

i

wxWidgets 2.6.2: A portable C++ and Python GUI
toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

September, 2005

i

Contents

Copyright notice................................... .. ix

Introduction....................................... .. 1
What is wxWidgets?... 1
Why another cross-platform development tool? .. 1
wxWidgets requirements .. 3
Availability and location of wxWidgets .. 3
Acknowledgements .. 4

Multi-platform development with wxWidgets.......... ... 5
Include files.. 5
Libraries ... 5
Configuration.. 5
Makefiles.. 6
Windows-specific files .. 6
Allocating and deleting wxWidgets objects.. 7
Architecture dependency.. 7
Conditional compilation .. 8
C++ issues... 8
File handling .. 9

Utilities and libraries supplied with wxWidgets.... ... 10

Programming strategies 12
Strategies for reducing programming errors.. 12
Strategies for portability.. 12
Strategies for debugging .. 12

Libraries list 15

Alphabetical class reference 18
wxAcceleratorEntry .. 18
wxAcceleratorTable.. 19
wxAccessible ... 22
wxActivateEvent... 29
wxActiveXContainer ... 31
wxActiveXEvent ... 35
Returns the dispatch id of this activex event. This is the numeric value from the .idl file
specified by the id().wxApp... 36
wxArchiveClassFactory .. 47

CONTENTS

ii

wxArchiveEntry .. 48
wxArchiveInputStream ... 51
wxArchiveIterator ... 52
wxArchiveNotifier ... 55
wxArchiveOutputStream... 55
wxArray.. 57
wxSortedArray doesn't have this function because it is always sorted.wxArrayString 70
wxArtProvider... 75
wxAutomationObject .. 80
wxBitmap ... 84
wxBitmapButton ... 96
wxBitmapDataObject.. 103
wxBitmapHandler ... 104
wxBoxSizer .. 107
wxBrush... 108
wxBrushList ... 114
wxBufferedDC.. 116
wxBufferedPaintDC.. 118
wxBufferedInputStream.. 118
wxBufferedOutputStream ... 119
wxBusyCursor.. 120
wxBusyInfo .. 121
wxButton.. 122
wxCalculateLayoutEvent .. 125
wxCalendarCtrl .. 127
wxCalendarDateAttr ... 132
wxCalendarEvent ... 135
wxCaret ... 136
wxCheckBox .. 138
wxCheckListBox... 142
wxChoice ... 145
This is implemented for Motif only and doesn't do anything under other
platforms.wxChoicebook .. 148
wxClassInfo ... 148
wxClient ... 150
wxClientDC .. 151
wxClientData.. 152
wxClientDataContainer... 153
wxClipboard ... 154
wxCloseEvent .. 157
wxCmdLineParser.. 159

CONTENTS

iii

wxColour.. 168
wxColourData .. 172
wxColourDatabase... 173
wxColourDialog.. 175
wxComboBox... 176
wxCommand.. 182
wxCommandEvent ... 184
wxCommandProcessor .. 189
wxCondition ... 193
wxConfigBase .. 196
wxConnection .. 210
wxContextMenuEvent .. 214
wxContextHelp... 215
wxContextHelpButton... 216
wxControl... 218
wxControlWithItems ... 219
SetSelection (p. ??)wxCountingOutputStream.. 226
wxCriticalSection.. 227
wxCriticalSectionLocker ... 228
wxCSConv ... 229
wxCursor.. 230
wxCustomDataObject... 235
wxDataFormat.. 237
wxDataInputStream.. 239
wxDataObject... 242
wxDataObjectComposite .. 246
wxDataObjectSimple .. 247
wxDataOutputStream ... 248
wxDateEvent.. 251
wxDatePickerCtrl.. 251
wxDateSpan .. 255
wxDateTime... 260
wxDateTimeHolidayAuthority.. 287
wxDateTimeWorkDays... 287
wxDb.. 287
wxDbColDataPtr... 320
wxDbColDef ... 320
wxDbColFor ... 321
wxDbColInf .. 322
wxDbConnectInf... 323

CONTENTS

iv

wxDbIdxDef ... 328
wxDbInf.. 329
wxDbTable... 329
wxDbTableInf ... 367
wxDbGridColInfo .. 367
wxDbGridTableBase .. 369
wxDC ... 372
wxDCClipper .. 391
wxDDEClient.. 392
wxDDEConnection ... 393
wxDDEServer .. 397
wxDebugContext.. 398
wxDebugStreamBuf ... 403
wxDebugReport ... 404
wxDebugReportCompress ... 408
wxDebugReportPreview ... 409
wxDebugReportPreviewStd.. 409
wxDebugReportUpload .. 410
wxDelegateRendererNative.. 411
wxDialog .. 412
wxDialog::EndModal (p. ??), wxDialog:GetReturnCode (p. ??), wxDialog::SetReturnCode (p.
??)wxDialUpEvent.. 422
wxDialUpManager.. 422
wxDir.. 426
wxDirDialog.. 429
wxDirTraverser... 432
wxDisplay... 433
wxDllLoader ... 436
wxDocChildFrame.. 439
wxDocManager .. 441
wxDocMDIChildFrame ... 449
wxDocMDIParentFrame ... 451
wxDocParentFrame.. 452
wxDocTemplate ... 454
wxDocument .. 459
wxDragImage... 466
wxDropFilesEvent .. 470
wxDropSource ... 472
wxDropTarget .. 475
wxDynamicLibrary.. 478
wxDynamicLibraryDetails ... 481

CONTENTS

v

wxEncodingConverter .. 482
wxEraseEvent .. 486
wxEvent ... 487
wxEvtHandler... 490
wxFFile .. 499
wxFFileInputStream ... 504
wxFFileOutputStream... 505
wxFFileStream ... 506
wxFile .. 506
wxFileConfig .. 513
wxFileDataObject ... 514
wxFileDialog... 515
wxFileDropTarget... 519
wxFileHistory.. 520
wxFileInputStream ... 523
wxFileName ... 524
wxFileOutputStream... 541
wxFileStream ... 542
wxFileSystem... 542
wxFileSystemHandler... 545
wxFileType... 547
wxFilterInputStream ... 551
wxFilterOutputStream... 552
wxFindDialogEvent .. 553
wxFindReplaceData ... 554
wxFindReplaceDialog... 556
wxFlexGridSizer ... 557
Note that this method does not trigger relayout.wxFocusEvent ... 560
wxFont ... 561
wxFontData.. 571
wxFontDialog ... 574
wxFontEnumerator... 575
wxFontList.. 577
wxFontMapper ... 578
wxFrame.. 582
wxFSFile .. 593
wxFTP ... 595
wxGauge.. 601
wxGBPosition... 605
wxGBSizerItem .. 607

CONTENTS

vi

wxGBSpan... 608
wxGDIObject.. 609
wxGenericDirCtrl .. 610
wxGenericValidator .. 614
wxGLCanvas.. 616
wxGLContext ... 619
wxGrid ... 621
wxGridCellAttr .. 654
wxGridBagSizer ... 657
wxGridCellBoolEditor ... 660
wxGridCellChoiceEditor.. 660
wxGridCellEditor .. 661
wxGridCellFloatEditor... 663
wxGridCellNumberEditor .. 664
wxGridCellTextEditor.. 665
wxGridEditorCreatedEvent ... 666
wxGridEvent... 667
wxGridRangeSelectEvent... 671
wxGridSizeEvent.. 673
wxGridCellBoolRenderer .. 674
wxGridCellFloatRenderer ... 675
wxGridCellNumberRenderer... 676
wxGridCellRenderer ... 677
wxGridCellStringRenderer .. 678
wxGridTableBase... 678
wxGridSizer ... 682
wxHashMap ... 684
wxHashSet... 688
wxHashTable ... 692
wxHelpController.. 694
wxHelpControllerHelpProvider.. 700
wxHelpEvent .. 701
wxHelpProvider .. 702
wxHtmlCell... 704
wxHtmlColourCell... 709
wxHtmlContainerCell.. 710
wxHtmlDCRenderer ... 714
wxHtmlEasyPrinting ... 717
wxHtmlFilter ... 720
wxHtmlHelpController... 721

CONTENTS

vii

wxHtmlHelpData .. 726
wxHtmlHelpDialog.. 727
wxHtmlHelpFrame.. 729
wxHtmlHelpWindow ... 730
wxHtmlModalHelp .. 734
wxHtmlLinkInfo... 735
wxHtmlListBox ... 736
wxHtmlParser... 738
wxHtmlPrintout ... 743
wxHtmlTag... 745
wxHtmlTagHandler... 748
wxHtmlTagsModule.. 750
wxHtmlWidgetCell .. 750
wxHtmlWindow .. 751
wxHtmlWinParser... 760
wxHtmlWinTagHandler... 766
wxHTTP... 766
wxHVScrolledWindow .. 768
Set the number of rows and columns the window contains. The derived class must provide
the heights for all rows and the widths for all columns with indices up to the respective values
given here in its OnGetRowHeight() (p. ??) and OnGetColumnWidth() (p.
??)implementations.wxIcon .. 778
wxIconBundle... 785
wxIconLocation .. 786
wxIconizeEvent .. 787
wxIdleEvent ... 788
wxImage .. 790
wxImageHandler .. 814
wxImageList ... 818
wxIndividualLayoutConstraint ... 823
wxInitDialogEvent... 825
wxInputStream ... 826
wxIPaddress .. 829
wxIPV4address .. 831
wxJoystick.. 832
wxJoystickEvent... 838
wxKeyEvent ... 841
wxLayoutAlgorithm... 846
wxLayoutConstraints .. 849
wxList... 851
wxListbook ... 858

CONTENTS

viii

wxListBox... 858
wxListCtrl ... 864
wxListEvent.. 884
wxListItem.. 887
wxListItemAttr .. 891
wxListView ... 893
wxLocale.. 895
wxLog .. 903
wxLogChain ... 909
wxLogGui... 911
wxLogNull .. 911
wxLogPassThrough ... 913
wxLogStderr... 913
wxLogStream... 914
wxLogTextCtrl .. 914
wxLogWindow.. 915
wxLongLong .. 916
wxMask.. 920
wxMaximizeEvent .. 922
wxMBConv... 923

ix

Copyright notice

Copyright (c) 1992-2006 Julian Smart, Robert Roebling, Vadim Zeitlin and other
members of the wxWidgets team

Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, lgpl.txt, gpl.txt, licence.txt,
licendoc.txt) for conditions of software and documentation use. Note that we use the old
name wxWindows in the license, pending recognition of the new name by OSI.

wxWindows Library License, Version 3.1

Copyright (c) 1998-2005 Julian Smart, Robert Roebling et al

Everyone is permitted to copy and distribute verbatim copies of this licence document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENCE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Library General Public Licence as published by the Free Software Foundation;
either version 2 of the Licence, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public Licence for
more details.

You should have received a copy of the GNU Library General Public Licence along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licenced under the
wxWindows Library Licence, applying either version 3.1 of the Licence, or (at your
option) any later version of the Licence as published by the copyright holders of version
3.1 of the Licence document.

2. The exception is that you may use, copy, link, modify and distribute under your own
terms, binary object code versions of works based on the Library.

3. If you copy code from files distributed under the terms of the GNU General Public
Licence or the GNU Library General Public Licence into a copy of this library, as this
licence permits, the exception does not apply to the code that you add in this way. To
avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice

COPYRIGHT

x

accordingly.

4. If you write modifications of your own for this library, it is your choice whether to permit
this exception to apply to your modifications. If you do not wish that, you must delete the
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by

COPYRIGHT

xi

someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

 GNU LIBRARY GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

COPYRIGHT

xii

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d

COPYRIGHT

xiii

requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.

COPYRIGHT

xiv

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a

COPYRIGHT

xv

special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,
link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you

COPYRIGHT

xvi

could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY

COPYRIGHT

xvii

PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Libr aries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's name and a brief id ea of what it
does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library Genera l Public
License as published by the Free Software Foundatio n; either
version 2 of the License, or (at your option) any l ater version.

This library is distributed in the hope that it wil l be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to t he Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright inte rest in the
library `Frob' (a library for tweaking knobs) writt en by James
Random Hacker.

<signature of Ty Coon>, 1 April 1990

COPYRIGHT

xviii

Ty Coon, President of Vice

That's all there is to it!

1

Introduction

What is wxWidgets?

wxWidgets is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports all desktop versions of
MS Windows, Unix with GTK+, Unix with Motif, and MacOS. An OS/2 port is in progress.

wxWidgets was originally developed at the Artificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1992.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin, Vaclav Slavik and many others.

This manual contains a class reference and topic overviews. For a selection of
wxWidgets tutorials, please see the documentation page on the wxWidgets web site
(http://www.wxwidgets.org).

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWidgets was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

 1. low price;

 2. source availability;

 3. simplicity of programming;

 4. support for a wide range of compilers.

Since wxWidgets was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWidgets has.

As open source software, wxWidgets has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWidgets a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those

CHAPTER 2

2

produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWidgets helps to insulate the programmer
from these winds of change. Although wxWidgets may not be suitable for every
application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming interface
than the native APIs. Programmers may find it worthwhile to use wxWidgets even if they
are developing on only one platform.

It is impossible to sum up the functionality of wxWidgets in a few paragraphs, but here
are some of the benefits:

 • Low cost (free, in fact!)

 • You get the source.

 • Available on a variety of popular platforms.

 • Works with almost all popular C++ compilers and Python.

 • Over 50 example programs.

 • Over 1000 pages of printable and on-line documentation.

 • Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

 • Simple-to-use, object-oriented API.

 • Flexible event system.

 • Graphics calls include lines, rounded rectangles, splines, polylines, etc.

 • Constraint-based and sizer-based layouts.

 • Print/preview and document/view architectures.

 • Toolbar, notebook, tree control, advanced list control classes.

 • PostScript generation under Unix, normal MS Windows printing on the PC.

 • MDI (Multiple Document Interface) support.

 • Can be used to create DLLs under Windows, dynamic libraries on Unix.

 • Common dialogs for file browsing, printing, colour selection, etc.

 • Under MS Windows, support for creating metafiles and copying them to the
clipboard.

CHAPTER 2

3

 • An API for invoking help from applications.

 • Ready-to-use HTML window (supporting a subset of HTML).

 • Network support via a family of socket and protocol classes.

 • Support for platform independent image processing.

 • Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

wxWidgets requirements

To make use of wxWidgets, you currently need one of the following setups.

(a) MS-Windows:

 1. A 32-bit or 64-bit PC running MS Windows.

 2. A Windows compiler: MS Visual C++ (embedded Visual C++ for wxWinCE port),
Borland C++, Watcom C++, Cygwin, MinGW, Metrowerks CodeWarrior, Digital
Mars C++. See install.txt for details about compiler version supported.

 3. At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(b) Unix:

 1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

 2. Almost any Unix workstation, and one of: GTK+ 1.2, GTK+ 2.0, Motif 1.2 or
higher, Lesstif. If using the wxX11 port, no such widget set is required.

 3. At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(c) Mac OS/Mac OS X:

 1. A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.

 2. CodeWarrior 5.3, 6 or 7 for Classic Mac OS.

 3. The Apple Developer Tools (eg. GNU C++), CodeWarrior 7 or above for Mac
OS X.

 4. At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

Availability and location of wxWidgets

wxWidgets is available by anonymous FTP and World Wide Web from
ftp://biolpc22.york.ac.uk/pub (ftp://biolpc22.york.ac.uk/pub) and/or
http://www.wxwidgets.org (http://www.wxwidgets.org).

CHAPTER 2

4

You can also buy a CD-ROM using the form on the Web site.

Acknowledgements

Thanks are due to AIAI for being willing to release the original version of wxWidgets into
the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWidgets, and
the many others who have been involved in the project over the years. Apologies for any
unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar, Alejandro
Aguilar-Sierra, AIAI, Patrick Albert, Karsten Ballueder, Mattia Barbon, Michael Bedward,
Kai Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, Ian Brown, C.
Buckley, Marco Cavallini, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Stefan Csomor,
Andrew Davison, Gilles Depeyrot, Neil Dudman, Robin Dunn, Hermann Dunkel, Jos van
Eijndhoven, Chris Elliott, David Elliott, Tom Felici, Thomas Fettig, Matthew Flatt,
Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher, Guillermo Rodriguez
Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale, Patrick Halke, Stefan
Hammes, Guillaume Helle, Harco de Hilster, Kevin Hock, Cord Hockemeyer, Markus
Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Ron Lee, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Thomas Runge, Tatu Männistö,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Ryan Norton, Hernan
Otero, Ian Perrigo, Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti,
Garrett Potts, Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach,
Arthur Seaton, Paul Shirley, Wlodzimierz 'ABX' Skiba, Vaclav Slavik, Julian Smart, Stein
Somers, Petr Smilauer, Neil Smith, Kari Systä, George Tasker, Arthur Tetzlaff-Deas,
Jonathan Tonberg, Jyrki Tuomi, Janos Vegh, Andrea Venturoli, David Webster, Otto
Wyss, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

'Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is'' without
express or implied warranty.

5

Multi-platform development with wxWidgets

This chapter describes the practical details of using wxWidgets. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is "wx/wx.h" ; this includes the most commonly used modules of
wxWidgets.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

// For compilers that support precompilation, inclu des "wx.h".
#include <wx/wxprec.h>

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
// Include your minimal set of headers here, or wx. h
#include <wx/wx.h>
#endif

... now your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation which is largely automatic for compilers with necessary
support. Currently it is used for Visual C++ (including embedded Visual C++), Borland
C++, Open Watcom C++, Digital Mars C++ and newer versions of GCC. Some
compilers might need extra work from the application developer to set the build
environment up as necessary for the support.

Libraries

Most ports of wxWidgets can create either a static library or a shared library. wxWidgets
can also be built in multilib and monolithic variants. See the libraries list (p. 15) for more
information on these.

Configuration

When using project files and makefiles directly to build wxWidgets, options are
configurable in the file "wx/XXX/setup.h" where XXX is the required platform (such
as msw, motif, gtk, mac). Some settings are a matter of taste, some help with platform-
specific problems, and others can be set to minimize the size of the library. Please see

CHAPTER 3

6

the setup.h file and install.txt files for details on configuration.

When using the 'configure' script to configure wxWidgets (on Unix and other platforms
where configure is available), the corresponding setup.h files are generated
automatically along with suitable makefiles. When using the RPM packages for installing
wxWidgets on Linux, a correct setup.h is shipped in the package and this must not be
changed.

Makefiles

On Microsoft Windows, wxWidgets has a different set of makefiles for each compiler,
because each compiler's 'make' tool is slightly different. Popular Windows compilers that
we cater for, and the corresponding makefile extensions, include: Microsoft Visual C++
(.vc), Borland C++ (.bcc), OpenWatcom C++ (.wat) and MinGW/Cygwin (.gcc). Makefiles
are provided for the wxWidgets library itself, samples, demos, and utilities.

On Linux, Mac and OS/2, you use the 'configure' command to generate the necessary
makefiles. You should also use this method when building with MinGW/Cygwin on
Windows.

We also provide project files for some compilers, such as Microsoft VC++. However, we
recommend using makefiles to build the wxWidgets library itself, because makefiles can
be more powerful and less manual intervention is required.

On Windows using a compiler other than MinGW/Cygwin, you would build the
wxWidgets library from the build/msw directory which contains the relevant makefiles.

On Windows using MinGW/Cygwin, and on Unix, MacOS X and OS/2, you invoke
'configure' (found in the top-level of the wxWidgets source hierarchy), from within a
suitable empty directory for containing makefiles, object files and libraries.

For details on using makefiles, configure, and project files, please see docs/xxx/install.txt
in your distribution, where xxx is the platform of interest, such as msw, gtk, x11, mac.

Windows-specific files

wxWidgets application compilation under MS Windows requires at least one extra file: a
resource file.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

#include "wx/msw/wx.rc"

which includes essential internal wxWidgets definitions. The resource script may also
contain references to icons, cursors, etc., for example:

wxicon icon wx.ico

CHAPTER 3

7

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Allocating and deleting wxWidgets objects

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWidgets
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWidgets, make sure you delete the array explicitly before wxWidgets has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWidgets defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Byte order macros (p. Error! Bookmark not defined.) section.

CHAPTER 3

8

Conditional compilation

One of the purposes of wxWidgets is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWidgets does not use templates (except for some advanced features that are
switched off by default) since it is a notoriously unportable feature.

RTTI

wxWidgets does not use C++ run-time type information since wxWidgets provides its
own run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be 0L so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK+ port use
an explicit conversion such as

 wxWindow *my_window = (wxWindow*) NULL;

It is recommended to adhere to this in all code using wxWidgets as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile "wx.h" , using this precompiled header for compiling both wxWidgets itself
and any wxWidgets applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLs) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWidgets, everything needs to be recompiled since
everything includes "wx.h" !)

A related problem is that for compilers that don't have precompiled headers, including a

CHAPTER 3

9

lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx.h . This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

10

Utilities and libraries supplied with wxWidgets

In addition to the core wxWidgets library, a number of further libraries and utilities are
supplied with each distribution.

Some are under the 'contrib' hierarchy which mirrors the structure of the main
wxWidgets hierarchy. See also the 'utils' hierarchy. The first place to look for
documentation about these tools and libraries is under the wxWidgets 'docs' hierarchy,
for example docs/htmlhelp/fl.chm .

For other user-contributed packages, please see the Contributions page on the
wxWidgets Web site (http://www.wxwidgets.org).

 Helpview Helpview is a program for displaying wxWidgets HTML Help files. In many
cases, you may wish to use the wxWidgets HTML Help classes from within your
application, but this provides a handy stand-alone viewer. See wxHTML Notes
(p. Error! Bookmark not defined.) for more details. You can find it in
samples/html/helpview .

 Tex2RTF Supplied with wxWidgets is a utility called Tex2RTF for converting LaTeX
manuals HTML, MS HTML Help, wxHTML Help, RTF, and Windows Help RTF
formats. Tex2RTF is used for the wxWidgets manuals and can be used
independently by authors wishing to create on-line and printed manuals from the
same LaTeX source. Please see the separate documentation for Tex2RTF. You
can find it under utils/tex2rtf .

 Helpgen Helpgen takes C++ header files and generates a Tex2RTF-compatible
documentation file for each class it finds, using comments as appropriate. This
is a good way to start a reference for a set of classes. Helpgen can be found in
utils/HelpGen .

 Emulator Xnest-based display emulator for X11-based PDA applications. On some
systems, the Xnest window does not synchronise with the 'skin' window. This
program can be found in utils/emulator .

 Configuration Tool The wxWidgets Configuration Tool is a work in progress
intended to make it easier to configure wxWidgets features in detail. It exports
setup.h configurations and will eventually generate makefile config files.
Invoking compilers is also on the cards. Since configurations are handled one at
a time, the tool is of limited used until further development can be done. The
program can be found in utils/configtool .

 XRC resource system This is the sizer-aware resource system, and uses XML-
based resource specifications that can be generated by tools such as
wxDesigner (http://www.roebling.de). You can find this in src/xrc ,
include/wx/xrc , samples/xrc . For more information, see the XML-based
resource system overview (p. Error! Bookmark not defined.).

 Object Graphics Library OGL defines an API for applications that need to display
objects connected by lines. The objects can be moved around and interacted
with. You can find this in contrib/src/ogl , contrib/include/wx/ogl ,

CHAPTER 4

11

and contrib/samples/ogl .

 Frame Layout library FL provides sophisticated pane dragging and docking
facilities. You can find this in contrib/src/fl , contrib/include/wx/fl ,
and contrib/samples/fl .

 Gizmos library Gizmos is a collection of useful widgets and other classes. Classes
include wxLEDNumberCtrl, wxEditableListBox, wxMultiCellCanvas. You can find
this in contrib/src/gizmos , contrib/include/wx/gizmos , and
contrib/samples/gizmos .

 Net library Net is a collection of very simple mail and web related classes. Currently
there is only wxEmail, which makes it easy to send email messages via MAPI on
Windows or sendmail on Unix. You can find this in contrib/src/net and
contrib/include/wx/net .

 Animate library Animate allows you to load animated GIFs and play them on a
window. The library can be extended to use other animation formats. You can
find this in contrib/src/animate , contrib/include/wx/animate , and
contrib/samples/animate .

 MMedia library Mmedia supports a variety of multimedia functionality. The status of
this library is currently unclear. You can find this in contrib/src/mmedia ,
contrib/include/wx/mmedia , and contrib/samples/mmedia .

 Styled Text Control library STC is a wrapper around Scintilla, a syntax-highlighting
text editor. You can find this in contrib/src/stc ,
contrib/include/wx/stc , and contrib/samples/stc .

 Plot Plot is a simple curve plotting library. You can find this in contrib/src/plot ,
contrib/include/wx/plot , and contrib/samples/plot .

12

Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWidgets programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although I haven't done this myself within wxWidgets, it is good practice to use ASSERT
statements liberally, that check for conditions that should or should not hold, and print
out appropriate error messages. These can be compiled out of a non-debugging version
of wxWidgets and your application. Using ASSERT is an example of 'defensive
programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, I
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWidgets resource files) on different
platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

Use wxWidgets resource files

Use .xrc (wxWidgets resource files) where possible, because they can be easily
changed independently of source code.

Strategies for debugging

CHAPTER 5

13

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

There is a variety of logging functions that you can use in your program: see Logging
functions (p. Error! Bookmark not defined.).

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWidgets debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWidgets will automatically check for memory leaks at the end of the
program if wxWidgets is suitably configured. Depending on the operating system and
compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. Error! Bookmark not defined.) as part of a
'defensive programming' strategy, scattering wxASSERTs liberally to test for problems in
your code as early as possible. Forward thinking will save a surprising amount of time in

CHAPTER 5

14

the long run.

See the debugging overview (p. Error! Bookmark not defined.) for further information.

15

Libraries list

Starting from version 2.5.0 wxWidgets can be built either as a single large library (this is
called the monolithic build) or as several smaller libraries (multilib build). Multilib build is
the default.

wxWidgets library is divided into libraries briefly described below. This diagram show
dependencies between them:

wxBase

Every wxWidgets application must link against this library. It contains mandatory classes
that any wxWidgets code depends on (e.g. wxString (p. Error! Bookmark not
defined.)) and portability classes that abstract differences between platforms. wxBase
can be used to develop console mode applications, it does not require any GUI libraries
or running X Window System on Unix.

wxNet

Classes for network access:

 • wxSocket classes (wxSocketClient (p. Error! Bookmark not defined.),
wxSocketServer (p. Error! Bookmark not defined.) and related classes)

 • wxSocketOutputStream (p. Error! Bookmark not defined.) and
wxSocketInputStream (p. Error! Bookmark not defined.)

CHAPTER 6

16

 • sockets-based IPC classes (wxTCPServer (p. 397), wxTCPClient (p. 392) and
wxTCPConnection (p. 393))

 • wxURL (p. Error! Bookmark not defined.)

 • wxInternetFSHandler (a wxFileSystem handler (p. Error! Bookmark not
defined.)) Requires wxBase.

wxXML

This library contains simple classes for parsing XML documents. Note that their API will
change in the future and backward compatibility will not be preserved. Use of this library
in your applications is not recommended, it is only meant for use by XML resources
system. Future versions of wxWidgets will contain new XML handling classes with DOM-
like API. Requires wxBase.

wxCore

Basic GUI classes such as GDI classes or controls are in this library. All wxWidgets GUI
applications must link against this library, only console mode applications don't.

wxAdvanced

Advanced or rarely used GUI classes:

 • wxBufferedDC

 • wxCalendarCtrl (p. 127)

 • wxGrid classes (p. Error! Bookmark not defined.)

 • wxJoystick (p. 832)

 • wxLayoutAlgorithm (p. 846)

 • wxSplashScreen (p. Error! Bookmark not defined.)

 • wxTaskBarIcon (p. Error! Bookmark not defined.)

 • wxSound (p. Error! Bookmark not defined.)

 • wxWizard (p. Error! Bookmark not defined.)

 • wxSashLayoutWindow (p. Error! Bookmark not defined.)

 • wxSashWindow (p. Error! Bookmark not defined.)

Requires wxCore and wxBase.

wxMedia

Miscellaneous classes related to multimedia. Currently this library only contains
wxMediaCtrl (p. Error! Bookmark not defined.) but more classes will be added in the
future.

CHAPTER 6

17

Requires wxCore and wxBase.

wxGL

This library contains wxGLCanvas (p. 616) class for integrating OpenGL library with
wxWidgets. Unlike all others, this library is not part of the monolithic library, it is always
built as separate library. Requires wxCore and wxBase.

wxHTML

Simple HTML renderer and other HTML rendering classes (p. Error! Bookmark not
defined.) are contained in this library, as well as wxHtmlHelpController (p. 721),
wxBestHelpController (p. 694) and wxHtmlListBox (p. 736). Requires wxCore and
wxBase.

wxODBC

Database classes (p. Error! Bookmark not defined.). Requires wxBase.

wxQA

This is the library containing extra classes for quality assurance. Currently it only
contains wxDebugReport (p. 404) and related classes, but more will be added to it in the
future.

Requires wxCore, wxBase and wxXML.

wxDbGrid

wxDbGridTableBase (p. 369) class which combines wxGrid (p. 621) and wxDbTable (p.
329). Requires wxODBC and wxAdvanced.

wxXRC

This library contains wxXmlResource (p. Error! Bookmark not defined.) class that
provides access to XML resource files in XRC format. Requires wxXML, wxCore,
wxAdvanced and wxHTML.

18

Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 19).

Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 19), wxWindow::SetAcceleratorTable (p. Error! Bookmark not
defined.)

wxAcceleratorEntry::wxAcceleratorEntry

 wxAcceleratorEntry ()

Default constructor.

 wxAcceleratorEntry (int flags, int keyCode, int cmd)

Constructor.

Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode

The keycode to be detected. See Keycodes (p. Error! Bookmark not defined.)
for a full list of keycodes.

cmd

The menu or control command identifier.

wxAcceleratorEntry::GetCommand

int GetCommand () const

CHAPTER 7

19

Returns the command identifier for the accelerator table entry.

wxAcceleratorEntry::GetFlags

int GetFlags () const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode () const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)

Sets the accelerator entry parameters.

Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode

The keycode to be detected. See Keycodes (p. Error! Bookmark not defined.)
for a full list of keycodes.

cmd

The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/accel.h>

CHAPTER 7

20

Example

 wxAcceleratorEntry entries[4];
 entries[0].Set(wxACCEL_CTRL, (int) 'N', ID_N EW_WINDOW);
 entries[1].Set(wxACCEL_CTRL, (int) 'X', wxID _EXIT);
 entries[2].Set(wxACCEL_SHIFT, (int) 'A', ID_A BOUT);
 entries[3].Set(wxACCEL_NORMAL, WXK_DELETE, wx ID_CUT);
 wxAcceleratorTable accel(4, entries);
 frame->SetAcceleratorTable(accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK+ at present).

See also

wxAcceleratorEntry (p. 18), wxWindow::SetAcceleratorTable (p. Error! Bookmark not
defined.)

wxAcceleratorTable::wxAcceleratorTable

 wxAcceleratorTable ()

Default constructor.

 wxAcceleratorTable (const wxAcceleratorTable& bitmap)

Copy constructor.

 wxAcceleratorTable (int n, wxAcceleratorEntry entries[])

Creates from an array of wxAcceleratorEntry (p. 18) objects.

 wxAcceleratorTable (const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

Parameters

n

Number of accelerator entries.

entries

The array of entries.

resource

Name of a Windows accelerator.

CHAPTER 7

21

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry
objects or references to 3-element arrays (flags, keyCode, cmd), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

 ~wxAcceleratorTable ()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns true if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator = (const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel

Accelerator table to assign.

Return value

Returns reference to this object.

wxAcceleratorTable::operator ==

bool operator == (const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel

Accelerator table to compare with

Return value

Returns true if the accelerator tables were effectively equal, false otherwise.

CHAPTER 7

22

wxAcceleratorTable::operator !=

bool operator != (const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel

Accelerator table to compare with

Return value

Returns true if the accelerator tables were unequal, false otherwise.

wxAccessible

The wxAccessible class allows wxWidgets applications, and wxWidgets itself, to return
extended information about user interface elements to client applications such as screen
readers. This is the main way in which wxWidgets implements accessibility features.

At present, only Microsoft Active Accessibility is supported by this class.

To use this class, derive from wxAccessible, implement appropriate functions, and
associate an object of the class with a window using wxWindow::SetAccessible (p.
Error! Bookmark not defined.).

All functions return an indication of success, failure, or not implemented using values of
the wxAccStatus enum type.

If you return wxACC_NOT_IMPLEMENTED from any function, the system will try to
implement the appropriate functionality. However this will not work with all functions.

Most functions work with an object id, which can be zero to refer to 'this' UI element, or
greater than zero to refer to the nth child element. This allows you to specify elements
that don't have a corresponding wxWindow or wxAccessible; for example, the sash of a
splitter window.

For details on the semantics of functions and types, please refer to the Microsoft Active
Accessibility 1.2 documentation.

This class is compiled into wxWidgets only if the wxUSE_ACCESSIBILITY setup symbol
is set to 1.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/access.h>

CHAPTER 7

23

Data structures

Functions return a wxAccStatus error code, which may be one of the following:

typedef enum
{
 wxACC_FAIL, // The function failed
 wxACC_FALSE, // The function returned false
 wxACC_OK, // The function complete d successfully
 wxACC_NOT_IMPLEMENTED, // The function is not i mplemented
 wxACC_NOT_SUPPORTED // The function is not s upported
} wxAccStatus

Directions of navigation are represented by the following:

typedef enum
{
 wxNAVDIR_DOWN,
 wxNAVDIR_FIRSTCHILD,
 wxNAVDIR_LASTCHILD,
 wxNAVDIR_LEFT,
 wxNAVDIR_NEXT,
 wxNAVDIR_PREVIOUS,
 wxNAVDIR_RIGHT,
 wxNAVDIR_UP
} wxNavDir

The role of a user interface element is represented by the following type:

typedef enum {
 wxROLE_NONE,
 wxROLE_SYSTEM_ALERT,
 wxROLE_SYSTEM_ANIMATION,
 wxROLE_SYSTEM_APPLICATION,
 wxROLE_SYSTEM_BORDER,
 wxROLE_SYSTEM_BUTTONDROPDOWN,
 wxROLE_SYSTEM_BUTTONDROPDOWNGRID,
 wxROLE_SYSTEM_BUTTONMENU,
 wxROLE_SYSTEM_CARET,
 wxROLE_SYSTEM_CELL,
 wxROLE_SYSTEM_CHARACTER,
 wxROLE_SYSTEM_CHART,
 wxROLE_SYSTEM_CHECKBUTTON,
 wxROLE_SYSTEM_CLIENT,
 wxROLE_SYSTEM_CLOCK,
 wxROLE_SYSTEM_COLUMN,
 wxROLE_SYSTEM_COLUMNHEADER,
 wxROLE_SYSTEM_COMBOBOX,
 wxROLE_SYSTEM_CURSOR,
 wxROLE_SYSTEM_DIAGRAM,
 wxROLE_SYSTEM_DIAL,
 wxROLE_SYSTEM_DIALOG,
 wxROLE_SYSTEM_DOCUMENT,
 wxROLE_SYSTEM_DROPLIST,
 wxROLE_SYSTEM_EQUATION,
 wxROLE_SYSTEM_GRAPHIC,
 wxROLE_SYSTEM_GRIP,
 wxROLE_SYSTEM_GROUPING,

CHAPTER 7

24

 wxROLE_SYSTEM_HELPBALLOON,
 wxROLE_SYSTEM_HOTKEYFIELD,
 wxROLE_SYSTEM_INDICATOR,
 wxROLE_SYSTEM_LINK,
 wxROLE_SYSTEM_LIST,
 wxROLE_SYSTEM_LISTITEM,
 wxROLE_SYSTEM_MENUBAR,
 wxROLE_SYSTEM_MENUITEM,
 wxROLE_SYSTEM_MENUPOPUP,
 wxROLE_SYSTEM_OUTLINE,
 wxROLE_SYSTEM_OUTLINEITEM,
 wxROLE_SYSTEM_PAGETAB,
 wxROLE_SYSTEM_PAGETABLIST,
 wxROLE_SYSTEM_PANE,
 wxROLE_SYSTEM_PROGRESSBAR,
 wxROLE_SYSTEM_PROPERTYPAGE,
 wxROLE_SYSTEM_PUSHBUTTON,
 wxROLE_SYSTEM_RADIOBUTTON,
 wxROLE_SYSTEM_ROW,
 wxROLE_SYSTEM_ROWHEADER,
 wxROLE_SYSTEM_SCROLLBAR,
 wxROLE_SYSTEM_SEPARATOR,
 wxROLE_SYSTEM_SLIDER,
 wxROLE_SYSTEM_SOUND,
 wxROLE_SYSTEM_SPINBUTTON,
 wxROLE_SYSTEM_STATICTEXT,
 wxROLE_SYSTEM_STATUSBAR,
 wxROLE_SYSTEM_TABLE,
 wxROLE_SYSTEM_TEXT,
 wxROLE_SYSTEM_TITLEBAR,
 wxROLE_SYSTEM_TOOLBAR,
 wxROLE_SYSTEM_TOOLTIP,
 wxROLE_SYSTEM_WHITESPACE,
 wxROLE_SYSTEM_WINDOW
} wxAccRole

Objects are represented by the following type:

typedef enum {
 wxOBJID_WINDOW = 0x00000000,
 wxOBJID_SYSMENU = 0xFFFFFFFF,
 wxOBJID_TITLEBAR = 0xFFFFFFFE,
 wxOBJID_MENU = 0xFFFFFFFD,
 wxOBJID_CLIENT = 0xFFFFFFFC,
 wxOBJID_VSCROLL = 0xFFFFFFFB,
 wxOBJID_HSCROLL = 0xFFFFFFFA,
 wxOBJID_SIZEGRIP = 0xFFFFFFF9,
 wxOBJID_CARET = 0xFFFFFFF8,
 wxOBJID_CURSOR = 0xFFFFFFF7,
 wxOBJID_ALERT = 0xFFFFFFF6,
 wxOBJID_SOUND = 0xFFFFFFF5
} wxAccObject

Selection actions are identified by this type:

typedef enum
{
 wxACC_SEL_NONE = 0,
 wxACC_SEL_TAKEFOCUS = 1,

CHAPTER 7

25

 wxACC_SEL_TAKESELECTION = 2,
 wxACC_SEL_EXTENDSELECTION = 4,
 wxACC_SEL_ADDSELECTION = 8,
 wxACC_SEL_REMOVESELECTION = 16
} wxAccSelectionFlags

States are represented by the following:

#define wxACC_STATE_SYSTEM_ALERT_HIGH 0x00000 001
#define wxACC_STATE_SYSTEM_ALERT_MEDIUM 0x00000 002
#define wxACC_STATE_SYSTEM_ALERT_LOW 0x00000 004
#define wxACC_STATE_SYSTEM_ANIMATED 0x00000 008
#define wxACC_STATE_SYSTEM_BUSY 0x00000 010
#define wxACC_STATE_SYSTEM_CHECKED 0x00000 020
#define wxACC_STATE_SYSTEM_COLLAPSED 0x00000 040
#define wxACC_STATE_SYSTEM_DEFAULT 0x00000 080
#define wxACC_STATE_SYSTEM_EXPANDED 0x00000 100
#define wxACC_STATE_SYSTEM_EXTSELECTABLE 0x00000 200
#define wxACC_STATE_SYSTEM_FLOATING 0x00000 400
#define wxACC_STATE_SYSTEM_FOCUSABLE 0x00000 800
#define wxACC_STATE_SYSTEM_FOCUSED 0x00001 000
#define wxACC_STATE_SYSTEM_HOTTRACKED 0x00002 000
#define wxACC_STATE_SYSTEM_INVISIBLE 0x00004 000
#define wxACC_STATE_SYSTEM_MARQUEED 0x00008 000
#define wxACC_STATE_SYSTEM_MIXED 0x00010 000
#define wxACC_STATE_SYSTEM_MULTISELECTABLE 0x00020 000
#define wxACC_STATE_SYSTEM_OFFSCREEN 0x00040 000
#define wxACC_STATE_SYSTEM_PRESSED 0x00080 000
#define wxACC_STATE_SYSTEM_PROTECTED 0x00100 000
#define wxACC_STATE_SYSTEM_READONLY 0x00200 000
#define wxACC_STATE_SYSTEM_SELECTABLE 0x00400 000
#define wxACC_STATE_SYSTEM_SELECTED 0x00800 000
#define wxACC_STATE_SYSTEM_SELFVOICING 0x01000 000
#define wxACC_STATE_SYSTEM_UNAVAILABLE 0x02000 000

Event identifiers that can be sent via wxAccessible::NotifyEvent (p. 29) are as follows:

#define wxACC_EVENT_SYSTEM_SOUND 0x000 1
#define wxACC_EVENT_SYSTEM_ALERT 0x000 2
#define wxACC_EVENT_SYSTEM_FOREGROUND 0x000 3
#define wxACC_EVENT_SYSTEM_MENUSTART 0x000 4
#define wxACC_EVENT_SYSTEM_MENUEND 0x000 5
#define wxACC_EVENT_SYSTEM_MENUPOPUPSTART 0x000 6
#define wxACC_EVENT_SYSTEM_MENUPOPUPEND 0x000 7
#define wxACC_EVENT_SYSTEM_CAPTURESTART 0x000 8
#define wxACC_EVENT_SYSTEM_CAPTUREEND 0x000 9
#define wxACC_EVENT_SYSTEM_MOVESIZESTART 0x000 A
#define wxACC_EVENT_SYSTEM_MOVESIZEEND 0x000 B
#define wxACC_EVENT_SYSTEM_CONTEXTHELPSTART 0x000 C
#define wxACC_EVENT_SYSTEM_CONTEXTHELPEND 0x000 D
#define wxACC_EVENT_SYSTEM_DRAGDROPSTART 0x000 E
#define wxACC_EVENT_SYSTEM_DRAGDROPEND 0x000 F
#define wxACC_EVENT_SYSTEM_DIALOGSTART 0x001 0
#define wxACC_EVENT_SYSTEM_DIALOGEND 0x001 1
#define wxACC_EVENT_SYSTEM_SCROLLINGSTART 0x001 2
#define wxACC_EVENT_SYSTEM_SCROLLINGEND 0x001 3
#define wxACC_EVENT_SYSTEM_SWITCHSTART 0x001 4
#define wxACC_EVENT_SYSTEM_SWITCHEND 0x001 5
#define wxACC_EVENT_SYSTEM_MINIMIZESTART 0x001 6

CHAPTER 7

26

#define wxACC_EVENT_SYSTEM_MINIMIZEEND 0x001 7
#define wxACC_EVENT_OBJECT_CREATE 0 x8000
#define wxACC_EVENT_OBJECT_DESTROY 0 x8001
#define wxACC_EVENT_OBJECT_SHOW 0 x8002
#define wxACC_EVENT_OBJECT_HIDE 0 x8003
#define wxACC_EVENT_OBJECT_REORDER 0 x8004
#define wxACC_EVENT_OBJECT_FOCUS 0 x8005
#define wxACC_EVENT_OBJECT_SELECTION 0 x8006
#define wxACC_EVENT_OBJECT_SELECTIONADD 0 x8007
#define wxACC_EVENT_OBJECT_SELECTIONREMOVE 0 x8008
#define wxACC_EVENT_OBJECT_SELECTIONWITHIN 0 x8009
#define wxACC_EVENT_OBJECT_STATECHANGE 0 x800A
#define wxACC_EVENT_OBJECT_LOCATIONCHANGE 0 x800B
#define wxACC_EVENT_OBJECT_NAMECHANGE 0 x800C
#define wxACC_EVENT_OBJECT_DESCRIPTIONCHANGE 0 x800D
#define wxACC_EVENT_OBJECT_VALUECHANGE 0 x800E
#define wxACC_EVENT_OBJECT_PARENTCHANGE 0 x800F
#define wxACC_EVENT_OBJECT_HELPCHANGE 0 x8010
#define wxACC_EVENT_OBJECT_DEFACTIONCHANGE 0 x8011
#define wxACC_EVENT_OBJECT_ACCELERATORCHANGE 0 x8012

wxAccessible::wxAccessible

 wxAccessible (wxWindow* win = NULL)

Constructor, taking an optional window. The object can be associated with a window
later.

wxAccessible::~wxAccessible

 ~wxAccessible ()

Destructor.

wxAccessible::DoDefaultAction

virtual wxAccStatus DoDefaultAction (int childId)

Performs the default action for the object. childId is 0 (the action for this object) or
greater than 0 (the action for a child). Return wxACC_NOT_SUPPORTED if there is no
default action for this window (e.g. an edit control).

wxAccessible::GetChild

virtual wxAccStatus GetChild (int childId, wxAccessible** child)

Gets the specified child (starting from 1). If child is NULL and the return value is
wxACC_OK, this means that the child is a simple element and not an accessible object.

wxAccessible::GetChildCount

CHAPTER 7

27

virtual wxAccStatus GetChildCount (int* childCount)

Returns the number of children in childCount.

wxAccessible::GetDefaultAction

virtual wxAccStatus GetDefaultAction (int childId, wxString* actionName)

Gets the default action for this object (0) or a child (greater than 0). Return wxACC_OK
even if there is no action. actionName is the action, or the empty string if there is no
action. The retrieved string describes the action that is performed on an object, not what
the object does as a result. For example, a toolbar button that prints a document has a
default action of "Press" rather than "Prints the current document."

wxAccessible::GetDescription

virtual wxAccStatus GetDescription (int childId, wxString* description)

Returns the description for this object or a child.

wxAccessible::GetFocus

virtual wxAccStatus GetFocus (int* childId, wxAccessible** child)

Gets the window with the keyboard focus. If childId is 0 and child is NULL, no object in
this subhierarchy has the focus. If this object has the focus, child should be 'this'.

wxAccessible::GetHelpText

virtual wxAccStatus GetHelpText (int childId, wxString* helpText)

Returns help text for this object or a child, similar to tooltip text.

wxAccessible::GetKeyboardShortcut

virtual wxAccStatus GetKeyboardShortcut (int childId, wxString* shortcut)

Returns the keyboard shortcut for this object or child. Return e.g. ALT+K.

wxAccessible::GetLocation

virtual wxAccStatus GetLocation (wxRect& rect, int elementId)

Returns the rectangle for this object (id is 0) or a child element (id is greater than 0).rect
is in screen coordinates.

wxAccessible::GetName

virtual wxAccStatus GetName (int childId, wxString* name)

CHAPTER 7

28

Gets the name of the specified object.

wxAccessible::GetParent

virtual wxAccStatus GetParent (wxAccessible** parent)

Returns the parent of this object, or NULL.

wxAccessible::GetRole

virtual wxAccStatus GetRole (int childId, wxAccRole* role)

Returns a role constant describing this object. See wxAccessible (p. 22) for a list of
these roles.

wxAccessible::GetSelections

virtual wxAccStatus GetSelections (wxVariant* selections)

Gets a variant representing the selected children of this object.

Acceptable values are:

 • a null variant (IsNull() returns TRUE)

 • a list variant (GetType() == wxT("list"))

 • an integer representing the selected child element, or 0 if this object is selected
(GetType() == wxT("long"))

 • a "void*" pointer to a wxAccessible child object

wxAccessible::GetState

virtual wxAccStatus GetState (int childId, long* state)

Returns a state constant. See wxAccessible (p. 22) for a list of these states.

wxAccessible::GetValue

virtual wxAccStatus GetValue (int childId, wxString* strValue)

Returns a localized string representing the value for the object or child.

wxAccessible::GetWindow

wxWindow* GetWindow ()

Returns the window associated with this object.

wxAccessible::HitTest

CHAPTER 7

29

virtual wxAccStatus HitTest (const wxPoint& pt, int* childId, wxAccessible**
childObject)

Returns a status value and object id to indicate whether the given point was on this or a
child object. Can return either a child object, or an integer representing the child
element, starting from 1.

pt is in screen coordinates.

wxAccessible::Navigate

virtual wxAccStatus Navigate (wxNavDir navDir, int fromId, int* toId, wxAccessible**
toObject)

Navigates from fromId to toId/toObject.

wxAccessible::NotifyEvent

virtual static void NotifyEvent (int eventType, wxWindow* window, wxAccObject
objectType, int objectType)

Allows the application to send an event when something changes in an accessible
object.

wxAccessible::Select

virtual wxAccStatus Select (int childId, wxAccSelectionFlags selectFlags)

Selects the object or child. See wxAccessible (p. 22) for a list of the selection actions.

wxAccessible::SetWindow

void SetWindow (wxWindow* window)

Sets the window associated with this object.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.

Derived from

wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

Event table macros

CHAPTER 7

30

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.

EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.

EVT_HIBERNATE(func) Process a hibernate event, supplying the
member function. This event applies to wxApp
only, and only on Windows SmartPhone and
PocketPC. It is generated when the system is
low on memory; the application should free up
as much memory as possible, and restore full
working state when it receives a
wxEVT_ACTIVATE or
wxEVT_ACTIVATE_APP event.

Remarks
A top-level window (a dialog or frame) receives an activate event when it is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivated resulting in all application frames being inactive. (Windows
only)

Please note that usually you should call event.Skip() (p. 490) in your handlers for these
events as not doing so can result in strange effects.

See also

Event handling overview (p. Error! Bookmark not defined.), wxApp::IsActive (p. 39)

wxActivateEvent::wxActivateEvent

 wxActivateEvent (WXTYPE eventType = 0, bool active = true, int id = 0)

Constructor.

wxActivateEvent::GetActive

bool GetActive () const

Returns true if the application or window is being activated, false otherwise.

wxActiveXContainer

wxActiveXContainer is a host for an activex control on Windows (and as such is a
platform-specific class). Note that the HWND that the class contains is the actual HWND

CHAPTER 7

31

of the activex control so using dynamic events and connecting to wxEVT_SIZE, for
example, will recieve the actual size message sent to the control.

It is somewhat similar to the ATL class CAxWindow in operation.

The size of the activex control's content is generally gauranteed to be that of the client
size of the parent of this wxActiveXContainer.

You can also process activex events through wxEVT_ACTIVEX or the corresponding
message map macro EVT_ACTIVEX.

See also

wxActiveXEvent (p. 35)

Derived from

wxControl (p. 218)

Include files

<wx/msw/ole/activex.h>

Example

This is an example of how to use the Adobe Acrobat Reader ActiveX control to read
PDF files (requires Acrobat Reader 4 and up). Controls like this are typically found and
dumped from OLEVIEW.exe that is distributed with Microsoft Visual C++. This example
also demonstrates how to create a backend for wxMediaCtrl (p. Error! Bookmark not
defined.).

//+++ +++++++++++++++
+++++++++++
//
// wxPDFMediaBackend
//
//
http://partners.adobe.com/public/developer/en/acrob at/sdk/pdf/iac/
IACOverview.pdf
//+++ +++++++++++++++
++++++++++++

#include "wx/mediactrl.h" // wxMediaBackendCo mmonBase
#include "wx/msw/ole/activex.h" // wxActiveXContain er
#include "wx/msw/ole/automtn.h" // wxAutomationObje ct

const IID DIID__DPdf =
{0xCA8A9781,0x280D,0x11CF,{0xA2,0x4D,0x44,0x45,0x53 ,0x54,0x00,0x00
}};
const IID DIID__DPdfEvents =
{0xCA8A9782,0x280D,0x11CF,{0xA2,0x4D,0x44,0x45,0x53 ,0x54,0x00,0x00
}};
const CLSID CLSID_Pdf =
{0xCA8A9780,0x280D,0x11CF,{0xA2,0x4D,0x44,0x45,0x53 ,0x54,0x00,0x00
}};

class WXDLLIMPEXP_MEDIA wxPDFMediaBackend : public
wxMediaBackendCommonBase
{

CHAPTER 7

32

public:
 wxPDFMediaBackend() : m_pAX(NULL) {}
 virtual ~wxPDFMediaBackend()
 {
 if(m_pAX)
 {
 m_pAX->DissociateHandle();
 delete m_pAX;
 }
 }
 virtual bool CreateControl(wxControl* ctrl, wxW indow* parent,
 wxWindowID id,
 const wxPoint& pos,
 const wxSize& size,
 long style,
 const wxValida tor& validator,
 const wxString & name)
 {
 IDispatch* pDispatch;
 if(::CoCreateInstance(CLSID_Pdf, NULL,
 CLSCTX_INPROC_SER VER,
 DIID__DPdf, (void **)&pDispatch)
!= 0)
 return false;

 m_PDF.SetDispatchPtr(pDispatch); // wxAutom ationObject
will release itself

 if (!ctrl->wxControl::Create(parent, id, p os, size,
 (style & ~wxBORDER_ MASK) |
wxBORDER_NONE,
 validator, name))
 return false;

 m_ctrl = wxStaticCast(ctrl, wxMediaCtrl);
 m_pAX = new wxActiveXContainer(ctrl,
 DIID__DPdf,
 pDispatch);

wxPDFMediaBackend::ShowPlayerControls(wxMEDIACTRLPL AYERCONTROLS_NO
NE);
 return true;
 }

 virtual bool Play()
 {
 return true;
 }
 virtual bool Pause()
 {
 return true;
 }
 virtual bool Stop()
 {
 return true;
 }

 virtual bool Load(const wxString& fileName)
 {
 if(m_PDF.CallMethod(wxT("LoadFile"), fileNa me).GetBool())
 {
 m_PDF.CallMethod(wxT("setCurrentPage"),
wxVariant((long)0));

CHAPTER 7

33

 NotifyMovieLoaded(); // initial refresh
 wxSizeEvent event;
 m_pAX->OnSize(event);
 return true;
 }

 return false;
 }
 virtual bool Load(const wxURI& location)
 {
 return m_PDF.CallMethod(wxT("LoadFile"),
location.BuildUnescapedURI()).GetBool();
 }
 virtual bool Load(const wxURI& WXUNUSED(locatio n),
 const wxURI& WXUNUSED(proxy))
 {
 return false;
 }

 virtual wxMediaState GetState()
 {
 return wxMEDIASTATE_STOPPED;
 }

 virtual bool SetPosition(wxLongLong where)
 {
 m_PDF.CallMethod(wxT("setCurrentPage"),
wxVariant((long)where.GetValue()));
 return true;
 }
 virtual wxLongLong GetPosition()
 {
 return 0;
 }
 virtual wxLongLong GetDuration()
 {
 return 0;
 }

 virtual void Move(int WXUNUSED(x), int WXUNUSED (y),
 int WXUNUSED(w), int WXUNUSED (h))
 {
 }
 wxSize GetVideoSize() const
 {
 return wxDefaultSize;
 }

 virtual double GetPlaybackRate()
 {
 return 0;
 }
 virtual bool SetPlaybackRate(double)
 {
 return false;
 }

 virtual double GetVolume()
 {
 return 0;
 }
 virtual bool SetVolume(double)
 {
 return false;

CHAPTER 7

34

 }

 virtual bool ShowPlayerControls(wxMediaCtrlPlay erControls
flags)
 {
 if(flags)
 {
 m_PDF.CallMethod(wxT("setShowToolbar"), true);
 m_PDF.CallMethod(wxT("setShowScrollbars "), true);
 }
 else
 {
 m_PDF.CallMethod(wxT("setShowToolbar"), false);
 m_PDF.CallMethod(wxT("setShowScrollbars "), false);
 }

 return true;
 }

 wxActiveXContainer* m_pAX;
 wxAutomationObject m_PDF;

 DECLARE_DYNAMIC_CLASS(wxPDFMediaBackend)
};

IMPLEMENT_DYNAMIC_CLASS(wxPDFMediaBackend, wxMediaB ackend);

Put this in one of your existant source files and then create a wxMediaCtrl with//[this]
is the parent window, "myfile.pdf" is the PDF file to open
wxMediaCtrl* mymediactrl = new wxMediaCtrl(this,
wxT("myfile.pdf"), wxID_ANY,
 wxDefaul tPosition,
wxSize(300,300),
 0,
wxT("wxPDFMediaBackend"));

wxActiveXContainer::wxActiveXContainer

 wxActiveXContainer (wxWindow* parent, REFIID iid, IUnknown* pUnk,
)

Creates this activex container.

parent

parent of this control. Must not be NULL.

iid

COM IID of pUnk to query. Must be a valid interface to an activex control.

pUnk

Interface of activex control

wxActiveXEvent

CHAPTER 7

35

An event class for handling activex events passed fromwxActiveXContainer (p. 31).
ActiveX events are basically a function call with the parameters passed through an array
of wxVariants along with a return value that is a wxVariant itself. What type the
parameters or return value are depends on the context (i.e. what the .idl specifies).

Note that unlike the third party wxActiveX function names are not supported.

Derived from

wxCommandEvent (p. 184)

Include files

<wx/msw/ole/activex.h>

Event table macros

EVT_ACTIVEX(func) Sent when the activex control hosted by
wxActiveXContainer (p. 31)recieves an activex
event.

wxActiveXEvent::ParamCount

size_t ParamCount () const

Obtains the number of parameters passed through the activex event.

wxActiveXEvent::ParamType

wxString ParamType (size_t idx) const

Obtains the param type of the param number idx specifies as a string.

wxActiveXEvent::ParamName

wxString ParamName (size_t idx) const

Obtains the param name of the param number idx specifies as a string.

wxActiveXEvent::operator[]

wxVariant& operator[] (size_t idx)

Obtains the actual parameter value specified by idx.

wxActiveXEvent::GetDispatchId

DISPID GetDispatchId (int idx) const

CHAPTER 7

36

Returns the dispatch id of this activex event. This is the
numeric value from the .idl file specified by the
id().wxApp

The wxApp class represents the application itself. It is used to:

 • set and get application-wide properties;

 • implement the windowing system message or event loop;

 • initiate application processing via wxApp::OnInit (p. 42);

 • allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWidgets how to create an instance of your application class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/app.h>

See also

wxApp overview (p. Error! Bookmark not defined.)

wxApp::wxApp

 wxApp ()

Constructor. Called implicitly with a definition of a wxApp object.

wxApp::~wxApp

virtual ~wxApp ()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

wxApp::argc

CHAPTER 7

37

int argc

Number of command line arguments (after environment-specific processing).

wxApp::argv

wxChar ** argv

Command line arguments (after environment-specific processing).

wxApp::CreateLogTarget

virtual wxLog* CreateLogTarget ()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 903)

wxApp::Dispatch

virtual void Dispatch ()

Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

 while (app.Pending())
 Dispatch();

See also

wxApp::Pending (p. 44)

wxApp::ExitMainLoop

virtual void ExitMainLoop ()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::FilterEvent

int FilterEvent (wxEvent& event)

This function is called before processing any event and allows the application to preempt
the processing of some events. If this method returns -1 the event is processed
normally, otherwise either true or false should be returned and the event processing
stops immediately considering that the event had been already processed (for the former
return value) or that it is not going to be processed at all (for the latter one).

CHAPTER 7

38

wxApp::GetAppName

wxString GetAppName () const

Returns the application name.

Remarks

wxWidgets sets this to a reasonable default before calling wxApp::OnInit (p. 42), but the
application can reset it at will.

wxApp::GetClassName

wxString GetClassName () const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 44)

wxApp::GetExitOnFrameDelete

bool GetExitOnFrameDelete () const

Returns true if the application will exit when the top-level window is deleted, false
otherwise.

See also

wxApp::SetExitOnFrameDelete (p. 45),
wxApp shutdown overview (p. Error! Bookmark not defined.)

wxApp::GetInstance

static wxAppConsole * GetInstance ()

Returns the one and only global application object. Usually wxTheApp is usead instead.

See also

wxApp::SetInstance (p. 45)

wxApp::GetTopWindow

virtual wxWindow * GetTopWindow () const

Returns a pointer to the top window.

Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 45), this function will

CHAPTER 7

39

find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 45)

wxApp::GetUseBestVisual

bool GetUseBestVisual () const

Returns true if the application will use the best visual on systems that support different
visuals, false otherwise.

See also

SetUseBestVisual (p. 46)

wxApp::GetVendorName

wxString GetVendorName () const

Returns the application's vendor name.

wxApp::IsActive

bool IsActive () const

Returns true if the application is active, i.e. if one of its windows is currently in the
foreground. If this function returns false and you need to attract users attention to the
application, you may use wxTopLevelWindow::RequestUserAttention (p. Error!
Bookmark not defined.) to do it.

wxApp::IsMainLoopRunning

static bool IsMainLoopRunning ()

Returns true if the main event loop is currently running, i.e. if the application is inside
OnRun (p. 43).

This can be useful to test whether the events can be dispatched. For example, if this
function returns false , non-blocking sockets cannot be used because the events from
them would never be processed.

wxApp::MainLoop

virtual int MainLoop ()

Called by wxWidgets on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

CHAPTER 7

40

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

wxApp::OnAssertFailure

void OnAssertFailure (const wxChar *file, int line, const wxChar *func, const
wxChar *cond, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
wxASSERT (p. Error! Bookmark not defined.) macro evaluated to false . It is only
called in debug mode (when __WXDEBUG__ is defined) as asserts are not left in the
release code at all.

The base class version shows the default assert failure dialog box proposing to the user
to stop the program, continue or ignore all subsequent asserts.

Parameters

file

the name of the source file where the assert occurred

line

the line number in this file where the assert occurred

func

the name of the function where the assert occurred, may be empty if the compiler
doesn't support C99 __FUNCTION__

cond

the condition of the failed assert in text form

msg

the message specified as argument to wxASSERT_MSG (p. Error! Bookmark
not defined.) or wxFAIL_MSG (p. Error! Bookmark not defined.), will be NULL if
just wxASSERT (p. Error! Bookmark not defined.) or wxFAIL (p. Error!
Bookmark not defined.) was used

wxApp::OnCmdLineError

bool OnCmdLineError (wxCmdLineParser& parser)

Called when command line parsing fails (i.e. an incorrect command line option was
specified by the user). The default behaviour is to show the program usage text and
abort the program.

Return true to continue normal execution or false to return false from OnInit (p. 42)
thus terminating the program.

See also

CHAPTER 7

41

OnInitCmdLine (p. 43)

wxApp::OnCmdLineHelp

bool OnCmdLineHelp (wxCmdLineParser& parser)

Called when the help option (--help) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return true to continue normal execution or false to return false from OnInit (p. 42)
thus terminating the program.

See also

OnInitCmdLine (p. 43)

wxApp::OnCmdLineParsed

bool OnCmdLineParsed (wxCmdLineParser& parser)

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return true to continue normal execution or false to return false from OnInit (p. 42)
thus terminating the program.

See also

OnInitCmdLine (p. 43)

wxApp::OnExceptionInMainLoop

virtual bool OnExceptionInMainLoop ()

This function is called if an unhandled exception occurs inside the main application event
loop. It can return true to ignore the exception and to continue running the loop or
false to exit the loop and terminate the program. In the latter case it can also use C++
throw keyword to rethrow the current exception.

The default behaviour of this function is the latter in all ports except under Windows
where a dialog is shown to the user which allows him to choose between the different
options. You may override this function in your class to do something more appropriate.

Finally note that if the exception is rethrown from here, it can be caught in
OnUnhandledException (p. 43).

wxApp::OnExit

CHAPTER 7

42

virtual int OnExit ()

Override this member function for any processing which needs to be done as the
application is about to exit. OnExit is called after destroying all application windows and
controls, but before wxWidgets cleanup. Note that it is not called at all if OnInit (p. 42)
failed.

The return value of this function is currently ignored, return the same value as returned
by the base class method if you override it.

wxApp::OnFatalException

void OnFatalException ()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. Error! Bookmark not
defined.) to enable this.

Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExceptions (p. Error! Bookmark not defined.)

wxApp::OnInit

bool OnInit ()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 45). You may use OnExit (p. 42) to
clean up anything initialized here, provided that the function returns true .

Notice that if you want to to use the command line processing provided by wxWidgets
you have to call the base class version in the derived class OnInit().

Return true to continue processing, false to exit the application immediately.

wxApp::OnInitCmdLine

void OnInitCmdLine (wxCmdLineParser& parser)

Called from OnInit (p. 42) and may be used to initialize the parser with the command line
options for this application. The base class versions adds support for a few standard
options only.

wxApp::OnRun

virtual int OnRun ()

CHAPTER 7

43

This virtual function is where the execution of a program written in wxWidgets starts. The
default implementation just enters the main loop and starts handling the events until it
terminates, either because ExitMainLoop (p. 37) has been explicitly called or because
the last frame has been deleted and GetExitOnFrameDelete (p. 38) flag is true (this is
the default).

The return value of this function becomes the exit code of the program, so it should
return 0 in case of successful termination.

wxApp::OnUnhandledException

virtual void OnUnhandledException ()

This function is called when an unhandled C++ exception occurs inside OnRun() (p. 43)
(the exceptions which occur during the program startup and shutdown might not be
caught at all). Note that the exception type is lost by now, so if you want to really handle
the exception you should override OnRun() (p. 43) and put a try/catch clause around the
call to the base class version there.

wxApp::ProcessMessage

bool ProcessMessage (WXMSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
true if the message was processed, false otherwise. If you use wxWidgets with another
class library with its own message loop, you should make sure that this function is called
to allow wxWidgets to receive messages. For example, to allow co-existence with the
Microsoft Foundation Classes, override the PreTranslateMessage function:

// Provide wxWidgets message loop compatibility
BOOL CTheApp::PreTranslateMessage(MSG *msg)
{
 if (wxTheApp && wxTheApp->ProcessMessage((WXMSW *)msg))
 return true;
 else
 return CWinApp::PreTranslateMessage(msg);
}

wxApp::Pending

virtual bool Pending ()

Returns true if unprocessed events are in the window system event queue.

See also

wxApp::Dispatch (p. 37)

wxApp::SendIdleEvents

bool SendIdleEvents (wxWindow* win, wxIdleEvent& event)

CHAPTER 7

44

Sends idle events to a window and its children.

Please note that this function is internal to wxWidgets and shouldn't be used by user
code.

Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If true is returned, more OnIdle processing is requested by one or more window.

See also

wxIdleEvent (p. 788)

wxApp::SetAppName

void SetAppName (const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWidgets.

See also

wxApp::GetAppName (p. 38)

wxApp::SetClassName

void SetClassName (const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

wxApp::GetClassName (p. 38)

wxApp::SetExitOnFrameDelete

void SetExitOnFrameDelete (bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag

If true (the default), the application will exit when the top-level frame is deleted. If
false, the application will continue to run.

See also

wxApp::GetExitOnFrameDelete (p. 38),

CHAPTER 7

45

wxApp shutdown overview (p. Error! Bookmark not defined.)

wxApp::SetInstance

static void SetInstance (wxAppConsole* app)

Allows external code to modify global wxTheApp, but you should really know what you're
doing if you call it.

Parameters

app

Replacement for the global application object.

See also

wxApp::GetInstance (p. 38)

wxApp::SetTopWindow

void SetTopWindow (wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::OnInit (p. 42) to let
wxWidgets know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWidgets just uses the first frame or dialog in its top-level window list, when it needs to
use the top window.

Parameters

window

The new top window.

See also

wxApp::GetTopWindow (p. 39), wxApp::OnInit (p. 42)

wxApp::SetVendorName

void SetVendorName (const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWidgets.

See also

wxApp::GetVendorName (p. 39)

wxApp::SetUseBestVisual

CHAPTER 7

46

void SetUseBestVisual (bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain applications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.

Parameters

flag

If true, the app will use the best visual.

wxApp::HandleEvent

virtual void HandleEvent (wxEvtHandler *handler, wxEventFunction func, wxEvent&
event) const

This function simply invokes the given method func of the specified event handler
handler with the event as parameter. It exists solely to allow to catch the C++ exceptions
which could be thrown by all event handlers in the application in one place: if you want to
do this, override this function in your wxApp-derived class and add try/catch clause(s) to
it.

wxApp::Yield

bool Yield (bool onlyIfNeeded = false)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and on systems with
cooperative multitasking, such as Windows 3.1 other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.
Error! Bookmark not defined.) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 908).

Calling Yield() recursively is normally an error and an assert failure is raised in debug
build if such situation is detected. However if the onlyIfNeeded parameter is true , the
method will just silently return false instead.

CHAPTER 7

47

wxArchiveClassFactory

An abstract base class which serves as a common interface to archive class factories
such as wxZipClassFactory (p. Error! Bookmark not defined.).

For each supported archive type (such as zip) there is a class factory derived from
wxArchiveClassFactory, which allows archive objects to be created in a generic way,
without knowing the particular type of archive being used.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/archive.h>

See also

Archive formats such as zip (p. Error! Bookmark not defined.)
Generic archive programming (p. Error! Bookmark not defined.)
wxArchiveEntry (p. 48)
wxArchiveInputStream (p. 51)
wxArchiveOutputStream (p. 55)

wxArchiveClassFactory::Get/SetConv

wxMBConv& GetConv () const

void SetConv (wxMBConv& conv)

The wxMBConv (p. 923) object that the created streams will use when translating meta-
data. The initial default, set by the constructor, is wxConvLocal.

wxArchiveClassFactory::GetInternalName

wxString GetInternalName (const wxString& name, wxPathFormat format =
wxPATH_NATIVE) const

Calls the static GetInternalName() function for the archive entry type, for example
wxZipEntry::GetInternalName() (p. Error! Bookmark not defined.).

wxArchiveClassFactory::NewEntry

wxArchiveEntry* NewEntry () const

Create a new wxArchiveEntry (p. 48) object of the appropriate type.

wxArchiveClassFactory::NewStream

CHAPTER 7

48

wxArchiveInputStream* NewStream (wxInputStream& stream) const

wxArchiveOutputStream* NewStream (wxOutputStream& stream) const

Create a new wxArchiveInputStream (p. 51)or wxArchiveOutputStream (p. 55) of the
appropriate type.

wxArchiveEntry

An abstract base class which serves as a common interface to archive entry classes
such as wxZipEntry (p. Error! Bookmark not defined.). These hold the meta-data
(filename, timestamp, etc.), for entries in archive files such as zips and tars.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/archive.h>

See also

Archive formats such as zip (p. Error! Bookmark not defined.)
Generic archive programming (p. Error! Bookmark not defined.)
wxArchiveInputStream (p. 51)
wxArchiveOutputStream (p. 55)
wxArchiveNotifier (p. 55)

Non-seekable streams

This information applies only when reading archives from non-seekable streams. When
the stream is seekable GetNextEntry() (p. 52)returns a fully populated wxArchiveEntry
(p. 48). See 'Archives on non-seekable streams (p. Error! Bookmark not defined.)' for
more information.

For generic programming, when the worst case must be assumed, you can rely on all
the fields of wxArchiveEntry being fully populated when GetNextEntry() returns, with the
the following exceptions:

GetSize() (p. 50) Guaranteed to be available after the entry has been read to Eof() (p.
827), or CloseEntry() (p. 52) has been called

IsReadOnly() (p. 51) Guaranteed to be available after the end of the
archive has been reached, i.e. after GetNextEntry() returns NULL and
Eof() is true

wxArchiveEntry::Clone

wxArchiveEntry* Clone () const

CHAPTER 7

49

Returns a copy of this entry object.

wxArchiveEntry::Get/SetDateTime

wxDateTime GetDateTime () const

void SetDateTime (const wxDateTime& dt)

The entry's timestamp.

wxArchiveEntry::GetInternalFormat

wxPathFormat GetInternalFormat () const

Returns the path format used internally within the archive to store filenames.

wxArchiveEntry::GetInternalName

wxString GetInternalName () const

Returns the entry's filename in the internal format used within the archive. The name can
include directory components, i.e. it can be a full path.

The names of directory entries are returned without any trailing path separator. This
gives a canonical name that can be used in comparisons.

See also

Looking up an archive entry by name (p. Error! Bookmark not defined.)

wxArchiveEntry::Get/SetName

wxString GetName (wxPathFormat format = wxPATH_NATIVE) const

void SetName (const wxString& name, wxPathFormat format = wxPATH_NATIVE)

The entry's name, by default in the native format. The name can include directory
components, i.e. it can be a full path.

If this is a directory entry, (i.e. if IsDir() (p. 50)is true) then GetName() returns the name
with a trailing path separator.

Similarly, setting a name with a trailing path separator sets IsDir().

wxArchiveEntry::GetOffset

off_t GetOffset () const

Returns a numeric value unique to the entry within the archive.

wxArchiveEntry::Get/SetSize

CHAPTER 7

50

off_t GetSize () const

void SetSize (off_t size)

The size of the entry's data in bytes.

wxArchiveEntry::IsDir/SetIsDir

bool IsDir () const

void SetIsDir (bool isDir = true)

True if this is a directory entry.

Directory entries are entries with no data, which are used to store the meta-data of
directories. They also make it possible for completely empty directories to be stored.

The names of entries within an archive can be complete paths, and unarchivers typically
create whatever directories are necessary as they restore files, even if the archive
contains no explicit directory entries.

wxArchiveEntry::IsReadOnly/SetIsReadOnly

bool IsReadOnly () const

void SetIsReadOnly (bool isReadOnly = true)

True if the entry is a read-only file.

wxArchiveEntry::Set/UnsetNotifier

void SetNotifier (wxArchiveNotifier& notifier)

void UnsetNotifier ()

Sets the notifier (p. 55) for this entry. Whenever the wxArchiveInputStream (p. 51)
updates this entry, it will then invoke the associated notifier's OnEntryUpdated (p.
55)method.

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams).

See also

Archives on non-seekable streams (p. Error! Bookmark not defined.)
wxArchiveNotifier (p. 55)

wxArchiveInputStream

An abstract base class which serves as a common interface to archive input streams
such as wxZipInputStream (p. Error! Bookmark not defined.).

CHAPTER 7

51

GetNextEntry() (p. 52) returns an wxArchiveEntry (p. 48) object containing the meta-data
for the next entry in the archive (and gives away ownership). Reading from the
wxArchiveInputStream then returns the entry's data. Eof() becomes true after an attempt
has been made to read past the end of the entry's data. When there are no more entries,
GetNextEntry() returns NULL and sets Eof().

Derived from

wxFilterInputStream (p. 551)

Include files

<wx/archive.h>

Data structures typedef wxArchiveEntry entry_type

See also

Archive formats such as zip (p. Error! Bookmark not defined.)
wxArchiveEntry (p. 48)
wxArchiveOutputStream (p. 55)

wxArchiveInputStream::CloseEntry

bool CloseEntry ()

Closes the current entry. On a non-seekable stream reads to the end of the current entry
first.

wxArchiveInputStream::GetNextEntry

wxArchiveEntry* GetNextEntry ()

Closes the current entry if one is open, then reads the meta-data for the next entry and
returns it in a wxArchiveEntry (p. 48)object, giving away ownership. Reading this
wxArchiveInputStream then returns the entry's data.

wxArchiveInputStream::OpenEntry

bool OpenEntry (wxArchiveEntry& entry)

Closes the current entry if one is open, then opens the entry specified by the
wxArchiveEntry (p. 48) object.

entry must be from the same archive file that this wxArchiveInputStream is reading, and
it must be reading it from a seekable stream.

See also

Looking up an archive entry by name (p. Error! Bookmark not defined.)

CHAPTER 7

52

wxArchiveIterator

An input iterator template class that can be used to transfer an archive's catalogue to a
container. It is only available if wxUSE_STL is set to 1 in setup.h, and the uses for it
outlined below require a compiler which supports member templates.

template <class Arc, class T = typename Arc::entry_ type*>
class wxArchiveIterator
{
 // this constructor creates an 'end of sequence ' object
 wxArchiveIterator();

 // template parameter 'Arc' should be the type of an archive
input stream
 wxArchiveIterator(Arc& arc) {

 /* ... */
};

The first template parameter should be the type of archive input stream (e.g.
wxArchiveInputStream (p. 51)) and the second can either be a pointer to an entry (e.g.
wxArchiveEntry (p. 48)*), or a string/pointer pair (e.g. std::pair<wxString,
wxArchiveEntry*>).

The <wx/archive.h> header defines the following typedefs:

 typedef wxArchiveIterator<wxArchiveInputStream> wxArchiveIter;

 typedef wxArchiveIterator<wxArchiveInputStream,
 std::pair<wxString, wxArchiveEntry*> >
wxArchivePairIter;

The header for any implementation of this interface should define similar typedefs for its
types, for example in <wx/zipstrm.h> there is:

 typedef wxArchiveIterator<wxZipInputStream> wxZ ipIter;

 typedef wxArchiveIterator<wxZipInputStream,
 std::pair<wxString, wxZipEntry*> > wxZ ipPairIter;

Transferring the catalogue of an archive arc to a vector cat, can then be done something
like this:

 std::vector<wxArchiveEntry*> cat((wxArchiveIter)arc,
wxArchiveIter());

When the iterator is dereferenced, it gives away ownership of an entry object. So in the
above example, when you have finished with catyou must delete the pointers it contains.

If you have smart pointers with normal copy semantics (i.e. not auto_ptr or wxScopedPtr
(p. Error! Bookmark not defined.)), then you can create an iterator which uses them
instead. For example, with a smart pointer class for zip entries ZipEntryPtr:

 typedef std::vector<ZipEntryPtr> ZipCatalog;

CHAPTER 7

53

 typedef wxArchiveIterator<wxZipInputStream, Zip EntryPtr>
ZipIter;
 ZipCatalog cat((ZipIter)zip, ZipIter());

Iterators that return std::pair objects can be used to populate a std::multimap, to allow
entries to be looked up by name. The string is initialised using the wxArchiveEntry
object's GetInternalName() (p. 49) function.

 typedef std::multimap<wxString, wxZipEntry*> Zi pCatalog;
 ZipCatalog cat((wxZipPairIter)zip, wxZipPairIte r());

 Note that this iterator also gives away ownership of an entry object each time it is
dereferenced. So in the above example, when you have finished with cat you must
delete the pointers it contains.

Or if you have them, a pair containing a smart pointer can be used (again ZipEntryPtr),
no worries about ownership:

 typedef std::multimap<wxString, ZipEntryPtr> Zi pCatalog;
 typedef wxArchiveIterator<wxZipInputStream,
 std::pair<wxString, ZipEntryPtr> > ZipPairIter;
 ZipCatalog cat((ZipPairIter)zip, ZipPairIter()) ;

Derived from

No base class

Include files

<wx/archive.h>

See also

wxArchiveEntry (p. 48)
wxArchiveInputStream (p. 51)
wxArchiveOutputStream (p. 55)

Data structures typedef std::input_iterator_tag iterator_category
typedef T value_type
typedef ptrdiff_t difference_type
typedef T* pointer
typedef T& reference

wxArchiveIterator::wxArchiveIterator

 wxArchiveIterator ()

Construct an 'end of sequence' instance.

 wxArchiveIterator (Arc& arc)

CHAPTER 7

54

Construct iterator that returns all the entries in the archive input stream arc.

wxArchiveIterator::operator*

const T& operator* () const

Returns an entry object from the archive input stream, giving away ownership.

wxArchiveIterator::operator++

wxArchiveIterator& operator++ ()

wxArchiveIterator& operator++ (int)

Position the input iterator at the next entry in the archive input stream.

wxArchiveNotifier

If you need to know when a wxArchiveInputStream (p. 51) updates a wxArchiveEntry (p.
48) object, you can create a notifier by deriving from this abstract base class, overriding
OnEntryUpdated() (p. 55). An instance of your notifier class can then be assigned to the
wxArchiveEntry object using wxArchiveEntry::SetNotifier() (p. 51). Your
OnEntryUpdated() method will then be invoked whenever the input stream updates the
entry.

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams). See Archives on
non-seekable streams (p. Error! Bookmark not defined.).

Derived from

No base class

Include files

<wx/archive.h>

See also

Archives on non-seekable streams (p. Error! Bookmark not defined.)
wxArchiveEntry (p. 48)
wxArchiveInputStream (p. 51)
wxArchiveOutputStream (p. 55)

wxArchiveNotifier::OnEntryUpdated

void OnEntryUpdated (class wxArchiveEntry& entry)

This method must be overridden in your derived class.

CHAPTER 7

55

wxArchiveOutputStream

An abstract base class which serves as a common interface to archive output streams
such as wxZipOutputStream (p. Error! Bookmark not defined.).

PutNextEntry() (p. 57) is used to create a new entry in the output archive, then the
entry's data is written to the wxArchiveOutputStream. Another call to PutNextEntry()
closes the current entry and begins the next.

Derived from

wxFilterOutputStream (p. 552)

Include files

<wx/archive.h>

See also

Archive formats such as zip (p. Error! Bookmark not defined.)
wxArchiveEntry (p. 48)
wxArchiveInputStream (p. 51)

wxArchiveOutputStream::~wxArchiveOutputStream

 ~wxArchiveOutputStream ()

Calls Close() (p. 56) if it has not already been called.

wxArchiveOutputStream::Close

bool Close ()

Closes the archive, returning true if it was successfully written. Called by the destructor if
not called explicitly.

wxArchiveOutputStream::CloseEntry

bool CloseEntry ()

Close the current entry. It is called implicitly whenever another new entry is created with
CopyEntry() (p. 57)or PutNextEntry() (p. 57), or when the archive is closed.

wxArchiveOutputStream::CopyArchiveMetaData

bool CopyArchiveMetaData (wxArchiveInputStream& stream)

Some archive formats have additional meta-data that applies to the archive as a whole.
For example in the case of zip there is a comment, which is stored at the end of the zip
file. CopyArchiveMetaData() can be used to transfer such information when writing a

CHAPTER 7

56

modified copy of an archive.

Since the position of the meta-data can vary between the various archive formats, it is
best to call CopyArchiveMetaData() before transferring the entries. The
wxArchiveOutputStream (p. 55)will then hold on to the meta-data and write it at the
correct point in the output file.

When the input archive is being read from a non-seekable stream, the meta-data may
not be available when CopyArchiveMetaData() is called, in which case the two streams
set up a link and transfer the data when it becomes available.

wxArchiveOutputStream::CopyEntry

bool CopyEntry (wxArchiveEntry* entry, wxArchiveInputStream& stream)

Takes ownership of entry and uses it to create a new entry in the archive. entry is then
opened in the input stream streamand its contents copied to this stream.

For archive types which compress entry data, CopyEntry() is likely to be much more
efficient than transferring the data using Read() and Write() since it will copy them
without decompressing and recompressing them.

entry must be from the same archive file that stream is accessing. For non-seekable
streams, entry must also be the last thing read from stream.

wxArchiveOutputStream::PutNextDirEntry

bool PutNextDirEntry (const wxString& name, const wxDateTime& dt =
wxDateTime::Now())

Create a new directory entry (see wxArchiveEntry::IsDir() (p. 50)) with the given name
and timestamp.

PutNextEntry() (p. 57) can also be used to create directory entries, by supplying a name
with a trailing path separator.

wxArchiveOutputStream::PutNextEntry

bool PutNextEntry (wxArchiveEntry* entry)

Takes ownership of entry and uses it to create a new entry in the archive. The entry's
data can then be written by writing to this wxArchiveOutputStream.

bool PutNextEntry (const wxString& name, const wxDateTime& dt =
wxDateTime::Now(), off_t size = wxInvalidOffset)

Create a new entry with the given name, timestamp and size. The entry's data can then
be written by writing to this wxArchiveOutputStream.

wxArray

CHAPTER 7

57

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. Error! Bookmark not defined.) for details). So, unlike the
arrays in some other languages, attempt to access an element beyond the arrays bound
doesn't automatically expand the array but provokes an assertion failure instead in
debug build and does nothing (except possibly crashing your program) in the release
build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 851)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 61) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWidgets has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWidgets internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWidgets).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it is Index() (p. 67) function execution time is O(log(N))
instead ofO(N) for the usual arrays but the Add() (p. 66) method is slower: it is O(log(N))
instead of constant time (neglecting time spent in memory allocation routine). However,
in a usual situation elements are added to an array much less often than searched inside

CHAPTER 7

58

it, so wxSortedArray may lead to huge performance improvements compared to
wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can be only used
for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
'forward') declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#include <wx/dynarray.h>

// we must forward declare the array because it is used inside the
class
// declaration
class MyDirectory;
class MyFile;

// this defines two new types: ArrayOfDirectories a nd ArrayOfFiles
which can be
// now used as shown below
WX_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);
WX_DECLARE_OBJARRAY(MyFile, ArrayOfFiles);

class MyDirectory
{
...
 ArrayOfDirectories m_subdirectories; // all sub directories
 ArrayOfFiles m_files; // all fil es in this
directory
};

...

// now that we have MyDirectory declaration in scop e we may finish
the
// definition of ArrayOfDirectories -- note that th is expands into
some C++
// code and so should only be compiled once (i.e., don't put this
in the
// header, but into a source file or you will get l inking errors)
#include <wx/arrimpl.cpp> // this is a magic incant ation which
must be done!
WX_DEFINE_OBJARRAY(ArrayOfDirectories);

// that's all!

It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayOfDirectories ;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to

CHAPTER 7

59

write

WX_DEFINE_ARRAY(int, ArrayOfDirectories);
WX_DEFINE_SORTED_ARRAY(int, ArrayOfFiles);

i.e. there is only one DEFINE macro and no need for separateDECLARE one.

See also:

Container classes overview (p. Error! Bookmark not defined.), wxList (p. 851)

Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 62)
WX_DEFINE_EXPORTED_ARRAY (p. 62)
WX_DEFINE_USER_EXPORTED_ARRAY (p. 62)
WX_DEFINE_SORTED_ARRAY (p. 63)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 63)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (p. 63)
WX_DECLARE_EXPORTED_OBJARRAY (p. 63)
WX_DECLARE_USER_EXPORTED_OBJARRAY (p. 63)
WX_DEFINE_OBJARRAY (p. 64)
WX_DEFINE_EXPORTED_OBJARRAY (p. 64)
WX_DEFINE_USER_EXPORTED_OBJARRAY (p. 64)

To slightly complicate the matters even further, the operator -> defined by default for the
array iterators by these macros only makes sense if the array element type is not a
pointer itself and, although it still works, this provokes warnings from some compilers
and to avoid them you should use the_PTR versions of the macros above. For example,
to define an array of pointers to double you should use:

WX_DEFINE_ARRAY_PTR(double *, MyArrayOfDoublePointe rs);

Note that the above macros are generally only useful for wxObject types. There are
separate macros for declaring an array of a simple type, such as an int.

The following simple types are supported:
int
long
size_t

CHAPTER 7

60

double

To create an array of a simple type, simply append the type you want in CAPS to the
array definition.

For example, for an integer array, you'd use one of the following variants:

WX_DEFINE_ARRAY_INT (p. 62)
WX_DEFINE_EXPORTED_ARRAY_INT (p. 62)
WX_DEFINE_USER_EXPORTED_ARRAY_INT (p. 62)
WX_DEFINE_SORTED_ARRAY_INT (p. 63)
WX_DEFINE_SORTED_EXPORTED_ARRAY_INT (p. 63)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY_INT (p. 63)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 65)
wxArray copy constructors and assignment operators (p. 65)
~wxArray (p. 65)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 69) function is provided to deallocate the
extra memory. The Alloc() (p. 66)function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 66)
Shrink (p. 69)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 68) method.

CHAPTER 7

61

Count (p. 66)
GetCount (p. 67)
IsEmpty (p. 68)
Item (p. 68)
Last (p. 68)

Adding items

Add (p. 66)
Insert (p. 67)
SetCount (p. 69)
WX_APPEND_ARRAY (p. 64)

Removing items

WX_CLEAR_ARRAY (p. 65)
Empty (p. 67)
Clear (p. 66)
RemoveAt (p. 69)
Remove (p. 68)

Searching and sorting

Index (p. 67)
Sort (p. 69)

WX_DEFINE_ARRAY

 WX_DEFINE_ARRAY (T, name)

 WX_DEFINE_EXPORTED_ARRAY (T, name)

 WX_DEFINE_USER_EXPORTED_ARRAY (T, name, exportspec)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling wxWidgets as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

WX_DEFINE_ARRAY_INT(int, MyArrayInt);

class MyClass;
WX_DEFINE_ARRAY(MyClass *, ArrayOfMyClass);

Note that wxWidgets predefines the following standard array classes: wxArrayInt,
wxArrayLong and wxArrayPtrVoid.

CHAPTER 7

62

WX_DEFINE_SORTED_ARRAY

 WX_DEFINE_SORTED_ARRAY (T, name)

 WX_DEFINE_SORTED_EXPORTED_ARRAY (T, name)

 WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling wxWidgets as a DLL under Windows
and array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

WX_DEFINE_SORTED_ARRAY_INT(int, MySortedArrayInt);

class MyClass;
WX_DEFINE_SORTED_ARRAY(MyClass *, ArrayOfMyClass);

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int CompareInts(int n1, int n2)
{
 return n1 - n2;
}

wxSortedArrayInt sorted(CompareInts);

int CompareMyClassObjects(MyClass *item1, MyClass * item2)
{
 // sort the items by their address...
 return Stricmp(item1->GetAddress(), item2->GetA ddress());
}

wxArrayOfMyClass another(CompareMyClassObjects);

WX_DECLARE_OBJARRAY

 WX_DECLARE_OBJARRAY (T, name)

 WX_DECLARE_EXPORTED_OBJARRAY (T, name)

 WX_DECLARE_USER_EXPORTED_OBJARRAY (T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling wxWidgets as a DLL under Windows
and array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

class MyClass;
WX_DECLARE_OBJARRAY(MyClass, wxArrayOfMyClass); // note: not
"MyClass *"!

CHAPTER 7

63

You must use WX_DEFINE_OBJARRAY() (p. 64) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

 WX_DEFINE_OBJARRAY (name)

 WX_DEFINE_EXPORTED_OBJARRAY (name)

 WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by
theWX_DECLARE_OBJARRAY() (p. 63) macro. You must include the file
<wx/arrimpl.cpp> before using this macro and you must have the full declaration of the
class of array elements in scope! If you forget to do the first, the error will be caught by
the compiler, but, unfortunately, many compilers will not give any warnings if you forget
to do the second - but the objects of the class will not be copied correctly and their real
destructor will not be called. The latter two forms are merely aliases of the first to satisfy
some people's sense of symmetry when using the exported declarations.

Example of usage:

// first declare the class!
class MyClass
{
public:
 MyClass(const MyClass&);

 ...

 virtual ~MyClass();
};

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY(wxArrayOfMyClass);

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to thearray. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call
Empty().

Default constructors

CHAPTER 7

64

 wxArray ()

 wxObjArray ()

Default constructor initializes an empty array object.

 wxSortedArray (int (*)(T first, T second) compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or
positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

 wxArray (const wxArray& array)

 wxSortedArray (const wxSortedArray& array)

 wxObjArray (const wxObjArray& array)

wxArray& operator= (const wxArray& array)

wxSortedArray& operator= (const wxSortedArray& array)

wxObjArray& operator= (const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer
type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

wxArray::~wxArray

 ~wxArray ()

 ~wxSortedArray ()

 ~wxObjArray ()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may useWX_CLEAR_ARRAY (p. 65) macro
for this.

wxArray::Add

void Add (T item, size_t copies = 1)

void Add (T *item)

void Add (T &item, size_t copies = 1)

CHAPTER 7

65

Appends the given number of copies of the item to the array consisting of the elements
of type T.

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements. Also note that you cannot append more than one pointer as reusing it would
lead to deleting it twice (or more) and hence to a crash.

You may also use WX_APPEND_ARRAY (p. 64) macro to append all elements of one
array to another one but it is more efficient to usecopies parameter and modify the
elements in place later if you plan to append a lot of items.

wxArray::Alloc

void Alloc (size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

wxArray::Clear

void Clear ()

This function does the same as Empty() (p. 67) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count () const

Same as GetCount() (p. 67). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach

T * Detach (size_t index)

Removes the element from the array, but, unlike,Remove() (p. 68) doesn't delete it. The
function returns the pointer to the removed element.

wxArray::Empty

void Empty ()

Empties the array. For wxObjArray classes, this destroys all of the array elements. For
wxArray and wxSortedArray this does nothing except marking the array of being empty -

CHAPTER 7

66

this function does not free the allocated memory, useClear() (p. 66) for this.

wxArray::GetCount

size_t GetCount () const

Return the number of items in the array.

wxArray::Index

int Index (T& item, bool searchFromEnd = false)

int Index (T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

void Insert (T item, size_t n, size_t copies = 1)

void Insert (T *item, size_t n)

void Insert (T &item, size_t n, size_t copies = 1)

Insert the given number of copies of the item into the array before the existing item n -
thus, Insert(something, 0u) will insert an item in such way that it will become the first
array element.

Please see Add() (p. 66) for explanation of the differences between the overloaded
versions of this function.

wxArray::IsEmpty

bool IsEmpty () const

Returns true if the array is empty, false otherwise.

CHAPTER 7

67

wxArray::Item

T& Item (size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Last

T& Last () const

Returns the last element in the array, i.e. is the same as Item(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

 Remove (T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObjArray it is deleted by the array - useDetach()
(p. 67) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item = array[n];
delete item;
array.Remove(n)

See also WX_CLEAR_ARRAY (p. 65) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::RemoveAt

 RemoveAt (size_t index, size_t count = 1)

Removes count elements starting at index from the array. When an element is removed
from wxObjArray it is deleted by the array - useDetach() (p. 67) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete it manually if required:

T *item = array[n];
delete item;
array.RemoveAt(n)

See also WX_CLEAR_ARRAY (p. 65) macro which deletes all elements of a wxArray

CHAPTER 7

68

(supposed to contain pointers).

wxArray::SetCount

void SetCount (size_t count, T defval = T(0))

This function ensures that the number of array elements is at leastcount. If the array has
already count or more items, nothing is done. Otherwise, count - GetCount()
elements are added and initialized to the value defval.

See also

GetCount (p. 67)

wxArray::Shrink

void Shrink ()

Frees all memory unused by the array. If the program knows that no new items will be
added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

wxArray::Sort

void Sort (CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

where T is the type of the array elements. I.e. it is a function returningint which is passed
two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is
always sorted.wxArrayString

wxArrayString is an efficient container for storing wxString (p. Error! Bookmark not
defined.) objects. It has the same features as all wxArray (p. 57) classes, i.e. it
dynamically expands when new items are added to it (so it is as easy to use as a linked
list), but the access time to the elements is constant, instead of being linear in number of
elements as in the case of linked lists. It is also very size efficient and doesn't take more
space than a C array wxString[] type (wxArrayString uses its knowledge of internals of
wxString class to achieve this).

This class is used in the same way as other dynamic arrays (p. 57), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in

CHAPTER 7

69

the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 74), Last (p. 74) or operator[] (p. 72) are not
constant, so the array elements may be modified in place like this

 array.Last().MakeUpper();

There is also a variant of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 73) function
(instead of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basically, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 57) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/arrstr.h>

See also

wxArray (p. 57), wxString (p. Error! Bookmark not defined.), wxString overview (p.
Error! Bookmark not defined.)

wxArrayString::wxArrayString

 wxArrayString ()

Default constructor.

 wxArrayString (const wxArrayString& array)

Copy constructor. Note that when an array is assigned to a sorted array, its contents is
automatically sorted during construction.

 wxArrayString (size_t sz, const wxChar** arr)

Constructor from a C string array. Pass a size sz and array arr.

CHAPTER 7

70

 wxArrayString (size_t sz, const wxString* arr)

Constructor from a wxString array. Pass a size sz and array arr.

wxArrayString::~wxArrayString

 ~wxArrayString ()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=

wxArrayString & operator = (const wxArrayString& array)

Assignment operator.

wxArrayString::operator==

bool operator == (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true only if the arrays have the same
number of elements and the same strings in the same order.

wxArrayString::operator!=

bool operator != (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true if the arrays have different number
of elements or if the elements don't match pairwise.

wxArrayString::operator[]

wxString& operator[] (size_t nIndex)

Return the array element at position nIndex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of Item (p. 74) method.

wxArrayString::Add

size_t Add (const wxString& str, size_t copies = 1)

Appends the given number of copies of the new item str to the array and returns the
index of the first new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 73) - 1 because the item is inserted at the correct position to keep the
array sorted and not appended.

CHAPTER 7

71

See also: Insert (p. 73)

wxArrayString::Alloc

void Alloc (size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 61)

wxArrayString::Clear

void Clear ()

Clears the array contents and frees memory.

See also: Empty (p. 73)

wxArrayString::Count

size_t Count () const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 73) instead.

wxArrayString::Empty

void Empty ()

Empties the array: after a call to this function GetCount (p. 73) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 72) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount () const

Returns the number of items in the array.

wxArrayString::Index

int Index (const char * sz, bool bCase = true, bool bFromEnd = false)

Search the element in the array, starting from the beginning ifbFromEnd is false or from
end otherwise. If bCase, comparison is case sensitive (default), otherwise the case is
ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter

CHAPTER 7

72

case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert

void Insert (const wxString& str, size_t nIndex, size_t copies = 1)

Insert the given number of copies of the new element in the array before the position
nIndex. Thus, for example, to insert the string in the beginning of the array you would
write

Insert("foo", 0);

If nIndex is equal to GetCount() this function behaves as Add (p. 72).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 73) would then not work!

wxArrayString::IsEmpty

bool IsEmpty ()

Returns true if the array is empty, false otherwise. This function returns the same result
as GetCount() == 0 but is probably easier to read.

wxArrayString::Item

wxString& Item (size_t nIndex) const

Return the array element at position nIndex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator[] (p. 72) for the operator version.

wxArrayString::Last

wxString& Last ()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove (const char * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 73)

CHAPTER 7

73

wxArrayString::RemoveAt

void RemoveAt (size_t nIndex, size_t count = 1)

Removes count items starting at position nIndex from the array.

wxArrayString::Shrink

void Shrink ()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 72), Dynamic array memory management (p. 61)

wxArrayString::Sort

void Sort (bool reverseOrder = false)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
true. The sort is case-sensitive.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 73) would then not work!

void Sort (CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than 0 if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int CompareStringLen(const wxString& first, const wxString&
second)
{
 return first.length() - second.length();
}

...

wxArrayString array;

array.Add("one");
array.Add("two");
array.Add("three");
array.Add("four");

array.Sort(CompareStringLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 73) would then not work!

CHAPTER 7

74

wxArtProvider

wxArtProvider class is used to customize the look of wxWidgets application. When
wxWidgets needs to display an icon or a bitmap (e.g. in the standard file dialog), it does
not use a hard-coded resource but asks wxArtProvider for it instead. This way users can
plug in their own wxArtProvider class and easily replace standard art with their own
version. All that is needed is to derive a class from wxArtProvider, override
itsCreateBitmap (p. 78) method and register the provider
withwxArtProvider::PushProvider (p. 80):

 class MyProvider : public wxArtProvider
 {
 protected:
 wxBitmap CreateBitmap(const wxArtID& id,
 const wxArtClient& client ,
 const wxSize size)
 { ... }
 };
 ...
 wxArtProvider::PushProvider(new MyProvider);

There's another way of taking advantage of this class: you can use it in your code and
use platform native icons as provided by wxArtProvider::GetBitmap (p. 79) or
wxArtProvider::GetIcon (p. 79) (NB: this is not yet really possible as of wxWidgets 2.3.3,
the set of wxArtProvider bitmaps is too small).

Identifying art resources

Every bitmap is known to wxArtProvider under an unique ID that is used by when
requesting a resource from it. The ID is represented by wxArtID type and can have one
of these predefined values (you can see bitmaps represented by these constants in the
artprov (p. Error! Bookmark not defined.) sample):

 • wxART_ADD_BOOKMARK

 • wxART_DEL_BOOKMARK

 • wxART_HELP_SIDE_PANEL

 • wxART_HELP_SETTINGS

 • wxART_HELP_BOOK

 • wxART_HELP_FOLDER

 • wxART_HELP_PAGE

 • wxART_GO_BACK

 • wxART_GO_FORWARD

 • wxART_GO_UP

 • wxART_GO_DOWN

CHAPTER 7

75

 • wxART_GO_TO_PARENT

 • wxART_GO_HOME

 • wxART_FILE_OPEN

 • wxART_PRINT

 • wxART_HELP

 • wxART_TIP

 • wxART_REPORT_VIEW

 • wxART_LIST_VIEW

 • wxART_NEW_DIR

 • wxART_FOLDER

 • wxART_GO_DIR_UP

 • wxART_EXECUTABLE_FILE

 • wxART_NORMAL_FILE

 • wxART_TICK_MARK

 • wxART_CROSS_MARK

 • wxART_ERROR

 • wxART_QUESTION

 • wxART_WARNING

 • wxART_INFORMATION

 • wxART_MISSING_IMAGE

Additionally, any string recognized by custom art providers registered usingPushProvider
(p. 80) may be used.

GTK+ Note

When running under GTK+ 2, GTK+ stock item IDs (e.g. "gtk-cdrom") may be used
as well. Additionally, if wxGTK was compiled against GTK+ >= 2.4, then it is also
possible to load icons from current icon theme by specifying their name (without
extension and directory components). Icon themes recognized by GTK+ follow
thefreedesktop.org Icon Themes specification
(http://freedesktop.org/Standards/icon-theme-spec). Note that themes
are not guaranteed to contain all icons, so wxArtProvider may return wxNullBitmap or
wxNullIcon . Default theme is typically installed in /usr/share/icons/hicolor .

CHAPTER 7

76

Clients

Client is the entity that calls wxArtProvider's GetBitmap or GetIcon function. It is
represented by wxClientID type and can have one of these values:

 • wxART_TOOLBAR

 • wxART_MENU

 • wxART_BUTTON

 • wxART_FRAME_ICON

 • wxART_CMN_DIALOG

 • wxART_HELP_BROWSER

 • wxART_MESSAGE_BOX

 • wxART_OTHER (used for all requests that don't fit into any of the categories
above)Client ID servers as a hint to wxArtProvider that is supposed to help it to
choose the best looking bitmap. For example it is often desirable to use slightly
different icons in menus and toolbars even though they represent the same
action (e.g. wx_ART_FILE_OPEN). Remember that this is really only a hint for
wxArtProvider -- it is common thatwxArtProvider::GetBitmap (p. 79) returns
identical bitmap for different client values!

See also

See the artprov (p. Error! Bookmark not defined.) sample for an example of
wxArtProvider usage.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/artprov.h>

wxArtProvider::CreateBitmap

wxBitmap CreateBitmap (const wxArtID& id, const wxArtClient& client, const
wxSize& size)

Derived art provider classes must override this method to create requested art resource.
Note that returned bitmaps are cached by wxArtProvider and it is therefore not
necessary to optimize CreateBitmap for speed (e.g. you may create wxBitmap objects
from XPMs here).

Parameters

CHAPTER 7

77

id

wxArtID unique identifier of the bitmap.

client

wxArtClient identifier of the client (i.e. who is asking for the bitmap). This only
servers as a hint.

size

Preferred size of the bitmap. The function may return a bitmap of different
dimensions, it will be automatically rescaled to meet client's request.

Note

This is not part of wxArtProvider's public API, usewxArtProvider::GetBitmap (p. 79) or
wxArtProvider::GetIcon (p. 79)to query wxArtProvider for a resource.

wxArtProvider::GetBitmap

static wxBitmap GetBitmap (const wxArtID& id, const wxArtClient& client =
wxART_OTHER, const wxSize& size = wxDefaultSize)

Query registered providers for bitmap with given ID.

Parameters

id

wxArtID unique identifier of the bitmap.

client

wxArtClient identifier of the client (i.e. who is asking for the bitmap).

size

Size of the returned bitmap or wxDefaultSize if size doesn't matter.

Return value

The bitmap if one of registered providers recognizes the ID or wxNullBitmap otherwise.

wxArtProvider::GetIcon

static wxIcon GetIcon (const wxArtID& id, const wxArtClient& client =
wxART_OTHER, const wxSize& size = wxDefaultSize)

Same as wxArtProvider::GetBitmap (p. 79), but return a wxIcon object (or wxNullIcon on
failure).

static wxSize GetSizeHint (const wxArtClient& client, bool platform_default = false)

CHAPTER 7

78

Returns a suitable size hint for the given wxArtClient. If platform_default is true , return
a size based on the current platform, otherwise return the size from the topmost
wxArtProvider. wxDefaultSize may be returned if the client doesn't have a specified
size, like wxART_OTHER for example.

wxArtProvider::PopProvider

static bool PopProvider ()

Remove latest added provider and delete it.

wxArtProvider::PushProvider

static void PushProvider (wxArtProvider* provider)

Register new art provider (add it to the top of providers stack).

wxArtProvider::RemoveProvider

static bool RemoveProvider (wxArtProvider* provider)

Remove a provider from the stack. The provider must have been added previously and
is not deleted.

wxAutomationObject

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. Error! Bookmark not defined.) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
API is high-level, and the application can specify multiple properties in a single string.
The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

 wxAutomationObject excelObject;
 if (excelObject.GetInstance("Excel.Application"))
 excelObject.PutProperty("ActiveCell.Font.Bold ", true);

Note that this class obviously works under Windows only.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/msw/ole/automtn.h>

CHAPTER 7

79

See also

wxVariant (p. Error! Bookmark not defined.)

wxAutomationObject::wxAutomationObject

 wxAutomationObject (WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

 ~wxAutomationObject ()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

wxVariant CallMethod (const wxString& method, int noArgs, wxVariant args[]) const

wxVariant CallMethod (const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 wxVariant res = obj.CallMethod("Sum", wxVariant(1 .2),
wxVariant(3.4));
 wxVariant res = obj.CallMethod("Sum", 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

 object.CallMethod("ActiveCell.Font.ShowDialog", " My caption");

wxAutomationObject::CreateInstance

bool CreateInstance (const wxString& classId) const

Creates a new object based on the class id, returning true if the object was successfully
created, or false if not.

wxAutomationObject::GetDispatchPtr

CHAPTER 7

80

IDispatch* GetDispatchPtr () const

Gets the IDispatch pointer.

wxAutomationObject::GetInstance

bool GetInstance (const wxString& classId) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns true if a pointer was successfully retrieved, false
otherwise.

Note that this cannot cope with two instances of a given OLE object being active
simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject (wxAutomationObject& obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 82) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 82)

wxAutomationObject::GetProperty

wxVariant GetProperty (const wxString& property, int noArgs, wxVariant args[])
const

wxVariant GetProperty (const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 wxVariant res = obj.GetProperty("Range", wxVarian t("A1"));
 wxVariant res = obj.GetProperty("Range", "A1");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

CHAPTER 7

81

wxAutomationObject::Invoke

bool Invoke (const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member

The member function or property name.

action

Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.

retValue

Return value (ignored if there is no return value)

.

noArgs

Number of arguments in args or ptrArgs.

args

If non-null, contains an array of variants.

ptrArgs

If non-null, contains an array of constant pointers to variants.

Return value

true if the operation was successful, false otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for
efficiency.

wxAutomationObject::PutProperty

bool PutProperty (const wxString& property, int noArgs, wxVariant args[]) const

bool PutProperty (const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero

CHAPTER 7

82

to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 obj.PutProperty("Value", wxVariant(23));
 obj.PutProperty("Value", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr (WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour or colour with alpha channel support.

Derived from

wxGDIObject (p. 609)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/bitmap.h>

Predefined objects

Objects:

wxNullBitmap

See also

wxBitmap overview (p. Error! Bookmark not defined.),supported bitmap file formats (p.
Error! Bookmark not defined.),wxDC::Blit (p. 373),wxIcon (p. 778), wxCursor (p. 230),
wxBitmap (p. 84),wxMemoryDC (p. Error! Bookmark not defined.)

wxBitmap::wxBitmap

 wxBitmap ()

CHAPTER 7

83

Default constructor.

 wxBitmap (const wxBitmap& bitmap)

Copy constructor. Note that this does not take a fresh copy of the data, but instead
makes the internal data point to bitmap's data. So changing one bitmap will change the
other. To make a real copy, you can use:

 wxBitmap newBitmap = oldBitmap.GetSubBitmap(
 wxRect(0, 0, oldBitmap .GetWidth(),
oldBitmap.GetHeight()));

 wxBitmap (void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

 wxBitmap (const char bits[], int width, int height
 int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxImage (p. 790) should be used for creating colour bitmaps from static data.

 wxBitmap (int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.
Beginning with version 2.5.4 of wxWidgets a depth of 32 including an alpha channel is
supported under MSW, Mac and GTK+.

 wxBitmap (const char** bits)

Creates a bitmap from XPM data.

 wxBitmap (const wxString& name, long type)

Loads a bitmap from a file or resource.

 wxBitmap (const wxImage& img, int depth = -1)

Creates bitmap object from the image. This has to be done to actually display an image
as you cannot draw an image directly on a window. The resulting bitmap will use the
provided colour depth (or that of the current system if depth is -1) which entails that a
colour reduction has to take place.

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created
on program start-up to look up colors. This ensures a very fast conversion, but the image
quality won't be perfect (and could be better for photo images using more sophisticated

CHAPTER 7

84

dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when
creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

Parameters

bits

Specifies an array of pixel values.

width

Specifies the width of the bitmap.

height

Specifies the height of the bitmap.

depth

Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.

name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type

May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCELoad a Windows bitmap resource from the
executable. Windows only.

wxBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration. If
all possible wxWidgets settings are used, the Windows platform supports BMP file,
BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wxImage (p. 790) can, which

CHAPTER 7

85

currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wxImage handlers loaded.

img

Platform-independent wxImage object.

Remarks

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWidgets has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

...

wxBitmap *bitmap = new wxBitmap(mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 92)

wxPython note: Constructors supported by wxPython are:

wxBitmap(name, flag) Loads a bitmap from a file

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM

CHAPTER 7

86

data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

wxBitmapFromImage(image, depth=-1) Convert a wxImage to a
wxBitmap.

wxPerl note: Constructors supported by wxPerl are:

 •::Bitmap->new(width, height, depth = -1)

 •::Bitmap->new(name, type)

 •::Bitmap->new(icon)

 •::Bitmap->newFromBits(bits, width, height, depth = 1)

 •::Bitmap->newFromXPM(data)

wxBitmap::~wxBitmap

 ~wxBitmap ()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWidgets when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler (wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 104)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers ()

CHAPTER 7

87

Deletes all bitmap handlers.

This function is called by wxWidgets on exit.

wxBitmap::ConvertToImage

wxImage ConvertToImage ()

Creates an image from a platform-dependent bitmap. This preserves mask information
so that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::CopyFromIcon

bool CopyFromIcon (const wxIcon& icon)

Creates the bitmap from an icon.

wxBitmap::Create

virtual bool Create (int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create (void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type.

Parameters

width

The width of the bitmap in pixels.

height

The height of the bitmap in pixels.

depth

The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data

Data whose type depends on the value of type.

type

A bitmap type identifier - see wxBitmap::wxBitmap (p. 84) for a list of possible
values.

Return value

true if the call succeeded, false otherwise.

CHAPTER 7

88

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 84)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler (const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler (const wxString& extension, wxBitmapType
bitmapType)

Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler (wxBitmapType bitmapType)

Finds the handler associated with the given bitmap type.

name

The handler name.

extension

The file extension, such as "bmp".

bitmapType

The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value

A pointer to the handler if found, NULL otherwise.

See also

wxBitmapHandler (p. 104)

wxBitmap::GetDepth

int GetDepth () const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers ()

CHAPTER 7

89

Returns the static list of bitmap format handlers.

See also

wxBitmapHandler (p. 104)

wxBitmap::GetHeight

int GetHeight () const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette () const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. Error! Bookmark not defined.)

wxBitmap::GetMask

wxMask* GetMask () const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 95), wxMask (p. 920)

wxBitmap::GetWidth

int GetWidth () const

Gets the width of the bitmap in pixels.

See also

wxBitmap::GetHeight (p. 91)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap (const wxRect& rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

CHAPTER 7

90

static void InitStandardHandlers ()

Adds the standard bitmap format handlers, which, depending on wxWidgets
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWidgets on startup.

See also

wxBitmapHandler (p. 104)

wxBitmap::InsertHandler

static void InsertHandler (wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 104)

wxBitmap::LoadFile

bool LoadFile (const wxString& name, wxBitmapType type)

Loads a bitmap from a file or resource.

Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type

One of the following values:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap resource
from the executable.

wxBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

CHAPTER 7

91

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

In addition, wxBitmap can read all formats that wxImage (p. 790) can
(wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
wxBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxImage handlers loaded.)

Return value

true if the operation succeeded, false otherwise.

Remarks

A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 91) member.

See also

wxBitmap::SaveFile (p. 93)

wxBitmap::Ok

bool Ok() const

Returns true if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler (const wxString& name)

Finds the handler with the given name, and removes it. The handler is not deleted.

name

The handler name.

Return value

true if the handler was found and removed, false otherwise.

See also

wxBitmapHandler (p. 104)

wxBitmap::SaveFile

bool SaveFile (const wxString& name, wxBitmapType type, wxPalette* palette =
NULL)

CHAPTER 7

92

Saves a bitmap in the named file.

Parameters

name

A filename. The meaning of name is determined by the type parameter.

type

One of the following values:

wxBITMAP_TYPE_BMP Save a Windows bitmap file.

wxBITMAP_TYPE_GIF Save a GIF bitmap file.

wxBITMAP_TYPE_XBM Save an X bitmap file.

wxBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

In addition, wxBitmap can save all formats that wxImage (p. 790) can
(wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxImage handlers loaded.)

palette

An optional palette used for saving the bitmap.

Return value

true if the operation succeeded, false otherwise.

Remarks

Depending on how wxWidgets has been configured, not all formats may be available.

See also

wxBitmap::LoadFile (p. 92)

wxBitmap::SetDepth

void SetDepth (int depth)

Sets the depth member (does not affect the bitmap data).

Parameters

depth

Bitmap depth.

wxBitmap::SetHeight

CHAPTER 7

93

void SetHeight (int height)

Sets the height member (does not affect the bitmap data).

Parameters

height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask (wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.

See also

wxBitmap::GetMask (p. 91), wxMask (p. 920)

wxBitmap::SetPalette

void SetPalette (const wxPalette& palette)

Sets the associated palette. (Not implemented under GTK+).

Parameters

palette

The palette to set.

See also

wxPalette (p. Error! Bookmark not defined.)

wxBitmap::SetWidth

void SetWidth (int width)

Sets the width member (does not affect the bitmap data).

Parameters

width

Bitmap width in pixels.

wxBitmap::operator =

CHAPTER 7

94

wxBitmap& operator = (const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap

Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator == (const wxBitmap& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap

Bitmap to compare with 'this'

Return value

Returns true if the bitmaps were effectively equal, false otherwise.

wxBitmap::operator !=

bool operator != (const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap

Bitmap to compare with 'this'

Return value

Returns true if the bitmaps were unequal, false otherwise.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
412) or panel (p. Error! Bookmark not defined.), or indeed almost any other window.

CHAPTER 7

95

Derived from

wxButton (p. 122)
wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWidgets will draw all button
states using this bitmap. If the application needs more control, additional bitmaps for the
selected state, unpressed focused state, and greyed-out state may be supplied.

Button states

This class supports bitmaps for several different states:

normal This is the bitmap shown in the default state, it must be
always valid while all the other bitmaps are optional and
don't have to be set.

disabled Bitmap shown when the button is disabled.

selected Bitmap shown when the button is pushed (e.g. while the
user keeps the mouse button pressed on it)

focus Bitmap shown when the button has keyboard focus but is
not pressed.

hover Bitmap shown when the mouse is over the button (but it is
not pressed). Notice that if hover bitmap is not specified
but the current platform UI uses hover images for the
buttons (such as Windows XP or GTK+), then the focus
bitmap is used for hover state as well. This makes it
possible to set focus bitmap only to get reasonably good
behaviour on all platforms.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32
only.

CHAPTER 7

96

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. WIN32
only.

Note that wxBU_EXACTFIT supported by wxButton (p. 122) is not used by this class as
bitmap buttons don't have any minimal standard size by default.

See also window styles overview (p. Error! Bookmark not defined.).

Event handling

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 122)

wxBitmapButton::wxBitmapButton

 wxBitmapButton ()

Default constructor.

 wxBitmapButton (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent

Parent window. Must not be NULL.

id

Button identifier. A value of -1 indicates a default value.

bitmap

Bitmap to be displayed.

pos

Button position.

size

CHAPTER 7

97

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style

Window style. See wxBitmapButton (p. 96).

validator

Window validator.

name

Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWidgets
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 102),
wxBitmapButton::SetBitmapFocus (p. 101), wxBitmapButton::SetBitmapDisabled (p.
101).

Note that the bitmap passed is smaller than the actual button created.

See also

wxBitmapButton::Create (p. 99), wxValidator (p. Error! Bookmark not defined.)

wxBitmapButton::~wxBitmapButton

 ~wxBitmapButton ()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 98).

wxBitmapButton::GetBitmapDisabled

const wxBitmap& GetBitmapDisabled () constwxBitmap& GetBitmapDisabled ()

Returns the bitmap for the disabled state, may be invalid.

Return value

A reference to the disabled state bitmap.

CHAPTER 7

98

See also

wxBitmapButton::SetBitmapDisabled (p. 101)

wxBitmapButton::GetBitmapFocus

const wxBitmap& GetBitmapFocus () constwxBitmap& GetBitmapFocus ()

Returns the bitmap for the focused state, may be invalid.

Return value

A reference to the focused state bitmap.

See also

wxBitmapButton::SetBitmapFocus (p. 101)

wxBitmapButton::GetBitmapHover

const wxBitmap& GetBitmapHover () constwxBitmap& GetBitmapHover ()

Returns the bitmap used when the mouse is over the button, may be invalid.

See also

wxBitmapButton::SetBitmapHover (p. 102)

wxBitmapButton::GetBitmapLabel

const wxBitmap& GetBitmapLabel () constwxBitmap& GetBitmapLabel ()

Returns the label bitmap (the one passed to the constructor), always valid.

Return value

A reference to the button's label bitmap.

See also

wxBitmapButton::SetBitmapLabel (p. 102)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected () constwxBitmap& GetBitmapSelected ()

Returns the bitmap for the pushed button state, may be invalid.

Return value

A reference to the selected state bitmap.

See also

CHAPTER 7

99

wxBitmapButton::SetBitmapSelected (p. 102)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled (const wxBitmap& bitmap)

Sets the bitmap for the disabled button appearance.

Parameters

bitmap

The bitmap to set.

See also

wxBitmapButton::GetBitmapDisabled (p. 99), wxBitmapButton::SetBitmapLabel (p. 102),
wxBitmapButton::SetBitmapSelected (p. 102), wxBitmapButton::SetBitmapFocus (p.
101)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus (const wxBitmap& bitmap)

Sets the bitmap for the button appearance when it has the keyboard focus.

Parameters

bitmap

The bitmap to set.

See also

wxBitmapButton::GetBitmapFocus (p. 100), wxBitmapButton::SetBitmapLabel (p. 102),
wxBitmapButton::SetBitmapSelected (p. 102), wxBitmapButton::SetBitmapDisabled (p.
101)

wxBitmapButton::SetBitmapHover

void SetBitmapHover (const wxBitmap& bitmap)

Sets the bitmap to be shown when the mouse is over the button.

This function is new since wxWidgets version 2.7.0 and the hover bitmap is currently
only supported in wxMSW.

See also

wxBitmapButton::GetBitmapHover (p. 100)

wxBitmapButton::SetBitmapLabel

CHAPTER 7

100

void SetBitmapLabel (const wxBitmap& bitmap)

Sets the bitmap label for the button.

Parameters

bitmap

The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 100)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected (const wxBitmap& bitmap)

Sets the bitmap for the selected (depressed) button appearance.

Parameters

bitmap

The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 101), wxBitmapButton::SetBitmapLabel (p.
102), wxBitmapButton::SetBitmapFocus (p. 101), wxBitmapButton::SetBitmapDisabled
(p. 101)

wxBitmapDataObject

wxBitmapDataObject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 154) or a wxDropSource (p. 472).
A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 103) may be overridden to increase
efficiency.

CHAPTER 7

101

Derived from

wxDataObjectSimple (p. 247)
wxDataObject (p. 242)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. Error! Bookmark not defined.),
wxDataObject (p. 242), wxDataObjectSimple (p. 247), wxFileDataObject (p. 514),
wxTextDataObject (p. Error! Bookmark not defined.), wxDataObject (p. 242)

 wxBitmapDataObject (const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 103) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap () const

Returns the bitmap associated with the data object. You may wish to override this
method when offering data on-demand, but this is not required by wxWidgets' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 154).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap (const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBitmapHandler

Overview (p. Error! Bookmark not defined.)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 88) in your application initialisation.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/bitmap.h>

CHAPTER 7

102

See also

wxBitmap (p. 84), wxIcon (p. 778), wxCursor (p. 230)

wxBitmapHandler::wxBitmapHandler

 wxBitmapHandler ()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

 ~wxBitmapHandler ()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create (wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap

The wxBitmap object.

width

The width of the bitmap in pixels.

height

The height of the bitmap in pixels.

depth

The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data

Data whose type depends on the value of type.

type

A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 84) for a list
of possible values.

CHAPTER 7

103

Return value

true if the call succeeded, false otherwise (the default).

wxBitmapHandler::GetName

wxString GetName () const

Gets the name of this handler.

wxBitmapHandler::GetExtension

wxString GetExtension () const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType () const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile (wxBitmap* bitmap, const wxString& name, long type)

Loads a bitmap from a file or resource, putting the resulting data into bitmap.

Parameters

bitmap

The bitmap object which is to be affected by this operation.

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type

See wxBitmap::wxBitmap (p. 84) for values this can take.

Return value

true if the operation succeeded, false otherwise.

See also

wxBitmap::LoadFile (p. 92)
wxBitmap::SaveFile (p. 93)
wxBitmapHandler::SaveFile (p. 106)

CHAPTER 7

104

wxBitmapHandler::SaveFile

bool SaveFile (wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.

Parameters

bitmap

The bitmap object which is to be affected by this operation.

name

A filename. The meaning of name is determined by the type parameter.

type

See wxBitmap::wxBitmap (p. 84) for values this can take.

palette

An optional palette used for saving the bitmap.

Return value

true if the operation succeeded, false otherwise.

See also

wxBitmap::LoadFile (p. 92)
wxBitmap::SaveFile (p. 93)
wxBitmapHandler::LoadFile (p. 105)

wxBitmapHandler::SetName

void SetName (const wxString& name)

Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension (const wxString& extension)

Sets the handler extension.

Parameters

CHAPTER 7

105

extension

Handler extension.

wxBitmapHandler::SetType

void SetType (long type)

Sets the handler type.

Parameters

name

Handler type.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

For more information, please see Programming with wxBoxSizer (p. Error! Bookmark
not defined.).

Derived from

wxSizer (p. Error! Bookmark not defined.)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/sizer.h>

See also

wxSizer (p. Error! Bookmark not defined.), Sizer overview (p. Error! Bookmark not
defined.)

wxBoxSizer::wxBoxSizer

 wxBoxSizer (int orient)

Constructor for a wxBoxSizer. orient may be either of wxVERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes ()

Implements the calculation of a box sizer's dimensions and then sets the size of its
children (calling wxWindow::SetSize (p. Error! Bookmark not defined.) if the child is a
window). It is used internally only and must not be called by the user. Documented for

CHAPTER 7

106

information.

wxBoxSizer::CalcMin

wxSize CalcMin ()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation ()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 609)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/brush.h>

Predefined objects

Objects:

wxNullBrush

Pointers:

wxBLUE_BRUSH
wxGREEN_BRUSH
wxWHITE_BRUSH
wxBLACK_BRUSH
wxGREY_BRUSH
wxMEDIUM_GREY_BRUSH
wxLIGHT_GREY_BRUSH
wxTRANSPARENT_BRUSH
wxCYAN_BRUSH
wxRED_BRUSH

Remarks

On a monochrome display, wxWidgets shows all brushes as white unless the colour is
really black.

CHAPTER 7

107

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::OnInit (p. 42) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList , and calling the member function FindOrCreateBrush .

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 114), wxDC (p. 372), wxDC::SetBrush (p. 388)

wxBrush::wxBrush

 wxBrush ()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 112) will return
false.

 wxBrush (const wxColour& colour, int style = wxSOLID)

Constructs a brush from a colour object and style.

 wxBrush (const wxString& colourName, int style)

Constructs a brush from a colour name and style.

 wxBrush (const wxBitmap& stippleBitmap)

Constructs a stippled brush using a bitmap.

 wxBrush (const wxBrush& brush)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

colour

Colour object.

colourName

Colour name. The name will be looked up in the colour database.

style

CHAPTER 7

108

One of:

wxTRANSPARENT Transparent (no fill).

wxSOLID Solid.

wxSTIPPLE Uses a bitmap as a stipple.

wxBDIAGONAL_HATCH Backward diagonal hatch.

wxCROSSDIAG_HATCH Cross-diagonal hatch.

wxFDIAGONAL_HATCH Forward diagonal hatch.

wxCROSS_HATCH Cross hatch.

wxHORIZONTAL_HATCH Horizontal hatch.

wxVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

stippleBitmap

A bitmap to use for stippling.

Remarks

If a stipple brush is created, the brush style will be set to wxSTIPPLE.

See also

wxBrushList (p. 114), wxColour (p. 168), wxColourDatabase (p. 173)

wxBrush::~wxBrush

 ~wxBrush ()

Destructor.

Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWidgets cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

CHAPTER 7

109

wxColour& GetColour () const

Returns a reference to the brush colour.

See also

wxBrush::SetColour (p. 113)

wxBrush::GetStipple

wxBitmap * GetStipple () const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 93) returns false).

See also

wxBrush::SetStipple (p. 113)

wxBrush::GetStyle

int GetStyle () const

Returns the brush style, one of:

wxTRANSPARENT Transparent (no fill).

wxSOLID Solid.

wxBDIAGONAL_HATCH Backward diagonal hatch.

wxCROSSDIAG_HATCH Cross-diagonal hatch.

wxFDIAGONAL_HATCH Forward diagonal hatch.

wxCROSS_HATCH Cross hatch.

wxHORIZONTAL_HATCH Horizontal hatch.

wxVERTICAL_HATCH Vertical hatch.

wxSTIPPLE Stippled using a bitmap.

wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::SetStyle (p. 113), wxBrush::SetColour (p. 113), wxBrush::SetStipple (p. 113)

wxBrush::IsHatch

bool IsHatch () const

Returns true if the style of the brush is any of hatched fills.

CHAPTER 7

110

See also

wxBrush::GetStyle (p. 112)

wxBrush::Ok

bool Ok() const

Returns true if the brush is initialised. It will return false if the default constructor has
been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour (wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour (const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour (unsigned char red, unsigned char green, unsigned char blue)

Sets the brush colour using red, green and blue values.

See also

wxBrush::GetColour (p. 111)

wxBrush::SetStipple

void SetStipple (const wxBitmap& bitmap)

Sets the stipple bitmap.

Parameters

bitmap

The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,

CHAPTER 7

111

Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 84)

wxBrush::SetStyle

void SetStyle (int style)

Sets the brush style.

style

One of:

wxTRANSPARENT Transparent (no fill).

wxSOLID Solid.

wxBDIAGONAL_HATCH Backward diagonal hatch.

wxCROSSDIAG_HATCH Cross-diagonal hatch.

wxFDIAGONAL_HATCH Forward diagonal hatch.

wxCROSS_HATCH Cross hatch.

wxHORIZONTAL_HATCH Horizontal hatch.

wxVERTICAL_HATCH Vertical hatch.

wxSTIPPLE Stippled using a bitmap.

wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::GetStyle (p. 112)

wxBrush::operator =

wxBrush& operator = (const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator == (const wxBrush& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

CHAPTER 7

112

wxBrush::operator !=

bool operator != (const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.

Derived from

wxList (p. 851)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/gdicmn.h>

Remarks

There is only one instance of this class: wxTheBrushList . Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWidgets which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a reference counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the reference
counting does it for you. For example, you can set a brush in a device context, and then
immediately delete the brush you passed, because the brush is 'copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWidgets to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWidgets.

See also

wxBrush (p. 108)

CHAPTER 7

113

wxBrushList::wxBrushList

void wxBrushList ()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList .

wxBrushList::AddBrush

void AddBrush (wxBrush * brush)

Used internally by wxWidgets to add a brush to the list.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush (const wxColour& colour, int style = wxSOLID)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Parameters

colour

Colour object.

style

Brush style. See wxBrush::SetStyle (p. 113) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush (wxBrush * brush)

Used by wxWidgets to remove a brush from the list.

wxBufferedDC

This simple class provides a simple way to avoid flicker: when drawing on it, everything
is in fact first drawn on an in-memory buffer (a wxBitmap (p. 84)) and then copied to the
screen only once, when this object is destroyed.

It can be used in the same way as any other device context. wxBufferedDC itself
typically replaces wxClientDC (p. 151), if you want to use it in your OnPaint() handler,
you should look atwxBufferedPaintDC (p. 118).

Derived from

wxMemoryDC (p. Error! Bookmark not defined.)
wxDC (p. 372)
wxObject (p. Error! Bookmark not defined.)

CHAPTER 7

114

Include files

<wx/dcbuffer.h>

See also

wxDC (p. 372)

wxBufferedDC::wxBufferedDC

 wxBufferedDC ()

 wxBufferedDC (wxDC *dc, const wxSize& area, int style =
wxBUFFER_CLIENT_AREA)

 wxBufferedDC (wxDC *dc, const wxBitmap& buffer, int style =
wxBUFFER_CLIENT_AREA)

If you use the first, default, constructor, you must call one of the Init (p. 117) methods
later in order to use the object.

The other constructors initialize the object immediately and Init() must not be called
after using them.

Parameters

dc

The underlying DC: everything drawn to this object will be flushed to this DC when
this object is destroyed. You may pass NULL in order to just initialize the buffer,
and not flush it.

area

The size of the bitmap to be used for buffering (this bitmap is created internally
when it is not given explicitly).

buffer

Explicitly provided bitmap to be used for buffering: this is the most efficient solution
as the bitmap doesn't have to be recreated each time but it also requires more
memory as the bitmap is never freed. The bitmap should have appropriate size,
anything drawn outside of its bounds is clipped.

style

wxBUFFER_CLIENT_AREA to indicate that just the client area of the window is
buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the buffer bitmap covers
the virtual area (in which case PrepareDC is automatically called for the actual
window device context).

wxBufferedDC::Init

CHAPTER 7

115

void Init (wxDC *dc, const wxSize& area, int style = wxBUFFER_CLIENT_AREA)

void Init (wxDC *dc, const wxBitmap& buffer, int style = wxBUFFER_CLIENT_AREA)

These functions initialize the object created using the default constructor. Please see
constructors documentation (p. 117) for details.

wxBufferedDC::~wxBufferedDC

Copies everything drawn on the DC so far to the underlying DC associated with this
object, if any.

wxBufferedPaintDC

This is a subclass of wxBufferedDC (p. 116) which can be used inside of an OnPaint()
event handler. Just create an object of this class instead of wxPaintDC (p. Error!
Bookmark not defined.) and that's all you have to do to (mostly) avoid flicker. The only
thing to watch out for is that if you are using this class together with wxScrolledWindow
(p. Error! Bookmark not defined.), you probably do not want to call PrepareDC (p.
Error! Bookmark not defined.) on it as it already does this internally for the real
underlying wxPaintDC.

Derived from

wxMemoryDC (p. Error! Bookmark not defined.)
wxDC (p. 372)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dcbuffer.h>

wxBufferedPaintDC::wxBufferedPaintDC

 wxBufferedPaintDC (wxWindow * window, const wxBitmap& buffer, int style =
wxBUFFER_CLIENT_AREA)

 wxBufferedPaintDC (wxWindow * window, int style = wxBUFFER_CLIENT_AREA)

As with wxBufferedDC (p. 117), you may either provide the bitmap to be used for
buffering or let this object create one internally (in the latter case, the size of the client
part of the window is used).

Pass wxBUFFER_CLIENT_AREA for the style parameter to indicate that just the client
area of the window is buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the
buffer bitmap covers the virtual area (in which case PrepareDC is automatically called
for the actual window device context).

wxBufferedPaintDC::~wxBufferedPaintDC

CHAPTER 7

116

Copies everything drawn on the DC so far to the window associated with this object,
using a wxPaintDC (p. Error! Bookmark not defined.).

wxBufferedInputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterInputStream (p. 551)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterInputStream (p. 551)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. Error! Bookmark not defined.), wxInputStream (p.
826),wxBufferedOutputStream (p. 119)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 552)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from

wxFilterOutputStream (p. 552)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. Error! Bookmark not defined.), wxOutputStream (p. Error!
Bookmark not defined.)

wxBufferedOutputStream::wxBufferedOutputStream

 wxBufferedOutputStream (const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the

CHAPTER 7

117

stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

 ~wxBufferedOutputStream ()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

void Sync ()

Flushes the buffer and calls Sync() on the parent stream.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:

 wxBusyCursor wait;

 for (int i = 0; i < 100000; i++)
 DoACalculation();

It works by calling wxBeginBusyCursor (p. Error! Bookmark not defined.) in the
constructor, and wxEndBusyCursor (p. Error! Bookmark not defined.) in the
destructor.

Derived from

None

Include files

<wx/utils.h>

See also

wxBeginBusyCursor (p. Error! Bookmark not defined.), wxEndBusyCursor (p. Error!
Bookmark not defined.), wxWindowDisabler (p. Error! Bookmark not defined.)

CHAPTER 7

118

wxBusyCursor::wxBusyCursor

 wxBusyCursor (wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. Error! Bookmark not
defined.).

wxBusyCursor::~wxBusyCursor

 ~wxBusyCursor ()

Destroys the busy cursor object, calling wxEndBusyCursor (p. Error! Bookmark not
defined.).

wxBusyInfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyInfo object on the stack, and within the current scope, a message
window will be shown.

For example:

 wxBusyInfo wait("Please wait, working...");

 for (int i = 0; i < 100000; i++)
 {
 DoACalculation();
 }

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case
it had been obscured by other windows, for example) like this:

 wxWindowDisabler disableAll;

 wxBusyInfo wait("Please wait, working...");

 for (int i = 0; i < 100000; i++)
 {
 DoACalculation();

 if (!(i % 1000))
 wxTheApp->Yield();
 }

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield()
(p. 46) for more details). The simplest way to do it is to use wxWindowDisabler (p. Error!
Bookmark not defined.) class as illustrated in the above example.

Derived from

None

Include files

CHAPTER 7

119

<wx/busyinfo.h>

wxBusyInfo::wxBusyInfo

 wxBusyInfo (const wxString& msg, wxWindow* parent = NULL)

Constructs a busy info window as child of parent and displays msgin it.

NB: If parent is not NULL you must ensure that it is not closed while the busy info is
shown.

wxBusyInfo::~wxBusyInfo

 ~wxBusyInfo ()

Hides and closes the window containing the information text.

wxButton

A button is a control that contains a text string, and is one of the most common elements
of a GUI. It may be placed on a dialog box (p. 412) or panel (p. Error! Bookmark not
defined.), or indeed almost any other window.

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. Windows and GTK+ only.

wxBU_TOP Aligns the label to the top of the button. Windows and
GTK+ only.

wxBU_RIGHT Right-justifies the bitmap label. Windows and GTK+ only.

wxBU_BOTTOM Aligns the label to the bottom of the button. Windows and
GTK+ only.

wxBU_EXACTFIT Creates the button as small as possible instead of making
it of the standard size (which is the default behaviour).

wxNO_BORDER Creates a flat button. Windows and GTK+ only.

CHAPTER 7

120

See also window styles overview (p. Error! Bookmark not defined.).

Event handling

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 96)

wxButton::wxButton

 wxButton ()

Default constructor.

 wxButton (wxWindow* parent, wxWindowID id, const wxString& label =
wxEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "button")

Constructor, creating and showing a button.

The preferred way to create standard buttons is to use default value oflabel. If no label is
supplied and id is one of standard IDs fromthis list (p. Error! Bookmark not defined.),
standard label will be used. In addition to that, the button will be decorated with stock
icons under GTK+ 2.

Parameters

parent

Parent window. Must not be NULL.

id

Button identifier. A value of wxID_ANY indicates a default value.

label

Text to be displayed on the button.

pos

Button position.

size

Button size. If the default size is specified then the button is sized appropriately for
the text.

CHAPTER 7

121

style

Window style. See wxButton (p. 122).

validator

Window validator.

name

Window name.

See also

wxButton::Create (p. 124), wxValidator (p. Error! Bookmark not defined.)

wxButton::~wxButton

 ~wxButton ()

Destructor, destroying the button.

wxButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label =
wxEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = 0, const wxValidator& validator, const wxString& name =
"button")

Button creation function for two-step creation. For more details, seewxButton::wxButton
(p. 123).

wxButton::GetLabel

wxString GetLabel () const

Returns the string label for the button.

Return value

The button's label.

See also

wxButton::SetLabel (p. 125)

wxButton::GetDefaultSize

wxSize GetDefaultSize ()

Returns the default size for the buttons. It is advised to make all the dialog buttons of the
same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

CHAPTER 7

122

wxButton::SetDefault

void SetDefault ()

This sets the button to be the default item for the panel or dialog box.

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. Error! Bookmark not
defined.) which sets the keyboard focus for windows and text panel items, and
wxPanel::SetDefaultItem (p. Error! Bookmark not defined.).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWidgets will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel (const wxString& label)

Sets the string label for the button.

Parameters

label

The label to set.

See also

wxButton::GetLabel (p. 124)

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 846) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/laywin.h>

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT

CHAPTER 7

123

event, which asks the window to take a 'bite'
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutInfoEvent (p. Error! Bookmark not defined.), wxSashLayoutWindow (p.
Error! Bookmark not defined.), wxLayoutAlgorithm (p. 846).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

 wxCalculateLayoutEvent (wxWindowID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags () const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect () const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags (int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect (const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date. For this, it displays a window
containing several parts: a control at the top to pick the month and the year (either or
both of them may be disabled), and a month area below them which shows all the days
in the month. The user can move the current selection using the keyboard and select the

CHAPTER 7

124

date (generating EVT_CALENDAR event) by pressing <Return> or double clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 132)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 131) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not recognized as
one by wxDateTime (p. Error! Bookmark not defined.) using SetHoliday (p. 133)
method.

As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_MONTH event
handler.

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/calctrl.h>

Window styles

wxCAL_SUNDAY_FIRST Show Sunday as the first day in the week

wxCAL_MONDAY_FIRST Show Monday as the first day in the week

wxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar

wxCAL_NO_YEAR_CHANGE Disable the year changing

wxCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

wxCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

wxCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wxCAL_SHOW_HOLIDAYS.

Event table macros

To process input from a calendar control, use these event handler macros to direct input

CHAPTER 7

125

to member functions that take a wxCalendarEvent (p. 135) argument.

EVT_CALENDAR(id, func) A day was double clicked in the calendar.

EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.

EVT_CALENDAR_DAY(id, func) The selected day changed.

EVT_CALENDAR_MONTH(id, func) The selected month changed.

EVT_CALENDAR_YEAR(id, func) The selected year changed.

EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day
header

Note that changing the selected date will result in either of EVT_CALENDAR_DAY, MONTH
or YEAR events and EVT_CALENDAR_SEL_CHANGED one.
Constants

The following are the possible return values for HitTest (p. 132) method:

enum wxCalendarHitTestResult
{
 wxCAL_HITTEST_NOWHERE, // outside of anyth ing
 wxCAL_HITTEST_HEADER, // on the header (w eekdays)
 wxCAL_HITTEST_DAY // on a day in the calendar
}

See also

Calendar sample (p. Error! Bookmark not defined.)
wxCalendarDateAttr (p. 132)
wxCalendarEvent (p. 135)

wxCalendarCtrl::wxCalendarCtrl

 wxCalendarCtrl ()

Default constructor, use Create (p. 129) after it.

 wxCalendarCtrl (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 129) method.

wxCalendarCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =

CHAPTER 7

126

wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Creates the control. See wxWindow (p. Error! Bookmark not defined.) for the meaning
of the parameters and the control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl

 ~wxCalendarCtrl ()

Destroys the control.

wxCalendarCtrl::SetDate

void SetDate (const wxDateTime& date)

Sets the current date.

wxCalendarCtrl::GetDate

const wxDateTime& GetDate () const

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_YEAR_CHANGEstyle bit
directly. It allows or disallows the user to change the year interactively.

wxCalendarCtrl::EnableMonthChange

void EnableMonthChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_MONTH_CHANGE style bit.
It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay (bool display = true)

This function should be used instead of changing wxCAL_SHOW_HOLIDAYSstyle bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

void SetHeaderColours (const wxColour& colFg, const wxColour& colBg)

CHAPTER 7

127

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg () const

Gets the foreground colour of the header part of the calendar window.

See also

SetHeaderColours (p. 130)

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg () const

Gets the background colour of the header part of the calendar window.

See also

SetHeaderColours (p. 130)

wxCalendarCtrl::SetHighlightColours

void SetHighlightColours (const wxColour& colFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg () const

Gets the foreground highlight colour.

See also

SetHighlightColours (p. 130)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg () const

Gets the background highlight colour.

See also

SetHighlightColours (p. 130)

wxCalendarCtrl::SetHolidayColours

void SetHolidayColours (const wxColour& colFg, const wxColour& colBg)

CHAPTER 7

128

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wxCAL_SHOW_HOLIDAYS flag).

wxCalendarCtrl::GetHolidayColourFg

const wxColour& GetHolidayColourFg () const

Return the foreground colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 131)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg () const

Return the background colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 131)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr (size_t day) const

Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL.

wxCalendarCtrl::SetAttr

void SetAttr (size_t day, wxCalendarDateAttr* attr)

Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCtrl::SetHoliday

void SetHoliday (size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr (size_t day)

Clears any attributes associated with the given day (in the range1...31).

CHAPTER 7

129

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest (const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAL_HITTEST_XXX constants (p. 127) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 127).

Derived from

No base class

Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCalendarDateBorder
{
 wxCAL_BORDER_NONE, // no border (defau lt)
 wxCAL_BORDER_SQUARE, // a rectangular bo rder
 wxCAL_BORDER_ROUND // a round border
}

See also

wxCalendarCtrl (p. 127)

Include files

<wx/calctrl.h>

wxCalendarDateAttr::wxCalendarDateAttr

 wxCalendarDateAttr ()

 wxCalendarDateAttr (const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER_NONE)

 wxCalendarDateAttr (wxCalendarDateBorder border, const wxColour& colBorder =
wxNullColour)

The constructors.

wxCalendarDateAttr::SetTextColour

CHAPTER 7

130

void SetTextColour (const wxColour& colText)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

void SetBackgroundColour (const wxColour& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour (const wxColour& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont (const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder (wxCalendarDateBorder border)

Sets the border kind (p. 132)

wxCalendarDateAttr::SetHoliday

void SetHoliday (bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

bool HasTextColour () const

Returns true if this item has a non default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour () const

Returns true if this attribute specifies a non default text background colour.

wxCalendarDateAttr::HasBorderColour

bool HasBorderColour () const

CHAPTER 7

131

Returns true if this attribute specifies a non default border colour.

wxCalendarDateAttr::HasFont

bool HasFont () const

Returns true if this attribute specifies a non default font.

wxCalendarDateAttr::HasBorder

bool HasBorder () const

Returns true if this attribute specifies a non default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday () const

Returns true if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour () const

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr::GetBackgroundColour

const wxColour& GetBackgroundColour () const

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour () const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

const wxFont& GetFont () const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder () const

Returns the border (p. 132) to use for the item with this attribute.

CHAPTER 7

132

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 127).

Derived from

wxDateEvent (p. 251)
wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/calctrl.h>

See also

wxCalendarCtrl (p. 127)

wxCalendarEvent::GetWeekDay

wxDateTime::WeekDay GetWeekDay () const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler. It doesn't make sense to call this function in other handlers.

wxCalendarEvent::SetWeekDay

void SetWeekDay (wxDateTime::WeekDay day)

Sets the week day carried by the event, normally only used by the library internally.

wxCaret

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. Error! Bookmark not defined.). The same caret can't be
reused in two different windows.

Derived from

No base class

Include files

CHAPTER 7

133

<wx/caret.h>

Data structures

wxCaret::wxCaret

 wxCaret ()

Default constructor: you must use one of Create() functions later.

 wxCaret (wxWindow* window, int width, int height)

 wxCaret (wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window.

wxCaret::Create

bool Create (wxWindowBase* window, int width, int height)

bool Create (wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window (same as constructor).

wxCaret::GetBlinkTime

static int GetBlinkTime ()

Returns the blink time which is measured in milliseconds and is the time elapsed
between 2 inversions of the caret (blink time of the caret is the same for all carets, so
this functions is static).

wxCaret::GetPosition

void GetPosition (int* x, int* y) const

wxPoint GetPosition () const

Get the caret position (in pixels).

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list (x, y)

wxCaret::GetSize

CHAPTER 7

134

void GetSize (int* width, int* height) const

wxSize GetSize () const

Get the caret size.

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size

GetSizeWH() Returns a 2-element list (width,
height)

wxCaret::GetWindow

wxWindow* GetWindow () const

Get the window the caret is associated with.

wxCaret::Hide

void Hide ()

Same as wxCaret::Show(false) (p. 138).

wxCaret::IsOk

bool IsOk () const

Returns true if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible () const

Returns true if the caret is visible and false if it is permanently hidden (if it is is blinking
and not shown currently but will be after the next blink, this method still returns true).

wxCaret::Move

void Move (int x, int y)

void Move (const wxPoint& pt)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime (int milliseconds)

Sets the blink time for all the carets.

CHAPTER 7

135

Remarks

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 136)

wxCaret::SetSize

void SetSize (int width, int height)

void SetSize (const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show (bool show = true)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown
N times as well to reappear on the screen.

wxCheckBox

A checkbox is a labelled box which by default is either on (checkmark is visible) or off
(no checkmark). Optionally (when the wxCHK_3STATE style flag is set) it can have a
third state, called the mixed or undetermined state. Often this is used as a "Does Not
Apply" state.

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/checkbox.h>

Window styles

wxCHK_2STATE Create a 2-state checkbox. This is the default.

wxCHK_3STATE Create a 3-state checkbox. Not implemented in
wxMGL, wxOS2 and wxGTK built against
GTK+ 1.2.

wxCHK_ALLOW_3RD_STATE_FOR_USER By default a user can't set a 3-state
checkbox to the third state. It can only be done

CHAPTER 7

136

from code. Using this flags allows the user to
set the checkbox to the third state by clicking.

wxALIGN_RIGHT Makes the text appear on the left of the
checkbox.

See also window styles overview (p. Error! Bookmark not defined.).

Event handling

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. Error! Bookmark not defined.), wxCommandEvent (p. 184)

wxCheckBox::wxCheckBox

 wxCheckBox ()

Default constructor.

 wxCheckBox (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent

Parent window. Must not be NULL.

id

Checkbox identifier. A value of -1 indicates a default value.

label

Text to be displayed next to the checkbox.

pos

Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.

size

Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.

CHAPTER 7

137

style

Window style. See wxCheckBox (p. 138).

validator

Window validator.

name

Window name.

See also

wxCheckBox::Create (p. 140), wxValidator (p. Error! Bookmark not defined.)

wxCheckBox::~wxCheckBox

 ~wxCheckBox ()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p.
139) for details.

wxCheckBox::GetValue

bool GetValue () const

Gets the state of a 2-state checkbox.

Return value

Returns true if it is checked, false otherwise.

wxCheckBox::Get3StateValue

wxCheckBoxState Get3StateValue () const

Gets the state of a 3-state checkbox.

Return value

Returns wxCHK_UNCHECKED when the checkbox is unchecked, wxCHK_CHECKED
when it is checked and wxCHK_UNDETERMINED when it's in the undetermined state.
Asserts when the function is used with a 2-state checkbox.

CHAPTER 7

138

wxCheckBox::Is3rdStateAllowedForUser

bool Is3rdStateAllowedForUser () const

Returns whether or not the user can set the checkbox to the third state.

Return value

Returns true if the user can set the third state of this checkbox, false if it can only be
set programmatically or if it's a 2-state checkbox.

wxCheckBox::Is3State

bool Is3State () const

Returns whether or not the checkbox is a 3-state checkbox.

Return value

Returns true if this checkbox is a 3-state checkbox, false if it's a 2-state checkbox.

wxCheckBox::IsChecked

bool IsChecked () const

This is just a maybe more readable synonym for GetValue (p. 141): just as the latter, it
returns true if the checkbox is checked and false otherwise.

wxCheckBox::SetValue

void SetValue (bool state)

Sets the checkbox to the given state. This does not cause a
wxEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state

If true , the check is on, otherwise it is off.

wxCheckBox::Set3StateValue

void Set3StateValue (const wxCheckBoxState state)

Sets the checkbox to the given state. This does not cause a
wxEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state

Can be one of: wxCHK_UNCHECKED (Check is off), wxCHK_CHECKED (Check

CHAPTER 7

139

is on) or wxCHK_UNDETERMINED (Check is mixed). Asserts when the checkbox
is a 2-state checkbox and setting the state to wxCHK_UNDETERMINED.

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

When using this class under Windows wxWidgets must be compiled with
USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 858).

Please note that wxCheckListBox uses client data in its implementation, and therefore
this is not available to the application.

Derived from

wxListBox (p. 858)
wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/checklst.h>

Window styles

See wxListBox (p. 858).

Event handling

EVT_CHECKLISTBOX(id, func) Process a
wxEVT_COMMAND_CHECKLISTBOX_TOGG
LED event, when an item in the check list box
is checked or unchecked.

See also

wxListBox (p. 858), wxChoice (p. 145), wxComboBox (p. 176), wxListCtrl (p. 864),
wxCommandEvent (p. 184)

wxCheckListBox::wxCheckListBox

 wxCheckListBox ()

Default constructor.

 wxCheckListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString

CHAPTER 7

140

choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

 wxCheckListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n

Number of strings with which to initialise the control.

choices

An array of strings with which to initialise the control.

style

Window style. See wxCheckListBox (p. 142).

validator

Window validator.

name

Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

wxCheckListBox::~wxCheckListBox

CHAPTER 7

141

void ~wxCheckListBox ()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check (int item, bool check = true)

Checks the given item. Note that calling this method doesn't result in
wxEVT_COMMAND_CHECKLISTBOX_TOGGLE being emitted.

Parameters

item

Index of item to check.

check

true if the item is to be checked, false otherwise.

wxCheckListBox::IsChecked

bool IsChecked (unsigned int item) const

Returns true if the given item is checked, false otherwise.

Parameters

item

Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from

wxControlWithItems (p. 219)
wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

CHAPTER 7

142

See also window styles overview (p. Error! Bookmark not defined.).

Event handling

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 858), wxComboBox (p. 176), wxCommandEvent (p. 184)

wxChoice::wxChoice

 wxChoice ()

Default constructor.

 wxChoice (wxWindow * parent, wxWindowID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

 wxChoice (wxWindow * parent, wxWindowID id, const wxPoint& pos, const wxSize&
size, const wxArrayString& choices, long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.

n

Number of strings with which to initialise the choice control.

choices

CHAPTER 7

143

An array of strings with which to initialise the choice control.

style

Window style. See wxChoice (p. 145).

validator

Window validator.

name

Window name.

See also

wxChoice::Create (p. 147), wxValidator (p. Error! Bookmark not defined.)

wxPython note: The wxChoice constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

wxChoice::~wxChoice

 ~wxChoice ()

Destructor, destroying the choice item.

wxChoice::Create

bool Create (wxWindow * parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices[], long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "choice")

bool Create (wxWindow * parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 145).

wxChoice::GetColumns

int GetColumns () const

Gets the number of columns in this choice item.

Remarks

This is implemented for Motif only and always returns 1 for the other platforms.

wxChoice::GetCurrentSelection

CHAPTER 7

144

int GetCurrentSelection () const

Unlike GetSelection (p. 222) which only returns the accepted selection value, i.e. the
selection in the control once the user closes the dropdown list, this function returns the
current selection. That is, while the dropdown list is shown, it returns the currently
selected item in it. When it is not shown, its result is the same as for the other function.

This function is new since wxWidgets version 2.6.2 (before this versionGetSelection (p.
222) itself behaved like this).

wxChoice::SetColumns

void SetColumns (int n = 1)

Sets the number of columns in this choice item.

Parameters

n

Number of columns.

Remarks

This is implemented for Motif only and doesn't do
anything under other platforms.wxChoicebook

wxChoicebook is a class similar to wxNotebook (p. Error! Bookmark not defined.) but
which uses a wxChoice (p. 145) to show the labels instead of the tabs.

There is no documentation for this class yet but its usage is identical to wxNotebook
(except for the features clearly related to tabs only), so please refer to that class
documentation for now. You can also use the notebook sample (p. Error! Bookmark
not defined.) to see wxChoicebook in action.

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/choicebk.h>

Window styles

wxCHB_DEFAULT Choose the default location for the labels depending on the
current platform (left everywhere except Mac where it is
top).

CHAPTER 7

145

wxCHB_TOP Place labels above the page area.

wxCHB_LEFT Place labels on the left side.

wxCHB_RIGHT Place labels on the right side.

wxCHB_BOTTOM Place labels below the page area.

See also

wxBookCtrl (p. Error! Bookmark not defined.), wxNotebook (p. Error! Bookmark not
defined.), notebook sample (p. Error! Bookmark not defined.)

wxClassInfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS .

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. Error! Bookmark not defined.), wxObject (p. Error! Bookmark not
defined.)

wxClassInfo::wxClassInfo

 wxClassInfo (const wxChar * className, const wxClassInfo * baseClass1, const
wxClassInfo * baseClass2, int size, wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassInfo::CreateObject

wxObject* CreateObject ()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

wxClassInfo::FindClass

static wxClassInfo * FindClass (wxChar * name)

CHAPTER 7

146

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassName1

wxChar * GetBaseClassName1 () const

Returns the name of the first base class (NULL if none).

wxClassInfo::GetBaseClassName2

wxChar * GetBaseClassName2 () const

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName

wxChar * GetClassName () const

Returns the string form of the class name.

wxClassInfo::GetSize

int GetSize () const

Returns the size of the class.

wxClassInfo::InitializeClasses

static void InitializeClasses ()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWidgets library initialization.

wxClassInfo::IsKindOf

bool IsKindOf (wxClassInfo* info)

Returns true if this class is a kind of (inherits from) the given class.

wxClient

A wxClient object represents the client part of a client-server DDE-like (Dynamic Data
Exchange) conversation. The actual DDE-based implementation using wxDDEClient is
available on Windows only, but a platform-independent, socket-based version of this API
is available using wxTCPClient, which has the same API.

To create a client which can communicate with a suitable server, you need to derive a
class from wxConnection and another from wxClient. The custom wxConnection class
will intercept communications in a 'conversation' with a server, and the custom wxClient

CHAPTER 7

147

is required so that a user-overriddenwxClient::OnMakeConnection (p. 151) member can
return a wxConnection of the required class, when a connection is made. Look at the
IPC sample and the Interprocess communications overview (p. Error! Bookmark not
defined.) for an example of how to do this.

Derived from

wxClientBase
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/ipc.h>

See also

wxServer (p. Error! Bookmark not defined.), wxConnection (p. 210), Interprocess
communications overview (p. Error! Bookmark not defined.)

wxClient::wxClient

 wxClient ()

Constructs a client object.

wxClient::MakeConnection

wxConnectionBase * MakeConnection (const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server by host (machine name under UNIX - use
'localhost' for same machine; ignored when using native DDE in Windows), service
name and topic string. If the server allows a connection, a wxConnection object will be
returned. The type of wxConnection returned can be altered by overriding the
wxClient::OnMakeConnection (p. 151) member to return your own derived connection
object.

Under Unix, the service name may be either an integer port identifier in which case an
Internet domain socket will be used for the communications, or a valid file name (which
shouldn't exist and will be deleted afterwards) in which case a Unix domain socket is
created.

SECURITY NOTE: Using Internet domain sockets if extremely insecure for IPC as there
is absolutely no access control for them, use Unix domain sockets whenever possible!

wxClient::OnMakeConnection

wxConnectionBase * OnMakeConnection ()

Called by wxClient::MakeConnection (p. 151), by default this simply returns a new

CHAPTER 7

148

wxConnection object. Override this method to return a wxConnection descendant
customised for the application.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxConnection::OnAdvise (p. 212).
You may also want to store application-specific data in instances of the new class.

wxClient::ValidHost

bool ValidHost (const wxString& host)

Returns true if this is a valid host name, false otherwise. This always returns true under
MS Windows.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint , construct a wxPaintDC (p. Error! Bookmark
not defined.) object.

To draw on the whole window including decorations, construct a wxWindowDC (p.
Error! Bookmark not defined.) object (Windows only).

Derived from

wxWindowDC (p. Error! Bookmark not defined.)
wxDC (p. 372)

Include files

<wx/dcclient.h>

See also

wxDC (p. 372), wxMemoryDC (p. Error! Bookmark not defined.), wxPaintDC (p. Error!
Bookmark not defined.), wxWindowDC (p. Error! Bookmark not defined.),
wxScreenDC (p. Error! Bookmark not defined.)

wxClientDC::wxClientDC

 wxClientDC (wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClientData

CHAPTER 7

149

All classes deriving from wxEvtHandler (p. 490)(such as all controls and wxApp (p. 36))
can hold arbitrary data which is here referred to as "client data". This is useful e.g. for
scripting languages which need to handle shadow objects for most of wxWidgets'
classes and which store a handle to such a shadow class as client data in that class.
This data can either be of type void - in which case the datacontainer does not take care
of freeing the data again or it is of type wxClientData or its derivatives. In that case the
container (e.g. a control) will free the memory itself later. Note that you must not assign
both void data and data derived from the wxClientData class to a container.

Some controls can hold various items and these controls can additionally hold client data
for each item. This is the case forwxChoice (p. 145), wxComboBox (p. 176)and
wxListBox (p. 858). wxTreeCtrl (p. Error! Bookmark not defined.)has a specialized
class wxTreeItemData (p. Error! Bookmark not defined.)for each item in the tree.

If you want to add client data to your own classes, you may use the mix-in class
wxClientDataContainer (p. 153).

Include files

<wx/clntdata.h>

See also

wxEvtHandler (p. 490), wxTreeItemData (p. Error! Bookmark not
defined.),wxStringClientData (p. Error! Bookmark not defined.),
wxClientDataContainer (p. 153)

wxClientData::wxClientData

 wxClientData ()

Constructor.

wxClientData::~wxClientData

 ~wxClientData ()

Virtual destructor.

wxClientDataContainer

This class is a mixin that provides storage and management of "client data." This data
can either be of type void - in which case the datacontainer does not take care of freeing
the data again or it is of type wxClientData or its derivatives. In that case the container
will free the memory itself later. Note that you must not assign both void data and data
derived from the wxClientData class to a container.

NOTE: This functionality is currently duplicated in wxEvtHandler in order to avoid having
more than one vtable in that class hierarchy.

CHAPTER 7

150

See also

wxEvtHandler (p. 490), wxClientData (p. 152)

Derived from

No base class

Include files

<wx/clntdata.h>

Data structures

wxClientDataContainer::wxClientDataContainer

 wxClientDataContainer ()

wxClientDataContainer::~wxClientDataContainer

 ~wxClientDataContainer ()

wxClientDataContainer::GetClientData

void* GetClientData () const

Get the untyped client data.

wxClientDataContainer::GetClientObject

wxClientData* GetClientObject () const

Get a pointer to the client data object.

wxClientDataContainer::SetClientData

void SetClientData (void* data)

Set the untyped client data.

wxClientDataContainer::SetClientObject

void SetClientObject (wxClientData* data)

Set the client data object. Any previous object will be deleted.

wxClipboard

CHAPTER 7

151

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWidgets 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.

See also the wxDataObject overview (p. Error! Bookmark not defined.) for further
information.

Call wxClipboard::Open (p. 157) to get ownership of the clipboard. If this operation
returns true, you now own the clipboard. Call wxClipboard::SetData (p. 157) to put data
on the clipboard, or wxClipboard::GetData (p. 156) to retrieve data from the clipboard.
Call wxClipboard::Close (p. 156) to close the clipboard and relinquish ownership. You
should keep the clipboard open only momentarily.

For example:

 // Write some text to the clipboard
 if (wxTheClipboard->Open())
 {
 // This data objects are held by the clipboard,
 // so do not delete them in the app.
 wxTheClipboard->SetData(new wxTextDataObject(" Some text"));
 wxTheClipboard->Close();
 }

 // Read some text
 if (wxTheClipboard->Open())
 {
 if (wxTheClipboard->IsSupported(wxDF_TEXT))
 {
 wxTextDataObject data;
 wxTheClipboard->GetData(data);
 wxMessageBox(data.GetText());
 }
 wxTheClipboard->Close();
 }

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/clipbrd.h>

See also

Drag and drop overview (p. Error! Bookmark not defined.), wxDataObject (p. 242)

wxClipboard::wxClipboard

 wxClipboard ()

Constructor.

CHAPTER 7

152

wxClipboard::~wxClipboard

 ~wxClipboard ()

Destructor.

wxClipboard::AddData

bool AddData (wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 156).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 157)

wxClipboard::Clear

void Clear ()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

void Close ()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
157).

wxClipboard::Flush

bool Flush ()

Flushes the clipboard: this means that the data which is currently on clipboard will stay
available even after the application exits (possibly eating memory), otherwise the
clipboard will be emptied on exit. Returns false if the operation is unsuccessful for any
reason.

wxClipboard::GetData

bool GetData (wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns true on success.

wxClipboard::IsOpened

CHAPTER 7

153

bool IsOpened () const

Returns true if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported (const wxDataFormat& format)

Returns true if there is data which matches the data format of the given data object
currently available (IsSupported sounds like a misnomer, FIXME: better deprecate this
name?) on the clipboard.

wxClipboard::Open

bool Open ()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 157) and
wxClipboard::GetData (p. 156).

Call wxClipboard::Close (p. 156) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns true on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData (wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 155)

wxClipboard::UsePrimarySelection

void UsePrimarySelection (bool primary = true)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is true.

wxCloseEvent

This event class contains information about window and session close events.

The handler function for EVT_CLOSE is called when the user has tried to close a a
frame or dialog box using the window manager (X) or system menu (Windows). It can

CHAPTER 7

154

also be invoked by the application itself programmatically, for example by calling the
wxWindow::Close (p. Error! Bookmark not defined.) function.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::CanVeto (p. 158). If this is false , you must destroy the window using
wxWindow::Destroy (p. Error! Bookmark not defined.). If the return value is true, it is
up to you whether you respond by destroying the window.

If you don't destroy the window, you should call wxCloseEvent::Veto (p. 159) to let the
calling code know that you did not destroy the window. This allows the wxWindow::Close
(p. Error! Bookmark not defined.) function to return true or false depending on
whether the close instruction was honoured or not.

Derived from

wxEvent (p. 487)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
wxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also
wxWindow::Close (p. Error! Bookmark not defined.), Window deletion overview (p.
Error! Bookmark not defined.)

wxCloseEvent::wxCloseEvent

 wxCloseEvent (WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto ()

CHAPTER 7

155

Returns true if you can veto a system shutdown or a window close event. Vetoing a
window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff () const

Returns true if the user is just logging off or false if the system is shutting down. This
method can only be called for end session and query end session events, it doesn't
make sense for close window event.

wxCloseEvent::SetCanVeto

void SetCanVeto (bool canVeto)

Sets the 'can veto' flag.

wxCloseEvent::SetForce

void SetForce (bool force) const

Sets the 'force' flag.

wxCloseEvent::SetLoggingOff

void SetLoggingOff (bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto (bool veto = true)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 158) returns true.

wxCmdLineParser

wxCmdLineParser is a class for parsing the command line.

It has the following features:

 1. distinguishes options, switches and parameters; allows option grouping

 2. allows both short and long options

 3. automatically generates the usage message from the command line description

CHAPTER 7

156

 4. does type checks on the options values (number, date, ...).

To use it you should follow these steps:

 1. construct (p. 162) an object of this class giving it the command line to parse and
optionally its description or use AddXXX() functions later

 2. call Parse()

 3. use Found() to retrieve the results

In the documentation below the following terminology is used:

switch This is a boolean option which can be given or
not, but which doesn't have any value. We use
the word switch to distinguish such boolean
options from more generic options like those
described below. For example, -v might be a
switch meaning "enable verbose mode".

option Option for us here is something which comes
with a value 0 unlike a switch. For example, -
o:filename might be an option which allows
to specify the name of the output file.

parameter This is a required program argument.

Derived from

No base class

Include files

<wx/cmdline.h>

Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 166).
Also, the meanings of parameters of the AddXXX() functions are the same as of the
corresponding fields in this structure:

struct wxCmdLineEntryDesc
{
 wxCmdLineEntryType kind;
 const wxChar *shortName;
 const wxChar *longName;
 const wxChar *description;
 wxCmdLineParamType type;
 int flags;
};

The type of a command line entity is in the kind field and may be one of the following
constants:

enum wxCmdLineEntryType

CHAPTER 7

157

{
 wxCMD_LINE_SWITCH,
 wxCMD_LINE_OPTION,
 wxCMD_LINE_PARAM,
 wxCMD_LINE_NONE // use this to terminat e the list
}

The field shortName is the usual, short, name of the switch or the option.longName is
the corresponding long name or NULL if the option has no long name. Both of these
fields are unused for the parameters. Both the short and long option names can contain
only letters, digits and the underscores.

description is used by the Usage() (p. 167) method to construct a help message
explaining the syntax of the program.

The possible values of type which specifies the type of the value accepted by an option
or parameter are:

enum wxCmdLineParamType
{
 wxCMD_LINE_VAL_STRING, // default
 wxCMD_LINE_VAL_NUMBER,
 wxCMD_LINE_VAL_DATE,
 wxCMD_LINE_VAL_NONE
}

Finally, the flags field is a combination of the following bit masks:

enum
{
 wxCMD_LINE_OPTION_MANDATORY = 0x01, // this opt ion must be
given
 wxCMD_LINE_PARAM_OPTIONAL = 0x02, // the para meter may be
omitted
 wxCMD_LINE_PARAM_MULTIPLE = 0x04, // the para meter may be
repeated
 wxCMD_LINE_OPTION_HELP = 0x08, // this opt ion is a help
request
 wxCMD_LINE_NEEDS_SEPARATOR = 0x10, // must hav e sep before
the value
}

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to
AddParam() (p. 167) allows one more parameter - this may be changed by giving non-
default flags to it, i.e. use wxCMD_LINE_OPTION_MANDATORY to require that the option
is given and wxCMD_LINE_PARAM_OPTIONAL to make a parameter optional. Also,
wxCMD_LINE_PARAM_MULTIPLE may be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command
line description. If you use this flag, you will probably need to use GetParamCount (p.
168) to retrieve the number of parameters effectively specified after calling Parse (p.
167).

CHAPTER 7

158

The last flag wxCMD_LINE_NEEDS_SEPARATOR can be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

wxApp::argc (p. 37) and wxApp::argv (p. 37)
console sample

Construction

Before Parse (p. 167) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and
parameters are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 167).

To specify the command line to parse you may use either one of constructors accepting
it (wxCmdLineParser(argc, argv) (p. 163) or wxCmdLineParser (p. 164) usually) or, if
you use the default constructor (p. 163), you can do it later by calling SetCmdLine (p.
164).

The same holds for command line description: it can be specified either in the
constructor (without command line (p. 164) or together with it (p. 164)) or constructed
later using either SetDesc (p. 166) or combination of AddSwitch (p. 167), AddOption (p.
167) and AddParam (p. 167) methods.

Using constructors or SetDesc (p. 166) uses a (usually const static) table containing
the command line description. If you want to decide which options to accept during the
run-time, using one of the AddXXX() functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 167).

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes ("--") and look like this: --verbose ,
i.e. they generally are complete words and not some abbreviations of them. As long
options are used by more and more applications, they are enabled by default, but may
be disabled with DisableLongOptions (p. 166).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,
'-' is always used, but Windows has at least two common choices for this: '-' and
'/' . Some programs also use '+' . The default is to use what suits most the current
platform, but may be changed with SetSwitchChars (p. 165) method.

Finally, SetLogo (p. 166) can be used to show some application-specific text before the

CHAPTER 7

159

explanation given by Usage (p. 167) function.

Parsing command line

After the command line description was constructed and the desired options were set,
you can finally call Parse (p. 167) method. It returns 0 if the command line was correct
and was parsed, -1 if the help option was specified (this is a separate case as, normally,
the program will terminate after this) or a positive number if there was an error during the
command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWidgets logging functions.

Getting results

After calling Parse (p. 167) (and if it returned 0), you may access the results of parsing
using one of overloaded Found() methods.

For a simple switch, you will simply call Found (p. 168) to determine if the switch was
given or not, for an option or a parameter, you will call a version of Found() which also
returns the associated value in the provided variable. All Found() functions return true if
the switch or option were found in the command line or false if they were not specified.

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser ()

Default constructor. You must use SetCmdLine (p. 164) later.

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (int argc, char** argv)

 wxCmdLineParser (int argc, wchar_t** argv)

Constructor specifies the command line to parse. This is the traditional (Unix) command
line format. The parameters argc and argv have the same meaning as for main()
function.

The second overloaded constructor is only available in Unicode build. The first one is
available in both ANSI and Unicode modes because under some platforms the
command line arguments are passed as ASCII strings even to Unicode programs.

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (const wxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of WinMain() .

CHAPTER 7

160

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 163), but also specifies the command line description (p.
166).

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 163), but also specifies the command line description (p.
166).

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (const wxCmdLineEntryDesc* desc, const wxString& cmdline)

Same as wxCmdLineParser (p. 164), but also specifies the command line description (p.
166).

wxCmdLineParser::ConvertStringToArgs

static wxArrayString ConvertStringToArgs (const wxChar *cmdline)

Breaks down the string containing the full command line in words. The words are
separated by whitespace. The quotes can be used in the input string to quote the white
space and the back slashes can be used to quote the quotes.

wxCmdLineParser::SetCmdLine

void SetCmdLine (int argc, char** argv)

void SetCmdLine (int argc, wchar_t** argv)

Set command line to parse after using one of the constructors which don't do it. The
second overload of this function is only available in Unicode build.

See also

wxCmdLineParser (p. 163)

wxCmdLineParser::SetCmdLine

void SetCmdLine (const wxString& cmdline)

Set command line to parse after using one of the constructors which don't do it.

See also

wxCmdLineParser (p. 164)

CHAPTER 7

161

wxCmdLineParser::~wxCmdLineParser

 ~wxCmdLineParser ()

Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars (const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is
"-" for Unix, "-/" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions (bool enable = true)

Enable or disable support for the long options.

As long options are not (yet) POSIX-compliant, this option allows to disable them.

See also

Customization (p. 162) and AreLongOptionsEnabled (p. 166)

wxCmdLineParser::DisableLongOptions

void DisableLongOptions ()

Identical to EnableLongOptions(false) (p. 165).

wxCmdLineParser::AreLongOptionsEnabled

bool AreLongOptionsEnabled ()

Returns true if long options are enabled, otherwise false.

See also

EnableLongOptions (p. 165)

wxCmdLineParser::SetLogo

void SetLogo (const wxString& logo)

logo is some extra text which will be shown by Usage (p. 167) method.

wxCmdLineParser::SetDesc

CHAPTER 7

162

void SetDesc (const wxCmdLineEntryDesc* desc)

Construct the command line description

Take the command line description from the wxCMD_LINE_NONE terminated table.

Example of usage:

static const wxCmdLineEntryDesc cmdLineDesc[] =
{
 { wxCMD_LINE_SWITCH, "v", "verbose", "be verbos e" },
 { wxCMD_LINE_SWITCH, "q", "quiet", "be quiet" },

 { wxCMD_LINE_OPTION, "o", "output", "output fi le" },
 { wxCMD_LINE_OPTION, "i", "input", "input dir " },
 { wxCMD_LINE_OPTION, "s", "size", "output bl ock size",
wxCMD_LINE_VAL_NUMBER },
 { wxCMD_LINE_OPTION, "d", "date", "output fi le date",
wxCMD_LINE_VAL_DATE },

 { wxCMD_LINE_PARAM, NULL, NULL, "input file",
wxCMD_LINE_VAL_STRING, wxCMD_LINE_PARAM_MULTIPLE },

 { wxCMD_LINE_NONE }
};

wxCmdLineParser parser;

parser.SetDesc(cmdLineDesc);

wxCmdLineParser::AddSwitch

void AddSwitch (const wxString& name, const wxString& lng = wxEmptyString,
const wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long name lng (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption

void AddOption (const wxString& name, const wxString& lng = wxEmptyString,
const wxString& desc = wxEmptyString, wxCmdLineParamType type =
wxCMD_LINE_VAL_STRING, int flags = 0)

Add an option name with an optional long name lng (no long name if it is empty, which is
default) taking a value of the given type (string by default) to the command line
description.

wxCmdLineParser::AddParam

void AddParam (const wxString& desc = wxEmptyString, wxCmdLineParamType
type = wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

CHAPTER 7

163

wxCmdLineParser::Parse

int Parse (bool giveUsage = true)

Parse the command line, return 0 if ok, -1 if "-h" or "--help" option was encountered
and the help message was given or a positive value if a syntax error occurred.

Parameters

giveUsage

If true (default), the usage message is given if a syntax error was encountered
while parsing the command line or if help was requested. If false , only error
messages about possible syntax errors are given, use Usage (p. 167) to show the
usage message from the caller if needed.

wxCmdLineParser::Usage

void Usage ()

Give the standard usage message describing all program options. It will use the options
and parameters descriptions specified earlier, so the resulting message will not be
helpful to the user unless the descriptions were indeed specified.

See also

SetLogo (p. 166)

wxCmdLineParser::Found

bool Found (const wxString& name) const

Returns true if the given switch was found, false otherwise.

wxCmdLineParser::Found

bool Found (const wxString& name, wxString* value) const

Returns true if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found (const wxString& name, long* value) const

Returns true if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found (const wxString& name, wxDateTime* value) const

CHAPTER 7

164

Returns true if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount () const

Returns the number of parameters found. This function makes sense mostly if you had
used wxCMD_LINE_PARAM_MULTIPLE flag.

wxCmdLineParser::GetParam

wxString GetParam (size_t n = 0u) const

Returns the value of Nth parameter (as string only for now).

See also

GetParamCount (p. 168)

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 173) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

You can retrieve the current system colour settings with wxSystemSettings (p. Error!
Bookmark not defined.).

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

wxBLACK
wxWHITE
wxRED
wxBLUE

CHAPTER 7

165

wxGREEN
wxCYAN
wxLIGHT_GREY

See also

wxColourDatabase (p. 173), wxPen (p. Error! Bookmark not defined.), wxBrush (p.
108), wxColourDialog (p. 175), wxSystemSettings (p. Error! Bookmark not defined.)

wxColour::wxColour

 wxColour ()

Default constructor.

 wxColour (unsigned char red, unsigned char green, unsigned char blue)

Constructs a colour from red, green and blue values.

 wxColour (const wxString& colourNname)

Constructs a colour object using a colour name listed in wxTheColourDatabase .

 wxColour (const wxColour& colour)

Copy constructor.

Parameters

red

The red value.

green

The green value.

blue

The blue value.

colourName

The colour name.

colour

The colour to copy.

See also

wxColourDatabase (p. 173)

CHAPTER 7

166

wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)

wxNamedColour(name)

wxColour::Blue

unsigned char Blue () const

Returns the blue intensity.

wxColour::GetPixel

long GetPixel () const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

wxColour::Green

unsigned char Green () const

Returns the green intensity.

wxColour::Ok

bool Ok() const

Returns true if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(unsigned char red, unsigned char green, unsigned char blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator = (const wxColour& colour)

CHAPTER 7

167

Assignment operator, taking another colour object.

wxColour& operator = (const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.

See also

wxColourDatabase (p. 173)

wxColour::operator ==

bool operator == (const wxColour& colour)

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator !=

bool operator != (const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wxColourData

This class holds a variety of information related to colour dialogs.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/cmndata.h>

See also

wxColour (p. 168), wxColourDialog (p. 175), wxColourDialog overview (p. Error!
Bookmark not defined.)

wxColourData::wxColourData

 wxColourData ()

Constructor. Initializes the custom colours to wxNullColour , the data colour setting to
black, and the choose full setting to true.

wxColourData::~wxColourData

 ~wxColourData ()

CHAPTER 7

168

Destructor.

wxColourData::GetChooseFull

bool GetChooseFull () const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Under PalmOS, determines whether colour
dialog will display full rgb colour picker or only available palette indexer. Has no meaning
under other platforms.

The default value is true.

wxColourData::GetColour

wxColour& GetColour () const

Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour (int i) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are invalid colours.

wxColourData::SetChooseFull

void SetChooseFull (const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is true.

wxColourData::SetColour

void SetColour (const wxColour& colour)

Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetCustomColour (int i, const wxColour& colour)

CHAPTER 7

169

Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are invalid colours.

wxColourData::operator =

void operator = (const wxColourData& data)

Assignment operator for the colour data.

wxColourDatabase

wxWidgets maintains a database of standard RGB colours for a predefined set of named
colours (such as "BLACK'', "LIGHT GREY''). The application may add to this set if
desired by usingAddColour (p. 174) and may use it to look up colours by names using
Find (p. 174) or find the names for the standard colour suing FindName (p. 175).

There is one predefined instance of this class calledwxTheColourDatabase .

Derived from

None

Include files

<wx/gdicmn.h>

Remarks

The standard database contains at least the following colours:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,
DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

wxColour (p. 168)

wxColourDatabase::wxColourDatabase

CHAPTER 7

170

 wxColourDatabase ()

Constructs the colour database. It will be initialized at the first use.

wxColourDatabase::AddColour

void AddColour (const wxString& colourName, const wxColour& colour)

void AddColour (const wxString& colourName, wxColour* colour)

Adds a colour to the database. If a colour with the same name already exists, it is
replaced.

Please note that the overload taking a pointer is deprecated and will be removed in the
next wxWidgets version, please don't use it.

wxColourDatabase::Find

wxColour Find (const wxString& colourName)

Finds a colour given the name. Returns an invalid colour object (that is, such that its
Ok() (p. 171) method returns false) if the colour wasn't found in the database.

wxColourDatabase::FindName

wxString FindName (const wxColour& colour) const

Finds a colour name given the colour. Returns an empty string if the colour is not found
in the database.

wxColourDialog

This class represents the colour chooser dialog.

Derived from

wxDialog (p. 412)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/colordlg.h>

See also

wxColourDialog Overview (p. Error! Bookmark not defined.),
wxColour (p. 168),
wxColourData (p. 172),
wxGetColourFromUser (p. Error! Bookmark not defined.)

CHAPTER 7

171

wxColourDialog::wxColourDialog

 wxColourDialog (wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data. Custom colours from colour data
object will be be used in dialog's colour palette. Invalid entries in custom colours list will
be ignored on some platforms (GTK) or replaced with white colour on platforms where
custom colours palette has fixed size (MSW).

See also

wxColourData (p. 172)

wxColourDialog::~wxColourDialog

 ~wxColourDialog ()

Destructor.

wxColourDialog::Create

bool Create (wxWindow* parent, wxColourData* data = NULL)

Same as constructor (p. 175).

wxColourDialog::GetColourData

wxColourData& GetColourData ()

Returns the colour data (p. 172) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.

Derived from

CHAPTER 7

172

wxControlWithItems (p. 219)
wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/combobox.h>

Window styles

wxCB_SIMPLE Creates a combobox with a permanently
displayed list. Windows only.

wxCB_DROPDOWN Creates a combobox with a drop-down list.

wxCB_READONLY Same as wxCB_DROPDOWN but only the
strings specified as the combobox choices can
be selected, it is impossible to select (even
from a program) a string which is not in the
choices list.

wxCB_SORT Sorts the entries in the list alphabetically.

wxPROCESS_ENTER The control will generate the event
wxEVT_COMMAND_TEXT_ENTER (otherwise
pressing Enter key is either processed
internally by the control or used for navigation
between dialog controls). Windows only.

See also window styles overview (p. Error! Bookmark not defined.).

Event handling

EVT_COMBOBOX(id, func) Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.
Note that callingGetValue (p. 180) returns the
new value of selection.

EVT_TEXT(id, func) Process a
wxEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
event, when <RETURN> is pressed in the
combobox.

See also

wxListBox (p. 858), wxTextCtrl (p. Error! Bookmark not defined.), wxChoice (p. 145),
wxCommandEvent (p. 184)

CHAPTER 7

173

wxComboBox::wxComboBox

 wxComboBox ()

Default constructor.

 wxComboBox (wxWindow* parent, wxWindowID id, const wxString& value = "",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n =
0, const wxString choices[] = NULL, long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "comboBox")

 wxComboBox (wxWindow* parent, wxWindowID id, const wxString& value, const
wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style = 0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboBox")

Constructor, creating and showing a combobox.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

value

Initial selection string. An empty string indicates no selection.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n

Number of strings with which to initialise the control.

choices

An array of strings with which to initialise the control.

style

Window style. See wxComboBox (p. 176).

CHAPTER 7

174

validator

Window validator.

name

Window name.

See also

wxComboBox::Create (p. 179), wxValidator (p. Error! Bookmark not defined.)

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

wxComboBox::~wxComboBox

 ~wxComboBox ()

Destructor, destroying the combobox.

wxComboBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices[], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

bool Create (wxWindow* parent, wxWindowID id, const wxString& value, const
wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style = 0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 177) for further details.

wxComboBox::CanCopy

bool CanCopy () const

Returns true if the combobox is editable and there is a text selection to copy to the
clipboard. Only available on Windows.

wxComboBox::CanCut

bool CanCut () const

Returns true if the combobox is editable and there is a text selection to copy to the
clipboard. Only available on Windows.

CHAPTER 7

175

wxComboBox::CanPaste

bool CanPaste () const

Returns true if the combobox is editable and there is text on the clipboard that can be
pasted into the text field. Only available on Windows.

wxComboBox::CanRedo

bool CanRedo () const

Returns true if the combobox is editable and the last undo can be redone. Only available
on Windows.

wxComboBox::CanUndo

bool CanUndo () const

Returns true if the combobox is editable and the last edit can be undone. Only available
on Windows.

wxComboBox::Copy

void Copy ()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut ()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::GetInsertionPoint

long GetInsertionPoint () const

Returns the insertion point for the combobox's text field.

Note: Under wxMSW, this function always returns 0 if the combobox doesn't have the
focus.

wxComboBox::GetLastPosition

virtual wxTextPos GetLastPosition () const

Returns the last position in the combobox text field.

wxComboBox::GetValue

CHAPTER 7

176

wxString GetValue () const

Returns the current value in the combobox text field.

wxComboBox::Paste

void Paste ()

Pastes text from the clipboard to the text field.

wxComboBox::Redo

void Redo ()

Redoes the last undo in the text field. Windows only.

wxComboBox::Replace

void Replace (long from, long to, const wxString& text)

Replaces the text between two positions with the given text, in the combobox text field.

Parameters

from

The first position.

to

The second position.

text

The text to insert.

wxComboBox::Remove

void Remove (long from, long to)

Removes the text between the two positions in the combobox text field.

Parameters

from

The first position.

to

The last position.

wxComboBox::SetInsertionPoint

CHAPTER 7

177

void SetInsertionPoint (long pos)

Sets the insertion point in the combobox text field.

Parameters

pos

The new insertion point.

wxComboBox::SetInsertionPointEnd

void SetInsertionPointEnd ()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection (long from, long to)

Selects the text between the two positions, in the combobox text field.

Parameters

from

The first position.

to

The second position.

wxPython note: This method is called SetMark in wxPython, SetSelection name is
kept forwxControlWithItems::SetSelection (p. 225).

wxComboBox::SetValue

void SetValue (const wxString& text)

Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONLY style the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

Parameters

text

The text to set.

wxComboBox::Undo

void Undo ()

CHAPTER 7

178

Undoes the last edit in the text field. Windows only.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/cmdproc.h>

See also

Overview (p. Error! Bookmark not defined.)

wxCommand::wxCommand

 wxCommand (bool canUndo = false, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependent).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

 ~wxCommand ()

Destructor.

wxCommand::CanUndo

bool CanUndo ()

Returns true if the command can be undone, false otherwise.

wxCommand::Do

bool Do()

CHAPTER 7

179

Override this member function to execute the appropriate action when called. Return
true to indicate that the action has taken place, false otherwise. Returning false will
indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName ()

Returns the command name.

wxCommand::Undo

bool Undo ()

Override this member function to un-execute a previous Do. Return true to indicate that
the action has taken place, false otherwise. Returning false will indicate to the command
processor that the action is not redoable and no change should be made to the
command history.

How you implement this command is totally application dependent, but typical strategies
include:

 • Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.

 • Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. Error!
Bookmark not defined.), have separate command event classes.

Derived from

wxEvent (p. 487)

Include files

<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to

CHAPTER 7

180

member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

EVT_COMBOBOX(id, func) Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

EVT_LISTBOX(id, func) Process a
wxEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

EVT_LISTBOX_DCLICK(id, func) Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

EVT_MENU(id, func) Process a
wxEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.

EVT_MENU_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

EVT_CONTEXT_MENU(func) Process the event generated when the user
has requested a popup menu to appear by
pressing a special keyboard key (under

CHAPTER 7

181

Windows) or by right clicking the mouse.

EVT_RADIOBOX(id, func) Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a
wxRadioBox control.

EVT_RADIOBUTTON(id, func) Process a
wxEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

EVT_SCROLLBAR(id, func) Process a
wxEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be
used instead (see wxScrollEvent (p. Error!
Bookmark not defined.)).

EVT_SLIDER(id, func) Process a
wxEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

EVT_TEXT(id, func) Process a
wxEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control. Note that you must use
wxTE_PROCESS_ENTER flag when creating
the control if you want it to generate such
events.

EVT_TEXT_MAXLEN(id, func) Process a
wxEVT_COMMAND_TEXT_MAXLEN
command, which is generated by a wxTextCtrl
control when the user tries to enter more
characters into it than the limit previously set
with SetMaxLength (p. Error! Bookmark not
defined.).

EVT_TOGGLEBUTTON(id, func) Process a
wxEVT_COMMAND_TOGGLEBUTTON_CLIC
KED event.

EVT_TOOL(id, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).

CHAPTER 7

182

Pass the id of the tool.

EVT_TOOL_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event
for a range of identifiers. Pass the ids of the
tools.

EVT_TOOL_RCLICKED(id, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a
wxEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a
wxEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a
wxEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_SET_FOCUS(id, func) Process a
wxEVT_COMMAND_SET_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_KILL_FOCUS(id, func) Process a
wxEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

wxCommandEvent::wxCommandEvent

 wxCommandEvent (WXTYPE commandEventType = 0, int id = 0)

CHAPTER 7

183

Constructor.

wxCommandEvent::Checked

bool Checked () const

Deprecated, use IsChecked (p. 188) instead.

wxCommandEvent::GetClientData

void* GetClientData ()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetClientObject

wxClientData * GetClientObject ()

Returns client object pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtraLong ()

Returns extra information dependant on the event objects type. If the event comes from
a listbox selection, it is a boolean determining whether the event was a selection (true)
or a deselection (false). A listbox deselection only occurs for multiple-selection boxes,
and in this case the index and string values are indeterminate and the listbox must be
examined by the application.

wxCommandEvent::GetInt

int GetInt ()

Returns the integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::GetSelection

int GetSelection ()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

wxString GetString ()

CHAPTER 7

184

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked () const

This method can be used with checkbox and menu events: for the checkboxes, the
method returns true for a selection event and false for a deselection one. For the
menu events, this method indicates if the menu item just has become checked or
unchecked (and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection

bool IsSelection ()

For a listbox or similar event, returns true if it is a selection, false if it is a deselection.

wxCommandEvent::SetClientData

void SetClientData (void* clientData)

Sets the client data for this event.

wxCommandEvent::SetClientObject

void SetClientObject (wxClientData* clientObject)

Sets the client object for this event. The client object is not owned by the event object
and the event object will not delete the client object in its destructor. The client object
must be owned and deleted by another object (e.g. a control) that has longer life time
than the event object.

wxCommandEvent::SetExtraLong

void SetExtraLong (int extraLong)

Sets the m_extraLong member.

wxCommandEvent::SetInt

void SetInt (int intCommand)

Sets the m_commandInt member.

wxCommandEvent::SetString

void SetString (const wxString& string)

Sets the m_commandString member.

CHAPTER 7

185

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/cmdproc.h>

See also

wxCommandProcessor overview (p. Error! Bookmark not defined.), wxCommand (p.
182)

wxCommandProcessor::wxCommandProcessor

 wxCommandProcessor (int maxCommands = -1)

Constructor.

maxCommands may be set to a positive integer to limit the number of commands stored
to it, otherwise (and by default) the list of commands can grow arbitrarily.

wxCommandProcessor::~wxCommandProcessor

 ~wxCommandProcessor ()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo ()

Returns true if the currently-active command can be undone, false otherwise.

wxCommandProcessor::ClearCommands

virtual void ClearCommands ()

Deletes all commands in the list and sets the current command pointer to NULL.

wxCommandProcessor::Redo

virtual bool Redo ()

CHAPTER 7

186

Executes (redoes) the current command (the command that has just been undone if
any).

wxCommandProcessor::GetCommands

wxList& GetCommands () const

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands () const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu () const

Returns the edit menu associated with the command processor.

wxCommandProcessor::GetRedoAccelerator

const wxString& GetRedoAccelerator () const

Returns the string that will be appended to the Redo menu item.

wxCommandProcessor::GetRedoMenuLabel

wxString GetRedoMenuLabel () const

Returns the string that will be shown for the redo menu item.

wxCommandProcessor::GetUndoAccelerator

const wxString& GetUndoAccelerator () const

Returns the string that will be appended to the Undo menu item.

wxCommandProcessor::GetUndoMenuLabel

wxString GetUndoMenuLabel () const

Returns the string that will be shown for the undo menu item.

wxCommandProcessor::Initialize

virtual void Initialize ()

Initializes the command processor, setting the current command to the last in the list (if

CHAPTER 7

187

any), and updating the edit menu (if one has been specified).

wxCommandProcessor::IsDirty

virtual bool IsDirty ()

Returns a boolean value that indicates if changes have been made since the last save
operation. This only works if wxCommandProcessor::MarkAsSaved (p. 192)is called
whenever the project is saved.

wxCommandProcessor::MarkAsSaved

virtual void MarkAsSaved ()

You must call this method whenever the project is saved if you plan to use
wxCommandProcessor::IsDirty (p. 191).

wxCommandProcessor::SetEditMenu

void SetEditMenu (wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::SetMenuStrings

void SetMenuStrings ()

Sets the menu labels according to the currently set menu and the current command
state.

wxCommandProcessor::SetRedoAccelerator

void SetRedoAccelerator (const wxString& accel)

Sets the string that will be appended to the Redo menu item.

wxCommandProcessor::SetUndoAccelerator

void SetUndoAccelerator (const wxString& accel)

Sets the string that will be appended to the Undo menu item.

wxCommandProcessor::Submit

virtual bool Submit (wxCommand * command, bool storeIt = true)

Submits a new command to the command processor. The command processor calls

CHAPTER 7

188

wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storeIt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

virtual bool Undo ()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true
which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. Error! Bookmark not defined.) for the worker thread,
but if there are several worker threads it already makes much more sense).

Note that a call to Signal() (p. 195) may happen before the other thread calls Wait() (p.
196) and, just as with the pthread conditions, the signal is then lost and so if you want to
be sure that you don't miss it you must keep the mutex associated with the condition
initially locked and lock it again before calling Signal() (p. 195). Of course, this means
that this call is going to block until Wait() (p. 196) is called by another thread.

Example

This example shows how a main thread may launch a worker thread which starts
running and then waits until the main thread signals it to continue:

class MySignallingThread : public wxThread
{
public:
 MySignallingThread(wxMutex *mutex, wxCondition *condition)
 {
 m_mutex = mutex;
 m_condition = condition;

 Create();
 }

 virtual ExitCode Entry()
 {
 ... do our job ...

 // tell the other(s) thread(s) that we're a bout to
terminate: we must
 // lock the mutex first or we might signal the condition
before the

CHAPTER 7

189

 // waiting threads start waiting on it!
 wxMutexLocker lock(m_mutex);
 m_condition.Broadcast(); // same as Signal() here -- one
waiter only

 return 0;
 }

private:
 wxCondition *m_condition;
 wxMutex *m_mutex;
};

int main()
{
 wxMutex mutex;
 wxCondition condition(mutex);

 // the mutex should be initially locked
 mutex.Lock();

 // create and run the thread but notice that it won't be able
to
 // exit (and signal its exit) before we unlock the mutex below
 MySignallingThread *thread = new MySignallingTh read(&mutex,
&condition);

 thread->Run();

 // wait for the thread termination: Wait() atom ically unlocks
the mutex
 // which allows the thread to continue and star ts waiting
 condition.Wait();

 // now we can exit
 return 0;
}

Of course, here it would be much better to simply use a joinable thread and call
wxThread::Wait (p. Error! Bookmark not defined.) on it, but this example does
illustrate the importance of properly locking the mutex when using wxCondition.

Constants

The following return codes are returned by wxCondition member functions:

enum wxCondError
{
 wxCOND_NO_ERROR = 0, // successful completio n
 wxCOND_INVALID, // object hasn't been i nitialized
successfully
 wxCOND_TIMEOUT, // WaitTimeout() has ti med out
 wxCOND_MISC_ERROR // some other error
};

Derived from

None.

Include files

CHAPTER 7

190

<wx/thread.h>

See also

wxThread (p. Error! Bookmark not defined.), wxMutex (p. Error! Bookmark not
defined.)

wxCondition::wxCondition

 wxCondition (wxMutex& mutex)

Default and only constructor. The mutex must be locked by the caller before calling Wait
(p. 196) function.

Use IsOk (p. 195) to check if the object was successfully initialized.

wxCondition::~wxCondition

 ~wxCondition ()

Destroys the wxCondition object. The destructor is not virtual so this class should not be
used polymorphically.

wxCondition::Broadcast

void Broadcast ()

Broadcasts to all waiting threads, waking all of them up. Note that this method may be
called whether the mutex associated with this condition is locked or not.

See also

wxCondition::Signal (p. 195)

wxCondition::IsOk

bool IsOk () const

Returns true if the object had been initialized successfully, false if an error occurred.

wxCondition::Signal

void Signal ()

Signals the object waking up at most one thread. If several threads are waiting on the
same condition, the exact thread which is woken up is undefined. If no threads are
waiting, the signal is lost and the condition would have to be signalled again to wake up
any thread which may start waiting on it later.

Note that this method may be called whether the mutex associated with this condition is

CHAPTER 7

191

locked or not.

See also

wxCondition::Broadcast (p. 195)

wxCondition::Wait

wxCondError Wait ()

Waits until the condition is signalled.

This method atomically releases the lock on the mutex associated with this condition
(this is why it must be locked prior to calling Wait) and puts the thread to sleep until
Signal (p. 195) or Broadcast (p. 195) is called.

Note that even if Signal (p. 195) had been called before Wait without waking up any
thread, the thread would still wait for another one and so it is important to ensure that the
condition will be signalled after Wait or the thread may sleep forever.

Return value

Returns wxCOND_NO_ERROR on success, another value if an error occurred.

See also

WaitTimeout (p. 196)

wxCondition::WaitTimeout

wxCondError WaitTimeout (unsigned long milliseconds)

Waits until the condition is signalled or the timeout has elapsed.

This method is identical to Wait (p. 196) except that it returns, with the return code of
wxCOND_TIMEOUT as soon as the given timeout expires.

Parameters

milliseconds

Timeout in milliseconds

Return value

Returns wxCOND_NO_ERROR if the condition was signalled, wxCOND_TIMEOUT if the
timeout elapsed before this happened or another error code from wxCondError enum.

wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it is an abstract base class) and you will always use one of its derivations:

CHAPTER 7

192

wxFileConfig (p. 513), wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWidgets provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32 and wxFileConfig otherwise.

See config overview (p. Error! Bookmark not defined.) for the descriptions of all
features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a
look at them. (p. 198)

Derived from

No base class

Include files

<wx/config.h> (to let wxWidgets choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)
<wx/fileconf.h> (wxFileConfig class)
<wx/msw/regconf.h> (wxRegConfig class)

Example

Here is how you would typically use this class:

 // using wxConfig instead of writing wxFileConfig or wxRegConfig
enhances
 // portability of the code
 wxConfig *config = new wxConfig("MyAppName");

 wxString str;
 if (config->Read("LastPrompt", &str)) {
 // last prompt was found in the config file/reg istry and its
value is now
 // in str
 ...
 }
 else {
 // no last prompt...
 }

 // another example: using default values and the full path
instead of just
 // key name: if the key is not found , the value 17 is returned
 long value = config->Read("/LastRun/CalculatedVal ues/MaxValue",
17);
 ...
 ...
 ...
 // at the end of the program we would save everyt hing back
 config->Write("LastPrompt", str);
 config->Write("/LastRun/CalculatedValues/MaxValue ", value);

CHAPTER 7

193

 // the changes will be written back automatically
 delete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"
for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Note that
you must delete this object (usually in wxApp::OnExit (p. 42)) in order to avoid memory
leaks, wxWidgets won't do it automatically.

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWidgets library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
578) or Unix version of wxFileDialog (p. 515) have the ability to use wxConfig class.

Set (p. 209)
Get (p. 205)
Create (p. 204)
DontCreateOnDemand (p. 204)

Constructor and destructor

wxConfigBase (p. 202)
~wxConfigBase (p. 203)

Path management

As explained in config overview (p. Error! Bookmark not defined.), the config classes
support a file system-like hierarchy of keys (files) and groups (directories). As in the file
system case, to specify a key in the config class you must use a path to it. Config
classes also support the notion of the current group, which makes it possible to use the

CHAPTER 7

194

relative paths. To clarify all this, here is an example (it is only for the sake of
demonstration, it doesn't do anything sensible!):

 wxConfig *config = new wxConfig("FooBarApp");

 // right now the current path is '/'
 conf->Write("RootEntry", 1);

 // go to some other place: if the group(s) don't exist, they
will be created
 conf->SetPath("/Group/Subgroup");

 // create an entry in subgroup
 conf->Write("SubgroupEntry", 3);

 // '..' is understood
 conf->Write("../GroupEntry", 2);
 conf->SetPath("..");

 wxASSERT(conf->Read("Subgroup/SubgroupEntry", 0l) == 3);

 // use absolute path: it is allowed, too
 wxASSERT(conf->Read("/RootEntry", 0l) == 1);

Warning: it is probably a good idea to always restore the path to its old value on function
exit:

 void foo(wxConfigBase *config)
 {
 wxString strOldPath = config->GetPath();

 config->SetPath("/Foo/Data");
 ...

 config->SetPath(strOldPath);
 }

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

 void bar(wxConfigBase *config)
 {
 config->Write("Test", 17);

 foo(config);

 // we're reading "/Foo/Data/Test" here! -1 will probably be
returned...
 wxASSERT(config->Read("Test", -1) == 17);
 }

Finally, the path separator in wxConfigBase and derived classes is always '/', regardless
of the platform (i.e. it is not '\\' under Windows).

SetPath (p. 209)
GetPath (p. 206)

Enumeration

CHAPTER 7

195

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return false when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it is not the index of the current item (you will have some great surprises with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

 wxConfigBase *config = ...;
 wxArrayString aNames;

 // enumeration variables
 wxString str;
 long dummy;

 // first enum all entries
 bool bCont = config->GetFirstEntry(str, dummy);
 while (bCont) {
 aNames.Add(str);

 bCont = GetConfig()->GetNextEntry(str, dummy);
 }

 ... we have all entry names in aNames...

 // now all groups...
 bCont = GetConfig()->GetFirstGroup(str, dummy);
 while (bCont) {
 aNames.Add(str);

 bCont = GetConfig()->GetNextGroup(str, dummy);
 }

 ... we have all group (and entry) names in aNames ...

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 205)
GetNextGroup (p. 206)
GetFirstEntry (p. 205)
GetNextEntry (p. 206)
GetNumberOfEntries (p. 206)
GetNumberOfGroups (p. 206)

Tests of existence

HasGroup (p. 207)
HasEntry (p. 206)
Exists (p. 204)
GetEntryType (p. 205)

CHAPTER 7

196

Miscellaneous functions

GetAppName (p. 205)
GetVendorName (p. 206)
SetUmask (p. 513)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that sizeof(bool) ==
sizeof(int) == sizeof(long) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 207)
Write (p. 209)
Flush (p. 204)

Rename entries/groups

The functions in this section allow to rename entries or subgroups of the current group.
They will return false on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 208)
RenameGroup (p. 209)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:
for example, when you uninstall it.

DeleteEntry (p. 204)
DeleteGroup (p. 204)
DeleteAll (p. 204)

CHAPTER 7

197

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

 # config file for my program
 UserData = $HOME/data

 # the following syntax is valud only under Window s
 UserData = %windir%\\data.dat

the call to config->Read("UserData") will return something
like"/home/zeitlin/data" if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(false) just before reading this value and
SetExpandEnvVars(true) just after. Another solution would be to prefix the offending
symbols with a backslash.

The following functions control this option:

IsExpandingEnvVars (p. 207)
SetExpandEnvVars (p. 209)
SetRecordDefaults (p. 209)
IsRecordingDefaults (p. 207)

wxConfigBase::wxConfigBase

 wxConfigBase (const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0, wxMBConv& conv
= wxConvUTF8)

This is the default and only constructor of the wxConfigBase class, and derived classes.

Parameters

appName

The application name. If this is empty, the class will normally use
wxApp::GetAppName (p. 38) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName

The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

CHAPTER 7

198

localFilename

Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename

Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style

Can be one of wxCONFIG_USE_LOCAL_FILE and
wxCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logically or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths. For
wxFileConfig, you can also add wxCONFIG_USE_NO_ESCAPE_CHARACTERS
which will turn off character escaping for the values of entries stored in the config
file: for example a foo key with some backslash characters will be stored as
foo=C:\mydir instead of the usual storage of foo=C:\\mydir . For
wxRegConfig, this flag refers to HKLM, and provides read-only access.

The wxCONFIG_USE_NO_ESCAPE_CHARACTERS style can be helpful if your
config file must be read or written to by a non-wxWidgets program (which might
not understand the escape characters). Note, however, that if
wxCONFIG_USE_NO_ESCAPE_CHARACTERS style is used, it is is now your
application's responsibility to ensure that there is no newline or other illegal
characters in a value, before writing that value to the file.

conv

This parameter is only used by wxFileConfig when compiled in Unicode mode. It
specifies the encoding in which the configuration file is written.

Remarks

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase

 ~wxConfigBase ()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create ()

Create a new config object: this function will create the "best" implementation of

CHAPTER 7

199

wxConfig available for the current platform, see comments near the definition of
wxCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

void DontCreateOnDemand ()

Calling this function will prevent Get() from automatically creating a new config object if
the current one is NULL. It might be useful to call it near the program end to prevent
"accidental" creation of a new config object.

wxConfigBase::DeleteAll

bool DeleteAll ()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
uninstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry (const wxString& key, bool bDeleteGroupIfEmpty = true)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

bool DeleteGroup (const wxString& key)

Delete the group (with all subgroups)

wxConfigBase::Exists

bool Exists (wxString& strName) const

returns true if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush (bool bCurrentOnly = false)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

static wxConfigBase * Get(bool CreateOnDemand = true)

Get the current config object. If there is no current object andCreateOnDemand is true,
creates one (using Create) unless DontCreateOnDemand was called previously.

CHAPTER 7

200

wxConfigBase::GetAppName

wxString GetAppName () const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType (const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:

 enum EntryType
 {
 Type_Unknown,
 Type_String,
 Type_Boolean,
 Type_Integer,
 Type_Float
 };

wxConfigBase::GetFirstGroup

bool GetFirstGroup (wxString& str, long& index) const

Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index) .

wxConfigBase::GetFirstEntry

bool GetFirstEntry (wxString& str, long& index) const

Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index) .

wxConfigBase::GetNextGroup

bool GetNextGroup (wxString& str, long& index) const

CHAPTER 7

201

Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index) .

wxConfigBase::GetNextEntry

bool GetNextEntry (wxString& str, long& index) const

Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index) .

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries (bool bRecursive = false) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups (bool bRecursive = false) const

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath

const wxString& GetPath () const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName () const

Returns the vendor name.

wxConfigBase::HasEntry

bool HasEntry (wxString& strName) const

returns true if the entry by this name exists

wxConfigBase::HasGroup

CHAPTER 7

202

bool HasGroup (const wxString& strName) const

returns true if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars () const

Returns true if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults () const

Returns true if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString* str) const

Read a string from the key, returning true if the value was read. If the key was not
found, str is not changed.

bool Read(const wxString& key, wxString* str, const wxString& defaultVal) const

Read a string from the key. The default value is returned if the key was not found.

Returns true if value was really read, false if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* l) const

Reads a long value, returning true if the value was found. If the value was not found, l
is not changed.

bool Read(const wxString& key, long* l,long defaultVal) const

Reads a long value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, long defaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

 conf->Read("key", 0);

CHAPTER 7

203

won't work because the call is ambiguous: compiler can not choose between twoRead
functions. Instead, write:

 conf->Read("key", 0l);

bool Read(const wxString& key, double* d) const

Reads a double value, returning true if the value was found. If the value was not found,
d is not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

Reads a bool value, returning true if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default="") Returns a string.

ReadInt(key, default=0) Returns an int.

ReadFloat(key, default=0.0) Returns a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Read(key, default="") Returns a string

ReadInt(key, default=0) Returns an integer

ReadFloat(key, default=0.0) Returns a floating point number

ReadBool(key, default=0) Returns a boolean

wxConfigBase::RenameEntry

bool RenameEntry (const wxString& oldName, const wxString& newName)

Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

CHAPTER 7

204

Returns false if oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup (const wxString& oldName, const wxString& newName)

Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns false if oldName doesn't exist or if newName already exists.

wxConfigBase::Set

static wxConfigBase * Set(wxConfigBase * pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandEnvVars

void SetExpandEnvVars (bool bDoIt = true)

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath (const wxString& strPath)

Set current path: if the first character is '/', it is the absolute path, otherwise it is a relative
path. '..' is supported. If strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults (bool bDoIt = true)

Sets whether defaults are recorded to the config file whenever an attempt to read the
value which is not present in it is done.

If on (default is off) all default values for the settings used by the program are written
back to the config file. This allows the user to see what config options may be changed
and is probably useful only for wxFileConfig.

wxConfigBase::Write

bool Write (const wxString& key, const wxString& value)

bool Write (const wxString& key, long value)

bool Write (const wxString& key, double value)

CHAPTER 7

205

bool Write (const wxString& key, bool value)

These functions write the specified value to the config file and return true on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.

WriteInt(key, value) Writes an int.

WriteFloat(key, value) Writes a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Write(key, value) Writes a string

WriteInt(key, value) Writes an integer

WriteFloat(key, value) Writes a floating point number

WriteBool(key, value) Writes a boolean

wxConnection

A wxConnection object represents the connection between a client and a server. It is
created by making a connection using a wxClient (p. 150) object, or by the acceptance
of a connection by a wxServer (p. Error! Bookmark not defined.) object. The bulk of a
DDE-like (Dynamic Data Exchange) conversation is controlled by calling members in a
wxConnection object or by overriding its members. The actual DDE-based
implementation using wxDDEConnection is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPConnection,
which has the same API.

An application should normally derive a new connection class from wxConnection, in
order to override the communication event handlers to do something interesting.

Derived from

wxConnectionBase
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/ipc.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat
{

CHAPTER 7

206

 wxIPC_INVALID = 0,
 wxIPC_TEXT = 1, /* CF_TEXT */
 wxIPC_BITMAP = 2, /* CF_BITMAP */
 wxIPC_METAFILE = 3, /* CF_METAFILEPICT * /
 wxIPC_SYLK = 4,
 wxIPC_DIF = 5,
 wxIPC_TIFF = 6,
 wxIPC_OEMTEXT = 7, /* CF_OEMTEXT */
 wxIPC_DIB = 8, /* CF_DIB */
 wxIPC_PALETTE = 9,
 wxIPC_PENDATA = 10,
 wxIPC_RIFF = 11,
 wxIPC_WAVE = 12,
 wxIPC_UNICODETEXT = 13,
 wxIPC_ENHMETAFILE = 14,
 wxIPC_FILENAME = 15, /* CF_HDROP */
 wxIPC_LOCALE = 16,
 wxIPC_PRIVATE = 20
};

See also

wxClient (p. 150), wxServer (p. Error! Bookmark not defined.),Interprocess
communications overview (p. Error! Bookmark not defined.)

wxConnection::wxConnection

 wxConnection ()

 wxConnection (char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxConnection, then the constructor should not be called directly, since the default
connection object will be provided on requesting (or accepting) a connection. However, if
the user defines his or her own derived connection object, the
wxServer::OnAcceptConnection (p. Error! Bookmark not defined.) and/or
wxClient::OnMakeConnection (p. 151) members should be replaced by functions which
construct the new connection object.

If the arguments of the wxConnection constructor are void then the wxConnection object
manages its own connection buffer, allocating memory as needed. A programmer-
supplied buffer cannot be increased if necessary, and the program will assert if it is not
large enough. The programmer-supplied buffer is included mainly for backwards
compatibility.

wxConnection::Advise

bool Advise (const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxConnection::OnAdvise (p. 212)
member to be called. Returns true if successful.

CHAPTER 7

207

wxConnection::Execute

bool Execute (char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxConnection::Poke (p. 213) in that
respect). Causes the server connection's wxConnection::OnExecute (p. 212) member to
be called. Returns true if successful.

wxConnection::Disconnect

bool Disconnect ()

Called by the client or server application to disconnect from the other program; it causes
the wxConnection::OnDisconnect (p. 212) message to be sent to the corresponding
connection object in the other program. Returns true if successful or already
disconnected. The application that calls Disconnect must explicitly delete its side of the
connection.

wxConnection::OnAdvise

virtual bool OnAdvise (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item, usingAdvise (p. 211).

wxConnection::OnDisconnect

virtual bool OnDisconnect ()

Message sent to the client or server application when the other application notifies it to
end the connection. The default behaviour is to delete the connection object and return
true, so applications should generally override OnDisconnect (finally calling the inherited
method as well) so that they know the connection object is no longer available.

wxConnection::OnExecute

virtual bool OnExecute (const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data, using Execute (p. 212). Note that there is no item associated with this message.

wxConnection::OnPoke

virtual bool OnPoke (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given

CHAPTER 7

208

data.

wxConnection::OnRequest

virtual char* OnRequest (const wxString& topic, const wxString& item, int * size,
wxIPCFormat format)

Message sent to the server application when the client calls wxConnection::Request (p.
214). The server's OnRequest (p. 213) method should respond by returning a character
string, or NULL to indicate no data, and setting *size. The character string must of
course persist after the call returns.

wxConnection::OnStartAdvise

virtual bool OnStartAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning false.

wxConnection::OnStopAdvise

virtual bool OnStopAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning false, although this doesn't have much meaning in practice.

wxConnection::Poke

bool Poke (const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxConnection::OnPoke (p.
213) member to be called. If size is -1 the size is computed from the string length of
data.

Returns true if successful.

wxConnection::Request

char* Request (const wxString& item, int * size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxConnection::OnRequest (p. 213) member to be called. Size may be
NULL or a pointer to a variable to receive the size of the requested item.

Returns a character string (actually a pointer to the connection's buffer) if successful,
NULL otherwise. This buffer does not need to be deleted.

CHAPTER 7

209

wxConnection::StartAdvise

bool StartAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxConnection::OnStartAdvise (p. 213) member to be
called. Returns true if the server okays it, false otherwise.

wxConnection::StopAdvise

bool StopAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxConnection::OnStopAdvise (p. 213) member to be called.
Returns true if the server okays it, false otherwise.

wxContextMenuEvent

This class is used for context menu events, sent to give the application a chance to
show a context (popup) menu.

Derived from

wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

Event table macros

To process a menu event, use these event handler macros to direct input to member
functions that take a wxContextMenuEvent argument.

EVT_CONTEXT_MENU(func) A right click (or other context menu command
depending on platform) has been detected.

See also

Command events (p. 184),
Event handling overview (p. Error! Bookmark not defined.)

wxContextMenuEvent::wxContextMenuEvent

 wxContextMenuEvent (WXTYPE id = 0, int id = 0, const wxPoint&
pos=wxDefaultPosition)

Constructor.

CHAPTER 7

210

wxContextMenuEvent::GetPosition

wxPoint GetPosition () const

Returns the position at which the menu should be shown.

wxContextMenuEvent::SetPosition

void SetPosition (const wxPoint& point)

Sets the position at which the menu should be shown.

wxContextHelp

This class changes the cursor to a query and puts the application into a 'context-
sensitive help mode'. When the user left-clicks on a window within the specified window,
a wxEVT_HELP event is sent to that control, and the application may respond to it by
popping up some help.

For example:

 wxContextHelp contextHelp(myWindow);

There are a couple of ways to invoke this behaviour implicitly:

 • Use the wxDIALOG_EX_CONTEXTHELP style for a dialog (Windows only).
This will put a question mark in the titlebar, and Windows will put the application
into context-sensitive help mode automatically, with further programming.

 • Create a wxContextHelpButton (p. 216), whose predefined behaviour is to
create a context help object. Normally you will write your application so that this
button is only added to a dialog for non-Windows platforms (use
wxDIALOG_EX_CONTEXTHELP on Windows).

Note that on Mac OS X, the cursor does not change when in context-sensitive help
mode.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/cshelp.h>

See also

wxHelpEvent (p. 701), wxHelpController (p. 694), wxContextHelpButton (p. 216)

wxContextHelp::wxContextHelp

CHAPTER 7

211

 wxContextHelp (wxWindow* window = NULL, bool doNow = true)

Constructs a context help object, calling BeginContextHelp (p. 216) if doNow is true (the
default).

If window is NULL, the top window is used.

wxContextHelp::~wxContextHelp

 ~wxContextHelp ()

Destroys the context help object.

wxContextHelp::BeginContextHelp

bool BeginContextHelp (wxWindow* window = NULL)

Puts the application into context-sensitive help mode. window is the window which will
be used to catch events; if NULL, the top window will be used.

Returns true if the application was successfully put into context-sensitive help mode.
This function only returns when the event loop has finished.

wxContextHelp::EndContextHelp

bool EndContextHelp ()

Ends context-sensitive help mode. Not normally called by the application.

wxContextHelpButton

Instances of this class may be used to add a question mark button that when pressed,
puts the application into context-help mode. It does this by creating a wxContextHelp (p.
215) object which itself generates a wxEVT_HELP event when the user clicks on a
window.

On Windows, you may add a question-mark icon to a dialog by use of the
wxDIALOG_EX_CONTEXTHELP extra style, but on other platforms you will have to add
a button explicitly, usually next to OK, Cancel or similar buttons.

Derived from

wxBitmapButton (p. 96)
wxButton (p. 122)
wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

CHAPTER 7

212

<wx/cshelp.h>

See also

wxBitmapButton (p. 96), wxContextHelp (p. 215)

wxContextHelpButton::wxContextHelpButton

 wxContextHelpButton ()

Default constructor.

 wxContextHelpButton (wxWindow* parent, wxWindowID id =
wxID_CONTEXT_HELP, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxBU_AUTODRAW)

Constructor, creating and showing a context help button.

Parameters

parent

Parent window. Must not be NULL.

id

Button identifier. Defaults to wxID_CONTEXT_HELP.

pos

Button position.

size

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the question mark bitmap.

style

Window style.

Remarks

Normally you need pass only the parent window to the constructor, and use the defaults
for the remaining parameters.

wxControl

This is the base class for a control or "widget''.

A control is generally a small window which processes user input and/or displays one or
more item of data.

CHAPTER 7

213

Derived from

wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/control.h>

See also

wxValidator (p. Error! Bookmark not defined.)

wxControl::Command

void Command (wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 184).

wxControl::GetLabel

wxString& GetLabel ()

Returns the control's text.

Note that the returned string contains the mnemonics (& characters) if any.

wxControl::SetLabel

void SetLabel (const wxString& label)

Sets the item's text.

The & characters in the label are special and indicate that the following character is a
mnemonic for this control and can be used to activate it from the keyboard (typically by
using Alt key in combination with it). To insert a literal ampersand character, you need to
double it, i.e. use "&&" .

wxControlWithItems

This class is an abstract base class for some wxWidgets controls which contain several
items, such as wxListBox (p. 858) andwxCheckListBox (p. 142) derived from it,wxChoice
(p. 145) and wxComboBox (p. 176).

It defines the methods for accessing the controls items and although each of the derived
classes implements them differently, they still all conform to the same interface.

The items in a wxControlWithItems have (non empty) string labels and, optionally, client

CHAPTER 7

214

data associated with them. Client data may be of two different kinds: either simple
untyped (void *) pointers which are simply stored by the control but not used in any
way by it, or typed pointers (wxClientData *) which are owned by the control
meaning that the typed client data (and only it) will be deleted when an item isdeleted (p.
220) or the entire control iscleared (p. 220) (which also happens when it is destroyed).
Finally note that in the same control all items must have client data of the same type
(typed or untyped), if any. This type is determined by the first call to Append (p. 219) (the
version with client data pointer) or SetClientData (p. 224).

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/ctrlsub.h> but usually never included directly

wxControlWithItems::Append

int Append (const wxString& item)

Adds the item to the end of the list box.

int Append (const wxString& item, void * clientData)

int Append (const wxString& item, wxClientData * clientData)

Adds the item to the end of the list box, associating the given, typed or untyped, client
data pointer with the item.

void Append (const wxArrayString& strings)

Appends several items at once to the control. Notice that calling this method may be
much faster than appending the items one by one if you need to add a lot of items.

Parameters

item

String to add.

clientData

Client data to associate with the item.

Return value

When appending a single item, the return value is the index of the newly added item
which may be different from the last one if the control is sorted (e.g. has wxLB_SORT or

CHAPTER 7

215

wxCB_SORT style).

wxControlWithItems::Clear

void Clear ()

Removes all items from the control.

Clear() also deletes the client data of the existing items if it is owned by the control.

wxControlWithItems::Delete

void Delete (unsigned int n)

Deletes an item from the control. The client data associated with the item will be also
deleted if it is owned by the control.

Note that it is an error (signalled by an assert failure in debug builds) to remove an item
with the index negative or greater or equal than the number of items in the control.

Parameters

n

The zero-based item index.

See also

Clear (p. 220)

wxControlWithItems::FindString

int FindString (const wxString& string, bool caseSensitive = false)

Finds an item whose label matches the given string.

Parameters

string

String to find.

caseSensitive

Whether search is case sensitive (default is not).

Return value

The zero-based position of the item, or wxNOT_FOUND if the string was not found.

wxControlWithItems::GetClientData

void * GetClientData (unsigned int n) const

CHAPTER 7

216

Returns a pointer to the client data associated with the given item (if any). It is an error to
call this function for a control which doesn't have untyped client data at all although it is
ok to call it even if the given item doesn't have any client data associated with it (but
other items do).

Parameters

n

The zero-based position of the item.

Return value

A pointer to the client data, or NULL if not present.

wxControlWithItems::GetClientObject

wxClientData * GetClientObject (unsigned int n) const

Returns a pointer to the client data associated with the given item (if any). It is an error to
call this function for a control which doesn't have typed client data at all although it is ok
to call it even if the given item doesn't have any client data associated with it (but other
items do).

Parameters

n

The zero-based position of the item.

Return value

A pointer to the client data, or NULL if not present.

wxControlWithItems::GetCount

unsigned int GetCount () const

Returns the number of items in the control.

See also

IsEmpty (p. 223)

wxControlWithItems::GetSelection

int GetSelection () const

Returns the index of the selected item or wxNOT_FOUND if no item is selected.

Return value

The position of the current selection.

CHAPTER 7

217

Remarks

This method can be used with single selection list boxes only, you should
usewxListBox::GetSelections (p. 861) for the list boxes with wxLB_MULTIPLE style.

See also

SetSelection (p. 225), GetStringSelection (p. 223)

wxControlWithItems::GetString

wxString GetString (unsigned int n) const

Returns the label of the item with the given index.

Parameters

n

The zero-based index.

Return value

The label of the item or an empty string if the position was invalid.

wxControlWithItems::GetStringSelection

wxString GetStringSelection () const

Returns the label of the selected item or an empty string if no item is selected.

See also

GetSelection (p. 222)

wxControlWithItems::Insert

int Insert (const wxString& item, unsigned int pos)

Inserts the item into the list before pos. Not valid for wxLB_SORT or wxCB_SORT styles,
use Append instead.

int Insert (const wxString& item, unsigned int pos, void * clientData)

int Insert (const wxString& item, unsigned int pos, wxClientData * clientData)

Inserts the item into the list before pos, associating the given, typed or untyped, client
data pointer with the item. Not valid for wxLB_SORT or wxCB_SORT styles, use Append
instead.

Parameters

item

CHAPTER 7

218

String to add.

pos

Position to insert item before, zero based.

clientData

Client data to associate with the item.

Return value

The return value is the index of the newly inserted item. If the insertion failed for some
reason, -1 is returned.

wxControlWithItems::IsEmpty

bool IsEmpty () const

Returns true if the control is empty or false if it has some items.

See also

GetCount (p. 222)

wxControlWithItems::Number

int Number () const

Obsolescence note: This method is obsolete and was replaced withGetCount (p. 222),
please use the new method in the new code. This method is only available if wxWidgets
was compiled withWXWIN_COMPATIBILITY_2_2 defined and will disappear completely
in future versions.

wxControlWithItems::Select

void Select (int n)

This is the same as SetSelection (p. 225) and exists only because it is slightly more
natural for controls which support multiple selection.

wxControlWithItems::SetClientData

void SetClientData (unsigned int n, void * data)

Associates the given untyped client data pointer with the given item. Note that it is an
error to call this function if any typed client data pointers had been associated with the
control items before.

Parameters

n

CHAPTER 7

219

The zero-based item index.

data

The client data to associate with the item.

wxControlWithItems::SetClientObject

void SetClientObject (unsigned int n, wxClientData * data)

Associates the given typed client data pointer with the given item: thedata object will be
deleted when the item is deleted (either explicitly by using Deletes (p. 220) or implicitly
when the control itself is destroyed).

Note that it is an error to call this function if any untyped client data pointers had been
associated with the control items before.

Parameters

n

The zero-based item index.

data

The client data to associate with the item.

wxControlWithItems::SetSelection

void SetSelection (int n)

Sets the selection to the given item n or removes the selection entirely if n ==
wxNOT_FOUND.

Note that this does not cause any command events to be emitted nor does it deselect
any other items in the controls which support multiple selections.

Parameters

n

The string position to select, starting from zero.

See also

SetString (p. 225), SetStringSelection (p. 225)

wxControlWithItems::SetString

void SetString (unsigned int n, const wxString& string)

Sets the label for the given item.

Parameters

CHAPTER 7

220

n

The zero-based item index.

string

The label to set.

wxControlWithItems::SetStringSelection

bool SetStringSelection (const wxString& string)

Selects the item with the specified string in the control. This doesn't cause any command
events being emitted.

Parameters

string

The string to select.

Return value

true if the specified string has been selected, false if it wasn't found in the control.

See also

SetSelection (p. 225)wxCountingOutputStream

wxCountingOutputStream is a specialized output stream which does not write any data
anyway, instead it counts how many bytes would get written if this were a normal
stream. This can sometimes be useful or required if some data gets serialized to a
stream or compressed by using stream compression and thus the final size of the
stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of
memory and the memory has to be allocated before writing to it (which is probably
always the case when writing to a memory stream).

Derived from

wxOutputStream (p. Error! Bookmark not defined.)wxStreamBase (p. Error!
Bookmark not defined.)

Include files

<wx/stream.h>

wxCountingOutputStream::wxCountingOutputStream

 wxCountingOutputStream ()

CHAPTER 7

221

Creates a wxCountingOutputStream object.

wxCountingOutputStream::~wxCountingOutputStream

 ~wxCountingOutputStream ()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize () const

Returns the current size of the stream.

wxCriticalSection

A critical section object is used for exactly the same purpose as mutexes (p. Error!
Bookmark not defined.). The only difference is that under Windows platform critical
sections are only visible inside one process, while mutexes may be shared between
processes, so using critical sections is slightly more efficient. The terminology is also
slightly different: mutex may be locked (or acquired) and unlocked (or released) while
critical section is entered and left by the program.

Finally, you should try to use wxCriticalSectionLocker (p. 228) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p.
Error! Bookmark not defined.) is preferrable to wxMutex (p. Error! Bookmark not
defined.) - please see wxMutex for an example.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. Error! Bookmark not defined.), wxCondition (p. 193),
wxCriticalSectionLocker (p. 228)

wxCriticalSection::wxCriticalSection

 wxCriticalSection ()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

CHAPTER 7

222

 ~wxCriticalSection ()

Destructor frees the resources.

wxCriticalSection::Enter

void Enter ()

Enter the critical section (same as locking a mutex). There is no error return for this
function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

void Leave ()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

wxCriticalSectionLocker

This is a small helper class to be used with wxCriticalSection (p. 227) objects. A
wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Example of using it:

void Set Foo()
{
 // gs_critSect is some (global) critical sectio n guarding
access to the
 // object "foo"
 wxCriticalSectionLocker locker(gs_critSect);

 if (...)
 {
 // do something
 ...

 return;
 }

 // do something else
 ...

 return;
}

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each return .

Derived from

None.

CHAPTER 7

223

Include files

<wx/thread.h>

See also

wxCriticalSection (p. 227), wxMutexLocker (p. Error! Bookmark not defined.)

wxCriticalSectionLocker::wxCriticalSectionLocker

 wxCriticalSectionLocker (wxCriticalSection& criticalsection)

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and
enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker

 ~wxCriticalSectionLocker ()

Destructor leaves the critical section.

wxCSConv

This class converts between any character sets and Unicode. It has one predefined
instance, wxConvLocal , for the default user character set.

Derived from

wxMBConv (p. 923)

Include files

<wx/strconv.h>

See also

wxMBConv (p. 923), wxEncodingConverter (p. 482), wxMBConv classes overview (p.
Error! Bookmark not defined.)

wxCSConv::wxCSConv

 wxCSConv (const wxChar* charset)

 wxCSConv (wxFontEncoding encoding)

Constructor. You may specify either the name of the character set you want to convert
from/to or an encoding constant. If the character set name is not recognized, ISO 8859-1
is used as fall back.

CHAPTER 7

224

wxCSConv::~wxCSConv

 ~wxCSConv ()

Destructor frees any resources needed to perform the conversion.

wxCSConv::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from the selected character set to Unicode. Returns length of string written to
destination buffer.

wxCSConv::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to the selected character set. Returns length of string written to
destination buffer.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxIcon (p. 778) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWidgets convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. Error! Bookmark not
defined.) is also available for MS Windows use.

Derived from

wxBitmap (p. 84)
wxGDIObject (p. 609)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/cursor.h>

Predefined objects

Objects:

wxNullCursor

Pointers:

CHAPTER 7

225

wxSTANDARD_CURSOR
wxHOURGLASS_CURSOR
wxCROSS_CURSOR

See also

wxBitmap (p. 84), wxIcon (p. 778), wxWindow::SetCursor (p. Error! Bookmark not
defined.), ::wxSetCursor (p. Error! Bookmark not defined.)

wxCursor::wxCursor

 wxCursor ()

Default constructor.

 wxCursor (const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL, wxColour* fg=NULL, wxColour* bg=NULL)

Constructs a cursor by passing an array of bits (Motif and GTK+ only). maskBits is used
only under Motif and GTK+. The parameters fg and bg are only present on GTK+, and
force the cursor to use particular background and foreground colours.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

 wxCursor (const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)

Constructs a cursor by passing a string resource name or filename.

On MacOS when specifying a string resource name, first the color cursors 'crsr' and then
the black/white cursors 'CURS' in the resource chain are scanned through.

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

 wxCursor (int cursorId)

Constructs a cursor using a cursor identifier.

 wxCursor (const wxImage& image)

Constructs a cursor from a wxImage. The cursor is monochrome, colors with the RGB
elements all greater than 127 will be foreground, colors less than this background. The
mask (if any) will be used as transparent.

In MSW the foreground will be white and the background black. If the cursor is larger
than 32x32 it is resized. In GTK, the two most frequent colors will be used for foreground
and background. The cursor will be displayed at the size of the image. On MacOS if the
cursor is larger than 16x16 it is resized and currently only shown as black/white (mask
respected).

 wxCursor (const wxCursor& cursor)

CHAPTER 7

226

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

bits

An array of bits.

maskBits

Bits for a mask bitmap.

width

Cursor width.

height

Cursor height.

hotSpotX

Hotspot x coordinate.

hotSpotY

Hotspot y coordinate.

type

Icon type to load. Under Motif, type defaults to wxBITMAP_TYPE_XBM . Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE . Under MacOS, it
defaults to wxBITMAP_TYPE_MACCURSOR_RESOURCE .

Under X, the permitted cursor types are:

wxBITMAP_TYPE_XBM Load an X bitmap file.

Under Windows, the permitted types are:

wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).

wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).

wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.

cursorId

A stock cursor identifier. May be one of:

CHAPTER 7

227

wxCURSOR_ARROW A standard arrow cursor.

wxCURSOR_RIGHT_ARROW A standard arrow cursor pointing to the right.

wxCURSOR_BLANK Transparent cursor.

wxCURSOR_BULLSEYE Bullseye cursor.

wxCURSOR_CHAR Rectangular character cursor.

wxCURSOR_CROSS A cross cursor.

wxCURSOR_HAND A hand cursor.

wxCURSOR_IBEAM An I-beam cursor (vertical line).

wxCURSOR_LEFT_BUTTON Represents a mouse with the left button
depressed.

wxCURSOR_MAGNIFIER A magnifier icon.

wxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button
depressed.

wxCURSOR_NO_ENTRY A no-entry sign cursor.

wxCURSOR_PAINT_BRUSH A paintbrush cursor.

wxCURSOR_PENCIL A pencil cursor.

wxCURSOR_POINT_LEFT A cursor that points left.

wxCURSOR_POINT_RIGHT A cursor that points right.

wxCURSOR_QUESTION_ARROW An arrow and question mark.

wxCURSOR_RIGHT_BUTTON Represents a mouse with the right button
depressed.

wxCURSOR_SIZENESW A sizing cursor pointing NE-SW.

wxCURSOR_SIZENS A sizing cursor pointing N-S.

wxCURSOR_SIZENWSE A sizing cursor pointing NW-SE.

wxCURSOR_SIZEWE A sizing cursor pointing W-E.

wxCURSOR_SIZING A general sizing cursor.

wxCURSOR_SPRAYCAN A spraycan cursor.

wxCURSOR_WAIT A wait cursor.

wxCURSOR_WATCH A watch cursor.

wxCURSOR_ARROWWAIT A cursor with both an arrow and an hourglass,

CHAPTER 7

228

(windows.)

Note that not all cursors are available on all platforms.

cursor

Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:

wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor
from a filename

wxStockCursor(id) Constructs a stock cursor

wxPerl note: Constructors supported by wxPerl are:

 •::Cursor->new(name, type, hotSpotX = 0, hotSpotY = 0)

 •::Cursor->new(id)

 •::Cursor->new(image)

 •::Cursor->newData(bits, width, height, hotSpotX = -1, hotSpotY = -1, maskBits = 0)

Example

The following is an example of creating a cursor from 32x32 bitmap data (down_bits)
and a mask (down_mask) where 1 is black and 0 is white for the bits, and 1 is opaque
and 0 is transparent for the mask. It works on Windows and GTK+.

static char down_bits[] = { 255, 255, 255, 255, 31,
 255, 255, 255, 31, 255, 255, 255, 31, 255, 255, 2 55,
 31, 255, 255, 255, 31, 255, 255, 255, 31, 255, 25 5,
 255, 31, 255, 255, 255, 31, 255, 255, 255, 25, 24 3,
 255, 255, 19, 249, 255, 255, 7, 252, 255, 255, 15 , 254,
 255, 255, 31, 255, 255, 255, 191, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255 };

static char down_mask[] = { 240, 1, 0, 0, 240, 1,
 0, 0, 240, 1, 0, 0, 240, 1, 0, 0, 240, 1, 0, 0, 2 40, 1,
 0, 0, 240, 1, 0, 0, 240, 1, 0, 0, 255, 31, 0, 0, 255,
 31, 0, 0, 254, 15, 0, 0, 252, 7, 0, 0, 248, 3, 0, 0,
 240, 1, 0, 0, 224, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0,
 0, 0, 0, 0, 0 };

#ifdef __WXMSW__
wxBitmap down_bitmap(down_bits, 32, 32);

CHAPTER 7

229

wxBitmap down_mask_bitmap(down_mask, 32, 32);

down_bitmap.SetMask(new wxMask(down_mask_bitmap));
wxImage down_image = down_bitmap.ConvertToImage();
down_image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_X, 6);
down_image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y, 14);
wxCursor down_cursor = wxCursor(down_image);
#else
wxCursor down_cursor = wxCursor(down_bits, 32, 32,
 6, 14, down_mask, wxWHITE, wxBLACK);
#endif

wxCursor::~wxCursor

 ~wxCursor ()

Destroys the cursor. A cursor can be reused for more than one window, and does not
get destroyed when the window is destroyed. wxWidgets destroys all cursors on
application exit, although it is best to clean them up explicitly.

wxCursor::Ok

bool Ok() const

Returns true if cursor data is present.

wxCursor::operator =

wxCursor& operator = (const wxCursor& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator == (const wxCursor& cursor)

Equality operator. Two cursors are equal if they contain pointers to the same underlying
cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor::operator !=

bool operator != (const wxCursor& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxCustomDataObject

wxCustomDataObject is a specialization of wxDataObjectSimple (p. 247) for some
application-specific data in arbitrary (either custom or one of the standard ones). The

CHAPTER 7

230

only restriction is that it is supposed that this data can be copied bitwise (i.e. with
memcpy()), so it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 237) or TakeData (p. 237) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should override GetSize (p. 237), GetData (p. 237)
and SetData (p. 237) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 247)
wxDataObject (p. 242)

Include files

<wx/dataobj.h>

See also

wxDataObject (p. 242)

wxCustomDataObject::wxCustomDataObject

 wxCustomDataObject (const wxDataFormat& format = wxFormatInvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here, SetFormat (p. 248) should be used.

wxCustomDataObject::~wxCustomDataObject

 ~wxCustomDataObject ()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 237) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Free() , you
should override the destructor in your class as well (which would probably just call the
derived class' version of Free()).

wxCustomDataObject::Alloc

CHAPTER 7

231

virtual void * Alloc (size_t size)

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

virtual void Free()

This function is called when the data is freed, you may override it to anything you want
(or may be nothing at all). The default version calls operator delete[] on the data.

wxCustomDataObject::GetSize

virtual size_t GetSize () const

Returns the data size in bytes.

wxCustomDataObject::GetData

virtual void * GetData () const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData (size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

wxCustomDataObject::TakeData

virtual void TakeData (size_t size, const void *data)

Like SetData (p. 237), but doesn't copy the data - instead the object takes ownership of
the pointer.

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

wxDataFormat

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

CHAPTER 7

232

On the system level, a data format is usually just a number (CLIPFORMATunder
Windows or Atom under X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)

wxDF_BITMAP A bitmap (wxBitmap)

wxDF_METAFILE A metafile (wxMetafile, Windows only)

wxDF_FILENAME A list of filenames

wxDF_HTML An HTML string. This is only valid when passed to
wxSetClipboardData when compiled with Visual C++ in
non-Unicode mode

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDataFormat::NativeFormat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!

Virtual functions to override

None

Derived from

None

See also

Clipboard and drag and drop overview (p. Error! Bookmark not defined.), DnD sample
(p. Error! Bookmark not defined.), wxDataObject (p. 242)

Include files

<wx/dataobj.h>

wxDataFormat::wxDataFormat

CHAPTER 7

233

 wxDataFormat (NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 239) or SetId (p. 239) later in this case)

wxPerl note: In wxPerl this function is named newNative .

wxDataFormat::wxDataFormat

 wxDataFormat (const wxChar *format)

Constructs a data format object for a custom format identified by its name format.

wxPerl note: In wxPerl this function is named newUser .

wxDataFormat::operator ==

bool operator == (const wxDataFormat& format) const

Returns true if the formats are equal.

wxDataFormat::operator !=

bool operator != (const wxDataFormat& format) const

Returns true if the formats are different.

wxDataFormat::GetId

wxString GetId () const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType

NativeFormat GetType () const

Returns the platform-specific number identifying the format.

wxDataFormat::SetId

void SetId (const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType (NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

CHAPTER 7

234

wxDataInputStream

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or little-endian format, little-endian being the default on all
architectures.

If you want to read data from text files (or streams) use wxTextInputStream (p. Error!
Bookmark not defined.) instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:

 wxFileInputStream input("mytext.dat");
 wxDataInputStream store(input);
 wxUint8 i1;
 float f2;
 wxString line;

 store >> i1; // read a 8 bit integer.
 store >> i1 >> f2; // read a 8 bit integer follow ed by float.
 store >> line; // read a text line

See also wxDataOutputStream (p. 248).

Derived from

None

Include files

<wx/datstrm.h>

wxDataInputStream::wxDataInputStream

 wxDataInputStream (wxInputStream& stream)

 wxDataInputStream (wxInputStream& stream, wxMBConv& conv = wxMBConvUTF8)

Constructs a datastream object from an input stream. Only read methods will be
available. The second form is only available in Unicode build of wxWidgets.

Parameters

stream

The input stream.

conv

CHAPTER 7

235

Charset conversion object object used to decode strings in Unicode mode (see
wxDataInputStream::ReadString (p. 242)documentation for detailed description).
Note that you must not destroyconv before you destroy this wxDataInputStream
instance!

wxDataInputStream::~wxDataInputStream

 ~wxDataInputStream ()

Destroys the wxDataInputStream object.

wxDataInputStream::BigEndianOrdered

void BigEndianOrdered (bool be_order)

If be_order is true, all data will be read in big-endian order , such as written
by programs on a big endian architecture (e.g. Spa rc) or written by Java-
Streams (which always use big-endian order). wxDa taInputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

void Read8(wxUint8 * buffer, size_t size)

Reads bytes from the stream in a specified buffer. The amount of bytes to read is
specified by the size variable.

wxDataInputStream::Read16

wxUint16 Read16()

Reads a 16 bit unsigned integer from the stream.

void Read16(wxUint16 * buffer, size_t size)

Reads 16 bit unsigned integers from the stream in a specified buffer. the amount of 16
bit unsigned integer to read is specified by the size variable.

wxDataInputStream::Read32

wxUint32 Read32()

Reads a 32 bit unsigned integer from the stream.

void Read32(wxUint32 * buffer, size_t size)

Reads 32 bit unsigned integers from the stream in a specified buffer. the amount of 32
bit unsigned integer to read is specified by the size variable.

wxDataInputStream::Read64

CHAPTER 7

236

wxUint64 Read64()

Reads a 64 bit unsigned integer from the stream.

void Read64(wxUint64 * buffer, size_t size)

Reads 64 bit unsigned integers from the stream in a specified buffer. the amount of 64
bit unsigned integer to read is specified by the size variable.

wxDataInputStream::ReadDouble

double ReadDouble ()

Reads a double (IEEE encoded) from the stream.

void ReadDouble (double * buffer, size_t size)

Reads double data (IEEE encoded) from the stream in a specified buffer. the amount of
double to read is specified by the size variable.

wxDataInputStream::ReadString

wxString ReadString ()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

In Unicode build of wxWidgets, the fuction first reads multibyte (char*) string from the
stream and then converts it to Unicode using the convobject passed to constructor and
returns the result as wxString. You are responsible for using the same convertor as
when writing the stream.

See also wxDataOutputStream::WriteString (p. 251).

wxDataObject

A wxDataObject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a 'smart' piece of
data unlike 'dumb' data containers such as memory buffers or files. Being 'smart' here
means that the data object itself should know what data formats it supports and how to
render itself in each of its supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on 'input' and 'output', i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Direction
{
 Get = 0x01, // format is supported by GetDa taHere()
 Set = 0x02 // format is supported by SetDa ta()

CHAPTER 7

237

};

which distinguishes between them. See wxDataFormat (p. 237) documentation for more
about formats.

Not surprisingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWidgets has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 247) and wxDataObjectComposite
(p. 246). wxDataObjectSimple (p. 247) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
246) is the simplest way to implement a wxDataObject that does support multiple
formats because it achieves this by simply holding several wxDataObjectSimple objects.

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or
custom if you combine it with the previous solution).

4. Use wxDataObject directly This is the solution for maximal flexibility and
efficiency, but it is also the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK+ data transfer mechanisms for clipboard and drag and drop,
nor OLE data transfer, copy any data until another application actually requests the data.
This is in contrast to the 'feel' offered to the user of a program who would normally think
that the data resides in the clipboard after having pressed 'Copy' - in reality it is only
declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 514), wxTextDataObject (p. Error! Bookmark not defined.) and

CHAPTER 7

238

wxBitmapDataObject (p. 103) which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 235)
for user-defined types. The format of user-defined data is given as a mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK+) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows
is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 247) instead.

wxPerl note: This class is not currently usable from wxPerl; you may use
Wx::PlDataObjectSimple (p. 247) instead.

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 245).

Derived from

None

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. Error! Bookmark not defined.), DnD sample
(p. Error! Bookmark not defined.), wxFileDataObject (p. 514), wxTextDataObject (p.
Error! Bookmark not defined.), wxBitmapDataObject (p. 103), wxCustomDataObject
(p. 235), wxDropTarget (p. 475), wxDropSource (p. 472), wxTextDropTarget (p. Error!
Bookmark not defined.), wxFileDropTarget (p. 519)

wxDataObject::wxDataObject

 wxDataObject ()

Constructor.

wxDataObject::~wxDataObject

 ~wxDataObject ()

Destructor.

CHAPTER 7

239

wxDataObject::GetAllFormats

virtual void GetAllFormats (wxDataFormat * formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.

wxPerl note: In wxPerl this method only takes the dir parameter. In scalar context it
returns the first format, in list context it returns a list containing all the supported formats.

wxDataObject::GetDataHere

virtual bool GetDataHere (const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return true on
success, false on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize (const wxDataFormat& format) const

Returns the data size of the given format format.

wxDataObject::GetFormatCount

virtual size_t GetFormatCount (Direction dir = Get) const

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

virtual wxDataFormat GetPreferredFormat (Direction dir = Get) const

Returns the preferred format for either rendering the data (if dir is Get , its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData (const wxDataFormat& format, size_t len, const void *buf)

Set the data in the format format of the length len provided in the buffer buf.

Returns true on success, false on failure.

wxDataObjectComposite

wxDataObjectComposite is the simplest wxDataObject (p. 242) derivation which may be
used to support multiple formats. It contains several wxDataObjectSimple (p. 247)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second

CHAPTER 7

240

parameter of Add (p. 247)) and its format determines the preferred format of the
composite data object as well.

See wxDataObject (p. 242) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.

Derived from

wxDataObject (p. 242)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. Error! Bookmark not defined.),
wxDataObject (p. 242), wxDataObjectSimple (p. 247), wxFileDataObject (p. 514),
wxTextDataObject (p. Error! Bookmark not defined.), wxBitmapDataObject (p. 103)

wxDataObjectComposite::wxDataObjectComposite

 wxDataObjectComposite ()

The default constructor.

wxDataObjectComposite::Add

void Add (wxDataObjectSimple *dataObject, bool preferred = false)

Adds the dataObject to the list of supported objects and it becomes the preferred object
if preferred is true.

wxDataObjectSimple

This is the simplest possible implementation of the wxDataObject (p. 242) class. The
data object of (a class derived from) this class only supports one format, so the number
of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

CHAPTER 7

241

wxPerl note: In wxPerl, you need to derive your data object class from
Wx::PlDataObjectSimple.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 248) and
GetDataHere (p. 248) while the objects which may be set must override SetData (p.
248). Of course, the objects supporting both operations must override all three methods.

Derived from

wxDataObject (p. 242)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. Error! Bookmark not defined.), DnD sample
(p. Error! Bookmark not defined.), wxFileDataObject (p. 514), wxTextDataObject (p.
Error! Bookmark not defined.), wxBitmapDataObject (p. 103)

wxDataObjectSimple::wxDataObjectSimple

 wxDataObjectSimple (const wxDataFormat& format = wxFormatInvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 248).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat () const

Returns the (one and only one) format supported by this object. It is supposed that the
format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat (const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize () const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

CHAPTER 7

242

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere (void *buf) const

Copy the data to the buffer, return true on success. Must be implemented in the derived
class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

wxDataObjectSimple::SetData

virtual bool SetData (size_t len, const void *buf)

Copy the data from the buffer, return true on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDataOutputStream

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or little-endian format, little-endian being the default on all
architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. Error!
Bookmark not defined.) instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDataInputStream (p. 239) for its usage and caveats.

See also wxDataInputStream (p. 239).

Derived from

None

Include files

<wx/datstrm.h>

wxDataOutputStream::wxDataOutputStream

 wxDataOutputStream (wxOutputStream& stream)

 wxDataOutputStream (wxOutputStream& stream, wxMBConv& conv =
wxMBConvUTF8)

Constructs a datastream object from an output stream. Only write methods will be

CHAPTER 7

243

available. The second form is only available in Unicode build of wxWidgets.

Parameters

stream

The output stream.

conv

Charset conversion object object used to encoding Unicode strings before writing
them to the stream in Unicode mode (see wxDataOutputStream::WriteString (p.
251)documentation for detailed description). Note that you must not destroyconv
before you destroy this wxDataOutputStream instance! It is recommended to use
default value (UTF-8).

wxDataOutputStream::~wxDataOutputStream

 ~wxDataOutputStream ()

Destroys the wxDataOutputStream object.

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered (bool be_order)

If be_order is true, all data will be written in big-endian or der, e.g. for
reading on a Sparc or from Java-Streams (which alwa ys use big-endian
order), otherwise data will be written in little-en dian order.
wxDataOutputStream::Write8

void Write8 (wxUint8 i8)

Writes the single byte i8 to the stream.

void Write8 (const wxUint8 * buffer, size_t size)

Writes an array of bytes to the stream. The amount of bytes to write is specified with the
size variable.

wxDataOutputStream::Write16

void Write16 (wxUint16 i16)

Writes the 16 bit unsigned integer i16 to the stream.

void Write16 (const wxUint16 * buffer, size_t size)

Writes an array of 16 bit unsigned integer to the stream. The amount of 16 bit unsigned
integer to write is specified with the size variable.

CHAPTER 7

244

wxDataOutputStream::Write32

void Write32 (wxUint32 i32)

Writes the 32 bit unsigned integer i32 to the stream.

void Write32 (const wxUint32 * buffer, size_t size)

Writes an array of 32 bit unsigned integer to the stream. The amount of 32 bit unsigned
integer to write is specified with the size variable.

wxDataOutputStream::Write64

void Write64 (wxUint64 i64)

Writes the 64 bit unsigned integer i64 to the stream.

void Write64 (const wxUint64 * buffer, size_t size)

Writes an array of 64 bit unsigned integer to the stream. The amount of 64 bit unsigned
integer to write is specified with the size variable.

wxDataOutputStream::WriteDouble

void WriteDouble (double f)

Writes the double f to the stream using the IEEE format.

void WriteDouble (const double * buffer, size_t size)

Writes an array of double to the stream. The amount of double to write is specified with
the size variable.

wxDataOutputStream::WriteString

void WriteString (const wxString& string)

Writes string to the stream. Actually, this method writes the size of the string before
writing string itself.

In ANSI build of wxWidgets, the string is written to the stream in exactly same way it is
represented in memory. In Unicode build, however, the string is first converted to
multibyte representation with conv object passed to stream's constructor (consequently,
ANSI application can read data written by Unicode application, as long as they agree on
encoding) and this representation is written to the stream. UTF-8 is used by default.

wxDateEvent

This event class holds information about a date change and is used together with
wxDatePickerCtrl (p. 251). It also serves as a base class for wxCalendarEvent (p. 135).

CHAPTER 7

245

Derived from

wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dateevt.h>

wxDateEvent::GetDate

const wxDateTime& GetDate () const

Returns the date.

wxDateEvent::SetDate

void SetDate (const wxDateTime& date)

Sets the date carried by the event, normally only used by the library internally.

wxDatePickerCtrl

This control allows the user to select a date. Unlike wxCalendarCtrl (p. 127), which is a
relatively big control, wxDatePickerCtrl is implemented as a small window showing the
currently selected date. The control can be edited using the keyboard, and can also
display a popup window for more user-friendly date selection, depending on the styles
used and the platform, except PalmOS where date is selected using native dialog.

It is only available if wxUSE_DATEPICKCTRL is set to 1.

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/datectrl.h>

(only available if wxUSE_DATEPICKCTRL is set to 1)

Window styles

wxDP_SPIN Creates a control without a month calendar drop down but
with spin-control-like arrows to change individual date
components. This style is not supported by the generic

CHAPTER 7

246

version.

wxDP_DROPDOWN Creates a control with a month calendar drop-down part
from which the user can select a date.

wxDP_DEFAULT Creates a control with the style that is best supported for
the current platform (currently wxDP_SPIN under Windows
and wxDP_DROPDOWN elsewhere).

wxDP_ALLOWNONE With this style, the control allows the user to not enter any
valid date at all. Without it - the default - the control always
has some valid date.

wxDP_SHOWCENTURY Forces display of the century in the default date format.
Without this style the century could be displayed, or not,
depending on the default date representation in the
system.

Event handling

EVT_DATE_CHANGED(id, func) This event fires when the user changes the
current selection in the control.

See also

wxCalendarCtrl (p. 127),
wxDateEvent (p. 251)

wxDatePickerCtrl::wxDatePickerCtrl

 wxDatePickerCtrl (wxWindow * parent, wxWindowID id, const wxDateTime& dt =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDP_DEFAULT | wxDP_SHOWCENTURY, const
wxValidator& validator = wxDefaultValidator,const wxString& name = "datectrl")

Initializes the object and calls Create (p. 253) with all the parameters.

wxDatePickerCtrl::Create

bool Create (wxWindow * parent, wxWindowID id, const wxDateTime& dt =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDP_DEFAULT | wxDP_SHOWCENTURY, const
wxValidator& validator = wxDefaultValidator,const wxString& name = "datectrl")

Parameters

parent

Parent window, must not be non-NULL.

id

CHAPTER 7

247

The identifier for the control.

dt

The initial value of the control, if an invalid date (such as the default value) is used,
the control is set to today.

pos

Initial position.

size

Initial size. If left at default value, the control chooses its own best size by using the
height approximately equal to a text control and width large enough to show the
date string fully.

style

The window style, should be left at 0 as there are no special styles for this control
in this version.

validator

Validator which can be used for additional date checks.

name

Control name.

Return value

true if the control was successfully created or false if creation failed.

wxDatePickerCtrl::GetRange

bool GetRange (wxDateTime * dt1, wxDateTime *dt2) const

If the control had been previously limited to a range of dates using SetRange() (p. 254),
returns the lower and upper bounds of this range. If no range is set (or only one of the
bounds is set), dt1 and/or dt2 are set to be invalid.

Parameters

dt1

Pointer to the object which receives the lower range limit or becomes invalid if it is
not set. May be NULL if the caller is not interested in lower limit

dt2

Same as above but for the upper limit

Return value

CHAPTER 7

248

false if no range limits are currently set, true if at least one bound is set.

wxDatePickerCtrl::GetValue

wxDateTime GetValue () const

Returns the currently selected. If there is no selection or the selection is outside of the
current range, an invalid object is returned.

wxDatePickerCtrl::SetFormat

void SetFormat (const wxChar* format)

Sets the display format for the date in the control. See wxDateTime for the meaning of
format strings.

Remarks

If the format parameter is invalid, the behaviour is undefined.

wxDatePickerCtrl::SetRange

void SetRange (const wxDateTime& dt1, const wxDateTime& dt2)

Sets the valid range for the date selection. If dt1 is valid, it becomes the earliest date
(inclusive) accepted by the control. If dt2 is valid, it becomes the latest possible date.

Remarks

If the current value of the control is outside of the newly set range bounds, the behaviour
is undefined.

wxDatePickerCtrl::SetValue

void SetValue (const wxDateTime& dt)

Changes the current value of the control. The date should be valid and included in the
currently selected range, if any.

Calling this method does not result in a date change event.

wxDateSpan

This class is a "logical time span" and is useful for implementing program logic for such
things as "add one month to the date" which, in general, doesn't mean to add
60*60*24*31 seconds to it, but to take the same date the next month (to understand that
this is indeed different consider adding one month to Feb, 15 -- we want to get Mar, 15,
of course).

When adding a month to the date, all lesser components (days, hours, ...) won't be
changed unless the resulting date would be invalid: for example, Jan 31 + 1 month will

CHAPTER 7

249

be Feb 28, not (non existing) Feb 31.

Because of this feature, adding and subtracting back again the same wxDateSpan will
not , in general give back the original date: Feb 28 - 1 month will be Jan 28, not Jan 31!

wxDateSpan objects can be either positive or negative. They may be multiplied by
scalars which multiply all deltas by the scalar: i.e.2*(1 month and 1 day) is 2 months
and 2 days. They can be added together and with wxDateTime (p. 260) or wxTimeSpan
(p. Error! Bookmark not defined.), but the type of result is different for each case.

Beware about weeks: if you specify both weeks and days, the total number of days
added will be 7*weeks + days! See also GetTotalDays() function.

Equality operators are defined for wxDateSpans. Two datespans are equal if and only if
they both give the same target date when added to every source date. Thus
wxDateSpan::Months(1) is not equal to wxDateSpan::Days(30), because they don't give
the same date when added to 1 Feb. But wxDateSpan::Days(14) is equal to
wxDateSpan::Weeks(2)

Finally, notice that for adding hours, minutes and so on you don't need this class at all:
wxTimeSpan (p. Error! Bookmark not defined.) will do the job because there are no
subtleties associated with those (we don't support leap seconds).

Derived from

No base class

Include files

<wx/datetime.h>

See also

Date classes overview (p. Error! Bookmark not defined.), wxDateTime (p. 260)

wxDateSpan::wxDateSpan

 wxDateSpan (int years = 0, int months = 0, int weeks = 0, int days = 0)

Constructs the date span object for the given number of years, months, weeks and days.
Note that the weeks and days add together if both are given.

wxDateSpan::Add

wxDateSpan Add (const wxDateSpan& other) const

wxDateSpan& Add (const wxDateSpan& other)

wxDateSpan& operator+= (const wxDateSpan& other)

Returns the sum of two date spans. The first version returns a new object, the second

CHAPTER 7

250

and third ones modify this object in place.

wxDateSpan::Day

static wxDateSpan Day()

Returns a date span object corresponding to one day.

See also

Days (p. 256)

wxDateSpan::Days

static wxDateSpan Days (int days)

Returns a date span object corresponding to the given number of days.

See also

Day (p. 256)

wxDateSpan::GetDays

int GetDays () const

Returns the number of days (only, that it not counting the weeks component!) in this date
span.

See also

GetTotalDays (p. 257)

wxDateSpan::GetMonths

int GetMonths () const

Returns the number of the months (not counting the years) in this date span.

wxDateSpan::GetTotalDays

int GetTotalDays () const

Returns the combined number of days in this date span, counting both weeks and days.
It still doesn't take neither months nor years into the account.

See also

GetWeeks (p. 257), GetDays (p. 256)

wxDateSpan::GetWeeks

CHAPTER 7

251

int GetWeeks () const

Returns the number of weeks in this date span.

See also

GetTotalDays (p. 257)

wxDateSpan::GetYears

int GetYears () const

Returns the number of years in this date span.

wxDateSpan::Month

static wxDateSpan Month ()

Returns a date span object corresponding to one month.

See also

Months (p. 258)

wxDateSpan::Months

static wxDateSpan Months (int mon)

Returns a date span object corresponding to the given number of months.

See also

Month (p. 257)

wxDateSpan::Multiply

wxDateSpan Multiply (int factor) const

wxDateSpan& Multiply (int factor)

wxDateSpan& operator*= (int factor)

Returns the product of the date span by the specified factor. The product is computed by
multiplying each of the components by the factor.

The first version returns a new object, the second and third ones modify this object in
place.

wxDateSpan::Negate

wxDateSpan Negate () const

CHAPTER 7

252

Returns the date span with the opposite sign.

See also

Neg (p. 258)

wxDateSpan::Neg

wxDateSpan& Neg()

wxDateSpan& operator- ()

Changes the sign of this date span.

See also

Negate (p. 258)

wxDateSpan::SetDays

wxDateSpan& SetDays (int n)

Sets the number of days (without modifying any other components) in this date span.

wxDateSpan::SetYears

wxDateSpan& SetYears (int n)

Sets the number of years (without modifying any other components) in this date span.

wxDateSpan::SetMonths

wxDateSpan& SetMonths (int n)

Sets the number of months (without modifying any other components) in this date span.

wxDateSpan::SetWeeks

wxDateSpan& SetWeeks (int n)

Sets the number of weeks (without modifying any other components) in this date span.

wxDateSpan::Subtract

wxDateSpan Subtract (const wxDateSpan& other) const

wxDateSpan& Subtract (const wxDateSpan& other)

wxDateSpan& operator+= (const wxDateSpan& other)

Returns the difference of two date spans. The first version returns a new object, the
second and third ones modify this object in place.

CHAPTER 7

253

wxDateSpan::Week

static wxDateSpan Week()

Returns a date span object corresponding to one week.

See also

Weeks (p. 259)

wxDateSpan::Weeks

static wxDateSpan Weeks (int weeks)

Returns a date span object corresponding to the given number of weeks.

See also

Week (p. 259)

wxDateSpan::Year

static wxDateSpan Year()

Returns a date span object corresponding to one year.

See also

Years (p. 260)

wxDateSpan::Years

static wxDateSpan Years (int years)

Returns a date span object corresponding to the given number of years.

See also

Year (p. 259)

wxDateSpan::operator==

bool operator== (wxDateSpan& other) const

Returns true if this date span is equal to the other one. Two date spans are considered
equal if and only if they have the same number of years and months and the same total
number of days (counting both days and weeks).

wxDateSpan::operator!=

bool operator!= (wxDateSpan& other) const

CHAPTER 7

254

Returns true if this date span is different from the other one.

See also

operator== (p. 260)

wxDateTime

wxDateTime class represents an absolute moment in the time.

Types

The type wxDateTime_t is typedefed as unsigned short and is used to contain the
number of years, hours, minutes, seconds and milliseconds.

Constants

Global constant wxDefaultDateTime and synonym for it wxInvalidDateTime are
defined. This constant will be different from any valid wxDateTime object.

All the following constants are defined inside wxDateTime class (i.e., to refer to them you
should prepend their names with wxDateTime::).

Time zone symbolic names:

 enum TZ
 {
 // the time in the current time zone
 Local,

 // zones from GMT (= Greenwhich Mean Time): they're
guaranteed to be
 // consequent numbers, so writing something like `GMT0 +
offset' is
 // safe if abs(offset) <= 12

 // underscore stands for minus
 GMT_12, GMT_11, GMT_10, GMT_9, GMT_8, GMT_7 ,
 GMT_6, GMT_5, GMT_4, GMT_3, GMT_2, GMT_1,
 GMT0,
 GMT1, GMT2, GMT3, GMT4, GMT5, GMT6,
 GMT7, GMT8, GMT9, GMT10, GMT11, GMT12,
 // Note that GMT12 and GMT_12 are not the s ame: there is a
difference
 // of exactly one day between them

 // some symbolic names for TZ

 // Europe
 WET = GMT0, // West ern Europe Time
 WEST = GMT1, // West ern Europe
Summer Time
 CET = GMT1, // Cent ral Europe Time
 CEST = GMT2, // Cent ral Europe
Summer Time
 EET = GMT2, // East ern Europe Time
 EEST = GMT3, // East ern Europe
Summer Time
 MSK = GMT3, // Mosc ow Time

CHAPTER 7

255

 MSD = GMT4, // Mosc ow Summer Time

 // US and Canada
 AST = GMT_4, // Atla ntic Standard
Time
 ADT = GMT_3, // Atla ntic Daylight
Time
 EST = GMT_5, // East ern Standard
Time
 EDT = GMT_4, // East ern Daylight
Saving Time
 CST = GMT_6, // Cent ral Standard
Time
 CDT = GMT_5, // Cent ral Daylight
Saving Time
 MST = GMT_7, // Moun tain Standard
Time
 MDT = GMT_6, // Moun tain Daylight
Saving Time
 PST = GMT_8, // Paci fic Standard
Time
 PDT = GMT_7, // Paci fic Daylight
Saving Time
 HST = GMT_10, // Hawa iian Standard
Time
 AKST = GMT_9, // Alas ka Standard
Time
 AKDT = GMT_8, // Alas ka Daylight
Saving Time

 // Australia

 A_WST = GMT8, // West ern Standard
Time
 A_CST = GMT12 + 1, // Cent ral Standard
Time (+9.5)
 A_EST = GMT10, // East ern Standard
Time
 A_ESST = GMT11, // East ern Summer Time

 // Universal Coordinated Time = the new and politically
correct name
 // for GMT
 UTC = GMT0
 };

Month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec and
Inv_Month for an invalid.month value are the values of wxDateTime::Month enum.

Likewise, Sun, Mon, Tue, Wed, Thu, Fri, Sat, and Inv_WeekDay are the values
inwxDateTime::WeekDay enum.

Finally, Inv_Year is defined to be an invalid value for year parameter.

GetMonthName() (p. 269) andGetWeekDayName (p. 270) functions use the following
flags:

 enum NameFlags
 {
 Name_Full = 0x01, // return full name
 Name_Abbr = 0x02 // return abbreviat ed name
 };

CHAPTER 7

256

Several functions accept an extra parameter specifying the calendar to use (although
most of them only support now the Gregorian calendar). This parameters is one of the
following values:

 enum Calendar
 {
 Gregorian, // calendar currently in use in Western
countries
 Julian // calendar in use since -45 un til the 1582
(or later)
 };

Date calculations often depend on the country and wxDateTime allows to set the country
whose conventions should be used usingSetCountry (p. 271). It takes one of the
following values as parameter:

 enum Country
 {
 Country_Unknown, // no special information for this
country
 Country_Default, // set the default country with
SetCountry() method
 // or use the default coun try with any
other

 Country_WesternEurope_Start,
 Country_EEC = Country_WesternEurope_Start,
 France,
 Germany,
 UK,
 Country_WesternEurope_End = UK,

 Russia,

 USA
 };

Different parts of the world use different conventions for the week start. In some
countries, the week starts on Sunday, while in others -- on Monday. The ISO standard
doesn't address this issue, so we support both conventions in the functions whose result
depends on it (GetWeekOfYear (p. 277) andGetWeekOfMonth (p. 277)).

The desired behvaiour may be specified by giving one of the following constants as
argument to these functions:

 enum WeekFlags
 {
 Default_First, // Sunday_First for US, Mo nday_First for
the rest
 Monday_First, // week starts with a Mond ay
 Sunday_First // week starts with a Sund ay
 };

Derived from

No base class

Include files

CHAPTER 7

257

<wx/datetime.h>

See also

Date classes overview (p. Error! Bookmark not defined.), wxTimeSpan (p. Error!
Bookmark not defined.), wxDateSpan (p. 255), wxCalendarCtrl (p. 127)

Static functions

For convenience, all static functions are collected here. These functions either set or
return the static variables of wxDateSpan (the country), return the current moment, year,
month or number of days in it, or do some general calendar-related actions.

Please note that although several function accept an extra Calendarparameter, it is
currently ignored as only the Gregorian calendar is supported. Future versions will
support other calendars.

wxPython note: These methods are standalone functions
namedwxDateTime_<StaticMethodName> in wxPython.

SetCountry (p. 271)
GetCountry (p. 269)
IsWestEuropeanCountry (p. 271)
GetCurrentYear (p. 269)
ConvertYearToBC (p. 268)
GetCurrentMonth (p. 269)
IsLeapYear (p. 271)
GetCentury (p. 269)
GetNumberOfDays (p. 270)
GetNumberOfDays (p. 270)
GetMonthName (p. 269)
GetWeekDayName (p. 270)
GetAmPmStrings (p. 268)
IsDSTApplicable (p. 271)
GetBeginDST (p. 268)
GetEndDST (p. 269)
Now (p. 271)
UNow (p. 272)
Today (p. 272)

Constructors, assignment operators and setters

Constructors and various Set() methods are collected here. If you construct a date
object from separate values for day, month and year, you should use IsValid (p. 275)
method to check that the values were correct as constructors can not return an error
code.

wxDateTime() (p. 272)
wxDateTime(time_t) (p. 272)
wxDateTime(struct tm) (p. 272)

CHAPTER 7

258

wxDateTime(double jdn) (p. 272)
wxDateTime(h, m, s, ms) (p. 273)
wxDateTime(day, mon, year, h, m, s, ms) (p. 273)
SetToCurrent (p. 273)
Set(time_t) (p. 273)
Set(struct tm) (p. 273)
Set(double jdn) (p. 273)
Set(h, m, s, ms) (p. 274)
Set(day, mon, year, h, m, s, ms) (p. 274)
SetFromDOS(unsigned long ddt) (p. 278)
ResetTime (p. 274)
SetYear (p. 274)
SetMonth (p. 274)
SetDay (p. 274)
SetHour (p. 275)
SetMinute (p. 275)
SetSecond (p. 275)
SetMillisecond (p. 275)
operator=(time_t) (p. 275)
operator=(struct tm) (p. 275)

Accessors

Here are the trivial accessors. Other functions, which might have to perform some more
complicated calculations to find the answer are under theCalendar calculations (p. 267)
section.

IsValid (p. 275)
GetTicks (p. 275)
GetYear (p. 276)
GetMonth (p. 276)
GetDay (p. 276)
GetWeekDay (p. 276)
GetHour (p. 276)
GetMinute (p. 276)
GetSecond (p. 276)
GetMillisecond (p. 276)
GetDayOfYear (p. 277)
GetWeekOfYear (p. 277)
GetWeekOfMonth (p. 277)
GetYearDay (p. 285)
IsWorkDay (p. 277)
IsGregorianDate (p. 277)
GetAsDOS (p. 278)

Date comparison

There are several function to allow date comparison. To supplement them, a few global
operators >, < etc taking wxDateTime are defined.

IsEqualTo (p. 278)

CHAPTER 7

259

IsEarlierThan (p. 278)
IsLaterThan (p. 278)
IsStrictlyBetween (p. 278)
IsBetween (p. 278)
IsSameDate (p. 279)
IsSameTime (p. 279)
IsEqualUpTo (p. 279)

Date arithmetics

These functions carry out arithmetics (p. Error! Bookmark not defined.) on the
wxDateTime objects. As explained in the overview, either wxTimeSpan or wxDateSpan
may be added to wxDateTime, hence all functions are overloaded to accept both
arguments.

Also, both Add() and Subtract() have both const and non-const version. The first
one returns a new object which represents the sum/difference of the original one with the
argument while the second form modifies the object to which it is applied. The operators
-= and += are defined to be equivalent to the second forms of these functions.

Add(wxTimeSpan) (p. 279)
Add(wxDateSpan) (p. 279)
Subtract(wxTimeSpan) (p. 279)
Subtract(wxDateSpan) (p. 280)
Subtract(wxDateTime) (p. 280)
oparator+=(wxTimeSpan) (p. 279)
oparator+=(wxDateSpan) (p. 279)
oparator-=(wxTimeSpan) (p. 279)
oparator-=(wxDateSpan) (p. 280)

Parsing and formatting dates

These functions convert wxDateTime objects to and from text. The conversions to text
are mostly trivial: you can either do it using the default date and time representations for
the current locale (FormatDate (p. 282) andFormatTime (p. 282)), using the international
standard representation defined by ISO 8601 (FormatISODate (p. 282)
andFormatISOTime (p. 282)) or by specifying any format at all and using Format (p. 282)
directly.

The conversions from text are more interesting, as there are much more possibilities to
care about. The simplest cases can be taken care of withParseFormat (p. 280) which
can parse any date in the given (rigid) format. ParseRfc822Date (p. 280) is another
function for parsing dates in predefined format -- the one of RFC 822 which (still...)
defines the format of email messages on the Internet. This format can not be described
with strptime(3) -like format strings used byFormat (p. 282), hence the need for a
separate function.

But the most interesting functions areParseTime (p. 281),ParseDate (p. 281)
andParseDateTime (p. 281). They try to parse the date ans time (or only one of them) in
'free' format, i.e. allow them to be specified in any of possible ways. These functions will
usually be used to parse the (interactive) user input which is not bound to be in any

CHAPTER 7

260

predefined format. As an example, ParseDateTime (p. 281) can parse the strings such
as "tomorrow" , "March first" and even"next Sunday" .

ParseRfc822Date (p. 280)
ParseFormat (p. 280)
ParseDateTime (p. 281)
ParseDate (p. 281)
ParseTime (p. 281)
Format (p. 282)
FormatDate (p. 282)
FormatTime (p. 282)
FormatISODate (p. 282)
FormatISOTime (p. 282)

Calendar calculations

The functions in this section perform the basic calendar calculations, mostly related to
the week days. They allow to find the given week day in the week with given number
(either in the month or in the year) and so on.

All (non-const) functions in this section don't modify the time part of the wxDateTime --
they only work with the date part of it.

SetToWeekDayInSameWeek (p. 282)
GetWeekDayInSameWeek (p. 283)
SetToNextWeekDay (p. 283)
GetNextWeekDay (p. 283)
SetToPrevWeekDay (p. 283)
GetPrevWeekDay (p. 283)
SetToWeekDay (p. 283)
GetWeekDay (p. 284)
SetToLastWeekDay (p. 284)
GetLastWeekDay (p. 284)
SetToWeekOfYear (p. 284)
SetToLastMonthDay (p. 284)
GetLastMonthDay (p. 285)
SetToYearDay (p. 285)
GetYearDay (p. 285)

Astronomical/historical functions

Some degree of support for the date units used in astronomy and/or history is provided.
You can construct a wxDateTime object from aJDN (p. 273) and you may also get its
JDN,MJD (p. 285) orRata Die number (p. 286) from it.

wxDateTime(double jdn) (p. 272)
Set(double jdn) (p. 273)
GetJulianDayNumber (p. 285)
GetJDN (p. 285)
GetModifiedJulianDayNumber (p. 285)
GetMJD (p. 286)

CHAPTER 7

261

GetRataDie (p. 286)

Time zone and DST support

Please see the time zone overview (p. Error! Bookmark not defined.) for more
information about time zones. Normally, these functions should be rarely used.

FromTimezone (p. 286)
ToTimezone (p. 286)
MakeTimezone (p. 286)
MakeFromTimezone (p. 286)
ToUTC (p. 287)
MakeUTC (p. 287)
GetBeginDST (p. 268)
GetEndDST (p. 269)
IsDST (p. 287)

wxDateTime::ConvertYearToBC

static int ConvertYearToBC (int year)

Converts the year in absolute notation (i.e. a number which can be negative, positive or
zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year
0 is year 1 BC and so for other years there is a difference of 1.

This function should be used like this:

 wxDateTime dt(...);
 int y = dt.GetYear();
 printf("The year is %d%s", wxDateTime::ConvertY earToBC(y), y >
0 ? "AD" : "BC");

wxDateTime::GetAmPmStrings

static void GetAmPmStrings (wxString * am, wxString * pm)

Returns the translations of the strings AM and PM used for time formatting for the current
locale. Either of the pointers may be NULL if the corresponding value is not needed.

wxDateTime::GetBeginDST

static wxDateTime GetBeginDST (int year = Inv_Year, Country country =
Country_Default)

Get the beginning of DST for the given country in the given year (current one by default).
This function suffers from limitations described inDST overview (p. Error! Bookmark
not defined.).

See also

CHAPTER 7

262

GetEndDST (p. 269)

wxDateTime::GetCountry

static Country GetCountry ()

Returns the current default country. The default country is used for DST calculations, for
example.

See also

SetCountry (p. 271)

wxDateTime::GetCurrentYear

static int GetCurrentYear (Calendar cal = Gregorian)

Get the current year in given calendar (only Gregorian is currently supported).

wxDateTime::GetCurrentMonth

static Month GetCurrentMonth (Calendar cal = Gregorian)

Get the current month in given calendar (only Gregorian is currently supported).

wxDateTime::GetCentury

static int GetCentury (int year = Inv_Year)

Get the current century, i.e. first two digits of the year, in given calendar (only Gregorian
is currently supported).

wxDateTime::GetEndDST

static wxDateTime GetEndDST (int year = Inv_Year, Country country =
Country_Default)

Returns the end of DST for the given country in the given year (current one by default).

See also

GetBeginDST (p. 268)

wxDateTime::GetMonthName

static wxString GetMonthName (Month month, NameFlags flags = Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given month.

See also

CHAPTER 7

263

GetWeekDayName (p. 270)

wxDateTime::GetNumberOfDays

static wxDateTime_t GetNumberOfDays (int year, Calendar cal = Gregorian)

static wxDateTime_t GetNumberOfDays (Month month, int year = Inv_Year, Calendar
cal = Gregorian)

Returns the number of days in the given year or in the given month of the year.

The only supported value for cal parameter is currently Gregorian .

wxPython note: These two methods are named GetNumberOfDaysInYear and
GetNumberOfDaysInMonth in wxPython.

wxDateTime::GetTimeNow

static time_t GetTimeNow ()

Returns the current time.

wxDateTime::GetTmNow

static struct tm * GetTmNow (struct tm * tm)

Returns the current time broken down, uses the buffer whose adress is passed to the
function via tm to store the result.

wxDateTime::GetTmNow

static struct tm * GetTmNow ()

Returns the current time broken down. Note that this function returns a pointer to a static
buffer that's reused by calls to this function and certain C library functions (e.g.
localtime). If there is any chance your code might be used in a multi-threaded
application, you really should use the flavour of function wxDateTime::GetTmNow (p.
270)taking a parameter.

wxDateTime::GetWeekDayName

static wxString GetWeekDayName (WeekDay weekday, NameFlags flags =
Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given week day.

See also

GetMonthName (p. 269)

wxDateTime::IsLeapYear

CHAPTER 7

264

static bool IsLeapYear (int year = Inv_Year, Calendar cal = Gregorian)

Returns true if the year is a leap one in the specified calendar.

This functions supports Gregorian and Julian calendars.

wxDateTime::IsWestEuropeanCountry

static bool IsWestEuropeanCountry (Country country = Country_Default)

This function returns true if the specified (or default) country is one of Western
European ones. It is used internally by wxDateTime to determine the DST convention
and date and time formatting rules.

wxDateTime::IsDSTApplicable

static bool IsDSTApplicable (int year = Inv_Year, Country country = Country_Default)

Returns true if DST was used n the given year (the current one by default) in the given
country.

wxDateTime::Now

static wxDateTime Now ()

Returns the object corresponding to the current time.

Example:

 wxDateTime now = wxDateTime::Now();
 printf("Current time in Paris:\t%s\n", now.Form at("%c",
wxDateTime::CET).c_str());

Note that this function is accurate up to second:wxDateTime::UNow (p. 272) should be
used for better precision (but it is less efficient and might not be available on all
platforms).

See also

Today (p. 272)

wxDateTime::SetCountry

static void SetCountry (Country country)

Sets the country to use by default. This setting influences the DST calculations, date
formatting and other things.

The possible values for country parameter are enumerated inwxDateTime constants
section (p. 260).

See also

CHAPTER 7

265

GetCountry (p. 269)

wxDateTime::Today

static wxDateTime Today ()

Returns the object corresponding to the midnight of the current day (i.e. the same as
Now() (p. 271), but the time part is set to 0).

See also

Now (p. 271)

wxDateTime::UNow

static wxDateTime UNow ()

Returns the object corresponding to the current time including the milliseconds if a
function to get time with such precision is available on the current platform (supported
under most Unices and Win32).

See also

Now (p. 271)

wxDateTime::wxDateTime

 wxDateTime ()

Default constructor. Use one of Set() functions to initialize the object later.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (time_t timet)

Same as Set (p. 272).

wxPython note: This constructor is named wxDateTimeFromTimeT in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (const struct tm& tm)

Same as Set (p. 272)

wxPython note: Unsupported.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (double jdn)

CHAPTER 7

266

Same as Set (p. 272)

wxPython note: This constructor is named wxDateTimeFromJDN in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (wxDateTime_t hour, wxDateTime_t minute = 0,
wxDateTime_t second = 0, wxDateTime_t millisec = 0)

Same as Set (p. 273)

wxPython note: This constructor is named wxDateTimeFromHMS in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (wxDateTime_t day, Month month = Inv_Month, int
Inv_Year,wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second =
0, wxDateTime_t millisec = 0)

Same as Set (p. 274)

wxPython note: This constructor is named wxDateTimeFromDMY in wxPython.

wxDateTime::SetToCurrent

wxDateTime& SetToCurrent ()

Sets the date and time of to the current values. Same as assigning the result of Now()
(p. 271) to this object.

wxDateTime::Set

wxDateTime& Set(time_t timet)

Constructs the object from timet value holding the number of seconds since Jan 1, 1970.

wxPython note: This method is named SetTimeT in wxPython.

wxDateTime::Set

wxDateTime& Set(const struct tm& tm)

Sets the date and time from the broken down representation in the standardtm structure.

wxPython note: Unsupported.

wxDateTime::Set

wxDateTime& Set(double jdn)

Sets the date from the so-called Julian Day Number.

CHAPTER 7

267

By definition, the Julian Day Number, usually abbreviated as JDN, of a particular instant
is the fractional number of days since 12 hours Universal Coordinated Time (Greenwich
mean noon) on January 1 of the year -4712 in the Julian proleptic calendar.

wxPython note: This method is named SetJDN in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t
second = 0, wxDateTime_t millisec = 0)

Sets the date to be equal to Today (p. 272) and the time from supplied parameters.

wxPython note: This method is named SetHMS in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t day, Month month = Inv_Month, int year = Inv_Year,
wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0,
wxDateTime_t millisec = 0)

Sets the date and time from the parameters.

wxDateTime::ResetTime

wxDateTime& ResetTime ()

Reset time to midnight (00:00:00) without changing the date.

wxDateTime::SetYear

wxDateTime& SetYear (int year)

Sets the year without changing other date components.

wxDateTime::SetMonth

wxDateTime& SetMonth (Month month)

Sets the month without changing other date components.

wxDateTime::SetDay

wxDateTime& SetDay(wxDateTime_t day)

Sets the day without changing other date components.

wxDateTime::SetHour

wxDateTime& SetHour (wxDateTime_t hour)

CHAPTER 7

268

Sets the hour without changing other date components.

wxDateTime::SetMinute

wxDateTime& SetMinute (wxDateTime_t minute)

Sets the minute without changing other date components.

wxDateTime::SetSecond

wxDateTime& SetSecond (wxDateTime_t second)

Sets the second without changing other date components.

wxDateTime::SetMillisecond

wxDateTime& SetMillisecond (wxDateTime_t millisecond)

Sets the millisecond without changing other date components.

wxDateTime::operator=

wxDateTime& operator (time_t timet)

Same as Set (p. 273).

wxDateTime::operator=

wxDateTime& operator (const struct tm& tm)

Same as Set (p. 273).

wxDateTime::IsValid

bool IsValid () const

Returns true if the object represents a valid time moment.

wxDateTime::GetTm

Tm GetTm (const TimeZone& tz = Local) const

Returns broken down representation of the date and time.

wxDateTime::GetTicks

time_t GetTicks () const

Returns the number of seconds since Jan 1, 1970. An assert failure will occur if the date
is not in the range covered by time_t type.

CHAPTER 7

269

wxDateTime::GetYear

int GetYear (const TimeZone& tz = Local) const

Returns the year in the given timezone (local one by default).

wxDateTime::GetMonth

Month GetMonth (const TimeZone& tz = Local) const

Returns the month in the given timezone (local one by default).

wxDateTime::GetDay

wxDateTime_t GetDay(const TimeZone& tz = Local) const

Returns the day in the given timezone (local one by default).

wxDateTime::GetWeekDay

WeekDay GetWeekDay (const TimeZone& tz = Local) const

Returns the week day in the given timezone (local one by default).

wxDateTime::GetHour

wxDateTime_t GetHour (const TimeZone& tz = Local) const

Returns the hour in the given timezone (local one by default).

wxDateTime::GetMinute

wxDateTime_t GetMinute (const TimeZone& tz = Local) const

Returns the minute in the given timezone (local one by default).

wxDateTime::GetSecond

wxDateTime_t GetSecond (const TimeZone& tz = Local) const

Returns the seconds in the given timezone (local one by default).

wxDateTime::GetMillisecond

wxDateTime_t GetMillisecond (const TimeZone& tz = Local) const

Returns the milliseconds in the given timezone (local one by default).

wxDateTime::GetDayOfYear

CHAPTER 7

270

wxDateTime_t GetDayOfYear (const TimeZone& tz = Local) const

Returns the day of the year (in 1...366 range) in the given timezone (local one by
default).

wxDateTime::GetWeekOfYear

wxDateTime_t GetWeekOfYear (WeekFlags flags = Monday_First, const TimeZone&
tz = Local) const

Returns the number of the week of the year this date is in. The first week of the year is,
according to international standards, the one containing Jan 4 or, equivalently, the first
week which has Thursday in this year. Both of these definitions are the same as saying
that the first week of the year must contain more than half of its days in this year.
Accordingly, the week number will always be in 1...53 range (52 for non leap years).

The function depends on the week start (p. 260) convention specified by the flags
argument but its results forSunday_First are not well-defined as the ISO definition
quoted above applies to the weeks starting on Monday only.

wxDateTime::GetWeekOfMonth

wxDateTime_t GetWeekOfMonth (WeekFlags flags = Monday_First, const
TimeZone& tz = Local) const

Returns the ordinal number of the week in the month (in 1...5 range).

As GetWeekOfYear (p. 277), this function supports both conventions for the week start.
See the description of theseweek start (p. 260) conventions.

wxDateTime::IsWorkDay

bool IsWorkDay (Country country = Country_Default) const

Returns true is this day is not a holiday in the given country.

wxDateTime::IsGregorianDate

bool IsGregorianDate (GregorianAdoption country = Gr_Standard) const

Returns true if the given date is later than the date of adoption of the Gregorian
calendar in the given country (and hence the Gregorian calendar calculations make
sense for it).

wxDateTime::SetFromDOS

wxDateTime& Set(unsigned long ddt)

Sets the date from the date and time inDOS
(http://developer.novell.com/ndk/doc/smscomp/index.h tml?page=/ndk
/doc/smscomp/sms_docs/data/hc2vlu5i.html)format.

CHAPTER 7

271

wxDateTime::GetAsDOS

unsigned long GetAsDOS () const

Returns the date and time inDOS
(http://developer.novell.com/ndk/doc/smscomp/index.h tml?page=/ndk
/doc/smscomp/sms_docs/data/hc2vlu5i.html)format.

wxDateTime::IsEqualTo

bool IsEqualTo (const wxDateTime& datetime) const

Returns true if the two dates are strictly identical.

wxDateTime::IsEarlierThan

bool IsEarlierThan (const wxDateTime& datetime) const

Returns true if this date precedes the given one.

wxDateTime::IsLaterThan

bool IsLaterThan (const wxDateTime& datetime) const

Returns true if this date is later than the given one.

wxDateTime::IsStrictlyBetween

bool IsStrictlyBetween (const wxDateTime& t1, const wxDateTime& t2) const

Returns true if this date lies strictly between the two others,

See also

IsBetween (p. 278)

wxDateTime::IsBetween

bool IsBetween (const wxDateTime& t1, const wxDateTime& t2) const

Returns true if IsStrictlyBetween (p. 278)is true or if the date is equal to one of the
limit values.

See also

IsStrictlyBetween (p. 278)

wxDateTime::IsSameDate

bool IsSameDate (const wxDateTime& dt) const

CHAPTER 7

272

Returns true if the date is the same without comparing the time parts.

wxDateTime::IsSameTime

bool IsSameTime (const wxDateTime& dt) const

Returns true if the time is the same (although dates may differ).

wxDateTime::IsEqualUpTo

bool IsEqualUpTo (const wxDateTime& dt, const wxTimeSpan& ts) const

Returns true if the date is equal to another one up to the given time interval, i.e. if the
absolute difference between the two dates is less than this interval.

wxDateTime::Add

wxDateTime Add (const wxTimeSpan& diff) const

wxDateTime& Add (const wxTimeSpan& diff)

wxDateTime& operator+= (const wxTimeSpan& diff)

Adds the given time span to this object.

wxPython note: This method is named AddTS in wxPython.

wxDateTime::Add

wxDateTime Add (const wxDateSpan& diff) const

wxDateTime& Add (const wxDateSpan& diff)

wxDateTime& operator+= (const wxDateSpan& diff)

Adds the given date span to this object.

wxPython note: This method is named AddDS in wxPython.

wxDateTime::Subtract

wxDateTime Subtract (const wxTimeSpan& diff) const

wxDateTime& Subtract (const wxTimeSpan& diff)

wxDateTime& operator-= (const wxTimeSpan& diff)

Subtracts the given time span from this object.

wxPython note: This method is named SubtractTS in wxPython.

wxDateTime::Subtract

CHAPTER 7

273

wxDateTime Subtract (const wxDateSpan& diff) const

wxDateTime& Subtract (const wxDateSpan& diff)

wxDateTime& operator-= (const wxDateSpan& diff)

Subtracts the given date span from this object.

wxPython note: This method is named SubtractDS in wxPython.

wxDateTime::Subtract

wxTimeSpan Subtract (const wxDateTime& dt) const

Subtracts another date from this one and returns the difference between them as
wxTimeSpan.

wxDateTime::ParseRfc822Date

const wxChar * ParseRfc822Date (const wxChar* date)

Parses the string date looking for a date formatted according to the RFC 822 in it. The
exact description of this format may, of course, be found in the RFC (section 5), but,
briefly, this is the format used in the headers of Internet email messages and one of the
most common strings expressing date in this format may be something like "Sat, 18
Dec 1999 00:48:30 +0100" .

Returns NULL if the conversion failed, otherwise return the pointer to the character
immediately following the part of the string which could be parsed. If the entire string
contains only the date in RFC 822 format, the returned pointer will be pointing to a NUL
character.

This function is intentionally strict, it will return an error for any string which is not RFC
822 compliant. If you need to parse date formatted in more free ways, you should use
ParseDateTime (p. 281) orParseDate (p. 281) instead.

wxDateTime::ParseFormat

const wxChar * ParseFormat (const wxChar * date, const wxChar * format =
wxDefaultDateTimeFormat, const wxDateTime& dateDef = wxDefaultDateTime)

This function parses the string date according to the givenformat. The system
strptime(3) function is used whenever available, but even if it is not, this function is
still implemented, although support for locale-dependent format specifiers such as "%c" ,
"%x" or "%X" may not be perfect and GNU extensions such as "%z" and "%Z" are not
implemented. This function does handle the month and weekday names in the current
locale on all platforms, however.

Please see the description of the ANSI C function strftime(3) for the syntax of the
format string.

The dateDef parameter is used to fill in the fields which could not be determined from the

CHAPTER 7

274

format string. For example, if the format is "%d" (the ay of the month), the month and
the year are taken from dateDef. If it is not specified, Today (p. 272) is used as the
default date.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDateTime

const wxChar * ParseDateTime (const wxChar * datetime)

Parses the string datetime containing the date and time in free format. This function tries
as hard as it can to interpret the given string as date and time. Unlike ParseRfc822Date
(p. 280), it will accept anything that may be accepted and will only reject strings which
can not be parsed in any way at all.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDate

const wxChar * ParseDate (const wxChar * date)

This function is like ParseDateTime (p. 281), but it only allows the date to be specified. It
is thus less flexible thenParseDateTime (p. 281), but also has less chances to
misinterpret the user input.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseTime

const wxChar * ParseTime (const wxChar * time)

This functions is like ParseDateTime (p. 281), but only allows the time to be specified in
the input string.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::Format

wxString Format (const wxChar * format = wxDefaultDateTimeFormat, const
TimeZone& tz = Local) const

This function does the same as the standard ANSI C strftime(3) function. Please
see its description for the meaning of format parameter.

It also accepts a few wxWidgets-specific extensions: you can optionally specify the width
of the field to follow using printf(3) -like syntax and the format specification %l can be
used to get the number of milliseconds.

CHAPTER 7

275

See also

ParseFormat (p. 280)

wxDateTime::FormatDate

wxString FormatDate () const

Identical to calling Format() (p. 282) with "%x" argument (which means 'preferred date
representation for the current locale').

wxDateTime::FormatTime

wxString FormatTime () const

Identical to calling Format() (p. 282) with "%X"argument (which means 'preferred time
representation for the current locale').

wxDateTime::FormatISODate

wxString FormatISODate () const

This function returns the date representation in the ISO 8601 format (YYYY-MM-DD).

wxDateTime::FormatISOTime

wxString FormatISOTime () const

This function returns the time representation in the ISO 8601 format (HH:MM:SS).

wxDateTime::SetToWeekDayInSameWeek

wxDateTime& SetToWeekDayInSameWeek (WeekDay weekday, WeekFlags flags =
Monday_First)

Adjusts the date so that it will still lie in the same week as before, but its week day will be
the given one.

Returns the reference to the modified object itself.

wxDateTime::GetWeekDayInSameWeek

wxDateTime GetWeekDayInSameWeek (WeekDay weekday, WeekFlags flags =
Monday_First) const

Returns the copy of this object to whichSetToWeekDayInSameWeek (p. 282) was
applied.

wxDateTime::SetToNextWeekDay

CHAPTER 7

276

wxDateTime& SetToNextWeekDay (WeekDay weekday)

Sets the date so that it will be the first weekday following the current date.

Returns the reference to the modified object itself.

wxDateTime::GetNextWeekDay

wxDateTime GetNextWeekDay (WeekDay weekday) const

Returns the copy of this object to whichSetToNextWeekDay (p. 283) was applied.

wxDateTime::SetToPrevWeekDay

wxDateTime& SetToPrevWeekDay (WeekDay weekday)

Sets the date so that it will be the last weekday before the current date.

Returns the reference to the modified object itself.

wxDateTime::GetPrevWeekDay

wxDateTime GetPrevWeekDay (WeekDay weekday) const

Returns the copy of this object to whichSetToPrevWeekDay (p. 283) was applied.

wxDateTime::SetToWeekDay

bool SetToWeekDay (WeekDay weekday, int n = 1, Month month = Inv_Month, int
year = Inv_Year)

Sets the date to the n-th weekday in the given month of the given year (the current
month and year are used by default). The parameter nmay be either positive (counting
from the beginning of the month) or negative (counting from the end of it).

For example, SetToWeekDay(2, wxDateTime::Wed) will set the date to the second
Wednesday in the current month andSetToWeekDay(-1, wxDateTime::Sun) -- to
the last Sunday in it.

Returns true if the date was modified successfully, false otherwise meaning that the
specified date doesn't exist.

wxDateTime::GetWeekDay

wxDateTime GetWeekDay (WeekDay weekday, int n = 1, Month month = Inv_Month,
int year = Inv_Year) const

Returns the copy of this object to whichSetToWeekDay (p. 283) was applied.

wxDateTime::SetToLastWeekDay

CHAPTER 7

277

bool SetToLastWeekDay (WeekDay weekday, Month month = Inv_Month, int year =
Inv_Year)

The effect of calling this function is the same as of callingSetToWeekDay(-1,
weekday, month, year) . The date will be set to the lastweekday in the given month
and year (the current ones by default).

Always returns true .

wxDateTime::GetLastWeekDay

wxDateTime GetLastWeekDay (WeekDay weekday, Month month = Inv_Month, int
year = Inv_Year)

Returns the copy of this object to whichSetToLastWeekDay (p. 284) was applied.

wxDateTime::SetToWeekOfYear

static wxDateTime SetToWeekOfYear (int year, wxDateTime_t numWeek, WeekDay
weekday = Mon)

Set the date to the given weekday in the week number numWeek of the given year . The
number should be in range 1...53.

Note that the returned date may be in a different year than the one passed to this
function because both the week 1 and week 52 or 53 (for leap years) contain days from
different years. SeeGetWeekOfYear (p. 277) for the explanation of how the year weeks
are counted.

wxDateTime::SetToLastMonthDay

wxDateTime& SetToLastMonthDay (Month month = Inv_Month, int year = Inv_Year)

Sets the date to the last day in the specified month (the current one by default).

Returns the reference to the modified object itself.

wxDateTime::GetLastMonthDay

wxDateTime GetLastMonthDay (Month month = Inv_Month, int year = Inv_Year)
const

Returns the copy of this object to whichSetToLastMonthDay (p. 284) was applied.

wxDateTime::SetToYearDay

wxDateTime& SetToYearDay (wxDateTime_t yday)

Sets the date to the day number yday in the same year (i.e., unlike the other functions,
this one does not use the current year). The day number should be in the range 1...366
for the leap years and 1...365 for the other ones.

CHAPTER 7

278

Returns the reference to the modified object itself.

wxDateTime::GetYearDay

wxDateTime GetYearDay (wxDateTime_t yday) const

Returns the copy of this object to whichSetToYearDay (p. 285) was applied.

wxDateTime::GetJulianDayNumber

double GetJulianDayNumber () const

Returns the JDN (p. 273) corresponding to this date. Beware of rounding errors!

See also

GetModifiedJulianDayNumber (p. 285)

wxDateTime::GetJDN

double GetJDN () const

Synonym for GetJulianDayNumber (p. 285).

wxDateTime::GetModifiedJulianDayNumber

double GetModifiedJulianDayNumber () const

Returns the Modified Julian Day Number (MJD) which is, by definition, equal to JDN -
2400000.5. The MJDs are simpler to work with as the integral MJDs correspond to
midnights of the dates in the Gregorian calendar and not th noons like JDN. The MJD 0
is Nov 17, 1858.

wxDateTime::GetMJD

double GetMJD () const

Synonym for GetModifiedJulianDayNumber (p. 285).

wxDateTime::GetRataDie

double GetRataDie () const

Return the Rata Die number of this date.

By definition, the Rata Die number is a date specified as the number of days relative to a
base date of December 31 of the year 0. Thus January 1 of the year 1 is Rata Die day 1.

wxDateTime::FromTimezone

CHAPTER 7

279

wxDateTime FromTimezone (const TimeZone& tz, bool noDST = false) const

Transform the date from the given time zone to the local one. If noDST is true , no DST
adjustments will be made.

Returns the date in the local time zone.

wxDateTime::ToTimezone

wxDateTime ToTimezone (const TimeZone& tz, bool noDST = false) const

Transform the date to the given time zone. If noDST is true , no DST adjustments will
be made.

Returns the date in the new time zone.

wxDateTime::MakeTimezone

wxDateTime& MakeTimezone (const TimeZone& tz, bool noDST = false)

Modifies the object in place to represent the date in another time zone. IfnoDST is true ,
no DST adjustments will be made.

wxDateTime::MakeFromTimezone

wxDateTime& MakeFromTimezone (const TimeZone& tz, bool noDST = false)

Same as FromTimezone (p. 286) but modifies the object in place.

wxDateTime::ToUTC

wxDateTime ToUTC(bool noDST = false) const

This is the same as calling ToTimezone (p. 286) with the argument GMT0.

wxDateTime::MakeUTC

wxDateTime& MakeUTC(bool noDST = false)

This is the same as calling MakeTimezone (p. 286) with the argument GMT0.

wxDateTime::IsDST

int IsDST(Country country = Country_Default) const

Returns true if the DST is applied for this date in the given country.

See also

GetBeginDST (p. 268) andGetEndDST (p. 269)

CHAPTER 7

280

wxDateTimeHolidayAuthority

TODO

wxDateTimeWorkDays

TODO

wxDb

A wxDb instance is a connection to an ODBC datasource which may be opened, closed,
and re-opened an unlimited number of times. A database connection allows function to
be performed directly on the datasource, as well as allowing access to any tables/views
defined in the datasource to which the user has sufficient privileges.

See the database classes overview (p. Error! Bookmark not defined.) for an
introduction to using the ODBC classes.

Include files

<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in db.cpp/.h for use with the wxDb class.

 • wxDbColFor (p. 321)

 • wxDbColInf (p. 322)

 • wxDbTableInf (p. 367)

 • wxDbInf (p. 329)

Constants

NOTE: In a future release, all ODBC class constants will be prefaced with 'wx'.

 wxDB_PATH_MAX Maximum path length all owed to be
passed to
 the ODBC driver to indi cate where the
data
 file(s) are located.

 DB_MAX_COLUMN_NAME_LEN Maximum supported lengt h for the name
of a
 column

 DB_MAX_ERROR_HISTORY Maximum number of error messages
retained in
 the queue before being overwritten by
new
 errors.

CHAPTER 7

281

 DB_MAX_ERROR_MSG_LEN Maximum supported lengt h of an error
message
 returned by the ODBC cl asses

 DB_MAX_STATEMENT_LEN Maximum supported lengt h for a
complete SQL
 statement to be passed to the ODBC
driver

 DB_MAX_TABLE_NAME_LEN Maximum supported lengt h for the name
of a
 table

 DB_MAX_WHERE_CLAUSE_LEN Maximum supported WHERE clause length
that
 can be passed to the OD BC driver

 DB_TYPE_NAME_LEN Maximum length of the n ame of a
column's
 data type

Enumerated types

Enumerated types

enum wxDbSqlLogState

sqlLogOFF, sqlLogON

enum wxDBMS

These are the databases currently tested and working with the ODBC classes. A call to
wxDb::Dbms (p. 299) will return one of these enumerated values listed below.

 • DB2

 • DBase (IV, V)**

 • Firebird

 • INFORMIX

 • Interbase

 • MS SQL Server (v7 - minimal testing)

 • MS Access (97, 2000, 2002, and 2003)

 • MySQL (2.x and 3.5 - use the 2.5x drivers though)

 • Oracle (v7, v8, v8i)

 • Pervasive SQL

 • PostgreSQL

 • Sybase (ASA and ASE)

CHAPTER 7

282

 • XBase Sequiter

 • VIRTUOSO

See the remarks in wxDb::Dbms (p. 299) for exceptions/issues with each of these
database engines.

Public member variables

SWORD wxDb::cbErrorMsg

This member variable is populated as a result of calling wxDb::GetNextError (p.
308). Contains the count of bytes in the wxDb::errorMsg string.

int wxDb::DB_STATUS

The last ODBC error/status that occurred on this data connection. Possible codes
are:

 DB_ERR_GENERAL_WARNING // Sq lState =
'01000'
 DB_ERR_DISCONNECT_ERROR // Sq lState =
'01002'
 DB_ERR_DATA_TRUNCATED // Sq lState =
'01004'
 DB_ERR_PRIV_NOT_REVOKED // Sq lState =
'01006'
 DB_ERR_INVALID_CONN_STR_ATTR // Sq lState =
'01S00'
 DB_ERR_ERROR_IN_ROW // Sq lState =
'01S01'
 DB_ERR_OPTION_VALUE_CHANGED // Sq lState =
'01S02'
 DB_ERR_NO_ROWS_UPD_OR_DEL // Sq lState =
'01S03'
 DB_ERR_MULTI_ROWS_UPD_OR_DEL // Sq lState =
'01S04'
 DB_ERR_WRONG_NO_OF_PARAMS // Sq lState =
'07001'
 DB_ERR_DATA_TYPE_ATTR_VIOL // Sq lState =
'07006'
 DB_ERR_UNABLE_TO_CONNECT // Sq lState =
'08001'
 DB_ERR_CONNECTION_IN_USE // Sq lState =
'08002'
 DB_ERR_CONNECTION_NOT_OPEN // Sq lState =
'08003'
 DB_ERR_REJECTED_CONNECTION // Sq lState =
'08004'
 DB_ERR_CONN_FAIL_IN_TRANS // Sq lState =
'08007'
 DB_ERR_COMM_LINK_FAILURE // Sq lState =
'08S01'
 DB_ERR_INSERT_VALUE_LIST_MISMATCH // Sq lState =
'21S01'
 DB_ERR_DERIVED_TABLE_MISMATCH // Sq lState =
'21S02'
 DB_ERR_STRING_RIGHT_TRUNC // Sq lState =
'22001'
 DB_ERR_NUMERIC_VALUE_OUT_OF_RNG // Sq lState =
'22003'

CHAPTER 7

283

 DB_ERR_ERROR_IN_ASSIGNMENT // Sq lState =
'22005'
 DB_ERR_DATETIME_FLD_OVERFLOW // Sq lState =
'22008'
 DB_ERR_DIVIDE_BY_ZERO // Sq lState =
'22012'
 DB_ERR_STR_DATA_LENGTH_MISMATCH // Sq lState =
'22026'
 DB_ERR_INTEGRITY_CONSTRAINT_VIOL // Sq lState =
'23000'
 DB_ERR_INVALID_CURSOR_STATE // Sq lState =
'24000'
 DB_ERR_INVALID_TRANS_STATE // Sq lState =
'25000'
 DB_ERR_INVALID_AUTH_SPEC // Sq lState =
'28000'
 DB_ERR_INVALID_CURSOR_NAME // Sq lState =
'34000'
 DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL // Sq lState =
'37000'
 DB_ERR_DUPLICATE_CURSOR_NAME // Sq lState =
'3C000'
 DB_ERR_SERIALIZATION_FAILURE // Sq lState =
'40001'
 DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL2 // Sq lState =
'42000'
 DB_ERR_OPERATION_ABORTED // Sq lState =
'70100'
 DB_ERR_UNSUPPORTED_FUNCTION // Sq lState =
'IM001'
 DB_ERR_NO_DATA_SOURCE // Sq lState =
'IM002'
 DB_ERR_DRIVER_LOAD_ERROR // Sq lState =
'IM003'
 DB_ERR_SQLALLOCENV_FAILED // Sq lState =
'IM004'
 DB_ERR_SQLALLOCCONNECT_FAILED // Sq lState =
'IM005'
 DB_ERR_SQLSETCONNECTOPTION_FAILED // Sq lState =
'IM006'
 DB_ERR_NO_DATA_SOURCE_DLG_PROHIB // Sq lState =
'IM007'
 DB_ERR_DIALOG_FAILED // Sq lState =
'IM008'
 DB_ERR_UNABLE_TO_LOAD_TRANSLATION_DLL // Sq lState =
'IM009'
 DB_ERR_DATA_SOURCE_NAME_TOO_LONG // Sq lState =
'IM010'
 DB_ERR_DRIVER_NAME_TOO_LONG // Sq lState =
'IM011'
 DB_ERR_DRIVER_KEYWORD_SYNTAX_ERROR // Sq lState =
'IM012'
 DB_ERR_TRACE_FILE_ERROR // Sq lState =
'IM013'
 DB_ERR_TABLE_OR_VIEW_ALREADY_EXISTS // Sq lState =
'S0001'
 DB_ERR_TABLE_NOT_FOUND // Sq lState =
'S0002'
 DB_ERR_INDEX_ALREADY_EXISTS // Sq lState =
'S0011'
 DB_ERR_INDEX_NOT_FOUND // Sq lState =
'S0012'
 DB_ERR_COLUMN_ALREADY_EXISTS // Sq lState =
'S0021'

CHAPTER 7

284

 DB_ERR_COLUMN_NOT_FOUND // Sq lState =
'S0022'
 DB_ERR_NO_DEFAULT_FOR_COLUMN // Sq lState =
'S0023'
 DB_ERR_GENERAL_ERROR // Sq lState =
'S1000'
 DB_ERR_MEMORY_ALLOCATION_FAILURE // Sq lState =
'S1001'
 DB_ERR_INVALID_COLUMN_NUMBER // Sq lState =
'S1002'
 DB_ERR_PROGRAM_TYPE_OUT_OF_RANGE // Sq lState =
'S1003'
 DB_ERR_SQL_DATA_TYPE_OUT_OF_RANGE // Sq lState =
'S1004'
 DB_ERR_OPERATION_CANCELLED // Sq lState =
'S1008'
 DB_ERR_INVALID_ARGUMENT_VALUE // Sq lState =
'S1009'
 DB_ERR_FUNCTION_SEQUENCE_ERROR // Sq lState =
'S1010'
 DB_ERR_OPERATION_INVALID_AT_THIS_TIME // Sq lState =
'S1011'
 DB_ERR_INVALID_TRANS_OPERATION_CODE // Sq lState =
'S1012'
 DB_ERR_NO_CURSOR_NAME_AVAIL // Sq lState =
'S1015'
 DB_ERR_INVALID_STR_OR_BUF_LEN // Sq lState =
'S1090'
 DB_ERR_DESCRIPTOR_TYPE_OUT_OF_RANGE // Sq lState =
'S1091'
 DB_ERR_OPTION_TYPE_OUT_OF_RANGE // Sq lState =
'S1092'
 DB_ERR_INVALID_PARAM_NO // Sq lState =
'S1093'
 DB_ERR_INVALID_SCALE_VALUE // Sq lState =
'S1094'
 DB_ERR_FUNCTION_TYPE_OUT_OF_RANGE // Sq lState =
'S1095'
 DB_ERR_INF_TYPE_OUT_OF_RANGE // Sq lState =
'S1096'
 DB_ERR_COLUMN_TYPE_OUT_OF_RANGE // Sq lState =
'S1097'
 DB_ERR_SCOPE_TYPE_OUT_OF_RANGE // Sq lState =
'S1098'
 DB_ERR_NULLABLE_TYPE_OUT_OF_RANGE // Sq lState =
'S1099'
 DB_ERR_UNIQUENESS_OPTION_TYPE_OUT_OF_RANGE // SqlState =
'S1100'
 DB_ERR_ACCURACY_OPTION_TYPE_OUT_OF_RANGE // Sq lState =
'S1101'
 DB_ERR_DIRECTION_OPTION_OUT_OF_RANGE // Sq lState =
'S1103'
 DB_ERR_INVALID_PRECISION_VALUE // Sq lState =
'S1104'
 DB_ERR_INVALID_PARAM_TYPE // Sq lState =
'S1105'
 DB_ERR_FETCH_TYPE_OUT_OF_RANGE // Sq lState =
'S1106'
 DB_ERR_ROW_VALUE_OUT_OF_RANGE // Sq lState =
'S1107'
 DB_ERR_CONCURRENCY_OPTION_OUT_OF_RANGE // Sq lState =
'S1108'
 DB_ERR_INVALID_CURSOR_POSITION // Sq lState =
'S1109'

CHAPTER 7

285

 DB_ERR_INVALID_DRIVER_COMPLETION // Sq lState =
'S1110'
 DB_ERR_INVALID_BOOKMARK_VALUE // Sq lState =
'S1111'
 DB_ERR_DRIVER_NOT_CAPABLE // Sq lState =
'S1C00'
 DB_ERR_TIMEOUT_EXPIRED // Sq lState =
'S1T00'

struct wxDb::dbInf

This structure is internal to the wxDb class and contains details of the ODBC
datasource that the current instance of the wxDb is connected to in its members.
When the datasource is opened, all of the information contained in the dbInf
structure is queried from the datasource. This information is used almost
exclusively within the ODBC class library. Where there may be a need for
particular portions of this information outside of the class library, member functions
(e.g.wxDbTable::IsCursorClosedOnCommit (p. 350)) have been added for ease of
use.

 wxChar dbmsName[40] - Name of the dbms pr oduct
 wxChar dbmsVer[64] - Version # of the db ms product
 wxChar driverName[40] - Driver name
 wxChar odbcVer[60] - ODBC version of the driver
 wxChar drvMgrOdbcVer[60] - ODBC version of the driver manager
 wxChar driverVer[60] - Driver version
 wxChar serverName[80] - Server Name, typica lly a connect
string
 wxChar databaseName[128] - Database filename
 wxChar outerJoins[2] - Does datasource sup port outer
joins
 wxChar procedureSupport[2] - Does datasource sup port stored
 procedures
 UWORD maxConnections - Maximum # of connec tions
datasource
 supports
 UWORD maxStmts - Maximum # of HSTMTs per HDBC
 UWORD apiConfLvl - ODBC API conformanc e level
 UWORD cliConfLvl - Is datasource SAG c ompliant
 UWORD sqlConfLvl - SQL conformance lev el
 UWORD cursorCommitBehavior - How cursors are affected on db
commit
 UWORD cursorRollbackBehavior - How cursors are affected on db
 rollback
 UWORD supportNotNullClause - Does datasource support NOT
NULL
 clause
 wxChar supportIEF[2] - Integrity Enhanceme nt Facility
(Ref.
 Integrity)
 UDWORD txnIsolation - Transaction isolati on level
supported by
 driver
 UDWORD txnIsolationOptions - Transaction isolati on level
options
 available
 UDWORD fetchDirections - Fetch directions su pported
 UDWORD lockTypes - Lock types supporte d in SQLSetPos
 UDWORD posOperations - Position operations supported in
 SQLSetPos
 UDWORD posStmts - Position statements supported
 UDWORD scrollConcurrency - Scrollable cursor c oncurrency

CHAPTER 7

286

options
 supported
 UDWORD scrollOptions - Scrollable cursor o ptions
supported
 UDWORD staticSensitivity - Can additions/delet ions/updates be
 detected
 UWORD txnCapable - Indicates if dataso urce supports
 transactions
 UDWORD loginTimeout - Number seconds to w ait for a login
 request

wxChar wxDb::errorList[DB_MAX_ERROR_HISTORY][DB_MAX_ERROR_MSG_LEN]

The last n ODBC errors that have occurred on this database connection.

wxChar wxDb::errorMsg[SQL_MAX_MESSAGE_LENGTH]

This member variable is populated as a result of calling wxDb::GetNextError (p.
308). It contains the ODBC error message text.

SDWORD wxDb::nativeError

Set by wxDb::DispAllErrors, wxDb::GetNextError, and wxDb::DispNextError. It
contains the datasource-specific error code returned by the datasource to the
ODBC driver. Used for reporting ODBC errors.

wxChar wxDb::sqlState[20]

Set by wxDb::TranslateSqlState(). Indicates the error state after a failed ODBC
operation. Used for reporting ODBC errors.

Remarks

Default cursor scrolling is defined by wxODBC_FWD_ONLY_CURSORS in setup.h
when the wxWidgets library is built. This behavior can be overridden when an instance
of a wxDb is created (see wxDb constructor (p. 296)). Default setting of this value true,
as not all databases/drivers support both types of cursors.

See also

wxDbColFor (p. 321), wxDbColInf (p. 322),wxDbTable (p. 329), wxDbTableInf (p.
367),wxDbInf (p. 329)

Associated non-class functions

The following functions are used in conjunction with the wxDb class.

void wxDbCloseConnections ()

Remarks

Closes all cached connections that have been made through use of
thewxDbGetConnection (p. 294) function.

NOTE: These connections are closed regardless of whether they are in use or not. This
function should only be called after the program has finished using the connections and

CHAPTER 7

287

all wxDbTable instances that use any of the connections have been closed.

This function performs a wxDb::CommitTrans (p. 298)on the connection before closing it
to commit any changes that are still pending, as well as to avoid any function sequence
errors upon closing each connection.

int wxDbConnectionsInUse ()

Remarks

Returns a count of how many database connections are currently free (not being used)
that have been cached through use of the wxDbGetConnection (p. 294)function.

bool wxDbFreeConnection (wxDb * pDb)

Remarks

Searches the list of cached database connections connection for one matching the
passed in wxDb instance. If found, that cached connection is freed.

Freeing a connection means that it is marked as available (free) in the cache of
connections, so that a call to wxDbGetConnection (p. 294)is able to return a pointer to
the wxDb instance for use. Freeing a connection does NOT close the connection, it only
makes the connection available again.

wxDb * wxDbGetConnection (wxDbConnectInf * pDbConfig,bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Remarks

This function is used to request a "new" wxDb instance for use by the program. The
wxDb instance returned is also opened (see wxDb::Open (p. 312)).

This function (along with wxDbFreeConnection() and wxDbCloseConnection()) maintain
a cache of wxDb instances for user/re-use by a program. When a program needs a
wxDb instance, it may call this function to obtain a wxDb instance. If there is a wxDb
instance in the cache that is currently unused that matches the connection requirements
specified in 'pDbConfig' then that cached connection is marked as no longer being free,
and a pointer to the wxDb instance is returned.

If there are no connections available in the cache that meet the requirements given in
'pDbConfig', then a new wxDb instance is created to connect to the datasource specified
in 'pDbConfig' using the userID and password given in 'pDbConfig'.

NOTE: The caching routine also uses the wxDb::Open (p. 312)connection datatype
copying code. If the call to wxDbGetConnection() requests a connection to a
datasource, and there is not one available in the cache, a new connection is created.
But when the connection is opened, instead of polling the datasource over again for its
datatypes, if a connection to the same datasource (using the same userID/password)
has already been done previously, the new connection skips querying the datasource for
its datatypes, and uses the same datatypes determined previously by the other
connection(s) for that same datasource. This cuts down greatly on network traffic,
database load, and connection creation time.

CHAPTER 7

288

When the program is done using a connection created through a call to
wxDbGetConnection(), the program should call wxDbFreeConnection() to release the
wxDb instance back to the cache. DO NOT DELETE THE wxDb INSTANCE! Deleting
the wxDb instance returned can cause a crash/memory corruption later in the program
when the cache is cleaned up.

When exiting the program, call wxDbCloseConnections() to close all the cached
connections created by calls to wxDbGetConnection().

const wxChar * wxDbLogExtendedErrorMsg (const wxChar * userText, wxDb * pDb,
wxChar * ErrFile, int ErrLine)

Writes a message to the wxLog window (stdout usually) when an internal error situation
occurs.

bool wxDbSqlLog (wxDbSqlLogState state, const wxString & filename =
SQL_LOG_FILENAME)

Remarks

This function sets the sql log state for all open wxDb objects

bool wxDbGetDataSource (HENV henv, wxChar * Dsn, SWORD DsnMax, wxChar
*DsDesc, SWORD DsDescMax, UWORD direction = SQL_FETCH_NEXT)

Remarks

This routine queries the ODBC driver manager for a list of available datasources.
Repeatedly call this function to obtain all the datasources available through the ODBC
driver manager on the current workstation.

 wxArrayString strArray;

 while (wxDbGetDataSource(DbConnectInf.GetHenv() , Dsn,
SQL_MAX_DSN_LENGTH+1, DsDesc, 255))
 strArray.Add(Dsn);

wxDb::wxDb

 wxDb ()

Default constructor.

 wxDb (const HENV & aHenv, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Constructor, used to create an ODBC connection to a datasource.

Parameters

aHenv

Environment handle used for this connection. SeewxDConnectInf::AllocHenv (p.

CHAPTER 7

289

325)

FwdOnlyCursors

Will cursors created for use with this datasource connection only allow forward
scrolling cursors.

Remarks

This is the constructor for the wxDb class. The wxDb object must be created and
opened before any database activity can occur.

Example

 wxDbConnectInf ConnectInf;
 Set values for member variables of ConnectIn f here

 wxDb sampleDB(ConnectInf.GetHenv());
 if (!sampleDB.Open(ConnectInf.GetDsn(), ConnectI nf.GetUserID(),
 ConnectInf.GetPassword()))
 {
 // Error opening datasource
 }

See also

wxDbGetConnection (p. 294)

wxDb::Catalog

bool Catalog (wxChar * userID, const wxString & fileName =
SQL_CATALOG_FILENAME)

Allows a data "dictionary" of the datasource to be created, dumping pertinent information
about all data tables to which the user specified in userID has access.

Parameters

userID

Database user name to use in accessing the database. All tables to which this
user has rights will be evaluated in the catalog.

fileName

OPTIONAL. Name of the text file to create and write the DB catalog to. Default is
SQL_CATALOG_FILENAME.

Return value

Returns true if the catalog request was successful, or false if there was some reason
that the catalog could not be generated.

Example

============== ============== ================ ==== ===== =======

CHAPTER 7

290

TABLE NAME COLUMN NAME DATA TYPE PREC ISION LENGTH
============== ============== ================ ==== ===== =======
EMPLOYEE RECID (0008)NUMBER 15 8
EMPLOYEE USER_ID (0012)VARCHAR2 13 13
EMPLOYEE FULL_NAME (0012)VARCHAR2 26 26
EMPLOYEE PASSWORD (0012)VARCHAR2 26 26
EMPLOYEE START_DATE (0011)DATE 19 16

wxDb::Close

void Close ()

Closes the database connection.

Remarks

At the end of your program, when you have finished all of your database work, you must
close the ODBC connection to the datasource. There are actually four steps involved in
doing this as illustrated in the example.

Any wxDbTable instances which use this connection must be deleted before closing the
database connection.

Example

 // Commit any open transactions on the datasourc e
 sampleDB.CommitTrans();

 // Delete any remaining wxDbTable objects alloca ted with new
 delete parts;

 // Close the wxDb connection when finished with it
 sampleDB.Close();

wxDb::CommitTrans

bool CommitTrans ()

Permanently "commits" changes (insertions/deletions/updates) to the database.

Return value

Returns true if the commit was successful, or false if the commit failed.

Remarks

Transactions begin implicitly as soon as you make a change to the database with an
insert/update/delete, or any other direct SQL command that performs one of these
operations against the datasource. At any time thereafter, to save the changes to disk
permanently, "commit" them by calling this function.

Calling this member function commits ALL open transactions on this ODBC connection.
For example, if three different wxDbTable instances used the same connection to the
datasource, committing changes made on one of those wxDbTable instances commits
any pending transactions on all three wxDbTable instances.

CHAPTER 7

291

Until a call to wxDb::CommitTrans() is made, no other user or cursor is able to see any
changes made to the row(s) that have been inserted/modified/deleted.

Special Note : Cursors

It is important to understand that different database/ODBC driver combinations handle
transactions differently. One thing in particular that you must pay attention to is cursors,
in regard to transactions. Cursors are what allow you to scroll through records forward
and backward and to manipulate records as you scroll through them. When you issue a
query, a cursor is created behind the scenes. The cursor keeps track of the query and
keeps track of the current record pointer. After you commit or rollback a transaction, the
cursor may be closed automatically. This is database dependent, and with some
databases this behavior can be controlled through management functions. This means
you would need to requery the datasource before you can perform any additional work
using this cursor. This is only necessary however if the datasource closes the cursor
after a commit or rollback. Use thewxDbTable::IsCursorClosedOnCommit (p.
350)member function to determine the datasource's transaction behavior. Note, in many
situations it is very inefficient to assume the cursor is closed and always requery. This
could put a significant, unnecessary load on datasources that leave the cursors open
after a transaction.

wxDb::CreateView

bool CreateView (const wxString & viewName,const wxString & colList, const
wxString & pSqlStmt)

Creates a SQL VIEW of one or more tables in a single datasource. Note that this
function will only work against databases which support views (currently only Oracle as
of November 21 2000).

Parameters

viewName

The name of the view. e.g. PARTS_V

colList

OPTIONAL Pass in a comma delimited list of column names if you wish to
explicitly name each column in the result set. If not desired, pass in an empty
string and the column names from the associated table(s) will be used.

pSqlStmt

Pointer to the select statement portion of the CREATE VIEW statement. Must be a
complete, valid SQL SELECT statement.

Remarks

A 'view' is a logical table that derives columns from one or more other tables or views.
Once the view is created, it can be queried exactly like any other table in the database.

NOTE: Views are not available with all datasources. Oracle is one example of a

CHAPTER 7

292

datasource which does support views.

Example

 // Incomplete code sample
 db.CreateView("PARTS_SD1", "PN, PD, QTY",
 "SELECT PART_NUM, PART_DESC, QTY_O N_HAND * 1.1
FROM PARTS \
 WHERE STORAGE_DEVICE = 1");

 // PARTS_SD1 can now be queried just as if it we re a data
table.
 // e.g. SELECT PN, PD, QTY FROM PARTS_SD1

wxDb::Dbms

wxDBMS Dbms ()

Remarks

The return value will be of the enumerated type wxDBMS. This enumerated type
contains a list of all the currently tested and supported databases.

Additional databases may work with these classes, but the databases returned by this
function have been tested and confirmed to work with these ODBC classes.

Possible values returned by this function can be viewed in theEnumerated types (p. 288)
section of wxDb.

There are known issues with conformance to the ODBC standards with several
datasources supported by the wxWidgets ODBC classes. Please see the overview for
specific details on which datasource have which issues.

Return value

The return value will indicate which of the supported datasources is currently connected
to by this connection. In the event that the datasource is not recognized, a value of
'dbmsUNIDENTIFIED' is returned.

wxDb::DispAllErrors

bool DispAllErrors (HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
= SQL_NULL_HSTMT)

Used to log all database errors that occurred as a result of an executed database
command. This logging is automatic and also includes debug logging when compiled in
debug mode via wxLogDebug (p. Error! Bookmark not defined.). If logging is turned
on via wxDb::SetSqlLogging (p. 315), then an entry is also logged to the defined log file.

Parameters

aHenv

Handle to the ODBC environment.

CHAPTER 7

293

aHdbc

Handle to the ODBC connection. Pass this in if the ODBC function call that erred
required a hdbc or hstmt argument.

aHstmt

Handle to the ODBC statement being executed against. Pass this in if the ODBC
function call that failed required a hstmt argument.

Remarks

This member function will log all of the ODBC error messages for the last ODBC function
call that was made. This function is normally used internally within the ODBC class
library, but can be used programmatically after calling ODBC functions directly (i.e.
SQLFreeEnv()).

Return value

The function always returns false, so a call to this function can be made in the return
statement of a code block in the event of a failure to perform an action (see the example
below).

See also

wxDb::SetSqlLogging (p. 315), wxDbSqlLog

Example

 if (SQLExecDirect(hstmt, (UCHAR FAR *) pSqlStmt, SQL_NTS) !=
SQL_SUCCESS)
 // Display all ODBC errors for this stmt
 return(db.DispAllErrors(db.henv, db.hdbc, hst mt));

wxDb::DispNextError

void DispNextError ()

Remarks

This function is normally used internally within the ODBC class library. It could be used
programmatically after calling ODBC functions directly. This function works in
conjunction with wxDb::GetNextError (p. 308) when errors (or sometimes informational
messages) returned from ODBC need to be analyzed rather than simply displaying
them as an error. GetNextError() retrieves the next ODBC error from the ODBC error
queue. The wxDb member variables "sqlState", "nativeError" and "errorMsg" could then
be evaluated. To display the error retrieved, DispNextError() could then be called. The
combination of GetNextError() and DispNextError() can be used to iteratively step
through the errors returned from ODBC evaluating each one in context and displaying
the ones you choose.

Example

 // Drop the table before attempting to create it
 sprintf(sqlStmt, "DROP TABLE %s", tableName);

CHAPTER 7

294

 // Execute the drop table statement
 if (SQLExecDirect(hstmt,(UCHAR FAR *)sqlStmt,SQL _NTS) !=
SQL_SUCCESS)
 {
 // Check for sqlState = S0002, "Table or view not found".
 // Ignore this error, bomb out on any other e rror.
 pDb->GetNextError(henv, hdbc, hstmt);
 if (wxStrcmp(pDb->sqlState, "S0002"))
 {
 pDb->DispNextError(); // Displayed error retrieved
 pDb->DispAllErrors(henv, hdbc, hstmt); // Display all
other errors, if any
 pDb->RollbackTrans(); // Rollback the tr ansaction
 CloseCursor(); // Close the curso r
 return(false); // Return Failure
 }
 }

wxDb::DropView

bool DropView (const wxString & viewName)

Drops the data table view named in 'viewName'.

Parameters

viewName

Name of the view to be dropped.

Remarks

If the view does not exist, this function will return true. Note that views are not supported
with all datasources.

wxDb::ExecSql

bool ExecSql (const wxString & pSqlStmt)

bool ExecSql (const wxString & pSqlStmt, wxDbColInf ** columns, short & numcols)

Allows a native SQL command to be executed directly against the datasource. In
addition to being able to run any standard SQL command, use of this function allows a
user to (potentially) utilize features specific to the datasource they are connected to that
may not be available through ODBC. The ODBC driver will pass the specified command
directly to the datasource.

To get column amount and column names or other information about returned columns,
pass 'columns' and 'numcols' parameters to the function also.

Parameters

pSqlStmt

Pointer to the SQL statement to be executed.

CHAPTER 7

295

columns

On success, this function will set this pointer to point to array of wxDbColInf (p.
322) objects, holding information about columns returned by the query. You need
to call delete[] for the pointer you pass here after you don't use it anymore to
prevent memory leak.

numcols

Reference to variable where amount of objects in 'columns'-parameter will be set.

Remarks

This member extends the wxDb class and allows you to build and execute ANY VALID
SQL statement against the datasource. This allows you to extend the class library by
being able to issue any SQL statement that the datasource is capable of processing.

See also

wxDb::GetData (p. 305), wxDb::GetNext (p. 308)

wxDb::FwdOnlyCursors

bool IsFwdOnlyCursors ()

Older form (pre-2.3/2.4 of wxWidgets) of thewxDb::IsFwdOnlyCursors (p. 310). This
method is provided for backward compatibility only. The
methodwxDb::IsFwdOnlyCursors (p. 310) should be used in place of this method.

wxDbInf * GetCatalog (const wxChar * userID)

wxDb::GetCatalog

wxDbInf * GetCatalog (const wxChar * userID)

Returns a wxDbInf (p. 329) pointer that points to the catalog (datasource) name,
schema, number of tables accessible to the current user, and a wxDbTableInf pointer to
all data pertaining to all tables in the users catalog.

Parameters

userID

Owner/Schema of the table. Specify a userID when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. userID is evaluated as follows:

 userID == NULL ... UserID is ignored (DEF AULT)
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

Remarks

The returned catalog will only contain catalog entries for tables to which the user

CHAPTER 7

296

specified in 'userID' has sufficient privileges. If no user is specified (NULL passed in), a
catalog pertaining to all tables in the datasource accessible to the connected user
(permissions apply) via this connection will be returned.

wxDb::GetColumnCount

int GetColumnCount (const wxString & tableName, const wxChar * userID)

Parameters

tableName

The table name you wish to obtain column information about.

userID

Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userID is evaluated in the
following manner:

 userID == NULL ... UserID is ignored (DEF AULT)
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

Return value

Returns a count of how many columns are in the specified table. If an error occurs
retrieving the number of columns, this function will return a -1.

wxDb::GetColumns

wxDbColInf * GetColumns (const wxString & tableName, UWORD *numCols, const
wxChar * userID=NULL)

wxDbColInf * GetColumns (wxChar * tableName[], const wxChar * userID)

Parameters

tableName

The table name you wish to obtain column information about.

numCols

Pointer to a UWORD which will hold a count of the number of columns returned by
this function

tableName[]

An array of pointers to table names you wish to obtain column information about.
The last element of this array must be a NULL string.

userID

CHAPTER 7

297

Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userID is evaluated in the
following manner:

 userID == NULL ... UserID is ignored (DEF AULT)
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

Return value

This function returns a pointer to an array of wxDbColInf (p. 322)structures, allowing you
to obtain information regarding the columns of the named table(s). If no columns were
found, or an error occurred, this pointer will be NULL.

THE CALLING FUNCTION IS RESPONSIBLE FOR DELETING THE wxDbColInf
MEMORY WHEN IT IS FINISHED WITH IT.

ALL column bindings associated with this wxDb instance are unbound by this function,
including those used by any wxDbTable instances that use this wxDb instance. This
function should use its own wxDb instance to avoid undesired unbinding of columns.

See also

wxDbColInf (p. 322)

Example

 wxChar *tableList[] = {"PARTS", 0};
 wxDbColInf *colInf = pDb->GetColumns(tableList);
 if (colInf)
 {
 // Use the column inf

 // Destroy the memory
 delete [] colInf;
 }

wxDb::GetData

bool GetData (UWORD colNumber, SWORD cType,PTR pData, SDWORD maxLen,
SDWORD FAR * cbReturned)

Used to retrieve result set data without binding column values to memory variables (i.e.
not using a wxDbTable instance to access table data).

Parameters

colNumber

Ordinal number of the desired column in the result set to be returned.

cType

The C data type that is to be returned. See a partial list in wxDbTable::SetColDefs

CHAPTER 7

298

(p. 358)

pData

Memory buffer which will hold the data returned by the call to this function.

maxLen

Maximum size of the buffer 'pData' in characters. NOTE: Not UNICODE safe. If
this is a numeric field, a value of 0 may be passed for this parameter, as the API
knows the size of the expected return value.

cbReturned

Pointer to the buffer containing the length of the actual data returned. If this value
comes back as SQL_NULL_DATA, then thewxDb::GetData (p. 305) call has failed.

See also

wxDb::GetNext (p. 308), wxDb::ExecSql (p. 302)

Example

 SDWORD cb;
 ULONG reqQty;
 wxString sqlStmt;
 sqlStmt = "SELECT SUM(REQUIRED_QTY - PICKED_QTY) FROM
ORDER_TABLE WHERE \
 PART_RECID = 1450 AND REQUIRED_QTY > PICKED_QTY";

 // Perform the query
 if (!pDb->ExecSql(sqlStmt.c_str()))
 {
 // ERROR
 return(0);
 }

 // Request the first row of the result set
 if (!pDb->GetNext())
 {
 // ERROR
 return(0);
 }

 // Read column #1 of the row returned by the ca ll to
::GetNext()
 // and return the value in 'reqQty'
 if (!pDb->GetData(1, SQL_C_ULONG, &reqQty, 0, & cb))
 {
 // ERROR
 return(0);
 }

 // Check for a NULL result
 if (cb == SQL_NULL_DATA)
 return(0);

Remarks

When requesting multiple columns to be returned from the result set (for example, the

CHAPTER 7

299

SQL query requested 3 columns be returned), the calls to this function must request the
columns in ordinal sequence (1,2,3 or 1,3 or 2,3).

wxDb::GetDatabaseName

const wxChar * GetDatabaseName ()

Returns the name of the database engine.

wxDb::GetDatasourceName

const wxString & GetDatasourceName ()

Returns the ODBC datasource name.

wxDb::GetHDBC

HDBC GetHDBC ()

Returns the ODBC handle to the database connection.

wxDb::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDb::GetHSTMT

HSTMT GetHSTMT()

Returns the ODBC statement handle associated with this database connection.

wxDb::GetKeyFields

int GetKeyFields (const wxString & tableName, wxDbColInf * colInf, UWORD
numColumns)

Used to determine which columns are members of primary or non-primary indexes on
the specified table. If a column is a member of a foreign key for some other table, that
information is detected also.

This function is primarily for use by the wxDb::GetColumns (p. 304) function, but may be
called if desired from the client application.

Parameters

tableName

Name of the table for which the columns will be evaluated as to their inclusion in
any indexes.

CHAPTER 7

300

colInf

Data structure containing the column definitions (obtained with wxDb::GetColumns
(p. 304)). This function populates the PkCol, PkTableName, and FkTableName
members of the colInf structure.

numColumns

Number of columns defined in the instance of colInf.

Return value

Currently always returns true.

See also

wxDbColInf (p. 322), wxDb::GetColumns (p. 304)

wxDb::GetNext

bool GetNext ()

Called after executing a query, this function requests the next row in the result set after
the current position of the cursor.

See also

wxDb::ExecSql (p. 302), wxDb::GetData (p. 305)

wxDb::GetNextError

bool GetNextError (HENV aHenv,HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt =
SQL_NULL_HSTMT)

Parameters

aHenv

A handle to the ODBC environment.

aHdbc

OPTIONAL. A handle to the ODBC connection. Pass this in if the ODBC function
call that failed required a hdbc or hstmt argument.

AHstmt

OPTIONAL.A handle to the ODBC statement being executed against. Pass this in
if the ODBC function call that failed requires a hstmt argument.

Example

 if (SQLExecDirect(hstmt, (UCHAR FAR *) pSqlStmt, SQL_NTS) !=
SQL_SUCCESS)
 {

CHAPTER 7

301

 return(db.GetNextError(db.henv, db.hdbc, hstm t));
 }

See also

wxDb::DispNextError (p. 301),wxDb::DispAllErrors (p. 300)

wxDb::GetPassword

const wxString & GetPassword ()

Returns the password used to establish this connection to the datasource.

wxDb::GetTableCount

int GetTableCount ()

Returns the number of wxDbTable() instances currently using this datasource
connection.

wxDb::GetUsername

const wxString & GetUsername ()

Returns the user name (uid) used to establish this connection to the datasource.

wxDb::Grant

bool Grant (int privileges, const wxString & tableName,const wxString & userList =
"PUBLIC")

Use this member function to GRANT privileges to users for accessing tables in the
datasource.

Parameters

privileges

Use this argument to select which privileges you want to grant. Pass
DB_GRANT_ALL to grant all privileges. To grant individual privileges pass one or
more of the following OR'd together:

 DB_GRANT_SELECT = 1
 DB_GRANT_INSERT = 2
 DB_GRANT_UPDATE = 4
 DB_GRANT_DELETE = 8
 DB_GRANT_ALL = DB_GRANT_SELECT | DB_GR ANT_INSERT |
 DB_GRANT_UPDATE | DB_GR ANT_DELETE

tableName

The name of the table you wish to grant privileges on.

CHAPTER 7

302

userList

OPTIONAL. A comma delimited list of users to grant the privileges to. If this
argument is not passed in, the privileges will be given to the general PUBLIC.

Remarks

Some databases require user names to be specified in all capital letters (i.e. Oracle).
This function does not automatically capitalize the user names passed in the comma-
separated list. This is the responsibility of the calling routine.

The currently logged in user must have sufficient grantor privileges for this function to be
able to successfully grant the indicated privileges.

Example

 db.Grant(DB_GRANT_SELECT | DB_GRANT_INSERT, "PAR TS", "mary,
sue");

wxDb::IsFwdOnlyCursors

bool IsFwdOnlyCursors ()

This setting indicates whether this database connection was created as being capable of
using only forward scrolling cursors.

This function does NOT indicate if the ODBC driver or datasource supports backward
scrolling cursors. There is no standard way of detecting if the driver or datasource can
support backward scrolling cursors.

If a wxDb instance was created as being capable of only forward scrolling cursors, then
even if the datasource and ODBC driver support backward scrolling cursors, tables
using this database connection would only be able to use forward scrolling cursors.

The default setting of whether a wxDb connection to a database allows forward-only or
also backward scrolling cursors is defined in setup.h by the value of
wxODBC_FWD_ONLY_CURSORS. This default setting can be overridden when the
wxDb connection is initially created (seewxDb constructor (p. 296) and
wxDbGetConnection (p. 294)).

Return value

Returns true if this datasource connection is defined as using only forward scrolling
cursors, or false if the connection is defined as being allowed to use backward scrolling
cursors and their associated functions (see note above).

Remarks

Added as of wxWidgets v2.4 release, this function is a renamed version of
wxDb::FwdOnlyCursors() to match the normal wxWidgets naming conventions for class
member functions.

This function is not available in versions prior to v2.4. You should use
wxDb::FwdOnlyCursors (p. 303) for wxWidgets versions prior to 2.4.

CHAPTER 7

303

See also

wxDb constructor (p. 296), wxDbGetConnection (p. 294)

wxDb::IsOpen

bool IsOpen ()

Indicates whether the database connection to the datasource is currently opened.

Remarks

This function may indicate that the database connection is open, even if the call to
wxDb::Open (p. 312) may have failed to fully initialize the connection correctly. The
connection to the databaseis open and can be used via the direct SQL commands, if this
function returns true. Other functions which depend on thewxDb::Open (p. 312) to have
completed correctly may not function as expected. The return result from wxDb::Open
(p. 312) is the only way to know if complete initialization of this wxDb connection was
successful or not. See wxDb::Open (p. 312) for more details on partial failures to open a
connection instance.

wxDb::LogError

void LogError (const wxString & errMsg const wxString & SQLState="")

errMsg

Free-form text to display describing the error/text to be logged.

SQLState

OPTIONAL. Native SQL state error. Default is 0.

Remarks

Calling this function will enter a log message in the error list maintained for the database
connection. This log message is free form and can be anything the programmer wants
to enter in the error list.

If SQL logging is turned on, the call to this function will also log the text into the SQL log
file.

See also

wxDb::WriteSqlLog (p. 319)

wxDb::ModifyColumn

void ModifyColumn (const wxString & tableName const wxString & ColumnNameint
dataType ULONG columnLength=0 const wxString & optionalParam="")

Used to change certain properties of a column such as the length, or whether a column
allows NULLs or not.

CHAPTER 7

304

tableName

Name of the table that the column to be modified is in.

columnName

Name of the column to be modified. NOTE: Name of column cannot be changed
with this function.

dataType

Any one of DB_DATA_TYPE_VARCHAR, DB_DATA_TYPE_INTEGER,
DB_DATA_TYPE_FLOAT, DB_DATA_TYPE_DATE.

columnLength

New size of the column. Valid only for DB_DATA_TYPE_VARCHAR dataType
fields. Default is 0.

optionalParam

Default is "".

Remarks

Cannot be used to modify the precision of a numeric column, therefore 'columnLength' is
ignored unless the dataType is DB_DATA_TYPE_VARCHAR.

Some datasources do not allow certain properties of a column to be changed if any rows
currently have data stored in that column. Those datasources that do allow columns to
be changed with data in the rows many handle truncation and/or expansion in different
ways. Please refer to the reference material for the datasource being used for
behavioral descriptions.

Example

 ok = pDb->ModifyColumn("CONTACTS", "ADDRESS2",
 DB_, colDefs[j].SzDataO bj,
 wxT("NOT NULL"));

wxDb::Open

bool Open (const wxString & Dsn, const wxString & Uid,const wxString & AuthStr,
bool failOnDataTypeUnsupported)

bool Open (const wxString & inConnectStr, bool failOnDataTypeUnsupported)

bool Open (wxDbConnectInf * dbConnectInf, bool failOnDataTypeUnsupported)

bool Open (wxDb * copyDb)

Opens a connection to the datasource, sets certain behaviors of the datasource to
confirm to the accepted behaviors (e.g. cursor position maintained on commits), and
queries the datasource for its representations of the basic datatypes to determine the
form in which the data going to/from columns in the data tables are to be handled.

CHAPTER 7

305

The second form of this function, which accepts a "wxDb *" as a parameter, can be used
to avoid the overhead (execution time, database load, network traffic) which are needed
to determine the data types and representations of data that are necessary for cross-
datasource support by these classes.

Normally the first form of the wxDb::Open() function will open the connection and then
send a series of queries to the datasource asking it for its representation of data types,
and all the features it supports. If one connection to the datasource has already been
made previously, the information gathered when that connection was created can just be
copied to any new connections to the same datasource by passing a pointer to the first
connection in as a parameter to the wxDb::Open() function. Note that this new
connection created from the first connections information will use the same
Dsn/Uid/AuthStr as the first connection used.

Parameters

Dsn

datasource name. The name of the ODBC datasource as assigned when the
datasource is initially set up through the ODBC data source manager.

Uid

User ID. The name (ID) of the user you wish to connect as to the datasource. The
user name (ID) determines what objects you have access to in the datasource and
what datasource privileges you have. Privileges include being able to create new
objects, update objects, delete objects and so on. Users and privileges are
normally administered by the database administrator.

AuthStr

The password associated with the Uid.

failOnDataTypeUnsupporte

As part of connecting to a database, the wxDb::Open() function will query the
database to find out the native types that it supports. With some databases, some
data types may not be supported, or not sufficiently supported, for use with the
wxODBC classes. Normally a program should fail in this case, so as not to try to
use a data type that is not supported. This parameter allows the programmer to
override the failure if they wish and continue on using the connection.

dbConnectInf

Contains a DSN, Uid, Password, or a connection string to be used in opening a
new connection to the database. If a connection string is present, then the
connection string will be used. If there is no connection string present, then the
DSN, Uid, and Password are used.

inConnectStr

A valid ODBC connection string used to connect to a database

copyDb

CHAPTER 7

306

Already completely configured and opened datasource connection from which all
Dsn, Uid, AuthStr, connection string, and data typing information is to be copied
from for use by this datasource connection. If 'copyDb' used a connection string
to create its connection originally, then the connection being made by this call to
wxDb::Open() will use that same connection string.

Remarks

After a wxDb instance is created, it must then be opened. When opening a datasource,
there must be three pieces of information passed. The data source name, user name
(ID) and the password for the user. No database activity on the datasource can be
performed until the connection is opened. This is normally done at program startup and
the datasource remains open for the duration of the program/module run.

It is possible to have connections to multiple datasources open at the same time to
support distributed database connections by having separate instances of wxDb objects
that use either the same or different Dsn/Uid/AuthStr settings.

If this function returns a value of false, it does not necessarily mean that the connection
to the datasource was not opened. It may mean that some portion of the initialization of
the connection failed (such as a datatype not being able to be determined how the
datasource represents it). To determine if the connection to the database failed, use the
wxDb::IsOpen (p. 311)function after receiving a false result back from this function to
determine if the connection was opened or not. If this function returns false, but
wxDb::IsOpen (p. 311)returns true, then direct SQL commands may be passed to the
database connection and can be successfully executed, but use of the datatypes (such
as by a wxDbTable instance) that are normally determined during open will not be
possible.

The Dsn, Uid, and AuthStr string pointers that are passed in are copied. NOT the strings
themselves, only the pointers. The calling routine must maintain the memory for these
three strings for the life of the wxDb instance.

Example

 wxDb sampleDB(DbConnectInf.GetHenv());
 if (!sampleDB.Open("Oracle 7.1 HP/UX", "gtasker" ,
"myPassword"))
 {
 if (sampleDb.IsOpen())
 {
 // Connection is open, but the initializati on of
 // datatypes and parameter settings failed
 }
 else
 {
 // Error opening datasource
 }
 }

wxDb::RollbackTrans

bool RollbackTrans ()

Function to "undo" changes made to the database. After an insert/update/delete, the

CHAPTER 7

307

operation may be "undone" by issuing this command any time before a
wxDb::CommitTrans (p. 298) is called on the database connection.

Remarks

Transactions begin implicitly as soon as you make a change to the database. The
transaction continues until either a commit or rollback is executed. Calling
wxDb::RollbackTrans() will result in ALL changes done using this database connection
that have not already been committed to be "undone" back to the last commit/rollback
that was successfully executed.

Calling this member function rolls back ALL open (uncommitted) transactions on this
ODBC connection, including all wxDbTable instances that use this connection.

See also

wxDb::CommitTrans (p. 298) for a special note on cursors

wxDb::SetDebugErrorMessages

void SetDebugErrorMessages (bool state)

state

Either true (debug messages are logged) or false (debug messages are not
logged).

Remarks

Turns on/off debug error messages from the ODBC class library. When this function is
passed true, errors are reported to the user/logged automatically in a text or pop-up
dialog when an ODBC error occurs. When passed false, errors are silently handled.

When compiled in release mode (FINAL=1), this setting has no affect.

See also

wxDb constructor (p. 296)

wxDb::SetSqlLogging

bool SetSqlLogging (wxDbSqlLogState state, const wxString & filename =
SQL_LOG_FILENAME, bool append = false)

Parameters

state

Either sqlLogOFF or sqlLogON (see enum wxDbSqlLogState (p. 321)). Turns
logging of SQL commands sent to the datasource OFF or ON.

filename

OPTIONAL. Name of the file to which the log text is to be written. Default is

CHAPTER 7

308

SQL_LOG_FILENAME.

append

OPTIONAL. Whether the file is appended to or overwritten. Default is false.

Remarks

When called with sqlLogON, all commands sent to the datasource engine are logged to
the file specified by filename. Logging is done by embedded wxDb::WriteSqlLog (p.
319) calls in the database member functions, or may be manually logged by adding calls
to wxDb::WriteSqlLog (p. 319) in your own source code.

When called with sqlLogOFF, the logging file is closed, and any calls to
wxDb::WriteSqlLog (p. 319) are ignored.

wxDb::SQLColumnName

const wxString SQLColumnName (const char * colName)

Returns the column name in a form ready for use in SQL statements. In most cases, the
column name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in column names, which must be specially quoted. For
example, if the datasource allows spaces in the column name, the returned string will
have the correct enclosing marks around the name to allow it to be properly included in a
SQL statement for the DBMS that is currently connected to with this connection.

Parameters

colName

Native name of the column in the table that is to be evaluated to determine if any
special quoting marks needed to be added to it before including the column name
in a SQL statement

See also

wxDb::SQLTableName (p. 316)

wxDb::SQLTableName

const wxString SQLTableName (const char * tableName)

Returns the table name in a form ready for use in SQL statements. In most cases, the
table name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in table names, which must be specially quoted. For example,
if the datasource allows spaces in the table name, the returned string will have the
correct enclosing marks around the name to allow it to be properly included in a SQL
statement for the data source that is currently connected to with this connection.

Parameters

tableName

CHAPTER 7

309

Native name of the table that is to be evaluated to determine if any special quoting
marks needed to be added to it before including the table name in a SQL
statement

See also

wxDb::SQLColumnName (p. 316)

wxDb::TableExists

bool TableExists (const wxString & tableName, const wxChar * userID=NULL, const
wxString & path="")

Checks the ODBC datasource for the existence of a table. If a userIDis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName

Name of the table to check for the existence of.

userID

Owner of the table (also referred to as schema). Specify a userID when the
datasource you are connected to allows multiple unique tables with the same
name to be owned by different users. userIDis evaluated as follows:

 userID == NULL ... UserID is ignored (DEF AULT)
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

Remarks

tableName may refer to a table, view, alias or synonym.

This function does not indicate whether or not the user has privileges to query or perform
other functions on the table. Use the wxDb::TablePrivileges (p. 318) to determine if the
user has sufficient privileges or not.

See also

wxDb::TablePrivileges (p. 318)

wxDb::TablePrivileges

bool TablePrivileges (const wxString & tableName, const wxString & priv,const
wxChar * userID=NULL, const wxChar * schema=NULL,const wxString & path="")

Checks the ODBC datasource for the existence of a table. If a userIDis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

CHAPTER 7

310

Parameters

tableName

Name of the table on which to check privileges.tableName may refer to a table,
view, alias or synonym.

priv

The table privilege being evaluated. May be one of the following (or a datasource
specific privilege):

 SELECT : The connected user is permitted t o retrieve data
for
 one or more columns of the table.

 INSERT : The connected user is permitted t o insert new
rows
 containing data for one or more c olumns into the
 table.

 UPDATE : The connected user is permitted t o update the
data in
 one or more columns of the table.

 DELETE : The connected user is permitted t o delete rows
of
 data from the table.

 REFERENCES : Is the connected user permitted t o refer to one
or
 more columns of the table within a constraint
(for
 example, a unique, referential, o r table check
 constraint).

userID

OPTIONAL. User for which to determine if the privilege specified to be checked is
granted or not. Default is "".userID is evaluated as follows:

 userID == NULL ... NOT ALLOWED!
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

schema

OPTIONAL. Owner of the table. Specify a userID when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. Specifying the table owner makes determination of the users
privileges MUCH faster. Default is NULL. userID is evaluated as follows:

 schema == NULL ... Any owner (DEFAULT)
 schema == "" ... Owned by 'this->uid'
 schema != "" ... Owned by userID specif ied in 'schema'

path

OPTIONAL. Path to the table. Default is "". Currently unused.

CHAPTER 7

311

Remarks

The scope of privilege allowed to the connected user by a given table privilege is
datasource dependent.

For example, the privilege UPDATE might allow the connected user to update all
columns in a table on one datasource, but only those columns for which the grantor (the
user that granted the connected user) has the UPDATE privilege on another datasource.

Looking up a user's privileges to a table can be time consuming depending on the
datasource and ODBC driver. This time can be minimized by passing a schemaas a
parameter. With some datasources/drivers, the difference can be several seconds of
time difference.

wxDb::TranslateSqlState

int TranslateSqlState (const wxString & SQLState)

Converts an ODBC sqlstate to an internal error code.

Parameters

SQLState

State to be converted.

Return value

Returns the internal class DB_ERR code. See wxDb::DB_STATUS (p. 287) definition.

wxDb::WriteSqlLog

bool WriteSqlLog (const wxString & logMsg)

Parameters

logMsg

Free form string to be written to the log file.

Remarks

Very useful debugging tool that may be turned on/off during run time (see (see
wxDb::SetSqlLogging (p. 315) for details on turning logging on/off). The passed in string
logMsg will be written to a log file if SQL logging is turned on.

Return value

If SQL logging is off when a call to WriteSqlLog() is made, or there is a failure to write
the log message to the log file, the function returns false without performing the
requested log, otherwise true is returned.

See also

CHAPTER 7

312

wxDb::SetSqlLogging (p. 315)

wxDbColDataPtr

Pointer to dynamic column definitions for use with a wxDbTable instance. Currently there
are no member functions for this class.

See the database classes overview (p. Error! Bookmark not defined.) for an
introduction to using the ODBC classes.

 void *PtrDataObj;
 int SzDataObj;
 SWORD SqlCtype;

wxDbColDef

This class is used to hold information about the columns bound to an instance of a
wxDbTable object.

Each instance of this class describes one column in the wxDbTable object. When
calling the wxDb constructor (p. 296), a parameter passed in indicates the number of
columns that will be defined for the wxDbTable object. The constructor uses this
information to allocate adequate memory for all of the column descriptions in your
wxDbTable object. Private member wxDbTable::colDefs is a pointer to this chunk of
memory maintained by the wxDbTable class (and can be retrieved using
thewxDbTable::GetColDefs (p. 344) function). To access the nth column definition of
your wxDbTable object, just reference wxDbColDefs element [n - 1].

Typically, wxDbTable::SetColDefs (p. 358) is used to populate an array of these data
structures for the wxDbTable instance.

Currently there are no accessor functions for this class, so all members are public.

 wxChar ColName[DB_MAX_COLUMN_NAME_LEN+1]; // Column Name
 int DbDataType; - Logical Data Type;
 e.g. DB_DATA_TYPE_INTE GER
 SWORD SqlCtype; - C data type; e.g. SQL_ C_LONG
 void *PtrDataObj; - Address of the data ob ject
 int SzDataObj; - Size, in bytes, of the data object
 bool KeyField; - Is column part of the PRIMARY KEY for
the
 table? -- Date fields should NOT be
 KeyFields
 bool Updateable; - Column is updateable?
 bool InsertAllowed; - Column included in INS ERT statements?
 bool DerivedCol; - Column is a derived va lue?
 SDWORD CbValue; - !!!Internal use only!! !
 bool Null; - NOT FULLY IMPLEMENTED
 Allows NULL values in Inserts and
Updates

See also

database classes overview (p. Error! Bookmark not defined.),wxDbTable::GetColDefs

CHAPTER 7

313

(p. 344), wxDb constructor (p. 296)

Include files

<wx/db.h>

wxDbColDef::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbColFor

Beginning support for handling international formatting specifically on dates and floats.

 wxString s_Field; // Formatted Stri ng for Output
 wxString s_Format[7]; // Formatted Obje cts - TIMESTAMP
has
 the biggest (7)
 wxString s_Amount[7]; // Formatted Obje cts - amount of
 things that ca n be formatted
 int i_Amount[7]; // Formatted Obje cts -
 TT MM YYYY HH MM SS m
 int i_Nation; // 0 = timestamp
 1 = EU
 2 = UK
 3 = Internatio nal
 4 = US
 int i_dbDataType; // conversion of the
'sqlDataType'
 to the generic data type used
by
 these classes
 SWORD i_sqlDataType;

The constructor for this class initializes all the values to zero or NULL.

The destructor does nothing at this time.

Only one function is provided with this class currently.

See the database classes overview (p. Error! Bookmark not defined.) for an
introduction to using the ODBC classes.

Include files

<wx/db.h>

wxDbColFor::Format

int Format (int Nation, int dbDataType,SWORD sqlDataType, short columnSize,short

CHAPTER 7

314

decimalDigits)

Work in progress, and should be inter-related with wxLocale eventually.

wxDbColFor::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbColInf

Used with the wxDb::GetColumns (p. 304) functions for obtaining all retrievable
information about a column's definition.

 wxChar catalog[128+1];
 wxChar schema[128+1];
 wxChar tableName[DB_MAX_TABLE_NAME_LEN+1] ;
 wxChar colName[DB_MAX_COLUMN_NAME_LEN+1];
 SWORD sqlDataType;
 wxChar typeName[128+1];
 SWORD columnSize;
 SWORD bufferLength;
 short decimalDigits;
 short numPrecRadix;
 short nullable;
 wxChar remarks[254+1];
 int dbDataType; // conversion of the 'sqlDataType'
 // to the generic dat a type used by
 // these classes
 int PkCol; // Primary key column
 0 = No
 1 = First Key
 2 = Second Key, etc...
 wxChar PkTableName[DB_MAX_TABLE_NAME_LEN+ 1];
 // Tables that use th is PKey as a
FKey
 int FkCol; // Foreign key column
 0 = No
 1 = First Key
 2 = Second Key, etc...
 wxChar FkTableName[DB_MAX_TABLE_NAME_LEN+ 1];
 // Foreign key table name
 wxDbColFor *pColFor; // How should this co lumn be
formatted

The constructor for this class initializes all the values to zero, "", or NULL.

The destructor for this class takes care of deleting the pColFor member if it is non-NULL.

See the database classes overview (p. Error! Bookmark not defined.) for an
introduction to using the ODBC classes.

Include files

<wx/db.h>

CHAPTER 7

315

wxDbColInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectInf

This class is used for holding the data necessary for connecting to the ODBC
datasource. That information includes: SQL environment handle, datasource name,
user ID, password and default directory path (used with dBase). Other optional fields
held in this class are and file type, both for future functions planned to be added for
creating/manipulating datasource definitions.

wxDbConnectInf::wxDbConnectInf

 wxDbConnectInf ()

Default constructor.

 wxDbConnectInf (HENV henv, const wxString & dsn,const wxString & userID="",
const wxString & password,const wxString & defaultDir="", const wxString
&description="",const wxString & fileType="")

Constructor which allows initial settings of all the classes member variables.

See the special note below on the henv parameter for forcing this constructor to create a
SQL environment handle automatically, rather than needing to pass one in to the
function.

Parameters

henv

Environment handle used for this connection. See wxDConnectInf::AllocHenv (p.
325) for how to create an SQL environment handle. NOTE: Passing in a NULL for
this parameter will inform the constructor that it should create its own SQL
environment handle. If NULL is passed for this parameter, the constructor will call
wxDConnectInf::AllocHenv (p. 325) internally. A flag is set internally also to
indicate that the HENV was created by the constructor so that when the default
class destructor is called, the destructor will call wxDConnectInf::FreeHenv (p.
325) to free the environment handle automatically.

dsn

Name of the datasource to be used in creating wxDb instances for creating
connection(s) to a datasource.

userID

OPTIONAL Many datasources allow (or even require) use of a username to
determine privileges that connecting user is allowed to have when accessing the
datasource or the data tables. Default is "".

CHAPTER 7

316

password

OPTIONAL Password to be associated with the user ID specified in 'userID'.
Default is "".

defaultDir

OPTIONAL Used for datasources which require the path to where the data file is
stored to be specified. dBase is one example of the type of datasource which
requires this information. Default is "".

description

OPTIONAL FUTURE USE Default is "".

fileType

OPTIONAL FUTURE USE Default is "".

Remarks

It is strongly recommended that programs use the longer form of the constructor and
allow the constructor to create the SQL environment handle automatically, and manage
the destruction of the handle.

Example

 wxDbConnectInf *DbConnectInf;

 DbConnectInf = new wxDbConnectInf(0,"MY_DSN", "MY_ USER",
"MY_PASSWORD");

the rest of the program

 delete DbConnectInf;

See also

wxDConnectInf::AllocHenv (p. 325),wxDConnectInf::FreeHenv (p. 325)

wxDbConnectInf::~wxDbConnectInf

 ~wxDbConnectInf ()

Handles the default destruction of the instance of the class. If the long form of the
wxDConnectInf (p. 323) was used, then this destructor also takes care of calling
wxDConnectInf::FreeHenv (p. 325) to free the SQL environment handle.

wxDbConnectInf::AllocHenv

bool AllocHenv ()

Allocates a SQL environment handle that will be used to interface with an ODBC
datasource.

CHAPTER 7

317

Remarks

This function can be automatically called by the long from of thewxDbConnectInf (p. 323)
constructor.

wxDbConnectInf::FreeHenv

void FreeHenv ()

Frees the SQL environment handle being managed by the instance of this class.

Remarks

If the SQL environment handle was created using the long form of the wxDbConnectInf
(p. 323) constructor, then the flag indicating that the HENV should be destroyed when
the classes destructor is called is reset to be false, so that any future handles created
using the wxDbConnectInf::AllocHenv (p. 325) function must be manually released with
a call to this function.

wxDbConnectInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectInf::GetAuthStr

const wxChar * GetAuthStr ()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectInf::GetPassword (p. 326)

wxDbConnectInf::GetDefaultDir

const wxChar * GetDefaultDir ()

Accessor function to return the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectInf::GetDescription

const wxChar * GetDescription ()

Accessor function to return the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetDsn

CHAPTER 7

318

const wxChar * GetDsn ()

Accessor function to return the datasource name assigned for this class instance.

wxDbConnectInf::GetFileType

const wxChar * GetFileType ()

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetHenv

const HENV GetHenv ()

Accessor function to return the SQL environment handle being managed by this class
instance.

wxDbConnectInf::GetPassword

const wxChar * GetPassword ()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectInf::GetAuthStr (p. 325)

wxDbConnectInf::GetUid

const wxChar * GetUid ()

Accessor function to return the user ID assigned for this class instance.

wxDbConnectInf::GetUserID

const wxChar * GetUserID ()

Accessor function to return the user ID assigned for this class instance.

wxDbConnectInf::SetAuthStr

 SetAuthStr (const wxString &authstr)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectInf::SetPassword (p. 328)

wxDbConnectInf::SetDefaultDir

CHAPTER 7

319

 SetDefaultDir (const wxString &defDir)

Accessor function to assign the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectInf::SetDescription

 SetDescription (const wxString &desc)

Accessor function to assign the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectInf::SetDsn

 SetDsn (const wxString &dsn)

Accessor function to assign the datasource name for this class instance.

wxDbConnectInf::SetFileType

 SetFileType (const wxString &)

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::SetHenv

void SetHenv (const HENV henv)

Accessor function to set the SQL environment handle for this class instance.

wxDbConnectInf::SetPassword

 SetPassword (const wxString &password)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectInf::SetAuthStr (p. 327)

wxDbConnectInf::SetUid

 SetUid (const wxString &uid)

Accessor function to set the user ID for this class instance.

CHAPTER 7

320

wxDbConnectInf::SetUserID

 SetUserID (const wxString &userID)

Accessor function to assign the user ID for this class instance.

wxDbIdxDef

Used in creation of non-primary indexes. Currently there are no member functions for
this class.

 wxChar ColName[DB_MAX_COLUMN_NAME_LEN+1]
 // Name of column
 bool Ascending // Is index maint ained in
 ASCENDING sequ ence?

There are no constructors/destructors as of this time, and no member functions.

See the database classes overview (p. Error! Bookmark not defined.) for an
introduction to using the ODBC classes.

Include files

<wx/db.h>

wxDbInf

Contains information regarding the database connection (datasource name, number of
tables, etc). A pointer to a wxDbTableInf is included in this class so a program can
create a wxDbTableInf array instance to maintain all information about all tables in the
datasource to have all the datasource's information in one memory structure.

Primarily, this class is used internally by the wxWidgets ODBC classes.

 wxChar catalog[128+1];
 wxChar schema[128+1]; // typically mean s owner of
table(s)
 int numTables; // How many table s does this
 datasource hav e
 wxDbTableInf *pTableInf; // Equals a new
 wxDbTableInf[n umTables];

The constructor for this class initializes all the values to zero, "", or NULL.

The destructor for this class takes care of deleting the pTableInf member if it is non-
NULL.

See the database classes overview (p. Error! Bookmark not defined.) for an
introduction to using the ODBC classes.

Include files

<wx/db.h>

CHAPTER 7

321

wxDbInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbTable

A wxDbTable instance provides re-usable access to rows of data in a table contained
within the associated ODBC datasource

See the database classes overview (p. Error! Bookmark not defined.) for an
introduction to using the ODBC classes.

Include files

<wx/dbtable.h>
<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in dbtable.cpp/.h for use with the
wxDbTable class.

 • wxDbColDef (p. 320)

 • wxDbColDataPtr (p. 320)

 • wxDbIdxDef (p. 328)

Constants

 wxDB_DEFAULT_CURSOR Primary cursor normally us ed for cursor
based
 operations.

 wxDB_QUERY_ONLY Used to indicate whether a table that is
opened
 is for query only, or if
insert/update/deletes
 will be performed on the t able. Less
overhead
 (cursors and memory) are a llocated for
query
 only tables, plus read acc ess times are
faster
 with some datasources.

 wxDB_ROWID_LEN [Oracle only] - Used when
CanUpdateByRowID()
 is true. Optimizes update s so they are
faster
 by updating on the Oracle- specific ROWID
column
 rather than some other ind ex.

CHAPTER 7

322

 wxDB_DISABLE_VIEW Use to indicate when a dat abase view
should not
 be if a table is normally set up to use a
view.
 [Currently unsupported.]

wxDbTable::wxDbTable

 wxDbTable (wxDb * pwxDb, const wxString & tblName, const UWORD numColumns,
const wxString & qryTblName = "", bool qryOnly = !wxDB_QUERY_ONLY, const
wxString & tblPath = "")

Default constructor.

Parameters

pwxDb

Pointer to the wxDb instance to be used by this wxDbTable instance.

tblName

The name of the table in the RDBMS.

numColumns

The number of columns in the table. (Do NOT include the ROWID column in the
count if using Oracle).

qryTblName

OPTIONAL. The name of the table or view to base your queries on. This
argument allows you to specify a table/view other than the base table for this
object to base your queries on. This allows you to query on a view for example,
but all of the INSERT, UPDATE and DELETES will still be performed on the base
table for this wxDbTable object. Basing your queries on a view can provide a
substantial performance increase in cases where your queries involve many tables
with multiple joins. Default is "".

qryOnly

OPTIONAL. Indicates whether the table will be accessible for query purposes
only, or should the table create the necessary cursors to be able to insert, update,
and delete data from the table. Default is !wxDB_QUERY_ONLY.

tblPath

OPTIONAL. Some datasources (such as dBase) require a path to where the table
is stored on the system. Default is "".

CHAPTER 7

323

wxDbTable::wxDbTable

virtual ~wxDbTable ()

Virtual default destructor.

wxDbTable::BuildDeleteStmt

void BuildDeleteStmt (wxString & pSqlStmt,int typeOfDel, const wxString
&pWhereClause="")

Constructs the full SQL statement that can be used to delete all rows matching the
criteria in the pWhereClause.

Parameters

pSqlStmt

Pointer to buffer for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfDel

The type of delete statement being performed. Can be one of three values:
DB_DEL_KEYFIELDS, DB_DEL_WHERE or DB_DEL_MATCHING

pWhereClause

OPTIONAL. If the typeOfDel is DB_DEL_WHERE, then you must also pass in a
SQL WHERE clause in this argument. Default is "".

Remarks

This member function constructs a SQL DELETE statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

wxDbTable::BuildSelectStmt

void BuildSelectStmt (wxString & pSqlStmt,int typeOfSelect, bool distinct)

Constructs the full SQL statement that can be used to select all rows matching the
criteria in the pWhereClause. This function is called internally in the wxDbTable class
whenever the function wxDbTable::Query (p. 353)is called.

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 358)statements are
included in the list of columns returned by the SQL statement created by a call to this
function.

Parameters

CHAPTER 7

324

pSqlStmt

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfSelect

The type of select statement being performed. Can be one of four values:
DB_SELECT_KEYFIELDS, DB_SELECT_WHERE, DB_SELECT_MATCHING or
DB_SELECT_STATEMENT.

distinct

Whether to select distinct records only.

Remarks

This member function constructs a SQL SELECT statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified usingwxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

wxDbTable::BuildUpdateStmt

void BuildUpdateStmt (wxString & pSqlStmt, int typeOfUpd,const wxString
&pWhereClause="")

Constructs the full SQL statement that can be used to update all rows matching the
criteria in the pWhereClause.

If typeOfUpdate is DB_UPD_KEYFIELDS, then the current values in the bound columns
are used to determine which row(s) in the table are to be updated. The exception to this
is when a datasource supports ROW IDs (Oracle). The ROW ID column is used for
efficiency purposes when available.

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 358)statements are
included in the list of columns updated by the SQL statement created by a call to this
function. Any column definitions that were defined as being non-updateable will be
excluded from the SQL UPDATE statement created by this function.

Parameters

pSqlStmt

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfUpdate

The type of update statement being performed. Can be one of two values:
DB_UPD_KEYFIELDS or DB_UPD_WHERE.

CHAPTER 7

325

pWhereClause

OPTIONAL. If the typeOfUpdate is DB_UPD_WHERE, then you must also pass in
a SQL WHERE clause in this argument. Default is "".

Remarks

This member function allows you to see what the SQL UPDATE statement looks like that
the ODBC class library builds. This can be used for debugging purposes if you are
having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

wxDbTable::BuildWhereClause

 void BuildWhereClause (wxString & pWhereClause,int typeOfWhere, const wxString
&qualTableName="",bool useLikeComparison=false)

Constructs the portion of a SQL statement which would follow the word 'WHERE' in a
SQL statement to be passed to the datasource. The returned string does NOT include
the word 'WHERE'.

Parameters

pWhereClause

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfWhere

The type of where clause to generate. Can be one of two values:
DB_WHERE_KEYFIELDS or DB_WHERE_MATCHING.

qualTableName

OPTIONAL. Prepended to all base table column names. For use when a FROM
clause has been specified with thewxDbTable::SetFromClause (p. 361), to clarify
which table a column name reference belongs to. Default is "".

useLikeComparison

OPTIONAL. Should the constructed WHERE clause utilize the LIKE comparison
operator. If false, then the '=' operator is used. Default is false.

Remarks

This member function allows you to see what the SQL WHERE clause looks like that the
ODBC class library builds. This can be used for debugging purposes if you are having
problems executing your own SQL statements.

If using 'typeOfWhere' set to DB_WHERE_MATCHING, any bound columns currently

CHAPTER 7

326

containing a NULL value are not included in the WHERE clause's list of columns to use
in the comparison.

wxDbTable::CanSelectForUpdate

bool CanSelectForUpdate ()

Use this function to determine if the datasource supports SELECT ... FOR UPDATE.
When the keywords "FOR UPDATE" are included as part of your SQL SELECT
statement, all records retrieved (not just queried, but actually retrieved
usingwxDbTable::GetNext (p. 347), etc) from the result set are locked.

Remarks

Not all datasources support the "FOR UPDATE" clause, so you must use this member
function to determine if the datasource currently connected to supports this behavior or
not before trying to select using "FOR UPDATE".

If the wxDbTable instance was created with the parameter wxDB_QUERY_ONLY, then
this function will return false. For all known databases which do not support the FOR
UPDATE clause, this function will return false also.

wxDbTable::CanUpdateByROWID

bool CanUpdateByROWID ()

CURRENTLY ONLY POSSIBLE IF USING ORACLE.

--- CURRENTLY DISABLED FOR *ALL* DATASOURCES --- NOV 1 2000 - gt

Every Oracle table has a hidden column named ROWID. This is a pointer to the
physical location of the record in the datasource and allows for very fast updates and
deletes. The key is to retrieve this ROWID during your query so it is available during an
update or delete operation.

Use of the ROWID feature is always handled by the class library except in the case of
wxDbTable::QueryBySqlStmt (p. 354). Since you are passing in the SQL SELECT
statement, it is up to you to include the ROWID column in your query. If you do not, the
application will still work, but may not be as optimized. The ROWID is always the last
column in the column list in your SQL SELECT statement. The ROWID is not a column
in the normal sense and should not be considered part of the column definitions for the
wxDbTable object.

Remarks

The decision to include the ROWID in your SQL SELECT statement must be deferred
until runtime since it depends on whether you are connected to an Oracle datasource or
not.

Example

 // Incomplete code sample
 wxDbTable parts;

CHAPTER 7

327

 if (parts.CanUpdateByROWID())
 {
 // Note that the ROWID column must always b e the last
column selected
 sqlStmt = "SELECT PART_NUM, PART_DESC, ROWI D" FROM PARTS";
 }
 else
 sqlStmt = "SELECT PART_NUM, PART_DESC FROM PARTS";

wxDbTable::ClearMemberVar

void ClearMemberVar (UWORD colNumber, bool setToNull=false)

Same as wxDbTable::ClearMemberVars (p. 336) except that this function clears only the
specified column of its values, and optionally sets the column to be a NULL column.

colNumber

Column number that is to be cleared. This number (between 0 and (numColumns-
1)) is the index of the column definition created using thewxDbTable::SetColDefs
(p. 358) function.

setToNull

OPTIONAL. Indicates whether the column should be flagged as being a NULL
value stored in the bound memory variable. If true, then any value stored in the
bound member variable is cleared. Default is false.

wxDbTable::ClearMemberVars

void ClearMemberVars (bool setToNull=false)

Initializes all bound columns of the wxDbTable instance to zero. In the case of a string,
zero is copied to the first byte of the string.

setToNull

OPTIONAL. Indicates whether all columns should be flagged as having a NULL
value stored in the bound memory variable. If true, then any value stored in the
bound member variable is cleared. Default is false.

Remarks

This is useful before calling functions such aswxDbTable::QueryMatching (p. 356)
orwxDbTable::DeleteMatching (p. 341) since these functions build their WHERE clauses
from non-zero columns. To call eitherwxDbTable::QueryMatching (p. 356)
orwxDbTable::DeleteMatching (p. 341) use this sequence:

1) ClearMemberVars()
2) Assign columns values you wish to match on
3) Call wxDbTable::QueryMatching() or wxDbTable::D eleteMatching()

wxDbTable::CloseCursor

CHAPTER 7

328

bool CloseCursor (HSTMTcursor)

Closes the specified cursor associated with the wxDbTable object.

Parameters

cursor

The cursor to be closed.

Remarks

Typically handled internally by the ODBC class library, but may be used by the
programmer if desired.

DO NOT CLOSE THE wxDB_DEFAULT_CURSOR!

wxDbTable::Count

ULONG Count (const wxString & args="*")

Returns the number of records which would be in the result set using the current query
parameters specified in the WHERE and FROM clauses.

Parameters

args

OPTIONAL. This argument allows the use of the DISTINCT keyword against a
column name to cause the returned count to only indicate the number of rows in
the result set that have a unique value in the specified column. An example is
shown below. Default is "*", meaning a count of the total number of rows matching
is returned, regardless of uniqueness.

Remarks

This function can be called before or after an actual query to obtain the count of records
in the result set. Count() uses its own cursor, so result set cursor positioning is not
affected by calls to Count().

WHERE and FROM clauses specified usingwxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) ARE used by this function.

Example

 USERS TABLE

 FIRST_NAME LAST_NAME
 ----------- ----------
 John Doe
 Richard Smith
 Michael Jones
 John Carpenter

 // Incomplete code sample
 wxDbTable users;

CHAPTER 7

329

 users.SetWhereClause("");

 // This Count() will return 4, as there are fou r users listed
above
 // that match the query parameters
 totalNumberOfUsers = users.Count();

 // This Count() will return 3, as there are onl y 3 unique
first names
 // in the table above - John, Richard, Michael.
 totalNumberOfUniqueFirstNames = users.Count("DI STINCT
FIRST_NAME");

wxDbTable::CreateIndex

bool CreateIndex (const wxString & IndexName, bool unique,UWORD
numIndexColumns, wxDbIdxDef * pIndexDefs,bool attemptDrop=true)

This member function allows you to create secondary (non primary) indexes on your
tables. You first create your table, normally specifying a primary index, and then create
any secondary indexes on the table. Indexes in relational model are not required. You
do not need indexes to look up records in a table or to join two tables together. In the
relational model, indexes, if available, provide a quicker means to look up data in a table.
To enjoy the performance benefits of indexes, the indexes must be defined on the
appropriate columns and your SQL code must be written in such a way as to take
advantage of those indexes.

Parameters

IndexName

Name of the Index. Name must be unique within the table space of the
datasource.

unique

Indicates if this index is unique.

numIndexColumns

Number of columns in the index.

pIndexDefs

A pointer to an array wxDbIdxDef (p. 328) structures.

attemptDrop

OPTIONAL. Indicates if the function should try to execute a
wxDbTable::DropIndex (p. 343) on the index name provided before trying to create
the index name. Default is true.

Remarks

The first parameter, index name, must be unique and should be given a meaningful

CHAPTER 7

330

name. Common practice is to include the table name as a prefix in the index name (e.g.
For table PARTS, you might want to call your index PARTS_Index1). This will allow you
to easily view all of the indexes defined for a given table grouped together alphabetically.

The second parameter indicates if the index is unique or not. Uniqueness is enforced at
the RDBMS level preventing rows which would have duplicate indexes from being
inserted into the table when violating a unique index's uniqueness.

In the third parameter, specify how many columns are in your index. This number must
match the number of columns defined in the 'pIndexDefs' parameter.

The fourth parameter specifies which columns make up the index using thewxDbIdxDef
(p. 328) structure. For each column in the index, you must specify two things, the
column name and the sort order (ascending / descending). See the example below to
see how to build and pass in the wxDbIdxDef (p. 328) structure.

The fifth parameter is provided to handle the differences in datasources as to whether
they will automatically overwrite existing indexes with the same name or not. Some
datasources require that the existing index must be dropped first, so this is the default
behavior.

Some datasources (MySQL, and possibly others) require columns which are to be part
of an index to be defined as NOT NULL. When this function is called, if a column is not
defined to be NOT NULL, a call to this function will modify the column definition to
change any columns included in the index to be NOT NULL. In this situation, if a NULL
value already exists in one of the columns that is being modified, creation of the index
will fail.

PostGres is unable to handle index definitions which specify whether the index is
ascending or descending, and defaults to the system default when the index is created.

It is not necessary to call wxDb::CommitTrans (p. 298)after executing this function.

Example

 // Create a secondary index on the PARTS table
 wxDbIdxDef IndexDef[2]; // 2 columns make up the index

 wxStrcpy(IndexDef[0].ColName, "PART_DESC"); // Column 1
 IndexDef[0].Ascending = true;

 wxStrcpy(IndexDef[1].ColName, "SERIAL_NO"); // Column 2
 IndexDef[1].Ascending = false;

 // Create a name for the index based on the tab le's name
 wxString indexName;
 indexName.Printf("%s_Index1",parts->GetTableNam e());
 parts->CreateIndex(indexName, true, 2, IndexDef);

wxDbTable::CreateTable

bool CreateTable (bool attemptDrop=true)

Creates a table based on the definitions previously defined for this wxDbTable instance.

CHAPTER 7

331

Parameters

attemptDrop

OPTIONAL. Indicates whether the driver should attempt to drop the table before
trying to create it. Some datasources will not allow creation of a table if the table
already exists in the table space being used. Default is true.

Remarks

This function creates the table and primary index (if any) in the table space associated
with the connected datasource. The owner of these objects will be the user id that was
given when wxDb::Open (p. 312) was called. The objects will be created in the default
schema/table space for that user.

In your derived wxDbTable object constructor, the columns and primary index of the
table are described through the wxDbColDef (p. 320) structure.wxDbTable::CreateTable
(p. 339) uses this information to create the table and to add the primary index.
SeewxDbTable (p. 329) ctor and wxDbColDef description for additional information on
describing the columns of the table.

It is not necessary to call wxDb::CommitTrans (p. 298)after executing this function.

wxDbTable::DB_STATUS

bool DB_STATUS ()

Accessor function that returns the wxDb private member variable DB_STATUS for the
database connection used by this instance of wxDbTable.

wxDbTable::Delete

bool Delete ()

Deletes the row from the table indicated by the current cursor.

Remarks

Use wxDbTable::GetFirst (p. 345),wxDbTable::GetLast (p. 346),wxDbTable::GetNext (p.
347) orwxDbTable::GetPrev (p. 347) to position the cursor to a valid record. Once
positioned on a record, call this function to delete the row from the table.

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use
of this function to commit or rollback the deletion.

NOTE: Most datasources have a limited size "rollback" segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

CHAPTER 7

332

wxDbTable::DeleteCursor

bool DeleteCursor (HSTMT *hstmtDel)

Allows a program to delete a cursor.

Parameters

hstmtDel

Handle of the cursor to delete.

Remarks

For default cursors associated with the instance of wxDbTable, it is not necessary to
specifically delete the cursors. This is automatically done in the wxDbTable destructor.

NOTE: If the cursor could not be deleted for some reason, an error is logged indicating
the reason. Even if the cursor could not be deleted, the HSTMT that is passed in is
deleted, and the pointer is set to NULL.

DO NOT DELETE THE wxDB_DEFAULT_CURSOR!

wxDbTable::DeleteMatching

bool DeleteMatching ()

This member function allows you to delete records from your wxDbTable object by
specifying the data in the columns to match on.

Remarks

To delete all users with a first name of "JOHN", do the following:

 1. Clear all "columns" using wxDbTable::ClearMemberVars().

 2. Set the FIRST_NAME column equal to "JOHN".

 3. Call wxDbTable::DeleteMatching().

The WHERE clause is built by the ODBC class library based on all non-NULL columns.
This allows deletion of records by matching on any column(s) in your wxDbTable
instance, without having to write the SQL WHERE clause.

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use
of this function to commit or rollback the deletion.

NOTE: Row(s) should be locked before deleting them to make sure they are not already
in use. This can be achieved by callingwxDbTable::QueryMatching (p. 356), and then
retrieving the records, locking each as you go (assuming FOR UPDATE is allowed on
the datasource). After the row(s) have been successfully locked, call this function.

NOTE: Most datasources have a limited "rollback" segment. This means that it is only
possible to insert/update/delete a finite number of rows without performing a

CHAPTER 7

333

wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

Example

 // Incomplete code sample to delete all users w ith a first
name
 // of "JOHN"
 users.ClearMemberVars();
 wxStrcpy(users.FirstName,"JOHN");
 users.DeleteMatching();

wxDbTable::DeleteWhere

bool DeleteWhere (const wxString & pWhereClause)

Deletes all rows from the table which match the criteria specified in the WHERE clause
that is passed in.

Parameters

pWhereClause

SQL WHERE clause. This WHERE clause determines which records will be
deleted from the table interfaced through the wxDbTable instance. The WHERE
clause passed in must be compliant with the SQL 92 grammar. Do not include the
keyword 'WHERE'

Remarks

This is the most powerful form of the wxDbTable delete functions. This function gives
access to the full power of SQL. This function can be used to delete records by passing
a valid SQL WHERE clause. Sophisticated deletions can be performed based on
multiple criteria using the full functionality of the SQL language.

A wxDb::CommitTrans (p. 298) must be called after use of this function to commit the
deletions.

Note: This function is limited to deleting records from the table associated with this
wxDbTable object only. Deletions on joined tables is not possible.

NOTE: Most datasources have a limited size "rollback" segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

CHAPTER 7

334

Example

 // Delete parts 1 thru 10 from containers 'X', 'Y' and 'Z'
that
 // are magenta in color
 parts.DeleteWhere("(PART_NUMBER BETWEEN 1 AND 1 0) AND \
 CONTAINER IN ('X', 'Y', 'Z') AND \
 UPPER(COLOR) = 'MAGENTA'");

wxDbTable::DropIndex

bool DropIndex (const wxString & IndexName)

Allows an index on the associated table to be dropped (deleted) if the user login has
sufficient privileges to do so.

Parameters

IndexName

Name of the index to be dropped.

Remarks

If the index specified in the 'IndexName' parameter does not exist, an error will be
logged, and the function will return a result of false.

It is not necessary to call wxDb::CommitTrans (p. 298)after executing this function.

wxDbTable::DropTable

bool DropTable ()

Deletes the associated table if the user has sufficient privileges to do so.

Remarks

This function returns true if the table does not exist, but only for supported databases
(see wxDb::Dbms (p. 299)). If a datasource is not specifically supported, and this
function is called, the function will return false.

Most datasources/ODBC drivers will delete any indexes associated with the table
automatically, and others may not. Check the documentation for your database to
determine the behavior.

It is not necessary to call wxDb::CommitTrans (p. 298)after executing this function.

wxDbTable::From

const wxString & From ()

void From (const wxString & From)

Accessor function for the private class member wxDbTable::from. Can be used as a

CHAPTER 7

335

synonym for wxDbTable::GetFromClause (p. 346)(the first form of this function)
orwxDbTable::SetFromClause (p. 361) (the second form of this function).

Parameters

From

A comma separated list of table names that are to be inner joined with the base
table's columns so that the joined table's columns may be returned in the result set
or used as a portion of a comparison with the base table's columns. NOTE that
the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::from.

The second form of the function has no return value, as it will always set the from clause
successfully.

See also

wxDbTable::GetFromClause (p. 346),wxDbTable::SetFromClause (p. 361)

wxDbTable::GetColDefs

wxDbColDef * GetColDefs ()

Accessor function that returns a pointer to the array of column definitions that are bound
to the columns that this wxDbTable instance is associated with.

To determine the number of elements pointed to by the returnedwxDbColDef (p. 320)
pointer, use thewxDbTable::GetNumberOfColumns (p. 347) function.

Remarks

These column definitions must not be manually redefined after they have been set.

wxDbTable::GetCursor

HSTMT GetCursor ()

Returns the HSTMT value of the current cursor for this wxDbTable object.

Remarks

This function is typically used just before changing to use a different cursor so that after
the program is finished using the other cursor, the current cursor can be set back to
being the cursor in use.

See also

wxDbTable::SetCursor (p. 360), wxDbTable::GetNewCursor (p. 346)

CHAPTER 7

336

wxDbTable::GetDb

wxDb * GetDb ()

Accessor function for the private member variable pDb which is a pointer to the
datasource connection that this wxDbTable instance uses.

wxDbTable::GetFirst

bool GetFirst ()

Retrieves the FIRST row in the record set as defined by the current query. Before
retrieving records, a query must be performed usingwxDbTable::Query (p.
353),wxDbTable::QueryOnKeyFields (p. 357),wxDbTable::QueryMatching (p. 356)
orwxDbTable::QueryBySqlStmt (p. 354).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to false. If the connection does not allow
backward scrolling cursors, this function will return false, and the data contained in the
bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 310)

wxDbTable::GetFromClause

const wxString & GetFromClause ()

Accessor function that returns the current FROM setting assigned with
thewxDbTable::SetFromClause (p. 361).

See also

wxDbTable::From (p. 344)

wxDbTable::GetLast

bool GetLast ()

Retrieves the LAST row in the record set as defined by the current query. Before
retrieving records, a query must be performed usingwxDbTable::Query (p.
353),wxDbTable::QueryOnKeyFields (p. 357),wxDbTable::QueryMatching (p. 356)
orwxDbTable::QueryBySqlStmt (p. 354).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to false. If the connection does not allow
backward scrolling cursors, this function will return false, and the data contained in the

CHAPTER 7

337

bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 310)

wxDbTable::GetNewCursor

HSTMT * GetNewCursor (bool setCursor=false,bool bindColumns=true)

This function will create a new cursor that can be used to access the table being
referenced by this wxDbTable instance, or to execute direct SQL commands on without
affecting the cursors that are already defined and possibly positioned.

Parameters

setCursor

OPTIONAL. Should this new cursor be set to be the current cursor after
successfully creating the new cursor. Default is false.

bindColumns

OPTIONAL. Should this new cursor be bound to all the memory variables that the
default cursor is bound to. Default is true.

Remarks

This new cursor must be closed usingwxDbTable::DeleteCursor (p. 341)by the calling
program before the wxDbTable instance is deleted, or both memory and resource leaks
will occur.

wxDbTable::GetNext

bool GetNext ()

Retrieves the NEXT row in the record set after the current cursor position as defined by
the current query. Before retrieving records, a query must be performed using
wxDbTable::Query (p. 353),wxDbTable::QueryOnKeyFields (p.
357),wxDbTable::QueryMatching (p. 356) orwxDbTable::QueryBySqlStmt (p. 354).

Return value

This function returns false when the current cursor has reached the end of the result set.
When false is returned, data in the bound columns is undefined.

Remarks

This function works with both forward and backward scrolling cursors.

See also wxDbTable::++ (p. 366)

wxDbTable::GetNumberOfColumns

CHAPTER 7

338

UWORD GetNumberOfColumns ()

Accessor function that returns the number of columns that are statically bound for
access by the wxDbTable instance.

wxDbTable::GetOrderByClause

const wxString & GetOrderByClause ()

Accessor function that returns the current ORDER BY setting assigned with the
wxDbTable::SetOrderByClause (p. 363).

See also

wxDbTable::OrderBy (p. 352)

wxDbTable::GetPrev

bool GetPrev ()

Retrieves the PREVIOUS row in the record set before the current cursor position as
defined by the current query. Before retrieving records, a query must be performed
using wxDbTable::Query (p. 353),wxDbTable::QueryOnKeyFields (p.
357),wxDbTable::QueryMatching (p. 356) orwxDbTable::QueryBySqlStmt (p. 354).

Return value

This function returns false when the current cursor has reached the beginning of the
result set and there are now other rows prior to the cursors current position. When false
is returned, data in the bound columns is undefined.

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to false. If the connection does not allow
backward scrolling cursors, this function will return false, and the data contained in the
bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 310),wxDbTable::-- (p. 366)

wxDbTable::GetQueryTableName

const wxString & GetQueryTableName ()

Accessor function that returns the name of the table/view that was indicated as being the
table/view to query against when this wxDbTable instance was created.

See also

wxDbTable constructor (p. 330)

CHAPTER 7

339

wxDbTable::GetRowNum

UWORD GetRowNum ()

Returns the ODBC row number for performing positioned updates and deletes.

Remarks

This function is not being used within the ODBC class library and may be a candidate for
removal if no use is found for it.

Row number with some datasources/ODBC drivers is the position in the result set, while
in others it may be a physical position in the database. Check your database
documentation to find out which behavior is supported.

wxDbTable::GetTableName

const wxString & GetTableName ()

Accessor function that returns the name of the table that was indicated as being the
table that this wxDbTable instance was associated with.

wxDbTable::GetTablePath

const wxString & GetTablePath ()

Accessor function that returns the path to the data table that was indicated during
creation of this wxDbTable instance.

Remarks

Currently only applicable to dBase and MS-Access datasources.

wxDbTable::GetWhereClause

const wxString & GetWhereClause ()

Accessor function that returns the current WHERE setting assigned with
thewxDbTable::SetWhereClause (p. 364)

See also

wxDbTable::Where (p. 366)

wxDbTable::Insert

int Insert ()

Inserts a new record into the table being referenced by this wxDbTable instance. The
values in the member variables of the wxDbTable instance are inserted into the columns
of the new row in the database.

CHAPTER 7

340

Return value

 DB_SUCCESS Record inserted success fully (value =
1)

 DB_FAILURE Insert failed (value = 0)

 DB_ERR_INTEGRITY_CONSTRAINT_VIOL
 The insert failed due t o an integrity
 constraint violation (d uplicate non-
unique
 index entry) is attempt ed.

Remarks

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use
of this function to commit or rollback the insertion.

Example

 // Incomplete code snippet
 wxStrcpy(parts->PartName, "10");
 wxStrcpy(parts->PartDesc, "Part #10");
 parts->Qty = 1000;
 RETCODE retcode = parts->Insert();
 switch(retcode)
 {
 case DB_SUCCESS:
 parts->GetDb()->CommitTrans();
 return(true);
 case DB_ERR_INTEGRITY_CONSTRAINT_VIOL:
 // Current data would result in a dupli cate key
 // on one or more indexes that do not a llow duplicates
 parts->GetDb()->RollbackTrans();
 return(false);
 default:
 // Insert failed for some unexpected re ason
 parts->GetDb()->RollbackTrans();
 return(false);
 }

wxDbTable::IsColNull

bool IsColNull (UWORD colNumber) const

Used primarily in the ODBC class library to determine if a column value is set to "NULL".
Works for all data types supported by the ODBC class library.

Parameters

colNumber

The column number of the bound column as defined by
thewxDbTable::SetColDefs (p. 358)calls which defined the columns accessible to
this wxDbTable instance.

Remarks

NULL column support is currently not fully implemented as of wxWidgets 2.4.

CHAPTER 7

341

wxDbTable::IsCursorClosedOnCommit

bool IsCursorClosedOnCommit ()

Accessor function to return information collected during the opening of the datasource
connection that is used by this wxDbTable instance. The result returned by this function
indicates whether an implicit closing of the cursor is done after a commit on the
database connection.

Return value

Returns true if the cursor associated with this wxDbTable object is closed after a commit
or rollback operation. Returns false otherwise.

Remarks

If more than one wxDbTable instance used the same database connection, all cursors
which use the database connection are closed on the commit if this function indicates
true.

wxDbTable::IsQueryOnly

bool IsQueryOnly ()

Accessor function that returns a value indicating if this wxDbTable instance was created
to allow only queries to be performed on the bound columns. If this function returns true,
then no actions may be performed using this wxDbTable instance that would modify
(insert/delete/update) the table's data.

wxDbTable::Open

bool Open (bool checkPrivileges=false, bool checkTableExists=true)

Every wxDbTable instance must be opened before it can be used. This function checks
for the existence of the requested table, binds columns, creates required cursors,
(insert/select and update if connection is not wxDB_QUERY_ONLY) and constructs the
insert statement that is to be used for inserting data as a new row in the datasource.

NOTE: To retrieve data into an opened table, the of the table must be bound to the
variables in the program via call(s) to wxDbTable::SetColDefs (p. 358) before calling
Open().

See the database classes overview (p. Error! Bookmark not defined.) for an
introduction to using the ODBC classes.

Parameters

checkPrivileges

Indicates whether the Open() function should check whether the current connected
user has at least SELECT privileges to access the table to which they are trying to
open. Default is false.

CHAPTER 7

342

checkTableExists

Indicates whether the Open() function should check whether the table exists in the
database or not before opening it. Default is true.

Remarks

If the function returns a false value due to the table not existing, a log entry is recorded
for the datasource connection indicating the problem that was detected when checking
for table existence. Note that it is usually best for the calling routine to check for the
existence of the table and for sufficient user privileges to access the table in the mode
(wxDB_QUERY_ONLY or !wxDB_QUERY_ONLY) before trying to open the table for the
best possible explanation as to why a table cannot be opened.

Checking the user's privileges on a table can be quite time consuming during the open
phase. With most applications, the programmer already knows that the user has
sufficient privileges to access the table, so this check is normally not required.

For best performance, open the table, and then use thewxDb::TablePrivileges (p. 318)
function to check the users privileges. Passing a schema to the TablePrivileges()
function can significantly speed up the privileges checks.

See also

wxDb::TableExists (p. 317),wxDb::TablePrivileges (p. 318)wxDbTable::SetColDefs (p.
358)

wxDbTable::OrderBy

const wxString & OrderBy ()

void OrderBy (const wxString & OrderBy)

Accessor function for the private class member wxDbTable::orderBy. Can be used as a
synonym forwxDbTable::GetOrderByClause (p. 347)(the first form of this function)
orwxDbTable::SetOrderByClause (p. 363)(the second form of this function).

Parameters

OrderBy

A comma separated list of column names that indicate the alphabetized/numeric
sorting sequence that the result set is to be returned in. If a FROM clause has
also been specified, each column name specified in the ORDER BY clause should
be prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::orderBy.

The second form of the function has no return value.

CHAPTER 7

343

See also

wxDbTable::GetOrderByClause (p. 347),wxDbTable::SetFromClause (p. 361)

wxDbTable::Query

virtual bool Query (bool forUpdate=false, bool distinct=false)

Parameters

forUpdate

OPTIONAL. Gives you the option of locking records as they are retrieved. If the
RDBMS is not capable of the FOR UPDATE clause, this argument is ignored.
SeewxDbTable::CanSelectForUpdate (p. 334) for additional information regarding
this argument. Default is false.

distinct

OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is false.

Remarks

This function queries records from the datasource based on the three wxDbTable
members: "where", "orderBy", and "from". UsewxDbTable::SetWhereClause (p. 364) to
filter on records to be retrieved (e.g. All users with a first name of "JOHN"). Use
wxDbTable::SetOrderByClause (p. 363) to change the sequence in which records are
returned in the result set from the datasource (e.g. Ordered by LAST_NAME).
UsewxDbTable::SetFromClause (p. 361) to allow inner joining of the base table (the one
being associated with this instance of wxDbTable) with other tables which share a
related field.

After each of these clauses are set/cleared, call wxDbTable::Query() to fetch the result
set from the datasource.

This scheme has an advantage if you have to requery your record set frequently in that
you only have to set your WHERE, ORDER BY, and FROM clauses once. Then to
refresh the record set, simply call wxDbTable::Query() as frequently as needed.

Note that repeated calls to wxDbTable::Query() may tax the database server and make
your application sluggish if done too frequently or unnecessarily.

The base table name is automatically prepended to the base column names in the event
that the FROM clause has been set (is non-null) usingwxDbTable::SetFromClause (p.
361).

The cursor for the result set is positioned before the first record in the result set after the
query. To retrieve the first record, call eitherwxDbTable::GetFirst (p. 345) (only if
backward scrolling cursors are available) orwxDbTable::GetNext (p. 347). Typically, no
data from the result set is returned to the client driver until a request such
aswxDbTable::GetNext (p. 347) is performed, so network traffic and database load are

CHAPTER 7

344

not overwhelmed transmitting data until the data is actually requested by the client. This
behavior is solely dependent on the ODBC driver though, so refer to the ODBC driver's
reference material for information on its behaviors.

Values in the bound columns' memory variables are undefined after executing a call to
this function and remain that way until a row in the result set is requested to be returned.

The wxDbTable::Query() function is defined as "virtual" so that it may be overridden for
application specific purposes.

Be sure to set the wxDbTable's "where", "orderBy", and "from" member variables to "" if
they are not to be used in the query. Otherwise, the results returned may have
unexpected results (or no results) due to improper or incorrect query parameters
constructed from the uninitialized clauses.

Example

 // Incomplete code sample
 parts->SetWhereClause("DESCRIPTION = 'FOOD'");
 parts->SetOrderByClause("EXPIRATION_DATE");
 parts->SetFromClause("");
 // Query the records based on the where, orderB y and from
clauses
 // specified above
 parts->Query();
 // Display all records queried
 while(parts->GetNext())
 dispPart(parts); // user defined function

wxDbTable::QueryBySqlStmt

bool QueryBySqlStmt (const wxString & pSqlStmt)

Performs a query against the datasource by accepting and passing verbatim the SQL
SELECT statement passed to the function.

Parameters

pSqlStmt

Pointer to the SQL SELECT statement to be executed.

Remarks

This is the most powerful form of the query functions available. This member function
allows a programmer to write their own custom SQL SELECT statement for requesting
data from the datasource. This gives the programmer access to the full power of SQL
for performing operations such as scalar functions, aggregate functions, table joins, and
sub-queries, as well as datasource specific function calls.

The requirements of the SELECT statement are the following:

 1. Must return the correct number of columns. In the derived wxDbTable
constructor, it is specified how many columns are in the wxDbTable object. The
SELECT statement must return exactly that many columns.

CHAPTER 7

345

 2. The columns must be returned in the same sequence as specified when defining
the bounds columns wxDbTable::SetColDefs (p. 358), and the columns returned
must be of the proper data type. For example, if column 3 is defined in the
wxDbTable bound column definitions to be a float, the SELECT statement must
return a float for column 3 (e.g. PRICE * 1.10 to increase the price by 10

 3. The ROWID can be included in your SELECT statement as the last column
selected, if the datasource supports it. Use wxDbTable::CanUpdateByROWID()
to determine if the ROWID can be selected from the datasource. If it can, much
better performance can be achieved on updates and deletes by including the
ROWID in the SELECT statement.

Even though data can be selected from multiple tables (joins) in your select statement,
only the base table associated with this wxDbTable object is automatically updated
through the ODBC class library. Data from multiple tables can be selected for display
purposes however. Include columns in the wxDbTable object and mark them as non-
updateable (SeewxDbColDef (p. 320) for details). This way columns can be selected
and displayed from other tables, but only the base table will be updated automatically
when performed through thewxDbTable::Update (p. 365) function after using this type of
query. To update tables other than the base table, use thewxDbTable::Update (p. 365)
function passing a SQL statement.

After this function has been called, the cursor is positioned before the first record in the
record set. To retrieve the first record, call either wxDbTable::GetFirst (p. 345)
orwxDbTable::GetNext (p. 347).

Example

 // Incomplete code samples
 wxString sqlStmt;
 sqlStmt = "SELECT * FROM PARTS WHERE STORAGE_DE VICE = 'SD98' \
 AND CONTAINER = 12";
 // Query the records using the SQL SELECT state ment above
 parts->QueryBySqlStmt(sqlStmt);
 // Display all records queried
 while(parts->GetNext())
 dispPart(&parts);

 Example SQL statements

 // Table Join returning 3 columns
 SELECT PART_NUM, part_desc, sd_name
 from parts, storage_devices
 where parts.storage_device_id =
 storage_devices.storage_device_id

 // Aggregate function returning total number of
 // parts in container 99
 SELECT count(*) from PARTS where container = 99

 // Order by clause; ROWID, scalar function
 SELECT PART_NUM, substring(part_desc, 1, 10), q ty_on_hand + 1,
ROWID
 from parts
 where warehouse = 10
 order by PART_NUM desc // descend ing order

CHAPTER 7

346

 // Subquery
 SELECT * from parts
 where container in (select container
 from storage_devices
 where device_id = 12)

wxDbTable::QueryMatching

virtual bool QueryMatching (bool forUpdate=false,bool distinct=false)

QueryMatching allows querying of records from the table associated with the wxDbTable
object by matching "columns" to values.

For example: To query the datasource for the row with a PART_NUMBER column value
of "32", clear all column variables of the wxDbTable object, set the PartNumber variable
that is bound to the PART_NUMBER column in the wxDbTable object to "32", and then
call wxDbTable::QueryMatching().

Parameters

forUpdate

OPTIONAL. Gives you the option of locking records as they are queried (SELECT
... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE clause, this
argument is ignored. SeewxDbTable::CanSelectForUpdate (p. 334) for additional
information regarding this argument. Default is false.

distinct

OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is false.

Remarks

The SQL WHERE clause is built by the ODBC class library based on all non-zero/non-
NULL columns in your wxDbTable object. Matches can be on one, many or all of the
wxDbTable's columns. The base table name is prepended to the column names in the
event that the wxDbTable's FROM clause is non-null.

This function cannot be used to perform queries which will check for columns that are 0
or NULL, as the automatically constructed WHERE clause only will contain comparisons
on column member variables that are non-zero/non-NULL.

The primary difference between this function and wxDbTable::QueryOnKeyFields (p.
357)is that this function can query on any column(s) in the wxDbTable object. Note
however that this may not always be very efficient. Searching on non-indexed columns
will always require a full table scan.

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either wxDbTable::GetFirst
(p. 345) orwxDbTable::GetNext (p. 347).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and

CHAPTER 7

347

wxDbTable::SetFromClause (p. 361) are ignored by this function.

Example

 // Incomplete code sample
 parts->ClearMemberVars(); // Set all columns to zero
 wxStrcpy(parts->PartNumber,"32"); // Set colu mns to query on
 parts->OnHold = true;
 parts->QueryMatching(); // Query
 // Display all records queried
 while(parts->GetNext())
 dispPart(parts); // Some application defin ed function

wxDbTable::QueryOnKeyFields

bool QueryOnKeyFields (bool forUpdate=false,bool distinct=false)

QueryOnKeyFields provides an easy mechanism to query records in the table
associated with the wxDbTable object by the primary index column(s). Simply assign
the primary index column(s) values and then call this member function to retrieve the
record.

Note that since primary indexes are always unique, this function implicitly always returns
a single record from the database. The base table name is prepended to the column
names in the event that the wxDbTable's FROM clause is non-null.

Parameters

forUpdate

OPTIONAL. Gives you the option of locking records as they are queried (SELECT
... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE clause, this
argument is ignored. SeewxDbTable::CanSelectForUpdate (p. 334) for additional
information regarding this argument. Default is false.

distinct

OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is false.

Remarks

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either wxDbTable::GetFirst
(p. 345) orwxDbTable::GetNext (p. 347).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

Example

 // Incomplete code sample
 wxStrcpy(parts->PartNumber, "32");
 parts->QueryOnKeyFields();
 // Display all records queried

CHAPTER 7

348

 while(parts->GetNext())
 dispPart(parts); // Some application defin ed function

wxDbTable::Refresh

bool Refresh ()

This function re-reads the bound columns into the memory variables, setting them to the
current values stored on the disk.

The cursor position and result set are unaffected by calls to this function. (The one
exception is in the case where the record to be refreshed has been deleted by some
other user or transaction since it was originally retrieved as part of the result set. For
most datasources, the default behavior in this situation is to return the value that was
originally queried for the result set, even though it has been deleted from the database.
But this is datasource dependent, and should be tested before relying on this behavior.)

Remarks

This routine is only guaranteed to work if the table has a unique primary index defined
for it. Otherwise, more than one record may be fetched and there is no guarantee that
the correct record will be refreshed. The table's columns are refreshed to reflect the
current data in the database.

wxDbTable::SetColDefs

bool SetColDefs (UWORD index, const wxString & fieldName,int dataType, void
*pData, SWORD cType,int size, bool keyField = false, bool updateable = true,bool
insertAllowed = true, bool derivedColumn = false)

wxDbColDataPtr * SetColDefs (wxDbColInf * colInfs, UWORD numCols)

Parameters

index

Column number (0 to n-1, where n is the number of columns specified as being
defined for this wxDbTable instance when the wxDbTable constructor was called.

fieldName

Column name from the associated data table.

dataType

Logical data type. Valid logical types include:

 DB_DATA_TYPE_VARCHAR : strings
 DB_DATA_TYPE_INTEGER : non-floating poin t numbers
 DB_DATA_TYPE_FLOAT : floating point nu mbers
 DB_DATA_TYPE_DATE : dates
 DB_DATA_TYPE_BLOB : binary large obje cts
 DB_DATA_TYPE_MEMO : large strings

CHAPTER 7

349

pData

Pointer to the data object that will hold the column's value when a row of data is
returned from the datasource.

cType

SQL C Type. This defines the data type that the SQL representation of the data is
converted to to be stored in pData. Other valid types are available also, but these
are the most common ones:

 SQL_C_CHAR // string - deprecated: use SQL _C_WXCHAR
 SQL_C_WXCHAR // string - Used transparently in unicode or
non-unicode builds
 SQL_C_LONG
 SQL_C_ULONG
 SQL_C_SHORT
 SQL_C_USHORT
 SQL_C_FLOAT
 SQL_C_DOUBLE
 SQL_C_NUMERIC
 SQL_C_TIMESTAMP

 SQL_C_BOOLEAN // defined in db.h
 SQL_C_ENUM // defined in db.h

size

Maximum size in bytes of the pData object.

keyField

OPTIONAL. Indicates if this column is part of the primary index. Default is false.

updateable

OPTIONAL. Are updates allowed on this column? Default is true.

insertAllowed

OPTIONAL. Inserts allowed on this column? Default is true.

derivedColumn

OPTIONAL. Is this a derived column (non-base table column for query only)?
Default is false.

colInfs

Pointer to an array of wxDbColInf instances which contains all the information
necessary to create numCols column definitions.

numCols

Number of elements of wxDbColInf type that are pointed to by colInfs, which are to
have column definitions created from them.

CHAPTER 7

350

Remarks

If pData is to hold a string of characters, be sure to include enough space for the NULL
terminator in pData and in the byte count of size.

Using the first form of this function, if the column definition is not able to be created, a
value of false is returned. If the specified index of the column exceeds the number of
columns defined in the wxDbTable instance, an assert is thrown and logged (in debug
builds) and a false is returned.

A failure to create the column definition in the second form results in a value of NULL
being returned.

Both forms of this function provide a shortcut for defining the columns in your wxDbTable
object. Use this function in any derived wxDbTable constructor when describing the
column/columns in the wxDbTable object.

The second form of this function is primarily used when thewxDb::GetColumns (p. 304)
function was used to query the datasource for the column definitions, so that the column
definitions are already stored in wxDbColInf form. One example use of
usingwxDb::GetColumns (p. 304) then using this function is if a data table existed in one
datasource, and the table's column definitions were to be copied over to another
datasource or table.

Example

 // Long way not using this function
 wxStrcpy(colDefs[0].ColName, "PART_NUM");
 colDefs[0].DbDataType = DB_DATA_TYPE_VARCHAR;
 colDefs[0].PtrDataObj = PartNumber;
 colDefs[0].SqlCtype = SQL_C_WXCHAR;
 colDefs[0].SzDataObj = PART_NUMBER_LEN;
 colDefs[0].KeyField = true;
 colDefs[0].Updateable = false;
 colDefs[0].InsertAllowed= true;
 colDefs[0].DerivedCol = false;

 // Shortcut using this function
 SetColDefs(0, "PART_NUM", DB_DATA_TYPE_VARCHAR, PartNumber,
 SQL_C_WXCHAR, PART_NUMBER_LEN, true, false, true,
false);

wxDbTable::SetCursor

void SetCursor (HSTMT *hstmtActivate = (void **) wxDB_DEFAULT_CURSOR)

Parameters

hstmtActivate

OPTIONAL. Pointer to the cursor that is to become the current cursor. Passing no
cursor handle will reset the cursor back to the wxDbTable's default (original) cursor
that was created when the wxDbTable instance was first created. Default is
wxDB_DEFAULT_CURSOR.

Remarks

CHAPTER 7

351

When swapping between cursors, the member variables of the wxDbTable object are
automatically refreshed with the column values of the row that the current cursor is
positioned at (if any). If the cursor is not positioned, then the data in member variables
is undefined.

The only way to return back to the cursor that was in use before this function was called
is to programmatically determine the current cursor's HSTMTBEFORE calling this
function using wxDbTable::GetCursor (p. 345)and saving a pointer to that cursor.

See also

wxDbTable::GetNewCursor (p. 346),wxDbTable::GetCursor (p.
345),wxDbTable::SetCursor (p. 360)

wxDbTable::SetFromClause

void SetFromClause (const wxString & From)

Accessor function for setting the private class member wxDbTable::from that indicates
what other tables should be inner joined with the wxDbTable's base table for access to
the columns in those other tables.

Synonym to this function is one form of wxDbTable::From (p. 344)

Parameters

From

A comma separated list of table names that are to be inner joined with the base
table's columns so that the joined table's columns may be returned in the result set
or used as a portion of a comparison with the base table's columns. NOTE that
the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Remarks

Used by the wxDbTable::Query (p. 353) andwxDbTable::Count (p. 337) member
functions to allow inner joining of records from multiple tables.

Do not include the keyword "FROM" when setting the FROM clause.

If using the FROM clause when performing a query, be certain to include in the
corresponding WHERE clause a comparison of a column from either the base table or
one of the other joined tables to each other joined table to ensure the datasource knows
on which column values the tables should be joined on.

Example

 ...
 // Base table is the "LOCATION" table, and it i s being
 // inner joined to the "PART" table via the fie ld
"PART_NUMBER"
 // that can be related between the two tables.
 location->SetWhereClause("LOCATION.PART_NUMBER =
PART.PART_NUMBER")

CHAPTER 7

352

 location->SetFromClause("PART");
 ...

See also

wxDbTable::From (p. 344),wxDbTable::GetFromClause (p. 346)

wxDbTable::SetColNull

bool SetColNull (UWORD colNumber, bool set=true)

bool SetColNull (const wxString & colName,bool set=true)

Both forms of this function allow a member variable representing a column in the table
associated with this wxDbTable object to be set to NULL.

The first form allows the column to be set by the index into the column definitions used
to create the wxDbTable instance, while the second allows the actual column name to
be specified.

Parameters

colNumber

Index into the column definitions used when first defining this wxDbTable object.

colName

Actual data table column name that is to be set to NULL.

set

Whether the column is set to NULL or not. Passing true sets the column to NULL,
passing false sets the column to be non-NULL. Default is true.

Remarks

No database updates are done by this function. It only operates on the member
variables in memory. Use and insert or update function to store this value to disk.

wxDbTable::SetOrderByClause

void SetOrderByClause (const wxString & OrderBy)

Accessor function for setting the private class member wxDbTable::orderBy which
determines sequence/ordering of the rows returned in the result set of a query.

A synonym to this function is one form of the function wxDbTable::OrderBy (p. 352)

Parameters

OrderBy

A comma separated list of column names that indicate the alphabetized sorting

CHAPTER 7

353

sequence that the result set is to be returned in. If a FROM clause has also been
specified, each column name specified in the ORDER BY clause should be
prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks

Do not include the keywords "ORDER BY" when setting the ORDER BY clause.

Example

 ...
 parts->SetOrderByClause("PART_DESCRIP, QUANTITY ");
 ...

 ...
 location->SetOrderByClause("LOCATION.POSITION,
PART.PART_NUMBER);
 ...

See also

wxDbTable::OrderBy (p. 352),wxDbTable::GetOrderByClause (p. 347)

wxDbTable::SetQueryTimeout

bool SetQueryTimeout (UDWORD nSeconds)

Allows a time period to be set as the timeout period for queries.

Parameters

nSeconds

The number of seconds to wait for the query to complete before timing out.

Remarks

Neither Oracle or Access support this function as of yet. Other databases should be
evaluated for support before depending on this function working correctly.

wxDbTable::SetWhereClause

void SetWhereClause (const wxString & Where)

Accessor function for setting the private class member wxDbTable::where that
determines which rows are returned in the result set by the datasource.

A synonym to this function is one form of the function wxDbTable::Where (p. 366)

Parameters

Where

SQL "where" clause. This clause can contain any SQL language that is legal in

CHAPTER 7

354

standard where clauses. If a FROM clause has also been specified, each column
name specified in the ORDER BY clause should be prefaced with the table name
to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks

Do not include the keywords "WHERE" when setting the WHERE clause.

Example

 ...
 // Simple where clause
 parts->SetWhereClause("PART_NUMBER = '32'");
 ...
 // Any comparison operators
 parts->SetWhereClause("PART_DESCRIP LIKE 'HAMME R%'");
 ...
 // Multiple comparisons, including a function c all
 parts->Where("QTY > 0 AND {fn UCASE(PART_DESCRI P)} LIKE
'%DRILL%'");
 ...
 // Using parameters and multiple logical combin ations
 parts->Where("((QTY > 10) OR (ON_ORDER > 0)) AN D ON_HOLD =
0");
 ...
 // This query uses an inner join (requiring a F ROM clause
also)
 // that joins the PART and LOCATION table on he common field
 // PART_NUMBER.
 parts->Where("PART.ON_HOLD = 0 AND \
 PART.PART_NUMBER = LOCATION.PART_ NUMBER AND \
 LOCATION.PART_NUMBER > 0");

See also

wxDbTable::Where (p. 366),wxDbTable::GetWhereClause (p. 349)

wxDbTable::Update

bool Update ()

bool Update (const wxString & pSqlStmt)

The first form of this function will update the row that the current cursor is currently
positioned at with the values in the memory variables that are bound to the columns.
The actual SQL statement to perform the update is automatically created by the ODBC
class, and then executed.

The second form of the function allows full access through SQL statements for updating
records in the database. Write any valid SQL UPDATE statement and submit it to this
function for execution. Sophisticated updates can be performed using the full power of
the SQL dialect. The full SQL statement must have the exact syntax required by the
driver/datasource for performing the update. This usually is in the form of:

 UPDATE tablename SET col1=X, col2=Y, ... where ...

CHAPTER 7

355

Parameters

pSqlStmt

Pointer to SQL UPDATE statement to be executed.

Remarks

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use
of this function to commit or rollback the update.

Example

 wxString sqlStmt;
 sqlStmt = "update PART set QTY = 0 where PART_N UMBER = '32'";

wxDbTable::UpdateWhere

bool UpdateWhere (const wxString & pWhereClause)

Performs updates to the base table of the wxDbTable object, updating only the rows
which match the criteria specified in the pWhereClause.

All columns that are bound to member variables for this wxDbTable instance that were
defined with the "updateable" parameter set to true will be updated with the information
currently held in the memory variable.

Parameters

pWhereClause

Pointer to a valid SQL WHERE clause. Do not include the keyword 'WHERE'.

Remarks

Care should be used when updating columns that are part of indexes with this function
so as not to violate an unique key constraints.

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use
of this function to commit or rollback the update(s).

wxDbTable::Where

const wxString & Where ()

void Where (const wxString& Where)

Accessor function for the private class member wxDbTable::where. Can be used as a
synonym for wxDbTable::GetWhereClause (p. 349)(the first form of this function) to
return the current where clause orwxDbTable::SetWhereClause (p. 364) (the second
form of this function) to set the where clause for this table instance.

Parameters

CHAPTER 7

356

Where

A valid SQL WHERE clause. Do not include the keyword 'WHERE'.

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::where.

The second form of the function has no return value, as it will always set the where
clause successfully.

See also

wxDbTable::GetWhereClause (p. 349),wxDbTable::SetWhereClause (p. 364)

wxDbTable::operator ++

bool operator ++ ()

Synonym for wxDbTable::GetNext (p. 347)

See also

wxDbTable::GetNext (p. 347)

wxDbTable::operator --

bool operator -- ()

Synonym for wxDbTable::GetPrev (p. 347)

See also

wxDbTable::GetPrev (p. 347)

wxDbTableInf

 tableName[0] = 0;
 tableType[0] = 0;
 tableRemarks[0] = 0;
 numCols = 0;
 pColInf = NULL;

Currently only used by wxDb::GetCatalog (p. 303) internally and wxDbInf (p. 329) class,
but may be used in future releases for user functions. Contains information describing
the table (Name, type, etc). A pointer to a wxDbColInf array instance is included so a
program can create awxDbColInf (p. 322) array instance (usingwxDb::GetColumns (p.
304)) to maintain all information about the columns of a table in one memory structure.

Eventually, accessor functions will be added for this class

See the database classes overview (p. Error! Bookmark not defined.) for an

CHAPTER 7

357

introduction to using the ODBC classes.

Include files

<wx/db.h>

wxDbTableInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbGridColInfo

This class is used to define columns to be shown, names of the columns, order and
type of data, when using wxdbGridTableBase (p. 369) to display a Table or query in a
wxGrid (p. 621)

See the database grid example in wxDbGridTableBase (p. 369) for an introduction to
using the wxDbGrid classes.

Include files

<wx/dbgrid.h>

wxDbGridColInfo::wxDbGridColInfo

 wxDbGridColInfo (int colNumber, wxString type, wxString title, wxDbGridColInfo
*next)

Default constructor. See the database grid example in wxDbGridTableBase (p. 369) to
see two different ways for adding columns.

Parameters

colNumber

Column number in the wxDbTable (p. 329) instance to be used (first column is 0).

type

Column type ,wxString specifying the grid name for the datatype in this column, or
use wxGRID_VALUE_DBAUTO to determine the type automatically from the
wxDbColDef (p. 320) definition

title

The column label to be used in the grid display

CHAPTER 7

358

next

A pointer to the next wxDbGridColInfo structure if using one-step construction,
NULL terminates the list. Use Null also if using two step construction.

See the database grid example in wxDbGridTableBase (p. 369) to see two different
ways for adding columns.

wxDbGridColInfo::~wxDbGridColInfo

 ~wxDbGridColInfo ()

Destructor.

wxDbGridColInfo::AddColInfo

void AddColInfo (int colNumber,wxString type, wxString title)

Use this member function for adding columns. See the database grid example in
wxDbGridTableBase (p. 369) to see two different ways for adding columns.

It is important to note that this class is merely a specifier to the wxDbGridTableBase (p.
369) constructor. Changes made to this datatype after the wxDbGridTableBase (p. 369)
is called will not have any effect.

Parameters colNumber

Column number in the wxDbTable (p. 329) instance to be used (first column is 0).

type

Column type ,wxString specifying the grid name for the datatype in this column, or
use wxGRID_VALUE_DBAUTO to determine the type automatically from the
wxDbColDef (p. 320) definition

title

The column label to be used in the grid display

Remarks

As wxDbTable must be defined with to have columns which match those to by a
wxDbGridColInfo info structure as this is the structure which informs the grid of how you
want to display your wxDbTable (p. 329). If no datatype conversion or the referenced
column number does not exist the the behavior is undefined.

See the example at wxDbGridColInfo::wxDbGridColInfo (p. 368).

wxDbGridTableBase

You can view a database table in a grid using this class.

CHAPTER 7

359

If you are deriving your own wxDbTable subclass for your table , then you may consider
overriding GetCol() and SetCol() to provide calculated fields. This does work but care
should be taken when using wxDbGridTableBase in this way.

The constructor and AssignDbTable() call allows you to specify the ownership if the
wxDbTable object pointer. If you tell wxGridTableBase to take ownership , it will delete
the passed wxDbTable when an new on is assigned or wxGridTableBase's destructor is
called. However no checks for aliasing are done so Assign(table,..,true);
Assign(table,..,true); is an error. If you need to requery an table object the preferred
way is that the client keeps ownership.

Derived From

wxGridTableBase (p. 678)

Include files

<wx/dbgrid.h>

Example

 // First step, let's define wxDbTable
 int numColumns = 2;
 wxDbTable *table = new wxDbTable (db, tblName, num Columns);
 int int_var;
 wxChar string_name[255];
 table->SetColDef (0, "column 0", DB_DATA_TYPE_INTE GER,
&int_var,
 SQL_C_LONG, sizeof(int_var), true);
 table->SetColDef (1, "column 1", DB_DATA_TYPE_VARC HAR,
&string_name,
 SQL_C_LONG, sizeof(string_name), false);

 // now let's define columns in the grid

 // first way to do it
 wxDbGridColInfo *columns;
 columns = new wxDbGridColInfo(0, wxGRID_VALUE_L ONG, "first
column",
 new wxDbGridColInfo(1, wxGRID_VALUE_S TRING, "second
column",
 NULL);

 // second way to do it
 wxDbGridColInfo *columns;
 // first column is special
 columns = new wxDbGridColInfo(0, wxGRID_VALUE_L ONG, "first
column", NULL);
 // all the rest
 columns->AddColInfo (1, wxGRID_VALUE_STRING, "s econd column");

 // second way may be better when columns are no t known at
compile time

 // now, let's open the table and make a Query()
 table->Open();
 // this step is very important
 table->SetRowMode (wxDbTable::WX_ROW_MODE_QUERY);
 // in the grid we will see only the rows of the result query
 m_dbTable->Query();

CHAPTER 7

360

 wxDbGridTableBase *dbgrid = new wxDbGridTableBa se(table,
columns, wxUSE_QUERY, true);
 delete columns; // not needed anymore
 wxGrid *grid = new wxGrid (...);
 grid->SetTable(dbgrid, true);
 grid->Fit();

Include files

<wx/dbgrid.h>

Helper classes and data structures

wxDbGridTableBase::wxDbGridTableBase

 wxDbGridTableBase (wxDbTable * tab, wxDbGridColInfo * ColInfo, int count =
wxUSE_QUERY, bool takeOwnership = true)

Constructor.

Parameters

tab

 The database table you want to display. Must be opened and queried before
display the grid. See the example above (p. 369).

ColInfo

 Columns titles, and other values. See wxDbGridColInfo (p. 367).

count

You can use a query result set (wxUSE_QUERY, to use
wxDbTable::Count(wxDbTable::Count() or you can fix the total number of rows
(count >= 0) to display, or specify it if you already know the size in avoid calling

takeOwnership

 If true, this class deletes wxDbTable when it stops referring to it, if false
application must take care of deleting it.

wxDbGridTableBase::ValidateRow

void ValidateRow (int row)

It ensures that the row data is fetched from the database, and it the wxDbTable local
buffer, the row number passed should be the grid row.

Parameters

row

 Row where validation must be done.

CHAPTER 7

361

wxDbGridTableBase::UpdateRow

bool UpdateRow (int row)

If row has changed it forces that row to be written back to the database, however
support for detecting whether insert/update is required is currently not in wxDbTable, so
this function is currently unsupported.

Parameters

row

 Row you want to update.

wxDbGridTableBase::AssignDbTable

bool AssignDbTable (wxDbTable * tab,int count = wxUSE_QUERY,bool
takeOwnership = true)

Resets the grid for using with a new database table, but using the same columns
definition. This can be useful when re-querying the database and want to see the
changes.

Parameters

tab

 Database table you want to assign to the grid.

count

 Number of rows you want to show or wxUSE_QUERY for using a query.

takeOwnership

 If false, user must take care of deleting tab after deleting the wxDbGridTableBase.
If true, deletion is made by destructor class.

wxDC

A wxDC is a device context onto which graphics and text can be drawn. It is intended to
represent a number of output devices in a generic way, so a window can have a device
context associated with it, and a printer also has a device context. In this way, the same
piece of code may write to a number of different devices, if the device context is used as
a parameter.

Notice that wxDC is an abstract base class and can't be created directly, please use
wxPaintDC (p. Error! Bookmark not defined.), wxClientDC (p. 151), wxWindowDC (p.
Error! Bookmark not defined.), wxScreenDC (p. Error! Bookmark not defined.),
wxMemoryDC (p. Error! Bookmark not defined.) or wxPrinterDC (p. Error! Bookmark
not defined.).

CHAPTER 7

362

Please note that in addition to the versions of the methods documented here, there are
also versions which accept single wxPoint parameter instead of two wxCoord ones or
wxPoint and wxSize instead of four of them.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dc.h>

See also

Overview (p. Error! Bookmark not defined.)

wxDC::Blit

bool Blit (wxCoord xdest, wxCoord ydest, wxCoord width, wxCoord height, wxDC*
source, wxCoord xsrc, wxCoord ysrc, int logicalFunc = wxCOPY, bool useMask =
false, wxCoord xsrcMask = -1, wxCoord ysrcMask = -1)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to
copy, source DC, source coordinates, logical function, whether to use a bitmap mask,
and mask source position.

Parameters

xdest

Destination device context x position.

ydest

Destination device context y position.

width

Width of source area to be copied.

height

Height of source area to be copied.

source

Source device context.

xsrc

Source device context x position.

ysrc

CHAPTER 7

363

Source device context y position.

logicalFunc

Logical function to use: see wxDC::SetLogicalFunction (p. 389).

useMask

If true, Blit does a transparent blit using the mask that is associated with the bitmap
selected into the source device context. The Windows implementation does the
following if MaskBlt cannot be used:

 1. Creates a temporary bitmap and copies the destination area into it.

 2. Copies the source area into the temporary bitmap using the specified
logical function.

 3. Sets the masked area in the temporary bitmap to BLACK by ANDing the
mask bitmap with the temp bitmap with the foreground colour set to
WHITE and the bg colour set to BLACK.

 4. Sets the unmasked area in the destination area to BLACK by ANDing the
mask bitmap with the destination area with the foreground colour set to
BLACK and the background colour set to WHITE.

 5. ORs the temporary bitmap with the destination area.

 6. Deletes the temporary bitmap.

This sequence of operations ensures that the source's transparent area need not
be black, and logical functions are supported.

Note: on Windows, blitting with masks can be speeded up considerably by
compiling wxWidgets with the wxUSE_DC_CACHE option enabled. You can also
influence whether MaskBlt or the explicit mask blitting code above is used, by
using wxSystemOptions (p. Error! Bookmark not defined.) and setting the no-
maskblt option to 1.

xsrcMask

Source x position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on
Windows.

ysrcMask

Source y position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on
Windows.

Remarks

There is partial support for Blit in wxPostScriptDC, under X.

CHAPTER 7

364

See wxMemoryDC (p. Error! Bookmark not defined.) for typical usage.

See also

wxMemoryDC (p. Error! Bookmark not defined.), wxBitmap (p. 84), wxMask (p. 920)

wxDC::CalcBoundingBox

void CalcBoundingBox (wxCoord x, wxCoord y)

Adds the specified point to the bounding box which can be retrieved with MinX (p. 387),
MaxX (p. 386) and MinY (p. 387), MaxY (p. 386) functions.

See also

ResetBoundingBox (p. 387)

wxDC::Clear

void Clear ()

Clears the device context using the current background brush.

wxDC::ComputeScaleAndOrigin

virtual void ComputeScaleAndOrigin ()

Performs all necessary computations for given platform and context type after each
change of scale and origin parameters. Usually called automatically internally after such
changes.

wxDC::CrossHair

void CrossHair (wxCoord x, wxCoord y)

Displays a cross hair using the current pen. This is a vertical and horizontal line the
height and width of the window, centred on the given point.

wxDC::DestroyClippingRegion

void DestroyClippingRegion ()

Destroys the current clipping region so that none of the DC is clipped. See also
wxDC::SetClippingRegion (p. 388).

wxDC::DeviceToLogicalX

wxCoord DeviceToLogicalX (wxCoord x)

Convert device X coordinate to logical coordinate, using the current mapping mode.

CHAPTER 7

365

wxDC::DeviceToLogicalXRel

wxCoord DeviceToLogicalXRel (wxCoord x)

Convert device X coordinate to relative logical coordinate, using the current mapping
mode but ignoring the x axis orientation. Use this function for converting a width, for
example.

wxDC::DeviceToLogicalY

wxCoord DeviceToLogicalY (wxCoord y)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalYRel

wxCoord DeviceToLogicalYRel (wxCoord y)

Convert device Y coordinate to relative logical coordinate, using the current mapping
mode but ignoring the y axis orientation. Use this function for converting a height, for
example.

wxDC::DrawArc

void DrawArc (wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, wxCoord xc,
wxCoord yc)

Draws an arc of a circle, centred on (xc, yc), with starting point (x1, y1) and ending at
(x2, y2). The current pen is used for the outline and the current brush for filling the
shape.

The arc is drawn in an anticlockwise direction from the start point to the end point.

wxDC::DrawBitmap

void DrawBitmap (const wxBitmap& bitmap, wxCoord x, wxCoord y, bool
transparent)

Draw a bitmap on the device context at the specified point. If transparent is true and the
bitmap has a transparency mask, the bitmap will be drawn transparently.

When drawing a mono-bitmap, the current text foreground colour will be used to draw
the foreground of the bitmap (all bits set to 1), and the current text background colour to
draw the background (all bits set to 0). See also SetTextForeground (p. 391),
SetTextBackground (p. 390) and wxMemoryDC (p. Error! Bookmark not defined.).

wxDC::DrawCheckMark

void DrawCheckMark (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void DrawCheckMark (const wxRect & rect)

CHAPTER 7

366

Draws a check mark inside the given rectangle.

wxDC::DrawCircle

void DrawCircle (wxCoord x, wxCoord y, wxCoord radius)

void DrawCircle (const wxPoint& pt, wxCoord radius)

Draws a circle with the given centre and radius.

See also

DrawEllipse (p. 377)

wxDC::DrawEllipse

void DrawEllipse (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void DrawEllipse (const wxPoint& pt, const wxSize& size)

void DrawEllipse (const wxRect& rect)

Draws an ellipse contained in the rectangle specified either with the given top left corner
and the given size or directly. The current pen is used for the outline and the current
brush for filling the shape.

See also

DrawCircle (p. 376)

wxDC::DrawEllipticArc

void DrawEllipticArc (wxCoord x, wxCoord y, wxCoord width, wxCoord height,
double start, double end)

Draws an arc of an ellipse. The current pen is used for drawing the arc and the current
brush is used for drawing the pie.

x and y specify the x and y coordinates of the upper-left corner of the rectangle that
contains the ellipse.

width and height specify the width and height of the rectangle that contains the ellipse.

start and end specify the start and end of the arc relative to the three-o'clock position
from the center of the rectangle. Angles are specified in degrees (360 is a complete
circle). Positive values mean counter-clockwise motion. If start is equal to end, a
complete ellipse will be drawn.

wxDC::DrawIcon

void DrawIcon (const wxIcon& icon, wxCoord x, wxCoord y)

CHAPTER 7

367

Draw an icon on the display (does nothing if the device context is PostScript). This can
be the simplest way of drawing bitmaps on a window.

wxDC::DrawLabel

virtual void DrawLabel (const wxString& text, const wxBitmap&
image, const wxRect& rect, int alignment =
wxALIGN_LEFT | wxALIGN_TOP, int indexAccel = -1,
wxRect * rectBounding = NULL)

void DrawLabel (const wxString& text, const wxRect& rect, int
alignment = wxALIGN_LEFT | wxALIGN_TOP, int indexAccel = -1)

Draw optional bitmap and the text into the given rectangle and aligns it as specified by
alignment parameter; it also will emphasize the character with the given index if it is != -1
and return the bounding rectangle if required.

wxDC::DrawLine

void DrawLine (wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2)

Draws a line from the first point to the second. The current pen is used for drawing the
line. Note that the point (x2, y2) is not part of the line and is not drawn by this function
(this is consistent with the behaviour of many other toolkits).

wxDC::DrawLines

void DrawLines (int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0)

void DrawLines (wxList * points, wxCoord xoffset = 0, wxCoord yoffset = 0)

Draws lines using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate. The current pen is used for drawing the lines. The
programmer is responsible for deleting the list of points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

wxDC::DrawPolygon

void DrawPolygon (int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

void DrawPolygon (wxList * points, wxCoord xoffset = 0, wxCoord yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

Draws a filled polygon using an array of points of size n, or list of pointers to points,
adding the optional offset coordinate.

CHAPTER 7

368

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE .

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling. The programmer is responsible for
deleting the list of points.

Note that wxWidgets automatically closes the first and last points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

wxDC::DrawPolyPolygon

void DrawPolyPolygon (int n, int count[], wxPoint points[], wxCoord xoffset = 0,
wxCoord yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

Draws two or more filled polygons using an array of points, adding the optional offset
coordinates.

Notice that for the platforms providing a native implementation of this function (Windows
and PostScript-based wxDC currently), this is more efficient than using DrawPolygon (p.
378) in a loop.

n specifies the number of polygons to draw, the array count of size n specifies the
number of points in each of the polygons in the points array.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE .

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling.

The polygons maybe disjoint or overlapping. Each polygon specified in a call
toDrawPolyPolygon must be closed. Unlike polygons created by theDrawPolygon (p.
378) member function, the polygons created byDrawPolyPolygon are not closed
automatically.

wxPython note: Not implemented yet

wxPerl note: Not implemented yet

wxDC::DrawPoint

void DrawPoint (wxCoord x, wxCoord y)

Draws a point using the color of the current pen. Note that the other properties of the
pen are not used, such as width etc..

CHAPTER 7

369

wxDC::DrawRectangle

void DrawRectangle (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Draws a rectangle with the given top left corner, and with the given size. The current
pen is used for the outline and the current brush for filling the shape.

wxDC::DrawRotatedText

void DrawRotatedText (const wxString& text, wxCoord x, wxCoord y, double angle)

Draws the text rotated by angle degrees.

NB: Under Win9x only TrueType fonts can be drawn by this function. In particular, a font
different from wxNORMAL_FONT should be used as the latter is not a TrueType font.
wxSWISS_FONT is an example of a font which is.

See also

DrawText (p. 380)

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle (wxCoord x, wxCoord y, wxCoord width, wxCoord
height, double radius)

Draws a rectangle with the given top left corner, and with the given size. The corners
are quarter-circles using the given radius. The current pen is used for the outline and the
current brush for filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If
radius is negative, the absolute value is assumed to be the proportion of the smallest
dimension of the rectangle. This means that the corner can be a sensible size relative to
the size of the rectangle, and also avoids the strange effects X produces when the
corners are too big for the rectangle.

wxDC::DrawSpline

void DrawSpline (int n, wxPoint points[])

Draws a spline between all given control points, using the current pen.

void DrawSpline (wxList * points)

Draws a spline between all given control points, using the current pen. Doesn't delete
the wxList and contents.

void DrawSpline (wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, wxCoord x3,
wxCoord y3)

Draws a three-point spline using the current pen.

CHAPTER 7

370

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts a reference to an array of
wxPoint objects.

wxDC::DrawText

void DrawText (const wxString& text, wxCoord x, wxCoord y)

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

The coordinates refer to the top-left corner of the rectangle bounding the string. See
wxDC::GetTextExtent (p. 384) for how to get the dimensions of a text string, which can
be used to position the text more precisely.

NB: under wxGTK the current logical function (p. 382) is used by this function but it is
ignored by wxMSW. Thus, you should avoid using logical functions with this function in
portable programs.

wxDC::EndDoc

void EndDoc ()

Ends a document (only relevant when outputting to a printer).

wxDC::EndPage

void EndPage ()

Ends a document page (only relevant when outputting to a printer).

wxDC::FloodFill

bool FloodFill (wxCoord x, wxCoord y, const wxColour& colour, int
style=wxFLOOD_SURFACE)

Flood fills the device context starting from the given point, using the current brush colour,
and using a style:

 • wxFLOOD_SURFACE: the flooding occurs until a colour other than the given
colour is encountered.

 • wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.

Returns false if the operation failed.

Note: The present implementation for non-Windows platforms may fail to find colour
borders if the pixels do not match the colour exactly. However the function will still return
true.

CHAPTER 7

371

wxDC::GetBackground

const wxBrush& GetBackground () const

Gets the brush used for painting the background (see wxDC::SetBackground (p. 388)).

wxDC::GetBackgroundMode

int GetBackgroundMode () const

Returns the current background mode: wxSOLID or wxTRANSPARENT.

See also

SetBackgroundMode (p. 388)

wxDC::GetBrush

const wxBrush& GetBrush () const

Gets the current brush (see wxDC::SetBrush (p. 388)).

wxDC::GetCharHeight

wxCoord GetCharHeight ()

Gets the character height of the currently set font.

wxDC::GetCharWidth

wxCoord GetCharWidth ()

Gets the average character width of the currently set font.

wxDC::GetClippingBox

void GetClippingBox (wxCoord *x, wxCoord *y, wxCoord *width, wxCoord *height)

Gets the rectangle surrounding the current clipping region.

wxPython note: No arguments are required and the four values defining the rectangle
are returned as a tuple.

wxPerl note: This method takes no arguments and returns a four element list(x, y,
width, height)

wxDC::GetFont

const wxFont& GetFont () const

Gets the current font. Notice that even although each device context object has some

CHAPTER 7

372

default font after creation, this method would return a wxNullFont initially and only
after calling wxDC::SetFont (p. 389) a valid font is returned.

wxDC::GetLogicalFunction

int GetLogicalFunction ()

Gets the current logical function (see wxDC::SetLogicalFunction (p. 389)).

wxDC::GetMapMode

int GetMapMode ()

Gets the mapping mode for the device context (see wxDC::SetMapMode (p. 389)).

wxDC::GetPartialTextExtents

bool GetPartialTextExtents (const wxString& text, wxArrayInt& widths) const

Fills the widths array with the widths from the beginning of text to the corresponding
character of text. The generic version simply builds a running total of the widths of each
character using GetTextExtent (p. 384), however if the various platforms have a native
API function that is faster or more accurate than the generic implementation then it
should be used instead.

wxPython note: This method only takes the text parameter and returns a Python list of
integers.

wxDC::GetPen

const wxPen& GetPen () const

Gets the current pen (see wxDC::SetPen (p. 390)).

wxDC::GetPixel

bool GetPixel (wxCoord x, wxCoord y, wxColour * colour)

Gets in colour the colour at the specified location. Not available for wxPostScriptDC or
wxMetafileDC.

Note that setting a pixel can be done using DrawPoint (p. 379).

wxPython note: For wxPython the wxColour value is returned and is not required as a
parameter.

wxPerl note: This method only takes the parameters x and y and returns a Wx::Colour
value

wxDC::GetPPI

CHAPTER 7

373

wxSize GetPPI() const

Returns the resolution of the device in pixels per inch.

wxDC::GetSize

void GetSize (wxCoord * width, wxCoord * height) const

wxSize GetSize () const

This gets the horizontal and vertical resolution in device units. It can be used to scale
graphics to fit the page. For example, if maxX and maxY represent the maximum
horizontal and vertical 'pixel' values used in your application, the following code will scale
the graphic to fit on the printer page:

 wxCoord w, h;
 dc.GetSize(&w, &h);
 double scaleX=(double)(maxX/w);
 double scaleY=(double)(maxY/h);
 dc.SetUserScale(min(scaleX,scaleY),min(scaleX,sca leY));

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize

GetSizeTuple() Returns a 2-tuple (width, height)

wxPerl note: In place of a single overloaded method, wxPerl uses:

GetSize() Returns a Wx::Size

GetSizeWH() Returns a 2-element list (
width, height)

wxDC::GetSizeMM

void GetSizeMM (wxCoord * width, wxCoord * height) const

wxSize GetSizeMM () const

Returns the horizontal and vertical resolution in millimetres.

wxDC::GetTextBackground

const wxColour& GetTextBackground () const

Gets the current text background colour (see wxDC::SetTextBackground (p. 390)).

wxDC::GetTextExtent

CHAPTER 7

374

void GetTextExtent (const wxString& string, wxCoord * w, wxCoord * h,
 wxCoord * descent = NULL, wxCoord * externalLeading = NULL, wxFont * font =
NULL)

Gets the dimensions of the string using the currently selected font. string is the text
string to measure, w and h are the total width and height respectively, descent is the
dimension from the baseline of the font to the bottom of the descender, and
externalLeading is any extra vertical space added to the font by the font designer
(usually is zero).

If the optional parameter font is specified and valid, then it is used for the text extent
calculation. Otherwise the currently selected font is.

See also wxFont (p. 561), wxDC::SetFont (p. 389).

wxPython note: The following methods are implemented in wxPython:

GetTextExtent(string) Returns a 2-tuple, (width, height)

GetFullTextExtent(string, font=NULL) Returns a 4-tuple, (width, height,
descent, externalLeading)

wxPerl note: In wxPerl this method is implemented as GetTextExtent(string, font =
undef) returning a four element array (width, height, descent,
externalLeading)

wxDC::GetTextForeground

const wxColour& GetTextForeground () const

Gets the current text foreground colour (see wxDC::SetTextForeground (p. 391)).

wxDC::GetUserScale

void GetUserScale (double *x, double *y)

Gets the current user scale factor (set by SetUserScale (p. 391)).

wxPerl note: In wxPerl this method takes no arguments and return a two element array
(x, y)

wxDC::GradientFillConcentric

void GradientFillConcentric (const wxRect& rect, const wxColour& initialColour,
const wxColour& destColour)

void GradientFillConcentric (const wxRect& rect, const wxColour& initialColour,
const wxColour& destColour, const wxPoint& circleCenter)

Fill the area specified by rect with a radial gradient, starting from initialColour at the
centre of the circle and fading to destColour on the circle outside.

CHAPTER 7

375

circleCenter are the relative coordinates of centre of the circle in the specified rect. If not
specified, the cercle is placed at the centre of rect.

Note: Currently this function is very slow, don't use it for real-time drawing.

wxDC::GradientFillLinear

void GradientFillLinear (const wxRect& rect, const wxColour& initialColour, const
wxColour& destColour, wxDirection nDirection = wxEAST)

Fill the area specified by rect with a linear gradient, starting from initialColour and
eventually fading to destColour. The nDirection specifies the direction of the colour
change, default is to use initialColour on the left part of the rectangle and destColour on
the right one.

wxDC::LogicalToDeviceX

wxCoord LogicalToDeviceX (wxCoord x)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceXRel

wxCoord LogicalToDeviceXRel (wxCoord x)

Converts logical X coordinate to relative device coordinate, using the current mapping
mode but ignoring the x axis orientation. Use this for converting a width, for example.

wxDC::LogicalToDeviceY

wxCoord LogicalToDeviceY (wxCoord y)

Converts logical Y coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceYRel

wxCoord LogicalToDeviceYRel (wxCoord y)

Converts logical Y coordinate to relative device coordinate, using the current mapping
mode but ignoring the y axis orientation. Use this for converting a height, for example.

wxDC::MaxX

wxCoord MaxX()

Gets the maximum horizontal extent used in drawing commands so far.

wxDC::MaxY

wxCoord MaxY()

CHAPTER 7

376

Gets the maximum vertical extent used in drawing commands so far.

wxDC::MinX

wxCoord MinX ()

Gets the minimum horizontal extent used in drawing commands so far.

wxDC::MinY

wxCoord MinY ()

Gets the minimum vertical extent used in drawing commands so far.

wxDC::Ok

bool Ok()

Returns true if the DC is ok to use.

wxDC::ResetBoundingBox

void ResetBoundingBox ()

Resets the bounding box: after a call to this function, the bounding box doesn't contain
anything.

See also

CalcBoundingBox (p. 374)

wxDC::SetAxisOrientation

void SetAxisOrientation (bool xLeftRight, bool yBottomUp)

Sets the x and y axis orientation (i.e., the direction from lowest to highest values on the
axis). The default orientation is x axis from left to right and y axis from top down.

Parameters

xLeftRight

True to set the x axis orientation to the natural left to right orientation, false to
invert it.

yBottomUp

True to set the y axis orientation to the natural bottom up orientation, false to invert
it.

wxDC::SetBackground

CHAPTER 7

377

void SetBackground (const wxBrush& brush)

Sets the current background brush for the DC.

wxDC::SetBackgroundMode

void SetBackgroundMode (int mode)

mode may be one of wxSOLID and wxTRANSPARENT. This setting determines whether
text will be drawn with a background colour or not.

wxDC::SetBrush

void SetBrush (const wxBrush& brush)

Sets the current brush for the DC.

If the argument is wxNullBrush, the current brush is selected out of the device context,
and the original brush restored, allowing the current brush to be destroyed safely.

See also wxBrush (p. 108).

See also wxMemoryDC (p. Error! Bookmark not defined.) for the interpretation of
colours when drawing into a monochrome bitmap.

 wxDC::SetClippingRegion

void SetClippingRegion (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void SetClippingRegion (const wxPoint& pt, const wxSize& sz)

void SetClippingRegion (const wxRect& rect)

void SetClippingRegion (const wxRegion& region)

Sets the clipping region for this device context to the intersection of the given region
described by the parameters of this method and the previously set clipping region. You
should call DestroyClippingRegion (p. 375) if you want to set the clipping region exactly
to the region specified.

The clipping region is an area to which drawing is restricted. Possible uses for the
clipping region are for clipping text or for speeding up window redraws when only a
known area of the screen is damaged.

See also

wxDC::DestroyClippingRegion (p. 375), wxRegion (p. Error! Bookmark not defined.)

wxDC::SetDeviceOrigin

void SetDeviceOrigin (wxCoord x, wxCoord y)

CHAPTER 7

378

Sets the device origin (i.e., the origin in pixels after scaling has been applied).

This function may be useful in Windows printing operations for placing a graphic on a
page.

wxDC::SetFont

void SetFont (const wxFont& font)

Sets the current font for the DC. It must be a valid font, in particular you should not pass
wxNullFont to this method.

See also wxFont (p. 561).

wxDC::SetLogicalFunction

void SetLogicalFunction (int function)

Sets the current logical function for the device context. This determines how a source
pixel (from a pen or brush colour, or source device context if using wxDC::Blit (p. 373))
combines with a destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values
are as follows:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)
wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst
wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxXOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine
the current colour and the background using a logical operation. wxINVERT is
commonly used for drawing rubber bands or moving outlines, since drawing twice
reverts to the original colour.

wxDC::SetMapMode

void SetMapMode (int int)

The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units. Note that in X, text drawing isn't handled
consistently with the mapping mode; a font is always specified in point size. However,
setting the user scale (see wxDC::SetUserScale (p. 391)) scales the text appropriately.

CHAPTER 7

379

In Windows, scalable TrueType fonts are always used; in X, results depend on
availability of fonts, but usually a reasonable match is found.

The coordinate origin is always at the top left of the screen/printer.

Drawing to a Windows printer device context uses the current mapping mode, but
mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

wxMM_TWIPS Each logical unit is 1/20 of a point, or 1/1440 of
an inch.

wxMM_POINTS Each logical unit is a point, or 1/72 of an inch.

wxMM_METRIC Each logical unit is 1 mm.

wxMM_LOMETRIC Each logical unit is 1/10 of a mm.

wxMM_TEXT Each logical unit is 1 pixel.

wxDC::SetPalette

void SetPalette (const wxPalette& palette)

If this is a window DC or memory DC, assigns the given palette to the window or bitmap
associated with the DC. If the argument is wxNullPalette, the current palette is selected
out of the device context, and the original palette restored.

See wxPalette (p. Error! Bookmark not defined.) for further details.

wxDC::SetPen

void SetPen (const wxPen& pen)

Sets the current pen for the DC.

If the argument is wxNullPen, the current pen is selected out of the device context, and
the original pen restored.

See also wxMemoryDC (p. Error! Bookmark not defined.) for the interpretation of
colours when drawing into a monochrome bitmap.

wxDC::SetTextBackground

void SetTextBackground (const wxColour& colour)

Sets the current text background colour for the DC.

wxDC::SetTextForeground

void SetTextForeground (const wxColour& colour)

CHAPTER 7

380

Sets the current text foreground colour for the DC.

See also wxMemoryDC (p. Error! Bookmark not defined.) for the interpretation of
colours when drawing into a monochrome bitmap.

wxDC::SetUserScale

void SetUserScale (double xScale, double yScale)

Sets the user scaling factor, useful for applications which require 'zooming'.

wxDC::StartDoc

bool StartDoc (const wxString& message)

Starts a document (only relevant when outputting to a printer). Message is a message to
show while printing.

wxDC::StartPage

bool StartPage ()

Starts a document page (only relevant when outputting to a printer).

wxDCClipper

This is a small helper class which sets the specified DC to its constructor clipping region
and then automatically destroys it in its destructor. Using it ensures that an unwanted
clipping region is not left set on the DC.

Derived from

No base class

Include files

<wx/dc.h>

See also

wxDC (p. 372)

wxDCClipper::wxDCClipper

 wxDCClipper (wxDC& dc, wxCoord x,wxCoord y,wxCoord w,wxCoord h,)

 wxDCClipper (wxDC& dc, const wxRect& rect)

Constructor: sets the clipping region for the given device context to the specified

CHAPTER 7

381

rectangle.

wxDCClipper::~wxDCClipper

 ~wxDCClipper ()

Destructor: destroys the clipping region set in the constructor.

wxDDEClient

A wxDDEClient object represents the client part of a client-server DDE (Dynamic Data
Exchange) conversation.

To create a client which can communicate with a suitable server, you need to derive a
class from wxDDEConnection and another from wxDDEClient. The custom
wxDDEConnection class will intercept communications in a 'conversation' with a server,
and the custom wxDDEServer is required so that a user-overridden
wxDDEClient::OnMakeConnection (p. 393) member can return a wxDDEConnection of
the required class, when a connection is made.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPClient (p. Error!
Bookmark not defined.).

Derived from

wxClientBase
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dde.h>

See also

wxDDEServer (p. 397), wxDDEConnection (p. 393), Interprocess communications
overview (p. Error! Bookmark not defined.)

wxDDEClient::wxDDEClient

 wxDDEClient ()

Constructs a client object.

wxDDEClient::MakeConnection

wxConnectionBase * MakeConnection (const wxString& host, const wxString&
service, const wxString& topic)

CHAPTER 7

382

Tries to make a connection with a server specified by the host (machine name under
UNIX, ignored under Windows), service name (must contain an integer port number
under UNIX), and topic string. If the server allows a connection, a wxDDEConnection
object will be returned. The type of wxDDEConnection returned can be altered by
overriding the wxDDEClient::OnMakeConnection (p. 393) member to return your own
derived connection object.

wxDDEClient::OnMakeConnection

wxConnectionBase * OnMakeConnection ()

The type of wxDDEConnection (p. 393) returned from a wxDDEClient::MakeConnection
(p. 393) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxDDEConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxDDEConnection::OnAdvise (p.
212). You may also want to store application-specific data in instances of the new class.

wxDDEClient::ValidHost

bool ValidHost (const wxString& host)

Returns true if this is a valid host name, false otherwise. This always returns true
under MS Windows.

wxDDEConnection

A wxDDEConnection object represents the connection between a client and a server. It
can be created by making a connection using a wxDDEClient (p. 392) object, or by the
acceptance of a connection by a wxDDEServer (p. 397) object. The bulk of a DDE
(Dynamic Data Exchange) conversation is controlled by calling members in a
wxDDEConnection object or by overriding its members.

An application should normally derive a new connection class from wxDDEConnection,
in order to override the communication event handlers to do something interesting.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPConnection (p.
Error! Bookmark not defined.).

Derived from

wxConnectionBase
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dde.h>

Types

CHAPTER 7

383

wxIPCFormat is defined as follows:

enum wxIPCFormat
{
 wxIPC_INVALID = 0,
 wxIPC_TEXT = 1, /* CF_TEXT */
 wxIPC_BITMAP = 2, /* CF_BITMAP */
 wxIPC_METAFILE = 3, /* CF_METAFILEPICT * /
 wxIPC_SYLK = 4,
 wxIPC_DIF = 5,
 wxIPC_TIFF = 6,
 wxIPC_OEMTEXT = 7, /* CF_OEMTEXT */
 wxIPC_DIB = 8, /* CF_DIB */
 wxIPC_PALETTE = 9,
 wxIPC_PENDATA = 10,
 wxIPC_RIFF = 11,
 wxIPC_WAVE = 12,
 wxIPC_UNICODETEXT = 13,
 wxIPC_ENHMETAFILE = 14,
 wxIPC_FILENAME = 15, /* CF_HDROP */
 wxIPC_LOCALE = 16,
 wxIPC_PRIVATE = 20
};

See also

wxDDEClient (p. 392), wxDDEServer (p. 397), Interprocess communications overview
(p. Error! Bookmark not defined.)

wxDDEConnection::wxDDEConnection

 wxDDEConnection ()

 wxDDEConnection (char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxDDEConnection, then the constructor should not be called directly, since the
default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxDDEServer::OnAcceptConnection (p. 398) and/or wxDDEClient::OnMakeConnection
(p. 393) members should be replaced by functions which construct the new connection
object. If the arguments of the wxDDEConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

wxDDEConnection::Advise

bool Advise (const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxDDEConnection::OnAdvise (p.
395)member to be called. Returns true if successful.

CHAPTER 7

384

wxDDEConnection::Execute

bool Execute (char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxDDEConnection::Poke (p. 396) in
that respect). Causes the server connection's wxDDEConnection::OnExecute (p. 395)
member to be called. Returns true if successful.

wxDDEConnection::Disconnect

bool Disconnect ()

Called by the client or server application to disconnect from the other program; it causes
the wxDDEConnection::OnDisconnect (p. 395) message to be sent to the corresponding
connection object in the other program. The default behaviour of OnDisconnect is to
delete the connection, but the calling application must explicitly delete its side of the
connection having called Disconnect . Returns true if successful.

wxDDEConnection::OnAdvise

virtual bool OnAdvise (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

wxDDEConnection::OnDisconnect

virtual bool OnDisconnect ()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.

wxDDEConnection::OnExecute

virtual bool OnExecute (const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.

wxDDEConnection::OnPoke

virtual bool OnPoke (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

CHAPTER 7

385

wxDDEConnection::OnRequest

virtual char* OnRequest (const wxString& topic, const wxString& item, int * size,
wxIPCFormat format)

Message sent to the server application when the client calls
wxDDEConnection::Request (p. 397). The server should respond by returning a
character string from OnRequest , or NULL to indicate no data.

wxDDEConnection::OnStartAdvise

virtual bool OnStartAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning false.

wxDDEConnection::OnStopAdvise

virtual bool OnStopAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning false, although this doesn't have much meaning in practice.

wxDDEConnection::Poke

bool Poke (const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxDDEConnection::OnPoke
(p. 396) member to be called. Returns true if successful.

wxDDEConnection::Request

char* Request (const wxString& item, int * size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxDDEConnection::OnRequest (p. 396) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL
otherwise.

wxDDEConnection::StartAdvise

bool StartAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxDDEConnection::OnStartAdvise (p. 396) member to
be called. Returns true if the server okays it, false otherwise.

CHAPTER 7

386

wxDDEConnection::StopAdvise

bool StopAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxDDEConnection::OnStopAdvise (p. 396) member to be called.
Returns true if the server okays it, false otherwise.

wxDDEServer

A wxDDEServer object represents the server part of a client-server DDE (Dynamic Data
Exchange) conversation.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPServer (p. Error!
Bookmark not defined.).

Derived from

wxServerBase

Include files

<wx/dde.h>

See also

wxDDEClient (p. 392), wxDDEConnection (p. 393), IPC overview (p. Error! Bookmark
not defined.)

wxDDEServer::wxDDEServer

 wxDDEServer ()

Constructs a server object.

wxDDEServer::Create

bool Create (const wxString& service)

Registers the server using the given service name. Under UNIX, the string must contain
an integer id which is used as an Internet port number. false is returned if the call failed
(for example, the port number is already in use).

wxDDEServer::OnAcceptConnection

virtual wxConnectionBase * OnAcceptConnection (const wxString& topic)

When a client calls MakeConnection , the server receives the message and this

CHAPTER 7

387

member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxDDEConnection type, or of a user-
derived type. If the topic is "STDIO'', the application may wish to refuse the connection.
Under UNIX, when a server is created the OnAcceptConnection message is always sent
for standard input and output, but in the context of DDE messages it doesn't make a lot
of sense.

wxDebugContext

A class for performing various debugging and memory tracing operations. Full
functionality (such as printing out objects currently allocated) is only present in a
debugging build of wxWidgets, i.e. if the __WXDEBUG__ symbol is defined.
wxDebugContext and related functions and macros can be compiled out by setting
wxUSE_DEBUG_CONTEXT to 0 is setup.h

Derived from

No parent class.

Include files

<wx/memory.h>

See also

Overview (p. Error! Bookmark not defined.)

wxDebugContext::Check

int Check ()

Checks the memory blocks for errors, starting from the currently set checkpoint.

Return value

Returns the number of errors, so a value of zero represents success. Returns -1 if an
error was detected that prevents further checking.

wxDebugContext::Dump

bool Dump ()

Performs a memory dump from the currently set checkpoint, writing to the current debug
stream. Calls the Dump member function for each wxObject derived instance.

Return value

true if the function succeeded, false otherwise.

wxDebugContext::GetCheckPrevious

CHAPTER 7

388

bool GetCheckPrevious ()

Returns true if the memory allocator checks all previous memory blocks for errors. By
default, this is false since it slows down execution considerably.

See also

wxDebugContext::SetCheckPrevious (p. 401)

wxDebugContext::GetDebugMode

bool GetDebugMode ()

Returns true if debug mode is on. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

See also

wxDebugContext::SetDebugMode (p. 402)

wxDebugContext::GetLevel

int GetLevel ()

Gets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 903) functionality.

See also

wxDebugContext::SetLevel (p. 402)

wxDebugContext::GetStream

ostream& GetStream ()

Returns the output stream associated with the debug context.

This is obsolete, replaced by wxLog (p. 903) functionality.

See also

wxDebugContext::SetStream (p. 403)

wxDebugContext::GetStreamBuf

streambuf* GetStreamBuf ()

Returns a pointer to the output stream buffer associated with the debug context. There

CHAPTER 7

389

may not necessarily be a stream buffer if the stream has been set by the user.

This is obsolete, replaced by wxLog (p. 903) functionality.

wxDebugContext::HasStream

bool HasStream ()

Returns true if there is a stream currently associated with the debug context.

This is obsolete, replaced by wxLog (p. 903) functionality.

See also

wxDebugContext::SetStream (p. 403), wxDebugContext::GetStream (p. 400)

wxDebugContext::PrintClasses

bool PrintClasses ()

Prints a list of the classes declared in this application, giving derivation and whether
instances of this class can be dynamically created.

See also

wxDebugContext::PrintStatistics (p. 401)

wxDebugContext::PrintStatistics

bool PrintStatistics (bool detailed = true)

Performs a statistics analysis from the currently set checkpoint, writing to the current
debug stream. The number of object and non-object allocations is printed, together with
the total size.

Parameters

detailed

If true, the function will also print how many objects of each class have been
allocated, and the space taken by these class instances.

See also

wxDebugContext::PrintStatistics (p. 401)

wxDebugContext::SetCheckpoint

void SetCheckpoint (bool all = false)

Sets the current checkpoint: Dump and PrintStatistics operations will be performed from
this point on. This allows you to ignore allocations that have been performed up to this
point.

CHAPTER 7

390

Parameters

all

If true, the checkpoint is reset to include all memory allocations since the program
started.

wxDebugContext::SetCheckPrevious

void SetCheckPrevious (bool check)

Tells the memory allocator to check all previous memory blocks for errors. By default,
this is false since it slows down execution considerably.

See also

wxDebugContext::GetCheckPrevious (p. 399)

wxDebugContext::SetDebugMode

void SetDebugMode (bool debug)

Sets the debug mode on or off. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

By default, debug mode is on if __WXDEBUG__ is defined. If the application uses this
function, it should make sure that all object memory allocated is deallocated with the
same value of debug mode. Otherwise, the delete operator might try to look for memory
information that does not exist.

See also

wxDebugContext::GetDebugMode (p. 399)

wxDebugContext::SetFile

bool SetFile (const wxString& filename)

Sets the current debug file and creates a stream. This will delete any existing stream
and stream buffer. By default, the debug context stream outputs to the debugger
(Windows) or standard error (other platforms).

wxDebugContext::SetLevel

void SetLevel (int level)

Sets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

CHAPTER 7

391

This is obsolete, replaced by wxLog (p. 903) functionality.

See also

wxDebugContext::GetLevel (p. 399)

wxDebugContext::SetStandardError

bool SetStandardError ()

Sets the debugging stream to be the debugger (Windows) or standard error (other
platforms). This is the default setting. The existing stream will be flushed and deleted.

This is obsolete, replaced by wxLog (p. 903) functionality.

wxDebugContext::SetStream

void SetStream (ostream* stream, streambuf* streamBuf = NULL)

Sets the stream and optionally, stream buffer associated with the debug context. This
operation flushes and deletes the existing stream (and stream buffer if any).

This is obsolete, replaced by wxLog (p. 903) functionality.

Parameters

stream

Stream to associate with the debug context. Do not set this to NULL.

streamBuf

Stream buffer to associate with the debug context.

See also

wxDebugContext::GetStream (p. 400), wxDebugContext::HasStream (p. 400)

wxDebugStreamBuf

This class allows you to treat debugging output in a similar (stream-based) fashion on
different platforms. Under Windows, an ostream constructed with this buffer outputs to
the debugger, or other program that intercepts debugging output. On other platforms, the
output goes to standard error (cerr).

This is soon to be obsolete, replaced by wxLog (p. 903) functionality.

Derived from

streambuf

Include files

CHAPTER 7

392

<wx/memory.h>

Example

 wxDebugStreamBuf streamBuf;
 ostream stream(&streamBuf);

 stream << "Hello world!" << endl;

See also

Overview (p. Error! Bookmark not defined.)

wxDebugReport

wxDebugReport is used to generate a debug report, containing information about the
program current state. It is usually used from wxApp::OnFatalException() (p. 42) as
shown in the sample (p. Error! Bookmark not defined.).

A wxDebugReport object contains one or more files. A few of them can be created by
the class itself but more can be created from the outside and then added to the report.
Also note that several virtual functions may be overridden to further customize the class
behaviour.

Once a report is fully assembled, it can simply be left in the temporary directory so that
the user can email it to the developers (in which case you should still use
wxDebugReportCompress (p. 408) to compress it in a single file) or uploaded to a Web
server using wxDebugReportUpload (p. 410) (setting up the Web server to accept
uploads is your responsibility, of course). Other handlers, for example for automatically
emailing the report, can be defined as well but are not currently included in wxWidgets.

Example of use

 wxDebugReport report;
 wxDebugReportPreviewStd preview;

 report.AddCurrentContext(); // could also use AddAll()
 report.AddCurrentDump(); // to do both at o nce

 if (preview.Show(report))
 report.Process();

Derived from

No base class

Include files

<wx/debugrpt.h>

Data structures

This enum is used for functions that report either the current state or the state during the
last (fatal) exception:

CHAPTER 7

393

enum wxDebugReport::Context
{
 Context_Current,
 Context_Exception
};

wxDebugReport::wxDebugReport

 wxDebugReport ()

The constructor creates a temporary directory where the files that will be included in the
report are created. Use IsOk() (p. 407) to check for errors.

wxDebugReport::~wxDebugReport

 ~wxDebugReport ()

The destructor normally destroys the temporary directory created in the constructor with
all the files it contains. Call Reset() (p. 408) to prevent this from happening.

wxDebugReport::AddAll

void AddAll (Context context = Context_Exception)

Adds all available information to the report. Currently this includes a text (XML) file
describing the process context and, under Win32, a minidump file.

wxDebugReport::AddContext

bool AddContext (Context ctx)

Add an XML file containing the current or exception context and the stack trace.

wxDebugReport::AddCurrentContext

bool AddCurrentContext ()

The same as AddContext(Context_Current) (p. 405).

wxDebugReport::AddCurrentDump

bool AddCurrentDump ()

The same as AddDump(Context_Current) (p. 405).

wxDebugReport::AddDump

bool AddDump (Context ctx)

CHAPTER 7

394

Adds the minidump file to the debug report.

Minidumps are only available under recent Win32 versions (dbghlp32.dll can be
installed under older systems to make minidumps available).

wxDebugReport::AddExceptionContext

bool AddExceptionContext ()

The same as AddContext(Context_Exception) (p. 405).

wxDebugReport::AddExceptionDump

bool AddExceptionDump ()

The same as AddDump(Context_Exception) (p. 405).

wxDebugReport::AddFile

void AddFile (const wxString& filename, const wxString& description)

Add another file to the report. If filename is an absolute path, it is copied to a file in the
debug report directory with the same name. Otherwise the file should already exist in
this directory

description only exists to be displayed to the user in the report summary shown by
wxDebugReportPreview (p. 409).

See also

GetDirectory() (p. 407),
AddText() (p. 406)

wxDebugReport::AddText

bool AddText (const wxString& filename, const wxString& text, const wxString&
description)

This is a convenient wrapper around AddFile (p. 406). It creates the file with the given
name and writes text to it, then adds the file to the report. The filename shouldn't contain
the path.

Returns true if file could be added successfully, false if an IO error occurred.

wxDebugReport::DoAddCustomContext

void DoAddCustomContext (wxXmlNode * nodeRoot)

This function may be overridden to add arbitrary custom context to the XML context file
created by AddContext (p. 405). By default, it does nothing.

CHAPTER 7

395

wxDebugReport::DoAddExceptionInfo

bool DoAddExceptionInfo (wxXmlNode* nodeContext)

This function may be overridden to modify the contents of the exception tag in the XML
context file.

wxDebugReport::DoAddLoadedModules

bool DoAddLoadedModules (wxXmlNode* nodeModules)

This function may be overridden to modify the contents of the modules tag in the XML
context file.

wxDebugReport::DoAddSystemInfo

bool DoAddSystemInfo (wxXmlNode* nodeSystemInfo)

This function may be overridden to modify the contents of the system tag in the XML
context file.

wxDebugReport::GetDirectory

const wxString& GetDirectory () const

Returns the name of the temporary directory used for the files in this report.

This method should be used to construct the full name of the files which you wish to add
to the report using AddFile (p. 406).

wxDebugReport::GetFile

bool GetFile (size_t n, wxString* name, wxString* desc) const

Retrieves the name (relative to GetDirectory() (p. 407)) and the description of the file
with the given index. If n is greater than or equal to the number of filse, false is
returned.

wxDebugReport::GetFilesCount

size_t GetFilesCount () const

Gets the current number files in this report.

wxDebugReport::GetReportName

wxString GetReportName () const

Gets the name used as a base name for various files, by default wxApp::GetAppName()
(p. 38) is used.

CHAPTER 7

396

wxDebugReport::IsOk

bool IsOk () const

Returns true if the object was successfully initialized. If this method returns false the
report can't be used.

wxDebugReport::Process

bool Process ()

Processes this report: the base class simply notifies the user that the report has been
generated. This is usually not enough -- instead you should override this method to do
something more useful to you.

wxDebugReport::RemoveFile

void RemoveFile (const wxString& name)

Removes the file from report: this is used by wxDebugReportPreview (p. 409) to allow
the user to remove files potentially containing private information from the report.

wxDebugReport::Reset

void Reset ()

Resets the directory name we use. The object can't be used any more after this as it
becomes uninitialized and invalid.

wxDebugReportCompress

wxDebugReportCompress is a wxDebugReport (p. 404) which compresses all the files
in this debug report into a single .ZIP file in itsProcess() function.

Derived from

wxDebugReport (p. 404)

Include files

<wx/debugrpt.h>

wxDebugReportCompress::wxDebugReportCompress

 wxDebugReportCompress ()

Default constructor does nothing special.

CHAPTER 7

397

wxDebugReportCompress::GetCompressedFileName

const wxString& GetCompressedFileName () const

Returns the full path of the compressed file (empty if creation failed).

wxDebugReportPreview

This class presents the debug report to the user and allows him to veto report entirely or
remove some parts of it. Although not mandatory, using this class is strongly
recommended as data included in the debug report might contain sensitive private
information and the user should be notified about it as well as having a possibility to
examine the data which had been gathered to check whether this is effectively the case
and discard the debug report if it is.

wxDebugReportPreview is an abstract base class, currently the only concrete class
deriving from it is wxDebugReportPreviewStd (p. 409).

Derived from

No base class

Include files

<wx/debugrpt.h>

wxDebugReportPreview::wxDebugReportPreview

 wxDebugReportPreview ()

Trivial default constructor.

wxDebugReportPreview::~wxDebugReportPreview

 ~wxDebugReportPreview ()

dtor is trivial as well but should be virtual for a base class

wxDebugReportPreview::Show

bool Show (wxDebugReport& dbgrpt) const

Present the report to the user and allow him to modify it by removing some or all of the
files and, potentially, adding some notes. Return true if the report should be processed
or false if the user chose to cancel report generation or removed all files from it.

wxDebugReportPreviewStd

CHAPTER 7

398

wxDebugReportPreviewStd is a standard debug report preview window. It displays a
GUIdialog allowing the user to examine the contents of a debug report, remove files from
and add notes to it.

Derived from

wxDebugReportPreview (p. 409)

Include files

<wx/debugrpt.h>

wxDebugReportPreviewStd::wxDebugReportPreviewStd

 wxDebugReportPreviewStd ()

Trivial default constructor.

wxDebugReportPreviewStd::Show

bool Show (wxDebugReport& dbgrpt) const

Show the dialog, see wxDebugReportPreview::Show() (p. 409) for more information.

wxDebugReportUpload

This class is used to upload a compressed file using HTTP POST request. As this class
derives from wxDebugReportCompress, before upload the report is compressed in a
single .ZIP file.

Derived from

wxDebugReportCompress (p. 408)

Include files

<wx/debugrpt.h>

wxDebugReportUpload::wxDebugReportUpload

 wxDebugReportUpload (const wxString& url, const wxString& input, const
wxString& action, const wxString& curl = _T("curl"))

This class will upload the compressed file created by its base class to an HTML
multipart/form-data form at the specified address. The url is the upload page address,
input is the name of the "type=file" control on the form used for the file name and
action is the value of the form action field. The report is uploaded using curl program
which should be available, the curl parameter may be used to specify the full path to it.

CHAPTER 7

399

wxDebugReportUpload::OnServerReply

bool OnServerReply (const wxArrayString& WXUNUSED(reply))

This function may be overridden in a derived class to show the output from curl: this may
be an HTML page or anything else that the server returned. Value returned by this
function becomes the return value of wxDebugReport::Process() (p. 408).

wxDelegateRendererNative

wxDelegateRendererNative allows reuse of renderers code by forwarding all the
wxRendererNative (p. Error! Bookmark not defined.) methods to the given object and
thus allowing you to only modify some of its methods -- without having to reimplement all
of them.

Note that the "normal'', inheritance-based approach, doesn't work with the renderers as
it is impossible to derive from a class unknown at compile-time and the renderer is only
chosen at run-time. So suppose that you want to only add something to the drawing of
the tree control buttons but leave all the other methods unchanged -- the only way to do
it, considering that the renderer class which you want to customize might not even be
written yet when you write your code (it could be written later and loaded from a DLL
during run-time), is by using this class.

Except for the constructor, it has exactly the same methods as wxRendererNative (p.
Error! Bookmark not defined.) and their implementation is trivial: they are simply
forwarded to the real renderer. Note that the "real'' renderer may, in turn, be a
wxDelegateRendererNative as well and that there may be arbitrarily many levels like this
-- but at the end of the chain there must be a real renderer which does the drawing.

Derived from

wxRendererNative (p. Error! Bookmark not defined.)

Include files

<wx/renderer.h>

wxDelegateRendererNative::wxDelegateRendererNative

 wxDelegateRendererNative ()

 wxDelegateRendererNative (wxRendererNative& rendererNative)

The default constructor does the same thing as the other one except that it uses the
generic renderer (p. Error! Bookmark not defined.) instead of the user-specified
rendererNative.

In any case, this sets up the delegate renderer object to follow all calls to the specified
real renderer.

CHAPTER 7

400

Note that this object does not take ownership of (i.e. won't delete)rendererNative.

wxDelegateRendererNative::DrawXXX

 DrawXXX (...)

This class also provides all the virtual methods of wxRendererNative (p. Error!
Bookmark not defined.), please refer to that class documentation for the details.

wxDialog

A dialog box is a window with a title bar and sometimes a system menu, which can be
moved around the screen. It can contain controls and other windows and is usually used
to allow the user to make some choice or to answer a question.

Derived from

wxTopLevelWindow (p. Error! Bookmark not defined.)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dialog.h>

Remarks

There are two kinds of dialog -- modal and modeless. A modal dialog blocks program
flow and user input on other windows until it is dismissed, whereas a modeless dialog
behaves more like a frame in that program flow continues, and input in other windows is
still possible. To show a modal dialog you should use the ShowModal (p. 421) method
while to show a dialog modelessly you simply use Show (p. 421), just as with frames.

Note that the modal dialog is one of the very few examples of wxWindow-derived objects
which may be created on the stack and not on the heap. In other words, although this
code snippet:

 void AskUser()
 {
 MyAskDialog *dlg = new MyAskDialog(...);
 if (dlg->ShowModal() == wxID_OK)
 ...
 //else: dialog was cancelled or some anothe r button
pressed

 dlg->Destroy();
 }

works, you can also achieve the same result by using a simpler code fragment below:

 void AskUser()
 {
 MyAskDialog dlg(...);

CHAPTER 7

401

 if (dlg.ShowModal() == wxID_OK)
 ...

 // no need to call Destroy() here
 }

An application can define a wxCloseEvent (p. 157) handler for the dialog to respond to
system close events.

Window styles

wxCAPTION Puts a caption on the dialog box.

wxDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION,
wxCLOSE_BOX and wxSYSTEM_MENU (the last one is
not used under Unix)

wxRESIZE_BORDER Display a resizeable frame around the window.

wxSYSTEM_MENU Display a system menu.

wxCLOSE_BOX Displays a close box on the frame.

wxMAXIMIZE_BOX Displays a maximize box on the dialog.

wxMINIMIZE_BOX Displays a minimize box on the dialog.

wxTHICK_FRAME Display a thick frame around the window.

wxSTAY_ON_TOP The dialog stays on top of all other windows.

wxNO_3D Under Windows, specifies that the child controls should not
have 3D borders unless specified in the control.

wxDIALOG_NO_PARENT By default, a dialog created with a NULL parent window will
be given theapplication's top level window (p. 39) as
parent. Use this style to prevent this from happening and
create an orphan dialog. This is not recommended for
modal dialogs.

wxDIALOG_EX_CONTEXTHELP Under Windows, puts a query button on the
caption. When pressed, Windows will go into a context-
sensitive help mode and wxWidgets will send a
wxEVT_HELP event if the user clicked on an application
window. Note that this is an extended style and must be
set by calling SetExtraStyle (p. Error! Bookmark not
defined.) before Create is called (two-step construction).

wxDIALOG_EX_METAL On Mac OS X, frames with this style will be shown with a
metallic look. This is an extra style.

Under Unix or Linux, MWM (the Motif Window Manager) or other window managers
recognizing the MHM hints should be running for any of these styles to have an effect.

See also Generic window styles (p. Error! Bookmark not defined.).

CHAPTER 7

402

See also

wxDialog overview (p. Error! Bookmark not defined.), wxFrame (p. 582), Validator
overview (p. Error! Bookmark not defined.)

wxDialog::wxDialog

 wxDialog ()

Default constructor.

 wxDialog (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Constructor.

Parameters

parent

Can be NULL, a frame or another dialog box.

id

An identifier for the dialog. A value of -1 is taken to mean a default.

title

The title of the dialog.

pos

The dialog position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWidgets, depending on platform.

size

The dialog size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWidgets, depending on platform.

style

The window style. See wxDialog (p. 412).

name

Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxDialog::Create (p. 415)

CHAPTER 7

403

wxDialog::~wxDialog

 ~wxDialog ()

Destructor. Deletes any child windows before deleting the physical window.

wxDialog::Centre

void Centre (int direction = wxBOTH)

Centres the dialog box on the display.

Parameters

direction

May be wxHORIZONTAL, wxVERTICAL or wxBOTH.

wxDialog::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Used for two-step dialog box construction. See wxDialog::wxDialog (p. 414) for details.

wxDialog::CreateButtonSizer

wxSizer* CreateButtonSizer (long flags)

Creates a sizer with standard buttons. flags is a bit list of the following flags: wxOK,
wxCANCEL, wxYES, wxNO, wxHELP, wxNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

This function simply calls CreateStdDialogButtonSizer (p. 415).

wxDialog::CreateStdDialogButtonSizer

wxStdDialogButtonSizer* CreateStdDialogButtonSizer (long flags)

Creates a wxStdDialogButtonSizer (p. Error! Bookmark not defined.) with standard
buttons. flags is a bit list of the following flags: wxOK, wxCANCEL, wxYES, wxNO,
wxHELP, wxNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

wxDialog::DoOK

virtual bool DoOK ()

This function is called when the titlebar OK button is pressed (PocketPC only). A

CHAPTER 7

404

command event for the identifier returned by GetAffirmativeId is sent by default. You can
override this function. If the function returns false, wxWidgets will call Close() for the
dialog.

wxDialog::EndModal

void EndModal (int retCode)

Ends a modal dialog, passing a value to be returned from the wxDialog::ShowModal (p.
421) invocation.

Parameters

retCode

The value that should be returned by ShowModal .

See also

wxDialog::ShowModal (p. 421), wxDialog::GetReturnCode (p. 417),
wxDialog::SetReturnCode (p. 420)

wxDialog::GetAffirmativeId

int GetAffirmativeId () const

Gets the identifier to be used when the user presses an OK button in a PocketPC
titlebar.

See also

wxDialog::SetAffirmativeId (p. 419)

wxDialog::GetEscapeId

int GetEscapeId () const

Gets the identifier of the button to map presses of ESCbutton to.

See also

wxDialog::SetEscapeId (p. 419)

wxDialog::GetReturnCode

int GetReturnCode ()

Gets the return code for this window.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 421) returns a code to the application.

CHAPTER 7

405

See also

wxDialog::SetReturnCode (p. 420), wxDialog::ShowModal (p. 421), wxDialog::EndModal
(p. 416)

wxDialog::GetToolBar

wxToolBar* GetToolBar () const

On PocketPC, a dialog is automatically provided with an empty toolbar. GetToolBar
allows you to access the toolbar and add tools to it. Removing tools and adding arbitrary
controls are not currently supported.

This function is not available on any other platform.

wxDialog::Iconize

void Iconize (const bool iconize)

Iconizes or restores the dialog. Windows only.

Parameters

iconize

If true, iconizes the dialog box; if false, shows and restores it.

Remarks

Note that in Windows, iconization has no effect since dialog boxes cannot be iconized.
However, applications may need to explicitly restore dialog boxes under Motif which
have user-iconizable frames, and under Windows calling Iconize(false) will bring
the window to the front, as does Show(true) .

wxDialog::IsIconized

bool IsIconized () const

Returns true if the dialog box is iconized. Windows only.

Remarks

Always returns false under Windows since dialogs cannot be iconized.

wxDialog::IsModal

bool IsModal () const

Returns true if the dialog box is modal, false otherwise.

wxDialog::OnApply

CHAPTER 7

406

void OnApply (wxCommandEvent& event)

The default handler for the wxID_APPLY identifier.

Remarks

This function calls wxWindow::Validate (p. Error! Bookmark not defined.) and
wxWindow::TransferDataFromWindow (p. Error! Bookmark not defined.).

See also

wxDialog::OnOK (p. 418), wxDialog::OnCancel (p. 418)

wxDialog::OnCancel

void OnCancel (wxCommandEvent& event)

The default handler for the wxID_CANCEL identifier.

Remarks

The function either calls EndModal(wxID_CANCEL) if the dialog is modal, or sets the
return value to wxID_CANCEL and calls Show(false) if the dialog is modeless.

See also

wxDialog::OnOK (p. 418), wxDialog::OnApply (p. 418)

wxDialog::OnOK

void OnOK (wxCommandEvent& event)

The default handler for the wxID_OK identifier.

Remarks

The function calls wxWindow::Validate (p. Error! Bookmark not defined.), then
wxWindow::TransferDataFromWindow (p. Error! Bookmark not defined.). If this
returns true, the function either calls EndModal(wxID_OK) if the dialog is modal, or sets
the return value to wxID_OK and calls Show(false) if the dialog is modeless.

See also

wxDialog::OnCancel (p. 418), wxDialog::OnApply (p. 418)

wxDialog::OnSysColourChanged

void OnSysColourChanged (wxSysColourChangedEvent& event)

The default handler for wxEVT_SYS_COLOUR_CHANGED.

Parameters

event

CHAPTER 7

407

The colour change event.

Remarks

Changes the dialog's colour to conform to the current settings (Windows only). Add an
event table entry for your dialog class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxEvent::Skip to propagate the notification to child windows and controls.

See also

wxSysColourChangedEvent (p. Error! Bookmark not defined.)

wxDialog::SetAffirmativeId

void SetAffirmativeId (int id)

Sets the identifier to be used when the user presses an OK button in a PocketPC
titlebar. By default, this is wxID_OK.

See also

wxDialog::GetAffirmativeId (p. 416)

wxDialog::SetEscapeId

void SetEscapeId (int id)

Sets the identifier to be used when the user presses ESCbutton in the dialog. By default,
this is wxID_ANY meaning that the first suitable button is used: if there a wxID_CANCEL
button, it is activated, otherwise wxID_OK button is activated if present. Another possible
special value for id is wxID_NONE meaning thatESC presses should be ignored. If
another value is given, it is interpreted as the id of the button to map the escape key to.

wxDialog::SetIcon

void SetIcon (const wxIcon& icon)

Sets the icon for this dialog.

Parameters

icon

The icon to associate with this dialog.

See also wxIcon (p. 778).

wxDialog::SetIcons

void SetIcons (const wxIconBundle& icons)

CHAPTER 7

408

Sets the icons for this dialog.

Parameters

icons

The icons to associate with this dialog.

See also wxIconBundle (p. 785).

wxDialog::SetModal

void SetModal (const bool flag)

NB: This function is deprecated and doesn't work for all ports, just useShowModal (p.
421) to show a modal dialog instead.

Allows the programmer to specify whether the dialog box is modal (wxDialog::Show
blocks control until the dialog is hidden) or modeless (control returns immediately).

Parameters

flag

If true, the dialog will be modal, otherwise it will be modeless.

wxDialog::SetReturnCode

void SetReturnCode (int retCode)

Sets the return code for this window.

Parameters

retCode

The integer return code, usually a control identifier.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 421) returns a code to the application. The function wxDialog::EndModal (p. 416)
calls SetReturnCode .

See also

wxDialog::GetReturnCode (p. 417), wxDialog::ShowModal (p. 421), wxDialog::EndModal
(p. 416)

wxDialog::Show

bool Show (const bool show)

Hides or shows the dialog.

CHAPTER 7

409

Parameters

show

If true, the dialog box is shown and brought to the front; otherwise the box is
hidden. If false and the dialog is modal, control is returned to the calling program.

Remarks

The preferred way of dismissing a modal dialog is to use wxDialog::EndModal (p. 416).

wxDialog::ShowModal

int ShowModal ()

Shows a modal dialog. Program flow does not return until the dialog has been dismissed
with wxDialog::EndModal (p. 416).

Return value

The return value is the value set with wxDialog::SetReturnCode (p. 420).

See also

wxDialog::EndModal (p. 416), wxDialog:GetReturnCode
(p. 417), wxDialog::SetReturnCode (p.
420)wxDialUpEvent

This is the event class for the dialup events sent by wxDialUpManager (p. 422).

Derived from

wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dialup.h>

wxDialUpEvent::wxDialUpEvent

 wxDialUpEvent (bool isConnected, bool isOwnEvent)

Constructor is only used by wxDialUpManager (p. 422).

wxDialUpEvent::IsConnectedEvent

bool IsConnectedEvent () const

CHAPTER 7

410

Is this a CONNECTED or DISCONNECTED event? In other words, does it notify about
transition from offline to online state or vice versa?

wxDialUpEvent::IsOwnEvent

bool IsOwnEvent () const

Does this event come from wxDialUpManager::Dial() or from some extrenal process (i.e.
does it result from our own attempt to establish the connection)?

wxDialUpManager

This class encapsulates functions dealing with verifying the connection status of the
workstation (connected to the Internet via a direct connection, connected through a
modem or not connected at all) and to establish this connection if possible/required (i.e.
in the case of the modem).

The program may also wish to be notified about the change in the connection status (for
example, to perform some action when the user connects to the network the next time
or, on the contrary, to stop receiving data from the net when the user hangs up the
modem). For this, you need to use one of the event macros described below.

This class is different from other wxWidgets classes in that there is at most one instance
of this class in the program accessed via wxDialUpManager::Create() (p. 423) and you
can't create the objects of this class directly.

Derived from

No base class

Include files

<wx/dialup.h>

Event table macros

To be notified about the change in the network connection status, use these event
handler macros to direct input to member functions that take a wxDialUpEvent (p. 422)
argument.

EVT_DIALUP_CONNECTED(func) A connection with the network was established.

EVT_DIALUP_DISCONNECTED(func) The connection with the network was lost.

See also
dialup sample (p. Error! Bookmark not defined.)
wxDialUpEvent (p. 422)

wxDialUpManager::Create

CHAPTER 7

411

wxDialUpManager* Create ()

This function should create and return the object of the platform-specific class derived
from wxDialUpManager. You should delete the pointer when you are done with it.

wxDialUpManager::IsOk

bool IsOk () const

Returns true if the dialup manager was initialized correctly. If this function returns
false , no other functions will work neither, so it is a good idea to call this function and
check its result before calling any other wxDialUpManager methods

wxDialUpManager::~wxDialUpManager

 ~wxDialUpManager ()

Destructor.

wxDialUpManager::GetISPNames

size_t GetISPNames (wxArrayString& names) const

This function is only implemented under Windows.

Fills the array with the names of all possible values for the first parameter to Dial() (p.
424) on this machine and returns their number (may be 0).

wxDialUpManager::Dial

bool Dial (const wxString& nameOfISP = wxEmptyString, const wxString& username
= wxEmptyString, const wxString& password = wxEmptyString, bool async = true)

Dial the given ISP, use username and password to authenticate.

The parameters are only used under Windows currently, for Unix you should use
SetConnectCommand (p. 426) to customize this functions behaviour.

If no nameOfISP is given, the function will select the default one (proposing the user to
choose among all connections defined on this machine) and if no username and/or
password are given, the function will try to do without them, but will ask the user if really
needed.

If async parameter is false , the function waits until the end of dialing and returns true
upon successful completion.

If async is true , the function only initiates the connection and returns immediately - the
result is reported via events (an event is sent anyhow, but if dialing failed it will be a
DISCONNECTED one).

wxDialUpManager::IsDialing

CHAPTER 7

412

bool IsDialing () const

Returns true if (async) dialing is in progress.

See also

Dial (p. 424)

wxDialUpManager::CancelDialing

bool CancelDialing ()

Cancel dialing the number initiated with Dial (p. 424) with async parameter equal to
true .

Note that this won't result in DISCONNECTED event being sent.

See also

IsDialing (p. 424)

wxDialUpManager::HangUp

bool HangUp ()

Hang up the currently active dial up connection.

wxDialUpManager::IsAlwaysOnline

bool IsAlwaysOnline () const

Returns true if the computer has a permanent network connection (i.e. is on a LAN)
and so there is no need to use Dial() function to go online.

NB: this functions tries to guess the result and it is not always guaranteed to be correct,
so it is better to ask user for confirmation or give him a possibility to override it.

wxDialUpManager::IsOnline

bool IsOnline () const

Returns true if the computer is connected to the network: under Windows, this just
means that a RAS connection exists, under Unix we check that the "well-known host"
(as specified by SetWellKnownHost (p. 426)) is reachable.

wxDialUpManager::SetOnlineStatus

void SetOnlineStatus (bool isOnline = true)

Sometimes the built-in logic for determining the online status may fail, so, in general, the
user should be allowed to override it. This function allows to forcefully set the online
status - whatever our internal algorithm may think about it.

CHAPTER 7

413

See also

IsOnline (p. 425)

wxDialUpManager::EnableAutoCheckOnlineStatus

bool EnableAutoCheckOnlineStatus (size_t nSeconds = 60)

Enable automatic checks for the connection status and sending of
wxEVT_DIALUP_CONNECTED/wxEVT_DIALUP_DISCONNECTED events. The interval
parameter is only for Unix where we do the check manually and specifies how often
should we repeat the check (each minute by default). Under Windows, the notification
about the change of connection status is sent by the system and so we don't do any
polling and this parameter is ignored.

Returns false if couldn't set up automatic check for online status.

wxDialUpManager::DisableAutoCheckOnlineStatus

void DisableAutoCheckOnlineStatus ()

Disable automatic check for connection status change - notice that
thewxEVT_DIALUP_XXX events won't be sent any more neither.

wxDialUpManager::SetWellKnownHost

void SetWellKnownHost (const wxString& hostname, int portno = 80)

This method is for Unix only.

Under Unix, the value of well-known host is used to check whether we're connected to
the internet. It is unused under Windows, but this function is always safe to call. The
default value is www.yahoo.com:80 .

wxDialUpManager::SetConnectCommand

void SetConnectCommand (const wxString& commandDial = wxT("/usr/bin/pon"),
const wxString& commandHangup = wxT("/usr/bin/poff"))

This method is for Unix only.

Sets the commands to start up the network and to hang up again.

See also

Dial (p. 424)

wxDir

wxDir is a portable equivalent of Unix open/read/closedir functions which allow
enumerating of the files in a directory. wxDir allows enumerate files as well as

CHAPTER 7

414

directories.

wxDir also provides a flexible way to enumerate files recursively using Traverse (p. 429)
or a simpler GetAllFiles (p. 428) function.

Example of use:

 wxDir dir(wxGetCwd());

 if (!dir.IsOpened())
 {
 // deal with the error here - wxDir would a lready log an
error message
 // explaining the exact reason of the failu re
 return;
 }

 puts("Enumerating object files in current direc tory:");

 wxString filename;

 bool cont = dir.GetFirst(&filename, filespec, f lags);
 while (cont)
 {
 printf("%s\n", filename.c_str());

 cont = dir.GetNext(&filename);
 }

Derived from

No base class

Constants

These flags define what kind of filename is included in the list of files enumerated by
GetFirst/GetNext.

enum
{
 wxDIR_FILES = 0x0001, // include file s
 wxDIR_DIRS = 0x0002, // include dire ctories
 wxDIR_HIDDEN = 0x0004, // include hidd en files
 wxDIR_DOTDOT = 0x0008, // include '.' and '..'

 // by default, enumerate everything except '.' and '..'
 wxDIR_DEFAULT = wxDIR_FILES | wxDIR_DIRS | wx DIR_HIDDEN
}

Include files

<wx/dir.h>

wxDir::wxDir

CHAPTER 7

415

 wxDir ()

Default constructor, use Open() (p. 429) afterwards.

 wxDir (const wxString& dir)

Opens the directory for enumeration, use IsOpened() (p. 429) to test for errors.

wxDir::~wxDir

 ~wxDir ()

Destructor cleans up the associated resources. It is not virtual and so this class is not
meant to be used polymorphically.

wxDir::Exists

static bool Exists (const wxString& dir)

Test for existence of a directory with the given name

wxDir::GetAllFiles

static size_t GetAllFiles (const wxString& dirname, wxArrayString * files, const
wxString& filespec = wxEmptyString, int flags = wxDIR_DEFAULT)

The function appends the names of all the files under directory dirname to the array files
(note that its old content is preserved). Only files matching the filespec are taken, with
empty spec matching all the files.

The flags parameter should always include wxDIR_FILES or the array would be
unchanged and should include wxDIR_DIRS flag to recurse into subdirectories (both
flags are included in the value by default).

See also: Traverse (p. 429)

wxDir::GetFirst

bool GetFirst (wxString* filename, const wxString& filespec = wxEmptyString, int
flags = wxDIR_DEFAULT) const

Start enumerating all files matching filespec (or all files if it is empty) and flags, return
true on success.

wxDir::GetName

wxString GetName () const

Returns the name of the directory itself. The returned string does not have the trailing
path separator (slash or backslash).

CHAPTER 7

416

wxDir::GetNext

bool GetNext (wxString* filename) const

Continue enumerating files satisfying the criteria specified by the last call to GetFirst (p.
428).

wxDir::HasFiles

bool HasFiles (const wxString& filespec = wxEmptyString)

Returns true if the directory contains any files matching the given filespec. If filespec is
empty, look for any files at all. In any case, even hidden files are taken into account.

wxDir::HasSubDirs

bool HasSubDirs (const wxString& dirspec = wxEmptyString)

Returns true if the directory contains any subdirectories (if a non empty filespec is
given, only check for directories matching it). The hidden subdirectories are taken into
account as well.

wxDir::IsOpened

bool IsOpened () const

Returns true if the directory was successfully opened by a previous call to Open (p. 429).

wxDir::Open

bool Open (const wxString& dir)

Open the directory for enumerating, returns true on success or false if an error occurred.

wxDir::Traverse

size_t Traverse (wxDirTraverser& sink, const wxString& filespec = wxEmptyString,
int flags = wxDIR_DEFAULT)

Enumerate all files and directories under the given directory recursively calling the
element of the provided wxDirTraverser (p. 432) object for each of them.

More precisely, the function will really recurse into subdirectories if flags contains
wxDIR_DIRS flag. It will ignore the files (but still possibly recurse into subdirectories) if
wxDIR_FILES flag is given.

For each found directory, sink.OnDir() (p. 433) is called and sink.OnFile() (p. 433) is
called for every file. Depending on the return value, the enumeration may continue or
stop.

The function returns the total number of files found or (size_t)-1 on error.

CHAPTER 7

417

See also: GetAllFiles (p. 428)

wxDirDialog

This class represents the directory chooser dialog.

Derived from

wxDialog (p. 412)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dirdlg.h> <wx/generic/dirdlgg.h>

Window styles

wxDD_DEFAULT_STYLE Equivalent to a combination of
wxDEFAULT_DIALOG_STYLE,
wxDD_NEW_DIR_BUTTON and wxRESIZE_BORDER
(the last one is not used under wxWinCE).

wxDD_NEW_DIR_BUTTON Add "Create new directory" button and allow directory
names to be editable. On Windows the new directory
button is only available with recent versions of the common
dialogs.

See also Generic window styles (p. Error! Bookmark not defined.).

See also

wxDirDialog overview (p. Error! Bookmark not defined.), wxFileDialog (p. 515)

wxDirDialog::wxDirDialog

 wxDirDialog (wxWindow* parent, const wxString& message = "Choose a directory",
const wxString& defaultPath = "", long style = wxDD_DEFAULT_STYLE, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, const
wxString& name = "wxDirCtrl")

Constructor. Use wxDirDialog::ShowModal (p. 432) to show the dialog.

Parameters

parent

Parent window.

message

CHAPTER 7

418

Message to show on the dialog.

defaultPath

The default path, or the empty string.

style

The dialog style. See wxDirDialog (p. 429)

pos

Dialog position. Ignored under Windows.

size

Dialog size. Ignored under Windows.

name

The dialog name, not used.

wxDirDialog::~wxDirDialog

 ~wxDirDialog ()

Destructor.

wxDirDialog::GetPath

wxString GetPath () const

Returns the default or user-selected path.

wxDirDialog::GetMessage

wxString GetMessage () const

Returns the message that will be displayed on the dialog.

wxDirDialog::GetStyle

long GetStyle () const

Returns the dialog style.

wxDirDialog::SetMessage

void SetMessage (const wxString& message)

Sets the message that will be displayed on the dialog.

CHAPTER 7

419

wxDirDialog::SetPath

void SetPath (const wxString& path)

Sets the default path.

wxDirDialog::SetStyle

void SetStyle (long style)

Sets the dialog style. This is currently unused.

wxDirDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxDirTraverser

wxDirTraverser is an abstract interface which must be implemented by objects passed to
Traverse (p. 429) function.

Example of use (this works almost like GetAllFiles (p. 428)):

 class wxDirTraverserSimple : public wxDirTraver ser
 {
 public:
 wxDirTraverserSimple(wxArrayString& files) :
m_files(files) { }

 virtual wxDirTraverseResult OnFile(const wx String&
filename)
 {
 m_files.Add(filename);
 return wxDIR_CONTINUE;
 }

 virtual wxDirTraverseResult OnDir(const wxS tring&
WXUNUSED(dirname))
 {
 return wxDIR_CONTINUE;
 }

 private:
 wxArrayString& m_files;
 };

 // get the names of all files in the array
 wxArrayString files;
 wxDirTraverserSimple traverser(files);

 wxDir dir(dirname);
 dir.Traverse(traverser);

CHAPTER 7

420

Derived from

No base class

Constants

The elements of wxDirTraverseResult are the possible return values of the callback
functions:

enum wxDirTraverseResult
{
 wxDIR_IGNORE = -1, // ignore this director y but continue
with others
 wxDIR_STOP, // stop traversing
 wxDIR_CONTINUE // continue into this d irectory
};

Include files

<wx/dir.h>

wxDirTraverser::OnDir

virtual wxDirTraverseResult OnDir (const wxString& dirname)

This function is called for each directory. It may return wxSIR_STOP to abort traversing
completely, wxDIR_IGNORE to skip this directory but continue with others or
wxDIR_CONTINUE to enumerate all files and subdirectories in this directory.

This is a pure virtual function and must be implemented in the derived class.

wxDirTraverser::OnFile

virtual wxDirTraverseResult OnFile (const wxString& filename)

This function is called for each file. It may return wxDIR_STOP to abort traversing (for
example, if the file being searched is found) or wxDIR_CONTINUE to proceed.

This is a pure virtual function and must be implemented in the derived class.

wxOpenErrorTraverser::OnOpenError

virtual wxOpenErrorTraverseResult OnOpenError (const wxString& openerrorname)

This function is called for each directory which we failed to open for enumerating. It may
return wxSIR_STOP to abort traversing completely,wxDIR_IGNORE to skip this directory
but continue with others or wxDIR_CONTINUE to retry opening this directory once again.

The base class version always returns wxDIR_IGNORE.

CHAPTER 7

421

wxDisplay

Determines the sizes and locations of displays connected to the system.

Derived from

None

Include files

<wx/display.h>

See also

wxClientDisplayRect (p. Error! Bookmark not defined.), wxDisplaySize (p. Error!
Bookmark not defined.), wxDisplaySizeMM (p. Error! Bookmark not defined.)

wxDisplay::wxDisplay

 wxDisplay (size_t index = 0)

Constructor, setting up a wxDisplay instance with the specified display.

Parameters

index

The index of the display to use. This must be non-negative and lower than the
value returned by GetCount() (p. 435).

wxDisplay::~wxDisplay

void ~wxDisplay ()

Destructor.

wxDisplay::ChangeMode

bool ChangeMode (const wxVideoMode& mode = wxDefaultVideoMode)

Changes the video mode of this display to the mode specified in the mode parameter.

If wxDefaultVideoMode is passed in as the mode parameter, the defined behaviour is
that wxDisplay will reset the video mode to the default mode used by the display. On
Windows, the behavior is normal. However, there are differences on other platforms.
On Unix variations using X11 extensions it should behave as defined, but some
irregularities may occur.

On wxMac passing in wxDefaultVideoMode as the mode parameter does nothing. This
happens because carbon no longer has access to DMUseScreenPrefs, an
undocumented function that changed the video mode to the system default by using the

CHAPTER 7

422

system's 'scrn' resource.

wxDisplay::GetClientArea

wxRect GetClientArea () const

Returns the client area of the display. The client area is the part of the display available
for the normal (non full screen) windows, usually it is the same as GetGeometry (p. 436)
but it could be less if there is a taskbar (or equivalent) on this display.

See also:

wxClientDisplayRect (p. Error! Bookmark not defined.)

wxDisplay::GetCount

static size_t GetCount ()

Returns the number of connected displays.

wxDisplay::GetCurrentMode

wxVideoMode GetCurrentMode () const

Returns the current video mode that this display is in.

wxDisplay::GetDepth

int GetDepth () const

Returns the bit depth of the display whose index was passed to the constructor.

wxDisplay::GetFromPoint

static int GetFromPoint (const wxPoint& pt)

Returns the index of the display on which the given point lies. Returns wxNOT_FOUND if
the point is not on any connected display.

Parameters

pt

The point to locate.

wxDisplay::GetFromWindow

static int GetFromWindow (wxWindow* win)

Returns the index of the display on which the given window lies.

CHAPTER 7

423

If the window is on more than one display it gets the display that overlaps the window
the most.

Returns wxNOT_FOUND if the window is not on any connected display.

Parameters

win

The window to locate.

wxDisplay::GetGeometry

wxRect GetGeometry () const

Returns the bounding rectangle of the display whose index was passed to the
constructor.

See also:

GetClientArea (p. 434), wxDisplaySize (p. Error! Bookmark not defined.)

wxDisplay::GetModes

wxArrayVideoModes GetModes (const wxVideoMode& mode =
wxDefaultVideoMode) const

Fills and returns an array with all the video modes that are supported by this display, or
video modes that are supported by this display and match the mode parameter (if mode
is not wxDefaultVideoMode).

wxDisplay::GetName

wxString GetName () const

Returns the display's name. A name is not available on all platforms.

wxDisplay::IsPrimary

bool IsPrimary ()

Returns true if the display is the primary display. The primary display is the one whose
index is 0.

wxDllLoader

Deprecation note: This class is deprecated since version 2.4 and is not compiled in by
default in version 2.6 and will be removed in 2.8. Please use wxDynamicLibrary (p. 478)
instead.

wxDllLoader is a class providing an interface similar to Unix's dlopen() . It is used by

CHAPTER 7

424

the wxLibrary framework and manages the actual loading of shared libraries and the
resolving of symbols in them. There are no instances of this class, it simply serves as a
namespace for its static member functions.

Please note that class wxDynamicLibrary (p. 478) provides alternative, friendlier
interface to wxDllLoader.

The terms DLL and shared library/object will both be used in the documentation to refer
to the same thing: a .dll file under Windows or .so or .sl one under Unix.

Example of using this class to dynamically load the strlen() function:

#if defined(__WXMSW__)
 static const wxChar *LIB_NAME = _T("kernel32");
 static const wxChar *FUNC_NAME = _T("lstrlenA") ;
#elif defined(__UNIX__)
 static const wxChar *LIB_NAME = _T("/lib/libc-2 .0.7.so");
 static const wxChar *FUNC_NAME = _T("strlen");
#endif

 wxDllType dllHandle = wxDllLoader::LoadLibrary(LIB_NAME);
 if (!dllHandle)
 {
 ... error ...
 }
 else
 {
 typedef int (*strlenType)(char *);
 strlenType pfnStrlen =
(strlenType)wxDllLoader::GetSymbol(dllHandle, FUNC_ NAME);
 if (!pfnStrlen)
 {
 ... error ...
 }
 else
 {
 if (pfnStrlen("foo") != 3)
 {
 ... error ...
 }
 else
 {
 ... ok! ...
 }
 }

 wxDllLoader::UnloadLibrary(dllHandle);
 }

Derived from

No base class

Include files

<wx/dynlib.h>

Data structures

This header defines a platform-dependent wxDllType typedef which stores a handle to

CHAPTER 7

425

a loaded DLLs on the given platform.

wxDllLoader::GetDllExt

static wxString GetDllExt ()

Returns the string containing the usual extension for shared libraries for the given
systems (including the leading dot if not empty).

For example, this function will return ".dll" under Windows or (usually) ".so" under
Unix.

wxDllLoader::GetProgramHandle

wxDllType GetProgramHandle ()

This function returns a valid handle for the main program itself. Notice that the NULL
return value is valid for some systems (i.e. doesn't mean that the function failed).

NB: This function is Unix specific. It will always fail under Windows or OS/2.

wxDllLoader::GetSymbol

void * GetSymbol (wxDllType dllHandle, const wxString& name)

This function resolves a symbol in a loaded DLL, such as a variable or function name.

Returned value will be NULL if the symbol was not found in the DLL or if an error
occurred.

Parameters

dllHandle

Valid handle previously returned by LoadLibrary (p. 438)

name

Name of the symbol.

wxDllLoader::LoadLibrary

wxDllType LoadLibrary (const wxString & libname, bool* success = NULL)

This function loads a shared library into memory, with libname being the name of the
library: it may be either the full name including path and (platform-dependent) extension,
just the basename (no path and no extension) or a basename with extension. In the last
two cases, the library will be searched in all standard locations.

Returns a handle to the loaded DLL. Use success parameter to test if it is valid. If the

CHAPTER 7

426

handle is valid, the library must be unloaded later with UnloadLibrary (p. 439).

Parameters

libname

Name of the shared object to load.

success

May point to a bool variable which will be set to true or false; may also be NULL.

wxDllLoader::UnloadLibrary

void UnloadLibrary (wxDllType dllhandle)

This function unloads the shared library. The handle dllhandle must have been returned
by LoadLibrary (p. 438) previously.

wxDocChildFrame

The wxDocChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for SDI (not MDI) child frames.

The class is part of the document/view framework supported by wxWidgets, and
cooperates with the wxView (p. Error! Bookmark not defined.), wxDocument (p. 459),
wxDocManager (p. 441) and wxDocTemplate (p. 454) classes.

See the example application in samples/docview .

Derived from

wxFrame (p. 582)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/docview.h>

See also

Document/view overview (p. Error! Bookmark not defined.), wxFrame (p. 582)

wxDocChildFrame::m_childDocument

wxDocument* m_childDocument

The document associated with the frame.

wxDocChildFrame::m_childView

CHAPTER 7

427

wxView* m_childView

The view associated with the frame.

wxDocChildFrame::wxDocChildFrame

 wxDocChildFrame (wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocChildFrame::~wxDocChildFrame

 ~wxDocChildFrame ()

Destructor.

wxDocChildFrame::GetDocument

wxDocument* GetDocument () const

Returns the document associated with this frame.

wxDocChildFrame::GetView

wxView* GetView () const

Returns the view associated with this frame.

wxDocChildFrame::OnActivate

void OnActivate (wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocChildFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocChildFrame::SetDocument

void SetDocument (wxDocument * doc)

Sets the document for this frame.

CHAPTER 7

428

wxDocChildFrame::SetView

void SetView (wxView * view)

Sets the view for this frame.

wxDocManager

The wxDocManager class is part of the document/view framework supported by
wxWidgets, and cooperates with the wxView (p. Error! Bookmark not defined.),
wxDocument (p. 459) and wxDocTemplate (p. 454) classes.

Derived from

wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/docview.h>

See also

wxDocManager overview (p. Error! Bookmark not defined.), wxDocument (p. 459),
wxView (p. Error! Bookmark not defined.), wxDocTemplate (p. 454), wxFileHistory (p.
520)

wxDocManager::m_currentView

wxView* m_currentView

The currently active view.

wxDocManager::m_defaultDocumentNameCounter

int m_defaultDocumentNameCounter

Stores the integer to be used for the next default document name.

wxDocManager::m_fileHistory

wxFileHistory* m_fileHistory

A pointer to an instance of wxFileHistory (p. 520), which manages the history of recently-
visited files on the File menu.

wxDocManager::m_maxDocsOpen

int m_maxDocsOpen

CHAPTER 7

429

Stores the maximum number of documents that can be opened before existing
documents are closed. By default, this is 10,000.

wxDocManager::m_docs

wxList m_docs

A list of all documents.

wxDocManager::m_flags

long m_flags

Stores the flags passed to the constructor.

wxDocManager::m_lastDirectory

The directory last selected by the user when opening a file.

wxFileHistory* m_fileHistory

wxDocManager::m_templates

wxList m_templates

A list of all document templates.

wxDocManager::wxDocManager

 wxDocManager (long flags = wxDEFAULT_DOCMAN_FLAGS, bool initialize = true)

Constructor. Create a document manager instance dynamically near the start of your
application before doing any document or view operations.

flags is currently unused.

If initialize is true, the Initialize (p. 446) function will be called to create a default history
list object. If you derive from wxDocManager, you may wish to call the base constructor
with false, and then call Initialize in your own constructor, to allow your own Initialize or
OnCreateFileHistory functions to be called.

wxDocManager::~wxDocManager

void ~wxDocManager ()

Destructor.

wxDocManager::ActivateView

void ActivateView (wxView* doc, bool activate = true)

CHAPTER 7

430

Sets the current view.

wxDocManager::AddDocument

void AddDocument (wxDocument * doc)

Adds the document to the list of documents.

wxDocManager::AddFileToHistory

void AddFileToHistory (const wxString& filename)

Adds a file to the file history list, if we have a pointer to an appropriate file menu.

wxDocManager::AssociateTemplate

void AssociateTemplate (wxDocTemplate * temp)

Adds the template to the document manager's template list.

wxDocManager::CloseDocuments

bool CloseDocuments (bool force = true)

Closes all currently opened documents.

wxDocManager::CreateDocument

wxDocument* CreateDocument (const wxString& path, long flags)

Creates a new document in a manner determined by the flags parameter, which can be:

 • wxDOC_NEW Creates a fresh document.

 • wxDOC_SILENT Silently loads the given document file.

If wxDOC_NEW is present, a new document will be created and returned, possibly after
asking the user for a template to use if there is more than one document template. If
wxDOC_SILENT is present, a new document will be created and the given file loaded
into it. If neither of these flags is present, the user will be presented with a file selector
for the file to load, and the template to use will be determined by the extension
(Windows) or by popping up a template choice list (other platforms).

If the maximum number of documents has been reached, this function will delete the
oldest currently loaded document before creating a new one.

wxDocManager::CreateView

wxView* CreateView (wxDocument* doc, long flags)

Creates a new view for the given document. If more than one view is allowed for the

CHAPTER 7

431

document (by virtue of multiple templates mentioning the same document type), a choice
of view is presented to the user.

wxDocManager::DisassociateTemplate

void DisassociateTemplate (wxDocTemplate * temp)

Removes the template from the list of templates.

wxDocManager::FileHistoryAddFilesToMenu

void FileHistoryAddFilesToMenu ()

Appends the files in the history list, to all menus managed by the file history object.

void FileHistoryAddFilesToMenu (wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxDocManager::FileHistoryLoad

void FileHistoryLoad (wxConfigBase& config)

Loads the file history from a config object.

See also

wxConfig (p. 196)

wxDocManager::FileHistoryRemoveMenu

void FileHistoryRemoveMenu (wxMenu* menu)

Removes the given menu from the list of menus managed by the file history object.

wxDocManager::FileHistorySave

void FileHistorySave (wxConfigBase& resourceFile)

Saves the file history into a config object. This must be called explicitly by the
application.

See also

wxConfig (p. 196)

wxDocManager::FileHistoryUseMenu

void FileHistoryUseMenu (wxMenu* menu)

Use this menu for appending recently-visited document filenames, for convenient

CHAPTER 7

432

access. Calling this function with a valid menu pointer enables the history list
functionality.

Note that you can add multiple menus using this function, to be managed by the file
history object.

wxDocManager::FindTemplateForPath

wxDocTemplate * FindTemplateForPath (const wxString& path)

Given a path, try to find template that matches the extension. This is only an
approximate method of finding a template for creating a document.

wxDocManager::GetCurrentDocument

wxDocument * GetCurrentDocument ()

Returns the document associated with the currently active view (if any).

wxDocManager::GetCurrentView

wxView * GetCurrentView ()

Returns the currently active view

wxDocManager::GetDocuments

wxList& GetDocuments ()

Returns a reference to the list of documents.

wxDocManager::GetFileHistory

wxFileHistory * GetFileHistory ()

Returns a pointer to file history.

wxDocManager::GetLastDirectory

wxString GetLastDirectory () const

Returns the directory last selected by the user when opening a file. Initially empty.

wxDocManager::GetMaxDocsOpen

int GetMaxDocsOpen ()

Returns the number of documents that can be open simultaneously.

wxDocManager::GetHistoryFilesCount

CHAPTER 7

433

size_t GetHistoryFilesCount ()

Returns the number of files currently stored in the file history.

wxDocManager::GetTemplates

wxList& GetTemplates ()

Returns a reference to the list of associated templates.

wxDocManager::Initialize

bool Initialize ()

Initializes data; currently just calls OnCreateFileHistory. Some data cannot always be
initialized in the constructor because the programmer must be given the opportunity to
override functionality. If OnCreateFileHistory was called from the constructor, an
overridden virtual OnCreateFileHistory would not be called due to C++'s 'interesting'
constructor semantics. In fact Initialize is called from the wxDocManager constructor, but
this can be vetoed by passing false to the second argument, allowing the derived class's
constructor to call Initialize, possibly calling a different OnCreateFileHistory from the
default.

The bottom line: if you're not deriving from Initialize, forget it and construct
wxDocManager with no arguments.

wxDocManager::MakeDefaultName

bool MakeDefaultName (const wxString& buf)

Copies a suitable default name into buf. This is implemented by appending an integer
counter to the string unnamed and incrementing the counter.

wxPerl note: In wxPerl this function must return the modified name rather than just
modifying the argument.

wxDocManager::OnCreateFileHistory

wxFileHistory * OnCreateFileHistory ()

A hook to allow a derived class to create a different type of file history. Called from
Initialize (p. 446).

wxDocManager::OnFileClose

void OnFileClose (wxCommandEvent& event)

Closes and deletes the currently active document.

wxDocManager::OnFileCloseAll

CHAPTER 7

434

void OnFileCloseAll (wxCommandEvent& event)

Closes and deletes all the currently opened documents.

wxDocManager::OnFileNew

void OnFileNew (wxCommandEvent& event)

Creates a document from a list of templates (if more than one template).

wxDocManager::OnFileOpen

void OnFileOpen (wxCommandEvent& event)

Creates a new document and reads in the selected file.

wxDocManager::OnFileRevert

void OnFileRevert (wxCommandEvent& event)

Reverts the current document by calling wxDocument::Revert for the current document.

wxDocManager::OnFileSave

void OnFileSave (wxCommandEvent& event)

Saves the current document by calling wxDocument::Save for the current document.

wxDocManager::OnFileSaveAs

void OnFileSaveAs (wxCommandEvent& event)

Calls wxDocument::SaveAs for the current document.

wxDocManager::RemoveDocument

void RemoveDocument (wxDocument * doc)

Removes the document from the list of documents.

wxDocManager::SelectDocumentPath

wxDocTemplate * SelectDocumentPath (wxDocTemplate ** templates, int
noTemplates, wxString& path, long flags, bool save)

Under Windows, pops up a file selector with a list of filters corresponding to document
templates. The wxDocTemplate corresponding to the selected file's extension is
returned.

On other platforms, if there is more than one document template a choice list is popped

CHAPTER 7

435

up, followed by a file selector.

This function is used in wxDocManager::CreateDocument.

wxPerl note: In wxPerl templates is a reference to a list of templates. If you override
this method in your document manager it must return two values, eg:

 (doctemplate, path) = My::DocManager->SelectDocumentPath(...);

wxDocManager::SelectDocumentType

wxDocTemplate * SelectDocumentType (wxDocTemplate ** templates, int
noTemplates, bool sort=false)

Returns a document template by asking the user (if there is more than one template).
This function is used in wxDocManager::CreateDocument.

Parameters

templates

Pointer to an array of templates from which to choose a desired template.

noTemplates

Number of templates being pointed to by the templates pointer.

sort

If more than one template is passed in in templates, then this parameter indicates
whether the list of templates that the user will have to choose from is sorted or not
when shown the choice box dialog. Default is false.

wxPerl note: In wxPerl templates is a reference to a list of templates.

wxDocManager::SelectViewType

wxDocTemplate * SelectViewType (wxDocTemplate ** templates, int noTemplates,
bool sort=false)

Returns a document template by asking the user (if there is more than one template),
displaying a list of valid views. This function is used in wxDocManager::CreateView. The
dialog normally will not appear because the array of templates only contains those
relevant to the document in question, and often there will only be one such.

Parameters

templates

Pointer to an array of templates from which to choose a desired template.

noTemplates

Number of templates being pointed to by the templates pointer.

CHAPTER 7

436

sort

If more than one template is passed in in templates, then this parameter indicates
whether the list of templates that the user will have to choose from is sorted or not
when shown the choice box dialog. Default is false.

wxPerl note: In wxPerl templates is a reference to a list of templates.

wxDocManager::SetLastDirectory

void SetLastDirectory (const wxString& dir)

Sets the directory to be displayed to the user when opening a file. Initially this is empty.

wxDocManager::SetMaxDocsOpen

void SetMaxDocsOpen (int n)

Sets the maximum number of documents that can be open at a time. By default, this is
10,000. If you set it to 1, existing documents will be saved and deleted when the user
tries to open or create a new one (similar to the behaviour of Windows Write, for
example). Allowing multiple documents gives behaviour more akin to MS Word and
other Multiple Document Interface applications.

wxDocMDIChildFrame

The wxDocMDIChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for MDI child frames.

The class is part of the document/view framework supported by wxWidgets, and
cooperates with the wxView (p. Error! Bookmark not defined.), wxDocument (p. 459),
wxDocManager (p. 441) and wxDocTemplate (p. 454) classes.

See the example application in samples/docview .

Derived from

wxMDIChildFrame (p. Error! Bookmark not defined.)
wxFrame (p. 582)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. Error! Bookmark not defined.), wxMDIChildFrame (p.
Error! Bookmark not defined.)

CHAPTER 7

437

wxDocMDIChildFrame::m_childDocument

wxDocument* m_childDocument

The document associated with the frame.

wxDocMDIChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

wxDocMDIChildFrame::wxDocMDIChildFrame

 wxDocMDIChildFrame (wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocMDIChildFrame::~wxDocMDIChildFrame

 ~wxDocMDIChildFrame ()

Destructor.

wxDocMDIChildFrame::GetDocument

wxDocument* GetDocument () const

Returns the document associated with this frame.

wxDocMDIChildFrame::GetView

wxView* GetView () const

Returns the view associated with this frame.

wxDocMDIChildFrame::OnActivate

void OnActivate (wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocMDIChildFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

CHAPTER 7

438

Closes and deletes the current view and document.

wxDocMDIChildFrame::SetDocument

void SetDocument (wxDocument * doc)

Sets the document for this frame.

wxDocMDIChildFrame::SetView

void SetView (wxView * view)

Sets the view for this frame.

wxDocMDIParentFrame

The wxDocMDIParentFrame class provides a default top-level frame for applications
using the document/view framework. This class can only be used for MDI parent frames.

It cooperates with the wxView (p. Error! Bookmark not defined.), wxDocument (p.
459), wxDocManager (p. 441) and wxDocTemplates (p. 454) classes.

See the example application in samples/docview .

Derived from

wxMDIParentFrame (p. Error! Bookmark not defined.)
wxFrame (p. 582)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. Error! Bookmark not defined.), wxMDIParentFrame (p.
Error! Bookmark not defined.)

wxDocMDIParentFrame::wxDocMDIParentFrame

 wxDocMDIParentFrame ()

 wxDocMDIParentFrame (wxDocManager* manager, wxFrame * parent, wxWindowID
id, const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString&
name = "frame")

CHAPTER 7

439

Constructor.

wxDocMDIParentFrame::~wxDocMDIParentFrame

 ~wxDocMDIParentFrame ()

Destructor.

wxDocMDIParentFrame::Create

bool Create (wxDocManager* manager, wxFrame * parent, wxWindowID id, const
wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Creates the window.

wxDocMDIParentFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
{
 if (m_docManager->Clear(!event.CanVeto()))
 {
 this->Destroy();
 }
 else
 event.Veto();
}

wxDocParentFrame

The wxDocParentFrame class provides a default top-level frame for applications using
the document/view framework. This class can only be used for SDI (not MDI) parent
frames.

It cooperates with the wxView (p. Error! Bookmark not defined.), wxDocument (p.
459), wxDocManager (p. 441) and wxDocTemplates (p. 454) classes.

See the example application in samples/docview .

Derived from

wxFrame (p. 582)
wxWindow (p. Error! Bookmark not defined.)

CHAPTER 7

440

wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/docview.h>

See also

Document/view overview (p. Error! Bookmark not defined.), wxFrame (p. 582)

wxDocParentFrame::wxDocParentFrame

 wxDocParentFrame (wxDocManager* manager, wxFrame * parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocParentFrame::~wxDocParentFrame

 ~wxDocParentFrame ()

Destructor.

wxDocParentFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
{
 if (m_docManager->Clear(!event.CanVeto()))
 {
 this->Destroy();
 }
 else
 event.Veto();
}

wxDocTemplate

The wxDocTemplate class is used to model the relationship between a document class
and a view class.

CHAPTER 7

441

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/docview.h>

See also

wxDocTemplate overview (p. Error! Bookmark not defined.), wxDocument (p. 459),
wxView (p. Error! Bookmark not defined.)

wxDocTemplate::m_defaultExt

wxString m_defaultExt

The default extension for files of this type.

wxDocTemplate::m_description

wxString m_description

A short description of this template.

wxDocTemplate::m_directory

wxString m_directory

The default directory for files of this type.

wxDocTemplate::m_docClassInfo

wxClassInfo* m_docClassInfo

Run-time class information that allows document instances to be constructed
dynamically.

wxDocTemplate::m_docTypeName

wxString m_docTypeName

The named type of the document associated with this template.

wxDocTemplate::m_documentManager

wxDocTemplate* m_documentManager

A pointer to the document manager for which this template was created.

CHAPTER 7

442

wxDocTemplate::m_fileFilter

wxString m_fileFilter

The file filter (such as *.txt) to be used in file selector dialogs.

wxDocTemplate::m_flags

long m_flags

The flags passed to the constructor.

wxDocTemplate::m_viewClassInfo

wxClassInfo* m_viewClassInfo

Run-time class information that allows view instances to be constructed dynamically.

wxDocTemplate::m_viewTypeName

wxString m_viewTypeName

The named type of the view associated with this template.

wxDocTemplate::wxDocTemplate

 wxDocTemplate (wxDocManager* manager, const wxString& descr, const
wxString& filter, const wxString& dir, const wxString& ext, const wxString&
docTypeName, const wxString& viewTypeName, wxClassInfo* docClassInfo = NULL,
wxClassInfo* viewClassInfo = NULL, long flags = wxDEFAULT_TEMPLATE_FLAGS)

Constructor. Create instances dynamically near the start of your application after
creating a wxDocManager instance, and before doing any document or view operations.

manager is the document manager object which manages this template.

descr is a short description of what the template is for. This string will be displayed in the
file filter list of Windows file selectors.

filter is an appropriate file filter such as *.txt .

dir is the default directory to use for file selectors.

ext is the default file extension (such as txt).

docTypeName is a name that should be unique for a given type of document, used for
gathering a list of views relevant to a particular document.

viewTypeName is a name that should be unique for a given view.

docClassInfo is a pointer to the run-time document class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyDocumentClass). If this is not supplied, you

CHAPTER 7

443

will need to derive a new wxDocTemplate class and override the CreateDocument
member to return a new document instance on demand.

viewClassInfo is a pointer to the run-time view class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyViewClass). If this is not supplied, you will
need to derive a new wxDocTemplate class and override the CreateView member to
return a new view instance on demand.

flags is a bit list of the following:

 • wxTEMPLATE_VISIBLE The template may be displayed to the user in dialogs.

 • wxTEMPLATE_INVISIBLE The template may not be displayed to the user in
dialogs.

 • wxDEFAULT_TEMPLATE_FLAGS Defined as wxTEMPLATE_VISIBLE.

wxPerl note: In wxPerl docClassInfo and viewClassInfo can be either
Wx::ClassInfo objects or strings which contain the name of the perl packages which
are to be used as Wx::Document andWx::View classes (they must have a constructor
named new):

Wx::DocTemplate->new(docmgr, descr, filter, dir, e xt, docTypeName,
viewTypeName, docClassInfo,
viewClassInfo, flags) will construct
document and view objects from the class
information

Wx::DocTemplate->new(docmgr, descr, filter, dir, e xt, docTypeName,
viewTypeName, docClassName,
viewClassName, flags) will construct
document and view objects from perl packages

Wx::DocTemplate->new(docmgr, descr, filter, dir, e xt, docTypeName,
viewTypeName)
 Wx::DocTemplate::CreateDocument(
) andWx::DocTemplate::CreateView()
must be overridden

wxDocTemplate::~wxDocTemplate

void ~wxDocTemplate ()

Destructor.

wxDocTemplate::CreateDocument

wxDocument * CreateDocument (const wxString& path, long flags = 0)

Creates a new instance of the associated document class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this

CHAPTER 7

444

function to return an appropriate document instance.

This function calls wxDocTemplate::InitDocument which in turns calls
wxDocument::OnCreate.

wxDocTemplate::CreateView

wxView * CreateView (wxDocument * doc, long flags = 0)

Creates a new instance of the associated view class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate view instance.

wxDocTemplate::GetDefaultExtension

wxString GetDefaultExtension ()

Returns the default file extension for the document data, as passed to the document
template constructor.

wxDocTemplate::GetDescription

wxString GetDescription ()

Returns the text description of this template, as passed to the document template
constructor.

wxDocTemplate::GetDirectory

wxString GetDirectory ()

Returns the default directory, as passed to the document template constructor.

wxDocTemplate::GetDocumentManager

wxDocManager * GetDocumentManager ()

Returns a pointer to the document manager instance for which this template was
created.

wxDocTemplate::GetDocumentName

wxString GetDocumentName ()

Returns the document type name, as passed to the document template constructor.

wxDocTemplate::GetFileFilter

wxString GetFileFilter ()

CHAPTER 7

445

Returns the file filter, as passed to the document template constructor.

wxDocTemplate::GetFlags

long GetFlags ()

Returns the flags, as passed to the document template constructor.

wxDocTemplate::GetViewName

wxString GetViewName ()

Returns the view type name, as passed to the document template constructor.

wxDocTemplate::InitDocument

bool InitDocument (wxDocument* doc, const wxString& path, long flags = 0)

Initialises the document, calling wxDocument::OnCreate. This is called from
wxDocTemplate::CreateDocument.

wxDocTemplate::IsVisible

bool IsVisible ()

Returns true if the document template can be shown in user dialogs, false otherwise.

wxDocTemplate::SetDefaultExtension

void SetDefaultExtension (const wxString& ext)

Sets the default file extension.

wxDocTemplate::SetDescription

void SetDescription (const wxString& descr)

Sets the template description.

wxDocTemplate::SetDirectory

void SetDirectory (const wxString& dir)

Sets the default directory.

wxDocTemplate::SetDocumentManager

void SetDocumentManager (wxDocManager * manager)

Sets the pointer to the document manager instance for which this template was created.

CHAPTER 7

446

Should not be called by the application.

wxDocTemplate::SetFileFilter

void SetFileFilter (const wxString& filter)

Sets the file filter.

wxDocTemplate::SetFlags

void SetFlags (long flags)

Sets the internal document template flags (see the constructor description for more
details).

wxDocument

The document class can be used to model an application's file-based data. It is part of
the document/view framework supported by wxWidgets, and cooperates with the
wxView (p. Error! Bookmark not defined.), wxDocTemplate (p. 454) and
wxDocManager (p. 441) classes.

Derived from

wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/docview.h>

See also

wxDocument overview (p. Error! Bookmark not defined.), wxView (p. Error!
Bookmark not defined.), wxDocTemplate (p. 454), wxDocManager (p. 441)

wxDocument::m_commandProcessor

wxCommandProcessor* m_commandProcessor

A pointer to the command processor associated with this document.

wxDocument::m_documentFile

wxString m_documentFile

Filename associated with this document ("" if none).

CHAPTER 7

447

wxDocument::m_documentModified

bool m_documentModified

true if the document has been modified, false otherwise.

wxDocument::m_documentTemplate

wxDocTemplate * m_documentTemplate

A pointer to the template from which this document was created.

wxDocument::m_documentTitle

wxString m_documentTitle

Document title. The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.

wxDocument::m_documentTypeName

wxString m_documentTypeName

The document type name given to the wxDocTemplate constructor, copied to this
variable when the document is created. If several document templates are created that
use the same document type, this variable is used in wxDocManager::CreateView to
collate a list of alternative view types that can be used on this kind of document. Do not
change the value of this variable.

wxDocument::m_documentViews

wxList m_documentViews

List of wxView instances associated with this document.

wxDocument::wxDocument

 wxDocument ()

Constructor. Define your own default constructor to initialize application-specific data.

wxDocument::~wxDocument

 ~wxDocument ()

Destructor. Removes itself from the document manager.

wxDocument::AddView

virtual bool AddView (wxView * view)

CHAPTER 7

448

If the view is not already in the list of views, adds the view and calls
OnChangedViewList.

wxDocument::Close

virtual bool Close ()

Closes the document, by calling OnSaveModified and then (if this returned true)
OnCloseDocument. This does not normally delete the document object: use
DeleteAllViews to do this implicitly.

wxDocument::DeleteAllViews

virtual bool DeleteAllViews ()

Calls wxView::Close and deletes each view. Deleting the final view will implicitly delete
the document itself, because the wxView destructor calls RemoveView. This in turns
calls wxDocument::OnChangedViewList, whose default implemention is to save and
delete the document if no views exist.

wxDocument::GetCommandProcessor

wxCommandProcessor* GetCommandProcessor () const

Returns a pointer to the command processor associated with this document.

See wxCommandProcessor (p. 189).

wxDocument::GetDocumentTemplate

wxDocTemplate* GetDocumentTemplate () const

Gets a pointer to the template that created the document.

wxDocument::GetDocumentManager

wxDocManager* GetDocumentManager () const

Gets a pointer to the associated document manager.

wxDocument::GetDocumentName

wxString GetDocumentName () const

Gets the document type name for this document. See the comment for
documentTypeName (p. 460).

wxDocument::GetDocumentWindow

wxWindow* GetDocumentWindow () const

CHAPTER 7

449

Intended to return a suitable window for using as a parent for document-related dialog
boxes. By default, uses the frame associated with the first view.

wxDocument::GetFilename

wxString GetFilename () const

Gets the filename associated with this document, or "" if none is associated.

wxDocument::GetFirstView

wxView * GetFirstView () const

A convenience function to get the first view for a document, because in many cases a
document will only have a single view.

See also: GetViews (p. 462)

wxDocument::GetPrintableName

virtual void GetPrintableName (wxString& name) const

Copies a suitable document name into the supplied name buffer. The default function
uses the title, or if there is no title, uses the filename; or if no filename, the string
unnamed .

wxPerl note: In wxPerl this function must return the modified name rather than just
modifying the argument.

wxDocument::GetTitle

wxString GetTitle () const

Gets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.

wxDocument::GetViews

wxList & GetViews () const

Returns the list whose elements are the views on the document.

See also: GetFirstView (p. 462)

wxDocument::IsModified

virtual bool IsModified () const

Returns true if the document has been modified since the last save, false otherwise. You
may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

CHAPTER 7

450

See also Modify (p. 463).

wxDocument::LoadObject

virtual istream& LoadObject (istream& stream)

virtual wxInputStream& LoadObject (wxInputStream& stream)

Override this function and call it from your own LoadObject before streaming your own
data. LoadObject is called by the framework automatically when the document contents
need to be loaded.

Note that only one of these forms exists, depending on how wxWidgets was configured.

wxDocument::Modify

virtual void Modify (bool modify)

Call with true to mark the document as modified since the last save, false otherwise. You
may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

See also IsModified (p. 462).

wxDocument::OnChangedViewList

virtual void OnChangedViewList ()

Called when a view is added to or deleted from this document. The default
implementation saves and deletes the document if no views exist (the last one has just
been removed).

wxDocument::OnCloseDocument

virtual bool OnCloseDocument ()

The default implementation calls DeleteContents (an empty implementation) sets the
modified flag to false. Override this to supply additional behaviour when the document is
closed with Close.

wxDocument::OnCreate

virtual bool OnCreate (const wxString& path, long flags)

Called just after the document object is created to give it a chance to initialize itself. The
default implementation uses the template associated with the document to create an
initial view. If this function returns false, the document is deleted.

wxDocument::OnCreateCommandProcessor

virtual wxCommandProcessor* OnCreateCommandProcessor ()

CHAPTER 7

451

Override this function if you want a different (or no) command processor to be created
when the document is created. By default, it returns an instance of
wxCommandProcessor.

See wxCommandProcessor (p. 189).

wxDocument::OnNewDocument

virtual bool OnNewDocument ()

The default implementation calls OnSaveModified and DeleteContents, makes a default
title for the document, and notifies the views that the filename (in fact, the title) has
changed.

wxDocument::OnOpenDocument

virtual bool OnOpenDocument (const wxString& filename)

Constructs an input file stream for the given filename (which must not be empty), and
calls LoadObject. If LoadObject returns true, the document is set to unmodified;
otherwise, an error message box is displayed. The document's views are notified that
the filename has changed, to give windows an opportunity to update their titles. All of the
document's views are then updated.

wxDocument::OnSaveDocument

virtual bool OnSaveDocument (const wxString& filename)

Constructs an output file stream for the given filename (which must not be empty), and
calls SaveObject. If SaveObject returns true, the document is set to unmodified;
otherwise, an error message box is displayed.

wxDocument::OnSaveModified

virtual bool OnSaveModified ()

If the document has been modified, prompts the user to ask if the changes should be
changed. If the user replies Yes, the Save function is called. If No, the document is
marked as unmodified and the function succeeds. If Cancel, the function fails.

wxDocument::RemoveView

virtual bool RemoveView (wxView* view)

Removes the view from the document's list of views, and calls OnChangedViewList.

wxDocument::Save

virtual bool Save()

CHAPTER 7

452

Saves the document by calling OnSaveDocument if there is an associated filename, or
SaveAs if there is no filename.

wxDocument::SaveAs

virtual bool SaveAs ()

Prompts the user for a file to save to, and then calls OnSaveDocument.

wxDocument::SaveObject

virtual ostream& SaveObject (ostream& stream)

virtual wxOutputStream& SaveObject (wxOutputStream& stream)

Override this function and call it from your own SaveObject before streaming your own
data. SaveObject is called by the framework automatically when the document contents
need to be saved.

Note that only one of these forms exists, depending on how wxWidgets was configured.

wxDocument::SetCommandProcessor

virtual void SetCommandProcessor (wxCommandProcessor * processor)

Sets the command processor to be used for this document. The document will then be
responsible for its deletion. Normally you should not call this; override
OnCreateCommandProcessor instead.

See wxCommandProcessor (p. 189).

wxDocument::SetDocumentName

void SetDocumentName (const wxString& name)

Sets the document type name for this document. See the comment for
documentTypeName (p. 460).

wxDocument::SetDocumentTemplate

void SetDocumentTemplate (wxDocTemplate* templ)

Sets the pointer to the template that created the document. Should only be called by the
framework.

wxDocument::SetFilename

void SetFilename (const wxString& filename, bool notifyViews = false)

Sets the filename for this document. Usually called by the framework.

CHAPTER 7

453

If notifyViews is true, wxView::OnChangeFilename is called for all views.

wxDocument::SetTitle

void SetTitle (const wxString& title)

Sets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.

wxDocument::UpdateAllViews

void UpdateAllViews (wxView* sender = NULL, wxObject* hint = NULL)

Updates all views. If sender is non-NULL, does not update this view.

hint represents optional information to allow a view to optimize its update.

wxDragImage

This class is used when you wish to drag an object on the screen, and a simple cursor is
not enough.

On Windows, the WIN32 API is used to do achieve smooth dragging. On other
platforms, wxGenericDragImage is used. Applications may also prefer to use
wxGenericDragImage on Windows, too.

wxPython note: wxPython uses wxGenericDragImage on all platforms, but uses the
wxDragImage name.

To use this class, when you wish to start dragging an image, create a wxDragImage
object and store it somewhere you can access it as the drag progresses. Call BeginDrag
to start, and EndDrag to stop the drag. To move the image, initially call Show and then
Move. If you wish to update the screen contents during the drag (for example, highlight
an item as in the dragimag sample), first call Hide, update the screen, call Move, and
then call Show.

You can drag within one window, or you can use full-screen dragging either across the
whole screen, or just restricted to one area of the screen to save resources. If you want
the user to drag between two windows, then you will need to use full-screen dragging.

If you wish to draw the image yourself, use wxGenericDragImage and override
wxDragImage::DoDrawImage (p. 469) and wxDragImage::GetImageRect (p. 469).

Please see samples/dragimag for an example.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dragimag.h>

CHAPTER 7

454

<wx/generic/dragimgg.h>

wxDragImage::wxDragImage

 wxDragImage ()

Default constructor.

 wxDragImage (const wxBitmap& image, const wxCursor& cursor = wxNullCursor,
const wxPoint& cursorHotspot = wxPoint(0, 0))

Constructs a drag image from a bitmap and optional cursor.

 wxDragImage (const wxIcon& image, const wxCursor& cursor = wxNullCursor,
const wxPoint& cursorHotspot = wxPoint(0, 0))

Constructs a drag image from an icon and optional cursor.

wxPython note: This constructor is called wxDragIcon in wxPython.

 wxDragImage (const wxString& text, const wxCursor& cursor = wxNullCursor, const
wxPoint& cursorHotspot = wxPoint(0, 0))

Constructs a drag image from a text string and optional cursor.

wxPython note: This constructor is called wxDragString in wxPython.

 wxDragImage (const wxTreeCtrl& treeCtrl, wxTreeItemId& id)

Constructs a drag image from the text in the given tree control item, and optional cursor.

wxPython note: This constructor is called wxDragTreeItem in wxPython.

 wxDragImage (const wxListCtrl& treeCtrl, long id)

Constructs a drag image from the text in the given tree control item, and optional cursor.

wxPython note: This constructor is called wxDragListItem in wxPython.

 wxDragImage (const wxCursor& cursor = wxNullCursor, const wxPoint&
cursorHotspot = wxPoint(0, 0))

Constructs a drag image an optional cursor. This constructor is only available for
wxGenericDragImage, and can be used when the application supplies
wxDragImage::DoDrawImage (p. 469) and wxDragImage::GetImageRect (p. 469).

Parameters

image

Icon or bitmap to be used as the drag image. The bitmap can have a mask.

text

CHAPTER 7

455

Text used to construct a drag image.

cursor

Optional cursor to combine with the image.

hotspot

This parameter is deprecated.

treeCtrl

Tree control for constructing a tree drag image.

listCtrl

List control for constructing a list drag image.

id

Tree or list control item id.

wxDragImage::BeginDrag

bool BeginDrag (const wxPoint& hotspot, wxWindow* window, bool fullScreen =
false, wxRect* rect = NULL)

Start dragging the image, in a window or full screen.

bool BeginDrag (const wxPoint& hotspot, wxWindow* window, wxWindow*
boundingWindow)

Start dragging the image, using the first window to capture the mouse and the second to
specify the bounding area. This form is equivalent to using the first form, but more
convenient than working out the bounding rectangle explicitly.

You need to then call wxDragImage::Show (p. 470) and wxDragImage::Move (p. 470) to
show the image on the screen.

Call wxDragImage::EndDrag (p. 469) when the drag has finished.

Note that this call automatically calls CaptureMouse.

Parameters

hotspot

The location of the drag position relative to the upper-left corner of the image.

window

The window that captures the mouse, and within which the dragging is limited
unless fullScreen is true.

boundingWindow

CHAPTER 7

456

In the second form of the function, specifies the area within which the drag occurs.

fullScreen

If true, specifies that the drag will be visible over the full screen, or over as much of
the screen as is specified by rect. Note that the mouse will still be captured in
window.

rect

If non-NULL, specifies the rectangle (in screen coordinates) that bounds the
dragging operation. Specifying this can make the operation more efficient by
cutting down on the area under consideration, and it can also make a visual
difference since the drag is clipped to this area.

wxDragImage::DoDrawImage

virtual bool DoDrawImage (wxDC& dc, const wxPoint& pos)

Draws the image on the device context with top-left corner at the given position.

This function is only available with wxGenericDragImage, to allow applications to draw
their own image instead of using an actual bitmap. If you override this function, you must
also override wxDragImage::GetImageRect (p. 469).

wxDragImage::EndDrag

bool EndDrag ()

Call this when the drag has finished.

Note that this call automatically calls ReleaseMouse.

wxDragImage::GetImageRect

virtual wxRect GetImageRect (const wxPoint& pos) const

Returns the rectangle enclosing the image, assuming that the image is drawn with its
top-left corner at the given point.

This function is available in wxGenericDragImage only, and may be overridden (together
with wxDragImage::DoDrawImage (p. 469)) to provide a virtual drawing capability.

wxDragImage::Hide

bool Hide ()

Hides the image. You may wish to call this before updating the window contents
(perhaps highlighting an item). Then call wxDragImage::Move (p. 470) and
wxDragImage::Show (p. 470).

CHAPTER 7

457

wxDragImage::Move

bool Move (const wxPoint& pt)

Call this to move the image to a new position. The image will only be shown if
wxDragImage::Show (p. 470) has been called previously (for example at the start of the
drag).

pt is the position in client coordinates (relative to the window specified in BeginDrag).

You can move the image either when the image is hidden or shown, but in general
dragging will be smoother if you move the image when it is shown.

wxDragImage::Show

bool Show ()

Shows the image. Call this at least once when dragging.

wxDragImage::UpdateBackingFromWindow

bool UpdateBackingFromWindow (wxDC& windowDC, wxMemoryDC& destDC,
const wxRect& sourceRect, const wxRect& destRect) const

Override this if you wish to draw the window contents to the backing bitmap yourself.
This can be desirable if you wish to avoid flicker by not having to redraw the updated
window itself just before dragging, which can cause a flicker just as the drag starts.
Instead, paint the drag image's backing bitmap to show the appropriate graphic minus
the objects to be dragged, and leave the window itself to be updated by the drag image.
This can provide eerily smooth, flicker-free drag behaviour.

The default implementation copies the window contents to the backing bitmap. A new
implementation will normally copy information from another source, such as from its own
backing bitmap if it has one, or directly from internal data structures.

This function is available in wxGenericDragImage only.

wxDropFilesEvent

This class is used for drop files events, that is, when files have been dropped onto the
window. This functionality is currently only available under Windows. The window must
have previously been enabled for dropping by calling wxWindow::DragAcceptFiles (p.
Error! Bookmark not defined.).

Important note: this is a separate implementation to the more general drag and drop
implementation documented here (p. Error! Bookmark not defined.). It uses the older,
Windows message-based approach of dropping files.

Derived from

wxEvent (p. 487)

CHAPTER 7

458

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

Event table macros

To process a drop files event, use these event handler macros to direct input to a
member function that takes a wxDropFilesEvent argument.

EVT_DROP_FILES(func) Process a wxEVT_DROP_FILES event.

See also
Event handling overview (p. Error! Bookmark not defined.)

wxDropFilesEvent::wxDropFilesEvent

 wxDropFilesEvent (WXTYPE id = 0, int noFiles = 0, wxString* files = NULL)

Constructor.

wxDropFilesEvent::m_files

wxString* m_files

An array of filenames.

wxDropFilesEvent::m_noFiles

int m_noFiles

The number of files dropped.

wxDropFilesEvent::m_pos

wxPoint m_pos

The point at which the drop took place.

wxDropFilesEvent::GetFiles

wxString* GetFiles () const

Returns an array of filenames.

wxDropFilesEvent::GetNumberOfFiles

int GetNumberOfFiles () const

CHAPTER 7

459

Returns the number of files dropped.

wxDropFilesEvent::GetPosition

wxPoint GetPosition () const

Returns the position at which the files were dropped.

Returns an array of filenames.

wxDropSource

This class represents a source for a drag and drop operation.

See Drag and drop overview (p. Error! Bookmark not defined.) and wxDataObject
overview (p. Error! Bookmark not defined.) for more information.

Derived from

None

Include files

<wx/dnd.h>

Types

wxDragResult is defined as follows:

enum wxDragResult
{
 wxDragError, // error prevented the d&d oper ation from
completing
 wxDragNone, // drag target didn't accept th e data
 wxDragCopy, // the data was successfully co pied
 wxDragMove, // the data was successfully mo ved (MSW only)
 wxDragLink, // operation is a drag-link
 wxDragCancel // the operation was cancelled by user (not an
error)
};

See also

wxDropTarget (p. 475), wxTextDropTarget (p. Error! Bookmark not defined.),
wxFileDropTarget (p. 519)

wxDropSource::wxDropSource

 wxDropSource (wxWindow* win = NULL,const wxIconOrCursor& iconCopy =
wxNullIconOrCursor, const wxIconOrCursor& iconMove = wxNullIconOrCursor, const
wxIconOrCursor& iconNone = wxNullIconOrCursor)

CHAPTER 7

460

 wxDropSource (wxDataObject& data, wxWindow* win = NULL,const
wxIconOrCursor& iconCopy = wxNullIconOrCursor, const wxIconOrCursor&
iconMove = wxNullIconOrCursor, const wxIconOrCursor& iconNone =
wxNullIconOrCursor)

The constructors for wxDataObject.

If you use the constructor without data parameter you must call SetData (p. 474) later.

Note that the exact type of iconCopy and subsequent parameters differs between
wxMSW and wxGTK: these are cursors under Windows but icons for GTK. You should
use the macro wxDROP_ICON (p. Error! Bookmark not defined.) in portable programs
instead of directly using either of these types.

Parameters

win

The window which initiates the drag and drop operation.

iconCopy

The icon or cursor used for feedback for copy operation.

iconMove

The icon or cursor used for feedback for move operation.

iconNone

The icon or cursor used for feedback when operation can't be done.

win is the window which initiates the drag and drop operation.

wxDropSource::~wxDropSource

virtual ~wxDropSource ()

wxDropSource::SetData

void SetData (wxDataObject& data)

Sets the data wxDataObject (p. 242) associated with the drop source. This will not
delete any previously associated data.

wxDropSource::DoDragDrop

virtual wxDragResult DoDragDrop (int flags = wxDrag_CopyOnly)

Do it (call this in response to a mouse button press, for example). This starts the drag-
and-drop operation which will terminate when the user releases the mouse.

Parameters

CHAPTER 7

461

flags

If wxDrag_AllowMove is included in the flags, data may be moved and not only
copied (default). If wxDrag_DefaultMove is specified (which includes the
previous flag), this is even the default operation

.

Return value

Returns the operation requested by the user, may be wxDragCopy , wxDragMove ,
wxDragLink , wxDragCancel or wxDragNone if an error occurred.

wxDropSource::GetDataObject

wxDataObject * GetDataObject ()

Returns the wxDataObject object that has been assigned previously.

wxDropSource::GiveFeedback

virtual bool GiveFeedback (wxDragResult effect)

Overridable: you may give some custom UI feedback during the drag and drop operation
in this function. It is called on each mouse move, so your implementation must not be
too slow.

Parameters

effect

The effect to implement. One of wxDragCopy , wxDragMove , wxDragLink and
wxDragNone .

scrolling

true if the window is scrolling. MSW only.

Return value

Return false if you want default feedback, or true if you implement your own feedback.
The return values is ignored under GTK.

wxDropSource::SetCursor

void SetCursor (wxDragResult res, const wxCursor& cursor)

Set the icon to use for a certain drag result.

Parameters

res

CHAPTER 7

462

The drag result to set the icon for.

cursor

The ion to show when this drag result occurs.

wxDropTarget

This class represents a target for a drag and drop operation. A wxDataObject (p.
242)can be associated with it and by default, this object will be filled with the data from
the drag source, if the data formats supported by the data object match the drag source
data format.

There are various virtual handler functions defined in this class which may be overridden
to give visual feedback or react in a more fine-tuned way, e.g. by not accepting data on
the whole window area, but only a small portion of it. The normal sequence of calls
isOnEnter (p. 477), possibly many times OnDragOver (p. 477),OnDrop (p. 476) and
finally OnData (p. 476).

See Drag and drop overview (p. Error! Bookmark not defined.) and wxDataObject
overview (p. Error! Bookmark not defined.)for more information.

Derived from

None

Include files

<wx/dnd.h>

Types

wxDragResult is defined as follows:

enum wxDragResult
{
 wxDragError, // error prevented the d&d oper ation from
completing
 wxDragNone, // drag target didn't accept th e data
 wxDragCopy, // the data was successfully co pied
 wxDragMove, // the data was successfully mo ved (MSW only)
 wxDragLink, // operation is a drag-link
 wxDragCancel // the operation was cancelled by user (not an
error)
};

See also

wxDropSource (p. 472), wxTextDropTarget (p. Error! Bookmark not defined.),
wxFileDropTarget (p. 519),wxDataFormat (p. 237), wxDataObject (p. 242)

wxDropTarget::wxDropTarget

CHAPTER 7

463

 wxDropTarget (wxDataObject* data = NULL)

Constructor. data is the data to be associated with the drop target.

wxDropTarget::~wxDropTarget

 ~wxDropTarget ()

Destructor. Deletes the associated data object, if any.

wxDropTarget::GetData

virtual void GetData ()

This method may only be called from within OnData (p. 476). By default, this method
copies the data from the drop source to the wxDataObject (p. 242) associated with this
drop target, calling its wxDataObject::SetData (p. 246) method.

wxDropTarget::OnData

virtual wxDragResult OnData (wxCoord x, wxCoord y, wxDragResult def)

Called after OnDrop (p. 476) returns true. By default this will usually GetData (p. 476)
and will return the suggested default value def.

wxDropTarget::OnDrop

virtual bool OnDrop (wxCoord x, wxCoord y)

Called when the user drops a data object on the target. Return false to veto the
operation.

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

Return value

Return true to accept the data, false to veto the operation.

wxDropTarget::OnEnter

virtual wxDragResult OnEnter (wxCoord x, wxCoord y, wxDragResult def)

Called when the mouse enters the drop target. By default, this calls OnDragOver (p.
477).

CHAPTER 7

464

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

def

Suggested default for return value. Determined by SHIFT or CONTROL key states.

Return value

Returns the desired operation or wxDragNone . This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.

wxDropTarget::OnDragOver

virtual wxDragResult OnDragOver (wxCoord x, wxCoord y, wxDragResult def)

Called when the mouse is being dragged over the drop target. By default, this calls
functions return the suggested return value def.

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

def

Suggested value for return value. Determined by SHIFT or CONTROL key states.

Return value

Returns the desired operation or wxDragNone . This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.

wxDropTarget::OnLeave

virtual void OnLeave ()

Called when the mouse leaves the drop target.

wxDropTarget::SetDataObject

void SetDataObject (wxDataObject* data)

CHAPTER 7

465

Sets the data wxDataObject (p. 242) associated with the drop target and deletes any
previously associated data object.

wxDynamicLibrary

wxDynamicLibrary is a class representing dynamically loadable library (Windows DLL,
shared library under Unix etc.). Just create an object of this class to load a library and
don't worry about unloading it -- it will be done in the objects destructor automatically.

Derived from

No base class.

Include files

<wx/dynlib.h>

(only available if wxUSE_DYNLIB_CLASS is set to 1)

wxDynamicLibrary::wxDynamicLibrary

 wxDynamicLibrary ()

 wxDynamicLibrary (const wxString& name, int flags = wxDL_DEFAULT)

Constructor. Second form calls Load (p. 481).

wxDynamicLibrary::CanonicalizeName

static wxString CanonicalizeName (const wxString& name,
wxDynamicLibraryCategory cat = wxDL_LIBRARY)

Returns the platform-specific full name for the library called name. E.g. it adds a ".dll"
extension under Windows and "lib" prefix and ".so" , ".sl" or maybe ".dylib"
extension under Unix.

The possible values for cat are:

 wxDL_LIBRARY normal library

 wxDL_MODULE a loadable module or plugin

See also

CanonicalizePluginName (p. 479)

wxDynamicLibrary::CanonicalizePluginName

static wxString CanonicalizePluginName (const wxString& name,
wxPluginCategory cat = wxDL_PLUGIN_GUI)

CHAPTER 7

466

This function does the same thing as CanonicalizeName (p. 479) but for wxWidgets
plugins. The only difference is that compiler and version information are added to the
name to ensure that the plugin which is going to be loaded will be compatible with the
main program.

The possible values for cat are:

 wxDL_PLUGIN_GUI plugin which uses GUI classes (default)

 wxDL_PLUGIN_BASE plugin which only uses wxBase

wxDynamicLibrary::Detach

wxDllType Detach ()

Detaches this object from its library handle, i.e. the object will not unload the library any
longer in its destructor but it is now the callers responsibility to do this using Unload (p.
481).

wxDynamicLibrary::GetSymbol

void * GetSymbol (const wxString& name) const

Returns pointer to symbol name in the library or NULL if the library contains no such
symbol.

See also

wxDYNLIB_FUNCTION (p. Error! Bookmark not defined.)

wxDynamicLibrary::GetSymbolAorW

void * GetSymbolAorW (const wxString& name) const

This function is available only under Windows as it is only useful when dynamically
loading symbols from standard Windows DLLs. Such functions have either 'A' (in ANSI
build) or 'W' (in Unicode, or wide character build) suffix if they take string parameters.
Using this function you can use just the base name of the function and the correct suffix
is appende automatically depending on the current build. Otherwise, this method is
identical to GetSymbol (p. 479).

wxDynamicLibrary::GetProgramHandle

static wxDllType GetProgramHandle ()

Return a valid handle for the main program itself or NULL if symbols from the main
program can't be loaded on this platform.

wxDynamicLibrary::HasSymbol

bool HasSymbol (const wxString& name) const

CHAPTER 7

467

Returns true if the symbol with the given name is present in the dynamic library, false
otherwise. Unlike GetSymbol (p. 479), this function doesn't log an error message if the
symbol is not found.

This function is new since wxWidgets version 2.5.4

wxDynamicLibrary::IsLoaded

bool IsLoaded () const

Returns true if the library was successfully loaded, false otherwise.

wxDynamicLibrary::ListLoaded

static wxDynamicLibraryDetailsArray ListLoaded ()

This static method returns an array (p. 57) containing the details of all modules loaded
into the address space of the current project, the array elements are object of
wxDynamicLibraryDetails class. The array will be empty if an error occurred.

This method is currently implemented only under Win32 and Linux and is useful mostly
for diagnostics purposes.

wxDynamicLibrary::Load

bool Load (const wxString& name, int flags = wxDL_DEFAULT)

Loads DLL with the given name into memory. The flags argument can be a combination
of the following bits:

wxDL_LAZY equivalent of RTLD_LAZY under Unix, ignored
elsewhere

wxDL_NOW equivalent of RTLD_NOW under Unix, ignored
elsewhere

wxDL_GLOBAL equivalent of RTLD_GLOBAL under Unix,
ignored elsewhere

wxDL_VERBATIM don't try to append the appropriate extension to
the library name (this is done by default).

wxDL_DEFAULT default flags, same as wxDL_NOW currently

Returns true if the library was successfully loaded, false otherwise.

wxDynamicLibrary::Unload

void Unload ()

static void Unload (wxDllType handle)

CHAPTER 7

468

Unloads the library from memory. wxDynamicLibrary object automatically calls this
method from its destructor if it had been successfully loaded.

The second version is only used if you need to keep the library in memory during a
longer period of time than the scope of the wxDynamicLibrary object. In this case you
may call Detach (p. 479) and store the handle somewhere and call this static method
later to unload it.

wxDynamicLibraryDetails

This class is used for the objects returned by wxDynamicLibrary::ListLoaded (p. 480)
method and contains the information about a single module loaded into the address
space of the current process. A module in this context may be either a dynamic library or
the main program itself.

Derived from

No base class.

Include files

<wx/dynlib.h>

(only available if wxUSE_DYNLIB_CLASS is set to 1)

wxDynamicLibraryDetails::GetName

wxString GetName () const

Returns the base name of this module, e.g. kernel32.dll or libc-2.3.2.so .

wxDynamicLibraryDetails::GetPath

wxString GetPath () const

Returns the full path of this module if available, e.g.
c:\windows\system32\kernel32.dll or /lib/libc-2.3.2.so .

wxDynamicLibraryDetails::GetAddress

bool GetAddress (void ** addr, size_t *len) const

Retrieves the load address and the size of this module.

Parameters

addr

the pointer to the location to return load address in, may beNULL

CHAPTER 7

469

len

pointer to the location to return the size of this module in memory in, may be NULL

Return value

true if the load address and module size were retrieved, false if this information is not
available.

wxDynamicLibraryDetails::GetVersion

wxString GetVersion () const

Returns the version of this module, e.g. 5.2.3790.0 or 2.3.2 . The returned string is
empty if the version information is not available.

wxEncodingConverter

This class is capable of converting strings between two 8-bit encodings/charsets. It can
also convert from/to Unicode (but only if you compiled wxWidgets with
wxUSE_WCHAR_T set to 1). Only a limited subset of encodings is supported by
wxEncodingConverter:wxFONTENCODING_ISO8859_1..15 ,
wxFONTENCODING_CP1250..1257 and wxFONTENCODING_KOI8.

Note

Please use wxMBConv classes (p. Error! Bookmark not defined.) instead if possible.
wxCSConv (p. 229) has much better support for various encodings than
wxEncodingConverter. wxEncodingConverter is useful only if you rely on
wxCONVERT_SUBSTITUTE mode of operation (see Init (p. 483)).

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/encconv.h>

See also

wxFontMapper (p. 578), wxMBConv (p. 923), Writing non-English applications (p. Error!
Bookmark not defined.)

wxEncodingConverter::wxEncodingConverter

 wxEncodingConverter ()

Constructor.

CHAPTER 7

470

wxEncodingConverter::Init

bool Init (wxFontEncoding input_enc, wxFontEncoding output_enc, int method =
wxCONVERT_STRICT)

Initialize conversion. Both output or input encoding may be
wxFONTENCODING_UNICODE, but only if wxUSE_ENCODING is set to 1. All
subsequent calls to Convert() (p. 484) will interpret its argument as a string in input_enc
encoding and will output string in output_enc encoding. You must call this method before
calling Convert. You may call it more than once in order to switch to another
conversion.Method affects behaviour of Convert() in case input character cannot be
converted because it does not exist in output encoding:

wxCONVERT_STRICT follow behaviour of GNU Recode - just copy
unconvertible characters to output and don't
change them (its integer value will stay the
same)

wxCONVERT_SUBSTITUTE try some (lossy) substitutions - e.g. replace
unconvertible latin capitals with acute by
ordinary capitals, replace en-dash or em-dash
by '-' etc.

Both modes guarantee that output string will have same length as input string.

Return value

false if given conversion is impossible, true otherwise (conversion may be impossible
either if you try to convert to Unicode with non-Unicode build of wxWidgets or if input or
output encoding is not supported.)

wxEncodingConverter::CanConvert

static bool CanConvert (wxFontEncoding encIn, wxFontEncoding encOut)

Return true if (any text in) multibyte encoding encIn can be converted to another one
(encOut) losslessly.

Do not call this method with wxFONTENCODING_UNICODE as either parameter, it doesn't
make sense (always works in one sense and always depends on the text to convert in
the other).

wxEncodingConverter::Convert

bool Convert (const char* input, char* output) const

bool Convert (const wchar_t* input, wchar_t* output) const

bool Convert (const char* input, wchar_t* output) const

bool Convert (const wchar_t* input, char* output) const

Convert input string according to settings passed toInit (p. 483) and writes the result to

CHAPTER 7

471

output.

bool Convert (char* str) const

bool Convert (wchar_t* str) const

Convert input string according to settings passed toInit (p. 483) in-place, i.e. write the
result to the same memory area.

All of the versions above return true if the conversion was lossless andfalse if at least
one of the characters couldn't be converted and was replaced with '?' in the output.
Note that if wxCONVERT_SUBSTITUTE was passed to Init (p. 483), substitution is
considered lossless operation.

wxString Convert (const wxString& input) const

Convert wxString and return new wxString object.

Notes

You must call Init (p. 483) before using this method!

wchar_t versions of the method are not available if wxWidgets was compiled with
wxUSE_WCHAR_T set to 0.

wxEncodingConverter::GetPlatformEquivalents

static wxFontEncodingArray GetPlatformEquivalents (wxFontEncoding enc, int
platform = wxPLATFORM_CURRENT)

Return equivalents for given font that are used under given platform. Supported
platforms:

 • wxPLATFORM_UNIX

 • wxPLATFORM_WINDOWS

 • wxPLATFORM_OS2

 • wxPLATFORM_MAC

 • wxPLATFORM_CURRENT

wxPLATFORM_CURRENT means the platform this binary was compiled for.

Examples:

current platform enc returned value
--
unix CP1250 {ISO8859_2}
unix ISO8859_2 {ISO8859_2}
windows ISO8859_2 {CP1250}
unix CP1252 {ISO8859_1,ISO8859_15}

Equivalence is defined in terms of convertibility: two encodings are equivalent if you can

CHAPTER 7

472

convert text between then without losing information (it may - and will - happen that you
lose special chars like quotation marks or em-dashes but you shouldn't lose any
diacritics and language-specific characters when converting between equivalent
encodings).

Remember that this function does NOT check for presence of fonts in system. It only
tells you what are most suitable encodings. (It usually returns only one encoding.)

Notes

 • Note that argument enc itself may be present in the returned array, so that you
can, as a side-effect, detect whether the encoding is native for this platform or
not.

 • Convert (p. 484) is not limited to converting between equivalent encodings, it
can convert between two arbitrary encodings.

 • If enc is present in the returned array, then it is always the first item of it.

 • Please note that the returned array may contain no items at all.

wxEncodingConverter::GetAllEquivalents

static wxFontEncodingArray GetAllEquivalents (wxFontEncoding enc)

Similar to GetPlatformEquivalents (p. 485), but this one will return ALL equivalent
encodings, regardless of the platform, and including itself.

This platform's encodings are before others in the array. And again, if enc is in the array,
it is the very first item in it.

wxEraseEvent

An erase event is sent when a window's background needs to be repainted.

On some platforms, such as GTK+, this event is simulated (simply generated just before
the paint event) and may cause flicker. It is therefore recommended that you set the text
background colour explicitly in order to prevent flicker. The default background colour
under GTK+ is grey.

To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table
definition.

You must call wxEraseEvent::GetDC and use the returned device context if it is non-
NULL. If it is NULL, create your own temporary wxClientDC object.

Derived from

wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

CHAPTER 7

473

<wx/event.h>

Event table macros

To process an erase event, use this event handler macro to direct input to a member
function that takes a wxEraseEvent argument.

EVT_ERASE_BACKGROUND(func) Process a wxEVT_ERASE_BACKGROUND
event.

Remarks
Use the device context returned by GetDC (p. 487) to draw on, don't create a wxPaintDC
in the event handler.

See also

Event handling overview (p. Error! Bookmark not defined.)

wxEraseEvent::wxEraseEvent

 wxEraseEvent (int id = 0, wxDC* dc = NULL)

Constructor.

wxEraseEvent::GetDC

wxDC* GetDC() const

Returns the device context associated with the erase event to draw on.

wxEvent

An event is a structure holding information about an event passed to a callback or
member function. wxEvent used to be a multipurpose event object, and is an abstract
base class for other event classes (see below).

For more information about events, see the Event handling overview (p. Error!
Bookmark not defined.).

wxPerl note: In wxPerl custom event classes should be derived fromWx::PlEvent and
Wx::PlCommandEvent .

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

CHAPTER 7

474

See also

wxCommandEvent (p. 184), wxMouseEvent (p. Error! Bookmark not defined.)

wxEvent::wxEvent

 wxEvent (int id = 0, wxEventType eventType = wxEVT_NULL)

Constructor. Should not need to be used directly by an application.

wxEvent::m_propagationLevel

int m_propagationLevel

Indicates how many levels the event can propagate. This member is protected and
should typically only be set in the constructors of the derived classes. It may be
temporarily changed by StopPropagation (p. 490) and ResumePropagation (p. 489) and
tested with ShouldPropagate (p. 490).

The initial value is set to either wxEVENT_PROPAGATE_NONE (by default) meaning that
the event shouldn't be propagated at all or to wxEVENT_PROPAGATE_MAX (for command
events) meaning that it should be propagated as much as necessary.

Any positive number means that the event should be propagated but no more than the
given number of times. E.g. the propagation level may be set to 1 to propagate the event
to its parent only, but not to its grandparent.

wxEvent::Clone

virtual wxEvent* Clone () const

Returns a copy of the event.

Any event that is posted to the wxWidgets event system for later action
(viawxEvtHandler::AddPendingEvent (p. 491) orwxPostEvent (p. Error! Bookmark not
defined.)) must implement this method. All wxWidgets events fully implement this
method, but any derived events implemented by the user should also implement this
method just in case they (or some event derived from them) are ever posted.

All wxWidgets events implement a copy constructor, so the easiest way of implementing
the Clone function is to implement a copy constructor for a new event (call it MyEvent)
and then define the Clone function like this:

 wxEvent *Clone(void) const { return new MyEvent (*this); }

wxEvent::GetEventObject

wxObject* GetEventObject ()

Returns the object (usually a window) associated with the event, if any.

CHAPTER 7

475

wxEvent::GetEventType

WXTYPE GetEventType ()

Returns the identifier of the given event type, such as
wxEVENT_TYPE_BUTTON_COMMAND.

wxEvent::GetId

int GetId () const

Returns the identifier associated with this event, such as a button command id.

wxEvent::GetSkipped

bool GetSkipped () const

Returns true if the event handler should be skipped, false otherwise.

wxEvent::GetTimestamp

long GetTimestamp ()

Gets the timestamp for the event.

wxEvent::IsCommandEvent

bool IsCommandEvent () const

Returns true if the event is or is derived fromwxCommandEvent (p. 184) else it returns
false. Note: Exists only for optimization purposes.

wxEvent::ResumePropagation

void ResumePropagation (int propagationLevel)

Sets the propagation level to the given value (for example returned from an earlier call to
StopPropagation (p. 490)).

wxEvent::SetEventObject

void SetEventObject (wxObject* object)

Sets the originating object.

wxEvent::SetEventType

void SetEventType (WXTYPE typ)

Sets the event type.

CHAPTER 7

476

wxEvent::SetId

void SetId (int id)

Sets the identifier associated with this event, such as a button command id.

wxEvent::SetTimestamp

void SetTimestamp (long timeStamp)

Sets the timestamp for the event.

wxEvent::ShouldPropagate

bool ShouldPropagate () const

Test if this event should be propagated or not, i.e. if the propagation level is currently
greater than 0.

wxEvent::Skip

void Skip (bool skip = true)

Called by an event handler, it controls whether additional event handlers bound to this
event will be called after the current event handler returns. Skip(false) (the default
behavior) will prevent additional event handlers from being called and control will be
returned to the sender of the event immediately after the current handler has finished.
Skip(true) will cause the event processing system to continue searching for a handler
function for this event.

wxEvent::StopPropagation

int StopPropagation ()

Stop the event from propagating to its parent window.

Returns the old propagation level value which may be later passed to
ResumePropagation (p. 489) to allow propagating the event again.

wxEvtHandler

A class that can handle events from the windowing system. wxWindow (and therefore all
window classes) are derived from this class.

When events are received, wxEvtHandler invokes the method listed in the event table
using itself as the object. When using multiple inheritance it is imperative that the
wxEvtHandler(-derived) class be the first class inherited such that the "this" pointer for
the overall object will be identical to the "this" pointer for the wxEvtHandler portion.

Derived from

CHAPTER 7

477

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

See also

Event handling overview (p. Error! Bookmark not defined.)

wxEvtHandler::wxEvtHandler

 wxEvtHandler ()

Constructor.

wxEvtHandler::~wxEvtHandler

 ~wxEvtHandler ()

Destructor. If the handler is part of a chain, the destructor will unlink itself and restore the
previous and next handlers so that they point to each other.

wxEvtHandler::AddPendingEvent

void AddPendingEvent (wxEvent& event)

This function posts an event to be processed later.

Parameters

event

Event to add to process queue.

Remarks

The difference between sending an event (using theProcessEvent (p. 495) method) and
posting it is that in the first case the event is processed before the function returns, while
in the second case, the function returns immediately and the event will be processed
sometime later (usually during the next event loop iteration).

A copy of event is made by the function, so the original can be deleted as soon as
function returns (it is common that the original is created on the stack). This requires
that the wxEvent::Clone (p. 488) method be implemented by event so that it can be
duplicated and stored until it gets processed.

This is also the method to call for inter-thread communication---it will post events safely
between different threads which means that this method is thread-safe by using critical
sections where needed. In a multi-threaded program, you often need to inform the main
GUI thread about the status of other working threads and such notification should be

CHAPTER 7

478

done using this method.

This method automatically wakes up idle handling if the underlying window system is
currently idle and thus would not send any idle events. (Waking up idle handling is done
calling ::wxWakeUpIdle (p. Error! Bookmark not defined.).)

wxEvtHandler::Connect

void Connect (int id, int lastId, wxEventType eventType, wxObjectEventFunction
function, wxObject* userData = NULL, wxEvtHandler* eventSink = NULL)

void Connect (int id, wxEventType eventType, wxObjectEventFunction function,
wxObject* userData = NULL, wxEvtHandler* eventSink = NULL)

void Connect (wxEventType eventType, wxObjectEventFunction function, wxObject*
userData = NULL, wxEvtHandler* eventSink = NULL)

Connects the given function dynamically with the event handler, id and event type. This
is an alternative to the use of static event tables. See the 'event' or the old 'dynamic'
sample for usage.

Parameters

id

The identifier (or first of the identifier range) to be associated with the event
handler function. For the version not taking this argument, it defaults to wxID_ANY.

lastId

The second part of the identifier range to be associated with the event handler
function.

eventType

The event type to be associated with this event handler.

function

The event handler function. Note that this function should be explicitly converted to
the correct type which can be done using a macro called wxFooHandler for the
handler for any wxFooEvent .

userData

Data to be associated with the event table entry.

eventSink

Object whose member function should be called. If this is NULL,this will be used.

Example

 frame->Connect(wxID_EXIT,
 wxEVT_COMMAND_MENU_SELECTED,

CHAPTER 7

479

 wxCommandEventHandler(MyFrame::OnQuit));

wxPerl note: In wxPerl this function takes 4 arguments: id, lastid, type,
method ; if method is undef , the handler is disconnected.

wxEvtHandler::Disconnect

bool Disconnect (wxEventType eventType = wxEVT_NULL, wxObjectEventFunction
function = NULL, wxObject* userData = NULL, wxEvtHandler* eventSink = NULL)

bool Disconnect (int id = wxID_ANY, wxEventType eventType = wxEVT_NULL,
wxObjectEventFunction function = NULL, wxObject* userData = NULL,
wxEvtHandler* eventSink = NULL)

bool Disconnect (int id, int lastId = wxID_ANY, wxEventType eventType =
wxEVT_NULL, wxObjectEventFunction function = NULL, wxObject* userData =
NULL, wxEvtHandler* eventSink = NULL)

Disconnects the given function dynamically from the event handler, using the specified
parameters as search criteria and returning true if a matching function has been found
and removed. This method can only disconnect functions which have been added using
the wxEvtHandler::Connect (p. 492) method. There is no way to disconnect functions
connected using the (static) event tables.

Parameters

id

The identifier (or first of the identifier range) associated with the event handler
function.

lastId

The second part of the identifier range associated with the event handler function.

eventType

The event type associated with this event handler.

function

The event handler function.

userData

Data associated with the event table entry.

eventSink

Object whose member function should be called.

wxPerl note: In wxPerl this function takes 3 arguments: id, lastid, type .

wxEvtHandler::GetClientData

CHAPTER 7

480

void* GetClientData ()

Gets user-supplied client data.

Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members.

See also

wxEvtHandler::SetClientData (p. 497)

wxEvtHandler::GetClientObject

wxClientData* GetClientObject () const

Get a pointer to the user-supplied client data object.

See also

wxEvtHandler::SetClientObject (p. 497),wxClientData (p. 152)

wxEvtHandler::GetEvtHandlerEnabled

bool GetEvtHandlerEnabled ()

Returns true if the event handler is enabled, false otherwise.

See also

wxEvtHandler::SetEvtHandlerEnabled (p. 497)

wxEvtHandler::GetNextHandler

wxEvtHandler* GetNextHandler ()

Gets the pointer to the next handler in the chain.

See also

wxEvtHandler::SetNextHandler (p. 498), wxEvtHandler::GetPreviousHandler (p. 494),
wxEvtHandler::SetPreviousHandler (p. 498), wxWindow::PushEventHandler (p. Error!
Bookmark not defined.), wxWindow::PopEventHandler (p. Error! Bookmark not
defined.)

wxEvtHandler::GetPreviousHandler

wxEvtHandler* GetPreviousHandler ()

Gets the pointer to the previous handler in the chain.

See also

CHAPTER 7

481

wxEvtHandler::SetPreviousHandler (p. 498), wxEvtHandler::GetNextHandler (p. 494),
wxEvtHandler::SetNextHandler (p. 498), wxWindow::PushEventHandler (p. Error!
Bookmark not defined.), wxWindow::PopEventHandler (p. Error! Bookmark not
defined.)

wxEvtHandler::ProcessEvent

virtual bool ProcessEvent (wxEvent& event)

Processes an event, searching event tables and calling zero or more suitable event
handler function(s).

Parameters

event

Event to process.

Return value

true if a suitable event handler function was found and executed, and the function did not
call wxEvent::Skip (p. 490).

Remarks

Normally, your application would not call this function: it is called in the wxWidgets
implementation to dispatch incoming user interface events to the framework (and
application).

However, you might need to call it if implementing new functionality (such as a new
control) where you define new event types, as opposed to allowing the user to override
virtual functions.

An instance where you might actually override the ProcessEvent function is where you
want to direct event processing to event handlers not normally noticed by wxWidgets.
For example, in the document/view architecture, documents and views are potential
event handlers. When an event reaches a frame, ProcessEvent will need to be called
on the associated document and view in case event handler functions are associated
with these objects. The property classes library (wxProperty) also overrides
ProcessEvent for similar reasons.

The normal order of event table searching is as follows:

 1. If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled (p.
497)) the function skips to step (6).

 2. If the object is a wxWindow, ProcessEvent is recursively called on the window's
wxValidator (p. Error! Bookmark not defined.). If this returns true, the function
exits.

 3. SearchEventTable is called for this event handler. If this fails, the base class
table is tried, and so on until no more tables exist or an appropriate function was
found, in which case the function exits.

CHAPTER 7

482

 4. The search is applied down the entire chain of event handlers (usually the chain
has a length of one). If this succeeds, the function exits.

 5. If the object is a wxWindow and the event is a wxCommandEvent,
ProcessEvent is recursively applied to the parent window's event handler. If
this returns true, the function exits.

 6. Finally, ProcessEvent is called on the wxApp object.

See also

wxEvtHandler::SearchEventTable (p. 496)

wxEvtHandler::SearchEventTable

virtual bool SearchEventTable (wxEventTable& table, wxEvent& event)

Searches the event table, executing an event handler function if an appropriate one is
found.

Parameters

table

Event table to be searched.

event

Event to be matched against an event table entry.

Return value

true if a suitable event handler function was found and executed, and the function did not
call wxEvent::Skip (p. 490).

Remarks

This function looks through the object's event table and tries to find an entry that will
match the event.

An entry will match if:

 1. The event type matches, and

 2. the identifier or identifier range matches, or the event table entry's identifier is
zero.

If a suitable function is called but calls wxEvent::Skip (p. 490), this function will fail, and
searching will continue.

See also

wxEvtHandler::ProcessEvent (p. 495)

CHAPTER 7

483

wxEvtHandler::SetClientData

void SetClientData (void* data)

Sets user-supplied client data.

Parameters

data

Data to be associated with the event handler.

Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members. You must not call this
method andSetClientObject (p. 497) on the same class - only one of them.

See also

wxEvtHandler::GetClientData (p. 493)

wxEvtHandler::SetClientObject

void SetClientObject (wxClientData* data)

Set the client data object. Any previous object will be deleted.

See also

wxEvtHandler::GetClientObject (p. 494),wxClientData (p. 152)

wxEvtHandler::SetEvtHandlerEnabled

void SetEvtHandlerEnabled (bool enabled)

Enables or disables the event handler.

Parameters

enabled

true if the event handler is to be enabled, false if it is to be disabled.

Remarks

You can use this function to avoid having to remove the event handler from the chain, for
example when implementing a dialog editor and changing from edit to test mode.

See also

wxEvtHandler::GetEvtHandlerEnabled (p. 494)

wxEvtHandler::SetNextHandler

CHAPTER 7

484

void SetNextHandler (wxEvtHandler* handler)

Sets the pointer to the next handler.

Parameters

handler

Event handler to be set as the next handler.

See also

wxEvtHandler::GetNextHandler (p. 494), wxEvtHandler::SetPreviousHandler (p. 498),
wxEvtHandler::GetPreviousHandler (p. 494), wxWindow::PushEventHandler (p. Error!
Bookmark not defined.), wxWindow::PopEventHandler (p. Error! Bookmark not
defined.)

wxEvtHandler::SetPreviousHandler

void SetPreviousHandler (wxEvtHandler* handler)

Sets the pointer to the previous handler.

Parameters

handler

Event handler to be set as the previous handler.

See also

wxEvtHandler::GetPreviousHandler (p. 494), wxEvtHandler::SetNextHandler (p. 498),
wxEvtHandler::GetNextHandler (p. 494), wxWindow::PushEventHandler (p. Error!
Bookmark not defined.), wxWindow::PopEventHandler (p. Error! Bookmark not
defined.)

wxFFile

wxFFile implements buffered file I/O. This is a very small class designed to minimize the
overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers. It
wraps inside it a FILE * handle used by standard C IO library (also known as stdio).

Derived from

None.

Include files

<wx/ffile.h>

wxFromStart Count offset from the start of the file

CHAPTER 7

485

wxFromCurrent Count offset from the current position of the file
pointer

wxFromEnd Count offset from the end of the file
(backwards)

wxFFile::wxFFile

 wxFFile ()

Default constructor.

 wxFFile (const char* filename, const char* mode = "r")

Opens a file with the given mode. As there is no way to return whether the operation was
successful or not from the constructor you should test the return value of IsOpened (p.
501) to check that it didn't fail.

 wxFFile (FILE* fp)

Opens a file with the given file pointer, which has already been opened.

Parameters

filename

The filename.

mode

The mode in which to open the file using standard C strings. Note that you should
use "b" flag if you use binary files under Windows or the results might be
unexpected due to automatic newline conversion done for the text files.

fp

An existing file descriptor, such as stderr.

wxFFile::~wxFFile

 ~wxFFile ()

Destructor will close the file.

NB: it is not virtual so you should not derive from wxFFile!

wxFFile::Attach

void Attach (FILE* fp)

Attaches an existing file pointer to the wxFFile object.

CHAPTER 7

486

The descriptor should be already opened and it will be closed by wxFFile object.

wxFFile::Close

bool Close ()

Closes the file and returns true on success.

wxFFile::Detach

void Detach ()

Get back a file pointer from wxFFile object -- the caller is responsible for closing the file if
this descriptor is opened. IsOpened() (p. 501) will return false after call to Detach().

wxFFile::fp

FILE * fp () const

Returns the file pointer associated with the file.

wxFFile::Eof

bool Eof () const

Returns true if the an attempt has been made to read pastthe end of the file.

Note that the behaviour of the file descriptor based classwxFile (p. 506) is different as
wxFile::Eof (p. 509)will return true here as soon as the last byte of the file has been
read.

Also note that this method may only be called for opened files and may crash if the file is
not opened.

See also

IsOpened (p. 501)

wxFFile::Error

Returns true if an error has occurred on this file, similar to the standardferror()
function.

Please note that this method may only be called for opened files and may crash if the file
is not opened.

See also

IsOpened (p. 501)

wxFFile::Flush

CHAPTER 7

487

bool Flush ()

Flushes the file and returns true on success.

wxFFile::GetKind

wxFileKind GetKind () const

Returns the type of the file. Possible return values are:

enum wxFileKind
{
 wxFILE_KIND_UNKNOWN,
 wxFILE_KIND_DISK, // a file supporting seekin g to arbitrary
offsets
 wxFILE_KIND_TERMINAL, // a tty
 wxFILE_KIND_PIPE // a pipe
};

wxFFile::IsOpened

bool IsOpened () const

Returns true if the file is opened. Most of the methods of this class may only be used
for an opened file.

wxFFile::Length

wxFileOffset Length () const

Returns the length of the file.

wxFFile::Open

bool Open (const char* filename, const char* mode = "r")

Opens the file, returning true if successful.

Parameters

filename

The filename.

mode

The mode in which to open the file.

wxFFile::Read

size_t Read(void* buffer, size_t count)

CHAPTER 7

488

Reads the specified number of bytes into a buffer, returning the actual number read.

Parameters

buffer

A buffer to receive the data.

count

The number of bytes to read.

Return value

The number of bytes read.

wxFFile::ReadAll

bool ReadAll (wxString * str, wxMBConv& conv = wxConvUTF8)

Reads the entire contents of the file into a string.

Parameters

str

String to read data into.

conv

Conversion object to use in Unicode build; by default supposes that file contents is
encoded in UTF-8.

Return value

true if file was read successfully, false otherwise.

wxFFile::Seek

bool Seek(wxFileOffset ofs, wxSeekMode mode = wxFromStart)

Seeks to the specified position and returns true on success.

Parameters

ofs

Offset to seek to.

mode

One of wxFromStart , wxFromEnd , wxFromCurrent .

wxFFile::SeekEnd

CHAPTER 7

489

bool SeekEnd (wxFileOffset ofs = 0)

Moves the file pointer to the specified number of bytes before the end of the file and
returns true on success.

Parameters

ofs

Number of bytes before the end of the file.

wxFFile::Tell

wxFileOffset Tell () const

Returns the current position.

wxFFile::Write

size_t Write (const void* buffer, size_t count)

Writes the specified number of bytes from a buffer.

Parameters

buffer

A buffer containing the data.

count

The number of bytes to write.

Return value

Number of bytes written.

wxFFile::Write

bool Write (const wxString& s, wxMBConv& conv = wxConvUTF8)

Writes the contents of the string to the file, returns true on success.

The second argument is only meaningful in Unicode build of wxWidgets whenconv is
used to convert s to multibyte representation.

wxFFileInputStream

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 499) whereas wxFileInputStream (p. 523) is
based in the wxFile (p. 506) class.

CHAPTER 7

490

Note that SeekI() (p. 828) can seek beyond the end of the stream (file) and will thus not
return wxInvalidOffset for that.

Derived from

wxInputStream (p. 826)

Include files

<wx/wfstream.h>

See also

wxBufferedInputStream (p. 118), wxFFileOutputStream (p. 505), wxFileOutputStream (p.
541)

wxFFileInputStream::wxFFileInputStream

 wxFFileInputStream (const wxString& filename, const wxChar * mode = "rb")

Opens the specified file using its filename name using the specified mode.

 wxFFileInputStream (wxFFile& file)

Initializes a file stream in read-only mode using the file I/O object file.

 wxFFileInputStream (FILE * fp)

Initializes a file stream in read-only mode using the specified file pointer fp.

wxFFileInputStream::~wxFFileInputStream

 ~wxFFileInputStream ()

Destructor.

wxFFileInputStream::Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFFileOutputStream

This class represents data written to a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 499) whereas wxFileInputStream (p. 504) is
based in the wxFile (p. 506) class.

Note that SeekO() (p. Error! Bookmark not defined.) can seek beyond the end of the
stream (file) and will thus not return wxInvalidOffset for that.

CHAPTER 7

491

Derived from

wxOutputStream (p. Error! Bookmark not defined.)

Include files

<wx/wfstream.h>

See also

wxBufferedOutputStream (p. 119), wxFFileInputStream (p. 504), wxFileInputStream (p.
523)

wxFFileOutputStream::wxFFileOutputStream

 wxFFileOutputStream (const wxString& filename, const wxChar * mode="w+b")

Opens the file with the given filename name in the specified mode.

 wxFFileOutputStream (wxFFile& file)

Initializes a file stream in write-only mode using the file I/O object file.

 wxFFileOutputStream (FILE * fp)

Initializes a file stream in write-only mode using the file descriptor fp.

wxFFileOutputStream::~wxFFileOutputStream

 ~wxFFileOutputStream ()

Destructor.

wxFFileOutputStream::Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFFileStream

Derived from

wxFFileOutputStream (p. 505), wxFFileInputStream (p. 504)

Include files

<wx/wfstream.h>

See also

CHAPTER 7

492

wxStreamBuffer (p. Error! Bookmark not defined.)

wxFFileStream::wxFFileStream

 wxFFileStream (const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

wxFile

A wxFile performs raw file I/O. This is a very small class designed to minimize the
overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers. wxFile
also automatically closes the file in its destructor making it unnecessary to worry about
forgetting to do it. wxFile is a wrapper around file descriptor. - see also wxFFile
(p. 499) for a wrapper around FILE structure.

wxFileOffset is used by the wxFile functions which require offsets as parameter or
return them. If the platform supports it, wxFileOffset if a typedef for a native 64 bit
integer, else a 32 bit integer is used for wxFileOffset.

Derived from

None.

Include files

<wx/file.h>

Constants

wx/file.h defines the following constants:

#define wxS_IRUSR 00400
#define wxS_IWUSR 00200
#define wxS_IXUSR 00100

#define wxS_IRGRP 00040
#define wxS_IWGRP 00020
#define wxS_IXGRP 00010

#define wxS_IROTH 00004
#define wxS_IWOTH 00002
#define wxS_IXOTH 00001

// default mode for the new files: corresponds to u mask 022
#define wxS_DEFAULT (wxS_IRUSR | wxS_IWUSR | wxS_I RGRP |
wxS_IWGRP | wxS_IROTH | wxS_IWOTH)

These constants define the file access rights and are used with wxFile::Create (p. 509)
and wxFile::Open (p. 510).

The OpenMode enumeration defines the different modes for opening a file, it is defined

CHAPTER 7

493

inside wxFile class so its members should be specified with wxFile:: scope resolution
prefix. It is also used with wxFile::Access (p. 508) function.

wxFile::read Open file for reading or test if it can be opened
for reading with Access()

wxFile::write Open file for writing deleting the contents of the
file if it already exists or test if it can be opened
for writing with Access()

wxFile::read_write Open file for reading and writing; can not be
used with Access()

wxFile::write_append Open file for appending: the file is opened for
writing, but the old contents of the file is not
erased and the file pointer is initially placed at
the end of the file; can not be used with
Access(). This is the same as wxFile::write if
the file doesn't exist.

wxFile::write_excl Open the file securely for writing (Uses
O_EXCL | O_CREAT). Will fail if the file
already exists, else create and open it
atomically. Useful for opening temporary files
without being vulnerable to race exploits.

Other constants defined elsewhere but used by wxFile functions are wxInvalidOffset
which represents an invalid value of type wxFileOffset and is returned by functions
returning wxFileOffset on error and the seek mode constants used with Seek() (p. 511):

wxFromStart Count offset from the start of the file

wxFromCurrent Count offset from the current position of the file
pointer

wxFromEnd Count offset from the end of the file
(backwards)

wxFile::wxFile

 wxFile ()

Default constructor.

 wxFile (const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens a file with the given mode. As there is no way to return whether the operation was
successful or not from the constructor you should test the return value of IsOpened (p.
510) to check that it didn't fail.

 wxFile (int fd)

CHAPTER 7

494

Associates the file with the given file descriptor, which has already been opened.

Parameters

filename

The filename.

mode

The mode in which to open the file. May be one of wxFile::read , wxFile::write
and wxFile::read_write .

fd

An existing file descriptor (see Attach() (p. 509) for the list of predefined
descriptors)

wxFile::~wxFile

 ~wxFile ()

Destructor will close the file.

NB: it is not virtual so you should not use wxFile polymorphically.

wxFile::Access

static bool Access (const char * name, OpenMode mode)

This function verifies if we may access the given file in specified mode. Only values of
wxFile::read or wxFile::write really make sense here.

wxFile::Attach

void Attach (int fd)

Attaches an existing file descriptor to the wxFile object. Example of predefined file
descriptors are 0, 1 and 2 which correspond to stdin, stdout and stderr (and have
symbolic names of wxFile::fd_stdin , wxFile::fd_stdout and wxFile::fd_stderr).

The descriptor should be already opened and it will be closed by wxFile object.

wxFile::Close

void Close ()

Closes the file.

wxFile::Create

bool Create (const char* filename, bool overwrite = false, int access = wxS_DEFAULT)

CHAPTER 7

495

Creates a file for writing. If the file already exists, setting overwrite to true will ensure it
is overwritten.

wxFile::Detach

void Detach ()

Get back a file descriptor from wxFile object - the caller is responsible for closing the file
if this descriptor is opened. IsOpened() (p. 510) will return false after call to Detach().

wxFile::fd

int fd () const

Returns the file descriptor associated with the file.

wxFile::Eof

bool Eof () const

Returns true if the end of the file has been reached.

Note that the behaviour of the file pointer based class wxFFile (p. 499) is different as
wxFFile::Eof (p. 500) will return true here only if an attempt has been made to read past
the last byte of the file, while wxFile::Eof() will return true even before such attempt is
made if the file pointer is at the last position in the file.

Note also that this function doesn't work on unseekable file descriptors (examples
include pipes, terminals and sockets under Unix) and an attempt to use it will result in an
error message in such case. So, to read the entire file into memory, you should write a
loop which uses Read (p. 511) repeatedly and tests its return condition instead of using
Eof() as this will not work for special files under Unix.

wxFile::Exists

static bool Exists (const char* filename)

Returns true if the given name specifies an existing regular file (not a directory or a link)

wxFile::Flush

bool Flush ()

Flushes the file descriptor.

Note that wxFile::Flush is not implemented on some Windows compilers due to a
missing fsync function, which reduces the usefulness of this function (it can still be called
but it will do nothing on unsupported compilers).

wxFile::GetKind

CHAPTER 7

496

wxFileKind GetKind () const

Returns the type of the file. Possible return values are:

enum wxFileKind
{
 wxFILE_KIND_UNKNOWN,
 wxFILE_KIND_DISK, // a file supporting seekin g to arbitrary
offsets
 wxFILE_KIND_TERMINAL, // a tty
 wxFILE_KIND_PIPE // a pipe
};

wxFile::IsOpened

bool IsOpened () const

Returns true if the file has been opened.

wxFile::Length

wxFileOffset Length () const

Returns the length of the file.

wxFile::Open

bool Open (const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens the file, returning true if successful.

Parameters

filename

The filename.

mode

The mode in which to open the file. May be one of wxFile::read , wxFile::write
and wxFile::read_write .

wxFile::Read

size_t Read(void* buffer, size_t count)

Reads the specified number of bytes into a buffer, returning the actual number read.

Parameters

buffer

A buffer to receive the data.

CHAPTER 7

497

count

The number of bytes to read.

Return value

The number of bytes read, or the symbol wxInvalidOffset (-1) if there was an error.

wxFile::Seek

wxFileOffset Seek(wxFileOffset ofs, wxSeekMode mode = wxFromStart)

Seeks to the specified position.

Parameters

ofs

Offset to seek to.

mode

One of wxFromStart , wxFromEnd , wxFromCurrent .

Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::SeekEnd

wxFileOffset SeekEnd (wxFileOffset ofs = 0)

Moves the file pointer to the specified number of bytes relative to the end of the file. For
example, SeekEnd(-5) would position the pointer 5bytes before the end.

Parameters

ofs

Number of bytes before the end of the file.

Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::Tell

wxFileOffset Tell () const

Returns the current position or wxInvalidOffset if file is not opened or if another error
occurred.

wxFile::Write

CHAPTER 7

498

size_t Write (const void* buffer, size_t count)

Writes the specified number of bytes from a buffer.

Parameters

buffer

A buffer containing the data.

count

The number of bytes to write.

Return value

the number of bytes actually written

wxFile::Write

bool Write (const wxString& s, wxMBConv& conv = wxConvUTF8)

Writes the contents of the string to the file, returns true on success.

The second argument is only meaningful in Unicode build of wxWidgets whenconv is
used to convert s to multibyte representation.

Note that this method only works with NUL-terminated strings, if you want to write data
with embedded NULs to the file you should use the other Write() overload (p. 512).

wxFileConfig

wxFileConfig implements wxConfigBase (p. 196) interface for storing and retrieving
configuration information using plain text files. The files have a simple format reminiscent
of Windows INI files with lines of the form key = value defining the keys and lines of
special form[group] indicating the start of each group.

This class is used by default for wxConfig on Unix platforms but may also be used
explicitly if you want to use files and not the registry even under Windows.

Derived from

wxConfigBase (p. 196)

Include files

<wx/fileconf.h>

wxFileConfig::wxFileConfig

 wxFileConfig (wxInputStream& is, wxMBConv& conv = wxConvUTF8)

CHAPTER 7

499

Read the config data from the specified stream instead of the associated file, as usual.

See also

Save (p. 513)

wxFileConfig::Save

bool Save(wxOutputStream& os, wxMBConv& conv = wxConvUTF8)

Saves all config data to the given stream, returns true if data was saved successfully or
false on error.

Note the interaction of this function with the internal "dirty flag'': the data is saved
unconditionally, i.e. even if the object is not dirty. However after saving it successfully,
the dirty flag is reset so no changes will be written back to the file this object is
associated with until you change its contents again.

See also

Flush (p. 204)

wxFileConfig::SetUmask

void SetUmask (int mode)

Allows to set the mode to be used for the config file creation. For example, to create a
config file which is not readable by other users (useful if it stores some sensitive
information, such as passwords), you could use SetUmask(0077) .

This function doesn't do anything on non-Unix platforms.

See also

wxCHANGE_UMASK (p. Error! Bookmark not defined.)

wxFileDataObject

wxFileDataObject is a specialization of wxDataObject (p. 242) for file names. The
program works with it just as if it were a list of absolute file names, but internally it uses
the same format as Explorer and other compatible programs under Windows or
GNOME/KDE filemanager under Unix which makes it possible to receive files from them
using this class.

Warning: Under all non-Windows platforms this class is currently "input-only", i.e. you
can receive the files from another application, but copying (or dragging) file(s) from a
wxWidgets application is not currently supported. PS: GTK2 should work as well.

Virtual functions to override

None.

CHAPTER 7

500

Derived from

wxDataObjectSimple (p. 247)
wxDataObject (p. 242)

Include files

<wx/dataobj.h>

See also

wxDataObject (p. 242), wxDataObjectSimple (p. 247), wxTextDataObject (p. Error!
Bookmark not defined.), wxBitmapDataObject (p. 103), wxDataObject (p. 242)

wxFileDataObject

 wxFileDataObject ()

Constructor.

wxFileDataObject::AddFile

virtual void AddFile (const wxString& file)

MSW only: adds a file to the file list represented by this data object.

wxFileDataObject::GetFilenames

const wxArrayString& GetFilenames () const

Returns the array (p. 70) of file names.

wxFileDialog

This class represents the file chooser dialog.

Derived from

wxDialog (p. 412)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/filedlg.h>

See also

wxFileDialog overview (p. Error! Bookmark not defined.), wxFileSelector (p. Error!

CHAPTER 7

501

Bookmark not defined.)

Remarks

Pops up a file selector box. In Windows and GTK2.4+, this is the common file selector
dialog. In X, this is a file selector box with somewhat less functionality. The path and
filename are distinct elements of a full file pathname. If path is "", the current directory
will be used. If filename is "", no default filename will be supplied. The wildcard
determines what files are displayed in the file selector, and file extension supplies a type
extension for the required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxHIDE_READONLY, wxFILE_MUST_EXIST,
wxMULTIPLE, wxCHANGE_DIR or 0.

Both the X and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed. The wildcard may be a specification for
multiple types of file with a description for each, such as:

 "BMP and GIF files (*.bmp;*.gif)|*.bmp;*.gif|PNG f iles
(*.png)|*.png"

It must be noted that wildcard support in the native Motif file dialog is quite limited: only
one alternative is supported, and it is displayed without the descriptive test; "BMP files
(*.bmp)|*.bmp'' is displayed as "*.bmp'', and both "BMP files (*.bmp)|*.bmp|GIF files
(*.gif)|*.gif'' and "Image files|*.bmp;*.gif'' are errors.

wxFileDialog::wxFileDialog

 wxFileDialog (wxWindow* parent, const wxString& message = "Choose a file", const
wxString& defaultDir = "", const wxString& defaultFile = "", const wxString& wildcard
= "*.*", long style = 0, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxFileDialog::ShowModal (p. 519) to show the dialog.

Parameters

parent

Parent window.

message

Message to show on the dialog.

defaultDir

The default directory, or the empty string.

defaultFile

The default filename, or the empty string.

CHAPTER 7

502

wildcard

A wildcard, such as "*.*" or "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif".

Note that the native Motif dialog has some limitations with respect to wildcards;
see the Remarks section above.

style

A dialog style. A bitlist of:

wxOPEN This is an open dialog.

wxSAVE This is a save dialog.

wxOVERWRITE_PROMPT For save dialog only: prompt for a confirmation if a
file will be overwritten.

wxHIDE_READONLY Do not display the checkbox to toggle display of
read-only files. Deprecated in 2.6; the checkbox is
never shown.

wxFILE_MUST_EXIST The user may only select files that actually exist.

wxMULTIPLE For open dialog only: allows selecting multiple files.

wxCHANGE_DIR Change the current working directory to the directory
where the file(s) chosen by the user are.

pos

Dialog position. Not implemented.

NB: Previous versions of wxWidgets used wxCHANGE_DIR by default under MS
Windows which allowed the program to simply remember the last directory where user
selected the files to open/save. This (desired) functionality must be implemented in the
program itself now (manually remember the last path used and pass it to the dialog the
next time it is called) or by using this flag.

wxFileDialog::~wxFileDialog

 ~wxFileDialog ()

Destructor.

wxFileDialog::GetDirectory

wxString GetDirectory () const

Returns the default directory.

wxFileDialog::GetFilename

CHAPTER 7

503

wxString GetFilename () const

Returns the default filename.

wxFileDialog::GetFilenames

void GetFilenames (wxArrayString& filenames) const

Fills the array filenames with the names of the files chosen. This function should only be
used with the dialogs which have wxMULTIPLE style, use GetFilename (p. 517) for the
others.

Note that under Windows, if the user selects shortcuts, the filenames include paths,
since the application cannot determine the full path of each referenced file by appending
the directory containing the shortcuts to the filename.

wxFileDialog::GetFilterIndex

int GetFilterIndex () const

Returns the index into the list of filters supplied, optionally, in the wildcard parameter.
Before the dialog is shown, this is the index which will be used when the dialog is first
displayed. After the dialog is shown, this is the index selected by the user.

wxFileDialog::GetMessage

wxString GetMessage () const

Returns the message that will be displayed on the dialog.

wxFileDialog::GetPath

wxString GetPath () const

Returns the full path (directory and filename) of the selected file.

wxFileDialog::GetPaths

void GetPaths (wxArrayString& paths) const

Fills the array paths with the full paths of the files chosen. This function should only be
used with the dialogs which have wxMULTIPLE style, use GetPath (p. 518) for the
others.

wxFileDialog::GetStyle

long GetStyle () const

Returns the dialog style.

CHAPTER 7

504

wxFileDialog::GetWildcard

wxString GetWildcard () const

Returns the file dialog wildcard.

wxFileDialog::SetDirectory

void SetDirectory (const wxString& directory)

Sets the default directory.

wxFileDialog::SetFilename

void SetFilename (const wxString& setfilename)

Sets the default filename.

wxFileDialog::SetFilterIndex

void SetFilterIndex (int filterIndex)

Sets the default filter index, starting from zero.

wxFileDialog::SetMessage

void SetMessage (const wxString& message)

Sets the message that will be displayed on the dialog.

wxFileDialog::SetPath

void SetPath (const wxString& path)

Sets the path (the combined directory and filename that will be returned when the dialog
is dismissed).

wxFileDialog::SetStyle

void SetStyle (long style)

Sets the dialog style. See wxFileDialog::wxFileDialog (p. 516) for details.

wxFileDialog::SetWildcard

void SetWildcard (const wxString& wildCard)

Sets the wildcard, which can contain multiple file types, for example:

"BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif"

CHAPTER 7

505

Note that the native Motif dialog has some limitations with respect to wildcards; see the
Remarks section above.

wxFileDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxFileDropTarget

This is a drop target (p. 475) which accepts files (dragged from File Manager or
Explorer).

Derived from

wxDropTarget (p. 475)

Include files

<wx/dnd.h>

See also

Drag and drop overview (p. Error! Bookmark not defined.), wxDropSource (p. 472),
wxDropTarget (p. 475), wxTextDropTarget (p. Error! Bookmark not defined.)

wxFileDropTarget::wxFileDropTarget

 wxFileDropTarget ()

Constructor.

wxFileDropTarget::OnDrop

virtual bool OnDrop (long x, long y, const void *data, size_t size)

See wxDropTarget::OnDrop (p. 476). This function is implemented appropriately for files,
and calls wxFileDropTarget::OnDropFiles (p. 520).

wxFileDropTarget::OnDropFiles

virtual bool OnDropFiles (wxCoord x, wxCoord y, const wxArrayString& filenames)

Override this function to receive dropped files.

Parameters

CHAPTER 7

506

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

filenames

An array of filenames.

Return value

Return true to accept the data, false to veto the operation.

wxFileHistory

The wxFileHistory encapsulates a user interface convenience, the list of most recently
visited files as shown on a menu (usually the File menu).

wxFileHistory can manage one or more file menus. More than one menu may be
required in an MDI application, where the file history should appear on each MDI child
menu as well as the MDI parent frame.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/docview.h>

See also

wxFileHistory overview (p. Error! Bookmark not defined.), wxDocManager (p. 441)

wxFileHistory::m_fileHistory

char** m_fileHistory

A character array of strings corresponding to the most recently opened files.

wxFileHistory::m_fileHistoryN

size_t m_fileHistoryN

The number of files stored in the history array.

wxFileHistory::m_fileMaxFiles

CHAPTER 7

507

size_t m_fileMaxFiles

The maximum number of files to be stored and displayed on the menu.

wxFileHistory::m_fileMenu

wxMenu* m_fileMenu

The file menu used to display the file history list (if enabled).

wxFileHistory::wxFileHistory

 wxFileHistory (size_t maxFiles = 9, wxWindowID idBase = wxID_FILE1)

Constructor. Pass the maximum number of files that should be stored and displayed.

idBase defaults to wxID_FILE1 and represents the id given to the first history menu item.
Since menu items can't share the same ID you should change idBase (To one of your
own defined IDs) when using more than one wxFileHistory in your application.

wxFileHistory::~wxFileHistory

 ~wxFileHistory ()

Destructor.

wxFileHistory::AddFileToHistory

void AddFileToHistory (const wxString& filename)

Adds a file to the file history list, if the object has a pointer to an appropriate file menu.

wxFileHistory::AddFilesToMenu

void AddFilesToMenu ()

Appends the files in the history list, to all menus managed by the file history object.

void AddFilesToMenu (wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxFileHistory::GetCount

size_t GetCount () const

Returns the number of files currently stored in the file history.

wxFileHistory::GetHistoryFile

wxString GetHistoryFile (size_t index) const

CHAPTER 7

508

Returns the file at this index (zero-based).

wxFileHistory::GetMaxFiles

int GetMaxFiles () const

Returns the maximum number of files that can be stored.

wxFileHistory::GetMenus

const wxList& GetMenus () const

Returns the list of menus that are managed by this file history object.

See also

wxFileHistory::UseMenu (p. 523)

wxFileHistory::Load

void Load (wxConfigBase& config)

Loads the file history from the given config object. This function should be called
explicitly by the application.

See also

wxConfig (p. 196)

wxFileHistory::RemoveFileFromHistory

void RemoveFileFromHistory (size_t i)

Removes the specified file from the history.

wxFileHistory::RemoveMenu

void RemoveMenu (wxMenu* menu)

Removes this menu from the list of those managed by this object.

wxFileHistory::Save

void Save(wxConfigBase& config)

Saves the file history into the given config object. This must be called explicitly by the
application.

See also

wxConfig (p. 196)

CHAPTER 7

509

wxFileHistory::UseMenu

void UseMenu (wxMenu* menu)

Adds this menu to the list of those menus that are managed by this file history object.
Also see AddFilesToMenu() (p. 522) for initializing the menu with filenames that are
already in the history when this function is called, as this is not done automatically.

wxFileInputStream

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFile (p. 506) whereas wxFFileInputStream (p. 504) is
based in the wxFFile (p. 499) class.

Note that SeekI() (p. 828) can seek beyond the end of the stream (file) and will thus not
return wxInvalidOffset for that.

Derived from

wxInputStream (p. 826)

Include files

<wx/wfstream.h>

See also

wxBufferedInputStream (p. 118), wxFileOutputStream (p. 541), wxFFileOutputStream (p.
505)

wxFileInputStream::wxFileInputStream

 wxFileInputStream (const wxString& ifileName)

Opens the specified file using its ifilename name in read-only mode.

 wxFileInputStream (wxFile& file)

Initializes a file stream in read-only mode using the file I/O object file.

 wxFileInputStream (int fd)

Initializes a file stream in read-only mode using the specified file descriptor.

wxFileInputStream::~wxFileInputStream

 ~wxFileInputStream ()

Destructor.

CHAPTER 7

510

wxFileInputStream::Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFileName

wxFileName encapsulates a file name. This class serves two purposes: first, it provides
the functions to split the file names into components and to recombine these
components in the full file name which can then be passed to the OS file functions (and
wxWidgets functions (p. Error! Bookmark not defined.) wrapping them). Second, it
includes the functions for working with the files itself. Note that to change the file data
you should use wxFile (p. 506) class instead. wxFileName provides functions for working
with the file attributes.

Derived from

No base class

Include files

<wx/filename.h>

Data structures

Many wxFileName methods accept the path format argument which is by
wxPATH_NATIVE by default meaning to use the path format native for the current
platform.

The path format affects the operation of wxFileName functions in several ways: first and
foremost, it defines the path separator character to use, but it also affects other things
such as whether the path has the drive part or not.

enum wxPathFormat
{
 wxPATH_NATIVE = 0, // the path format for the current
platform
 wxPATH_UNIX,
 wxPATH_BEOS = wxPATH_UNIX,
 wxPATH_MAC,
 wxPATH_DOS,
 wxPATH_WIN = wxPATH_DOS,
 wxPATH_OS2 = wxPATH_DOS,
 wxPATH_VMS,

 wxPATH_MAX // Not a valid value for specifying path format
}

File name format

wxFileName currently supports the file names in the Unix, DOS/Windows, Mac OS and

CHAPTER 7

511

VMS formats. Although these formats are quite different, wxFileName tries to treat them
all in the same generic way. It supposes that all file names consist of the following parts:
the volume (also known as drive under Windows or device under VMS), the path which
is a sequence of directory names separated by the path separators (p. 533) and the full
filename itself which, in turn, is composed from the base file name and the extension. All
of the individual components of the file name may be empty and, for example, the
volume name is always empty under Unix, but if they are all empty simultaneously, the
filename object is considered to be in an invalid state and IsOk (p. 534) returns false
for it.

File names can be case-sensitive or not, the function IsCaseSensitive (p. 534) allows to
determine this.

The rules for determining if the file name is absolute or relative also depends on the file
name format and the only portable way to answer to this question is to use IsAbsolute
(p. 534) method. To ensure that the filename is absolute you may use MakeAbsolute (p.
535). There is also an inverse function MakeRelativeTo (p. 536) which undoes
whatNormalize(wxPATH_NORM_DOTS) (p. 537) does.

Other functions returning information about the file format provided by this class are
GetVolumeSeparator (p. 534), IsPathSeparator (p. 535).

IsRelative (p. 535)

File name construction

TODO.

File tests

Before doing the other tests you should use IsOk (p. 534) to verify that the filename is
well defined. If it is, FileExists (p. 530) can be used to test if a file with such name exists
and DirExists (p. 530) - if a directory with this name exists.

File names should be compared using SameAs (p. 538) method or == (p. 540).

File name components

These functions allow to examine and modify the individual directories of the path:

AppendDir (p. 528)
InsertDir (p. 534)
GetDirCount (p. 531)PrependDir (p. 537)
RemoveDir (p. 537)
RemoveLastDir (p. 538)

To change the components of the file name individually you can use the following
functions:

GetExt (p. 531)
GetName (p. 532)

CHAPTER 7

512

GetVolume (p. 533)
HasExt (p. 534)
HasName (p. 534)
HasVolume (p. 534)
SetExt (p. 538)
ClearExt (p. 529)
SetEmptyExt (p. 538)
SetName (p. 539)
SetVolume (p. 539)

Operations

These methods allow to work with the file creation, access and modification times. Note
that not all filesystems under all platforms implement these times in the same way. For
example, the access time under Windows has a resolution of one day (so it is really the
access date and not time). The access time may be updated when the file is executed or
not depending on the platform.

GetModificationTime (p. 532)
GetTimes (p. 533)
SetTimes (p. 539)
Touch (p. 540)

Other file system operations functions are:

Mkdir (p. 536)
Rmdir (p. 538)

wxFileName::wxFileName

 wxFileName ()

Default constructor.

 wxFileName (const wxFileName& filename)

Copy constructor.

 wxFileName (const wxString& fullpath, wxPathFormat format = wxPATH_NATIVE)

Constructor taking a full filename. If it terminates with a '/', a directory path is constructed
(the name will be empty), otherwise a file name and extension are extracted from it.

 wxFileName (const wxString& path, const wxString& name, wxPathFormat format =
wxPATH_NATIVE)

Constructor from a directory name and a file name.

 wxFileName (const wxString& path, const wxString& name, const wxString& ext,
wxPathFormat format = wxPATH_NATIVE)

CHAPTER 7

513

Constructor from a directory name, base file name and extension.

 wxFileName (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, wxPathFormat format = wxPATH_NATIVE)

Constructor from a volume name, a directory name, base file name and extension.

wxFileName::AppendDir

void AppendDir (const wxString& dir)

Appends a directory component to the path. This component should contain a single
directory name level, i.e. not contain any path or volume separators nor should it be
empty, otherwise the function does nothing (and generates an assert failure in debug
build).

wxFileName::Assign

void Assign (const wxFileName& filepath)

void Assign (const wxString& fullpath, wxPathFormat format = wxPATH_NATIVE)

void Assign (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, bool hasExt, wxPathFormat format = wxPATH_NATIVE)

void Assign (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, wxPathFormat format = wxPATH_NATIVE)

void Assign (const wxString& path, const wxString& name, wxPathFormat format =
wxPATH_NATIVE)

void Assign (const wxString& path, const wxString& name, const wxString& ext,
wxPathFormat format = wxPATH_NATIVE)

Creates the file name from various combinations of data.

wxFileName::AssignCwd

static void AssignCwd (const wxString& volume = wxEmptyString)

Makes this object refer to the current working directory on the specified volume (or
current volume if volume is empty).

See also

GetCwd (p. 530)

wxFileName::AssignDir

void AssignDir (const wxString& dir, wxPathFormat format = wxPATH_NATIVE)

Sets this file name object to the given directory name. The name and extension will be

CHAPTER 7

514

empty.

wxFileName::AssignHomeDir

void AssignHomeDir ()

Sets this file name object to the home directory.

wxFileName::AssignTempFileName

void AssignTempFileName (const wxString& prefix, wxFile * fileTemp = NULL)

The function calls CreateTempFileName (p. 529) to create a temporary file and sets this
object to the name of the file. If a temporary file couldn't be created, the object is put into
the invalid (p. 534) state.

wxFileName::Clear

void Clear ()

Reset all components to default, uninitialized state.

wxFileName::ClearExt

void SetClearExt ()

Removes the extension from the file name resulting in a file name with no trailing dot.

See also

SetExt (p. 538)SetEmptyExt (p. 538)

wxFileName::CreateTempFileName

static wxString CreateTempFileName (const wxString& prefix, wxFile * fileTemp =
NULL)

Returns a temporary file name starting with the given prefix. If the prefix is an absolute
path, the temporary file is created in this directory, otherwise it is created in the default
system directory for the temporary files or in the current directory.

If the function succeeds, the temporary file is actually created. If fileTemp is not NULL,
this file will be opened using the name of the temporary file. When possible, this is done
in an atomic way ensuring that no race condition occurs between the temporary file
name generation and opening it which could often lead to security compromise on the
multiuser systems. If fileTemp is NULL, the file is only created, but not opened.

Under Unix, the temporary file will have read and write permissions for the owner only to
minimize the security problems.

Parameters

CHAPTER 7

515

prefix

Prefix to use for the temporary file name construction

fileTemp

The file to open or NULL to just get the name

Return value

The full temporary file name or an empty string on error.

wxFileName::DirExists

bool DirExists () const

static bool DirExists (const wxString& dir)

Returns true if the directory with this name exists.

wxFileName::DirName

static wxFileName DirName (const wxString& dir, wxPathFormat format =
wxPATH_NATIVE)

Returns the object corresponding to the directory with the given name. The dir
parameter may have trailing path separator or not.

wxFileName::FileExists

bool FileExists () const

static bool FileExists (const wxString& file)

Returns true if the file with this name exists.

See also

DirExists (p. 530)

wxFileName::FileName

static wxFileName FileName (const wxString& file, wxPathFormat format =
wxPATH_NATIVE)

Returns the file name object corresponding to the given file. This function exists mainly
for symmetry with DirName (p. 530).

wxFileName::GetCwd

static wxString GetCwd (const wxString& volume = "")

CHAPTER 7

516

Retrieves the value of the current working directory on the specified volume. If the
volume is empty, the program's current working directory is returned for the current
volume.

Return value

The string containing the current working directory or an empty string on error.

See also

AssignCwd (p. 528)

wxFileName::GetDirCount

size_t GetDirCount () const

Returns the number of directories in the file name.

wxFileName::GetDirs

const wxArrayString& GetDirs () const

Returns the directories in string array form.

wxFileName::GetExt

wxString GetExt () const

Returns the file name extension.

wxFileName::GetForbiddenChars

static wxString GetForbiddenChars (wxPathFormat format = wxPATH_NATIVE)

Returns the characters that can't be used in filenames and directory names for the
specified format.

wxFileName::GetFormat

static wxPathFormat GetFormat (wxPathFormat format = wxPATH_NATIVE)

Returns the canonical path format for this platform.

wxFileName::GetFullName

wxString GetFullName () const

Returns the full name (including extension but excluding directories).

wxFileName::GetFullPath

CHAPTER 7

517

wxString GetFullPath (wxPathFormat format = wxPATH_NATIVE) const

Returns the full path with name and extension.

wxFileName::GetHomeDir

static wxString GetHomeDir ()

Returns the home directory.

wxFileName::GetLongPath

wxString GetLongPath () const

Return the long form of the path (returns identity on non-Windows platforms)

wxFileName::GetModificationTime

wxDateTime GetModificationTime () const

Returns the last time the file was last modified.

wxFileName::GetName

wxString GetName () const

Returns the name part of the filename (without extension).

See also

GetFullName (p. 531)

wxFileName::GetPath

wxString GetPath (int flags = wxPATH_GET_VOLUME, wxPathFormat format =
wxPATH_NATIVE) const

Returns the path part of the filename (without the name or extension). The possible flags
values are:

wxPATH_GET_VOLUME Return the path with the volume (does nothing for the
filename formats without volumes), otherwise the path
without volume part is returned.

wxPATH_GET_SEPARATOR Return the path with the trailing separator, if this
flag is not given there will be no separator at the end of the
path.

wxFileName::GetPathSeparator

static wxChar GetPathSeparator (wxPathFormat format = wxPATH_NATIVE)

CHAPTER 7

518

Returns the usually used path separator for this format. For all formats but wxPATH_DOS
there is only one path separator anyhow, but for DOS there are two of them and the
native one, i.e. the backslash is returned by this method.

See also

GetPathSeparators (p. 533)

wxFileName::GetPathSeparators

static wxString GetPathSeparators (wxPathFormat format = wxPATH_NATIVE)

Returns the string containing all the path separators for this format. For all formats but
wxPATH_DOS this string contains only one character but for DOS and Windows both '/'
and '\' may be used as separators.

See also

GetPathSeparator (p. 532)

wxFileName::GetPathTerminators

static wxString GetPathTerminators (wxPathFormat format = wxPATH_NATIVE)

Returns the string of characters which may terminate the path part. This is the same as
GetPathSeparators (p. 533) except for VMS path format where] is used at the end of the
path part.

wxFileName::GetShortPath

wxString GetShortPath () const

Return the short form of the path (returns identity on non-Windows platforms).

wxFileName::GetTimes

bool GetTimes (wxDateTime* dtAccess, wxDateTime* dtMod, wxDateTime* dtCreate)
const

Returns the last access, last modification and creation times. The last access time is
updated whenever the file is read or written (or executed in the case of Windows), last
modification time is only changed when the file is written to. Finally, the creation time is
indeed the time when the file was created under Windows and the inode change time
under Unix (as it is impossible to retrieve the real file creation time there anyhow) which
can also be changed by many operations after the file creation.

Any of the pointers may be NULL if the corresponding time is not needed.

Return value

true on success, false if we failed to retrieve the times.

CHAPTER 7

519

wxFileName::GetVolume

wxString GetVolume () const

Returns the string containing the volume for this file name, empty if it doesn't have one
or if the file system doesn't support volumes at all (for example, Unix).

wxFileName::GetVolumeSeparator

static wxString GetVolumeSeparator (wxPathFormat format = wxPATH_NATIVE)

Returns the string separating the volume from the path for this format.

wxFileName::HasExt

bool HasExt () const

Returns true if an extension is present.

wxFileName::HasName

bool HasName () const

Returns true if a name is present.

wxFileName::HasVolume

bool HasVolume () const

Returns true if a volume specifier is present.

wxFileName::InsertDir

void InsertDir (size_t before, const wxString& dir)

Inserts a directory component before the zero-based position in the directory list. Please
see AppendDir (p. 528) for important notes.

wxFileName::IsAbsolute

bool IsAbsolute (wxPathFormat format = wxPATH_NATIVE)

Returns true if this filename is absolute.

wxFileName::IsCaseSensitive

static bool IsCaseSensitive (wxPathFormat format = wxPATH_NATIVE)

Returns true if the file names of this type are case-sensitive.

CHAPTER 7

520

wxFileName::IsOk

bool IsOk () const

Returns true if the filename is valid, false if it is not initialized yet. The assignment
functions andClear (p. 529) may reset the object to the uninitialized, invalid state (the
former only do it on failure).

wxFileName::IsPathSeparator

static bool IsPathSeparator (wxChar ch, wxPathFormat format = wxPATH_NATIVE)

Returns true if the char is a path separator for this format.

wxFileName::IsRelative

bool IsRelative (wxPathFormat format = wxPATH_NATIVE)

Returns true if this filename is not absolute.

wxFileName::IsDir

bool IsDir () const

Returns true if this object represents a directory, false otherwise (i.e. if it is a file).
Note that this method doesn't test whether the directory or file really exists, you should
use DirExists (p. 530) or FileExists (p. 530) for this.

wxFileName::MacFindDefaultTypeAndCreator

static bool MacFindDefaultTypeAndCreator (const wxString& ext, wxUint32* type,
wxUint32* creator)

On Mac OS, gets the common type and creator for the given extension.

wxFileName::MacRegisterDefaultTypeAndCreator

static void MacRegisterDefaultTypeAndCreator (const wxString& ext, wxUint32
type, wxUint32 creator)

On Mac OS, registers application defined extensions and their default type and creator.

wxFileName::MacSetDefaultTypeAndCreator

bool MacSetDefaultTypeAndCreator ()

On Mac OS, looks up the appropriate type and creator from the registration and then
sets it.

wxFileName::MakeAbsolute

CHAPTER 7

521

bool MakeAbsolute (const wxString& cwd = wxEmptyString, wxPathFormat format =
wxPATH_NATIVE)

Make the file name absolute. This is a shortcut forNormalize (p.
537)(wxPATH_NORM_DOTS | wxPATH_NORM_ABSOLUTE | wxPATH_NORM_TILDE,
cwd, format) .

See also

MakeRelativeTo (p. 536),Normalize (p. 537),IsAbsolute (p. 534)

wxFileName::MakeRelativeTo

bool MakeRelativeTo (const wxString& pathBase = wxEmptyString, wxPathFormat
format = wxPATH_NATIVE)

This function tries to put this file name in a form relative to pathBase. In other words, it
returns the file name which should be used to access this file if the current directory
were pathBase.

pathBase

the directory to use as root, current directory is used by default

format

the file name format, native by default

Return value

true if the file name has been changed, false if we failed to do anything with it
(currently this only happens if the file name is on a volume different from the volume
specified by pathBase).

See also

Normalize (p. 537)

wxFileName::Mkdir

bool Mkdir (int perm = 0777, int flags = 0)

static bool Mkdir (const wxString& dir, int perm = 0777, int flags = 0)

dir

the directory to create

parm

the permissions for the newly created directory

flags

CHAPTER 7

522

if the flags contain wxPATH_MKDIR_FULL flag, try to create each directory in the
path and also don't return an error if the target directory already exists.

Return value

Returns true if the directory was successfully created, false otherwise.

wxFileName::Normalize

bool Normalize (int flags = wxPATH_NORM_ALL, const wxString& cwd =
wxEmptyString, wxPathFormat format = wxPATH_NATIVE)

Normalize the path. With the default flags value, the path will be made absolute, without
any ".." and "." and all environment variables will be expanded in it.

flags

The kind of normalization to do with the file name. It can be any or-combination of
the following constants:

wxPATH_NORM_ENV_VARS replace env vars with their values

wxPATH_NORM_DOTS squeeze all .. and . and prepend cwd

wxPATH_NORM_TILDE Unix only: replace ~ and ~user

wxPATH_NORM_CASE if filesystem is case insensitive, transform to lower
case

wxPATH_NORM_ABSOLUTE make the path absolute

wxPATH_NORM_LONG make the path the long form

wxPATH_NORM_SHORTCUT resolve if it is a shortcut (Windows only)

wxPATH_NORM_ALL all of previous flags except wxPATH_NORM_CASE

cwd

If not empty, this directory will be used instead of current working directory in
normalization.

format

The file name format, native by default.

wxFileName::PrependDir

void PrependDir (const wxString& dir)

Prepends a directory to the file path. Please see AppendDir (p. 528) for important notes.

wxFileName::RemoveDir

CHAPTER 7

523

void RemoveDir (size_t pos)

Removes the specified directory component from the path.

See also

GetDirCount (p. 531)

wxFileName::RemoveLastDir

void RemoveLastDir ()

Removes last directory component from the path.

wxFileName::Rmdir

bool Rmdir ()

static bool Rmdir (const wxString& dir)

Deletes the specified directory from the file system.

wxFileName::SameAs

bool SameAs (const wxFileName& filepath, wxPathFormat format =
wxPATH_NATIVE) const

Compares the filename using the rules of this platform.

wxFileName::SetCwd

bool SetCwd ()

static bool SetCwd (const wxString& cwd)

Changes the current working directory.

wxFileName::SetExt

void SetExt (const wxString& ext)

Sets the extension of the file name. Setting an empty string as the extension will remove
the extension resulting in a file name without a trailing dot, unlike a call to SetEmptyExt
(p. 538).

See also

SetEmptyExt (p. 538)ClearExt (p. 529)

wxFileName::SetEmptyExt

CHAPTER 7

524

void SetEmptyExt ()

Sets the extension of the file name to be an empty extension. This is different from
having no extension at all as the file name will have a trailing dot after a call to this
method.

See also

SetExt (p. 538)ClearExt (p. 529)

wxFileName::SetFullName

void SetFullName (const wxString& fullname)

The full name is the file name and extension (but without the path).

wxFileName::SetName

void SetName (const wxString& name)

Sets the name part (without extension).

See also

SetFullName (p. 539)

wxFileName::SetTimes

bool SetTimes (const wxDateTime* dtAccess, const wxDateTime* dtMod, const
wxDateTime* dtCreate)

Sets the file creation and last access/modification times (any of the pointers may be
NULL).

wxFileName::SetVolume

void SetVolume (const wxString& volume)

Sets the volume specifier.

wxFileName::SplitPath

static void SplitPath (const wxString& fullpath, wxString* volume, wxString* path,
wxString* name, wxString* ext, bool *hasExt = NULL, wxPathFormat format =
wxPATH_NATIVE)

static void SplitPath (const wxString& fullpath, wxString* volume, wxString* path,
wxString* name, wxString* ext, wxPathFormat format = wxPATH_NATIVE)

static void SplitPath (const wxString& fullpath, wxString* path, wxString* name,
wxString* ext, wxPathFormat format = wxPATH_NATIVE)

CHAPTER 7

525

This function splits a full file name into components: the volume (with the first version)
path (including the volume in the second version), the base name and the extension.
Any of the output parameters (volume, path, name or ext) may be NULL if you are not
interested in the value of a particular component. Also, fullpath may be empty on entry.

On return, path contains the file path (without the trailing separator), name contains the
file name and ext contains the file extension without leading dot. All three of them may
be empty if the corresponding component is. The old contents of the strings pointed to
by these parameters will be overwritten in any case (if the pointers are not NULL).

Note that for a filename "foo.'' the extension is present, as indicated by the trailing dot,
but empty. If you need to cope with such cases, you should use hasExt instead of relying
on testing whether ext is empty or not.

wxFileName::SplitVolume

static void SplitVolume (const wxString& fullpath, wxString* volume, wxString* path,
wxPathFormat format = wxPATH_NATIVE)

Splits the given fullpath into the volume part (which may be empty) and the pure path
part, not containing any volume.

See also

SplitPath (p. 539)

wxFileName::Touch

bool Touch ()

Sets the access and modification times to the current moment.

wxFileName::operator=

wxFileName& operator operator= (const wxFileName& filename)

wxFileName& operator operator= (const wxString& filename)

Assigns the new value to this filename object.

wxFileName::operator==

bool operator operator== (const wxFileName& filename) const

bool operator operator== (const wxString& filename) const

Returns true if the filenames are equal. The string filenames is interpreted as a path in
the native filename format.

wxFileName::operator!=

CHAPTER 7

526

bool operator operator!= (const wxFileName& filename) const

bool operator operator!= (const wxString& filename) const

Returns true if the filenames are different. The string filenamesis interpreted as a path
in the native filename format.

wxFileOutputStream

This class represents data written to a file. There are actually two such groups of
classes: this one is based on wxFile (p. 506) whereas wxFFileInputStream (p. 504) is
based in the wxFFile (p. 499) class.

Note that SeekO() (p. Error! Bookmark not defined.) can seek beyond the end of the
stream (file) and will thus not return wxInvalidOffset for that.

Derived from

wxOutputStream (p. Error! Bookmark not defined.)

Include files

<wx/wfstream.h>

See also

wxBufferedOutputStream (p. 119), wxFileInputStream (p. 523), wxFFileInputStream (p.
504)

wxFileOutputStream::wxFileOutputStream

 wxFileOutputStream (const wxString& ofileName)

Creates a new file with ofilename name and initializes the stream in write-only mode.

 wxFileOutputStream (wxFile& file)

Initializes a file stream in write-only mode using the file I/O object file.

 wxFileOutputStream (int fd)

Initializes a file stream in write-only mode using the file descriptor fd.

wxFileOutputStream::~wxFileOutputStream

 ~wxFileOutputStream ()

Destructor.

wxFileOutputStream::Ok

CHAPTER 7

527

bool Ok() const

Returns true if the stream is initialized and ready.

wxFileStream

Derived from

wxFileOutputStream (p. 541), wxFileInputStream (p. 523)

Include files

<wx/wfstream.h>

See also

wxStreamBuffer (p. Error! Bookmark not defined.)

wxFileStream::wxFileStream

 wxFileStream (const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

wxFileSystem

This class provides an interface for opening files on different file systems. It can handle
absolute and/or local filenames. It uses a system of handlers (p. 545) to provide access
to user-defined virtual file systems.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/filesys.h>

See Also

wxFileSystemHandler (p. 545), wxFSFile (p. 593), Overview (p. Error! Bookmark not
defined.)

wxFileSystem::wxFileSystem

 wxFileSystem ()

Constructor.

CHAPTER 7

528

wxFileSystem::AddHandler

static void AddHandler (wxFileSystemHandler *handler)

This static function adds new handler into the list of handlers. The handlers (p. 545)
provide access to virtual FS.

Note

You can call:

wxFileSystem::AddHandler(new My_FS_Handler);

This is because (a) AddHandler is a static method, and (b) the handlers are deleted in
wxFileSystem's destructor so that you don't have to care about it.

wxFileSystem::ChangePathTo

void ChangePathTo (const wxString& location, bool is_dir = false)

Sets the current location. location parameter passed to OpenFile (p. 544) is relative to
this path.

Caution! Unless is_dir is true the location parameter is not the directory name but the
name of the file in this directory. All these commands change the path to "dir/subdir/":

 ChangePathTo("dir/subdir/xh.htm");
 ChangePathTo("dir/subdir", true);
 ChangePathTo("dir/subdir/", true);

Parameters

location

the new location. Its meaning depends on the value of is_dir

is_dir

if true location is new directory. If false (default) location is file in the new directory.

Example

 f = fs -> OpenFile("hello.htm"); // opens file 'h ello.htm'
 fs -> ChangePathTo("subdir/folder", true);
 f = fs -> OpenFile("hello.htm"); // opens file
'subdir/folder/hello.htm' !!

wxFileSystem::GetPath

wxString GetPath ()

Returns actual path (set by ChangePathTo (p. 543)).

wxFileSystem::FileNameToURL

CHAPTER 7

529

static wxString FileNameToURL (wxFileName filename)

Converts filename into URL.

See also

wxFileSystem::URLToFileName (p. 544),wxFileName (p. 524)

wxFileSystem::FindFirst

wxString FindFirst (const wxString& wildcard, int flags = 0)

Works like wxFindFirstFile (p. Error! Bookmark not defined.). Returns name of the first
filename (within filesystem's current path) that matches wildcard. flags may be one of
wxFILE (only files), wxDIR (only directories) or 0 (both).

wxFileSystem::FindNext

wxString FindNext ()

Returns the next filename that matches parameters passed to FindFirst (p. 544).

wxFileSystem::OpenFile

wxFSFile* OpenFile (const wxString& location)

Opens the file and returns a pointer to a wxFSFile (p. 593) object or NULL if failed. It first
tries to open the file in relative scope (based on value passed to ChangePathTo()
method) and then as an absolute path. Note that the user is responsible for deleting the
returned wxFSFile.

wxFileSystem::URLToFileName

static wxFileName URLToFileName (const wxString& url)

Converts URL into a well-formed filename. The URL must use the file protocol.

See also

wxFileSystem::FileNameToURL (p. 544), wxFileName (p. 524)

wxFileSystemHandler

Classes derived from wxFileSystemHandler are used to access virtual file systems. Its
public interface consists of two methods: CanOpen (p. 545) and OpenFile (p. 547). It
provides additional protected methods to simplify the process of opening the file:
GetProtocol, GetLeftLocation, GetRightLocation, GetAnchor, GetMimeTypeFromExt.

Please have a look at overview (p. Error! Bookmark not defined.) if you don't know
how locations are constructed.

CHAPTER 7

530

Also consult list of available handlers (p. Error! Bookmark not defined.).

wxPerl note: In wxPerl, you need to derive your file system handler class from
Wx::PlFileSystemHandler.

Notes

 • The handlers are shared by all instances of wxFileSystem.

 • wxHTML library provides handlers for local files and HTTP or FTP protocol

 • The location parameter passed to OpenFile or CanOpen methods is always an
absolute path. You don't need to check the FS's current path.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/filesys.h>

See also

wxFileSystem (p. 542), wxFSFile (p. 593), Overview (p. Error! Bookmark not defined.)

wxFileSystemHandler::wxFileSystemHandler

 wxFileSystemHandler ()

Constructor.

wxFileSystemHandler::CanOpen

virtual bool CanOpen (const wxString& location)

Returns true if the handler is able to open this file. This function doesn't check whether
the file exists or not, it only checks if it knows the protocol. Example:

bool MyHand::CanOpen(const wxString& location)
{
 return (GetProtocol(location) == "http");
}

Must be overridden in derived handlers.

wxFileSystemHandler::GetAnchor

wxString GetAnchor (const wxString& location) const

Returns the anchor if present in the location. See wxFSFile (p. 594) for details.

CHAPTER 7

531

Example: GetAnchor("index.htm#chapter2") == "chapter2"

Note: the anchor is NOT part of the left location.

wxFileSystemHandler::GetLeftLocation

wxString GetLeftLocation (const wxString& location) const

Returns the left location string extracted from location.

Example: GetLeftLocation("file:myzipfile.zip#zip:index.htm") == "file:myzipfile.zip"

wxFileSystemHandler::GetMimeTypeFromExt

wxString GetMimeTypeFromExt (const wxString& location)

Returns the MIME type based on extension of location. (While wxFSFile::GetMimeType
returns real MIME type - either extension-based or queried from HTTP.)

Example : GetMimeTypeFromExt("index.htm") == "text/html"

wxFileSystemHandler::GetProtocol

wxString GetProtocol (const wxString& location) const

Returns the protocol string extracted from location.

Example: GetProtocol("file:myzipfile.zip#zip:index.htm") == "zip"

wxFileSystemHandler::GetRightLocation

wxString GetRightLocation (const wxString& location) const

Returns the right location string extracted from location.

Example : GetRightLocation("file:myzipfile.zip#zip:index.htm") == "index.htm"

wxFileSystemHandler::FindFirst

virtual wxString FindFirst (const wxString& wildcard, int flags = 0)

Works like wxFindFirstFile (p. Error! Bookmark not defined.). Returns name of the first
filename (within filesystem's current path) that matches wildcard. flags may be one of
wxFILE (only files), wxDIR (only directories) or 0 (both).

This method is only called if CanOpen (p. 545) returns true.

wxFileSystemHandler::FindNext

virtual wxString FindNext ()

CHAPTER 7

532

Returns next filename that matches parameters passed to FindFirst (p. 544).

This method is only called if CanOpen (p. 545) returns true and FindFirst returned a non-
empty string.

wxFileSystemHandler::OpenFile

virtual wxFSFile* OpenFile (wxFileSystem& fs, const wxString& location)

Opens the file and returns wxFSFile pointer or NULL if failed.

Must be overridden in derived handlers.

Parameters

fs

Parent FS (the FS from that OpenFile was called). See ZIP handler for details of
how to use it.

location

The absolute location of file.

wxFileType

This class holds information about a given file type. File type is the same as MIME type
under Unix, but under Windows it corresponds more to an extension than to MIME type
(in fact, several extensions may correspond to a file type). This object may be created in
several different ways: the program might know the file extension and wish to find out
the corresponding MIME type or, conversely, it might want to find the right extension for
the file to which it writes the contents of given MIME type. Depending on how it was
created some fields may be unknown so the return value of all the accessors must be
checked: false will be returned if the corresponding information couldn't be found.

The objects of this class are never created by the application code but are returned by
wxMimeTypesManager::GetFileTypeFromMimeType (p. Error! Bookmark not
defined.) and wxMimeTypesManager::GetFileTypeFromExtension (p. Error! Bookmark
not defined.) methods. But it is your responsibility to delete the returned pointer when
you're done with it!

A brief reminder about what the MIME types are (see the RFC 1341 for more
information): basically, it is just a pair category/type (for example, "text/plain") where the
category is a basic indication of what a file is. Examples of categories are "application",
"image", "text", "binary", and type is a precise definition of the document format: "plain"
in the example above means just ASCII text without any formatting, while "text/html" is
the HTML document source.

A MIME type may have one or more associated extensions: "text/plain" will typically
correspond to the extension ".txt", but may as well be associated with ".ini" or ".conf".

Derived from

CHAPTER 7

533

None

Include files

<wx/mimetype.h>

See also

wxMimeTypesManager (p. Error! Bookmark not defined.)

MessageParameters class

One of the most common usages of MIME is to encode an e-mail message. The MIME
type of the encoded message is an example of a message parameter. These
parameters are found in the message headers ("Content-XXX"). At the very least, they
must specify the MIME type and the version of MIME used, but almost always they
provide additional information about the message such as the original file name or the
charset (for the text documents).

These parameters may be useful to the program used to open, edit, view or print the
message, so, for example, an e-mail client program will have to pass them to this
program. Because wxFileType itself can not know about these parameters, it uses
MessageParameters class to query them. The default implementation only requires the
caller to provide the file name (always used by the program to be called - it must know
which file to open) and the MIME type and supposes that there are no other parameters.
If you wish to supply additional parameters, you must derive your own class from
MessageParameters and override GetParamValue() function, for example:

// provide the message parameters for the MIME type manager
class MailMessageParameters : public wxFileType::Me ssageParameters
{
public:
 MailMessageParameters(const wxString& filename,
 const wxString& mimetype)
 : wxFileType::MessageParameters(filename, mim etype)
 {
 }

 virtual wxString GetParamValue(const wxString& n ame) const
 {
 // parameter names are not case-sensitive
 if (name.CmpNoCase("charset") == 0)
 return "US-ASCII";
 else
 return
wxFileType::MessageParameters::GetParamValue(name);
 }
};

Now you only need to create an object of this class and pass it to, for example,
GetOpenCommand (p. 550) like this:

wxString command;
if (filetype->GetOpenCommand(&command,
 MailMessageParameters ("foo.txt",

CHAPTER 7

534

"text/plain")))
{
 // the full command for opening the text docume nts is in
'command'
 // (it might be "notepad foo.txt" under Windows or "cat
foo.txt" under Unix)
}
else
{
 // we don't know how to handle such files...
}

Windows: As only the file name is used by the program associated with the given
extension anyhow (but no other message parameters), there is no need to ever derive
from MessageParameters class for a Windows-only program.

wxFileType::wxFileType

 wxFileType ()

The default constructor is private because you should never create objects of this type:
they are only returned by wxMimeTypesManager (p. Error! Bookmark not defined.)
methods.

wxFileType::~wxFileType

 ~wxFileType ()

The destructor of this class is not virtual, so it should not be derived from.

wxFileType::GetMimeType

bool GetMimeType (wxString* mimeType)

If the function returns true , the string pointed to by mimeType is filled with full MIME
type specification for this file type: for example, "text/plain".

wxFileType::GetMimeTypes

bool GetMimeType (wxArrayString& mimeTypes)

Same as GetMimeType (p. 549) but returns array of MIME types. This array will contain
only one item in most cases but sometimes, notably under Unix with KDE, may contain
more MIME types. This happens when one file extension is mapped to different MIME
types by KDE, mailcap and mime.types.

wxFileType::GetExtensions

bool GetExtensions (wxArrayString& extensions)

If the function returns true , the array extensions is filled with all extensions associated
with this file type: for example, it may contain the following two elements for the MIME
type "text/html" (notice the absence of the leading dot): "html" and "htm".

CHAPTER 7

535

Windows: This function is currently not implemented: there is no (efficient) way to
retrieve associated extensions from the given MIME type on this platform, so it will only
return true if the wxFileType object was created by GetFileTypeFromExtension (p.
Error! Bookmark not defined.) function in the first place.

wxFileType::GetIcon

bool GetIcon (wxIconLocation * iconLoc)

If the function returns true , the iconLoc is filled with the location of the icon for this
MIME type. A wxIcon (p. 778) may be created from iconLoc later.

Windows: The function returns the icon shown by Explorer for the files of the specified
type.

Mac: This function is not implemented and always returns false .

Unix: MIME manager gathers information about icons from GNOME and KDE settings
and thus GetIcon's success depends on availability of these desktop environments.

wxFileType::GetDescription

bool GetDescription (wxString* desc)

If the function returns true , the string pointed to by desc is filled with a brief description
for this file type: for example, "text document" for the "text/plain" MIME type.

wxFileType::GetOpenCommand

bool GetOpenCommand (wxString* command, MessageParameters& params)

wxString GetOpenCommand (const wxString& filename)

With the first version of this method, if the true is returned, the string pointed to by
command is filled with the command which must be executed (see wxExecute (p. Error!
Bookmark not defined.)) in order to open the file of the given type. In this case, the
name of the file as well as any other parameters is retrieved from MessageParameters
(p. 548) class.

In the second case, only the filename is specified and the command to be used to open
this kind of file is returned directly. An empty string is returned to indicate that an error
occurred (typically meaning that there is no standard way to open this kind of files).

wxFileType::GetPrintCommand

bool GetPrintCommand (wxString* command,MessageParameters& params)

If the function returns true , the string pointed to by command is filled with the command
which must be executed (see wxExecute (p. Error! Bookmark not defined.)) in order to
print the file of the given type. The name of the file is retrieved from MessageParameters
(p. 548) class.

CHAPTER 7

536

wxFileType::ExpandCommand

static wxString ExpandCommand (const wxString& command,
MessageParameters& params)

This function is primarily intended for GetOpenCommand and GetPrintCommand usage
but may be also used by the application directly if, for example, you want to use some
non default command to open the file.

The function replaces all occurrences of

format specification with

%s the full file name

%t the MIME type

%{param} the value of the parameter param

using the MessageParameters object you pass to it.

If there is no '%s' in the command string (and the string is not empty), it is assumed that
the command reads the data on stdin and so the effect is the same as "< %s" were
appended to the string.

Unlike all other functions of this class, there is no error return for this function.

wxFilterInputStream

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can uncompress or decrypt the data which are read
from another stream and pass it to the requester.

Derived from

wxInputStream (p. 826)
wxStreamBase (p. Error! Bookmark not defined.)

Include files

<wx/stream.h>

Note

The interface of this class is the same as that of wxInputStream. Only a constructor
differs and it is documented below.

wxFilterInputStream::wxFilterInputStream

 wxFilterInputStream (wxInputStream& stream)

CHAPTER 7

537

Initializes a "filter" stream.

wxFilterOutputStream

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can compress, encrypt the data which are passed to
it and write them to another stream.

Derived from

wxOutputStream (p. Error! Bookmark not defined.)
wxStreamBase (p. Error! Bookmark not defined.)

Include files

<wx/stream.h>

Note

The use of this class is exactly the same as of wxOutputStream. Only a constructor
differs and it is documented below.

wxFilterOutputStream::wxFilterOutputStream

 wxFilterOutputStream (wxOutputStream& stream)

Initializes a "filter" stream.

wxFindDialogEvent

wxFindReplaceDialog events

Derived from

wxCommandEvent (p. 184)

Include files

<wx/fdrepdlg.h>

Event table macros

To process a command event from wxFindReplaceDialog (p. 556), use these event
handler macros to direct input to member functions that take a wxFindDialogEvent
argument. The id parameter is the identifier of the find dialog and you may usually
specify -1 for it unless you plan to have several find dialogs sending events to the same
owner window simultaneously.

EVT_FIND(id, func) Find button was pressed in the dialog.

CHAPTER 7

538

EVT_FIND_NEXT(id, func) Find next button was pressed in the dialog.

EVT_FIND_REPLACE(id, func) Replace button was pressed in the dialog.

EVT_FIND_REPLACE_ALL(id, func) Replace all button was pressed in the dialog.

EVT_FIND_CLOSE(id, func) The dialog is being destroyed, any pointers to it
cannot be used any longer.

wxFindDialogEvent::wxFindDialogEvent

 wxFindDialogEvent (wxEventType commandType = wxEVT_NULL, int id = 0)

Constuctor used by wxWidgets only.

wxFindDialogEvent::GetFlags

int GetFlags () const

Get the currently selected flags: this is the combination of
wxFR_DOWN,wxFR_WHOLEWORD and wxFR_MATCHCASE flags.

wxFindDialogEvent::GetFindString

wxString GetFindString () const

Return the string to find (never empty).

wxFindDialogEvent::GetReplaceString

const wxString& GetReplaceString () const

Return the string to replace the search string with (only for replace and replace all
events).

wxFindDialogEvent::GetDialog

wxFindReplaceDialog* GetDialog () const

Return the pointer to the dialog which generated this event.

wxFindReplaceData

wxFindReplaceData holds the data for wxFindReplaceDialog (p. 556). It is used to
initialize the dialog with the default values and will keep the last values from the dialog
when it is closed. It is also updated each time a wxFindDialogEvent (p. 553) is generated
so instead of using the wxFindDialogEvent methods you can also directly query this
object.

CHAPTER 7

539

Note that all SetXXX() methods may only be called before showing the dialog and
calling them has no effect later.

Include files

#include <wx/fdrepdlg.h>

Derived from

wxObject (p. Error! Bookmark not defined.)

Data structures

Flags used by wxFindReplaceData::GetFlags() (p. 555)
andwxFindDialogEvent::GetFlags() (p. 553):

enum wxFindReplaceFlags
{
 // downward search/replace selected (otherwise - upwards)
 wxFR_DOWN = 1,

 // whole word search/replace selected
 wxFR_WHOLEWORD = 2,

 // case sensitive search/replace selected (othe rwise - case
insensitive)
 wxFR_MATCHCASE = 4
}

These flags can be specified in wxFindReplaceDialog ctor (p. 556) or Create() (p. 556):

enum wxFindReplaceDialogStyles
{
 // replace dialog (otherwise find dialog)
 wxFR_REPLACEDIALOG = 1,

 // don't allow changing the search direction
 wxFR_NOUPDOWN = 2,

 // don't allow case sensitive searching
 wxFR_NOMATCHCASE = 4,

 // don't allow whole word searching
 wxFR_NOWHOLEWORD = 8
}

wxFindReplaceData::wxFindReplaceData

 wxFindReplaceData (wxUint32 flags = 0)

Constuctor initializes the flags to default value (0).

wxFindReplaceData::GetFindString

const wxString& GetFindString ()

CHAPTER 7

540

Get the string to find.

wxFindReplaceData::GetReplaceString

const wxString& GetReplaceString ()

Get the replacement string.

wxFindReplaceData::GetFlags

int GetFlags () const

Get the combination of wxFindReplaceFlags values.

wxFindReplaceData::SetFlags

void SetFlags (wxUint32 flags)

Set the flags to use to initialize the controls of the dialog.

wxFindReplaceData::SetFindString

void SetFindString (const wxString& str)

Set the string to find (used as initial value by the dialog).

wxFindReplaceData::SetReplaceString

void SetReplaceString (const wxString& str)

Set the replacement string (used as initial value by the dialog).

wxFindReplaceDialog

wxFindReplaceDialog is a standard modeless dialog which is used to allow the user to
search for some text (and possibly replace it with something else). The actual searching
is supposed to be done in the owner window which is the parent of this dialog. Note that
it means that unlike for the other standard dialogs this one must have a parent window.
Also note that there is no way to use this dialog in a modal way; it is always, by design
and implementation, modeless.

Please see the dialogs sample for an example of using it.

Include files

#include <wx/fdrepdlg.h>

Derived from

wxDialog (p. 412)

CHAPTER 7

541

wxFindReplaceDialog::wxFindReplaceDialog

 wxFindReplaceDialog ()

 wxFindReplaceDialog (wxWindow * parent, wxFindReplaceData* data, const
wxString& title, int style = 0)

After using default constructor Create() (p. 556) must be called.

The parent and data parameters must be non-NULL.

wxFindReplaceDialog::~wxFindReplaceDialog

 ~wxFindReplaceDialog ()

Destructor.

wxFindReplaceDialog::Create

bool Create (wxWindow * parent, wxFindReplaceData* data, const wxString& title,
int style = 0)

Creates the dialog; use Show (p. Error! Bookmark not defined.) to show it on screen.

The parent and data parameters must be non-
NULL.wxFindReplaceDialog::GetData

const wxFindReplaceData* GetData () const

Get the wxFindReplaceData (p. 554) object used by this dialog.

wxFlexGridSizer

A flex grid sizer is a sizer which lays out its children in a two-dimensional table with all
table fields in one row having the same height and all fields in one column having the
same width, but all rows or all columns are not necessarily the same height or width as
in the wxGridSizer (p. 682).

Since wxWidgets 2.5.0, wxFlexGridSizer can also size items equally in one direction but
unequally ("flexibly") in the other. If the sizer is only flexible in one direction (this can be
changed usingSetFlexibleDirection (p. 559)), it needs to be decided how the sizer should
grow in the other ("non flexible") direction in order to fill the available space.
TheSetNonFlexibleGrowMode (p. 559) method serves this purpose.

Derived from

wxGridSizer (p. 682)
wxSizer (p. Error! Bookmark not defined.)

CHAPTER 7

542

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/sizer.h>

See also

wxSizer (p. Error! Bookmark not defined.), Sizer overview (p. Error! Bookmark not
defined.)

wxFlexGridSizer::wxFlexGridSizer

 wxFlexGridSizer (int rows, int cols, int vgap, int hgap)

 wxFlexGridSizer (int cols, int vgap = 0, int hgap = 0)

Constructor for a wxGridSizer. rows and cols determine the number of columns and
rows in the sizer - if either of the parameters is zero, it will be calculated to form the total
number of children in the sizer, thus making the sizer grow dynamically. vgap and hgap
define extra space between all children.

wxFlexGridSizer::AddGrowableCol

void AddGrowableCol (size_t idx, int proportion = 0)

Specifies that column idx (starting from zero) should be grown if there is extra space
available to the sizer.

The proportion parameter has the same meaning as the stretch factor for the sizers (p.
Error! Bookmark not defined.) except that if all proportions are 0, then all columns are
resized equally (instead of not being resized at all).

wxFlexGridSizer::AddGrowableRow

void AddGrowableRow (size_t idx, int proportion = 0)

Specifies that row idx (starting from zero) should be grown if there is extra space
available to the sizer.

See AddGrowableCol (p. 558) for the description of proportion parameter.

wxFlexGridSizer::GetFlexibleDirection

int GetFlexibleDirection () const

Returns a wxOrientation value that specifies whether the sizer flexibly resizes its
columns, rows, or both (default).

Return value

CHAPTER 7

543

One of the following values:

wxVERTICAL Rows are flexibly sized.

wxHORIZONTAL Columns are flexibly sized.

wxBOTH Both rows and columns are flexibly sized (this
is the default value).

See also

SetFlexibleDirection (p. 559)

wxFlexGridSizer::GetNonFlexibleGrowMode

int GetNonFlexibleGrowMode () const

Returns the value that specifies how the sizer grows in the "non flexible" direction if there
is one.

Return value

One of the following values:

wxFLEX_GROWMODE_NONE Sizer doesn't grow in the non flexible direction.

wxFLEX_GROWMODE_SPECIFIED Sizer honors growable columns/rows set
withAddGrowableCol (p. 558)
andAddGrowableRow (p. 558). In this case
equal sizing applies to minimum sizes of
columns or rows (this is the default value).

wxFLEX_GROWMODE_ALL Sizer equally stretches all columns or rows in
the non flexible direction, whether they are
growable or not in the flexible direction.

See also

SetFlexibleDirection (p. 559),SetNonFlexibleGrowMode (p. 559)

wxFlexGridSizer::RemoveGrowableCol

void RemoveGrowableCol (size_t idx)

Specifies that column idx is no longer growable.

wxFlexGridSizer::RemoveGrowableRow

void RemoveGrowableRow (size_t idx)

Specifies that row idx is no longer growable.

wxFlexGridSizer::SetFlexibleDirection

CHAPTER 7

544

void SetFlexibleDirection (int direction)

Specifies whether the sizer should flexibly resize its columns, rows, or both. Argument
direction can be wxVERTICAL, wxHORIZONTALor wxBOTH (which is the default
value). Any other value is ignored. SeeGetFlexibleDirection() (p. 558) for the explanation
of these values.

Note that this method does not trigger relayout.

wxFlexGridSizer::SetNonFlexibleGrowMode

void SetNonFlexibleGrowMode (wxFlexSizerGrowMode mode)

Specifies how the sizer should grow in the non flexible direction if there is one
(soSetFlexibleDirection() (p. 559) must have been called previously). Argument mode
can be one of those documented inGetNonFlexibleGrowMode (p. 558), please see there
for their explanation.

Note that this method does not trigger
relayout.wxFocusEvent

A focus event is sent when a window's focus changes. The window losing focus receives
a "kill focus'' event while the window gaining it gets a "set focus'' one.

Notice that the set focus event happens both when the user gives focus to the window
(whether using the mouse or keyboard) and when it is done from the program itself using
SetFocus (p. Error! Bookmark not defined.).

Derived from

wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

Event table macros

To process a focus event, use these event handler macros to direct input to a member
function that takes a wxFocusEvent argument.

EVT_SET_FOCUS(func) Process a wxEVT_SET_FOCUS event.

EVT_KILL_FOCUS(func) Process a wxEVT_KILL_FOCUS event.

See also
Event handling overview (p. Error! Bookmark not defined.)

wxFocusEvent::wxFocusEvent

CHAPTER 7

545

 wxFocusEvent (WXTYPE eventType = 0, int id = 0)

Constructor.

wxFocusEvent::GetWindow

Returns the window associated with this event, that is the window which had the focus
before for the wxEVT_SET_FOCUS event and the window which is going to receive focus
for the wxEVT_KILL_FOCUS one.

Warning: the window pointer may be NULL!

wxFont

A font is an object which determines the appearance of text. Fonts are used for drawing
text to a device context, and setting the appearance of a window's text.

You can retrieve the current system font settings with wxSystemSettings (p. Error!
Bookmark not defined.).

wxSystemSettings (p. Error! Bookmark not defined.)

Derived from

wxGDIObject (p. 609)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/font.h>

Constants

The possible values for the family parameter of wxFont constructor (p. 563) are (the old
names are for compatibility only):

enum wxFontFamily
{
 wxFONTFAMILY_DEFAULT = wxDEFAULT,
 wxFONTFAMILY_DECORATIVE = wxDECORATIVE,
 wxFONTFAMILY_ROMAN = wxROMAN,
 wxFONTFAMILY_SCRIPT = wxSCRIPT,
 wxFONTFAMILY_SWISS = wxSWISS,
 wxFONTFAMILY_MODERN = wxMODERN,
 wxFONTFAMILY_TELETYPE = wxTELETYPE,
 wxFONTFAMILY_MAX
};

The possible values for the weight parameter are (the old names are for compatibility
only):

enum wxFontWeight
{
 wxFONTWEIGHT_NORMAL = wxNORMAL,
 wxFONTWEIGHT_LIGHT = wxLIGHT,

CHAPTER 7

546

 wxFONTWEIGHT_BOLD = wxBOLD,
 wxFONTWEIGHT_MAX
};

The font flags which can be used during the font creation are:

enum
{
 // no special flags: font with default weight/s lant/anti-
aliasing
 wxFONTFLAG_DEFAULT = 0,

 // slant flags (default: no slant)
 wxFONTFLAG_ITALIC = 1 << 0,
 wxFONTFLAG_SLANT = 1 << 1,

 // weight flags (default: medium)
 wxFONTFLAG_LIGHT = 1 << 2,
 wxFONTFLAG_BOLD = 1 << 3,

 // anti-aliasing flag: force on or off (default : the current
system default)
 wxFONTFLAG_ANTIALIASED = 1 << 4,
 wxFONTFLAG_NOT_ANTIALIASED = 1 << 5,

 // underlined/strikethrough flags (default: no lines)
 wxFONTFLAG_UNDERLINED = 1 << 6,
 wxFONTFLAG_STRIKETHROUGH = 1 << 7,
};

The known font encodings are:

enum wxFontEncoding
{
 wxFONTENCODING_SYSTEM = -1, // system defau lt
 wxFONTENCODING_DEFAULT, // current defa ult encoding

 // ISO8859 standard defines a number of single- byte charsets
 wxFONTENCODING_ISO8859_1, // West Europea n (Latin1)
 wxFONTENCODING_ISO8859_2, // Central and East European
(Latin2)
 wxFONTENCODING_ISO8859_3, // Esperanto (L atin3)
 wxFONTENCODING_ISO8859_4, // Baltic (old) (Latin4)
 wxFONTENCODING_ISO8859_5, // Cyrillic
 wxFONTENCODING_ISO8859_6, // Arabic
 wxFONTENCODING_ISO8859_7, // Greek
 wxFONTENCODING_ISO8859_8, // Hebrew
 wxFONTENCODING_ISO8859_9, // Turkish (Lat in5)
 wxFONTENCODING_ISO8859_10, // Variation of Latin4
(Latin6)
 wxFONTENCODING_ISO8859_11, // Thai
 wxFONTENCODING_ISO8859_12, // doesn't exis t currently,
but put it
 // here anyhow to make all
ISO8859
 // consecutive numbers
 wxFONTENCODING_ISO8859_13, // Baltic (Lati n7)
 wxFONTENCODING_ISO8859_14, // Latin8
 wxFONTENCODING_ISO8859_15, // Latin9 (a.k. a. Latin0,
includes euro)
 wxFONTENCODING_ISO8859_MAX,

 // Cyrillic charset soup (see

CHAPTER 7

547

http://czyborra.com/charsets/cyrillic.html)
 wxFONTENCODING_KOI8, // we don't sup port any of
KOI8 variants
 wxFONTENCODING_ALTERNATIVE, // same as MS-D OS CP866
 wxFONTENCODING_BULGARIAN, // used under L inux in
Bulgaria

 // what would we do without Microsoft? They hav e their own
encodings
 // for DOS
 wxFONTENCODING_CP437, // original MS- DOS codepage
 wxFONTENCODING_CP850, // CP437 merged with Latin1
 wxFONTENCODING_CP852, // CP437 merged with Latin2
 wxFONTENCODING_CP855, // another cyri llic encoding
 wxFONTENCODING_CP866, // and another one
 // and for Windows
 wxFONTENCODING_CP874, // WinThai
 wxFONTENCODING_CP1250, // WinLatin2
 wxFONTENCODING_CP1251, // WinCyrillic
 wxFONTENCODING_CP1252, // WinLatin1
 wxFONTENCODING_CP1253, // WinGreek (88 59-7)
 wxFONTENCODING_CP1254, // WinTurkish
 wxFONTENCODING_CP1255, // WinHebrew
 wxFONTENCODING_CP1256, // WinArabic
 wxFONTENCODING_CP1257, // WinBaltic (s ame as Latin 7)
 wxFONTENCODING_CP12_MAX,

 wxFONTENCODING_UTF7, // UTF-7 Unicod e encoding
 wxFONTENCODING_UTF8, // UTF-8 Unicod e encoding

 wxFONTENCODING_UNICODE, // Unicode - cu rrently used
only by
 // wxEncodingCo nverter class

 wxFONTENCODING_MAX
};

Predefined objects

Objects:

wxNullFont

Pointers:

wxNORMAL_FONT
wxSMALL_FONT
wxITALIC_FONT
wxSWISS_FONT

See also

wxFont overview (p. Error! Bookmark not defined.), wxDC::SetFont (p. 389),
wxDC::DrawText (p. 380), wxDC::GetTextExtent (p. 384), wxFontDialog (p. 574),
wxSystemSettings (p. Error! Bookmark not defined.)

wxFont::wxFont

CHAPTER 7

548

 wxFont ()

Default constructor.

 wxFont (int pointSize, wxFontFamily family, int style, wxFontWeight weight, const
bool underline = false, const wxString& faceName = "", wxFontEncoding encoding =
wxFONTENCODING_DEFAULT)

 wxFont (const wxSize& pixelSize, wxFontFamily family, int style, wxFontWeight
weight, const bool underline = false, const wxString& faceName = "",
wxFontEncoding encoding = wxFONTENCODING_DEFAULT)

Creates a font object with the specified attributes.

Parameters

pointSize

Size in points.

pixelSize

Size in pixels: this is directly supported only under MSW currently where this
constructor can be used directly, under other platforms a font with the closest size
to the given one is found using binary search and the static New (p. 567) method
must be used.

family

Font family, a generic way of referring to fonts without specifying actual facename.
One of:

wxFONTFAMILY_DEFAULT Chooses a default font.

wxFONTFAMILY_DECORATIVE A decorative font.

wxFONTFAMILY_ROMAN A formal, serif font.

wxFONTFAMILY_SCRIPT A handwriting font.

wxFONTFAMILY_SWISS A sans-serif font.

wxFONTFAMILY_MODERN A fixed pitch font.

wxFONTFAMILY_TELETYPE A teletype font.

style

One of wxFONTSTYLE_NORMAL , wxFONTSTYLE_SLANT and
wxFONTSTYLE_ITALIC .

weight

Font weight, sometimes also referred to as font boldness. One of:

CHAPTER 7

549

wxFONTWEIGHT_NORMAL Normal font.

wxFONTWEIGHT_LIGHT Light font.

wxFONTWEIGHT_BOLD Bold font.

underline

The value can be true or false. At present this has an effect on Windows and Motif
2.x only.

faceName

An optional string specifying the actual typeface to be used. If it is an empty string,
a default typeface will be chosen based on the family.

encoding

An encoding which may be one ofwxFONTENCODING_SYSTEM Default
system encoding.

wxFONTENCODING_DEFAULT Default application encoding: this is the
encoding set by calls toSetDefaultEncoding (p. 568)
and which may be set to, say, KOI8 to create all fonts
by default with KOI8 encoding. Initially, the default
application encoding is the same as default system
encoding.

wxFONTENCODING_ISO8859_1...15 ISO8859 encodings.

wxFONTENCODING_KOI8 The standard Russian encoding for Internet.

wxFONTENCODING_CP1250...1252 Windows encodings similar to ISO8859 (but
not identical).

If the specified encoding isn't available, no font is created (see also font encoding
overview (p. Error! Bookmark not defined.)).
Remarks

If the desired font does not exist, the closest match will be chosen. Under Windows, only
scalable TrueType fonts are used.

See also wxDC::SetFont (p. 389), wxDC::DrawText (p. 380)and wxDC::GetTextExtent
(p. 384).

wxFont::~wxFont

 ~wxFont ()

Destructor.

Remarks

CHAPTER 7

550

The destructor may not delete the underlying font object of the native windowing system,
since wxFont uses a reference counting system for efficiency.

Although all remaining fonts are deleted when the application exits, the application
should try to clean up all fonts itself. This is because wxWidgets cannot know if a pointer
to the font object is stored in an application data structure, and there is a risk of double
deletion.

wxFont::IsFixedWidth

bool IsFixedWidth () const

Returns true if the font is a fixed width (or monospaced) font,false if it is a
proportional one or font is invalid.

wxFont::GetDefaultEncoding

static wxFontEncoding GetDefaultEncoding ()

Returns the current application's default encoding.

See also

Font encoding overview (p. Error! Bookmark not defined.),SetDefaultEncoding (p.
568)

wxFont::GetFaceName

wxString GetFaceName () const

Returns the typeface name associated with the font, or the empty string if there is no
typeface information.

See also

wxFont::SetFaceName (p. 568)

wxFont::GetFamily

wxFontFamily GetFamily () const

Gets the font family. See wxFont::SetFamily (p. 569) for a list of valid family identifiers.

See also

wxFont::SetFamily (p. 569)

wxFont::GetNativeFontInfoDesc

wxString GetNativeFontInfoDesc () const

Returns the platform-dependent string completely describing this font or an empty string

CHAPTER 7

551

if the font wasn't constructed using the native font description.

See also

wxFont::SetNativeFontInfo (p. 569)

wxFont::GetPointSize

int GetPointSize () const

Gets the point size.

See also

wxFont::SetPointSize (p. 569)

wxFont::GetStyle

int GetStyle () const

Gets the font style. See wxFont::wxFont (p. 563) for a list of valid styles.

See also

wxFont::SetStyle (p. 570)

wxFont::GetUnderlined

bool GetUnderlined () const

Returns true if the font is underlined, false otherwise.

See also

wxFont::SetUnderlined (p. 570)

wxFont::GetWeight

wxFontWeight GetWeight () const

Gets the font weight. See wxFont::wxFont (p. 563) for a list of valid weight identifiers.

See also

wxFont::SetWeight (p. 570)

wxFont::New

static wxFont * New(int pointSize, wxFontFamily family, int style, wxFontWeight
weight, const bool underline = false, const wxString& faceName = "",
wxFontEncoding encoding = wxFONTENCODING_DEFAULT)

CHAPTER 7

552

static wxFont * New(int pointSize, wxFontFamily family, int flags =
wxFONTFLAG_DEFAULT, const wxString& faceName = "", wxFontEncoding encoding
= wxFONTENCODING_DEFAULT)

static wxFont * New(const wxSize& pixelSize, wxFontFamily family, int style,
wxFontWeight weight, const bool underline = false, const wxString& faceName = "",
wxFontEncoding encoding = wxFONTENCODING_DEFAULT)

static wxFont * New(const wxSize& pixelSize, wxFontFamily family, int flags =
wxFONTFLAG_DEFAULT, const wxString& faceName = "", wxFontEncoding encoding
= wxFONTENCODING_DEFAULT)

These functions take the same parameters as wxFont constructor (p. 563) and return a
new font object allocated on the heap.

Using New() is currently the only way to directly create a font with the given size in
pixels on platforms other than wxMSW.

wxFont::Ok

bool Ok() const

Returns true if this object is a valid font, false otherwise.

wxFont::SetDefaultEncoding

static void SetDefaultEncoding (wxFontEncoding encoding)

Sets the default font encoding.

See also

Font encoding overview (p. Error! Bookmark not defined.),GetDefaultEncoding (p.
566)

wxFont::SetFaceName

void SetFaceName (const wxString& faceName)

Sets the facename for the font.

Parameters

faceName

A valid facename, which should be on the end-user's system.

Remarks

To avoid portability problems, don't rely on a specific face, but specify the font family
instead or as well. A suitable font will be found on the end-user's system. If both the
family and the facename are specified, wxWidgets will first search for the specific face,
and then for a font belonging to the same family.

CHAPTER 7

553

See also

wxFont::GetFaceName (p. 566), wxFont::SetFamily (p. 569)

wxFont::SetFamily

void SetFamily (wxFontFamily family)

Sets the font family.

Parameters

family

One of:

wxFONTFAMILY_DEFAULT Chooses a default font.

wxFONTFAMILY_DECORATIVE A decorative font.

wxFONTFAMILY_ROMAN A formal, serif font.

wxFONTFAMILY_SCRIPT A handwriting font.

wxFONTFAMILY_SWISS A sans-serif font.

wxFONTFAMILY_MODERN A fixed pitch font.

wxFONTFAMILY_TELETYPE A teletype font.

See also

wxFont::GetFamily (p. 566), wxFont::SetFaceName (p. 568)

wxFont::SetNativeFontInfo

void SetNativeFontInfo (const wxString& info)

Creates the font corresponding to the given native font description string which must
have been previously returned byGetNativeFontInfoDesc (p. 566). If the string is invalid,
font is unchanged.

wxFont::SetPointSize

void SetPointSize (int pointSize)

Sets the point size.

Parameters

pointSize

Size in points.

CHAPTER 7

554

See also

wxFont::GetPointSize (p. 567)

wxFont::SetStyle

void SetStyle (int style)

Sets the font style.

Parameters

style

One of wxFONTSTYLE_NORMAL , wxFONTSTYLE_SLANT and
wxFONTSTYLE_ITALIC .

See also

wxFont::GetStyle (p. 567)

wxFont::SetUnderlined

void SetUnderlined (const bool underlined)

Sets underlining.

Parameters

underlining

true to underline, false otherwise.

See also

wxFont::GetUnderlined (p. 567)

wxFont::SetWeight

void SetWeight (wxFontWeight weight)

Sets the font weight.

Parameters

weight

One of:

wxFONTWEIGHT_NORMAL Normal font.

wxFONTWEIGHT_LIGHT Light font.

wxFONTWEIGHT_BOLD Bold font.

CHAPTER 7

555

See also

wxFont::GetWeight (p. 567)

wxFont::operator =

wxFont& operator = (const wxFont& font)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxFont::operator ==

bool operator == (const wxFont& font)

Equality operator. Two fonts are equal if they contain pointers to the same underlying
font data. It does not compare each attribute, so two independently-created fonts using
the same parameters will fail the test.

wxFont::operator !=

bool operator != (const wxFont& font)

Inequality operator. Two fonts are not equal if they contain pointers to different
underlying font data. It does not compare each attribute.

wxFontData

wxFontDialog overview (p. Error! Bookmark not defined.)

This class holds a variety of information related to font dialogs.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/cmndata.h>

See also

Overview (p. Error! Bookmark not defined.), wxFont (p. 561), wxFontDialog (p. 574)

wxFontData::wxFontData

 wxFontData ()

Constructor. Initializes fontColour to black, showHelp to black, allowSymbols to true,

CHAPTER 7

556

enableEffects to true, minSize to 0 and maxSize to 0.

wxFontData::EnableEffects

void EnableEffects (bool enable)

Enables or disables 'effects' under MS Windows or generic only. This refers to the
controls for manipulating colour, strikeout and underline properties.

The default value is true.

wxFontData::GetAllowSymbols

bool GetAllowSymbols ()

Under MS Windows, returns a flag determining whether symbol fonts can be selected.
Has no effect on other platforms.

The default value is true.

wxFontData::GetColour

wxColour& GetColour ()

Gets the colour associated with the font dialog.

The default value is black.

wxFontData::GetChosenFont

wxFont GetChosenFont ()

Gets the font chosen by the user if the user pressed OK (wxFontDialog::ShowModal
returned wxID_OK).

wxFontData::GetEnableEffects

bool GetEnableEffects ()

Determines whether 'effects' are enabled under Windows. This refers to the controls for
manipulating colour, strikeout and underline properties.

The default value is true.

wxFontData::GetInitialFont

wxFont GetInitialFont ()

Gets the font that will be initially used by the font dialog. This should have previously
been set by the application.

CHAPTER 7

557

wxFontData::GetShowHelp

bool GetShowHelp ()

Returns true if the Help button will be shown (Windows only).

The default value is false.

wxFontData::SetAllowSymbols

void SetAllowSymbols (bool allowSymbols)

Under MS Windows, determines whether symbol fonts can be selected. Has no effect on
other platforms.

The default value is true.

wxFontData::SetChosenFont

void SetChosenFont (const wxFont& font)

Sets the font that will be returned to the user (for internal use only).

wxFontData::SetColour

void SetColour (const wxColour& colour)

Sets the colour that will be used for the font foreground colour.

The default colour is black.

wxFontData::SetInitialFont

void SetInitialFont (const wxFont& font)

Sets the font that will be initially used by the font dialog.

wxFontData::SetRange

void SetRange (int min, int max)

Sets the valid range for the font point size (Windows only).

The default is 0, 0 (unrestricted range).

wxFontData::SetShowHelp

void SetShowHelp (bool showHelp)

Determines whether the Help button will be displayed in the font dialog (Windows only).

CHAPTER 7

558

The default value is false.

wxFontData::operator =

void operator = (const wxFontData& data)

Assignment operator for the font data.

wxFontDialog

This class represents the font chooser dialog.

Derived from

wxDialog (p. 412)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/fontdlg.h>

See also

Overview (p. Error! Bookmark not defined.),
wxFontData (p. 571),
wxGetFontFromUser (p. Error! Bookmark not defined.)

wxFontDialog::wxFontDialog

 wxFontDialog ()

 wxFontDialog (wxWindow* parent)

 wxFontDialog (wxWindow* parent, const wxFontData& data)

Constructor. Pass a parent window, and optionally the font data (p. 571) object to be
used to initialize the dialog controls. If the default constructor is used, Create() (p. 574)
must be called before the dialog can be shown.

wxFontDialog::Create

bool Create (wxWindow* parent)

bool Create (wxWindow* parent, const wxFontData& data)

Creates the dialog if it the wxFontDialog object had been initialized using the default
constructor. Returns true on success and false if an error occurred.

CHAPTER 7

559

wxFontDialog::GetFontData

const wxFontData& GetFontData () const

wxFontData& GetFontData ()

Returns the font data (p. 571) associated with the font dialog.

wxFontDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed Ok, and wxID_CANCEL
otherwise.

If the user cancels the dialog (ShowModal returns wxID_CANCEL), no font will be
created. If the user presses OK, a new wxFont will be created and stored in the font
dialog's wxFontData structure.

wxFontEnumerator

wxFontEnumerator enumerates either all available fonts on the system or only the ones
with given attributes - either only fixed-width (suited for use in programs such as terminal
emulators and the like) or the fonts available in the given encoding (p. Error! Bookmark
not defined.).

To do this, you just have to call one of EnumerateXXX() functions - either
EnumerateFacenames (p. 576) or EnumerateEncodings (p. 576) and the corresponding
callback (OnFacename (p. 577) or OnFontEncoding (p. 577)) will be called repeatedly
until either all fonts satisfying the specified criteria are exhausted or the callback returns
false.

Virtual functions to override

Either OnFacename (p. 577) or OnFontEncoding (p. 577) should be overridden
depending on whether you plan to call EnumerateFacenames (p. 576) or
EnumerateEncodings (p. 576). Of course, if you call both of them, you should override
both functions.

Derived from

None

Include files

<wx/fontenum.h>

See also

Font encoding overview (p. Error! Bookmark not defined.), Font sample (p. Error!
Bookmark not defined.), wxFont (p. 561), wxFontMapper (p. 578)

CHAPTER 7

560

wxFontEnumerator::EnumerateFacenames

virtual bool EnumerateFacenames (wxFontEncoding encoding =
wxFONTENCODING_SYSTEM, bool fixedWidthOnly = false)

Call OnFacename (p. 577) for each font which supports given encoding (only if it is not
wxFONTENCODING_SYSTEM) and is of fixed width (if fixedWidthOnly is true).

Calling this function with default arguments will result in enumerating all fonts available
on the system.

wxFontEnumerator::EnumerateEncodings

virtual bool EnumerateEncodings (const wxString& font = "")

Call OnFontEncoding (p. 577) for each encoding supported by the given font - or for
each encoding supported by at least some font if font is not specified.

wxFontEnumerator::GetEncodings

wxArrayString* GetEncodings ()

Return array of strings containing all encodings found by EnumerateEncodings (p. 576).
This is convenience function. It is based on default implementation of OnFontEncoding
(p. 577) so don't expect it to work if you overwrite that method.

wxFontEnumerator::GetFacenames

wxArrayString* GetFacenames ()

Return array of strings containing all facenames found by EnumerateFacenames (p.
576). This is convenience function. It is based on default implementation of
OnFacename (p. 577) so don't expect it to work if you overwrite that method.

wxFontEnumerator::OnFacename

virtual bool OnFacename (const wxString& font)

Called by EnumerateFacenames (p. 576) for each match. Return true to continue
enumeration or false to stop it.

wxFontEnumerator::OnFontEncoding

virtual bool OnFontEncoding (const wxString& font, const wxString& encoding)

Called by EnumerateEncodings (p. 576) for each match. Return true to continue
enumeration or false to stop it.

CHAPTER 7

561

wxFontList

A font list is a list containing all fonts which have been created. There is only one
instance of this class: wxTheFontList . Use this object to search for a previously
created font of the desired type and create it if not already found. In some windowing
systems, the font may be a scarce resource, so it is best to reuse old resources if
possible. When an application finishes, all fonts will be deleted and their resources
freed, eliminating the possibility of 'memory leaks'.

Derived from

wxList (p. 851)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/gdicmn.h>

See also

wxFont (p. 561)

wxFontList::wxFontList

 wxFontList ()

Constructor. The application should not construct its own font list: use the object pointer
wxTheFontList .

wxFontList::AddFont

void AddFont (wxFont * font)

Used by wxWidgets to add a font to the list, called in the font constructor.

wxFontList::FindOrCreateFont

wxFont * FindOrCreateFont (int point_size, int family, int style, int weight, bool
underline = false, const wxString& facename = NULL, wxFontEncoding encoding =
wxFONTENCODING_DEFAULT)

Finds a font of the given specification, or creates one and adds it to the list. See the
wxFont constructor (p. 563) for details of the arguments.

wxFontList::RemoveFont

void RemoveFont (wxFont * font)

Used by wxWidgets to remove a font from the list.

CHAPTER 7

562

wxFontMapper

wxFontMapper manages user-definable correspondence between logical font names
and the fonts present on the machine.

The default implementations of all functions will ask the user if they are not capable of
finding the answer themselves and store the answer in a config file (configurable via
SetConfigXXX functions). This behaviour may be disabled by giving the value of false to
"interactive" parameter.

However, the functions will always consult the config file to allow the user-defined values
override the default logic and there is no way to disable this - which shouldn't be ever
needed because if "interactive" was never true, the config file is never created anyhow.

In case everything else fails (i.e. there is no record in config file and "interactive" is false
or user denied to choose any replacement), the class queries wxEncodingConverter (p.
482) for "equivalent" encodings (e.g. iso8859-2 and cp1250) and tries them.

Using wxFontMapper in conjunction with wxMBConv cla sses

If you need to display text in encoding which is not available at host system (see
IsEncodingAvailable (p. 581)), you may use these two classes to find font in some
similar encoding (see GetAltForEncoding (p. 580)) and convert the text to this encoding
(wxMBConv classes (p. Error! Bookmark not defined.)).

Following code snippet demonstrates it:

if (!wxFontMapper::Get()->IsEncodingAvailable(enc, facename))
{
 wxFontEncoding alternative;
 if (wxFontMapper::Get()->GetAltForEncoding(enc, &alternative,
 facen ame, false))
 {
 wxCSConv convFrom(wxFontMapper::Get()-
>GetEncodingName(enc));
 wxCSConv convTo(wxFontMapper::Get()-
>GetEncodingName(alternative));
 text = wxString(text.mb_str(convFrom), convT o);
 }
 else
 ...failure (or we may try iso8859-1/7bit ASC II)...
}
...display text...

Derived from

No base class

Include files

<wx/fontmap.h>

See also

wxEncodingConverter (p. 482), Writing non-English applications (p. Error! Bookmark
not defined.)

CHAPTER 7

563

wxFontMapper::wxFontMapper

 wxFontMapper ()

Default ctor.

Note

The preferred way of creating a wxFontMapper instance is to call wxFontMapper::Get (p.
580).

wxFontMapper::~wxFontMapper

 ~wxFontMapper ()

Virtual dtor for a base class.

wxFontMapper::CharsetToEncoding

wxFontEncoding CharsetToEncoding (const wxString& charset, bool interactive =
true)

Returns the encoding for the given charset (in the form of RFC 2046)
orwxFONTENCODING_SYSTEM if couldn't decode it.

Be careful when using this function with interactive set to true (default value) as the
function then may show a dialog box to the user which may lead to unexpected
reentrancies and may also take a significantly longer time than a simple function call. For
these reasons, it is almost always a bad idea to call this function from the event handlers
for repeatedly generated events such as EVT_PAINT.

wxFontMapper::Get

static wxFontMapper * Get()

Get the current font mapper object. If there is no current object, creates one.

See also

wxFontMapper::Set (p. 582)

wxFontMapper::GetAllEncodingNames

static const wxChar** GetAllEncodingNames (wxFontEncoding encoding)

Returns the array of all possible names for the given encoding. The array isNULL-
terminated. IF it isn't empty, the first name in it is the canonical encoding name, i.e. the
same string as returned by GetEncodingName() (p. 581).

CHAPTER 7

564

wxFontMapper::GetAltForEncoding

bool GetAltForEncoding (wxFontEncoding encoding, wxNativeEncodingInfo* info,
const wxString& facename = wxEmptyString, bool interactive = true)

bool GetAltForEncoding (wxFontEncoding encoding, wxFontEncoding*
alt_encoding, const wxString& facename = wxEmptyString, bool interactive = true)

Find an alternative for the given encoding (which is supposed to not be available on this
system). If successful, return true and fill info structure with the parameters required to
create the font, otherwise return false.

The first form is for wxWidgets' internal use while the second one is better suitable for
general use -- it returns wxFontEncoding which can consequently be passed to wxFont
constructor.

wxFontMapper::GetEncoding

static wxFontEncoding GetEncoding (size_t n)

Returns the n-th supported encoding. Together with GetSupportedEncodingsCount() (p.
581) this method may be used to get all supported encodings.

wxFontMapper::GetEncodingDescription

static wxString GetEncodingDescription (wxFontEncoding encoding)

Return user-readable string describing the given encoding.

wxFontMapper::GetEncodingFromName

static wxFontEncoding GetEncodingFromName (const wxString& encoding)

Return the encoding corresponding to the given internal name. This function is the
inverse of GetEncodingName (p. 581) and is intentionally less general than
CharsetToEncoding (p. 579), i.e. it doesn't try to make any guesses nor ever asks the
user. It is meant just as a way of restoring objects previously serialized using
GetEncodingName (p. 581).

wxFontMapper::GetEncodingName

static wxString GetEncodingName (wxFontEncoding encoding)

Return internal string identifier for the encoding (see also GetEncodingDescription() (p.
580))

See also

GetEncodingFromName (p. 581)

wxFontMapper::GetSupportedEncodingsCount

CHAPTER 7

565

static size_t GetSupportedEncodingsCount ()

Returns the number of the font encodings supported by this class. Together with
GetEncoding (p. 580) this method may be used to get all supported encodings.

wxFontMapper::IsEncodingAvailable

bool IsEncodingAvailable (wxFontEncoding encoding, const wxString& facename =
wxEmptyString)

Check whether given encoding is available in given face or not. If no facename is given,
find any font in this encoding.

wxFontMapper::SetDialogParent

void SetDialogParent (wxWindow* parent)

The parent window for modal dialogs.

wxFontMapper::SetDialogTitle

void SetDialogTitle (const wxString& title)

The title for the dialogs (note that default is quite reasonable).

wxFontMapper::Set

static wxFontMapper * Set(wxFontMapper * mapper)

Set the current font mapper object and return previous one (may be NULL). This method
is only useful if you want to plug-in an alternative font mapper into wxWidgets.

See also

wxFontMapper::Get (p. 580)

wxFontMapper::SetConfig

void SetConfig (wxConfigBase* config)

Set the config object to use (may be NULL to use default).

By default, the global one (from wxConfigBase::Get() will be used) and the default root
path for the config settings is the string returned by GetDefaultConfigPath().

wxFontMapper::SetConfigPath

void SetConfigPath (const wxString& prefix)

Set the root config path to use (should be an absolute path).

CHAPTER 7

566

wxFrame

A frame is a window whose size and position can (usually) be changed by the user. It
usually has thick borders and a title bar, and can optionally contain a menu bar, toolbar
and status bar. A frame can contain any window that is not a frame or dialog.

A frame that has a status bar and toolbar created via the
CreateStatusBar/CreateToolBar functions manages these windows, and adjusts the
value returned by GetClientSize to reflect the remaining size available to application
windows.

Derived from

wxTopLevelWindow (p. Error! Bookmark not defined.)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/frame.h>

Window styles

wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |
wxMAXIMIZE_BOX | wxRESIZE_BORDER |
wxSYSTEM_MENU | wxCAPTION | wxCLOSE_BOX |
wxCLIP_CHILDREN .

wxICONIZE Display the frame iconized (minimized). Windows only.

wxCAPTION Puts a caption on the frame.

wxMINIMIZE Identical to wxICONIZE . Windows only.

wxMINIMIZE_BOX Displays a minimize box on the frame.

wxMAXIMIZE Displays the frame maximized. Windows only.

wxMAXIMIZE_BOX Displays a maximize box on the frame.

wxCLOSE_BOX Displays a close box on the frame.

wxSTAY_ON_TOP Stay on top of all other windows, see also
wxFRAME_FLOAT_ON_PARENT.

wxSYSTEM_MENU Displays a system menu.

wxRESIZE_BORDER Displays a resizeable border around the window.

wxFRAME_TOOL_WINDOW Causes a frame with a small titlebar to be created;
the frame does not appear in the taskbar under Windows
or GTK+.

CHAPTER 7

567

wxFRAME_NO_TASKBAR Creates an otherwise normal frame but it does not appear
in the taskbar under Windows or GTK+ (note that it will
minimize to the desktop window under Windows which
may seem strange to the users and thus it might be better
to use this style only without wxMINIMIZE_BOX style). In
wxGTK, the flag is respected only if GTK+ is at least
version 2.2 and the window manager supports
_NET_WM_STATE_SKIP_TASKBAR
(http://freedesktop.org/Standards/wm-
spec/1.3/ar01s05.html) hint. Has no effect under
other platforms.

wxFRAME_FLOAT_ON_PARENT The frame will always be on top of its parent (unlike
wxSTAY_ON_TOP). A frame created with this style must
have a non-NULL parent.

wxFRAME_EX_CONTEXTHELP Under Windows, puts a query button on the
caption. When pressed, Windows will go into a context-
sensitive help mode and wxWidgets will send a
wxEVT_HELP event if the user clicked on an application
window. Note that this is an extended style and must be
set by calling SetExtraStyle (p. Error! Bookmark not
defined.) before Create is called (two-step construction).
You cannot use this style together with wxMAXIMIZE_BOX
or wxMINIMIZE_BOX, so you should use
wxDEFAULT_FRAME_STYLE & ~ (wxMINIMIZE_BOX |
wxMAXIMIZE_BOX) for the frames having this style (the
dialogs don't have a minimize or a maximize box by
default)

wxFRAME_SHAPED Windows with this style are allowed to have their shape
changed with the SetShape (p. Error! Bookmark not
defined.) method.

wxFRAME_EX_METAL On Mac OS X, frames with this style will be shown with a
metallic look. This is an extra style.

The default frame style is for normal, resizeable frames. To create a frame which can not
be resized by user, you may use the following combination of styles:
wxDEFAULT_FRAME_STYLE & ~ (wxRESIZE_BORDER | wxRES IZE_BOX |
wxMAXIMIZE_BOX). See also window styles overview (p. Error! Bookmark not
defined.).

Default event processing

wxFrame processes the following events:

wxEVT_SIZE (p. Error! Bookmark not defined.) If the frame has exactly one child
window, not counting the status and toolbar, this child is
resized to take the entire frame client area. If two or more
windows are present, they should be laid out explicitly
either by manually handling wxEVT_SIZE or usingsizers
(p. Error! Bookmark not defined.)

CHAPTER 7

568

wxEVT_MENU_HIGHLIGHT (p. Error! Bookmark not defined.) The default
implementation displays the help string (p. Error!
Bookmark not defined.) associated with the selected item
in the first pane of the status bar, if there is one.

Remarks

An application should normally define an wxCloseEvent (p. 157) handler for the frame to
respond to system close events, for example so that related data and subwindows can
be cleaned up.

See also

wxMDIParentFrame (p. Error! Bookmark not defined.), wxMDIChildFrame (p. Error!
Bookmark not defined.), wxMiniFrame (p. Error! Bookmark not defined.), wxDialog
(p. 412)

wxFrame::wxFrame

 wxFrame ()

Default constructor.

 wxFrame (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent

The window parent. This may be NULL. If it is non-NULL, the frame will always be
displayed on top of the parent window on Windows.

id

The window identifier. It may take a value of -1 to indicate a default value.

title

The caption to be displayed on the frame's title bar.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWidgets, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the

CHAPTER 7

569

windowing system or wxWidgets, depending on platform.

style

The window style. See wxFrame (p. 582).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

For Motif, MWM (the Motif Window Manager) should be running for any window styles to
work (otherwise all styles take effect).

See also

wxFrame::Create (p. 586)

wxFrame::~wxFrame

void ~wxFrame ()

Destructor. Destroys all child windows and menu bar if present.

wxFrame::Centre

void Centre (int direction = wxBOTH)

Centres the frame on the display.

Parameters

direction

The parameter may be wxHORIZONTAL, wxVERTICAL or wxBOTH.

wxFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxFrame::wxFrame (p. 584) for further details.

wxFrame::CreateStatusBar

virtual wxStatusBar* CreateStatusBar (int number = 1, long style = 0, wxWindowID id
= -1, const wxString& name = "statusBar")

Creates a status bar at the bottom of the frame.

CHAPTER 7

570

Parameters

number

The number of fields to create. Specify a value greater than 1 to create a multi-field
status bar.

style

The status bar style. See wxStatusBar (p. Error! Bookmark not defined.) for a list
of valid styles.

id

The status bar window identifier. If -1, an identifier will be chosen by wxWidgets.

name

The status bar window name.

Return value

A pointer to the status bar if it was created successfully, NULL otherwise.

Remarks

The width of the status bar is the whole width of the frame (adjusted automatically when
resizing), and the height and text size are chosen by the host windowing system.

By default, the status bar is an instance of wxStatusBar. To use a different class,
override wxFrame::OnCreateStatusBar (p. 589).

Note that you can put controls and other windows on the status bar if you wish.

See also

wxFrame::SetStatusText (p. 592), wxFrame::OnCreateStatusBar (p. 589),
wxFrame::GetStatusBar (p. 588)

wxFrame::CreateToolBar

virtual wxToolBar* CreateToolBar (long style = wxNO_BORDER |
wxTB_HORIZONTAL, wxWindowID id = -1, const wxString& name = "toolBar")

Creates a toolbar at the top or left of the frame.

Parameters

style

The toolbar style. See wxToolBar (p. Error! Bookmark not defined.) for a list of
valid styles.

id

CHAPTER 7

571

The toolbar window identifier. If -1, an identifier will be chosen by wxWidgets.

name

The toolbar window name.

Return value

A pointer to the toolbar if it was created successfully, NULL otherwise.

Remarks

By default, the toolbar is an instance of wxToolBar (which is defined to be a suitable
toolbar class on each platform, such as wxToolBar95). To use a different class, override
wxFrame::OnCreateToolBar (p. 590).

When a toolbar has been created with this function, or made known to the frame with
wxFrame::SetToolBar (p. 593), the frame will manage the toolbar position and adjust the
return value from wxWindow::GetClientSize (p. Error! Bookmark not defined.) to
reflect the available space for application windows.

Under Pocket PC, you should always use this function for creating the toolbar to be
managed by the frame, so that wxWidgets can use a combined menubar and toolbar.
Where you manage your own toolbars, create a wxToolBar as usual.

See also

wxFrame::CreateStatusBar (p. 586), wxFrame::OnCreateToolBar (p. 590),
wxFrame::SetToolBar (p. 593), wxFrame::GetToolBar (p. 589)

wxFrame::GetClientAreaOrigin

wxPoint GetClientAreaOrigin () const

Returns the origin of the frame client area (in client coordinates). It may be different from
(0, 0) if the frame has a toolbar.

wxFrame::GetMenuBar

wxMenuBar* GetMenuBar () const

Returns a pointer to the menubar currently associated with the frame (if any).

See also

wxFrame::SetMenuBar (p. 591), wxMenuBar (p. Error! Bookmark not defined.),
wxMenu (p. Error! Bookmark not defined.)

wxFrame::GetStatusBar

wxStatusBar* GetStatusBar () const

Returns a pointer to the status bar currently associated with the frame (if any).

CHAPTER 7

572

See also

wxFrame::CreateStatusBar (p. 586), wxStatusBar (p. Error! Bookmark not defined.)

wxFrame::GetStatusBarPane

int GetStatusBarPane ()

Returns the status bar pane used to display menu and toolbar help.

See also

wxFrame::SetStatusBarPane (p. 592)

wxFrame::GetToolBar

wxToolBar* GetToolBar () const

Returns a pointer to the toolbar currently associated with the frame (if any).

See also

wxFrame::CreateToolBar (p. 587), wxToolBar (p. Error! Bookmark not defined.),
wxFrame::SetToolBar (p. 593)

wxFrame::OnCreateStatusBar

virtual wxStatusBar* OnCreateStatusBar (int number, long style, wxWindowID id,
const wxString& name)

Virtual function called when a status bar is requested by wxFrame::CreateStatusBar (p.
586).

Parameters

number

The number of fields to create.

style

The window style. See wxStatusBar (p. Error! Bookmark not defined.) for a list
of valid styles.

id

The window identifier. If -1, an identifier will be chosen by wxWidgets.

name

The window name.

Return value

CHAPTER 7

573

A status bar object.

Remarks

An application can override this function to return a different kind of status bar. The
default implementation returns an instance of wxStatusBar (p. Error! Bookmark not
defined.).

See also

wxFrame::CreateStatusBar (p. 586), wxStatusBar (p. Error! Bookmark not defined.).

wxFrame::OnCreateToolBar

virtual wxToolBar* OnCreateToolBar (long style, wxWindowID id, const wxString&
name)

Virtual function called when a toolbar is requested by wxFrame::CreateToolBar (p. 587).

Parameters

style

The toolbar style. See wxToolBar (p. Error! Bookmark not defined.) for a list of
valid styles.

id

The toolbar window identifier. If -1, an identifier will be chosen by wxWidgets.

name

The toolbar window name.

Return value

A toolbar object.

Remarks

An application can override this function to return a different kind of toolbar. The default
implementation returns an instance of wxToolBar (p. Error! Bookmark not defined.).

See also

wxFrame::CreateToolBar (p. 587), wxToolBar (p. Error! Bookmark not defined.).

wxFrame::ProcessCommand

void ProcessCommand (int id)

Simulate a menu command.

Parameters

CHAPTER 7

574

id

The identifier for a menu item.

wxFrame::SendSizeEvent

void SendSizeEvent ()

This function sends a dummy size event (p. Error! Bookmark not defined.) to the
frame forcing it to reevaluate its children positions. It is sometimes useful to call this
function after adding or deleting a children after the frame creation or if a child size
changes.

Note that if the frame is using either sizers or constraints for the children layout, it is
enough to call Layout() (p. Error! Bookmark not defined.) directly and this function
should not be used in this case.

wxFrame::SetMenuBar

void SetMenuBar (wxMenuBar* menuBar)

Tells the frame to show the given menu bar.

Parameters

menuBar

The menu bar to associate with the frame.

Remarks

If the frame is destroyed, the menu bar and its menus will be destroyed also, so do not
delete the menu bar explicitly (except by resetting the frame's menu bar to another frame
or NULL).

Under Windows, a size event is generated, so be sure to initialize data members
properly before calling SetMenuBar .

Note that on some platforms, it is not possible to call this function twice for the same
frame object.

See also

wxFrame::GetMenuBar (p. 588), wxMenuBar (p. Error! Bookmark not defined.),
wxMenu (p. Error! Bookmark not defined.).

wxFrame::SetStatusBar

void SetStatusBar (wxStatusBar* statusBar)

Associates a status bar with the frame.

See also

CHAPTER 7

575

wxFrame::CreateStatusBar (p. 586), wxStatusBar (p. Error! Bookmark not defined.),
wxFrame::GetStatusBar (p. 588)

wxFrame::SetStatusBarPane

void SetStatusBarPane (int n)

Set the status bar pane used to display menu and toolbar help. Using -1 disables help
display.

wxFrame::SetStatusText

virtual void SetStatusText (const wxString& text, int number = 0)

Sets the status bar text and redraws the status bar.

Parameters

text

The text for the status field.

number

The status field (starting from zero).

Remarks

Use an empty string to clear the status bar.

See also

wxFrame::CreateStatusBar (p. 586), wxStatusBar (p. Error! Bookmark not defined.)

wxFrame::SetStatusWidths

virtual void SetStatusWidths (int n, int * widths)

Sets the widths of the fields in the status bar.

Parameters

n

The number of fields in the status bar. It must be the same used in
CreateStatusBar (p. 586).

widths

Must contain an array of n integers, each of which is a status field width in pixels. A
value of -1 indicates that the field is variable width; at least one field must be -1.
You should delete this array after calling SetStatusWidths .

Remarks

CHAPTER 7

576

The widths of the variable fields are calculated from the total width of all fields, minus the
sum of widths of the non-variable fields, divided by the number of variable fields.

wxPython note: Only a single parameter is required, a Python list of integers.

wxPerl note: In wxPerl this method takes the field widths as parameters.

wxFrame::SetToolBar

void SetToolBar (wxToolBar* toolBar)

Associates a toolbar with the frame.

See also

wxFrame::CreateToolBar (p. 587), wxToolBar (p. Error! Bookmark not defined.),
wxFrame::GetToolBar (p. 589)

wxFSFile

This class represents a single file opened by wxFileSystem (p. 542). It provides more
information than wxWindow's input stream (stream, filename, mime type, anchor).

Note: Any pointer returned by a method of wxFSFile is valid only as long as the
wxFSFile object exists. For example a call to GetStream() doesn't create the stream but
only returns the pointer to it. In other words after 10 calls to GetStream() you will obtain
ten identical pointers.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/filesys.h>

See Also

wxFileSystemHandler (p. 545), wxFileSystem (p. 542), Overview (p. Error! Bookmark
not defined.)

wxFSFile::wxFSFile

 wxFSFile (wxInputStream *stream, const wxString& loc, const wxString& mimetype,
const wxString& anchor, wxDateTime modif)

Constructor. You probably won't use it. See Notes for details.

Parameters

CHAPTER 7

577

stream

The input stream that will be used to access data

location

The full location (aka filename) of the file

mimetype

MIME type of this file. Mime type is either extension-based or HTTP Content-Type

anchor

Anchor. See GetAnchor() (p. 594) for details.

If you are not sure of the meaning of these params, see the description of the
GetXXXX() functions.

Notes

It is seldom used by the application programmer but you will need it if you are writing
your own virtual FS. For example you may need something similar to
wxMemoryInputStream, but because wxMemoryInputStream doesn't free the memory
when destroyed and thus passing a memory stream pointer into wxFSFile constructor
would lead to memory leaks, you can write your own class derived from wxFSFile:

class wxMyFSFile : public wxFSFile
{
 private:
 void *m_Mem;
 public:
 wxMyFSFile(.....)
 ~wxMyFSFile() {free(m_Mem);}
 // of course dtor is virtual ;-)
};

wxFSFile::GetAnchor

const wxString& GetAnchor () const

Returns anchor (if present). The term of anchor can be easily explained using few
examples:

index.htm#anchor /* 'anchor' i s anchor */
index/wx001.htm /* NO anchor here! */
archive/main.zip#zip:index.htm#global /* 'global' */
archive/main.zip#zip:index.htm /* NO anchor here! */

Usually an anchor is presented only if the MIME type is 'text/html'. But it may have some
meaning with other files; for example myanim.avi#200 may refer to position in animation
or reality.wrl#MyView may refer to a predefined view in VRML.

wxFSFile::GetLocation

CHAPTER 7

578

const wxString& GetLocation () const

Returns full location of the file, including path and protocol. Examples :

http://www.wxwidgets.org
http://www.ms.mff.cuni.cz/~vsla8348/wxhtml/archive. zip#zip:info.tx
t
file:/home/vasek/index.htm
relative-file.htm

wxFSFile::GetMimeType

const wxString& GetMimeType () const

Returns the MIME type of the content of this file. It is either extension-based (see
wxMimeTypesManager) or extracted from HTTP protocol Content-Type header.

wxFSFile::GetModificationTime

wxDateTime GetModificationTime () const

Returns time when this file was modified.

wxFSFile::GetStream

wxInputStream* GetStream () const

Returns pointer to the stream. You can use the returned stream to directly access data.
You may suppose that the stream provide Seek and GetSize functionality (even in the
case of the HTTP protocol which doesn't provide this by default. wxHtml uses local
cache to work around this and to speed up the connection).

wxFTP

wxFTP can be used to establish a connection to an FTP server and perform all the usual
operations. Please consult the RFC 959 for more details about the FTP protocol.

To use a commands which doesn't involve file transfer (i.e. directory oriented
commands) you just need to call a corresponding member function or use the generic
SendCommand (p. 597) method. However to actually transfer files you just get or give a
stream to or from this class and the actual data are read or written using the usual
stream methods.

Example of using wxFTP for file downloading:

 wxFTP ftp;

 // if you don't use these lines anonymous login will be used
 ftp.SetUser("user");
 ftp.SetPassword("password");

 if (!ftp.Connect("ftp.wxwindows.org"))
 {

CHAPTER 7

579

 wxLogError("Couldn't connect");
 return;
 }

 ftp.ChDir("/pub");
 wxInputStream *in = ftp.GetInputStream("wxWidge ts-
4.2.0.tar.gz");
 if (!in)
 {
 wxLogError("Coudln't get file");
 }
 else
 {
 size_t size = in->GetSize();
 char *data = new char[size];
 if (!in->Read(data, size))
 {
 wxLogError("Read error");
 }
 else
 {
 // file data is in the buffer
 ...
 }

 delete [] data;
 delete in;
 }

To upload a file you would do (assuming the connection to the server was opened
successfully):

 wxOutputStream *out = ftp.GetOutputStream(" filename");
 if (out)
 {
 out->Write(...); // your data
 delete out;
 }

Constants

wxFTP defines constants corresponding to the two supported transfer modes:

enum TransferMode
{
 ASCII,
 BINARY
};

Derived from

wxProtocol (p. Error! Bookmark not defined.)

Include files

<wx/protocol/ftp.h>

See also

wxSocketBase (p. Error! Bookmark not defined.)

CHAPTER 7

580

wxFTP::wxFTP

 wxFTP ()

Default constructor.

wxFTP::~wxFTP

 ~wxFTP ()

Destructor will close the connection if connected.

wxFTP::Abort

bool Abort ()

Aborts the download currently in process, returns true if ok, false if an error
occurred.

wxFTP::CheckCommand

bool CheckCommand (const wxString& command, char ret)

Send the specified command to the FTP server. ret specifies the expected result.

Return value

true if the command has been sent successfully, else false.

wxFTP::SendCommand

char SendCommand (const wxString& command)

Send the specified command to the FTP server and return the first character of the
return code.

wxFTP::GetLastResult

const wxString& GetLastResult ()

Returns the last command result, i.e. the full server reply for the last command.

wxFTP::ChDir

bool ChDir (const wxString& dir)

Change the current FTP working directory. Returns true if successful.

CHAPTER 7

581

wxFTP::MkDir

bool MkDir (const wxString& dir)

Create the specified directory in the current FTP working directory. Returns true if
successful.

wxFTP::RmDir

bool RmDir (const wxString& dir)

Remove the specified directory from the current FTP working directory. Returns true if
successful.

wxFTP::Pwd

wxString Pwd ()

Returns the current FTP working directory.

wxFTP::Rename

bool Rename (const wxString& src, const wxString& dst)

Rename the specified src element to dst. Returns true if successful.

wxFTP::RmFile

bool RmFile (const wxString& path)

Delete the file specified by path. Returns true if successful.

wxFTP::SetAscii

bool SetAscii ()

Sets the transfer mode to ASCII. It will be used for the next transfer.

wxFTP::SetBinary

bool SetBinary ()

Sets the transfer mode to binary (IMAGE). It will be used for the next transfer.

wxFTP::SetPassive

void SetPassive (bool pasv)

If pasv is true , passive connection to the FTP server is used. This is the default as it
works with practically all firewalls. If the server doesn't support passive move, you may

CHAPTER 7

582

call this function with false argument to use active connection.

wxFTP::SetTransferMode

bool SetTransferMode (TransferMode mode)

Sets the transfer mode to the specified one. It will be used for the next transfer.

If this function is never called, binary transfer mode is used by default.

wxFTP::SetUser

void SetUser (const wxString& user)

Sets the user name to be sent to the FTP server to be allowed to log in.

Default value

The default value of the user name is "anonymous".

Remark

This parameter can be included in a URL if you want to use the URL manager. For
example, you can use: "ftp://a_user:a_password@a.host:service/a_directory/a_file" to
specify a user and a password.

wxFTP::SetPassword

void SetPassword (const wxString& passwd)

Sets the password to be sent to the FTP server to be allowed to log in.

Default value

The default value of the user name is your email address. For example, it could be
"username@userhost.domain". This password is built by getting the current user name
and the host name of the local machine from the system.

Remark

This parameter can be included in a URL if you want to use the URL manager. For
example, you can use: "ftp://a_user:a_password@a.host:service/a_directory/a_file" to
specify a user and a password.

wxFTP::FileExists

bool FileExists (const wxString& filename)

Returns true if the given remote file exists, false otherwise.

wxFTP::GetFileSize

CHAPTER 7

583

int GetFileSize (const wxString& filename)

Returns the file size in bytes or -1 if the file doesn't exist or the size couldn't be
determined. Notice that this size can be approximative size only and shouldn't be used
for allocating the buffer in which the remote file is copied, for example.

wxFTP::GetDirList

bool GetDirList (wxArrayString& files, const wxString& wildcard = "")

The GetList function is quite low-level. It returns the list of the files in the current
directory. The list can be filtered using the wildcard string. If wildcard is empty (default), it
will return all files in directory.

The form of the list can change from one peer system to another. For example, for a
UNIX peer system, it will look like this:

-r--r--r-- 1 guilhem lavaux 12738 Jan 16 20 :17 cmndata.cpp
-r--r--r-- 1 guilhem lavaux 10866 Jan 24 16 :41 config.cpp
-rw-rw-rw- 1 guilhem lavaux 29967 Dec 21 19 :17 cwlex_yy.c
-rw-rw-rw- 1 guilhem lavaux 14342 Jan 22 19 :51 cwy_tab.c
-r--r--r-- 1 guilhem lavaux 13890 Jan 29 19 :18 date.cpp
-r--r--r-- 1 guilhem lavaux 3989 Feb 8 19 :18 datstrm.cpp

But on Windows system, it will look like this:

winamp~1 exe 520196 02-25-1999 19:28 winamp204 .exe
 1 file(s) 520 196 bytes

Return value: true if the file list was successfully retrieved, false otherwise.

See also

GetFilesList (p. 600)

wxFTP::GetFilesList

bool GetFilesList (wxArrayString& files, const wxString& wildcard = "")

This function returns the computer-parsable list of the files in the current directory
(optionally only of the files matching the wildcard, all files by default). This list always has
the same format and contains one full (including the directory path) file name per line.

Return value: true if the file list was successfully retrieved, false otherwise.

wxFTP::GetOutputStream

wxOutputStream * GetOutputStream (const wxString& file)

Initializes an output stream to the specified file. The returned stream has all but the seek
functionality of wxStreams. When the user finishes writing data, he has to delete the
stream to close it.

Return value

CHAPTER 7

584

An initialized write-only stream.

See also

wxOutputStream (p. Error! Bookmark not defined.)

wxFTP::GetInputStream

wxInputStream * GetInputStream (const wxString& path)

Creates a new input stream on the specified path. You can use all but the seek
functionality of wxStream. Seek isn't available on all streams. For example, HTTP or
FTP streams do not deal with it. Other functions like Tell are not available for this sort of
stream, at present. You will be notified when the EOF is reached by an error.

Return value

Returns NULL if an error occurred (it could be a network failure or the fact that the file
doesn't exist).

Returns the initialized stream. You will have to delete it yourself when you don't need it
anymore. The destructor closes the DATA stream connection but will leave the
COMMAND stream connection opened. It means that you can still send new commands
without reconnecting.

Example of a standalone connection (without wxURL)

 wxFTP ftp;
 wxInputStream *in_stream;
 char *data;

 ftp.Connect("a.host.domain");
 ftp.ChDir("a_directory");
 in_stream = ftp.GetInputStream("a_file_to_get");

 data = new char[in_stream->GetSize()];

 in_stream->Read(data, in_stream->GetSize());
 if (in_stream->LastError() != wxStream_NOERROR) {
 // Do something.
 }

 delete in_stream; /* Close the DATA connection */

 ftp.Close(); /* Close the COMMAND connection */

See also

wxInputStream (p. 826)

wxGauge

A gauge is a horizontal or vertical bar which shows a quantity (often time). There are no
user commands for the gauge.

CHAPTER 7

585

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/gauge.h>

Window styles

wxGA_HORIZONTAL Creates a horizontal gauge.

wxGA_VERTICAL Creates a vertical gauge.

wxGA_SMOOTH Creates smooth progress bar with one pixel wide update
step (not supported by all platforms).

See also window styles overview (p. Error! Bookmark not defined.).

Event handling

wxGauge is read-only so generates no events.

See also

wxSlider (p. Error! Bookmark not defined.), wxScrollBar (p. Error! Bookmark not
defined.)

wxGauge::wxGauge

 wxGauge ()

Default constructor.

 wxGauge (wxWindow* parent, wxWindowID id, int range, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxGA_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "gauge")

Constructor, creating and showing a gauge.

Parameters

parent

Window parent.

id

Window identifier.

CHAPTER 7

586

range

Integer range (maximum value) of the gauge.

pos

Window position.

size

Window size.

style

Gauge style. See wxGauge (p. 601).

name

Window name.

See also

wxGauge::Create (p. 603)

wxGauge::~wxGauge

 ~wxGauge ()

Destructor, destroying the gauge.

wxGauge::Create

bool Create (wxWindow* parent, wxWindowID id, int range, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxGA_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "gauge")

Creates the gauge for two-step construction. See wxGauge::wxGauge (p. 602) for
further details.

wxGauge::GetBezelFace

int GetBezelFace () const

Returns the width of the 3D bezel face.

Remarks

This method is not implemented (returns 0) for most platforms.

See also

wxGauge::SetBezelFace (p. 604)

CHAPTER 7

587

wxGauge::GetRange

int GetRange () const

Returns the maximum position of the gauge.

Remarks

This method is not implemented (doesn't do anything) for most platforms.

See also

wxGauge::SetRange (p. 605)

wxGauge::GetShadowWidth

int GetShadowWidth () const

Returns the 3D shadow margin width.

Remarks

This method is not implemented (returns 0) for most platforms.

See also

wxGauge::SetShadowWidth (p. 605)

wxGauge::GetValue

int GetValue () const

Returns the current position of the gauge.

See also

wxGauge::SetValue (p. 605)

wxGauge::IsVertical

bool IsVertical () const

Returns true if the gauge is vertical (has wxGA_VERTICAL style) and false otherwise.

wxGauge::SetBezelFace

void SetBezelFace (int width)

Sets the 3D bezel face width.

Remarks

This method is not implemented (doesn't do anything) for most platforms.

CHAPTER 7

588

See also

wxGauge::GetBezelFace (p. 603)

wxGauge::SetRange

void SetRange (int range)

Sets the range (maximum value) of the gauge.

See also

wxGauge::GetRange (p. 604)

wxGauge::SetShadowWidth

void SetShadowWidth (int width)

Sets the 3D shadow width.

Remarks

This method is not implemented (doesn't do anything) for most platforms.

wxGauge::SetValue

void SetValue (int pos)

Sets the position of the gauge.

Parameters

pos

Position for the gauge level.

See also

wxGauge::GetValue (p. 604)

wxGBPosition

This class represents the position of an item in a virtual grid of rows and columns
managed by a wxGridBagSizer (p. 657).

Derived from

No base class

Include files

<wx/gbsizer.h>

CHAPTER 7

589

wxGBPosition::wxGBPosition

 wxGBPosition ()

 wxGBPosition (int row, int col)

Construct a new wxGBPosition, optionally setting the row and column. The default is
(0,0).

wxGBPosition::GetCol

int GetCol () const

Get the current column value.

wxGBPosition::GetRow

int GetRow () const

Get the current row value.

wxGBPosition::SetCol

void SetCol (int col)

Set a new column value.

wxGBPosition::SetRow

void SetRow (int row)

Set a new row value.

wxGBPosition::operator!

bool operator! (const wxGBPosition& p) const

Is the wxGBPosition valid? (An invalid wxGBPosition is (-1,-1).)

wxGBPosition::operator==

bool operator operator== (const wxGBPosition& p) const

Compare equality of two wxGBPositions.

wxGBSizerItem

CHAPTER 7

590

The wxGBSizerItem class is used by the wxGridBagSizer (p. 657) for tracking the items
in the sizer. It adds grid position and spanning information to the normal wxSizerItem (p.
Error! Bookmark not defined.) by addingwxGBPosition (p. 605) and wxGBSpan (p.
608)attrbibutes. Most of the time you will not need to use a wxGBSizerItem directly in
your code, but there are a couple of cases where it is handy.

Derived from

wxSizerItem (p. Error! Bookmark not defined.)

Include files

<wx/gbsizer.h>

wxGBSizerItem::wxGBSizerItem

 wxGBSizerItem (int width, int height, const wxGBPosition& pos, const wxGBSpan&
span, int flag, int border, wxObject* userData)

Construct a sizer item for tracking a spacer.

 wxGBSizerItem (wxWindow* window, const wxGBPosition& pos, const
wxGBSpan& span, int flag, int border, wxObject* userData)

Construct a sizer item for tracking a window.

 wxGBSizerItem (wxSizer* sizer, const wxGBPosition& pos, const wxGBSpan&
span, int flag, int border, wxObject* userData)

Construct a sizer item for tracking a subsizer.

wxGBSizerItem::GetEndPos

void GetEndPos (int& row, int& col)

Get the row and column of the endpoint of this item

wxGBSizerItem::GetPos

wxGBPosition GetPos () const

void GetPos (int& row, int& col) const

Get the grid position of the item.

wxGBSizerItem::GetSpan

wxGBSpan GetSpan () const

void GetSpan (int& rowspan, int& colspan) const

CHAPTER 7

591

Get the row and column spanning of the item.

wxGBSizerItem::Intersects

bool Intersects (const wxGBSizerItem& other)

Returns true if this item and the other item instersect

bool Intersects (const wxGBPosition& pos, const wxGBSpan& span)

Returns true if the given pos/span would intersect with this item.

wxGBSizerItem::SetPos

bool SetPos (const wxGBPosition& pos)

If the item is already a member of a sizer then first ensure that there is no other item that
would intersect with this one at the new position, then set the new position. Returns true
if the change is successful and after the next Layout the item will be moved.

wxGBSizerItem::SetSpan

bool SetSpan (const wxGBSpan& span)

If the item is already a member of a sizer then first ensure that there is no other item that
would intersect with this one with its new spanning size, then set the new spanning.
Returns true if the change is successful and after the next Layout the item will be
resized.

wxGBSpan

This class is used to hold the row and column spanning attributes of items in a
wxGridBagSizer (p. 657).

Derived from

No base class

Include files

<wx/gbsizer.h>

wxGBSpan::wxGBSpan

 wxGBSpan ()

 wxGBSpan (int rowspan, int colspan)

Construct a new wxGBSpan, optionally setting the rowspan and colspan. The default is

CHAPTER 7

592

(1,1). (Meaning that the item occupies one cell in each direction.

wxGBSpan::GetColspan

int GetColspan () const

Get the current colspan value.

wxGBSpan::GetRowspan

int GetRowspan () const

Get the current rowspan value.

wxGBSpan::SetColspan

void SetColspan (int colspan)

Set a new colspan value.

wxGBSpan::SetRowspan

void SetRowspan (int rowspan)

Set a new rowspan value.

wxGBSpan::operator!

bool operator! (const wxGBSpan& o) const

Is the wxGBSpan valid? (An invalid wxGBSpan is (-1,-1).)

wxGBSpan::operator==

bool operator operator== (const wxGBSpan& o) const

Compare equality of two wxGBSpans.

wxGDIObject

This class allows platforms to implement functionality to optimise GDI objects, such as
wxPen, wxBrush and wxFont. On Windows, the underling GDI objects are a scarce
resource and are cleaned up when a usage count goes to zero. On some platforms this
class may not have any special functionality.

Since the functionality of this class is platform-specific, it is not documented here in
detail.

Derived from

CHAPTER 7

593

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/gdiobj.h>

See also

wxPen (p. Error! Bookmark not defined.), wxBrush (p. 108), wxFont (p. 561)

wxGDIObject::wxGDIObject

 wxGDIObject ()

Default constructor.

wxGenericDirCtrl

This control can be used to place a directory listing (with optional files) on an arbitrary
window.

The control contains a wxTreeCtrl (p. Error! Bookmark not defined.) window
representing the directory hierarchy, and optionally, a wxChoice (p. 145) window
containing a list of filters.

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/dirctrl.h>

Window styles

wxDIRCTRL_DIR_ONLY Only show directories, and not files.

wxDIRCTRL_3D_INTERNAL Use 3D borders for internal controls.

wxDIRCTRL_SELECT_FIRST When setting the default path, select the first
file in the directory.

wxDIRCTRL_SHOW_FILTERS Show the drop-down filter list.

wxDIRCTRL_EDIT_LABELS Allow the folder and file labels to be editable.

See also Generic window styles (p. Error! Bookmark not defined.).

CHAPTER 7

594

Data structures

wxGenericDirCtrl::wxGenericDirCtrl

 wxGenericDirCtrl ()

Default constructor.

 wxGenericDirCtrl (wxWindow* parent, const wxWindowID id = -1, const wxString&
dir = wxDirDialogDefaultFolderStr, const wxPoint& pos = wxDefaultPosition, const
wxSize& size = wxDefaultSize, long style =
wxDIRCTRL_3D_INTERNAL|wxSUNKEN_BORDER, const wxString& filter =
wxEmptyString, int defaultFilter = 0, const wxString& name = wxTreeCtrlNameStr)

Main constructor.

Parameters

parent

Parent window.

id

Window identifier.

dir

Initial folder.

pos

Position.

size

Size.

style

Window style. Please see wxGenericDirCtrl (p. 610) for a list of possible styles.

filter

A filter string, using the same syntax as that for wxFileDialog (p. 515). This may be
empty if filters are not being used.

Example: "All files (*.*)|*.*|JPEG files (*.jpg)|*.jpg"

defaultFilter

The zero-indexed default filter setting.

CHAPTER 7

595

name

The window name.

wxGenericDirCtrl::~wxGenericDirCtrl

 ~wxGenericDirCtrl ()

Destructor.

wxGenericDirCtrl::Create

bool Create (wxWindow* parent, const wxWindowID id = -1, const wxString& dir =
wxDirDialogDefaultFolderStr, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxDIRCTRL_3D_INTERNAL|wxSUNKEN_BORDER,
const wxString& filter = wxEmptyString, int defaultFilter = 0, const wxString& name =
wxTreeCtrlNameStr)

Create function for two-step construction. See wxGenericDirCtrl::wxGenericDirCtrl (p.
611) for details.

wxGenericDirCtrl::Init

void Init ()

Initializes variables.

wxGenericDirCtrl::CollapseTree

void CollapseTree ()

Collapses the entire tree.

wxGenericDirCtrl::ExpandPath

bool ExpandPath (const wxString& path)

Tries to expand as much of the given path as possible, so that the filename or directory
is visible in the tree control.

wxGenericDirCtrl::GetDefaultPath

wxString GetDefaultPath () const

Gets the default path.

wxGenericDirCtrl::GetPath

wxString GetPath () const

CHAPTER 7

596

Gets the currently-selected directory or filename.

wxGenericDirCtrl::GetFilePath

wxString GetFilePath () const

Gets selected filename path only (else empty string).

This function doesn't count a directory as a selection.

wxGenericDirCtrl::GetFilter

wxString GetFilter () const

Returns the filter string.

wxGenericDirCtrl::GetFilterIndex

int GetFilterIndex () const

Returns the current filter index (zero-based).

wxGenericDirCtrl::GetFilterListCtrl

wxDirFilterListCtrl* GetFilterListCtrl () const

Returns a pointer to the filter list control (if present).

wxGenericDirCtrl::GetRootId

wxTreeItemId GetRootId ()

Returns the root id for the tree control.

wxGenericDirCtrl::GetTreeCtrl

wxTreeCtrl* GetTreeCtrl () const

Returns a pointer to the tree control.

wxGenericDirCtrl::ReCreateTree

void ReCreateTree ()

Collapse and expand the tree, thus re-creating it from scratch. May be used to update
the displayed directory content.

wxGenericDirCtrl::SetDefaultPath

void SetDefaultPath (const wxString& path)

CHAPTER 7

597

Sets the default path.

wxGenericDirCtrl::SetFilter

void SetFilter (const wxString& filter)

Sets the filter string.

wxGenericDirCtrl::SetFilterIndex

void SetFilterIndex (int n)

Sets the current filter index (zero-based).

wxGenericDirCtrl::SetPath

void SetPath (const wxString& path)

Sets the current path.

wxGenericValidator

wxGenericValidator performs data transfer (but not validation or filtering) for the following
basic controls: wxButton, wxCheckBox, wxListBox, wxStaticText, wxRadioButton,
wxRadioBox, wxChoice, wxComboBox, wxGauge, wxSlider, wxScrollBar, wxSpinButton,
wxTextCtrl, wxCheckListBox.

It checks the type of the window and uses an appropriate type for that window. For
example, wxButton and wxTextCtrl transfer data to and from a wxString variable;
wxListBox uses a wxArrayInt; wxCheckBox uses a bool.

For more information, please see Validator overview (p. Error! Bookmark not
defined.).

Derived from

wxValidator (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/valgen.h>

See also

Validator overview (p. Error! Bookmark not defined.), wxValidator (p. Error!
Bookmark not defined.),wxTextValidator (p. Error! Bookmark not defined.)

CHAPTER 7

598

wxGenericValidator::wxGenericValidator

 wxGenericValidator (const wxGenericValidator& validator)

Copy constructor.

 wxGenericValidator (bool* valPtr)

Constructor taking a bool pointer. This will be used for wxCheckBox and wxRadioButton.

 wxGenericValidator (wxString* valPtr)

Constructor taking a wxString pointer. This will be used for wxButton, wxComboBox,
wxStaticText, wxTextCtrl.

 wxGenericValidator (int* valPtr)

Constructor taking an integer pointer. This will be used for wxGauge, wxScrollBar,
wxRadioBox, wxSpinButton, wxChoice.

 wxGenericValidator (wxArrayInt* valPtr)

Constructor taking a wxArrayInt pointer. This will be used for wxListBox,
wxCheckListBox.

Parameters

validator

Validator to copy.

valPtr

A pointer to a variable that contains the value. This variable should have a lifetime
equal to or longer than the validator lifetime (which is usually determined by the
lifetime of the window).

wxGenericValidator::~wxGenericValidator

 ~wxGenericValidator ()

Destructor.

wxGenericValidator::Clone

virtual wxValidator* Clone () const

Clones the generic validator using the copy constructor.

wxGenericValidator::TransferFromWindow

virtual bool TransferFromWindow ()

CHAPTER 7

599

Transfers the value from the window to the appropriate data type.

wxGenericValidator::TransferToWindow

virtual bool TransferToWindow ()

Transfers the value to the window.

wxGLCanvas

wxGLCanvas is a class for displaying OpenGL graphics. There are wrappers for
OpenGL on Windows, and GTK+ and Motif.

To use this class, create a wxGLCanvas window, call wxGLCanvas::SetCurrent (p. 619)
to direct normal OpenGL commands to the window, and then call
wxGLCanvas::SwapBuffers (p. 619) to show the OpenGL buffer on the window.

To set up the attributes for the rendering context (number of bits for the depth buffer,
number of bits for the stencil buffer and so on) you should set up the correct values of
the attribList parameter. The values that should be set up and their meanings will be
described below.

To switch wxGLCanvas support on under Windows, edit setup.h and
setwxUSE_GLCANVAS to 1. You may also need to have to addopengl32.lib to the list
of libraries your program is linked with. On Unix, pass --with-opengl to configure to
compile using OpenGL or Mesa.

Derived from

wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/glcanvas.h>

Window styles

There are no specific window styles for this class.

See also window styles overview (p. Error! Bookmark not defined.).

Constants

The generic GL implementation doesn't support many of these options, such as stereo,
auxiliary buffers, alpha channel, and accum buffer. Other implementations may support
them.

WX_GL_RGBA Use true colour

WX_GL_BUFFER_SIZE Bits for buffer if not WX_GL_RGBA

CHAPTER 7

600

WX_GL_LEVEL 0 for main buffer, >0 for overlay, <0 for underlay

WX_GL_DOUBLEBUFFER Use doublebuffer

WX_GL_STEREO Use stereoscopic display

WX_GL_AUX_BUFFERS Number of auxiliary buffers (not all implementation support
this option)

WX_GL_MIN_RED Use red buffer with most bits (> MIN_RED bits)

WX_GL_MIN_GREEN Use green buffer with most bits (> MIN_GREEN bits)

WX_GL_MIN_BLUE Use blue buffer with most bits (> MIN_BLUE bits)

WX_GL_MIN_ALPHA Use alpha buffer with most bits (> MIN_ALPHA bits)

WX_GL_DEPTH_SIZE Bits for Z-buffer (0,16,32)

WX_GL_STENCIL_SIZE Bits for stencil buffer

WX_GL_MIN_ACCUM_RED Use red accum buffer with most bits (> MIN_ACCUM_RED
bits)

WX_GL_MIN_ACCUM_GREEN Use green buffer with most bits (>
MIN_ACCUM_GREEN bits)

WX_GL_MIN_ACCUM_BLUE Use blue buffer with most bits (>
MIN_ACCUM_BLUE bits)

WX_GL_MIN_ACCUM_ALPHA Use blue buffer with most bits (>
MIN_ACCUM_ALPHA bits)

See also

wxGLContext (p. 619)

wxGLCanvas::wxGLCanvas

void wxGLCanvas (wxWindow* parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style=0, const
wxString& name="GLCanvas", int* attribList = 0, const wxPalette& palette =
wxNullPalette)

void wxGLCanvas (wxWindow* parent, wxGLContext* sharedContext, wxWindowID
id = -1, const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize,
long style=0, const wxString& name="GLCanvas", int* attribList = 0, const
wxPalette& palette = wxNullPalette)

void wxGLCanvas (wxWindow* parent, wxGLCanvas* sharedCanvas, wxWindowID
id = -1, const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize,
long style=0, const wxString& name="GLCanvas", int* attribList = 0, const

CHAPTER 7

601

wxPalette& palette = wxNullPalette)

Constructor.

parent

Pointer to a parent window.

sharedContext

Context to share object resources with.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that wxWidgets
should generate a default position for the window.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxWidgets should
generate a default size for the window. If no suitable size can be found, the
window will be sized to 20x20 pixels so that the window is visible but obviously not
correctly sized.

style

Window style.

name

Window name.

attribList

Array of int. With this parameter you can set the device context attributes
associated to this window. This array is zero-terminated: it should be set up with
constants described in the table above. If a constant should be followed by a
value, put it in the next array position. For example, the WX_GL_DEPTH_SIZE
should be followed by the value that indicates the number of bits for the depth
buffer, so:

attribList[index]= WX_GL_DEPTH_SIZE;
attribList[index+1]=32;
and so on.

palette

If the window has the palette, it should by pass this value. Note: palette and
WX_GL_RGBA are mutually exclusive.

wxGLCanvas::GetContext

CHAPTER 7

602

wxGLContext* GetContext ()

Obtains the context that is associated with this canvas.

wxGLCanvas::SetCurrent

void SetCurrent ()

Sets this canvas as the current recipient of OpenGL calls. Each canvas contains an
OpenGL device context that has been created during the creation of this window. So this
call sets the current device context as the target device context for OpenGL operations.

Note that this function may only be called after the window has been shown.

wxGLCanvas::SetColour

void SetColour (const char* colour)

Sets the current colour for this window, using the wxWidgets colour database to find a
named colour.

wxGLCanvas::SwapBuffers

void SwapBuffers ()

Displays the previous OpenGL commands on the window.

wxGLContext

wxGLContext is a class for sharing OpenGL data resources, such as display lists, with
another wxGLCanvas (p. 616).

By sharing data resources, you can prevent code duplication, save memory, and
ultimately help optimize your application.

As an example, let's say you want to draw a ball on two different windows that is
identical on each one, but the dimensions of one is slightly different than the other one.
What you would do is create your display lists in the shared context, and then translate
each ball on the individual canvas's context. This way the actual data for the ball is only
created once (in the shared context), and you won't have to duplicate your development
efforts on the second ball.

Note that some wxGLContext features are extremely platform-specific - its best to check
your native platform's glcanvas header (on windows include/wx/msw/glcanvas.h) to see
what features your native platform provides.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

CHAPTER 7

603

<wx/glcanvas.h>

See also

wxGLCanvas (p. 616)

wxGLContext::wxGLContext

void wxGLContext (bool isRGB, wxGLCanvas* win, const wxPalette& palette =
wxNullPalette)

void wxGLContext (bool isRGB, wxGLCanvas* win, const wxPalette& palette =
wxNullPalette, const wxGLContext* other)

win

Canvas to associate this shared context with.

other

Context to share data resources with.

wxGLContext::GetWindow

const wxWindow* GetWindow ()

Obtains the window that is associated with this context.

wxGLContext::SetCurrent

void SetCurrent ()

Sets this context as the current recipient of OpenGL calls. Each context contains an
OpenGL device context that has been created during the creation of this window. So this
call sets the current device context as the target device context for OpenGL operations.

wxGLContext::SetColour

void SetColour (const char* colour)

Sets the current colour for this context, using the wxWidgets colour database to find a
named colour.

wxGLContext::SwapBuffers

void SwapBuffers ()

Displays the previous OpenGL commands on the associated window.

CHAPTER 7

604

wxGrid

wxGrid and its related classes are used for displaying and editing tabular data. They
provide a rich set of features for display, editing, and interacting with a variety of data
sources. For simple applications, and to help you get started, wxGrid is the only class
you need to refer to directly. It will set up default instances of the other classes and
manage them for you. For more complex applications you can derive your own classes
for custom grid views, grid data tables, cell editors and renderers. The wxGrid classes
overview (p. Error! Bookmark not defined.) has examples of simple and more complex
applications, explains the relationship between the various grid classes and has a
summary of the keyboard shortcuts and mouse functions provided by wxGrid.

wxGrid has been greatly expanded and redesigned for wxWidgets 2.2 onwards. If you
have been using the old wxGrid class you will probably want to have a look at the
wxGrid classes overview (p. Error! Bookmark not defined.) to see how things have
changed. The new grid classes are reasonably backward-compatible but there are some
exceptions. There are also easier ways of doing many things compared to the previous
implementation.

Derived from

wxScrolledWindow (p. Error! Bookmark not defined.)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/grid.h>

Window styles

There are presently no specific window styles for wxGrid.

Event handling

The event handler for the following functions takes a wxGridEvent (p. 667) parameter.
The ..._CMD_... variants also take a window identifier.

EVT_GRID_CELL_LEFT_CLICK(func) The user clicked a cell with the left mouse
button. Processes a
wxEVT_GRID_CELL_LEFT_CLICK.

EVT_GRID_CELL_RIGHT_CLICK(func) The user clicked a cell with the right mouse
button. Processes a
wxEVT_GRID_CELL_RIGHT_CLICK.

EVT_GRID_CELL_LEFT_DCLICK(func) The user double-clicked a cell with the left
mouse button. Processes a
wxEVT_GRID_CELL_LEFT_DCLICK.

EVT_GRID_CELL_RIGHT_DCLICK(func) The user double-clicked a cell with the right
mouse button. Processes a

CHAPTER 7

605

wxEVT_GRID_CELL_RIGHT_DCLICK.

EVT_GRID_LABEL_LEFT_CLICK(func) The user clicked a label with the left mouse
button. Processes a
wxEVT_GRID_LABEL_LEFT_CLICK.

EVT_GRID_LABEL_RIGHT_CLICK(func) The user clicked a label with the right
mouse button. Processes a
wxEVT_GRID_LABEL_RIGHT_CLICK.

EVT_GRID_LABEL_LEFT_DCLICK(func) The user double-clicked a label with the left
mouse button. Processes a
wxEVT_GRID_LABEL_LEFT_DCLICK.

EVT_GRID_LABEL_RIGHT_DCLICK(func) The user double-clicked a label with
the right mouse button. Processes a
wxEVT_GRID_LABEL_RIGHT_DCLICK.

EVT_GRID_CELL_CHANGE(func) The user changed the data in a cell. Processes
a wxEVT_GRID_CELL_CHANGE.

EVT_GRID_SELECT_CELL(func) The user moved to, and selected a cell.
Processes a wxEVT_GRID_SELECT_CELL.

EVT_GRID_EDITOR_HIDDEN(func) The editor for a cell was hidden. Processes a
wxEVT_GRID_EDITOR_HIDDEN.

EVT_GRID_EDITOR_SHOWN(func) The editor for a cell was shown. Processes a
wxEVT_GRID_EDITOR_SHOWN.

EVT_GRID_CMD_CELL_LEFT_CLICK(id, func) The user clicked a cell with the left
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_LEFT_CLICK.

EVT_GRID_CMD_CELL_RIGHT_CLICK(id, func) The user clicked a cell with the right
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_RIGHT_CLICK.

EVT_GRID_CMD_CELL_LEFT_DCLICK(id, func) The user double-clicked a cell with
the left mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_LEFT_DCLICK.

EVT_GRID_CMD_CELL_RIGHT_DCLICK(id, func) The user double-clicked a
cell with the right mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_CELL_RIGHT_DCLICK.

EVT_GRID_CMD_LABEL_LEFT_CLICK(id, func) The user clicked a label with the left
mouse button; variant taking a window
identifier. Processes a

CHAPTER 7

606

wxEVT_GRID_LABEL_LEFT_CLICK.

EVT_GRID_CMD_LABEL_RIGHT_CLICK(id, func) The user clicked a label with
the right mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_LABEL_RIGHT_CLICK.

EVT_GRID_CMD_LABEL_LEFT_DCLICK(id, func) The user double-clicked a
label with the left mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_LABEL_LEFT_DCLICK.

EVT_GRID_CMD_LABEL_RIGHT_DCLICK(id, func) The user double-clicked a
label with the right mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_LABEL_RIGHT_DCLICK.

EVT_GRID_CMD_CELL_CHANGE(id, func) The user changed the data in a cell;
variant taking a window identifier. Processes a
wxEVT_GRID_CELL_CHANGE.

EVT_GRID_CMD_SELECT_CELL(id, func) The user moved to, and selected a
cell; variant taking a window identifier.
Processes a wxEVT_GRID_SELECT_CELL.

EVT_GRID_CMD_EDITOR_HIDDEN(id, func) The editor for a cell was hidden;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_HIDDEN.

EVT_GRID_CMD_EDITOR_SHOWN(id, func) The editor for a cell was shown;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_SHOWN.

The event handler for the following functions takes a wxGridSizeEvent (p. 673)
parameter. The ..._CMD_... variants also take a window identifier.
EVT_GRID_COL_SIZE(func) The user resized a column by dragging it.

Processes a wxEVT_GRID_COL_SIZE.

EVT_GRID_ROW_SIZE(func) The user resized a row by dragging it.
Processes a wxEVT_GRID_ROW_SIZE.

EVT_GRID_CMD_COL_SIZE(func) The user resized a column by dragging it;
variant taking a window identifier. Processes a
wxEVT_GRID_COL_SIZE.

EVT_GRID_CMD_ROW_SIZE(func) The user resized a row by dragging it; variant
taking a window identifier. Processes a
wxEVT_GRID_ROW_SIZE.

The event handler for the following functions takes a wxGridRangeSelectEvent (p. 671)
parameter. The ..._CMD_... variant also takes a window identifier.
EVT_GRID_RANGE_SELECT(func) The user selected a group of contiguous cells.

Processes a wxEVT_GRID_RANGE_SELECT.

CHAPTER 7

607

EVT_GRID_CMD_RANGE_SELECT(id, func) The user selected a group of
contiguous cells; variant taking a window
identifier. Processes a
wxEVT_GRID_RANGE_SELECT.

The event handler for the following functions takes a wxGridEditorCreatedEvent (p. 666)
parameter. The ..._CMD_... variant also takes a window identifier.
EVT_GRID_EDITOR_CREATED(func) The editor for a cell was created. Processes a

wxEVT_GRID_EDITOR_CREATED.

EVT_GRID_CMD_EDITOR_CREATED(id, func) The editor for a cell was created;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_CREATED.

See also
wxGrid overview (p. Error! Bookmark not defined.)

Constructors and initialization

wxGrid (p. 624)
~wxGrid (p. 625)
CreateGrid (p. 628)
SetTable (p. 653)

Display format

Selection functions

wxGrid::ClearSelection (p. 628)
wxGrid::IsSelection (p. 641)
wxGrid::SelectAll (p. 644)
wxGrid::SelectBlock (p. 644)
wxGrid::SelectCol (p. 644)
wxGrid::SelectRow (p. 644)

wxGrid::wxGrid

 wxGrid ()

Default constructor

 wxGrid (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxWANTS_CHARS, const wxString& name = wxPanelNameStr)

Constructor to create a grid object. Call either wxGrid::CreateGrid (p. 628)
orwxGrid::SetTable (p. 653) directly after this to initialize the grid before using it.

CHAPTER 7

608

wxGrid::~wxGrid

 ~wxGrid ()

Destructor. This will also destroy the associated grid table unless you passed a table
object to the grid and specified that the grid should not take ownership of the table (see
wxGrid::SetTable (p. 653)).

wxGrid::AppendCols

bool AppendCols (int numCols = 1, bool updateLabels = true)

Appends one or more new columns to the right of the grid and returns true if successful.
The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to
overridewxGridTableBase::AppendCols (p. 681). SeewxGrid::InsertCols (p. 640) for
further information.

wxGrid::AppendRows

bool AppendRows (int numRows = 1, bool updateLabels = true)

Appends one or more new rows to the bottom of the grid and returns true if successful.
The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to
overridewxGridTableBase::AppendRows (p. 680). SeewxGrid::InsertRows (p. 640) for
further information.

wxGrid::AutoSize

void AutoSize ()

Automatically sets the height and width of all rows and columns to fit their contents.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeColOrRow

void AutoSizeColOrRow (int n, bool setAsMin, bool column)

Common part of AutoSizeColumn/Row() or row?

wxGrid::AutoSizeColumn

void AutoSizeColumn (int col, bool setAsMin = true)

CHAPTER 7

609

Automatically sizes the column to fit its contents. If setAsMin is true the calculated width
will also be set as the minimal width for the column.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeColumns

void AutoSizeColumns (bool setAsMin = true)

Automatically sizes all columns to fit their contents. If setAsMin is true the calculated
widths will also be set as the minimal widths for the columns.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeRow

void AutoSizeRow (int row, bool setAsMin = true)

Automatically sizes the row to fit its contents. If setAsMin is true the calculated height will
also be set as the minimal height for the row.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeRows

void AutoSizeRows (bool setAsMin = true)

Automatically sizes all rows to fit their contents. If setAsMin is true the calculated heights
will also be set as the minimal heights for the rows.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::BeginBatch

void BeginBatch ()

Increments the grid's batch count. When the count is greater than zero repainting of the
grid is suppressed. Each call to BeginBatch must be matched by a later call
towxGrid::EndBatch (p. 630). Code that does a lot of grid modification can be enclosed

CHAPTER 7

610

between BeginBatch and EndBatch calls to avoid screen flicker. The final EndBatch will
cause the grid to be repainted.

wxGrid::BlockToDeviceRect

wxRect BlockToDeviceRect (const wxGridCellCoords & topLeft, const
wxGridCellCoords & bottomRight)

This function returns the rectangle that encloses the block of cells limited by TopLeft and
BottomRight cell in device coords and clipped to the client size of the grid window.

wxGrid::CanDragColSize

bool CanDragColSize ()

Returns true if columns can be resized by dragging with the mouse. Columns can be
resized by dragging the edges of their labels. If grid line dragging is enabled they can
also be resized by dragging the right edge of the column in the grid cell area (see
wxGrid::EnableDragGridSize (p. 630)).

wxGrid::CanDragRowSize

bool CanDragRowSize ()

Returns true if rows can be resized by dragging with the mouse. Rows can be resized by
dragging the edges of their labels. If grid line dragging is enabled they can also be
resized by dragging the lower edge of the row in the grid cell area (see
wxGrid::EnableDragGridSize (p. 630)).

wxGrid::CanDragGridSize

bool CanDragGridSize ()

Return true if the dragging of grid lines to resize rows and columns is enabled or false
otherwise.

wxGrid::CanEnableCellControl

bool CanEnableCellControl () const

Returns true if the in-place edit control for the current grid cell can be used and false
otherwise (e.g. if the current cell is read-only).

wxGrid::CanHaveAttributes

bool CanHaveAttributes ()

Do we have some place to store attributes in?

wxGrid::CellToRect

CHAPTER 7

611

wxRect CellToRect (int row, int col)

wxRect CellToRect (const wxGridCellCoords& coords)

Return the rectangle corresponding to the grid cell's size and position in logical
coordinates.

wxGrid::ClearGrid

void ClearGrid ()

Clears all data in the underlying grid table and repaints the grid. The table is not deleted
by this function. If you are using a derived table class then you need to
overridewxGridTableBase::Clear (p. 680) for this function to have any effect.

wxGrid::ClearSelection

void ClearSelection ()

Deselects all cells that are currently selected.

wxGrid::CreateGrid

bool CreateGrid (int numRows, int numCols, wxGrid::wxGridSelectionModes
selmode = wxGrid::wxGridSelectCells)

Creates a grid with the specified initial number of rows and columns. Call this directly
after the grid constructor. When you use this function wxGrid will create and manage a
simple table of string values for you. All of the grid data will be stored in memory.

For applications with more complex data types or relationships, or for dealing with very
large datasets, you should derive your own grid table class and pass a table object to
the grid with wxGrid::SetTable (p. 653).

wxGrid::DeleteCols

bool DeleteCols (int pos = 0, int numCols = 1, bool updateLabels = true)

Deletes one or more columns from a grid starting at the specified position and returns
true if successful. The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to
overridewxGridTableBase::DeleteCols (p. 681). SeewxGrid::InsertCols (p. 640) for
further information.

wxGrid::DeleteRows

bool DeleteRows (int pos = 0, int numRows = 1, bool updateLabels = true)

Deletes one or more rows from a grid starting at the specified position and returns true if
successful. The updateLabels argument is not used at present.

CHAPTER 7

612

If you are using a derived grid table class you will need to
overridewxGridTableBase::DeleteRows (p. 680). SeewxGrid::InsertRows (p. 640) for
further information.

wxGrid::DisableCellEditControl

void DisableCellEditControl ()

Disables in-place editing of grid cells. Equivalent to calling EnableCellEditControl(false).

wxGrid::DisableDragColSize

void DisableDragColSize ()

Disables column sizing by dragging with the mouse. Equivalent to passing false
towxGrid::EnableDragColSize (p. 630).

wxGrid::DisableDragGridSize

void DisableDragGridSize ()

Disable mouse dragging of grid lines to resize rows and columns. Equivalent to passing
false to wxGrid::EnableDragGridSize (p. 630)

wxGrid::DisableDragRowSize

void DisableDragRowSize ()

Disables row sizing by dragging with the mouse. Equivalent to passing false
towxGrid::EnableDragRowSize (p. 630).

wxGrid::EnableCellEditControl

void EnableCellEditControl (bool enable = true)

Enables or disables in-place editing of grid cell data. The grid will issue either a
wxEVT_GRID_EDITOR_SHOWN or wxEVT_GRID_EDITOR_HIDDEN event.

wxGrid::EnableDragColSize

void EnableDragColSize (bool enable = true)

Enables or disables column sizing by dragging with the mouse.

wxGrid::EnableDragGridSize

void EnableDragGridSize (bool enable = true)

Enables or disables row and column resizing by dragging gridlines with the mouse.

CHAPTER 7

613

wxGrid::EnableDragRowSize

void EnableDragRowSize (bool enable = true)

Enables or disables row sizing by dragging with the mouse.

wxGrid::EnableEditing

void EnableEditing (bool edit)

If the edit argument is false this function sets the whole grid as read-only. If the
argument is true the grid is set to the default state where cells may be editable. In the
default state you can set single grid cells and whole rows and columns to be editable or
read-only viawxGridCellAttribute::SetReadOnly (p. 655). For single cells you can also
use the shortcut functionwxGrid::SetReadOnly (p. 650).

For more information about controlling grid cell attributes see thewxGridCellAttr (p. 654)
cell attribute class and thewxGrid classes overview (p. Error! Bookmark not defined.).

wxGrid::EnableGridLines

void EnableGridLines (bool enable = true)

Turns the drawing of grid lines on or off.

wxGrid::EndBatch

void EndBatch ()

Decrements the grid's batch count. When the count is greater than zero repainting of the
grid is suppressed. Each previous call towxGrid::BeginBatch (p. 627) must be matched
by a later call to EndBatch. Code that does a lot of grid modification can be enclosed
between BeginBatch and EndBatch calls to avoid screen flicker. The final EndBatch will
cause the grid to be repainted.

wxGrid::Fit

void Fit ()

Overridden wxWindow method.

wxGrid::ForceRefresh

void ForceRefresh ()

Causes immediate repainting of the grid. Use this instead of the usual
wxWindow::Refresh.

wxGrid::GetBatchCount

CHAPTER 7

614

int GetBatchCount ()

Returns the number of times that wxGrid::BeginBatch (p. 627) has been called without
(yet) matching calls to wxGrid::EndBatch (p. 630). While the grid's batch count is greater
than zero the display will not be updated.

wxGrid::GetCellAlignment

void GetCellAlignment (int row, int col, int* horiz, int* vert)

Sets the arguments to the horizontal and vertical text alignment values for the grid cell at
the specified location.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxPerl note: This method only takes the parameters row and col and returns a 2-
element list (horiz, vert) .

wxGrid::GetCellBackgroundColour

wxColour GetCellBackgroundColour (int row, int col)

Returns the background colour of the cell at the specified location.

wxGrid::GetCellEditor

wxGridCellEditor* GetCellEditor (int row, int col)

Returns a pointer to the editor for the cell at the specified location.

See wxGridCellEditor (p. 661) and the wxGrid overview (p. Error! Bookmark not
defined.) for more information about cell editors and renderers.

wxGrid::GetCellFont

wxFont GetCellFont (int row, int col)

Returns the font for text in the grid cell at the specified location.

wxGrid::GetCellRenderer

wxGridCellRenderer* GetCellRenderer (int row, int col)

Returns a pointer to the renderer for the grid cell at the specified location.

See wxGridCellRenderer (p. 677) and the wxGrid overview (p. Error! Bookmark not
defined.) for more information about cell editors and renderers.

CHAPTER 7

615

wxGrid::GetCellTextColour

wxColour GetCellTextColour (int row, int col)

Returns the text colour for the grid cell at the specified location.

wxGrid::GetCellValue

wxString GetCellValue (int row, int col)

wxString GetCellValue (const wxGridCellCoords& coords)

Returns the string contained in the cell at the specified location. For simple applications
where a grid object automatically uses a default grid table of string values you use this
function together with wxGrid::SetCellValue (p. 646) to access cell values.

For more complex applications where you have derived your own grid table class that
contains various data types (e.g. numeric, boolean or user-defined custom types) then
you only use this function for those cells that contain string values.

See wxGridTableBase::CanGetValueAs (p. 679)and the wxGrid overview (p. Error!
Bookmark not defined.) for more information.

wxGrid::GetColLeft

int GetColLeft (int col) const

wxGrid::GetColLabelAlignment

void GetColLabelAlignment (int* horiz, int* vert)

Sets the arguments to the current column label alignment values.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxPerl note: This method takes no parameters and returns a 2-element list (horiz,
vert) .

wxGrid::GetColLabelSize

int GetColLabelSize ()

Returns the current height of the column labels.

wxGrid::GetColLabelValue

wxString GetColLabelValue (int col)

CHAPTER 7

616

Returns the specified column label. The default grid table class provides column labels
of the form A,B...Z,AA,AB...ZZ,AAA... If you are using a custom grid table you can
overridewxGridTableBase::GetColLabelValue (p. 681) to provide your own labels.

wxGrid::GetColMinimalAcceptableWidth

int GetColMinimalAcceptableWidth ()

This returns the value of the lowest column width that can be handled correctly. See
member SetColMinimalAcceptableWidth (p. 648) for details.

wxGrid::GetColMinimalWidth

int GetColMinimalWidth (int col) const

Get the minimal width of the given column/row.

wxGrid::GetColRight

int GetColRight (int col) const

wxGrid::GetColSize

int GetColSize (int col)

Returns the width of the specified column.

wxGrid::GetDefaultCellAlignment

void GetDefaultCellAlignment (int* horiz, int* vert)

Sets the arguments to the current default horizontal and vertical text alignment values.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::GetDefaultCellBackgroundColour

wxColour GetDefaultCellBackgroundColour ()

Returns the current default background colour for grid cells.

wxGrid::GetDefaultCellFont

wxFont GetDefaultCellFont ()

Returns the current default font for grid cell text.

CHAPTER 7

617

wxGrid::GetDefaultCellTextColour

wxColour GetDefaultCellTextColour ()

Returns the current default colour for grid cell text.

wxGrid::GetDefaultColLabelSize

int GetDefaultColLabelSize ()

Returns the default height for column labels.

wxGrid::GetDefaultColSize

int GetDefaultColSize ()

Returns the current default width for grid columns.

wxGrid::GetDefaultEditor

wxGridCellEditor* GetDefaultEditor () const

Returns a pointer to the current default grid cell editor.

See wxGridCellEditor (p. 661) and the wxGrid overview (p. Error! Bookmark not
defined.) for more information about cell editors and renderers.

wxGrid::GetDefaultEditorForCell

wxGridCellEditor* GetDefaultEditorForCell (int row, int col) const

wxGridCellEditor* GetDefaultEditorForCell (const wxGridCellCoords& c) const

wxGrid::GetDefaultEditorForType

wxGridCellEditor* GetDefaultEditorForType (const wxString& typeName) const

wxGrid::GetDefaultRenderer

wxGridCellRenderer* GetDefaultRenderer () const

Returns a pointer to the current default grid cell renderer.

See wxGridCellRenderer (p. 677) and the wxGrid overview (p. Error! Bookmark not
defined.) for more information about cell editors and renderers.

wxGrid::GetDefaultRendererForCell

wxGridCellRenderer* GetDefaultRendererForCell (int row, int col) const

CHAPTER 7

618

wxGrid::GetDefaultRendererForType

wxGridCellRenderer* GetDefaultRendererForType (const wxString& typeName)
const

wxGrid::GetDefaultRowLabelSize

int GetDefaultRowLabelSize ()

Returns the default width for the row labels.

wxGrid::GetDefaultRowSize

int GetDefaultRowSize ()

Returns the current default height for grid rows.

wxGrid::GetGridCursorCol

int GetGridCursorCol ()

Returns the current grid cell column position.

wxGrid::GetGridCursorRow

int GetGridCursorRow ()

Returns the current grid cell row position.

wxGrid::GetGridLineColour

wxColour GetGridLineColour ()

Returns the colour used for grid lines.

wxGrid::GridLinesEnabled

bool GridLinesEnabled ()

Returns true if drawing of grid lines is turned on, false otherwise.

wxGrid::GetLabelBackgroundColour

wxColour GetLabelBackgroundColour ()

Returns the colour used for the background of row and column labels.

wxGrid::GetLabelFont

wxFont GetLabelFont ()

CHAPTER 7

619

Returns the font used for row and column labels.

wxGrid::GetLabelTextColour

wxColour GetLabelTextColour ()

Returns the colour used for row and column label text.

wxGrid::GetNumberCols

int GetNumberCols ()

Returns the total number of grid columns (actually the number of columns in the
underlying grid table).

wxGrid::GetNumberRows

int GetNumberRows ()

Returns the total number of grid rows (actually the number of rows in the underlying grid
table).

wxGrid::GetOrCreateCellAttr

wxGridCellAttr* GetOrCreateCellAttr (int row, int col) const

wxGrid::GetRowMinimalAcceptableHeight

int GetRowMinimalAcceptableHeight ()

This returns the value of the lowest row width that can be handled correctly. See
member SetRowMinimalAcceptableHeight (p. 651) for details.

wxGrid::GetRowMinimalHeight

int GetRowMinimalHeight (int col) const

wxGrid::GetRowLabelAlignment

void GetRowLabelAlignment (int* horiz, int* vert)

Sets the arguments to the current row label alignment values.

Horizontal alignment will be one of wxLEFT, wxCENTRE or wxRIGHT.
Vertical alignment will be one of wxTOP, wxCENTRE or wxBOTTOM.

wxPerl note: This method takes no parameters and returns a 2-element list (horiz,
vert) .

wxGrid::GetRowLabelSize

CHAPTER 7

620

int GetRowLabelSize ()

Returns the current width of the row labels.

wxGrid::GetRowLabelValue

wxString GetRowLabelValue (int row)

Returns the specified row label. The default grid table class provides numeric row labels.
If you are using a custom grid table you can
overridewxGridTableBase::GetRowLabelValue (p. 681) to provide your own labels.

wxGrid::GetRowSize

int GetRowSize (int row)

Returns the height of the specified row.

wxGrid::GetScrollLineX

int GetScrollLineX () const

Returns the number of pixels per horizontal scroll increment. The default is 15.

See also

wxGrid::GetScrollLineY (p. 638), wxGrid::SetScrollLineX (p. 652),
wxGrid::SetScrollLineY (p. 652)

wxGrid::GetScrollLineY

int GetScrollLineY () const

Returns the number of pixels per vertical scroll increment. The default is 15.

See also

wxGrid::GetScrollLineX (p. 638), wxGrid::SetScrollLineX (p. 652),
wxGrid::SetScrollLineY (p. 652)

wxGrid::GetSelectionMode

wxGrid::wxGridSelectionModes GetSelectionMode () const

Returns the current selection mode, see wxGrid::SetSelectionMode (p. 653).

wxGrid::GetSelectedCells

wxGridCellCoordsArray GetSelectedCells () const

Returns an array of singly selected cells.

CHAPTER 7

621

wxGrid::GetSelectedCols

wxArrayInt GetSelectedCols () const

Returns an array of selected cols.

wxGrid::GetSelectedRows

wxArrayInt GetSelectedRows () const

Returns an array of selected rows.

wxGrid::GetSelectionBackground

wxColour GetSelectionBackground () const

Access or update the selection fore/back colours

wxGrid::GetSelectionBlockTopLeft

wxGridCellCoordsArray GetSelectionBlockTopLeft () const

Returns an array of the top left corners of blocks of selected cells, see
wxGrid::GetSelectionBlockBottomRight (p. 639).

wxGrid::GetSelectionBlockBottomRight

wxGridCellCoordsArray GetSelectionBlockBottomRight () const

Returns an array of the bottom right corners of blocks of selected cells, see
wxGrid::GetSelectionBlockTopLeft (p. 639).

wxGrid::GetSelectionForeground

wxColour GetSelectionForeground () const

wxGrid::GetTable

wxGridTableBase * GetTable () const

Returns a base pointer to the current table object.

wxGrid::GetViewWidth

int GetViewWidth ()

Returned number of whole cols visible.

wxGrid::HideCellEditControl

CHAPTER 7

622

void HideCellEditControl ()

Hides the in-place cell edit control.

wxGrid::InitColWidths

void InitColWidths ()

Init the m_colWidths/Rights arrays

wxGrid::InitRowHeights

void InitRowHeights ()

NB: never access m_row/col arrays directly because they are created on demand,
always use accessor functions instead!

Init the m_rowHeights/Bottoms arrays with default values.

wxGrid::InsertCols

bool InsertCols (int pos = 0, int numCols = 1, bool updateLabels = true)

Inserts one or more new columns into a grid with the first new column at the specified
position and returns true if successful. The updateLabels argument is not used at
present.

The sequence of actions begins with the grid object requesting the underlying grid table
to insert new columns. If this is successful the table notifies the grid and the grid updates
the display. For a default grid (one where you have called wxGrid::CreateGrid (p. 628))
this process is automatic. If you are using a custom grid table (specified with
wxGrid::SetTable (p. 653)) then you must override wxGridTableBase::InsertCols (p. 681)
in your derived table class.

wxGrid::InsertRows

bool InsertRows (int pos = 0, int numRows = 1, bool updateLabels = true)

Inserts one or more new rows into a grid with the first new row at the specified position
and returns true if successful. The updateLabels argument is not used at present.

The sequence of actions begins with the grid object requesting the underlying grid table
to insert new rows. If this is successful the table notifies the grid and the grid updates the
display. For a default grid (one where you have called wxGrid::CreateGrid (p. 628)) this
process is automatic. If you are using a custom grid table (specified with
wxGrid::SetTable (p. 653)) then you must override wxGridTableBase::InsertRows (p.
680) in your derived table class.

wxGrid::IsCellEditControlEnabled

bool IsCellEditControlEnabled () const

CHAPTER 7

623

Returns true if the in-place edit control is currently enabled.

wxGrid::IsCurrentCellReadOnly

bool IsCurrentCellReadOnly () const

Returns true if the current cell has been set to read-only (see wxGrid::SetReadOnly (p.
650)).

wxGrid::IsEditable

bool IsEditable ()

Returns false if the whole grid has been set as read-only or true otherwise. See
wxGrid::EnableEditing (p. 630) for more information about controlling the editing status
of grid cells.

wxGrid::IsInSelection

bool IsInSelection (int row, int col) const

bool IsInSelection (const wxGridCellCoords& coords) const

Is this cell currently selected.

wxGrid::IsReadOnly

bool IsReadOnly (int row, int col) const

Returns true if the cell at the specified location can't be edited. See also
wxGrid::IsReadOnly (p. 641).

wxGrid::IsSelection

bool IsSelection ()

Returns true if there are currently rows, columns or blocks of cells selected.

wxGrid::IsVisible

bool IsVisible (int row, int col, bool wholeCellVisible = true)

bool IsVisible (const wxGridCellCoords& coords, bool wholeCellVisible = true)

Returns true if a cell is either wholly visible (the default) or at least partially visible in the
grid window.

wxGrid::MakeCellVisible

void MakeCellVisible (int row, int col)

CHAPTER 7

624

void MakeCellVisible (const wxGridCellCoords& coords)

Brings the specified cell into the visible grid cell area with minimal scrolling. Does
nothing if the cell is already visible.

wxGrid::MoveCursorDown

bool MoveCursorDown (bool expandSelection)

Moves the grid cursor down by one row. If a block of cells was previously selected it will
expand if the argument is true or be cleared if the argument is false.

Keyboard
This function is called for Down cursor key presses or Shift+Down to expand a selection.

wxGrid::MoveCursorLeft

bool MoveCursorLeft (bool expandSelection)

Moves the grid cursor left by one column. If a block of cells was previously selected it will
expand if the argument is true or be cleared if the argument is false.

Keyboard
This function is called for Left cursor key presses or Shift+Left to expand a selection.

wxGrid::MoveCursorRight

bool MoveCursorRight (bool expandSelection)

Moves the grid cursor right by one column. If a block of cells was previously selected it
will expand if the argument is true or be cleared if the argument is false.

Keyboard
This function is called for Right cursor key presses or Shift+Right to expand a selection.

wxGrid::MoveCursorUp

bool MoveCursorUp (bool expandSelection)

Moves the grid cursor up by one row. If a block of cells was previously selected it will
expand if the argument is true or be cleared if the argument is false.

Keyboard
This function is called for Up cursor key presses or Shift+Up to expand a selection.

wxGrid::MoveCursorDownBlock

bool MoveCursorDownBlock (bool expandSelection)

Moves the grid cursor down in the current column such that it skips to the beginning or
end of a block of non-empty cells. If a block of cells was previously selected it will

CHAPTER 7

625

expand if the argument is true or be cleared if the argument is false.

Keyboard
This function is called for the Ctrl+Down key combination. Shift+Ctrl+Down expands a
selection.

wxGrid::MoveCursorLeftBlock

bool MoveCursorLeftBlock (bool expandSelection)

Moves the grid cursor left in the current row such that it skips to the beginning or end of
a block of non-empty cells. If a block of cells was previously selected it will expand if the
argument is true or be cleared if the argument is false.

Keyboard
This function is called for the Ctrl+Left key combination. Shift+Ctrl+left expands a
selection.

wxGrid::MoveCursorRightBlock

bool MoveCursorRightBlock (bool expandSelection)

Moves the grid cursor right in the current row such that it skips to the beginning or end of
a block of non-empty cells. If a block of cells was previously selected it will expand if the
argument is true or be cleared if the argument is false.

Keyboard
This function is called for the Ctrl+Right key combination. Shift+Ctrl+Right expands a
selection.

wxGrid::MoveCursorUpBlock

bool MoveCursorUpBlock (bool expandSelection)

Moves the grid cursor up in the current column such that it skips to the beginning or end
of a block of non-empty cells. If a block of cells was previously selected it will expand if
the argument is true or be cleared if the argument is false.

Keyboard
This function is called for the Ctrl+Up key combination. Shift+Ctrl+Up expands a
selection.

wxGrid::MovePageDown

bool MovePageDown ()

Moves the grid cursor down by some number of rows so that the previous bottom visible
row becomes the top visible row.

Keyboard
This function is called for PgDn keypresses.

CHAPTER 7

626

wxGrid::MovePageUp

bool MovePageUp ()

Moves the grid cursor up by some number of rows so that the previous top visible row
becomes the bottom visible row.

Keyboard
This function is called for PgUp keypresses.

wxGrid::RegisterDataType

void RegisterDataType (const wxString& typeName, wxGridCellRenderer* renderer,
wxGridCellEditor* editor)

Methods for a registry for mapping data types to Renderers/Editors

wxGrid::SaveEditControlValue

void SaveEditControlValue ()

Sets the value of the current grid cell to the current in-place edit control value. This is
called automatically when the grid cursor moves from the current cell to a new cell. It is
also a good idea to call this function when closing a grid since any edits to the final cell
location will not be saved otherwise.

wxGrid::SelectAll

void SelectAll ()

Selects all cells in the grid.

wxGrid::SelectBlock

void SelectBlock (int topRow, int leftCol,int bottomRow, int rightCol, bool
addToSelected = false)

void SelectBlock (const wxGridCellCoords& topLeft,const wxGridCellCoords&
bottomRight, bool addToSelected = false)

Selects a rectangular block of cells. If addToSelected is false then any existing selection
will be deselected; if true the column will be added to the existing selection.

wxGrid::SelectCol

void SelectCol (int col, bool addToSelected = false)

Selects the specified column. If addToSelected is false then any existing selection will be
deselected; if true the column will be added to the existing selection.

CHAPTER 7

627

wxGrid::SelectionToDeviceRect

wxRect SelectionToDeviceRect ()

This function returns the rectangle that encloses the selected cells in device coords and
clipped to the client size of the grid window.

wxGrid::SelectRow

void SelectRow (int row, bool addToSelected = false)

Selects the specified row. If addToSelected is false then any existing selection will be
deselected; if true the row will be added to the existing selection.

wxGrid::SetCellAlignment

void SetCellAlignment (int row, int col, int horiz, int vert)

void SetCellAlignment (int align, int row, int col)

Sets the horizontal and vertical alignment for grid cell text at the specified location.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetCellBackgroundColour

void SetCellBackgroundColour (int row, int col, const wxColour& colour)

wxGrid::SetCellEditor

void SetCellEditor (int row, int col, wxGridCellEditor* editor)

Sets the editor for the grid cell at the specified location. The grid will take ownership of
the pointer.

See wxGridCellEditor (p. 661) and the wxGrid overview (p. Error! Bookmark not
defined.) for more information about cell editors and renderers.

wxGrid::SetCellFont

void SetCellFont (int row, int col, const wxFont& font)

Sets the font for text in the grid cell at the specified location.

wxGrid::SetCellRenderer

void SetCellRenderer (int row, int col, wxGridCellRenderer* renderer)

CHAPTER 7

628

Sets the renderer for the grid cell at the specified location. The grid will take ownership
of the pointer.

See wxGridCellRenderer (p. 677) and the wxGrid overview (p. Error! Bookmark not
defined.) for more information about cell editors and renderers.

wxGrid::SetCellTextColour

void SetCellTextColour (int row, int col, const wxColour& colour)

void SetCellTextColour (const wxColour& val, int row, int col)

void SetCellTextColour (const wxColour& colour)

Sets the text colour for the grid cell at the specified location.

wxGrid::SetCellValue

void SetCellValue (int row, int col, const wxString& s)

void SetCellValue (const wxGridCellCoords& coords, const wxString& s)

void SetCellValue (const wxString& val, int row, int col)

Sets the string value for the cell at the specified location. For simple applications where
a grid object automatically uses a default grid table of string values you use this function
together with wxGrid::GetCellValue (p. 632) to access cell values.

For more complex applications where you have derived your own grid table class that
contains various data types (e.g. numeric, boolean or user-defined custom types) then
you only use this function for those cells that contain string values.

The last form is for backward compatibility only.

See wxGridTableBase::CanSetValueAs (p. 679) and the wxGrid overview (p. Error!
Bookmark not defined.) for more information.

wxGrid::SetColAttr

void SetColAttr (int col, wxGridCellAttr* attr)

Sets the cell attributes for all cells in the specified column.

For more information about controlling grid cell attributes see the wxGridCellAttr (p. 654)
cell attribute class and the wxGrid classes overview (p. Error! Bookmark not defined.).

wxGrid::SetColFormatBool

void SetColFormatBool (int col)

Sets the specified column to display boolean values. wxGrid displays boolean values
with a checkbox.

CHAPTER 7

629

wxGrid::SetColFormatNumber

void SetColFormatNumber (int col)

Sets the specified column to display integer values.

wxGrid::SetColFormatFloat

void SetColFormatFloat (int col, int width = -1, int precision = -1)

Sets the specified column to display floating point values with the given width and
precision.

wxGrid::SetColFormatCustom

void SetColFormatCustom (int col, const wxString& typeName)

Sets the specified column to display data in a custom format. See the wxGrid overview
(p. Error! Bookmark not defined.) for more information on working with custom data
types.

wxGrid::SetColLabelAlignment

void SetColLabelAlignment (int horiz, int vert)

Sets the horizontal and vertical alignment of column label text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetColLabelSize

void SetColLabelSize (int height)

Sets the height of the column labels.

wxGrid::SetColLabelValue

void SetColLabelValue (int col, const wxString& value)

Set the value for the given column label. If you are using a derived grid table you must
override wxGridTableBase::SetColLabelValue (p. 681)for this to have any effect.

wxGrid::SetColMinimalWidth

void SetColMinimalWidth (int col, int width)

Sets the minimal width for the specified column. This should normally be called when

CHAPTER 7

630

creating the grid because it will not resize a column that is already narrower than the
minimal width. The width argument must be higher than the minimimal acceptable
column width, seewxGrid::GetColMinimalAcceptableWidth (p. 633).

wxGrid::SetColMinimalAcceptableWidth

void SetColMinimalAcceptableWidth (int width)

This modifies the minimum column width that can be handled correctly. Specifying a low
value here allows smaller grid cells to be dealt with correctly. Specifying a value here
which is much smaller than the actual minimum size will incur a performance penalty in
the functions which perform grid cell index lookup on the basis of screen coordinates.
This should normally be called when creating the grid because it will not resize existing
columns with sizes smaller than the value specified here.

wxGrid::SetColSize

void SetColSize (int col, int width)

Sets the width of the specified column.

This function does not refresh the grid. If you are calling it outside of a BeginBatch /
EndBatch block you can use wxGrid::ForceRefresh (p. 631) to see the changes.

Automatically sizes the column to fit its contents. If setAsMin is true the calculated width
will also be set as the minimal width for the column.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::SetDefaultCellAlignment

void SetDefaultCellAlignment (int horiz, int vert)

Sets the default horizontal and vertical alignment for grid cell text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetDefaultCellBackgroundColour

void SetDefaultCellBackgroundColour (const wxColour& colour)

Sets the default background colour for grid cells.

wxGrid::SetDefaultCellFont

CHAPTER 7

631

void SetDefaultCellFont (const wxFont& font)

Sets the default font to be used for grid cell text.

wxGrid::SetDefaultCellTextColour

void SetDefaultCellTextColour (const wxColour& colour)

Sets the current default colour for grid cell text.

wxGrid::SetDefaultEditor

void SetDefaultEditor (wxGridCellEditor* editor)

Sets the default editor for grid cells. The grid will take ownership of the pointer.

See wxGridCellEditor (p. 661) and the wxGrid overview (p. Error! Bookmark not
defined.) for more information about cell editors and renderers.

wxGrid::SetDefaultRenderer

void SetDefaultRenderer (wxGridCellRenderer* renderer)

Sets the default renderer for grid cells. The grid will take ownership of the pointer.

See wxGridCellRenderer (p. 677) and the wxGrid overview (p. Error! Bookmark not
defined.) for more information about cell editors and renderers.

wxGrid::SetDefaultColSize

void SetDefaultColSize (int width, bool resizeExistingCols = false)

Sets the default width for columns in the grid. This will only affect columns subsequently
added to the grid unless resizeExistingCols is true.

wxGrid::SetDefaultRowSize

void SetDefaultRowSize (int height, bool resizeExistingRows = false)

Sets the default height for rows in the grid. This will only affect rows subsequently added
to the grid unless resizeExistingRows is true.

wxGrid::SetGridCursor

void SetGridCursor (int row, int col)

Set the grid cursor to the specified cell. This function calls wxGrid::MakeCellVisible (p.
641).

wxGrid::SetGridLineColour

CHAPTER 7

632

void SetGridLineColour (const wxColour& colour)

Sets the colour used to draw grid lines.

wxGrid::SetLabelBackgroundColour

void SetLabelBackgroundColour (const wxColour& colour)

Sets the background colour for row and column labels.

wxGrid::SetLabelFont

void SetLabelFont (const wxFont& font)

Sets the font for row and column labels.

wxGrid::SetLabelTextColour

void SetLabelTextColour (const wxColour& colour)

Sets the colour for row and column label text.

wxGrid::SetMargins

void SetMargins (int extraWidth, int extraHeight)

A grid may occupy more space than needed for its rows/columns. This function allows to
set how big this extra space is

wxGrid::SetOrCalcColumnSizes

int SetOrCalcColumnSizes (bool calcOnly, bool setAsMin = true)

Common part of AutoSizeColumn/Row() and GetBestSize()

wxGrid::SetOrCalcRowSizes

int SetOrCalcRowSizes (bool calcOnly, bool setAsMin = true)

wxGrid::SetReadOnly

void SetReadOnly (int row, int col, bool isReadOnly = true)

Makes the cell at the specified location read-only or editable. See also
wxGrid::IsReadOnly (p. 641).

wxGrid::SetRowAttr

void SetRowAttr (int row, wxGridCellAttr* attr)

CHAPTER 7

633

Sets the cell attributes for all cells in the specified row. See the wxGridCellAttr (p. 654)
class for more information about controlling cell attributes.

wxGrid::SetRowLabelAlignment

void SetRowLabelAlignment (int horiz, int vert)

Sets the horizontal and vertical alignment of row label text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetRowLabelSize

void SetRowLabelSize (int width)

Sets the width of the row labels.

wxGrid::SetRowLabelValue

void SetRowLabelValue (int row, const wxString& value)

Set the value for the given row label. If you are using a derived grid table you must
override wxGridTableBase::SetRowLabelValue (p. 681)for this to have any effect.

wxGrid::SetRowMinimalHeight

void SetRowMinimalHeight (int row, int height)

Sets the minimal height for the specified row. This should normally be called when
creating the grid because it will not resize a row that is already shorter than the minimal
height. The height argument must be higher than the minimimal acceptable row height,
seewxGrid::GetRowMinimalAcceptableHeight (p. 637).

wxGrid::SetRowMinimalAcceptableHeight

void SetRowMinimalAcceptableHeight (int height)

This modifies the minimum row width that can be handled correctly. Specifying a low
value here allows smaller grid cells to be dealt with correctly. Specifying a value here
which is much smaller than the actual minimum size will incur a performance penalty in
the functions which perform grid cell index lookup on the basis of screen coordinates.
This should normally be called when creating the grid because it will not resize existing
rows with sizes smaller than the value specified here.

wxGrid::SetRowSize

CHAPTER 7

634

void SetRowSize (int row, int height)

Sets the height of the specified row.

This function does not refresh the grid. If you are calling it outside of a BeginBatch /
EndBatch block you can use wxGrid::ForceRefresh (p. 631) to see the changes.

Automatically sizes the column to fit its contents. If setAsMin is true the calculated width
will also be set as the minimal width for the column.

Note

wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::SetScrollLineX

void SetScrollLineX (int x)

Sets the number of pixels per horizontal scroll increment. The default is 15. Sometimes
wxGrid has trouble setting the scrollbars correctly due to rounding errors: setting this to 1
can help.

See also

wxGrid::GetScrollLineX (p. 638), wxGrid::GetScrollLineY (p. 638),
wxGrid::SetScrollLineY (p. 652)

wxGrid::SetScrollLineY

void SetScrollLineY (int y)

Sets the number of pixels per vertical scroll increment. The default is 15. Sometimes
wxGrid has trouble setting the scrollbars correctly due to rounding errors: setting this to 1
can help.

See also

wxGrid::GetScrollLineX (p. 638), wxGrid::GetScrollLineY (p. 638),
wxGrid::SetScrollLineX (p. 652)

wxGrid::SetSelectionBackground

void SetSelectionBackground (const wxColour& c)

wxGrid::SetSelectionForeground

void SetSelectionForeground (const wxColour& c)

wxGrid::SetSelectionMode

CHAPTER 7

635

void SetSelectionMode (wxGrid::wxGridSelectionModes selmode)

Set the selection behaviour of the grid.

Parameters

wxGrid::wxGridSelectCells

The default mode where individual cells are selected.

wxGrid::wxGridSelectRows

Selections will consist of whole rows.

wxGrid::wxGridSelectColumns

Selections will consist of whole columns.

wxGrid::SetTable

bool SetTable (wxGridTableBase* table, bool takeOwnership = false,
wxGrid::wxGridSelectionModes selmode = wxGrid::wxGridSelectCells)

Passes a pointer to a custom grid table to be used by the grid. This should be called
after the grid constructor and before using the grid object. If takeOwnership is set to true
then the table will be deleted by the wxGrid destructor.

Use this function instead of wxGrid::CreateGrid (p. 628) when your application involves
complex or non-string data or data sets that are too large to fit wholly in memory.

wxGrid::ShowCellEditControl

void ShowCellEditControl ()

Displays the in-place cell edit control for the current cell.

wxGrid::XToCol

int XToCol (int x)

Returns the grid column that corresponds to the logical x coordinate. Returns
wxNOT_FOUND if there is no column at the x position.

wxGrid::XToEdgeOfCol

int XToEdgeOfCol (int x)

Returns the column whose right hand edge is close to the given logical x position. If no
column edge is near to this position wxNOT_FOUND is returned.

wxGrid::YToEdgeOfRow

CHAPTER 7

636

int YToEdgeOfRow (int y)

Returns the row whose bottom edge is close to the given logical y position. If no row
edge is near to this position wxNOT_FOUND is returned.

wxGrid::YToRow

int YToRow (int y)

Returns the grid row that corresponds to the logical y coordinate. Returns
wxNOT_FOUND if there is no row at the y position.

wxGridCellAttr

This class can be used to alter the cells' appearance in the grid by changing their
colour/font/... from default. An object of this class may be returned by
wxGridTable::GetAttr().

Derived from

No base class

Include files

<wx/grid.h>

wxGridCellAttr::wxGridCellAttr

 wxGridCellAttr ()

Default constructor.

 wxGridCellAttr (const wxColour& colText, const wxColour& colBack, const
wxFont& font, int hAlign, int vAlign)

VZ: considering the number of members wxGridCellAttr has now, this ctor seems to be
pretty useless... may be we should just remove it?

wxGridCellAttr::Clone

wxGridCellAttr* Clone () const

Creates a new copy of this object.

wxGridCellAttr::IncRef

void IncRef ()

This class is ref counted: it is created with ref count of 1, so calling DecRef() once will

CHAPTER 7

637

delete it. Calling IncRef() allows to lock it until the matching DecRef() is called

wxGridCellAttr::DecRef

void DecRef ()

wxGridCellAttr::SetTextColour

void SetTextColour (const wxColour& colText)

Sets the text colour.

wxGridCellAttr::SetBackgroundColour

void SetBackgroundColour (const wxColour& colBack)

Sets the background colour.

wxGridCellAttr::SetFont

void SetFont (const wxFont& font)

Sets the font.

wxGridCellAttr::SetAlignment

void SetAlignment (int hAlign, int vAlign)

Sets the alignment.

wxGridCellAttr::SetReadOnly

void SetReadOnly (bool isReadOnly = true)

wxGridCellAttr::SetRenderer

void SetRenderer (wxGridCellRenderer* renderer)

takes ownership of the pointer

wxGridCellAttr::SetEditor

void SetEditor (wxGridCellEditor* editor)

wxGridCellAttr::HasTextColour

bool HasTextColour () const

accessors

CHAPTER 7

638

wxGridCellAttr::HasBackgroundColour

bool HasBackgroundColour () const

wxGridCellAttr::HasFont

bool HasFont () const

wxGridCellAttr::HasAlignment

bool HasAlignment () const

wxGridCellAttr::HasRenderer

bool HasRenderer () const

wxGridCellAttr::HasEditor

bool HasEditor () const

wxGridCellAttr::GetTextColour

const wxColour& GetTextColour () const

wxGridCellAttr::GetBackgroundColour

const wxColour& GetBackgroundColour () const

wxGridCellAttr::GetFont

const wxFont& GetFont () const

wxGridCellAttr::GetAlignment

void GetAlignment (int* hAlign, int* vAlign) const

wxPerl note: This method takes no parameters and returns a 2-element list (hAlign,
vAlign) .

wxGridCellAttr::GetRenderer

wxGridCellRenderer* GetRenderer (wxGrid* grid, int row, int col) const

wxGridCellAttr::GetEditor

wxGridCellEditor* GetEditor (wxGrid* grid, int row, int col) const

CHAPTER 7

639

wxGridCellAttr::IsReadOnly

bool IsReadOnly () const

wxGridCellAttr::SetDefAttr

void SetDefAttr (wxGridCellAttr* defAttr)

wxGridBagSizer

A wxSizer (p. Error! Bookmark not defined.) that can lay out items in a virtual grid like
a wxFlexGridSizer (p. 557) but in this case explicit positioning of the items is allowed
using wxGBPosition (p. 605), and items can optionally span more than one row and/or
column using wxGBSpan (p. 608).

Derived from

wxFlexGridSizer (p. 557)
wxGridSizer (p. 682)
wxSizer (p. Error! Bookmark not defined.)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/gbsizer.h>

wxGridBagSizer::wxGridBagSizer

 wxGridBagSizer (int vgap = 0, int hgap = 0)

Constructor, with optional parameters to specify the gap between the rows and columns.

wxGridBagSizer::Add

wxSizerItem* Add (wxWindow* window, const wxGBPosition& pos, const
wxGBSpan& span = wxDefaultSpan, int flag = 0, int border = 0, wxObject* userData =
NULL)

wxSizerItem* Add (wxSizer* sizer, const wxGBPosition& pos, const wxGBSpan&
span = wxDefaultSpan, int flag = 0, int border = 0, wxObject* userData = NULL)

wxSizerItem* Add (int width, int height, const wxGBPosition& pos, const
wxGBSpan& span = wxDefaultSpan, int flag = 0, int border = 0, wxObject* userData =
NULL)

wxSizerItem* Add (wxGBSizerItem* item)

The Add methods return a valid pointer if the item was successfully placed at the given
position, NULL if something was already there.

CHAPTER 7

640

wxGridBagSizer::CalcMin

wxSize CalcMin ()

Called when the managed size of the sizer is needed or when layout needs done.

wxGridBagSizer::CheckForIntersection

bool CheckForIntersection (wxGBSizerItem* item, wxGBSizerItem* excludeItem =
NULL)

bool CheckForIntersection (const wxGBPosition& pos, const wxGBSpan& span,
wxGBSizerItem* excludeItem = NULL)

Look at all items and see if any intersect (or would overlap) the given item. Returns true
if so, false if there would be no overlap. If an excludeItem is given then it will not be
checked for intersection, for example it may be the item we are checking the position of.

wxGridBagSizer::FindItem

wxGBSizerItem* FindItem (wxWindow* window)

wxGBSizerItem* FindItem (wxSizer* sizer)

Find the sizer item for the given window or subsizer, returns NULL if not found. (non-
recursive)

wxGridBagSizer::FindItemAtPoint

wxGBSizerItem* FindItemAtPoint (const wxPoint& pt)

Return the sizer item located at the point given in pt, or NULL if there is no item at that
point. The (x,y) coordinates in pt correspond to the client coordinates of the window
using the sizer for layout. (non-recursive)

wxGridBagSizer::FindItemAtPosition

wxGBSizerItem* FindItemAtPosition (const wxGBPosition& pos)

Return the sizer item for the given grid cell, or NULL if there is no item at that position.
(non-recursive)

wxGridBagSizer::FindItemWithData

wxGBSizerItem* FindItemWithData (const wxObject* userData)

Return the sizer item that has a matching user data (it only compares pointer values) or
NULL if not found. (non-recursive)

wxGridBagSizer::GetCellSize

CHAPTER 7

641

wxSize GetCellSize (int row, int col) const

Get the size of the specified cell, including hgap and vgap. Only valid after a Layout.

wxGridBagSizer::GetEmptyCellSize

wxSize GetEmptyCellSize () const

Get the size used for cells in the grid with no item.

wxGridBagSizer::GetItemPosition

wxGBPosition GetItemPosition (wxWindow* window)

wxGBPosition GetItemPosition (wxSizer* sizer)

wxGBPosition GetItemPosition (size_t index)

Get the grid position of the specified item.

wxGridBagSizer::GetItemSpan

wxGBSpan GetItemSpan (wxWindow* window)

wxGBSpan GetItemSpan (wxSizer* sizer)

wxGBSpan GetItemSpan (size_t index)

Get the row/col spanning of the specified item

wxGridBagSizer::RecalcSizes

void RecalcSizes ()

Called when the managed size of the sizer is needed or when layout needs done.

wxGridBagSizer::SetEmptyCellSize

void SetEmptyCellSize (const wxSize& sz)

Set the size used for cells in the grid with no item.

wxGridBagSizer::SetItemPosition

bool SetItemPosition (wxWindow* window, const wxGBPosition& pos)

bool SetItemPosition (wxSizer* sizer, const wxGBPosition& pos)

bool SetItemPosition (size_t index, const wxGBPosition& pos)

Set the grid position of the specified item. Returns true on success. If the move is not
allowed (because an item is already there) then false is returned.

CHAPTER 7

642

wxGridBagSizer::SetItemSpan

bool SetItemSpan (wxWindow* window, const wxGBSpan& span)

bool SetItemSpan (wxSizer* sizer, const wxGBSpan& span)

bool SetItemSpan (size_t index, const wxGBSpan& span)

Set the row/col spanning of the specified item. Returns true on success. If the move is
not allowed (because an item is already there) then false is returned.

wxGridCellBoolEditor

The editor for boolean data.

Derived from

wxGridCellEditor (p. 661)

See also

wxGridCellEditor (p. 661), wxGridCellFloatEditor (p. 663), wxGridCellNumberEditor (p.
664), wxGridCellTextEditor (p. 665), wxGridCellChoiceEditor (p. 660)

Include files

<wx/grid.h>

wxGridCellBoolEditor::wxGridCellBoolEditor

 wxGridCellBoolEditor ()

Default constructor.

wxGridCellChoiceEditor

The editor for string data allowing to choose from a list of strings.

Derived from

wxGridCellEditor (p. 661)

See also

wxGridCellEditor (p. 661), wxGridCellFloatEditor (p. 663), wxGridCellBoolEditor (p. 660),
wxGridCellTextEditor (p. 665), wxGridCellNumberEditor (p. 664)

CHAPTER 7

643

wxGridCellChoiceEditor::wxGridCellChoiceEditor

 wxGridCellChoiceEditor (size_t count = 0, const wxString choices[] = NULL, bool
allowOthers = false)

 wxGridCellChoiceEditor (const wxArrayString& choices, bool allowOthers = false)

count

Number of strings from which the user can choose.

choices

An array of strings from which the user can choose.

allowOthers

If allowOthers if true, the user can type a string not in choices array.

wxGridCellChoiceEditor::SetParameters

void SetParameters (const wxString& params)

Parameters string format is "item1[,item2[...,itemN]]"

wxGridCellEditor

This class is responsible for providing and manipulating the in-place edit controls for the
grid. Instances of wxGridCellEditor (actually, instances of derived classes since it is an
abstract class) can be associated with the cell attributes for individual cells, rows,
columns, or even for the entire grid.

Derived from

wxGridCellWorker

See also

wxGridCellTextEditor (p. 665), wxGridCellFloatEditor (p. 663), wxGridCellBoolEditor (p.
660), wxGridCellNumberEditor (p. 664), wxGridCellChoiceEditor (p. 660)

Include files

<wx/grid.h>

wxGridCellEditor::wxGridCellEditor

 wxGridCellEditor ()

wxGridCellEditor::IsCreated

CHAPTER 7

644

bool IsCreated ()

wxGridCellEditor::Create

void Create (wxWindow* parent, wxWindowID id, wxEvtHandler* evtHandler)

Creates the actual edit control.

wxGridCellEditor::SetSize

void SetSize (const wxRect& rect)

Size and position the edit control.

wxGridCellEditor::Show

void Show (bool show, wxGridCellAttr* attr = NULL)

Show or hide the edit control, use the specified attributes to set colours/fonts for it.

wxGridCellEditor::PaintBackground

void PaintBackground (const wxRect& rectCell, wxGridCellAttr* attr)

Draws the part of the cell not occupied by the control: the base class version just fills it
with background colour from the attribute.

wxGridCellEditor::BeginEdit

void BeginEdit (int row, int col, wxGrid* grid)

Fetch the value from the table and prepare the edit control to begin editing. Set the focus
to the edit control.

wxGridCellEditor::EndEdit

bool EndEdit (int row, int col, wxGrid* grid)

Complete the editing of the current cell. Returns true if the value has changed. If
necessary, the control may be destroyed.

wxGridCellEditor::Reset

void Reset ()

Reset the value in the control back to its starting value.

wxGridCellEditor::StartingKey

void StartingKey (wxKeyEvent& event)

CHAPTER 7

645

If the editor is enabled by pressing keys on the grid, this will be called to let the editor do
something about that first key if desired.

wxGridCellEditor::StartingClick

void StartingClick ()

If the editor is enabled by clicking on the cell, this method will be called.

wxGridCellEditor::HandleReturn

void HandleReturn (wxKeyEvent& event)

Some types of controls on some platforms may need some help with the Return key.

wxGridCellEditor::Destroy

void Destroy ()

Final cleanup.

wxGridCellEditor::Clone

wxGridCellEditor* Clone () const

Create a new object which is the copy of this one.

wxGridCellEditor::~wxGridCellEditor

 ~wxGridCellEditor ()

The dtor is private because only DecRef() can delete us.

wxGridCellFloatEditor

The editor for floating point numbers data.

Derived from

wxGridCellTextEditor (p. 665)
wxGridCellEditor (p. 661)

See also

wxGridCellEditor (p. 661), wxGridCellNumberEditor (p. 664), wxGridCellBoolEditor (p.
660), wxGridCellTextEditor (p. 665), wxGridCellChoiceEditor (p. 660)

Include files

<wx/grid.h>

CHAPTER 7

646

wxGridCellFloatEditor::wxGridCellFloatEditor

 wxGridCellFloatEditor (int width = -1, int precision = -1)

width

Minimum number of characters to be shown.

precision

Number of digits after the decimal dot.

wxGridCellFloatEditor::SetParameters

void SetParameters (const wxString& params)

Parameters string format is "width,precision"

wxGridCellNumberEditor

The editor for numeric integer data.

Derived from

wxGridCellTextEditor (p. 665)
wxGridCellEditor (p. 661)

See also

wxGridCellEditor (p. 661), wxGridCellFloatEditor (p. 663), wxGridCellBoolEditor (p. 660),
wxGridCellTextEditor (p. 665), wxGridCellChoiceEditor (p. 660)

Include files

<wx/grid.h>

wxGridCellNumberEditor::wxGridCellNumberEditor

 wxGridCellNumberEditor (int min = -1, int max = -1)

Allows to specify the range for acceptable data; if min == max == -1, no range checking
is done

wxGridCellNumberEditor::GetString

wxString GetString () const

CHAPTER 7

647

String representation of the value.

wxGridCellNumberEditor::HasRange

bool HasRange () const

If the return value is true, the editor uses a wxSpinCtrl to get user input, otherwise it uses
a wxTextCtrl.

wxGridCellNumberEditor::SetParameters

void SetParameters (const wxString& params)

Parameters string format is "min,max".

wxGridCellTextEditor

The editor for string/text data.

Derived from

wxGridCellEditor (p. 661)

See also

wxGridCellEditor (p. 661), wxGridCellFloatEditor (p. 663), wxGridCellBoolEditor (p. 660),
wxGridCellNumberEditor (p. 664), wxGridCellChoiceEditor (p. 660)

Include files

<wx/grid.h>

wxGridCellTextEditor::wxGridCellTextEditor

 wxGridCellTextEditor ()

Default constructor.

wxGridCellTextEditor::SetParameters

void SetParameters (const wxString& params)

The parameters string format is "n" where n is a number representing the maximum
width.

wxGridEditorCreatedEvent

Derived from

CHAPTER 7

648

wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Event handling

The event handler for the following functions takes a wxGridEditorCreatedEvent (p. 666)
parameter. The ..._CMD_... variants also take a window identifier.

EVT_GRID_EDITOR_CREATED(func) The editor for a cell was created. Processes a
wxEVT_GRID_EDITOR_CREATED.

EVT_GRID_CMD_EDITOR_CREATED(id, func) The editor for a cell was created;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_CREATED.

Include files
<wx/grid.h>

wxGridEditorCreatedEvent::wxGridEditorCreatedEvent

 wxGridEditorCreatedEvent ()

Default constructor.

 wxGridEditorCreatedEvent (int id, wxEventType type, wxObject* obj, int row, int col,
wxControl* ctrl)

wxGridEditorCreatedEvent::GetCol

int GetCol ()

Returns the column at which the event occurred.

wxGridEditorCreatedEvent::GetControl

wxControl* GetControl ()

Returns the edit control.

wxGridEditorCreatedEvent::GetRow

int GetRow ()

Returns the row at which the event occurred.

wxGridEditorCreatedEvent::SetCol

void SetCol (int col)

CHAPTER 7

649

Sets the column at which the event occurred.

wxGridEditorCreatedEvent::SetControl

void SetControl (wxControl* ctrl)

Sets the edit control.

wxGridEditorCreatedEvent::SetRow

void SetRow (int row)

Sets the row at which the event occurred.

wxGridEvent

This event class contains information about various grid events.

Derived from

wxNotifyEvent (p. Error! Bookmark not defined.)
wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/grid.h>

Event handling

The event handler for the following functions takes a wxGridEvent (p. 667) parameter.
The ..._CMD_... variants also take a window identifier.

EVT_GRID_CELL_LEFT_CLICK(func) The user clicked a cell with the left mouse
button. Processes a
wxEVT_GRID_CELL_LEFT_CLICK.

EVT_GRID_CELL_RIGHT_CLICK(func) The user clicked a cell with the right mouse
button. Processes a
wxEVT_GRID_CELL_RIGHT_CLICK.

EVT_GRID_CELL_LEFT_DCLICK(func) The user double-clicked a cell with the left
mouse button. Processes a
wxEVT_GRID_CELL_LEFT_DCLICK.

EVT_GRID_CELL_RIGHT_DCLICK(func) The user double-clicked a cell with the right
mouse button. Processes a
wxEVT_GRID_CELL_RIGHT_DCLICK.

EVT_GRID_LABEL_LEFT_CLICK(func) The user clicked a label with the left mouse
button. Processes a

CHAPTER 7

650

wxEVT_GRID_LABEL_LEFT_CLICK.

EVT_GRID_LABEL_RIGHT_CLICK(func) The user clicked a label with the right
mouse button. Processes a
wxEVT_GRID_LABEL_RIGHT_CLICK.

EVT_GRID_LABEL_LEFT_DCLICK(func) The user double-clicked a label with the left
mouse button. Processes a
wxEVT_GRID_LABEL_LEFT_DCLICK.

EVT_GRID_LABEL_RIGHT_DCLICK(func) The user double-clicked a label with
the right mouse button. Processes a
wxEVT_GRID_LABEL_RIGHT_DCLICK.

EVT_GRID_CELL_CHANGE(func) The user changed the data in a cell. Processes
a wxEVT_GRID_CELL_CHANGE.

EVT_GRID_SELECT_CELL(func) The user moved to, and selected a cell.
Processes a wxEVT_GRID_SELECT_CELL.

EVT_GRID_EDITOR_HIDDEN(func) The editor for a cell was hidden. Processes a
wxEVT_GRID_EDITOR_HIDDEN.

EVT_GRID_EDITOR_SHOWN(func) The editor for a cell was shown. Processes a
wxEVT_GRID_EDITOR_SHOWN.

EVT_GRID_CMD_CELL_LEFT_CLICK(id, func) The user clicked a cell with the left
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_LEFT_CLICK.

EVT_GRID_CMD_CELL_RIGHT_CLICK(id, func) The user clicked a cell with the right
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_RIGHT_CLICK.

EVT_GRID_CMD_CELL_LEFT_DCLICK(id, func) The user double-clicked a cell with
the left mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_LEFT_DCLICK.

EVT_GRID_CMD_CELL_RIGHT_DCLICK(id, func) The user double-clicked a
cell with the right mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_CELL_RIGHT_DCLICK.

EVT_GRID_CMD_LABEL_LEFT_CLICK(id, func) The user clicked a label with the left
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_LABEL_LEFT_CLICK.

EVT_GRID_CMD_LABEL_RIGHT_CLICK(id, func) The user clicked a label with
the right mouse button; variant taking a window

CHAPTER 7

651

identifier. Processes a
wxEVT_GRID_LABEL_RIGHT_CLICK.

EVT_GRID_CMD_LABEL_LEFT_DCLICK(id, func) The user double-clicked a
label with the left mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_LABEL_LEFT_DCLICK.

EVT_GRID_CMD_LABEL_RIGHT_DCLICK(id, func) The user double-clicked a
label with the right mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_LABEL_RIGHT_DCLICK.

EVT_GRID_CMD_CELL_CHANGE(id, func) The user changed the data in a cell;
variant taking a window identifier. Processes a
wxEVT_GRID_CELL_CHANGE.

EVT_GRID_CMD_SELECT_CELL(id, func) The user moved to, and selected a
cell; variant taking a window identifier.
Processes a wxEVT_GRID_SELECT_CELL.

EVT_GRID_CMD_EDITOR_HIDDEN(id, func) The editor for a cell was hidden;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_HIDDEN.

EVT_GRID_CMD_EDITOR_SHOWN(id, func) The editor for a cell was shown;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_SHOWN.

wxGridEvent::wxGridEvent

 wxGridEvent ()

Default constructor.

 wxGridEvent (int id, wxEventType type, wxObject* obj, int row = -1, int col = -1, int x
= -1, int y = -1, bool sel = true, bool control = false, bool shift = false, bool alt = false,
bool meta = false)

Parameters

wxGridEvent::AltDown

bool AltDown ()

Returns true if the Alt key was down at the time of the event.

wxGridEvent::ControlDown

bool ControlDown ()

CHAPTER 7

652

Returns true if the Control key was down at the time of the event.

wxGridEvent::GetCol

int GetCol ()

Column at which the event occurred.

wxGridEvent::GetPosition

wxPoint GetPosition ()

Position in pixels at which the event occurred.

wxGridEvent::GetRow

int GetRow ()

Row at which the event occurred.

wxGridEvent::MetaDown

bool MetaDown ()

Returns true if the Meta key was down at the time of the event.

wxGridEvent::Selecting

bool Selecting ()

Returns true if the user deselected a cell, false if the user deselected a cell.

wxGridEvent::ShiftDown

bool ShiftDown ()

Returns true if the Shift key was down at the time of the event.

wxGridRangeSelectEvent

Derived from

wxNotifyEvent (p. Error! Bookmark not defined.)
wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Event handling

The event handler for the following functions takes a wxGridRangeSelectEvent (p. 671)

CHAPTER 7

653

parameter. The ..._CMD_... variants also take a window identifier.

EVT_GRID_RANGE_SELECT(func) The user selected a group of contiguous cells.
Processes a wxEVT_GRID_RANGE_SELECT.

EVT_GRID_CMD_RANGE_SELECT(func) The user selected a group of contiguous
cells; variant taking a window identifier.
Processes a wxEVT_GRID_RANGE_SELECT.

Include files
<wx/grid.h>

wxGridRangeSelectEvent::wxGridRangeSelectEvent

 wxGridRangeSelectEvent ()

Default constructor.

 wxGridRangeSelectEvent (int id, wxEventType type, wxObject* obj, const
wxGridCellCoords& topLeft, const wxGridCellCoords& bottomRight, bool sel = true,
bool control = false, bool shift = false, bool alt = false, bool meta = false)

wxGridRangeSelectEvent::AltDown

bool AltDown ()

Returns true if the Alt key was down at the time of the event.

wxGridRangeSelectEvent::ControlDown

bool ControlDown ()

Returns true if the Control key was down at the time of the event.

wxGridRangeSelectEvent::GetBottomRightCoords

wxGridCellCoords GetBottomRightCoords ()

Top left corner of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetBottomRow

int GetBottomRow ()

Bottom row of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetLeftCol

int GetLeftCol ()

CHAPTER 7

654

Left column of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetRightCol

int GetRightCol ()

Right column of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetTopLeftCoords

wxGridCellCoords GetTopLeftCoords ()

Top left corner of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetTopRow

int GetTopRow ()

Top row of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::MetaDown

bool MetaDown ()

Returns true if the Meta key was down at the time of the event.

wxGridRangeSelectEvent::Selecting

bool Selecting ()

Returns true if the area was selected, false otherwise.

wxGridRangeSelectEvent::ShiftDown

bool ShiftDown ()

Returns true if the Shift key was down at the time of the event.

wxGridSizeEvent

This event class contains information about a row/column resize event.

Derived from

wxNotifyEvent (p. Error! Bookmark not defined.)
wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

CHAPTER 7

655

<wx/grid.h>

Event handling

The event handler for the following functions takes a wxGridSizeEvent (p. 673)
parameter. The ..._CMD_... variants also take a window identifier.

EVT_GRID_COL_SIZE(func) The user resized a column by dragging it.
Processes a wxEVT_GRID_COL_SIZE.

EVT_GRID_ROW_SIZE(func) The user resized a row by dragging it.
Processes a wxEVT_GRID_ROW_SIZE.

EVT_GRID_CMD_COL_SIZE(func) The user resized a column by dragging it;
variant taking a window identifier. Processes a
wxEVT_GRID_COL_SIZE.

EVT_GRID_CMD_ROW_SIZE(func) The user resized a row by dragging it; variant
taking a window identifier. Processes a
wxEVT_GRID_ROW_SIZE.

wxGridSizeEvent::wxGridSizeEvent

 wxGridSizeEvent ()

Default constructor.

 wxGridSizeEvent (int id, wxEventType type, wxObject* obj, int rowOrCol = -1, int x =
-1, int y = -1, bool control = false, bool shift = false, bool alt = false, bool meta = false)

wxGridSizeEvent::AltDown

bool AltDown ()

Returns true if the Alt key was down at the time of the event.

wxGridSizeEvent::ControlDown

bool ControlDown ()

Returns true if the Control key was down at the time of the event.

wxGridSizeEvent::GetPosition

wxPoint GetPosition ()

Position in pixels at which the event occurred.

wxGridSizeEvent::GetRowOrCol

int GetRowOrCol ()

CHAPTER 7

656

Row or column at that was resized.

wxGridSizeEvent::MetaDown

bool MetaDown ()

Returns true if the Meta key was down at the time of the event.

wxGridSizeEvent::ShiftDown

bool ShiftDown ()

Returns true if the Shift key was down at the time of the event.

wxGridCellBoolRenderer

This class may be used to format boolean data in a cell. for string cells.

Derived from

wxGridCellRenderer (p. 677)

See also

wxGridCellRenderer (p. 677), wxGridCellStringRenderer (p. 678),
wxGridCellFloatRenderer (p. 675), wxGridCellNumberRenderer (p. 676)

Include files

<wx/grid.h>

wxGridCellBoolRenderer::wxGridCellBoolRenderer

 wxGridCellBoolRenderer ()

Default constructor

wxGridCellFloatRenderer

This class may be used to format floating point data in a cell.

Derived from

wxGridCellStringRenderer (p. 678)
wxGridCellRenderer (p. 677)

See also

wxGridCellRenderer (p. 677), wxGridCellNumberRenderer (p. 676),

CHAPTER 7

657

wxGridCellStringRenderer (p. 678), wxGridCellBoolRenderer (p. 674)

Include files

<wx/grid.h>

wxGridCellFloatRenderer::wxGridCellFloatRenderer

 wxGridCellFloatRenderer (int width = -1, int precision = -1)

width

Minimum number of characters to be shown.

precision

Number of digits after the decimal dot.

wxGridCellFloatRenderer::GetPrecision

int GetPrecision () const

Returns the precision (see wxGridCellFloatRenderer (p. 675)).

wxGridCellFloatRenderer::GetWidth

int GetWidth () const

Returns the width (see wxGridCellFloatRenderer (p. 675)).

wxGridCellFloatRenderer::SetParameters

void SetParameters (const wxString& params)

Parameters string format is "width[,precision]".

wxGridCellFloatRenderer::SetPrecision

void SetPrecision (int precision)

Sets the precision (see wxGridCellFloatRenderer (p. 675)).

wxGridCellFloatRenderer::SetWidth

void SetWidth (int width)

Sets the width (see wxGridCellFloatRenderer (p. 675))

CHAPTER 7

658

wxGridCellNumberRenderer

This class may be used to format integer data in a cell.

Derived from

wxGridellStringRenderer (p. 678)
wxGridCellRenderer (p. 677)

See also

wxGridCellRenderer (p. 677), wxGridCellStringRenderer (p. 678),
wxGridCellFloatRenderer (p. 675), wxGridCellBoolRenderer (p. 674)

Include files

<wx/grid.h>

wxGridCellNumberRenderer::wxGridCellNumberRenderer

 wxGridCellNumberRenderer ()

Default constructor

wxGridCellRenderer

This class is responsible for actually drawing the cell in the grid. You may pass it to the
wxGridCellAttr (below) to change the format of one given cell or to
wxGrid::SetDefaultRenderer() to change the view of all cells. This is an abstract class,
and you will normally use one of the predefined derived classes or derive your own class
from it.

Derived from

wxGridCellWorker

See also

wxGridCellStringRenderer (p. 678), wxGridCellNumberRenderer (p. 676),
wxGridCellFloatRenderer (p. 675), wxGridCellBoolRenderer (p. 674)

Include files

<wx/grid.h>

wxGridCellRenderer::Draw

void Draw (wxGrid& grid, wxGridCellAttr& attr, wxDC& dc, const wxRect& rect, int

CHAPTER 7

659

row, int col, bool isSelected)

Draw the given cell on the provided DC inside the given rectangle using the style
specified by the attribute and the default or selected state corresponding to the
isSelected value.

This pure virtual function has a default implementation which will prepare the DC using
the given attribute: it will draw the rectangle with the background colour from attr and set
the text colour and font.

wxGridCellRenderer::GetBestSize

wxSize GetBestSize (wxGrid& grid, wxGridCellAttr& attr, wxDC& dc, int row, int col)

Get the preferred size of the cell for its contents.

wxGridCellRenderer::Clone

wxGridCellRenderer* Clone () const

wxGridCellStringRenderer

This class may be used to format string data in a cell; it is the default for string cells.

Derived from

wxGridCellRenderer (p. 677)

See also

wxGridCellRenderer (p. 677), wxGridCellNumberRenderer (p. 676),
wxGridCellFloatRenderer (p. 675), wxGridCellBoolRenderer (p. 674)

Include files

<wx/grid.h>

wxGridCellStringRenderer::wxGridCellStringRenderer

 wxGridCellStringRenderer ()

Default constructor

wxGridTableBase

Grid table classes.

Derived from

CHAPTER 7

660

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/grid.h>

wxGridTableBase::wxGridTableBase

 wxGridTableBase ()

wxGridTableBase::~wxGridTableBase

 ~wxGridTableBase ()

wxGridTableBase::GetNumberRows

int GetNumberRows ()

You must override these functions in a derived table class.

wxGridTableBase::GetNumberCols

int GetNumberCols ()

wxGridTableBase::IsEmptyCell

bool IsEmptyCell (int row, int col)

wxGridTableBase::GetValue

wxString GetValue (int row, int col)

wxGridTableBase::SetValue

void SetValue (int row, int col, const wxString& value)

wxGridTableBase::GetTypeName

wxString GetTypeName (int row, int col)

Data type determination and value access.

wxGridTableBase::CanGetValueAs

bool CanGetValueAs (int row, int col, const wxString& typeName)

wxGridTableBase::CanSetValueAs

CHAPTER 7

661

bool CanSetValueAs (int row, int col, const wxString& typeName)

wxGridTableBase::GetValueAsLong

long GetValueAsLong (int row, int col)

wxGridTableBase::GetValueAsDouble

double GetValueAsDouble (int row, int col)

wxGridTableBase::GetValueAsBool

bool GetValueAsBool (int row, int col)

wxGridTableBase::SetValueAsLong

void SetValueAsLong (int row, int col, long value)

wxGridTableBase::SetValueAsDouble

void SetValueAsDouble (int row, int col, double value)

wxGridTableBase::SetValueAsBool

void SetValueAsBool (int row, int col, bool value)

wxGridTableBase::GetValueAsCustom

void* GetValueAsCustom (int row, int col, const wxString& typeName)

For user defined types

wxGridTableBase::SetValueAsCustom

void SetValueAsCustom (int row, int col, const wxString& typeName, void* value)

wxGridTableBase::SetView

void SetView (wxGrid* grid)

Overriding these is optional

wxGridTableBase::GetView

wxGrid * GetView () const

wxGridTableBase::Clear

CHAPTER 7

662

void Clear ()

wxGridTableBase::InsertRows

bool InsertRows (size_t pos = 0, size_t numRows = 1)

wxGridTableBase::AppendRows

bool AppendRows (size_t numRows = 1)

wxGridTableBase::DeleteRows

bool DeleteRows (size_t pos = 0, size_t numRows = 1)

wxGridTableBase::InsertCols

bool InsertCols (size_t pos = 0, size_t numCols = 1)

wxGridTableBase::AppendCols

bool AppendCols (size_t numCols = 1)

wxGridTableBase::DeleteCols

bool DeleteCols (size_t pos = 0, size_t numCols = 1)

wxGridTableBase::GetRowLabelValue

wxString GetRowLabelValue (int row)

wxGridTableBase::GetColLabelValue

wxString GetColLabelValue (int col)

wxGridTableBase::SetRowLabelValue

void SetRowLabelValue (int WXUNUSED(row), const wxString&)

wxGridTableBase::SetColLabelValue

void SetColLabelValue (int WXUNUSED(col), const wxString&)

wxGridTableBase::SetAttrProvider

void SetAttrProvider (wxGridCellAttrProvider* attrProvider)

Attribute handling give us the attr provider to use - we take ownership of the pointer

CHAPTER 7

663

wxGridTableBase::GetAttrProvider

wxGridCellAttrProvider* GetAttrProvider () const

get the currently used attr provider (may be NULL)

wxGridTableBase::CanHaveAttributes

bool CanHaveAttributes ()

Does this table allow attributes? Default implementation creates a
wxGridCellAttrProvider if necessary.

wxGridTableBase::UpdateAttrRows

void UpdateAttrRows (size_t pos, int numRows)

change row/col number in attribute if needed

wxGridTableBase::UpdateAttrCols

void UpdateAttrCols (size_t pos, int numCols)

wxGridTableBase::GetAttr

wxGridCellAttr* GetAttr (int row, int col)

by default forwarded to wxGridCellAttrProvider if any. May be overridden to handle
attributes directly in the table.

wxGridTableBase::SetAttr

void SetAttr (wxGridCellAttr* attr, int row, int col)

these functions take ownership of the pointer

wxGridTableBase::SetRowAttr

void SetRowAttr (wxGridCellAttr* attr, int row)

wxGridTableBase::SetColAttr

void SetColAttr (wxGridCellAttr* attr, int col)

wxGridSizer

A grid sizer is a sizer which lays out its children in a two-dimensional table with all table
fields having the same size, i.e. the width of each field is the width of the widest child,
the height of each field is the height of the tallest child.

CHAPTER 7

664

Derived from

wxSizer (p. Error! Bookmark not defined.)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/sizer.h>

See also

wxSizer (p. Error! Bookmark not defined.), Sizer overview (p. Error! Bookmark not
defined.)

wxGridSizer::wxGridSizer

 wxGridSizer (int rows, int cols, int vgap, int hgap)

 wxGridSizer (int cols, int vgap = 0, int hgap = 0)

Constructor for a wxGridSizer. rows and cols determine the number of columns and
rows in the sizer - if either of the parameters is zero, it will be calculated to form the total
number of children in the sizer, thus making the sizer grow dynamically. vgap and hgap
define extra space between all children.

wxGridSizer::GetCols

int GetCols ()

Returns the number of columns in the sizer.

wxGridSizer::GetHGap

int GetHGap ()

Returns the horizontal gap (in pixels) between cells in the sizer.

wxGridSizer::GetRows

int GetRows ()

Returns the number of rows in the sizer.

wxGridSizer::GetVGap

int GetVGap ()

Returns the vertical gap (in pixels) between the cells in the sizer.

wxGridSizer::SetCols

CHAPTER 7

665

void SetCols (int cols)

Sets the number of columns in the sizer.

wxGridSizer::SetHGap

void SetHGap (int gap)

Sets the horizontal gap (in pixels) between cells in the sizer.

wxGridSizer::SetRows

void SetRows (int rows)

Sets the number of rows in the sizer.

wxGridSizer::SetVGap

void SetVGap (int gap)

Sets the vertical gap (in pixels) between the cells in the sizer.

wxHashMap

This is a simple, type-safe, and reasonably efficient hash map class, whose interface is
a subset of the interface of STL containers. In particular, the interface is modeled after
std::map, and the various, non standard, std::hash_map.

Example

 class MyClass { /* ... */ };

 // declare a hash map with string keys and int values
 WX_DECLARE_STRING_HASH_MAP(int, MyHash5);
 // same, with int keys and MyClass* values
 WX_DECLARE_HASH_MAP(int, MyClass*, wxIntegerHa sh,
wxIntegerEqual, MyHash1);
 // same, with wxString keys and int values
 WX_DECLARE_STRING_HASH_MAP(int, MyHash3);
 // same, with wxString keys and values
 WX_DECLARE_STRING_HASH_MAP(wxString, MyHash2) ;

 MyHash1 h1;
 MyHash2 h2;

 // store and retrieve values
 h1[1] = new MyClass(1);
 h1[10000000] = NULL;
 h1[50000] = new MyClass(2);
 h2["Bill"] = "ABC";
 wxString tmp = h2["Bill"];
 // since element with key "Joe" is not present, this will
return
 // the default value, which is an empty string in the case of
wxString
 MyClass tmp2 = h2["Joe"];

CHAPTER 7

666

 // iterate over all the elements in the class
 MyHash2::iterator it;
 for(it = h2.begin(); it != h2.end(); ++it)
 {
 wxString key = it->first, value = it->secon d;
 // do something useful with key and value
 }

Declaring new hash table types

 WX_DECLARE_STRING_HASH_MAP(VALUE_T, // typ e of the values
 CLASSNAME); // nam e of the class

Declares a hash map class named CLASSNAME, with wxString keys and VALUE_T
values.

 WX_DECLARE_VOIDPTR_HASH_MAP(VALUE_T, // ty pe of the
values
 CLASSNAME); // na me of the class

Declares a hash map class named CLASSNAME, with void* keys and VALUE_T
values.

 WX_DECLARE_HASH_MAP(KEY_T, // type of the keys
 VALUE_T, // type of the values
 HASH_T, // hasher
 KEY_EQ_T, // key equalit y predicate
 CLASSNAME); // name of the class

The HASH_T and KEY_EQ_T are the types used for the hashing function and key
comparison. wxWidgets provides three predefined hashing functions:
wxIntegerHash for integer types (int , long , short , and their unsigned counterparts
), wxStringHash for strings (wxString , wxChar* , char*), andwxPointerHash for
any kind of pointer. Similarly three equality predicates:wxIntegerEqual ,
wxStringEqual , wxPointerEqual are provided.

Using this you could declare a hash map mapping int values to wxString like this:

 WX_DECLARE_HASH_MAP(int,
 wxString,
 wxIntegerHash,
 wxIntegerEqual,
 MyHash);

 // using an user-defined class for keys
 class MyKey { /* ... */ };

 // hashing function
 class MyKeyHash
 {
 public:
 MyKeyHash() { }

 unsigned long operator()(const MyKey& k) const
 { /* compute the hash */ }

 MyKeyHash& operator=(const MyKeyHash&) { re turn *this; }
 };

CHAPTER 7

667

 // comparison operator
 class MyKeyEqual
 {
 public:
 MyKeyEqual() { }
 bool operator()(const MyKey& a, const MyKe y& b) const
 { /* compare for equality */ }

 MyKeyEqual& operator=(const MyKeyEqual&) { return *this; }
 };

 WX_DECLARE_HASH_MAP(MyKey, // type of the keys
 SOME_TYPE, // any type yo u like
 MyKeyHash, // hasher
 MyKeyEqual, // key equalit y predicate
 CLASSNAME); // name of the class

In the documentation below you should replace wxHashMap with the name you used in
the class declaration.

wxHashMap::key_type Type of the hash keys

wxHashMap::mapped_type Type of the values stored in the hash map

wxHashMap::value_type Equivalent tostruct { key_type first;
mapped_type second };

wxHashMap::iterator Used to enumerate all the elements in a hash
map; it is similar to a value_type*

wxHashMap::const_iterator Used to enumerate all the elements in a
constant hash map; it is similar to a const
value_type*

wxHashMap::size_type Used for sizes

wxHashMap::Insert_Result The return value forinsert() (p. 688)

Iterators

An iterator is similar to a pointer, and so you can use the usual pointer operations: ++it
(and it++) to move to the next element,*it to access the element pointed to, it-
>first (it->second) to access the key (value) of the element pointed to. Hash
maps provide forward only iterators, this means that you can't use --it , it + 3 , it1
- it2 .

Include files

<wx/hashmap.h>

wxHashMap::wxHashMap

 wxHashMap (size_type size = 10)

CHAPTER 7

668

The size parameter is just a hint, the table will resize automatically to preserve
performance.

 wxHashMap (const wxHashMap& map)

Copy constructor.

wxHashMap::begin

const_iterator begin () const

iterator begin ()

Returns an iterator pointing at the first element of the hash map. Please remember that
hash maps do not guarantee ordering.

wxHashMap::clear

void clear ()

Removes all elements from the hash map.

wxHashMap::count

size_type count (const key_type& key) const

Counts the number of elements with the given key present in the map. This function
returns only 0 or 1.

wxHashMap::empty

bool empty () const

Returns true if the hash map does not contain any elements, false otherwise.

wxHashMap::end

const_iterator end () const

iterator end ()

Returns an iterator pointing at the one-after-the-last element of the hash map. Please
remember that hash maps do not guarantee ordering.

wxHashMap::erase

size_type erase (const key_type& key)

Erases the element with the given key, and returns the number of elements erased
(either 0 or 1).

CHAPTER 7

669

void erase (iterator it)

void erase (const_iterator it)

Erases the element pointed to by the iterator. After the deletion the iterator is no longer
valid and must not be used.

wxHashMap::find

iterator find (const key_type& key)

const_iterator find (const key_type& key) const

If an element with the given key is present, the functions returns an iterator pointing at
that element, otherwise an invalid iterator is returned (i.e. hashmap.find(
non_existent_key) == hashmap.end()).

wxHashMap::insert

Insert_Result insert (const value_type& v)

Inserts the given value in the hash map. The return value is equivalent to a
std::pair<wxHashMap::iterator, bool> ; the iterator points to the inserted
element, the boolean value is true if v was actually inserted.

wxHashMap::operator[]

mapped_type& operator[] (const key_type& key)

Use the key as an array subscript. The only difference is that if the given key is not
present in the hash map, an element with the default value_type() is inserted in the
table.

wxHashMap::size

size_type size () const

Returns the number of elements in the map.

wxHashSet

This is a simple, type-safe, and reasonably efficient hash set class, whose interface is a
subset of the interface of STL containers. In particular, the interface is modeled after
std::set, and the various, non standard, std::hash_map.

Example

 class MyClass { /* ... */ };

 // same, with MyClass* keys (only uses pointer equality!)
 WX_DECLARE_HASH_SET(MyClass*, wxPointerHash, w xPointerEqual,

CHAPTER 7

670

MySet1);
 // same, with int keys
 WX_DECLARE_HASH_SET(int, wxIntegerHash, wxInte gerEqual,
MySet2);
 // declare a hash set with string keys
 WX_DECLARE_HASH_SET(wxString, wxStringHash, wx StringEqual,
MySet3);

 MySet1 h1;
 MySet2 h1;
 MySet3 h3;

 // store and retrieve values
 h1.insert(new MyClass(1));

 h3.insert("foo");
 h3.insert("bar");
 h3.insert("baz");

 int size = h3.size(); // now is three
 bool has_foo = h3.find("foo") != h3.end();

 h3.insert("bar"); // still has size three

 // iterate over all the elements in the class
 MySet3::iterator it;
 for(it = h3.begin(); it != h3.end(); ++it)
 {
 wxString key = *it;
 // do something useful with key
 }

Declaring new hash set types

 WX_DECLARE_HASH_SET(KEY_T, // type of the keys
 HASH_T, // hasher
 KEY_EQ_T, // key equalit y predicate
 CLASSNAME); // name of the class

The HASH_T and KEY_EQ_T are the types used for the hashing function and key
comparison. wxWidgets provides three predefined hashing functions:
wxIntegerHash for integer types (int , long , short , and their unsigned counterparts
), wxStringHash for strings (wxString , wxChar* , char*), andwxPointerHash for
any kind of pointer. Similarly three equality predicates:wxIntegerEqual ,
wxStringEqual , wxPointerEqual are provided.

Using this you could declare a hash set using int values like this:

 WX_DECLARE_HASH_SET(int,
 wxIntegerHash,
 wxIntegerEqual,
 MySet);

 // using an user-defined class for keys
 class MyKey { /* ... */ };

 // hashing function
 class MyKeyHash
 {
 public:
 MyKeyHash() { }

CHAPTER 7

671

 unsigned long operator()(const MyKey& k) const
 { /* compute the hash */ }

 MyKeyHash& operator=(const MyKeyHash&) { re turn *this; }
 };

 // comparison operator
 class MyKeyEqual
 {
 public:
 MyKeyEqual() { }
 bool operator()(const MyKey& a, const MyKe y& b) const
 { /* compare for equality */ }

 MyKeyEqual& operator=(const MyKeyEqual&) { return *this; }
 };

 WX_DECLARE_HASH_SET(MyKey, // type of the keys
 MyKeyHash, // hasher
 MyKeyEqual, // key equalit y predicate
 CLASSNAME); // name of the class

In the documentation below you should replace wxHashSet with the name you used in
the class declaration.

wxHashSet::key_type Type of the hash keys

wxHashSet::mapped_type Type of hash keys

wxHashSet::value_type Type of hash keys

wxHashSet::iterator Used to enumerate all the elements in a hash
set; it is similar to a value_type*

wxHashSet::const_iterator Used to enumerate all the elements in a
constant hash set; it is similar to a const
value_type*

wxHashSet::size_type Used for sizes

wxHashSet::Insert_Result The return value forinsert() (p. 692)

Iterators

An iterator is similar to a pointer, and so you can use the usual pointer operations: ++it
(and it++) to move to the next element,*it to access the element pointed to, *it to
access the value of the element pointed to. Hash sets provide forward only iterators, this
means that you can't use --it , it + 3 , it1 - it2 .

Include files

<wx/hashset.h>

wxHashSet::wxHashSet

CHAPTER 7

672

 wxHashSet (size_type size = 10)

The size parameter is just a hint, the table will resize automatically to preserve
performance.

 wxHashSet (const wxHashSet& set)

Copy constructor.

wxHashSet::begin

const_iterator begin () const

iterator begin ()

Returns an iterator pointing at the first element of the hash set. Please remember that
hash sets do not guarantee ordering.

wxHashSet::clear

void clear ()

Removes all elements from the hash set.

wxHashSet::count

size_type count (const key_type& key) const

Counts the number of elements with the given key present in the set. This function
returns only 0 or 1.

wxHashSet::empty

bool empty () const

Returns true if the hash set does not contain any elements, false otherwise.

wxHashSet::end

const_iterator end () const

iterator end ()

Returns an iterator pointing at the one-after-the-last element of the hash set. Please
remember that hash sets do not guarantee ordering.

wxHashSet::erase

size_type erase (const key_type& key)

Erases the element with the given key, and returns the number of elements erased

CHAPTER 7

673

(either 0 or 1).

void erase (iterator it)

void erase (const_iterator it)

Erases the element pointed to by the iterator. After the deletion the iterator is no longer
valid and must not be used.

wxHashSet::find

iterator find (const key_type& key)

const_iterator find (const key_type& key) const

If an element with the given key is present, the functions returns an iterator pointing at
that element, otherwise an invalid iterator is returned (i.e. hashset.find(non_existent_key
) == hashset.end()).

wxHashSet::insert

Insert_Result insert (const value_type& v)

Inserts the given value in the hash set. The return value is equivalent to a
std::pair<wxHashMap::iterator, bool> ; the iterator points to the inserted
element, the boolean value is true if v was actually inserted.

wxHashSet::size

size_type size () const

Returns the number of elements in the set.

wxHashTable

Please note that this class is retained for backward compatibility reasons; you should
use wxHashMap (p. 684).

This class provides hash table functionality for wxWidgets, and for an application if it
wishes. Data can be hashed on an integer or string key.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/hash.h>

Example

Below is an example of using a hash table.

CHAPTER 7

674

 wxHashTable table(wxKEY_STRING);

 wxPoint *point = new wxPoint(100, 200);
 table.Put("point 1", point);

 wxPoint *found_point = (wxPoint *)table.Get("poin t 1");

A hash table is implemented as an array of pointers to lists. When no data has been
stored, the hash table takes only a little more space than this array (default size is 1000).
When a data item is added, an integer is constructed from the integer or string key that
is within the bounds of the array. If the array element is NULL, a new (keyed) list is
created for the element. Then the data object is appended to the list, storing the key in
case other data objects need to be stored in the list also (when a 'collision' occurs).

Retrieval involves recalculating the array index from the key, and searching along the
keyed list for the data object whose stored key matches the passed key. Obviously this
is quicker when there are fewer collisions, so hashing will become inefficient if the
number of items to be stored greatly exceeds the size of the hash table.

See also

wxList (p. 851)

wxHashTable::wxHashTable

 wxHashTable (unsigned int key_type, int size = 1000)

Constructor. key_type is one of wxKEY_INTEGER, or wxKEY_STRING, and indicates
what sort of keying is required. size is optional.

wxHashTable::~wxHashTable

 ~wxHashTable ()

Destroys the hash table.

wxHashTable::BeginFind

void BeginFind ()

The counterpart of Next. If the application wishes to iterate through all the data in the
hash table, it can call BeginFind and then loop on Next.

wxHashTable::Clear

void Clear ()

Clears the hash table of all nodes (but as usual, doesn't delete user data).

CHAPTER 7

675

wxHashTable::Delete

wxObject * Delete (long key)

wxObject * Delete (const wxString& key)

Deletes entry in hash table and returns the user's data (if found).

wxHashTable::DeleteContents

void DeleteContents (bool flag)

If set to true data stored in hash table will be deleted when hash table object is
destroyed.

wxHashTable::Get

wxObject * Get(long key)

wxObject * Get(const char* key)

Gets data from the hash table, using an integer or string key (depending on which has
table constructor was used).

wxHashTable::MakeKey

long MakeKey (const wxString& string)

Makes an integer key out of a string. An application may wish to make a key explicitly
(for instance when combining two data values to form a key).

wxHashTable::Next

wxHashTable::Node * Next ()

If the application wishes to iterate through all the data in the hash table, it can call
BeginFind and then loop on Next. This function returns a wxHashTable::Node pointer
(or NULL if there are no more nodes). The return value is functionally equivalent to
wxNode but might not be implemented as a wxNode . The user will probably only wish
to use theGetData method to retrieve the data; the node may also be deleted.

wxHashTable::Put

void Put (long key, wxObject * object)

void Put (const char* key, wxObject * object)

Inserts data into the hash table, using an integer or string key (depending on which has
table constructor was used). The key string is copied and stored by the hash table
implementation.

CHAPTER 7

676

wxHashTable::GetCount

size_t GetCount () const

Returns the number of elements in the hash table.

wxHelpController

This is a family of classes by which applications may invoke a help viewer to provide on-
line help.

A help controller allows an application to display help, at the contents or at a particular
topic, and shut the help program down on termination. This avoids proliferation of many
instances of the help viewer whenever the user requests a different topic via the
application's menus or buttons.

Typically, an application will create a help controller instance when it starts, and
immediately call Initialize to associate a filename with it. The help viewer will only get
run, however, just before the first call to display something.

Most help controller classes actually derive from wxHelpControllerBase and have names
of the form wxXXXHelpController or wxHelpControllerXXX. An appropriate class is
aliased to the name wxHelpController for each platform, as follows:

 • On desktop Windows, wxCHMHelpController is used (MS HTML Help).

 • On Windows CE, wxWinceHelpController is used.

 • On all other platforms, wxHtmlHelpController is used if wxHTML is compiled into
wxWidgets; otherwise wxExtHelpController is used (for invoking an external
browser).

The remaining help controller classes need to be named explicitly by an application that
wishes to make use of them.

There are currently the following help controller classes defined:

 • wxWinHelpController, for controlling Windows Help.

 • wxCHMHelpController, for controlling MS HTML Help. To use this, you need to
set wxUSE_MS_HTML_HELP to 1 in setup.h and have htmlhelp.h header from
Microsoft's HTML Help kit (you don't need VC++ specific htmlhelp.lib because
wxWidgets loads necessary DLL at runtime and so it works with all compilers).

 • wxBestHelpController, for controlling MS HTML Help or, if Microsoft's runtime is
not available, wxHtmlHelpController (p. 721). You need to provideboth CHM
and HTB versions of the help file. For 32bit Windows only.

 • wxExtHelpController, for controlling external browsers under Unix. The default
browser is Netscape Navigator. The 'help' sample shows its use.

 • wxWinceHelpController, for controlling a simple .htm help controller for

CHAPTER 7

677

Windows CE applications.

 • wxHtmlHelpController (p. 721), a sophisticated help controller using wxHTML (p.
Error! Bookmark not defined.), in a similar style to the Microsoft HTML Help
viewer and using some of the same files. Although it has an API compatible with
other help controllers, it has more advanced features, so it is recommended that
you use the specific API for this class instead. Note that if you use .zip or .htb
formats for your books, you must add this line to your application initialization:
wxFileSystem::AddHandler(new wxZipFSHandler); or nothing will be
shown in your help window.

Derived from

wxHelpControllerBase
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/help.h> (wxWidgets chooses the appropriate help controller class)
<wx/helpbase.h> (wxHelpControllerBase class)
<wx/helpwin.h> (Windows Help controller)
<wx/msw/helpchm.h> (MS HTML Help controller)
<wx/generic/helpext.h> (external HTML browser controller)
<wx/html/helpctrl.h> (wxHTML based help controller: wxHtmlHelpController)

See also

wxHtmlHelpController (p. 721), wxHTML (p. Error! Bookmark not defined.)

wxHelpController::wxHelpController

 wxHelpController (wxWindow* parentWindow = NULL)

Constructs a help instance object, but does not invoke the help viewer.

If you provide a window, it will be used by some help controller classes, such as
wxCHMHelpController, wxWinHelpController and wxHtmlHelpController, as the parent
for the help window instead of the value of wxApp::GetTopWindow (p. 39). You can also
change the parent window later with wxHelpController::SetParentWindow (p. 699).

wxHelpController::~wxHelpController

 ~wxHelpController ()

Destroys the help instance, closing down the viewer if it is running.

wxHelpController::Initialize

virtual bool Initialize (const wxString& file)

CHAPTER 7

678

virtual bool Initialize (const wxString& file, int server)

Initializes the help instance with a help filename, and optionally a server socket number
if using wxHelp (now obsolete). Does not invoke the help viewer. This must be called
directly after the help instance object is created and before any attempts to communicate
with the viewer.

You may omit the file extension and a suitable one will be chosen. For
wxHtmlHelpController, the extensions zip, htb and hhp will be appended while searching
for a suitable file. For WinHelp, the hlp extension is appended.

wxHelpController::DisplayBlock

virtual bool DisplayBlock (long blockNo)

If the help viewer is not running, runs it and displays the file at the given block number.

WinHelp: Refers to the context number.

MS HTML Help: Refers to the context number.

External HTML help: the same as for wxHelpController::DisplaySection (p. 697).

wxHtmlHelpController: sectionNo is an identifier as specified in the .hhc file. See Help
files format (p. Error! Bookmark not defined.).

This function is for backward compatibility only, and applications should use
wxHelpController (p. 697) instead.

wxHelpController::DisplayContents

virtual bool DisplayContents ()

If the help viewer is not running, runs it and displays the contents.

wxHelpController::DisplayContextPopup

virtual bool DisplayContextPopup (int contextId)

Displays the section as a popup window using a context id.

Returns false if unsuccessful or not implemented.

wxHelpController::DisplaySection

virtual bool DisplaySection (const wxString& section)

If the help viewer is not running, runs it and displays the given section.

The interpretation of section differs between help viewers. For most viewers, this call is
equivalent to KeywordSearch. For MS HTML Help, wxHTML help and external HTML
help, if section has a .htm or .html extension, that HTML file will be displayed; otherwise

CHAPTER 7

679

a keyword search is done.

virtual bool DisplaySection (int sectionNo)

If the help viewer is not running, runs it and displays the given section.

WinHelp, MS HTML Help sectionNo is a context id.

External HTML help: wxExtHelpController implements sectionNo as an id in a map file,
which is of the form:

0 wx.html ; Index
1 wx34.html#classref ; Class reference
2 wx204.html ; Function reference

wxHtmlHelpController: sectionNo is an identifier as specified in the .hhc file. See Help
files format (p. Error! Bookmark not defined.).

See also the help sample for notes on how to specify section numbers for various help
file formats.

wxHelpController::DisplayTextPopup

virtual bool DisplayTextPopup (const wxString& text, const wxPoint& pos)

Displays the text in a popup window, if possible.

Returns false if unsuccessful or not implemented.

wxHelpController::GetFrameParameters

virtual wxFrame * GetFrameParameters (const wxSize * size = NULL, const wxPoint
* pos = NULL, bool * newFrameEachTime = NULL)

wxHtmlHelpController returns the frame, size and position.

For all other help controllers, this function does nothing and just returns NULL.

Parameters

viewer

This defaults to "netscape" for wxExtHelpController.

flags

This defaults to wxHELP_NETSCAPE for wxExtHelpController, indicating that the
viewer is a variant of Netscape Navigator.

wxHelpController::GetParentWindow

virtual bool GetParentWindow () const

Returns the window to be used as the parent for the help window. This window is used

CHAPTER 7

680

by wxCHMHelpController, wxWinHelpController and wxHtmlHelpController.

wxHelpController::KeywordSearch

virtual bool KeywordSearch (const wxString& keyWord, wxHelpSearchMode mode
= wxHELP_SEARCH_ALL)

If the help viewer is not running, runs it, and searches for sections matching the given
keyword. If one match is found, the file is displayed at this section. The optional
parameter allows the search the index (wxHELP_SEARCH_INDEX) but this currently
only supported by the wxHtmlHelpController.

WinHelp, MS HTML Help: If more than one match is found, the first topic is displayed.

External HTML help, simple wxHTML help: If more than one match is found, a choice of
topics is displayed.

wxHtmlHelpController: see wxHtmlHelpController::KeywordSearch (p. 725).

wxHelpController::LoadFile

virtual bool LoadFile (const wxString& file = "")

If the help viewer is not running, runs it and loads the given file. If the filename is not
supplied or is empty, the file specified in Initialize is used. If the viewer is already
displaying the specified file, it will not be reloaded. This member function may be used
before each display call in case the user has opened another file.

wxHtmlHelpController ignores this call.

wxHelpController::OnQuit

virtual bool OnQuit ()

Overridable member called when this application's viewer is quit by the user.

This does not work for all help controllers.

wxHelpController::SetFrameParameters

virtual void SetFrameParameters (const wxString & title, const wxSize & size, const
wxPoint & pos = wxDefaultPosition, bool newFrameEachTime = false)

For wxHtmlHelpController, the title is set (again with %s indicating the page title) and
also the size and position of the frame if the frame is already open. newFrameEachTime
is ignored.

For all other help controllers this function has no effect.

wxHelpController::SetParentWindow

CHAPTER 7

681

virtual void SetParentWindow (wxWindow* parentWindow)

Sets the window to be used as the parent for the help window. This is used by
wxCHMHelpController, wxWinHelpController and wxHtmlHelpController.

wxHelpController::SetViewer

virtual void SetViewer (const wxString& viewer, long flags)

Sets detailed viewer information. So far this is only relevant to wxExtHelpController.

Some examples of usage:

 m_help.SetViewer("kdehelp");
 m_help.SetViewer("gnome-help-browser");
 m_help.SetViewer("netscape", wxHELP_NETSCAPE);

wxHelpController::Quit

virtual bool Quit ()

If the viewer is running, quits it by disconnecting.

For Windows Help, the viewer will only close if no other application is using it.

wxHelpControllerHelpProvider

wxHelpControllerHelpProvider is an implementation of wxHelpProvider which supports
both context identifiers and plain text help strings. If the help text is an integer, it is
passed to wxHelpController::DisplayContextPopup. Otherwise, it shows the string in a
tooltip as per wxSimpleHelpProvider. If you use this with a wxCHMHelpController
instance on windows, it will use the native style of tip window instead of wxTipWindow
(p. Error! Bookmark not defined.).

You can use the convenience function wxContextId to convert an integer context id to a
string for passing to wxWindow::SetHelpText (p. Error! Bookmark not defined.).

Derived from

wxSimpleHelpProvider (p. Error! Bookmark not defined.)
wxHelpProvider (p. 702)

Include files

<wx/cshelp.h>

See also

wxHelpProvider (p. 702), wxSimpleHelpProvider (p. Error! Bookmark not defined.),
wxContextHelp (p. 215), wxWindow::SetHelpText (p. Error! Bookmark not defined.),
wxWindow::GetHelpText (p. Error! Bookmark not defined.)

CHAPTER 7

682

wxHelpControllerHelpProvider::wxHelpControllerHelpP rovider

 wxHelpControllerHelpProvider (wxHelpControllerBase* hc = NULL)

Note that the instance doesn't own the help controller. The help controller should be
deleted separately.

wxHelpControllerHelpProvider::SetHelpController

void SetHelpController (wxHelpControllerBase* hc)

Sets the help controller associated with this help provider.

wxHelpControllerHelpProvider::GetHelpController

wxHelpControllerBase* GetHelpController () const

Returns the help controller associated with this help provider.

wxHelpEvent

A help event is sent when the user has requested context-sensitive help. This can either
be caused by the application requesting context-sensitive help mode via wxContextHelp
(p. 215), or (on MS Windows) by the system generating a WM_HELP message when the
user pressed F1 or clicked on the query button in a dialog caption.

A help event is sent to the window that the user clicked on, and is propagated up the
window hierarchy until the event is processed or there are no more event handlers. The
application should call wxEvent::GetId to check the identity of the clicked-on window,
and then either show some suitable help or call wxEvent::Skip if the identifier is
unrecognised. Calling Skip is important because it allows wxWidgets to generate further
events for ancestors of the clicked-on window. Otherwise it would be impossible to show
help for container windows, since processing would stop after the first window found.

Derived from

wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxHelpEvent argument.

CHAPTER 7

683

EVT_HELP(id, func) Process a wxEVT_HELP event.

EVT_HELP_RANGE(id1, id2, func) Process a wxEVT_HELP event for a range of
ids.

See also
wxContextHelp (p. 215), wxDialog (p. 412), Event handling overview (p. Error!
Bookmark not defined.)

wxHelpEvent::wxHelpEvent

 wxHelpEvent (WXTYPE eventType = 0, wxWindowID id = 0, const wxPoint& point)

Constructor.

wxHelpEvent::GetPosition

const wxPoint& GetPosition () const

Returns the left-click position of the mouse, in screen coordinates. This allows the
application to position the help appropriately.

wxHelpEvent::SetPosition

void SetPosition (const wxPoint& pt)

Sets the left-click position of the mouse, in screen coordinates.

wxHelpProvider

wxHelpProvider is an abstract class used by a program implementing context-sensitive
help to show the help text for the given window.

The current help provider must be explicitly set by the application using
wxHelpProvider::Set().

Derived from

No base class

Include files

<wx/cshelp.h>

See also

wxContextHelp (p. 215), wxContextHelpButton (p. 216), wxSimpleHelpProvider (p.
Error! Bookmark not defined.), wxHelpControllerHelpProvider (p. 700),
wxWindow::SetHelpText (p. Error! Bookmark not defined.), wxWindow::GetHelpText
(p. Error! Bookmark not defined.)

CHAPTER 7

684

wxHelpProvider::~wxHelpProvider

 ~wxHelpProvider ()

Virtual destructor for any base class.

wxHelpProvider::AddHelp

void AddHelp (wxWindowBase* window, const wxString& text)

Associates the text with the given window or id. Although all help providers have these
functions to allow making wxWindow::SetHelpText (p. Error! Bookmark not defined.)
work, not all of them implement the functions.

wxHelpProvider::Get

wxHelpProvider* Get()

Unlike some other classes, the help provider is not created on demand. This must be
explicitly done by the application.

wxHelpProvider::GetHelp

wxString GetHelp (const wxWindowBase* window)

Gets the help string for this window. Its interpretation is dependent on the help provider
except that empty string always means that no help is associated with the window.

void AddHelp (wxWindowID id, const wxString& text)

This version associates the given text with all windows with this id. May be used to set
the same help string for all Cancel buttons in the application, for example.

wxHelpProvider::RemoveHelp

void RemoveHelp (wxWindowBase* window)

Removes the association between the window pointer and the help text. This is called by
the wxWindow destructor. Without this, the table of help strings will fill up and when
window pointers are reused, the wrong help string will be found.

wxHelpProvider::Set

wxHelpProvider* Set(wxHelpProvider* helpProvider)

Get/set the current, application-wide help provider. Returns the previous one.

wxHelpProvider::ShowHelp

CHAPTER 7

685

bool ShowHelp (wxWindowBase* window)

Shows help for the given window. Uses GetHelp (p. 703) internally if applicable.

Returns true if it was done, or false if no help was available for this window.

wxHtmlCell

Internal data structure. It represents fragments of parsed HTML page, the so-called cell
- a word, picture, table, horizontal line and so on. It is used by wxHtmlWindow (p. 751)
and wxHtmlWinParser (p. 760) to represent HTML page in memory.

You can divide cells into two groups : visible cells with non-zero width and height and
helper cells (usually with zero width and height) that perform special actions such as
color or font change.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/html/htmlcell.h>

See Also

Cells Overview (p. Error! Bookmark not defined.),wxHtmlContainerCell (p. 710)

wxHtmlCell::wxHtmlCell

 wxHtmlCell ()

Constructor.

wxHtmlCell::AdjustPagebreak

virtual bool AdjustPagebreak (int * pagebreak)

This method is used to adjust pagebreak position. The parameter is variable that
contains y-coordinate of page break (= horizontal line that should not be crossed by
words, images etc.). If this cell cannot be divided into two pieces (each one on another
page) then it moves the pagebreak few pixels up.

Returns true if pagebreak was modified, false otherwise

Usage: while (container->AdjustPagebreak(&p)) {}

wxHtmlCell::Draw

virtual void Draw (wxDC& dc, int x, int y, int view_y1, int view_y2)

CHAPTER 7

686

Renders the cell.

Parameters

dc

Device context to which the cell is to be drawn

x,y

Coordinates of parent's upper left corner (origin). You must add this to
m_PosX,m_PosY when passing coordinates to dc's methods Example : dc ->
DrawText("hello", x + m_PosX, y + m_PosY)

view_y1

y-coord of the first line visible in window. This is used to optimize rendering speed

view_y2

y-coord of the last line visible in window. This is used to optimize rendering speed

wxHtmlCell::DrawInvisible

virtual void DrawInvisible (wxDC& dc, int x, int y)

This method is called instead of Draw (p. 704) when the cell is certainly out of the screen
(and thus invisible). This is not nonsense - some tags (like wxHtmlColourCell (p. 709)or
font setter) must be drawn even if they are invisible!

Parameters

dc

Device context to which the cell is to be drawn

x,y

Coordinates of parent's upper left corner. You must add this to m_PosX,m_PosY
when passing coordinates to dc's methods Example : dc ->
DrawText("hello", x + m_PosX, y + m_PosY)

wxHtmlCell::Find

virtual const wxHtmlCell* Find (int condition, const void* param)

Returns pointer to itself if this cell matches condition (or if any of the cells following in the
list matches), NULL otherwise. (In other words if you call top-level container's Find it will
return pointer to the first cell that matches the condition)

It is recommended way how to obtain pointer to particular cell or to cell of some type
(e.g. wxHtmlAnchorCell reacts on wxHTML_COND_ISANCHOR condition)

Parameters

CHAPTER 7

687

condition

Unique integer identifier of condition

param

Optional parameters

Defined conditions

wxHTML_COND_ISANCHOR Finds particular anchor. param is pointer to
wxString with name of the anchor.

wxHTML_COND_USER User-defined conditions start from this number.

wxHtmlCell::GetDescent

int GetDescent () const

Returns descent value of the cell (m_Descent member). See explanation:

wxHtmlCell::GetFirstChild

wxHtmlCell* GetFirstChild ()

Returns pointer to the first cell in the list. You can then use child's GetNext (p.
707)method to obtain pointer to the next cell in list.

Note: This shouldn't be used by the end user. If you need some way of finding particular
cell in the list, try Find (p. 705) method instead.

wxHtmlCell::GetHeight

int GetHeight () const

Returns height of the cell (m_Height member).

wxHtmlCell::GetId

virtual wxString GetId () const

CHAPTER 7

688

Returns unique cell identifier if there is any, empty string otherwise.

wxHtmlCell::GetLink

virtual wxHtmlLinkInfo* GetLink (int x = 0, int y = 0) const

Returns hypertext link if associated with this cell or NULL otherwise. See wxHtmlLinkInfo
(p. 735). (Note: this makes sense only for visible tags).

Parameters

x,y

Coordinates of position where the user pressed mouse button. These coordinates
are used e.g. by COLORMAP. Values are relative to the upper left corner of THIS
cell (i.e. from 0 to m_Width or m_Height)

wxHtmlCell::GetNext

wxHtmlCell* GetNext () const

Returns pointer to the next cell in list (see htmlcell.h if you're interested in details).

wxHtmlCell::GetParent

wxHtmlContainerCell* GetParent () const

Returns pointer to parent container.

wxHtmlCell::GetPosX

int GetPosX () const

Returns X position within parent (the value is relative to parent's upper left corner). The
returned value is meaningful only if parent's Layout (p. 707) was called before!

wxHtmlCell::GetPosY

int GetPosY () const

Returns Y position within parent (the value is relative to parent's upper left corner). The
returned value is meaningful only if parent's Layout (p. 707) was called before!

wxHtmlCell::GetWidth

int GetWidth () const

Returns width of the cell (m_Width member).

wxHtmlCell::Layout

CHAPTER 7

689

virtual void Layout (int w)

This method performs two actions:

 1. adjusts the cell's width according to the fact that maximal possible width is w.
(this has sense when working with horizontal lines, tables etc.)

 2. prepares layout (=fill-in m_PosX, m_PosY (and sometimes m_Height) members)
based on actual width w

It must be called before displaying cells structure because m_PosX and m_PosY are
undefined (or invalid) before calling Layout.

wxHtmlCell::OnMouseClick

virtual void OnMouseClick (wxWindow* parent, int x, int y, const wxMouseEvent&
event)

This function is simple event handler. Each time the user clicks mouse button over a cell
within wxHtmlWindow (p. 751) this method of that cell is called. Default behavior is that it
calls wxHtmlWindow::LoadPage (p. 754).

Note

If you need more "advanced" event handling you should use wxHtmlBinderCell instead.

Parameters

parent

parent window (always wxHtmlWindow!)

x, y

coordinates of mouse click (this is relative to cell's origin

left, middle, right

boolean flags for mouse buttons. true if the left/middle/right button is pressed, false
otherwise

wxHtmlCell::SetId

void SetId (const wxString& id)

Sets unique cell identifier. Default value is no identifier, i.e. empty string.

wxHtmlCell::SetLink

void SetLink (const wxHtmlLinkInfo& link)

Sets the hypertext link associated with this cell. (Default value is wxHtmlLinkInfo (p.
735)("", "") (no link))

CHAPTER 7

690

wxHtmlCell::SetNext

void SetNext (wxHtmlCell *cell)

Sets the next cell in the list. This shouldn't be called by user - it is to be used only by
wxHtmlContainerCell::InsertCell (p. 711).

wxHtmlCell::SetParent

void SetParent (wxHtmlContainerCell *p)

Sets parent container of this cell. This is called fromwxHtmlContainerCell::InsertCell (p.
711).

wxHtmlCell::SetPos

void SetPos (int x, int y)

Sets the cell's position within parent container.

wxHtmlColourCell

This cell changes the colour of either the background or the foreground.

Derived from

wxHtmlCell (p. 704)

Include files

<wx/html/htmlcell.h>

wxHtmlColourCell::wxHtmlColourCell

 wxHtmlColourCell (wxColour clr, int flags = wxHTML_CLR_FOREGROUND)

Constructor.

Parameters

clr

The color

flags

Can be one of following:

wxHTML_CLR_FOREGROUND change color of text

CHAPTER 7

691

wxHTML_CLR_BACKGROUND change background color

wxHtmlContainerCell

The wxHtmlContainerCell class is an implementation of a cell that may contain more
cells in it. It is heavily used in the wxHTML layout algorithm.

Derived from

wxHtmlCell (p. 704)

Include files

<wx/html/htmlcell.h>

See Also

Cells Overview (p. Error! Bookmark not defined.)

wxHtmlContainerCell::wxHtmlContainerCell

 wxHtmlContainerCell (wxHtmlContainerCell *parent)

Constructor. parent is pointer to parent container or NULL.

wxHtmlContainerCell::GetAlignHor

int GetAlignHor () const

Returns container's horizontal alignment.

wxHtmlContainerCell::GetAlignVer

int GetAlignVer () const

Returns container's vertical alignment.

wxHtmlContainerCell::GetBackgroundColour

wxColour GetBackgroundColour ()

Returns the background colour of the container or wxNullColour if no background
colour is set.

wxHtmlContainerCell::GetIndent

int GetIndent (int ind) const

CHAPTER 7

692

Returns the indentation. ind is one of the wxHTML_INDENT_* constants.

Note: You must call GetIndentUnits (p. 711) with same ind parameter in order to
correctly interpret the returned integer value. It is NOT always in pixels!

wxHtmlContainerCell::GetIndentUnits

int GetIndentUnits (int ind) const

Returns the units of indentation for ind where ind is one of the wxHTML_INDENT_*
constants.

wxHtmlContainerCell::InsertCell

void InsertCell (wxHtmlCell *cell)

Inserts new cell into the container.

wxHtmlContainerCell::SetAlign

void SetAlign (const wxHtmlTag& tag)

Sets the container's alignment (both horizontal and vertical) according to the values
stored in tag. (Tags ALIGN parameter is extracted.) In fact it is only a front-end to
SetAlignHor (p. 711) and SetAlignVer (p. 711).

wxHtmlContainerCell::SetAlignHor

void SetAlignHor (int al)

Sets the container's horizontal alignment. During Layout (p. 707) each line is aligned
according to al value.

Parameters

al

new horizontal alignment. May be one of these values:

wxHTML_ALIGN_LEFT lines are left-aligned (default)

wxHTML_ALIGN_JUSTIFY lines are justified

wxHTML_ALIGN_CENTER lines are centered

wxHTML_ALIGN_RIGHT lines are right-aligned

wxHtmlContainerCell::SetAlignVer

void SetAlignVer (int al)

CHAPTER 7

693

Sets the container's vertical alignment. This is per-line alignment!

Parameters

al

new vertical alignment. May be one of these values:

wxHTML_ALIGN_BOTTOM cells are over the line (default)

wxHTML_ALIGN_CENTER cells are centered on line

wxHTML_ALIGN_TOP cells are under the line

wxHtmlContainerCell::SetBackgroundColour

void SetBackgroundColour (const wxColour& clr)

Sets the background colour for this container.

wxHtmlContainerCell::SetBorder

void SetBorder (const wxColour& clr1, const wxColour& clr2)

Sets the border (frame) colours. A border is a rectangle around the container.

Parameters

clr1

Colour of top and left lines

clr2

Colour of bottom and right lines

CHAPTER 7

694

wxHtmlContainerCell::SetIndent

void SetIndent (int i, int what, int units = wxHTML_UNITS_PIXELS)

Sets the indentation (free space between borders of container and subcells).

Parameters

i

Indentation value.

what

Determines which of the four borders we're setting. It is OR combination of
following constants:

wxHTML_INDENT_TOP top border

wxHTML_INDENT_BOTTOM bottom

wxHTML_INDENT_LEFT left

wxHTML_INDENT_RIGHT right

wxHTML_INDENT_HORIZONTAL left and right

wxHTML_INDENT_VERTICAL top and bottom

wxHTML_INDENT_ALL all 4 borders

units

Units of i. This parameter affects interpretation of value.

wxHTML_UNITS_PIXELS i is number of pixels

wxHTML_UNITS_PERCENT i is interpreted as percents of width of

CHAPTER 7

695

parent container

wxHtmlContainerCell::SetMinHeight

void SetMinHeight (int h, int align = wxHTML_ALIGN_TOP)

Sets minimal height of the container.

When container's Layout (p. 707) is called, m_Height is set depending on layout of
subcells to the height of area covered by layed-out subcells. Calling this method
guarantees you that the height of container is never smaller than h - even if the subcells
cover much smaller area.

Parameters

h

The minimal height.

align

If height of the container is lower than the minimum height, empty space must be
inserted somewhere in order to ensure minimal height. This parameter is one of
wxHTML_ALIGN_TOP, wxHTML_ALIGN_BOTTOM,
wxHTML_ALIGN_CENTER . It refers to the contents, not to the empty place.

wxHtmlContainerCell::SetWidthFloat

void SetWidthFloat (int w, int units)

void SetWidthFloat (const wxHtmlTag& tag, double pixel_scale = 1.0)

Sets floating width adjustment.

The normal behaviour of container is that its width is the same as the width of parent
container (and thus you can have only one sub-container per line). You can change this
by setting FWA.

pixel_scale is number of real pixels that equals to 1 HTML pixel.

Parameters

w

Width of the container. If the value is negative it means complement to full width of
parent container (e.g.SetWidthFloat(-50, wxHTML_UNITS_PIXELS) sets the
width of container to parent's width minus 50 pixels. This is useful when creating
tables - you can call SetWidthFloat(50) and SetWidthFloat(-50))

units

Units of w This parameter affects the interpretation of value.

CHAPTER 7

696

wxHTML_UNITS_PIXELS w is number of pixels

wxHTML_UNITS_PERCENT w is interpreted as percents of width of
parent container

tag

In the second version of method, w and unitsinfo is extracted from tag's WIDTH
parameter.

wxPython note: The second form of this method is named SetWidthFloatFromTag in
wxPython.

wxHtmlDCRenderer

This class can render HTML document into a specified area of a DC. You can use it in
your own printing code, although use of wxHtmlEasyPrinting (p. 717) or wxHtmlPrintout
(p. 743) is strongly recommended.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/html/htmprint.h>

wxHtmlDCRenderer::wxHtmlDCRenderer

 wxHtmlDCRenderer ()

Constructor.

wxHtmlDCRenderer::SetDC

void SetDC(wxDC* dc, double pixel_scale = 1.0)

Assign DC instance to the renderer.

pixel_scale can be used when rendering to high-resolution DCs (e.g. printer) to adjust
size of pixel metrics. (Many dimensions in HTML are given in pixels -- e.g. image sizes.
300x300 image would be only one inch wide on typical printer. With pixel_scale = 3.0 it
would be 3 inches.)

wxHtmlDCRenderer::SetFonts

void SetFonts (const wxString& normal_face, const wxString& fixed_face, const int
*sizes = NULL)

CHAPTER 7

697

Sets fonts. See wxHtmlWindow::SetFonts (p. 758) for detailed description.

See also SetSize (p. 715).

wxHtmlDCRenderer::SetSize

void SetSize (int width, int height)

Set size of output rectangle, in pixels. Note that you can't change width of the rectangle
between calls to Render (p. 716)! (You can freely change height.)

wxHtmlDCRenderer::SetHtmlText

void SetHtmlText (const wxString& html, const wxString& basepath =
wxEmptyString, bool isdir = true)

Assign text to the renderer. Render (p. 716) then draws the text onto DC.

Parameters

html

HTML text. This is not a filename.

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

isdir

false if basepath is filename, true if it is directory name (see wxFileSystem (p. 542)
for detailed explanation)

wxHtmlDCRenderer::Render

int Render (int x, int y, int from = 0, int dont_render = false)

Renders HTML text to the DC.

Parameters

x,y

 position of upper-left corner of printing rectangle (see SetSize (p. 715))

from

y-coordinate of the very first visible cell

dont_render

if true then this method only returns y coordinate of the next page and does not
output anything

CHAPTER 7

698

Returned value is y coordinate of first cell than didn't fit onto page. Use this value as
from in next call to Render in order to print multipages document.

Caution!

The Following three methods must always be called before any call to Render
(preferably in this order):

 • SetDC (p. 715)

 • SetSize (p. 715)

 • SetHtmlText (p. 715)

Render() changes the DC's user scale and does NOT r estore it.

wxHtmlDCRenderer::GetTotalHeight

int GetTotalHeight ()

Returns the height of the HTML text. This is important if area height (see SetSize (p.
715)) is smaller that total height and thus the page cannot fit into it. In that case you're
supposed to call Render (p. 716) as long as its return value is smaller than
GetTotalHeight's.

wxHtmlEasyPrinting

This class provides very simple interface to printing architecture. It allows you to print
HTML documents using only a few commands.

Note

Do not create this class on the stack only. You should create an instance on app startup
and use this instance for all printing operations. The reason is that this class stores
various settings in it.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/html/htmprint.h>

wxHtmlEasyPrinting::wxHtmlEasyPrinting

 wxHtmlEasyPrinting (const wxString& name = "Printing", wxWindow* parentWindow
= NULL)

Constructor.

CHAPTER 7

699

Parameters

name

Name of the printing object. Used by preview frames and setup dialogs.

parentWindow

pointer to the window that will own the preview frame and setup dialogs. May be
NULL.

wxHtmlEasyPrinting::PreviewFile

bool PreviewFile (const wxString& htmlfile)

Preview HTML file.

Returns false in case of error -- callwxPrinter::GetLastError (p. Error! Bookmark not
defined.) to get detailed information about the kind of the error.

wxHtmlEasyPrinting::PreviewText

bool PreviewText (const wxString& htmltext, const wxString& basepath =
wxEmptyString)

Preview HTML text (not file!).

Returns false in case of error -- callwxPrinter::GetLastError (p. Error! Bookmark not
defined.) to get detailed information about the kind of the error.

Parameters

htmltext

HTML text.

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

wxHtmlEasyPrinting::PrintFile

bool PrintFile (const wxString& htmlfile)

Print HTML file.

Returns false in case of error -- callwxPrinter::GetLastError (p. Error! Bookmark not
defined.) to get detailed information about the kind of the error.

wxHtmlEasyPrinting::PrintText

bool PrintText (const wxString& htmltext, const wxString& basepath =

CHAPTER 7

700

wxEmptyString)

Print HTML text (not file!).

Returns false in case of error -- callwxPrinter::GetLastError (p. Error! Bookmark not
defined.) to get detailed information about the kind of the error.

Parameters

htmltext

HTML text.

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

wxHtmlEasyPrinting::PageSetup

void PageSetup ()

Display page setup dialog and allows the user to modify settings.

wxHtmlEasyPrinting::SetFonts

void SetFonts (const wxString& normal_face, const wxString& fixed_face, const int
*sizes = NULL)

Sets fonts. See wxHtmlWindow::SetFonts (p. 758) for detailed description.

wxHtmlEasyPrinting::SetHeader

void SetHeader (const wxString& header, int pg = wxPAGE_ALL)

Set page header.

Parameters

header

HTML text to be used as header. You can use macros in it:

 • @PAGENUM@ is replaced by page number

 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlEasyPrinting::SetFooter

CHAPTER 7

701

void SetFooter (const wxString& footer, int pg = wxPAGE_ALL)

Set page footer.

Parameters

footer

HTML text to be used as footer. You can use macros in it:

 • @PAGENUM@ is replaced by page number

 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlEasyPrinting::GetPrintData

wxPrintData* GetPrintData ()

Returns pointer to wxPrintData (p. Error! Bookmark not defined.) instance used by this
class. You can set its parameters (via SetXXXX methods).

wxHtmlEasyPrinting::GetPageSetupData

wxPageSetupDialogData* GetPageSetupData ()

Returns a pointer to wxPageSetupDialogData (p. Error! Bookmark not defined.)
instance used by this class. You can set its parameters (via SetXXXX methods).

wxHtmlFilter

This class is the parent class of input filters for wxHtmlWindow (p. 751). It allows you to
read and display files of different file formats.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/html/htmlfilt.h>

See Also

Overview (p. Error! Bookmark not defined.)

wxHtmlFilter::wxHtmlFilter

CHAPTER 7

702

 wxHtmlFilter ()

Constructor.

wxHtmlFilter::CanRead

bool CanRead (const wxFSFile& file)

Returns true if this filter is capable of reading file file.

Example:

bool MyFilter::CanRead(const wxFSFile& file)
{
 return (file.GetMimeType() == "application/x-ug h");
}

wxHtmlFilter::ReadFile

wxString ReadFile (const wxFSFile& file)

Reads the file and returns string with HTML document.

Example:

wxString MyImgFilter::ReadFile(const wxFSFile& file)
{
 return "<html><body><img src=\"" +
 file.GetLocation() +
 "\"></body></html>";
}

wxHtmlHelpController

This help controller provides an easy way of displaying HTML help in your application
(see test sample). The help system is based on books (see AddBook (p. 723)). A book
is a logical section of documentation (for example "User's Guide" or "Programmer's
Guide" or "C++ Reference" or "wxWidgets Reference"). The help controller can handle
as many books as you want.

Although this class has an API compatible with other wxWidgets help controllers as
documented by wxHelpController (p. 694), it is recommended that you use the enhanced
capabilities of wxHtmlHelpController's API.

wxHTML uses Microsoft's HTML Help Workshop project files (.hhp, .hhk, .hhc) as its
native format. The file format is described here (p. Error! Bookmark not defined.).
Have a look at docs/html/ directory where sample project files are stored.

You can use Tex2RTF to produce these files when generating HTML, if you set
htmlWorkshopFiles to true in your tex2rtf.ini file. The commercial tool HelpBlocks
(www.helpblocks.com) can also create these files.

Note

CHAPTER 7

703

It is strongly recommended to use preprocessed .hhp.cached version of projects. It can
be either created on-the-fly (see SetTempDir (p. 725)) or you can use hhp2cached
utility from utils/hhp2cached to create it and distribute the cached version together with
helpfiles. See samples/html/help sample for demonstration of its use.

See also

Information about wxBestHelpController (p. 694), wxHtmlHelpFrame (p. 729),
wxHtmlHelpDialog (p. 727), wxHtmlHelpWindow (p. 730),wxHtmlModalHelp (p. 734)

Derived from

wxHelpControllerBase

Include files

<wx/html/helpctrl.h>

wxHtmlHelpController::wxHtmlHelpController

 wxHtmlHelpController (int style = wxHF_DEFAULT_STYLE, wxWindow*
parentWindow = NULL)

Constructor.

Parameters

style is a combination of these flags:

wxHF_TOOLBAR The help window has a toolbar.

wxHF_FLAT_TOOLBAR The help window has a toolbar with flat buttons
(aka coolbar).

wxHF_CONTENTS The help window has a contents panel.

wxHF_INDEX The help window has an index panel.

wxHF_SEARCH The help window has a search panel.

wxHF_BOOKMARKS The help window has bookmarks controls.

wxHF_OPEN_FILES Allows user to open arbitrary HTML document.

wxHF_PRINT The toolbar contains "print" button.

wxHF_MERGE_BOOKS The contents pane does not show book nodes.
All books are merged together and appear as
single book to the user.

wxHF_ICONS_BOOK All nodes in contents pane have a book icon.
This is how Microsoft's HTML help viewer
behaves.

CHAPTER 7

704

wxHF_ICONS_FOLDER Book nodes in contents pane have a book icon,
book's sections have a folder icon. This is the
default.

wxHF_ICONS_BOOK_CHAPTER Both book nodes and nodes of top-level
sections of a book (i.e. chapters) have a book
icon, all other sections (sections, subsections,
...) have a folder icon.

wxHF_EMBEDDED Specifies that the help controller controls an
embedded window of class
wxHtmlHelpWindow (p. 730) that should not be
destroyed when the controller is destroyed.

wxHF_DIALOG Specifies that the help controller should create
a dialog containing the help window.

wxHF_FRAME Specifies that the help controller should create
a frame containing the help window. This is the
default if neither wxHF_DIALOG nor
wxHF_EMBEDDED is specified.

wxHF_MODAL Specifies that the help controller should create
a modal dialog containing the help window
(used with the wxHF_DIALOG style).

wxHF_DEFAULT_STYLE wxHF_TOOLBAR | wxHF_CONTENTS |
wxHF_INDEX | wxHF_SEARCH |
wxHF_BOOKMARKS | wxHF_PRINT

parentWindow is an optional window to be used as the parent for the help window.

wxHtmlHelpController::AddBook

bool AddBook (const wxFileName& bookFile, bool showWaitMsg)

bool AddBook (const wxString& bookUrl, bool showWaitMsg)

Adds book (.hhp file (p. Error! Bookmark not defined.) - HTML Help Workshop project
file) into the list of loaded books. This must be called at least once before displaying any
help.

bookFile or bookUrl may be either .hhp file or ZIP archive that contains arbitrary number
of .hhp files in top-level directory. This ZIP archive must have .zip or .htb extension (the
latter stands for "HTML book"). In other words,
AddBook(wxFileName("help.zip")) is possible and is the recommended way.

Parameters

showWaitMsg

If true then a decoration-less window with progress message is displayed.

bookFile

CHAPTER 7

705

Help book filename. It is recommended to use this prototype instead of the one
taking URL, because it is less error-prone.

bookUrl

Help book URL (note that syntax of filename and URL is different on most
platforms)

Note

Don't forget to install wxFileSystem ZIP handler
withwxFileSystem::AddHandler(new wxZipFSHandler); before calling this
method on a .zip or .htb file!

wxHtmlHelpController::CreateHelpDialog

virtual wxHtmlHelpDialog* CreateHelpDialog (wxHtmlHelpData * data)

This protected virtual method may be overridden so that when specifying the
wxHF_DIALOG style, the controller uses a different dialog.

wxHtmlHelpController::CreateHelpFrame

virtual wxHtmlHelpFrame* CreateHelpFrame (wxHtmlHelpData * data)

This protected virtual method may be overridden so that the controller uses a different
frame.

wxHtmlHelpController::Display

void Display (const wxString& x)

Displays page x. This is THE important function - it is used to display the help in
application.

You can specify the page in many ways:

 • as direct filename of HTML document

 • as chapter name (from contents) or as a book name

 • as some word from index

 • even as any word (will be searched)

Looking for the page runs in these steps:

 1. try to locate file named x (if x is for example "doc/howto.htm")

 2. try to open starting page of book named x

 3. try to find x in contents (if x is for example "How To ...")

CHAPTER 7

706

 4. try to find x in index (if x is for example "How To ...")

 5. switch to Search panel and start searching

void Display (const int id)

This alternative form is used to search help contents by numeric IDs.

wxPython note: The second form of this method is named DisplayId in wxPython.

wxHtmlHelpController::DisplayContents

void DisplayContents ()

Displays help window and focuses contents panel.

wxHtmlHelpController::DisplayIndex

void DisplayIndex ()

Displays help window and focuses index panel.

wxHtmlHelpController::KeywordSearch

bool KeywordSearch (const wxString& keyword, wxHelpSearchMode mode =
wxHELP_SEARCH_ALL)

Displays help window, focuses search panel and starts searching. Returns true if the
keyword was found. Optionally it searches through the index (mode =
wxHELP_SEARCH_INDEX), default the content (mode = wxHELP_SEARCH_ALL).

Important: KeywordSearch searches only pages listed in .hhc file(s). You should list all
pages in the contents file.

wxHtmlHelpController::ReadCustomization

void ReadCustomization (wxConfigBase* cfg, wxString path = wxEmptyString)

Reads the controller's setting (position of window, etc.)

wxHtmlHelpController::SetTempDir

void SetTempDir (const wxString& path)

Sets the path for storing temporary files - cached binary versions of index and contents
files. These binary forms are much faster to read. Default value is empty string (empty
string means that no cached data are stored). Note that these files are not deleted when
program exits.

Once created these cached files will be used in all subsequent executions of your
application. If cached files become older than corresponding .hhp file (e.g. if you
regenerate documentation) it will be refreshed.

CHAPTER 7

707

wxHtmlHelpController::SetTitleFormat

void SetTitleFormat (const wxString& format)

Sets format of title of the frame. Must contain exactly one "%s" (for title of displayed
HTML page).

wxHtmlHelpController::UseConfig

void UseConfig (wxConfigBase* config, const wxString& rootpath = wxEmptyString)

Associates config object with the controller.

If there is associated config object, wxHtmlHelpController automatically reads and writes
settings (including wxHtmlWindow's settings) when needed.

The only thing you must do is create wxConfig object and call UseConfig.

If you do not use UseConfig, wxHtmlHelpController will use default wxConfig object if
available (for details see wxConfigBase::Get (p. 205) and wxConfigBase::Set (p. 209)).

wxHtmlHelpController::WriteCustomization

void WriteCustomization (wxConfigBase* cfg, wxString path = wxEmptyString)

Stores controllers setting (position of window etc.)

wxHtmlHelpData

This class is used by wxHtmlHelpController (p. 721) and wxHtmlHelpFrame (p. 729) to
access HTML help items. It is internal class and should not be used directly - except for
the case you're writing your own HTML help controller.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/html/helpdata.h>

wxHtmlHelpData::wxHtmlHelpData

 wxHtmlHelpData ()

Constructor.

wxHtmlHelpData::AddBook

CHAPTER 7

708

bool AddBook (const wxString& book_url)

Adds new book. book is URL (not filename!) of HTML help project (hhp) or ZIP file that
contains arbitrary number of .hhp projects (this zip file can have either .zip or .htb
extension, htb stands for "html book"). Returns success.

wxHtmlHelpData::FindPageById

wxString FindPageById (int id)

Returns page's URL based on integer ID stored in project.

wxHtmlHelpData::FindPageByName

wxString FindPageByName (const wxString& page)

Returns page's URL based on its (file)name.

wxHtmlHelpData::GetBookRecArray

const wxHtmlBookRecArray& GetBookRecArray ()

Returns array with help books info.

wxHtmlHelpData::GetContentsArray

const wxHtmlHelpDataItems& GetContentsArray ()

Returns reference to array with contents entries.

wxHtmlHelpData::GetIndexArray

const wxHtmlHelpDataItems& GetIndexArray ()

Returns reference to array with index entries.

wxHtmlHelpData::SetTempDir

void SetTempDir (const wxString& path)

Sets temporary directory where binary cached versions of MS HTML Workshop files will
be stored. (This is turned off by default and you can enable this feature by setting non-
empty temp dir.)

wxHtmlHelpDialog

This class is used by wxHtmlHelpController (p. 721) to display help. It is an internal
class and should not be used directly - except for the case when you're writing your own
HTML help controller.

CHAPTER 7

709

Derived from

wxFrame (p. 582)

Include files

<wx/html/helpdlg.h>

wxHtmlHelpDialog::wxHtmlHelpDialog

 wxHtmlHelpDialog (wxHtmlHelpData* data = NULL)

 wxHtmlHelpDialog (wxWindow* parent, int wxWindowID, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULT_STYLE, wxHtmlHelpData* data = NULL)

Constructor. For the values of style, please see the documentation for
wxHtmlHelpController (p. 721).

wxHtmlHelpDialog::AddToolbarButtons

virtual void AddToolbarButtons (wxToolBar * toolBar, int style)

You may override this virtual method to add more buttons to the help window's toolbar.
toolBar is a pointer to the toolbar and style is the style flag as passed to the Create
method.

wxToolBar::Realize is called immediately after returning from this function.

wxHtmlHelpDialog::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULT_STYLE)

Creates the dialog. See the constructor (p. 728)for a description of the parameters.

wxHtmlHelpDialog::GetController

wxHtmlHelpController* GetController () const

Returns the help controller associated with the dialog.

wxHtmlHelpDialog::ReadCustomization

void ReadCustomization (wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Reads the user's settings for this dialog see wxHtmlHelpController::ReadCustomization
(p. 725))

CHAPTER 7

710

wxHtmlHelpDialog::SetController

void SetController (wxHtmlHelpController* contoller)

Sets the help controller associated with the dialog.

wxHtmlHelpDialog::SetTitleFormat

void SetTitleFormat (const wxString& format)

Sets the dialog's title format. format must contain exactly one "%s" (it will be replaced by
the page title).

wxHtmlHelpDialog::WriteCustomization

void WriteCustomization (wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Saves the user's settings for this dialog (see wxHtmlHelpController::WriteCustomization
(p. 726)).

wxHtmlHelpFrame

This class is used by wxHtmlHelpController (p. 721) to display help. It is an internal
class and should not be used directly - except for the case when you're writing your own
HTML help controller.

Derived from

wxFrame (p. 582)

Include files

<wx/html/helpfrm.h>

wxHtmlHelpFrame::wxHtmlHelpFrame

 wxHtmlHelpFrame (wxHtmlHelpData* data = NULL)

 wxHtmlHelpFrame (wxWindow* parent, int wxWindowID, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULT_STYLE, wxHtmlHelpData* data = NULL)

Constructor. For the values of style, please see the documentation for
wxHtmlHelpController (p. 721).

wxHtmlHelpFrame::AddToolbarButtons

virtual void AddToolbarButtons (wxToolBar * toolBar, int style)

CHAPTER 7

711

You may override this virtual method to add more buttons to the help window's toolbar.
toolBar is a pointer to the toolbar and style is the style flag as passed to the Create
method.

wxToolBar::Realize is called immediately after returning from this function.

wxHtmlHelpFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULT_STYLE)

Creates the frame. See the constructor (p. 729)for a description of the parameters.

wxHtmlHelpFrame::GetController

wxHtmlHelpController* GetController () const

Returns the help controller associated with the frame.

wxHtmlHelpFrame::ReadCustomization

void ReadCustomization (wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Reads the user's settings for this frame see wxHtmlHelpController::ReadCustomization
(p. 725))

wxHtmlHelpFrame::SetController

void SetController (wxHtmlHelpController* contoller)

Sets the help controller associated with the frame.

wxHtmlHelpFrame::SetTitleFormat

void SetTitleFormat (const wxString& format)

Sets the frame's title format. format must contain exactly one "%s" (it will be replaced by
the page title).

wxHtmlHelpFrame::WriteCustomization

void WriteCustomization (wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Saves the user's settings for this frame (see wxHtmlHelpController::WriteCustomization
(p. 726)).

wxHtmlHelpWindow

CHAPTER 7

712

This class is used by wxHtmlHelpController (p. 721) to display help within a frame or
dialog, but you can use it yourself to create an embedded HTML help window.

For example:

 // m_embeddedHelpWindow is a wxHtmlHelpWindow
 // m_embeddedHtmlHelp is a wxHtmlHelpController

 // Create embedded HTML Help window
 m_embeddedHelpWindow = new wxHtmlHelpWindow;
 m_embeddedHtmlHelp.UseConfig(config, rootPath); // Set your
own config object here
 m_embeddedHtmlHelp.SetHelpWindow(m_embeddedHelp Window);
 m_embeddedHelpWindow->Create(this,
 wxID_ANY, wxDefaultPosition, GetClientSize(),
wxTAB_TRAVERSAL|wxNO_BORDER, wxHF_DEFAULT_STYLE);
 m_embeddedHtmlHelp.AddBook(wxFileName(_T("doc.z ip")));

You should pass the style wxHF_EMBEDDED to the style parameter of
wxHtmlHelpController to allow the embedded window to be destroyed independently of
the help controller.

Derived from

wxWindow (p. Error! Bookmark not defined.)

Include files

<wx/html/helpwnd.h>

wxHtmlHelpWindow::wxHtmlHelpWindow

 wxHtmlHelpWindow (wxHtmlHelpData* data = NULL)

 wxHtmlHelpWindow (wxWindow* parent, int wxWindowID, int style =
wxHF_DEFAULT_STYLE, wxHtmlHelpData* data = NULL)

Constructor.

Constructor. For the values of style, please see the documentation for
wxHtmlHelpController (p. 721).

wxHtmlHelpWindow::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULT_STYLE)

Creates the frame. See the constructor (p. 731)for a description of the parameters.

wxHtmlHelpWindow::CreateContents

void CreateContents ()

CHAPTER 7

713

Creates contents panel. (May take some time.)

Protected.

wxHtmlHelpWindow::CreateIndex

void CreateIndex ()

Creates index panel. (May take some time.)

Protected.

wxHtmlHelpWindow::CreateSearch

void CreateSearch ()

Creates search panel.

wxHtmlHelpWindow::Display

bool Display (const wxString& x)

bool Display (const int id)

Displays page x. If not found it will give the user the choice of searching books. Looking
for the page runs in these steps:

 1. try to locate file named x (if x is for example "doc/howto.htm")

 2. try to open starting page of book x

 3. try to find x in contents (if x is for example "How To ...")

 4. try to find x in index (if x is for example "How To ...")

The second form takes numeric ID as the parameter. (uses extension to MS format,
<param name="ID" value=id>)

wxPython note: The second form of this method is named DisplayId in wxPython.

wxHtmlHelpWindow::DisplayContents

bool DisplayContents ()

Displays contents panel.

wxHtmlHelpWindow::DisplayIndex

bool DisplayIndex ()

Displays index panel.

CHAPTER 7

714

wxHtmlHelpWindow::GetData

wxHtmlHelpData* GetData ()

Returns the wxHtmlHelpData object, which is usually a pointer to the controller's data.

wxHtmlHelpWindow::KeywordSearch

bool KeywordSearch (const wxString& keyword, wxHelpSearchMode mode =
wxHELP_SEARCH_ALL)

Search for given keyword. Optionally it searches through the index (mode =
wxHELP_SEARCH_INDEX), default the content (mode = wxHELP_SEARCH_ALL).

wxHtmlHelpWindow::ReadCustomization

void ReadCustomization (wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Reads the user's settings for this window (see
wxHtmlHelpController::ReadCustomization (p. 725))

wxHtmlHelpWindow::RefreshLists

void RefreshLists ()

Refresh all panels. This is necessary if a new book was added.

Protected.

wxHtmlHelpWindow::SetTitleFormat

void SetTitleFormat (const wxString& format)

Sets the frame's title format. format must contain exactly one "%s" (it will be replaced by
the page title).

wxHtmlHelpWindow::UseConfig

void UseConfig (wxConfigBase* config, const wxString& rootpath = wxEmptyString)

Associates a wxConfig object with the help window. It is recommended that you use
wxHtmlHelpController::UseConfig (p. 726) instead.

wxHtmlHelpWindow::WriteCustomization

void WriteCustomization (wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Saves the user's settings for this window(see wxHtmlHelpController::WriteCustomization
(p. 726)).

CHAPTER 7

715

wxHtmlHelpWindow::AddToolbarButtons

virtual void AddToolbarButtons (wxToolBar * toolBar, int style)

You may override this virtual method to add more buttons to the help window's toolbar.
toolBar is a pointer to the toolbar and style is the style flag as passed to the Create
method.

wxToolBar::Realize is called immediately after returning from this function.

See samples/html/helpview for an example.

wxHtmlModalHelp

This class uses wxHtmlHelpController (p. 721) to display help in a modal dialog. This is
useful on platforms such as wxMac where if you display help from a modal dialog, the
help window must itself be a modal dialog.

Create objects of this class on the stack, for example:

 // The help can be browsed during the lifetime of this object;
when the user quits
 // the help, program execution will continue.
 wxHtmlModalHelp help(parent, wxT("help"), wxT(" My topic"));

Derived from

None

Include files

<wx/html/helpctrl.h>

wxHtmlModalHelp::wxHtmlModalHelp

 wxHtmlModalHelp (wxWindow* parent, const wxString& helpFile, const wxString&
topic = wxEmptyString, int style = wxHF_DEFAULT_STYLE | wxHF_DIALOG |
wxHF_MODAL)

Parameters

parent is the parent of the dialog.

helpFile is the HTML help file to show.

topic is an optional topic. If this is empty, the help contents will be shown.

style is a combination of the flags described in the wxHtmlHelpController (p. 721)
documentation.

CHAPTER 7

716

wxHtmlLinkInfo

This class stores all necessary information about hypertext links (as represented by <A>
tag in HTML documents). In current implementation it stores URL and target frame
name. Note that frames are not currently supported by wxHTML!

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/html/htmlcell.h>

wxHtmlLinkInfo::wxHtmlLinkInfo

 wxHtmlLinkInfo ()

Default ctor.

 wxHtmlLinkInfo (const wxString& href, const wxString& target = wxEmptyString)

Construct hypertext link from HREF (aka URL) and TARGET (name of target frame).

wxHtmlLinkInfo::GetEvent

const wxMouseEvent * GetEvent ()

Return pointer to event that generated OnLinkClicked event. Valid only within
wxHtmlWindow::OnLinkClicked (p. 756), NULL otherwise.

wxHtmlLinkInfo::GetHtmlCell

const wxHtmlCell * GetHtmlCell ()

Return pointer to the cell that was clicked. Valid only within
wxHtmlWindow::OnLinkClicked (p. 756), NULL otherwise.

wxHtmlLinkInfo::GetHref

wxString GetHref ()

Return HREF value of the <A> tag.

wxHtmlLinkInfo::GetTarget

wxString GetTarget ()

Return TARGET value of the <A> tag (this value is used to specify in which frame should

CHAPTER 7

717

be the page pointed by Href (p. 735) opened).

wxHtmlListBox

wxHtmlListBox is an implementation of wxVListBox (p. Error! Bookmark not defined.)
which shows HTML content in the listbox rows. This is still an abstract base class and
you will need to derive your own class from it (see htlbox sample for the example) but
you will only need to override a single OnGetItem() (p. 738) function.

Derived from

wxVListBox (p. Error! Bookmark not defined.)

Include files

<wx/htmllbox.h>

wxHtmlListBox::wxHtmlListBox

 wxHtmlListBox (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint&
pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxVListBoxNameStr)

Normal constructor which calls Create() (p. 736)internally.

 wxHtmlListBox ()

Default constructor, you must call Create() (p. 736)later.

wxHtmlListBox::~wxHtmlListBox

 ~wxHtmlListBox ()

Destructor cleans up whatever resources we use.

wxHtmlListBox::Create

bool Create (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxVListBoxNameStr)

Creates the control and optionally sets the initial number of items in it (it may also be set
or changed later with SetItemCount() (p. Error! Bookmark not defined.)).

There are no special styles defined for wxHtmlListBox, in particular the wxListBox styles
can not be used here.

Returns true on success or false if the control couldn't be created

CHAPTER 7

718

wxHtmlListBox::GetFileSystem

wxFileSystem& GetFileSystem ()

const wxFileSystem& GetFileSystem () const

Returns the wxFileSystem (p. 542) used by the HTML parser of this object. The file
system object is used to resolve the paths in HTML fragments displayed in the control
and you should use wxFileSystem::ChangePathTo (p. 543) if you use relative paths for
the images or other resources embedded in your HTML.

wxHtmlListBox::GetSelectedTextBgColour

wxColour GetSelectedTextBgColour (const wxColour& colBg) const

This virtual function may be overridden to change the appearance of the background of
the selected cells in the same way as GetSelectedTextColour (p. 737).

It should be rarely, if ever, used because SetSelectionBackground (p. Error! Bookmark
not defined.) allows to change the selection background for all cells at once and doing
anything more fancy is probably going to look strangely.

See also

GetSelectedTextColour (p. 737)

wxHtmlListBox::GetSelectedTextColour

wxColour GetSelectedTextColour (const wxColour& colFg) const

This virtual function may be overridden to customize the appearance of the selected
cells. It is used to determine how the colour colFg is going to look inside selection. By
default all original colours are completely ignored and the standard, system-dependent,
selection colour is used but the program may wish to override this to achieve some
custom appearance.

See also

GetSelectedTextBgColour (p. 737),
SetSelectionBackground (p. Error! Bookmark not defined.),
wxSystemSettings::GetColour (p. Error! Bookmark not defined.)

wxHtmlListBox::OnGetItem

wxString OnGetItem (size_t n) const

This method must be implemented in the derived class and should return the body (i.e.
without <html> nor <body> tags) of the HTML fragment for the given item.

wxHtmlListBox::OnGetItemMarkup

wxString OnGetItemMarkup (size_t n) const

CHAPTER 7

719

This function may be overridden to decorate HTML returned byOnGetItem() (p. 738).

wxHtmlParser

Classes derived from this handle the generic parsing of HTML documents: it scans the
document and divide it into blocks of tags (where one block consists of beginning and
ending tag and of text between these two tags).

It is independent from wxHtmlWindow and can be used as stand-alone parser (Julian
Smart's idea of speech-only HTML viewer or wget-like utility - see InetGet sample for
example).

It uses system of tag handlers to parse the HTML document. Tag handlers are not
statically shared by all instances but are created for each wxHtmlParser instance. The
reason is that the handler may contain document-specific temporary data used during
parsing (e.g. complicated structures like tables).

Typically the user calls only the Parse (p. 741) method.

Derived from

wxObject

Include files

<wx/html/htmlpars.h>

See also

Cells Overview (p. Error! Bookmark not defined.),Tag Handlers Overview (p. Error!
Bookmark not defined.),wxHtmlTag (p. 745)

wxHtmlParser::wxHtmlParser

 wxHtmlParser ()

Constructor.

wxHtmlParser::AddTag

void AddTag (const wxHtmlTag& tag)

This may (and may not) be overwritten in derived class.

This method is called each time new tag is about to be added. tag contains information
about the tag. (See wxHtmlTag (p. 745)for details.)

Default (wxHtmlParser) behaviour is this: First it finds a handler capable of handling this
tag and then it calls handler's HandleTag method.

CHAPTER 7

720

wxHtmlParser::AddTagHandler

virtual void AddTagHandler (wxHtmlTagHandler *handler)

Adds handler to the internal list (& hash table) of handlers. This method should not be
called directly by user but rather by derived class' constructor.

This adds the handler to this instance of wxHtmlParser, not to all objects of this class!
(Static front-end to AddTagHandler is provided by wxHtmlWinParser).

All handlers are deleted on object deletion.

wxHtmlParser::AddText

virtual void AddWord (const char* txt)

Must be overwritten in derived class.

This method is called by DoParsing (p. 739)each time a part of text is parsed. txt is NOT
only one word, it is substring of input. It is not formatted or preprocessed (so white
spaces are unmodified).

wxHtmlParser::DoParsing

void DoParsing (int begin_pos, int end_pos)

void DoParsing ()

Parses the m_Source from begin_pos to end_pos-1. (in noparams version it parses
whole m_Source)

wxHtmlParser::DoneParser

virtual void DoneParser ()

This must be called after DoParsing().

wxHtmlParser::GetFS

wxFileSystem* GetFS() const

Returns pointer to the file system. Because each tag handler has reference to it is parent
parser it can easily request the file by calling

wxFSFile *f = m_Parser -> GetFS() -> OpenFile("imag e.jpg");

wxHtmlParser::GetProduct

virtual wxObject* GetProduct ()

Returns product of parsing. Returned value is result of parsing of the document. The

CHAPTER 7

721

type of this result depends on internal representation in derived parser (but it must be
derived from wxObject!).

See wxHtmlWinParser for details.

wxHtmlParser::GetSource

wxString* GetSource ()

Returns pointer to the source being parsed.

wxHtmlParser::InitParser

virtual void InitParser (const wxString& source)

Setups the parser for parsing the source string. (Should be overridden in derived class)

wxHtmlParser::OpenURL

virtual wxFSFile* OpenURL (wxHtmlURLType type, const wxString& url)

Opens given URL and returns wxFSFile object that can be used to read data from it.
This method may return NULL in one of two cases: either the URL doesn't point to any
valid resource or the URL is blocked by overridden implementation of OpenURL in
derived class.

Parameters

type

Indicates type of the resource. Is one of:

wxHTML_URL_PAGE Opening a HTML page.

wxHTML_URL_IMAGE Opening an image.

wxHTML_URL_OTHER Opening a resource that doesn't fall into
any other category.

url

URL being opened.

Notes

Always use this method in tag handlers instead of GetFS()->OpenFile() because it
can block the URL and is thus more secure.

Default behaviour is to call wxHtmlWindow::OnOpeningURL (p. 756)of the associated
wxHtmlWindow object (which may decide to block the URL or redirect it to another
one),if there's any, and always open the URL if the parser is not used with
wxHtmlWindow.

CHAPTER 7

722

Returned wxFSFile object is not guaranteed to point to url, it might have been
redirected!

wxHtmlParser::Parse

wxObject* Parse (const wxString& source)

Proceeds parsing of the document. This is end-user method. You can simply call it when
you need to obtain parsed output (which is parser-specific)

The method does these things:

 1. calls InitParser(source) (p. 740)

 2. calls DoParsing (p. 739)

 3. calls GetProduct (p. 740)

 4. calls DoneParser (p. 740)

 5. returns value returned by GetProduct

You shouldn't use InitParser, DoParsing, GetProduct or DoneParser directly.

wxHtmlParser::PushTagHandler

void PushTagHandler (wxHtmlTagHandler* handler, const wxString& tags)

Forces the handler to handle additional tags (not returned by GetSupportedTags (p.
749)). The handler should already be added to this parser.

Parameters

handler

the handler

tags

List of tags (in same format as GetSupportedTags's return value). The parser will
redirect these tags to handler (until call to PopTagHandler (p. 742)).

Example

Imagine you want to parse following pseudo-html structure:

<myitems>
 <param name="one" value="1">
 <param name="two" value="2">
</myitems>

<execute>
 <param program="text.exe">
</execute>

CHAPTER 7

723

It is obvious that you cannot use only one tag handler for <param> tag. Instead you must
use context-sensitive handlers for <param> inside <myitems> and <param> inside
<execute>.

This is the preferred solution:

TAG_HANDLER_BEGIN(MYITEM, "MYITEMS")
 TAG_HANDLER_PROC(tag)
 {
 // ...something...

 m_Parser -> PushTagHandler(this, "PARAM");
 ParseInner(tag);
 m_Parser -> PopTagHandler();

 // ...something...
 }
TAG_HANDLER_END(MYITEM)

wxHtmlParser::PopTagHandler

void PopTagHandler ()

Restores parser's state before last call to PushTagHandler (p. 741).

wxHtmlParser::SetFS

void SetFS(wxFileSystem *fs)

Sets the virtual file system that will be used to request additional files. (For example
 tag handler requests wxFSFile with the image data.)

wxHtmlParser::StopParsing

void StopParsing ()

Call this function to interrupt parsing from a tag handler. No more tags will be parsed
afterward. This function may only be called fromwxHtmlParser::Parse (p. 741) or any
function called by it (i.e. from tag handlers).

wxHtmlPrintout

This class serves as printout class for HTML documents.

Derived from

wxPrintout (p. Error! Bookmark not defined.)

Include files

<wx/html/htmprint.h>

CHAPTER 7

724

wxHtmlPrintout::wxHtmlPrintout

 wxHtmlPrintout (const wxString& title = "Printout")

Constructor.

wxHtmlPrintout::AddFilter

static void AddFilter (wxHtmlFilter* filter)

Adds a filter to the static list of filters for wxHtmlPrintout. See wxHtmlFilter (p. 720) for
further information.

wxHtmlPrintout::SetFonts

void SetFonts (const wxString& normal_face, const wxString& fixed_face, const int
*sizes = NULL)

Sets fonts. See wxHtmlWindow::SetFonts (p. 758) for detailed description.

wxHtmlPrintout::SetFooter

void SetFooter (const wxString& footer, int pg = wxPAGE_ALL)

Sets page footer.

Parameters

footer

HTML text to be used as footer. You can use macros in it:

 • @PAGENUM@ is replaced by page number

 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlPrintout::SetHeader

void SetHeader (const wxString& header, int pg = wxPAGE_ALL)

Sets page header.

Parameters

header

HTML text to be used as header. You can use macros in it:

 • @PAGENUM@ is replaced by page number

CHAPTER 7

725

 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlPrintout::SetHtmlFile

void SetHtmlFile (const wxString& htmlfile)

Prepare the class for printing this HTML file . The file may be located on any virtual file
system or it may be normal file.

wxHtmlPrintout::SetHtmlText

void SetHtmlText (const wxString& html, const wxString& basepath =
wxEmptyString, bool isdir = true)

Prepare the class for printing this HTML text.

Parameters

html

HTML text. (NOT file!)

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

isdir

false if basepath is filename, true if it is directory name (see wxFileSystem (p. 542)
for detailed explanation)

wxHtmlPrintout::SetMargins

void SetMargins (float top = 25.2, float bottom = 25.2, float left = 25.2, float right =
25.2, float spaces = 5)

Sets margins in millimeters. Defaults to 1 inch for margins and 0.5cm for space between
text and header and/or footer

wxHtmlTag

This class represents a single HTML tag. It is used by tag handlers (p. Error!
Bookmark not defined.).

Derived from

wxObject

CHAPTER 7

726

Include files

<wx/html/htmltag.h>

wxHtmlTag::wxHtmlTag

 wxHtmlTag (wxHtmlTag * parent, const wxString& source, int pos, int end_pos,
wxHtmlTagsCache* cache, wxHtmlEntitiesParser * entParser)

Constructor. You will probably never have to construct a wxHtmlTag object yourself.
Feel free to ignore the constructor parameters. Have a look at src/html/htmlpars.cpp if
you're interested in creating it.

wxHtmlTag::GetAllParams

const wxString& GetAllParams () const

Returns a string containing all parameters.

Example : tag contains . Call to
tag.GetAllParams() would return SIZE=+2 COLOR="#000000" .

wxHtmlTag::GetBeginPos

int GetBeginPos () const

Returns beginning position of the text between this tag and paired ending tag. See
explanation (returned position is marked with '|'):

bla bla bla <MYTAG> bla bla internal text</MYTAG> b la bla
 |

wxHtmlTag::GetEndPos1

int GetEndPos1 () const

Returns ending position of the text between this tag and paired ending tag. See
explanation (returned position is marked with '|'):

bla bla bla <MYTAG> bla bla internal text</MYTAG> b la bla
 |

wxHtmlTag::GetEndPos2

int GetEndPos2 () const

Returns ending position 2 of the text between this tag and paired ending tag. See
explanation (returned position is marked with '|'):

bla bla bla <MYTAG> bla bla internal text</MYTAG> b la bla

CHAPTER 7

727

 |

wxHtmlTag::GetName

wxString GetName () const

Returns tag's name. The name is always in uppercase and it doesn't contain '<' or '/'
characters. (So the name of tag is "FONT" and name of </table>
is "TABLE")

wxHtmlTag::GetParam

wxString GetParam (const wxString& par, bool with_commas = false) const

Returns the value of the parameter. You should check whether the parameter exists or
not (use HasParam (p. 747)) first.

Parameters

par

The parameter's name.

with_commas

true if you want to get commas as well. See example.

Example

...
/* you have wxHtmlTag variable tag which is equal t o
 HTML tag */
dummy = tag.GetParam("SIZE");
 // dummy == "+2"
dummy = tag.GetParam("COLOR");
 // dummy == "#0000FF"
dummy = tag.GetParam("COLOR", true);
 // dummy == "\"#0000FF\"" -- see the difference! !

wxHtmlTag::GetParamAsColour

bool GetParamAsColour (const wxString& par, wxColour * clr) const

Interprets tag parameter par as colour specification and saves its value into wxColour
variable pointed by clr.

Returns true on success and false if par is not colour specification or if the tag has no
such parameter.

wxHtmlTag::GetParamAsInt

bool GetParamAsInt (const wxString& par, int * value) const

Interprets tag parameter par as an integer and saves its value into int variable pointed by

CHAPTER 7

728

value.

Returns true on success and false if par is not an integer or if the tag has no such
parameter.

wxHtmlTag::HasEnding

bool HasEnding () const

Returns true if this tag is paired with ending tag, false otherwise.

See the example of HTML document:

<html><body>
Hello<p>
How are you?
<p align=center>This is centered...</p>
Oops
Oooops!
</body></html>

In this example tags HTML and BODY have ending tags, first P and BR doesn't have
ending tag while the second P has. The third P tag (which is ending itself) of course
doesn't have ending tag.

wxHtmlTag::HasParam

bool HasParam (const wxString& par) const

Returns true if the tag has a parameter of the given name. Example : <FONT SIZE=+2
COLOR="#FF00FF"> has two parameters named "SIZE" and "COLOR".

Parameters

par

the parameter you're looking for.

wxHtmlTag::ScanParam

wxString ScanParam (const wxString& par, const wxChar * format, void * value)
const

This method scans the given parameter. Usage is exactly the same as sscanf's usage
except that you don't pass a string but a parameter name as the first argument and you
can only retrieve one value (i.e. you can use only one "%" element in format).

Parameters

par

The name of the tag you want to query

format

CHAPTER 7

729

scanf()-like format string.

value

pointer to a variable to store the value in

wxHtmlTagHandler

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/html/htmlpars.h>

See Also

Overview (p. Error! Bookmark not defined.),wxHtmlTag (p. 745)

wxHtmlTagHandler::m_Parser

wxHtmlParser* m_Parser

This attribute is used to access parent parser. It is protected so that it can't be accessed
by user but can be accessed from derived classes.

wxHtmlTagHandler::wxHtmlTagHandler

 wxHtmlTagHandler ()

Constructor.

wxHtmlTagHandler::GetSupportedTags

virtual wxString GetSupportedTags ()

Returns list of supported tags. The list is in uppercase and tags are delimited by ','.
Example : "I,B,FONT,P"

wxHtmlTagHandler::HandleTag

virtual bool HandleTag (const wxHtmlTag& tag)

This is the core method of each handler. It is called each time one of supported tags is
detected. tag contains all necessary info (see wxHtmlTag (p. 745) for details).

Return value

CHAPTER 7

730

true if ParseInner (p. 749) was called, false otherwise.

Example

bool MyHandler::HandleTag(const wxHtmlTag& tag)
{
 ...
 // change state of parser (e.g. set bold face)
 ParseInner(tag);
 ...
 // restore original state of parser
}

You shouldn't call ParseInner if the tag is not paired with an ending one.

wxHtmlTagHandler::ParseInner

void ParseInner (const wxHtmlTag& tag)

This method calls parser's DoParsing (p. 739) method for the string between this tag and
the paired ending tag:

...Hello, world!...

In this example, a call to ParseInner (with tag pointing to A tag) will parse 'Hello, world!'.

wxHtmlTagHandler::SetParser

virtual void SetParser (wxHtmlParser *parser)

Assigns parser to this handler. Each instance of handler is guaranteed to be called only
from the parser.

wxHtmlTagsModule

This class provides easy way of filling wxHtmlWinParser's table of tag handlers. It is
used almost exclusively together with the set ofTAGS_MODULE_* macros (p. Error!
Bookmark not defined.)

Derived from

wxModule (p. Error! Bookmark not defined.)

Include files

<wx/html/winpars.h>

See Also

Tag Handlers (p. Error! Bookmark not defined.),wxHtmlTagHandler (p.
748),wxHtmlWinTagHandler (p. 766),

CHAPTER 7

731

wxHtmlTagsModule::FillHandlersTable

virtual void FillHandlersTable (wxHtmlWinParser *parser)

You must override this method. In most common case its body consists only of lines of
the following type:

parser -> AddTagHandler(new MyHandler);

I recommend using the TAGS_MODULE_* macros.

Paremeters

parser

Pointer to the parser that requested tables filling.

wxHtmlWidgetCell

wxHtmlWidgetCell is a class that provides a connection between HTML cells and
widgets (an object derived from wxWindow). You can use it to display things like forms,
input boxes etc. in an HTML window.

wxHtmlWidgetCell takes care of resizing and moving window.

Derived from

wxHtmlCell (p. 704)

Include files

<wx/html/htmlcell.h>

wxHtmlWidgetCell::wxHtmlWidgetCell

 wxHtmlWidgetCell (wxWindow* wnd, int w = 0)

Constructor.

Parameters

wnd

Connected window. It is parent window must be the wxHtmlWindow object within
which it is displayed!

w

Floating width. If non-zero width of wnd window is adjusted so that it is always w
percents of parent container's width. (For example w = 100 means that the window
will always have same width as parent container)

CHAPTER 7

732

wxHtmlWindow

wxHtmlWindow is probably the only class you will directly use unless you want to do
something special (like adding new tag handlers or MIME filters).

The purpose of this class is to display HTML pages (either local file or downloaded via
HTTP protocol) in a window. The width of the window is constant - given in the
constructor - and virtual height is changed dynamically depending on page size. Once
the window is created you can set its content by calling SetPage(text) (p.
759),LoadPage(filename) (p. 754) orLoadFile (p. 754).

Note

wxHtmlWindow uses the wxImage (p. 790) class for displaying images. Don't forget to
initialize all image formats you need before loading any page! (See
wxInitAllImageHandlers (p. Error! Bookmark not defined.) andwxImage::AddHandler
(p. 795).)

Derived from

wxScrolledWindow (p. Error! Bookmark not defined.)

Include files

<wx/html/htmlwin.h>

Window styles

wxHW_SCROLLBAR_NEVER Never display scrollbars, not even when the page is
larger than the window.

wxHW_SCROLLBAR_AUTO Display scrollbars only if page's size exceeds
window's size.

wxHW_NO_SELECTION Don't allow the user to select text.

wxHtmlWindow::wxHtmlWindow

 wxHtmlWindow ()

Default constructor.

 wxHtmlWindow (wxWindow *parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxHW_DEFAULT_STYLE, const wxString& name = "htmlWindow")

Constructor. The parameters are the same as for the wxScrolledWindow (p. Error!
Bookmark not defined.) constructor.

Parameters

style

Window style. See wxHtmlWindow (p. 751).

CHAPTER 7

733

wxHtmlWindow::AddFilter

static void AddFilter (wxHtmlFilter *filter)

Adds input filter (p. Error! Bookmark not defined.) to the static list of available filters.
These filters are present by default:

 • text/html MIME type

 • image/* MIME types

 • Plain Text filter (this filter is used if no other filter matches)

wxHtmlWindow::AppendToPage

bool AppendToPage (const wxString& source)

Appends HTML fragment to currently displayed text and refreshes the window.

Parameters

source

HTML code fragment

Return value

false if an error occurred, true otherwise.

wxHtmlWindow::GetInternalRepresentation

wxHtmlContainerCell* GetInternalRepresentation () const

Returns pointer to the top-level container.

See also: Cells Overview (p. Error! Bookmark not defined.), Printing Overview (p.
Error! Bookmark not defined.)

wxHtmlWindow::GetOpenedAnchor

wxString GetOpenedAnchor ()

Returns anchor within currently opened page (see GetOpenedPage (p. 753)). If no page
is opened or if the displayed page wasn't produced by call to LoadPage, empty string is
returned.

wxHtmlWindow::GetOpenedPage

wxString GetOpenedPage ()

Returns full location of the opened page. If no page is opened or if the displayed page
wasn't produced by call to LoadPage, empty string is returned.

CHAPTER 7

734

wxHtmlWindow::GetOpenedPageTitle

wxString GetOpenedPageTitle ()

Returns title of the opened page or wxEmptyString if current page does not contain
<TITLE> tag.

wxHtmlWindow::GetRelatedFrame

wxFrame* GetRelatedFrame () const

Returns the related frame.

wxHtmlWindow::HistoryBack

bool HistoryBack ()

Moves back to the previous page. (each page displayed using LoadPage (p. 754) is
stored in history list.)

wxHtmlWindow::HistoryCanBack

bool HistoryCanBack ()

Returns true if it is possible to go back in the history (i.e. HistoryBack() won't fail).

wxHtmlWindow::HistoryCanForward

bool HistoryCanForward ()

Returns true if it is possible to go forward in the history (i.e. HistoryBack() won't fail).

wxHtmlWindow::HistoryClear

void HistoryClear ()

Clears history.

wxHtmlWindow::HistoryForward

bool HistoryForward ()

Moves to next page in history.

wxHtmlWindow::LoadFile

virtual bool LoadFile (const wxFileName& filename)

Loads HTML page from file and displays it.

CHAPTER 7

735

Return value

false if an error occurred, true otherwise

See also

LoadPage (p. 754)

wxHtmlWindow::LoadPage

virtual bool LoadPage (const wxString& location)

Unlike SetPage this function first loads HTML page from location and then displays it.
See example:

htmlwin->LoadPage("help/myproject/index.htm");

Parameters

location

The address of document. See wxFileSystem (p. 542) for details on address
format and behaviour of "opener".

Return value

false if an error occurred, true otherwise

See also

LoadFile (p. 754)

wxHtmlWindow::OnCellClicked

virtual void OnCellClicked (wxHtmlCell *cell, wxCoord x, wxCoord y, const
wxMouseEvent& event)

This method is called when a mouse button is clicked inside wxHtmlWindow. The default
behaviour is to call OnLinkClicked (p. 756) if the cell contains a hypertext link.

Parameters

cell

The cell inside which the mouse was clicked, always a simple (i.e. non container)
cell

x, y

The logical coordinates of the click point

event

The mouse event containing other information about the click

CHAPTER 7

736

wxHtmlWindow::OnCellMouseHover

virtual void OnCellMouseHover (wxHtmlCell *cell, wxCoord x, wxCoord y)

This method is called when a mouse moves over an HTML cell.

Parameters

cell

The cell inside which the mouse is currently, always a simple (i.e. non container)
cell

x, y

The logical coordinates of the click point

wxHtmlWindow::OnLinkClicked

virtual void OnLinkClicked (const wxHtmlLinkInfo& link)

Called when user clicks on hypertext link. Default behaviour is to call LoadPage (p. 754)
and do nothing else.

Also see wxHtmlLinkInfo (p. 735).

wxHtmlWindow::OnOpeningURL

virtual wxHtmlOpeningStatus OnOpeningURL (wxHtmlURLType type,const
wxString& url, wxString * redirect)

Called when an URL is being opened (either when the user clicks on a link or an image
is loaded). The URL will be opened only if OnOpeningURL returns wxHTML_OPEN. This
method is called bywxHtmlParser::OpenURL (p. 740). You can override OnOpeningURL
to selectively block some URLs (e.g. for security reasons) or to redirect them elsewhere.
Default behaviour is to always return wxHTML_OPEN.

Parameters

type

Indicates type of the resource. Is one ofwxHTML_URL_PAGE Opening a
HTML page.

wxHTML_URL_IMAGE Opening an image.

wxHTML_URL_OTHER Opening a resource that doesn't fall into any other
category.

url

URL being opened.

CHAPTER 7

737

redirect

Pointer to wxString variable that must be filled with an URL if OnOpeningURL
returns wxHTML_REDIRECT.

Return value wxHTML_OPEN Open the URL.

wxHTML_BLOCK Deny access to the URL, wxHtmlParser::OpenURL (p.
740) will return NULL.

wxHTML_REDIRECT Don't open url, redirect to another URL. OnOpeningURL
must fill *redirect with the new URL. OnOpeningURL will be
called again on returned URL.

wxHtmlWindow::OnSetTitle

virtual void OnSetTitle (const wxString& title)

Called on parsing <TITLE> tag.

wxHtmlWindow::ReadCustomization

virtual void ReadCustomization (wxConfigBase *cfg, wxString path =
wxEmptyString)

This reads custom settings from wxConfig. It uses the path 'path' if given, otherwise it
saves info into currently selected path. The values are stored in sub-path
wxHtmlWindow

Read values: all things set by SetFonts, SetBorders.

Parameters

cfg

wxConfig from which you want to read the configuration.

path

Optional path in config tree. If not given current path is used.

wxHtmlWindow::SelectAll

void SelectAll ()

Selects all text in the window.

See also

SelectLine (p. 757),SelectWord (p. 758)

wxHtmlWindow::SelectionToText

CHAPTER 7

738

wxString SelectionToText ()

Returns current selection as plain text. Returns empty string if no text is currently
selected.

wxHtmlWindow::SelectLine

void SelectLine (const wxPoint& pos)

Selects the line of text that pos points at. Note that posis relative to the top of displayed
page, not to window's origin, useCalcUnscrolledPosition (p. Error! Bookmark not
defined.)to convert physical coordinate.

See also

SelectAll (p. 757),SelectWord (p. 758)

wxHtmlWindow::SelectWord

void SelectWord (const wxPoint& pos)

Selects the word at position pos. Note that posis relative to the top of displayed page,
not to window's origin, useCalcUnscrolledPosition (p. Error! Bookmark not defined.)to
convert physical coordinate.

See also

SelectAll (p. 757),SelectLine (p. 757)

wxHtmlWindow::SetBorders

void SetBorders (int b)

This function sets the space between border of window and HTML contents. See image:

CHAPTER 7

739

Parameters

b

indentation from borders in pixels

wxHtmlWindow::SetFonts

void SetFonts (const wxString& normal_face, const wxString& fixed_face, const int
*sizes = NULL)

This function sets font sizes and faces.

Parameters

normal_face

This is face name for normal (i.e. non-fixed) font. It can be either empty string
(then the default face is chosen) or platform-specific face name. Examples are
"helvetica" under Unix or "Times New Roman" under Windows.

fixed_face

The same thing for fixed face (<TT>..</TT>)

sizes

This is an array of 7 items of int type. The values represent size of font with HTML
size from -2 to +4 (to). Default sizes are
used if sizesis NULL.

Defaults

Default font sizes are defined by constants wxHTML_FONT_SIZE_1,

CHAPTER 7

740

wxHTML_FONT_SIZE_2, ..., wxHTML_FONT_SIZE_7. Note that they differ among
platforms. Default face names are empty strings.

wxHtmlWindow::SetPage

bool SetPage (const wxString& source)

Sets HTML page and display it. This won't load the page!! It will display the source. See
example:

htmlwin -> SetPage("<html><body>Hello, world!</body ></html>");

If you want to load a document from some location use LoadPage (p. 754) instead.

Parameters

source

The HTML document source to be displayed.

Return value

false if an error occurred, true otherwise.

wxHtmlWindow::SetRelatedFrame

void SetRelatedFrame (wxFrame* frame, const wxString& format)

Sets the frame in which page title will be displayed. format is format of frame title, e.g.
"HtmlHelp : %s". It must contain exactly one %s. This%s is substituted with HTML page
title.

wxHtmlWindow::SetRelatedStatusBar

void SetRelatedStatusBar (int bar)

After calling SetRelatedFrame (p. 759), this sets statusbar slot where messages will be
displayed. (Default is -1 = no messages.)

Parameters

bar

statusbar slot number (0..n)

wxHtmlWindow::ToText

wxString ToText ()

Returns content of currently displayed page as plain text.

wxHtmlWindow::WriteCustomization

CHAPTER 7

741

virtual void WriteCustomization (wxConfigBase *cfg, wxString path =
wxEmptyString)

Saves custom settings into wxConfig. It uses the path 'path' if given, otherwise it saves
info into currently selected path. Regardless of whether the path is given or not, the
function creates sub-path wxHtmlWindow .

Saved values: all things set by SetFonts, SetBorders.

Parameters

cfg

wxConfig to which you want to save the configuration.

path

Optional path in config tree. If not given, the current path is used.

wxHtmlWinParser

This class is derived from wxHtmlParser (p. 738) and its main goal is to parse HTML
input so that it can be displayed inwxHtmlWindow (p. 751). It uses a special
wxHtmlWinTagHandler (p. 766).

Notes

The product of parsing is a wxHtmlCell (resp. wxHtmlContainer) object.

Derived from

wxHtmlParser (p. 738)

Include files

<wx/html/winpars.h>

See Also

Handlers overview (p. Error! Bookmark not defined.)

wxHtmlWinParser::wxHtmlWinParser

 wxHtmlWinParser ()

 wxHtmlWinParser (wxHtmlWindow *wnd)

Constructor. Don't use the default one, use constructor withwnd parameter (wnd is
pointer to associated wxHtmlWindow (p. 751))

wxHtmlWinParser::AddModule

CHAPTER 7

742

static void AddModule (wxHtmlTagsModule *module)

Adds module (p. Error! Bookmark not defined.) to the list of wxHtmlWinParser tag
handler.

wxHtmlWinParser::CloseContainer

wxHtmlContainerCell* CloseContainer ()

Closes the container, sets actual container to the parent one and returns pointer to it
(see Overview (p. Error! Bookmark not defined.)).

wxHtmlWinParser::CreateCurrentFont

virtual wxFont* CreateCurrentFont ()

Creates font based on current setting (see SetFontSize (p. 765), SetFontBold (p. 765),
SetFontItalic (p. 765), SetFontFixed (p. 765), SetFontUnderlined (p. 765)) and returns
pointer to it. If the font was already created only a pointer is returned.

wxHtmlWinParser::GetActualColor

const wxColour& GetActualColor () const

Returns actual text colour.

wxHtmlWinParser::GetAlign

int GetAlign () const

Returns default horizontal alignment.

wxHtmlWinParser::GetCharHeight

int GetCharHeight () const

Returns (average) char height in standard font. It is used as DC-independent metrics.

Note: This function doesn't return the actual height. If you want to know the height of the
current font, call GetDC -> GetCharHeight() .

wxHtmlWinParser::GetCharWidth

int GetCharWidth () const

Returns average char width in standard font. It is used as DC-independent metrics.

Note: This function doesn't return the actual width. If you want to know the height of the
current font, call GetDC -> GetCharWidth()

CHAPTER 7

743

wxHtmlWinParser::GetContainer

wxHtmlContainerCell* GetContainer () const

Returns pointer to the currently opened container (see Overview (p. Error! Bookmark
not defined.)). Common use:

m_WParser -> GetContainer() -> InsertCell(new ...);

wxHtmlWinParser::GetDC

wxDC* GetDC()

Returns pointer to the DC used during parsing.

wxHtmlWinParser::GetEncodingConverter

wxEncodingConverter * GetEncodingConverter () const

Returns wxEncodingConverter (p. 482) class used to do conversion between input
encoding (p. 763) and output encoding (p. 764).

wxHtmlWinParser::GetFontBold

int GetFontBold () const

Returns true if actual font is bold, false otherwise.

wxHtmlWinParser::GetFontFace

wxString GetFontFace () const

Returns actual font face name.

wxHtmlWinParser::GetFontFixed

int GetFontFixed () const

Returns true if actual font is fixed face, false otherwise.

wxHtmlWinParser::GetFontItalic

int GetFontItalic () const

Returns true if actual font is italic, false otherwise.

wxHtmlWinParser::GetFontSize

int GetFontSize () const

CHAPTER 7

744

Returns actual font size (HTML size varies from -2 to +4)

wxHtmlWinParser::GetFontUnderlined

int GetFontUnderlined () const

Returns true if actual font is underlined, false otherwise.

wxHtmlWinParser::GetInputEncoding

wxFontEncoding GetInputEncoding () const

Returns input encoding.

wxHtmlWinParser::GetLink

const wxHtmlLinkInfo& GetLink () const

Returns actual hypertext link. (This value has a non-empty Href (p. 735) string if the
parser is between <A> and tags, wxEmptyString otherwise.)

wxHtmlWinParser::GetLinkColor

const wxColour& GetLinkColor () const

Returns the colour of hypertext link text.

wxHtmlWinParser::GetOutputEncoding

wxFontEncoding GetOutputEncoding () const

Returns output encoding, i.e. closest match to document's input encoding that is
supported by operating system.

wxHtmlWinParser::GetWindow

wxHtmlWindow* GetWindow ()

Returns associated window (wxHtmlWindow). This may be NULL! (You should always
test if it is non-NULL. For example TITLE handler sets window title only if some window
is associated, otherwise it does nothing)

wxHtmlWinParser::OpenContainer

wxHtmlContainerCell* OpenContainer ()

Opens new container and returns pointer to it (see Overview (p. Error! Bookmark not
defined.)).

wxHtmlWinParser::SetActualColor

CHAPTER 7

745

void SetActualColor (const wxColour& clr)

Sets actual text colour. Note: this DOESN'T change the colour! You must create
wxHtmlColourCell (p. 709) yourself.

wxHtmlWinParser::SetAlign

void SetAlign (int a)

Sets default horizontal alignment (see wxHtmlContainerCell::SetAlignHor (p. 711).)
Alignment of newly opened container is set to this value.

wxHtmlWinParser::SetContainer

wxHtmlContainerCell* SetContainer (wxHtmlContainerCell * c)

Allows you to directly set opened container. This is not recommended - you should use
OpenContainer wherever possible.

wxHtmlWinParser::SetDC

virtual void SetDC(wxDC *dc, double pixel_scale = 1.0)

Sets the DC. This must be called before Parse (p. 741)!pixel_scale can be used when
rendering to high-resolution DCs (e.g. printer) to adjust size of pixel metrics. (Many
dimensions in HTML are given in pixels -- e.g. image sizes. 300x300 image would be
only one inch wide on typical printer. With pixel_scale = 3.0 it would be 3 inches.)

wxHtmlWinParser::SetFontBold

void SetFontBold (int x)

Sets bold flag of actualfont. x is either true of false.

wxHtmlWinParser::SetFontFace

void SetFontFace (const wxString& face)

Sets current font face to face. This affects either fixed size font or proportional,
depending on context (whether the parser is inside <TT> tag or not).

wxHtmlWinParser::SetFontFixed

void SetFontFixed (int x)

Sets fixed face flag of actualfont. x is either true of false.

wxHtmlWinParser::SetFontItalic

void SetFontItalic (int x)

CHAPTER 7

746

Sets italic flag of actualfont. x is either true of false.

wxHtmlWinParser::SetFontSize

void SetFontSize (int s)

Sets actual font size (HTML size varies from 1 to 7)

wxHtmlWinParser::SetFontUnderlined

void SetFontUnderlined (int x)

Sets underlined flag of actualfont. x is either true of false.

wxHtmlWinParser::SetFonts

void SetFonts (const wxString& normal_face, const wxString& fixed_face, const int
*sizes = NULL)

Sets fonts. See wxHtmlWindow::SetFonts (p. 758) for detailed description.

wxHtmlWinParser::SetInputEncoding

void SetInputEncoding (wxFontEncoding enc)

Sets input encoding. The parser uses this information to build conversion tables from
document's encoding to some encoding supported by operating system.

wxHtmlWinParser::SetLink

void SetLink (const wxHtmlLinkInfo& link)

Sets actual hypertext link. Empty link is represented by wxHtmlLinkInfo (p. 735) with Href
equal to wxEmptyString.

wxHtmlWinParser::SetLinkColor

void SetLinkColor (const wxColour& clr)

Sets colour of hypertext link.

wxHtmlWinTagHandler

This is basically wxHtmlTagHandler except that it is extended with protected member
m_WParser pointing to the wxHtmlWinParser object (value of this member is identical to
wxHtmlParser's m_Parser).

Derived from

wxHtmlTagHandler (p. 748)

CHAPTER 7

747

Include files

<wx/html/winpars.h>

wxHtmlWinTagHandler::m_WParser

wxHtmlWinParser* m_WParser

Value of this attribute is identical to value of m_Parser. The only different is that
m_WParser points to wxHtmlWinParser object while m_Parser points to wxHtmlParser
object. (The same object, but overcast.)

wxHTTP

Derived from

wxProtocol (p. Error! Bookmark not defined.)

Include files

<wx/protocol/http.h>

See also

wxSocketBase (p. Error! Bookmark not defined.), wxURL (p. Error! Bookmark not
defined.)

wxHTTP::GetResponse

int GetResponse () const

Returns the HTTP response code returned by the server. Please refer toRFC 2616
(http://www.faqs.org/rfcs/rfc2616.html) for the list of responses.

wxHTTP::GetInputStream

wxInputStream * GetInputStream (const wxString& path)

Creates a new input stream on the specified path. You can use all except the seek
functionality of wxStream. Seek isn't available on all streams. For example, http or ftp
streams doesn't deal with it. Other functions like Tell and SeekI for this sort of stream.
You will be notified when the EOF is reached by an error.

Note

You can know the size of the file you are getting using wxStreamBase::GetSize() (p.
Error! Bookmark not defined.). But there is a limitation: as HTTP servers aren't obliged
to pass the size of the file, in some case, you will be returned 0xfffffff by GetSize(). In
these cases, you should use the value returned by wxInputStream::LastRead() (p. 827):

CHAPTER 7

748

this value will be 0 when the stream is finished.

Return value

Returns the initialized stream. You will have to delete it yourself once you don't use it
anymore. The destructor closes the network connection. The next time you will try to get
a file the network connection will have to be reestablished: but you don't have to take
care of this since wxHTTP reestablishes it automatically.

See also

wxInputStream (p. 826)

wxHTTP::SetHeader

void SetHeader (const wxString& header, const wxString& h_data)

It sets data of a field to be sent during the next request to the HTTP server. The field
name is specified by header and the content by h_data. This is a low level function and it
assumes that you know what you are doing.

wxHTTP::GetHeader

wxString GetHeader (const wxString& header)

Returns the data attached with a field whose name is specified by header. If the field
doesn't exist, it will return an empty string and not a NULL string.

Note

The header is not case-sensitive, i.e. "CONTENT-TYPE" and "content-type" represent
the same header.

wxHVScrolledWindow

This class is strongly influenced by wxVScrolledWindow (p. Error! Bookmark not
defined.). Like wxVScrolledWindow, this class is here to provide an easy way to
implement variable line sizes. The difference is that wxVScrolledWindow only works
with vertical scrolling. This class extends the behavior of wxVScrolledWindow to the
horizontal axis in addition to the vertical axis.

The scrolling is also "virtual" in the sense that row widths and column heights only need
to be known for the rows and columns that are currently visible.

Like wxVScrolledWindow (p. Error! Bookmark not defined.), this is a generalization of
the wxScrolledWindow (p. Error! Bookmark not defined.) class which can be only used
when all rows have a constant height and columns have a constant width. Like
wxVScrolledWinow it lacks some of wxScrolledWindow features such as scrolling
another window or only scrolling a rectangle of the window and not its entire client area.

If only vertical scrolling is needed, wxVScrolledWindow is recommended because it is

CHAPTER 7

749

simpler to use. There is no wxHScrolledWindow but horizontal-only scrolling is
implemented easily enough with this class.

To use this class, you need to derive from it and implement both the OnGetRowHeight()
(p. 774) and the OnGetColumnWidth() (p. 773) pure virtual methods. You also must call
SetRowColumnCounts (p. 778) to let the base class know how many rows and columns
it should display. After these requirements are met scrolling is handled entirely by
wxHVScrolledWindow. You only need to draw the visible part of contents in your
OnPaint() method as usual. You should use GetVisibleRowsBegin() (p. 772),
GetVisibleColumnsBegin() (p. 771), GetVisibleRowsEnd() (p. 772), and
GetVisibleColumnsEnd() (p. 772) to determine which lines to to display. If physical
scrolling is enabled the device context origin is shifted by the scroll position
(throughPrepareDC()), child windows are moved as the window scrolls, and the pixels
on the screen are moved to minimize the region that requires painting. Physical scrolling
is enabled by default.

Derived from

wxPanel (p. Error! Bookmark not defined.)

Include files

<wx/vscroll.h>

wxHVScrolledWindow::wxHVScrolledWindow

 wxHVScrolledWindow (wxWindow* parent, wxWindowID id = wxID_ANY, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = wxPanelNameStr)

This is the normal constructor, no need to call Create() after using this one.

Note that wxVSCROLL and wxHSCROLL are always automatically added to our style,
there is no need to specify them explicitly.

 wxHVScrolledWindow ()

Default constructor, you must call Create() (p. 769)later.

Parameters

parent

The parent window, must not be NULL

id

The identifier of this window, wxID_ANY by default

pos

The initial window position

CHAPTER 7

750

size

The initial window size

style

The window style. There are no special style bits defined for this class.

name

The name for this window; usually not used

wxHVScrolledWindow::Create

bool Create (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxPanelNameStr)

Same as the non default ctor (p. 769) but returns status code: true if ok, false if the
window couldn't have been created.

Just as with the ctor above, both the wxVSCROLL and the wxHSCROLLstyles are always
used. There is no need to specify either explicitly.

wxHVScrolledWindow::EnablePhysicalScrolling

 EnablePhysicalScrolling (bool scrolling = true)

With physical scrolling enabled the device origin is changed properly when a wxDC is
prepared using PrepareDC() , children are actually moved and layed out according to
the current scroll position, and the contents of the window (pixels) are actually moved to
reduce the amount of redraw needed.

Physical scrolling is enabled by default but can be disable or re-enabled at any time. An
example of when you'd want to disable it would be if you have statically positioned
graphic elements or children you do not want to move while the window is being
scrolled. If you disable physical scrolling you must manually adjust positioning for items
within the scrolled window yourself. Also note that an unprepared wxDC requires you to
do the same, regardless of the physical scrolling state.

wxHVScrolledWindow::EstimateTotalHeight

virtual wxCoord EstimateTotalHeight () const

This protected function is used internally by wxHVScrolledWindow to estimate the total
height of the window when SetRowColumnCounts (p. 778)is called. The default
implementation uses the brute force approach if the number of the items in the control is
small enough. Otherwise, it tries to find the average row height using some rows in the
beginning, middle and the end.

If it is undesirable to query all these rows (some of which might be never shown) just for
the total height calculation, you may override the function and provide your own guess

CHAPTER 7

751

using a better and/or faster method.

Note that although returning a totally wrong value would still work, it risks causing some
very strange scrollbar behaviour so this function should really try to make the best guess
possible.

wxHVScrolledWindow::EstimateTotalWidth

virtual wxCoord EstimateTotalWidth () const

This protected function is used internally by wxHVScrolledWindow to estimate the total
width of the window when SetRowColumnCounts (p. 778)is called. The default
implementation uses the brute force approach if the number of the items in the control is
small enough. Otherwise, it tries to find the average column width using some columns
in the beginning, middle and the end.

If it is undesirable to query all these columns (some of which might be never shown) just
for the total width calculation, you may override the function and provide your own guess
using a better and/or faster method.

Note that although returning a totally wrong value would still work, it risks causing some
very strange scrollbar behaviour so this function should really try to make the best guess
possible.

wxHVScrolledWindow::GetColumnCount

wxSize GetColumnCount () const

Get the number of columns this window contains (previously set by
SetRowColumnCounts() (p. 778))

wxHVScrolledWindow::GetRowCount

wxSize GetRowCount () const

Get the number of rows this window contains (previously set by SetRowColumnCounts()
(p. 778))

wxHVScrolledWindow::GetRowColumnCounts

wxSize GetRowColumnCounts () const

Get the number of rows (X or width) and columns (Y or height) this window contains
(previously set by SetRowColumnCounts() (p. 778))

wxHVScrolledWindow::GetVisibleBegin

wxPoint GetVisibleBegin () const

Returns the indicies of the first visible row (Y) and column (X).

CHAPTER 7

752

See also

GetVisibleRowsBegin (p. 772), GetVisibleColumnsBegin (p. 771)

wxHVScrolledWindow::GetVisibleColumnsBegin

size_t GetVisibleColumnsBegin () const

Returns the index of the first currently visible column.

See also

GetVisibleColumnsEnd (p. 772)

wxHVScrolledWindow::GetVisibleColumnsEnd

size_t GetVisibleColumnsEnd () const

Returns the index of the first column after the currently visible page. If the return value is
0 it means that no columns are currently shown (which only happens if the control is
empty). Note that the index returned by this method is not always a valid index as it may
be equal to GetColumnCount (p. 771).

See also

GetVisibleColumnsBegin (p. 771)

wxHVScrolledWindow::GetVisibleEnd

wxPoint GetVisibleEnd () const

Returns the indicies of the row and column after the last visible row (Y) and last visible
column (X), respectively.

See also

GetVisibleRowsEnd (p. 772), GetVisibleColumnsEnd (p. 772)

wxHVScrolledWindow::GetVisibleRowsBegin

size_t GetVisibleRowsBegin () const

Returns the index of the first currently visible row.

See also

GetVisibleRowsEnd (p. 772)

wxHVScrolledWindow::GetVisibleRowsEnd

size_t GetVisibleRowsEnd () const

CHAPTER 7

753

Returns the index of the first row after the currently visible page. If the return value is 0 it
means that no rows are currently shown (which only happens if the control is empty).
Note that the index returned by this method is not always a valid index as it may be
equal to GetRowCount (p. 771).

See also

GetVisibleRowsBegin (p. 772)

wxHVScrolledWindow::HitTest

wxPoint HitTest (wxCoord x, wxCoord y) const

wxPoint HitTest (const wxPoint& pt) const

Return the position (X as column, Y as row) of the cell occupying the specified position
(in physical coordinates). A value of wxNOT_FOUND in either X, Y, or X and Y means it is
outside the range availible rows and/or columns.

wxHVScrolledWindow::IsColumnVisible

bool IsColumnVisible (size_t column) const

Returns true if the given column is at least partially visible orfalse otherwise.

wxHVScrolledWindow::IsRowVisible

bool IsRowVisible (size_t row) const

Returns true if the given row is at least partially visible or false otherwise.

wxHVScrolledWindow::IsVisible

bool IsVisible (size_t row, size_t column) const

Returns true if the given row and column are both at least partially visible or false
otherwise.

wxHVScrolledWindow::OnGetColumnWidth

wxCoord OnGetColumnWidth (size_t n) const

This protected pure virtual function must be overridden in the derived class and should
return the width of the given column in pixels.

See also

OnGetColumnsWidthHint (p. 773)

wxHVScrolledWindow::OnGetColumnsWidthHint

CHAPTER 7

754

void OnGetColumnsWidthHint (size_t columnMin, size_t columnMax) const

This function doesn't have to be overridden but it may be useful to do it if calculating the
columns' heights is a relatively expensive operation as it gives the user code a possibility
to calculate several of them at once.

OnGetColumnsWidthHint() is normally called just before OnGetColumnWidth() (p.
773) but you shouldn't rely on the latter being called for all columns in the interval
specified here. It is also possible that OnGetColumnWidth() will be called for the
columns outside of this interval, so this is really just a hint, not a promise.

Finally note that columnMin is inclusive, while columnMax is exclusive, as usual.

wxHVScrolledWindow::OnGetRowHeight

wxCoord OnGetRowHeight (size_t n) const

This protected pure virtual function must be overridden in the derived class and should
return the height of the given row in pixels.

See also

OnGetRowsHeightHint (p. 774)

wxHVScrolledWindow::OnGetRowsHeightHint

void OnGetRowsHeightHint (size_t rowMin, size_t rowMax) const

This function doesn't have to be overridden but it may be useful to do it if calculating the
row's heights is a relatively expensive operation as it gives the user code a possibility to
calculate several of them at once.

OnGetRowsHeightHint() is normally called just before OnGetRowHeight() (p. 774)
but you shouldn't rely on the latter being called for all rows in the interval specified here.
It is also possible that OnGetRowHeight() will be called for the rows outside of this
interval, so this is really just a hint, not a promise.

Finally note that rowMin is inclusive, while rowMax is exclusive, as usual.

wxHVScrolledWindow::RefreshColumn

void RefreshColumn (size_t column)

Refreshes the specified column -- it will be redrawn during the next main loop iteration.

wxHVScrolledWindow::RefreshRow

void RefreshRow (size_t row)

Refreshes the specified row -- it will be redrawn during the next main loop iteration.

CHAPTER 7

755

wxHVScrolledWindow::RefreshRowColumn

void RefreshRowColumn (size_t row, size_t column)

Refreshes the specified cell -- it will be redrawn during the next main loop iteration.

See also

RefreshRowsColumns (p. 775)

wxHVScrolledWindow::RefreshColumns

void RefreshColumns (size_ t fromColumn, size_t toColumn)

Refreshes the columns between fromColumn and toColumn (inclusive).fromColumn
should be less than or equal to toColumn.

See also

RefreshColumn (p. 774)

wxHVScrolledWindow::RefreshRows

void RefreshRows (size_ t fromRow, size_t toRow)

Refreshes the rows between fromRow and toRow (inclusive).fromRow should be less
than or equal to toRow.

See also

RefreshRow (p. 774)

wxHVScrolledWindow::RefreshRowsColumns

void RefreshRowsColumns (size_t fromRow, size_t toRow, size_ t fromColumn, size_t
toColumn)

Refreshes the region of cells between fromRow, fromColumn andtoRow, toColumn
(inclusive). fromRow and fromColumnshould be less than or equal to toRow and
toColumn, respectively.

See also

RefreshRowColumn (p. 775)

wxHVScrolledWindow::RefreshAll

void RefreshAll ()

This function completely refreshes the control, recalculating the number of items shown
on screen and repainting them. It should be called when the values returned by either
OnGetRowHeight (p. 774) or OnGetColumnWidth (p. 773) change for some reason and

CHAPTER 7

756

the window must be updated to reflect this.

wxHVScrolledWindow::ScrollColumns

bool ScrollColumns (int columns)

Scroll by the specified number of columns which may be positive (to scroll right) or
negative (to scroll left).

Returns true if the window was scrolled, false otherwise (for example if we're trying to
scroll right but we are already showing the last column).

wxHVScrolledWindow::ScrollRows

bool ScrollRows (int rows)

Scroll by the specified number of rows which may be positive (to scroll down) or negative
(to scroll up).

Returns true if the window was scrolled, false otherwise (for example if we're trying to
scroll down but we are already showing the last row).

See also

LineUp (p. Error! Bookmark not defined.), LineDown (p. Error! Bookmark not
defined.)

wxHVScrolledWindow::ScrollRowsColumns

bool ScrollRowsColumns (int rows, int columns)

Scroll by the specified number of rows and columns which may be positive (to scroll
down or right) or negative (to scroll up or left).

Returns true if the window was scrolled, false otherwise (for example if we're trying to
scroll down but we are already showing the last row).

See also

LineUp (p. Error! Bookmark not defined.), LineDown (p. Error! Bookmark not
defined.)

wxHVScrolledWindow::ScrollColumnPages

bool ScrollColumnPages (int columnPages)

Scroll by the specified number of column pages, which may be positive (to scroll right) or
negative (to scroll left).

wxHVScrolledWindow::ScrollPages

bool ScrollPages (int rowPages, int columnPages)

CHAPTER 7

757

Scroll by the specified number of row pages and column pages, both of which may be
positive (to scroll down or right) or negative (to scroll up or left).

See also

ScrollRowsColumns (p. 776),
PageUp (p. Error! Bookmark not defined.), PageDown (p. Error! Bookmark not
defined.)

wxHVScrolledWindow::ScrollRowPages

bool ScrollRowPages (int rowPages)

Scroll by the specified number of row pages, which may be positive (to scroll down) or
negative (to scroll up).

See also

PageUp (p. Error! Bookmark not defined.), PageDown (p. Error! Bookmark not
defined.)

wxHVScrolledWindow::ScrollToColumn

bool ScrollToColumn (size_t column)

Scroll to the specified column. The specified column will be the first visible column on the
left side afterwards.

Return true if we scrolled the window, false if nothing was done.

wxHVScrolledWindow::ScrollToRow

bool ScrollToRow (size_t row)

Scroll to the specified row. The specified column will be the first visible row on the top
afterwards.

Return true if we scrolled the window, false if nothing was done.

wxHVScrolledWindow::ScrollToRowColumn

bool ScrollToRowColumn (size_t row, size_t column)

Scroll to the specified row and column. The cell described will be the top left visible cell
afterwards.

Return true if we scrolled the window, false if nothing was done.

wxHVScrolledWindow::SetRowColumnCounts

void SetLineCount (size_t row, size_t column)

CHAPTER 7

758

Set the number of rows and columns the window
contains. The derived class must provide the height s for
all rows and the widths for all columns with indice s up
to the respective values given here in its
OnGetRowHeight() (p. 774) and OnGetColumnWidth() (p.
773)implementations.wxIcon

An icon is a small rectangular bitmap usually used for denoting a minimized application.
It differs from a wxBitmap in always having a mask associated with it for transparent
drawing. On some platforms, icons and bitmaps are implemented identically, since there
is no real distinction between a wxBitmap with a mask and an icon; and there is no
specific icon format on some platforms (X-based applications usually standardize on
XPMs for small bitmaps and icons). However, some platforms (such as Windows) make
the distinction, so a separate class is provided.

Derived from

wxBitmap (p. 84)
wxGDIObject (p. 609)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/icon.h>

Predefined objects

Objects:

wxNullIcon

Remarks

It is usually desirable to associate a pertinent icon with a frame. Icons can also be used
for other purposes, for example with wxTreeCtrl (p. Error! Bookmark not defined.) and
wxListCtrl (p. 864).

Icons have different formats on different platforms. Therefore, separate icons will usually
be created for the different environments. Platform-specific methods for creating a
wxIcon structure are catered for, and this is an occasion where conditional compilation
will probably be required.

Note that a new icon must be created for every time the icon is to be used for a new
window. In Windows, the icon will not be reloaded if it has already been used. An icon
allocated to a frame will be deleted when the frame is deleted.

For more information please see Bitmap and icon overview (p. Error! Bookmark not
defined.).

See also

CHAPTER 7

759

Bitmap and icon overview (p. Error! Bookmark not defined.), supported bitmap file
formats (p. Error! Bookmark not defined.), wxDC::DrawIcon (p. 377), wxCursor (p.
230)

wxIcon::wxIcon

 wxIcon ()

Default constructor.

 wxIcon (const wxIcon& icon)

Copy constructor.

 wxIcon (void* data, int type, int width, int height, int depth = -1)

Creates an icon from the given data, which can be of arbitrary type.

 wxIcon (const char bits[], int width, int height
 int depth = 1)

Creates an icon from an array of bits.

 wxIcon (int width, int height, int depth = -1)

Creates a new icon.

 wxIcon (char** bits)

 wxIcon (const char** bits)

Creates an icon from XPM data.

 wxIcon (const wxString& name, wxBitmapType type, int desiredWidth = -1, int
desiredHeight = -1)

Loads an icon from a file or resource.

 wxIcon (const wxIconLocation& loc)

Loads an icon from the specified location (p. 786).

Parameters

bits

Specifies an array of pixel values.

width

Specifies the width of the icon.

height

CHAPTER 7

760

Specifies the height of the icon.

desiredWidth

Specifies the desired width of the icon. This parameter only has an effect in
Windows (32-bit) where icon resources can contain several icons of different sizes.

desiredWidth

Specifies the desired height of the icon. This parameter only has an effect in
Windows (32-bit) where icon resources can contain several icons of different sizes.

depth

Specifies the depth of the icon. If this is omitted, the display depth of the screen is
used.

name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the flags parameter.

loc

The object describing the location of the native icon, see wxIconLocation (p. 786).

type

May be one of the following:

wxBITMAP_TYPE_ICO Load a Windows icon file.

wxBITMAP_TYPE_ICO_RESOURCE Load a Windows icon from the resource
database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration. If
all possible wxWidgets settings are used, the Windows platform supports ICO file,
ICO resource, XPM data, and XPM file. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

Remarks

The first form constructs an icon object with no data; an assignment or another member
function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
icon data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

CHAPTER 7

761

The fourth form constructs an icon from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) icon from an array of pixel values,
under both X and Windows.

The sixth form constructs a new icon.

The seventh form constructs an icon from pixmap (XPM) data, if wxWidgets has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

...

wxIcon *icon = new wxIcon(mybitmap);

A macro, wxICON, is available which creates an icon using an XPM on the appropriate
platform, or an icon resource on Windows.

wxIcon icon(wxICON(mondrian));

// Equivalent to:

#if defined(__WXGTK__) || defined(__WXMOTIF__)
wxIcon icon(mondrian_xpm);
#endif

#if defined(__WXMSW__)
wxIcon icon("mondrian");
#endif

The eighth form constructs an icon from a file or resource. name can refer to a resource
name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_ICO_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxIcon::CopyFromBitmap

void CopyFromBitmap (const wxBitmap& bmp)

Copies bmp bitmap to this icon. Under MS Windows the bitmap must have mask colour
set.

wxIcon::LoadFile (p. 783)

wxPerl note: Constructors supported by wxPerl are:

 •::Icon->new(width, height, depth = -1)

CHAPTER 7

762

 •::Icon->new(name, type, desiredWidth = -1, desiredHeight = -1)

 •::Icon->newFromBits(bits, width, height, depth = 1)

 •::Icon->newFromXPM(data)

wxIcon::~wxIcon

 ~wxIcon ()

Destroys the wxIcon object and possibly the underlying icon data. Because reference
counting is used, the icon may not actually be destroyed at this point - only when the
reference count is zero will the data be deleted.

If the application omits to delete the icon explicitly, the icon will be destroyed
automatically by wxWidgets when the application exits.

Do not delete an icon that is selected into a memory device context.

wxIcon::GetDepth

int GetDepth () const

Gets the colour depth of the icon. A value of 1 indicates a monochrome icon.

wxIcon::GetHeight

int GetHeight () const

Gets the height of the icon in pixels.

wxIcon::GetWidth

int GetWidth () const

Gets the width of the icon in pixels.

See also

wxIcon::GetHeight (p. 782)

wxIcon::LoadFile

bool LoadFile (const wxString& name, wxBitmapType type)

Loads an icon from a file or resource.

Parameters

name

Either a filename or a Windows resource name. The meaning of name is

CHAPTER 7

763

determined by the type parameter.

type

One of the following values:

wxBITMAP_TYPE_ICO Load a Windows icon file.

wxBITMAP_TYPE_ICO_RESOURCE Load a Windows icon from the resource
database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

Return value

true if the operation succeeded, false otherwise.

See also

wxIcon::wxIcon (p. 779)

wxIcon::Ok

bool Ok() const

Returns true if icon data is present.

wxIcon::SetDepth

void SetDepth (int depth)

Sets the depth member (does not affect the icon data).

Parameters

depth

Icon depth.

wxIcon::SetHeight

void SetHeight (int height)

Sets the height member (does not affect the icon data).

Parameters

height

CHAPTER 7

764

Icon height in pixels.

wxIcon::SetWidth

void SetWidth (int width)

Sets the width member (does not affect the icon data).

Parameters

width

Icon width in pixels.

wxIcon::operator =

wxIcon& operator = (const wxIcon& icon)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in icon and increments a reference counter. It is a fast operation.

Parameters

icon

Icon to assign.

Return value

Returns 'this' object.

wxIcon::operator ==

bool operator == (const wxIcon& icon)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

icon

Icon to compare with 'this'

Return value

Returns true if the icons were effectively equal, false otherwise.

wxIcon::operator !=

bool operator != (const wxIcon& icon)

Inequality operator. This operator tests whether the internal data pointers are unequal (a

CHAPTER 7

765

fast test).

Parameters

icon

Icon to compare with 'this'

Return value

Returns true if the icons were unequal, false otherwise.

wxIconBundle

This class contains multiple copies of an icon in different sizes, see also
wxDialog::SetIcons (p. 420) andwxTopLevelWindow::SetIcons (p. Error! Bookmark not
defined.).

Derived from

No base class

wxIconBundle::wxIconBundle

 wxIconBundle ()

Default constructor.

 wxIconBundle (const wxString& file, long type)

Initializes the bundle with the icon(s) found in the file.

 wxIconBundle (const wxIcon& icon)

Initializes the bundle with a single icon.

 wxIconBundle (const wxIconBundle& ic)

Copy constructor.

wxIconBundle::~wxIconBundle

 ~wxIconBundle ()

Destructor.

wxIconBundle::AddIcon

void AddIcon (const wxString& file, long type)

CHAPTER 7

766

Adds all the icons contained in the file to the bundle; if the collection already contains
icons with the same width and height, they are replaced by the new ones.

void AddIcon (const wxIcon& icon)

Adds the icon to the collection; if the collection already contains an icon with the same
width and height, it is replaced by the new one.

wxIconBundle::GetIcon

const wxIcon& GetIcon (const wxSize& size) const

Returns the icon with the given size; if no such icon exists, returns the icon with size
wxSYS_ICON_X/wxSYS_ICON_Y; if no such icon exists, returns the first icon in the
bundle. If size = wxSize(-1, -1), returns the icon with size
wxSYS_ICON_X/wxSYS_ICON_Y.

const wxIcon& GetIcon (wxCoord size = -1) const

Same as GetIcon(wxSize(size, size)).

wxIconBundle::operator=

const wxIconBundle& operator= (const wxIconBundle& ic)

Assignment operator.

wxIconLocation

wxIconLocation is a tiny class describing the location of an (external, i.e. not embedded
into the application resources) icon. For most platforms it simply contains the file name
but under some others (notably Windows) the same file may contain multiple icons and
so this class also stores the index of the icon inside the file.

In any case, its details should be of no interest to the application code and most of them
are not even documented here (on purpose) as it is only meant to be used as an opaque
class: the application may get the object of this class from somewhere and the only
reasonable thing to do with it later is to create a wxIcon (p. 778) from it.

Derived from

None.

Include files

<wx/iconloc.h>

See also

wxIcon (p. 778), wxFileType::GetIcon (p. 550)

CHAPTER 7

767

wxIconLocation::IsOk

bool IsOk () const

Returns true if the object is valid, i.e. was properly initialized, and false otherwise.

wxIconizeEvent

An event being sent when the frame is iconized (minimized) or restored.

Currently only wxMSW and wxGTK generate such events.

Derived from

wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

Event table macros

To process an iconize event, use this event handler macro to direct input to a member
function that takes a wxIconizeEvent argument.

EVT_ICONIZE(func) Process a wxEVT_ICONIZE event.

See also
Event handling overview (p. Error! Bookmark not defined.),
wxTopLevelWindow::Iconize (p. Error! Bookmark not defined.),
wxTopLevelWindow::IsIconized (p. Error! Bookmark not defined.)

wxIconizeEvent::wxIconizeEvent

 wxIconizeEvent (int id = 0, bool iconized = true)

Constructor.

wxIconizeEvent::Iconized

bool Iconized () const

Returns true if the frame has been iconized, false if it has been restored.

wxIdleEvent

This class is used for idle events, which are generated when the system becomes idle.
Note that, unless you do something specifically, the idle events are not sent if the system

CHAPTER 7

768

remains idle once it has become it, e.g. only a single idle event will be generated until
something else resulting in more normal events happens and only then is the next idle
event sent again. If you need to ensure a continuous stream of idle events, you can
either use RequestMore (p. 789) method in your handler or call wxWakeUpIdle (p.
Error! Bookmark not defined.) periodically (for example from timer event), but note
that both of these approaches (and especially the first one) increase the system load
and so should be avoided if possible.

By default, idle events are sent to all windows (and also wxApp (p. 36), as usual). If this
is causing a significant overhead in your application, you can call wxIdleEvent::SetMode
(p. 790) with the value wxIDLE_PROCESS_SPECIFIED, and set the
wxWS_EX_PROCESS_IDLE extra window style for every window which should receive
idle events.

Derived from

wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

Event table macros

To process an idle event, use this event handler macro to direct input to a member
function that takes a wxIdleEvent argument.

EVT_IDLE(func) Process a wxEVT_IDLE event.

See also
Event handling overview (p. Error! Bookmark not defined.), wxUpdateUIEvent (p.
Error! Bookmark not defined.), wxWindow::OnInternalIdle (p. Error! Bookmark not
defined.)

wxIdleEvent::wxIdleEvent

 wxIdleEvent ()

Constructor.

wxIdleEvent::CanSend

static bool CanSend (wxWindow* window)

Returns true if it is appropriate to send idle events to this window.

This function looks at the mode used (see wxIdleEvent::SetMode (p. 790)), and the
wxWS_EX_PROCESS_IDLE style in window to determine whether idle events should
be sent to this window now. By default this will always return true because the update
mode is initially wxIDLE_PROCESS_ALL. You can change the mode to only send idle

CHAPTER 7

769

events to windows with the wxWS_EX_PROCESS_IDLE extra window style set.

See also

wxIdleEvent::SetMode (p. 790)

wxIdleEvent::GetMode

static wxIdleMode GetMode ()

Static function returning a value specifying how wxWidgets will send idle events: to all
windows, or only to those which specify that they will process the events.

See wxIdleEvent::SetMode (p. 790).

wxIdleEvent::RequestMore

void RequestMore (bool needMore = true)

Tells wxWidgets that more processing is required. This function can be called by an
OnIdle handler for a window or window event handler to indicate that wxApp::OnIdle
should forward the OnIdle event once more to the application windows. If no window
calls this function during OnIdle, then the application will remain in a passive event loop
(not calling OnIdle) until a new event is posted to the application by the windowing
system.

See also

wxIdleEvent::MoreRequested (p. 789)

wxIdleEvent::MoreRequested

bool MoreRequested () const

Returns true if the OnIdle function processing this event requested more processing
time.

See also

wxIdleEvent::RequestMore (p. 789)

wxIdleEvent::SetMode

static void SetMode (wxIdleMode mode)

Static function for specifying how wxWidgets will send idle events: to all windows, or only
to those which specify that they will process the events.

mode can be one of the following values. The default is wxIDLE_PROCESS_ALL.

enum wxIdleMode
{
 // Send idle events to all windows

CHAPTER 7

770

 wxIDLE_PROCESS_ALL,

 // Send idle events to windows that have
 // the wxWS_EX_PROCESS_IDLE flag specified
 wxIDLE_PROCESS_SPECIFIED
};

wxImage

This class encapsulates a platform-independent image. An image can be created from
data, or using wxBitmap::ConvertToImage (p. 89). An image can be loaded from a file in
a variety of formats, and is extensible to new formats via image format handlers.
Functions are available to set and get image bits, so it can be used for basic image
manipulation.

A wxImage cannot (currently) be drawn directly to a wxDC (p. 372). Instead, a platform-
specific wxBitmap (p. 84) object must be created from it using the
wxBitmap::wxBitmap(wxImage,int depth) (p. 84) constructor. This bitmap can then be
drawn in a device context, using wxDC::DrawBitmap (p. 376).

One colour value of the image may be used as a mask colour which will lead to the
automatic creation of a wxMask (p. 920) object associated to the bitmap object.

Alpha channel support

Starting from wxWidgets 2.5.0 wxImage supports alpha channel data, that is in addition
to a byte for the red, green and blue colour components for each pixel it also stores a
byte representing the pixel opacity. An alpha value of 0corresponds to a transparent
pixel (null opacity) while a value of 255means that the pixel is 100% opaque.

Unlike RGB data, not all images have an alpha channel and before usingGetAlpha (p.
799) you should check if this image contains an alpha channel with HasAlpha (p. 802).
Note that currently only images loaded from PNG files with transparency information will
have an alpha channel but alpha support will be added to the other formats as well (as
well as support for saving images with alpha channel which also isn't implemented).

Available image handlers

The following image handlers are available. wxBMPHandler is always installed by
default. To use other image formats, install the appropriate handler with
wxImage::AddHandler (p. 795) orwxInitAllImageHandlers (p. Error! Bookmark not
defined.).

wxBMPHandler For loading and saving, always installed.

wxPNGHandler For loading (including alpha support) and saving.

wxJPEGHandler For loading and saving.

wxGIFHandler Only for loading, due to legal issues.

wxPCXHandler For loading and saving (see below).

CHAPTER 7

771

wxPNMHandler For loading and saving (see below).

wxTIFFHandler For loading and saving.

wxIFFHandler For loading only.

wxXPMHandler For loading and saving.

wxICOHandler For loading and saving.

wxCURHandler For loading and saving.

wxANIHandler For loading only.

When saving in PCX format, wxPCXHandler will count the number of different colours in
the image; if there are 256 or less colours, it will save as 8 bit, else it will save as 24 bit.

Loading PNMs only works for ASCII or raw RGB images. When saving in PNM format,
wxPNMHandler will always save as raw RGB.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/image.h>

See also

wxBitmap (p. 84),wxInitAllImageHandlers (p. Error! Bookmark not defined.)

wxImage::wxImage

 wxImage ()

Default constructor.

 wxImage (const wxImage& image)

Copy constructor.

 wxImage (const wxBitmap& bitmap)

(Deprecated form, use wxBitmap::ConvertToImage (p. 89)instead.) Constructs an image
from a platform-dependent bitmap. This preserves mask information so that bitmaps and
images can be converted back and forth without loss in that respect.

 wxImage (int width, int height, bool clear=true)

Creates an image with the given width and height. If clear is true, the new image will be
initialized to black. Otherwise, the image data will be uninitialized.

CHAPTER 7

772

 wxImage (int width, int height, unsigned char* data, bool static_data = false)

Creates an image from given data with the given width and height. Ifstatic_data is true,
then wxImage will not delete the actual image data in its destructor, otherwise it will free
it by callingfree().

 wxImage (const wxString& name, long type = wxBITMAP_TYPE_ANY, int index = -1)

 wxImage (const wxString& name, const wxString& mimetype, int index = -1)

Loads an image from a file.

 wxImage (wxInputStream& stream, long type = wxBITMAP_TYPE_ANY, int index = -
1)

 wxImage (wxInputStream& stream, const wxString& mimetype, int index = -1)

Loads an image from an input stream.

 wxImage (const char** xpmData)

Creates an image from XPM data.

Parameters

width

Specifies the width of the image.

height

Specifies the height of the image.

name

Name of the file from which to load the image.

stream

Opened input stream from which to load the image. Currently, the stream must
support seeking.

type

May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_JPEG Load a JPEG bitmap file.

wxBITMAP_TYPE_PNG Load a PNG bitmap file.

wxBITMAP_TYPE_PCX Load a PCX bitmap file.

CHAPTER 7

773

wxBITMAP_TYPE_PNM Load a PNM bitmap file.

wxBITMAP_TYPE_TIF Load a TIFF bitmap file.

wxBITMAP_TYPE_XPM Load a XPM bitmap file.

wxBITMAP_TYPE_ICO Load a Windows icon file (ICO).

wxBITMAP_TYPE_CUR Load a Windows cursor file (CUR).

wxBITMAP_TYPE_ANI Load a Windows animated cursor file (ANI).

wxBITMAP_TYPE_ANY Will try to autodetect the format.

mimetype

MIME type string (for example 'image/jpeg')

index

Index of the image to load in the case that the image file contains multiple images.
This is only used by GIF, ICO and TIFF handlers. The default value (-1) means
"choose the default image" and is interpreted as the first image (index=0) by the
GIF and TIFF handler and as the largest and most colourful one by the ICO
handler.

xpmData

A pointer to XPM image data.

Remarks

Depending on how wxWidgets has been configured, not all formats may be available.

Note: any handler other than BMP must be previously initialized with
wxImage::AddHandler (p. 795) orwxInitAllImageHandlers (p. Error! Bookmark not
defined.).

Note: you can use GetOptionInt (p. 803) to get the hotspot for loaded cursor file: int
hotspot_x = image.GetOptionInt(wxIMAGE_OPTION_CUR_H OTSPOT_X);
 int hotspot_y =
image.GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_Y);

See also

wxImage::LoadFile (p. 804)

wxPython note: Constructors supported by wxPython are:

wxImage(name, flag) Loads an image from a file

wxNullImage() Create a null image (has no size or image data)

wxEmptyImage(width, height) Creates an empty image of the given size

CHAPTER 7

774

wxImageFromMime(name, mimetype Creates an image from the given file
of the given mimetype

wxImageFromBitmap(bitmap) Creates an image from a platform-
dependent bitmap

wxPerl note: Constructors supported by wxPerl are:

 •::Image->new(bitmap)

 •::Image->new(icon)

 •::Image->new(width, height)

 •::Image->new(width, height, data)

 •::Image->new(file, type, index)

 •::Image->new(file, mimetype, index)

 •::Image->new(stream, type, index)

 •::Image->new(stream, mimetype, index)

wxImage::~wxImage

 ~wxImage ()

Destructor.

wxImage::AddHandler

static void AddHandler (wxImageHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler

A new image format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxImageHandler (p. 814)

bool CanRead (const wxString& filename)

returns true if the current image handlers can read this file

wxPython note: In wxPython this static method is named wxImage_AddHandler .

wxImage::CleanUpHandlers

CHAPTER 7

775

static void CleanUpHandlers ()

Deletes all image handlers.

This function is called by wxWidgets on exit.

wxImage::ComputeHistogram

unsigned long ComputeHistogram (wxImageHistogram& histogram) const

Computes the histogram of the image. histogram is a reference to wxImageHistogram
object. wxImageHistogram is a specialization ofwxHashMap (p. 684) "template" and is
defined as follows:

class WXDLLEXPORT wxImageHistogramEntry
{
public:
 wxImageHistogramEntry() : index(0), value(0) {}
 unsigned long index;
 unsigned long value;
};

WX_DECLARE_EXPORTED_HASH_MAP(unsigned long, wxImage HistogramEntry,
 wxIntegerHash, wxInteg erEqual,
 wxImageHistogram);

Return value

Returns number of colours in the histogram.

wxImage::ConvertAlphaToMask

bool ConvertAlphaToMask (unsigned char threshold = 128)

If the image has alpha channel, this method converts it to mask. All pixels with alpha
value less than threshold are replaced with mask colour and the alpha channel is
removed. Mask colour is chosen automatically usingFindFirstUnusedColour (p. 797).

If the image image doesn't have alpha channel, ConvertAlphaToMask does nothing.

Return value

false if FindFirstUnusedColour returns false , true otherwise.

wxImage::ConvertToBitmap

wxBitmap ConvertToBitmap () const

Deprecated, use equivalent wxBitmap constructor (p. 84)(which takes wxImage and
depth as its arguments) instead.

wxImage::ConvertToGreyscale

wxImage ConvertToGreyscale (double lr = 0.299, double lg = 0.587, double lb =

CHAPTER 7

776

0.114) const

Returns a greyscale version of the image. The returned image uses the luminance
component of the original to calculate the greyscale. Defaults to using ITU-T BT.601
when converting to YUV, where every pixel equals (R * lr) + (G * lg) + (B * lb).

wxImage::ConvertToMono

wxImage ConvertToMono (unsigned char r, unsigned char g, unsigned char b)
const

Returns monochromatic version of the image. The returned image has white colour
where the original has (r,g,b) colour and black colour everywhere else.

wxImage::Copy

wxImage Copy () const

Returns an identical copy of the image.

wxImage::Create

bool Create (int width, int height, bool clear=true)

Creates a fresh image. If clear is true, the new image will be initialized to black.
Otherwise, the image data will be uninitialized.

Parameters

width

The width of the image in pixels.

height

The height of the image in pixels.

Return value

true if the call succeeded, false otherwise.

wxImage::Destroy

void Destroy ()

Destroys the image data.

wxImage::FindFirstUnusedColour

bool FindFirstUnusedColour (unsigned char * r, unsigned char * g, unsigned char *
b, unsigned char startR = 1, unsigned char startG = 0, unsigned char startB = 0)

CHAPTER 7

777

Parameters

r,g,b

Pointers to variables to save the colour.

startR,startG,startB

Initial values of the colour. Returned colour will have RGB values equal to or
greater than these.

Finds the first colour that is never used in the image. The search begins at given initial
colour and continues by increasing R, G and B components (in this order) by 1 until an
unused colour is found or the colour space exhausted.

Return value

Returns false if there is no unused colour left, true on success.

Notes

Note that this method involves computing the histogram, which is computationally
intensive operation.

wxImage::FindHandler

static wxImageHandler* FindHandler (const wxString& name)

Finds the handler with the given name.

static wxImageHandler* FindHandler (const wxString& extension, long imageType)

Finds the handler associated with the given extension and type.

static wxImageHandler* FindHandler (long imageType)

Finds the handler associated with the given image type.

static wxImageHandler* FindHandlerMime (const wxString& mimetype)

Finds the handler associated with the given MIME type.

name

The handler name.

extension

The file extension, such as "bmp".

imageType

The image type, such as wxBITMAP_TYPE_BMP.

mimetype

CHAPTER 7

778

MIME type.

Return value

A pointer to the handler if found, NULL otherwise.

See also

wxImageHandler (p. 814)

wxImage::GetImageExtWildcard

static wxString GetImageExtWildcard ()

Iterates all registered wxImageHandler objects, and returns a string containing file
extension masks suitable for passing to file open/save dialog boxes.

Return value

The format of the returned string is "(*.ext1;*.ext2)|*.ext1;*.ext2".

It is usually a good idea to prepend a description before passing the result to the dialog.

Example:

 wxFileDialog FileDlg(this, "Choose Image", ::w xGetCwd(), "",
_("Image Files ") + wxImage::GetImageExtWildcard(), wxOPEN);

See also

wxImageHandler (p. 814)

wxImage::GetAlpha

unsigned char GetAlpha (int x, int y) const

Returns the alpha value for the given pixel. This function may only be called for the
images with alpha channel, use HasAlpha (p. 802) to check for this.

The returned value is the opacity of the image, i.e. the value of 0corresponds to the
transparent pixels while the value of 255 -- to the opaque ones.

unsigned char * GetAlpha () const

Returns pointer to the array storing the alpha values for this image. This pointer is NULL
for the images without the alpha channel. If the image does have it, this pointer may be
used to directly manipulate the alpha values which are stored as the RGB (p. 799) ones.

wxImage::GetBlue

unsigned char GetBlue (int x, int y) const

Returns the blue intensity at the given coordinate.

CHAPTER 7

779

wxImage::GetData

unsigned char* GetData () const

Returns the image data as an array. This is most often used when doing direct image
manipulation. The return value points to an array of characters in RGBRGBRGB...
format in the top-to-bottom, left-to-right order, that is the first RGB triplet corresponds to
the pixel first pixel of the first row, the second one --- to the second pixel of the first row
and so on until the end of the first row, with second row following after it and so on.

You should not delete the returned pointer nor pass it towxImage::SetData (p. 811).

wxImage::GetGreen

unsigned char GetGreen (int x, int y) const

Returns the green intensity at the given coordinate.

wxImage::GetImageCount

static int GetImageCount (const wxString& filename, long type =
wxBITMAP_TYPE_ANY)

static int GetImageCount (wxInputStream& stream, long type =
wxBITMAP_TYPE_ANY)

If the image file contains more than one image and the image handler is capable of
retrieving these individually, this function will return the number of available images.

name

Name of the file to query.

stream

Opened input stream with image data. Currently, the stream must support seeking.

type

May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_JPEG Load a JPEG bitmap file.

wxBITMAP_TYPE_PNG Load a PNG bitmap file.

wxBITMAP_TYPE_PCX Load a PCX bitmap file.

wxBITMAP_TYPE_PNM Load a PNM bitmap file.

wxBITMAP_TYPE_TIF Load a TIFF bitmap file.

CHAPTER 7

780

wxBITMAP_TYPE_XPM Load a XPM bitmap file.

wxBITMAP_TYPE_ICO Load a Windows icon file (ICO).

wxBITMAP_TYPE_CUR Load a Windows cursor file (CUR).

wxBITMAP_TYPE_ANI Load a Windows animated cursor file (ANI).

wxBITMAP_TYPE_ANY Will try to autodetect the format.

Return value

Number of available images. For most image handlers, this is 1 (exceptions are TIFF
and ICO formats).

wxImage::GetHandlers

static wxList& GetHandlers ()

Returns the static list of image format handlers.

See also

wxImageHandler (p. 814)

wxImage::GetHeight

int GetHeight () const

Gets the height of the image in pixels.

wxImage::GetMaskBlue

unsigned char GetMaskBlue () const

Gets the blue value of the mask colour.

wxImage::GetMaskGreen

unsigned char GetMaskGreen () const

Gets the green value of the mask colour.

wxImage::GetMaskRed

unsigned char GetMaskRed () const

Gets the red value of the mask colour.

wxImage::GetOrFindMaskColour

CHAPTER 7

781

bool GetOrFindMaskColour (unsigned char *r, unsigned char *g, unsigned char *b)
const

Get the current mask colour or find a suitable unused colour that could be used as a
mask colour. Returns true if the image currently has a mask.

wxImage::GetPalette

const wxPalette& GetPalette () const

Returns the palette associated with the image. Currently the palette is only used when
converting to wxBitmap under Windows.

Eventually wxImage handlers will set the palette if one exists in the image file.

wxImage::GetRed

unsigned char GetRed (int x, int y) const

Returns the red intensity at the given coordinate.

wxImage::GetSubImage

wxImage GetSubImage (const wxRect& rect) const

Returns a sub image of the current one as long as the rect belongs entirely to the image.

wxImage::GetWidth

int GetWidth () const

Gets the width of the image in pixels.

See also

wxImage::GetHeight (p. 801)

HSVValue::HSVValue

 HSVValue (double h = 0.0, double s = 0.0, double v = 0.0)

Constructor for HSVValue, an object that contains values for hue, saturation and value
which represent the value of a color. It is used by wxImage::HSVtoRGB (p. 802)and
wxImage::RGBtoHSV (p. 807), which converts between HSV color space and RGB color
space.

wxPython note: use wxImage_HSVValue in wxPython

wxImage::HSVtoRGB

wxImage::RGBValue HSVtoRGB (const HSVValue & hsv)

CHAPTER 7

782

Converts a color in HSV color space to RGB color space.

wxImage::HasAlpha

bool HasAlpha () const

Returns true if this image has alpha channel, false otherwise.

See also

GetAlpha (p. 799), SetAlpha (p. 811)

wxImage::HasMask

bool HasMask () const

Returns true if there is a mask active, false otherwise.

wxImage::GetOption

wxString GetOption (const wxString& name) const

Gets a user-defined option. The function is case-insensitive to name.

For example, when saving as a JPEG file, the option quality is used, which is a number
between 0 and 100 (0 is terrible, 100 is very good).

See also

wxImage::SetOption (p. 812), wxImage::GetOptionInt (p. 803), wxImage::HasOption (p.
803)

wxImage::GetOptionInt

int GetOptionInt (const wxString& name) const

Gets a user-defined option as an integer. The function is case-insensitive to name.

If the given option is not present, the function returns 0. UsewxImage::HasOption (p.
803) is 0 is a possibly valid value for the option.

Options for wxPNGHandlerwxIMAGE_OPTION_PNG_FORMAT Format for saving a
PNG file.

wxIMAGE_OPTION_PNG_BITDEPTH Bit depth for every channel (R/G/B/A).

Supported values for wxIMAGE_OPTION_PNG_FORMAT:wxPNG_TYPE_COLOUR
 Stores RGB image.

wxPNG_TYPE_GREY Stores grey image, converts from RGB.

wxPNG_TYPE_GREY_RED Stores grey image, uses red value as grey.

CHAPTER 7

783

See also

wxImage::SetOption (p. 812), wxImage::GetOption (p. 803)

wxImage::HasOption

bool HasOption (const wxString& name) const

Returns true if the given option is present. The function is case-insensitive to name.

See also

wxImage::SetOption (p. 812), wxImage::GetOption (p. 803), wxImage::GetOptionInt (p.
803)

wxImage::InitAlpha

void InitAlpha ()

Initializes the image alpha channel data. It is an error to call it if the image already has
alpha data. If it doesn't, alpha data will be by default initialized to all pixels being fully
opaque. But if the image has a a mask colour, all mask pixels will be completely
transparent.

wxImage::InitStandardHandlers

static void InitStandardHandlers ()

Internal use only. Adds standard image format handlers. It only install BMP for the time
being, which is used by wxBitmap.

This function is called by wxWidgets on startup, and shouldn't be called by the user.

See also

wxImageHandler (p. 814),wxInitAllImageHandlers (p. Error! Bookmark not defined.)

wxImage::InsertHandler

static void InsertHandler (wxImageHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler

A new image format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxImageHandler (p. 814)

CHAPTER 7

784

wxImage::IsTransparent

bool IsTransparent (int x, int y, unsigned char threshold = 128) const

Returns true if the given pixel is transparent, i.e. either has the mask colour if this
image has a mask or if this image has alpha channel and alpha value of this pixel is
strictly less than threshold.

wxImage::LoadFile

bool LoadFile (const wxString& name, long type = wxBITMAP_TYPE_ANY, int index
= -1)

bool LoadFile (const wxString& name, const wxString& mimetype, int index = -1)

Loads an image from a file. If no handler type is provided, the library will try to autodetect
the format.

bool LoadFile (wxInputStream& stream, long type, int index = -1)

bool LoadFile (wxInputStream& stream, const wxString& mimetype, int index = -1)

Loads an image from an input stream.

Parameters

name

Name of the file from which to load the image.

stream

Opened input stream from which to load the image. Currently, the stream must
support seeking.

type

One of the following values:

wxBITMAP_TYPE_BMP Load a Windows image file.

wxBITMAP_TYPE_GIF Load a GIF image file.

wxBITMAP_TYPE_JPEG Load a JPEG image file.

wxBITMAP_TYPE_PCX Load a PCX image file.

wxBITMAP_TYPE_PNG Load a PNG image file.

wxBITMAP_TYPE_PNM Load a PNM image file.

wxBITMAP_TYPE_TIF Load a TIFF image file.

wxBITMAP_TYPE_XPM Load a XPM image file.

CHAPTER 7

785

wxBITMAP_TYPE_ICO Load a Windows icon file (ICO).

wxBITMAP_TYPE_CUR Load a Windows cursor file (CUR).

wxBITMAP_TYPE_ANI Load a Windows animated cursor file (ANI).

wxBITMAP_TYPE_ANY Will try to autodetect the format.

mimetype

MIME type string (for example 'image/jpeg')

index

Index of the image to load in the case that the image file contains multiple images.
This is only used by GIF, ICO and TIFF handlers. The default value (-1) means
"choose the default image" and is interpreted as the first image (index=0) by the
GIF and TIFF handler and as the largest and most colourful one by the ICO
handler.

Remarks

Depending on how wxWidgets has been configured, not all formats may be available.

Note: you can use GetOptionInt (p. 803) to get the hotspot for loaded cursor file: int
hotspot_x = image.GetOptionInt(wxIMAGE_OPTION_CUR_H OTSPOT_X);
 int hotspot_y =
image.GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_Y);

Return value

true if the operation succeeded, false otherwise. If the optional index parameter is out of
range, false is returned and a call to wxLogError() takes place.

See also

wxImage::SaveFile (p. 808)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

LoadFile(filename, type) Loads an image of the given type from a file

LoadMimeFile(filename, mimetype) Loads an image of the given
mimetype from a file

wxPerl note: Methods supported by wxPerl are:

 •>LoadFile(name, type)

 •>LoadFile(name, mimetype)

CHAPTER 7

786

wxImage::Ok

bool Ok() const

Returns true if image data is present.

RGBValue::RGBValue

 RGBValue (unsigned char r = 0, unsigned char g = 0, unsigned char b = 0)

Constructor for RGBValue, an object that contains values for red, green and blud which
represent the value of a color. It is used by wxImage::HSVtoRGB (p. 802)and
wxImage::RGBtoHSV (p. 807), which converts between HSV color space and RGB color
space.

wxPython note: use wxImage_RGBValue in wxPython

wxImage::RGBtoHSV

wxImage::HSVValue RGBtoHSV (const RGBValue& rgb)

Converts a color in RGB color space to HSV color space.

wxImage::RemoveHandler

static bool RemoveHandler (const wxString& name)

Finds the handler with the given name, and removes it. The handler is not deleted.

name

The handler name.

Return value

true if the handler was found and removed, false otherwise.

See also

wxImageHandler (p. 814)

wxImage::Mirror

wxImage Mirror (bool horizontally = true) const

Returns a mirrored copy of the image. The parameter horizontallyindicates the
orientation.

wxImage::Replace

void Replace (unsigned char r1, unsigned char g1, unsigned char b1,unsigned char
r2, unsigned char g2, unsigned char b2)

CHAPTER 7

787

Replaces the colour specified by r1,g1,b1 by the colour r2,g2,b2.

wxImage::Rescale

wxImage & Rescale (int width, int height)

Changes the size of the image in-place by scaling it: after a call to this function, the
image will have the given width and height.

Returns the (modified) image itself.

See also

Scale (p. 810)

wxImage::Resize

wxImage & Resize (const wxSize& size, const wxPoint& pos, int red = -1, int green =
-1, int blue = -1)

Changes the size of the image in-place without scaling it by adding either a border with
the given colour or cropping as necessary. The image is pasted into a new image with
the given size and background colour at the position posrelative to the upper left of the
new image. If red = green = blue = -1then use either the current mask colour if set or
find, use, and set a suitable mask colour for any newly exposed areas.

Returns the (modified) image itself.

See also

Size (p. 811)

wxImage::Rotate

wxImage Rotate (double angle, const wxPoint& rotationCentre, bool interpolating =
true, wxPoint* offsetAfterRotation = NULL)

Rotates the image about the given point, by angle radians. Passing true to interpolating
results in better image quality, but is slower. If the image has a mask, then the mask
colour is used for the uncovered pixels in the rotated image background. Else, black (rgb
0, 0, 0) will be used.

Returns the rotated image, leaving this image intact.

wxImage::RotateHue

void RotateHue (double angle)

Rotates the hue of each pixel in the image by angle, which is a double in the range of -
1.0 to +1.0, where -1.0 corresponds to -360 degrees and +1.0 corresponds to +360
degrees.

CHAPTER 7

788

wxImage::Rotate90

wxImage Rotate90 (bool clockwise = true) const

Returns a copy of the image rotated 90 degrees in the direction indicated by clockwise.

wxImage::SaveFile

bool SaveFile (const wxString& name, int type) const

bool SaveFile (const wxString& name, const wxString& mimetype) const

Saves an image in the named file.

bool SaveFile (const wxString& name) const

Saves an image in the named file. File type is determined from the extension of the file
name. Note that this function may fail if the extension is not recognized! You can use
one of the forms above to save images to files with non-standard extensions.

bool SaveFile (wxOutputStream& stream, int type) const

bool SaveFile (wxOutputStream& stream, const wxString& mimetype) const

Saves an image in the given stream.

Parameters

name

Name of the file to save the image to.

stream

Opened output stream to save the image to.

type

Currently these types can be used:

wxBITMAP_TYPE_BMP Save a BMP image file.

wxBITMAP_TYPE_JPEG Save a JPEG image file.

wxBITMAP_TYPE_PNG Save a PNG image file.

wxBITMAP_TYPE_PCX Save a PCX image file (tries to save as 8-bit if
possible, falls back to 24-bit otherwise).

wxBITMAP_TYPE_PNM Save a PNM image file (as raw RGB always).

wxBITMAP_TYPE_TIFF Save a TIFF image file.

wxBITMAP_TYPE_XPM Save a XPM image file.

CHAPTER 7

789

wxBITMAP_TYPE_ICO Save a Windows icon file (ICO) (the size may be up
to 255 wide by 127 high. A single image is saved in 8
colors at the size supplied).

wxBITMAP_TYPE_CUR Save a Windows cursor file (CUR).

mimetype

MIME type.

Return value

true if the operation succeeded, false otherwise.

Remarks

Depending on how wxWidgets has been configured, not all formats may be available.

Note: you can use GetOptionInt (p. 803) to set the hotspot before saving an image into a
cursor file (default hotspot is in the centre of the image):
image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_X, hotsp otX);
 image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y, h otspotY);

See also

wxImage::LoadFile (p. 804)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SaveFile(filename, type) Saves the image using the given type to the
named file

SaveMimeFile(filename, mimetype) Saves the image using the given
mimetype to the named file

wxPerl note: Methods supported by wxPerl are:

 •>SaveFile(name, type)

 •>SaveFile(name, mimetype)

wxImage::Scale

wxImage Scale (int width, int height) const

Returns a scaled version of the image. This is also useful for scaling bitmaps in general
as the only other way to scale bitmaps is to blit a wxMemoryDC into another
wxMemoryDC.

It may be mentioned that the GTK port uses this function internally to scale bitmaps
when using mapping modes in wxDC.

CHAPTER 7

790

Example:

 // get the bitmap from somewhere
 wxBitmap bmp = ...;

 // rescale it to have size of 32*32
 if (bmp.GetWidth() != 32 || bmp.GetHeight() != 32)
 {
 wxImage image = bmp.ConvertToImage();
 bmp = wxBitmap(image.Scale(32, 32));

 // another possibility:
 image.Rescale(32, 32);
 bmp = image;
 }

See also

Rescale (p. 807)

wxImage::Size

wxImage Size(const wxSize& size, const wxPoint& pos, int red = -1, int green = -1,
int blue = -1) const

Returns a resized version of this image without scaling it by adding either a border with
the given colour or cropping as necessary. The image is pasted into a new image with
the given size and background colour at the position posrelative to the upper left of the
new image. If red = green = blue = -1then use either the current mask colour if set or
find, use, and set a suitable mask colour for any newly exposed areas.

See also

Resize (p. 808)

wxImage::SetAlpha

void SetAlpha (unsigned char * alpha = NULL,bool static_data = false)

This function is similar to SetData (p. 811) and has similar restrictions. The pointer
passed to it may however be NULL in which case the function will allocate the alpha
array internally -- this is useful to add alpha channel data to an image which doesn't
have any. If the pointer is notNULL, it must have one byte for each image pixel and be
allocated withmalloc() . wxImage takes ownership of the pointer and will free it
unlessstatic_data parameter is set to true -- in this case the caller should do it.

void SetAlpha (int x, int y, unsigned char alpha)

Sets the alpha value for the given pixel. This function should only be called if the image
has alpha channel data, use HasAlpha (p. 802) to check for this.

wxImage::SetData

CHAPTER 7

791

void SetData (unsigned char* data)

Sets the image data without performing checks. The data given must have the size
(width*height*3) or results will be unexpected. Don't use this method if you aren't sure
you know what you are doing.

The data must have been allocated with malloc() , NOT withoperator new .

After this call the pointer to the data is owned by the wxImage object, that will be
responsible for deleting it. Do not pass to this function a pointer obtained
throughwxImage::GetData (p. 799).

wxImage::SetMask

void SetMask (bool hasMask = true)

Specifies whether there is a mask or not. The area of the mask is determined by the
current mask colour.

wxImage::SetMaskColour

void SetMaskColour (unsigned char red, unsigned char green, unsigned char blue)

Sets the mask colour for this image (and tells the image to use the mask).

wxImage::SetMaskFromImage

bool SetMaskFromImage (const wxImage& mask, unsigned char mr, unsigned char
mg, unsigned char mb)

Parameters

mask

The mask image to extract mask shape from. Must have same dimensions as the
image.

mr,mg,mb

RGB value of pixels in mask that will be used to create the mask.

Sets image's mask so that the pixels that have RGB value of mr,mg,mbin mask will be
masked in the image. This is done by first finding an unused colour in the image, setting
this colour as the mask colour and then using this colour to draw all pixels in the image
who corresponding pixel in mask has given RGB value.

Return value

Returns false if mask does not have same dimensions as the image or if there is no
unused colour left. Returns true if the mask was successfully applied.

Notes

CHAPTER 7

792

Note that this method involves computing the histogram, which is computationally
intensive operation.

wxImage::SetOption

void SetOption (const wxString& name, const wxString& value)

void SetOption (const wxString& name, int value)

Sets a user-defined option. The function is case-insensitive to name.

For example, when saving as a JPEG file, the option quality is used, which is a number
between 0 and 100 (0 is terrible, 100 is very good).

See also

wxImage::GetOption (p. 803), wxImage::GetOptionInt (p. 803), wxImage::HasOption (p.
803)

wxImage::SetPalette

void SetPalette (const wxPalette& palette)

Associates a palette with the image. The palette may be used when converting wxImage
to wxBitmap (MSW only at present) or in file save operations (none as yet).

wxImage::SetRGB

void SetRGB (int x, int y, unsigned char red, unsigned char green, unsigned char
blue)

Sets the pixel at the given coordinate. This routine performs bounds-checks for the
coordinate so it can be considered a safe way to manipulate the data, but in some cases
this might be too slow so that the data will have to be set directly. In that case you will
have to get access to the image data using the GetData (p. 799) method.

wxImage::SetRGB

void SetRGB (wxRect & rect, unsigned char red, unsigned char green, unsigned
char blue)

Sets the colour of the pixels within the given rectangle. This routine performs bounds-
checks for the coordinate so it can be considered a safe way to manipulate the data.

wxImage::operator =

wxImage& operator = (const wxImage& image)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in image and increments a reference counter. It is a fast operation.

CHAPTER 7

793

Parameters

image

Image to assign.

Return value

Returns 'this' object.

wxImage::operator ==

bool operator == (const wxImage& image) const

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

image

Image to compare with 'this'

Return value

Returns true if the images were effectively equal, false otherwise.

wxImage::operator !=

bool operator != (const wxImage& image) const

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

image

Image to compare with 'this'

Return value

Returns true if the images were unequal, false otherwise.

wxImageHandler

This is the base class for implementing image file loading/saving, and image creation
from data. It is used within wxImage and is not normally seen by the application.

If you wish to extend the capabilities of wxImage, derive a class from wxImageHandler
and add the handler using wxImage::AddHandler (p. 795) in your application
initialisation.

CHAPTER 7

794

Note (Legal Issue)

This software is based in part on the work of the Independent JPEG Group.

(Applies when wxWidgets is linked with JPEG support. wxJPEGHandler uses libjpeg
created by IJG.)

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/image.h>

See also

wxImage (p. 790),wxInitAllImageHandlers (p. Error! Bookmark not defined.)

wxImageHandler::wxImageHandler

 wxImageHandler ()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxImageHandler::~wxImageHandler

 ~wxImageHandler ()

Destroys the wxImageHandler object.

wxImageHandler::GetName

wxString GetName () const

Gets the name of this handler.

wxImageHandler::GetExtension

wxString GetExtension () const

Gets the file extension associated with this handler.

wxImageHandler::GetImageCount

int GetImageCount (wxInputStream& stream)

If the image file contains more than one image and the image handler is capable of
retrieving these individually, this function will return the number of available images.

CHAPTER 7

795

stream

Opened input stream for reading image data. Currently, the stream must support
seeking.

Return value

Number of available images. For most image handlers, this is 1 (exceptions are TIFF
and ICO formats).

wxImageHandler::GetType

long GetType () const

Gets the image type associated with this handler.

wxImageHandler::GetMimeType

wxString GetMimeType () const

Gets the MIME type associated with this handler.

wxImageHandler::LoadFile

bool LoadFile (wxImage* image, wxInputStream& stream, bool verbose=true, int
index=0)

Loads a image from a stream, putting the resulting data into image. If the image file
contains more than one image and the image handler is capable of retrieving these
individually, indexindicates which image to read from the stream.

Parameters

image

The image object which is to be affected by this operation.

stream

Opened input stream for reading image data.

verbose

If set to true, errors reported by the image handler will produce wxLogMessages.

index

The index of the image in the file (starting from zero).

Return value

true if the operation succeeded, false otherwise.

See also

CHAPTER 7

796

wxImage::LoadFile (p. 804),wxImage::SaveFile (p. 808),wxImageHandler::SaveFile (p.
817)

wxImageHandler::SaveFile

bool SaveFile (wxImage* image, wxOutputStream& stream)

Saves a image in the output stream.

Parameters

image

The image object which is to be affected by this operation.

stream

Opened output stream for writing the data.

Return value

true if the operation succeeded, false otherwise.

See also

wxImage::LoadFile (p. 804),wxImage::SaveFile (p. 808),wxImageHandler::LoadFile (p.
816)

wxImageHandler::SetName

void SetName (const wxString& name)

Sets the handler name.

Parameters

name

Handler name.

wxImageHandler::SetExtension

void SetExtension (const wxString& extension)

Sets the handler extension.

Parameters

extension

Handler extension.

wxImageHandler::SetMimeType

CHAPTER 7

797

void SetMimeType (const wxString& mimetype)

Sets the handler MIME type.

Parameters

mimename

Handler MIME type.

wxImageHandler::SetType

void SetType (long type)

Sets the handler type.

Parameters

name

Handler type.

wxImageList

A wxImageList contains a list of images, which are stored in an unspecified form. Images
can have masks for transparent drawing, and can be made from a variety of sources
including bitmaps and icons.

wxImageList is used principally in conjunction with wxTreeCtrl (p. Error! Bookmark not
defined.) and wxListCtrl (p. 864) classes.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/imaglist.h>

See also

wxTreeCtrl (p. Error! Bookmark not defined.), wxListCtrl (p. 864)

wxImageList::wxImageList

 wxImageList ()

Default constructor.

 wxImageList (int width, int height, const bool mask = true, int initialCount = 1)

CHAPTER 7

798

Constructor specifying the image size, whether image masks should be created, and the
initial size of the list.

Parameters

width

Width of the images in the list.

height

Height of the images in the list.

mask

true if masks should be created for all images.

initialCount

The initial size of the list.

See also

wxImageList::Create (p. 820)

wxImageList::Add

int Add (const wxBitmap& bitmap, const wxBitmap& mask = wxNullBitmap)

Adds a new image using a bitmap and optional mask bitmap.

int Add (const wxBitmap& bitmap, const wxColour& maskColour)

Adds a new image using a bitmap and mask colour.

int Add (const wxIcon& icon)

Adds a new image using an icon.

Parameters

bitmap

Bitmap representing the opaque areas of the image.

mask

Monochrome mask bitmap, representing the transparent areas of the image.

maskColour

Colour indicating which parts of the image are transparent.

icon

Icon to use as the image.

CHAPTER 7

799

Return value

The new zero-based image index.

Remarks

The original bitmap or icon is not affected by the Add operation, and can be deleted
afterwards.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Add(bitmap, mask=wxNullBitmap)

AddWithColourMask(bitmap, colour)

AddIcon(icon)

wxImageList::Create

bool Create (int width, int height, const bool mask = true, int initialCount = 1)

Initializes the list. See wxImageList::wxImageList (p. 818) for details.

wxImageList::Draw

bool Draw (int index, wxDC& dc, int x, int y, int flags =
wxIMAGELIST_DRAW_NORMAL, const bool solidBackground = false)

Draws a specified image onto a device context.

Parameters

index

Image index, starting from zero.

dc

Device context to draw on.

x

X position on the device context.

y

Y position on the device context.

flags

How to draw the image. A bitlist of a selection of the following:

wxIMAGELIST_DRAW_NORMAL Draw the image normally.

CHAPTER 7

800

wxIMAGELIST_DRAW_TRANSPARENT Draw the image with transparency.

wxIMAGELIST_DRAW_SELECTED Draw the image in selected state.

wxIMAGELIST_DRAW_FOCUSED Draw the image in a focused state.

solidBackground

For optimisation - drawing can be faster if the function is told that the background
is solid.

wxImageList::GetBitmap

wxBitmap GetBitmap (int index) const

Returns the bitmap corresponding to the given index.

wxImageList::GetIcon

wxIcon GetIcon (int index) const

Returns the icon corresponding to the given index.

wxImageList::GetImageCount

int GetImageCount () const

Returns the number of images in the list.

wxImageList::GetSize

bool GetSize (int index, int& width, int & height) const

Retrieves the size of the images in the list. Currently, the index parameter is ignored as
all images in the list have the same size.

Parameters

index

currently unused, should be 0

width

receives the width of the images in the list

height

receives the height of the images in the list

Return value

CHAPTER 7

801

true if the function succeeded, false if it failed (for example, if the image list was not yet
initialized).

wxImageList::Remove

bool Remove (int index)

Removes the image at the given position.

wxImageList::RemoveAll

bool RemoveAll ()

Removes all the images in the list.

wxImageList::Replace

bool Replace (int index, const wxBitmap& bitmap, const wxBitmap& mask =
wxNullBitmap)

Replaces the existing image with the new image.

Windows only.

bool Replace (int index, const wxIcon& icon)

Replaces the existing image with the new image.

Parameters

bitmap

Bitmap representing the opaque areas of the image.

mask

Monochrome mask bitmap, representing the transparent areas of the image.

icon

Icon to use as the image.

Return value

true if the replacement was successful, false otherwise.

Remarks

The original bitmap or icon is not affected by the Replace operation, and can be deleted
afterwards.

wxPython note: The second form is called ReplaceIcon in wxPython.

CHAPTER 7

802

wxIndividualLayoutConstraint

Objects of this class are stored in the wxLayoutConstraint class as one of eight possible
constraints that a window can be involved in.

Constraints are initially set to have the relationship wxUnconstrained, which means that
their values should be calculated by looking at known constraints.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/layout.h>

See also

Overview and examples (p. Error! Bookmark not defined.), wxLayoutConstraints (p.
849), wxWindow::SetConstraints (p. Error! Bookmark not defined.).

Edges and relationships

The wxEdge enumerated type specifies the type of edge or dimension of a window.

wxLeft The left edge.

wxTop The top edge.

wxRight The right edge.

wxBottom The bottom edge.

wxCentreX The x-coordinate of the centre of the window.

wxCentreY The y-coordinate of the centre of the window.

The wxRelationship enumerated type specifies the relationship that this edge or
dimension has with another specified edge or dimension. Normally, the user doesn't use
these directly because functions such as Below and RightOf are a convenience for using
the more general Set function.

wxUnconstrained The edge or dimension is unconstrained (the default for
edges.

wxAsIs The edge or dimension is to be taken from the current
window position or size (the default for dimensions.

wxAbove The edge should be above another edge.

wxBelow The edge should be below another edge.

CHAPTER 7

803

wxLeftOf The edge should be to the left of another edge.

wxRightOf The edge should be to the right of another edge.

wxSameAs The edge or dimension should be the same as another
edge or dimension.

wxPercentOf The edge or dimension should be a percentage of another
edge or dimension.

wxAbsolute The edge or dimension should be a given absolute value.

wxIndividualLayoutConstraint::wxIndividualLayoutCon straint

void wxIndividualLayoutConstraint ()

Constructor. Not used by the end-user.

wxIndividualLayoutConstraint::Above

void Above (wxWindow * otherWin, int margin = 0)

Constrains this edge to be above the given window, with an optional margin. Implicitly,
this is relative to the top edge of the other window.

wxIndividualLayoutConstraint::Absolute

void Absolute (int value)

Constrains this edge or dimension to be the given absolute value.

wxIndividualLayoutConstraint::AsIs

void AsIs ()

Sets this edge or constraint to be whatever the window's value is at the moment. If either
of the width and height constraints are as is, the window will not be resized, but moved
instead. This is important when considering panel items which are intended to have a
default size, such as a button, which may take its size from the size of the button label.

wxIndividualLayoutConstraint::Below

void Below (wxWindow * otherWin, int margin = 0)

Constrains this edge to be below the given window, with an optional margin. Implicitly,
this is relative to the bottom edge of the other window.

wxIndividualLayoutConstraint::Unconstrained

void Unconstrained ()

CHAPTER 7

804

Sets this edge or dimension to be unconstrained, that is, dependent on other edges and
dimensions from which this value can be deduced.

wxIndividualLayoutConstraint::LeftOf

void LeftOf (wxWindow * otherWin, int margin = 0)

Constrains this edge to be to the left of the given window, with an optional margin.
Implicitly, this is relative to the left edge of the other window.

wxIndividualLayoutConstraint::PercentOf

void PercentOf (wxWindow * otherWin, wxEdge edge, int per)

Constrains this edge or dimension to be to a percentage of the given window, with an
optional margin.

wxIndividualLayoutConstraint::RightOf

void RightOf (wxWindow * otherWin, int margin = 0)

Constrains this edge to be to the right of the given window, with an optional margin.
Implicitly, this is relative to the right edge of the other window.

wxIndividualLayoutConstraint::SameAs

void SameAs (wxWindow * otherWin, wxEdge edge, int margin = 0)

Constrains this edge or dimension to be to the same as the edge of the given window,
with an optional margin.

wxIndividualLayoutConstraint::Set

void Set(wxRelationship rel, wxWindow * otherWin, wxEdge otherEdge, int value = 0,
int margin = 0)

Sets the properties of the constraint. Normally called by one of the convenience
functions such as Above, RightOf, SameAs.

wxInitDialogEvent

A wxInitDialogEvent is sent as a dialog or panel is being initialised. Handlers for this
event can transfer data to the window. The default handler calls
wxWindow::TransferDataToWindow (p. Error! Bookmark not defined.).

Derived from

wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

CHAPTER 7

805

Include files

<wx/event.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxInitDialogEvent argument.

EVT_INIT_DIALOG(func) Process a wxEVT_INIT_DIALOG event.

See also

Event handling overview (p. Error! Bookmark not defined.)

wxInitDialogEvent::wxInitDialogEvent

 wxInitDialogEvent (int id = 0)

Constructor.

wxInputStream

wxInputStream is an abstract base class which may not be used directly.

Derived from

wxStreamBase (p. Error! Bookmark not defined.)

Include files

<wx/stream.h>

wxInputStream::wxInputStream

 wxInputStream ()

Creates a dummy input stream.

wxInputStream::~wxInputStream

 ~wxInputStream ()

Destructor.

wxInputStream::CanRead

bool CanRead () const

CHAPTER 7

806

Returns true if some data is available in the stream right now, so that calling Read() (p.
827) wouldn't block.

wxInputStream::GetC

char GetC()

Returns the first character in the input queue and removes it, blocking until it appears if
necessary.

Note

If EOF, return value is undefined and LastRead() will return 0 and not 1.

wxInputStream::Eof

bool Eof () const

Returns true after an attempt has been made to read past the end of the stream.

Note

In wxWidgets 2.6.x and below some streams returned Eof() when the last byte had been
read rather than when an attempt had been made to read past the last byte. If you want
to avoid depending on one behaviour or the other then call LastRead() (p. 827) to check
the number of bytes actually read.

wxInputStream::LastRead

size_t LastRead () const

Returns the last number of bytes read.

wxInputStream::Peek

char Peek()

Returns the first character in the input queue without removing it.

Note

Blocks until something appears in the stream if necessary, if nothing ever does (i.e.
EOF) LastRead() will return 0 (and the return value is undefined), otherwise LastRead()
returns 1.

wxInputStream::Read

wxInputStream& Read(void * buffer, size_t size)

Reads the specified amount of bytes and stores the data in buffer.

Warning

CHAPTER 7

807

The buffer absolutely needs to have at least the specified size.

Return value

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxInputStream& Read(wxOutputStream& stream_out)

Reads data from the input queue and stores it in the specified output stream. The data is
read until an error is raised by one of the two streams.

Return value

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxInputStream::SeekI

off_t SeekI(off_t pos, wxSeekMode mode = wxFromStart)

Changes the stream current position.

Parameters

pos

Offset to seek to.

mode

One of wxFromStart , wxFromEnd , wxFromCurrent .

Return value

The new stream position or wxInvalidOffset on error.

wxInputStream::TellI

off_t TellI () const

Returns the current stream position.

wxInputStream::Ungetch

size_t Ungetch (const char* buffer, size_t size)

This function is only useful in read mode. It is the manager of the "Write-Back" buffer.
This buffer acts like a temporary buffer where data which has to be read during the next
read IO call are put. This is useful when you get a big block of data which you didn't want
to read: you can replace them at the top of the input queue by this way.

Be very careful about this call in connection with calling SeekI() on the same stream.

CHAPTER 7

808

Any call to SeekI() will invalidate any previous call to this method (otherwise you could
SeekI() to one position, "unread" a few bytes there, SeekI() to another position and data
would be either lost or corrupted).

Return value

Returns the amount of bytes saved in the Write-Back buffer.

bool Ungetch (char c)

This function acts like the previous one except that it takes only one character: it is
sometimes shorter to use than the generic function.

wxIPaddress

wxIPaddress is an abstract base class for all internet protocol address objects.
Currently, only wxIPV4address (p. 831) is implemented. An experimental
implementation for IPV6, wxIPV6address, is being developed.

Derived from

wxSockAddress (p. Error! Bookmark not defined.)

Include files

<wx/socket.h>

wxIPaddress::Hostname

virtual bool Hostname (const wxString& hostname)

Set the address to hostname, which can be a host name or an IP-style address in a
format dependent on implementation.

Return value

Returns true on success, false if something goes wrong (invalid hostname or invalid IP
address).

virtual wxString Hostname ()

Returns the hostname which matches the IP address.

wxIPaddress::IPAddress

virtual wxString IPAddress ()

Returns a wxString containing the IP address.

wxIPaddress::Service

CHAPTER 7

809

virtual bool Service (const wxString& service)

Set the port to that corresponding to the specified service.

Return value

Returns true on success, false if something goes wrong (invalid service).

virtual bool Service (unsigned short service)

Set the port to that corresponding to the specified service.

Return value

Returns true on success, false if something goes wrong (invalid service).

virtual unsigned short Service ()

Returns the current service.

wxIPaddress::AnyAddress

virtual bool AnyAddress ()

Internally, this is the same as setting the IP address to INADDR_ANY .

On IPV4 implementations, 0.0.0.0

On IPV6 implementations, ::

Return value

Returns true on success, false if something went wrong.

wxIPaddress::LocalHost

virtual bool LocalHost ()

Set address to localhost.

On IPV4 implementations, 127.0.0.1

On IPV6 implementations, ::1

Return value

Returns true on success, false if something went wrong.

wxIPaddress::IsLocalHost

virtual bool IsLocalHost ()

Determines if current address is set to localhost.

CHAPTER 7

810

Return value

Returns true if address is localhost, false if internet address.

wxIPV4address

Derived from

wxIPaddress (p. 829)

Include files

<wx/socket.h>

wxIPV4address::Hostname

bool Hostname (const wxString& hostname)

Set the address to hostname, which can be a host name or an IP-style address in dot
notation (a.b.c.d)

Return value

Returns true on success, false if something goes wrong (invalid hostname or invalid IP
address).

wxString Hostname ()

Returns the hostname which matches the IP address.

wxIPV4address::IPAddress

wxString IPAddress ()

Returns a wxString containing the IP address in dot quad (127.0.0.1) format.

wxIPV4address::Service

bool Service (const wxString& service)

Set the port to that corresponding to the specified service.

Return value

Returns true on success, false if something goes wrong (invalid service).

bool Service (unsigned short service)

Set the port to that corresponding to the specified service.

CHAPTER 7

811

Return value

Returns true on success, false if something goes wrong (invalid service).

unsigned short Service ()

Returns the current service.

wxIPV4address::AnyAddress

bool AnyAddress ()

Set address to any of the addresses of the current machine. Whenever possible, use
this function instead of wxIPV4address::LocalHost (p. 832), as this correctly handles
multi-homed hosts and avoids other small problems. Internally, this is the same as
setting the IP address to INADDR_ANY .

Return value

Returns true on success, false if something went wrong.

wxIPV4address::LocalHost

bool LocalHost ()

Set address to localhost (127.0.0.1). Whenever possible, use the
wxIPV4address::AnyAddress (p. 832), function instead of this one, as this will correctly
handle multi-homed hosts and avoid other small problems.

Return value

Returns true on success, false if something went wrong.

wxJoystick

wxJoystick allows an application to control one or more joysticks.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/joystick.h>

See also

wxJoystickEvent (p. 838)

wxJoystick::wxJoystick

CHAPTER 7

812

 wxJoystick (int joystick = wxJOYSTICK1)

Constructor. joystick may be one of wxJOYSTICK1, wxJOYSTICK2, indicating the
joystick controller of interest.

wxJoystick::~wxJoystick

 ~wxJoystick ()

Destroys the wxJoystick object.

wxJoystick::GetButtonState

int GetButtonState () const

Returns the state of the joystick buttons. Every button is mapped to a single bit in the
returned integer, with the first button being mapped to the least significant bit, and so on.
A bitlist of wxJOY_BUTTONn identifiers, where n is 1, 2, 3 or 4 is available for historical
reasons.

wxJoystick::GetManufacturerId

int GetManufacturerId () const

Returns the manufacturer id.

wxJoystick::GetMovementThreshold

int GetMovementThreshold () const

Returns the movement threshold, the number of steps outside which the joystick is
deemed to have moved.

wxJoystick::GetNumberAxes

int GetNumberAxes () const

Returns the number of axes for this joystick.

wxJoystick::GetNumberButtons

int GetNumberButtons () const

Returns the number of buttons for this joystick.

wxJoystick::GetNumberJoysticks

static int GetNumberJoysticks ()

Returns the number of joysticks currently attached to the computer.

CHAPTER 7

813

wxJoystick::GetPollingMax

int GetPollingMax () const

Returns the maximum polling frequency.

wxJoystick::GetPollingMin

int GetPollingMin () const

Returns the minimum polling frequency.

wxJoystick::GetProductId

int GetProductId () const

Returns the product id for the joystick.

wxJoystick::GetProductName

wxString GetProductName () const

Returns the product name for the joystick.

wxJoystick::GetPosition

wxPoint GetPosition () const

Returns the x, y position of the joystick.

wxJoystick::GetPOVPosition

int GetPOVPosition () const

Returns the point-of-view position, expressed in continuous, one-hundredth of a degree
units, but limited to return 0, 9000, 18000 or 27000. Returns -1 on error.

wxJoystick::GetPOVCTSPosition

int GetPOVCTSPosition () const

Returns the point-of-view position, expressed in continuous, one-hundredth of a degree
units. Returns -1 on error.

wxJoystick::GetRudderMax

int GetRudderMax () const

Returns the maximum rudder position.

CHAPTER 7

814

wxJoystick::GetRudderMin

int GetRudderMin () const

Returns the minimum rudder position.

wxJoystick::GetRudderPosition

int GetRudderPosition () const

Returns the rudder position.

wxJoystick::GetUMax

int GetUMax () const

Returns the maximum U position.

wxJoystick::GetUMin

int GetUMin () const

Returns the minimum U position.

wxJoystick::GetUPosition

int GetUPosition () const

Gets the position of the fifth axis of the joystick, if it exists.

wxJoystick::GetVMax

int GetVMax () const

Returns the maximum V position.

wxJoystick::GetVMin

int GetVMin () const

Returns the minimum V position.

wxJoystick::GetVPosition

int GetVPosition () const

Gets the position of the sixth axis of the joystick, if it exists.

wxJoystick::GetXMax

CHAPTER 7

815

int GetXMax () const

Returns the maximum x position.

wxJoystick::GetXMin

int GetXMin () const

Returns the minimum x position.

wxJoystick::GetYMax

int GetYMax () const

Returns the maximum y position.

wxJoystick::GetYMin

int GetYMin () const

Returns the minimum y position.

wxJoystick::GetZMax

int GetZMax () const

Returns the maximum z position.

wxJoystick::GetZMin

int GetZMin () const

Returns the minimum z position.

wxJoystick::GetZPosition

int GetZPosition () const

Returns the z position of the joystick.

wxJoystick::HasPOV

bool HasPOV() const

Returns true if the joystick has a point of view control.

wxJoystick::HasPOV4Dir

bool HasPOV4Dir () const

CHAPTER 7

816

Returns true if the joystick point-of-view supports discrete values (centered, forward,
backward, left, and right).

wxJoystick::HasPOVCTS

bool HasPOVCTS() const

Returns true if the joystick point-of-view supports continuous degree bearings.

wxJoystick::HasRudder

bool HasRudder () const

Returns true if there is a rudder attached to the computer.

wxJoystick::HasU

bool HasU() const

Returns true if the joystick has a U axis.

wxJoystick::HasV

bool HasV() const

Returns true if the joystick has a V axis.

wxJoystick::HasZ

bool HasZ() const

Returns true if the joystick has a Z axis.

wxJoystick::IsOk

bool IsOk () const

Returns true if the joystick is functioning.

wxJoystick::ReleaseCapture

bool ReleaseCapture ()

Releases the capture set by SetCapture .

Return value

true if the capture release succeeded.

See also

CHAPTER 7

817

wxJoystick::SetCapture (p. 838), wxJoystickEvent (p. 838)

wxJoystick::SetCapture

bool SetCapture (wxWindow* win, int pollingFreq = 0)

Sets the capture to direct joystick events to win.

Parameters

win

The window that will receive joystick events.

pollingFreq

If zero, movement events are sent when above the threshold. If greater than zero,
events are received every pollingFreq milliseconds.

Return value

true if the capture succeeded.

See also

wxJoystick::ReleaseCapture (p. 837), wxJoystickEvent (p. 838)

wxJoystick::SetMovementThreshold

void SetMovementThreshold (int threshold)

Sets the movement threshold, the number of steps outside which the joystick is deemed
to have moved.

wxJoystickEvent

This event class contains information about mouse events, particularly events received
by windows.

Derived from

wxEvent (p. 487)

Include files

<wx/event.h>

Event table macros

To process a mouse event, use these event handler macros to direct input to member
functions that take a wxJoystickEvent argument.

EVT_JOY_BUTTON_DOWN(func) Process a wxEVT_JOY_BUTTON_DOWN

CHAPTER 7

818

event.

EVT_JOY_BUTTON_UP(func) Process a wxEVT_JOY_BUTTON_UP event.

EVT_JOY_MOVE(func) Process a wxEVT_JOY_MOVE event.

EVT_JOY_ZMOVE(func) Process a wxEVT_JOY_ZMOVE event.

EVT_JOYSTICK_EVENTS(func) Processes all joystick events.

See also
wxJoystick (p. 832)

wxJoystickEvent::wxJoystickEvent

 wxJoystickEvent (WXTYPE eventType = 0, int state = 0, int joystick = wxJOYSTICK1,
int change = 0)

Constructor.

wxJoystickEvent::ButtonDown

bool ButtonDown (int button = wxJOY_BUTTON_ANY) const

Returns true if the event was a down event from the specified button (or any button).

Parameters

button

Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::ButtonIsDown

bool ButtonIsDown (int button = wxJOY_BUTTON_ANY) const

Returns true if the specified button (or any button) was in a down state.

Parameters

button

Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::ButtonUp

bool ButtonUp (int button = wxJOY_BUTTON_ANY) const

Returns true if the event was an up event from the specified button (or any button).

CHAPTER 7

819

Parameters

button

Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::GetButtonChange

int GetButtonChange () const

Returns the identifier of the button changing state. This is a wxJOY_BUTTONn identifier,
where n is one of 1, 2, 3, 4.

wxJoystickEvent::GetButtonState

int GetButtonState () const

Returns the down state of the buttons. This is a bitlist of wxJOY_BUTTONn identifiers,
where n is one of 1, 2, 3, 4.

wxJoystickEvent::GetJoystick

int GetJoystick () const

Returns the identifier of the joystick generating the event - one of wxJOYSTICK1 and
wxJOYSTICK2.

wxJoystickEvent::GetPosition

wxPoint GetPosition () const

Returns the x, y position of the joystick event.

wxJoystickEvent::GetZPosition

int GetZPosition () const

Returns the z position of the joystick event.

wxJoystickEvent::IsButton

bool IsButton () const

Returns true if this was a button up or down event (not 'is any button down?').

wxJoystickEvent::IsMove

bool IsMove () const

CHAPTER 7

820

Returns true if this was an x, y move event.

wxJoystickEvent::IsZMove

bool IsZMove () const

Returns true if this was a z move event.

wxKeyEvent

This event class contains information about keypress (character) events.

Notice that there are three different kinds of keyboard events in wxWidgets: key down
and up events and char events. The difference between the first two is clear - the first
corresponds to a key press and the second to a key release - otherwise they are
identical. Just note that if the key is maintained in a pressed state you will typically get a
lot of (automatically generated) down events but only one up so it is wrong to assume
that there is one up event corresponding to each down one.

Both key events provide untranslated key codes while the char event carries the
translated one. The untranslated code for alphanumeric keys is always an upper case
value. For the other keys it is one of WXK_XXX values from the keycodes table (p. Error!
Bookmark not defined.). The translated key is, in general, the character the user
expects to appear as the result of the key combination when typing the text into a text
entry zone, for example.

A few examples to clarify this (all assume that CAPS LOCK is unpressed and the
standard US keyboard): when the 'A' key is pressed, the key down event key code is
equal to ASCII A == 65. But the char event key code is ASCII a == 97. On the other
hand, if you press both SHIFT and'A' keys simultaneously , the key code in key down
event will still be just 'A' while the char event key code parameter will now be 'A' as
well.

Although in this simple case it is clear that the correct key code could be found in the key
down event handler by checking the value returned byShiftDown() (p. 846), in general
you should useEVT_CHAR for this as for non alphanumeric keys the translation is
keyboard-layout dependent and can only be done properly by the system itself.

Another kind of translation is done when the control key is pressed: for example, for
CTRL-A key press the key down event still carries the same key code 'a' as usual but
the char event will have key code of1, the ASCII value of this key combination.

You may discover how the other keys on your system behave interactively by running
the text (p. Error! Bookmark not defined.) wxWidgets sample and pressing some keys
in any of the text controls shown in it.

Note: If a key down (EVT_KEY_DOWN) event is caught and the event handler does not
call event.Skip() then the corresponding char event (EVT_CHAR) will not happen.
This is by design and enables the programs that handle both types of events to be a bit
simpler.

CHAPTER 7

821

Note for Windows programmers: The key and char events in wxWidgets are similar to
but slightly different from Windows WM_KEYDOWN andWM_CHAR events. In particular, Alt-x
combination will generate a char event in wxWidgets (unless it is used as an
accelerator).

Tip: be sure to call event.Skip() for events that you don't process in key event
function, otherwise menu shortcuts may cease to work under Windows.

Derived from

wxEvent (p. 487)

Include files

<wx/event.h>

Event table macros

To process a key event, use these event handler macros to direct input to member
functions that take a wxKeyEvent argument.

EVT_KEY_DOWN(func) Process a wxEVT_KEY_DOWN event (any key
has been pressed).

EVT_KEY_UP(func) Process a wxEVT_KEY_UP event (any key has
been released).

EVT_CHAR(func) Process a wxEVT_CHAR event.

wxKeyEvent::m_altDown

bool m_altDown

Deprecated: Please use GetModifiers (p. 844)instead!

true if the Alt key is pressed down.

wxKeyEvent::m_controlDown

bool m_controlDown

Deprecated: Please use GetModifiers (p. 844)instead!

true if control is pressed down.

wxKeyEvent::m_keyCode

long m_keyCode

Deprecated: Please use GetKeyCode (p. 844)instead!

Virtual keycode. See Keycodes (p. Error! Bookmark not defined.) for a list of

CHAPTER 7

822

identifiers.

wxKeyEvent::m_metaDown

bool m_metaDown

Deprecated: Please use GetModifiers (p. 844)instead!

true if the Meta key is pressed down.

wxKeyEvent::m_shiftDown

bool m_shiftDown

Deprecated: Please use GetModifiers (p. 844)instead!

true if shift is pressed down.

wxKeyEvent::m_x

int m_x

Deprecated: Please use GetX (p. 846) instead!

X position of the event.

wxKeyEvent::m_y

int m_y

Deprecated: Please use GetY (p. 846) instead!

Y position of the event.

wxKeyEvent::wxKeyEvent

 wxKeyEvent (WXTYPE keyEventType)

Constructor. Currently, the only valid event types are wxEVT_CHAR and
wxEVT_CHAR_HOOK.

wxKeyEvent::AltDown

bool AltDown () const

Returns true if the Alt key was down at the time of the key event.

Notice that GetModifiers (p. 844) is easier to use correctly than this function so you
should consider using it in new code.

wxKeyEvent::CmdDown

CHAPTER 7

823

bool CmdDown () const

CMD is a pseudo key which is the same as Control for PC and Unix platforms but the
special APPLE (a.k.a as COMMAND) key under Macs: it makes often sense to use it
instead of, say, ControlDown() because Cmd key is used for the same thing under Mac
as Ctrl elsewhere (but Ctrl still exists, just not used for this purpose under Mac). So for
non-Mac platforms this is the same as ControlDown() (p. 844) and under Mac this is the
same as MetaDown() (p. 846).

wxKeyEvent::ControlDown

bool ControlDown () const

Returns true if the control key was down at the time of the key event.

Notice that GetModifiers (p. 844) is easier to use correctly than this function so you
should consider using it in new code.

wxKeyEvent::GetKeyCode

int GetKeyCode () const

Returns the virtual key code. ASCII events return normal ASCII values, while non-ASCII
events return values such as WXK_LEFT for the left cursor key. See Keycodes (p.
Error! Bookmark not defined.) for a full list of the virtual key codes.

Note that in Unicode build, the returned value is meaningful only if the user entered a
character that can be represented in current locale's default charset. You can obtain the
corresponding Unicode character usingGetUnicodeKey (p. 845).

wxKeyEvent::GetModifiers

int GetModifiers () const

Return the bitmask of modifier keys which were pressed when this event happened. See
key modifier constants (p. Error! Bookmark not defined.) for the full list of modifiers.

Notice that this function is easier to use correctly than, for example, ControlDown (p.
844) because when using the latter you also have to remember to test that none of the
other modifiers is pressed:

 if (ControlDown() && !AltDown() && !ShiftDown() &&
!MetaDown())
 ... handle Ctrl-XXX ...

and forgetting to do it can result in serious program bugs (e.g. program not working with
European keyboard layout where ALTGR key which is seen by the program as
combination of CTRL and ALT is used). On the other hand, you can simply write

 if (GetModifiers() == wxMOD_CONTROL)
 ... handle Ctrl-XXX ...

with this function.

CHAPTER 7

824

wxKeyEvent::GetPosition

wxPoint GetPosition () const

void GetPosition (long * x, long * y) const

Obtains the position (in client coordinates) at which the key was pressed.

wxKeyEvent::GetRawKeyCode

wxUint32 GetRawKeyCode () const

Returns the raw key code for this event. This is a platform-dependent scan code which
should only be used in advanced applications.

NB: Currently the raw key codes are not supported by all ports, use#ifdef
wxHAS_RAW_KEY_CODES to determine if this feature is available.

wxKeyEvent::GetRawKeyFlags

wxUint32 GetRawKeyFlags () const

Returns the low level key flags for this event. The flags are platform-dependent and
should only be used in advanced applications.

NB: Currently the raw key flags are not supported by all ports, use#ifdef
wxHAS_RAW_KEY_CODES to determine if this feature is available.

wxKeyEvent::GetUnicodeKey

wxChar GetUnicodeKey () const

Returns the Unicode character corresponding to this key event.

This function is only available in Unicode build, i.e. whenwxUSE_UNICODE is 1.

wxKeyEvent::GetX

long GetX() const

Returns the X position (in client coordinates) of the event.

wxKeyEvent::GetY

long GetY() const

Returns the Y (in client coordinates) position of the event.

wxKeyEvent::HasModifiers

bool HasModifiers () const

CHAPTER 7

825

Returns true if either CTRL or ALT keys was down at the time of the key event. Note that
this function does not take into account neither SHIFT nor META key states (the reason
for ignoring the latter is that it is common for NUMLOCK key to be configured asMETA
under X but the key presses even while NUMLOCK is on should be still processed
normally).

wxKeyEvent::MetaDown

bool MetaDown () const

Returns true if the Meta key was down at the time of the key event.

Notice that GetModifiers (p. 844) is easier to use correctly than this function so you
should consider using it in new code.

wxKeyEvent::ShiftDown

bool ShiftDown () const

Returns true if the shift key was down at the time of the key event.

Notice that GetModifiers (p. 844) is easier to use correctly than this function so you
should consider using it in new code.

wxLayoutAlgorithm

wxLayoutAlgorithm implements layout of subwindows in MDI or SDI frames. It sends a
wxCalculateLayoutEvent event to children of the frame, asking them for information
about their size. For MDI parent frames, the algorithm allocates the remaining space to
the MDI client window (which contains the MDI child frames). For SDI (normal) frames, a
'main' window is specified as taking up the remaining space.

Because the event system is used, this technique can be applied to any windows, which
are not necessarily 'aware' of the layout classes (no virtual functions in wxWindow refer
to wxLayoutAlgorithm or its events). However, you may wish to use
wxSashLayoutWindow (p. Error! Bookmark not defined.) for your subwindows since
this class provides handlers for the required events, and accessors to specify the
desired size of the window. The sash behaviour in the base class can be used,
optionally, to make the windows user-resizable.

wxLayoutAlgorithm is typically used in IDE (integrated development environment)
applications, where there are several resizable windows in addition to the MDI client
window, or other primary editing window. Resizable windows might include toolbars, a
project window, and a window for displaying error and warning messages.

When a window receives an OnCalculateLayout event, it should call SetRect in the given
event object, to be the old supplied rectangle minus whatever space the window takes
up. It should also set its own size accordingly.
wxSashLayoutWindow::OnCalculateLayout generates an OnQueryLayoutInfo event
which it sends to itself to determine the orientation, alignment and size of the window,
which it gets from internal member variables set by the application.

CHAPTER 7

826

The algorithm works by starting off with a rectangle equal to the whole frame client area.
It iterates through the frame children, generating OnCalculateLayout events which
subtract the window size and return the remaining rectangle for the next window to
process. It is assumed (by wxSashLayoutWindow::OnCalculateLayout) that a window
stretches the full dimension of the frame client, according to the orientation it specifies.
For example, a horizontal window will stretch the full width of the remaining portion of the
frame client area. In the other orientation, the window will be fixed to whatever size was
specified by OnQueryLayoutInfo. An alignment setting will make the window 'stick' to the
left, top, right or bottom of the remaining client area. This scheme implies that order of
window creation is important. Say you wish to have an extra toolbar at the top of the
frame, a project window to the left of the MDI client window, and an output window
above the status bar. You should therefore create the windows in this order: toolbar,
output window, project window. This ensures that the toolbar and output window take up
space at the top and bottom, and then the remaining height in-between is used for the
project window.

wxLayoutAlgorithm is quite independent of the way in which OnCalculateLayout chooses
to interpret a window's size and alignment. Therefore you could implement a different
window class with a new OnCalculateLayout event handler, that has a more
sophisticated way of laying out the windows. It might allow specification of whether
stretching occurs in the specified orientation, for example, rather than always assuming
stretching. (This could, and probably should, be added to the existing implementation).

Note: wxLayoutAlgorithm has nothing to do with wxLayoutConstraints. It is an alternative
way of specifying layouts for which the normal constraint system is unsuitable.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/laywin.h>

Event handling

The algorithm object does not respond to events, but itself generates the following
events in order to calculate window sizes.

EVT_QUERY_LAYOUT_INFO(func) Process a wxEVT_QUERY_LAYOUT_INFO
event, to get size, orientation and alignment
from a window. See wxQueryLayoutInfoEvent
(p. Error! Bookmark not defined.).

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite'
out of a rectangle provided by the algorithm.
See wxCalculateLayoutEvent (p. 125).

Data types

enum wxLayoutOrientation {
 wxLAYOUT_HORIZONTAL,
 wxLAYOUT_VERTICAL

CHAPTER 7

827

};

enum wxLayoutAlignment {
 wxLAYOUT_NONE,
 wxLAYOUT_TOP,
 wxLAYOUT_LEFT,
 wxLAYOUT_RIGHT,
 wxLAYOUT_BOTTOM,
};

See also

wxSashEvent (p. Error! Bookmark not defined.), wxSashLayoutWindow (p. Error!
Bookmark not defined.), Event handling overview (p. Error! Bookmark not defined.)

wxCalculateLayoutEvent (p. 125), wxQueryLayoutInfoEvent (p. Error! Bookmark not
defined.), wxSashLayoutWindow (p. Error! Bookmark not defined.), wxSashWindow
(p. Error! Bookmark not defined.)

wxLayoutAlgorithm::wxLayoutAlgorithm

 wxLayoutAlgorithm ()

Default constructor.

wxLayoutAlgorithm::~wxLayoutAlgorithm

 ~wxLayoutAlgorithm ()

Destructor.

wxLayoutAlgorithm::LayoutFrame

bool LayoutFrame (wxFrame* frame, wxWindow* mainWindow = NULL) const

Lays out the children of a normal frame. mainWindow is set to occupy the remaining
space.

This function simply calls wxLayoutAlgorithm::LayoutWindow (p. 849).

wxLayoutAlgorithm::LayoutMDIFrame

bool LayoutMDIFrame (wxMDIParentFrame* frame, wxRect* rect = NULL) const

Lays out the children of an MDI parent frame. If rect is non-NULL, the given rectangle
will be used as a starting point instead of the frame's client area.

The MDI client window is set to occupy the remaining space.

CHAPTER 7

828

wxLayoutAlgorithm::LayoutWindow

bool LayoutWindow (wxWindow* parent, wxWindow* mainWindow = NULL) const

Lays out the children of a normal frame or other window.

mainWindow is set to occupy the remaining space. If this is not specified, then the last
window that responds to a calculate layout event in query mode will get the remaining
space (that is, a non-query OnCalculateLayout event will not be sent to this window and
the window will be set to the remaining size).

wxLayoutConstraints

Note: constraints are now deprecated and you should use sizers (p. Error! Bookmark
not defined.) instead.

Objects of this class can be associated with a window to define its layout constraints,
with respect to siblings or its parent.

The class consists of the following eight constraints of class
wxIndividualLayoutConstraint, some or all of which should be accessed directly to set
the appropriate constraints.

 • left: represents the left hand edge of the window

 • right: represents the right hand edge of the window

 • top: represents the top edge of the window

 • bottom: represents the bottom edge of the window

 • width: represents the width of the window

 • height: represents the height of the window

 • centreX: represents the horizontal centre point of the window

 • centreY: represents the vertical centre point of the window

Most constraints are initially set to have the relationship wxUnconstrained, which means
that their values should be calculated by looking at known constraints. The exceptions
are width and height, which are set to wxAsIs to ensure that if the user does not specify
a constraint, the existing width and height will be used, to be compatible with panel items
which often have take a default size. If the constraint is wxAsIs, the dimension will not be
changed.

wxPerl note: In wxPerl the constraints are accessed as constraint =
Wx::LayoutConstraints->new();
 constraint->centreX->AsIs();
 constraint->centreY->Unconstrained();

CHAPTER 7

829

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/layout.h>

See also

Overview and examples (p. Error! Bookmark not defined.),
wxIndividualLayoutConstraint (p. 823), wxWindow::SetConstraints (p. Error! Bookmark
not defined.)

wxLayoutConstraints::wxLayoutConstraints

 wxLayoutConstraints ()

Constructor.

wxLayoutConstraints::bottom

wxIndividualLayoutConstraint bottom

Constraint for the bottom edge.

wxLayoutConstraints::centreX

wxIndividualLayoutConstraint centreX

Constraint for the horizontal centre point.

wxLayoutConstraints::centreY

wxIndividualLayoutConstraint centreY

Constraint for the vertical centre point.

wxLayoutConstraints::height

wxIndividualLayoutConstraint height

Constraint for the height.

wxLayoutConstraints::left

wxIndividualLayoutConstraint left

Constraint for the left-hand edge.

CHAPTER 7

830

wxLayoutConstraints::right

wxIndividualLayoutConstraint right

Constraint for the right-hand edge.

wxLayoutConstraints::top

wxIndividualLayoutConstraint top

Constraint for the top edge.

wxLayoutConstraints::width

wxIndividualLayoutConstraint width

Constraint for the width.

wxList

wxList classes provide linked list functionality for wxWidgets, and for an application if it
wishes. Depending on the form of constructor used, a list can be keyed on integer or
string keys to provide a primitive look-up ability, but please note that this feature is
deprecated . See wxHashMap (p. 684) for a faster method of storage when random
access is required.

While wxList class in the previous versions of wxWidgets only could contain elements of
type wxObject and had essentially untyped interface (thus allowing you to put apples in
the list and read back oranges from it), the new wxList classes family may contain
elements of any type and has much more strict type checking. Unfortunately, it also
requires an additional line to be inserted in your program for each list class you use
(which is the only solution short of using templates which is not done in wxWidgets
because of portability issues).

The general idea is to have the base class wxListBase working with void *data but make
all of its dangerous (because untyped) functions protected, so that they can only be used
from derived classes which, in turn, expose a type safe interface. With this approach a
new wxList-like class must be defined for each list type (i.e. list of ints, of wxStrings or of
MyObjects). This is done with WX_DECLARE_LIST and WX_DEFINE_LIST macros like
this (notice the similarity with WX_DECLARE_OBJARRAY and
WX_IMPLEMENT_OBJARRAY macros):

Example

 // this part might be in a header or source (.c pp) file
 class MyListElement
 {
 ... // whatever
 };

 // declare our list class: this macro declares and partly
implements MyList

CHAPTER 7

831

 // class (which derives from wxListBase)
 WX_DECLARE_LIST(MyListElement, MyList);

 ...

 // the only requirement for the rest is to be A FTER the full
declaration of
 // MyListElement (for WX_DECLARE_LIST forward d eclaration is
enough), but
 // usually it will be found in the source file and not in the
header

 #include <wx/listimpl.cpp>
 WX_DEFINE_LIST(MyList);

 // now MyList class may be used as a usual wxLi st, but all of
its methods
 // will take/return the objects of the right (i .e.
MyListElement) type. You
 // also have MyList::Node type which is the typ e-safe version
of wxNode.
 MyList list;
 MyListElement element;
 list.Append(&element); // ok
 list.Append(17); // error: incorrect type

 // let's iterate over the list
 for (MyList::Node *node = list.GetFirst(); nod e; node = node-
>GetNext())
 {
 MyListElement *current = node->GetData();

 ...process the current element...
 }

For compatibility with previous versions wxList and wxStringList classes are still defined,
but their usage is deprecated and they will disappear in the future versions completely.
The use of the latter is especially discouraged as it is not only unsafe but is also much
less efficient thanwxArrayString (p. 70) class.

In the documentation of the list classes below, the template notations are used even
though these classes are not really templates at all -- but it helps to think about them as
if they were. You should replace wxNode<T> with wxListName::Node and T itself with
the list element type (i.e. the first parameter of WX_DECLARE_LIST).

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/list.h>

Example

It is very common to iterate on a list as follows:

 ...
 wxWindow *win1 = new wxWindow(...);
 wxWindow *win2 = new wxWindow(...);

CHAPTER 7

832

 wxList SomeList;
 SomeList.Append(win1);
 SomeList.Append(win2);

 ...

 wxNode *node = SomeList.GetFirst();
 while (node)
 {
 wxWindow *win = node->GetData();
 ...
 node = node->GetNext();
 }

To delete nodes in a list as the list is being traversed, replace

 ...
 node = node->GetNext();
 ...

with

 ...
 delete win;
 delete node;
 node = SomeList.GetFirst();
 ...

See wxNode (p. Error! Bookmark not defined.) for members that retrieve the data
associated with a node, and members for getting to the next or previous node.

See also

wxNode (p. Error! Bookmark not defined.),wxArray (p. 57)

wxList::wxList

 wxList ()

 wxList (int n, T *objects[])

 wxList (T *object, ...)

Note : keyed lists are deprecated and should not be used in new code.

 wxList (unsigned int key_type)

Constructors. key_type is one of wxKEY_NONE, wxKEY_INTEGER, or
wxKEY_STRING, and indicates what sort of keying is required (if any).

objects is an array of n objects with which to initialize the list.

The variable-length argument list constructor must be supplied with a terminating NULL.

CHAPTER 7

833

wxList::~wxList

 ~wxList ()

Destroys the list. Also destroys any remaining nodes, but does not destroy client data
held in the nodes.

wxList::Append

wxNode<T> * Append (T *object)

Note : keyed lists are deprecated and should not be used in new code.

wxNode<T> * Append (long key, T *object)

wxNode<T> * Append (const wxString& key, T *object)

Appends a new wxNode (p. Error! Bookmark not defined.) to the end of the list and
puts a pointer to the object in the node. The last two forms store a key with the object
for later retrieval using the key. The new node is returned in each case.

The key string is copied and stored by the list implementation.

wxList::Clear

void Clear ()

Clears the list (but does not delete the client data stored with each node unless you
called DeleteContents(true), in which case it deletes data).

wxList::DeleteContents

void DeleteContents (bool destroy)

If destroy is true , instructs the list to call delete on the client contents of a node
whenever the node is destroyed. The default is false .

wxList::DeleteNode

bool DeleteNode (wxNode<T> * node)

Deletes the given node from the list, returning true if successful.

wxList::DeleteObject

bool DeleteObject (T *object)

Finds the given client object and deletes the appropriate node from the list,
returningtrue if successful. The application must delete the actual object separately.

wxList::Erase

CHAPTER 7

834

void Erase (wxNode<T> * node)

Removes element at given position.

wxList::Find

wxNode<T> * Find (T * object)

Returns the node whose client data is object or NULL if none found.

Note : keyed lists are deprecated and should not be used in new code.

wxNode<T> * Find (long key)

wxNode<T> * Find (const wxString& key)

Returns the node whose stored key matches key. Use on a keyed list only.

wxList::GetCount

size_t GetCount () const

Returns the number of elements in the list.

wxList::GetFirst

wxNode<T> * GetFirst ()

Returns the first node in the list (NULL if the list is empty).

wxList::GetLast

wxNode<T> * GetLast ()

Returns the last node in the list (NULL if the list is empty).

wxList::IndexOf

int IndexOf (T* obj)

Returns the index of obj within the list or wxNOT_FOUND if objis not found in the list.

wxList::Insert

wxNode<T> * Insert (T *object)

Insert object at front of list.

wxNode<T> * Insert (size_t position, T *object)

Insert object before position, i.e. the index of the new item in the list will be equal to
position. position should be less than or equal to GetCount (p. 855); if it is equal to it, this

CHAPTER 7

835

is the same as calling Append (p. 854).

wxNode<T> * Insert (wxNode<T> * node, T *object)

Inserts the object before the given node.

wxList::IsEmpty

bool IsEmpty () const

Returns true if the list is empty, false otherwise.

wxList::Item

wxNode<T> * Item (size_t index) const

Returns the node at given position in the list.

wxList::Member

wxNode<T> * Member (T *object)

NB: This function is deprecated, use Find (p. 855) instead.

Returns the node associated with object if it is in the list, NULL otherwise.

wxList::Nth

wxNode<T> * Nth (int n)

NB: This function is deprecated, use Item (p. 856) instead.

Returns the nth node in the list, indexing from zero (NULL if the list is empty or the nth
node could not be found).

wxList::Number

int Number ()

NB: This function is deprecated, use GetCount (p. 855) instead.

Returns the number of elements in the list.

wxList::Sort

void Sort (wxSortCompareFunction compfunc)

 // Type of compare function for list sort operati on (as in
'qsort')
 typedef int (*wxSortCompareFunction)(const void * elem1, const
void *elem2);

CHAPTER 7

836

Allows the sorting of arbitrary lists by giving a function to compare two list elements. We
use the system qsort function for the actual sorting process.

If you use untyped wxList the sort function receives pointers to wxObject pointers
(wxObject **), so be careful to dereference appropriately - but, of course, a better
solution is to use list of appropriate type defined withWX_DECLARE_LIST.

Example:

 int listcompare(const void *arg1, const void *arg 2)
 {
 return(compare(**(wxString **)arg1, // use t he wxString
'compare'
 **(wxString **)arg2)); // funct ion
 }

 void main()
 {
 wxList list;

 list.Append(new wxString("DEF"));
 list.Append(new wxString("GHI"));
 list.Append(new wxString("ABC"));
 list.Sort(listcompare);
 }

wxListbook

wxListbook is a class similar to wxNotebook (p. Error! Bookmark not defined.) but
which uses a wxListCtrl (p. 864) to show the labels instead of the tabs.

There is no documentation for this class yet but its usage is identical to wxNotebook
(except for the features clearly related to tabs only), so please refer to that class
documentation for now. You can also use the notebook sample (p. Error! Bookmark
not defined.) to see wxListbook in action.

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/listbook.h>

Window styles

wxLB_DEFAULT Choose the default location for the labels depending on the
current platform (left everywhere except Mac where it is
top).

wxLB_TOP Place labels above the page area.

CHAPTER 7

837

wxLB_LEFT Place labels on the left side.

wxLB_RIGHT Place labels on the right side.

wxLB_BOTTOM Place labels below the page area.

See also

wxBookCtrl (p. Error! Bookmark not defined.), wxNotebook (p. Error! Bookmark not
defined.), notebook sample (p. Error! Bookmark not defined.)

wxListBox

A listbox is used to select one or more of a list of strings. The strings are displayed in a
scrolling box, with the selected string(s) marked in reverse video. A listbox can be single
selection (if an item is selected, the previous selection is removed) or multiple selection
(clicking an item toggles the item on or off independently of other selections).

List box elements are numbered from zero. Their number is limited in some platforms
(e.g. ca. 2000 on GTK).

A listbox callback gets an event wxEVT_COMMAND_LISTBOX_SELECTED for single
clicks, and wxEVT_COMMAND_LISTBOX_DOUBLE_CLICKED for double clicks.

Derived from

wxControlWithItems (p. 219)
wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/listbox.h>

Window styles

wxLB_SINGLE Single-selection list.

wxLB_MULTIPLE Multiple-selection list: the user can toggle multiple items on
and off.

wxLB_EXTENDED Extended-selection list: the user can select multiple items
using the SHIFT key and the mouse or special key
combinations.

wxLB_HSCROLL Create horizontal scrollbar if contents are too wide
(Windows only).

wxLB_ALWAYS_SB Always show a vertical scrollbar.

wxLB_NEEDED_SB Only create a vertical scrollbar if needed.

CHAPTER 7

838

wxLB_SORT The listbox contents are sorted in alphabetical order.

Note that wxLB_SINGLE, wxLB_MULTIPLE and wxLB_EXTENDEDstyles are mutually
exclusive and you can specify at most one of them (single selection is the default).

See also window styles overview (p. Error! Bookmark not defined.).

Event handling

EVT_LISTBOX(id, func) Process a
wxEVT_COMMAND_LISTBOX_SELECTED
event, when an item on the list is selected.

EVT_LISTBOX_DCLICK(id, func) Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED event, when the listbox is double-clicked.

See also

wxChoice (p. 145), wxComboBox (p. 176), wxListCtrl (p. 864), wxCommandEvent (p.
184)

wxListBox::wxListBox

 wxListBox ()

Default constructor.

 wxListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

 wxListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

CHAPTER 7

839

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n

Number of strings with which to initialise the control.

choices

An array of strings with which to initialise the control.

style

Window style. See wxListBox (p. 858).

validator

Window validator.

name

Window name.

See also

wxListBox::Create (p. 861), wxValidator (p. Error! Bookmark not defined.)

wxPython note: The wxListBox constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

wxListBox::~wxListBox

void ~wxListBox ()

Destructor, destroying the list box.

wxListBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "listBox")

Creates the listbox for two-step construction. See wxListBox::wxListBox (p. 860) for
further details.

CHAPTER 7

840

wxListBox::Deselect

void Deselect (int n)

Deselects an item in the list box.

Parameters

n

The zero-based item to deselect.

Remarks

This applies to multiple selection listboxes only.

wxListBox::GetSelections

int GetSelections (wxArrayInt& selections) const

Fill an array of ints with the positions of the currently selected items.

Parameters

selections

A reference to an wxArrayInt instance that is used to store the result of the query.

Return value

The number of selections.

Remarks

Use this with a multiple selection listbox.

See also

wxControlWithItems::GetSelection (p. 222), wxControlWithItems::GetStringSelection (p.
223), wxControlWithItems::SetSelection (p. 225)

wxPython note: The wxPython version of this method takes no parameters and returns
a tuple of the selected items.

wxPerl note: In wxPerl this method takes no parameters and return the selected items
as a list.

wxListBox::InsertItems

void InsertItems (int nItems, const wxString *items, int pos)

void InsertItems (const wxArrayString& nItems, int pos)

Insert the given number of strings before the specified position.

CHAPTER 7

841

Parameters

nItems

Number of items in the array items

items

Labels of items to be inserted

pos

Position before which to insert the items: for example, if pos is 0 the items will be
inserted in the beginning of the listbox

wxPython note: The first two parameters are collapsed into a single parameter for
wxPython, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nItems and items .

wxListBox::HitTest

int HitTest (const wxPoint& point) const

Returns the item located at point, or wxNOT_FOUND if there is no item located at point.

This function is new since wxWidgets version 2.7.0. It is currently implemented for
wxMSW, wxMac and wxGTK2 ports.

Parameters

point

Point of item (in client coordinates) to obtain

Return value

Item located at point, or wxNOT_FOUND if unimplemented or the item does not exist.

wxListBox::IsSelected

bool IsSelected (int n) const

Determines whether an item is selected.

Parameters

n

The zero-based item index.

Return value

true if the given item is selected, false otherwise.

CHAPTER 7

842

wxListBox::Set

void Set(int n, const wxString* choices, void **clientData = NULL)

void Set(const wxArrayString& choices, void **clientData = NULL)

Clears the list box and adds the given strings to it.

Parameters

n

The number of strings to set.

choices

An array of strings to set.

clientData

Options array of client data pointers

Remarks

You may free the array from the calling program after this function has been called.

wxListBox::SetFirstItem

void SetFirstItem (int n)

void SetFirstItem (const wxString& string)

Set the specified item to be the first visible item. Windows only.

Parameters

n

The zero-based item index.

string

The string that should be visible.

wxListCtrl

A list control presents lists in a number of formats: list view, report view, icon view and
small icon view. In any case, elements are numbered from zero. For all these modes,
the items are stored in the control and must be added to it using InsertItem (p. 876)
method.

A special case of report view quite different from the other modes of the list control is a
virtual control in which the items data (including text, images and attributes) is managed

CHAPTER 7

843

by the main program and is requested by the control itself only when needed which
allows to have controls with millions of items without consuming much memory. To use
virtual list control you must useSetItemCount (p. 881) first and overload at
leastOnGetItemText (p. 878) (and optionallyOnGetItemImage (p. 877) or
OnGetItemColumnImage (p. 877) andOnGetItemAttr (p. 877)) to return the information
about the items when the control requests it. Virtual list control can be used as a normal
one except that no operations which can take time proportional to the number of items in
the control happen -- this is required to allow having a practically infinite number of
items. For example, in a multiple selection virtual list control, the selections won't be sent
when many items are selected at once because this could mean iterating over all the
items.

Using many of wxListCtrl features is shown in thecorresponding sample (p. Error!
Bookmark not defined.).

To intercept events from a list control, use the event table macros described in
wxListEvent (p. 884).

Derived from

wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/listctrl.h>

Window styles

wxLC_LIST Multicolumn list view, with optional small icons.
Columns are computed automatically, i.e. you
don't set columns as in wxLC_REPORT. In
other words, the list wraps, unlike a wxListBox.

wxLC_REPORT Single or multicolumn report view, with optional
header.

wxLC_VIRTUAL The application provides items text on demand.
May only be used with wxLC_REPORT.

wxLC_ICON Large icon view, with optional labels.

wxLC_SMALL_ICON Small icon view, with optional labels.

wxLC_ALIGN_TOP Icons align to the top. Win32 default, Win32
only.

wxLC_ALIGN_LEFT Icons align to the left.

wxLC_AUTOARRANGE Icons arrange themselves. Win32 only.

wxLC_EDIT_LABELS Labels are editable: the application will be

CHAPTER 7

844

notified when editing starts.

wxLC_NO_HEADER No header in report mode.

wxLC_SINGLE_SEL Single selection (default is multiple).

wxLC_SORT_ASCENDING Sort in ascending order (must still supply a
comparison callback in SortItems.

wxLC_SORT_DESCENDING Sort in descending order (must still supply a
comparison callback in SortItems.

wxLC_HRULES Draws light horizontal rules between rows in
report mode.

wxLC_VRULES Draws light vertical rules between columns in
report mode.

See also window styles overview (p. Error! Bookmark not defined.).

Event handling

To process input from a list control, use these event handler macros to direct input to
member functions that take a wxListEvent (p. 884) argument.

EVT_LIST_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.

EVT_LIST_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.

EVT_LIST_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be prevented
by calling Veto() (p. Error! Bookmark not
defined.).

EVT_LIST_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented
by calling Veto() (p. Error! Bookmark not
defined.).

EVT_LIST_DELETE_ITEM(id, func) Delete an item.

EVT_LIST_DELETE_ALL_ITEMS(id, func) Delete all items.

EVT_LIST_ITEM_SELECTED(id, func) The item has been selected.

EVT_LIST_ITEM_DESELECTED(id, func) The item has been deselected.

EVT_LIST_ITEM_ACTIVATED(id, func) The item has been activated (ENTER or double
click).

EVT_LIST_ITEM_FOCUSED(id, func) The currently focused item has changed.

EVT_LIST_ITEM_MIDDLE_CLICK(id, func) The middle mouse button has been
clicked on an item.

EVT_LIST_ITEM_RIGHT_CLICK(id, func) The right mouse button has been clicked on
an item.

CHAPTER 7

845

EVT_LIST_KEY_DOWN(id, func) A key has been pressed.

EVT_LIST_INSERT_ITEM(id, func) An item has been inserted.

EVT_LIST_COL_CLICK(id, func) A column (m_col) has been left-clicked.

EVT_LIST_COL_RIGHT_CLICK(id, func) A column (m_col) has been right-clicked.

EVT_LIST_COL_BEGIN_DRAG(id, func) The user started resizing a column - can be
vetoed.

EVT_LIST_COL_DRAGGING(id, func) The divider between columns is being dragged.

EVT_LIST_COL_END_DRAG(id, func) A column has been resized by the user.

EVT_LIST_CACHE_HINT(id, func) Prepare cache for a virtual list control

See also
wxListCtrl overview (p. Error! Bookmark not defined.), wxListView (p. 893), wxListBox
(p. 858), wxTreeCtrl (p. Error! Bookmark not defined.), wxImageList (p. 818),
wxListEvent (p. 884),wxListItem (p. 887)

wxListCtrl::wxListCtrl

 wxListCtrl ()

Default constructor.

 wxListCtrl (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxLC_ICON,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
wxListCtrlNameStr)

Constructor, creating and showing a list control.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

CHAPTER 7

846

style

Window style. See wxListCtrl (p. 864).

validator

Window validator.

name

Window name.

See also

wxListCtrl::Create (p. 868), wxValidator (p. Error! Bookmark not defined.)

wxListCtrl::~wxListCtrl

void ~wxListCtrl ()

Destructor, destroying the list control.

wxListCtrl::Arrange

bool Arrange (int flag = wxLIST_ALIGN_DEFAULT)

Arranges the items in icon or small icon view. This only has effect on Win32. flag is one
of:

wxLIST_ALIGN_DEFAULT Default alignment.

wxLIST_ALIGN_LEFT Align to the left side of the control.

wxLIST_ALIGN_TOP Align to the top side of the control.

wxLIST_ALIGN_SNAP_TO_GRID Snap to grid.

wxListCtrl::AssignImageList

void AssignImageList (wxImageList* imageList, int which)

Sets the image list associated with the control and takes ownership of it (i.e. the control
will, unlike when using SetImageList, delete the list when destroyed). which is one of
wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the last
is unimplemented).

See also

wxListCtrl::SetImageList (p. 879)

wxListCtrl::ClearAll

void ClearAll ()

CHAPTER 7

847

Deletes all items and all columns.

wxListCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxLC_ICON,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
wxListCtrlNameStr)

Creates the list control. See wxListCtrl::wxListCtrl (p. 867) for further details.

wxListCtrl::DeleteAllItems

bool DeleteAllItems ()

Deletes all items in the list control.

NB: This function does not send thewxEVT_COMMAND_LIST_DELETE_ITEM event
because deleting many items from the control would be too slow then (unlike DeleteItem
(p. 869)).

wxListCtrl::DeleteColumn

bool DeleteColumn (int col)

Deletes a column.

wxListCtrl::DeleteItem

bool DeleteItem (long item)

Deletes the specified item. This function sends
thewxEVT_COMMAND_LIST_DELETE_ITEM event for the item being deleted.

See also: DeleteAllItems (p. 869)

wxListCtrl::EditLabel

void EditLabel (long item)

Starts editing the label of the given item. This function generates a
EVT_LIST_BEGIN_LABEL_EDIT event which can be vetoed so that no text control will
appear for in-place editing.

If the user changed the label (i.e. s/he does not press ESC or leave the text control
without changes, a EVT_LIST_END_LABEL_EDIT event will be sent which can be
vetoed as well.

wxListCtrl::EnsureVisible

bool EnsureVisible (long item)

CHAPTER 7

848

Ensures this item is visible.

wxListCtrl::FindItem

long FindItem (long start, const wxString& str, const bool partial = false)

Find an item whose label matches this string, starting from start or the beginning if start
is -1.

long FindItem (long start, long data)

Find an item whose data matches this data, starting from start or the beginning if 'start' is
-1.

long FindItem (long start, const wxPoint& pt, int direction)

Find an item nearest this position in the specified direction, starting fromstart or the
beginning if start is -1.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

FindItem(start, str, partial=false)

FindItemData(start, data)

FindItemAtPos(start, point, direction)

wxPerl note: In wxPerl there are three methods instead of a single overloaded method:

FindItem(start, str, partial = false)

FindItemData(start, data)

FindItemAtPos(start, point, direction)

wxListCtrl::GetColumn

bool GetColumn (int col, wxListItem& item) const

Gets information about this column. See wxListCtrl::SetItem (p. 879) for more
information.

wxPerl note: In wxPerl this method takes only the col parameter and returns a
Wx::ListItem (or undef).

wxListCtrl::GetColumnCount

int GetColumnCount () const

Returns the number of columns.

CHAPTER 7

849

wxListCtrl::GetColumnWidth

int GetColumnWidth (int col) const

Gets the column width (report view only).

wxListCtrl::GetCountPerPage

int GetCountPerPage () const

Gets the number of items that can fit vertically in the visible area of the list control (list or
report view) or the total number of items in the list control (icon or small icon view).

wxListCtrl::GetEditControl

wxTextCtrl * GetEditControl () const

Returns the edit control being currently used to edit a label. Returns NULLif no label is
being edited.

NB: It is currently only implemented for wxMSW.

wxListCtrl::GetImageList

wxImageList* GetImageList (int which) const

Returns the specified image list. which may be one of:

wxIMAGE_LIST_NORMAL The normal (large icon) image list.

wxIMAGE_LIST_SMALL The small icon image list.

wxIMAGE_LIST_STATE The user-defined state image list (unimplemented).

wxListCtrl::GetItem

bool GetItem (wxListItem& info) const

Gets information about the item. See wxListCtrl::SetItem (p. 879) for more information.

You must call info.SetId() to the ID of item you're interested in before calling this method.

wxPython note: The wxPython version of this method takes an integer parameter for
the item ID, an optional integer for the column number, and returns the wxListItem
object.

wxPerl note: In wxPerl this method takes as parameter the ID of the item and (
optionally) the column, and returns a Wx::ListItem object.

wxListCtrl::GetItemBackgroundColour

wxColour GetItemBackgroundColour (long item) const

CHAPTER 7

850

Returns the colour for this item. If the item has no specific colour, returns an invalid
colour (and not the default background control of the control itself).

See also

GetItemTextColour (p. 873)

wxListCtrl::GetItemCount

int GetItemCount () const

Returns the number of items in the list control.

wxListCtrl::GetItemData

long GetItemData (long item) const

Gets the application-defined data associated with this item.

wxListCtrl::GetItemFont

wxFont GetItemFont (long item) const

Returns the item's font.

wxListCtrl::GetItemPosition

bool GetItemPosition (long item, wxPoint& pos) const

Returns the position of the item, in icon or small icon view.

wxPython note: The wxPython version of this method accepts only the item ID and
returns the wxPoint.

wxPerl note: In wxPerl this method takes only the item parameter and returns a
Wx::Point (or undef).

wxListCtrl::GetItemRect

bool GetItemRect (long item, wxRect& rect, int code = wxLIST_RECT_BOUNDS)
const

Returns the rectangle representing the item's size and position, in physical coordinates.

code is one of wxLIST_RECT_BOUNDS, wxLIST_RECT_ICON,
wxLIST_RECT_LABEL.

wxPython note: The wxPython version of this method accepts only the item ID and
code and returns the wxRect.

wxPerl note: In wxPerl this method takes only the item parameter and returns a
Wx::Rect (or undef).

CHAPTER 7

851

wxListCtrl::GetItemSpacing

wxSize GetItemSpacing () const

Retrieves the spacing between icons in pixels: horizontal spacing is returned as x
component of the wxSize (p. Error! Bookmark not defined.) object and the vertical
spacing as its y component.

wxListCtrl::GetItemState

int GetItemState (long item, long stateMask) const

Gets the item state. For a list of state flags, see wxListCtrl::SetItem (p. 879).

The stateMask indicates which state flags are of interest.

wxListCtrl::GetItemText

wxString GetItemText (long item) const

Gets the item text for this item.

wxListCtrl::GetItemTextColour

wxColour GetItemTextColour (long item) const

Returns the colour for this item. If the item has no specific colour, returns an invalid
colour (and not the default foreground control of the control itself as this wouldn't allow
distinguishing between items having the same colour as the current control foreground
and items with default colour which, hence, have always the same colour as the control).

wxListCtrl::GetNextItem

long GetNextItem (long item, int geometry = wxLIST_NEXT_ALL, int state =
wxLIST_STATE_DONTCARE) const

Searches for an item with the given geometry or state, starting fromitem but excluding
the item itself. If item is -1, the first item that matches the specified flags will be returned.

Returns the first item with given state following item or -1 if no such item found.

This function may be used to find all selected items in the control like this:

 long item = -1;
 for (;;)
 {
 item = listctrl->GetNextItem(item,
 wxLIST_NEXT_AL L,
 wxLIST_STATE_S ELECTED);
 if (item == -1)
 break;

 // this item is selected - do whatever is n eeded with it
 wxLogMessage("Item %ld is selected.", item) ;

CHAPTER 7

852

 }

geometry can be one of:

wxLIST_NEXT_ABOVE Searches for an item above the specified item.

wxLIST_NEXT_ALL Searches for subsequent item by index.

wxLIST_NEXT_BELOW Searches for an item below the specified item.

wxLIST_NEXT_LEFT Searches for an item to the left of the specified item.

wxLIST_NEXT_RIGHT Searches for an item to the right of the specified item.

NB: this parameter is only supported by wxMSW currently and ignored on other
platforms.

state can be a bitlist of the following:

wxLIST_STATE_DONTCARE Don't care what the state is.

wxLIST_STATE_DROPHILITED The item indicates it is a drop target.

wxLIST_STATE_FOCUSED The item has the focus.

wxLIST_STATE_SELECTEDThe item is selected.

wxLIST_STATE_CUT The item is selected as part of a cut and paste operation.

wxListCtrl::GetSelectedItemCount

int GetSelectedItemCount () const

Returns the number of selected items in the list control.

wxListCtrl::GetTextColour

wxColour GetTextColour () const

Gets the text colour of the list control.

wxListCtrl::GetTopItem

long GetTopItem () const

Gets the index of the topmost visible item when in list or report view.

wxListCtrl::GetViewRect

wxRect GetViewRect () const

Returns the rectangle taken by all items in the control. In other words, if the controls
client size were equal to the size of this rectangle, no scrollbars would be needed and no

CHAPTER 7

853

free space would be left.

Note that this function only works in the icon and small icon views, not in list or report
views (this is a limitation of the native Win32 control).

wxListCtrl::HitTest

long HitTest (const wxPoint& point, int& flags)

Determines which item (if any) is at the specified point, giving details in flags. Returns
index of the item or wxNOT_FOUNDif no item is at the specified point.flags will be a
combination of the following flags:

wxLIST_HITTEST_ABOVE Above the client area.

wxLIST_HITTEST_BELOW Below the client area.

wxLIST_HITTEST_NOWHERE In the client area but below the last item.

wxLIST_HITTEST_ONITEMICON On the bitmap associated with an item.

wxLIST_HITTEST_ONITEMLABEL On the label (string) associated with an item.

wxLIST_HITTEST_ONITEMRIGHT In the area to the right of an item.

wxLIST_HITTEST_ONITEMSTATEICON On the state icon for a tree view item that is
in a user-defined state.

wxLIST_HITTEST_TOLEFT To the right of the client area.

wxLIST_HITTEST_TORIGHT To the left of the client area.

wxLIST_HITTEST_ONITEM Combination of wxLIST_HITTEST_ONITEMICON,
wxLIST_HITTEST_ONITEMLABEL,
wxLIST_HITTEST_ONITEMSTATEICON.

wxPython note: A tuple of values is returned in the wxPython version of this method.
The first value is the item id and the second is the flags value mentioned above.

wxPerl note: In wxPerl this method only takes the point parameter and returns a 2-
element list (item, flags) .

wxListCtrl::InsertColumn

long InsertColumn (long col, wxListItem& info)

long InsertColumn (long col, const wxString& heading, int format =
wxLIST_FORMAT_LEFT, int width = -1)

For report view mode (only), inserts a column. For more details, see wxListCtrl::SetItem
(p. 879).

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

CHAPTER 7

854

InsertColumn(col, heading, format=wxLIST_FORMAT_LEF T, width=-1)
 Creates a column using a header string
only.

InsertColumnItem(col, item) Creates a column using a wxListItem.

wxListCtrl::InsertItem

long InsertItem (wxListItem& info)

Inserts an item, returning the index of the new item if successful, -1 otherwise.

long InsertItem (long index, const wxString& label)

Inserts a string item.

long InsertItem (long index, int imageIndex)

Inserts an image item.

long InsertItem (long index, const wxString& label, int imageIndex)

Insert an image/string item.

Parameters

info

wxListItem object

index

Index of the new item, supplied by the application

label

String label

imageIndex

index into the image list associated with this control and view style

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

InsertItem(item) Inserts an item using a wxListItem.

InsertStringItem(index, label) Inserts a string item.

InsertImageItem(index, imageIndex) Inserts an image item.

InsertImageStringItem(index, label, imageIndex) Insert an image/string
item.

CHAPTER 7

855

wxPerl note: In wxPerl there are four methods instead of a single overloaded method:

InsertItem(item) Inserts a Wx::ListItem

InsertStringItem(index, label) Inserts a string item

InsertImageItem(index, imageIndex) Inserts an image item

InsertImageStringItem(index, label, imageIndex) Inserts an item with a
string and an image

wxListCtrl::OnGetItemAttr

virtual wxListItemAttr * OnGetItemAttr (long item) const

This function may be overloaded in the derived class for a control withwxLC_VIRTUAL
style. It should return the attribute for the for the specified item or NULL to use the
default appearance parameters.

wxListCtrl will not delete the pointer or keep a reference of it. You can return the same
wxListItemAttr pointer for every OnGetItemAttr call.

The base class version always returns NULL.

See also

OnGetItemImage (p. 877),
OnGetItemColumnImage (p. 877),
OnGetItemText (p. 878)

wxListCtrl::OnGetItemImage

virtual int OnGetItemImage (long item) const

This function must be overloaded in the derived class for a control withwxLC_VIRTUAL
style having an image list (p. 879)(if the control doesn't have an image list, it is not
necessary to overload it). It should return the index of the items image in the controls
image list or -1 for no image. In a control with wxLC_REPORT style, OnGetItemImage
only gets called for the first column of each line.

The base class version always returns -1.

See also

OnGetItemText (p. 878),
OnGetItemColumnImage (p. 877),
OnGetItemAttr (p. 877)

wxListCtrl::OnGetItemColumnImage

virtual int OnGetItemColumnImage (long item, long column) const

CHAPTER 7

856

Overload this function in the derived class for a control withwxLC_VIRTUAL and
wxLC_REPORT styles in order to specify the image index for the given line and column.

The base class version always calls OnGetItemImage for the first column, else it returns
-1.

See also

OnGetItemText (p. 878),
OnGetItemImage (p. 877),
OnGetItemAttr (p. 877)

wxListCtrl::OnGetItemText

virtual wxString OnGetItemText (long item, long column) const

This function must be overloaded in the derived class for a control withwxLC_VIRTUAL
style. It should return the string containing the text of the given column for the specified
item .

See also

SetItemCount (p. 881),
OnGetItemImage (p. 877),
OnGetItemColumnImage (p. 877),
OnGetItemAttr (p. 877)

wxListCtrl::RefreshItem

void RefreshItem (long item)

Redraws the given item. This is only useful for the virtual list controls as without calling
this function the displayed value of the item doesn't change even when the underlying
data does change.

See also

RefreshItems (p. 878)

wxListCtrl::RefreshItems

void RefreshItems (long itemFrom, long itemTo)

Redraws the items between itemFrom and itemTo. The starting item must be less than
or equal to the ending one.

Just as RefreshItem (p. 878) this is only useful for virtual list controls.

wxListCtrl::ScrollList

bool ScrollList (int dx, int dy)

CHAPTER 7

857

Scrolls the list control. If in icon, small icon or report view mode,dx specifies the number
of pixels to scroll. If in list view mode,dx specifies the number of columns to scroll. dy
always specifies the number of pixels to scroll vertically.

NB: This method is currently only implemented in the Windows version.

wxListCtrl::SetBackgroundColour

void SetBackgroundColour (const wxColour& col)

Sets the background colour (GetBackgroundColour already implicit in wxWindow class).

wxListCtrl::SetColumn

bool SetColumn (int col, wxListItem& item)

Sets information about this column. See wxListCtrl::SetItem (p. 879) for more
information.

wxListCtrl::SetColumnWidth

bool SetColumnWidth (int col, int width)

Sets the column width.

width can be a width in pixels or wxLIST_AUTOSIZE (-1) or
wxLIST_AUTOSIZE_USEHEADER (-2). wxLIST_AUTOSIZE will resize the column to
the length of its longest item. wxLIST_AUTOSIZE_USEHEADER will resize the column
to the length of the header (Win32) or 80 pixels (other platforms).

In small or normal icon view, col must be -1, and the column width is set for all columns.

wxListCtrl::SetImageList

void SetImageList (wxImageList* imageList, int which)

Sets the image list associated with the control. which is one of
wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the last
is unimplemented).

This method does not take ownership of the image list, you have to delete it yourself.

See also

wxListCtrl::AssignImageList (p. 868)

wxListCtrl::SetItem

bool SetItem (wxListItem& info)

long SetItem (long index, int col, const wxString& label, int imageId = -1)

CHAPTER 7

858

Sets information about the item.

wxListItem is a class with the following members:

long m_mask Indicates which fields are valid. See the list of valid mask
flags below.

long m_itemId The zero-based item position.

int m_col Zero-based column, if in report mode.

long m_state The state of the item. See the list of valid state flags below.

long m_stateMask A mask indicating which state flags are valid. See the list of
valid state flags below.

wxString m_text The label/header text.

int m_image The zero-based index into an image list.

long m_data Application-defined data.

int m_format For columns only: the format. Can be
wxLIST_FORMAT_LEFT, wxLIST_FORMAT_RIGHT or
wxLIST_FORMAT_CENTRE.

int m_width For columns only: the column width.

The m_mask member contains a bitlist specifying which of the other fields are valid. The
flags are:

wxLIST_MASK_STATE The m_state field is valid.

wxLIST_MASK_TEXT The m_text field is valid.

wxLIST_MASK_IMAGE The m_image field is valid.

wxLIST_MASK_DATA The m_data field is valid.

wxLIST_MASK_WIDTH The m_width field is valid.

wxLIST_MASK_FORMAT The m_format field is valid.

The m_stateMask and m_state members take flags from the following:

wxLIST_STATE_DONTCARE Don't care what the state is. Win32 only.

wxLIST_STATE_DROPHILITED The item is highlighted to receive a drop event.
Win32 only.

wxLIST_STATE_FOCUSED The item has the focus.

wxLIST_STATE_SELECTEDThe item is selected.

wxLIST_STATE_CUT The item is in the cut state. Win32 only.

CHAPTER 7

859

The wxListItem object can also contain item-specific colour and font information: for this
you need to call one of SetTextColour(), SetBackgroundColour() or SetFont() functions
on it passing it the colour/font to use. If the colour/font is not specified, the default list
control colour/font is used.

long SetItem (long index, int col, const wxString& label, int imageId = -1)

Sets a string field at a particular column.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetItem(item) Sets information about the given wxListItem.

SetStringItem(index, col, label, imageId) Sets a string or image at a
given location.

wxListCtrl::SetItemBackgroundColour

void SetItemBackgroundColour (long item, const wxColour& col)

Sets the background colour for this item. This function only works in report view.

The colour can be retrieved usingGetItemBackgroundColour (p. 871).

wxListCtrl::SetItemCount

void SetItemCount (long count)

This method can only be used with virtual list controls. It is used to indicate to the control
the number of items it contains. After calling it, the main program should be ready to
handle calls to various item callbacks (such asOnGetItemText (p. 878)) for all items in
the range from 0 to count.

wxListCtrl::SetItemData

bool SetItemData (long item, long data)

Associates application-defined data with this item.

wxListCtrl::SetItemFont

void SetItemFont (long item, const wxFont& font)

Sets the item's font.

wxListCtrl::SetItemImage

bool SetItemImage (long item, int image)

Sets the image associated with the item. The image is an index into the image list

CHAPTER 7

860

associated with the list control. In report view, this only sets the image for the first
column.

bool SetItemImage (long item, int image, int selImage)

Sets the unselected and selected images associated with the item. The images are
indices into the image list associated with the list control. This form is deprecated:
selImage is not used.

wxListCtrl::SetItemColumnImage

bool SetItemImage (long item, long columnint image)

Sets the image associated with the item. In report view, you can specify the column. The
image is an index into the image list associated with the list control.

wxListCtrl::SetItemPosition

bool SetItemPosition (long item, const wxPoint& pos)

Sets the position of the item, in icon or small icon view. Windows only.

wxListCtrl::SetItemState

bool SetItemState (long item, long state, long stateMask)

Sets the item state. For a list of state flags, see wxListCtrl::SetItem (p. 879).

The stateMask indicates which state flags are valid.

wxListCtrl::SetItemText

void SetItemText (long item, const wxString& text)

Sets the item text for this item.

wxListCtrl::SetItemTextColour

void SetItemTextColour (long item, const wxColour& col)

Sets the colour for this item. This function only works in report view.

The colour can be retrieved usingGetItemTextColour (p. 873).

wxListCtrl::SetSingleStyle

void SetSingleStyle (long style, const bool add = true)

Adds or removes a single window style.

wxListCtrl::SetTextColour

CHAPTER 7

861

void SetTextColour (const wxColour& col)

Sets the text colour of the list control.

wxListCtrl::SetWindowStyleFlag

void SetWindowStyleFlag (long style)

Sets the whole window style, deleting all items.

wxListCtrl::SortItems

bool SortItems (wxListCtrlCompare fnSortCallBack, long data)

Call this function to sort the items in the list control. Sorting is done using the specified
fnSortCallBack function. This function must have the following prototype:

int wxCALLBACK wxListCompareFunction(long item1, lo ng item2, long
sortData)

It is called each time when the two items must be compared and should return 0 if the
items are equal, negative value if the first item is less than the second one and positive
value if the first one is greater than the second one (the same convention as used by
qsort(3)).

Parameters

item1

client data associated with the first item (NOT the index).

item2

client data associated with the second item (NOT the index).

data

the value passed to SortItems() itself.

Notice that the control may only be sorted on client data associated with the items, so
you must use SetItemData (p. 881) if you want to be able to sort the items in the control.

Please see the listctrl sample (p. Error! Bookmark not defined.) for an example of
using this function.

wxPython note: wxPython uses the sortData parameter to pass the Python function to
call, so it is not available for programmer use. Call SortItems with a reference to a
callable object that expects two parameters.

wxPerl note: In wxPerl the comparison function must take just two parameters;
however, you may use a closure to achieve an effect similar to the SortItems third
parameter.

CHAPTER 7

862

wxListEvent

A list event holds information about events associated with wxListCtrl objects.

Derived from

wxNotifyEvent (p. Error! Bookmark not defined.)
wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/listctrl.h>

Event table macros

To process input from a list control, use these event handler macros to direct input to
member functions that take a wxListEvent argument.

EVT_LIST_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.

EVT_LIST_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.

EVT_LIST_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be prevented
by calling Veto() (p. Error! Bookmark not
defined.).

EVT_LIST_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented
by calling Veto() (p. Error! Bookmark not
defined.).

EVT_LIST_DELETE_ITEM(id, func) Delete an item.

EVT_LIST_DELETE_ALL_ITEMS(id, func) Delete all items.

EVT_LIST_ITEM_SELECTED(id, func) The item has been selected.

EVT_LIST_ITEM_DESELECTED(id, func) The item has been deselected.

EVT_LIST_ITEM_ACTIVATED(id, func) The item has been activated (ENTER or double
click).

EVT_LIST_ITEM_FOCUSED(id, func) The currently focused item has changed.

EVT_LIST_ITEM_MIDDLE_CLICK(id, func) The middle mouse button has been
clicked on an item.

EVT_LIST_ITEM_RIGHT_CLICK(id, func) The right mouse button has been clicked on
an item.

EVT_LIST_KEY_DOWN(id, func) A key has been pressed.

EVT_LIST_INSERT_ITEM(id, func) An item has been inserted.

CHAPTER 7

863

EVT_LIST_COL_CLICK(id, func) A column (m_col) has been left-clicked.

EVT_LIST_COL_RIGHT_CLICK(id, func) A column (m_col) (which can be -1 if the
click occurred outside any column) has been
right-clicked.

EVT_LIST_COL_BEGIN_DRAG(id, func) The user started resizing a column - can be
vetoed.

EVT_LIST_COL_DRAGGING(id, func) The divider between columns is being dragged.

EVT_LIST_COL_END_DRAG(id, func) A column has been resized by the user.

EVT_LIST_CACHE_HINT(id, func) Prepare cache for a virtual list control

See also
wxListCtrl (p. 864)

wxListEvent::wxListEvent

 wxListEvent (WXTYPE commandType = 0, int id = 0)

Constructor.

wxListEvent::GetCacheFrom

long GetCacheFrom () const

For EVT_LIST_CACHE_HINT event only: return the first item which the list control
advises us to cache.

wxListEvent::GetCacheTo

long GetCacheTo () const

For EVT_LIST_CACHE_HINT event only: return the last item (inclusive) which the list
control advises us to cache.

wxListEvent::GetKeyCode

int GetKeyCode () const

Key code if the event is a keypress event.

wxListEvent::GetIndex

long GetIndex () const

The item index.

CHAPTER 7

864

wxListEvent::GetColumn

int GetColumn () const

The column position: it is only used with COL events. For the column dragging events, it
is the column to the left of the divider being dragged, for the column click events it may
be -1 if the user clicked in the list control header outside any column.

wxListEvent::GetPoint

wxPoint GetPoint () const

The position of the mouse pointer if the event is a drag event.

wxListEvent::GetLabel

const wxString& GetLabel () const

The (new) item label for EVT_LIST_END_LABEL_EDIT event.

wxListEvent::GetText

const wxString& GetText () const

The text.

wxListEvent::GetImage

int GetImage () const

The image.

wxListEvent::GetData

long GetData () const

The data.

wxListEvent::GetMask

long GetMask () const

The mask.

wxListEvent::GetItem

const wxListItem& GetItem () const

An item object, used by some events. See also wxListCtrl::SetItem (p. 879).

CHAPTER 7

865

wxListEvent::IsEditCancelled

bool IsEditCancelled () const

This method only makes sense for EVT_LIST_END_LABEL_EDIT message and returns
true if it the label editing has been cancelled by the user (GetLabel (p. 886) returns an
empty string in this case but it doesn't allow the application to distinguish between really
cancelling the edit and the admittedly rare case when the user wants to rename it to an
empty string).

wxListItem

This class stores information about a wxListCtrl item or column.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/listctrl.h>

wxListItem::wxListItem

 wxListItem ()

Constructor.

wxListItem::Clear

void Clear ()

Resets the item state to the default.

wxListItem::GetAlign

wxListColumnFormat GetAlign () const

Returns the alignment for this item. Can be one of wxLIST_FORMAT_LEFT,
wxLIST_FORMAT_RIGHT or wxLIST_FORMAT_CENTRE.

wxListItem::GetBackgroundColour

wxColour GetBackgroundColour () const

Returns the background colour for this item.

wxListItem::GetColumn

CHAPTER 7

866

int GetColumn () const

Returns the zero-based column; meaningful only in report mode.

wxListItem::GetData

long GetData () const

Returns client data associated with the control. Please note that client data is associated
with the item and not with subitems.

wxListItem::GetFont

wxFont GetFont () const

Returns the font used to display the item.

wxListItem::GetId

long GetId () const

Returns the zero-based item position.

wxListItem::GetImage

int GetImage () const

Returns the zero-based index of the image associated with the item into the image list.

wxListItem::GetMask

long GetMask () const

Returns a bit mask indicating which fields of the structure are valid; can be any
combination of the following values:

wxLIST_MASK_STATE GetState is valid.

wxLIST_MASK_TEXT GetText is valid.

wxLIST_MASK_IMAGE GetImage is valid.

wxLIST_MASK_DATA GetData is valid.

wxLIST_MASK_WIDTH GetWidth is valid.

wxLIST_MASK_FORMAT GetFormat is valid.

wxListItem::GetState

long GetState () const

CHAPTER 7

867

Returns a bit field representing the state of the item. Can be any combination of:

wxLIST_STATE_DONTCARE Don't care what the state is. Win32 only.

wxLIST_STATE_DROPHILITED The item is highlighted to receive a drop event.
Win32 only.

wxLIST_STATE_FOCUSED The item has the focus.

wxLIST_STATE_SELECTEDThe item is selected.

wxLIST_STATE_CUT The item is in the cut state. Win32 only.

wxListItem::GetText

const wxString& GetText () const

Returns the label/header text.

wxListItem::GetTextColour

wxColour GetTextColour () const

Returns the text colour.

wxListItem::GetWidth

int GetWidth () const

Meaningful only for column headers in report mode. Returns the column width.

wxListItem::SetAlign

void SetAlign (wxListColumnFormat align)

Sets the alignment for the item. See alsowxListItem::GetAlign (p. 887)

wxListItem::SetBackgroundColour

void SetBackgroundColour (const wxColour& colBack)

Sets the background colour for the item.

wxListItem::SetColumn

void SetColumn (int col)

Sets the zero-based column. Meaningful only in report mode.

wxListItem::SetData

CHAPTER 7

868

void SetData (long data)

void SetData (void* data)

Sets client data for the item. Please note that client data is associated with the item and
not with subitems.

wxListItem::SetFont

void SetFont (const wxFont& font)

Sets the font for the item.

wxListItem::SetId

void SetId (long id)

Sets the zero-based item position.

wxListItem::SetImage

void SetImage (int image)

Sets the zero-based index of the image associated with the item into the image list.

wxListItem::SetMask

void SetMask (long mask)

Sets the mask of valid fields. See wxListItem::GetMask (p. 888).

wxListItem::SetState

void SetState (long state)

Sets the item state flags (note that the valid state flags are influenced by the value of the
state mask, seewxListItem::SetStateMask (p. 890)). See wxListItem::GetState (p. 889)
for valid flag values.

wxListItem::SetStateMask

void SetStateMask (long stateMask)

Sets the bitmask that is used to determine which of the state flags are to be set. See
also wxListItem::SetState (p. 890).

wxListItem::SetText

void SetText (const wxString& text)

CHAPTER 7

869

Sets the text label for the item.

wxListItem::SetTextColour

void SetTextColour (const wxColour& colText)

Sets the text colour for the item.

wxListItem::SetWidth

void SetWidth (int width)

Meaningful only for column headers in report mode. Sets the column width.

wxListItemAttr

Represents the attributes (color, font, ...) of awxListCtrl (p. 864) wxListItem (p. 864).

Include files

<wx/listctrl.h>

See also

wxListCtrl overview (p. Error! Bookmark not defined.), wxListCtrl (p. 864), wxListItem
(p. 887)

wxListItemAttr::wxListItemAttr

 wxListItemAttr ()

Default constructor.

 wxListItemAttr (const wxColour& colText, const wxColour& colBack, const
wxFont& font)

Construct a wxListItemAttr with the specified foreground and background colors and
font.

wxListItemAttr::GetBackgroundColour

const wxColour& GetBackgroundColour () const

Returns the currently set background color.

wxListItemAttr::GetFont

const wxFont& GetFont () const

CHAPTER 7

870

Returns the currently set font.

wxListItemAttr::GetTextColour

const wxColour& GetTextColour () const

Returns the currently set text color.

wxListItemAttr::HasBackgroundColour

bool HasBackgroundColour () const

Returns true if the currently set background color is valid.

wxListItemAttr::HasFont

bool HasFont () const

Returns true if the currently set font is valid.

wxListItemAttr::HasTextColour

bool HasTextColour () const

Returns true if the currently set text color is valid.

wxListItemAttr::SetBackgroundColour

void SetBackgroundColour (const wxColour& colour)

Sets a new background color.

wxListItemAttr::SetFont

void SetFont (const wxFont& font)

Sets a new font.

wxListItemAttr::SetTextColour

void SetTextColour (const wxColour& colour)

Sets a new text color.

wxListView

This class currently simply presents a simpler to use interface for the wxListCtrl (p. 864)
-- it can be thought of as a façadefor that complicated class. Using it is preferable to
using wxListCtrl (p. 864) directly whenever possible because in the future some ports

CHAPTER 7

871

might implement wxListView but not the full set of wxListCtrl features.

Other than different interface, this class is identical to wxListCtrl. In particular, it uses the
same events, same window styles and so on.

Derived from

wxListCtrl (p. 864)
wxControl (p. 218)
wxWindow (p. Error! Bookmark not defined.)
wxEvtHandler (p. 490)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/listctrl.h>

wxListView::ClearColumnImage

void ClearColumnImage (int col)

Resets the column image -- after calling this function, no image will be shown.

Parameters

col

the column to clear image for

See also

SetColumnImage (p. 895)

wxListView::Focus

void Focus (long index)

Sets focus to the item with the given index.

wxListView::GetFirstSelected

long GetFirstSelected () const

Returns the first selected item in a (presumably) multiple selection control. Tigether with
GetNextSelected (p. 894) it can be used to iterate over all selected items in the control.

Return value

The first selected item, if any, -1 otherwise.

wxListView::GetFocusedItem

CHAPTER 7

872

long GetFocusedItem () const

Returns the currently focused item or -1 if none.

See also

IsSelected (p. 894),
Focus (p. 893)

wxListView::GetNextSelected

long GetNextSelected (long item) const

Used together with GetFirstSelected (p. 893) to iterate over all selected items in the
control.

Return value

Returns the next selected item or -1 if there are no more of them.

wxListView::IsSelected

bool IsSelected (long index)

Returns true if the item with the given index is selected, false otherwise.

See also

GetFirstSelected (p. 893),
GetNextSelected (p. 894)

wxListView::Select

void Select (long n, bool on = true)

Selects or unselects the given item.

Parameters

n

the item to select or unselect

on

if true (default), selects the item, otherwise unselects it

See also

SetItemState (p. 882)

wxListView::SetColumnImage

CHAPTER 7

873

void SetColumnImage (int col, int image)

Sets the column image for the specified column. To use the column images, the control
must have a valid image list with at least one image.

Parameters

col

the column to set image for

image

the index of the column image in the controls image list

See also

ClearColumnImage (p. 893),
SetImageList (p. 879)

wxLocale

wxLocale class encapsulates all language-dependent settings and is a generalization of
the C locale concept.

In wxWidgets this class manages message catalogs which contain the translations of the
strings used to the current language.

wxPerl note: In wxPerl you can't use the '_' function name, so the Wx::Locale module
can export the gettext and gettext_noop under any given name.

 # this imports gettext (equivalent to Wx::GetTra nslation
 # and gettext_noop (a noop)
 # into your module
 use Wx::Locale qw(:default);

 #

 # use the functions
 print gettext(``Panic!'');

 button = Wx::Button->new(window, -1, gettext(`` Label''));

If you need to translate a lot of strings, then adding gettext() around each one is a long
task (that is why _() was introduced), so just choose a shorter name for gettext:

 #
 use Wx::Locale 'gettext' => 't',
 'gettext_noop' => 'gettext_noop';

 # ...

 # use the functions
 print t(``Panic!!'');

 # ...

CHAPTER 7

874

Derived from

No base class

See also

Internationalization overview (p. Error! Bookmark not defined.),
Internat sample (p. Error! Bookmark not defined.)

Include files

<wx/intl.h>

Supported languages

See list of recognized language constants (p. Error! Bookmark not defined.). These
constants may be used to specify the language in Init (p. 901) and are returned by
GetSystemLanguage (p. 901):

wxLocale::wxLocale

 wxLocale ()

This is the default constructor and it does nothing to initialize the object: Init() (p. 901)
must be used to do that.

 wxLocale (int language, int flags = wxLOCALE_LOAD_DEFAULT |
wxLOCALE_CONV_ENCODING)

See Init() (p. 901) for parameters description.

 wxLocale (const char *szName, const char *szShort = NULL, const char *szLocale =
NULL, bool bLoadDefault = true, bool bConvertEncoding = false)

See Init() (p. 901) for parameters description.

The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of standard C
library functions such as printf() or strftime(). Second, this wxLocale object becomes the
new current global locale for the application and so all subsequent calls to
wxGetTranslation() will try to translate the messages using the message catalogs for this
locale.

wxLocale::~wxLocale

 ~wxLocale ()

The destructor, like the constructor, also has global side effects: the previously set locale
is restored and so the changes described in Init (p. 901) documentation are rolled back.

CHAPTER 7

875

wxLocale::AddCatalog

bool AddCatalog (const char *szDomain)

bool AddCatalog (const char *szDomain, wxLanguage msgIdLanguage, const char
*msgIdCharset)

Add a catalog for use with the current locale: it is searched for in standard places
(current directory first, then the system one), but you may also prepend additional
directories to the search path with AddCatalogLookupPathPrefix() (p. 898).

All loaded catalogs will be used for message lookup byGetString() (p. 900) for the
current locale.

Returns true if catalog was successfully loaded, false otherwise (which might mean that
the catalog is not found or that it isn't in the correct format).

The second form of this method takes two additional arguments,msgIdLanguage and
msgIdCharset.

msgIdLanguage specifies the language of "msgid" strings in source code (i.e. arguments
to GetString (p. 900),wxGetTranslation (p. Error! Bookmark not defined.) and the _()
(p. Error! Bookmark not defined.) macro). It is used if AddCatalog cannot find any
catalog for current language: if the language is same as source code language, then
strings from source code are used instead.

msgIdCharset lets you specify the charset used for msgids in sources in case they use
8-bit characters (e.g. German or French strings). This argument has no effect in
Unicode build, because literals in sources are Unicode strings; you have to use
compiler-specific method of setting the right charset when compiling with Unicode.

By default (i.e. when you use the first form), msgid strings are assumed to be in English
and written only using 7-bit ASCII characters.

If you have to deal with non-English strings or 8-bit characters in the source code, see
the instructions in Writing non-English applications (p. Error! Bookmark not defined.).

wxLocale::AddCatalogLookupPathPrefix

void AddCatalogLookupPathPrefix (const wxString& prefix)

Add a prefix to the catalog lookup path: the message catalog files will be looked up
under prefix/<lang>/LC_MESSAGES, prefix/<lang> and prefix (in this order).

This only applies to subsequent invocations of AddCatalog().

wxLocale::AddLanguage

static void AddLanguage (const wxLanguageInfo& info)

Adds custom, user-defined language to the database of known languages. This
database is used in conjunction with the first form of Init (p. 901).

CHAPTER 7

876

wxLanguageInfo is defined as follows:

struct WXDLLEXPORT wxLanguageInfo
{
 int Language; // wxLanguage i d
 wxString CanonicalName; // Canonical na me, e.g. fr_FR
#ifdef __WIN32__
 wxUint32 WinLang, WinSublang; // Win32 langua ge identifiers
 // (LANG_xxxx, SUBLANG_xxxx)
#endif
 wxString Description; // human-readab le name of the
language
};

Language should be greater than wxLANGUAGE_USER_DEFINED.

wxPerl note: In wxPerl Wx::LanguageInfo has only one method:

Wx::LanguageInfo->new(language, canonicalName, WinLang, WinSubLang,
Description)

wxLocale::FindLanguageInfo

static wxLanguageInfo * FindLanguageInfo (const wxString& locale)

This function may be used to find the language description structure for the given locale,
specified either as a two letter ISO language code (for example, "pt"), a language code
followed by the country code ("pt_BR") or a full, human readable, language description
("Portuguese-Brazil").

Returns the information for the given language or NULL if this language is unknown.
Note that even if the returned pointer is valid, the caller shouldnot delete it.

See also

GetLanguageInfo (p. 899)

wxLocale::GetCanonicalName

wxString GetCanonicalName () const

Returns the canonical form of current locale name. Canonical form is the one that is
used on UNIX systems: it is a two- or five-letter string in xx or xx_YY format, where xx is
ISO 639 code of language and YY is ISO 3166 code of the country. Examples are "en",
"en_GB", "en_US" or "fr_FR".

This form is internally used when looking up message catalogs.

Compare GetSysName (p. 900).

wxLocale::GetLanguage

int GetLanguage () const

CHAPTER 7

877

Returns wxLanguage (p. 896) constant of current language. Note that you can call this
function only if you used the form ofInit (p. 901) that takes wxLanguage argument.

wxLocale::GetLanguageInfo

static wxLanguageInfo * GetLanguageInfo (int lang) const

Returns a pointer to wxLanguageInfo structure containing information about the given
language or NULL if this language is unknown. Note that even if the returned pointer is
valid, the caller should not delete it.

See AddLanguage (p. 898) for the wxLanguageInfo description.

As with Init (p. 901), wxLANGUAGE_DEFAULT has the special meaning if passed as an
argument to this function and in this case the result of GetSystemLanguage() (p. 901) is
used.

wxLocale::GetLanguageName

static wxString GetLanguageName (int lang) const

Returns English name of the given language or empty string if this language is unknown.

See GetLanguageInfo (p. 899) for a remark about special meaning of
wxLANGUAGE_DEFAULT.

wxLocale::GetLocale

const char* GetLocale () const

Returns the locale name as passed to the constructor or Init() (p. 901). This is full,
human-readable name, e.g. "English" or "French".

wxLocale::GetName

const wxString& GetName () const

Returns the current short name for the locale (as given to the constructor or the Init()
function).

wxLocale::GetString

const char* GetString (const char *szOrigString, const char *szDomain = NULL)
const

const char* GetString (const char *szOrigString, const char *szOrigString2, size_t n,
const char *szDomain = NULL) const

Retrieves the translation for a string in all loaded domains unless the szDomain
parameter is specified (and then only this catalog/domain is searched).

CHAPTER 7

878

Returns original string if translation is not available (in this case an error message is
generated the first time a string is not found; use wxLogNull (p. Error! Bookmark not
defined.) to suppress it).

The second form is used when retrieving translation of string that has different singular
and plural form in English or different plural forms in some other language. It takes two
extra arguments: szOrigStringparameter must contain the singular form of the string to
be converted. It is also used as the key for the search in the catalog. The szOrigString2
parameter is the plural form (in English). The parameter n is used to determine the plural
form. If no message catalog is found szOrigString is returned if 'n == 1', otherwise
szOrigString2. See GNU gettext manual
(http://www.gnu.org/manual/gettext/html_chapter/gett ext_10.html#S
EC150) for additional information on plural forms handling.

This method is called by the wxGetTranslation (p. Error! Bookmark not
defined.)function and _() (p. Error! Bookmark not defined.) macro.

Remarks

Domains are searched in the last to first order, i.e. catalogs added later override those
added before.

wxLocale::GetHeaderValue

wxString GetHeaderValue (const char *szHeader, const char *szDomain = NULL)
const

Returns the header value for header szHeader. The search for szHeader is case
sensitive. If an szDomainis passed, this domain is searched. Else all domains will be
searched until a header has been found. The return value is the value of the header if
found. Else this will be empty.

wxLocale::GetSysName

wxString GetSysName () const

Returns current platform-specific locale name as passed to setlocale().

Compare GetCanonicalName (p. 899).

wxLocale::GetSystemEncoding

static wxFontEncoding GetSystemEncoding () const

Tries to detect the user's default font encoding. Returns wxFontEncoding (p. 561) value
or wxFONTENCODING_SYSTEM if it couldn't be determined.

wxLocale::GetSystemEncodingName

static wxString GetSystemEncodingName () const

CHAPTER 7

879

Tries to detect the name of the user's default font encoding. This string isn't particularly
useful for the application as its form is platform-dependent and so you should probably
use GetSystemEncoding (p. 901) instead.

Returns a user-readable string value or an empty string if it couldn't be determined.

wxLocale::GetSystemLanguage

static int GetSystemLanguage () const

Tries to detect the user's default language setting. Returns wxLanguage (p. 896) value
or wxLANGUAGE_UNKNOWN if the language-guessing algorithm failed.

wxLocale::Init

bool Init (int language = wxLANGUAGE_DEFAULT, int flags =
wxLOCALE_LOAD_DEFAULT | wxLOCALE_CONV_ENCODING)

bool Init (const char *szName, const char *szShort = NULL, const char *szLocale =
NULL, bool bLoadDefault = true, bool bConvertEncoding = false)

The second form is deprecated, use the first one unless you know what you are doing.

Parameters

language

wxLanguage (p. 896) identifier of the locale. wxLANGUAGE_DEFAULT has
special meaning -- wxLocale will use system's default language (see
GetSystemLanguage (p. 901)).

flags

Combination of the following:

wxLOCALE_LOAD_DEFAULT Load the message catalog for the given
locale containing the translations of standard
wxWidgets messages automatically.

wxLOCALE_CONV_ENCODING Automatically convert message catalogs to
platform's default encoding. Note that it will do only
basic conversion between well-known pair like
iso8859-1 and windows-1252 or iso8859-2 and
windows-1250. See Writing non-English applications
(p. Error! Bookmark not defined.) for detailed
description of this behaviour. Note that this flag is
meaningless in Unicode build.

szName

The name of the locale. Only used in diagnostic messages.

CHAPTER 7

880

szShort

The standard 2 letter locale abbreviation; it is used as the directory prefix when
looking for the message catalog files.

szLocale

The parameter for the call to setlocale(). Note that it is platform-specific.

bLoadDefault

May be set to false to prevent loading of the message catalog for the given locale
containing the translations of standard wxWidgets messages. This parameter
would be rarely used in normal circumstances.

bConvertEncoding

May be set to true to do automatic conversion of message catalogs to platform's
native encoding. Note that it will do only basic conversion between well-known
pair like iso8859-1 and windows-1252 or iso8859-2 and windows-1250. See
Writing non-English applications (p. Error! Bookmark not defined.) for detailed
description of this behaviour.

The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of standard C
library functions such as printf() or strftime(). Second, this wxLocale object becomes the
new current global locale for the application and so all subsequent calls
towxGetTranslation() (p. Error! Bookmark not defined.) will try to translate the
messages using the message catalogs for this locale.

Returns true on success or false if the given locale couldn't be set.

wxLocale::IsLoaded

bool IsLoaded (const char* domain) const

Check if the given catalog is loaded, and returns true if it is.

According to GNU gettext tradition, each catalog normally corresponds to 'domain' which
is more or less the application name.

See also: AddCatalog (p. 897)

wxLocale::IsOk

bool IsOk () const

Returns true if the locale could be set successfully.

wxLog

wxLog class defines the interface for the log targets used by wxWidgets logging

CHAPTER 7

881

functions as explained in the wxLog overview (p. Error! Bookmark not defined.). The
only situations when you need to directly use this class is when you want to derive your
own log target because the existing ones don't satisfy your needs. Another case is if you
wish to customize the behaviour of the standard logging classes (all of which respect the
wxLog settings): for example, set which trace messages are logged and which are not or
change (or even remove completely) the timestamp on the messages.

Otherwise, it is completely hidden behind the wxLogXXX() functions and you may not
even know about its existence.

See log overview (p. Error! Bookmark not defined.) for the descriptions of wxWidgets
logging facilities.

Derived from

No base class

Include files

<wx/log.h>

Static functions

The functions in this section work with and manipulate the active log target. The OnLog()
(p. 906) is called by the wxLogXXX() functions and invokes the DoLog() (p. 907) of the
active log target if any. Get/Set methods are used to install/query the current active
target and, finally, DontCreateOnDemand() (p. 908) disables the automatic creation of a
standard log target if none actually exists. It is only useful when the application is
terminating and shouldn't be used in other situations because it may easily lead to a loss
of messages.

OnLog (p. 906)
GetActiveTarget (p. 906)
SetActiveTarget (p. 906)
DontCreateOnDemand (p. 908)
Suspend (p. 907)
Resume (p. 907)

Logging functions

There are two functions which must be implemented by any derived class to actually
process the log messages: DoLog (p. 907) andDoLogString (p. 907). The second
function receives a string which just has to be output in some way and the easiest way to
write a new log target is to override just this function in the derived class. If more control
over the output format is needed, then the first function must be overridden which allows
to construct custom messages depending on the log level or even do completely
different things depending on the message severity (for example, throw away all
messages except warnings and errors, show warnings on the screen and forward the
error messages to the user's (or programmer's) cell phone - maybe depending on
whether the timestamp tells us if it is day or night in the current time zone).

CHAPTER 7

882

There also functions to support message buffering. Why are they needed? Some of
wxLog implementations, most notably the standard wxLogGui class, buffer the
messages (for example, to avoid showing the user a zillion of modal message boxes one
after another -- which would be really annoying).Flush() (p. 908) shows them all and
clears the buffer contents. This function doesn't do anything if the buffer is already
empty.

Flush (p. 908)
FlushActive (p. 908)

Customization

The functions below allow some limited customization of wxLog behaviour without
writing a new log target class (which, aside of being a matter of several minutes, allows
you to do anything you want).

The verbose messages are the trace messages which are not disabled in the release
mode and are generated by wxLogVerbose (p. Error! Bookmark not defined.). They
are not normally shown to the user because they present little interest, but may be
activated, for example, in order to help the user find some program problem.

As for the (real) trace messages, their handling depends on the settings of the
(application global) trace mask. There are two ways to specify it: either by using
SetTraceMask (p. 909) andGetTraceMask (p. 909) and usingwxLogTrace (p. Error!
Bookmark not defined.) which takes an integer mask or by usingAddTraceMask (p.
906) for string trace masks.

The difference between bit-wise and string trace masks is that a message using integer
trace mask will only be logged if all bits of the mask are set in the current mask while a
message using string mask will be logged simply if the mask had been added before to
the list of allowed ones.

For example,

// wxTraceOleCalls is one of standard bit masks
wxLogTrace(wxTraceRefCount | wxTraceOleCalls, "Acti ve object ref
count: %d", nRef);

will do something only if the current trace mask contains bothwxTraceRefCount and
wxTraceOle , but

// wxTRACE_OleCalls is one of standard string masks
wxLogTrace(wxTRACE_OleCalls, "IFoo::Bar() called");

will log the message if it was preceded by

wxLog::AddTraceMask(wxTRACE_OleCalls);

Using string masks is simpler and allows to easily add custom ones, so this is the
preferred way of working with trace messages. The integer trace mask is kept for
compatibility and for additional (but very rarely needed) flexibility only.

The standard trace masks are given in wxLogTrace (p. Error! Bookmark not
defined.)documentation.

CHAPTER 7

883

Finally, the wxLog::DoLog() function automatically prepends a time stamp to all the
messages. The format of the time stamp may be changed: it can be any string with %
specifications fully described in the documentation of the standard strftime() function. For
example, the default format is "[%d/%b/%y %H:%M:%S] " which gives something like
"[17/Sep/98 22:10:16] " (without quotes) for the current date. Setting an empty string as
the time format disables timestamping of the messages completely.

NB: Timestamping is disabled for Visual C++ users in debug builds by default because
otherwise it would be impossible to directly go to the line from which the log message
was generated by simply clicking in the debugger window on the corresponding error
message. If you wish to enable it, please useSetTimestamp (p. 909) explicitly.

AddTraceMask (p. 906)
RemoveTraceMask (p. 909)
ClearTraceMasks (p. 906)
GetTraceMasks (p. 906)
IsAllowedTraceMask (p. 909)
SetVerbose (p. 908)
GetVerbose (p. 908)
SetTimestamp (p. 909)
GetTimestamp (p. 909)
SetTraceMask (p. 909)
GetTraceMask (p. 909)

wxLog::AddTraceMask

static void AddTraceMask (const wxString& mask)

Add the mask to the list of allowed masks forwxLogTrace (p. Error! Bookmark not
defined.).

See also

RemoveTraceMask (p. 909)GetTraceMasks (p. 906)

wxLog::ClearTraceMasks

static void ClearTraceMasks ()

Removes all trace masks previously set withAddTraceMask (p. 906).

See also

RemoveTraceMask (p. 909)

wxLog::GetTraceMasks

static const wxArrayString & GetTraceMasks ()

Returns the currently allowed list of string trace masks.

CHAPTER 7

884

See also

AddTraceMask (p. 906).

wxLog::OnLog

static void OnLog (wxLogLevel level, const char * message)

Forwards the message at specified level to the DoLog() function of the active log target if
there is any, does nothing otherwise.

wxLog::GetActiveTarget

static wxLog * GetActiveTarget ()

Returns the pointer to the active log target (may be NULL).

wxLog::SetActiveTarget

static wxLog * SetActiveTarget (wxLog * logtarget)

Sets the specified log target as the active one. Returns the pointer to the previous active
log target (may be NULL). To supress logging use a new instance of wxLogNull not
NULL. If the active log target is set to NULL a new default log target will be created
when logging occurs.

wxLog::Suspend

static void Suspend ()

Suspends the logging until Resume (p. 907) is called. Note that the latter must be called
the same number of times as the former to undo it, i.e. if you call Suspend() twice you
must call Resume() twice as well.

Note that suspending the logging means that the log sink won't be be flushed
periodically, it doesn't have any effect if the current log target does the logging
immediately without waiting for Flush (p. 908) to be called (the standard GUI log target
only shows the log dialog when it is flushed, so Suspend() works as expected with it).

See also

Resume (p. 907),
wxLogNull (p. Error! Bookmark not defined.)

wxLog::Resume

static void Resume ()

Resumes logging previously suspended by a call toSuspend (p. 907). All messages
logged in the meanwhile will be flushed soon.

CHAPTER 7

885

wxLog::DoLog

virtual void DoLog (wxLogLevel level, const wxChar *msg, time_t timestamp)

Called to process the message of the specified severity. msg is the text of the message
as specified in the call of wxLogXXX() function which generated it and timestamp is the
moment when the message was generated.

The base class version prepends the timestamp to the message, adds a prefix
corresponding to the log level and then callsDoLogString (p. 907) with the resulting
string.

wxLog::DoLogString

virtual void DoLogString (const wxChar *msg, time_t timestamp)

Called to log the specified string. The timestamp is already included into the string but
still passed to this function.

A simple implementation may just send the string to stdout or, better,stderr .

wxLog::DontCreateOnDemand

static void DontCreateOnDemand ()

Instructs wxLog to not create new log targets on the fly if there is none currently.
(Almost) for internal use only: it is supposed to be called by the application shutdown
code.

Note that this function also callsClearTraceMasks (p. 906).

wxLog::Flush

virtual void Flush ()

Shows all the messages currently in buffer and clears it. If the buffer is already empty,
nothing happens.

wxLog::FlushActive

static void FlushActive ()

Flushes the current log target if any, does nothing if there is none.

See also

Flush (p. 908)

wxLog::SetVerbose

static void SetVerbose (bool verbose = true)

CHAPTER 7

886

Activates or deactivates verbose mode in which the verbose messages are logged as
the normal ones instead of being silently dropped.

wxLog::GetVerbose

static bool GetVerbose ()

Returns whether the verbose mode is currently active.

wxLog::SetLogLevel

static void SetLogLevel (wxLogLevel logLevel)

Specifies that log messages with level > logLevel should be ignored and not sent to the
active log target.

wxLog::GetLogLevel

static wxLogLevel GetLogLevel ()

Returns the current log level limit.

wxLog::SetTimestamp

void SetTimestamp (const char * format)

Sets the timestamp format prepended by the default log targets to all messages. The
string may contain any normal characters as well as %prefixed format specificators, see
strftime() manual for details. Passing a NULL value (not empty string) to this function
disables message timestamping.

wxLog::GetTimestamp

const char * GetTimestamp () const

Returns the current timestamp format string.

wxLog::SetTraceMask

static void SetTraceMask (wxTraceMask mask)

Sets the trace mask, see Customization (p. 904)section for details.

wxLog::GetTraceMask

Returns the current trace mask, see Customization (p. 904) section for details.

wxLog::IsAllowedTraceMask

static bool IsAllowedTraceMask (const wxChar * mask)

CHAPTER 7

887

Returns true if the mask is one of allowed masks forwxLogTrace (p. Error! Bookmark
not defined.).

See also: AddTraceMask (p. 906),RemoveTraceMask (p. 909)

wxLog::RemoveTraceMask

static void RemoveTraceMask (const wxString& mask)

Remove the mask from the list of allowed masks forwxLogTrace (p. Error! Bookmark
not defined.).

See also: AddTraceMask (p. 906)

wxLogChain

This simple class allows to chain log sinks, that is to install a new sink but keep passing
log messages to the old one instead of replacing it completely asSetActiveTarget (p.
906) does.

It is especially useful when you want to divert the logs somewhere (for example to a file
or a log window) but also keep showing the error messages using the standard dialogs
as wxLogGui (p. Error! Bookmark not defined.) does by default.

Example of usage:

wxLogChain *logChain = new wxLogChain(new wxLogStde rr);

// all the log messages are sent to stderr and also processed as
usually
...

// don't delete logChain directly as this would lea ve a dangling
// pointer as active log target, use SetActiveTarge t() instead
delete wxLog::SetActiveTarget(...something else or NULL...);

Derived from

wxLog (p. 903)

Include files

<wx/log.h>

wxLogChain::wxLogChain

 wxLogChain (wxLog * logger)

Sets the specified logger (which may be NULL) as the default log target but the log
messages are also passed to the previous log target if any.

CHAPTER 7

888

wxLogChain::~wxLogChain

 ~wxLogChain ()

Destroys the previous log target.

wxLogChain::GetOldLog

wxLog * GetOldLog () const

Returns the pointer to the previously active log target (which may be NULL).

wxLogChain::IsPassingMessages

bool IsPassingMessages () const

Returns true if the messages are passed to the previously active log target (default) or
false if PassMessages (p. 911)had been called.

wxLogChain::PassMessages

void PassMessages (bool passMessages)

By default, the log messages are passed to the previously active log target. Calling this
function with false parameter disables this behaviour (presumably temporarily, as you
shouldn't use wxLogChain at all otherwise) and it can be reenabled by calling it again
with passMessages set to true .

wxLogChain::SetLog

void SetLog (wxLog * logger)

Sets another log target to use (may be NULL). The log target specified in the constructor
(p. 910) or in a previous call to this function is deleted.

This doesn't change the old log target value (the one the messages are forwarded to)
which still remains the same as was active when wxLogChain object was created.

wxLogGui

This is the default log target for the GUI wxWidgets applications. It is passed to
wxLog::SetActiveTarget (p. 906) at the program startup and is deleted by wxWidgets
during the program shut down.

Derived from

wxLog (p. 903)

Include files

<wx/log.h>

CHAPTER 7

889

wxLogGui::wxLogGui

 wxLogGui ()

Default constructor.

wxLogNull

This class allows to temporarily suspend logging. All calls to the log functions during the
life time of an object of this class are just ignored.

In particular, it can be used to suppress the log messages given by wxWidgets itself but
it should be noted that it is rarely the best way to cope with this problem as all log
messages are suppressed, even if they indicate a completely different error than the one
the programmer wanted to suppress.

For instance, the example of the overview:

 wxFile file;

 // wxFile.Open() normally complains if file can't be opened, we
don't want it
 {
 wxLogNull logNo;
 if (!file.Open("bar"))
 ... process error ourselves ...
 } // ~wxLogNull called, old log sink restored

 wxLogMessage("..."); // ok

would be better written as:

 wxFile file;

 // don't try to open file if it doesn't exist, we are prepared
to deal with
 // this ourselves - but all other errors are not expected
 if (wxFile::Exists("bar"))
 {
 // gives an error message if the file couldn' t be opened
 file.Open("bar");
 }
 else
 {
 ...
 }

Derived from

wxLog (p. 903)

Include files

<wx/log.h>

CHAPTER 7

890

wxLogNull::wxLogNull

 wxLogNull ()

Suspends logging.

wxLogNull::~wxLogNull

Resumes logging.

wxLogPassThrough

A special version of wxLogChain (p. 909) which uses itself as the new log target. Maybe
more clearly, it means that this is a log target which forwards the log messages to the
previously installed one in addition to processing them itself.

Unlike wxLogChain (p. 909) which is usually used directly as is, this class must be
derived from to implement DoLog (p. 907)and/or DoLogString (p. 907) methods.

Derived from

wxLogChain (p. 909)

Include files

<wx/log.h>

wxLogPassThrough::wxLogPassThrough

Default ctor installs this object as the current active log target.

wxLogStderr

This class can be used to redirect the log messages to a C file stream (not to be
confused with C++ streams). It is the default log target for the non-GUI wxWidgets
applications which send all the output to stderr .

Derived from

wxLog (p. 903)

Include files

<wx/log.h>

See also

CHAPTER 7

891

wxLogStream (p. 914)

wxLogStderr::wxLogStderr

 wxLogStderr (FILE *fp = NULL)

Constructs a log target which sends all the log messages to the givenFILE . If it is NULL,
the messages are sent to stderr .

wxLogStream

This class can be used to redirect the log messages to a C++ stream.

Please note that this class is only available if wxWidgets was compiled with the standard
iostream library support (wxUSE_STD_IOSTREAM must be on).

Derived from

wxLog (p. 903)

Include files

<wx/log.h>

See also

wxLogStderr (p. 913),
wxStreamToTextRedirector (p. Error! Bookmark not defined.)

wxLogStream::wxLogStream

 wxLogStream (std::ostream *ostr = NULL)

Constructs a log target which sends all the log messages to the given output stream. If it
is NULL, the messages are sent to cerr .

wxLogTextCtrl

Using these target all the log messages can be redirected to a text control. The text
control must have been created with wxTE_MULTILINE style by the caller previously.

Derived from

wxLog (p. 903)

Include files

CHAPTER 7

892

<wx/log.h>

See also

wxLogTextCtrl (p. 914),
wxStreamToTextRedirector (p. Error! Bookmark not defined.)

wxLogTextCtrl::wxLogTextCtrl

 wxLogTextCtrl (wxTextCtrl *textctrl)

Constructs a log target which sends all the log messages to the given text control. The
textctrl parameter cannot be NULL.

wxLogWindow

This class represents a background log window: to be precise, it collects all log
messages in the log frame which it manages but also passes them on to the log target
which was active at the moment of its creation. This allows, for example, to show all the
log messages in a frame but still continue to process them normally by showing the
standard log dialog.

Derived from

wxLogPassThrough (p. 913)

Include files

<wx/log.h>

See also

wxLogTextCtrl (p. 914)

wxLogWindow::wxLogWindow

 wxLogWindow (wxFrame *parent, const wxChar *title, bool show = true, bool
passToOld = true)

Creates the log frame window and starts collecting the messages in it.

Parameters

parent

The parent window for the log frame, may be NULL

title

CHAPTER 7

893

The title for the log frame

show

true to show the frame initially (default), otherwisewxLogWindow::Show (p. 916)
must be called later.

passToOld

true to process the log messages normally in addition to logging them in the log
frame (default), false to only log them in the log frame.

wxLogWindow::Show

void Show (bool show = true)

Shows or hides the frame.

wxLogWindow::GetFrame

wxFrame * GetFrame () const

Returns the associated log frame window. This may be used to position or resize it but
use wxLogWindow::Show (p. 916) to show or hide it.

wxLogWindow::OnFrameCreate

virtual void OnFrameCreate (wxFrame *frame)

Called immediately after the log frame creation allowing for any extra initializations.

wxLogWindow::OnFrameClose

virtual bool OnFrameClose (wxFrame *frame)

Called if the user closes the window interactively, will not be called if it is destroyed for
another reason (such as when program exits).

Return true from here to allow the frame to close, false to prevent this from
happening.

See also

wxLogWindow::OnFrameDelete (p. 916)

wxLogWindow::OnFrameDelete

virtual void OnFrameDelete (wxFrame *frame)

Called right before the log frame is going to be deleted: will always be called unlike
OnFrameClose() (p. 916).

CHAPTER 7

894

wxLongLong

This class represents a signed 64 bit long number. It is implemented using the native 64
bit type where available (machines with 64 bit longs or compilers which have (an analog
of) long long type) and uses the emulation code in the other cases which ensures that it
is the most efficient solution for working with 64 bit integers independently of the
architecture.

wxLongLong defines all usual arithmetic operations such as addition, subtraction, bitwise
shifts and logical operations as well as multiplication and division (not yet for the
machines without native long long). It also has operators for implicit construction from
and conversion to the native long long type if it exists and long.

You would usually use this type in exactly the same manner as any other (built-in)
arithmetic type. Note that wxLongLong is a signed type, if you want unsigned values use
wxULongLong which has exactly the same API as wxLongLong except when explicitly
mentioned otherwise.

If a native (i.e. supported directly by the compiler) 64 bit integer type was found to exist,
wxLongLong_t macro will be defined to correspond to it. Also, in this case only, two
additional macros will be defined: wxLongLongFmtSpec (p. Error! Bookmark not
defined.) for printing 64 bit integers using the standard printf() function (but see also
ToString() (p. 919) for a more portable solution) andwxLL (p. Error! Bookmark not
defined.) for defining 64 bit integer compile-time constants.

Derived from

No base class

Include files

<wx/longlong.h>

wxLongLong::wxLongLong

 wxLongLong ()

Default constructor initializes the object to 0.

wxLongLong::wxLongLong

 wxLongLong (wxLongLong_t ll)

Constructor from native long long (only for compilers supporting it).

wxLongLong::wxLongLong

 wxLongLong (long hi, unsigned long lo)

Constructor from 2 longs: the high and low part are combined into one wxLongLong.

CHAPTER 7

895

wxLongLong::operator=

wxLongLong& operator operator= (wxLongLong_t ll)

Assignment operator from native long long (only for compilers supporting it).

wxLongLong::operator=

wxLongLong& operator operator= (wxULongLong_t ll)

Assignment operator from native unsigned long long (only for compilers supporting it).

wxLongLong::operator=

wxLongLong& operator operator= (long l)

Assignment operator from long.

wxLongLong::operator=

wxLongLong& operator operator= (unsigned long l)

Assignment operator from unsigned long.

wxLongLong::operator=

wxLongLong& operator operator= (const wxULongLong & ll)

Assignment operator from unsigned long long. The sign bit will be copied too.

wxLongLong::Abs

wxLongLong Abs () const

wxLongLong& Abs ()

Returns an absolute value of wxLongLong - either making a copy (const version) or
modifying it in place (the second one). Not in wxULongLong.

wxLongLong::Assign

wxLongLong& Assign (double d)

This allows to convert a double value to wxLongLong type. Such conversion is not
always possible in which case the result will be silently truncated in a platform-
dependent way. Not in wxULongLong.

wxLongLong::GetHi

long GetHi () const

CHAPTER 7

896

Returns the high 32 bits of 64 bit integer.

wxLongLong::GetLo

unsigned long GetLo () const

Returns the low 32 bits of 64 bit integer.

wxLongLong::GetValue

wxLongLong_t GetValue () const

Convert to native long long (only for compilers supporting it)

wxLongLong::ToDouble

double ToDouble () const

Returns the value as double .

wxLongLong::ToLong

long ToLong () const

Truncate wxLongLong to long. If the conversion loses data (i.e. the wxLongLong value is
outside the range of built-in long type), an assert will be triggered in debug mode.

wxLongLong::ToString

wxString ToString () const

Returns the string representation of a wxLongLong.

wxLongLong::operator+

wxLongLong operator+ (const wxLongLong& ll) const

Adds 2 wxLongLongs together and returns the result.

wxLongLong::operator+=

wxLongLong& operator+ (const wxLongLong& ll)

Add another wxLongLong to this one.

wxLongLong::operator++

wxLongLong& operator++ ()

wxLongLong& operator++ (int)

CHAPTER 7

897

Pre/post increment operator.

wxLongLong::operator-

wxLongLong operator- () const

Returns the value of this wxLongLong with opposite sign. Not in wxULongLong.

wxLongLong::operator-

wxLongLong operator- (const wxLongLong& ll) const

Subtracts 2 wxLongLongs and returns the result.

wxLongLong::operator-=

wxLongLong& operator- (const wxLongLong& ll)

Subtracts another wxLongLong from this one.

wxLongLong::operator--

wxLongLong& operator-- ()

wxLongLong& operator-- (int)

Pre/post decrement operator.

wxMask

This class encapsulates a monochrome mask bitmap, where the masked area is black
and the unmasked area is white. When associated with a bitmap and drawn in a device
context, the unmasked area of the bitmap will be drawn, and the masked area will not be
drawn.

Derived from

wxObject (p. Error! Bookmark not defined.)

Include files

<wx/bitmap.h>

Remarks

A mask may be associated with a wxBitmap (p. 84). It is used in wxDC::Blit (p. 373)
when the source device context is a wxMemoryDC (p. Error! Bookmark not defined.)
with wxBitmap selected into it that contains a mask.

See also

CHAPTER 7

898

wxBitmap (p. 84), wxDC::Blit (p. 373), wxMemoryDC (p. Error! Bookmark not defined.)

wxMask::wxMask

 wxMask ()

Default constructor.

 wxMask (const wxBitmap (p. 84)& bitmap)

Constructs a mask from a monochrome bitmap.

wxPython note: This is the default constructor for wxMask in wxPython.

 wxMask (const wxBitmap (p. 84)& bitmap, const wxColour (p. 168)& colour)

Constructs a mask from a bitmap and a colour that indicates the background.

wxPython note: wxPython has an alternate wxMask constructor matching this form
called wxMaskColour .

 wxMask (const wxBitmap& bitmap, int index)

Constructs a mask from a bitmap and a palette index that indicates the background. Not
yet implemented for GTK.

Parameters

bitmap

A valid bitmap.

colour

A colour specifying the transparency RGB values.

index

Index into a palette, specifying the transparency colour.

wxMask::~wxMask

 ~wxMask ()

Destroys the wxMask object and the underlying bitmap data.

wxMask::Create

bool Create (const wxBitmap& bitmap)

Constructs a mask from a monochrome bitmap.

CHAPTER 7

899

bool Create (const wxBitmap& bitmap, const wxColour& colour)

Constructs a mask from a bitmap and a colour that indicates the background.

bool Create (const wxBitmap& bitmap, int index)

Constructs a mask from a bitmap and a palette index that indicates the background. Not
yet implemented for GTK.

Parameters

bitmap

A valid bitmap.

colour

A colour specifying the transparency RGB values.

index

Index into a palette, specifying the transparency colour.

wxMaximizeEvent

An event being sent when the frame is maximized or restored.

Derived from

wxEvent (p. 487)
wxObject (p. Error! Bookmark not defined.)

Include files

<wx/event.h>

Event table macros

To process a maximize event, use this event handler macro to direct input to a member
function that takes a wxMaximizeEvent argument.

EVT_MAXIMIZE(func) Process a wxEVT_MAXIMIZE event.

See also
Event handling overview (p. Error! Bookmark not defined.),
wxTopLevelWindow::Maximize (p. Error! Bookmark not defined.),
wxTopLevelWindow::IsMaximized (p. Error! Bookmark not defined.)

wxMaximizeEvent::wxMaximizeEvent

 wxMaximizeEvent (int id = 0)

CHAPTER 7

900

Constructor.

wxMBConv

This class is the base class of a hierarchy of classes capable of converting text strings
between multibyte (SBCS or DBCS) encodings and Unicode.

In the documentation for this and related classes please notice that length of the string
refers to the number of characters in the string not counting the terminating NUL, if any.
While the size of the string is the total number of bytes in the string, including any trailing
NULs. Thus, length of wide character string L"foo" is 3 while its size can be either 8 or
16 depending on whether wchar_t is 2 bytes (as under Windows) or 4 (Unix).

Global variables

There are several predefined instances of this class:wxConvLibc Uses the standard
ANSI C mbstowcs() andwcstombs()
functions to perform the conversions; thus
depends on the current locale.

wxConvFile The appropriate conversion for the file names,
depends on the system.

Derived from

No base class

Include files

<wx/strconv.h>

See also

wxCSConv (p. 229), wxEncodingConverter (p. 482), wxMBConv classes overview (p.
Error! Bookmark not defined.)

wxMBConv::wxMBConv

 wxMBConv ()

Constructor.

wxMBConv::MB2WC

virtual size_t MB2WC(wchar_t * out, const char * in, size_t outLen) const

Converts from a string in in multibyte encoding to Unicode putting up to outLen
characters into the buffer out.

If out is NULL, only the length of the string which would result from the conversion is

CHAPTER 7

901

calculated and returned. Note that this is the length and not size, i.e. the returned value
does not include the trailing NUL. But when the function is called with a non-NULL out
buffer, the outLen parameter should be one more to allow to properly NUL-terminate the
string.

Parameters

out

The output buffer, may be NULL if the caller is only interested in the length of the
resulting string

in

The NUL-terminated input string, cannot be NULL

outLen

The length of the output buffer but including NUL, ignored if out is NULL

Return value

The length of the converted string excluding the trailing NUL

