
i

Hardy Frequently Asked Questions Version 3.0

Julian Smart
Artificial Intelligence Applications Institute

University of Edinburgh
EH1 1HN

July 1994

i

Contents

1. About this document and the SDK ..1
1.1. Using the SDK samples ...1

1.2. Contents of the SDK ..1

1.3. old2new.txt ..3

2. General questions and answers ..7
2.1. What are the hardware and software requirements for running Hardy?...........................7

2.2. Why is a diagrams.def file needed?..7

2.3. Why is there no Undo facility?..7

2.4. How can I create new symbols for Hardy?..7

2.5. What languages can I use to develop Hardy applications? ...8

2.6. What have wxWindows and wxCLIPS got to do with Hardy? ..8

2.7. How can I write a customized installation procedure under Windows?8

2.8. How can I customize the Hardy startup screen under Windows?8

3. Using CLIPS...9
3.1. Is CLIPS free? ...9

3.2. Is CLIPS any good? What about file-handling, and so on? ...9

3.3. But CLIPS is an A.I. language. How does that affect me?...9

3.3.1. Animal demo..9

3.4. How do Hardy and my CLIPS code communicate? ..17

3.4.1. Tree demo code...17

3.4.2. Tree demo loader...19

3.5. Why does it take so long to load CLIPS code into Hardy? ..19

3.5.1. Loader example ...19

3.6. Is there an Integrated Development Environment for Hardy?..20

3.7. Why is execution sometimes slow? ..20

3.8. Sometimes CLIPS callbacks fail to execute. Why? ...21

3.9. How can I have a custom menu on the Hardy control window?.....................................21

3.10. What facilities are available for generating reports?..21

3.10.1. HTML generation ...22

3.10.2. If you don't want to generate LaTeX ...22

3.10.3. Where can I get Tex2RTF? ..22

3.11. How can I build customized user interfaces in Hardy? ..22

3.11.1. GUI example..22

3.12. My popup windows make the main window pop up...27

3.13. How can I keep my code portable between platforms? ...27

3.14. What interprocess-communication facilities can I use? ...28

CONTENTS

ii

3.14.1. ProgMan example..28

4. Digging into Hardy diagrams ...30
4.1. Why the difference between node and arc objects, and images? I'm confused.30

4.2. What is the relationship between item and image? ...30

4.3. Can I access the diagram type definition from CLIPS? ...30

4.4. Can I have attributes of different types? ...30

5. Hardy bug list ..31
5.1. All platforms...31

5.2. X only ..31

5.3. Windows only ..31

Glossary...32
GUI ..32

HTML ...32

LaTeX ..32

Metafile ..32

Open Look..32

RTF..32

wxHelp ...32

wxWindows ..32

XView...32

Index...33

1

1. About this document and the SDK

This document is a list of frequently asked questions, or questions that might very well be asked,
about developing custom Hardy applications, with answers and pointers to further information. It
accompanies the Hardy Software Development Kit (SDK), which contains sample CLIPS and
C++ files.

The first port of call for the Hardy developer is of course the user manual, which contains the
Hardy and GUI CLIPS function reference, and a small introduction to programming in Hardy.

Other documents available are the CLIPS 6.0 manual (written by NASA), and a CLIPS 6.0
Windows Help file containing a terse syntax summary.

Note that some of the examples use function names that don't correspond to the Hardy CLIPS
function reference. This is because they use an old naming scheme, which is still valid for
backward compatibility. Please refer to the document old2new.txt (page 3) which lists old and
new function names.

1.1. Using the SDK samples

Under Windows, you can partially automate the installation of CLIPS samples into the Program
Manager, by inserting similar lines to the following into the [Extensions] section of WIN.INI:

clp=c:\hardy\hardy.exe -clips ^.clp
ind=c:\hardy\hardy.exe -f ^.ind

Change this to reflect where Hardy is installed on your system. Then, (re)start the File Manager,
and drag .clp files (usually with 'load' in the filename) from the File Manager to the Program
Manager.

If the sample includes an index file, you can add -f and a filename to the Program Manager item,
or load the index manually from Hardy.

If you create new Program Manager items manually, fill out the fields as follows, changing the text
to suit your setup:

Description: Drag Test
Command line: c:\hardy\hardy.exe -clips dragload.clp
Working directory: c:\hardy\hardysdk\clips\drag

Setting the working directory is important.

Under UNIX, change your working directory to the sample directory, and invoke Hardy with
appropriate command line arguments (see above).

1.2. Contents of the SDK

Welcome to the HARDY Software Development Kit (SDK) version 3.0
===

Julian Smart, February 8th 1996
===============================

CHAPTER 1

2

This relatively informal gathering-together of examples and Frequently
Asked
Questions (FAQ) is intended to help HARDY programmers get started,
particularly those using CLIPS. Since the C++ interface is a recent
addition, there are very few examples available, but hopefully this
will
be remedied during the next few months.

Note that some of the examples use function names that don't correspond
to the HARDY CLIPS function reference. This is because they use an
old naming scheme, which is still valid for backward compatibility.
Please refer to the document old2new.txt which lists old and new
function names.

The contents of this SDK are as follows.

DOCS
 faq.hlp Windows help version of FAQ
 faq.ps PostScript version of FAQ
 faq.rtf RTF version of FAQ
 faq.xlp wxHelp version of FAQ
 clips6.hlp CLIPS 6.0 help file
 readme.txt This file

CLIPS/CRITPATH
 * Critical Path analysis demo. See readme.txt.

CLIPS/DDE
 ddetest.clp Example of using DDE to talk to the Windows
 Program Manager
CLIPS/DRAG
 drag.clp Example of intercepting right-drag events to
 allow dragging from or to 'empty space' on the
 canvas. Create a card and right-drag.

 dragload.clp Loader for the drag example

CLIPS/GRID Grid canvas demo.

CLIPS/GUI
 hello.clp Example GUI demo
 guiload.clp GUI demo loader

CLIPS/HTML
 loader.clp Hardy to HTML converter (to be 'batched')
 convert.clp Main conversion routine
 diagram.clp Diagram conversion
 dialog.clp Dialogs
 forward.clp Forward declarations
 globals.clp Global variables
 hypertxt.clp Hypertext card conversion
 text.clp Text card conversion
 utils.clp Various utility functions
 diagrams.def Example diagrams.def file with menu for main window

CLIPS/HTML HTML viewer demo using HTML canvas.

CHAPTER 1

3

CLIPS/ODBC
 odbc.clp ODBC browser demo.

CLIPS/POPUP Popup menu on a card demo.

CLIPS/REPORTS
 demoload.clp Example Windows report-writing demo (to be
'batched')
 ddeword.clp Code to talk to Word for Windows and Tex2RTF via
DDE
 report.clp Code to initiate writing a report from HARDY
 *.def Example definition files
 *.dia Example diagram file
 *.hyp Example hypertext card contents
 *.ind Example HARDY index

CLIPS/RULES
 *.clp Examples from the CLIPS distribution, slightly
 modified for HARDY input/output

CLIPS/RESOURCE
 *.clp Resource-reading examples for wxCLIPS/wxCOOL
 dialog1.wxr Dialog resource for examples

CLIPS/TOOLBAR
 toolbar.clp Custom toolbar demo (Windows only).
 *.bmp Bitmaps for the toolbar demo.

CLIPS/TREE
 tree.clp Example tree-drawing application. Demonstrates
event
 handling, creation of diagrams, diagram layout.
 treeload.clp Loads the application
 tree.def Tree diagram definition
 diagrams.def Suitable definition list

CLIPS/UTILS
 utils1.clp Filename and other utilities, used by report demo.

CLIPS/WXCOOL
 *.clp wxCOOL, a wrapper around most of the wxCLIPS GUI
functionality.

1.3. old2new.txt

This file lists old and new function names.

create-card card-create
delete-card card-delete
find-card-by-title card-find-by-title
get-first-card hardy-get-first-card
get-next-card hardy-get-next-card

CHAPTER 1

4

get-card-string-attribute card-get-string-attribute
get-card-x card-get-x
get-card-y card-get-y
get-card-with card-get-width
get-card-height card-get-height
get-first-card-item card-get-first-item
get-next-card-item card-get-next-item
get-first-item-link item-get-first-link
get-next-item-link item-get-next-link
get-card-special-item card-get-special-item
get-link-from link-get-item-from
get-link-to link-get-item-to
get-link-card-from link-get-card-from
get-link-card-to link-get-card-to
get-link-type link-get-type
get-link-kind link-get-kind
get-item-type item-get-type
get-item-kind item-get-kind
get-top-card hardy-get-top-card
goto-item item-goto
is-card-shown card-is-shown
is-card-modified card-is-modified
load-text-file text-card-load-file
load-index hardy-load-index
save-index hardy-save-index
move-card card-move
quit-card card-quit
set-card-status-text card-set-status-text
set-card-string-attribute card-set-string-attribute
show-card card-show
iconize-card card-iconize
add-object-attribute diagram-object-add-
attribute
delete-object-attribute diagram-object-delete-
attribute
clear-card-canvas diagram-card-clear-canvas
copy-diagram diagram-card-copy
create-diagram-card diagram-card-create
create-expansion-card diagram-card-create-
expansion
create-node-image node-image-create
create-arc-image arc-image-create
delete-all-images diagram-card-delete-all-
images
delete-image diagram-image-delete
deselect-all card-deselect-all
draw-image diagram-image-draw
draw-image-text diagram-image-draw-text
duplicate-node-image node-image-duplicate
erase-image diagram-image-erase
find-diagram-root diagram-card-find-root
format-object-text diagram-object-format-text
diagram-layout-tree diagram-card-layout-tree
diagram-layout-graph diagram-card-layout-graph
diagram-save-bitmap diagram-card-save-bitmap
diagram-save-metafile diagram-card-save-metafile
diagram-set-layout-parameters diagram-card-set-layout-

CHAPTER 1

5

parameters
set-image-pen-colour diagram-image-set-pen-
colour
set-image-brush-colour diagram-image-set-brush-
colour
set-image-text-colour diagram-image-set-text-
colour
get-arc-image-from arc-image-get-image-from
get-arc-image-to arc-image-get-image-to
get-arc-image-from-attachment arc-image-get-attachment-
from
get-arc-image-to-attachment arc-image-get-attachment-to
get-card-for-image diagram-image-get-card
get-card-print-width diagram-card-get-print-
width
get-card-print-height diagram-card-get-print-
height
get-first-object-image diagram-object-get-first-
image
get-next-object-image diagram-object-get-next-
image
get-first-card-arc-image diagram-card-get-first-arc-
image
get-next-card-arc-image diagram-card-get-next-arc-
image
get-first-card-node-image diagram-card-get-first-
node-image
get-next-card-node-image diagram-card-get-next-node-
image
get-first-card-arc diagram-card-get-first-arc-
object
get-next-card-arc diagram-card-get-next-arc-
object
get-first-card-node diagram-card-get-first-
node-object
get-next-card-node diagram-card-get-next-node-
object
get-object-from-image diagram-image-get-object
get-object-string-attribute diagram-object-get-string-
attribute
get-first-object-attribute diagram-object-get-first-
attribute
get-next-object-attribute diagram-object-get-next-
attribute
get-first-expansion-descendant diagram-card-get-first-
descendant
get-next-expansion-descendant diagram-card-get-next-
descendant
get-first-node-image-arc node-image-get-first-arc-
image
get-next-node-image-arc node-image-get-next-arc-
image
get-first-node-object-arc node-object-get-first-arc-
object
get-next-node-object-arc node-object-get-next-arc-
object
get-first-image-expansion diagram-image-get-first-

CHAPTER 1

6

expansion
get-next-image-expansion diagram-image-get-next-
expansion
get-image-item diagram-image-get-item
get-item-image item-get-image
get-image-x diagram-image-get-x
get-image-y diagram-image-get-y
get-image-width diagram-image-get-width
get-image-height diagram-image-get-height
image-selected diagram-image-selected
load-diagram diagram-card-load-file
save-diagram diagram-card-save-file
move-image diagram-image-move
print-hierarchy-to-files diagram-card-print-
hierarchy
redraw-diagram diagram-card-redraw
resize-image diagram-image-resize
select-image diagram-image-select
set-object-string-attribute diagram-object-set-string-
attribute
set-object-format-string diagram-object-set-format-
string
get-item-block item-get-block
create-hypertext-card hypertext-card-create
get-first-block-selection hypertext-card-get-first-
selection
get-next-block-selection hypertext-card-get-next-
selection
hypertext-get-current-char hypertext-card-get-current-
char
hypertext-get-current-line hypertext-card-get-current-
line
hypertext-get-line-length hypertext-card-get-line-
length
hypertext-get-offset-position hypertext-card-get-offset-
position
hypertext-get-no-lines hypertext-card-get-no-lines
hypertext-get-span-text hypertext-card-get-span-
text
hypertext-insert-text hypertext-card-insert-text
hypertext-string-search hypertext-card-string-
search
load-hypertext hypertext-card-load-file
save-hypertext hypertext-card-save-file
set-block-type hypertext-block-set-type
hypertext-add-block hypertext-block-add
hypertext-clear-block hypertext-block-clear
get-block-text hypertext-block-get-text
get-block-type hypertext-block-get-type
get-block-item hypertext-block-get-item

7

2. General questions and answers

2.1. What are the hardware and software requirements for running Hardy?

Under X:

• About 10 MB of disk space (more if the static Motif executable is used).
• A Sun workstation with 16MB or more of RAM.
• Solaris 1.x or 2.x.
• If the static version is not being used, then the versions of the Motif, X11 and Xt libraries

must agree with Hardy's expectations: can be hard to get right. Hint: symbolic linking
from what Hardy expects to what you have installed sometimes work, as does setting
LD_LIBRARY_PATH.

Under Windows:

• About 4MB of disk space.
• 486 or better processor.
• 8MB RAM minimum, preferably 16MB.
• Windows 3.x, Windows 95, Windows NT or (at a pinch) OS/2 with Windows emulation.

Sun's WABI Windows emulator probably won't do.

Note that under Windows, there is a choice of executables: 16-bit, generic 32-bit (will work under
NT, Windows 95, WIN32s) and Windows 95 (only works under Windows 95).

A Mac port is in progress and is expected around July 1996. For UNIX platforms other than Sun,
please contact AIAI for a quote for porting Hardy.

2.2. Why is a diagrams.def file needed?

Hardy needs to know what diagram type definitions, hypertext type definitions, and symbol
libraries to load before any indexes or diagrams can be loaded or created. This list of definition
files enables you to switch between 'applications' by loading different sets of definition files.

2.3. Why is there no Undo facility?

Because it's very difficult! There have been many requests for such a facility, and I am thinking
about how I would implement it.

2.4. How can I create new symbols for Hardy?

There are two main methods for create new symbols: use the node symbol editor and combine
existing symbols using consraints; and converting Windows metafiles to Hardy symbols.

A convenient (at present, only) way of creating suitable metafiles is to use the shareware
package TopDraw, available from our ftp site. This generates suitably simple metafiles for Hardy
to recognise. There are heavy restrictions on the complexity of the metafile: no clipping areas are
allowed, no text, no bitmaps, no arcs (except for those made up of lines).

If people have success with other metafile-generating packages, I would be interested to know
about it.

CHAPTER 2

8

2.5. What languages can I use to develop Hardy applications?

The main supported language is CLIPS, which is integrated with Hardy and supports an
interactive style of development. C++ is supported inside AIAI, using the header file hapi.h and a
library file. Unfortunately we cannot distribute the library file or source code outside AIAI. See
Using CLIPS (page 9).

The DDE (page 28) facility can be used to call Hardy functions from other programs under
Windows.

2.6. What have wxWindows and wxCLIPS got to do with Hardy?

wxWindows is the portable, C++ GUI toolkit used to implement Hardy. Many of the classes have
been encapsulated in CLIPS functions (used in an object-oriented manner, with integer identifiers
replacing object pointers). This package is known as wxCLIPS, and is both a stand-alone CLIPS
development environment, and a library that has been linked with Hardy to provide the GUI
functionality.

wxWindows and wxCLIPS were written at AIAI, and are both available free of charge by
anonymous ftp from:

ftp.aiai.ed.ac.uk

in the directories /pub/packages/wxwin and /pub/packages/wxclips.

2.7. How can I write a customized installation procedure under Windows?

Use the wxWindows installation program, the latest version of which may be found in :

ftp.aiai.ed.ac.uk:/pub/packages/wxwin/tools/install

It can also be found in the SDK install directory, but may not be as up to date.

You edit a file called install.inf to specify destination directories, program manager icons,
compression method and so on.

2.8. How can I customize the Hardy startup screen under Windows?

Put the files hystart.bmp and hystart.txt in a directory accessible by Hardy. hystart.bmp should be
a 16-colour Windows bitmap 255 pixels or less in width and height; hystart.txt should contain a
number of lines of text for the dialog text. If these files are not found, the Hardy defaults will be
used.

Unfortunately, the Hardy icon cannot be customized at present.

9

3. Using CLIPS

For the sake of brevity, the following discussion assumes that CLIPS is being used to customize
Hardy. If C++ is being used instead, most of this applies, except... when it doesn't (which should
be fairly obvious).

3.1. Is CLIPS free?

This is a matter of continuing debate. It is free in the United States, but there are some claims by
the official distributor COSMIC that outside the U.S., source code should be purchased for a
nominal price. In fact, CLIPS is distributed with many CD-ROMS and at least one book, and is
also available by anonymous ftp.

AIAI have written confirmation from COSMIC that there are no copyright problems associated
with the Hardy version of CLIPS.

3.2. Is CLIPS any good? What about file-handling, and so on?

Built-in macro languages are sometimes viewed with suspicion, since they may not have all the
flexibility of 'doing it in C'. Fortunately, CLIPS is a well-developed language with functions,
objects, templates, rules, facts, I/O facilities, and a large set of mathematical functions. There are
GUI extensions that allow fairly complex user interfaces and graphics to be constructed, which
will need little or no change on other Hardy-supported platforms.

It's unlikely that CLIPS would prove too unwieldy or lack sufficient functionality for your
application. If it did, you could fall back on C++, or with a little help from us, implement your own
CLIPS functions to do intensive or specialist work.

3.3. But CLIPS is an A.I. language. How does that affect me?

It needn't affect you in the slightest, in that CLIPS was originally integrated with Hardy purely for
the functions, as an extension language. The fact that it is also a rule-based shell was deemed
irrelevant; after consideration of the alternatives, CLIPS was found to be the most portable,
easily-tailorable language available.

The rule-based part of CLIPS is a bonus, and may be used solely or sparingly as the need arises.
It's worth considering as a useful pattern matching facility.

Here is a rule-based example (see CLIPS/RULES on the SDK disk).

3.3.1. Animal demo

;;;==
;;; Animal Identification Expert System
;;;
;;; A simple expert system which attempts to identify
;;; an animal based on its characteristics.
;;; The knowledge base in this example is a
;;; collection of facts which represent backward
;;; chaining rules. CLIPS forward chaining rules are
;;; then used to simulate a backward chaining inference
;;; engine.

CHAPTER 3

10

;;;
;;; CLIPS Version 5.1 Example
;;;
;;; To execute, merely load, reset, and run.
;;; Answer questions yes or no.
;;;==

;;;**************************
;;;* INFERENCE ENGINE RULES *
;;;**************************

(defrule propogate-goal ""
 (goal is ?goal)
 (if ?variable $? then ?goal ? ?value)
 =>
 (assert (goal is ?variable)))

(defrule goal-satified ""
 (declare (salience 30))
 ?f <- (goal is ?goal)
 (variable ?goal ?value)
 (answer ? ?text ?goal)
 =>
 (retract ?f)
 (format t "%s%s%n" ?text ?value))

(defrule remove-rule-no-match ""
 (declare (salience 20))
 (variable ?variable ?value)
 ?f <- (if ?variable ? ~?value ? ? ? $?)
 =>
 (retract ?f))

(defrule modify-rule-match ""
 (declare (salience 20))
 (variable ?variable ?value)
 ?f <- (if ?variable ? ?value and $?rest then ?goal ?holder ?goal-
value)
 =>
 (retract ?f)
 (assert (if $?rest then ?goal ?holder ?goal-value)))

(defrule rule-satisfied ""
 (declare (salience 20))
 (variable ?variable ?value)
 ?f <- (if ?variable ? ?value then ?goal ? ?goal-value)
 =>
 (retract ?f)
 (assert (variable ?goal ?goal-value)))

(defrule ask-question-no-legalvalues ""
 (declare (salience 10))
 (not (legalanswers $?))
 ?f1 <- (goal is ?variable)
 ?f2 <- (question ?variable ? ?text)
 =>
 (retract ?f1 ?f2)

CHAPTER 3

11

 (assert (variable ?variable =(string-to-symbol (get-text-from-user
?text)))))

(defrule ask-question-legalvalues ""
 (declare (salience 10))
 (legalanswers ? $?answers)
 ?f1 <- (goal is ?variable)
 ?f2 <- (question ?variable ? ?text)
 =>
 (retract ?f1)
; (format t "%s " ?text)
 (printout t ?answers)
 (format t "%n")
 (bind ?reply (string-to-symbol (get-text-from-user ?text)))
 (if (member (lowcase ?reply) ?answers)
 then (assert (variable ?variable ?reply))
 (retract ?f2)
 else (assert (goal is ?variable))))

;;;***************************
;;;* DEFFACTS KNOWLEDGE BASE *
;;;***************************

(deffacts knowledge-base
 (goal is type.animal)
 (legalanswers are yes no)
 (if backbone is yes
 then superphylum is backbone)
 (if backbone is no
 then superphylum is jellyback)
 (question backbone is "Does your animal have a backbone?")
 (if superphylum is backbone and
 warm.blooded is yes
 then phylum is warm)
 (if superphylum is backbone and
 warm.blooded is no
 then phylum is cold)
 (question warm.blooded is "Is the animal warm blooded?")
 (if superphylum is jellyback and
 live.prime.in.soil is yes
 then phylum is soil)
 (if superphylum is jellyback and
 live.prime.in.soil is no
 then phylum is elsewhere)
 (question live.prime.in.soil is "Does your animal live primarily in
soil?")
 (if phylum is warm and
 has.breasts is yes
 then class is breasts)
 (if phylum is warm and
 has.breasts is no
 then type.animal is bird/penguin)
 (question has.breasts is "Normally, does the female of your animal
nurse its young with milk?")
 (if phylum is cold and
 always.in.water is yes
 then class is water)

CHAPTER 3

12

 (if phylum is cold and
 always.in.water is no
 then class is dry)
 (question always.in.water is "Is your animal always in water?")
 (if phylum is soil and
 flat.bodied is yes
 then type.animal is flatworm)
 (if phylum is soil and
 flat.bodied is no
 then type.animal is worm/leech)
 (question flat.bodied is "Does your animal have a flat body?")
 (if phylum is elsewhere and
 body.in.segments is yes
 then class is segments)
 (if phylum is elsewhere and
 body.in.segments is no
 then class is unified)
 (question body.in.segments is "Is the animals body in segments?")
 (if class is breasts and
 can.eat.meat is yes
 then order is meat)
 (if class is breasts and
 can.eat.meat is no
 then order is vegy)
 (question can.eat.meat is "Does your animal eat red meat?")
 (if class is water and
 boney is yes
 then type.animal is fish)
 (if class is water and
 boney is no
 then type.animal is shark/ray)
 (question boney is "Does your animal have a boney skeleton?")
 (if class is dry and
 scally is yes
 then order is scales)
 (if class is dry and
 scally is no
 then order is soft)
 (question scally is "Is your animal covered with scaled skin?")
 (if class is segments and
 shell is yes
 then order is shell)
 (if class is segments and
 shell is no
 then type.animal is centipede/millipede/insect)
 (question shell is "Does your animal have a shell?")
 (if class is unified and
 digest.cells is yes
 then order is cells)
 (if class is unified and
 digest.cells is no
 then order is stomach)
 (question digest.cells is "Does your animal use many cells to digest
it's food instead of a stomach?")
 (if order is meat and
 fly is yes
 then type.animal is bat)

CHAPTER 3

13

 (if order is meat and
 fly is no
 then family is nowings)
 (question fly is "Can your animal fly?")
 (if order is vegy and
 hooves is yes
 then family is hooves)
 (if order is vegy and
 hooves is no
 then family is feet)
 (question hooves is "Does your animal have hooves?")
 (if order is scales and
 rounded.shell is yes
 then type.animal is turtle)
 (if order is scales and
 rounded.shell is no
 then family is noshell)
 (question rounded.shell is "Does the animal have a rounded shell?")
 (if order is soft and
 jump is yes
 then type.animal is frog)
 (if order is soft and
 jump is no
 then type.animal is salamander)
 (question jump is "Does your animal jump?")
 (if order is shell and
 tail is yes
 then type.animal is lobster)
 (if order is shell and
 tail is no
 then type.animal is crab)
 (question tail is "Does your animal have a tail?")
 (if order is cells and
 stationary is yes
 then family is stationary)
 (if order is cells and
 stationary is no
 then type.animal is jellyfish)
 (question stationary is "Is your animal attached permanently to an
object?")
 (if order is stomach and
 multicelled is yes
 then family is multicelled)
 (if order is stomach and
 multicelled is no
 then type.animal is protozoa)
 (question multicelled is "Is your animal made up of more than one
cell?")
 (if family is nowings and
 opposing.thumb is yes
 then genus is thumb)
 (if family is nowings and
 opposing.thumb is no
 then genus is nothumb)
 (question opposing.thumb is "Does your animal have an opposing
thumb?")
 (if family is hooves and

CHAPTER 3

14

 two.toes is yes
 then genus is twotoes)
 (if family is hooves and
 two.toes is no
 then genus is onetoe)
 (question two.toes is "Does your animal stand on two toes/hooves per
foot?")
 (if family is feet and
 live.in.water is yes
 then genus is water)
 (if family is feet and
 live.in.water is no
 then genus is dry)
 (question live.in.water is "Does your animal live in water?")
 (if family is noshell and
 limbs is yes
 then type.animal is crocodile/alligator)
 (if family is noshell and
 limbs is no
 then type.animal is snake)
 (question limbs is "Does your animal have limbs?")
 (if family is stationary and
 spikes is yes
 then type.animal is sea.anemone)
 (if family is stationary and
 spikes is no
 then type.animal is coral/sponge)
 (question spikes is "Does your animal normally have spikes radiating
from it's body?")
 (if family is multicelled and
 spiral.shell is yes
 then type.animal is snail)
 (if family is multicelled and
 spiral.shell is no
 then genus is noshell)
 (question spiral.shell is "Does your animal have a spiral-shaped
shell?")
 (if genus is thumb and
 prehensile.tail is yes
 then type.animal is monkey)
 (if genus is thumb and
 prehensile.tail is no
 then species is notail)
 (question prehensile.tail is "Does your animal have a prehensile
tail?")
 (if genus is nothumb and
 over.400 is yes
 then species is 400)
 (if genus is nothumb and
 over.400 is no
 then species is under400)
 (question over.400 is "Does an adult normally weigh over 400
pounds?")
 (if genus is twotoes and
 horns is yes
 then species is horns)
 (if genus is twotoes and

CHAPTER 3

15

 horns is no
 then species is nohorns)
 (question horns is "Does your animal have horns?")
 (if genus is onetoe and
 plating is yes
 then type.animal is rhinoceros)
 (if genus is onetoe and
 plating is no
 then type.animal is horse/zebra)
 (question plating is "Is your animal covered with a protective
plating?")
 (if genus is water and
 hunted is yes
 then type.animal is whale)
 (if genus is water and
 hunted is no
 then type.animal is dolphin/porpoise)
 (question hunted is "Is your animal, unfortunately, commercially
hunted?")
 (if genus is dry and
 front.teeth is yes
 then species is teeth)
 (if genus is dry and
 front.teeth is no
 then species is noteeth)
 (question front.teeth is "Does your animal have large front teeth?")
 (if genus is noshell and
 bivalve is yes
 then type.animal is clam/oyster)
 (if genus is noshell and
 bivalve is no
 then type.animal is squid/octopus)
 (question bivalve is "Is your animal protected by two half-shells?")
 (if species is notail and
 nearly.hairless is yes
 then type.animal is man)
 (if species is notail and
 nearly.hairless is no
 then subspecies is hair)
 (question nearly.hairless is "Is your animal nearly hairless?")
 (if species is 400 and
 land.based is yes
 then type.animal is bear/tiger/lion)
 (if species is 400 and
 land.based is no
 then type.animal is walrus)
 (question land.based is "Is your animal land based?")
 (if species is under400 and
 thintail is yes
 then type.animal is cat)
 (if species is under400 and
 thintail is no
 then type.animal is coyote/wolf/fox/dog)
 (question thintail is "Does your animal have a thin tail?")
 (if species is horns and
 one.horn is yes
 then type.animal is hippopotamus)

CHAPTER 3

16

 (if species is horns and
 one.horn is no
 then subspecies is nohorn)
 (question one.horn is "Does your animal have one horn?")
 (if species is nohorns and
 lives.in.desert is yes
 then type.animal is camel)
 (if species is nohorns and
 lives.in.desert is no
 then type.animal is giraffe)
 (question lives.in.desert is "Does your animal normally live in the
desert?")
 (if species is teeth and
 large.ears is yes
 then type.animal is rabbit)
 (if species is teeth and
 large.ears is no the type.animal is
rat/mouse/squirrel/beaver/porcupine)
 (question large.ears is "Does your animal have large ears?")
 (if species is noteeth and
 pouch is yes
 then type.animal is "kangaroo/koala bear")
 (if species is noteeth and
 pouch is no
 then type.animal is mole/shrew/elephant)
 (question pouch is "Does your animal have a pouch?")
 (if subspecies is hair and
 long.powerful.arms is yes
 then type.animal is orangutan/gorilla/chimpanzie)
 (if subspecies is hair and
 long.powerful.arms is no
 then type.animal is baboon)
 (question long.powerful.arms is "Does your animal have long,
powerful arms?")
 (if subspecies is nohorn and
 fleece is yes
 then type.animal is sheep/goat)
 (if subspecies is nohorn and
 fleece is no
 then subsubspecies is nofleece)
 (question fleece is "Does your animal have fleece?")
 (if subsubspecies is nofleece and
 domesticated is yes
 then type.animal is cow)
 (if subsubspecies is nofleece and
 domesticated is no
 then type.animal is deer/moose/antelope)
 (question domesticated is "Is your animal domesticated?")
 (answer is "I think your animal is a " type.animal)
)

;;; Auto-boot function for wxCLIPS (Windows only)
(deffunction app-on-init ()
 (unwatch all)
 (show-ide-window)
 (reset)
 (run)

CHAPTER 3

17

 (return 0)
)

3.4. How do Hardy and my CLIPS code communicate?

Hardy and CLIPS are essentially two big chunks of code linked together, in the same process
space. In normal use, CLIPS code only executes in two situations: when Hardy is started up,
using the -clips command, and when certain events call your code.

At startup, the CLIPS custom code is given a chance to load files, and initialize before returning
control back to Hardy. The C++ equivalent of this is defining the function gyInitializeCustomCode
for Hardy to call at startup.

The user will also want to register event handlers (either CLIPS or C++ functions) which will be
called by Hardy when the specified events happen. The CLIPS function register-event-handler is
used to specify a context (for example "Toplevel'' or a user-defined card type), an event name,
and the function name (CLIPS) or address (C++).

For example, the following registers interest in the CustomMenu event for diagrams of type
"bsdm'', so Hardy will call the function test-event-handler when the user selects an item on the
custom menu.

; We are interested in CustomMenu events for BSDM demo diagram type
(register-event-handler CustomMenu "bsdm" test-event-handler)

During a callback, custom code will probably call back into Hardy by means of the Hardy CLIPS
functions.

Apart from the simple developer's window, there is no other way in which Hardy and CLIPS are
related; no object-oriented association between diagrams and chunks of code. Everything is
essentially global, and code must explicitly register interest in particular events in particular
contexts.

Here's an example of an application that intercepts menu and left-click events to allow very quick
construction of tree diagrams.

3.4.1. Tree demo code

;;; Tree-drawer demo
;;; Use -clips treeload.clp on HARDY command line.
;;; Create a tree card, create a root with the custom menu,
;;; then keep clicking on nodes to create children.

(defglobal ?*tree-root* = 0)

;;; Asks for a name and creates the tree root
(deffunction tree-add-root-image (?card-id)
 (bind ?msg (get-text-from-user "Enter name for new root node"))
 (if (eq ?msg "") then 0 else
 ; Create a new image
 (bind ?image1 (create-node-image ?card-id "Node"))

 ; Find it's underlying node object
 (bind ?object1 (get-object-from-image ?card-id ?image1))

CHAPTER 3

18

 ; Set the name attribute
 (set-object-string-attribute ?card-id ?object1 "name" ?msg)

 ; Format the text on the image
 (format-object-text ?card-id ?object1)

 (bind ?*tree-root* ?image1)
 ; Layout the tree
 (diagram-layout-tree ?card-id ?*tree-root*))
)

;;; Callback for custom menu
(deffunction tree-menu-handler (?card-id ?option)
 (if (eq ?option "Add root") then
 (tree-add-root-image ?card-id) else
 (if (eq ?option "Layout tree") then
 (diagram-layout-tree ?card-id ?*tree-root*)))
)

;;; Left-click handler to create children
(deffunction tree-node-handler (?card-id ?image-id ?x ?y ?shift
?control)
 (declare ?x float)
 (declare ?y float)
 (if (and (neq ?shift 1) (neq ?control 1)) then
 (bind ?msg (get-text-from-user "Enter name for new node"))
 (if (eq ?msg "") then 0 else

 ; Create a node image
 (bind ?image1 (create-node-image ?card-id "Node"))

 ; Get the underlying node object
 (bind ?object1 (get-object-from-image ?card-id ?image1))

 ; Set the name attribute
 (set-object-string-attribute ?card-id ?object1 "name" ?msg)

 ; Format the text on the image
 (format-object-text ?card-id ?object1)

 ; Add an arc
 (bind ?image3 (create-arc-image ?card-id "Arc" ?image-id ?image1 1
3))

 ; Layout the tree
 (diagram-layout-tree ?card-id ?*tree-root*)
 0)
 else 1)
)

;;; Handler for the user deleting images
(deffunction tree-delete-image-handler (?card-id ?image-id ?type)
 (declare ?type string)
 (if (eq ?image-id ?*tree-root*) then
 (bind ?*tree-root* 0) else
 (diagram-layout-tree ?card-id ?*tree-root*)

CHAPTER 3

19

)
)

;;; Handler for initialisation
(deffunction tree-init ()
 (message-box "Welcome to the tree demo: create a new Tree card and
see Options menu");
 (return 1)
)

3.4.2. Tree demo loader

;;; Tree-drawing demo
;;; Use -clips treeload.clp on HARDY command line.
;;; Create a tree card, create a root with the custom menu,
;;; then keep clicking on nodes to create children.

(load "tree.clp")

; Event handlers for Tree Demo
(register-event-handler CustomMenu "Tree" tree-menu-handler)
(register-event-handler NodeLeftClick "Tree" tree-node-handler)
(register-event-handler DeleteNodeImage "Tree" tree-delete-image-
handler)
(register-event-handler DeleteArcImage "Tree" tree-delete-image-
handler)
(register-event-handler OnHardyInit "Toplevel" tree-init)

3.5. Why does it take so long to load CLIPS code into Hardy?

There are two ways of loading CLIPS code: batch and load, each with a entry on the developer
window File menu, and a function equivalent.

batch executes all possible CLIPS commands and construct definitions, but doesn't do much
checking of constructs. It is slow.

load only recognises CLIPS constructs such as deffunction, as opposed to function calls. It is
relatively fast.

Therefore, the recommended practise is not to batch all CLIPS code: instead, have a small file
contains several further load commands, and a few function calls (such as register-event-
handler). This 'loader' file can be batched or used as the command line with -clips, so the
minimum possible amount is subject to the slow batch reading.

Another reason for a slow-down is because tracing is on. See Slow execution (page 20).

Here's a demo loader file that should be batched but calls load to load most of the program.

3.5.1. Loader example

CHAPTER 3

20

;;; File: demoload.clp
;;; Purpose: Report-writing demo loader (Windows only).
;;; For use with the demo BSDM diagram type
;;; Author: Julian Smart
;;; Created: 16/7/94

(load "utils1.clp")
(load "globals.clp")
(load "dialog.clp")
(load "latex.clp")
(load "ddeword.clp")
(load "report.clp")

; We are interested in CustomMenu events for the Hardy window
(register-event-handler CustomMenu Toplevel report-event-handler)

; Turn off excessive output to the developer window
(unwatch all)

3.6. Is there an Integrated Development Environment for Hardy?

No, but under Windows there's the next best thing: the ability to execute some of the Developer
Window functionality from a DDE program. The program editor/ddesend.exe allows the user to
load and batch the current buffer, by defining a macro which calls ddesend.exe with an
appropriate command line.

The DDE client (of which ddesend.exe is an example) must connect to the server using the
service name HARDY, and establish a conversation on the HARDY topic.

The file editor/macros.rc is a sample MicroEMACS for Windows macro file, that implements
commnds for loading files into Hardy, and executing CLIPS commands, from within
MicroEMACS, using ddesend.exe.

Here are some examples of Hardy DDE commands. They consist of a letter, a space, and then
some data.

L c:\example.clp
B c:\example.clp
E (app-on-init)
Q
C

Here is a list of commands that Hardy recognizes:

• L: load the given file of constructs into CLIPS
• B: batch the given file of constructs into CLIPS
• E: execute the given command
• C: clear the Hardy development window
• Q: quit Hardy

3.7. Why is execution sometimes slow?

It could be because tracing is enabled, and lots of text is being output on the development
window. Try calling

CHAPTER 3

21

(unwatch all)

3.8. Sometimes CLIPS callbacks fail to execute. Why?

There is a condition that can occur when a CLIPS command has failed; subsequent attempts to
run the code cause FALSE to be displayed, then nothing further happens. You may have quit
Hardy and rerun occasionally during your development. Note: this has now been cured (as of late
1995).

3.9. How can I have a custom menu on the Hardy control window?

There isn't a convenient user interface for doing it, but you can create such a menu by inserting
lines like these in the diagrams.def definition list:

custom(custom_menu_name = "&Custom options",
 custom_menu_strings = ["&First item", "&Second item"]).

Then use the "CustomMenu'' event for the "Toplevel'' context. See the manual entry for register-
event-handler for further details on events.

3.10. What facilities are available for generating reports?

The one-word answer to this is, 'none'. A better answer is that the Hardy allows total report-
generating flexibility via CLIPS. There are no built-in facilities that allow instant document
generation from a hypertext index or diagram hierarchy.

The reason for this is that it is unlikely that a generic facility would be sufficient for all possible
uses of Hardy. Instead, the Hardy application programmer can write report generators using
CLIPS or C++ code. There are several Hardy functions that help you in this task, such as
diagram-card-save-metafile.

The easiest approach is probably to generate a LaTeX file. Why LaTeX? Because it is a relatively
simple format to generate, and can be converted into various other formats using Tex2RTF (page
22) or similar utility. Sample code is available in the Hardy SDK that generates a report with
mixed text and diagrams.

On the UNIX platform, the diagrams can be saved in PostScript, LaTeX used to convert to a .dvi
file, and then dvips can be used to produce a PostScript file. The LaTeX macro package
PSBOX may be used for incorporating the PostScript files.

Under Windows, Tex2RTF can be used to generate Rich Text Format (RTF) files, which can be
read by most popular word processors. Diagrams are saved as metafiles by the report writer, as
they can be scaled in the word processor with no adverse effect.

The example CLIPS code demonstrates using DDE to automate the conversion to RTF and
loading into MS Word.

Under Windows there is the additional possibility of generating a Windows Help file, to produce a
read-only, browseable hypertext version of the Hardy document. This requires the Windows Help
compiler (hc.exe or hc505.exe), available free from various anonymous ftp sites.

Under both Windows and UNIX, Tex2RTF can be used to produce HTML files for viewing on the
World Wide Web. However, at present the conversion of graphics files to GIF must be done
manually, although it could be automated. Use diagram-card-save-bitmap to save a bitmap, and

CHAPTER 3

22

try to find a command-line utility to convert from bitmap to GIF format (but see HTML generation
(page 22)).

3.10.1. HTML generation

The HTML directory contains a Hardy application to generate HTML files for a whole Hardy index
(unlike the report generator mentioned above which only works for diagram hierarchies).

Currently it works under Windows only, because only the Windows version can save suitable
colour bitmaps. To convert the saved BMP files to GIF, the utility calls a shareware DOS program
called ColorView which must be in the PATH. Any other suitable BMP to GIF conversion
program could also be used with suitable changes to the code.

3.10.2. If you don't want to generate LaTeX

If you really want to generate a native format such as PostScript and RTF, then that's fine, but be
prepared to work long hours! There are a couple of Hardy functions to help RTF writers: convert-
bitmap-to-rtf, and convert-metafile-to-rtf. These functions convert image files into the hexadecimal
RTF data required by some RTF readers. Note that different RTF readers have different
requirements (Word for Windows can cope with an INCLUDEPICTURE field that simply
references a metafile on disk, whereas others may require the hexadecimal data to be embedded
in the file).

An RTF specification is available from the Microsoft ftp site, or from the Microsoft Developer's
Network CD-ROM. You can also look at the source code of Tex2RTF (page 22) for some hints.

3.10.3. Where can I get Tex2RTF?

The latest version of Tex2RTF can be accessed by anonymous ftp from:

ftp.aiai.ed.ac.uk/pub/packages/tex2rtf

It is available in SPARC Open Look and Windows 3.1 versions.

Tex2RTF was developed using the free Open Look, Motif and Windows 3.1 C++ class library
wxWindows, also available from the above FTP site in the /pub/wxwin/beta directory.

3.11. How can I build customized user interfaces in Hardy?

For many applications, using simple functions such as message-box, get-choice, file-selector and
get-text-from-user may be adequate, combined with intercepting custom menu and mouse click
events. But you may find after a while that you need something a little more complex.

This is where wxCLIPS comes in (see also wxWindows and wxCLIPS (page 8)). It provides a
range of building blocks for building your own interfaces, including frames, panels, buttons, list
boxes, text windows, canvases, pens, brushes, and fonts. The demo supplied with the SDK in
CLIPS/GUI shows off some of these features.

Here's the simple GUI example.

3.11.1. GUI example

CHAPTER 3

23

;;; hello.clp
;;; Shows how a frame may be created, with a menu bar and
;;; panel, using low-level windows functions.
;;; Load using -clips <file> on the command line or using the Batch
;;; or Load commands from the CLIPS development window; type
;;; (app-on-init) to start.

(defglobal ?*main-frame* = 0)
(defglobal ?*subframe* = 0)
(defglobal ?*panel* = 0)
(defglobal ?*canvas* = 0)
(defglobal ?*text-win* = 0)
(defglobal ?*hand-cursor* = 0)

(defglobal ?*small_font* = 0)
(defglobal ?*green_pen* = 0)
(defglobal ?*black_pen* = 0)
(defglobal ?*red_pen* = 0)
(defglobal ?*cyan_brush* = 0)

(defglobal ?*xpos* = -1.0)
(defglobal ?*ypos* = -1.0)

(defglobal ?*bitmap* = 0)
(defglobal ?*button-bitmap* = 0)
(defglobal ?*icon* = 0)

;;; Sizing callback
(deffunction on-size (?id ?w ?h)
 (if (and (> ?id 0) (> ?*panel* 0) (> ?*text-win* 0)) then
 (bind ?client-width (window-get-client-width ?id))
 (bind ?client-height (window-get-client-height ?id))
 (window-set-size ?*panel* 0 0 ?client-width (* ?client-height 0.666))
 (window-set-size ?*text-win* 0 (* ?client-height 0.666) ?client-width
(/ ?client-height 3))
)
)

;;; Utility function for drawing a bitmap
(deffunction draw-bitmap (?dc ?bitmap ?x ?y)
 (bind ?mem-dc (memory-dc-create))
 (memory-dc-select-object ?mem-dc ?bitmap)
 ; Blit the memory device context onto the destination device context
 (dc-blit ?dc ?x ?y (bitmap-get-width ?bitmap) (bitmap-get-height
?bitmap)
 ?mem-dc 0.0 0.0)
 (dc-delete ?mem-dc)
)

(deffunction draw-graphics (?dc)
 (if (> ?*bitmap* 0) then
 (draw-bitmap ?dc ?*bitmap* 0.0 250.0))

 (dc-set-font ?dc ?*small_font*)
 (dc-set-pen ?dc ?*green_pen*)
 (dc-draw-line ?dc 0.0 0.0 200.0 200.0)

CHAPTER 3

24

 (dc-draw-line ?dc 200.0 0.0 0.0 200.0)

 (dc-set-pen ?dc ?*red_pen*)
 (dc-set-brush ?dc ?*cyan_brush*)
 (dc-draw-rectangle ?dc 100.0 100.0 100.0 50.0)
 (dc-draw-rounded-rectangle ?dc 150.0 150.0 100.0 50.0)

 (dc-set-clipping-region ?dc 150.0 150.0 100.0 50.0)
 (dc-draw-text ?dc "This text should be clipped within the rectangle"
150.0 170.0)
 (dc-destroy-clipping-region ?dc)

 (dc-draw-ellipse ?dc 250.0 250.0 100.0 50.0)
 (dc-draw-spline ?dc (mv-append 50.0 200.0 50.0 100.0 200.0 10.0))
 (dc-draw-line ?dc 50.0 230.0 200.0 230.0)
 (dc-draw-text ?dc "This is a test string" 50.0 230.0)
)

;;; Painting callback
(deffunction on-paint (?id)
 (if (> ?id 0) then
 (bind ?dc (canvas-get-dc ?id))
 (draw-graphics ?dc)
)
)

(deffunction on-event (?canvas ?event)
 (bind ?dc (canvas-get-dc ?canvas))
 (dc-set-pen ?dc ?*black_pen*)
 (bind ?x (mouse-event-position-x ?event))
 (bind ?y (mouse-event-position-y ?event))
 (bind ?dragging (mouse-event-dragging ?event))
 (if (and (> ?*xpos* -1) (> ?*ypos* -1) (> ?dragging 0)) then
 (dc-draw-line ?dc ?*xpos* ?*ypos* ?x ?y)
)
 (bind ?*xpos* ?x)
 (bind ?*ypos* ?y)
)

(deffunction on-close (?frame)
 (format t "Closing frame.%n")
 (window-delete ?*subframe*)
 (bind ?*panel* 0)
 (bind ?*text-win* 0)
 1)

(deffunction on-menu-command (?frame ?id)
 (switch ?id
 (case 200 then (message-box "CLIPS for wxWindows Demo
by Julian Smart (c) 1993" wxOK 1 0 "About wxWindows CLIPS Demo"))
 (case 3 then (if (on-close ?frame) then (window-delete ?frame)))
 (case 1 then
 (bind ?file (file-selector "Choose a text file to load"))
 (if (neq ?file "") then
 (text-window-load-file ?*text-win* ?file)))
 (case 4 then
 (bind ?dc (postscript-dc-create "" 1))

CHAPTER 3

25

 (if (and (> ?dc 0) (= (dc-ok ?dc) 1)) then
 (if (= (dc-start-doc ?dc "Printing") 1) then
 (dc-start-page ?dc)
 (draw-graphics ?dc)
 (dc-end-page ?dc)
 (dc-end-doc ?dc)
)
)
 (if (> ?dc 0) then (dc-delete ?dc))
)
)
)

;;; Button callback
(deffunction frame-button-proc (?id)
 (bind ?parent (window-get-parent ?id))
 (bind ?grandparent (window-get-parent ?parent))
 (format t "Pressed button %d%n" ?id)
 (message-box "Hello")
)

;;; Text callback
(deffunction text-callback (?id)
 (bind ?event-id (panel-item-get-command-event))
 (if (eq "wxEVENT_TYPE_TEXT_ENTER_COMMAND" (event-get-event-type
?event-id)) then
 (format t "The text was %s%n" (text-get-value ?id))
)
)

;;; Test program to create a frame
(deffunction app-on-init ()
 (unwatch all)
 (if (= ?*small_font* 0) then
 (bind ?*small_font* (font-create 10 wxSWISS wxNORMAL wxNORMAL 0))
 (bind ?*green_pen* (pen-create GREEN 1 wxSOLID))
 (bind ?*black_pen* (pen-create BLACK 1 wxSOLID))
 (bind ?*red_pen* (pen-create RED 3 wxSOLID))
 (bind ?*cyan_brush* (brush-create CYAN wxSOLID))
 (bind ?*hand-cursor* (cursor-create "wxCURSOR_HAND"))
 (if (eq "Windows 3.1" (get-platform)) then
 (bind ?*bitmap* (bitmap-load-from-file "wxwin.bmp"))
 (bind ?*button-bitmap* (bitmap-load-from-file "aiai.bmp"))
 (bind ?*icon* (icon-load-from-file "aiai.ico"))
)
)

 (bind ?*main-frame* (frame-create 0 "Hello wxCLIPS!" -1 -1 500 460))
 (frame-create-status-line ?*main-frame*)
 (frame-set-status-text ?*main-frame* "Welcome to wxCLIPS")
 (if (> ?*icon* 0) then
 (frame-set-icon ?*main-frame* ?*icon*)
)

 (window-add-callback ?*main-frame* OnSize on-size)
 (window-add-callback ?*main-frame* OnClose on-close)
 (window-add-callback ?*main-frame* OnMenuCommand on-menu-command)

CHAPTER 3

26

 ;;; Make a menu bar
 (bind ?file-menu (menu-create))
 (menu-append ?file-menu 1 "&Load file")
 (menu-append ?file-menu 4 "&Print to PostScript")

 (bind ?pull-right (menu-create))
 (menu-append ?pull-right 100 "&Twips")
 (menu-append ?pull-right 101 "&10th mm")

 (menu-append ?file-menu 2 "&Scale picture" ?pull-right)
 (menu-append-separator ?file-menu)
 (menu-append ?file-menu 3 "&Quit")

 (bind ?help-menu (menu-create))
 (menu-append ?help-menu 200 "&About")

 (bind ?menu-bar (menu-bar-create))
 (menu-bar-append ?menu-bar ?file-menu "&File")
 (menu-bar-append ?menu-bar ?help-menu "&Help")

 (frame-set-menu-bar ?*main-frame* ?menu-bar)

 ;;; Make a panel and panel items
 (bind ?*panel* (panel-create ?*main-frame* 0 0 500 250))
 (panel-set-label-position ?*panel* wxVERTICAL)

 (bind ?*text-win* (text-window-create ?*main-frame* 0 250 500 250))

 (bind ?button (button-create ?*panel* frame-button-proc "A button"))
 (if (> ?*button-bitmap* 0) then
 (bind ?bitmap-button (button-create-from-bitmap ?*panel* frame-
button-proc ?*button-bitmap*))
)
 (bind ?text (text-create ?*panel* "text-callback" "A text item"
"Initial value" -1 -1 200 -1 "wxPROCESS_ENTER"))
 (bind ?check (check-box-create ?*panel* "" "A check box"))

 (panel-new-line ?*panel*)

 (bind ?choice (choice-create ?*panel* "" "A choice item" -1 -1 -1 -1
(mv-append
 "One" "Two" "Three" "Four")))
 (choice-set-selection ?choice 0)

 (message-create ?*panel* "Hello! A simple message")

 (bind ?list (list-box-create ?*panel* "" "A list" 0 -1 -1 100 80))
 (list-box-append ?list "Apple")
 (list-box-append ?list "Pear")
 (list-box-append ?list "Orange")
 (list-box-append ?list "Banana")
 (list-box-append ?list "Fruit")

 (panel-new-line ?*panel*)

 (bind ?slider (slider-create ?*panel* "" "A slider" 40 22 101 200))

CHAPTER 3

27

 (bind ?multi (multi-text-create ?*panel* "" "Multiline text" "Some
text" -1 -1 200 100))

; (window-fit ?*panel*)
; (window-fit ?*main-frame*)

 (text-window-load-file ?*text-win* "hello.clp")
 (bind ?*subframe* (frame-create 0 "Canvas Frame" 300 300 400 400))
 (bind ?*canvas* (canvas-create ?*subframe* 0 0 400 400))
 (window-set-cursor ?*canvas* ?*hand-cursor*)
 (window-add-callback ?*canvas* OnPaint on-paint)
 (window-add-callback ?*canvas* OnEvent on-event)
 (canvas-set-scrollbars ?*canvas* 20 20 50 50 4 4)

 (window-centre ?*main-frame* wxBOTH)

 (window-show ?*main-frame* 1)
 (window-show ?*subframe* 1)

 ?*main-frame*)

3.12. My popup windows make the main window pop up.

If you use frames, dialog boxes convenience dialog functions with no parent window, Hardy will
use the main window. This may then pop up (on some platforms) and obscure other windows.

To avoid this, pass a valid frame or dialog identifier to the window you're creating. If the window
you want to be the parent is a card, use card-get-frame to retrieve a valid frame identifier. Do not
use the card identifier itself, this will most likely cause a crash.

3.13. How can I keep my code portable between platforms?

• When writing GUI code, use relative positioning where possible:

• don't use absolute values for positions, use -1 for x and y values
• use panel-new-line to space items.
• use window-fit on a panel/dialog box, then on the frame if there is one, to

shrink a window around its contents

• Use get-platform to test what platform Hardy is running on, and execute slightly
different code where necessary.

• When copying diagrams.def and index files between platforms, you may need to edit the
files to eliminate absolute pathnames. Alternatively, use the -path command line option
to specify where files will be found; Hardy will search such paths.

• Pass valid parent windows to all frames and dialogs (see Window problems (page 27).

• Use short, DOS-compatible filenames (8+3 characters).

• Use end of line converters where necessary when copying between UNIX and DOS
platforms.

CHAPTER 3

28

3.14. What interprocess-communication facilities can I use?

Hardy supports synchronous Dynamic Data Exchange (DDE) under Windows, and a simulation of
DDE using sockets under UNIX.

An external client program can use Hardy as a server, making a connection and using the
execute DDE command to call CLIPS code, followed by a request DDE command to get a return
value. Note that this kind of connection is only available on the CLIPS-enabled version of Hardy,
since an interactive language interpreter is required.

In addition, CLIPS DDE functions are available within Hardy, so a CLIPS program can make
Hardy the client, requesting information from or sending information to an external application,
such as a spreadsheet or word processor. The report-generating example in the Hardy SDK
shows DDE being used to invoke Tex2RTF and Word for Windows.

Under UNIX, there is an undocumented program called DDEPIPE that sites between a normal
pipe-aware UNIX application and Hardy. This offers a simple command interface that translates
messages sent to the pipe into a subset of the simulated DDE protocol required by Hardy.

The DDE facilities available in CLIPS are documented in the Hardy User Guide. They are a
functional encapsulation of the object-oriented equivalent in wxWindows (page 8), and so further
information can be obtained from the wxWindows manual. Another place to look is Microsoft
documentation and technical notes, plus Charles Petzold's Programming Windows 3.1.

Here's an example of talking to the Windows Program Manager using DDE. As you can see, DDE
needn't be at all frightening: the example is only a page or so long.

3.14.1. ProgMan example

;;; Demo of DDE functions: chatting to PROGMAN
;;;

(defglobal ?*progman-server* = 0)
(defglobal ?*progman-server-name* = "PROGMAN")
(defglobal ?*progman-host-name* = "none")
(defglobal ?*progman-topic-name* = "PROGMAN")
(defglobal ?*progman-client* = 0)
(defglobal ?*progman-connection* = 0)

;;; Convert a multi-value list of strings to one string
(deffunction many-strings-to-one ($?strings)
 (bind ?counter 1)
 (bind ?string "")
 (while (<= ?counter (length $?strings)) do
 (bind ?string (str-cat ?string (nth ?counter $?strings)))
 (bind ?counter (+ ?counter 1))
)
 (return ?string)
)

(deffunction progman-demo ()
 ;; Get a group name from the user
 (bind ?new-group-name (get-text-from-user "New PROGMAN group name"))
 (if (neq ?new-group-name "") then
 ;; Form create group command

CHAPTER 3

29

 (bind ?command (many-strings-to-one (mv-append "[CreateGroup(" ?new-
group-name ")]")))

 ;; Construct a client object
 (bind ?*progman-client* (client-create))

 ;; Construct a connection object
 (bind ?*progman-connection* (client-make-connection
 ?*progman-client* ?*progman-host-name*
 ?*progman-server-name* ?*progman-topic-name*))

 ;; Execute a command to create a group
 (bind ?exe (connection-execute ?*progman-connection* ?command))

 ;; Request a list of groups
 (bind ?req (connection-request ?*progman-connection* "PROGMAN"))
 (format t "%nProgram Manager Groups:%n")
 (format t "%s%n%n" ?req)

 ;; Disconnect
 (connection-disconnect ?*progman-connection*)
)
)

;;; Automatically called when running application from command line
;;; e.g. wxclips -start -clips ddetest.clp
;;; Also runnable from the Application: Run application.
(deffunction app-on-init ()
 (progman-demo)
)

30

4. Digging into Hardy diagrams

4.1. Why the difference between node and arc objects, and images? I'm
confused.

Yes, it can seem bewildering. But there is a reason for this difference. Node and arc objects are
intended as an internal, not displayed, representation of a diagram: they contain attributes, and
are typed. Node and arc images, on the other hand, merely reflect these objects visually: there
may even be two or more images for the same object, perhaps at different levels of a hierarchical
diagram. Images can be hyperlinked to other cards, objects can't be.

4.2. What is the relationship between item and image?

An item in Hardy-land is a generic concept for 'something on a card'. Therefore an image on a
diagram card is an item, and so is a block of text on a hypertext card. You'd expect to be able to
do similar things with items of different kinds, and so you can -- any item can form a hyperlink
with any other item. In addition, there are non-visual items: the special item that exists on each
card, to form hyperlink relationships in the absence of a visual item such as a text block or
diagram image.

Fine, as far as the user is concerned. An item is an item is a block, or an image. But for the
programmer, things are a little different: items are separate entities, with different identifiers. For
any image or block, there is one item. It is this identifier you must use to form or follow hyperlinks.
There's a good reason for this separation, to do with being able to examine items and links when
card contents are not loaded. The distinction means explicitly getting an image's item id, or an
item's image id, using the appropriate Hardy functions.

4.3. Can I access the diagram type definition from CLIPS?

No, at present there aren't any functions for accessing or changing the type definitions. The only
way to create new ones programmatically would be to write them to file and have the user load
them in (or write to the diagrams.def list of definitions).

However, when examining diagram structures, you can query the type of node and arc objects
(using diagram-object-get-string-attribute with a "type'' as the attribute name) and the diagram
type (using card-get-string-attribute, again with "type'' as the attribute name).

4.4. Can I have attributes of different types?

No, only string attributes are allowed, but you can convert different CLIPS types to and from
strings.

31

5. Hardy bug list

The following is a (probably incomplete) list of the known Hardy bugs and problems. Please
contact us if you find any more.

5.1. All platforms

Duplicate images Duplicate images can occasionally cause problems with crashes, and
when deleted can cause removal of arcs connected to images for which this is duplicate.
Please use this facility with caution.

Crash when deleting cards If you delete a card hierarchy, and have event handlers that
might (implicitly) expose a card whilst it was being deleted, a crash can result. Try to
disable as many event handlers as you can whilst a card is being deleted (e.g. by setting
a global variable from within a DeleteCard event handler). A card can get exposed (a
physical window created for it) by calling a function such as diagram-card-clear-canvas
when the card is not shown.

5.2. X only

Asynchonicity problems Due probably to the asynchonous nature of X, it is dangerous to
do a lot of programmatic creation and deletion of windows in sequence. For example,
highlighting a window to load a diagram from disk, then immediately deleting the
window, seems to cause a crash (the canvas refresh occurs even though there's no
canvas any more). Try to split these actions up if you are getting a crash, such that the
user must initiate more actions manually (using a timer might help, also).

5.3. Windows only

Modal lockout It has been reported that it is possible to push a dialog box behind the Hardy
window and not get it back again, so Hardy is stuck in a modal loop until Windows is
terminated. Using parent windows for all dialog boxes should alleviate this problem.

32

Glossary

GUI

Graphical User Interface, such as Windows 3 or X.

HTML

Hypertext Markup Language; an SGML document type, used for providing hypertext information
on the World Wide Web, a distributed hypertext system on the Internet.

LaTeX

A typesetting language implemented as a set of TeX macros. It is distinguished for allowing
specification of the document structure, whilst taking care of most layout concerns. It represents
the opposite end of the spectrum from WYSIWYG word processors.

Metafile

Microsoft Windows-specific object which may contain a restricted set of GDI primitives. It is
device independent, since it may be scaled without losing precision, unlike a bitmap. A metafile
may exist in a file or in memory. wxWindows implements enough metafile functionality to use it to
pass graphics to other applications via the clipboard. A placeable metafile is a metafile with a 22-
byte header which can be imported into several Windows applications, and is a format used by
the Microsoft help compiler.

Open Look

A specification for a GUI 'look and feel', initiated by Sun Microsystems. XView is one toolkit for
writing Open Look applications under X, and wxWindows sits on top of XView.

RTF

Rich Text Format: an interchange format for word processor files, used for importing and
exporting formatted documents, and as the input to the Windows Help compiler.

wxHelp

wxHelp is the hypertext help facility used to provide on-line documentation for UNIX-based
wxWindows applications. Under Windows 3.1, Windows Help is used instead.

wxWindows

wxWindows is a free C++ toolkit for writing applications that are portable across several
platforms. Currently these are Motif, Open Look, Windows 3.1 and Windows NT.

XView

An X toolkit supplied by Sun Microsystems, initially just for porting SunView applications to X, but
which has become a popular toolkit in its own right due to its simplicity of use. XView implements
Sun's Open Look 'look and feel' for X, but is not the only toolkit to do so.

33

Index

—A—
Animal demo, 9

—G—
GUI example, 22

—H—
HTML generation, 22

—I—
If you don't want to generate LaTeX, 22

—L—
Loader example, 19

—P—
ProgMan example, 28

—T—
Tree demo code, 17
Tree demo loader, 19

—W—
Where can I get Tex2RTF?, 22

