Returns a new date representing the first day of the month. The new date must be deleted when
it is finished with.

date-get-week-of-month

long (date-get-week-of-month long date)

Returns the week of month (in the range 1 to 6).

date-get-week-of-year
long (date-get-week-of-year long date)

Returns the week of year (in the range 1 to 52).

date-get-year
long (date-get-year long date)

Returns the year as an integer (such as '1995").

date-get-year-end
long (date-get-year-end long date)
Returns a new date the date representing the last day of the year. Delete the new date when you

have finished with it.

date-get-year-start

255

long (date-get-year-start long date)

Returns a new date the date representing the first day of the year. Delete the new date when you
have finished with it.

date-is-leap-year

long (date-is-leap-year long date)

Returns 1 if the year of this date is a leap year.

date-set-current-date
long (date-set-current-date long date)

Sets the date to current system date.

date-set-julian
long (date-set-julian long date long julian)

Sets the date to the given Julian date.

date-set-date

long (date-set-date long date long month long day long year)
Sets the date to the given date.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

date-set-format
long (date-set-format long date string format)
Sets the current format type.

format should be one of:

WxDAY Format day only.

WXMONTH Format month only.

wxMDY Format MONTH, DAY, YEAR.

wxFULL Format day, month and year in US style: DAYOFWEEK, MONTH, DAY, YEAR.

WXEUROPEAN Format day, month and year in European style: DAY, MONTH, YEAR.

256

date-set-option
long (date-set-option long date string option long enable=1)
Enables or disables an option for formatting. option may be one of:

wWxNO_CENTURY The century is not formatted.
WXDATE_ABBR Month and day names are abbreviated to 3 characters when formatting.

date-add-days
long (date-add-days long date long days)

Adds an integer number of days to the date, returning a new date object.

date-subtract-days
long (date-subtract-days long date long days)

Subtracts an integer number of days from the date, returning a new date object.

date-subtract
long (date-subtract long date long datel long date2)

Subtracts one date from another, return the number of intervening days.

date-add-self
long (date-add-self long date long days)

Adds an integer number of days to the date, returning 1 if successful.

date-subtract-self
long (date-subtract-self long date long days)

Subtracts an integer number of days from the date, returning 1 if successful.

date-le
long (date-le long datel long date?2)

Function to compare two dates, returning 1 if datel is earlier than date2.

257

date-leq
long (date-leq long datel long date2)

Function to compare two dates, returning 1 if datel is earlier than or equal to date2.

date-ge
long (date-ge long datel long date2)

Function to compare two dates, returning 1 if datel is later than date2.

date-geq
long (date-geq long datel long date2)

Function to compare two dates, returning 1 if datel is later than or equal to date2.

date-eq
long (date-eq long datel long date?2)

Function to compare two dates, returning 1 if datel is equal to date2.

date-neq

long (date-neq long datel long date2)

Function to compare two dates, returning 1 if datel is not equal to date2.

14.16. Device context

See also Overview (page 346)

A device context is an abstraction of a surface that can be drawn onto.

The following functions can be used with any device context identifier, with the exception of dc-blit
which must not be used with a PostScript device context, and dc-get-text-extent-width, dc-get-
text-extent-height which do not function correctly on PostScript or metafile device contexts.
dc-begin-drawing

long (dc-begin-drawing long id)

Bracket a series of drawing primitives in dc-begin-drawing and dc-end-drawing to optimize

drawing under Windows, and also if drawing to a panel or dialog box context, for which these
calls are mandatory. The calls may be nested.

258

dc-blit

long (dc-blit long dest-dc-id double dest-x double dest-y double width double height long
source-dc-id double source-x double source-y optional string logical-op = "wxCOPY")

Block-copies the given area from a source device context to a destination device context. This
operation is not available to PostScript and Windows Metafile destination device contexts.

The argument logical-op sets the current logical function for the canvas. This determines how a
source pixel from the source device context combines with a destination pixel in the current

device context.

The possible values and their meaning in terms of source and destination pixel values are as

follows:

wx AND

WXAND_| NVERT
WXAND REVERSE
wx CLEAR

wx COPY

wWx EQUI V

wx | NVERT

wx NAND

WX NOR
wxNO_OP

wx OR

WX OR | NVERT
wxOR_REVERSE
WX SET

WX SRC | NVERT
wx XOR

src AND dst
(NOT src) AND dst
src AND (NOT dst)

0

src

(NOT src) XOR dst
NOT dst

(NOT src) OR (NOT dst)
(NOT src) AND (NOT dst)
dst

src OR dst

(NOT src) OR dst

src OR (NOT dst)

1

NOT src

src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine the
current colour and the background using a logical operation. wxXOR is commonly used for
drawing rubber bands or moving outlines, since drawing twice reverts to the original colour.

dc-clear

long (dc-clear long dc-id)

Clears the device context using the background colour.

dc-delete
long (dc-delete long dc-id)

Deletes a device context that has been explicitly created (so not a canvas DC).

dc-destroy-clipping-region

long (dc-destroy-clipping-region long dc-id)

259

Destroys the current clipping region.

dc-draw-ellipse

long (dc-draw-ellipse long dc-id
double x double y double width double height)

Draws an ellipse. The outline and filling attributes are determined by the pen and brush settings
respectively.
dc-draw-line

long (dc-draw-line long dc-id
double x1 double y1 double x2 double y2)

Draws a line between the given points.

dc-draw-lines

long (dc-draw-lines long dc-id multifield list)

Draws lines between the given points. list is a multifield, which can be created by a call to mv-
append and a list of arguments. The list must contain an even number of floating-point values,
interpreted in pairs as the points determining the multiline.

dc-draw-point

long (dc-draw-point long dc-id double x double y)

Draws a point.

dc-draw-polygon

long (dc-draw-polygon long dc-id multifield list)

Draws a (possibly filled) polygon. list is a multifield, which can be created by a call to mv-append
and a list of arguments. The list must contain an even number of floating-point values, interpreted

in pairs as the points determining the polygon. The outline and filling attributes are determined by
the pen and brush settings respectively.

dc-draw-rectangle

long (dc-draw-rectangle long dc-id
double x double y double width double height)

Draws a rectangle. The outline and filling attributes are determined by the pen and brush settings
respectively.

260

dc-draw-rounded-rectangle

long (dc-draw-rounded-rectangle long dc-id
double x double y double width double height double radius)

Draws a rounded rectangle, with corners with a specified radius (optional). The outline and filling
attributes are determined by the pen and brush settings respectively.
dc-draw-text

long (dc-draw-text long dc-id
string text double x double y)

Draw text at the given position, using the font set by dc-set-font (page Error! Bookmark not
defined.), and using the colours set by dc-set-text-foreground (page Error! Bookmark not
defined.) and dc-set-text-background (page Error! Bookmark not defined.) respectively.
dc-draw-spline

long (dc-draw-spline long dc-id multifield list)

Draws a spline curve. list is a multifield, which can be created by a call to mv-append and a list of
arguments. The list must contain an even number of floating-point values, interpreted in pairs as
the points determining the spline shape.

dc-end-doc

long (dc-end-doc long dc-id)

Ends a document (such as a PostScript or Windows printer document).

dc-end-drawing

long (dc-end-drawing long id)

Bracket a series of drawing primitives in dc-begin-drawing and dc-end-drawing to optimize
drawing under Windows, and also if drawing to a panel or dialog box context, for which these
calls are mandatory. The calls may be nested.

dc-end-page

long (dc-end-page long dc-id)

Ends a page.

dc-get-min-x

261

double (dc-get-min-x long dc-id)

Returns the minimum X value drawn so far on the device context.

dc-get-min-y
double (dc-get-min-y long dc-id)

Returns the minimum Y value drawn so far on the device context.

dc-get-max-x
double (dc-get-max-x long dc-id)

Returns the maximum X value drawn so far on the device context.

dc-get-max-y
double (dc-get-max-y long dc-id)

Returns the maximum Y value drawn so far on the device context.

dc-get-text-extent-height
double (dc-get-text-extent-height long dc-id string text)

Returns the height of the text as drawn on this device context, in logical units.

dc-get-text-extent-width
double (dc-get-text-extent-width long dc-id string text)

Returns the width of the text as drawn on this device context, in logical units.

dc-ok

long (dc-ok long id)

Returns 1 if the device context is OK (usually meaning, it has been initialised correctly), and 0
otherwise.

dc-start-doc

long (dc-start-doc long dc-id string message)

Starts a document (such as a PostScript or Windows printer document) using the given string for
any associated message box (the message is not in fact currently used).

262

dc-start-page
long (dc-start-page long dc-id)

Starts a page.

dc-set-background
long (dc-set-background long dc-id long brush)

Sets the background brush.

dc-set-background-mode

long (dc-set-background-mode long dc-id string mode)

Sets the mode for drawing text background.

mode may be wxSOLID (use the text background colour) or WxTRANSPARENT (do not fill the
background).

dc-set-brush

long (dc-set-brush long dc-id long brush-id)

Sets the current brush for the device context. brush-id is an ID returned from a call to brush-
create (page Error! Bookmark not defined.), or zero to select any existing brush out of the
device context.

dc-set-colourmap

long (dc-set-colourmap long dc-id long cmap-id)

Sets the colourmap for the device context. If cmap-id is zero, the original colourmap is restored
so that it is safe to delete the device context (or colourmap).

dc-set-clipping-region

long (dc-set-clipping-region long dc-id
double x1 double y1 double x2 double y2)

Sets a rectangular clipping region, outside which drawing operations have no effect.

dc-set-font

long (dc-set-font long dc-id long font-id)

263

Sets the current font for the device context. font-id is an ID returned from a call to font-create
(page Error! Bookmark not defined.), or zero to select any existing font out of the device
context.

dc-set-logical-function
long (dc-set-logical-function long dc-id string logical-function)
Sets the current logical function for the device context. The logical function determines how pixels

are changed by the drawing functions, and may be one of wxCOPY, wxXOR, wxINVERT,
wxOR_REVERSE and wxAND_REVERSE.

dc-set-pen
long (dc-set-pen long dc-id long pen-id)
Sets the current pen for the device context. pen-id is an ID returned from a call to pen-create

(page Error! Bookmark not defined.), or zero to select any existing pen out of the device
context.

dc-set-text-foreground
long (dc-set-text-foreground long dc-id string colour)

Sets the colour for the text foreground, effective when dc-draw-text (page Error! Bookmark not
defined.) is used. colour is a capitalized name from the list defined in the wxWindows manual.

dc-set-text-background
long (dc-set-text-background long dc-id string colour)

Sets the colour for the text background, effective when dc-draw-text (page Error! Bookmark not
defined.) is used. colour is a capitalized name from the list defined in the wxWindows manual.

14.17. Dialog box
See also Overview (page 346)

A dialog box is essentially a panel (page 297) with its own frame (page 266), and therefore
shares some functions and behaviour with both of these objects.

Any panel item can be created as a child of a dialog box, and also the dialog box can be created
modal, so that the flow of program control halts until the dialog box is dismissed.

The following callbacks are valid for the dialog box class: see also those listed for panels.

OnCharHook Under Windows only, all key strokes going to a dialog box or frame can be
intercepted before being passed on for normal processing. This callback function takes
the window id and event id, and should return 1 to override further processing, or 0 to do
default processing. See also Key event (page 283).

264

dialog-box-create

long (dialog-box-create long parent-id string title
optional long modal optional long x optional long y
optional long width optional long height optional string style optional string name)

Creates a dialog box. parent-id can be zero or a valid dialog or frame ID; title should be a string
for the dialog box's title. The value of modal may be 1 (when window-show (page Error!
Bookmark not defined.) is called with an argument of 1, the dialog blocks until window-show is
called with an argument of 0) or 0 (dialog is modeless, and window-show returns immediately).

The window-show (page Error! Bookmark not defined.) function must be called with argument

1 to make the dialog visible, and with argument 0 to undisplay the dialog (and to dimiss a modal

dialog).

The style parameter may be a combination of the following, using the bitwise 'or' operator:

WXCAPTION Puts a caption on the dialog box (under XView and Motif this is mandatory).

WXSTAY_ON_TOP Stay on top of other windows (Windows only).

WXSYSTEM_MENU Display a system menu (manadatory under XView and Motif).

wWXTHICK_FRAME Display a thick frame around the window (manadatory under XView and
Motif).

WXVSCROLL Give the dialog box a vertical scrollbar (XView only).

The default value for style is "wxCAPTION | wxSYSTEM_MENU | wxTHICK_FRAME".

name gives the dialog box a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

dialog-box-create-from-resource

long (dialog-box-create-from-resource long parent-id string resource-name)

Creates a dialog box from the given wxWindows resource. The resource file containing this
resource must first have been loaded with load-resource-file (page Error! Bookmark not
defined.).

Panel items on a panel or dialog box that has been created from a resource, do not have

conventional callbacks. Therefore you need to intercept the OnCommand event for the panel or
dialog box and test the name and event of the item passed to this callback.

dialog-box-is-modal
long (dialog-box-is-modal long parent-id)

Returns 1 if the dialog box is modal, O otherwise.

dialog-box-set-modal

265

long (dialog-box-set-modal long parent-id, long modal)

Sets the dialog box to be modal or non-modal, before window-show is issued. Pass 1 or 0 to
modal.

14.18. Event

An event is an 'abstract class' from which other event classes, such as mouse, key and command
events, are derived.

event-get-event-type

string (event-get-event-type long id)
Returns the event type.

14.19. Font

A font is an object that can be set for a device context (page 258) to determine the characteristics
of text drawn with dc-draw-text (page Error! Bookmark not defined.).

font-create

long (font-create long point-size word family word style word weight long underlined optional
stringfacename)

Creates a font for use in a device context.
point-size gives the font point size.

family may be one of wxROMAN, wxSCRIPT, wxDECORATIVE, wxSWISS, wxMODERN,
WXDEFAULT.

style may be one of WxXNORMAL, wxITALIC.
weight may be one of wxBOLD, wxLIGHT, wxNORMAL.
underlined may be 1 or 0.

facename is an optional font facename, for specifying the exact font face required.

font-delete

long (font-delete long font-id)

Deletes the given font.

14.20. Frame

A frame is a window containing text, canvas or panel subwindows. It normally has decorations

added by the window manager, such as a system menu, a thick frame, and resize handles. When
a wxWindows or wxCLIPS application initializes, a top-level frame must be returned to the system

266

for successful start-up. When a top-level frame and all its children are deleted, the application
terminates.

Usually an application will need to register an OnClose handler in case the window manager
sends the application a close message. If the handler returns 1, the frame is deleted by the
system (possibly terminating the application).

The user can register the following callbacks:

OnActivate Called with a frame identifier and integer flag, when the frame is activated.
Under Windows, you may need to intercept this event and set the focus for a
subwindow, or the subwindow may not receive character events. By default, wxWindows
will set the focus for the first subwindow of a frame.

OnCharHook Under Windows only, all key strokes going to a dialog box or frame can be
intercepted before being passed on for normal processing. This callback function takes
the window id and event id, and should return 1 to override further processing, or 0 to do
default processing. See also Key event (page 283).

OnClose The function is called with the window identifier. If the callback returns 1 and the
function was called by the window manager, the window is automatically deleted
(possibly terminating the application). A return value of O forbids automatic deletion.

OnMenuCommand Called with a frame identifier and menu item identifier. Test the menu
item identifier and perform an appropriate action.

OnMenusSelect Called with a frame identifier and menu item identifier, when the cursor
travels over the menu item (but the user does not click). Test the menu item identifier
and perform an appropriate action.

OnSize The function is called with the window identifier, width and height.

See also window-add-callback (page Error! Bookmark not defined.).

frame-create

long (frame-create long parent-id string title
optional long x optional long y
optional long width optional long height optional string style optional string name)

Creates a frame. parent-id can be zero or a valid frame ID; title should be a string for the frame's
title.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

wxICONIZE Display the frame iconized (minimized) (Windows only).

wWxCAPTION Puts a caption on the frame (under XView and Motif this is mandatory).

WXDEFAULT_FRAME Defined as a combination of wxMINIMIZE_BOX, wxMAXIMIZE_BOX,
WXTHICK_FRAME, wxSYSTEM_MENU, and wxCAPTION.

wxMDI_CHILD Specifies a Windows MDI (multiple document interface) child frame.

WXMDI_PARENT Specifies a Windows MDI (multiple document interface) parent frame.

WXMINIMIZE Identical to wxICONIZE.

WXMINIMIZE_BOX Displays a minimize box on the frame (Windows only).

WXMAXIMIZE Displays the frame maximized (Windows only).

WXMAXIMIZE_BOX Displays a maximize box on the frame (Windows only).

wxSDI Specifies a normal SDI (single document interface) frame.

WXSTAY_ON_TOP Stay on top of other windows (Windows only).

WXSYSTEM_MENU Displays a system menu (manadatory under XView and Motif).

wWXTHICK_FRAME Displays a thick frame around the window (manadatory under XView and
Motif).

267

name gives the frame a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

The function window-show must be called before a new frame is visible.

frame-create-status-line
long (frame-create-status-line long parent-id, optional long n=1)

Creates a status line at the bottom of the frame. Use frame-set-status-text (page Error!
Bookmark not defined.) to write to the status line.

n is a number from 1 to 5 for the number of status areas to create.

frame-iconize
long (frame-iconize long frame-id optional long minimize)

Minimize the frame if the second argument is 1 or absent, restore the frame otherwise.

frame-is-iconized
long (frame-is-iconized long frame-id)

Returns 1 if the frame is iconized (minimized), O otherwise.

frame-on-size
long (frame-on-size long frame-id long width long height)

Performs default processing for the OnSize event. Can be called from within an OnSize callback.

frame-set-menu-bar
long (frame-set-menu-bar long frame-id long menu-bar-id)

Associate a menu bar with the frame. See menu bar (page 289).

frame-set-tool-bar
long (frame-set-tool-bar long frame-id long tool-bar)

Informs an MDI parent window that a panel or canvas should be treated as a toolbar, and sized
accordingly. Windows only.

268

frame-set-icon
long (frame-set-icon long frame-id long icon-id)

Set the icon of a frame. See icon (page 282).

frame-set-status-text
long (frame-set-status-text long frame-id string text, optional long i=0)

Sets the text for the status line (previously created with frame-create-status-line (page Error!
Bookmark not defined.)).

i is a number from 0 to 4 for the number of the status area to write to.

frame-set-title

long (frame-set-title long frame-id string text)
Set the title of a frame.

14.21. Help

A 'help instance' is created to manage on-line help associated with one or more files. wxCLIPS
supports both Windows Help under MS Windows, and wxHelp under all platforms.

Windows Help (.hlp) files may be created using a number of tools, such as Tex2RTF. wxHelp
(.xIp) files can be created with a text editor or a tool such as Tex2RTF.

wxHelp is very limited in its capabilities and should only be used on platforms with no native help.
Consider using HTML files instead (although you cannot currently access HTML files from your
application).

help-create

long (help-create optional long native = 1)

Creates a help instance. If native is 1, the native help system will be invoked (such as WinHelp
under MS Windows). If 0, wxHelp will be invoked.

help-delete

long (help-delete long id)

Deletes the help instance.

help-display-block

long (help-display-block long id long blockld)

269

Displays the help file at the given block identifier (system dependent).

help-display-contents
long (help-display-contents long id string filename)

Displays the contents of the help file currently loaded.

help-display-section
long (help-display-section long id long section)

Displays the help file at the given section (system dependent).

help-keyword-search
long (help-keyword-search long id string keyword)

Positions the help file at a section matching the given string.

help-load-file
long (help-load-file long id string filename)

Attempts to load the given file into the help instance. Use a function like help-display-contents to
display the file.

14.22. HWND functions

This group of functions allows MS Windows programs to perform a few operations on another
program's window.

hwnd-find

long (hwnd-find string title)

Searches for a window with the given title, and returns the window handle. Returns zero if none
was found.

hwnd-iconize

long (hwnd-iconize long hwnd optional long iconize=1)

Iconizes or deiconizes the given window.

hwnd-move

270

long (hwnd-move long hwnd long x long y long width long height optional long repaint=1)

Moves and resizes the given window.

hwnd-refresh
long (hwnd-refresh long hwnd optional long erase-background=1)

Refreshes (invalidates) the given window.

hwnd-send-message
long (hwnd-send-message long hwnd long msg long wparam long Iparam)

Sends a Windows message to the window.

hwnd-show
long (hwnd-show long hwnd optional long show=1)

Shows or hides the given window.

hwnd-quit
long (hwnd-quit long hwnd)

Sends a WM_CLOSE message to the given window.

14.23. Gauge

A gauge is used for displaying a quantity, for example amount of processing done. It must be a
child of a panel (page 297).

gauge-create
long (gauge-create long panel-id string label
long range optional long x optional long y
optional long width optional long height optional string style optional string name)
Creates a gauge item on the given panel.
range indicates the maximum value of the gauge.
style is a bit list of the following:
WXGA HORIZONTAL The item will be created as a horizontal gauge
WXGA VERTICAL The item will be created as a vertical gauge.

WXGA_PROGRESSBAR Under Windows 95, the item will be created as a horizontal
progress bar.

271

name gives the gauge a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.
gauge-set-value

long (gauge-set-value long gauge-id long value)

Set the value of a gauge item.

gauge-set-bezel-face
long (gauge-set-bezel-face long gauge-id long width)

Set the bezel parameter of the gauge (takes effect under Windows version only).

gauge-set-shadow-width
long (gauge-set-shadow-width long gauge-id long width)

Set the shadow width of the gauge (takes effect under Windows version only).

14.24. Grid

See also Overview (page 354)

A subwindow used for displaying grids (matrices/tables). A grid can contain text or bitmaps.
Note: this functionality is implemented in Windows only, for the time being.

The following callbacks are valid for the grid class.

OnPaint Called with a window identifier when the window receives a repaint event from the
window manager.

OnSize The function is called with the window identifier, width and height.

OnCellLeftClick The function is called with the window identifier, row, column, X, y, control
down flag, shift down flag.

OnCellRightClick The function is called with the window identifier, row, column, X, y, control
down flag, shift down flag.

OnCellChange The function is called with the window identifier, row, column.

OnChangelLabels The function is called with the window identifier.

OnChangeSelectionLabel The function is called with the window identifier.

See also window-add-callback (page Error! Bookmark not defined.).

grid-adjust-scrollbars

272

void (grid-adjust-scrollbars long grid-id)

Adjusts the scrollbars to suit the size of the grid: this may cause one or both to be hidden. You
may wish to call this from code which alters the number of rows or columns (or height/width of
rows or columns), or from an OnSize callback.

grid-append-cols

long (grid-append-cols long grid-id long n optional long update-labels=1) Inserts n columns
at the end of the table, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.
grid-append-rows

long (grid-append-rows long grid-id long n optional long update-labels=1) Inserts n rows at
the end of the table, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.

grid-clear-grid
void (grid-clear-grid long grid-id)

Clears the grid (untested).

grid-create
long (grid-create long parent-id optional long x optional long y
optional long width optional long height optional string style=0 optional string
name="grid")
Creates a grid window. You must also call grid-create-grid after you call this function.

parent-id must be a valid frame ID.

name gives the canvas a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

grid-create-grid

long (grid-create-grid long grid-id long rows long cols
optional long default-width optional long default-height)

Initializes the size of the grid. Returns 1 if successful, O otherwise.

grid-delete-cols

long (grid-delete-cols long grid-id long position long n optional long update-labels=1)
Deletes n columns starting at position, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.

273

grid-delete-rows

long (grid-delete-rows long grid-id long position long n optional long update-labels=1)
Deletes n rows starting at position, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.

grid-get-cell-alignment

string (grid-get-cell-alignment long grid-id long row long col) Gets the cell text alignment at
row, col. The return value is one of wxLEFT, wxRIGHT, wxCENTRE.
grid-get-cell-background-colour

long (grid-set-cell-background-colour long grid-id optional long row=-1 optional long col=-1)
Gets the cell background colour.

The return value is a colour value of the kind created using colour-create.

If row and col are zero or greater, the returned colour is that of an individual cell. If these values
are -1 or absent, the colour is the global, default cell background colour.

grid-get-cell-bitmap

long (grid-get-cell-bitmap long grid-id long row long col) Returns the bitmap associated with
the cell at row, col. If none has been set, 0 will be returned. See also grid-set-cell-bitmap (page
Error! Bookmark not defined.).

grid-get-cell-text-colour

long (grid-set-cell-text-colour long grid-id optional long row=-1 optional long col=-1) Gets
the cell text colour.

The return value is a colour value of the kind created using colour-create.

If row and col are zero or greater, the returned colour is that of an individual cell. If these values
are -1 or absent, the colour is the global, default cell text colour.

grid-get-cell-value

string (grid-get-cell-value long grid-id long row long col) Gets the cell value at row, col.

grid-get-column-width

long (grid-get-column-width long grid-id long col) Gets the given column width in pixels.

274

grid-get-cursor-column

long (grid-get-cursor-column long grid-id) Returns the column of the currently selected cell.

grid-get-cursor-row

long (grid-get-cursor-row long grid-id) Returns the row of the currently selected cell.

grid-get-rows
long (grid-get-rows long grid-id)

Returns the number of rows in the grid.

grid-get-cols
long (grid-get-cols long grid-id)

Returns the number of columns in the grid.

grid-get-editable
long (grid-get-editable long grid-id)

Returns 1 if the grid is editable (the text field is showing), 0 otherwise.

grid-get-label-alignment

string (grid-get-label-alignment long grid-id string orientation) Gets the column label or row
label alignment.

If orientation is WXVERTICAL, the row label alignment is returned. If orientation is
WXHORIZONTAL, the column label alignment is returned.

The return value is one of WxLEFT, wxRIGHT, wxCENTRE.

grid-get-label-background-colour
long (grid-get-label-background-colour long grid-id) Gets the label background colour.

The return value is a colour value of the kind created using colour-create.

grid-get-label-size

long (grid-get-label-size long grid-id string orientation) Gets the column label height or row
label width in pixels. If orientation is WxVERTICAL, the row label width is returned. If orientation is
WXHORIZONTAL, the column label height is returned.

275

grid-get-label-text-colour
long (grid-get-label-text-colour long grid-id) Gets the label text colour.

The return value is a colour value of the kind created using colour-create.

grid-get-label-value

string (grid-get-label-value long grid-id string orientation long position) position is the label row
or column position (starting from zero).

Gets a column label or row label value.

If orientation is WXVERTICAL, the row label alignment is set. If orientation is WxXHORIZONTAL,
the column label alignment is set.

grid-get-row-height

long (grid-get-row-height long grid-id long row) Gets the given row height in pixels.

grid-get-scroll-pos-x
long (grid-get-scroll-pos-x long grid-id)

Returns the current scroll position in the horizontal dimension (in scroll positions, not pixels).

grid-get-scroll-pos-y
long (grid-get-scroll-pos-y long grid-id)

Returns the current scroll position in the vertical dimension (in scroll positions, not pixels).

grid-get-text-item

long (grid-get-text-item long grid-id)

Returns the identifier of the text item which is used for editing cells. Use this to set the label of the
text item, for example, in an OnChangeSelectionLabel callback, which is called when the user
selects a different cell.

grid-insert-cols

long (grid-insert-cols long grid-id long position long n optional long update-labels=1) Inserts
n columns in front of position, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.

276

grid-insert-rows

long (grid-insert-rows long grid-id long position long n optional long update-labels=1) Inserts
n rows in front of position, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.

grid-on-activate

void (grid-on-activate long grid-id long active)

Call this function from a frame OnActivate callback. This function causes focus to be given to the
text field (if in editable mode).

grid-on-paint

void (grid-on-paint long grid-id)

Call this function if you override the on-paint event handler.

grid-on-size
void (grid-on-size long grid-id long w long h)

Call this function if you override the on-size event handler.

grid-set-cell-alignment
void (grid-set-cell-alignment long grid-id string alignment long row long col) Sets the cell text

alignment at row, col to the given value. alignment should be one of wxLEFT, wxRIGHT,
WXCENTRE.

grid-set-cell-background-colour

void (grid-set-cell-background-colour long grid-id long colour optional long row=-1 optional
long col=-1) Sets the cell background colour.

colour should be a colour value created with colour-create.

If row and col are zero or greater, the colour will be associated with an individual cell. If these
values are -1 or absent, the colour will refer to all cells.

grid-set-cell-bitmap

void (grid-set-cell-bitmap long grid-id long bitmap-id long row long col) Associates a bitmap
with the cell at row, col. If this is called, the bitmap will be displayed instead of text. Since
colourmaps are not used in drawing the bitmap, use low-colour bitmaps if possible (16 colours or
less).

277

grid-set-cell-text-colour

void (grid-set-cell-text-colour long grid-id long colour optional long row=-1 optional long
col=-1) Sets the cell text colour.

colour should be a colour value created with colour-create.

If row and col are zero or greater, the colour will be associated with an individual cell. If these
values are -1 or absent, the colour will refer to all cells.

grid-set-cell-text-font

void (grid-set-cell-text-font long grid-id long font-id optional long row=-1 optional long col=-
1) Sets the cell text font.

font should be a valid font identifier.

If row and col are zero or greater, the font will be associated with an individual cell. If these values
are -1 or absent, the font will refer to all cells.

grid-set-cell-value

void (grid-set-cell-value long grid-id string value long row long col) Sets the cell at row, col to
the given value.

grid-set-column-width

void (grid-set-column-width long grid-id long col long width) Sets the given column width in
pixels.

grid-set-divider-pen

void (grid-set-divider-pen long grid-id long pen-id)

Sets the pen for drawing the cell divisions (light grey by default). If pen-id is 0, the divisions are
switched off.

grid-set-editable

void (grid-set-editable long grid-id long editable)

If editable is 1, displays the text field for entering cell values. If editable is 0, hides the text field.

grid-set-grid-cursor

void (grid-set-grid-cursor long grid-id longrow longcolumn) Sets the selection to the given

278

cell.

grid-set-label-alignment

void (grid-set-label-alignment long grid-id string orientation string alignment) Sets the column
label or row label alignment.

If orientation is WXVERTICAL, the row label alignment is set. If orientation is WxXHORIZONTAL,
the column label alignment is set.

alignment should be one of wxLEFT, wxRIGHT, wxCENTRE.

grid-set-label-background-colour

void (grid-set-label-background-colour long grid-id long colour) Sets the label background
colour.

colour should be a colour value created with colour-create.

grid-set-label-size

void (grid-set-label-size long grid-id string orientation long size) Sets the column label height
or row label width in pixels. If orientation is wxVERTICAL, the row label width is set. If orientation
is WXHORIZONTAL, the column label height is set.

A value of zero switches off the label in the specified dimension.

grid-set-label-text-colour
void (grid-set-label-text-colour long grid-id long colour) Sets the label text colour.

colour should be a colour value created with colour-create.

grid-set-label-text-font

void (grid-set-label-text-font long grid-id long font-id) Sets the label text font.

grid-set-label-value
void (grid-set-label-value long grid-id string orientation string value long position)
Sets a column label or row label value.

If orientation is WXVERTICAL, the row label alignment is set. If orientation is WxXHORIZONTAL,
the column label alignment is set.

position is the label row or column position (starting from zero).

279

grid-set-row-height

void (grid-set-row-height long grid-id long row long height) Sets the given row height in pixels.

grid-update-dimensions
void (grid-update-dimensions long grid-id)

Recalculates dimensions so drawing is accurate. You may wish to call this if you alter a grid
dimension, such as column width.

14.25. Groupbox

A group box is a box drawn around one or more controls. Available under Windows only.

group-box-create

long (group-box-create long panel-id string label
long x long y long width long height optional string style optional string name)

Creates a group box and returns its id.

name gives the group box a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

14.26. Html

A subwindow used for displaying HTML files, using a class library written by Andrew Davison. At
present only local HTML files should be loaded, and links in HTML files should again be local
files, with non-URL specifications. Later releases will eventually allow Web browsing functionality,
but to simplify wxCLIPS installation, this functionality has been omitted.

There are some bugs in scrolling and presentation, but for simple needs, it may prove handy to
be able to show text and graphics (GIF files).

Note: this functionality is implemented in Windows only for the time being, and even then, not in
all Windows releases of wxCLIPS and Hardy.

The following callbacks are valid for the html class.

OnSize The function is called with the window identifier, width and height.

OnOpenURL The function is called just before a URL is about to be opened, with the
window identifier, and a URL. Return 1 to allow default processing, 0 to veto further
processing. You can use this to program special URLs as buttons, if you test the URL
and return 0 if you will process it yourself.

OnSetStatusText This is called with the window identifier and text, whenever it is
appropriate to notify the user of the URL the mouse is over.

See also window-add-callback (page Error! Bookmark not defined.).

html-back

280

void (html-back long id)

Loads and displays the previously-displayed URL or file.

html-cancel
void (html-cancel long id)

Sets a flag to cancel the current operation.

html-clear-cache
void (html-clear-cache long id)

Clears the internal cache.

html-create
long (html-create long parent-id optional long x optional long y
optional long width optional long height optional string style=0 optional string
name="html|")
Creates an HTML window.
parent-id must be a valid frame ID.
name gives the canvas a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

html-get-current-url

string (html-get-current-url long id) Returns the current URL.

html-on-size
void (html-on-size long id long width long height)

Invokes the HTML panel's OnSize member. This may need to be called if you override OnSize.

html-open-file

long (html-open-file long id string file) Opens and displays a file.

html-resize

void (html-resize long id)

281

Resizes and displays the current file.

html-save-file

long (html-save-file long id string file) Saves the currently displayed file.

html-open-url

long (html-open-url long id string url)

Opens a URL (not yet functioning).14.27. Icon

An icon is a small bitmap which can be used to decorate a minimized frame. There are platform-
specific ways of creating an icon.

icon-create

long (icon-create string fileOrResource)

Creates an icon. Under X, the argument must be the filename of a valid XBM (X bitmap) file.
Under Windows, the argument must be the name of an icon resource compiled into the current

executable.

Use frame-set-icon (page Error! Bookmark not defined.) to set the icon of a frame.

icon-delete
long (icon-delete long icon-id)

Deletes the given icon.

icon-get-height
long (icon-get-height long icon-id)

Gets the height of the icon.

icon-get-width
long (icon-get-width long icon-id)

Gets the width of the icon.

icon-load-from-file

long (icon-load-from-file string file, string bitmap-type)

282

Loads an icon from a file. Under X, the argument must be the filename of a valid XBM (X bitmap)
file. Under Windows, the argument must be the filename of a Windows icon file.

Under X, the permitted icon types in the bitmap-type are:
WXBITMAP_TYPE_BMP Load a Windows bitmap file (if USE_IMAGE_LOADING_IN_X
is enabled in wx_setup.h).
WXBITMAP_TYPE_GIF Load a GIF bitmap file (if USE_IMAGE_LOADING_IN_X is
enabled in wx_setup.h).
WXBITMAP_TYPE_XBM Load an X bitmap file.
WXBITMAP_TYPE_XPM Load an XPM (colour pixmap) file. Only available if
USE_XPM_IN_X is enabled in wx_setup.h.
Under Windows, the permitted types are:
WXBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h).
WXBITMAP_TYPE_ICO_RESOURCE Load a Windows resource (as specified in the .rc
file).
14.28. Instance table
wXCLIPS provides some functions for mapping between the integer identifiers used to represent
objects in wxCLIPS funtions, and COOL instance names. When creating object-oriented
wrappers around wxCLIPS function groups, you can add an instance name entry in the init
handler, and delete it in the delete handler. For each event, you can register a callback which
retrieves the instance name from the identifier passed to the callback, and sends an appropriate
message to that instance.

See also wxclips-object-exists (page Error! Bookmark not defined.).

instance-table-add-entry
long (instance-table-add-entry long id instance instance-name)

Adds an entry to the instance table, indexing on the integer id.

instance-table-delete-entry
long (instance-table-delete-entry long id)

Deletes an entry from the instance table.

instance-table-get-instance
instance-name (instance-table-get-instance long id)
Retrieves an instance name for the integer id.

14.29. Key event

283

A key event identifier is passed to a window's OnChar or OnCharHook callback. The key code,
position and state of shift/control/alt can be examined by calling the following functions.
key-event-alt-down

long (key-event-alt-down long event-id)

Returns 1 if alt was pressed.

key-event-control-down
long (key-event-control-down long event-id)

Returns 1 if control was pressed.

key-event-get-key-code

string (key-event-get-key-code long event-id)

Returns a string corresponding to the internal wxWindows key code, such as "WXK_BACK",
"WXK_F1" or "WXK_RETURN".

key-event-position-x

double (key-event-position-x long event-id)

Gets the x position of the mouse pointer at the moment the key was pressed.

key-event-position-y
double (key-event-position-y long event-id)

Gets the y position of the mouse pointer at the moment the key was pressed.

key-event-shift-down

long (key-event-shift-down long event-id)

Returns 1 if shift was pressed.

14.30. Listbox

A listbox displays a choice of strings. It must be the child of a panel (page 297). In a single-

selection listbox, only one choice may be highlighted. In a multiple-selection listbox, several may
be highlighted.

list-box-create

284

long (list-box-create long panel-id string callback string label

long multiple, optional long x optional long y

optional long width optional long height optional string style optional string name)
Creates a list box item on the given panel. The callback may be the empty string (") to denote no
callback, or a word or string for the function name. The function will be called when an item in the
list box is selected or deselected, with the list box ID as argument. The value of multiple should
be 1 if multiple selections are required, or 0 if only a single selection is required.
style is a bit list of some of the following:
WXNEEDED_SB Create scrollbars if needed.

WXALWAYS_SB Create scrollbars immediately.
WXHSCROLL Create horizontal scrollbar if contents are two wide (Windows only).

name gives the group box a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.
list-box-append

long (list-box-append long list-box-id string item
optional string client-data)

Append a string to the list box, with an optional client data string.

list-box-find-string
long (list-box-find-string long list-box-id string item)

Find the string in the list box and return the integer position if found, -1 if not.

list-box-clear
long (list-box-clear long list-box-id)

Clear all strings from the list box.

list-box-get-selection
long (list-box-get-selection long list-box-id)

Get the position of the selection (for single-selection list boxes only).

list-box-get-string-selection

285

string (list-box-get-string-selection long list-box-id)

Get the selected string (for single-selection list boxes only).

list-box-is-selected
long (list-box-is-selected long list-box-id long item)

Returns 1 if item is selected, O otherwise.

list-box-set-selection
long (list-box-set-selection long list-box-id long item-pos long flag=1)
Set a selection by item position.

If flag is 1, the item is selected, otherwise it is deselected.

list-box-set-string-selection
long (list-box-set-string-selection long list-box-id string item)

Set a selection by string.

list-box-number
long (list-box-number long list-box-id)

Return the number of items in the list box.

list-box-delete
long (list-box-delete long list-box-id long item-pos)

Delete an item in the list box.

list-box-get-string
string (list-box-get-string long list-box-id long item-pos)

Return the string at the given position.

list-box-get-first-selection
long (list-box-get-first-selection long list-box-id)

Get the first selection position in a multi-selection list box (-1 for no more selections).

286

list-box-get-next-selection

long (list-box-get-next-selection)

Get the next selection position in a multi-selection list box (-1 for no more selections).
14.31. Memory device context

A memory device context is used for drawing into, or copying from, a bitmap. See also the Bitmap
(page 236) object.

memory-dc-create
long (memory-dc-create)

Create a memory device context and returns its ID.

memory-dc-select-object
long (memory-dc-select-object long id long bitmap-id)

Makes this device context the drawing surface for the given bitmap (see Bitmap (page 236)).
Deleting the memory device context disassociates the bitmap, freeing it to be used with another
memory device context. To draw a bitmap on a device context that supports bitmap drawing (i.e.
not a Metafile or PostScript device context), using code like the following:

7o, Wility function for drawing a bitmap

(deffunction drawbitmap (?dc ?bitmap ?x ?y)
(bind ?nem dc (nenory-dc-create))
(rmenory-dc-sel ect -obj ect ?nem dc ?bi t map)
; Blit the menory device context onto the destination device context
(dc-blit ?dc ?x ?y (bitmap-get-wi dth ?bitmap) (bitmap-get-height

?bi t map)
?mem dc 0.0 0.0)

(rmenory-dc-del ete ?mem dc)

)

If bitmap-id is zero, the existing bitmap (if any) will be selected out of the device context. This
might be necessary if you wish to delete the bitmap before deleting the device context (for
example, for reusing the same device context for different bitmaps).

14.32. Menu

The menu is used only as a component of a menu bar (page 289). Create menus, append menu
items (strings, separators or further menus), and finally append the menu to the menu bar.

A menu or menu bar string may contain an ampersand, which is taken to mean 'underline the
next character and use it as the hotkey'. This gives the user the opportunity to use keystrokes to
access menus and items.

287

menu-create

long (menu-create optional string label optional string callback)

Create a menu and returns the menu's ID.

label is unused at present.

callback should be present if creating a popup menu (i.e. not a menubar menu). It will be called
with the menu's id when the user selects an item. From within the callback, use panel-item-get-

command-event (page Error! Bookmark not defined.) to retrieve the command event and from
that, the menu item selection.

menu-append

long (menu-append long menu-id long item-id

string item-string optional long submenu-id optional string help-string optional long
checkable)

Append a string or submenu to the menu, passing the integer ID by which the menu item will be
referenced, a string to be displayed, an optional id for a pullright menu, and an optional flag for
specifying whether this menu item can be checked.

A help string can be supplied, in which case the string will be shown on the first field of the status
line (if any) in the frame containing the menu bar, when the mouse pointer moves over the menu
item.

menu-append-separator

long (menu-append-separator long menu-id)

Append a menu separator.

menu-break
long (menu-break long menu-id)

Inserts a column break into the menu.

menu-check
long (menu-check long menu-id long item-id long check)

Check (check =1 or uncheck check = 0 the given menu item. MS Windows only.

menu-enable
long (menu-enable long menu-id long item-id long enable)

Enable (enable = 1 or disable enable = 0 the given menu item.

288

14.33. Menu bar

A menu bar is a standard user interface element which places the main commands of an
application along the top of a frame (page 266).

The menu bar must be assigned to a frame using frame-set-menu-bar (page Error! Bookmark
not defined.). Once this is done, the menu bar must not be deleted by the application: it will be
deleted when the frame is deleted.

A menu or menu bar string may contain an ampersand, which is taken to mean 'underline the
next character and use it as the hotkey'. This gives the user the opportunity to use keystrokes to
access menus and items.

See also Menu (page 287).

menu-bar-create
long (menu-bar-create)

Create a menu bar and return its ID.

menu-bar-create-from-resource

long (menu-bar-create-from-resource string resource-name)

Create a menu bar and return its ID, given a resource name.

The resource file containing this resource must first have been loaded with load-resource-file
(page Error! Bookmark not defined.).

menu-bar-append

long (menu-bar-append long menu-bar-id long menu-id string title)

Append a menu to a menu bar.

menu-bar-check
long (menu-bar-check long menu-bar-id long item-id long check)

Check (check = 1) or uncheck (check = 0) the given menu item (MS Windows only).

menu-bar-checked
long (menu-bar-checked long menu-bar-id long item-id)

Returns 1 if the menu item is checked, 0 otherwise.

289

menu-bar-enable
long (menu-bar-enable long menu-bar-id long item-id long enable)

Enable (enable = 1) or disable (enable = 0) the given menu item.

14.34. Message

A message is a simple piece of text on a panel (page 297).

message-create
long (message-create long panel-id string label

optional long x optional long y

optional string style optional string name)
Creates a message item on the given panel (a simple, non-selectable, non-editable string). If no
position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.
style is reserved for future use.

name gives the message a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

message-create-from-bitmap
long (message-create-from-bitmap long panel-id long bitmap-id
optional long x optional long y
optional long width optional long height optional string style optional string name)

Creates a bitmap message given a valid bitmap identifier.

name gives the message a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

14.35. Metafile

A metafile is the Windows vector format. Currently, the only way of creating a Windows metafile is
to close a metafile device context, and the only valid operations are to delete the metafile and to
place it on the clipboard.

These functions are only available under Windows.

14.35.1. Example

Below is a example of metafle, metafile device context and clipboard use. Note the way the
metafile dimensions are passed to the clipboard, making use of the device context's ability to
keep track of the maximum extent of drawing commands.

(bind ?dc (netafile-dc-create))
(if (eq (dc-ok ?dc) 1) then

290

; Do some draw ng

(bind ?nf (netafile-dc-close ?dc))

(if (neq ?nf 0) then

; Pass nmetafile to the clipboard

(rmetafil e-set-clipboard ?nf (dc-get-nax-x ?dc) (dc-get-nmax-y
?dc))

(rmetafil e-delete ?nf)

)
)
)

(dc-del ete ?dc)
metafile-delete
long (metafile-delete long id)

Deletes the metafile.

metafile-set-clipboard

long (metafile-set-clipboard long id int width int height)

Places the metafile on the clipboard, returning 1 for success and O for failure.

The metafile should be deleted immediately after this operation.

14.36. Metafile device context

A metafile device context is used for creating a metafile. The programmer should create the
metafile device context, close it to return a metafile, delete the device context, use the metafile
(the only valid thing to do with it currently is to place it on the clipboard, and then delete the
metafile.

These functions are only available under Windows.

See also Metafile (page 290).

metafile-dc-create

long (metafile-dc-create optional string filename)

Creates a metafile device context and returns its ID.

filename is the file to be used if creating a disk-based metafile. Usually this will be zero or
absent, and an in-memory metafile will be created.

metafile-dc-close

long (metafile-dc-close long id)

291

Closes the metafile device context and returns a metafile. The device context should no longer be
used after this call is made, and it should be deleted.

See Metafile (page 290).

14.37. Mouse event

A mouse event identifier is passed to the canvas OnEvent (page Error! Bookmark not defined.)
callback. The state of the mouse buttons (and some keys) can be examined by calling the
following functions.

mouse-event-button

long (mouse-event-button long event-id long button)

Returns 1 if the given button is changing state. button may be 1, 2 or 3 (left, middle and right
buttons respectively).

mouse-event-button-down

long (mouse-event-button-down long event-id)

Returns 1 if the event is a mouse button down event.

mouse-event-control-down
long (mouse-event-control-down long event-id)

Returns 1 if the control key is down.

mouse-event-dragging
long (mouse-event-dragging long event-id)

Returns 1 if the event is a dragging event (holding a mouse button down and moving).

mouse-event-left-down
long (mouse-event-left-down long event-id)

Returns 1 if the left mouse button is down.

mouse-event-left-up
long (mouse-event-left-up long event-id)

Returns 1 if the left mouse button is up.

292

mouse-event-is-button
long (mouse-event-is-button long event-id)

Returns 1 if the event is a button press or release.

mouse-event-middle-down
long (mouse-event-middle-down long event-id)

Returns 1 if the middle mouse button is down.

mouse-event-middle-up
long (mouse-event-middle-up long event-id)

Returns 1 if the middle mouse button is up.

mouse-event-position-x
double (mouse-event-position-x long event-id)

Returns the mouse x-position.

mouse-event-position-y
double (mouse-event-position-y long event-id)

Returns the mouse y-position.

mouse-event-right-down
long (mouse-event-right-down long event-id)

Returns 1 if the right mouse button is down.

mouse-event-right-up
long (mouse-event-right-up long event-id)

Returns 1 if the right mouse button is up.

mouse-event-shift-down

long (mouse-event-shift-down long event-id)

293

Returns 1 if the shift key is down.

14.38. Multi-line text

A multi-line text item is able to show several lines of text, unlike the single line text (page 309)
item. It must be the child of a panel (page 297).

Under Windows, there is an extended range of functions. Some take character positions - a
single integer which can identify a character position - and others take line and character
numbers. If you want to use a function that takes one form, but you only have the other, you can

convert between them using a function such as multi-text-xy-to-position or multi-text-position-to-
line. Note that line and character numbers start from zero.

multi-text-create
long (multi-text-create long panel-id string callback string label

optional string value optional long x optional long y

optional long width optional long height optional string style optional string name)
Creates a multi-line text item on the given panel. The callback may be the empty string (") to
denote no callback, or a word or string for the function name. The function will be called when

return is pressed in the text item, with the text item ID as argument. The default value is optional.

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.

The style parameter can be a bit list of the following:
WXHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical
scrollbar is displayed, and lines will be wrapped. This parameter is ignored

under XView.
WXREADONLY The text is read-only (not XView).

name gives the multitext a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

multi-text-copy

long (multi-text-copy long window-id)

Copies the selected text to the clipboard. Windows only.

multi-text-cut
long (multi-text-cut long window-id)

Copies the selected text to the clipboard, then removes the selection. Windows only.

multi-text-get-insertion-point

294

long (multi-text-get-insertion-point long window-id)

Returns the insertion point. Windows only.

multi-text-get-last-position
long (multi-text-get-last-position long window-id)

Returns the final position in the text window. Windows only.

multi-text-get-line-length
long (multi-text-get-line-length long window-id long line-no)

Returns the length of the text at line line-no. Windows only.

multi-text-get-line-length
long (multi-text-get-line-text long window-id long line-no)

Returns the text at line-no.

multi-text-get-number-of-lines
long (multi-text-get-number-of-lines long window-id)

Returns the number of lines in the text window. Windows only.

multi-text-get-value
string (multi-text-get-value long multi-text-item)

Get the multi-text item's string value.

multi-text-set-value
long (multi-text-set-value long multi-text-item string value)

Set the multi-text item's string value.

multi-text-paste
long (multi-text-paste long window-id)

Pastes the text (if any) from the clipboard to the text window. Windows only.

295

multi-text-position-to-char
long (multi-text-position-to-char long window-id long pos)

Returns the character position (starting from zero) for the given index position. Windows only.

multi-text-position-to-line
long (multi-text-position-to-line long window-id long pos)

Returns the line number (starting from zero) for the given index position. Windows only.

multi-text-remove
long (multi-text-remove long window-id long start-pos long end-pos)

Removes the text between the given span selection. Windows only.

multi-text-replace
long (multi-text-replace long window-id long start-pos long end-pos string text)

Replaces the text between the given span selection with the given text.

multi-text-set-insertion-point
long (multi-text-set-insertion-point long window-id long pos)

Sets the insertion point to the given index position. Windows only.

multi-text-set-selection
long (multi-text-set-selection long window-id long start-pos long end-pos)

Sets the selection to the given span of text. Windows only.

multi-text-show-position
long (multi-text-show-position long window-id long pos)

Shows the text at the given index position. Windows only.

multi-text-write
long (multi-text-write long window-id string text)

Writes the given string into the multitext, at the current cursor point. Windows only.

296

multi-text-xy-to-position

long (multi-text-xy-to-position long window-id long char-position long line)
Converts the character and line number (each starting from zero) to a position.
14.39. Object

An object is a general term for any wxCLIPS entity, such as window, brush, pen, listbox, etc.

object-delete
long (object-delete long id)

Deletes an object.

object-get-type
char * (object-get-type long id)
Returns the C++ class name for the object.

14.40. Panel

A panel is a subwindow for placing panel items, such as buttons (page 238) and text items (page
309). Its parent must be a frame (page 266). A panel inherits most properties from canvas, except
for scrollbar functionality.

Note that a dialog box (page 264) may be used in a similar way to a panel.
The following callbacks are valid for the panel class:

OnCommand Called with a panel identifier, an item identifier and a command event
identifier when a command event is received by a panel item that does not have an
associated callback. If you have created a panel or dialog box from a resource, you will
need to intercept OnCommand.

OnDefaultAction Called with a panel identifier and an item identifier, when a double click
has been received from a listbox.

OnEvent Called with a panel identifier and a mouse event (page 292) identifier. This can
only be guaranteed only when the panel is in user edit mode (to be implemented).

OnPaint Called with a panel identifier when the panel receives a repaint event from the
window manager.

OnSize The function is called with the window identifier, width and height.

See also window-add-callback (page Error! Bookmark not defined.).

panel-create

long (panel-create long parent-id optional long x optional long y
optional long width optional long height optional string style optional string name)

297

Creates a panel. parent-id must be a valid frame ID.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

WXABSOLUTE_POSITIONING A hint to the windowing system not to try native Windowing
system layout (Motif only). This is the recommended style for all Motif panels
and dialog boxes.

WXBORDER Draws a thin border around the panel.
wWXVSCROLL Gives the dialog box a vertical scrollbar (XView only).

name gives the panel a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

panel-create-from-resource

long (panel-create-from-resource long parent-id string resource-name)

Creates a panel from the given wxWindows resource. The resource file containing this resource
must first have been loaded with load-resource-file (page Error! Bookmark not defined.).

Panel items on a panel or dialog box that has been created from a resource, do not have

conventional callbacks. Therefore you need to intercept the OnCommand event for the panel or
dialog box and test the name and event of the item passed to this callback.

panel-set-button-font

long (panel-set-button-font long panel-id long font-id)

Sets the font used for panel or dialog box item buttons (or contents). See also panel-set-label-font
(page Error! Bookmark not defined.).

panel-set-label-font

long (panel-set-label-font long panel-id long font-id)

Sets the font used for panel or dialog box item labels. See also panel-set-button-font (page Error!
Bookmark not defined.).

panel-set-label-position

long (panel-set-label-position long panel-id string position)

Change the current label orientation for panel items: position may be wxVERTICAL or
WXxHORIZONTAL.

panel-new-line

long (panel-new-line long panel-id)

298

Insert a new line, that is, make subsequent panel items appear at the start of the next line.

14.41. Panel item

A panel item is a control (or widget) that can be placed on a panel (page 297) to accept user
input, and display information.

The following functions apply to panel items, which include button (page 238), checkbox (page
243), choice (page 243), message (page 290), text (page 309), multi-line text (page 294), slider
(page 309).

panel-item-get-command-event

long (panel-item-get-command-event)

Returns the identifier of the command event for the current panel item or menu callback, or zero if
not called within a callback.

panel-item-get-label

string (panel-item-get-label long panel-id)

Get the item's label.

panel-item-set-default
long (panel-item-set-default long panel-id)

Make this item the default.

panel-item-set-label

long (panel-item-set-label long panel-id string label)
Set the item's label.

14.42. Pen

A pen is used to control the colour and style of subsequent drawing operations on a device
context (page 258).

pen-create
long (pen-create string colour long width word style)

long (pen-create long colour-value long width word style)

Creates a pen for use in a device context. A pen is used for the outlines of graphic shapes. A

299

brush must be set to fill the shapes.

colour is a wxWindows colour string such as "BLACK", "CYAN".

colour-value is a value returned from colour-create (page Error! Bookmark not defined.).
width specifies the width of the pen.

style may be one of wxSOLID, wxDOT, wxLONG_DASH, wxSHORT_DASH, wxTRANSPARENT.

pen-delete

long (pen-delete long pen-id)

Deletes the given pen.

14.43. PostScript device context

A PostScript device context is used for drawing into a postscript file.

postscript-dc-create

long (postscript-dc-create optional string file
optional long interactive optional long window-id)

Creates a postscript device context and returns its ID.

file is the file to be used for printing to. interactive may be 1 to popup up a printer dialog, or 0
otherwise. window-id is a parent window for the printer dialog.

14.44. Printer device context

A Printer device context is used for drawing onto a Windows printer.

printer-dc-create

long (printer-dc-create optional string driver optional string device
optional string filename optional long interactive)

Creates a printer device context and returns its ID.

file is the file to be used for printing to. interactive may be 1 to popup up a printer dialog, or 0
otherwise.

14.45. Radiobox

A radiobox item is a matrix of strings with associated radio buttons. The buttons are mutually
exclusive, so pressing one will deselect the current selection.

radio-box-create

300

long (radio-box-create long panel-id string callback string label
long x long y long width long height
multivalue strings long major-dimension optional string style optional string name)

Creates a radiobox item on the given panel. The callback may be the empty string (") to denote
no callback, or a word or string for the function name. The function will be called when an item in
the radiobox is selected, with the radiobox ID as argument. If no position is given, the panel item
is placed after the last item. The value -1 may be passed to denote a default, so that the position
may be left unspecified and the size given.

strings should be a multifield of strings.

major-dimension specifies the number of rows (if style is wxVERTICAL) or columns (if style is
WXHORIZONTAL) for a two-dimensional radiobox.

style specifies a bit list of styles.
WXVERTICAL Lays the radiobox out in columns.

WXHORIZONTAL Lays the radiobox out in rows.

name gives the radiobox a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

radio-box-get-selection

long (radio-box-get-selection long radio-box-id)

Get the ID of the button currently selected.

radio-box-set-selection

long (radio-box-set-selection long radio-box-id long item)

Sets the given button to be the current selection.

14.46. Recordset

See also Database classes overview (page 349)

Each recordset represents an ODBC database query. You can make multiple queries at a time by

using multiple recordsets with a database or you can make your queries in sequential order using
the same recordset.

recordset-create

long (recordset-create long db optional string type = "wxOPEN_TYPE_DYNASET" optional
string options = "wxOPTION_DEFAULT")

Constructs a recordset object and returns its id. db is a pointer to the database instance you wish
to use the recordset with. Currently there are two possible values of type:

301

"wxOPEN_TYPE_DYNASET": Loads only one record at a time into memory. The other
data of the result set will be loaded dynamically when moving the cursor. This is the
default type.
"wxOPEN_TYPE_SNAPSHOT": Loads all records of a result set at once. This will need
much more memory, but will result in faster access to the ODBC data.
The options parameter is not used yet.
The function appends the recordset object to the parent database's list of recordset objects, for
later destruction when the database is destroyed.
recordset-delete
long (recordset-delete long id)
Deletes the recordset. All data except that stored in user-defined variables will be lost. It also
unlinks the recordset object from the parent database's list of recordset objects.
recordset-execute-sql
long (recordset-execute-sql long id string sql)
Directly executes a SQL statement. The data will be presented as a hormal result set. Note that
the recordset must have been created as a snapshot, not dynaset. Dynasets will be implemented

in the near future.

Examples of common SQL statements are given in A selection of SQL commands (page 353).

recordset-get-char-data

string (recordset-get-char-data long id string-or-long col)

Returns the character (string) data for the current record at the specified column. The column can
be a name or an integer position (starting from zero).

recordset-get-col-name

string (recordset-get-col-name long id long col)

Gets the name of the coumn at position col. Returns the empty string if col does not exist.

recordset-get-col-type
string (recordset-get-col-type long id string-or-long col)

Gets the name of the coumn at position col or name col. Returns "SQL_TYPE_NULL" if col does
not exist.

See ODBC SQL data types (page 352) for the possible return values from this function.

302

recordset-get-columns

long (recordset-get-columns long id optional string table ="")

Returns the columns of the table with the specified name. If no name is given, the internal class
member table will be used. If both names are NULL nothing will happen. The data will be
presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER

1 (VARCHAR) TABLE_OWNER

2 (VARCHAR) TABLE_NAME

3 (VARCHAR) COLUMN_NAME

4 (SMALLINT) DATA TYPE

5 (VARCHAR) TYPE_NAME

6 (INTEGER) PRECISION

7 (INTEGER) LENGTH

8 (SMALLINT) SCALE

9 (SMALLINT) RADIX

10 (SMALLINT) NULLABLE

11 (VARCHAR) REMARKS

recordset-get-database
long (recordset-get-database long id)

Returns the identifier of the parent database.

recordset-get-data-sources

long (recordset-get-data-sources long id)

Gets the currently-defined data sources via the ODBC manager. The data will be presented as a
normal result set. See the documentation for the ODBC function SQLDataSources for how the
data is organized. The name of the source is at column O.

recordset-get-error-code

string (recordset-get-error-code long id)

303

Returns the error code of the last ODBC action. This will be a string containing one of:

SQL _ERROR General error.

SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.

SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained
from the ODBC manager.

recordset-get-filter
string (recordset-get-filter long id)

Returns the current filter.

recordset-get-float-data
double (recordset-get-float-data long id string-or-long col)

Returns the floating-point data for the current record at the specified column. The column can be
a name or an integer position (starting from zero).

recordset-get-foreign-keys

long (recordset-get-foreign-keys long id optional string ftable = "™ optional string ktable = ")
Returns a list of foreign keys in the specified table (columns in the specified table that refer to
primary keys in other tables), or a list of foreign keys in other tables that refer to the primary key
in the specified table.

If ptable contains a table name, this function returns a result set containing the primary key of the
specified table.

If ftable contains a table name, this functions returns a result set of containing all of the foreign
keys in the specified table and the primary keys (in other tables) to which they refer.

If both ptable and ftable contain table names, this function returns the foreign keys in the table
specified in ftable that refer to the primary key of the table specified in ptable. This should be one
key at most.

GetForeignKeys returns results as a standard result set. If the foreign keys associated with a
primary key are requested, the result set is ordered by FKTABLE_QUALIFIER,
FKTABLE_OWNER, FKTABLE_NAME, and KEY_SEQ. If the primary keys associated with a
foreign key are requested, the result set is ordered by PKTABLE QUALIFIER,
PKTABLE_OWNER, PKTABLE_NAME, and KEY_SEQ. The following table lists the columns in
the result set.

0 (VARCHAR) PKTABLE_QUALIFIER
1 (VARCHAR) PKTABLE_OWNER

304

2 (VARCHAR) PKTABLE_NAME
3 (VARCHAR) PKCOLUMN_NAME
4 (VARCHAR) FKTABLE_QUALIFIER
5 (VARCHAR) FKTABLE_OWNER
6 (VARCHAR) FKTABLE_NAME
7 (VARCHAR) FKCOLUMN_NAME
8 (SMALLINT) KEY_SEQ

9 (SMALLINT) UPDATE_RULE

10 (SMALLINT) DELETE_RULE

11 (VARCHAR) FK_NAME

12 (VARCHAR) PK_NAME

recordset-get-int-data

long (recordset-get-int-data long id string-or-long col)

Returns the integer data for the current record at the specified column. The column can be a
name or an integer position (starting from zero).

recordset-get-number-cols

long (recordset-get-number-cols long id)

Returns the number of columns in the result set.

recordset-get-number-fields
long (recordset-get-number-fields long id)

Not implemented.

recordset-get-number-params
long (recordset-get-number-params long id)

Not implemented.

recordset-get-number-records
long (recordset-get-number-records long id)

Returns the number of records in the result set.

recordset-get-primary-keys
long (recordset-get-primary-keys long id optional string table ="")

Returns the column names that comprise the primary key of the table with the specified name. If

305

no name is given the class member tablename will be used. If both names are NULL nothing will
happen. The data will be presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME

3 (VARCHAR) COLUMN_NAME

4 (SMALLINT) KEY_SEQ
5 (VARCHAR) PK_NAME

recordset-get-result-set

long (recordset-get-result-set long id)

Copies the data presented by ODBC into the recordset. Depending on the recordset type all or
only one record(s) will be copied. Usually this function will be called automatically after each
successful database operation.

recordset-get-table-name

string (recordset-get-table-name long id)

Returns the name of the current table.

recordset-get-tables
long (recordset-get-tables long id)

Gets the tables of a database. The data will be presented as a normal result set, organized as
follows:

0 (VARCHAR) TABLE_QUALIFIER

1 (VARCHAR) TABLE_OWNER

2 (VARCHAR) TABLE_NAME

3 (VARCHAR) TABLE_TYPE (TABLE, VIEW, SYSTEM TABLE, GLOBAL TEMPORARY,

LOCAL TEMPORARY, ALIAS, SYNONYM, or database-specific type)
4 (VARCHAR) REMARKS

recordset-goto
long (recordset-goto long id long n)

Moves the cursor to the record with the number n, where the first record has the number O.

recordset-is-bof

long (recordset-is-bof long id)

306

Returns 1 if the user tried to move the cursor before the first record in the set.

recordset-is-field-dirty
long (recordset-is-field-dirty long id string-or-long field)

Returns 1 if the given field has been changed but not saved yet.

recordset-is-field-null
long (recordset-is-field-null long id string-or-long field)

Returns 1 if the given field has no data.

recordset-is-col-nullable
long (recordset-is-col-nullable long id string-or-long field)

Returns 1 if the given column may contain no data.

recordset-is-eof
long (recordset-is-eof long id)

Returns 1 if the user tried to move the cursor behind the last record in the set.

recordset-is-open
long (recordset-is-open long id)

Returns 1 if the parent database is open.

recordset-move
long (recordset-move long id long rows)

Moves the cursor a given number of rows. Negative values are allowed.

recordset-move-first
long (recordset-move-first long id)

Moves the cursor to the first record.

recordset-move-last

307

long (recordset-move-last long id)

Moves the cursor to the last record.

recordset-move-next
long (recordset-move-next long id)

Moves the cursor to the next record.
recordset-move-prev

long (recordset-move-prev long id)

Moves the cursor to the previous record.
recordset-query

long (recordset-query long id string columns string table optional string filter)

Start a query. An SQL string of the following type will automatically be generated and executed:
"SELECT columns FROM table WHERE filter".

recordset-set-table-name

long (recordset-set-table-name long id string table)

Specify the name of the table you want to use.

14.47. Server

See also Interprocess communication overview (page 343)

A server object represents the server side of a DDE conversation.

To delete a server object, use object-delete.

server-create
long (server-create string service-name)
Creates a server object, and returns an integer id if successful.

service-name is a string identifying this service to potential clients. Under UNIX, it should contain
a valid port number.

The application should use window-add-callback (page Error! Bookmark not defined.) to
register the window callback OnAcceptConnection or OnAcceptConnectionEx, which will be
called when a client requests a connection.

OnAcceptConnection will be called with arguments:

1. serverid (long)
2. the name of the topic in which the client is interested (string)

308

3. tentative connection id (long)

If this function returns zero, the connection is rejected and deleted, otherwise it is confirmed. See
also connection (page 247).

OnAcceptConnectionEx will be called with arguments:

1. serverid (long)
2. the name of the topic in which the client is interested (string)

This form assumes that the connection object will be created with connection-create from within
the callback.

14.48. Slider

A slider is a panel item for denoting a range of values. It must be a child of a panel (page 297).

slider-create
long (slider-create long panel-id string callback string label

long value long min-value long max-value

long width optional long x optional long y optional string style optional string name)
Creates a horizontal slider item on the given panel. The callback may be the empty string (") to
denote no callback, or a word or string for the function name. The function will be called when the
slider value is changed, with the slider item ID as argument.

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.

style is a bit list of the following:
wxHORIZONTAL The item will be created as a horizontal slider.

WXVERTICAL The item will be created as a vertical slider.

name gives the slider a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

slider-set-value

long (slider-set-value long slider-id long value)

Set the value of the slider.

slider-get-value
long (slider-get-value long slider-id)
Gets the value of the slider.

14.49. Text

309

A text item is used for displaying and editing a single line of text. It must be a child of a panel
(page 297).

See also multi-line text (page 294).

text-create

long (text-create long panel-id string callback string label
optional string value optional long x optional long y
optional long width optional long height optional string style optional string name)

Creates a single-line text item on the given panel. The callback may be the empty string (") to
denote no callback, or a word or string for the function name. The function will be called when
return is pressed in the text item, with the text item ID as argument. The default value is optional.

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.

style may be the empty string, or a bit list of:

WXTE_PROCESS_ENTER The callback function will receive the event
WXEVENT_TYPE_TEXT_ENTER_COMMAND. Note that this will break tab
traversal for this panel item under Windows. Single-line text only.

WXTE_PASSWORD The text will be echoed as asterisks. Single-line text only.

WXTE_READONLY The text will not be user-editable.

WXHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical

scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView. Multi-line text only.

name gives the group box a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

text-set-value

long (text-set-value long text-id string value)

Set the string value of a text item.

text-get-value

string (text-get-value long text-id)

Get the string value of a text item.

14.50. Text window

To display a lot of text, use this subwindow as the child of a frame (page 266). It is capable of

loading and saving files of ASCII text, and under Open Look and Motif, the text can be edited
directly.

310

To allow the user to edit text under Windows as well as the other platforms, either invoke an
external editor or create a multi-line text item (page 294) on a panel.

Under Windows, there is an extended range of functions. Some take character positions - a

single integer which can identify a character position - and others take line and character

numbers. If you want to use a function that takes one form, but you only have the other, you can

convert between them using a function such as text-window-xy-to-position or text-window-

position-to-line. Note that line and character numbers start from zero.

The following callbacks are valid for the dialog box class:

OnChar (Not XView.) The function is called with the text window identifier, key code, and

key event identifier. If the event is an ASCII keypress, the code will correspond to the
ASCII code; otherwise, the programmer must refer to the constants defined in
conmmon. h, in the wxWindows library.

To invoke default processing, call text-window-on-char.
OnSize The function is called with the text window identifier, width and height.

See also window-add-callback (page Error! Bookmark not defined.).

text-window-clear
long (text-window-clear long window-id)

Clears the contents of a text subwindow. Returns 1 if successful, O otherwise.

text-window-copy
long (text-window-copy long window-id)

Copies the selected text to the clipboard.

text-window-cut
long (text-window-cut long window-id)

Copies the selected text to the clipboard, then removes the selection.

text-window-create

long (text-window-create long parent-id optional long x optional long y
optional long width optional long height optional string style optional string name)

Creates a text subwindow. parent-id must be a valid frame ID.
style is a bit list of some of the following:
WXBORDER Use this style to draw a thin border in Windows 3 (non-native implementation

only).
WXNATIVE_IMPL Use this style to allow editing under MS Windows, albeit with a 64K

311

limitation.

name gives the text window a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

text-window-discard-edits

void (text-window-discard-edits long window-id)

Discard any edits in the text window.

text-window-get-contents
string (text-window-get-contents long window-id)

Returns the window contents (to a maximum of 1000 characters).

text-window-get-insertion-point
long (text-window-get-insertion-point long window-id)

Returns the insertion point.

text-window-get-last-position
long (text-window-get-last-position long window-id)

Returns the final position in the text window.

text-window-get-line-length
long (text-window-get-line-length long window-id long line-no)

Returns the length of the text at line line-no.

text-window-get-line-length
long (text-window-get-line-text long window-id long line-no)

Returns the text at line-no.

text-window-get-number-of-lines
long (text-window-get-number-of-lines long window-id)

Returns the number of lines in the text window.

312

text-window-load-file
long (text-window-load-file long window-id string filename)

Load the file onto the text subwindow, returning 1 for success, 0 for failure.

text-window-modified
long (text-window-modified long window-id)

Returns 1 if the text has been modified, O otherwise.

text-window-on-char

long (text-window-on-char long panel-id long event-id)

The default implementation of the OnChar callback. Call this to pass intercepted characters
through to the text window. Note that under Windows, there seems to be an intermittent GPF bug
when using this and then closing the window.

text-window-paste

long (text-window-paste long window-id)

Pastes the text (if any) from the clipboard to the text window.

text-window-position-to-char
long (text-window-position-to-char long window-id long pos)

Returns the character position (starting from zero) for the given index position.

text-window-position-to-line
long (text-window-position-to-line long window-id long pos)

Returns the line number (starting from zero) for the given index position.

text-window-remove
long (text-window-remove long window-id long start-pos long end-pos)

Removes the text between the given span selection.

text-window-replace

313

long (text-window-replace long window-id long start-pos long end-pos string text)

Replaces the text between the given span selection with the given text.

text-window-show-position
long (text-window-show-position long window-id long pos)

Shows the text at the given index position.

text-window-save-file
long (text-window-save-file long window-id string filename)

Saves the text in the subwindow to the given file, returning 1 for success, 0 for failure.

text-window-set-editable
long (text-window-set-editable long window-id long editable)

Sets the window editable (editable is 1) or read-only (editable is 0).

text-window-set-insertion-point
long (text-window-set-insertion-point long window-id long pos)

Sets the insertion point to the given index position.

text-window-set-selection
long (text-window-set-selection long window-id long start-pos long end-pos)

Sets the selection to the given span of text.

text-window-write
long (text-window-write long window-id string text)

Writes the given string into the text window, at the current cursor point.

text-window-xy-to-position
long (text-window-xy-to-position long window-id long char-position long line)

Converts the character and line number (each starting from zero) to a position.

314

14.51. Timer

A timer object can be created to notify the application at regular intervals.

timer-create

long (timer-create)

Creates a timer object. Use timer-start to start the timer, and register a Notify callback function to
receive notification.

timer-delete

long (timer-delete long id)

Stops and deletes the timer object.

timer-start
long (timer-start long id long milliseconds)

Starts the timer, notifying at intervals of duration milliseconds.

timer-stop

long (timer-stop long id)

Stops the timer.

14.52. Toolbar

See also Overview (page 347)

A toolbar is an array of bitmap buttons, implemented by drawing bitmaps onto a canvas, instead
of using the native button implementation.

toolbar-add-separator

long (toolbar-add-separator long id)

Adds a separator between tools.

toolbar-add-tool

long (toolbar-add-tool long id long index long bitmap-id1 optional long bitmap-id2 = 0
optional long is-toggle = 0 optional double x = -1.0 optional double x = 1.0 optional long
client-data = 0 optional string short-help-string="" optional string long-help-string="")

315

Adds a tool to the toolbar. Pass at least one bitmap, the bitmap to be displayed when active and
not depressed; and optionally, the bitmap to be displayed when the tool is depressed or toggled.
Under Windows, only one bitmap is necessary, and under X, the second bitmap will be created
automatically as the inverse of the first button if none is supplied.

You can specify whether the tool is allowed to toggle, and pass a position if you are not going to
automatically layout the toolbar with toolbar-layout. You can associate client data with the tool.

short-help-string is only used by Windows 95 versions of wxCLIPS. The string is used to supply
text for a tooltip, a small yellow window that appears as the mouse pointer hovers over the button.

long-help-string can be used for longer help strings, such as status line help.

toolbar-clear-tools
long (toolbar-clear-tools long id)

Clears all the tools from the toolbar.

toolbar-create
long (toolbar-create long parent_id optional long x optional long y optional long width
optional long height optional string style optional string orientation = "wxVERTICAL" optional
long nrows-or-columns optional long create-buttons optional string name)
Creates a toolbar, with a given layout orientation (whether the tools are automatically laid out in
rows or columns) and the number of rows or columns. These parameters are arbitrary if the tools
are to be positioned manually and toolbar-layout not called.
style may be a bit list of:

wxTB_3DBUTTONS: gives a simple 3D look to the buttons.
create-buttons should be 1 (the default) if the toolbar should superimpose the user-supplied
buttons onto a larger 3D button. If 0, the tool will be the same size as the button, and the toggle
state will be represented by inverting the tool (Windows) or adding a border (X).

Returns the toolbar id if successful, zero otherwise.

name gives the toolbar a name that can be retrieved with window-get-name (page Error!
Bookmark not defined.).

Note that absolute tool positioning (or the toolbar-layout function) does not work for buttonbars
under Windows 95: instead, you can specify the number of rows for the toolbar, and use toolbar-
add-separator to achieve inter-tool spacing.

toolbar-create-tools

long (toolbar-create-tools long id)

This should be called when creating Windows 95 buttonbars, after all tools have been added. It
adds the tools to the toolbar. You can also call it for non-Windows 95 toolbars and buttonbars, in

316

which case it will have no effect.

toolbar-enable-tool
long (toolbar-enable-tool long id long tool-id long enable)

Enables the tool (if enable is 1) or disables it (if enable is 0).

toolbar-get-max-height
double (toolbar-get-max-height long id)

Gets the maximum height of the toolbar when it has been automatically laid out.

toolbar-get-max-width
double (toolbar-get-max-width long id)

Gets the maximum width of the toolbar when it has been automatically laid out.

toolbar-get-tool-client-data
long (toolbar-get-tool-client-data long id long tool-id)

Returns the client data associated with the given tool.

toolbar-get-tool-enabled
long (toolbar-get-tool-enabled long id long tool-id)

Returns 1 if the tool is enabled, 0 otherwise.

toolbar-get-tool-long-help
string (toolbar-get-tool-long-help long id long tool-id)

Returns the long help associated with this tool.

toolbar-get-tool-short-help
string (toolbar-get-tool-short-help long id long tool-id)

Returns the short help associated with this tool.

toolbar-get-tool-state

317

long (toolbar-get-tool-state long id long tool-id)

Returns the tool state (1 for toggled on, O for off).

toolbar-layout

long (toolbar-layout long id)

Lays out all the tools if automatic layout is required.

Note that this function does not work for buttonbars under Windows 95: but you can still specify
the number of rows for the toolbar.

toolbar-on-paint

void (toolbar-on-paint long id)

Calls the default toolbar paint callback. You may wish to call this if you override the default
callback.

toolbar-set-default-size

long (toolbar-set-default-size long id long width long height)

Sets the width and height of tool buttons (Windows only). The default is 24 by 22.

toolbar-set-margins
long (toolbar-set-margins long id long x long y)

Sets the width and height of the toolbar margins and spacing, if automatic layout is being used.

toolbar-set-tool-long-help
long (toolbar-set-tool-long-help long id long tool-id string help-string)

Sets the long help associated with this tool.

toolbar-set-tool-short-help
long (toolbar-set-tool-short-help long id long tool-id string help-string)

Sets the short help associated with this tool.

toolbar-toggle-tool

long (toolbar-toggle-tool long id long tool-id long toggle)

318

Toggles the tool on or off.

14.53. Window

The window is an 'abstract' class which does not exist in its own right, but is used to access the
functionality of classes derived from it. Therefore, please refer to this section when considering
other classes.

window-add-callback

long (window-add-callback long window-id word event word function)

Sets the callback function of a given window (frame, panel, panel item etc.) for the given event, to
be the given CLIPS function. See individual window descriptions for details of valid callbacks.
window-centre

long (window-centre long window-id word orientation)

orientation may be wxVERTICAL, wxHORIZONTAL or wxBOTH. Centres the window with
respect to its parent (or desktop).

window-close

long (window-close long window-id long force-close)

Closes the dialog or frame without immediately deleting the object. The object will be cleaned up
in 'idle' processing time. Use of this function instead of deleting the window directly is highly
recommended, especially under Motif which is sensitive to frame and dialog deletion.

This function first calls the window's OnClose handler. If OnClose returns FALSE, the close will
be vetoed unless the force-close argument is 1, in which case the deletion will take place anyway.

window-close should only be used for frames and dialog boxes.

window-delete
long (window-delete long window-id)

Deletes a window. See also window-close (page Error! Bookmark not defined.).

window-enable
long (window-enable long window-id long enable)

If enable is 1, enables the window for input. If enable is 0, the window is disabled (greyed out in
the case of a panel item).

319

window-fit
long (window-fit long window-id)

Fits the panel, dialog box or frame around its children.

window-get-name
string (window-get-name long window-id)

Gets the window's name (the 'name' parameter passed to a window constructor).

window-get-next-child
long (window-get-next-child long window-id long child-id)
If child-id is zero, returns the id of the first child window of window-id.
If child-id is a valid child id, returns the id of the next child window.
Returns -1 if there are no more children.
Example:

(bind ?child-id (w ndow get-next-child ?win-id 0))

(while (neq ?child-id -1)
(bind ?type (object-get-type ?child-id))

(bind 2child-id (w ndow get-next-child 2win-d 2child-id))
)
window-get-parent
long (window-get-parent long window-id)

Gets the id of the window's parent.

window-get-x
long (window-get-x long window-id)

Get the x coordinate of the window.

window-get-y
long (window-get-y long window-id)

Gets the y coordinate of the window.

320

window-get-width
long (window-get-width long window-id)

Gets the width of the window.

window-get-height
long (window-get-height long window-id)

Gets the height of the window.

window-get-client-width
long (window-get-client-width long window-id)

Gets the client width (space available for child windows) of the window.

window-get-client-height
long (window-get-client-height long window-id)

Gets the client height (space available for child windows) of the window.

window-is-shown
long (window-is-shown long window-id)

Returns 1 if the window is shown, O otherwise.

window-make-modal
long (window-make-modal long window-id long modal)

modal may be 1 to disable all frames and dialog boxes except this one, or 0 to enable all frames
and dialogs again.

Has no effect in XView.

window-popup-menu
long (window-popup-menu long window-id long menu-id double x double y)

Pops up a menu on the window, at the given position. The menu will be dismissed (but not
destroyed) when the user makes a selection.

Note that there is a reliability problem with Motif popup menus; they may not pop up after the first

321

time.

window-refresh

long (window-refresh long window-id long erase-background=1 long x=-1 long y=-1 long
width=-1 long height=-1) Refreshes the give window, causing OnPaint to be called. This
function should be called in preference to calling an OnPaint handler directly.

erase-background controls whether the window background is automatically cleared in the
current background colour (1) or not (0). The default is 1.

The last four optional arguments define a rectangle to limit the 'damaged’ area. If all arguments
are -1, this is taken to mean that the whole window should be refreshed.
window-remove-callback

long (window-remove-callback long window-id word event)

Removes the callback function associated with this event.

window-set-cursor
long (window-set-cursor long window-id long cursor-id)

Sets the cursor for this window.

window-set-focus
long (window-set-focus long window-id)

Set this window to have the keyboard focus.

window-set-size
long (window-set-size long window-id long x long y long width long height)

Sets the position and size of the window.

window-set-size-hints

long (window-set-size-hints long window-id long min-width=-1 long min-height=-1 long max-
width=-1 long max-height=-1 long inc-width=-1 long inc-height=-1) Tells the windowing system
to restrict the resizing of the frame or dialog box.

min-width, min-height determine the minimum size of the window.

max-width, max-height determine the maximum size of the window.

inc-width, inc-height determine the increments by which the window is sized (Motif only).

322

-1 values indicate where default values should be used instead of application-specified values.

window-set-client-size
long (window-set-client-size long window-id long width long height)

Sets the client size (available space for child windows) of the window.

window-show
long (window-show long window-id long show)
If show is 1, shows the window. If show is 0, the window is hidden. If the window is a modal

dialog box, show = 1 will start the modal loop, and show = 0 will terminate the loop (allowing
execution to proceed after the first call to window-show).

14.54. Miscellaneous

This section contains an assortment of useful GUI and other functions.

batch

void (batch string filename)

Executes the given file of CLIPS commands as if from a terminal. Note that full error checking on
construct definitions is not performed; use load when checking is required.
begin-busy-cursor

void (begin-busy-cursor)

Starts a 'busy' section of code, putting up an hourglass cursor. Use end-busy-cursor (page Error!
Bookmark not defined.) at the end of the section.

These pairs of calls may be nested for programming convenience.

bell
void (bell)

Rings the system bell.

chdir
long (chdir string directory)

Changes to the given directory and returns 1 if successful, O otherwise.

323

clean-windows
void (clean-windows)

Delete all frames and dialog boxes created through CLIPS calls.

clear-ide-window
void (clear-ide-window)

Clears the wxCLIPS development window.

clear-resources
long (clear-resources)

Clears the wxCLIPS resource table. This table is separate from the default resource table that is
used by wxCLIPS and other host C++ applications.

See also load-resource-file (page Error! Bookmark not defined.), panel-create-from-resource

(page Error! Bookmark not defined.), dialog-box-create-from-resource (page Error! Bookmark
not defined.).

copy-file

long (copy-file string f1 string f2)

Copies file f1 to 2, returning 1 if successful, 0 otherwise.

debug-msg

void (debug-msg string text)

Outputs text to the debugging stream. Under X, this is the standard error stream. Under
Windows, this outputs to the debugger (if present) or any other program that can intercept debug
messages, such as Microsoft's DBWIN sample application. This can be useful if you don't have a
text window available, and you want the messages to persist after your program has exited,
gracefully or otherwise.

dir-exists

long (dir-exists string directory)

Returns 1 if the directory exists, 0 otherwise.

end-busy-cursor

324

void (end-busy-cursor)

Ends a 'busy' section of code, resetting the cursor to the original for each window. Use begin-
busy-cursor (page Error! Bookmark not defined.) at the start of the section.

These pairs of calls may be nested for programming convenience.

execute
long (execute string command optional long synchronous = 0)

Executes the given system command, either asynchronously (the function returns control
immediately) or synchronously (the function returns control when the command terminates). The
default is asynchronous execution.

This function should be used in preference to the CLIPS system command. Under Windows, it
calls WinExec. You cannot call built-in DOS commands (such erase) with this function: you may
need to write a batch file instead.

fact-string-existp

bool (fact-string-existp string fact)

Allows an application to test a fact from within a function. For example:

CLI PS> (fact-string-existp "(Exanmple 1)")
CLI PS> FALSE

CLI PS> (assert (Exanple 2))

CLI PS> <Fact - 0>

CLI PS> (fact-string-existp "(Exanmple 2)")
CLI PS> TRUE

CLIPS> (retract 0)

CLI PS> (fact-string-existp "(Exanmple 2)")
CLI PS> FALSE

file-exists
long (file-exists string filename)

Returns 1 if the file exists, 0 otherwise.

file-selector

string (file-selector optional string message optional string path optional string file
optional string extension optional string wildcard optional long parent-id optional string
flags)

Pops up a file selector with given (optional) arguments, returning a fully qualified filename or the

325

empty string.

flags can be the empty string or a bit list of the following:

WXSAVE Display the Save button instead of the Open button (Windows only).

WXOVERWRITE_PROMPT Prompts the user when saving if there is already a file of that
name (Windows only).

wWxOPEN Display the Open button (Windows only).
wxHIDE_READONLY Hide the "Open as read-only" checkbox (Windows only).

find-window-by-label

long (find-window-by-label string label optional long parent-id)

Finds a window with a label or title corresponding to label. Optionally pass a parent id from where
to start searching.

find-window-by-name

long (find-window-by-name string name optional long parent-id)

Finds a window with a name corresponding to name. Optionally pass a parent id from where to
start searching.

float-to-string

string (float-to-string double n)

Convert a floating point number to a string.

get-active-window
long (get-active-window)

Returns the id of the active window, or -1 if either there is no active window in this application, or
the active window has not been created as a wxCLIPS window.

This function only works under MS Windows.

get-choice

string (get-choice string message multifield choices optional long centre-message optional
long parent-id)

Given a message string and a multifield comprising a number of choice strings, pops up a menu
for the user to select one item. Returns one of the supplied strings if the user pressed Ok, or the
null string if the user pressed Cancel.

A multifield can be created with the CLIPS function mv-append, for example:

326

(bi nd ?choice (get-choice "Choose pl ease"
(mv-append "One" "Two" "Three")))

If centre-message is 1 (the default), the message will be centred on the dialog box. Ifitis O, the
message will be left-justified. New lines are allowed in the message.

get-elapsed-time
long (get-elapsed-time optional long reset-timer = 1)

Returns the elapsed time in milliseconds since the last reset, using start-timer (page Error!
Bookmark not defined.) or by passing 1 to this function.

get-ide-window
long (get-ide-window)

Gets the id of the wxCLIPS development window (stand-alone wxCLIPS only). If the development
window has not been created, zero is returned.

get-os-version
string (get-os-version)

Returns a string representing the operating system under which the program is currently running.
It is more precise than get-platform (page Error! Bookmark not defined.). However, be careful

about inferring from a value of wxWIN95 that this version of wxCLIPS is compiled as a Windows
95 application: it may be compiled as a generic WIN32 application.

This may be one of the following (although only a number of these platforms are currently
supported).

WXCURSES: Text-only CURSES platform
WXXVIEW_X: Sun's XView OpenLOOK toolkit
WXMOTIF_X: OSF Motif 1.x.x

WXCOSE_X: OSF Common Desktop Environment
WXNEXTSTEP: NeXTStep

WXMACINTOSH: Apple System 7

WXGEQOS: GEOS

wx0OS2_PM: OS/2 Workplace

wWXWINDOWS: Windows or WfW
WXPENWINDOWS: Windows for Pen Computing
WXWINDOWS_NT: Windows NT

WXWIN32S: Windows 32S API

wWxWIN95: Windows 95

wxWIN386: Watcom 32-bit supervisor mode

get-platform

327

string (get-platform)

Gets a string indicating the current platform the program is running on. Currently one of "XView",
"Motif" and "Windows 3.1".

For a more precise notion of current operating system, see get-os-version (page Error!
Bookmark not defined.).

get-resource
string (get-resource string section string entry optional string filename)

Gets the value from the resource file (such as WIN.INI or .Xdefaults, depending on platform). If
the filename is omitted, WIN.INI under Windows or .Xdefaults under X will be used.

See also write-resource (page Error! Bookmark not defined.)

get-text-from-user

string (get-text-from-user string message optional string default-value
optional long centre-message optional long parent-id)

Give a message string and a default value, pops up a dialog box prompting the user to enter a
string. Returns the input string if the user pressed Ok, or the null string if the user pressed
Cancel.

If centre-message is 1 (the default), the message will be centred on the dialog box. Ifitis O, the
message will be left-justified. New lines are allowed in the message.

load-resource-file

long (load-resource-file string filename)

Loads the given . wxr resource file, return 1 if the operation was successful.

See also clear-resources (page Error! Bookmark not defined.), panel-create-from-resource

(page Error! Bookmark not defined.), dialog-box-create-from-resource (page Error! Bookmark
not defined.).

long-to-string
string (long-to-string long value)

Convert the integer to a string.

make-metafile-placeable

long (make-metafile-placeable string filename long min-x long min-y long max-x long max-y
optional double scale)

328

Given a filename for an existing, valid metafile, makes it into a placeable metafile by prepending a
header containing the given bounding box. The bounding box may be obtained from a device
context after drawing into it, using the functions dc-get-min-x, dc-get-min-y, dc-get-max-x, and dc-
get-max-y.

In addition to adding the placeable metafile header, this function adds the equivalent of the
following code to the start of the metafile data:

Set MapMbde(dc, MM ANl SOTRCPI C) ;
Set WndowOr g(dc, m nX, mnY);
Set W ndowkext (dc, nmaxX - minX, nmaxY - mnY);

This simulates the MM_TEXT mapping mode, which wxWindows assumes.

Placeable metafiles may be imported by many Windows applications, and can be used in RTF
(Rich Text Format) files.

scale allows the specification of scale for the metafile.
This function is only available under Windows.

See also metafile-dc (page 291).

mci-send-string

string (mci-send-string string command)

Sends an MCI (Media Control Interface) string to Windows. Returns an error string if there was an
error, or the empty string if there was no error. This allows you to play MIDI and WAV files, for
example, and videos if you have an appropriate device driver.

For example:

(bind ?err (nti-send-string "play bark.wav"))
(if (neq ?err "") then (printout t "Error: " ?err crilf))

The following describes the basic command syntax.

| oad devi ce_nane {file_nane}

pause devi ce_nane

pl ay devi ce_nane [from position]
[to position]

[insert | overwite]

resume devi ce_nane

save devi ce_nane [file_nane]
seek devi ce_nane {to position | to start | to end}
set devi ce_nane [audio all off

| audio all on
| audio left off

329

| audio left on
| audio right off
| audio right on
| video off
| video on]
[door closed | door open]
[time format nilliseconds | tinme format ns]
status devi ce_nane {current track
| length
| length track track nunber
| node
| nunber of tracks
| position
| position track track_numnber
| ready
| start position
| time format}

stop devi ce nane

message-box

word (message-box string message optional word type
optional long centre-message optional long parent-id optional string title)

Pops up a dialog box with a message, where the buttons on the dialog box depend on the type
parameter. This may be OK, OK-CANCEL, YES-NO or YES-NO-CANCEL. The return value is
OK, CANCEL, YES or NO.

If centre-message is 1 (the default), the message will be centred on the dialog box. Ifitis O, the
message will be left-justified. New lines are allowed in the message.

The optional title parameter allows the message box title to be changed from the default string
'Message'.

mkdir

long (mkdir string directory)

Creates the given directory and returns 1 if successful, O otherwise.

now
string (now)

Returns a string representing the current time and date.

read-string

string (read-string)

330

Read a string (pops up a dialog box).

return-result
void (return-result any result)

Used by internal C++ functions to get the return value of an arbitrary CLIPS expression.

rmdir
long (rmdir string directory)

Removes the given directory and returns 1 if successful, O otherwise.

show-ide-window

void (show-ide-window)

Shows the wxCLIPS development window if it has not already been created (stand-alone
WXCLIPS only). This can be useful if starting a CLIPS program from the command line, and you

want the development window to be shown before app-on-init has finished. Only likely to work
under Windows.

set-work-proc

void (set-work-proc string function)

Sets the work function, a function with no parameter and no return result, which will be called
when the application is otherwise idle. If this is the empty string, the work procedure is cancelled.

(Stand-alone version of wxCLIPS only).

Note: this has been found not to work properly on the Windows version, and is not implemented
for XView. So probably this is useful only under Motif.

sleep

long (sleep long no-secs)

Makes the process dormant for the given number of seconds. This might be used in a loop
involving interprocess communication, for example, to allow time for programs to be loaded.
Message processing will take place whilst the process is asleep, so beware of the user interacting
with the system during this period.

start-timer

void (start-timer)

331

Starts the wxCLIPS stopwatch. You can get elapsed time in milliseconds with get-elapsed-time
(page Error! Bookmark not defined.).

string-sort

multifield (string-sort multifield string-list)

Sorts the given multifield list in ascending alphabetical order. A list may be created using the mv-
append CLIPS function.

string-to-float

double (string-to-float string value)

Convert the string to a floating point number.

string-to-long
long (string-to-long string value)

Convert the string to a long integer.

string-to-symbol
word (string-to-symbol string value)

Convert the string to a symbol.

symbol-to-string
string (symbol-to-string word value)

Convert the string to a symbol.

write-resource
long (write-resource string section string entry string value optional string filename)

Writes the value into the resource file (such as WIN.INI or .Xdefaults, depending on platform). If
the filename is omitted, WIN.INI under Windows or .Xdefaults under X will be used.

See also get-resource (page Error! Bookmark not defined.)

wxclips-object-exists

long (wxclips-object-exists long id)

332

Returns 1 if the given wxCLIPS object exists, 0 otherwise.

yield
long (yield)
Yields to the windowing system message loop, if appropriate. Normally only of use under

Windows, during periods of intensive processing, particularly following window creation or
modification. It has no effect under XView or Motif.

333

15. wxCLIPS classes by category

A classification of wxCLIPS classes by category.

15.1. Managed windows

There are several types of window that are directly controlled by the window manager (such as
MS Windows, or the Motif Window Manager). Frames may contain subwindows (page 334), and
dialog boxes have their own built-in subwindow similar to a panel.

WXCLIPS function groups

Frame (page 266)
Dialog box (page 264)

wxCOOL classes

wxFrame (page 191)
wxDialogBox (page 187)

15.2. Subwindows

Subwindows should be created as children of frames. The panel subwindow may contain panel
items (controls or widgets).

WXCLIPS function groups

Canvas (page 239)

Grid (page 272)

Panel (page 297)

Text window (page 310)
Toolbar (page 315)

wxCOOL classes

wxCanvas (page 164)
wxPanel (page 209)
wxTextWindow (page 225)
wxToolBar (page 227)

See also Window (page 319) and wxWindow (page 231).

15.3. Panel items

These are widgets (in Motif terminology) or controls (in MS Windows terminology) that can be
placed on panels and dialog boxes, with the exception of Menu and MenuBar.

WXCLIPS function groups

Button (page 238)
CheckBox (page 243)
Choice (page 243)
Gauge (page 271)
GroupBox (page 280)

Item (page 299)
ListBox (page 284)
MultiText (page 294)
Menu (page 287)
MenuBar (page 289)
Message (page 290)
RadioBox (page 300)
Slider (page 309)
Text (page 309)

wxCOOL classes

wxButton (page 163)
wxCheckBox (page 166)
wxChoice (page 166)
wxGauge (page 195)
wxGroupBox (page 196)
wxItem (page 211)
wxListBox (page 198)
wxMultiText (page 208)
wxMenu (page 201)
wxMenuBar (page 203)
wxMessage (page 204)
wxRadioBox (page 214)
wxSlider (page 223)
wxText (page 224)

See also Window (page 319) and wxWindow (page 231).
15.4. Convenience dialogs
Popup-related special-purpose dialogs, and related functions.

file-selector (page Error! Bookmark not defined.)
get-choice (page Error! Bookmark not defined.)
get-text-from-user (page Error! Bookmark not defined.)
message-box (page Error! Bookmark not defined.)
begin-busy-cursor (page Error! Bookmark not defined.)
end-busy-cursor (page Error! Bookmark not defined.)

15.5. Device contexts
See also Overview (page 346)

Device contexts are surfaces that may be drawn on, and provide an abstraction that allows
parameterisation of your drawing code by passing different device contexts.

WXCLIPS function groups

wxDC (page 258)
MemoryDC (page 287)
MetaFileDC (page 291)
PostScriptDC (page 300)

335

PrinterDC (page 300)
Metafile (page 290)

wxCOOL classes

DC (page 182)
wxMemoryDC (page 201)
wxMetaFileDC (page 205)
wxPostScriptDC (page 212)
wxPrinterDC (page 213)
wxMetafile (page 204)

See also make-metafile-placeable (page Error! Bookmark not defined.).

15.6. Graphics device interface
These classes are related to the Graphics Device Interface, in MS Windows terminology.
WXCLIPS function groups

Bitmap (page 236)
Brush (page 238)
Cursor (page 249)
Font (page 266)
Icon (page 282)
Pen (page 299)
Colour (page 246)

wxCOOL classes

wxBitmap (page 161)
wxBrush (page 162)
wxCursor (page 172)
wxFont (page 190)
wxlcon (page 196)
wxPen (page 212)

15.7. Events

Some member functions that an application overrides are passed event objects containing
information about the event.

WXCLIPS function groups

CommandEvent (page 246)
Event (page 266)
KeyEvent (page 283)
MouseEvent (page 292)

wxCOOL classes
wxCommandEvent (page 168)

wxEvent (page 189)
wxKeyEvent (page 197)

336

wxMouseEvent (page 206)
15.8. Interprocess communication
See also Overview (page 343)
wXCLIPS provides a simple interprocess communications facilities based on DDE.
WXCLIPS function groups

Client (page 245)
Connection (page 247)
Help (page 269)
Server (page 308)

wxCOOL classes

wxClient (page 168)
wxConnection (page 169)
wxHelplnstance (page 194)
wxServer (page 222)

15.9. Database classes
See also Database classes overview (page 349)

WXCLIPS provides a set of classes for accessing Microsoft's ODBC (Open Database
Connectivity) product.

WXCLIPS function groups

Database (page 250)
RecordSet (page 301)

wxCOOL classes

wxDatabase (page 174)
wxRecordSet (page 215)

15.10. File functions

chdir (page Error! Bookmark not defined.)
dir-exists (page Error! Bookmark not defined.)
file-exists (page Error! Bookmark not defined.)
get-resource (page Error! Bookmark not defined.)
write-resource (page Error! Bookmark not defined.)

15.11. Time-related functions
Functions
Date class (page 252)

Timer class (page 315)
get-elapsed-time (page Error! Bookmark not defined.)

337

start-timer (page Error! Bookmark not defined.)
now (page Error! Bookmark not defined.)

WXCLIPS function groups

Date class (page 252)
Timer class (page 315)

wxCOOL classes

wxDate (page 176)
wxTimer (page 227)

15.12. Noisy functions

bell (page Error! Bookmark not defined.)
mci-send-string (page Error! Bookmark not defined.)

15.13. Operating system functions
These functions are related to operating system functionality.

execute (page Error! Bookmark not defined.)
get-platform (page Error! Bookmark not defined.)
get-resource (page Error! Bookmark not defined.)
write-resource (page Error! Bookmark not defined.)
yield (page Error! Bookmark not defined.)

sleep (page Error! Bookmark not defined.)

15.14. wxCLIPS environment functions
These functions are related to the wxCLIPS development environment.

app-on-init (page Error! Bookmark not defined.)

batch (page Error! Bookmark not defined.)
clean-windows (page Error! Bookmark not defined.)
debug-msg (page Error! Bookmark not defined.)
get-ide-window (page Error! Bookmark not defined.)
get-resource (page Error! Bookmark not defined.)
show-ide-window (page Error! Bookmark not defined.)

15.15. Data functions
These functions are related to general data manipulation.

float-to-string (page Error! Bookmark not defined.)
long-to-string (page Error! Bookmark not defined.)
read-string (page Error! Bookmark not defined.)
string-sort (page Error! Bookmark not defined.)
string-to-float (page Error! Bookmark not defined.)
string-to-long (page Error! Bookmark not defined.)
string-to-symbol (page Error! Bookmark not defined.)
symbol-to-string (page Error! Bookmark not defined.)

338

339

16. Topic overviews

16.1. Window styles

Window styles are used to specify alternative behaviour and appearances for windows, when
they are created. The symbols are defined in such as way that they can be combined in a 'bit list'
using the bitwise-or operator, as found in C and C++. In CLIPS, you enclose this bit list in a string.
For example:

"WXCAPTI ON | wxM NI M ZE_BOX | wxM NI M ZE_BOX | wxTHI CK_FRAME"

16.1.1. wxFrame styles
The following styles apply to wxFrame windows.

wxICONIZE Display the frame iconized (minimized) (Windows only).

WxCAPTION Puts a caption on the frame (Windows and XView only).
WXDEFAULT_FRAME Defined as a combination of wxMINIMIZE_BOX, wxMAXIMIZE_BOX,
WXTHICK_FRAME, wxSYSTEM_MENU, and wxCAPTION.

wxMDI_CHILD Specifies a Windows MDI (multiple document interface) child frame.

WXMDI_PARENT Specifies a Windows MDI (multiple document interface) parent frame.

WXMINIMIZE Identical to wxICONIZE.

wWxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif only).

WXMAXIMIZE Displays the frame maximized (Windows only).

WXMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif only).

wxSDI Specifies a normal SDI (single document interface) frame.

WXSTAY_ON_TOP Stay on top of other windows (Windows only).

WXSYSTEM_MENU Displays a system menu (Windows and Motif only).

wWXTHICK_FRAME Displays a thick frame around the window (Windows and Motif only).

WXRESIZE_BORDER Displays a resizeable border around the window (Motif only).

WXTINY_CAPTION_HORIZ Under Windows 3.1, displays a small horizontal caption if
USE_ITSY_BITSY is setto 1 in wx_setup.h and the Microsoft ItsyBitsy library
has been compiled. Use instead of wxCAPTION.

WXTINY_CAPTION_VERT Under Windows 3.1, displays a small vertical caption if
USE_ITSY_BITSY is setto 1 in wx_setup.h and the Microsoft ItsyBitsy library
has been compiled. Use instead of wxCAPTION.

16.1.2. wxDialogBox styles
The following styles apply to wxDialogBox windows.

wWxCAPTION Puts a caption on the dialog box (Motif only).

WXDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION, wxSYSTEM_MENU
and wxTHICK_FRAME

WXRESIZE_BORDER Display a resizeable frame around the window (Motif only).

WXSYSTEM_MENU Display a system menu (Motif only).

wWXTHICK_FRAME Display a thick frame around the window (Motif only).

WXUSER_COLOURS Under Windows, overrides standard control processing to allow setting of
the dialog box background colour.

WXVSCROLL Give the dialog box a vertical scrollbar (XView only).

16.1.3. wxItem styles
The following styles apply to all wxltem (page 211) derived windows.

WXHORIZONTAL_LABEL The item will be created with a horizontal label.

WXVERTICAL_LABEL The item will be created with a vertical label.

WXFIXED_LENGTH Allows the values of a column of items to be left-aligned. Create an item
with this style, and pad out your labels with spaces to the same length. The item
labels will initially created with a string of identical characters, positioning all the
values at the same x-position. Then the real label is restored.

16.1.4. wxButton styles

There are no styles specific to wxButton (page 163).

16.1.5. wxGauge styles
The following styles apply to wxGauge (page 195) items.

WXGA HORIZONTAL The item will be created as a horizontal gauge.

WXGA VERTICAL The item will be created as a vertical gauge.

WXGA_PROGRESSBAR Under Windows 95, the item will be created as a horizontal
progress bar.

16.1.6. wxGroupBox styles

There are no styles specific to wxGroupBox (page 196).

16.1.7. wxListBox styles
The following styles apply to wxListBox (page 198) items.

WXNEEDED_SB Create scrollbars if needed.

wxLB_NEEDED_SB Same as wxNEEDED_SB.

WXALWAYS_SB Create scrollbars immediately.

wWxLB_ALWAYS_SB Same as wxALWAYS_LB.

wxLB_SINGLE Single-selection list.

wxLB_MULTIPLE Multiple-selection list.

wxLB_EXTENDED Extended-selection list (Motif only).

WXHSCROLL Create horizontal scrollbar if contents are too wide (Windows only).

16.1.8. wxMessage styles

There are no styles specific to wxMessage (page 204).

341

16.1.9. wxRadioBox
The following styles apply to wxRadioBox (page 214) items.

WXVERTICAL Lays the radiobox out in columns.
WXHORIZONTAL Lays the radiobox out in rows.

16.1.10. wxSlider styles
The following styles apply to wxSlider (page 223) items.

wWXxHORIZONTAL The item will be created as a horizontal slider.
WXVERTICAL The item will be created as a vertical slider.

16.1.11. wxText/wxMultiText styles
The following styles apply to wxText (page 224) and wxMultiText (page 208) items.

WXTE_PROCESS_ENTER The callback function will receive the event
WXEVENT_TYPE_TEXT_ENTER_COMMAND. Note that this will break tab
traversal for this panel item under Windows. Single-line text only.

WXTE_PASSWORD The text will be echoed as asterisks. Single-line text only.

WXTE_READONLY The text will not be user-editable.

WXHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical
scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView. Multi-line text only.

16.1.12. wxTextWindow styles
The following styles apply to wxTextWindow (page 225) objects.

WXBORDER Use this style to draw a thin border in Windows 3 (non-native implementation
only).

WXNATIVE_IMPL Use this style to allow editing under Windows 3.1, albeit with a 64K
limitation.

WXREADONLY Use this style to disable editing.

WXHSCROLL Use this style to enable a horizontal scrollbar, or leave it out to allow line
wrapping. Windows and Motif only.

16.1.13. wxPanel styles
The following styles apply to wxPanel (page 209) windows.

WXBORDER Draws a thin border around the panel.

WXUSER_COLOURS Under Windows, overrides standard control processing to allow setting of
the panel background colour.

WXVSCROLL Gives the dialog box a vertical scrollbar (XView only).

342

16.1.14. wxCanvas styles
The following styles apply to wxCanvas (page 164) windows.

wxBORDER Gives the canvas a thin border (Windows 3 and Motif only).
WXRETAINED Gives the canvas a wxWindows-implemented backing store, making repainting
much faster but at a potentially costly memory premium (XView and Motif only).

16.1.15. wxToolBar styles
The following styles apply to wxToolBar (page 227) objects.

wxTB_3DBUTTONS Gives a 3D look to the buttons, but not to the same extent as
wxButtonBar.

16.2. Interprocess communication overview

WXCLIP function groups: Server (page 308), Connection (page 247), Client (page 245).
wxCOOL classes: wxServer (page 222), wxConnection (page 169), wxClient (page 168).

The following describes how wxCLIPS implements DDE. The following three classes are central.

1. Client. This represents the client application, and is used only within a client program.

2. Server. This represents the server application, and is used only within a server program.

3. Connection. This represents the connection from the current client or server to the other
application (server or client), and can be used in both server and client programs. Most
DDE transactions operate on this object.

Messages between applications are usually identified by three variables: connection object, topic
name and item name. A data string is a fourth element of some messages. To create a
connection (a conversation in Windows parlance), the client application sends the message
client-make-connection to the client object, with a string service name to identify the server and a
topic name to identify the topic for the duration of the connection. Under UNIX, the service name
must contain an integer port identifier.

The server then responds and either vetos the connection or allows it. If allowed, a connection
object is created which persists until the connection is closed. The connection object is then used
for subsequent messages between client and server.

To create a working server, the programmer must:

1. Create a server object, giving it a service hame.

2. Register the callback OnAcceptConnection for accepting or rejecting a connection, on
the basis of the topic argument.

3. Create a Connection object.

4. Provide callbacks for various messages that are sent to the server side of a Connection.

To create a working client, the programmer must:

343

1. Create a client object.

2. Create a connection object using client-make-connection (page Error! Bookmark not
defined.).

3. Provide callbacks for various messages that are sent to the client side of a Connection.

4. Use the Connection functions to send messages to the server.

16.2.1. Data transfer
These are the ways that data can be transferred from one application to another.

Execute: the client calls the server with a data string representing a command to be
executed. This succeeds or fails, depending on the server's willingness to answer. If the
client wants to find the result of the Execute command other than success or failure, it
has to explicitly call Request.

Request: the client asks the server for a particular data string associated with a given
item string. If the server is unwilling to reply, the return value is NULL. Otherwise, the
return value is a string (actually a pointer to the connection buffer, so it should not be
deallocated by the application).

Poke: The client sends a data string associated with an item string directly to the server.
This succeeds or fails.

Advise: The client asks to be advised of any change in data associated with a particular
item. If the server agrees, the server will send an OnAdvise message to the client along
with the item and data.

The default data type is wxCF_TEXT (ASCII text), and the default data size is the length of the
null-terminated string. Windows-specific data types could also be used on the PC.

16.2.2. Connection overview
See also Interprocess communication overview (page 343)

A connection object has no creation function, since it is implicitly created when a connection is
requested (one object at each side of the connection).

A connection object id is used for initiating DDE commands and requests using functions such as
connection-execute, and it also has event handlers associated with it to respond to commands
from the other side of the connection.

The callbacks you can define for a connection (using window-add-callback (page Error!
Bookmark not defined.)) are as follows.

OnAdvise Called when an OnAdvise message is received by the client in response to a
server-side connection-advise call. The function should take arguments: connection id,
OnAdvise, topic string, item name string, data string. The function should return 1 if
successful, 0 otherwise. The data string is what the server is passing to the client.

OnExecute Called when an OnExecute message is received by the server in response to a
client-side connection-execute call. The function should take arguments: connection id,
OnExecute, topic string, dummy item, data string. The function should return 1 if
successful, 0 otherwise.

OnPoke Called when an OnPoke message is received by the server in response to a client-
side connection-poke call. The function should take arguments: connection id, OnPoke,
topic string, item name, data string. The function should return 1 if successful, 0

otherwise.

OnRequest Called when an OnRequest message is received by the server in response to a
client-side connection-request call. The function should take arguments: connection id,
OnRequest, topic string, item name, data string. The function should return the data
being requested, or the empty string if none. otherwise.

OnStartAdvise Called when an OnStartAdvise message is received by the server in
response to a client-side connection-start-advise call. The function should take
arguments: connection id, OnStartAdvise, topic string, item name, dummy data. The
function should return 1 if successful, O otherwise.

OnStopAdvise Called when an OnStopAdvise message is received by the server in
response to a client-side connection-start-advise call. The function should take
arguments: connection id, OnStopAdvise, topic string, item name, dummy data. The
function should return 1 if successful, O otherwise.

16.2.3. Examples

See the sample programs ddeserv.clp, ddeclien.clp in the examples directory. Run the server,
then the client (you'll have to copy wxclips.exe to wxclips2.exe to run two copies
simulataneously).

The sample ddetest.clp shows a simple example of accessing the Program Manager using DDE
(Windows only).

;, Deno of DDE functions: chatting to PROGVAN

(def gl obal ?*progman-server* = 0)

(def gl obal ?*progman- server - name* = " PROGVAN")
(def gl obal ?*progman-host - nane* = "none")

(def gl obal ?*progman-topi c- nanme* = " PROGVAN')
(def gl obal ?*progman-client* = 0)

(def gl obal ?*progman-connecti on* = 0)

;;; Convert a multifield list of strings to one string
(def functi on many-strings-to-one ($?strings)
(bind ?counter 1)
(bind ?string "")
(while (<= ?counter (length $?strings)) do
(bind ?string (str-cat ?string (nth ?counter $?strings)))
(bind ?counter (+ ?counter 1))

)

(return ?string)

)

(deffunction progman-deno ()

;; Get a group nanme fromthe user

(bi nd ?new group-nane (get-text-fromuser "New PROGVAN group nane"))
(if (neq ?new group-nanme "") then

;; Formcreate group comrand

(bi nd ?comand (many-strings-to-one (nv-append "[CreateG oup(" ?new
group-name ")]")))

;; Construct a client object
(bind ?*progman-client* (client-create))

345

;; Construct a connection object

(bi nd ?*progman- connecti on* (client-nmake-connection
?*progman-client* ?*progman- host - name*
?*progman- server - name* ?*progman-t opi c- nane*))

;; Execute a command to create a group
(bi nd ?exe (connection-execute ?*prognman-connecti on* ?conmand))

;; Request a list of groups

(bind ?req (connection-request ?*progman-connection* "PROGVAN'))
(format t "9%mProgram Manager G oups: %m")

(format t "9%%%" ?req)

;; Di sconnect
(connecti on-di sconnect ?*progman-connecti on*)

;;; Autonmatically called when running application fromcommand |ine
7, €.0. wxclips -start -clips ddetest.clp
75, Also runnable fromthe Application: Run application.
(deffunction app-on-init ()

(prognan- deno)

)

16.3. Device context overview

wxCLIPS function groups: DC (page 258), PostScriptDC (page 300), MetaFileDC (page 291),
MemoryDC (page 287), PrinterDC (page 300)

wxCOOL classes: wxDC (page 182), wxPostScriptDC (page 212), wxMetaFileDC (page 205),
wxMemoryDC (page 201), wxPrinterDC (page 213)

A device context is an abstraction of all the devices that can be drawn onto, such as PostScript
file, canvas, printer, metafile, and bitmap. Instead of drawing directly on one of these devices, the
application programmer can write a function that writes to a device context, and then pass any
device context to that function. The most frequently used device context is probably the canvas
device context. This cannot be created by an application but can be retrieved from a canvas
(page 239) by calling canvas-get-dc (page Error! Bookmark not defined.).

At present, wxCLIPS supports the canvas, memory, PostScript, Windows printer and Windows
metafile device contexts.

When writing code to draw into a device context, use a device context variable as a parameter

whenever possible, to allow the most general use of your drawing code. You can then pass a
device context object of any derived type.

16.4. Dialog box overview
Function group/class: DialogBox (page 264)/wxDialogBox (page 187)

A dialog box is similar to a panel, in that it is a window which can be used for placing panel items,
with the following exceptions:

1. A surrounding frame is implicitly created.
2. Extra functionality is automatically given to the dialog box, such as tabbing between

346

items (currently Windows only).
3. If the dialog box is modal, the calling program is blocked until the dialog box is
dismissed.

Under XView, some panel items may display incorrectly in a modal dialog, and two modal dialogs
may not be open simultaneously. This can be corrected using a wxWindows patch.

Under implementations that permit it, Dialog box inherits from Canvas via Panel, and has a Panel
DC that the application can draw on.

The panel device context associated with Dialog box behaves slightly differently than for a panel
or canvas: drawing to it requires enclosing code in dc-begin-drawing, dc-end-drawing calls. This
is because under Windows, dialog box device contexts are not 'retained' and settings would be
lost if the device context were retrieved and released for each drawing operations.

See Miscellaneous (page 323) for convenience dialog functions which avoid the need to create a
dialog box and individual items.

The following callbacks are valid for the dialog box class:

OnCommand Called with a panel identifier, an item identifier and a command event
identifier when a command event is received by a panel item that does not have an
associated callback. If you have created a panel or dialog box from a resource, you will
need to intercept OnCommand.

OnClose The function is called with the window identifier. If the callback returns 1 and the
function was called by the window manager, the window is automatically deleted. A
return value of O forbids automatic deletion.

OnEvent Called with a dialog box identifier and a mouse event (page 292) identifier. This
can only be guaranteed only when the dialog box is in user edit mode (to be
implemented).

OnPaint Called with a dialog box identifier when the dialog box receives a repaint event from
the window manager.

OnSize The function is called with the dialog box identifier, width and height.

See also Panel (page 297) and Window (page 319) for inherited member functions.

16.5. Toolbar overview
Function group/class: Toolbar (page 315)/wxToolBar (page 227)

A toolbar is an array of bitmap buttons, implemented by drawing bitmaps onto a canvas, instead
of using the native button implementation. Since the toolbar inherits from canvas, you can use all
canvas functions on a toolbar object.

Each tool can be specified as a normal button, on/off toggle, and disabled or enabled. Tool layout
is automatic or manual. Left click and right click events may be intercepted, using OnLeftClick
and OnRightClick callbacks. The OnMouseEnter callback is used to update the status line (for
example) with help text as the mouse moves over the tools. See window-add-callback (page
Error! Bookmark not defined.) for details on these callbacks.

Normal subwindow geometry considerations are applicable (i.e., in a frame with more than one
subwindow, you must resize the subwindows when you receive an OnSize event from the frame).
The exception is for Multiple Document Interface (MDI) frames under Windows, where you must
call frame-set-tool-bar to associate the toolbar with the MDI client window, and after initializing the
toolbar height, further resizing is unnecessary.

347

Toolbars are often displayed as a horizontal strip under the menubar, or in a floating frame. If you
wish to draw a border for the toolbar, you must intercept the toolbar's OnPaint handler. In this
overriden callback, you must first call the toolbar's toolbar-on-paint function to draw all the tools,
and then draw the border onto the toolbar canvas.

Note that under Windows, you must supply bitmaps that are 16 pixels wide and 15 pixels high:
they will be placed on a tool button that is 24 by 22 pixels. If you wish to supply bitmaps of a
different size, you must call toolbar-set-default-size to set the overall tool button size (as opposed
to the bitmap size), or use the toolbar in non-button-creation mode by supplying an extra
argument to toolbar-create to disable this functionality.

Note also that in some circumstances, especially for the WIN32 version of wxCLIPS, there are
problems with the buttonbar (the symptoms are bitmaps scrambled randomly). If this happens,
revert to the normal toolbar by passing 0 in the create-buttons argument to toolbar-create, or
download a Windows 95 version of wxCLIPS.

Under X, tool buttons are the same size as the supplied button and there is no need to call
toolbar-set-default-size.

Tip: in circumstances where you might think of using drag and drop, which is not currently
implemented in wxWindows or wxCLIPS, you can use a toolbar to select 'modes' of operation
which change the cursor in a subwindow. Intercept left-click in the subwindow to place an object
or perform some operation.

Canvas callbacks apply, plus:

OnLeftClick The function is called with the toolbar identifier, tool index, and an integer which
is 1 if the tool is being toggled on, or zero otherwise. If this is a toggle tool, return 1 to
allow the toggle to take place, or 0 otherwise.

OnRightClick The function is called with the toolbar identifier, tool index, and x and y
floating point parameters indicating the position of the click. No value need be returned.

OnMouseEnter The function is called with the tool index, whenever the mouse goes into a
tool, or out of all tools. In the latter case, the tool index is -1. No value need be returned.

16.5.1. Differences in toolbar types

Different toolbar code kicks in according to the platform, and the arguments given to tool-bar-
create.

1. If create-buttons is 0, then the bog-standard wxToolBar class from wxWindows is used:
no 3D effect. This works across all supported wxCLIPS platforms. Layout can either be
automated, or tools must be placed at absolute coordinates.

2. If create-buttons is 1 and the platform is Windows 3.1 or generic WIN32 (not Windows
95), then the buttons will be 3D effect using the wxButtonBar class. On WIN32 toggle
tools will not work. On UNIX, the standard wxToolBar code will be used instead of
wxButtonBar. Again, layout is automatic or absolute.

3. If create-buttons is 1 and the Windows 95 version of wxCLIPS is being used (not just the
WIN32 version running on Windows 95), then the toolbar common control is used,
supporting tooltips. However, layout is different: you must specify wxVERTICAL for
layout orientation, plus the number of rows (usually 1), and you need to use toolbar-add-
separator to get spaces between tools. You cannot place tools at absolute coordinates
or use the toolbar-layout function. You must also call toolbar-create-tools after adding
tools. Device context painting is restricted and no events may be intercepted for the
toolbar except OnLeftClick and OnMouseEnter.

348

Note: under Windows 95, a wxButtonBar cannot be moved to any position other than the top-left
of the frame.

16.6. Database classes overview
WXCLIPS function groups: Database (page 250), Recordset (page 301)

wxCOOL classes: wxDatabase (page 174), wxRecordSet (page 215)

IMPORTANT NOTE: The ODBC classes are a preliminary release and incomplete. Please take
this into account when using them. Feedback and bug fixes are appreciated, as always. The
classes are being developed by Olaf Klein (oklein@smallo.ruhr.de) and Patrick Halke
(patrick@zaphod.ruhr.de).

WXCLIPS provides a set of classes for accessing a subset of Microsoft's ODBC (Open Database
Connectivity) product. Currently, this wrapper is available under MS Windows only, although
ODBC may appear on other platforms, and a generic or product-specific SQL emulator for the
ODBC classes may be provided in wxWindows at a later date.

ODBC presents a unified API (Application Programmer's Interface) to a wide variety of
databases, by interfacing indirectly to each database or file via an ODBC driver. The language for
most of the database operations is SQL, so you need to learn a small amount of SQL as well as
the wxCLIPS ODBC wrapper API. Even though the databases may not be SQL-based, the ODBC
drivers translate SQL into appropriate operations for the database or file: even text files have
rudimentry ODBC support, along with dBASE, Access, Excel and other file formats.

The run-time files for ODBC are bundled with many existing database packages, including MS
Office.

The minimum you need to distribute with your application is odbc.dll, which must go in the
Windows system directory. For the application to function correctly, ODBC drivers must be
installed on the user's machine. If you do not use the database classes, odbc.dIl will be loaded
but not called (so ODBC does not need to be setup fully if no ODBC calls will be made).

A sample is distributed with wxCLIPS in exanpl es/ odbc.

16.6.1. Procedures for writing an ODBC application

You first need to create a Database object. If you want to get information from the ODBC
manager instead of from a particular database (for example using recordset-get-data-sources
(page Error! Bookmark not defined.)), then you do not need to call database-open (page Error!
Bookmark not defined.). If you do wish to connect to a datasource, then call database-open.
You can reuse your Database object, calling database-close and database-open multiple times.

Then, create a Recordset object for retrieving or sending information. For ODBC manager
information retrieval, you can create it as a dynaset (retrieve the information as needed) or a
shapshot (get all the data at once). If you are going to call recordset-execute-sql (page Error!
Bookmark not defined.), you need to create it as a snapshot. Dynaset mode is not yet
implemented for user data.

Having called a function such as recordset-execute-sql or recordset-get-data-sources, you may
have a number of records associated with the recordset, if appropriate to the operation. You can
now retrieve information such as the number of records retrieved and the actual data itself. Use
functions such as recordset-get-int-data (page Error! Bookmark not defined.) or recordset-get-

349

char-data (page Error! Bookmark not defined.) to get the data, passing a column index or
name. The data returned will be for the current record. To move around the records, use
recordset-move-next (page Error! Bookmark not defined.), recordset-move-prev (page Error!
Bookmark not defined.) and associated functions.

You can use the same recordset for multiple operations, or delete the recordset and create a new
one.

Note that when you delete a Database, any associated recordsets also get deleted, so beware of
holding onto invalid pointers.

16.6.2. Examples

Here's an example of a function that updates a value in a database.

;;; Function for updating a field in a record in the incident.dbf deno
v file.

;;; E.g. (deno-update-integer "BD34" "X' 999)

;7; The key is the ASSET columm, BD34 in the exanple. Record(s)

mat chi ng

7,7, this key will be changed.

7o, "X' is the name of the colum to be updated.

999 is a value to replace the current val ue.

You nust have previously registered the file incident.dbf
with ODBC (e.g. fromthe control panel), with the source
7, hame "wxCLI PS denp". You can check if the file has changed
7, by using Mcrosoft CQuery.

(deffunction denp-update-integer (?asset ?col ?val ue)
(bi nd ?dat abase (database-create))

;; Open data source

(if (eq O (database-open ?database "wxCLIPS denmpn")) then
(bind ?nsg (database-get-error-nessage ?dat abase))
(printout t ?msg crlf)

(return 0)

)

;; Create a recordset
(bind ?recordset (recordset-create ?database "wxOPEN TYPE SNAPSHOT"))

;; Construct an SQL st atenent

(bind ?sql (str-cat "UPDATE Incident SET " ?col " =" ?value " WHERE
ASSET = '" ?asset "'"))

(printout t ?sqgl crlf)

;; Execute the SQ.
(if (eq O (recordset-execute-sql ?recordset ?sql)) then

(bind ?nsg (database-get-error-nessage ?dat abase))
(printout t ?msg crlf)
(return 0)

)

350

(recordset-del ete ?recordset)
(dat abase- cl ose ?dat abase)
(dat abase- del et e ?dat abase)
(return 1)

)

The next example gets a value from a particular field of a record.

;;; Function for returning the value of an integer field.

7, E.g. (deno-get-integer "BD34" "X")

7;; The key is the ASSET columm, BD34 in the exanple. The first record
mat chi ng

;;; this key will be returned.

;o "X' is the nane of the colum whose value is to be returned.

(deffunction denp-get-integer (?asset ?col)
(bi nd ?dat abase (database-create))

;; Open data source

(if (eq O (database-open ?database "wxCLI PS denmp")) then
(bind ?nsg (database-get-error-nessage ?dat abase))
(printout t ?msg crlf)

(return 0)

)

;; Create a recordset
(bind ?recordset (recordset-create ?database "wxOPEN TYPE SNAPSHOT"))

;; Construct an SQL st at enent
(bind ?sql (str-cat "SELECT * FROM I nci dent WHERE ASSET = '" ?asset

IIIII))
(printout t ?sqgl crlf)

;; Execute the SQL
(if (eq O (recordset-execute-sql ?recordset ?sql)) then

(bind ?nsg (database-get-error-nessage ?dat abase))
(printout t ?msg crlf)
(return 0)

)

;; Get the relevant field of the first record
(bind ?data (recordset-get-int-data ?recordset ?col))

(recordset-del ete ?recordset)
(dat abase- cl ose ?dat abase)
(dat abase- del et e ?dat abase)
(return ?data)

)

You can find out all the source names available to you with the following code.
(bi nd ?*dat abase* (database-create))
(bind ?*recordset* (recordset-create ?*database*

"wx OPEN_TYPE_SNAPSHOT"))

7, CGet the list of currently-defined ODBC sources

351

(if (eq O (recordset-get-data-sources ?*recordset*)) then
(show dat abase-error) el se

;;; Loop through all the source nanes (one per record)
(bind ?cont 1)
(while (eqg ?cont 1)
;;; The source nane is at the first colum (0) in the record
(bind ?data (recordset-get-char-data ?*recordset* 0))
(1ist-box-append ?*sources-1istbox* ?data)
(bind ?cont (recordset-nove-next ?*recordset*))
)
)

16.6.3. Database overview
See also Database classes overview (page 349)
Function group/class: Database (page 250)/wxDatabase (page 174)

Every database object represents an ODBC connection. To do anything useful with a database
object you need to create a Recordset object. All you can do with Database is opening/closing
connections and getting some info about it (users, passwords, and so on).

16.6.4. Recordset overview
See also Database classes overview (page 349)
Function group/class: Recordset (page 301)/wxRecordSet (page 215)

Each Recordset represents a database query. You can make multiple queries at a time by using
multiple Recordsets with a Database or you can make your queries in sequential order using the
same Recordset.

If Recordset is of the type wxOPEN_TYPE_DYNASET, there will be only one field for each
column, which will be updated every time you call functions like recordset-move or recordset-
goto. If Recordset is of the type wxOPEN_TYPE_SNAPSHOT, all records returned by an ODBC
function will be loaded at once.

16.6.5. ODBC SQL data types
See also Database classes overview (page 349)

These are the data types supported in ODBC SQL. Note that there are other, extended level
conformance types, not currently supported in wxCLIPS.

CHAR(n) A character string of fixed length n.

VARCHAR(n) A varying length character string of maximum length n.

LONG VARCHAR(n) A varying length character string: equivalent to VARCHAR for the
purposes of ODBC.

DECIMAL(p, s) An exact numeric of precision p and scale s.

NUMERIC(p, s) Same as DECIMAL.

352

SMALLINT A 2 byte integer.

INTEGER A 4 byte integer.
REAL A 4 byte floating point number.
FLOAT An 8 byte floating point number.

DOUBLE PRECISION Same as FLOAT.

These data types correspond to the following ODBC identifiers:

SQL_CHAR A character string of fixed length.
SQL_VARCHARA varying length character string.
SQL_DECIMAL An exact humeric.
SQL_NUMERIC Same as SQL_DECIMAL.
SQL_SMALLINTA 2 byte integer.

SQL_INTEGER A 4 byte integer.

SQL_REAL A 4 byte floating point number.
SQL_FLOAT An 8 byte floating point number.
SQL_DOUBLE Same as SQL_FLOAT.

16.6.6. A selection of SQL commands
See also Database classes overview (page 349)

The following is a very brief description of some common SQL commands, with examples.

16.6.6.1. Create
Creates a table.
Example:

CREATE TABLE Book

(BookNunber | NTEGER PRI MARY KEY
, CategoryCode CHAR(2) DEFAULT ' RO NOT NULL
Title VARCHAR(100) UNI QUE

Nunber Of Pages SMALLI NT
Ret ai | Pri ceAnount NUVERI C(5, 2)

16.6.6.2. Insert

Inserts records into a table.
Example:

| NSERT | NTO Book

(BookNunber, CategoryCode, Title)
VALUES(5, '"HR , 'The Lark Ascending')

16.6.6.3. Select

353

The Select operation retrieves rows and columns from a table. The criteria for selection and the
columns returned may be specified.

Examples:
SELECT * FROM Book
Selects all rows and columns from table Book.

SELECT Title, Retail Pri ceAnbunt FROM Book WHERE Retail Pri ceAnount >
20.0

Selects columns Title and RetailPriceAmount from table Book, returning only the rows that match
the WHERE clause.

SELECT * FROM Book WHERE Cat Code = 'LL' OR CatCode = 'RR

Selects all columns from table Book, returning only the rows that match the WHERE clause.
SELECT * FROM Book WHERE Cat Code |'S NULL

Selects all columns from table Book, returning only rows where the CatCode column is NULL.
SELECT * FROM Book ORDER BY Title

Selects all columns from table Book, ordering by Title, in ascending order. To specify descending
order, add DESC after the ORDER BY Title clause.

SELECT Titl e FROM Book WHERE Ret ai |l Pri ceAnount >= 20.0 AND
Retail Pri ceAnount <= 35.0

Selects records where RetailPriceAmount conforms to the WHERE expression.

16.6.6.4. Update

Updates records in a table.

Example:

UPDATE I ncident SET X = 123 WHERE ASSET = ' BD34'

This example sets a field in column 'X' to the number 123, for the record where the column
ASSET has the value 'BD34'.

16.7. Grid overview

Function group/class: Grid (page 272)

The grid class is a window designed for displaying data in tabular format. Possible uses include:
Displaying database tables;

building spreadsheet applications;
displaying files and their attributes;

354

use as a more sophisticated listbox where different fonts and colours are required.
This manual currently describes the version of Grid that operates under Windows, implementing
using mostly generic wxWindows code. It is intended to provide a similar API for Motif using the

public domain Xbae matrix widget, included in the wxGrid distribution. Work needs to be done to
wrap the Xbae functionality in a similar API.

16.7.1. The appearance and behaviour of a grid

The following screenshot shows the initial appearance of the sample grid application.

ILI_E wxlnd 5ample [_ (O] <]
Eile Settingz
A1 IFirst cell
A | B | ¢ | D =
1 | First call | —_
. Another cell
3 Vet another «
4
]
b
7
8

-
| | 3

The Grid class is a panel that provides a text editing area, and a grid with scrollbars. The grid has
horizontal and vertical label areas whose colours may be changed independently from the cell
area. The text editing area, and the label areas, may be switched off if desired.

The user navigates the grid using the mouse to click on cells and scroll around the virtual grid
area (no keyboard navigation is possible as yet). If the edit control is enabled, it always has the
focus for the currently selected cell and the user can type into it. The text in the edit control will be
reflected in the currently selected cell.

If the row and column label areas are enabled, the user can drag on the label divisions to resize a
row or column.

The sample application allows the user to change various aspects of the grid using the Grid API.
These include:

Changing the background and foreground colour of labels and cells;
toggling row and column label areas on and off independently;
toggling the edit control on and off;

toggling the light grey cell dividers on and off;

changing cell alignment.

There are various other aspects that can be controlled via the API, including changing individual

355

cell font and colour properties.
You need to call grid-create-grid before there are any cells in the grid.
All row and column positions start from zero, and dimensions are in pixels.

If you make changes to row or column dimensions, call grid-update-dimensions and then grid-
adjust-scrollbars. If you make changes to the grid appearance (such as a change of cell
background colour or font), call window-refresh for the changes to be shown.

16.7.2. Example
The following is an example of using the grid functionality.

vy, ogrid.clp

7., grid test

;;; Load using -clips <file> on the command |ine or using the Batch
;;; or Load commands fromthe CLIPS devel opment w ndow, type

;;; (app-on-init) to start.

(def gl obal ?*mai n-frame* = 0)
(def gl obal ?*grid* = 0)

(deffunction on-cl ose (?frane)
(format t "d osing franme. %m")
(bind ?*grid* 0)

1)

(def function on-activate (?frame ?active)
(if (> ?*grid* 0) then (grid-on-activate ?*grid* ?active))

)

(deffunction on-nmenu-conmand (?frane ?id)
(switch ?id
(case 200 then (message-box "CLIPS for wxW ndows Deno
by Julian Smart (c) 1993" wxOK 1 0 "About wxW ndows CLIPS Denp"))
(case 3 then (if (on-close ?frane) then (w ndow delete ?frane)))
)
)

7y, Test programto create a frane
(def function app-on-init ()
(unwatch all)

(bind ?*main-frame* (frame-create 0 "WwxCLIPS Grid Test" -1 -1 400
300))

(wi ndow add- cal | back ?*mai n-franme* OnC ose on-cl ose)
(wi ndow add- cal | back ?*nai n-frane* OnMenuConmand on- nenu- conmand)
(wi ndow add- cal | back ?*nai n-frane* OnActivate on-activate)

;;; Make a nenu bar
(bind ?file-nmenu (nenu-create))
(rmenu-append ?file-nmenu 3 "&Qit")

356

(bi nd ?nenu-bar (menu-bar-create))
(menu- bar - append ?nenu-bar ?file-nenu "&File")

(frame-set-nmenu-bar ?*mai n-franme* ?nmenu-bar)

7, Make a grid

(bind ?*grid* (grid-create ?*main-frame* 0 0 400 300))
(grid-create-grid ?*grid* 10 8)
(grid-set-colum-width ?*grid* 3 200)
(grid-set-row height ?*grid* 4 45)

(grid-set-cell-value ?*grid* "First cell" 0 0)
(grid-set-cell-value ?*grid* "Another cell" 1 1)
(grid-set-cell-value ?*grid* "Yet another cell" 2 2)

(grid-set-cell-text-font ?*grid* (font-create 12 WwxROVAN wx| TALI C
WXNORMAL 0) 0 0)

(bind ?red (col our-create RED))

(grid-set-cell-text-colour ?*grid* ?red 1 1)

(bind ?cyan (col our-create CYAN))

(grid-set-cell-background-col our ?*grid* ?cyan 2 2)

(gri d-updat e-di nensi ons ?*gri d*)

(wi ndow centre ?*mai n-frame* wxBOTH)
(Wi ndow show ?*nai n-frane* 1)

?*mai n-f rane*)

16.8. wxCOOL overview

16.8.1. What is wxCOOL?

Up until July 1995, wxCLIPS functionality was conceptually object-oriented, but solely
implemented using CLIPS functions. Since the only way to couple CLIPS to C or C++ programs is
by defining user functions, the functional route is a prerequisite. wxCOOL is a set of CLIPS
classes built on top of the user functions, encapsulating most of the wxCLIPS functionality for
which it is sensible to do so. At present, it is not quite complete. wxCOOL resides in the wxcool
subdirectory of the wxCLIPS installation directory, and is loaded by batching the file wx.clp.
Before using the classes, you need to call the function wxcool-init.

Because wxCOOL is implemented in terms of the wxCLIPS functions, it does add overhead to a
CLIPS application in terms of loading time, execution speed, and (to a less significant degree)
memory requirements. So you may still wish to code speed-critical parts of your application using
the raw wxCLIPS functions, especially where a lot of GUI elements are to be created.

Saving your application as a binary file will certainly speed up loading time (and help protect your
source code from prying eyes) but there may be a size limit on binary files under MS Windows
(as yet undetermined). Another problem is that you cannot load a binary file and then load non-
binary constructs: it's all-or-nothing.

16.8.2. How to use the wxCOOL class reference

In the message handler definitions (page 161), bold words are types, and are not part of CLIPS
syntax. Parameter names are in italics. Types are as follows:

357

double is a double-precision floating point number.
long is a long integer.

string is a double-quoted ASCII string.

word is an unquoted string.

bool is a CLIPS symbol taking values TRUE or FALSE.
multifield is a CLIPS multi-field value list.

void means that no value is returned.

Parameters can be optional, in which case defaults are assumed.

Some parameters can be combinations ('bit lists") of flags. wxCLIPS mimics the compact C++
syntax by parsing strings, for example:

(rmake-i nstance (gensynt) of wxFrame (style "wxSDl | wxDEFAULT")
col)

Each identifier in such a parameter is translated to an integer value, and all are logical-or'ed
together to produce an integer which is passed to the appropriate wxWindows C++ function.

Slots are listed before the message handlers.

Accessors (put-... and get-... functions) are not documented explicitly, but can be assumed
where appropriate: see the documentation for each class's slots.

Create handlers for each class are documented, but are not explicitly called by the programmer:
they are called by the init handler on instance creation. You can use call-next-handler from within
a Create handler, to ensure all ancestors get a chance to initialise. However, you should not
invoke call-next-handler in a 'delete' handler since CLIPS calls this for each class anyway.

16.8.3. Instance creation
Instance creation is done in the conventional CLIPS way, e.g.

(make-instance testl of MyFrame (title "Hello world!") (x 20) (y 20)
(wi dt h 200) (height 200))

Slot initializers take the place of function parameters, which makes for more legible code, albeit
for instance creation only, and not normal message passing.

Each class has a message handler called ‘create’, which constructs the underlying object and
adds callbacks for the instance. The initialization code cannot be put into the standard 'init'
handler for each class, since this is called for every class that an instance inherits from, and
would result in multiple wxCLIPS objects being created for one instance. Instead, there is one init
handler for wxObject which sends a create message to the object, and create is redefined for
each class.

Note that the integer identifier of the underlying wxCLIPS object can be retrieved with the get-id
accessor.

16.8.4. Types

WXCLIPS uses integers for various purposes, including boolean values. This is inconvenient in

358

CLIPS applications, which normally use the symbolic values TRUE and FALSE. Accordingly, all
wxCOOL boolean values are now symbolic (TRUE or FALSE). wxCOOL will not work correctly if
you attempt to use integers instead of symbolic values.

16.8.5. wxCOOL event handling

wxCOOL function callbacks and events work differently from wxCLIPS callbacks and events.
Instead of adding callbacks for events such as on-menu-command, you override the default event
handler. All window objects derive from the class wxEvtHandler, which contains default handlers
for all window callbacks. A window will normally process its own messages, so you would for
example add an on-menu-command handler to your wxFrame-derived class. However, you can
use the put-event-handler message to set the event handler to be a different instance of
wxEvtHandler. So, you could avoid deriving from a window class altogether, and have one class
which accepts the events from a variety of windows.

Panel items no longer require callback functions to be specified on creation. Instead, panel item
events are sent as an on-command message to the panel item. The default wxltem on-command
handler sends the message to its parent wxPanel, so you could derive a new class from wxPanel
to receive on-command events, or set the item's event handler to direct it to a different instance.

The on-command handler takes wxltem instance and wxCommandEvent instance parameters. A
convenient way of distinguishing incoming events is to give an item a name on creation, and test
for that name in the on-command handler, using the get-name accessor.

16.8.6. Implementation details

From version 1.42, wxCLIPS has a few built-in functions to aid in maintaining a parallel set of
classes corresponding to the underlying wxCLIPS classes (and ultimately, C++ classes). The
instance table (page 283) functions help map between integer identifiers and CLIPS instance
names. When an instance is constructed, the underlying wxCLIPS object is created and this id
added to the instance table. On deletion, the entry is removed from the instance table. Callbacks
are defined, such as gui-window-on-close, that are used for all instances of a class (and derived
classes); they use instance-table-get-instance to retrieve the instance corresponding to the
WXCLIPS object.

WXCLIPS sends OnDelete callbacks to the application when a wxCLIPS object is being deleted.
This is exploited in wxCOOL to ensure that wxCOOL instances are cleaned up if wxCLIPS, and
not the CLIPS application, deletes wxCLIPS objects. The twist is that we need to distinguish
between an application-initiated deletion, for which we wish to call a function such as window-
delete, and a wxCLIPS-initiated deletion, for which window-delete is effectively being called
implicitly. To avoid deleting objects twice, wxCOOL sets a pending-delete slot in the object which
is tested before deleting the underlying object.

In some cases, all deletions of a class's objects are initiated by wxCLIPS: for example, wxMenu
instances will be deleted by the parent wxMenuBar, which is deleted implicitly when the wxFrame
is deleted.

16.9. Resource overview
From version 1.49, wxCLIPS can load panels and dialog boxes from wxWindows resource files

(extension . wxr). You may create dialog resources using the wxWindows Dialog Editor, which
can be downloaded from:

359

ftp.aiai.ed.ac. uk/ pub/packages/ wxw n/ bi nary/ di al oged10. zi p

Before creating a panel or dialog, load the resource file using load-resource-file (page Error!
Bookmark not defined.). Then use panel-create-from-resource (page Error! Bookmark not
defined.) or dialog-box-create-from-resource (page Error! Bookmark not defined.).
Alternatively you can use the wxCOOL panel or dialog box instance creation syntax, supplying
the resource slot value).

To find an arbitrary panel item, you may need to use find-window-by-name (page Error!
Bookmark not defined.) or find-window-by-label (page Error! Bookmark not defined.).

360

Glossary
API

Application Programmer's Interface - a set of calls and classes defining how a library can be
used.

Bit list

A bit list in wxCLIPS is a way of specifying several window styles. It derives from C and C++
syntax, where by defining identifiers with carefully chosen binary numbers, it is possible to
combine several values in one integer. In wxCLIPS, you use similar syntax to C, but enclose the
list in quotes:

"WXCAPTI ON | wxM NI M ZE_BOX | wxM NI M ZE_BOX | wxTHI CK_FRAME"

Callback

Callbacks are application-defined functions which receive events from the GUI. You normally add
a callback for a particular window (such as a canvas) and event (such as OnPaint) using window-
add-callback, or pass the callback in a panel item creation function, such as button-create.

Canvas

A canvas is a subwindow on which graphics (but not panel items) can be drawn. It may be
scrollable. A canvas has adevice context overview (page 258) associated with it.

DDE

Dynamic Data Exchange - Microsoft's interprocess communication protocol. wxCLIPS provides a
subset of DDE under both Windows and UNIX.

Device context

A device context is an abstraction away from devices such as windows, printers and files. Code
that draws to a device context is generic since that device context could be associated with a
number of different real device. A canvas has a device context, although duplicate graphics calls
are provided for the canvas, so the beginner doesn't have to think in terms of device contexts
when starting out. See device context overview (page 258).

Dialog box

In wxCLIPS a dialog box is a convenient way of popping up a window with panel items, without
having to explicitly create a frame and a panel. A dialog box may be modal or modeless. A modal
dialog does not return control back to the calling program until the user has dismissed it, and all

other windows in the application are disabled until the dialog is dismissed. A modeless dialog is
just like a normal window in that the user can access other windows while the dialog is displayed.

Frame

A visible window usually consists of a frame which contains zero or more subwindows, such as
text subwindow, canvas, and panel.

GUI

Graphical User Interface, such as MS Windows or Motif.

Menu bar

A menu bar is a series of labelled menus, usually placed near the top of a window.
Metafile

MS Windows-specific object which may contain a restricted set of GDI primitives. It is device
independent, since it may be scaled without losing precision, unlike a bitmap. A metafile may

exist in a file or in memory. wxCLIPS implements enough metafile functionality to use it to pass
graphics to other applications via the clipboard or files.

Open Look

A specification for a GUI 'look and feel', initiated by Sun Microsystems. XView is one toolkit for
writing Open Look applications under X, and wxCLIPS sits on top of XView (among other
toolkits).

Panel

A panel is a subwindow on which a limited range of panel items (widgets or controls for user
input) can be placed. wxCLIPS allows panel items to be placed explicitly, or laid out from left to
right, top to bottom, which is a more platform independent method since spacing is calculated
automatically at run time. Panel items cannot be placed on a canvas, which is specifically for
drawing graphics. However, you can draw on a panel.

Resource

Resource takes several meanings in wxCLIPS. The functions get-resource, write-resource deal
with MS Windows . i ni and X . Xdef aul t s resource entries. The wxWindows/wxCLIPS
'resource system', on the other hand, is a facility for loading dialog specifications from . wxr files
(which may be created by hand or using the wxWindows Dialog Editor).

Status line

A status line is often found at the base of a window, to keep the user informed (for instance,
giving a line of description to menu items, as in thehello demo).

XView

An X toolkit supplied by Sun Microsystems for implementing the Open Look 'look and feel'. Freely
available, but virtually obsolete.

362

363

