wxWidgets 2.6.2: A portable C++ and Python GUI
toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

September, 2005

Contents

(0] o) 1T |10 o) 4o =SS Xvil
gL oTo [o 1o T o SR 1
WAL IS WXWIHGETS? ...ttt e e neeeaeeeeens 1
Why another cross-platform development tool?oovviiiiiiii e 1
Ao [T (R = To [U =T o =T) 3
Availability and location Of WXWIAQELSuueiiiiiiiiiiiiie e e 3
ACKNOWIBAGEIMENTS ... e et et e neeeaeeeeens 4
Multi-platform development with WXWIAQELS.......... cooiiiiiiiii e 5
INCIUAE FIlES ...ttt e e e et e e e e e e e aeeeeas 5
[o] = = 5
(@] 1110 U] =1 1o o SRR PURSP 5
= 1 1= 6
WiINAOWS-SPECITIC FIlES ... 6
Allocating and deleting WXWidgets ODJECES.coviiiiiiiiiiiie e 7
ArChiteCtUre dEPENUENCYuiiiiiiiiiiie it eeaeeee s 7
Conditional COMPIIALIONcociiiiiiiiiis e e e e e e e e e e e s e e eaeeeeeeesrenns 8
(O L= U1 O URRPPPPRSRRT 8
1 L= o= U o |11 T 9
Utilities and libraries supplied with WXWiIdgets.... .. 10
Programming StratEQIESccvvviiiii i cetee et e e et 12
Strategies for reducing pProgramming EITOISuuuuuieieeeeeeeeeeiiitiiisaeseeeeeeeeerearrn e aeaeeeeennn 12
Strategies fOr POItADIIITYooiei i e 12
Strategies for deDUGGINGcooiiiiieii e e e e e e e e e e e e aaaaa 12
[o = V=S] P 15
Alphabetical Class refErENCEuvvuiiiiii i i e 18
WXACCEIEIALOINENTIY ...t et r e e e e e e e e eeeens 18
N o] (=T = 1o 1= o[SRR 19
WXACCESSIDIE <.ttt e et e e e e e e e e e e e e e 22
WXACHVAIEEVENTttt e e et e e e e e e e e e e e aaaaaeeas 29
WXACHVEXCONEAINEY ...ttt e e e e e e e e e bbbttt ettt et e e e e e e e e aeeaaaeeneas 31
AN Y= =T o | SRR 35
Returns the dispatch id of this activex event. This is the numeric value from the .idl file
specified DY the IA(). WXAPD .. .eeeeeere it e et r e s e e e e e e e et e aaaeaaeaaeaae 36
WXATCHIVECIASSFACIONY ...ttt 47

CONTENTS

(TN (o] ATV =Y 1 11 Y 48
WXATCHIVEINDUISTIIEAIM ...ttt e e e e e e e e 51
(N (o] gAY =] (T = o] TR 52
WXATCRIVENOLITIEE ...t e e e e e e e e e 55
WXATCHIVEOULIPULSTIIEAM ...ttt ettt r et e e e e e e e e e eeeens 55
110N = Y PP U PP PP 57
wxSortedArray doesn't have this function because it is always sorted.wxArrayString 70
AN U ()Y Lo [OO PPPPPPPPPPPPN 75
WXAULOMALIONODJECT ...ttt e e e e e e e e e e e 80
WXBIEMIAD oottt e et et oot e e e et een e e e e e e e 84
WXBIEMAPBULTON ...ttt e et e e e e eeeaaeeaeeas 96
WXBItMAPDATAODJECT ...ttt 103
4TS gz T =TT | = S 104
1S)] 4] USRI 107
WXBIUSK ...ttt e e e e e e e oo e e e oo bbbt eeee e 108
WXBIUSKILISE ...ttt e e e e e e e e e e e e e b bbbttt e e b e e eeeeeeeas 114
WXBUFFEIEADIC ...ttt e e e e e e e e e et bbbttt bbb e e eeeeeee s 116
WXBUFFEredPaINIDC ...t e e e et e e e e e e e eeeaeaeaenens 118
WXBUFEredINPUESTIEAIM ...ttt 118
WXBUFFEr@dOULPULSTIEAIM ...ttt 119
WXBUSYCUISOI ... oo s eeeennenaees 120
WXBUSYINTO ettt e e e e e e e e e et e e s e e e e e e e e ae e bt e e e e e e e eeeee e nrarana 121
WUXBIULEON . .ottt e ettt e e ettt e e e e et e e e e e e e e aenns 122
WXCAlCUIALELAYOULEVENTviiiiii et e e e e e e e s e e e e e eeeaearaannas 125
WXCAIENAAICIT ...ttt bbb eeeeeee e s 127
WXCAIENAAIDALEALT ...ttt bbbttt eea e 132
WXCAIEBNAAIEVENT ...t e e e e e e e ettt e e e e e e e e eeeaennnnnnns 135
1 (OF: 1= PP TPTPPTR TP 136
1T (O 1= o1 4 = o) SRR 138
WXCRECKLISTBOX. ... ettt ettt ettt s e e e e e e e e e e eeetteatee e e e e aeeeeeeaennnnnnns 142
WXCRIOICE ...ttt ettt et e e e e e e e e e et oo e bbb bbbttt b e e e e eee e 145
This is implemented for Motif only and doesn't do anything under other

Platforms.WXCHOICEDOOKccoiiiiiiiiii it 148
WXCIASSINTO ..o eae s 148
177 (O 11T o | USRI 150
12O =] o1 { B OO PP OPPPPPPPPPPPPP 151
11O 11T a1 - SRR 152
WXClIENIDALACONTAINET ...ttt e e e bbbttt eeeeeeeeeas 153
177 (O 1101 o Yo T= 1 o SR 154
WXCIOSEEVENT ...t e ettt bbb e e e eee e 157
WXCIMOLINEPAISEN ...ttt bbb eeeeeeeee s 159

CONTENTS

12 Oe] (o 18 OO PP P PPPPPPPPPPPP 168
11O o] [o U B L - SRR 172
WXCOIOUIDALADASE ... e 173
110 (O o] To TU T4 - [T 175
11O o] 1] o Yo = o) USSR 176
WXCOIMMIANG ...ttt et ettt e et e e e e e e e e e e e ae o e e e bbb bbb bbbt et ebbe e e b e e e eeeeeeees 182
WXCOMMEANAEVENT ...t e e et bbbttt bbb e e eeeeeee s 184
WXCOMMEANAPTOCESSON ...ttt ettt ettt e e e e e e e e e e e e e e bbbttt e e ee b e eeeeeeeees 189
17O o] T 111 o o 1 USSP 193
WXCONTIGBASE ...ttt et e e e e e e et et 196
11O o] T 1= Tox 1o o SRR 210
WXCONIEXIMENUEVENT ... et eeeenn s 214
1T (O 0 g1 = a1 o TR 215
WXCONEXTHEIDBULIION ...t 216
WXCONIOL ...ttt ettt e et e e e e e e e e e e oo s o e bbbttt bbbt e e beeeeeeeeeeas 218
WXCONTTOIWIERITEMIS ... ee e ee e 219
SetSelection (p. ?2?2)WXCouNtiNGOULPULSIIEAMvueiiii i e e aa e 226
11O g o= 1 15T =T 1o o USSR 227
WXCTIHICAISECHONLOCKET ...t e e e e e e e eeaeeaneanns 228
1O 6o 0 | TSP UPPPT 229
1 (O U £]o | ST SPPTPTRUPPPTT 230
1T (LU (o131 D= 1= 1@ o= R 235
WXDAEAFOIMAL. ... et 237
(B L= 1= 1] o1 [65] £ (Y= 1 o TP 239
1T T =T o] = o] R 242
B =10 o] T=Tod (@0 4] o To 1] (= R 246
WXDAtaODJECtSIMPIE ...t 247
WXDAtAOULPULSTIIEAM ... e e s 248
WXDAEEEVENT ... ettt e e e e 251
(B T 1 =] o] (T 4 o SRR 251
WXDAEESPAN ...eeviiiii e et 255
1T T = I o = USSR 260
WXDate TImeHONAAYAULNOKILY........ccoi i e e e e 287
WXDAtETIMEWOITKDAYSevviiiii it e e e e et e e e e et e e e e e e e e et e ee e et e e s e e e e e eeeaesnnnnnes 287
WXDID. .ot e oo bbb e e e eee e 287
1T @] | D= =1 1 SRR 320
1T o1 o] 1 = PSR 320
1T 1@]| o T SRR 321
117254 o1 o] 1o | PR 322
WXDBDCONNECHINT ... e bbb e e e e ee e 323

CONTENTS

WXDBIOAXDES ...ttt e e e e e e e e e e e e e e bbbt eeeeeea e 328
17 o o USSP 329
1T o =][SRR 329
WX DD T ADIEINT . e ee e 367
1T 1€ ¢ Te [0 1 o] {1 SRR 367
WXDDGHATADIEBASE ... 369
WXDIC ..ot e et et e e e e e e e e e e e e a s 372
1T L O 1o o 1T SR 391
LT T o | PR 392
WXDDECONNECLION ...ttt e e e e e e e e ettt e e e e e e e eeeaennnnnnns 393
WXDDESEIVET ...ttt ettt e ettt e e ettt e e et et e e e e nn e e e ann s 397
WXDEDUGCONTEXL ...ttt e e e e e e e e e e et eeeeeeeee s 398
WXDEBUGSIIEaMBUT ... e 403
WXDEDUGREPOIT ...ttt 404
WXDEDUGREPOICOMPIESS ...vvuuiiiieeeeeie ittt et e e e e e e ettt e e e e e e e e et e aeeae e e s e eaeeeeesesnnnnnns 408
WXDEDUGREPOIMPIEVIEWvviiii it e e e e e e e et e e et e s e e e e e eeeaesrannnns 409
WXDEDUGREPOIMPIEVIEWSEA.t e e e e e e e e e e e e e e aeaaneanes 409
WXDEDUGREPOITUPIOAD ...ttt 410
wXDelegateReNAErerNALIVEuuuiiiiiiii e 411
WXDIAIOG ..ottt e e e 412
wxDialog::EndModal (p. ??), wxDialog:GetReturnCode (p. ??), wxDialog::SetReturnCode (p.

PIWXDIBIUPEVENT. ...t 422
(VBT T= 11101 g - Vo 1= R 422
1T L USRI 426
1T T -1 o T R 429
(T T I = V7= ==Y U RURTR 432
1T 1] o] - 2R 433
1T || I Y= o = SRR 436
WXDOCCRIHARTAME ...t eeeeeee e 439
WXDOCMEANAGET ...t e et e e e et e et e et e e et e et e e e e e e e e een 441
WXDOCMDICRIIAFTAME ...t e e e 449
WXDOCMDIPArENtFIAMEcooviiiiiiiiiiii e 451
WXDOCPAIENTFTAIME. ... ittt e e e e e et e e e eann s 452
1T Lo Tl =T 1 4]] - L= R 454
WXDOCUMEBNT ... ettt e ettt e e ettt e e e e et e e e e e an e e e e ennn s 459
1T =T g = Vo = TSP 466
WXDIOPFIIESEVENT ...t ee e 470
(D] fo] o 1STo 18] {od RS PPPT 472
2D o] ol =T o 1< PP UPPT PPN 475
1TV T a1 o IR o = o R 478
WXDYNaMICLIDraryDELalSiiii e e 481

CONTENTS

(V= g ToTo o [Ta o [@XoT g V7= q (=T R 482
WXETASEEVENT ... e ettt e e e e e e e e anan s 486
WWXEVENT .. ettt et eeann s 487
WXEVEHANAIET ...t e e e eeeee s 490
WX <.t e ettt e e e e e e e e e e eeeta e e e e e e e e e eeeannanaanns 499
AT 1 =Y [T o0 18] (=T Vo R 504
AV 1LY @ UL o101] (== Ty o U 505
WX B ST AM ..ottt e e e e et bbbt eeeeeea e 506
1T L USSP 506
WXFIECONFIG .ottt e e e e e 513
WXFIEDAtAODJECT ... 514
WXFIEDIAIOQ. . ..o et 515
1T LT o o I I T o = R 519
WXFTIEHISTOIY ...t e e ee e 520
(VLT LT o TU L 53 £ =Yg R 523
WXFTIENBIME ..ottt e et e e e e e e e e e oo oottt bbbt e e beeeeeeeeeeas 524
1T [T @ U 1 01U £ =T o S 541
1T SIS = T o U URTRT 542
WXFTIESYSTEM ...ttt e e e e et e et 542
WXFIESYStEMHANUIET ... e 545
2 1= Y o= OO PP TP PP PP 547
(V0= g g o1 1] 1=y o R 551
WXFIIEIOULPUESTIEAIM ...ttt e e et e e eeeee s 552
WXFINADIAIOGEVENT ... e e e e e e et e e et e e e e e e e eeeaesrannnns 553
WXFINAREPIACEDALAceveviiiii it e e e e e e et e e et e e e e e e e eeeaesrannnes 554
AT Te R =T o] =TT =Y - oo SR 556
1T 1= (] o 5] 4= SRR 557
WXFOCUSEVENL. ... e e et e ettt e e et e e e et n e e e annn s 560
1 o] TS OTTS PP PTRUPPPTT 561
WXFONMEDALA. ... et e et e et e et e e e e annas 571
1T 0T 11 D= 1T SR 574
WXFONTENUMEIATON ... et e e e e e e e e annn s 575
WX ONELIST. ..ottt et e e e e e e e e et o e bbb bbbttt e e b e e e e e e e ee s 577
(e 1Y F=T o] o 1= G SO 578
1 = 10 1= PP PRPPPPPPPPTPTR 582
LTS = PR 593
112 S I SO 595
1T (T 18 o U TPUPTPTT 601
1T =] 011 1o o 1 USSR 605
WXGBSIZEITIEIM ...ttt e et e e bbbttt e e e eeeeeee s 607

CONTENTS

12 (C = 1] o - Lo TSP 608
1121][1T PR 609
1V (1= 0 1= o] B 1 USSP 610
WXGENEINCVAIAALON ...t e e e ee e 614
(T O 01V 1 ST PSP UPPPTT 616
WXGLCONIEXE ...ttt e e e e e et et e e e ee e e e e e e e e e eeeannnnnaeas 619
12T o PP PP OPPOPPPPPPPPPP 621
WXGHIACRIALLE <.ttt e e e e e oo e e et e e bbbt bbbt en e eeeeeeeee s 654
WXGTIABAGSIZET ...ttt e e e e e ettt e e e 657
110 1o [OF=1 1121 To] | =l 1 o] USSR 660
110 o [0F=1 1[04 o (o =] o 1 (o] SRR 660
110 o [=1 | = 11 o TSR 661
WXGHIACEIFIOAIEITON. ... 663
WXGHACEINUMBDEIEITONt e e e e e e e e aeeeeeaens 664
WXGIACEITEXIEAILON ...t e e 665
WXGAEAITOrCreate@adEVENTuiiiiiiiiiiiie et 666
WXGTIAEVENT. ...ttt e e et bbbttt e e e eeeeeeeas 667
WXGTARANGESEIECIEVENL.uiiiiiiiiiiieie et 671
WXGHASIZEEVENT ...ttt e e e e e e e e ettt e e e e e e e e e e eeeaenennnnns 673
V0] o [OF=1 11 2o] | 2 {=T s o [=T o= oo SRR 674
WXGHACEHFIOAIRENUEIEN et e e e e e e e e e aenanennns 675
WXGIACEIINUMBDEIRENUEIET ... ittt ee e 676
1] o [OF=] 1| ST=T o T =T = U URTR 677
(V] o [OF = | RS (g To 2 =T g o (=T (=T SR 678
WXGHIATADIEBASE ... e e e e 678
WXGIIUSIZEN ..ottt e et e e e e e oo e et oo e bbbttt bbb e e b e e eeeeeeeas 682
WXHBSNIMAP ...ttt e et e e e e e e et e e 684
WXHBSNSEL. ..ottt e e e e e e e et e e et e e e e e e e e e eeannanaanns 688
1T o T T 1= 1] SRR 692
WXHEIDCONTIOIET ...ttt e e ee e 694
WXHEIPCoNtrollerHEIPPIOVIAETcoeieeeeeee e e e e e e 700
WXHEIDEVENT ...ttt e e e e e e et e e eee e 701
1T L= 0 o {01V o = R 702
WXHEMICEIL. ...t e ettt eeeeeeeee s 704
WXHEMICOIOUICEIL. ... eeeeeee e 709
WXHEMICONTAINEICEIL ... e e e e e e e e eeaeeenenens 710
WXHEMIDCRENAEIET ...t e e e e e e e et e ettt e e e e e e e e eeeaenannnnns 714
WXHEMIEASYPIINTING ...t e e ee e 717
1T 0 1= SRR 720
WXHEMIHEIPCONTIOHET ... e e e e e e e e e e e ee e araaaeas 721

vi

CONTENTS

WXHEMIHEIPDALA ...t e e e e et e e e e e e e e e e e eeeaearaannns 726
WXHEMIHEIPDIAIOG 727
WXHEMIHEIPFIAME. ... e 729
1V a1 =1 1AV T To o SR 730
WXHEMIMOAAIHEID ... 734
WXHEMILINKINTO....c e e 735
WXHEMILISTBOX ..ttt et e bbbttt eeeeeeeeeas 736
WXHEMIPAISET ...ttt e e e e e e et bbbt bbb b e e eeeee e s 738
WXHEMIPTINTOUL ...t e e e e e e e e e e e et e e e e e e e e e eeeaennnnnnns 743
WXHEMITAG oot e et e e e e e e e e e 745
WXHEMITAGHANGIET ... e 748
WXHEMITAGSMOAUIE ... e 750
1T a1 TAT Ao Fo = (O | U 750
WXHEMIWINGOW ... e e e e e e e e ettt e e e e e e e e eeeaennnnnnns 751
WXHEMIVWINPAISEE ...t bbbttt eeeeeeeeeas 760
WXHEMIWINTAGHANAIETeeii i e e e e e e ee e araaaees 766
WXHT TP oo e e e ettt e et e e e e ettt e e s e a e e e e e e e e eeennnnnnaeas 766
1T AV AS Yol fo] 1= To 1Y o To [1 SRR 768

Set the number of rows and columns the window contains. The derived class must provide
the heights for all rows and the widths for all columns with indices up to the respective values
given here in its OnGetRowHeight() (p. ??) and OnGetColumnWidth() (p.

2 2)IMPIEMENTAIONS.WXICON ...ttt e e e e e e e e e e e et e e e eaeaaaaenes 778
1T] =0T o | 1= SRR 785
WXICONLOCALION ...ttt e et e et e e e e e bbbttt e b e e eeeeeee s 786
Vo] 14T oY= o | USRS 787
WXIAIBEVENT ...ttt e e e e e oo e e bbbt bbb e e b e e eeeeeeeas 788
WXIMBGE ... e 790
1T =T =] o F= U o 1= SR 814
WXIMAGELIST ...ttt et e e e e e e e e e e e et e s 818
WXINAIVIAUAILAYOULCONSTIAINTutiiiiiiieiiiiei ettt 823
WXINIEDIAIOGEVENT. ...t e e e ee e 825
WXINPUESTIEAIM ... e e e e e e e e e e e e e e e e e nnnnaees 826
WXIPAAUIESS ...ttt e e e e e e e e e e e e oo e bbb bbb bbbt e et et eeeeeee s 829
WXIPVABUUIESS ...ttt e ettt e e e e e e e e e e eeetetataa e e e e aeeeeeeannnnnnnns 831
1T [0} 4o R 832
WXJOYSHICKEVENT. ...ttt e e e e e e e e et e e e eeee s 838
1S Y V= | PP 841
WXLAYOULAIGOTTNIM ... e 846
WXL AYOULCONSIIAINTS ...ttt ettt e e e e e e e e e e e e et eeeeeeeeees 849
1T = USSR 851
1T 13 o T T | TSR 858

Vi

CONTENTS

WXLISEBOX. .. ettt ettt ettt ettt e et e e e e e e e e e e oo oo bbb bbbt e e e e e e e eeas 858
1T 13 4 1 USSR 864
1T LS € V7= o | USSR 884
LS 1) (=] o DO UPPPPPPPPPPPPP 887
1T LS €1 =T 0V 1 SRR 891
WXLISEVIBW ..ottt e e e e e e e e e e e e o e bbb bbbttt e e e e e e eeeee s 893
WXLOCAIE ...ttt ettt e et e e e e e et e et e e et bbbttt eeeeeeeeeas 895
172 o T PSSP 903
WXLOGCRN@IN ...ttt e e e e e 909
WXLOGGUI .ttt eee ettt ettt e et e e e e e e e e e e e e e e 911
WXLOGNUIL ... e e e e e e et e et e e e e eeee s 911
WXLOGPASSTRIOUGN ... 913
1T (o0 1S3 [=1 o R 913
WXLOGSIIEAIM ... e annnaees 914
1T o T 1= {1 SR 914
1T (o o VAV o o 1 S 915
172 T | o] o T PSP 916
WWXIMIBSK . .. et ettt ettt e oo o2 et ettt ettt e e e e e e e e e ee et n e e e e e e e e eeeaennnnanns 920
WXMBXIMIZEEVENT ...ttt e e e e e e e e ettt e e e e e e e e eeeaennnnnnns 922
WXIMBICONV ... ettt ettt e e ettt e e ettt e e e e e e e e e e annn s 923
WXIMBECONVIIIE ...t e e e e e e e ettt e e e e e e e e e e eeeaenanennns 925
WXIMBCONVUTET ...ttt e e et ettt et e e e e e e e eeennnnnnaees 926
WXMBCONVUTS ...ttt et ettt e et e e e e e e e e e e e ae e aa e s aa e ee st eeteestenteeeseeeeeeeeeees 927
WXMBECONVUTELG ...ttt ettt e e ettt e ettt e e e e e e e eeeannnnnaeas 928
WXMBECONVUTESZ ...ttt e et et ettt e e e e e e e eeeannnnnaens 928
WXMDICRITAFTAME. ...t e e eee e 929
WXMDICHENTWINGOW ...ttt e e e e e e e e e e ettt e e e e e e e e eeeannnnnnnns 932
WXMDIPArENTFEIAME ... e ettt e e e e e et e e e ennn s 934
1T =0 =4 1 g SRR 941
Obtains the current position in time within the movie in milliseconds.wxMediaEvent.......... 949
1T =T a L] Y7 = U =T R 950
WXMEMOIYDC ..o e e 952
(VY =T a L] Y S = T o | R 954
WXMEMOTYINPUESTIEAMiiiiiiiiiiiii e e e e e e e e et n e e e e aenn s 955
WXMEMOTYOULPULSTIIEAIM ...t ieiieiit ettt e e e e e e r e e e ab s e e e ab e e e e e rennes 956
WWXIMIEINU <.ttt oot e e ettt e ettt e e et e abe s e e e et e e e e e en e e e e ennn s 957
WXIMBNUBAT ... e ettt e et e et e e e et e e e annn s 971
WXMENUEVENT ... e ettt e e e e e e e e annn s 979
WXIMBNUITEIM. ... et e ettt e e ettt e e ettt e e e e e an e e e e annnns 981
T Y =TS Vo [=] 1= (o o S 986

viii

CONTENTS

WXIMEBLATIIE .. e bbb e e 988
WXIMELATIEDIC ...ttt e e e e e e et e ee ettt e e e e e e e e e eeeaenannnnns 989
WXMIMETYPESIMABNAGET ...ttt ettt e e e e e e e e e e e e e e eeeeeeeeees 990
WXIMINIFTAIME. ..ottt et e e e e e e e e e e o e et bbbt bbb e e e b e e e eeeeeee s 993
1T (] I L USRI 996
WXIMIOTUIE ...ttt et et e e e oo e e e oottt e bbb e e e b e e e eeeeeeeas 997
WXxMouseCaptureChangedEVENtovuiiiiiie e e e e e e e e 998
WXIMOUSEEVENT. ...ttt e e e e et e et e e e e e e e e eeennnnanaees 999
WXIMOVEEVENL. ... et e et e e et e e et e e e e ee e e e eenen s 1008
WXMUIEICNOICEDIAIOQ ...ttt r e e e e e e es 1008
VWUXIMIUEEX ettt ettt ettt e ettt e e et et e e et e e b e e e et e e e eeeanneeeeerenns 1010
WXIMIUEEXLOCKET ...ttt ettt e e e e e e e e e eeeantnta e aeeeeeeeeeeeennnns 1013
WXINODE ...ttt ettt et et e e e e e e oo et oo oo kbbb bbbt et et e et et e e e e eeaeeeeeaeaas 1014
1T L] =] o Yo To USSP 1015
WXNOLEDOOKEVENT ...t e e e e e e as 1024
WXNOLEDOOKSIZET ... 1025
WXNOTIFYEVENT ... s e e e e e e e e et a e e e e e eee et e aesata e aeeeaeeeeeeesrenes 1026
WXODJECE ...ttt et e e e e e e ettt e e e e e e s 1027
WXODJECIREIDALA ...ttt e s 1031
WXOULPUESTIEAIM ... e e e e e e e e e e e e e e e e e e eennenes 1032
WXPAGESEIUPDIAIOG ...ttt 1034
WXPageSetUPDIAlOgDALA. ... uuuueiieieeeieieeeee e e e e et e e e e e e e e e e e e aeaaaraaa 1035
WXPAINIDC ...ttt e et e nee ettt e te et e e e e eeeaeaaeeaeaeaan 1040
WXPAINTEVENT ...ttt e e e e e e e e e e aeeeeaas 1040
WXPAIBTEE ...ttt r e e e e e e e e e e aaaeaas 1042
Inequality operator. Two palettes are not equal if they contain pointers to different underlying

palette data. It does not compare each attribute.wxPanelc.oeeeeeiiiiiiiiiiiiie e, 1046
WXPASSWOIAENTIYDIAIOFuuiriiiiiiiiiiieiiiie et e e 1049
WXPAENLISE ... e e e e e e e e e e e as 1050
WX I ..ottt e e e e et et e e e neeeenrnne 1052
WXPENLIST ..ottt ettt e e oo e ettt et e e e e e e e e e e e ae s 1058
Used by wxWidgets to remove a pen from the list. wxPoint..............cccceeeeiiieiiiiiiiiiiiiin, 1060
WXPOSESCIIPIDC ...ttt et e a e e e e e as 1061
WXPTEVIEWCAINVAS ...ttt ettt e e e e e e e e e e e e e ookttt bttt e ettt et e e e e eeaeeaeeeeeas 1062
WXPTEVIEWCONTIOIBAT ...ttt e e e e e et e e et a e e e e e e eeeeeeenens 1063
WX PTEVIEWETAIME ...ttt bbbttt e et e et e e eeeeeaaeeeeas 1064
T E D | - SRR 1066
1T ad €110 =1 Lo o TSP 1072
T Rd A1 B =1 (oo B | - T USSP 1073
1 1101 ST PPPPPPPPPRPON 1078
WXPTINEEIDIC ...ttt e e e e oo oo e bbbttt et e et e e e eeaeeaeeaeaas 1080

CONTENTS

WXPTINEOUL ...ttt ettt e e e oo bbbt e bt et e e e e e e eeaeeeeeeeeas 1080
WXPTINEPTEVIEW ...ttt ettt e e e et ettt a e e e e e e e e eeeeetat e aeeeeaaeeeeeeennns 1084
WXPTOCESS ...ttt e ettt e e et e e e et et e e et e e e e e e e aenan s 1087
WXPTOCESSEVENL. ... ettt e e e e e eeeranes 1093
WXPTOGIESSDIAIOQ ...ttt 1093
T Rd (0] 1= g VAT a=T=T A =1 o o SR PPPURRN 1096
WXPTOLOCOL ...ttt e e e e e eeaeeeeeaeaas 1099
WXQUANLIZE ...ttt e e et e e e et e e e e e et e e e e e et e e e e et e e e e eeaa e e e eeranas 1101
WXQUETYLAYOULINTOEVENTuiiiiiiiiiiiiii et 1102
(TR Lo o] =0) RPN 1104
WXRAAIOBULLON. ...t ettt e e e e e e e e e eeeeetat e e e e e e eeeeeeeeennns 1111
WXREAIPOINT ...ttt e e e e e e e e e e e e et e e e e e e eeeaeeeeenens 1114
WXRECT ... ettt e e e 1114
WXRECUISIONGUAIT.ceeeee ettt ettt e e e e e e e e ettt e e e e e e e e e e eeeanbntnnn e aeeeaeaeeeeeernnns 1120
WXRECUISIONGUAIAFIAQGvveveii i i e e e e e e e e e et e e e e e e eeaenrane 1122
LR | = TSP 1122
1T LYo o o PSPPI 1126
WXREGIONITEIALION ...ttt e e e e e eeeeeeeeeeees 1130
WXREGKEY ... et 1133
WXRENAEIEINALIVE. ...ttt e e e e e e e et e e et e e e e e e e eeeeeeennnas 1137
WXRENAEIEIVEISION ...ttt e e e e e e e e e ee e aeeatae e e e e e e e eeeeeeeeneas 1141
WXSASNEVENT ... e 1142
WXSASNLAYOUTWINAOW ...ttt e e e e 1144
WXSASHWINAOW. ...t eeee e e e aeeae s 1147
(ol] o 1=To VAN 4 - Y USRS 1152
1T o] o 1= o | =« USSP 1154
WXSCOPEATIEAP ...ttt e e e reee e e e e eeeeees 1156
WXSCIEENDC ...ttt e et e e et e e et e e e e e ae s 1157
1T e o1 - T USSP 1158
1T Te o1 F=To AV T o [1 RPRTPRRTRR 1165
WXSCIOIEVENT ...ttt e e e oottt et e e e et e e eeeaaeeeeeeeas 1174
WXSCIOIMINEVENT ...ttt e e e e e e e e e eeeaetat e e e e e e e e eeeeeennnns 1177
LTS =T o] o] = RPN 1178
WXSEECUISOIEVENT ...ttt et e e e e e ettt et s r e e e e e e e eeeenranes 1180
ST A= PP TP SPOPPPPPPPPTPTPN 1182
WXSIMPIEHEIPPIOVIART ... 1183
WXSINGIECNOICEDIAIOGttt e e 1183
WXSINGIEINSTANCECNECKET ...ttt 1185
WXSIZE ..ttt ettt oottt oo oottt oo oo e e et e e et e tettta e e e e e e eetee e nnn e e e e eaeeeeeenrnaa 1188
WXSIZEEVEINT ...ttt e e et e oottt et e et e et e e e e aeeae s 1190

CONTENTS

S Tr=] S OO PPPPPPRPON 1191
WXSIZEIFIAGS. oot e e 1200
ST 4= 1 1= o USSP 1202
1S 1o (= OO P P PPPPPPPPPPRPON 1206
WXSOCKAGAIESS ...ttt e oot e e ettt ettt e e e e e e e e e eeeeeentan e aeeeeeeeeeeeernnns 1215
WXSOCKEIBASE ...t bbbttt e e e e e e e e e e eeas 1216
WXSOCKEICTENT ...t e e e e e e e e e e aeeaeeas 1234
WXSOCKEIEVENT ...ttt et e e e e e e e aeeae s 1236
WXSOCKETINDUESTIEAIM ...ttt e e e e e e 1237
WXSOCKETOULPULSTIIEAM ...ttt e e e e e ee s 1238
WXSOCKEESEIVET ...ttt e oo e e e ettt e e e e e e e e e eeeeeeata e e e e aeeeeeeeeennnns 1238
1773 o 18 o USSP 1240
WXSPINBULLON ...t e e e e e e e e e e e e e e e et e aas e e aeeeeeaeeeaeeranes 1242
WXSPINC L.ttt e e e et e e e e eeeee s 1246
WXSPINEVENT ...t e e e e e e et ee e e e e e e ee et e ae e e e e eeeaeeeaaerana 1249
WXSPIASNSCIEEN ... e e e e e e e e e e e e aaaraaa 1250
LTS o] (=T V=T o | USSP 1252
WXSPHEEEIVWINTOW ...t r e e e e e e eeeeeees 1254
WXSPHEEIRENUEIPAIAIMS ...ttt e e e e e e 1265
WXSTACKFTAMIE ...ttt e e e e e e e e et e e e et e e e e e e e eeeeeeeennas 1266
WXSTACKWIKET ...ttt e e e e e et e e et e e e e e e e eeeeeeennens 1268
WXSTANAAIAPAINS ... 1269
WXSTALICBITMAD ..ottt e et e et e et e e e et e e e e eeeeeees 1273
WXSTATICBOX .. eeiiiie ittt et e e e e e e e e oo e e oo kbbb bbbttt et et e e e e e e e e eeeae s 1276
WXSTALICBOXSIZET ...ttt bbbttt et et e e e eeaaeeeeeeaas 1277
WX STALICLINE ..ottt e e e e e e e oo et e bbbt e bttt e e e e e e e e e e e e eeaeeas 1278
1T = LA [= S USSP 1280
WXSTATUSBAN ...t e et e et et e e e e e e e e e e e e 1282
WXSTADIAIOGBUIIONSIZET ...ttt e e e e e 1288
WXSTOPWWALICK ...ttt r et e e e e eeeee s 1290
WXSTTEAMBASE ...ttt e e e e e ettt e e e e e een e 1291
WXSTIEAMBUTTET ... e et e e e e e e e eeeeeaeees 1293
WXSIreaMTOTEXIREAIFECLONueiiiiiiiiiiiiiee e 1298
1T 1 1 o USRS 1300
WX SENG B U O ...t e e e e e e e e e e e e e e e e e aeeeaeaeeeaeerane 1323
WXSTHNGBUITEILENGIN ... 1324
WXSTINGCHENIDALA. ...ttt eeee e e es 1325
WXSTIINGINPUESTIEAM ...ttt e e e e eeeeeaeeeeees 1326
WXSTIINGOULPUESTIEAIM ...ttt e e e e e e eeeeeeeeeeeas 1326
WX SEING T OKENIZEN ... iieiee ettt e e e e e e et ee e e e e e e e e et e aetat e aeeaeeaeeeaessnnes 1327

Xi

CONTENTS

WXSYSCOIOUrChaNQEAEVENTccci i e e e e e e e e s e e e e e eeaenranes 1330
WXSYSTEMOPLIONS ...ttt e e e e e e r et e e e e e e e et e e e eeeeeeas 1330
WX SYSTEMSETHINGS ..ottt e e e e e et et e e e e e e e eeaeeaeeeeees 1334
WXTASKBAITCON ...ttt et e e e e e e e aeeaeeas 1338
11O 2 1 =T o | PR 1341
WXTCPCONNECHION ...ttt e e bbbttt e et e et eeeeeaeeaeeaeeas 1342
WX T P GBIV ..ttt ettt e e e et e e et e e et e ae e e e e e e eeeenranes 1346
1T =T 10T o 1 USRS 1347
WXTEMPFIEOULPULSTIEAIMuiiiiiiiiiiiii ittt e e e e e 1350
{2 =X YA A1 TP TPPPPRTT 1351
1T QI = o USRI 1355
WXTEXIDATAODJECT ...ttt e e e e 1373
XA B o] ol 1= o = PSPPSR 1375
WXTEXIENIIYDIAIOQ ...ttt e e e e e e ae e e as 1376
WXTEXEFIIR ...ttt et e e e eeeeeaeeeeaas 1378
WXTEXEINPUESTIEAM ..eeviiieiiii ettt e et e e e e e et e e e e e et e e e eeeanneeeaeren s 1383
WX T EXEOULPUESTIIEAIMttt e et e e e e e e b e e e e e b e e e eean e e e aeren s 1387
1 QI =Y AV 11 To F= 1o) USRI 1389
1T I 1 == T USSP 1391
WXTRIEAAHEIDEN ...t e e e e e e s 1399
1T I 1= USSR 1400
WXTIMEIEVENT ...t e ettt et e et eeeeeaeeaaeeeeas 1403
WXTIMESPAN ...ttt ettt e e e e e e et e e e e e e ekttt et et e e e neteeeeaeeeee s 1404
1T T 0 = £V o =T RPN 1410
1T I 1AV To Lo PP 1411
1T I e e To | £=1 210 o o ISP 1412
LTI 0101 = T TP 1415
WXTOOIDOOK. ...ttt e e e e e e e ee e et e e e e e e e e eeeaeeeneas 1432
WXTOOITIP ettt ettt e e e e e e e e et e et r e e neeeaeeaeeee s 1432
WXTOPLEVEIWINAOW ...ttt e e e e e e e e eeeee s 1434
wxTopLevelWindow::IsFullScreen (p. ??)WXTreebooKccoeveeiiiiiiiiiiiiiiii e, 1439
WXTTEEDOOKEVENT ...ttt e e e e e e e e e e et e e e e e e e e eeeaeeenens 1444
WXTTEECI ..ottt et e e e e e e e e oottt et ettt e e eeeeeeeeaeaas 1446
Unselects the given item. This works in multiselection controls only.wxTreeEvent 1465
WXTTEEITEIMDALA. ... ce ettt e e e e et e et e e e e e e e e eeeenrenes 1468
WXUPBIEUIEVENT ...ttt e e e e e e e aeeeeees 1469
11720 = SRR 1474
11720 SRR 1480
1TV £z UL T =1 (o USSP 1482
AV A= Lo | OO PTPPPPPPPPPPPPRPON 1485

Xii

CONTENTS

WXVAIANTDALA. ...ttt e e e e e e e e ettt ettt et e e eeeaeeaeeaeaas 1493
RTTI overview (p. ??) wxDynamicCast (p. 22)WXVIEWccoverriiiiiiiiiiiiiiineneneeee 1494
Sets the view type name. Should only be called by the framework.wxVListBox............... 1498
WXV SCIOIEAWINTOWttt e e e e ee e e e e eeee s 1505
1724 T T [USSP 1510
WXWINAOWUPAAIELOCKETuvvie i e et ae e e e e e e e e e e e e as s e e e e e eeaenrnne 1569
WXWINAOWCTEALEEVENT ...ttt e e e e e e e e e e e as 1570
WXWINAOWDIC ...ttt e e e e oo bbbttt et e e e et eeeeeeaeaeeeeeas 1571
WXWINAOWDESIIOYEVENTouiiiiiiiiiiiiiiiiii e 1572
WXWINAOWDISBDIET ... et e e e e e e e e eeeeeneees 1572
WXWWIZAIT ..ottt ettt et oo e e et e e et ettt e e e e e e e e e eeeenane e aeeeeeaeeeeenennns 1573
WXWIZAIAEVENT ...ttt et et ettt e e e e e e e e e eeeeetnta e e e e e e eeeeeeeennens 1578
2= T o | = o = U 1579
WXWIZArdPAgESIMPIE ...ttt e e 1581
WXXIMIDOCUMENT ...ttt e e e e e e e e b bbbttt et e e e e e e eeeeeaeeeeeas 1583
WXXIMINOGE..... ettt e e oo bbbttt e et e e e eeeeeeaeeeaas 1585
1T 411 = o] o1 o Y PP 1590
WXXIMIRESOUICE ...ttt ettt e e e e e e e e e eeeeeeata e e e e e e eeeeeeeernnns 1592
WXXMIRESOUICEHANIET ... e e e e e e eeeeaees 1596
WXZIPCIASSFACIONY ...ttt e e e e e aeeee s 1600
WXZIPENTIY oottt et e e e e e e e e e oot e et e e ae e e 1601
(VAT o a] o101 5] £ =TTy o USSP 1607
WXZIPNOTITIEE ..o e e e et e e e e eeeeee s 1609
WXZIPOULPULSIIEAIM. ..o iee et s e e e e e e e e e ettt s e e e e e e e e e seeaesatann e aeeaeeeeeesenrnnes 1610
(VA T o] o TUL 53 £ =T PRSP 1612
(A 1o T@ U 1 018 £ 1 (=T 1o PP 1613
U T o) o F PP 1616
Alphabetical functions and MAaCrOS lISt...........ooviiiiiiiiiiiiii e 1616
RV /=TS o] o Iy 1 =T o LT PPPPPPRPON 1621
Application initialization and termiNAtioNcooooiiiiiiii i 1622
Process control fUNCHIONS ..o 1625
THread fUNCHIONSot e e e e e e et e eeeat e e e e e e e e eeeeeeenens 1629
L1 L3 {0 Vo 1o PR 1632
Network, user and OS fUNCHIONSouuuuiiii e e e e e 1638
SENG FUNCHIONS ..t e e e 1642
(DT 1o I {1 Tox 1 o] o =P 1647
MaAth FUNCLIONS ... e e ettt e e e e e e e eeaenneenn s 1656
GDI FUNCHIONS ..ttt ettt e e e e e e e e e e e e e e e e e e e ae e s aa s e 1656
PrINTEI SETHNGS ..oeeiieeie ettt e e e e e e e e e e e e e e 1659
(@117 oo =T o I 111 o1 1T 1R 1661

Xiii

CONTENTS

MiISCellaneouS FUNCLIONScoiiiie e 1663
BYLE OFOEI MACTOS ... i iiiii ittt e et et e e e e e e e e e e e e e e et 1675
RTTIFUNCHONS ...t e e e e e ettt e e e e e e e eeaenaeennn s 1676
(o To 18] o1 1T 1P 1683
TIME FUNCHIONS. ...ttt ettt e e e e e e e e e e e eee b e e e e eeeeaeeeeenens 1689
Debugging macros and fUNCLIONSuuuiiiiiiiiiiii e 1692
Environment access FUNCHONSuuiiiiiiiiiiiie e 1696
(070] 0151 1= 1 01K ST PP P TP PPPPPPPPPPPTPTIN 1697
Preprocessor symbols defined by WXWIAQELSoovviiiiiiiiiiii e 1697
Standard event Identifiers.o e 1702
() Yoo o =P 1704
(G V1YL To 11 =T P 1706
(= T o [E= Vo T= TN o 1=Y o1)= P 1707
IS (0 10d Q1 (T 1 LR 1715
ClaSSES DY CALBQOIY ... i i eeiieiii i e s ettt e e e e e e e e et et e e e e e aaeeaeaetaanaeaaeeeeeeaeeraras 1718
QLI] o Toa Y= 1= RS 1740
CRANGES SINCE 2.4.X...eeeiiiiieiie ettt e e e e e e e e e e e e e e e e e ne e s ne s 1740
Notes 0N USING the refEreNCe.........cccuuiiiii e 1745
Writing a wxWidgets application: a rough guidecooooiiiiiiiiiiiii e 1746
wxWidgets Hello World Sampleooooiiiiiiiiie s e e 1747
WXWIOAQEES SAMPIES. ...t e e e e e e es 1749
1A o oI 01V 7=T A 1= YRR 1760
Runtime class information (aka RTTI) OVEIVIEWuuuiiiieieeeieieieiiiiee e 1762
WXSTITING OVEIVIEW ...ttt ettt e e e et e e e e e e ettt e e e e e e eeeeeaeeeenes 1764
BUFfEr ClaSSES OVEIVIBW. . ..ot bbb 1769
Date and time ClaSSES OVEIVIEWcuuuuuuiiii e ettt e e e e e e e et a e e e e e e e eeenenenn s 1770
Unicode support in WXWIAQELSoevvveiiiiieie e e e e e s e e e e e e e e aaaa s 1774
WXMBCONV ClASSES OVEIVIEWiiieeieiieiiiiit s e e e e e ettt a e e e e e e e e eeeaetntne s e e e e e e eeeeeeennens 1777
INErNAtIONAIIZALION ...t 1780
Writing non-English appliCationS...........couuiuiiiiiiiii e e e aeaaaaes 1781
CONtAINET CIASSES OVEIVIEWcoiiiiiiiiiii ittt ettt e s e e 1784
File classes and fUNCLIONS OVEIVIEWuuuiiiiiiiiiiiiiii e 1785
WXSEIEAMS OVEIVIEW ...ttt et e e e e et e ettt e e e e e e e e e e e et ettt e e e e e e eeeeeeaetntnnnaeeeeaeeeeeeernna 1785
WXLOQ ClASSES OVEIVIEWvvviiii i i e e e eeie ettt e s e e e e e e e e e e ettt s e e e e e e e e eeeeeaetataaaaeeeeeaeeeeenrnnes 1787
DebUGGING OVEIVIEW.ottt e e e et 1790
WXCONFiIG ClaSSES OVEIVIEBW......uuiiii e e et e et e s e e e e e e e e e e et ae e e e e e e eeaeesnnes 1793
WX S Y STOIM ..ttt eea e e e 1793
Event handling OVEIVIEW........ccooiiiii e et e e e e e e e s 1795

Xiv

CONTENTS

CH+ EXCEPLIONS OVEIVIEW ...ttt e e e e ettt e e e e e e e e et e s e s e e e e e e e eeaae e e e eaeaeees 1806
WINAOW SEYIES ...ttt e ettt et e e e e e e e eeeeenes 1808
WiNAOW delEtioN OVEIVIEWoiiii et e e e e et a e e e e e eeeeeeenees 1808
WXDIHAIOG OVEIVIEW ...ttt e e e e e e et e s e e e e e e e e e e eeeae et e aeeeaeeeeeeensenes 1810
V4= Ul Fo o oY =T A 1= U 1811
CONSIAINTS OVEIVIEWcoiiiiiiiiiiie ettt et e s aa s 1813
SHZEE OVEIVIBW. ...ttt ettt ettt e et e e e e e e e e e e e e e e e e e e aneenaanaaaan 1816
XML-based reSOUrce SYStEM OVEIVIEWuuuunieieeeeeeeeeeeiieiiisaseaeeeeeresesurnnsaesaeeassensnnes 1823
SCIOIING OVEIVIBW ...ttt ettt e e e e e e e e e n e e e e e e e ne s e 1832
Bitmaps and ICONS OVEIVIEW ...ttt e e e e e e e e e 1834
DEVICE CONEXE OVEIVIEW eeeeee et e ettt e e e e e e e e e et ee et e e e e e e e eeeeeennnennn e es 1837
WXFONT OVEIVIEW ...ttt e e ettt e e e e e e e e e eeeeeeata e e e aeeeeeeeeeennnns 1838
FONt @NCOAING OVEIVIEW.....uuiiieeeeiee et e e e ee et e e e e e e e e et e e et e e s e e e e e e aeeaaaaan s 1839
WXSPHEEIWINAOW OVEIVIEW ...ttt ettt e e e e e s 1840
WXTTEECIIT OVEIVIBW ...ttt ettt et et e e e eeeeeeeeeeeas 1841
WXLISECETT OVEIVIBW ...ttt bbbttt eeeeeeeeeeeaeeeeas 1843
WXIMAGELIST OVEIVIEW ...t ettt s e e ettt e s e e e e e e e e e e e aes s e e eeeeeaeaenrnnes 1843
WXBOOKCHT OVEIVIEW ...ttt e e e e e ettt e e e e e e e eeeeeeenens 1843
CommON dIialOgS OVEIVIEWceeeiiiiiiiiiie ittt e e e e e e e e e e e e e e 1845
DOCUMENT/VIEW OVEIVIEW ...ttt e e e e e e e e e e ettt e e e e e e e e eeeennnennn e es 1849
e WXID_PREVIEW (5012)TOO0IDAr OVEIVIEWcceeeiieeiiiiiiiie e e eeee e e e e e e e eeeaanns 1855
WXGHA ClASSES OVEIVIEWeeie ittt e e e e e e e et et e e e e e e e eeeeeeeenens 1860
WXTIPPTOVIOEI OVEIVIEW.viiiiii e e e e e et et e s e e e e e e e e e e e e e e e e e e eeeaetata e e e aeeaeeeaensnnes 1861
PrINtING OVEIVIEWot e e e e e e e e e e e et e e e e e eeaeeeebernn s 1862
Printing under UNiX (GTK=) ..ot s s e e e e e e et s e e e e e e e eeanaann s 1863
IO Ly g T == o o T o LY== P 1864
Drag and drOP OVEIVIEWcceiieiiiiiitire ittt ettt et e et e e e e e e et e e e e e e e 1865
WXDataODJECE OVEIVIEWeiiiiii sttt e e e e e e e e e e e e et a e e e e eeeeeaensnnes 1866
Database ClaSSES OVEIVIEWcciiiiiiiiiiiii ittt e e e e e e eeenneen s 1868
Interprocess COMMUNICALION OVEIVIEWcciiiiiiiiireiiee ittt ne e naee e 1891
WXHTIML OVEIVIBW ...ttt oottt e ettt e e e e e e e e e eeeentntnnn e e e e eeeeeeeeeeennns 1894
ENVIrONMENt VariabIesoooiiiii e 1904
WXPYENON OVEIVIEW ...t e e e e e e e e e e e e et s e e e e e e aeeeaeeranes 1904
Syntax of the builtin regular expression lirary ... 1916
Archive formats SUCH @S ZiP......ooiiii e e e e e e e e e e e e e e aeeraees 1929
Backward COmMPatiDIlitycoiieii e 1937
g Fo Va0 g g0 =] = T U 1940
12 I G oo ¢ SO 1940
{2 IS YT AT A Lo] S PSPPI 1940

« Dialog captions. The blue, bold captions on dialogs - with optional help button - should

XV

CONTENTS

be catered for, either by hard-wiring the capability into all dialogs and panels, or by providing

a standard component and SIZEF.WXMAC POuuuiiiiieeeiiiiieiiiie e e 1948
WXPAIMOS POI ...t eer et e e e e aeeeeees 1949
{2 (@ IS 722N o 1o | o S TSP 1949
17211, [©7 I o o PSPPI 1949
1700, & o T ¢ P TTPP 1950
o 1= PP 1952

XVi

Copyright notice

Copyright (c) 1992-2006 Julian Smart, Robert Roebling, Vadim Zeitlin and other
members of the wxWidgets team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, Igpl.txt, gpl.txt, licence.txt,
licendoc.txt) for conditions of software and documentation use. Note that we use the old
name wxWindows in the license, pending recognition of the new name by OSI.

wxWindows Library License, Version 3.1

Copyright (c) 1998-2005 Julian Smart, Robert Roebling et al

Everyone is permitted to copy and distribute verbatim copies of this licence document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENCE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Library General Public Licence as published by the Free Software Foundation;
either version 2 of the Licence, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public Licence for
more details.

You should have received a copy of the GNU Library General Public Licence along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licenced under the
wxWindows Library Licence, applying either version 3.1 of the Licence, or (at your
option) any later version of the Licence as published by the copyright holders of version
3.1 of the Licence document.

2. The exception is that you may use, copy, link, modify and distribute under your own
terms, binary object code versions of works based on the Library.

3. If you copy code from files distributed under the terms of the GNU General Public
Licence or the GNU Library General Public Licence into a copy of this library, as this
licence permits, the exception does not apply to the code that you add in this way. To
avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice

XVii

COPYRIGHT

accordingly.

4. If you write modifications of your own for this library, it is your choice whether to permit
this exception to apply to your modifications. If you do not wish that, you must delete the
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by

Xviii

COPYRIGHT

someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

XiX

COPYRIGHT

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification™.)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d

XX

COPYRIGHT

requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.

XXi

COPYRIGHT

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a

XXii

COPYRIGHT

special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,
link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you

XXiii

COPYRIGHT

could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY

XXiV

COPYRIGHT

PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libr aries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's name and a brief id ea of what it
does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library Genera | Public
License as published by the Free Software Foundatio n; either
version 2 of the License, or (at your option) any | ater version.
This library is distributed in the hope that it wil | be useful,
but WITHOUT ANY WARRANTY:; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to t he Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your schoal, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright inte restin the

library "Frob' (a library for tweaking knobs) writt en by James

Random Hacker.

<signature of Ty Coon>, 1 April 1990

XXV

COPYRIGHT

Ty Coon, President of Vice

That's all there is to it!

XXVi

Introduction

What is wxWidgets?

wxWidgets is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports all desktop versions of
MS Windows, Unix with GTK+, Unix with Motif, and MacOS. An OS/2 port is in progress.

wxWidgets was originally developed at the Artificial Intelligence Applications Institute,

University of Edinburgh, for internal use, and was first made publicly available in 1992.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin, Vaclav Slavik and many others.

This manual contains a class reference and topic overviews. For a selection of
wxWidgets tutorials, please see the documentation page on the wxWidgets web site
(http:/mvww.wxwidgets.org).

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWidgets was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

1. low price;

2. source availability;

3. simplicity of programming;

4. support for a wide range of compilers.

Since wxWidgets was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWidgets has.

As open source software, wxWidgets has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWidgets a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those

CHAPTER 2

produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWidgets helps to insulate the programmer
from these winds of change. Although wxWidgets may not be suitable for every
application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming interface
than the native APIs. Programmers may find it worthwhile to use wxWidgets even if they
are developing on only one platform.

It is impossible to sum up the functionality of wxWidgets in a few paragraphs, but here
are some of the benefits:

e« Low cost (free, in fact!)

* You get the source.

e Available on a variety of popular platforms.

* Works with almost all popular C++ compilers and Python.
e Over 50 example programs.

e Over 1000 pages of printable and on-line documentation.

e Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

e Simple-to-use, object-oriented API.

* Flexible event system.

e Graphics calls include lines, rounded rectangles, splines, polylines, etc.

e Constraint-based and sizer-based layouts.

» Print/preview and document/view architectures.

* Toolbar, notebook, tree control, advanced list control classes.

» PostScript generation under Unix, normal MS Windows printing on the PC.
e MDI (Multiple Document Interface) support.

e Can be used to create DLLs under Windows, dynamic libraries on Unix.

« Common dialogs for file browsing, printing, colour selection, etc.

 Under MS Windows, support for creating metafiles and copying them to the
clipboard.

CHAPTER 2

An API for invoking help from applications.

Ready-to-use HTML window (supporting a subset of HTML).
Network support via a family of socket and protocol classes.
Support for platform independent image processing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

wxWidgets requirements

To make use of wxWidgets, you currently need one of the following setups.

(a) MS-Windows:

1.
2.

A 32-bit or 64-bit PC running MS Windows.

A Windows compiler: MS Visual C++ (embedded Visual C++ for wxWinCE port),
Borland C++, Watcom C++, Cygwin, MinGW, Metrowerks CodeWarrior, Digital
Mars C++. See install.txt for details about compiler version supported.

At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(b) Unix:

1.
2.

Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

Almost any Unix workstation, and one of: GTK+ 1.2, GTK+ 2.0, Motif 1.2 or
higher, Lesstif. If using the wxX11 port, no such widget set is required.

At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(c) Mac OS/Mac OS X:

1.
2.
3.

A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.
CodeWarrior 5.3, 6 or 7 for Classic Mac OS.

The Apple Developer Tools (eg. GNU C++), CodeWarrior 7 or above for Mac
oS X.

At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

Availability and location of wxWidgets

wxWidgets is available by anonymous FTP and World Wide Web from
ftp://biolpc22.york.ac.uk/pub (ftp://biolpc22.york.ac.uk/pub) and/or
http://mww.wxwidgets.org (http://www.wxwidgets.org).

CHAPTER 2

You can also buy a CD-ROM using the form on the Web site.

Acknowledgements

Thanks are due to AlAl for being willing to release the original version of wxWidgets into
the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWidgets, and
the many others who have been involved in the project over the years. Apologies for any
unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar, Alejandro
Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Mattia Barbon, Michael Bedward,
Kai Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Marco Cavallini, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Stefan Csomor,
Andrew Davison, Gilles Depeyrot, Neil Dudman, Robin Dunn, Hermann Dunkel, Jos van
Eijndhoven, Chris Elliott, David Elliott, Tom Felici, Thomas Fettig, Matthew Flatt,
Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher, Guillermo Rodriguez
Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale, Patrick Halke, Stefan
Hammes, Guillaume Helle, Harco de Hilster, Kevin Hock, Cord Hockemeyer, Markus
Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhnem Lavaux, Ron Lee, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindgvist, Thomas Runge, Tatu Mannisto,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Ryan Norton, Hernan
Otero, lan Perrigo, Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti,
Garrett Potts, Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach,
Arthur Seaton, Paul Shirley, Wlodzimierz 'ABX' Skiba, Vaclav Slavik, Julian Smart, Stein
Somers, Petr Smilauer, Neil Smith, Kari Systa, George Tasker, Arthur Tetzlaff-Deas,
Jonathan Tonberg, Jyrki Tuomi, Janos Vegh, Andrea Venturoli, David Webster, Otto
Wyss, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

'‘Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.l.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Multi-platform development with wxWidgets

This chapter describes the practical details of using wxWidgets. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is "wx/wx.h" ; this includes the most commonly used modules of
wxWidgets.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

/I For compilers that support precompilation, inclu des "wx.h".
#include <wx/wxprec.h>

#ifdef _ BORLANDC
#pragma hdrstop
#endif

#ifndef WX_PRECOMP

/I Include your minimal set of headers here, or wx. h
#include <wx/wx.h>

#endif

... how your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation which is largely automatic for compilers with necessary
support. Currently it is used for Visual C++ (including embedded Visual C++), Borland
C++, Open Watcom C++, Digital Mars C++ and newer versions of GCC. Some
compilers might need extra work from the application developer to set the build
environment up as necessary for the support.

Libraries

Most ports of wxWidgets can create either a static library or a shared library. wxWidgets
can also be built in multilib and monolithic variants. See the libraries list (p. 15) for more
information on these.

Configuration

When using project files and makefiles directly to build wxWidgets, options are
configurable in the file "wx/XXX/setup.h" where XXX is the required platform (such
as msw, motif, gtk, mac). Some settings are a matter of taste, some help with platform-
specific problems, and others can be set to minimize the size of the library. Please see

CHAPTER 3

the setup.h file and install.txt files for details on configuration.

When using the ‘configure’ script to configure wxWidgets (on Unix and other platforms
where configure is available), the corresponding setup.h files are generated
automatically along with suitable makefiles. When using the RPM packages for installing
wxWidgets on Linux, a correct setup.h is shipped in the package and this must not be
changed.

Makefiles

On Microsoft Windows, wxWidgets has a different set of makefiles for each compiler,
because each compiler's 'make’ tool is slightly different. Popular Windows compilers that
we cater for, and the corresponding makefile extensions, include: Microsoft Visual C++
(.vc), Borland C++ (.bcc), OpenWatcom C++ (.wat) and MinGW/Cygwin (.gcc). Makefiles
are provided for the wxWidgets library itself, samples, demos, and utilities.

On Linux, Mac and OS/2, you use the ‘configure' command to generate the necessary
makefiles. You should also use this method when building with MinGW/Cygwin on
Windows.

We also provide project files for some compilers, such as Microsoft VC++. However, we
recommend using makefiles to build the wxWidgets library itself, because makefiles can
be more powerful and less manual intervention is required.

On Windows using a compiler other than MinGW/Cygwin, you would build the
wxWidgets library from the build/msw directory which contains the relevant makefiles.

On Windows using MinGW/Cygwin, and on Unix, MacOS X and OS/2, you invoke
‘configure’ (found in the top-level of the wxWidgets source hierarchy), from within a
suitable empty directory for containing makefiles, object files and libraries.

For details on using makefiles, configure, and project files, please see docs/xxx/install.txt
in your distribution, where xxx is the platform of interest, such as msw, gtk, x11, mac.

Windows-specific files

wxWidgets application compilation under MS Windows requires at least one extra file: a
resource file.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

#include "wx/msw/wx.rc"

which includes essential internal wxWidgets definitions. The resource script may also
contain references to icons, cursors, etc., for example:

wxicon icon wx.ico

CHAPTER 3

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Allocating and deleting wxWidgets objects

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWidgets
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWidgets, make sure you delete the array explicitly before wxWidgets has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWidgets defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUintl6 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Byte order macros (p. 1675) section.

CHAPTER 3

Conditional compilation

One of the purposes of wxWidgets is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWidgets does not use templates (except for some advanced features that are
switched off by default) since it is a notoriously unportable feature.

RTTI

wxWidgets does not use C++ run-time type information since wxWidgets provides its
own run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK+ port use
an explicit conversion such as

wxWindow *my_window = (wxWindow*) NULL;

It is recommended to adhere to this in all code using wxWidgets as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile "wx.h" | using this precompiled header for compiling both wxWidgets itself
and any wxWidgets applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLS) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWidgets, everything needs to be recompiled since
everything includes "wx.h")

A related problem is that for compilers that don't have precompiled headers, including a

CHAPTER 3

lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx.h . This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the flename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

Utilities and libraries supplied with wxWidgets

In addition to the core wxWidgets library, a number of further libraries and utilities are
supplied with each distribution.

Some are under the 'contrib' hierarchy which mirrors the structure of the main
wxWidgets hierarchy. See also the 'utils' hierarchy. The first place to look for
documentation about these tools and libraries is under the wxWidgets 'docs' hierarchy,
for example docs/htmlhelp/fl.chm

For other user-contributed packages, please see the Contributions page on the
wxWidgets Web site (http://www.wxwidgets.org).

Helpview Helpview is a program for displaying wxWidgets HTML Help files. In many
cases, you may wish to use the wxWidgets HTML Help classes from within your
application, but this provides a handy stand-alone viewer. See wxHTML Notes
(p- 1894) for more details. You can find it in samples/html/helpview

Tex2RTF Supplied with wxWidgets is a utility called Tex2RTF for converting LaTeX
manuals HTML, MS HTML Help, wxHTML Help, RTF, and Windows Help RTF
formats. Tex2RTF is used for the wxWidgets manuals and can be used
independently by authors wishing to create on-line and printed manuals from the
same LaTeX source. Please see the separate documentation for Tex2RTF. You
can find it under utils/tex2rtf

Helpgen Helpgen takes C++ header files and generates a Tex2RTF-compatible
documentation file for each class it finds, using comments as appropriate. This
is a good way to start a reference for a set of classes. Helpgen can be found in
utils/HelpGen

Emulator Xnest-based display emulator for X11-based PDA applications. On some
systems, the Xnest window does not synchronise with the 'skin' window. This
program can be found in utils/emulator

Configuration Tool The wxWidgets Configuration Tool is a work in progress
intended to make it easier to configure wxWidgets features in detail. It exports
setup.h configurations and will eventually generate makefile config files.
Invoking compilers is also on the cards. Since configurations are handled one at
a time, the tool is of limited used until further development can be done. The
program can be found in utils/configtool

XRC resource system This is the sizer-aware resource system, and uses XML-
based resource specifications that can be generated by tools such as
wxDesigner (http://www.roebling.de). You can find this in src/xrc
include/wx/xrc , samples/xrc . For more information, see the XML-based
resource system overview (p. 1823).

Object Graphics Library OGL defines an API for applications that need to display
objects connected by lines. The objects can be moved around and interacted
with. You can find this in contrib/src/og| , contrib/include/wx/og| ,
and contrib/samples/og|

10

CHAPTER 4

Frame Layout library FL provides sophisticated pane dragging and docking
facilities. You can find this in contrib/src/fl , contrib/include/wx/fl ,
and contrib/samples/fl

Gizmos library Gizmos is a collection of useful widgets and other classes. Classes
include wxLEDNumberCtrl, wxEditableListBox, wxMultiCellCanvas. You can find
this in contrib/src/gizmos , contrib/include/wx/gizmos , and
contrib/samples/gizmos

Net library Net is a collection of very simple mail and web related classes. Currently
there is only wxEmail, which makes it easy to send email messages via MAPI on
Windows or sendmail on Unix. You can find this in contrib/src/net and
contrib/include/wx/net

Animate library Animate allows you to load animated GIFs and play them on a
window. The library can be extended to use other animation formats. You can
find this in contrib/src/animate , contrib/include/wx/animate , and
contrib/samples/animate

MMedia library Mmedia supports a variety of multimedia functionality. The status of
this library is currently unclear. You can find this in contrib/src/mmedia ,
contrib/include/wx/mmedia , and contrib/samples/mmedia

Styled Text Control library ~ STC is a wrapper around Scintilla, a syntax-highlighting
text editor. You can find this in contrib/src/stc ,
contrib/include/wx/stc , and contrib/samples/stc

Plot Plotis a simple curve plotting library. You can find this in contrib/src/plot ,
contrib/include/wx/plot , and contrib/samples/plot

11

Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWidgets programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWidgets, it is good practice to use ASSERT
statements liberally, that check for conditions that should or should not hold, and print
out appropriate error messages. These can be compiled out of a non-debugging version
of wxWidgets and your application. Using ASSERT is an example of 'defensive
programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWidgets resource files) on different

platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

Use wxWidgets resource files

Use .xrc (wxWidgets resource files) where possible, because they can be easily
changed independently of source code.

Strategies for debugging

12

CHAPTERS

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1683).

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWidgets debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWidgets will automatically check for memory leaks at the end of the
program if wxWidgets is suitably configured. Depending on the operating system and
compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1692) as part of a 'defensive programming'
strategy, scattering WxASSERTS liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

13

CHAPTERS

See the debugging overview (p. 1790) for further information.

14

Libraries list

Starting from version 2.5.0 wxWidgets can be built either as a single large library (this is
called the monolithic build) or as several smaller libraries (multilib build). Multilib build is

the default.

wxWidgets library is divided into libraries briefly described below. This diagram show

dependencies between them:

Y

—

wxBase

______ I
_l I - — === g:- wiCore |- —

wxMedia j= !

wxBase

—

= wxXRC

=

|

wix ODBC

- wxDbGrid

O

—_— e e e e e e - - - = === =T

Every wxWidgets application must link against this library. It contains mandatory classes
that any wxWidgets code depends on (e.g. wxString (p. 1300)) and portability classes
that abstract differences between platforms. wxBase can be used to develop console
mode applications, it does not require any GUI libraries or running X Window System on

Unix.
wxNet

Classes for network access:

* wxSocket classes (wxSocketClient (p. 1234), wxSocketServer (p. 1238) and

related classes)

* wxSocketOutputStream (p. 1238) and wxSocketinputStream (p. 1237)

» sockets-based IPC classes (wWxTCPServer (p. 397), wxTCPClient (p. 392) and

15

CHAPTER 6

wxTCPConnection (p. 393))
* WxURL (p. 1480)
« wxInternetFSHandler (a wxFileSystem handler (p. 1793)) Requires wxBase.
WxXML

This library contains simple classes for parsing XML documents. Note that their API will
change in the future and backward compatibility will not be preserved. Use of this library
in your applications is not recommended, it is only meant for use by XML resources
system. Future versions of wxWidgets will contain new XML handling classes with DOM-
like API. Requires wxBase.

wxCore

Basic GUI classes such as GDI classes or controls are in this library. All wxWidgets GUI
applications must link against this library, only console mode applications don't.

wxAdvanced
Advanced or rarely used GUI classes:

* wxBufferedDC

e wxCalendarCtrl (p. 127)

e wxGrid classes (p. 1860)

e wxJoystick (p. 832)

e wxLayoutAlgorithm (p. 846)

» wxSplashScreen (p. 1250)

e wxTaskBarlcon (p. 1338)

* wxSound (p. 1240)

« wxWizard (p. 1573)

e wxSashLayoutWindow (p. 1144)

e wxSashWindow (p. 1147)
Requires wxCore and wxBase.
wxMedia

Miscellaneous classes related to multimedia. Currently this library only contains
wxMediaCtrl (p. 941) but more classes will be added in the future.

Requires wxCore and wxBase.

16

CHAPTER 6

wxGL

This library contains wxGLCanvas (p. 616) class for integrating OpenGL library with
wxWidgets. Unlike all others, this library is not part of the monolithic library, it is always
built as separate library. Requires wxCore and wxBase.

wWXHTML

Simple HTML renderer and other HTML rendering classes (p. 1894) are contained in this
library, as well as wxHtmIHelpController (p. 721), wxBestHelpController (p. 694) and
wxHtmIListBox (p. 736). Requires wxCore and wxBase.

wxODBC
Database classes (p. 1868). Requires wxBase.
WXQA

This is the library containing extra classes for quality assurance. Currently it only
contains wxDebugReport (p. 404) and related classes, but more will be added to it in the
future.

Requires wxCore, wxBase and wxXML.
wxDbGrid

wxDbGridTableBase (p. 369) class which combines wxGrid (p. 621) and wxDbTable (p.
329). Requires wxODBC and wxAdvanced.

WXXRC

This library contains wxXmlIResource (p. 1592) class that provides access to XML
resource files in XRC format. Requires wxXML, wxCore, wxAdvanced and wxHTML.

17

Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 19).
Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 19), wxWindow::SetAcceleratorTable (p. 1548)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry ()

Default constructor.

wxAcceleratorEntry (int flags, int keyCode, int cmd)
Constructor.

Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1704) for a full list of keycodes.
cmd

The menu or control command identifier.

wxAcceleratorEntry::GetCommand

int GetCommand () const

Returns the command identifier for the accelerator table entry.

18

CHAPTER7

wxAcceleratorEntry::GetFlags

int GetFlags () const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode () const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)
Sets the accelerator entry parameters.
Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1704) for a full list of keycodes.
cmd

The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

Derived from
wxObiject (p. 1027)
Include files
<wx/accel.h>

Example

wxAcceleratorEntry entries[4];

19

CHAPTER7

entries[0].Set(wxACCEL_CTRL, (int)'N’, ID_N EW_WINDOW);
entries[1].Set(wxACCEL_CTRL, (int)'X', wxID _EXIT);
entries[2].Set(wxACCEL_SHIFT, (int) ‘A", ID_A BOUT);
entries[3].Set(WxACCEL_NORMAL, WXK_DELETE, wx ID_CUT);

wxAcceleratorTable accel(4, entries);
frame->SetAcceleratorTable(accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK+ at present).

See also

wxAcceleratorEntry (p. 18), wxWindow::SetAcceleratorTable (p. 1548)

wxAcceleratorTable::wxAcceleratorTable

wxAcceleratorTable ()
Default constructor.
wxAcceleratorTable (const wxAcceleratorTable& bitmap)
Copy constructor.
wxAcceleratorTable (int n, wxAcceleratorEntry entries[])
Creates from an array of wxAcceleratorEntry (p. 18) objects.
wxAcceleratorTable (const wxString& resource)
Loads the accelerator table from a Windows resource (Windows only).
Parameters
n

Number of accelerator entries.
entries

The array of entries.
resource

Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

20

CHAPTER7

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry
objects or references to 3-element arrays (flags, keyCode, cmd), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable ()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns true if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator = (const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters
accel

Accelerator table to assign.
Return value

Returns reference to this object.

wxAcceleratorTable::operator ==

bool operator == (const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters
accel

Accelerator table to compare with
Return value

Returns true if the accelerator tables were effectively equal, false otherwise.

wxAcceleratorTable::operator =

21

CHAPTER7

bool operator != (const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters
accel

Accelerator table to compare with
Return value

Returns true if the accelerator tables were unequal, false otherwise.

wxAccessible

The wxAccessible class allows wxWidgets applications, and wxWidgets itself, to return
extended information about user interface elements to client applications such as screen
readers. This is the main way in which wxWidgets implements accessibility features.

At present, only Microsoft Active Accessibility is supported by this class.

To use this class, derive from wxAccessible, implement appropriate functions, and
associate an object of the class with a window using wxWindow::SetAccessible (p.
1548).

All functions return an indication of success, failure, or not implemented using values of
the wxAccStatus enum type.

If you return wxACC_NOT_IMPLEMENTED from any function, the system will try to
implement the appropriate functionality. However this will not work with all functions.

Most functions work with an object id, which can be zero to refer to 'this' Ul element, or
greater than zero to refer to the nth child element. This allows you to specify elements
that don't have a corresponding wxWindow or wxAccessible; for example, the sash of a
splitter window.

For details on the semantics of functions and types, please refer to the Microsoft Active
Accessibility 1.2 documentation.

This class is compiled into wxWidgets only if the wxUSE_ACCESSIBILITY setup symbol
is set to 1.

Derived from
wxObiject (p. 1027)
Include files
<wx/access.h>

Data structures

22

CHAPTER7

Functions return a wxAccStatus error code, which may be one of the following:

typedef enum

WXACC_FAIL, /I The function failed

WXACC_FALSE, /I The function returned false
WXACC_OK, /I The function complete d successfully
WXACC_NOT_IMPLEMENTED, // The function is not i mplemented
WXACC_NOT_SUPPORTED // The function is not s upported

} wxAccStatus

Directions of navigation are represented by the following:
typedef enum

WXNAVDIR_DOWN,
WXNAVDIR_FIRSTCHILD,
WXNAVDIR_LASTCHILD,
wWXNAVDIR_LEFT,
WXNAVDIR_NEXT,
WXNAVDIR_PREVIOUS,
WXNAVDIR_RIGHT,
WXNAVDIR_UP

} wxNavDir

The role of a user interface element is represented by the following type:

typedef enum {
wxROLE_NONE,
WXROLE_SYSTEM_ALERT,
WXROLE_SYSTEM_ANIMATION,
WXROLE_SYSTEM_APPLICATION,
WXROLE_SYSTEM_BORDER,
WXROLE_SYSTEM_BUTTONDROPDOWN,
WXROLE_SYSTEM_BUTTONDROPDOWNGRID,
WXROLE_SYSTEM_BUTTONMENU,
WXROLE_SYSTEM_CARET,
WXROLE_SYSTEM_CELL,
WXROLE_SYSTEM_CHARACTER,
WXROLE_SYSTEM_CHART,
WXROLE_SYSTEM_CHECKBUTTON,
WXROLE_SYSTEM_CLIENT,
WXROLE_SYSTEM_CLOCK,
WXROLE_SYSTEM_COLUMN,
WXROLE_SYSTEM_COLUMNHEADER,
WXROLE_SYSTEM_COMBOBOX,
WXROLE_SYSTEM_CURSOR,
WXROLE_SYSTEM_DIAGRAM,
WXROLE_SYSTEM_DIAL,
WXROLE_SYSTEM_DIALOG,
WXROLE_SYSTEM_DOCUMENT,
WXROLE_SYSTEM_DROPLIST,
WXROLE_SYSTEM_EQUATION,
WXROLE_SYSTEM_GRAPHIC,
WXROLE_SYSTEM_GRIP,
WXROLE_SYSTEM_GROUPING,
WXROLE_SYSTEM_HELPBALLOON,
WXROLE_SYSTEM_HOTKEYFIELD,

23

CHAPTER7

WXROLE_SYSTEM_INDICATOR,
WXROLE_SYSTEM_LINK,
WXROLE_SYSTEM_LIST,
WXROLE_SYSTEM_LISTITEM,
WXROLE_SYSTEM_MENUBAR,
WXROLE_SYSTEM_MENUITEM,
WXROLE_SYSTEM_MENUPOPUP,
WXROLE_SYSTEM_OUTLINE,
WXROLE_SYSTEM_OUTLINEITEM,
wWXROLE_SYSTEM_PAGETAB,
WXROLE_SYSTEM_PAGETABLIST,
WXROLE_SYSTEM_PANE,
WXROLE_SYSTEM_PROGRESSBAR,
wWXROLE_SYSTEM_PROPERTYPAGE,
WXROLE_SYSTEM_PUSHBUTTON,
WXROLE_SYSTEM_RADIOBUTTON,
WXROLE_SYSTEM_ROW,
WXROLE_SYSTEM_ROWHEADER,
WXROLE_SYSTEM_SCROLLBAR,
WXROLE_SYSTEM_SEPARATOR,
WXROLE_SYSTEM_SLIDER,
WXROLE_SYSTEM_SOUND,
WXROLE_SYSTEM_SPINBUTTON,
WXROLE_SYSTEM_STATICTEXT,
WXROLE_SYSTEM_STATUSBAR,
WXROLE_SYSTEM_TABLE,
WXROLE_SYSTEM_TEXT,
WXROLE_SYSTEM_TITLEBAR,
WXROLE_SYSTEM_TOOLBAR,
WXROLE_SYSTEM_TOOLTIP,
WXROLE_SYSTEM_WHITESPACE,
WXROLE_SYSTEM_WINDOW

} wxAccRole

Objects are represented by the following type:

typedef enum {
wxOBJID_WINDOW = 0x00000000,
wxOBJID_SYSMENU = OxFFFFFFFF,
wxOBJID_TITLEBAR = OxFFFFFFFE,
wxOBJID_MENU = OxFFFFFFFD,
wxOBJID_CLIENT = OxFFFFFFFC,
wxOBJID_VSCROLL = OxFFFFFFFB,
wxOBJID_HSCROLL = OxFFFFFFFA,
wxOBJID_SIZEGRIP = OxFFFFFFF9,
wxOBJID_CARET = OxFFFFFFFS8,
wxOBJID_CURSOR = OxFFFFFFF7,
wxOBJID_ALERT = OxFFFFFFF8,
wxOBJID_SOUND = OxFFFFFFF5

} wxAccObject

Selection actions are identified by this type:
typedef enum

WXACC_SEL_NONE =0,
WXACC_SEL_TAKEFOCUS =1,
WXACC_SEL_TAKESELECTION =2,
WXACC_SEL_EXTENDSELECTION = 4,

24

CHAPTER7

wxACC_SEL_ADDSELECTION =38,
WXACC_SEL_REMOVESELECTION = 16
} wxAccSelectionFlags

States are represented by the following:

#define wxACC_STATE_SYSTEM_ALERT HIGH 0x00000 001
#define wxACC_STATE_SYSTEM_ALERT_MEDIUM 0x00000 002
#define wxACC_STATE_SYSTEM_ALERT_LOW 0x00000 004

#define wxACC_STATE_SYSTEM_ANIMATED 0x00000 008
#define wxACC_STATE_SYSTEM_BUSY 0x00000 010
#define wxACC_STATE_SYSTEM_CHECKED 0x00000 020
#define wxACC_STATE_SYSTEM_COLLAPSED 0x00000 040
#define wxACC_STATE_SYSTEM_DEFAULT 0x00000 080
#define wxACC_STATE_SYSTEM_EXPANDED 0x00000 100
#define wxACC_STATE_SYSTEM_EXTSELECTABLE 0x00000 200
#define wxACC_STATE_SYSTEM_FLOATING 0x00000 400
#define wxACC_STATE_SYSTEM_FOCUSABLE 0x00000 800
#define wxACC_STATE_SYSTEM_FOCUSED 0x00001 000
#define wxACC_STATE_SYSTEM_HOTTRACKED 0x00002 000
#define wxACC_STATE_SYSTEM_INVISIBLE 0x00004 000
#define wxACC_STATE_SYSTEM_MARQUEED 0x00008 000
#define wxACC_STATE_SYSTEM_MIXED 0x00010 000

#define wxACC_STATE_SYSTEM_MULTISELECTABLE 0x00020 000
#define wxACC_STATE_SYSTEM_OFFSCREEN 0x00040 000

#define wxACC_STATE_SYSTEM_PRESSED 0x00080 000
#define wxACC_STATE_SYSTEM_PROTECTED 0x00100 000
#define wxACC_STATE_SYSTEM_READONLY 0x00200 000
#define wxACC_STATE_SYSTEM_SELECTABLE 0x00400 000
#define wxACC_STATE_SYSTEM_SELECTED 0x00800 000

#define wxACC_STATE_SYSTEM_SELFVOICING 0x01000 000
#define wxACC_STATE_SYSTEM_UNAVAILABLE 0x02000 000

Event identifiers that can be sent via wxAccessible::NotifyEvent (p. 29) are as follows:

#define wxACC_EVENT_SYSTEM_SOUND 0x000

#define wxACC_EVENT_SYSTEM_ALERT 0x000

#define wxACC_EVENT_SYSTEM_FOREGROUND 0x000
#define wxACC_EVENT_SYSTEM_MENUSTART 0x000
#define wxACC_EVENT_SYSTEM_MENUEND 0x000
#define wxACC_EVENT_SYSTEM_MENUPOPUPSTART ~ 0x000
#define wxACC_EVENT_SYSTEM_MENUPOPUPEND 0x000
#define wxACC_EVENT_SYSTEM_CAPTURESTART 0x000
#define wxACC_EVENT_SYSTEM_CAPTUREEND 0x000
#define wxACC_EVENT_SYSTEM_MOVESIZESTART ~ 0x000
#define wxACC_EVENT_SYSTEM_MOVESIZEEND 0x000
#define wxACC_EVENT_SYSTEM_CONTEXTHELPSTART 0x000 C
#define wxACC_EVENT_SYSTEM_CONTEXTHELPEND 0x000 D
#define wxACC_EVENT_SYSTEM_DRAGDROPSTART 0x000 E
#define wxACC_EVENT_SYSTEM_DRAGDROPEND 0x000

WP>OO~NOOITAWNE

T

#define wxACC_EVENT_SYSTEM_DIALOGSTART 0x001 0
#define wxACC_EVENT_SYSTEM_DIALOGEND 0x001 1
#define wxACC_EVENT_SYSTEM_SCROLLINGSTART 0x001 2
#define wxACC_EVENT_SYSTEM_SCROLLINGEND 0x001 3
#define wxACC_EVENT_SYSTEM_SWITCHSTART 0x001 4
#define wxACC_EVENT_SYSTEM_SWITCHEND 0x001 5
#define wxACC_EVENT_SYSTEM_MINIMIZESTART 0x001 6
#define wxACC_EVENT_SYSTEM_MINIMIZEEND 0x001 7
#define wxACC_EVENT_OBJECT_CREATE 0 x8000

25

CHAPTER7

#define wxACC_EVENT_OBJECT_DESTROY 0 x8001
#define wxACC_EVENT_OBJECT_SHOW 0 x8002
#define wxACC_EVENT_OBJECT_HIDE 0 x8003
#define wxACC_EVENT_OBJECT_REORDER 0 x8004
#define wxACC_EVENT_OBJECT_FOCUS 0 x8005
#define wxACC_EVENT_OBJECT_SELECTION 0 x8006
#define wxACC_EVENT_OBJECT_SELECTIONADD 0 x8007

#define wxACC_EVENT_OBJECT_SELECTIONREMOVE 0 x8008
#define wxACC_EVENT_OBJECT_SELECTIONWITHIN 0 x8009

#define wxACC_EVENT_OBJECT_STATECHANGE 0 Xx800A
#define wxACC_EVENT_OBJECT_LOCATIONCHANGE 0 x800B
#define wxACC_EVENT_OBJECT_NAMECHANGE 0 x800C
#define wxACC_EVENT_OBJECT_DESCRIPTIONCHANGE 0 x800D
#define wxACC_EVENT_OBJECT_VALUECHANGE 0 X800E
#define wxACC_EVENT_OBJECT_PARENTCHANGE 0 x800F
#define wxACC_EVENT_OBJECT_HELPCHANGE 0 x8010

#define wxACC_EVENT_OBJECT_DEFACTIONCHANGE 0 x8011
#define wxACC_EVENT_OBJECT_ACCELERATORCHANGE 0 x8012

wxAccessible::wxAccessible

wxAccessible (wxWindow* win = NULL)

Constructor, taking an optional window. The object can be associated with a window
later.

wxAccessible::~wxAccessible

~wxAccessible ()

Destructor.

wxAccessible::DoDefaultAction

virtual wxAccStatus DoDefaultAction (int childld)
Performs the default action for the object. childld is O (the action for this object) or

greater than 0 (the action for a child). Return wxACC_NOT_SUPPORTED if there is no
default action for this window (e.g. an edit control).

wxAccessible::GetChild

virtual wxAccStatus GetChild (int childld, wxAccessible** child)

Gets the specified child (starting from 1). If child is NULL and the return value is
wWxACC_OK, this means that the child is a simple element and not an accessible object.

wxAccessible::GetChildCount

virtual wxAccStatus GetChildCount (int* childCount)

26

CHAPTER7

Returns the number of children in childCount.

wxAccessible::GetDefaultAction

virtual wxAccStatus GetDefaultAction (int childld, wxString* actionName)

Gets the default action for this object (0) or a child (greater than 0). Return wxACC_OK
even if there is no action. actionName is the action, or the empty string if there is no
action. The retrieved string describes the action that is performed on an object, not what

the object does as a result. For example, a toolbar button that prints a document has a
default action of "Press" rather than "Prints the current document.”

wxAccessible::GetDescription

virtual wxAccStatus GetDescription (int childld, wxString* description)
Returns the description for this object or a child.
wxAccessible::GetFocus

virtual wxAccStatus GetFocus (int* childld, wxAccessible** child)

Gets the window with the keyboard focus. If childld is 0 and child is NULL, no object in
this subhierarchy has the focus. If this object has the focus, child should be ‘this'.

wxAccessible::GetHelpText

virtual wxAccStatus GetHelpText (int childld, wxString* helpText)

Returns help text for this object or a child, similar to tooltip text.
wxAccessible::GetKeyboardShortcut

virtual wxAccStatus GetKeyboardShortcut (int childld, wxString* shortcut)
Returns the keyboard shortcut for this object or child. Return e.g. ALT+K.
wxAccessible::GetLocation

virtual wxAccStatus GetlLocation (wxRect& rect, int elementld)

Returns the rectangle for this object (id is 0) or a child element (id is greater than 0).rect
is in screen coordinates.

wxAccessible::GetName

virtual wxAccStatus GetName(int childld, wxString* name)

Gets the name of the specified object.

27

CHAPTER7

wxAccessible::GetParent

virtual wxAccStatus GetParent (wxAccessible** parent)

Returns the parent of this object, or NULL.

wxAccessible::GetRole

virtual wxAccStatus GetRole (int childld, wxAccRole* role)

Returns a role constant describing this object. See wxAccessible (p. 22) for a list of
these roles.

wxAccessible::GetSelections

virtual wxAccStatus GetSelections (wxVariant* selections)
Gets a variant representing the selected children of this object.
Acceptable values are:

. a null variant (IsNull() returns TRUE)

. a list variant (GetType() == wxT("list"))

. an integer representing the selected child element, or 0O if this object is selected
(GetType() == wxT("long"))

e a'void*" pointer to a wxAccessible child object

wxAccessible::GetState

virtual wxAccStatus GetState (int childld, long* state)

Returns a state constant. See wxAccessible (p. 22) for a list of these states.
wxAccessible::GetValue

virtual wxAccStatus GetValue (int childld, wxString* strValue)

Returns a localized string representing the value for the object or child.
wxAccessible::GetWindow

wxWindow* GetWindow ()

Returns the window associated with this object.

wxAccessible::HitTest

virtual wxAccStatus HitTest (const wxPoint& pt, int* childld, wxAccessible**

28

CHAPTER7

childObject)

Returns a status value and object id to indicate whether the given point was on this or a
child object. Can return either a child object, or an integer representing the child
element, starting from 1.

ptis in screen coordinates.

wxAccessible::Navigate

virtual wxAccStatus Navigate (wxNavDir navDir, int fromld, int* told, wxAccessible**
toObject)

Navigates from fromld to told/toObject.

wxAccessible::NotifyEvent

virtual static void NotifyEvent (int eventType, wxWindow* window, wxAccObject
objectType, int objectType)

Allows the application to send an event when something changes in an accessible
object.

wxAccessible::Select

virtual wxAccStatus Select (int childld, wxAccSelectionFlags selectFlags)

Selects the object or child. See wxAccessible (p. 22) for a list of the selection actions.

wxAccessible::SetWindow

void SetWindow (wxWindow* window)

Sets the window associated with this object.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 487)
wxObject (p. 1027)

Include files
<wx/event.h>
Event table macros

To process an activate event, use these event handler macros to direct input to a

29

CHAPTER7

member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.
EVT_HIBERNATE(func) Process a hibernate event, supplying the

member function. This event applies to wxApp
only, and only on Windows SmartPhone and
PocketPC. It is generated when the system is
low on memory; the application should free up
as much memory as possible, and restore full
working state when it receives a
WXEVT_ACTIVATE or
WXEVT_ACTIVATE_APP event.

Remarks

A top-level window (a dialog or frame) receives an activate event when it is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivated resulting in all application frames being inactive. (Windows

only)

Please note that usually you should call event.Skip() (p. 490) in your handlers for these
events as not doing so can result in strange effects.

See also

Event handling overview (p. 1795), wxApp::IsActive (p. 39)

wxActivateEvent::wxActivateEvent

wxActivateEvent (WXTYPE eventType = 0, bool active = true, int id = 0)

Constructor.

wxActivateEvent::GetActive

bool GetActive () const

Returns true if the application or window is being activated, false otherwise.

wxActiveXContainer

wxActiveXContainer is a host for an activex control on Windows (and as such is a
platform-specific class). Note that the HWND that the class contains is the actual HWND
of the activex control so using dynamic events and connecting to wxEVT_SIZE, for

30

CHAPTER7

example, will recieve the actual size message sent to the control.
It is somewhat similar to the ATL class CAxWindow in operation.

The size of the activex control's content is generally gauranteed to be that of the client
size of the parent of this wxActiveXContainer.

You can also process activex events through wxEVT_ACTIVEX or the corresponding
message map macro EVT_ACTIVEX.

See also
wxActiveXEvent (p. 35)
Derived from
wxControl (p. 218)
Include files
<wx/msw/ole/activex.h>
Example

This is an example of how to use the Adobe Acrobat Reader ActiveX control to read
PDF files (requires Acrobat Reader 4 and up). Controls like this are typically found and
dumped from OLEVIEW.exe that is distributed with Microsoft Visual C++. This example
also demonstrates how to create a backend for wxMediaCtrl (p. 941).

[+ +++++++ -+
-+

I

/I wxPDFMediaBackend

I

1

http://partners.adobe.com/public/developer/en/acrob at/sdk/pdffiac/
IACOverview.pdf

[/+++++++++++++ R
++++++++++H++

#include "wx/mediactrl.h" /l wxMediaBackendCo mmonBase
#include "wx/mswi/ole/activex.h" // wxActiveXContain er

#include "wx/msw/ole/automtn.h" // wxAutomationObje ct

const IID DIID__ DPdf =

{OXCAB8A9781,0x280D,0x11CF,{0xA2,0x4D,0x44,0x45,0x53 ,0x54,0x00,0x00
h

const I[ID DIID__DPdfEvents =
{OxCA8A9782,0x280D,0x11CF,{0xA2,0x4D,0x44,0x45,0x53 ,0x54,0x00,0x00
h

const CLSID CLSID_Pdf =
{0xCA8A9780,0x280D,0x11CF,{0xA2,0x4D,0x44,0x45,0x53 ,0x54,0x00,0x00
h

class WXDLLIMPEXP_MEDIA wxPDFMediaBackend : public
wxMediaBackendCommonBase

{

public:
wxPDFMediaBackend() : m_pAX(NULL) {}
virtual ~wxPDFMediaBackend()

31

CHAPTER7

if(m_pAX)
m_pAX->DissociateHandle();
delete m_pAX;
virtual bool CreateControl(wxControl* ctrl, wxW indow* parent,

wxWindowID id,
const wxPoint& pos,
const wxSize& size,
long style,
const wxValida tor& validator,
const wxString & name)

IDispatch* pDispatch;
if(::CoCreatelnstance(CLSID_Pdf, NULL,

CLSCTX_INPROC_SER VER,
DIID__DPdf, (void **)&pDispatch)
1=0)
return false;
m_PDF.SetDispatchPtr(pDispatch); // wxAutom ationObject
will release itself
if (!ctrl->wxControl::Create(parent, id, p 0s, size,
(style & ~wxBORDER _ MASK) |

wxBORDER_NONE,
validator, name))
return false;

m_ctrl = wxStaticCast(ctrl, wxMediaCitrl);
m_pAX = new wxActiveXContainer(ctrl,
DIID__DPdf,
pDispatch);

wxPDFMediaBackend::ShowPlayerControls(WwxMEDIACTRLPL AYERCONTROLS_NO
NE);
return true;

}
}/irtual bool Play()

return true;
birtual bool Pause()

return true;
%irtual bool Stop()

return true;

}

virtual bool Load(const wxString& fileName)
if(m_PDF.CallMethod(wxT("LoadFile"), fileNa me).GetBool())

m_PDF.CallMethod(wxT("setCurrentPage"),
wxVariant((long)0));

NotifyMovieLoaded(); // initial refresh

wxSizeEvent event;

m_pAX->0nSize(event);

32

CHAPTER7

return true;

}

return false;
virtual bool Load(const wxURI& location)

return m_PDF.CallMethod(wxT("LoadFile"),
location.BuildUnescapedURI()).GetBool();

}
virtual bool Load(const wxURI& WXUNUSED(locatio
const wxURI& WXUNUSED(proxy))

return false;

}
virtual wxMediaState GetState()

return wxMEDIASTATE_STOPPED;

virtual bool SetPosition(wxLongLong where)
m_PDF.CallMethod(wxT ("setCurrentPage"),
wxVariant((long)where.GetValue()));
return true;
virtual wxLongLong GetPosition()
return O;
virtual wxLongLong GetDuration()

return O;

}

virtual void Move(int WXUNUSED(x), int WXUNUSED

int WXUNUSED(w), int WXUNUSED
{

wxSize GetVideoSize() const

return wxDefaultSize;

virtual double GetPlaybackRate()
return O;

}

virtual bool SetPlaybackRate(double)

return false;

virtual double GetVolume()
return O;

}

virtual bool SetVolume(double)

return false;

}

virtual bool ShowPlayerControls(wxMediaCtrIPlay

erControls

33

CHAPTER7

flags)
if(flags)

m_PDF.CallMethod(wxT("setShowToolbar"),
m_PDF.CallMethod(wxT("setShowScrollbars

else

m_PDF.CallMethod(wxT("setShowToolbar"),
m_PDF.CallMethod(wxT("setShowScrollbars

}

return true;

}

wxActiveXContainer* m_pAX;
wxAutomationObject m_PDF;

DECLARE_DYNAMIC_CLASS(wxPDFMediaBackend)

k

true);
", true);

false);
M), false);

IMPLEMENT_DYNAMIC_CLASS(wxPDFMediaBackend, wxMediaB ackend);

Put this in one of your existant source files and then create a wxMediaCtrl with//[this]

is the parent window, "myfile.pdf" is the PDF file
wxMediaCtrlI* mymediactrl = new wxMediaCtrl(this,
wxT("myfile.pdf"), wxID_ANY,

wxDefaul
wxSize(300,300),

0,
wxT ("wxPDFMediaBackend"));

wxActiveXContainer::wxActiveXContainer

wxActiveXContainer (wxWindow* parent, REFIID iid,

)

Creates this activex container.
parent
parent of this control. Must not be NULL.

iid

to open

tPosition,

IUnknown* pUnK,

COM IID of pUnk to query. Must be a valid interface to an activex control.

puUnk

Interface of activex control

wxActiveXEvent

An event class for handling activex events passed fromwxActiveXContainer (p. 31).

34

CHAPTER7

ActiveX events are basically a function call with the parameters passed through an array
of wxVariants along with a return value that is a wxVariant itself. What type the
parameters or return value are depends on the context (i.e. what the .idl specifies).

Note that unlike the third party wxActiveX function names are not supported.
Derived from

wxCommandEvent (p. 184)

Include files

<wx/msw/ole/activex.h>

Event table macros

EVT_ACTIVEX(func) Sent when the activex control hosted by
wxActiveXContainer (p. 31)recieves an activex
event.

wxActiveXEvent::ParamCount

size_t ParamCount () const

Obtains the number of parameters passed through the activex event.
wxActiveXEvent::ParamType

wxString ParamType (size_t idx) const

Obtains the param type of the param number idx specifies as a string.
wxActiveXEvent::ParamName

wxString ParamName (size_t idx) const

Obtains the param name of the param number idx specifies as a string.
wxActiveXEvent::.operator]]

wxVariant& operator[] (size_t idx)

Obtains the actual parameter value specified by idx.
wxActiveXEvent::GetDispatchid

DISPID GetDispatchld (int idx) const

Returns the dispatch id of this activex event. This IS the

35

CHAPTER7

numeric value from the .idl file specified by the
id().wxApp
The wxApp class represents the application itself. It is used to:
e set and get application-wide properties;
* implement the windowing system message or event loop;
* initiate application processing via wxApp::Onlinit (p. 42);

« allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWidgets how to create an instance of your application class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files
<wx/app.h>
See also

WXApp overview (p. 1760)

WXApPP::WXAppP

WXAPP ()

Constructor. Called implicitly with a definition of a wxApp object.
WXApPP::~WXApp

virtual ~wxApp ()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

WXApp::argc

int argc

36

CHAPTER7

Number of command line arguments (after environment-specific processing).

WXApp::argv
wxChar ** argv

Command line arguments (after environment-specific processing).

WXApp::CreateLogTarget

virtual wxLog* CreateLogTarget ()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 903)

wxApp::Dispatch
virtual void Dispatch ()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

while (app.Pending())
Dispatch();

See also

wxApp::Pending (p. 44)

wxApp::ExitMainLoop
virtual void ExitMainLoop ()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::FilterEvent

int FilterEvent (wxEvent& event)

This function is called before processing any event and allows the application to preempt
the processing of some events. If this method returns -1 the event is processed
normally, otherwise either true or false should be returned and the event processing
stops immediately considering that the event had been already processed (for the former
return value) or that it is not going to be processed at all (for the latter one).

37

CHAPTER7

wWxApp::GetAppName

wxString GetAppName () const
Returns the application name.
Remarks

wxWidgets sets this to a reasonable default before calling wxApp::Oninit (p. 42), but the
application can reset it at will.

wxApp::GetClassName

wxString GetClassName () const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 44)

wxApp::GetExitOnFrameDelete

bool GetExitOnFrameDelete () const

Returns true if the application will exit when the top-level window is deleted, false
otherwise.

See also

wxApp::SetExitOnFrameDelete (p. 45),
WxApp shutdown overview (p. 1761)

wxApp::Getinstance

static wxAppConsole * Getlnstance ()
Returns the one and only global application object. Usually wxTheApp is usead instead.
See also

wxApp::Setinstance (p. 45)

wxApp::GetTopWindow

virtual wxWindow * GetTopWindow () const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 45), this function will

38

CHAPTER7

find the first top-level window (frame or dialog) and return that.
See also

SetTopWindow (p. 45)

wxApp::GetUseBestVisual

bool GetUseBestVisual () const

Returns true if the application will use the best visual on systems that support different
visuals, false otherwise.

See also

SetUseBestVisual (p. 46)

wxApp::GetVendorName

wxString GetVendorName () const

Returns the application's vendor name.

wxApp::IsActive

bool IsActive () const

Returns true if the application is active, i.e. if one of its windows is currently in the
foreground. If this function returns false and you need to attract users attention to the
application, you may use wxTopLevelWindow::RequestUserAttention (p. 1436) to do it.

wxApp::IsMainLoopRunning

static bool IsMainLoopRunning ()

Returns true if the main event loop is currently running, i.e. if the application is inside
OnRun (p. 43).

This can be useful to test whether the events can be dispatched. For example, if this
function returns false , non-blocking sockets cannot be used because the events from
them would never be processed.

wxApp::MainLoop
virtual int MainLoop ()

Called by wxWidgets on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

39

CHAPTER7

wxApp::OnAssertFailure

void OnAssertFailure (const wxChar *file, int line, const wxChar *func, const
wxChar *cond, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
WXASSERT (p. 1692) macro evaluated to false . Itis only called in debug mode (when
__ WXDEBUG_is defined) as asserts are not left in the release code at all.

The base class version shows the default assert failure dialog box proposing to the user
to stop the program, continue or ignore all subsequent asserts.

Parameters
file

the name of the source file where the assert occurred
line

the line number in this file where the assert occurred
func

the name of the function where the assert occurred, may be empty if the compiler
doesn't support C99 _ FUNCTION___

cond
the condition of the failed assert in text form
msg

the message specified as argument to WxASSERT_MSG (p. 1693) or
WXFAIL_MSG (p. 1694), will be NULLIf just wxASSERT (p. 1692) or wxFAIL (p.
1694) was used

wxApp::OnCmdLineError

bool OnCmdLineError (wxCmdLineParser& parser)

Called when command line parsing fails (i.e. an incorrect command line option was
specified by the user). The default behaviour is to show the program usage text and
abort the program.

Return true to continue normal execution or false to return false from Onlnit (p. 42)
thus terminating the program.

See also

OnlInitCmdLine (p. 43)

wxApp::OnCmdLineHelp

40

CHAPTER7

bool OnCmdLineHelp (wxCmdLineParser& parser)

Called when the help option (--help) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return true to continue normal execution or false to return false from Onlnit (p. 42)
thus terminating the program.

See also

OnlInitCmdLine (p. 43)

wxApp::OnCmdLineParsed

bool OnCmdLineParsed (wxCmdLineParser& parser)

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return true to continue normal execution or false to return false from Onlnit (p. 42)
thus terminating the program.

See also

OnlInitCmdLine (p. 43)

WxApp::OnExceptioninMainLoop

virtual bool OnExceptioninMainLoop ()

This function is called if an unhandled exception occurs inside the main application event
loop. It can return true to ignore the exception and to continue running the loop or
false to exit the loop and terminate the program. In the latter case it can also use C++
throw keyword to rethrow the current exception.

The default behaviour of this function is the latter in all ports except under Windows
where a dialog is shown to the user which allows him to choose between the different
options. You may override this function in your class to do something more appropriate.

Finally note that if the exception is rethrown from here, it can be caught in
OnUnhandledException (p. 43).

WXApp::OnExit
virtual int OnExit ()

Override this member function for any processing which needs to be done as the
application is about to exit. OnExit is called after destroying all application windows and
controls, but before wxWidgets cleanup. Note that it is not called at all if Onlnit (p. 42)

41

CHAPTER7

failed.

The return value of this function is currently ignored, return the same value as returned
by the base class method if you override it.

wxApp::OnFatalException

void OnFatalException ()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1623) to enable this.

Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExceptions (p. 1623)

wxApp::Onlnit
bool Onlnit ()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 45). You may use OnExit (p. 42) to
clean up anything initialized here, provided that the function returns true .

Notice that if you want to to use the command line processing provided by wxWidgets
you have to call the base class version in the derived class Onlnit().

Return true to continue processing, false to exit the application immediately.

WxApp::OninitCmdLine

void OnInitCmdLine (wxCmdLineParser& parser)

Called from Onlnit (p. 42) and may be used to initialize the parser with the command line
options for this application. The base class versions adds support for a few standard
options only.

WXApp::OnRun

virtual int OnRun ()

This virtual function is where the execution of a program written in wxWidgets starts. The
default implementation just enters the main loop and starts handling the events until it
terminates, either because ExitMainLoop (p. 37) has been explicitly called or because
the last frame has been deleted and GetExitOnFrameDelete (p. 38) flag is true (this is
the default).

42

CHAPTER7

The return value of this function becomes the exit code of the program, so it should
return O in case of successful termination.

wxApp::OnUnhandledException

virtual void OnUnhandledException ()

This function is called when an unhandled C++ exception occurs inside OnRun() (p. 43)
(the exceptions which occur during the program startup and shutdown might not be
caught at all). Note that the exception type is lost by now, so if you want to really handle
the exception you should override OnRun() (p. 43) and put a try/catch clause around the
call to the base class version there.

wxApp::ProcessMessage

bool ProcessMessage (WXMSG *msgQ)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
true if the message was processed, false otherwise. If you use wxWidgets with another
class library with its own message loop, you should make sure that this function is called
to allow wxWidgets to receive messages. For example, to allow co-existence with the
Microsoft Foundation Classes, override the PreTranslateMessage function:

/I Provide wxWidgets message loop compatibility
BOOL CTheApp::PreTranslateMessage(MSG *msg)

if (wxTheApp && wxTheApp->ProcessMessage((WXMSW *)msQ))
return true;

else
return CWinApp::PreTranslateMessage(msg);

}

wxApp::Pending

virtual bool Pending ()

Returns true if unprocessed events are in the window system event queue.
See also

wxApp::Dispatch (p. 37)

wxApp::SendldleEvents

bool SendldleEvents (wxWindow* win, wxldleEvent& event)
Sends idle events to a window and its children.

Please note that this function is internal to wxWidgets and shouldn't be used by user
code.

Remarks

CHAPTER7

These functions poll the top-level windows, and their children, for idle event processing.
If true is returned, more Onldle processing is requested by one or more window.

See also

wxldleEvent (p. 788)

WXApp::SetAppName

void SetAppName (const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWidgets.

See also

wxApp::GetAppName (p. 38)

wxApp::SetClassName

void SetClassName (const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

wxApp::GetClassName (p. 38)

wxApp::SetExitOnFrameDelete

void SetExitOnFrameDelete (bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters
flag

If true (the default), the application will exit when the top-level frame is deleted. If
false, the application will continue to run.

See also

wxApp::GetExitOnFrameDelete (p. 38),
WxApp shutdown overview (p. 1761)

WXApp::Setinstance

static void Setlnstance (wxAppConsole* app)

Allows external code to modify global wxTheApp, but you should really know what you're

CHAPTER7

doing if you call it.
Parameters
app
Replacement for the global application object.
See also

wxApp::Getinstance (p. 38)

wxApp::SetTopWindow

void SetTopWindow (wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::Onlnit (p. 42) to let
wxWidgets know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWidgets just uses the first frame or dialog in its top-level window list, when it needs to
use the top window.

Parameters
window

The new top window.
See also

wxApp::GetTopWindow (p. 39), wxApp::Oninit (p. 42)

wxApp::SetVendorName

void SetVendorName (const wxString& name)

Sets the name of application’'s vendor. The name will be used in registry access. A
default name is set by wxWidgets.

See also

wxApp::GetVendorName (p. 39)

wxApp::SetUseBestVisual

void SetUseBestVisual (bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain applications are
supposed to run in TrueColour mode.

45

CHAPTER7

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters
flag

If true, the app will use the best visual.

wxApp::HandleEvent

virtual void HandleEvent (wxEvtHandler *handler, wxEventFunction func, wxEvent&
event) const

This function simply invokes the given method func of the specified event handler
handler with the event as parameter. It exists solely to allow to catch the C++ exceptions
which could be thrown by all event handlers in the application in one place: if you want to
do this, override this function in your wxApp-derived class and add try/catch clause(s) to
it.

wxApp::Yield

bool Yield (bool onlylfNeeded = false)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and on systems with
cooperative multitasking, such as Windows 3.1 other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.
1624) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 908).

Calling Yield() recursively is normally an error and an assert failure is raised in debug
build if such situation is detected. However if the onlylfNeeded parameter is true , the
method will just silently return false instead.

wxArchiveClassFactory

An abstract base class which serves as a common interface to archive class factories
such as wxZipClassFactory (p. 1600).

For each supported archive type (such as zip) there is a class factory derived from

46

CHAPTER7

wxArchiveClassFactory, which allows archive objects to be created in a generic way,
without knowing the particular type of archive being used.

Derived from
wxObiject (p. 1027)
Include files
<wx/archive.h>
See also

Archive formats such as zip (p. 1929)
Generic archive programming (p. 1933)
wxArchiveEntry (p. 48)
wxArchivelnputStream (p. 51)
wxArchiveOutputStream (p. 55)

wxArchiveClassFactory::Get/SetConv
wxMBConv& GetConv () const

void SetConv (wxMBConv& conv)

The wxMBConv (p. 923) object that the created streams will use when translating meta-
data. The initial default, set by the constructor, is wxConvLocal.

wxArchiveClassFactory::GetInternalName

wxString GetlnternalName (const wxString& name, wxPathFormat format =
WXPATH_NATIVE) const

Calls the static GetinternalName() function for the archive entry type, for example
wxZipEntry::GetinternalName() (p. 1605).

wxArchiveClassFactory::NewEntry

wxArchiveEntry* NewEntry () const

Create a new wxArchiveEntry (p. 48) object of the appropriate type.

wxArchiveClassFactory::NewStream

wxArchivelnputStream* NewStream (wxInputStream& stream) const
wxArchiveOutputStream* NewStream (wxOutputStreamé& stream) const

Create a new wxArchivelnputStream (p. 51)or wxArchiveOutputStream (p. 55) of the
appropriate type.

47

CHAPTER7

wxArchiveEntry

An abstract base class which serves as a common interface to archive entry classes
such as wxZipEntry (p. 1601). These hold the meta-data (filename, timestamp, etc.), for
entries in archive files such as zips and tars.

Derived from
wxObject (p. 1027)
Include files
<wx/archive.h>
See also

Archive formats such as zip (p. 1929)
Generic archive programming (p. 1933)
wxArchivelnputStream (p. 51)
wxArchiveOutputStream (p. 55)
wxArchiveNotifier (p. 55)

Non-seekable streams

This information applies only when reading archives from non-seekable streams. When
the stream is seekable GetNextEntry() (p. 52)returns a fully populated wxArchiveEntry
(p. 48). See 'Archives on non-seekable streams (p. 1935)' for more information.

For generic programming, when the worst case must be assumed, you can rely on all
the fields of wxArchiveEntry being fully populated when GetNextEntry() returns, with the
the following exceptions:

GetSize() (p. 50) Guaranteed to be available after the entry has been read to Eof() (p.
827), or CloseEntry() (p. 52) has been called

IsReadOnly() (p. 51) Guaranteed to be available after the end of the
archive has been reached, i.e. after GetNextEntry() returns NULL and
Eof() is true

wxArchiveEntry::Clone

wxArchiveEntry* Clone () const

Returns a copy of this entry object.

wxArchiveEntry::Get/SetDateTime

wxDateTime GetDateTime () const

void SetDateTime (const wxDateTime& dt)

48

CHAPTER7

The entry's timestamp.

wxArchiveEntry::GetInternalFormat

wxPathFormat GetlnternalFormat () const

Returns the path format used internally within the archive to store filenames.

wxArchiveEntry::GetinternalName

wxString GetlnternalName () const

Returns the entry's filename in the internal format used within the archive. The name can
include directory components, i.e. it can be a full path.

The names of directory entries are returned without any trailing path separator. This
gives a canonical name that can be used in comparisons.

See also

Looking up an archive entry by name (p. 1932)

wxArchiveEntry::Get/SetName
wxString GetName (wxPathFormat format = wxPATH_NATIVE) const
void SetName (const wxString& name, wxPathFormat format = wxPATH_NATIVE)

The entry's name, by default in the native format. The name can include directory
components, i.e. it can be a full path.

If this is a directory entry, (i.e. if IsDir() (p. 50)is true) then GetName() returns the name
with a trailing path separator.

Similarly, setting a name with a trailing path separator sets IsDir().

wxArchiveEntry::GetOffset

off t GetOffset () const

Returns a numeric value unique to the entry within the archive.

wxArchiveEntry::Get/SetSize

off t GetSize() const
void SetSize (off t size)

The size of the entry's data in bytes.

wxArchiveEntry::1sDir/SetlsDir

49

CHAPTER7

bool IsDir () const
void SetlsDir (bool isDir = true)
True if this is a directory entry.

Directory entries are entries with no data, which are used to store the meta-data of
directories. They also make it possible for completely empty directories to be stored.

The names of entries within an archive can be complete paths, and unarchivers typically
create whatever directories are necessary as they restore files, even if the archive
contains no explicit directory entries.

wxArchiveEntry::IsReadOnly/SetlIsReadOnly

bool IsReadOnly () const
void SetlsReadOnly (bool isReadOnly = true)

True if the entry is a read-only file.

wxArchiveEntry::Set/UnsetNotifier

void SetNotifier (wxArchiveNotifier& notifier)
void UnsetNotifier ()

Sets the notifier (p. 55) for this entry. Whenever the wxArchivelnputStream (p. 51)
updates this entry, it will then invoke the associated notifier's OnEntryUpdated (p.
55)method.

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams).

See also

Archives on non-seekable streams (p. 1935)
wxArchiveNotifier (p. 55)

wxArchivelnputStream

An abstract base class which serves as a common interface to archive input streams
such as wxZiplnputStream (p. 1607).

GetNextEntry() (p. 52) returns an wxArchiveEntry (p. 48) object containing the meta-data
for the next entry in the archive (and gives away ownership). Reading from the
wxArchivelnputStream then returns the entry's data. Eof() becomes true after an attempt
has been made to read past the end of the entry's data. When there are no more entries,
GetNextEntry() returns NULL and sets Eof().

Derived from

50

CHAPTER7

wxFilterInputStream (p. 551)
Include files
<wx/archive.h>
Data structures typedef wxArchiveEntry entry_type
See also

Archive formats such as zip (p. 1929)
wxArchiveEntry (p. 48)
wxArchiveOutputStream (p. 55)

wxArchivelnputStream::CloseEntry

bool CloseEntry ()

Closes the current entry. On a non-seekable stream reads to the end of the current entry
first.

wxArchivelnputStream::GetNextEntry

wxArchiveEntry* GetNextEntry ()

Closes the current entry if one is open, then reads the meta-data for the next entry and
returns it in a wxArchiveEntry (p. 48)object, giving away ownership. Reading this
wxArchivelnputStream then returns the entry's data.

wxArchivelnputStream::OpenEntry

bool OpenEntry (wxArchiveEntry& entry)

Closes the current entry if one is open, then opens the entry specified by the
wxArchiveEntry (p. 48) object.

entry must be from the same archive file that this wxArchivelnputStream is reading, and
it must be reading it from a seekable stream.

See also

Looking up an archive entry by name (p. 1932)

wxArchivelterator

An input iterator template class that can be used to transfer an archive's catalogue to a
container. It is only available if WwxXUSE_STL is set to 1 in setup.h, and the uses for it
outlined below require a compiler which supports member templates.

template <class Arc, class T = typename Arc::entry type*>

51

CHAPTER7

class wxArchivelterator

/I this constructor creates an 'end of sequence ' object
wxArchivelterator();

/I template parameter 'Arc' should be the type of an archive
input stream
wxArchivelterator(Arc& arc) {

P %
h

The first template parameter should be the type of archive input stream (e.g.
wxArchivelnputStream (p. 51)) and the second can either be a pointer to an entry (e.qg.
wxArchiveEntry (p. 48)*), or a string/pointer pair (e.g. std::pair<wxString,
wxArchiveEntry*>).

The <wx/archive.h> header defines the following typedefs:
typedef wxArchivelterator<wxArchivelnputStream> wxArchivelter;

typedef wxArchivelterator<wxArchivelnputStream,
std::pair<wxString, wxArchiveEntry*> >
wxArchivePairlter;

The header for any implementation of this interface should define similar typedefs for its
types, for example in <wx/zipstrm.h> there is:

typedef wxArchivelterator<wxZiplnputStream> wxZ iplter;

typedef wxArchivelterator<wxZiplnputStream,
std::pair<wxString, wxZipEntry*> > wxZ ipPairlter;

Transferring the catalogue of an archive arc to a vector cat, can then be done something
like this:

std::vector<wxArchiveEntry*> cat((wxArchivelter)arc,
wxArchivelter());

When the iterator is dereferenced, it gives away ownership of an entry object. So in the
above example, when you have finished with catyou must delete the pointers it contains.

If you have smart pointers with normal copy semantics (i.e. not auto_ptr or wxScopedPtr
(p. 1154)), then you can create an iterator which uses them instead. For example, with a
smart pointer class for zip entries ZipEntryPtr:

typedef std::vector<ZipEntryPtr> ZipCatalog;

typedef wxArchivelterator<wxZiplnputStream, Zip EntryPtr>
Ziplter;

ZipCatalog cat((Ziplter)zip, Ziplter());

Iterators that return std::pair objects can be used to populate a std::multimap, to allow
entries to be looked up by name. The string is initialised using the wxArchiveEntry

52

CHAPTER7

object's GetIinternalName() (p. 49) function.

typedef std::multimap<wxString, wxZipEntry*> Zi pCatalog;
ZipCatalog cat((wxZipPairlter)zip, wxZipPairlte r();

Note that this iterator also gives away ownership of an entry object each time it is
dereferenced. So in the above example, when you have finished with cat you must
delete the pointers it contains.

Or if you have them, a pair containing a smart pointer can be used (again ZipEntryPtr),
no worries about ownership:

typedef std::multimap<wxString, ZipEntryPtr> Zi pCatalog;
typedef wxArchivelterator<wxZiplnputStream,
std::pair<wxString, ZipEntryPtr> > ZipPairlter,;

ZipCatalog cat((ZipPairlter)zip, ZipPairlter()) ;

Derived from
No base class
Include files
<wx/archive.h>
See also

wxArchiveEntry (p. 48)
wxArchivelnputStream (p. 51)
wxArchiveOutputStream (p. 55)

Data structures typedef std::input_iterator_tag iterator_category
typedef T value_type

typedef ptrdiff_t difference_type

typedef T* pointer

typedef T& reference

wxArchivelterator::wxArchivelterator

wxArchivelterator ()
Construct an 'end of sequence' instance.
wxArchivelterator (Arc& arc)

Construct iterator that returns all the entries in the archive input stream arc.

wxArchivelterator::operator*

const T& operator* () const

53

CHAPTER7

Returns an entry object from the archive input stream, giving away ownership.

wxArchivelterator::operator++

wxArchivelterator& operator++ ()
wxArchivelterator& operator++ (int)

Position the input iterator at the next entry in the archive input stream.

wxArchiveNotifier

If you need to know when a wxArchivelnputStream (p. 51) updates a wxArchiveEntry (p.
48) object, you can create a notifier by deriving from this abstract base class, overriding
OnEntryUpdated() (p. 55). An instance of your notifier class can then be assigned to the
wxArchiveEntry object using wxArchiveEntry::SetNotifier() (p. 51). Your
OnEntryUpdated() method will then be invoked whenever the input stream updates the
entry.

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams). See Archives on
non-seekable streams (p. 1935).

Derived from
No base class
Include files
<wx/archive.h>
See also

Archives on non-seekable streams (p. 1935)
wxArchiveEntry (p. 48)
wxArchivelnputStream (p. 51)
wxArchiveOutputStream (p. 55)

wxArchiveNotifier::OnEntryUpdated

void OnEntryUpdated (class wxArchiveEntry& entry)

This method must be overridden in your derived class.

wxArchiveOutputStream

An abstract base class which serves as a common interface to archive output streams
such as wxZipOutputStream (p. 1610).

54

CHAPTER7

PutNextEntry() (p. 57) is used to create a new entry in the output archive, then the
entry's data is written to the wxArchiveOutputStream. Another call to PutNextEntry()
closes the current entry and begins the next.

Derived from
wxFilterOutputStream (p. 552)
Include files

<wx/archive.h>

See also

Archive formats such as zip (p. 1929)
wxArchiveEntry (p. 48)
wxArchivelnputStream (p. 51)

wxArchiveOutputStream::~wxArchiveOutputStream

~wxArchiveOutputStream ()

Calls Close() (p- 56) if it has not already been called.

wxArchiveOutputStream::Close

bool Close()

Closes the archive, returning true if it was successfully written. Called by the destructor if
not called explicitly.

wxArchiveOutputStream::CloseEntry

bool CloseEntry ()

Close the current entry. It is called implicitly whenever another new entry is created with
CopyEntry() (p. 57)or PutNextEntry() (p. 57), or when the archive is closed.

wxArchiveOutputStream::CopyArchiveMetaData

bool CopyArchiveMetaData (wxArchivelnputStream& stream)

Some archive formats have additional meta-data that applies to the archive as a whole.
For example in the case of zip there is a comment, which is stored at the end of the zip
file. CopyArchiveMetaData() can be used to transfer such information when writing a
modified copy of an archive.

Since the position of the meta-data can vary between the various archive formats, it is
best to call CopyArchiveMetaData() before transferring the entries. The
wxArchiveOutputStream (p. 55)will then hold on to the meta-data and write it at the

55

CHAPTER7

correct point in the output file.

When the input archive is being read from a non-seekable stream, the meta-data may
not be available when CopyArchiveMetaData() is called, in which case the two streams
set up a link and transfer the data when it becomes available.

wxArchiveOutputStream::CopyEntry

bool CopyEntry (wxArchiveEntry* entry, wxArchivelnputStream& stream)

Takes ownership of entry and uses it to create a new entry in the archive. entry is then
opened in the input stream streamand its contents copied to this stream.

For archive types which compress entry data, CopyEntry() is likely to be much more
efficient than transferring the data using Read() and Write() since it will copy them
without decompressing and recompressing them.

entry must be from the same archive file that stream is accessing. For non-seekable
streams, entry must also be the last thing read from stream.

wxArchiveOutputStream::PutNextDirEntry

bool PutNextDirEntry (const wxString& name, const wxDateTime& dt =
wxDateTime::Now())

Create a new directory entry (see wxArchiveEntry::I1sDir() (p. 50)) with the given name
and timestamp.

PutNextEntry() (p. 57) can also be used to create directory entries, by supplying a name
with a trailing path separator.

wxArchiveOutputStream::PutNextEntry

bool PutNextEntry (wxArchiveEntry* entry)

Takes ownership of entry and uses it to create a new entry in the archive. The entry's
data can then be written by writing to this wxArchiveOutputStream.

bool PutNextEntry (const wxString& name, const wxDateTime& dt =
wxDateTime::Now(), off_t size = wxInvalidOffset)

Create a new entry with the given name, timestamp and size. The entry's data can then
be written by writing to this wxArchiveOutputStream.

WXArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode

56

CHAPTER7

only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1790) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 851)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 61) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWidgets has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and

WX _DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template” names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWidgets internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWidgets).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it is Index() (p. 67) function execution time is O(log(N))
instead ofO(N) for the usual arrays but the Add() (p. 66) method is slower: it is O(log(N))
instead of constant time (neglecting time spent in memory allocation routine). However,
in a usual situation elements are added to an array much less often than searched inside
it, so wxSortedArray may lead to huge performance improvements compared to
wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can be only used
for storing integral types or pointers.

wxObjArray class treats its elements like "objects"”. It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the

57

CHAPTER7

objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
'forward’) declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#include <wx/dynarray.h>

/I we must forward declare the array because it is used inside the
class

/l declaration

class MyDirectory;

class MyFile;

/I this defines two new types: ArrayOfDirectories a nd ArrayOfFiles
which can be

/I now used as shown below

WX_DECLARE_OBJARRAY (MyDirectory, ArrayOfDirectories);
WX_DECLARE_OBJARRAY(MyFile, ArrayOfFiles);

class MyDirectory

ArrayOfDirectories m_subdirectories; // all sub directories
ArrayOfFiles m_files; I/ all fil es in this

directory

h

/I now that we have MyDirectory declaration in scop e we may finish

the

/I definition of ArrayOfDirectories -- note that th is expands into

some C++

/I code and so should only be compiled once (i.e., don't put this

in the

/I header, but into a source file or you will get | inking errors)

#include <wx/arrimpl.cpp> // this is a magic incant ation which

must be done!
WX_DEFINE_OBJARRAY (ArrayOfDirectories);

[/l that's all!

It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayOfDirectories ;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WX_DEFINE_ARRAY(int, ArrayOfDirectories);
WX_DEFINE_SORTED_ARRAY(int, ArrayOfFiles);

i.e. there is only one DEFINE macro and no need for separateDECLAREDNe.

58

CHAPTER7

See also:
Container classes overview (p. 1784), wxList (p. 851)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 62)
WX_DEFINE_EXPORTED_ARRAY (p. 62)
WX_DEFINE_USER_EXPORTED_ARRAY (p. 62)
WX_DEFINE_SORTED_ARRAY (p. 63)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 63)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (p. 63)
WX_DECLARE_EXPORTED_OBJARRAY (p. 63)
WX_DECLARE_USER_EXPORTED_OBJARRAY (p. 63)
WX_DEFINE_OBJARRAY (p. 64)
WX_DEFINE_EXPORTED_OBJARRAY (p. 64)
WX_DEFINE_USER_EXPORTED_OBJARRAY (p. 64)

To slightly complicate the matters even further, the operator -> defined by default for the
array iterators by these macros only makes sense if the array element type is not a
pointer itself and, although it still works, this provokes warnings from some compilers
and to avoid them you should use the_PTR versions of the macros above. For example,
to define an array of pointers to double you should use:

WX_DEFINE_ARRAY_PTR(double *, MyArrayOfDoublePointe rs);

Note that the above macros are generally only useful for wxObject types. There are
separate macros for declaring an array of a simple type, such as an int.

The following simple types are supported:
int

long

size t

double

To create an array of a simple type, simply append the type you want in CAPS to the
array definition.

For example, for an integer array, you'd use one of the following variants:

59

CHAPTER7

WX_DEFINE_ARRAY_INT (p. 62)
WX_DEFINE_EXPORTED_ARRAY_INT (p. 62)
WX_DEFINE_USER_EXPORTED_ARRAY_INT (p. 62)
WX_DEFINE_SORTED_ARRAY_INT (p. 63)
WX_DEFINE_SORTED_EXPORTED_ARRAY_INT (p. 63)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY_INT (p. 63)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 65)
wxArray copy constructors and assignment operators (p. 65)
~wxArray (p. 65)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT _INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 69) function is provided to deallocate the
extra memory. The Alloc() (p. 66)function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 66)
Shrink (p. 69)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 68) method.

Count (p. 66)
GetCount (p. 67)
ISEmpty (p. 68)
Item (p. 68)

Last (p. 68)

60

CHAPTER7

Adding items

Add (p. 66)

Insert (p. 67)

SetCount (p. 69)
WX_APPEND_ARRAY (p. 64)

Removing items

WX_CLEAR_ARRAY (p. 65)
Empty (p. 67)

Clear (p. 66)

RemoveAt (p. 69)

Remove (p. 68)

Searching and sorting

Index (p. 67)
Sort (p. 69)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY (T, name)
WX_DEFINE_EXPORTED_ARRAY (T, name)
WX_DEFINE_USER_EXPORTED_ARRAY (T, nhame, exportspec)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling wxWidgets as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:
WX_DEFINE_ARRAY_INT(int, MyArrayint);

class MyClass;
WX_DEFINE_ARRAY(MyClass *, ArrayOfMyClass);

Note that wxWidgets predefines the following standard array classes: wxArraylint,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

WX_DEFINE_SORTED_ARRAY (T, name)
WX_DEFINE_SORTED_EXPORTED_ARRAY (T, name)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (T, name)

61

CHAPTER7

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling wxWidgets as a DLL under Windows

and array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

WX_DEFINE_SORTED_ARRAY_INT(int, MySortedArrayint);

class MyClass;
WX_DEFINE_SORTED_ARRAY(MyClass *, ArrayOfMyClass);

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int Comparelnts(int n1, int n2)

return nl - n2;

wxSortedArrayInt sorted(Comparelnts);
int CompareMyClassObjects(MyClass *item1, MyClass * item2)

/I sort the items by their address...
return Stricmp(item1->GetAddress(), item2->GetA ddress());

wxArrayOfMyClass another(CompareMyClassObjects);

WX_DECLARE_OBJARRAY

WX_DECLARE_OBJARRAY (T, name)
WX_DECLARE_EXPORTED_OBJARRAY (T, name)
WX_DECLARE_USER_EXPORTED_OBJARRAY (T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling wxWidgets as a DLL under Windows
and array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

class MyClass;

WX_DECLARE_OBJARRAY (MyClass, wxArrayOfMyClass); // note: not
"MyClass *"!

You must use WX_DEFINE_OBJARRAY() (p. 64) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

WX_DEFINE_OBJARRAY (name)

62

CHAPTER7

WX_DEFINE_EXPORTED_OBJARRAY (name)
WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by
theWX_DECLARE_OBJARRAY() (p. 63) macro. You must include the file
<wx/arrimpl.cpp> before using this macro and you must have the full declaration of the
class of array elements in scope! If you forget to do the first, the error will be caught by
the compiler, but, unfortunately, many compilers will not give any warnings if you forget
to do the second - but the objects of the class will not be copied correctly and their real
destructor will not be called. The latter two forms are merely aliases of the first to satisfy
some people's sense of symmetry when using the exported declarations.

Example of usage:

/I first declare the class!
class MyClass

public:
MyClass(const MyClass&);

virtual ~MyClass();

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY (wxArrayOfMyClass);

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to thearray. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call

Empty().
Default constructors

wxArray ()
wxODbjArray ()
Default constructor initializes an empty array object.

wxSortedArray (int (*)(T first, T second) compareFunction)

63

CHAPTER7

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or
positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

wxArray (const wxArray& array)

wxSortedArray (const wxSortedArray& array)
wxODbjArray (const wxObjArray& array)

wxArray& operator= (const wxArray& array)
wxSortedArray& operator= (const wxSortedArray& array)
wxObjArray& operator= (const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer
type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

WXArray::-~wxArray

~wxArray ()
~wxSortedArray ()
~wxObjArray ()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may useWX_CLEAR_ARRAY (p. 65) macro
for this.

wxArray::Add

void Add (T item, size_t copies = 1)
void Add (T *item)

void Add (T &item, size_t copies = 1)

Appends the given number of copies of the item to the array consisting of the elements
of type T.

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes

64

CHAPTER7

sense for wxObjArrays because the other array types never take ownership of their
elements. Also note that you cannot append more than one pointer as reusing it would
lead to deleting it twice (or more) and hence to a crash.

You may also use WX_APPEND_ARRAY (p. 64) macro to append all elements of one
array to another one but it is more efficient to usecopies parameter and modify the
elements in place later if you plan to append a lot of items.

wxArray::Alloc

void Alloc (size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

wxArray::Clear

void Clear|()

This function does the same as Empty() (p. 67) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count () const

Same as GetCount() (p. 67). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach
T * Detach (size_t index)

Removes the element from the array, but, unlike,Remove() (p. 68) doesn't delete it. The
function returns the pointer to the removed element.

WxArray::Empty
void Empty ()
Empties the array. For wxObjArray classes, this destroys all of the array elements. For

wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, useClear() (p. 66) for this.

wxArray::GetCount

size_t GetCount () const

Return the number of items in the array.

65

CHAPTER7

wxArray::Index

int Index (T& item, bool searchFromEnd = false)
int Index (T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUNIDB returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

void Insert (T item, size_t n, size_t copies = 1)
void Insert (T *item, size_t n)

void Insert (T &item, size_t n, size_t copies = 1)

Insert the given number of copies of the item into the array before the existing item n -
thus, Insert(something, Ou) will insert an item in such way that it will become the first
array element.

Please see Add() (p. 66) for explanation of the differences between the overloaded
versions of this function.

wxArray:: IsEmpty
bool IsEmpty () const

Returns true if the array is empty, false otherwise.

WxArray::ltem

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

66

CHAPTER7

wxArray::Last

T& Last () const

Returns the last element in the array, i.e. is the same as Iltem(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

Remove (T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObjArray it is deleted by the array - useDetach()
(p. 67) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item = array[n];
delete item;
array.Remove(n)

See also WX_CLEAR_ARRAY (p. 65) macro which deletes all elements of a wxArray
(supposed to contain pointers).

WxArray::RemoveAt

RemoveAt (size_t index, size_t count = 1)

Removes count elements starting at index from the array. When an element is removed
from wxObjArray it is deleted by the array - useDetach() (p. 67) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete it manually if required:

T *item = array[n];

delete item;
array.RemoveAt(n)

See also WX_CLEAR_ARRAY (p. 65) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::SetCount

void SetCount (size_t count, T defval = T(0))

This function ensures that the number of array elements is at leastcount. If the array has
already count or more items, nothing is done. Otherwise, count - GetCount()
elements are added and initialized to the value defval.

67

CHAPTER7

See also

GetCount (p. 67)

wxArray::Shrink

void Shrink ()

Frees all memory unused by the array. If the program knows that no new items will be
added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

WxArray::Sort

void Sort (CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returningint which is passed
two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it 5
always sorted.wxArrayString

wxArrayString is an efficient container for storing wxString (p. 1300) objects. It has the
same features as all wxArray (p. 57) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString|[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 57), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 74), Last (p. 74) or operator[] (p. 72) are not
constant, so the array elements may be modified in place like this

array.Last().MakeUpper();

There is also a variant of wxArrayString called wxSortedArrayString which has exactly

68

CHAPTER7

the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 73) function
(instead of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basically, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 57) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files
<wx/arrstr.h>
See also

wxArray (p. 57), wxString (p. 1300), wxString overview (p. 1764)

wxArrayString::wxArrayString

wxArrayString ()
Default constructor.
wxArrayString (const wxArrayString& array)

Copy constructor. Note that when an array is assigned to a sorted array, its contents is
automatically sorted during construction.

wxArrayString (size_t sz, const wxChar** arr)
Constructor from a C string array. Pass a size sz and array arr.
wxArrayString (size_t sz, const wxString* arr)

Constructor from a wxString array. Pass a size sz and array arr.

WxArrayString::~wxArrayString
~wxArrayString ()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

69

CHAPTER7

wxArrayString::operator=
wxArrayString & operator = (const wxArrayString& array)

Assignment operator.

wxArrayString::operator==
bool operator == (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true only if the arrays have the same
number of elements and the same strings in the same order.

wxArrayString::operator!=

bool operator != (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true if the arrays have different number
of elements or if the elements don't match pairwise.

wxArrayString::operator]]

wxString& operator[] (size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of Item (p. 74) method.

wxArrayString::Add
size_t Add (const wxString& str, size_t copies = 1)

Appends the given number of copies of the new item str to the array and returns the
index of the first new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 73) - 1 because the item is inserted at the correct position to keep the
array sorted and not appended.

See also: Insert (p. 73)

wxArrayString::Alloc

void Alloc (size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 61)

70

CHAPTER7

wxArrayString::Clear

void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 73)

wxArrayString::Count

size_t Count () const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 73) instead.

wxArrayString::Empty
void Empty ()

Empties the array: after a call to this function GetCount (p. 73) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 72) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount () const

Returns the number of items in the array.

wxArrayString::Index

int Index (const char * sz, bool bCase = true, bool bFromEnd = false)

Search the element in the array, starting from the beginning ifoFromEnd is false or from
end otherwise. If bCase, comparison is case sensitive (default), otherwise the case is
ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUNM there is no match.

wxArrayString::Insert

void Insert (const wxString& str, size_t nindex, size t copies = 1)

Insert the given number of copies of the new element in the array before the position
nindex. Thus, for example, to insert the string in the beginning of the array you would
write

71

CHAPTER7

Insert("*foo", 0);

If nindex is equal to GetCount() this function behaves as Add (p. 72).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 73) would then not work!

wxArrayString::ISEmpty
bool IsEmpty ()

Returns true if the array is empty, false otherwise. This function returns the same result
as GetCount() == 0 but is probably easier to read.

wxArrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator[] (p. 72) for the operator version.

wxArrayString::Last

wxString& Last()
Returns the last element of the array. Attempt to access the last element of an empty

array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove (const char * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 73)
wxArrayString::RemoveAt

void RemoveAt (size_t nindex, size_t count = 1)

Removes count items starting at position nindex from the array.

wxArrayString::Shrink

void Shrink ()

72

CHAPTER7

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 72), Dynamic array memory management (p. 61)

wxArrayString::Sort

void Sort(bool reverseOrder = false)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
true. The sort is case-sensitive.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 73) would then not work!

void Sort (CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than O if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int CompareStringLen(const wxString& first, const wxString&
second)

return first.length() - second.length();

wxArrayString array;

array.Add("one");
array.Add("two");
array.Add("three");
array.Add("four");

array.Sort(CompareStringLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 73) would then not work!

wxArtProvider

wxArtProvider class is used to customize the look of wxWidgets application. When
wxWidgets needs to display an icon or a bitmap (e.g. in the standard file dialog), it does
not use a hard-coded resource but asks wxArtProvider for it instead. This way users can
plug in their own wxArtProvider class and easily replace standard art with their own
version. All that is needed is to derive a class from wxArtProvider, override
itsCreateBitmap (p. 78) method and register the provider

73

CHAPTER7

withwxArtProvider::PushProvider (p. 80):

class MyProvider : public wxArtProvider

protected:

wxBitmap CreateBitmap(const wxArtID& id,
const wxArtClient& client
const wxSize size)

{..}
k

\'/;/'xArtProvider::PushProvider(new MyProvider);

There's another way of taking advantage of this class: you can use it in your code and

use platform native icons as provided by wxArtProvider::GetBitmap (p. 79) or

wxArtProvider::Getlcon (p. 79) (NB: this is not yet really possible as of wxWidgets 2.3.3,

the set of wxArtProvider bitmaps is too small).

Identifying art resources

Every bitmap is known to wxArtProvider under an unique ID that is used by when

requesting a resource from it. The ID is represented by wxArtID type and can have one
of these predefined values (you can see bitmaps represented by these constants in the
artprov (p. 1750) sample):

WXART_ADD_BOOKMARK
WXART_DEL_BOOKMARK

WXART_HELP_SIDE_PANEL

WXART_HELP_SETTINGS
WXART_HELP_BOOK
WXART_HELP_FOLDER
WXART_HELP_PAGE
WXART_GO_BACK
WXART_GO_FORWARD
wWXART_GO_UP
WXART_GO_DOWN
WXART_GO_TO_PARENT
WXART_GO_HOME
WXART_FILE_OPEN

WXART_PRINT

74

CHAPTER7

« WXART_HELP
« WXART_TIP

« WXART_REPORT_VIEW

e WXART_LIST_VIEW

« WXART_NEW_DIR

« WXART_FOLDER

« WXART_GO_DIR_UP

« WXART_EXECUTABLE_FILE
« WXART_NORMAL_FILE

« WXART_TICK_MARK

« WXART_CROSS_MARK

« WXART_ERROR

« WXART_QUESTION

« WXART_WARNING

« WXART_INFORMATION

« WXART_MISSING_IMAGE

Additionally, any string recognized by custom art providers registered usingPushProvider
(p- 80) may be used.

GTK+ Note

When running under GTK+ 2, GTK+ stock item IDs (e.g. "gtk-cdrom™) may be used
as well. Additionally, if wxGTK was compiled against GTK+ >= 2.4, then it is also
possible to load icons from current icon theme by specifying their name (without
extension and directory components). Icon themes recognized by GTK+ follow
thefreedesktop.org Icon Themes specification
(http://freedesktop.org/Standards/icon-theme-spec). Note that themes
are not guaranteed to contain all icons, so wxArtProvider may return wxNullBitmap or
wxNulllcon . Default theme is typically installed in /usr/share/icons/hicolor

Clients

Client is the entity that calls wxArtProvider's GetBitmap or Getlcon function. It is
represented by wxClientID type and can have one of these values:

* WxART_TOOLBAR

75

CHAPTER7

« WXART_MENU

« WXART_BUTTON

« WXART_FRAME_ICON

« WXART_CMN_DIALOG

« WXART_HELP_BROWSER
« WXART_MESSAGE_BOX

« WxART_OTHER (used for all requests that don't fit into any of the categories
above)Client ID servers as a hint to wxArtProvider that is supposed to help it to
choose the best looking bitmap. For example it is often desirable to use slightly
different icons in menus and toolbars even though they represent the same
action (e.g. wx_ART_FILE_OPEN. Remember that this is really only a hint for
wxArtProvider -- it is common thatwxArtProvider::GetBitmap (p. 79) returns
identical bitmap for different client values!

See also

See the artprov (p. 1750) sample for an example of wxArtProvider usage.
Derived from

wxObject (p. 1027)

Include files

<wx/artprov.h>

wxArtProvider::CreateBitmap

wxBitmap CreateBitmap (const wxArtID& id, const wxArtClient& client, const
wxSize& size)

Derived art provider classes must override this method to create requested art resource.
Note that returned bitmaps are cached by wxArtProvider and it is therefore not
necessary to optimize CreateBitmap for speed (e.g. you may create wxBitmap objects
from XPMs here).

Parameters
id

wxArtID unique identifier of the bitmap.
client

wxArtClient identifier of the client (i.e. who is asking for the bitmap). This only
servers as a hint.

76

CHAPTER7

size

Preferred size of the bitmap. The function may return a bitmap of different
dimensions, it will be automatically rescaled to meet client's request.

Note

This is not part of wxArtProvider's public API, usewxArtProvider::GetBitmap (p. 79) or
wxArtProvider::Getlcon (p. 79)to query wxArtProvider for a resource.

wxArtProvider::GetBitmap

static wxBitmap GetBitmap (const wxArtID& id, const wxArtClient& client =
WXART_OTHER, const wxSize& size = wxDefaultSize)

Query registered providers for bitmap with given ID.
Parameters
id

wxArtID unique identifier of the bitmap.
client

wxArtClient identifier of the client (i.e. who is asking for the bitmap).
size

Size of the returned bitmap or wxDefaultSize if size doesn't matter.
Return value

The bitmap if one of registered providers recognizes the ID or wxNullBitmap otherwise.

wxArtProvider::Getlcon

static wxlcon Getlcon (const wxArtID& id, const wxArtClient& client =
WXART_OTHER, const wxSize& size = wxDefaultSize)

Same as wxArtProvider::GetBitmap (p. 79), but return a wxlcon object (or wxNulllcon on
failure).

static wxSize GetSizeHint (const wxArtClient& client, bool platform_default = false)

Returns a suitable size hint for the given wxArtClient. If platform_default is true , return
a size based on the current platform, otherwise return the size from the topmost
wxArtProvider. wxDefaultSize may be returned if the client doesn't have a specified
size, like wxART_OTHER for example.

wxArtProvider::PopProvider

static bool PopProvider ()

77

CHAPTER7

Remove latest added provider and delete it.

wxArtProvider::PushProvider

static void PushProvider (wxArtProvider* provider)

Register new art provider (add it to the top of providers stack).

wxArtProvider::RemoveProvider

static bool RemoveProvider (wxArtProvider* provider)

Remove a provider from the stack. The provider must have been added previously and
is not deleted.

wxAutomationObiject

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1485) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
API is high-level, and the application can specify multiple properties in a single string.
The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAutomationObject excelObject;
if (excelObject.Getlnstance("Excel.Application™))
excelObject.PutProperty("ActiveCell.Font.Bold " true);

Note that this class obviously works under Windows only.
Derived from

wxObiject (p. 1027)

Include files

<wx/mswj/ole/automtn.h>

See also

wxVariant (p. 1485)

wxAutomationObject::wxAutomationObject

wxAutomationObject (WXIDISPATCH* dispatchPtr = NULL)

78

CHAPTER7

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject ()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

wxVariant CallMethod (const wxString& method, int noArgs, wxVariant args[]) const
wxVariant CallMethod (const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res = obj.CallMethod("Sum", wxVariant(1 .2),
wxVariant(3.4));
wxVariant res = obj.CallMethod("Sum", 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

object.CallMethod("ActiveCell.Font.ShowDialog", " My caption");

wxAutomationObject::Createlnstance

bool Createlnstance (const wxString& classld) const

Creates a new object based on the class id, returning true if the object was successfully
created, or false if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr () const

Gets the IDispatch pointer.

wxAutomationObject::Getlnstance

bool Getlnstance (const wxString& classld) const

Retrieves the current object associated with a class id, and attaches the IDispatch

79

CHAPTER7

pointer to this object. Returns true if a pointer was successfully retrieved, false
otherwise.

Note that this cannot cope with two instances of a given OLE object being active
simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject (wxAutomationObject& obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 82) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.
See also

wxAutomationObject::GetProperty (p. 82)

wxAutomationObject::GetProperty

wxVariant GetProperty (const wxString& property, int noArgs, wxVariant argsl])
const

wxVariant GetProperty (const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res = obj.GetProperty("Range”, wxVarian t("A1"));
wxVariant res = obj.GetProperty("Range”, "A1");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke (const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

80

CHAPTER7

Parameters
member

The member function or property name.
action

Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.

retValue

Return value (ignored if there is no return value)

NoArgs
Number of arguments in args or ptrArgs.
args
If non-null, contains an array of variants.
ptrArgs
If non-null, contains an array of constant pointers to variants.
Return value
true if the operation was successful, false otherwise.
Remarks

Two types of argument array are provided, so that when possible pointers are used for
efficiency.

wxAutomationObject::PutProperty

bool PutProperty (const wxString& property, int noArgs, wxVariant args[]) const
bool PutProperty (const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj.PutProperty("Value", wxVariant(23));
obj.PutProperty("Value", 23);

81

CHAPTER7

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr (WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour or colour with alpha channel support.

Derived from

wxGDIObject (p. 609)
wxObiject (p. 1027)

Include files
<wx/bitmap.h>
Predefined objects
Objects:
wxNullBitmap

See also

wxBitmap overview (p. 1834),supported bitmap file formats (p. 1835),wxDC::Blit (p.
373),wxlcon (p. 778), wxCursor (p. 230), wxBitmap (p. 84),wxMemoryDC (p. 952)

wxBitmap::wxBitmap

wxBitmap ()

Default constructor.

wxBitmap (const wxBitmap& bitmap)

Copy constructor. Note that this does not take a fresh copy of the data, but instead
makes the internal data point to bitmap's data. So changing one bitmap will change the
other. To make a real copy, you can use:

wxBitmap newBitmap = oldBitmap.GetSubBitmap(
wxRect(0, 0, oldBitmap .GetWidth(),

82

CHAPTER7

oldBitmap.GetHeight()));
wxBitmap (void* data, int type, int width, int height, int depth =-1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap (const char bits[], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxIlmage (p. 790) should be used for creating colour bitmaps from static data.

wxBitmap (int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.
Beginning with version 2.5.4 of wxWidgets a depth of 32 including an alpha channel is
supported under MSW, Mac and GTK+.

wxBitmap (const char** bits)

Creates a bitmap from XPM data.

wxBitmap (const wxString& name, long type)
Loads a bitmap from a file or resource.

wxBitmap (const wxlmage& img, int depth =-1)

Creates bitmap object from the image. This has to be done to actually display an image
as you cannot draw an image directly on a window. The resulting bitmap will use the
provided colour depth (or that of the current system if depth is -1) which entails that a
colour reduction has to take place.

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created
on program start-up to look up colors. This ensures a very fast conversion, but the image
quality won't be perfect (and could be better for photo images using more sophisticated
dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when
creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

Parameters

bits

83

CHAPTER7

width

Specifies an array of pixel values.

Specifies the width of the bitmap.

height

Specifies the height of the bitmap.

depth

Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.

name

type

img

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

May be one of the following:
wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

WxBITMAP_TYPE_BMP_RESOURCELoad a Windows bitmap resource from the
executable. Windows only.

WxBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

WXBITMAP_TYPE_GIF Load a GIF bitmap file.
WxBITMAP_TYPE_XBM Load an X bitmap file.
WXBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration. If
all possible wxWidgets settings are used, the Windows platform supports BMP file,
BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMoatif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wximage (p. 790) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
WXBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.

Platform-independent wxlmage object.

Remarks

84

CHAPTER7

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWidgets has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

wxBitmap *bitmap = new wxBitmap(mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 92)

wxPython note: Constructors supported by wxPython are:
wxBitmap(name, flag) Loads a bitmap from a file

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM
data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

wxBitmapFromIimage(image, depth=-1) Convert a wxlmage to a
wxBitmap.

85

CHAPTER7

wxPerl note: Constructors supported by wxPerl are:
«::Bitmap->new(width, height, depth = -1)
«::Bitmap->new(name, type)
«::Bitmap->new(icon)
«::Bitmap->newFromBits(bits, width, height, depth = 1)

«::Bitmap->newFromXPM(data)

wxBitmap::~wxBitmap
~wxBitmap ()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWidgets when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler (wxBitmapHandler* handler)
Adds a handler to the end of the static list of format handlers.
handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 104)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers ()
Deletes all bitmap handlers.

This function is called by wxWidgets on exit.

wxBitmap::ConvertTolmage

wxlmage ConvertTolmage ()

Creates an image from a platform-dependent bitmap. This preserves mask information

86

CHAPTER7

so that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::CopyFromlcon

bool CopyFromlcon (const wxlcon& icon)

Creates the bitmap from an icon.

wxBitmap::Create

virtual bool Create(int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create (void* data, int type, int width, int height, int depth =-1)
Creates a bitmap from the given data, which can be of arbitrary type.
Parameters
width

The width of the bitmap in pixels.
height

The height of the bitmap in pixels.
depth

The depth of the bitmap in pixels. If this is -1, the screen depth is used.
data

Data whose type depends on the value of type.
type

A bitmap type identifier - see wxBitmap::wxBitmap (p. 84) for a list of possible
values.

Return value
true if the call succeeded, false otherwise.
Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 84)

87

CHAPTER7

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler (const wxString& name)
Finds the handler with the given name.

static wxBitmapHandler* FindHandler (const wxString& extension, wxBitmapType
bitmapType)

Finds the handler associated with the given extension and type.
static wxBitmapHandler* FindHandler (wxBitmapType bitmapType)
Finds the handler associated with the given bitmap type.
name

The handler name.
extension

The file extension, such as "bmp".
bitmapType

The bitmap type, such as wxBITMAP_TYPE_BMP.
Return value
A pointer to the handler if found, NULL otherwise.
See also

wxBitmapHandler (p. 104)

wxBitmap::GetDepth

int GetDepth () const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers ()
Returns the static list of bitmap format handlers.
See also

wxBitmapHandler (p. 104)

wxBitmap::GetHeight

int GetHeight () const

88

CHAPTER7

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette () const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 1042)

wxBitmap::GetMask

wxMask* GetMask () const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 95), wxMask (p. 920)

wxBitmap::GetWidth

int GetWidth () const

Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 91)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap (const wxRect& rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers ()

Adds the standard bitmap format handlers, which, depending on wxWidgets
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWidgets on startup.

See also

89

CHAPTER7

wxBitmapHandler (p. 104)

wxBitmap::InsertHandler

static void InsertHandler (wxBitmapHandler* handler)
Adds a handler at the start of the static list of format handlers.
handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 104)

wxBitmap::LoadFile

bool LoadFile (const wxString& name, wxBitmapType type)
Loads a bitmap from a file or resource.

Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:
wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap resource
from the executable.

WxBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

WxBITMAP_TYPE_GIF Load a GIF bitmap file.

wWxBITMAP_TYPE_XBM Load an X bitmap file.

WXBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

In addition, wxBitmap can read all formats that wxImage (p. 790) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
WXBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxImage handlers loaded.)

90

CHAPTER7

Return value
true if the operation succeeded, false otherwise.

Remarks

A palette may be associated with the bitmap if one exists (especially for colour Windows

bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 91) member.

See also

wxBitmap::SaveFile (p. 93)

wxBitmap::0Ok
bool Ok() const

Returns true if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler (const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.
name
The handler name.
Return value
true if the handler was found and removed, false otherwise.
See also

wxBitmapHandler (p. 104)

wxBitmap::SaveFile

bool SaveFile (const wxString& name, wxBitmapType type, wxPalette* palette =
NULL)

Saves a bitmap in the named file.
Parameters
name
A filename. The meaning of name is determined by the type parameter.
type

One of the following values:

91

CHAPTER7

wWxBITMAP_TYPE_BMP Save a Windows bitmap file.
WxBITMAP_TYPE_GIF Save a GIF bitmap file.

WxBITMAP_TYPE_XBM Save an X bitmap file.

WXBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

In addition, wxBitmap can save all formats that wximage (p. 790) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxlmage handlers loaded.)

palette
An optional palette used for saving the bitmap.
Return value
true if the operation succeeded, false otherwise.
Remarks
Depending on how wxWidgets has been configured, not all formats may be available.
See also

wxBitmap::LoadFile (p. 92)

wxBitmap::SetDepth
void SetDepth (int depth)
Sets the depth member (does not affect the bitmap data).
Parameters
depth
Bitmap depth.

wxBitmap::SetHeight

void SetHeight (int height)

Sets the height member (does not affect the bitmap data).
Parameters

height

Bitmap height in pixels.

92

CHAPTER7

wxBitmap::SetMask

void SetMask (wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.
See also

wxBitmap::GetMask (p. 91), wxMask (p. 920)

wxBitmap::SetPalette

void SetPalette (const wxPalette& palette)
Sets the associated palette. (Not implemented under GTK+).
Parameters
palette
The palette to set.
See also

wxPalette (p. 1042)

wxBitmap::SetWidth

void SetWidth (int width)

Sets the width member (does not affect the bitmap data).
Parameters

width

Bitmap width in pixels.

wxBitmap::operator =
wxBitmap& operator = (const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters
bitmap

Bitmap to assign.

93

CHAPTER7

Return value

Returns 'this' object.

wxBitmap::operator ==
bool operator == (const wxBitmapé& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters
bitmap

Bitmap to compare with 'this'
Return value

Returns true if the bitmaps were effectively equal, false otherwise.

wxBitmap::operator !=

bool operator != (const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters
bitmap

Bitmap to compare with 'this'
Return value

Returns true if the bitmaps were unequal, false otherwise.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
412) or panel (p. 1046), or indeed almost any other window.

Derived from

wxButton (p. 122)
wxControl (p. 218)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files

94

CHAPTER7

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWidgets will draw all button
states using this bitmap. If the application needs more control, additional bitmaps for the
selected state, unpressed focused state, and greyed-out state may be supplied.

Button states

This class supports bitmaps for several different states:

normal

disabled

selected

focus

hover

Window styles

wxBU_AUTODRAW

wxBU_LEFT
wxBU_TOP

wxBU_RIGHT
wxBU_BOTTOM

This is the bitmap shown in the default state, it must be
always valid while all the other bitmaps are optional and
don't have to be set.

Bitmap shown when the button is disabled.

Bitmap shown when the button is pushed (e.g. while the
user keeps the mouse button pressed on it)

Bitmap shown when the button has keyboard focus but is
not pressed.

Bitmap shown when the mouse is over the button (but it is
not pressed). Notice that if hover bitmap is not specified
but the current platform Ul uses hover images for the
buttons (such as Windows XP or GTK+), then the focus
bitmap is used for hover state as well. This makes it
possible to set focus bitmap only to get reasonably good
behaviour on all platforms.

If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

Left-justifies the bitmap label. WIN32 only.

Aligns the bitmap label to the top of the button. WIN32
only.

Right-justifies the bitmap label. WIN32 only.

Aligns the bitmap label to the bottom of the button. WIN32
only.

Note that wxBU_EXACTFIT supported by wxButton (p. 122) is not used by this class as
bitmap buttons don't have any minimal standard size by default.

See also window styles overview (p. 1808).

95

CHAPTER7

Event handling

EVT_BUTTON(id, func) Process a
WXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 122)

wxBitmapButton::wxBitmapButton

wxBitmapButton ()
Default constructor.

wxBitmapButton (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.
Parameters
parent

Parent window. Must not be NULL.

Button identifier. A value of -1 indicates a default value.
bitmap

Bitmap to be displayed.
pos

Button position.
size

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 96).
validator

Window validator.

96

CHAPTER7

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWidgets

will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 102),
wxBitmapButton::SetBitmapFocus (p. 101), wxBitmapButton::SetBitmapDisabled (p.
101).

Note that the bitmap passed is smaller than the actual button created.
See also

wxBitmapButton::Create (p. 99), wxValidator (p. 1482)

wxBitmapButton::~wxBitmapButton

~wxBitmapButton ()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button™)

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 98).

wxBitmapButton::GetBitmapDisabled

const wxBitmap& GetBitmapDisabled () constwxBitmap& GetBitmapDisabled ()
Returns the bitmap for the disabled state, may be invalid.

Return value

A reference to the disabled state bitmap.

See also

wxBitmapButton::SetBitmapDisabled (p. 101)

wxBitmapButton::GetBitmapFocus

const wxBitmap& GetBitmapFocus () constwxBitmap& GetBitmapFocus ()

Returns the bitmap for the focused state, may be invalid.

97

CHAPTER7

Return value
A reference to the focused state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 101)

wxBitmapButton::GetBitmapHover

const wxBitmap& GetBitmapHover () constwxBitmap& GetBitmapHover ()
Returns the bitmap used when the mouse is over the button, may be invalid.
See also

wxBitmapButton::SetBitmapHover (p. 102)

wxBitmapButton::GetBitmapLabel

const wxBitmap& GetBitmapLabel () constwxBitmap& GetBitmapLabel ()
Returns the label bitmap (the one passed to the constructor), always valid.
Return value

A reference to the button's label bitmap.

See also

wxBitmapButton::SetBitmapLabel (p. 102)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected () constwxBitmap& GetBitmapSelected ()
Returns the bitmap for the pushed button state, may be invalid.

Return value

A reference to the selected state bitmap.

See also

wxBitmapButton::SetBitmapSelected (p. 102)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled (const wxBitmap& bitmap)
Sets the bitmap for the disabled button appearance.

Parameters

98

CHAPTER7

bitmap
The bitmap to set.
See also

wxBitmapButton::GetBitmapDisabled (p. 99), wxBitmapButton::SetBitmapLabel (p. 102),
wxBitmapButton::SetBitmapSelected (p. 102), wxBitmapButton::SetBitmapFocus (p.
101)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus (const wxBitmap& bitmap)
Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters
bitmap
The bitmap to set.
See also

wxBitmapButton::GetBitmapFocus (p. 100), wxBitmapButton::SetBitmapLabel (p. 102),
wxBitmapButton::SetBitmapSelected (p. 102), wxBitmapButton::SetBitmapDisabled (p.
101)

wxBitmapButton::SetBitmapHover

void SetBitmapHover (const wxBitmap& bitmap)
Sets the bitmap to be shown when the mouse is over the button.

This function is new since wxWidgets version 2.7.0 and the hover bitmap is currently
only supported in wxMSW.

See also

wxBitmapButton::GetBitmapHover (p. 100)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel (const wxBitmap& bitmap)
Sets the bitmap label for the button.
Parameters
bitmap
The bitmap label to set.

Remarks

99

CHAPTER7

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 100)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected (const wxBitmap& bitmap)
Sets the bitmap for the selected (depressed) button appearance.
Parameters
bitmap
The bitmap to set.
See also

wxBitmapButton::GetBitmapSelected (p. 101), wxBitmapButton::SetBitmapLabel (p.
102), wxBitmapButton::SetBitmapFocus (p. 101), wxBitmapButton::SetBitmapDisabled
(p. 101)

wxBitmapDataObject

wxBitmapDataObiject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 154) or a wxDropSource (p. 472).

A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 103) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 247)
wxDataObject (p. 242)

Include files
<wx/dataobj.h>

See also

100

CHAPTER7

Clipboard and drag and drop overview (p. 1865), wxDataObject (p. 242),
wxDataObjectSimple (p. 247), wxFileDataObject (p. 514), wxTextDataObject (p. 1373),
wxDataObject (p. 242)

wxBitmapDataObject (const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 103) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap () const

Returns the bitmap associated with the data object. You may wish to override this
method when offering data on-demand, but this is not required by wxWidgets' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 154).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap (const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBitmapHandler

Overview (p. 1834)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 88) in your application initialisation.

Derived from
wxObject (p. 1027)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 84), wxlcon (p. 778), wxCursor (p. 230)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandler ()

Default constructor. In your own default constructor, initialise the members m_name,

101

CHAPTER7

m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandler ()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create (wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters
bitmap
The wxBitmap object.
width
The width of the bitmap in pixels.
height
The height of the bitmap in pixels.
depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.
data
Data whose type depends on the value of type.
type

A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 84) for a list
of possible values.

Return value

true if the call succeeded, false otherwise (the default).

wxBitmapHandler::GetName

wxString GetName () const

Gets the name of this handler.

102

CHAPTER7

wxBitmapHandler::GetExtension

wxString GetExtension () const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType () const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile (wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters
bitmap

The bitmap object which is to be affected by this operation.
name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 84) for values this can take.
Return value
true if the operation succeeded, false otherwise.
See also

wxBitmap::LoadFile (p. 92)
wxBitmap::SaveFile (p. 93)
wxBitmapHandler::SaveFile (p. 106)

wxBitmapHandler::SaveFile

bool SaveFile (wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.
Parameters

bitmap

103

CHAPTER7

The bitmap object which is to be affected by this operation.
name
A filename. The meaning of name is determined by the type parameter.
type
See wxBitmap::wxBitmap (p. 84) for values this can take.
palette
An optional palette used for saving the bitmap.
Return value
true if the operation succeeded, false otherwise.
See also

wxBitmap::LoadFile (p. 92)
wxBitmap::SaveFile (p. 93)
wxBitmapHandler::LoadFile (p. 105)

wxBitmapHandler::SetName

void SetName (const wxString& name)
Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension (const wxString& extension)
Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType
void SetType (long type)
Sets the handler type.

104

CHAPTER7

Parameters
name

Handler type.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

For more information, please see Programming with wxBoxSizer (p. 1820).
Derived from

wxSizer (p. 1191)
wxObject (p. 1027)

Include files
<wx/sizer.h>
See also

wxSizer (p. 1191), Sizer overview (p. 1816)

wxBoxSizer::.wxBoxSizer

wxBoxSizer (int orient)

Constructor for a wxBoxSizer. orient may be either of wx\VERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes ()

Implements the calculation of a box sizer's dimensions and then sets the size of its
children (calling wxWindow::SetSize (p. 1560) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin ()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation ()

105

CHAPTER7

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 609)
wxObiject (p. 1027)

Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

wxBLUE_BRUSH
WXGREEN_BRUSH
WXWHITE_BRUSH
wWxBLACK_BRUSH
WXGREY_BRUSH
wxXxMEDIUM_GREY_BRUSH
WXLIGHT_GREY_BRUSH
WXTRANSPARENT_BRUSH
wxCYAN_BRUSH
wWxRED_BRUSH

Remarks

On a monochrome display, wxWidgets shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::Oninit (p. 42) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList , and calling the member function FindOrCreateBrush .

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the

106

CHAPTER7

reference counting, are not affected.
See also

wxBrushList (p. 114), wxDC (p. 372), wxDC::SetBrush (p. 388)

wxBrush::.wxBrush

wxBrush ()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 112) will return
false.

wxBrush (const wxColour& colour, int style = wxSCLI D)
Constructs a brush from a colour object and style.
wxBrush (const wxString& colourName, int style)
Constructs a brush from a colour name and style.
wxBrush (const wxBitmap& stippleBitmap)
Constructs a stippled brush using a bitmap.
wxBrush (const wxBrush& brush)
Copy constructor. This uses reference counting so is a cheap operation.
Parameters
colour

Colour object.
colourName

Colour name. The name will be looked up in the colour database.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wWxSTIPPLE Uses a bitmap as a stipple.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.

107

CHAPTER7

wxCROSS HATCH Cross hatch.

WXHORIZONTAL_HATCH Horizontal hatch.

WXVERTICAL_HATCH Vertical hatch.
brush

Pointer or reference to a brush to copy.
stippleBitmap
A bitmap to use for stippling.
Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 114), wxColour (p. 168), wxColourDatabase (p. 173)

wxBrush::~wxBrush

~wxBrush ()
Destructor.
Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWidgets cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour () const
Returns a reference to the brush colour.
See also

wxBrush::SetColour (p. 113)

wxBrush::GetStipple

wxBitmap * GetStipple () const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this

108

CHAPTER7

bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 93) returns false).
See also

wxBrush::SetStipple (p. 113)

wxBrush::GetStyle

int GetStyle () const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
WxHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 113), wxBrush::SetColour (p. 113), wxBrush::SetStipple (p. 113)

wxBrush::IsHatch

bool IsHatch () const

Returns true if the style of the brush is any of hatched fills.
See also

wxBrush::GetStyle (p. 112)

wxBrush::Ok

bool Ok() const

Returns true if the brush is initialised. It will return false if the default constructor has
been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

109

CHAPTER7

wxBrush::SetColour

void SetColour (wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour (const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour (unsigned char red, unsigned char green, unsigned char blue)
Sets the brush colour using red, green and blue values.

See also

wxBrush::GetColour (p. 111)

wxBrush::SetStipple

void SetStipple (const wxBitmap& bitmap)
Sets the stipple bitmap.
Parameters
bitmap

The bitmap to use for stippling.
Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 84)

wxBrush::SetStyle
void SetStyle (int style)
Sets the brush style.

style

110

CHAPTER7

One of:
WXTRANSPARENT
wxSOLID
wxBDIAGONAL_HATCH
wWxCROSSDIAG_HATCH
wxFDIAGONAL_HATCH
wxCROSS_HATCH
WXHORIZONTAL_HATCH
WXVERTICAL_HATCH
WXSTIPPLE
WXSTIPPLE_MASK_OPAQUE

See also

wxBrush::GetStyle (p. 112)

wxBrush::operator =

Transparent (no fill).
Solid.

Backward diagonal hatch.
Cross-diagonal hatch.
Forward diagonal hatch.
Cross hatch.

Horizontal hatch.

Vertical hatch.

Stippled using a bitmap.

Stippled using a bitmap's mask.

wxBrush& operator = (const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator == (const wxBrush& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes

using the same parameters will fail the test.

wxBrush::operator !=

bool operator = (const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.

111

CHAPTER7

Derived from

wxList (p. 851)
wxObiject (p. 1027)

Include files
<wx/gdicmn.h>
Remarks

There is only one instance of this class: wxTheBrushList . Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWidgets which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a reference counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the reference
counting does it for you. For example, you can set a brush in a device context, and then
immediately delete the brush you passed, because the brush is ‘copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWidgets to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWidgets.

See also

wxBrush (p. 108)

wxBrushList::wxBrushList

void wxBrushList ()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList .

wxBrushList::AddBrush

void AddBrush (wxBrush * brush)

Used internally by wxWidgets to add a brush to the list.

112

CHAPTER7

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush (const wxColour& colour, int style = wxSOLID)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Parameters
colour

Colour object.
style

Brush style. See wxBrush::SetStyle (p. 113) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush (wxBrush * brush)

Used by wxWidgets to remove a brush from the list.

wxBufferedDC

This simple class provides a simple way to avoid flicker: when drawing on it, everything
is in fact first drawn on an in-memory buffer (a wxBitmap (p. 84)) and then copied to the
screen only once, when this object is destroyed.

It can be used in the same way as any other device context. wxBufferedDC itself
typically replaces wxClientDC (p. 151), if you want to use it in your OnPaint() handler,
you should look atwxBufferedPaintDC (p. 118).

Derived from

wxMemoryDC (p. 952)
wxDC (p. 372)
wxObject (p. 1027)

Include files
<wx/dcbuffer.h>
See also

wxDC (p. 372)

wxBufferedDC::wxBufferedDC

wxBufferedDC ()

113

CHAPTER7

wxBufferedDC (wxDC *dc, const wxSize& area, int style =
wxBUFFER_CLIENT_AREA)

wxBufferedDC (wxDC *dc, const wxBitmap& buffer, int style =
wxBUFFER_CLIENT_AREA)

If you use the first, default, constructor, you must call one of the Init (p. 117) methods
later in order to use the object.

The other constructors initialize the object immediately and Init() must not be called
after using them.

Parameters
dc

The underlying DC: everything drawn to this object will be flushed to this DC when
this object is destroyed. You may pass NULL in order to just initialize the buffer,
and not flush it.

area

The size of the bitmap to be used for buffering (this bitmap is created internally
when it is not given explicitly).

buffer

Explicitly provided bitmap to be used for buffering: this is the most efficient solution
as the bitmap doesn't have to be recreated each time but it also requires more
memory as the bitmap is never freed. The bitmap should have appropriate size,
anything drawn outside of its bounds is clipped.

style

WxBUFFER_CLIENT_AREA to indicate that just the client area of the window is
buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the buffer bitmap covers
the virtual area (in which case PrepareDC is automatically called for the actual
window device context).

wxBufferedDC::Init

void Init (wxDC *dc, const wxSize& area, int style = wxBUFFER_CLIENT_AREA)
void Init (wxDC *dc, const wxBitmap& buffer, int style = wxBUFFER_CLIENT_AREA)

These functions initialize the object created using the default constructor. Please see
constructors documentation (p. 117) for details.

wxBufferedDC::~wxBufferedDC

Copies everything drawn on the DC so far to the underlying DC associated with this
object, if any.

114

CHAPTER7

wxBufferedPaintDC

This is a subclass of wxBufferedDC (p. 116) which can be used inside of an OnPaint()
event handler. Just create an object of this class instead of wxPaintDC (p. 1040) and
that's all you have to do to (mostly) avoid flicker. The only thing to watch out for is that if
you are using this class together with wxScrolledWindow (p. 1165), you probably do not
want to call PrepareDC (p. 1171) on it as it already does this internally for the real
underlying wxPaintDC.

Derived from

wxMemoryDC (p. 952)
wxDC (p. 372)
wxObiject (p. 1027)

Include files

<wx/dcbuffer.h>

wxBufferedPaintDC::wxBufferedPaintDC

wxBufferedPaintDC (wxWindow * window, const wxBitmap& buffer, int style =
wxBUFFER_CLIENT_AREA)

wxBufferedPaintDC (wxWindow * window, int style = wxBUFFER_CLIENT_AREA)

As with wxBufferedDC (p. 117), you may either provide the bitmap to be used for
buffering or let this object create one internally (in the latter case, the size of the client
part of the window is used).

Pass wxBUFFER_CLIENT_AREA for the style parameter to indicate that just the client
area of the window is buffered, or wxBUFFER_VIRTUAL AREA to indicate that the
buffer bitmap covers the virtual area (in which case PrepareDC is automatically called
for the actual window device context).

wxBufferedPaintDC::~wxBufferedPaintDC

Copies everything drawn on the DC so far to the window associated with this object,
using a wxPaintDC (p. 1040).

wxBufferedinputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterlnputStream (p. 551)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

115

CHAPTER7

wxFilterInputStream (p. 551)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1293), wxInputStream (p. 826),wxBufferedOutputStream (p. 119)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 552)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from
wxFilterOutputStream (p. 552)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1293), wxOutputStream (p. 1032)

wxBufferedOutputStream::wxBufferedOutputStream

wxBufferedOutputStream (const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

~wxBufferedOutputStream ()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

116

CHAPTER7

wxBufferedOutputStream::Sync

void Sync ()

Flushes the buffer and calls Sync() on the parent stream.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:
wxBusyCursor wait;

for (inti=0; i <100000; i++)
DoAcCalculation();

It works by calling wxBeginBusyCursor (p. 1647) in the constructor, and
wxEndBusyCursor (p. 1649) in the destructor.

Derived from
None
Include files
<wx/utils.h>
See also

wxBeginBusyCursor (p. 1647), wxEndBusyCursor (p. 1649), wxWindowDisabler (p.
1572)

wxBusyCursor::wxBusyCursor

wxBusyCursor (wxCursor* cursor = WwxXHOURGLASS CURSOR)
Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1647).
wxBusyCursor::~wxBusyCursor

~wxBusyCursor ()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1649).

wxBusyIinfo

117

CHAPTER7

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyInfo object on the stack, and within the current scope, a message
window will be shown.

For example:
wxBusylInfo wait("Please wait, working...");
for (inti=0; i <100000; i++)
DoAcCalculation();

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case
it had been obscured by other windows, for example) like this:

wxWindowDisabler disableAll;

wxBusylInfo wait("Please wait, working...");

for (inti=0;i<100000; i++)
DoAcCalculation();

if (1(i % 1000))
wxTheApp->Yield();

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield()
(p. 46) for more details). The simplest way to do it is to use wxWindowDisabler (p. 1572)
class as illustrated in the above example.

Derived from
None
Include files

<wx/busyinfo.h>

wxBusylnfo::wxBusylnfo

wxBusylnfo (const wxString& msg, wxWindow* parent = NULL)
Constructs a busy info window as child of parent and displays msgin it.

NB: If parent is not NULL you must ensure that it is not closed while the busy info is
shown.

wxBusylnfo::~wxBusylnfo

~wxBusylnfo ()

118

CHAPTER7

Hides and closes the window containing the information text.

wxButton

A button is a control that contains a text string, and is one of the most common elements
of a GUI. It may be placed on a dialog box (p. 412) or panel (p. 1046), or indeed almost
any other window.

Derived from

wxControl (p. 218)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files
<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. Windows and GTK+ only.

wxBU_TOP Aligns the label to the top of the button. Windows and
GTK+ only.

wxBU_RIGHT Right-justifies the bitmap label. Windows and GTK+ only.

wxBU_BOTTOM Aligns the label to the bottom of the button. Windows and
GTK+ only.

wxBU_EXACTFIT Creates the button as small as possible instead of making

it of the standard size (which is the default behaviour).
wxNO_BORDER Creates a flat button. Windows and GTK+ only.
See also window styles overview (p. 1808).
Event handling

EVT_BUTTON(id, func) Process a
WXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 96)

wxButton::wxButton

wxButton ()

119

CHAPTER7

Default constructor.

wxButton (wxWindow* parent, wxWindowID id, const wxString& label =
WXEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "button")

Constructor, creating and showing a button.

The preferred way to create standard buttons is to use default value oflabel. If no label is
supplied and id is one of standard IDs fromthis list (p. 1715), standard label will be used.
In addition to that, the button will be decorated with stock icons under GTK+ 2.

Parameters
parent

Parent window. Must not be NULL.

Button identifier. A value of wxID_ANY indicates a default value.
label

Text to be displayed on the button.
pos

Button position.
size

Button size. If the default size is specified then the button is sized appropriately for
the text.

style
Window style. See wxButton (p. 122).
validator
Window validator.
name
Window name.
See also

wxButton::Create (p. 124), wxValidator (p. 1482)

wxButton::~wxButton

~wxButton ()

120

CHAPTER7

Destructor, destroying the button.

wxButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label =
WXEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = 0, const wxValidator& validator, const wxString& name =
"button™)

Button creation function for two-step creation. For more details, seewxButton::wxButton
(p. 123).

wxButton::GetLabel

wxString GetLabel () const

Returns the string label for the button.
Return value

The button's label.

See also

wxButton::SetLabel (p. 125)

wxButton::GetDefaultSize

wxSize GetDefaultSize ()

Returns the default size for the buttons. It is advised to make all the dialog buttons of the
same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault ()
This sets the button to be the default item for the panel or dialog box.
Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1554) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultitem (p. 1048).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWidgets will then set the size of all buttons currently on the panel to
the same size.

121

CHAPTER7

wxButton::SetLabel

void SetlLabel (const wxString& label)
Sets the string label for the button.
Parameters
label

The label to set.
See also

wxButton::GetLabel (p. 124)

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 846) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 487)
wxObject (p. 1027)

Include files
<wx/laywin.h>
Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite'
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 1102), wxSashLayoutWindow (p. 1144),
wxLayoutAlgorithm (p. 846).

wxCalculateLayoutEvent::wxCalculateLayoutEvent
wxCalculateLayoutEvent (wxWindowID id = 0)
Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags () const

122

CHAPTER7

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect () const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags (int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect (const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCitrl

The calendar control allows the user to pick a date. For this, it displays a window
containing several parts: a control at the top to pick the month and the year (either or
both of them may be disabled), and a month area below them which shows all the days
in the month. The user can move the current selection using the keyboard and select the
date (generating EVT_CALENDAFRVvent) by pressing <Return> or double clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 132)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 131) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not recognized as
one by wxDateTime (p. 1773) using SetHoliday (p. 133) method.

As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_MONHdent
handler.

Derived from

wxControl (p. 218)

123

CHAPTER7

wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files

<wx/calctrl.h>

Window styles

wWXCAL_SUNDAY_FIRST Show Sunday as the first day in the week
wxCAL_MONDAY_FIRST Show Monday as the first day in the week
wxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar
wxCAL_NO_YEAR_CHANGE Disable the year changing

wxCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

wxCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

WxCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wxCAL_SHOW_HOLIDAYS
Event table macros

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 135) argument.

EVT_CALENDAR(id, func) A day was double clicked in the calendar.
EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.
EVT_CALENDAR_DAY(id, func) The selected day changed.

EVT_CALENDAR_MONTH(id, func) The selected month changed.

EVT_CALENDAR_YEAR(id, func) The selected year changed.
EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day
header

Note that changing the selected date will result in either of EVT_CALENDAR_DAYONTH
or YEARevents and EVT_CALENDAR_SEL_CHANGEDe.
Constants

The following are the possible return values for HitTest (p. 132) method:
enum wxCalendarHitTestResult

WXCAL_HITTEST_NOWHERE, // outside of anyth ing

124

CHAPTER7

WXCAL_HITTEST_HEADER, // on the header (w eekdays)
WXCAL_HITTEST_DAY /I on a day in the calendar

See also

Calendar sample (p. 1750)
wxCalendarDateAttr (p. 132)
wxCalendarEvent (p. 135)

wxCalendarCtrl::wxCalendarCtrl

wxCalendarCtrl ()
Default constructor, use Create (p. 129) after it.

wxCalendarCtrl (wxWindow* parent, wxWindowlID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 129) method.

wxCalendarCtrl::Create
bool Create (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =

wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNamesStr)

Creates the control. See wxWindow (p. 1513) for the meaning of the parameters and the
control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl
~wxCalendarCtrl ()

Destroys the control.
wxCalendarCitrl::SetDate

void SetDate (const wxDateTime& date)
Sets the current date.
wxCalendarCtrl::GetDate

const wxDateTime& GetDate() const

125

CHAPTER7

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_YEAR_CHANGile bit
directly. It allows or disallows the user to change the year interactively.

wxCalendarCtrl::EnableMonthChange

void EnableMonthChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_MONTH_CHAN&He bit.
It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay (bool display = true)

This function should be used instead of changing wxCAL_SHOW_HOLIDAX§/le bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

void SetHeaderColours (const wxColour& colFg, const wxColour& colBg)

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg () const
Gets the foreground colour of the header part of the calendar window.
See also

SetHeaderColours (p. 130)

wxCalendarCitrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg () const
Gets the background colour of the header part of the calendar window.
See also

SetHeaderColours (p. 130)

wxCalendarCitrl::SetHighlightColours

126

CHAPTER7

void SetHighlightColours (const wxColour& colFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

wxCalendarCitrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg () const
Gets the foreground highlight colour.
See also

SetHighlightColours (p. 130)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg () const
Gets the background highlight colour.
See also

SetHighlightColours (p. 130)

wxCalendarCitrl::SetHolidayColours

void SetHolidayColours (const wxColour& colFg, const wxColour& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wxCAL_SHOW_HOLIDAYf&ag).

wxCalendarCitrl::GetHolidayColourFg

const wxColour& GetHolidayColourFg () const
Return the foreground colour currently used for holiday highlighting.
See also

SetHolidayColours (p. 131)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg () const
Return the background colour currently used for holiday highlighting.
See also

SetHolidayColours (p. 131)

wxCalendarCtrl::GetAttr

127

CHAPTER7

wxCalendarDateAttr * GetAttr (size_t day) const
Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL

wxCalendarCitrl::SetAttr
void SetAttr (size_t day, wxCalendarDateAttr* attr)
Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCitrl::SetHoliday

void SetHoliday (size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr (size_t day)

Clears any attributes associated with the given day (in the rangel...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest (const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAL_HITTEST_XXXconstants (p. 127) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 127).

Derived from
No base class
Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCalendarDateBorder

wxCAL_BORDER_NONE, /I no border (defau It)
wWXxCAL_BORDER_SQUARE, /l a rectangular bo rder
wWXxCAL_BORDER_ROUND /I a round border

128

CHAPTER7

}
See also
wxCalendarCtrl (p. 127)
Include files

<wx/calctrl.h>

wxCalendarDateAttr::wxCalendarDateAttr

wxCalendarDateAttr ()

wxCalendarDateAttr (const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER_NONE)

wxCalendarDateAttr (wxCalendarDateBorder border, const wxColour& colBorder =
wxNullColour)

The constructors.
wxCalendarDateAttr::SetTextColour

void SetTextColour (const wxColour& colText)
Sets the text (foreground) colour to use.
wxCalendarDateAttr::SetBackgroundColour
void SetBackgroundColour (constwxColour& colBack)
Sets the text background colour to use.
wxCalendarDateAttr::SetBorderColour

void SetBorderColour (const wxColour& col)
Sets the border colour to use.
wxCalendarDateAttr::SetFont

void SetFont (const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

129

CHAPTER7

void SetBorder (wxCalendarDateBorder border)

Sets the border kind (p. 132)

wxCalendarDateAttr::SetHoliday

void SetHoliday (bool holiday)

Display the date with this attribute as a holiday.
wxCalendarDateAttr::HasTextColour

bool HasTextColour () const

Returns true if this item has a non default text foreground colour.
wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour () const

Returns true if this attribute specifies a non default text background colour.
wxCalendarDateAttr::HasBorderColour

bool HasBorderColour () const

Returns true if this attribute specifies a non default border colour.
wxCalendarDateAttr::HasFont

bool HasFont () const

Returns true if this attribute specifies a non default font.
wxCalendarDateAttr::HasBorder

bool HasBorder () const

Returns true if this attribute specifies a non default (i.e. any) border.
wxCalendarDateAttr::IsHoliday

bool IsHoliday () const

Returns true if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour () const

130

CHAPTER7

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr::GetBackgroundColour

const wxColour& GetBackgroundColour () const

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour () const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

const wxFont& GetFont () const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder () const

Returns the border (p. 132) to use for the item with this attribute.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 127).
Derived from

wxDateEvent (p. 251)
wxCommandEvent (p. 184)
wxEvent (p. 487)

wxObiject (p. 1027)

Include files
<wx/calctrl.h>
See also

wxCalendarCtrl (p. 127)

wxCalendarEvent::GetWeekDay

wxDateTime::WeekDay GetWeekDay () const

131

CHAPTER7

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler. It doesn't make sense to call this function in other handlers.

wxCalendarEvent::SetWeekDay

void SetWeekDay (wxDateTime::WeekDay day)

Sets the week day carried by the event, normally only used by the library internally.

wxCaret

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1525). The same caret can't be reused in two different
windows.

Derived from
No base class
Include files
<wx/caret.h>

Data structures

wxCaret::wxCaret

wxCaret ()

Default constructor: you must use one of Create() functions later.
wxCaret (wxWindow* window, int width, int height)

wxCaret (wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window.

wxCaret::Create

bool Create (wxWindowBase* window, int width, int height)

bool Create (wxWindowBase* window, const wxSize& size)

132

CHAPTER7

Create the caret of given (in pixels) width and height and associates it with the given
window (same as constructor).

wxCaret::GetBlinkTime

static int GetBlinkTime ()

Returns the blink time which is measured in milliseconds and is the time elapsed
between 2 inversions of the caret (blink time of the caret is the same for all carets, so
this functions is static).

wxCaret::GetPosition

void GetPosition (int* x, int* y) const

wxPoint GetPosition () const

Get the caret position (in pixels).

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:
GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list (x, y)

wxCaret::GetSize

void GetSize (int* width, int* height) const
wxSize GetSize() const

Get the caret size.

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size
GetSizeWH() Returns a 2-element list (width,
height)

wxCaret::GetWindow

wxWindow* GetWindow () const

Get the window the caret is associated with.
wxCaret::Hide

void Hide()

133

CHAPTER7

Same as wxCaret::Show(false) (p. 138).

wxCaret::IsOk

bool 1sOk() const

Returns true if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible () const

Returns true if the caret is visible and false if it is permanently hidden (if it is is blinking
and not shown currently but will be after the next blink, this method still returns true).

wxCaret::Move
void Move(int x, int y)
void Move (const wxPoint& pt)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime (int milliseconds)
Sets the blink time for all the carets.
Remarks

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 136)

wxCaret::SetSize

void SetSize (int width, int height)
void SetSize(const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show (bool show = true)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown

134

CHAPTER7

N times as well to reappear on the screen.

wxCheckBox

A checkbox is a labelled box which by default is either on (checkmark is visible) or off
(no checkmark). Optionally (when the wxCHK_3STATE style flag is set) it can have a
third state, called the mixed or undetermined state. Often this is used as a "Does Not
Apply" state.

Derived from

wxControl (p. 218)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files
<wx/checkbox.h>

Window styles

WXCHK_2STATE Create a 2-state checkbox. This is the default.

wWxCHK_3STATE Create a 3-state checkbox. Not implemented in
WXMGL, wxOS2 and wxGTK built against
GTK+ 1.2.

WXCHK_ALLOW_3RD_STATE_FOR_USER By default a user can't set a 3-state

checkbox to the third state. It can only be done
from code. Using this flags allows the user to
set the checkbox to the third state by clicking.

WXALIGN_RIGHT Makes the text appear on the left of the
checkbox.

See also window styles overview (p. 1808).
Event handling

EVT_CHECKBOX(id, func) Process a
WXEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 1111), wxCommandEvent (p. 184)

wxCheckBox::wxCheckBox

wxCheckBox ()

135

CHAPTER7

Default constructor.

wxCheckBox (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.
Parameters
parent

Parent window. Must not be NULL.

id
Checkbox identifier. A value of -1 indicates a default value.
label
Text to be displayed next to the checkbox.
pos
Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.
size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.
style
Window style. See wxCheckBox (p. 138).
validator
Window validator.
name
Window name.
See also

wxCheckBox::Create (p. 140), wxValidator (p. 1482)

wxCheckBox::~wxCheckBox

~wxCheckBox ()

Destructor, destroying the checkbox.

wxCheckBox::Create

136

CHAPTER7

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p.
139) for details.

wxCheckBox::GetValue

bool GetValue () const
Gets the state of a 2-state checkbox.
Return value

Returns true if itis checked, false otherwise.

wxCheckBox::Get3StateValue
wxCheckBoxState Get3StateValue () const
Gets the state of a 3-state checkbox.

Return value

Returns wxCHK_UNCHECKED when the checkbox is unchecked, wxCHK_CHECKED
when it is checked and wxCHK_UNDETERMINED when it's in the undetermined state.
Asserts when the function is used with a 2-state checkbox.

wxCheckBox::Is3rdStateAllowedForUser

bool Is3rdStateAllowedForUser () const

Returns whether or not the user can set the checkbox to the third state.
Return value

Returns true if the user can set the third state of this checkbox, false if it can only be
set programmatically or if it's a 2-state checkbox.

wxCheckBox::Is3State

bool Is3State () const
Returns whether or not the checkbox is a 3-state checkbox.
Return value

Returns true if this checkbox is a 3-state checkbox, false if it's a 2-state checkbox.

wxCheckBox::IsChecked

137

CHAPTER7

bool IsChecked () const

This is just a maybe more readable synonym for GetValue (p. 141): just as the latter, it
returns true if the checkbox is checked and false otherwise.

wxCheckBox::SetValue

void SetValue (bool state)

Sets the checkbox to the given state. This does not cause a
wWXEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters
state

If true , the check is on, otherwise it is off.

wxCheckBox::Set3StateValue

void Set3StateValue (const wxCheckBoxState state)

Sets the checkbox to the given state. This does not cause a
WXEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters
state

Can be one of: wxCHK_UNCHECKED (Check is off), wxCHK_CHECKED (Check
is on) or wxCHK_UNDETERMINED (Check is mixed). Asserts when the checkbox
is a 2-state checkbox and setting the state to wxCHK_UNDETERMINED.

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

When using this class under Windows wxWidgets must be compiled with
USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 858).

Please note that wxCheckListBox uses client data in its implementation, and therefore
this is not available to the application.

Derived from

wxListBox (p. 858)
wxControl (p. 218)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

138

CHAPTER7

Include files
<wx/checklst.h>
Window styles

See wxListBox (p. 858).
Event handling

EVT_CHECKLISTBOX(id, func) Process a
WXEVT_COMMAND_CHECKLISTBOX _TOGG
LED event, when an item in the check list box
is checked or unchecked.

See also

wxListBox (p. 858), wxChoice (p. 145), wxComboBox (p. 176), wxListCtrl (p. 864),
wxCommandEvent (p. 184)

wxCheckListBox::wxCheckListBox

wxCheckListBox ()
Default constructor.

wxCheckListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

wxCheckListBox (wxWindow* parent, wxWindowlID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "listBox")

Constructor, creating and showing a list box.
Parameters
parent

Parent window. Must not be NULL.

Window identifier. A value of -1 indicates a default value.
pos
Window position.

size

139

CHAPTER7

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

Number of strings with which to initialise the control.
choices

An array of strings with which to initialise the control.
style

Window style. See wxCheckListBox (p. 142).
validator

Window validator.
name

Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox ()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check (int item, bool check = true)

Checks the given item. Note that calling this method doesn't result in
WXEVT_COMMAND_CHECKLISTBOX_TOGGLE being emitted.

Parameters
item

Index of item to check.
check

true if the item is to be checked, false otherwise.

wxCheckListBox::IsChecked

bool IsChecked (unsigned int item) const

140

CHAPTER7

Returns true if the given item is checked, false otherwise.
Parameters
item

Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from

wxControlWithltems (p. 219)
wxControl (p. 218)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.
See also window styles overview (p. 1808).
Event handling

EVT_CHOICE(id, func) Process a
WXEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 858), wxComboBox (p. 176), wxCommandEvent (p. 184)

wxChoice::wxChoice

wxChoice ()
Default constructor.

wxChoice (wxWindow * parent, wxWindowID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

141

CHAPTER7

wxChoice (wxWindow * parent, wxWindowID id, const wxPoint& pos, const wxSize&
size, const wxArrayString& choices, long style = 0, const wxValidator& validator =

wxDefaultValidator, const wxString& name = "choice")
Constructor, creating and showing a choice.
Parameters

parent

Parent window. Must not be NULL.

Window identifier. A value of -1 indicates a default value.
pos

Window position.
size

Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.

Number of strings with which to initialise the choice control.
choices

An array of strings with which to initialise the choice control.
style

Window style. See wxChoice (p. 145).
validator

Window validator.
name

Window name.
See also
wxChoice::Create (p. 147), wxValidator (p. 1482)

wxPython note: The wxChoice constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices

wxChoice::~wxChoice

142

CHAPTER7

~wxChoice ()

Destructor, destroying the choice item.

wxChoice::Create

bool Create (wxWindow * parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices]], long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "choice")

bool Create (wxWindow * parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 145).

wxChoice::GetColumns

int GetColumns () const
Gets the number of columns in this choice item.
Remarks

This is implemented for Motif only and always returns 1 for the other platforms.

wxChoice::GetCurrentSelection

int GetCurrentSelection () const

Unlike GetSelection (p. 222) which only returns the accepted selection value, i.e. the
selection in the control once the user closes the dropdown list, this function returns the
current selection. That is, while the dropdown list is shown, it returns the currently
selected item in it. When it is not shown, its result is the same as for the other function.

This function is new since wxWidgets version 2.6.2 (before this versionGetSelection (p.
222) itself behaved like this).

wxChoice::SetColumns

void SetColumns (int n=1)
Sets the number of columns in this choice item.
Parameters
n
Number of columns.

Remarks

143

CHAPTER7

This is implemented for Motif only and doesn't do
anything under other platforms.wxChoicebook

wxChoicebook is a class similar to wxNotebook (p. 1015) but which uses a wxChoice (p.
145) to show the labels instead of the tabs.

There is no documentation for this class yet but its usage is identical to wxNotebook
(except for the features clearly related to tabs only), so please refer to that class
documentation for now. You can also use the notebook sample (p. 1756) to see
wxChoicebook in action.

Derived from

wxControl (p. 218)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files
<wx/choicebk.h>

Window styles

wxCHB_DEFAULT Choose the default location for the labels depending on the
current platform (left everywhere except Mac where it is
top).

wxCHB_TOP Place labels above the page area.

wWXCHB_LEFT Place labels on the left side.

WXCHB_RIGHT Place labels on the right side.

wxCHB_BOTTOM Place labels below the page area.

See also

wxBookCtrl (p. 1843), wxNotebook (p. 1015), notebook sample (p. 1756)

wxClasslInfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS.

Derived from
No parent class.

Include files

144

CHAPTER7

<wx/object.h>
See also

Overview (p. 1763), wxObject (p. 1027)

wxClasslnfo::wxClassInfo

wxClassInfo (const wxChar * className, const wxClassInfo * baseClass1, const
wxClassInfo * baseClass2, int size, wxObjectConstructorFn fn)

Constructs a wxClassiInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClasslnfo::CreateObject

wxObject* CreateObject ()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

wxClasslInfo::FindClass

static wxClassInfo * FindClass (wxChar * name)

Finds the wxClassInfo object for a class of the given string name.
wxClassInfo::GetBaseClassNamel

wxChar * GetBaseClassNamel () const

Returns the name of the first base class (NULL if none).
wxClassInfo::GetBaseClassName?2

wxChar * GetBaseClassName2 () const

Returns the name of the second base class (NULL if none).
wxClassInfo::GetClassName

wxChar * GetClassName () const

Returns the string form of the class name.
wxClassInfo::GetSize

int GetSize () const

145

CHAPTER7

Returns the size of the class.

wxClasslInfo::InitializeClasses

static void InitializeClasses ()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWidgets library initialization.

wxClassInfo::IsKindOf

bool IsKindOf (wxClassInfo* info)

Returns true if this class is a kind of (inherits from) the given class.

wxClient

A wxClient object represents the client part of a client-server DDE-like (Dynamic Data
Exchange) conversation. The actual DDE-based implementation using wxDDEClIient is
available on Windows only, but a platform-independent, socket-based version of this API
is available using wxTCPClient, which has the same API.

To create a client which can communicate with a suitable server, you need to derive a
class from wxConnection and another from wxClient. The custom wxConnection class
will intercept communications in a ‘conversation’ with a server, and the custom wxClient
is required so that a user-overriddenwxClient::OnMakeConnection (p. 151) member can
return a wxConnection of the required class, when a connection is made. Look at the
IPC sample and the Interprocess communications overview (p. 1891) for an example of
how to do this.

Derived from

wxClientBase
wxObiject (p. 1027)

Include files
<wx/ipc.h>
See also

wxServer (p. 1182), wxConnection (p. 210), Interprocess communications overview (p.
1891)

wxClient::wxClient

wxClient ()

Constructs a client object.

146

CHAPTER7

wxClient::MakeConnection

wxConnectionBase * MakeConnection (const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server by host (machine name under UNIX - use
'localhost' for same machine; ignored when using native DDE in Windows), service
name and topic string. If the server allows a connection, a wxConnection object will be
returned. The type of wxConnection returned can be altered by overriding the
wxClient;:OnMakeConnection (p. 151) member to return your own derived connection
object.

Under Unix, the service name may be either an integer port identifier in which case an
Internet domain socket will be used for the communications, or a valid file name (which
shouldn't exist and will be deleted afterwards) in which case a Unix domain socket is
created.

SECURITY NOTE: Using Internet domain sockets if extremely insecure for IPC as there
is absolutely no access control for them, use Unix domain sockets whenever possible!

wxClient::OnMakeConnection

wxConnectionBase * OnMakeConnection ()

Called by wxClient::MakeConnection (p. 151), by default this simply returns a new
wxConnection object. Override this method to return a wxConnection descendant
customised for the application.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxConnection::OnAdvise (p. 212).
You may also want to store application-specific data in instances of the new class.

wxClient::ValidHost

bool ValidHost (const wxString& host)

Returns true if this is a valid host name, false otherwise. This always returns true under
MS Windows.

wXxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 1040) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1571)
object (Windows only).

Derived from

147

CHAPTER7

wxWindowDC (p. 1571)
wxDC (p. 372)

Include files
<wx/dcclient.h>
See also

wxDC (p. 372), wxMemoryDC (p. 952), wxPaintDC (p. 1040), wxWindowDC (p. 1571),
wxScreenDC (p. 1157)

wxClientDC::wxClientDC

wxClientDC (wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClientData

All classes deriving from wxEvtHandler (p. 490)(such as all controls and wxApp (p. 36))
can hold arbitrary data which is here referred to as "client data". This is useful e.g. for
scripting languages which need to handle shadow objects for most of wxWidgets'
classes and which store a handle to such a shadow class as client data in that class.
This data can either be of type void - in which case the datacontainer does not take care
of freeing the data again or it is of type wxClientData or its derivatives. In that case the
container (e.g. a control) will free the memory itself later. Note that you must not assign
both void data and data derived from the wxClientData class to a container.

Some controls can hold various items and these controls can additionally hold client data
for each item. This is the case forwxChoice (p. 145), wxComboBox (p. 176)and
wxListBox (p. 858). wxTreeCtrl (p. 1446)has a specialized class wxTreeltemData (p.
1468)for each item in the tree.

If you want to add client data to your own classes, you may use the mix-in class
wxClientDataContainer (p. 153).

Include files
<wx/cIntdata.h>
See also

wxEvtHandler (p. 490), wxTreeltemData (p. 1468),wxStringClientData (p. 1325),
wxClientDataContainer (p. 153)

wxClientData::wxClientData

148

CHAPTER7

wxClientData ()

Constructor.

wxClientData::~wxClientData

~wxClientData ()

Virtual destructor.

wxClientDataContainer

This class is a mixin that provides storage and management of "client data." This data
can either be of type void - in which case the datacontainer does not take care of freeing
the data again or it is of type wxClientData or its derivatives. In that case the container
will free the memory itself later. Note that you must not assign both void data and data
derived from the wxClientData class to a container.

NOTE: This functionality is currently duplicated in wxEvtHandler in order to avoid having
more than one vtable in that class hierarchy.

See also

wxEvtHandler (p. 490), wxClientData (p. 152)
Derived from

No base class

Include files

<wx/clntdata.h>

Data structures

wxClientDataContainer::wxClientDataContainer

wxClientDataContainer ()

wxClientDataContainer::~wxClientDataContainer

~wxClientDataContainer ()

wxClientDataContainer::GetClientData

void* GetClientData () const

Get the untyped client data.

149

CHAPTER7

wxClientDataContainer::GetClientObject

wxClientData* GetClientObject () const

Get a pointer to the client data object.

wxClientDataContainer::SetClientData

void SetClientData (void* data)

Set the untyped client data.

wxClientDataContainer::SetClientObject

void SetClientObject (wxClientData* data)

Set the client data object. Any previous object will be deleted.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWidgets 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.
See also the wxDataObject overview (p. 1866) for further information.

Call wxClipboard::Open (p. 157) to get ownership of the clipboard. If this operation
returns true, you now own the clipboard. Call wxClipboard::SetData (p. 157) to put data
on the clipboard, or wxClipboard::GetData (p. 156) to retrieve data from the clipboard.
Call wxClipboard::Close (p. 156) to close the clipboard and relinquish ownership. You
should keep the clipboard open only momentarily.

For example:

/I Write some text to the clipboard
if (wxTheClipboard->Open())

/I This data objects are held by the clipboard,

/I so do not delete them in the app.

wxTheClipboard->SetData(hew wxTextDataObject(" Some text"));
wxTheClipboard->Close();

}

/l Read some text
if (wxTheClipboard->Open())

if (wxTheClipboard->IsSupported(wxDF_TEXT))
wxTextDataObject data;
wxTheClipboard->GetData(data);
wxMessageBox(data.GetText());

}
wxTheClipboard->Close();
}

150

CHAPTER7

Derived from
wxObiject (p. 1027)
Include files
<wx/clipbrd.h>
See also

Drag and drop overview (p. 1865), wxDataObject (p. 242)

wxClipboard::wxClipboard

wxClipboard ()

Constructor.

wxClipboard::~wxClipboard

~wxClipboard ()

Destructor.

wxClipboard::AddData

bool AddData (wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 156).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 157)

wxClipboard::Clear

void Clear|()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

void Close ()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.

151

CHAPTER7

157).

wxClipboard::Flush

bool Flush ()

Flushes the clipboard: this means that the data which is currently on clipboard will stay
available even after the application exits (possibly eating memory), otherwise the
clipboard will be emptied on exit. Returns false if the operation is unsuccessful for any
reason.

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns true on success.

wxClipboard::IsOpened

bool I1sOpened () const

Returns true if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported (const wxDataFormat& format)

Returns true if there is data which matches the data format of the given data object
currently available (IsSupported sounds like a misnomer, FIXME: better deprecate this
name?) on the clipboard.

wxClipboard::Open

bool Open()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 157) and
wxClipboard::GetData (p. 156).

Call wxClipboard::Close (p. 156) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns true on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

152

CHAPTER7

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 155)

wxClipboard::UsePrimarySelection

void UsePrimarySelection (bool primary = true)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is true.

wxCloseEvent

This event class contains information about window and session close events.

The handler function for EVT_CLOSE is called when the user has tried to close a a
frame or dialog box using the window manager (X) or system menu (Windows). It can
also be invoked by the application itself programmatically, for example by calling the
wxWindow::Close (p. 1517) function.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::CanVeto (p. 158). If this is false , you must destroy the window using
wxWindow::Destroy (p. 1519). If the return value is true, it is up to you whether you
respond by destroying the window.

If you don't destroy the window, you should call wxCloseEvent::Veto (p. 159) to let the
calling code know that you did not destroy the window. This allows the wxWindow::Close
(p. 1517) function to return true or false depending on whether the close instruction
was honoured or not.

Derived from
wxEvent (p. 487)
Include files
<wx/event.h>
Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to

153

CHAPTER7

wxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also
wxWindow::Close (p. 1517), Window deletion overview (p. 1808)

wxCloseEvent::wxCloseEvent

wxCloseEvent (WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto ()

Returns true if you can veto a system shutdown or a window close event. Vetoing a
window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff () const

Returns true if the user is just logging off or false if the system is shutting down. This
method can only be called for end session and query end session events, it doesn't
make sense for close window event.

wxCloseEvent::SetCanVeto
void SetCanVeto (bool canVeto)
Sets the 'can veto' flag.
wxCloseEvent::SetForce

void SetForce (bool force) const
Sets the 'force’ flag.
wxCloseEvent::SetLoggingOff

void SetLoggingOff (bool loggingOff) const
Sets the 'logging off' flag.

154

CHAPTER7

wxCloseEvent::Veto

void Veto(bool veto = true)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 158) returns true.

wxCmdLineParser

wxCmdLineParser is a class for parsing the command line.
It has the following features:
1. distinguishes options, switches and parameters; allows option grouping
2. allows both short and long options
3. automatically generates the usage message from the command line description
4. does type checks on the options values (number, date, ...).
To use it you should follow these steps:

1. construct (p. 162) an object of this class giving it the command line to parse and
optionally its description or use AddXXX() functions later

2. call Parse()
3. use Found() to retrieve the results
In the documentation below the following terminology is used:

switch This is a boolean option which can be given or
not, but which doesn't have any value. We use
the word switch to distinguish such boolean
options from more generic options like those
described below. For example, -v might be a
switch meaning "enable verbose mode".

option Option for us here is something which comes
with a value 0 unlike a switch. For example, -
o:flename might be an option which allows
to specify the name of the output file.

parameter This is a required program argument.
Derived from
No base class

Include files

155

CHAPTER7

<wx/cmdline.h>
Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 166).
Also, the meanings of parameters of the AddXXX() functions are the same as of the
corresponding fields in this structure:

struct wxCmdLineEntryDesc

{
wxCmdLineEntryType kind;

const wxChar *shortName;
const wxChar *longName;
const wxChar *description;
wxCmdLineParamType type;
int flags;

%

The type of a command line entity is in the kind field and may be one of the following
constants:

enum wxCmdLineEntryType

wxCMD_LINE_SWITCH,

wxCMD_LINE_OPTION,

wxCMD_LINE_PARAM,

wxCMD_LINE_NONE /I use this to terminat e the list

The field shortName is the usual, short, name of the switch or the option.longName is
the corresponding long name or NULL if the option has no long name. Both of these
fields are unused for the parameters. Both the short and long option names can contain
only letters, digits and the underscores.

description is used by the Usage() (p. 167) method to construct a help message
explaining the syntax of the program.

The possible values of type which specifies the type of the value accepted by an option
or parameter are:

enum wxCmdLineParamType

{
wxCMD_LINE_VAL_STRING, // default

wxCMD_LINE_VAL_NUMBER,
wxCMD_LINE_VAL_DATE,
wxCMD_LINE_VAL_NONE

Finally, the flags field is a combination of the following bit masks:
enum

wxCMD_LINE_OPTION_MANDATORY = 0x01, // this opt ion must be

156

CHAPTER7

given

wXCMD_LINE_PARAM_OPTIONAL = 0x02, // the para meter may be
omitted

wWXCMD_LINE_PARAM_MULTIPLE = 0x04, // the para meter may be
repeated

wxCMD_LINE_OPTION_HELP = 0x08, // this opt ion is a help
request

wXxCMD_LINE_NEEDS_SEPARATOR = 0x10, // must hav e sep before
the value

}

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to
AddParam() (p. 167) allows one more parameter - this may be changed by giving non-
default flags to it, i.e. use wxCMD_LINE_OPTION_MANDATORYrequire that the option
is given and wxCMD_LINE_PARAM_OPTIONAtb make a parameter optional. Also,
wxCMD_LINE_PARAM_MULTIPLEnay be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command
line description. If you use this flag, you will probably need to use GetParamCount (p.
168) to retrieve the number of parameters effectively specified after calling Parse (p.
167).

The last flag wxCMD_LINE_NEEDS_SEPARAT@RnN be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

wxApp::argc (p. 37) and wxApp::argv (p. 37)
console sample

Construction

Before Parse (p. 167) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and
parameters are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 167).

To specify the command line to parse you may use either one of constructors accepting
it (wxCmdLineParser(argc, argv) (p. 163) or wxCmdLineParser (p. 164) usually) or, if
you use the default constructor (p. 163), you can do it later by calling SetCmdLine (p.
164).

The same holds for command line description: it can be specified either in the
constructor (without command line (p. 164) or together with it (p. 164)) or constructed
later using either SetDesc (p. 166) or combination of AddSwitch (p. 167), AddOption (p.
167) and AddParam (p. 167) methods.

Using constructors or SetDesc (p. 166) uses a (usually const static) table containing

157

CHAPTER7

the command line description. If you want to decide which options to accept during the
run-time, using one of the AddXXX() functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 167).

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes ("--") and look like this: --verbose ,
i.e. they generally are complete words and not some abbreviations of them. As long
options are used by more and more applications, they are enabled by default, but may
be disabled with DisableLongOptions (p. 166).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,
' is always used, but Windows has at least two common choices for this: '-* and
‘" . Some programs also use '+ . The default is to use what suits most the current
platform, but may be changed with SetSwitchChars (p. 165) method.

Finally, SetLogo (p. 166) can be used to show some application-specific text before the
explanation given by Usage (p. 167) function.

Parsing command line

After the command line description was constructed and the desired options were set,
you can finally call Parse (p. 167) method. It returns O if the command line was correct
and was parsed, -1 if the help option was specified (this is a separate case as, normally,
the program will terminate after this) or a positive number if there was an error during the
command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWidgets logging functions.

Getting results

After calling Parse (p. 167) (and if it returned 0), you may access the results of parsing
using one of overloaded Found() methods.

For a simple switch, you will simply call Found (p. 168) to determine if the switch was
given or not, for an option or a parameter, you will call a version of Found() which also
returns the associated value in the provided variable. All Found() functions return true if
the switch or option were found in the command line or false if they were not specified.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser ()

Default constructor. You must use SetCmdLine (p. 164) later.

158

CHAPTER7

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser (int argc, char** argv)
wxCmdLineParser (int argc, wchar_t** argv)

Constructor specifies the command line to parse. This is the traditional (Unix) command
line format. The parameters argc and argv have the same meaning as for main()
function.

The second overloaded constructor is only available in Unicode build. The first one is
available in both ANSI and Unicode modes because under some platforms the
command line arguments are passed as ASCII strings even to Unicode programs.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser (const wxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of WinMain()

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser (const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 163), but also specifies the command line description (p.
166).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser (const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 163), but also specifies the command line description (p.
166).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser (const wxCmdLineEntryDesc* desc, const wxString& cmdline)

Same as wxCmdLineParser (p. 164), but also specifies the command line description (p.
166).

wxCmdLineParser::ConvertString ToArgs

static wxArrayString ConvertStringToArgs (const wxChar *cmdline)

Breaks down the string containing the full command line in words. The words are
separated by whitespace. The quotes can be used in the input string to quote the white
space and the back slashes can be used to quote the quotes.

159

CHAPTER7

wxCmdLineParser::SetCmdLine

void SetCmdLine (int argc, char** argv)
void SetCmdLine (int argc, wchar_t** argv)

Set command line to parse after using one of the constructors which don't do it. The
second overload of this function is only available in Unicode build.

See also

wxCmdLineParser (p. 163)

wxCmdLineParser::SetCmdLine

void SetCmdLine (const wxString& cmdline)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmdLineParser (p. 164)

wxCmdLineParser::~wxCmdLineParser
~wxCmdLineParser ()
Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars (const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is
"' for Unix, "-/" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions (bool enable = true)

Enable or disable support for the long options.

As long options are not (yet) POSIX-compliant, this option allows to disable them.
See also

Customization (p. 162) and AreLongOptionsEnabled (p. 166)

wxCmdLineParser::DisableLongOptions

160

CHAPTER7

void DisableLongOptions ()
Identical to EnableLongOptions(false) (p. 165).

wxCmdLineParser::AreLongOptionsEnabled

bool AreLongOptionsEnabled ()

Returns true if long options are enabled, otherwise false.
See also

EnableLongOptions (p. 165)

wxCmdLineParser::SetLogo

void SetLogo (const wxString& logo)

logo is some extra text which will be shown by Usage (p. 167) method.

wxCmdLineParser::SetDesc

void SetDesc (const wxCmdLineEntryDesc* desc)

Construct the command line description

Take the command line description from the wxCMD_LINE_NONE terminated table.

Example of usage:

static const wxCmdLineEntryDesc cmdLineDesc[] =

{wxCMD_LINE_SWITCH, "v", "verbose", "be verbos e"},

{wxCMD_LINE_SWITCH, "q", "quiet", "be quiet" ,

{wxCMD_LINE_OPTION, "0", "output", "output fi le"},

{wxCMD_LINE_OPTION, "i", "input", "input dir "1

{wxCMD_LINE_OPTION, "s", "size", "output bl ock size",
wxCMD_LINE_VAL_NUMBER },

{wxCMD_LINE_OPTION, "d", "date", "output fi le date",

wxCMD_LINE_VAL_DATE },

{ wxCMD_LINE_PARAM, NULL, NULL, "input file",
WxCMD_LINE_VAL_STRING, wxCMD_LINE_PARAM_MULTIPLE },

{ WxCMD_LINE_NONE }

wxCmdLineParser parser;

parser.SetDesc(cmdLineDesc);

wxCmdLineParser::AddSwitch

void AddSwitch (const wxString& name, const wxString& Ing = wxEmptyString,

161

CHAPTER7

const wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long nhame Ing (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption
void AddOption (const wxString& name, const wxString& Ing = wxEmptyString,

const wxString& desc = wxEmptyString, wxCmdLineParamType type =
wXxCMD_LINE_VAL_STRING, int flags = 0)

Add an option name with an optional long name Ing (no long name if it is empty, which is
default) taking a value of the given type (string by default) to the command line
description.

wxCmdLineParser::AddParam

void AddParam (const wxString& desc = wxEmptyString, wxCmdLineParamType
type = wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

wxCmdLineParser::Parse

int Parse(bool giveUsage =tr ue)

Parse the command line, return O if ok, -1 if "-h" or "--help" option was encountered
and the help message was given or a positive value if a syntax error occurred.
Parameters

giveUsage

If true (default), the usage message is given if a syntax error was encountered
while parsing the command line or if help was requested. If false , only error
messages about possible syntax errors are given, use Usage (p. 167) to show the
usage message from the caller if needed.

wxCmdLineParser::Usage

void Usage()

Give the standard usage message describing all program options. It will use the options
and parameters descriptions specified earlier, so the resulting message will not be
helpful to the user unless the descriptions were indeed specified.

See also

SetLogo (p. 166)

wxCmdLineParser::Found

162

CHAPTER7

bool Found (const wxString& name) const

Returns true if the given switch was found, false otherwise.

wxCmdLineParser::Found

bool Found (const wxString& name, wxString* value) const

Returns true if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found (const wxString& name, long* value) const

Returns true if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found (const wxString& name, wxDateTime* value) const

Returns true if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount () const

Returns the number of parameters found. This function makes sense mostly if you had
used wxCMD_LINE_PARAM_MULTIPLHag.

wxCmdLineParser::GetParam

wxString GetParam (size_t n = Qu) const
Returns the value of Nth parameter (as string only for now).
See also

GetParamCount (p. 168)

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 173) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

163

CHAPTER7

You can retrieve the current system colour settings with wxSystemSettings (p. 1334).
Derived from

wxObject (p. 1027)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

WXBLACK
WXWHITE
wWXRED

wxBLUE
WXGREEN
WXCYAN
wWXLIGHT _GREY

See also

wxColourDatabase (p. 173), wxPen (p. 1052), wxBrush (p. 108), wxColourDialog (p.
175), wxSystemSettings (p. 1334)

wxColour::wxColour

wxColour ()

Default constructor.

wxColour (unsigned char red, unsigned char green, unsigned char blue)
Constructs a colour from red, green and blue values.

wxColour (const wxString& colourNname)

Constructs a colour object using a colour name listed in wxTheColourDatabase .
wxColour (const wxColour& colour)

Copy constructor.

Parameters

red

164

CHAPTER7

The red value.
green
The green value.
blue
The blue value.
colourName
The colour name.
colour
The colour to copy.
See also
wxColourDatabase (p. 173)
wxPython note: Constructors supported by wxPython are:
wxColour(red=0, green=0, blue=0)

wxNamedColour(name)

wxColour::Blue

unsigned char Blue () const

Returns the blue intensity.

wxColour::GetPixel

long GetPixel () const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).
wxColour::Green

unsigned char Green() const

Returns the green intensity.

wxColour::Ok

bool Ok() const

165

CHAPTER7

Returns true if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(unsigned char red, unsigned char green, unsigned char blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator = (const wxColour& colour)

Assignment operator, taking another colour object.

wxColour& operator = (const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.
See also

wxColourDatabase (p. 173)

wxColour::operator ==

bool operator == (const wxColour& colour)

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator =

bool operator != (const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wxColourData

This class holds a variety of information related to colour dialogs.
Derived from
wxObject (p. 1027)

Include files

166

CHAPTER7

<wx/cmndata.h>
See also

wxColour (p. 168), wxColourDialog (p. 175), wxColourDialog overview (p. 1845)

wxColourData::wxColourData

wxColourData ()

Constructor. Initializes the custom colours to wxNullColour , the data colour setting to
black, and the choose full setting to true.

wxColourData::~wxColourData

~wxColourData ()

Destructor.

wxColourData::GetChooseFull

bool GetChooseFull () const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Under PalmOS, determines whether colour
dialog will display full rgb colour picker or only available palette indexer. Has no meaning
under other platforms.

The default value is true.

wxColourData::GetColour
wxColour& GetColour () const
Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour (int i) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are invalid colours.

wxColourData::SetChooseFull

167

CHAPTER7

void SetChooseFull (const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is true.

wxColourData::SetColour

void SetColour (const wxColour& colour)
Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetCustomColour (int i, const wxColour& colour)
Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are invalid colours.

wxColourData::operator =

void operator = (const wxColourData& data)

Assignment operator for the colour data.

wxColourDatabase

wxWidgets maintains a database of standard RGB colours for a predefined set of named
colours (such as "BLACK", "LIGHT GREY"). The application may add to this set if
desired by usingAddColour (p. 174) and may use it to look up colours by names using
Find (p. 174) or find the names for the standard colour suing FindName (p. 175).

There is one predefined instance of this class calledwxTheColourDatabase .
Derived from

None

Include files

<wx/gdicmn.h>

Remarks

The standard database contains at least the following colours:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,

168

CHAPTER7

DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

wxColour (p. 168)

wxColourDatabase::wxColourDatabase

wxColourDatabase ()

Constructs the colour database. It will be initialized at the first use.

wxColourDatabase::AddColour

void AddColour (const wxString& colourName, const wxColour& colour)
void AddColour (const wxString& colourName, wxColour* colour)

Adds a colour to the database. If a colour with the same name already exists, it is
replaced.

Please note that the overload taking a pointer is deprecated and will be removed in the
next wxWidgets version, please don't use it.

wxColourDatabase::Find

wxColour Find (const wxString& colourName)

Finds a colour given the name. Returns an invalid colour object (that is, such that its
Ok() (p. 171) method returns false) if the colour wasn't found in the database.

wxColourDatabase::FindName

wxString FindName (const wxColour& colour) const

Finds a colour name given the colour. Returns an empty string if the colour is not found
in the database.

wxColourDialog

169

CHAPTER7

This class represents the colour chooser dialog.
Derived from

wxDialog (p. 412)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files
<wx/colordlg.h>
See also

wxColourDialog Overview (p. 1845),
wxColour (p. 168),

wxColourData (p. 172),
wxGetColourFromUser (p. 1649)

wxColourDialog::wxColourDialog

wxColourDialog (wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data. Custom colours from colour data
object will be be used in dialog's colour palette. Invalid entries in custom colours list will
be ignored on some platforms (GTK) or replaced with white colour on platforms where
custom colours palette has fixed size (MSW).

See also

wxColourData (p. 172)

wxColourDialog::~wxColourDialog

~wxColourDialog ()

Destructor.

wxColourDialog::Create

bool Create (wxWindow* parent, wxColourData* data = NULL)
Same as constructor (p. 175).
wxColourDialog::GetColourData

wxColourData& GetColourData ()

170

CHAPTER7

Returns the colour data (p. 172) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL

otherwise.

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-

down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.

Derived from

wxControlWithltems (p. 219)
wxControl (p. 218)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files
<wx/combobox.h>
Window styles

wxCB_SIMPLE

wxCB_DROPDOWN
wxCB_READONLY

wxCB_SORT
wxPROCESS_ENTER

Creates a combobox with a permanently
displayed list. Windows only.

Creates a combobox with a drop-down list.

Same as wxCB_DROPDOWN but only the
strings specified as the combobox choices can
be selected, it is impossible to select (even
from a program) a string which is not in the
choices list.

Sorts the entries in the list alphabetically.

The control will generate the event
WXEVT_COMMAND_TEXT_ENTER (otherwise
pressing Enter key is either processed
internally by the control or used for navigation
between dialog controls). Windows only.

See also window styles overview (p. 1808).

171

CHAPTER7

Event handling

EVT_COMBOBOX(id, func) Process a
WXEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.
Note that callingGetValue (p. 180) returns the
new value of selection.

EVT_TEXT(id, func) Process a
WXEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
event, when <RETURN> is pressed in the
combobox.

See also

wxListBox (p. 858), wxTextCtrl (p. 1355), wxChoice (p. 145), wxCommandEvent (p. 184)

wxComboBox::wxComboBox

wxComboBox ()
Default constructor.

wxComboBox (wxWindow* parent, wxWindowID id, const wxString& value =",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n,
const wxString choices[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "comboBox")

wxComboBox (wxWindow* parent, wxWindowID id, const wxString& value, const
wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style =0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboBox")

Constructor, creating and showing a combobox.
Parameters
parent

Parent window. Must not be NULL.

Window identifier. A value of -1 indicates a default value.
value

Initial selection string. An empty string indicates no selection.

172

CHAPTER7

pos
Window position.
size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

Number of strings with which to initialise the control.
choices

An array of strings with which to initialise the control.
style

Window style. See wxComboBox (p. 176).
validator

Window validator.
name

Window name.
See also
wxComboBox::Create (p. 179), wxValidator (p. 1482)

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices

wxComboBox::~wxComboBox

~wxComboBox ()

Destructor, destroying the combobox.

wxComboBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& value =", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices]], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

bool Create (wxWindow* parent, wxWindowID id, const wxString& value, const
wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style =0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =

173

CHAPTER7

"comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::.wxComboBox (p. 177) for further details.

wxComboBox::CanCopy

bool CanCopy () const

Returns true if the combobox is editable and there is a text selection to copy to the
clipboard. Only available on Windows.

wxComboBox::CanCut

bool CanCut() const

Returns true if the combobox is editable and there is a text selection to copy to the
clipboard. Only available on Windows.

wxComboBox::CanPaste

bool CanPaste () const

Returns true if the combobox is editable and there is text on the clipboard that can be
pasted into the text field. Only available on Windows.

wxComboBox::CanRedo

bool CanRedo () const

Returns true if the combobox is editable and the last undo can be redone. Only available
on Windows.

wxComboBox::CanUndo

bool CanUndo () const

Returns true if the combobox is editable and the last edit can be undone. Only available
on Windows.

wxComboBox::Copy

void Copy()

Copies the selected text to the clipboard.
wxComboBox::Cut

void Cut()

174

CHAPTER7

Copies the selected text to the clipboard and removes the selection.

wxComboBox::GetlnsertionPoint
long GetlnsertionPoint () const

Returns the insertion point for the combobox's text field.

Note: Under wxMSW, this function always returns 0 if the combobox doesn't have the
focus.

wxComboBox::GetLastPosition

virtual wxTextPos GetLastPosition () const

Returns the last position in the combobox text field.

wxComboBox::GetValue

wxString GetValue () const

Returns the current value in the combobox text field.

wxComboBox::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboBox::Redo

void Redo()

Redoes the last undo in the text field. Windows only.

wxComboBox::Replace

void Replace (long from, long to, const wxString& text)
Replaces the text between two positions with the given text, in the combobox text field.
Parameters
from
The first position.
to
The second position.

text

175

CHAPTER7

The text to insert.

wxComboBox::Remove

void Remove (long from, long to)
Removes the text between the two positions in the combobox text field.
Parameters
from
The first position.
to

The last position.

wxComboBox::SetlnsertionPoint

void SetinsertionPoint (long pos)

Sets the insertion point in the combobox text field.
Parameters

pos

The new insertion point.

wxComboBox::SetlnsertionPointEnd

void SetlnsertionPointEnd ()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection (long from, long to)
Selects the text between the two positions, in the combobox text field.
Parameters
from
The first position.
to
The second position.

wxPython note: This method is called SetMark in wxPython, SetSelection

name is

176

CHAPTER7

kept forwxControlWithltems::SetSelection (p. 225).

wxComboBox::SetValue

void SetValue (const wxString& text)
Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONL¥tyle the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

Parameters
text

The text to set.

wxComboBox::Undo

void Undo ()

Undoes the last edit in the text field. Windows only.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from
wxObiject (p. 1027)
Include files
<wx/cmdproc.h>
See also

Overview (p. 1853)

wxCommand::wxCommand

wxCommand (bool canUndo = false, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for

177

CHAPTER7

example the criteria for undoability is context-dependent).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

~wxCommand ()

Destructor.

wxCommand::CanUndo

bool CanUndo ()

Returns true if the command can be undone, false otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return
true to indicate that the action has taken place, false otherwise. Returning false will
indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName ()

Returns the command name.

wxCommand::Undo

bool Undo ()

Override this member function to un-execute a previous Do. Return true to indicate that
the action has taken place, false otherwise. Returning false will indicate to the command
processor that the action is not redoable and no change should be made to the
command history.

How you implement this command is totally application dependent, but typical strategies
include:

« Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.

» Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and

178

CHAPTER7

data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. 1446), have
separate command event classes.

Derived from
wxEvent (p. 487)
Include files
<wx/event.h>
Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

EVT_BUTTON(id, func) Process a
WXEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

EVT_CHECKBOX(id, func) Process a
WXEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

EVT_CHOICE(id, func) Process a
WXEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

EVT_COMBOBOX(id, func) Process a
WXEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

179

CHAPTER7

EVT_LISTBOX(id, func)

EVT_LISTBOX_DCLICK(id, func)

EVT_MENU(id, func)

EVT_MENU_RANGE(id1, id2, func)

EVT_CONTEXT_MENU(func)

EVT_RADIOBOX(id, func)

EVT_RADIOBUTTON(id, func)

EVT_SCROLLBAR(id, func)

EVT_SLIDER(d, func)

EVT_TEXT(id, func)

EVT_TEXT_ENTER(id, func)

Process a
WXEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

Process a
WXEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

Process a
wWxEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.

Process a
WXEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

Process the event generated when the user
has requested a popup menu to appear by
pressing a special keyboard key (under
Windows) or by right clicking the mouse.

Process a
WXEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a
wxRadioBox control.

Process a
WXEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

Process a
WXEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be
used instead (see wxScrollEvent (p. 1174)).

Process a
wWXEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

Process a
WXEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl

180

CHAPTER7

EVT_TEXT_MAXLEN(id, func)

EVT_TOGGLEBUTTON(id, func)

EVT_TOOL(id, func)

EVT_TOOL_RANGE(id1, id2, func)

EVT_TOOL_RCLICKED(id, func)

control. Note that you must use
WXTE_PROCESS_ENTER flag when creating
the control if you want it to generate such
events.

Process a
WXEVT_COMMAND_TEXT_MAXLEN
command, which is generated by a wxTextCtrl
control when the user tries to enter more
characters into it than the limit previously set
with SetMaxLength (p. 1370).

Process a
WXEVT_COMMAND_TOGGLEBUTTON_CLIC
KED event.

Process a
WXEVT_COMMAND_TOOL_CLICKED event (a
synonym for
WXEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

Process a
WXEVT_COMMAND_TOOL_CLICKED event
for a range of identifiers. Pass the ids of the
tools.

Process a
WXEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a

EVT_TOOL_ENTER(id, func)

WXEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a

WXEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a

WXEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a

WXEVT_COMMAND_RIGHT_CLICK

181

CHAPTER7

command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_SET FOCUS(id, func) Process a
WXEVT_COMMAND_SET_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_KILL_FOCUS(id, func) Process a
WXEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

wxCommandEvent::wxCommandEvent

wxCommandEvent (WXTYPE commandEventType =0, int id = 0)

Constructor.

wxCommandEvent::Checked

bool Checked () const

Deprecated, use IsChecked (p. 188) instead.

wxCommandEvent::GetClientData

void* GetClientData ()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetClientObject

wxClientData * GetClientObject ()

Returns client object pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtraLong ()

Returns extra information dependant on the event objects type. If the event comes from
a listbox selection, it is a boolean determining whether the event was a selection (true)
or a deselection (false). A listbox deselection only occurs for multiple-selection boxes,
and in this case the index and string values are indeterminate and the listbox must be

182

CHAPTER7

examined by the application.

wxCommandEvent::Getlnt

int GetInt()

Returns the integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::GetSelection

int GetSelection ()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

wxString GetString ()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked () const

This method can be used with checkbox and menu events: for the checkboxes, the
method returns true for a selection event and false for a deselection one. For the
menu events, this method indicates if the menu item just has become checked or
unchecked (and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection

bool IsSelection ()

For a listbox or similar event, returns true if it is a selection, false if it is a deselection.

wxCommandEvent::SetClientData

void SetClientData (void* clientData)

Sets the client data for this event.

wxCommandEvent::SetClientObject

void SetClientObject (wxClientData* clientObject)

Sets the client object for this event. The client object is not owned by the event object
and the event object will not delete the client object in its destructor. The client object
must be owned and deleted by another object (e.g. a control) that has longer life time

183

CHAPTER7

than the event object.

wxCommandEvent::SetExtraLong

void SetExtraLong (int extraLong)

Sets the m_extraLong member.

wxCommandEvent::Setint

void Setint (int intCommand)

Sets the m_commandint member.

wxCommandEvent::SetString

void SetString (const wxString& string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

Derived from
wxObiject (p. 1027)
Include files
<wx/cmdproc.h>
See also

wxCommandProcessor overview (p. 1853), wxCommand (p. 182)

wxCommandProcessor::wxCommandProcessor
wxCommandProcessor (int maxCommands = -1)
Constructor.

maxCommands may be set to a positive integer to limit the number of commands stored
to it, otherwise (and by default) the list of commands can grow arbitrarily.

wxCommandProcessor::~wxCommandProcessor

184

CHAPTER7

~wxCommandProcessor ()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo ()

Returns true if the currently-active command can be undone, false otherwise.
wxCommandProcessor::ClearCommands

virtual void ClearCommands ()

Deletes all commands in the list and sets the current command pointer to NULL
wxCommandProcessor::Redo

virtual bool Redo()

Executes (redoes) the current command (the command that has just been undone if
any).

wxCommandProcessor::GetCommands

wxList& GetCommands () const

Returns the list of commands.
wxCommandProcessor::GetMaxCommands

int GetMaxCommands () const

Returns the maximum number of commands that the command processor stores.
wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu () const

Returns the edit menu associated with the command processor.
wxCommandProcessor::GetRedoAccelerator

const wxString& GetRedoAccelerator () const

Returns the string that will be appended to the Redo menu item.
wxCommandProcessor::GetRedoMenuLabel

wxString GetRedoMenuLabel () const

185

CHAPTER7

Returns the string that will be shown for the redo menu item.

wxCommandProcessor::GetUndoAccelerator

const wxString& GetUndoAccelerator () const

Returns the string that will be appended to the Undo menu item.

wxCommandProcessor::GetUndoMenuLabel

wxString GetUndoMenuLabel () const

Returns the string that will be shown for the undo menu item.

wxCommandProcessor::Initialize

virtual void Initialize ()

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::IsDirty

virtual bool IsDirty ()

Returns a boolean value that indicates if changes have been made since the last save
operation. This only works if wxCommandProcessor::MarkAsSaved (p. 192)is called
whenever the project is saved.

wxCommandProcessor::MarkAsSaved

virtual void MarkAsSaved ()

You must call this method whenever the project is saved if you plan to use
wxCommandProcessor::IsDirty (p. 191).

wxCommandProcessor::SetEditMenu

void SetEditMenu (wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::SetMenuStrings

void SetMenuStrings ()

Sets the menu labels according to the currently set menu and the current command

186

CHAPTER7

state.

wxCommandProcessor::SetRedoAccelerator

void SetRedoAccelerator (const wxString& accel)

Sets the string that will be appended to the Redo menu item.

wxCommandProcessor::SetUndoAccelerator

void SetUndoAccelerator (const wxString& accel)

Sets the string that will be appended to the Undo menu item.

wxCommandProcessor::Submit

virtual bool Submit (wxCommand * command, bool storelt = true)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storelt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

virtual bool Undo ()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true
which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. 1398) for the worker thread, but if there are several
worker threads it already makes much more sense).

Note that a call to Signal() (p. 195) may happen before the other thread calls Wait() (p.
196) and, just as with the pthread conditions, the signal is then lost and so if you want to
be sure that you don't miss it you must keep the mutex associated with the condition
initially locked and lock it again before calling Signal() (p. 195). Of course, this means
that this call is going to block until Wait() (p. 196) is called by another thread.

187

CHAPTER7

Example

This example shows how a main thread may launch a worker thread which starts

running and then waits until the main thread signals it to continue:

class MySignallingThread : public wxThread
{

public:
MySignallingThread(wxMutex *mutex, wxCondition

m_mutex = mutex;
m_condition = condition;

Create();

virtual ExitCode Entry()
{

... doourjob ...

/I tell the other(s) thread(s) that we're a
terminate: we must

/l'lock the mutex first or we might signal
before the

/I waiting threads start waiting on it!

wxMutexLocker lock(m_mutex);

m_condition.Broadcast(); // same as Signal(
waiter only

return O;

private:
wxCondition *m_condition;
wxMutex *m_mutex;

int main()

wxMutex mutex;
wxCondition condition(mutex);

/I the mutex should be initially locked
mutex.Lock();

/I create and run the thread but notice that it
to
/I exit (and signal its exit) before we unlock
MySignallingThread *thread = new MySignallingTh
&condition);

thread->Run();

/I wait for the thread termination: Wait() atom
the mutex

/I which allows the thread to continue and star

condition.Wait();

/l now we can exit
return O;

}

*condition)

bout to

the condition

) here -- one

won't be able

the mutex below
read(&mutex,

ically unlocks

ts waiting

Of course, here it would be much better to simply use a joinable thread and call

188

CHAPTER7

wxThread::Wait (p. 1398) on it, but this example does illustrate the importance of
properly locking the mutex when using wxCondition.

Constants

The following return codes are returned by wxCondition member functions:

enum wxCondError

wxCOND_NO_ERROR =0, // successful completio n
WXCOND_INVALID, /I object hasn't been i nitialized
successfully
wxCOND_TIMEOUT, /I WaitTimeout() has ti med out
WXCOND_MISC_ERROR /I some other error
h
Derived from
None.
Include files

<wx/thread.h>
See also

wxThread (p. 1391), wxMutex (p. 1010)

wxCondition::.wxCondition

wxCondition (wxMutex& mutex)

Default and only constructor. The mutex must be locked by the caller before calling Wait
(p. 196) function.

Use IsOk (p. 195) to check if the object was successfully initialized.

wxCondition::~wxCondition

~wxCondition ()

Destroys the wxCondition object. The destructor is not virtual so this class should not be
used polymorphically.

wxCondition::Broadcast

void Broadcast ()

Broadcasts to all waiting threads, waking all of them up. Note that this method may be
called whether the mutex associated with this condition is locked or not.

See also

189

CHAPTER7

wxCondition::Signal (p. 195)

wxCondition::IsOk

bool 1sOk() const

Returns true if the object had been initialized successfully, false if an error occurred.

wxCondition::Signal

void Signal ()

Signals the object waking up at most one thread. If several threads are waiting on the
same condition, the exact thread which is woken up is undefined. If no threads are
waiting, the signal is lost and the condition would have to be signalled again to wake up
any thread which may start waiting on it later.

Note that this method may be called whether the mutex associated with this condition is
locked or not.

See also

wxCondition::Broadcast (p. 195)

wxCondition::Wait

wxCondError Wait()
Waits until the condition is signalled.

This method atomically releases the lock on the mutex associated with this condition
(this is why it must be locked prior to calling Wait) and puts the thread to sleep until
Signal (p. 195) or Broadcast (p. 195) is called.

Note that even if Signal (p. 195) had been called before Wait without waking up any
thread, the thread would still wait for another one and so it is important to ensure that the
condition will be signalled after Wait or the thread may sleep forever.

Return value
Returns wxCOND_NO_ERR@R success, another value if an error occurred.
See also

WaitTimeout (p. 196)

wxCondition::WaitTimeout

wxCondError WaitTimeout (unsigned long milliseconds)

Waits until the condition is signalled or the timeout has elapsed.

190

CHAPTER7

This method is identical to Wait (p. 196) except that it returns, with the return code of
wxCOND_TIMEOU®&s soon as the given timeout expires.

Parameters
milliseconds

Timeout in milliseconds
Return value

Returns wxCOND_NO_ERRGRhe condition was signalled, wxCOND_TIMEOQOUTF the
timeout elapsed before this happened or another error code from wxCondError enum.

wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it is an abstract base class) and you will always use one of its derivations:
wxFileConfig (p. 513), wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWidgets provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32 and wxFileConfig otherwise.

See config overview (p. 1793) for the descriptions of all features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a
look at them. (p. 198)

Derived from
No base class
Include files

<wx/config.h> (to let wxWidgets choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)

<wx/fileconf.h> (wxFileConfig class)

<wx/mswi/regconf.h> (wxRegConfig class)

Example

Here is how you would typically use this class:

/I using wxConfig instead of writing wxFileConfig or wxRegConfig
enhances

/Il portability of the code

wxConfig *config = new wxConfig("MyAppName");

wxString str;

191

CHAPTER7

if (config->Read("LastPrompt”, &str)) {
/' last prompt was found in the config file/reg istry and its
value is now
/l'in str

else {
/I no last prompt...

/I another example: using default values and the full path
instead of just

/I key name: if the key is not found , the value 17 is returned

long value = config->Read("/LastRun/CalculatedVal ues/MaxValue",
17);

/I at the end of the program we would save everyt hing back

config->Write("LastPrompt"”, str);

config->Write("/LastRun/CalculatedValues/MaxValue ", value);

Il the changes will be written back automatically
delete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"
for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default” config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Note that
you must delete this object (usually in wxApp::OnEXxit (p. 42)) in order to avoid memory
leaks, wxWidgets won't do it automatically.

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWidgets library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
578) or Unix version of wxFileDialog (p. 515) have the ability to use wxConfig class.

192

CHAPTER7

Set (p. 209)

Get (p. 205)

Create (p. 204)
DontCreateOnDemand (p. 204)

Constructor and destructor

wxConfigBase (p. 202)
~wxConfigBase (p. 203)

Path management

As explained in config overview (p. 1793), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion
of the current group, which makes it possible to use the relative paths. To clarify all this,
here is an example (it is only for the sake of demonstration, it doesn't do anything
sensiblel):

wxConfig *config = new wxConfig("FooBarApp");

/I right now the current path is '/’
conf->Write("RootEntry”, 1);

/I go to some other place: if the group(s) don't exist, they
will be created
conf->SetPath("/Group/Subgroup");

/I create an entry in subgroup
conf->Write("SubgroupEntry", 3);

/l".." is understood

conf->Write("../GroupEntry”, 2);

conf->SetPath("..");

WXASSERT(conf->Read("Subgroup/SubgroupEntry", Ol)==3);

/I use absolute path: it is allowed, too
WXASSERT(conf->Read("/RootEntry”, 0l) == 1);

Warning: it is probably a good idea to always restore the path to its old value on function
exit:

void foo(wxConfigBase *config)

{
wxString strOldPath = config->GetPath();
config->SetPath("/Foo/Data");

config->SetPath(strOldPath);

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

void bar(wxConfigBase *config)

193

CHAPTER7

{
config->Write("Test", 17);
foo(config);

/I we're reading "/Foo/Data/Test" here! -1 will probably be
returned...
WXASSERT(config->Read("Test", -1) == 17);

Finally, the path separator in wxConfigBase and derived classes is always '/, regardless
of the platform (i.e. it is not \\' under Windows).

SetPath (p. 209)
GetPath (p. 206)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return false when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it is not the index of the current item (you will have some great surprises with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

wxConfigBase *config = ...;
wxArrayString aNames;

/I enumeration variables
wxString str;
long dummy;

/I first enum all entries
bool bCont = config->GetFirstEntry(str, dummy);
while (bCont) {

aNames.Add(str);

bCont = GetConfig()->GetNextEntry(str, dummy);
}

... we have all entry names in aNames...

/I now all groups...
bCont = GetConfig()->GetFirstGroup(str, dummy);
while (bCont) {

aNames.Add(str);

bCont = GetConfig()->GetNextGroup(str, dummy);
}

... we have all group (and entry) names in aNames

There are also functions to get the number of entries/subgroups without actually

194

CHAPTER7

enumerating them, but you will probably never need them.

GetFirstGroup (p. 205)
GetNextGroup (p. 206)
GetFirstEntry (p. 205)
GetNextEntry (p. 206)
GetNumberOfEntries (p. 206)
GetNumberOfGroups (p. 206)

Tests of existence

HasGroup (p. 207)
HasEntry (p. 206)
Exists (p. 204)
GetEntryType (p. 205)

Miscellaneous functions

GetAppName (p. 205)
GetVendorName (p. 206)
SetUmask (p. 513)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that sizeof(bool) ==
sizeof(int) == sizeof(long) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 207)
Write (p. 209)
Flush (p. 204)

Rename entries/groups

The functions in this section allow to rename entries or subgroups of the current group.
They will return false on error. typically because either the entry/group with the original

195

CHAPTER7

name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 208)
RenameGroup (p. 209)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:
for example, when you uninstall it.

DeleteEntry (p. 204)
DeleteGroup (p. 204)
DeleteAll (p. 204)

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

config file for my program
UserData = $HOME/data

the following syntax is valud only under Window S
UserData = %windir%\\data.dat

the call to config->Read("UserData") will return something
like"/home/zeitlin/data" if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(false) just before reading this value and
SetExpandEnvVars(true) just after. Another solution would be to prefix the offending
symbols with a backslash.

The following functions control this option:

IsExpandingEnvVars (p. 207)
SetExpandEnvVars (p. 209)
SetRecordDefaults (p. 209)
IsRecordingDefaults (p. 207)

wxConfigBase::wxConfigBase

wxConfigBase (const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0, wxMBConv& conv

196

CHAPTER7

= wxConvUTF8)

This is the default and only constructor of the wxConfigBase class, and derived classes.
Parameters

appName

The application name. If this is empty, the class will normally use
wxApp::GetAppName (p. 38) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName

The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

localFilename

Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename

Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style

Can be one of wxCONFIG_USE_LOCAL_FILE and
WXCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logically or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths. For
wxFileConfig, you can also add wxCONFIG_USE_NO_ESCAPE_CHARACTERS
which will turn off character escaping for the values of entries stored in the config
file: for example a foo key with some backslash characters will be stored as
foo=C:\mydir instead of the usual storage of foo=C:\\mydir . For
wxRegConfig, this flag refers to HKLM, and provides read-only access.

The wxCONFIG_USE_NO_ESCAPE_CHARACTERS style can be helpful if your
config file must be read or written to by a non-wxWidgets program (which might
not understand the escape characters). Note, however, that if
WXCONFIG_USE_NO_ESCAPE_CHARACTERS style is used, it is is now your
application's responsibility to ensure that there is no newline or other illegal
characters in a value, before writing that value to the file.

conv

197

CHAPTER7

This parameter is only used by wxFileConfig when compiled in Unicode mode. It
specifies the encoding in which the configuration file is written.

Remarks

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase

~wxConfigBase ()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create ()

Create a new config object: this function will create the "best" implementation of
wxConfig available for the current platform, see comments near the definition of
wxCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

void DontCreateOnDemand ()

Calling this function will prevent Get() from automatically creating a new config object if
the current one is NULL. It might be useful to call it near the program end to prevent
"accidental" creation of a new config object.

wxConfigBase::DeleteAll

bool DeleteAll ()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
uninstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry (const wxString& key, bool bDeleteGrouplfEmpty = true)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

bool DeleteGroup (const wxString& key)

Delete the group (with all subgroups)

198

CHAPTER7

wxConfigBase::Exists

bool Exists (wxString& strName) const

returns true if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush (bool bCurrentOnly = false)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

static wxConfigBase * Get(bool CreateOnDemand = true)

Get the current config object. If there is no current object andCreateOnDemand is true,
creates one (using Create) unless DontCreateOnDemand was called previously.

wxConfigBase::GetAppName

wxString GetAppName () const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType (const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:
enum EntryType
Type_Unknown,
Type_String,
Type_Boolean,

Type_Integer,
Type_Float

wxConfigBase::GetFirstGroup

bool GetFirstGroup (wxString& str, long& index) const
Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the

199

CHAPTER7

continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index)

wxConfigBase::GetFirstEntry

bool GetFirstEntry (wxString& str, long& index) const
Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index)

wxConfigBase::GetNextGroup

bool GetNextGroup (wxString& str, long& index) const
Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index)

wxConfigBase::GetNextEntry

bool GetNextEntry (wxString& str, long& index) const
Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index)

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries (bool bRecursive = false) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups (bool bRecursive = false) const

Get number of entries/subgroups in the current group, with or without its subgroups.

200

CHAPTER7

wxConfigBase::GetPath

const wxString& GetPath () const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName () const

Returns the vendor name.

wxConfigBase::HasEntry

bool HasEntry (wxString& strName) const

returns true if the entry by this name exists

wxConfigBase::HasGroup

bool HasGroup (const wxString& strName) const

returns true if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars () const

Returns true if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults () const

Returns true if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString* str) const

Read a string from the key, returning true if the value was read. If the key was not
found, str is not changed.

bool Read(const wxString& key, wxString* str, const wxString& defaultVal) const
Read a string from the key. The default value is returned if the key was not found.
Returns true if value was really read, false if the default was used.

wxString Read(const wxString& key, const wxString& defaultval) const

201

CHAPTER7

Another version of Read(), returning the string value directly.
bool Read(const wxString& key, long*) const

Reads a long value, returning true if the value was found. If the value was not found, |
is not changed.

bool Read(const wxString& key, long* |,long defaultVal) const

Reads a long value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, long defaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing
conf->Read("key", 0);

won't work because the call is ambiguous: compiler can not choose between twoRead
functions. Instead, write:

conf->Read("key", 0l);

bool Read(const wxString& key, double* d) const

Reads a double value, returning true if the value was found. If the value was not found,
d is not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

Reads a bool value, returning true if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default="") Returns a string.

ReadInt(key, default=0) Returns an int.

202

CHAPTER7

ReadFloat(key, default=0.0) Returns a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Read(key, default="") Returns a string

ReadInt(key, default=0) Returns an integer
ReadFloat(key, default=0.0) Returns a floating point number
ReadBool(key, default=0) Returns a boolean

wxConfigBase::RenameEntry

bool RenameEntry (const wxString& oldName, const wxString& newName)

Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

Returns false if oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup (const wxString& oldName, const wxString& newName)

Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns false if oldName doesn't exist or if newName already exists.

wxConfigBase::Set

static wxConfigBase * Set(wxConfigBase * pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandEnvVars

void SetExpandEnvVars (bool bDolt = true)

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath (const wxString& strPath)

Set current path: if the first character is /', it is the absolute path, otherwise it is a relative

203

CHAPTER7

path. '.." is supported. If strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults (bool bDolt = true)

Sets whether defaults are recorded to the config file whenever an attempt to read the
value which is not present in it is done.

If on (default is off) all default values for the settings used by the program are written
back to the config file. This allows the user to see what config options may be changed
and is probably useful only for wxFileConfig.

wxConfigBase::Write

bool Write (const wxString& key, const wxString& value)

bool Write (const wxString& key, long value)

bool Write (const wxString& key, double value)

bool Write (const wxString& key, bool value)

These functions write the specified value to the config file and return true on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.
Writelnt(key, value) Writes an int.
WriteFloat(key, value) Writes a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Write(key, value) Writes a string

Writelnt(key, value) Writes an integer
WriteFloat(key, value) Writes a floating point number
WriteBool(key, value) Writes a boolean

wxConnection

A wxConnection object represents the connection between a client and a server. It is

created by making a connection using a wxClient (p. 150) object, or by the acceptance
of a connection by a wxServer (p. 1182) object. The bulk of a DDE-like (Dynamic Data
Exchange) conversation is controlled by calling members in a wxConnection object or

204

CHAPTER7

by overriding its members. The actual DDE-based implementation using
wxDDEConnection is available on Windows only, but a platform-independent, socket-
based version of this API is available using wxTCPConnection, which has the same API.

An application should normally derive a new connection class from wxConnection, in
order to override the communication event handlers to do something interesting.

Derived from

wxConnectionBase
wxObiject (p. 1027)

Include files

<wx/ipc.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat

{
wxIPC_INVALID = 0,
wxIPC_TEXT = 1, I CF_TEXT */
wxIPC_BITMAP = 2, * CE_BITMAP */
wxIPC_METAFILE = 3, /* CF_METAFILEPICT * /
wxIPC_SYLK = 4,
wxIPC_DIF = 5,
wWxIPC_TIFF = 6,
wxIPC_OEMTEXT = 7, I* CF_OEMTEXT */
wxIPC_DIB = 8, /* CF_DIB */
wxIPC_PALETTE = 9,
wxIPC_PENDATA = 10,
wWxIPC_RIFF = 11,
wxIPC_WAVE = 12,

wxIPC_UNICODETEXT = 13,
wWxIPC_ENHMETAFILE = 14,

wxIPC_FILENAME = 15, /* CF_HDROP */
wxIPC_LOCALE = 16,
wxIPC_PRIVATE = 20
J
See also

wxClient (p. 150), wxServer (p. 1182),Interprocess communications overview (p. 1891)

wxConnection::wxConnection

wxConnection ()
wxConnection (char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxConnection, then the constructor should not be called directly, since the default
connection object will be provided on requesting (or accepting) a connection. However, if

205

CHAPTER7

the user defines his or her own derived connection object, the
wxServer::0OnAcceptConnection (p. 1183) and/or wxClient::OnMakeConnection (p. 151)
members should be replaced by functions which construct the new connection object.

If the arguments of the wxConnection constructor are void then the wxConnection object
manages its own connection buffer, allocating memory as needed. A programmer-
supplied buffer cannot be increased if necessary, and the program will assert if it is not
large enough. The programmer-supplied buffer is included mainly for backwards
compatibility.

wxConnection::Advise

bool Advise (const wxString& item, char* data, int size = -1, wxIPCFormat format =
WxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxConnection::OnAdvise (p. 212)
member to be called. Returns true if successful.

wxConnection::Execute

bool Execute (char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxConnection::Poke (p. 213) in that
respect). Causes the server connection's wxConnection::OnExecute (p. 212) member to
be called. Returns true if successful.

wxConnection::Disconnect

bool Disconnect ()

Called by the client or server application to disconnect from the other program; it causes
the wxConnection::OnDisconnect (p. 212) message to be sent to the corresponding
connection object in the other program. Returns true if successful or already
disconnected. The application that calls Disconnect must explicitly delete its side of the
connection.

wxConnection::OnAdvise

virtual bool OnAdvise (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item, usingAdvise (p. 211).

wxConnection::OnDisconnect

virtual bool OnDisconnect ()

206

CHAPTER7

Message sent to the client or server application when the other application notifies it to
end the connection. The default behaviour is to delete the connection object and return
true, so applications should generally override OnDisconnect (finally calling the inherited
method as well) so that they know the connection object is no longer available.

wxConnection::OnExecute

virtual bool OnExecute (const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data, using Execute (p. 212). Note that there is no item associated with this message.

wxConnection::OnPoke

virtual bool OnPoke (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxConnection::OnRequest

virtual char* OnRequest (const wxString& topic, const wxString& item, int * size,
wxIPCFormat format)

Message sent to the server application when the client calls wxConnection::Request (p.
214). The server's OnRequest (p. 213) method should respond by returning a character
string, or NULL to indicate no data, and setting *size. The character string must of
course persist after the call returns.

wxConnection::OnStartAdvise

virtual bool OnStartAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
‘advise loop' for the given topic and item. The server can refuse to participate by
returning false.

wxConnection::OnStopAdvise

virtual bool OnStopAdvise (const wxString& topic, const wxString& item)
Message sent to the server application by the client, when the client wishes to stop an

'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning false, although this doesn't have much meaning in practice.

wxConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =

207

CHAPTER7

WXCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxConnection::OnPoke (p.
213) member to be called. If size is -1 the size is computed from the string length of
data.

Returns true if successful.

wxConnection::Request

char* Request (const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxConnection::OnRequest (p. 213) member to be called. Size may be
NULL or a pointer to a variable to receive the size of the requested item.

Returns a character string (actually a pointer to the connection's buffer) if successful,
NULL otherwise. This buffer does not need to be deleted.

wxConnection::StartAdvise

bool StartAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxConnection::OnStartAdvise (p. 213) member to be
called. Returns true if the server okays it, false otherwise.

wxConnection::StopAdvise

bool StopAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxConnection::OnStopAdvise (p. 213) member to be called.
Returns true if the server okays it, false otherwise.

wxContextMenuEvent

This class is used for context menu events, sent to give the application a chance to
show a context (popup) menu.

Derived from

wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObiject (p. 1027)

Include files

<wx/event.h>

208

CHAPTER7

Event table macros

To process a menu event, use these event handler macros to direct input to member
functions that take a wxContextMenuEvent argument.

EVT_CONTEXT_MENU(func) A right click (or other context menu command
depending on platform) has been detected.

See also

Command events (p. 184),
Event handling overview (p. 1795)

wxContextMenuEvent::wxContextMenuEvent

wxContextMenuEvent (WXTYPE id =0, int id = 0, const wxPoint&
pos=wxDefaultPosition)

Constructor.

wxContextMenuEvent::GetPosition

wxPoint GetPosition () const

Returns the position at which the menu should be shown.

wxContextMenuEvent::SetPosition

void SetPosition (const wxPoint& point)

Sets the position at which the menu should be shown.

wxContextHelp

This class changes the cursor to a query and puts the application into a ‘context-
sensitive help mode'. When the user left-clicks on a window within the specified window,
a WxEVT_HELP event is sent to that control, and the application may respond to it by
popping up some help.

For example:
wxContextHelp contextHelp(myWindowy);
There are a couple of ways to invoke this behaviour implicitly:

e Use the wxDIALOG_EX_CONTEXTHELP style for a dialog (Windows only).
This will put a question mark in the titlebar, and Windows will put the application
into context-sensitive help mode automatically, with further programming.

209

CHAPTER7

* Create a wxContextHelpButton (p. 216), whose predefined behaviour is to
create a context help object. Normally you will write your application so that this
button is only added to a dialog for non-Windows platforms (use
WXDIALOG_EX_CONTEXTHELP on Windows).

Note that on Mac OS X, the cursor does not change when in context-sensitive help
mode.

Derived from
wxObiject (p. 1027)
Include files
<wx/cshelp.h>

See also

wxHelpEvent (p. 701), wxHelpController (p. 694), wxContextHelpButton (p. 216)

wxContextHelp::wxContextHelp

wxContextHelp (wxWindow* window = NULL, bool doNow = true)

Constructs a context help object, calling BeginContextHelp (p. 216) if doNow is true (the
default).

If window is NULL, the top window is used.

wxContextHelp::~wxContextHelp

~wxContextHelp ()

Destroys the context help object.

wxContextHelp::BeginContextHelp

bool BeginContextHelp (wxWindow* window = NULL)

Puts the application into context-sensitive help mode. window is the window which will
be used to catch events; if NULL, the top window will be used.

Returns true if the application was successfully put into context-sensitive help mode.
This function only returns when the event loop has finished.

wxContextHelp::EndContextHelp

bool EndContextHelp ()

Ends context-sensitive help mode. Not normally called by the application.

210

CHAPTER7

wxContextHelpButton

Instances of this class may be used to add a question mark button that when pressed,
puts the application into context-help mode. It does this by creating a wxContextHelp (p.
215) object which itself generates a wxEVT_HELP event when the user clicks on a
window.

On Windows, you may add a question-mark icon to a dialog by use of the
WXDIALOG_EX_CONTEXTHELP extra style, but on other platforms you will have to add
a button explicitly, usually next to OK, Cancel or similar buttons.

Derived from

wxBitmapButton (p. 96)
wxButton (p. 122)
wxControl (p. 218)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files
<wx/cshelp.h>
See also

wxBitmapButton (p. 96), wxContextHelp (p. 215)

wxContextHelpButton::wxContextHelpButton

wxContextHelpButton ()
Default constructor.

wxContextHelpButton (wxWindow* parent, wxWindowID id =
wxID_CONTEXT_HELP, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxBU_AUTODRAW)

Constructor, creating and showing a context help button.
Parameters
parent

Parent window. Must not be NULL.

Button identifier. Defaults to wxID_ CONTEXT_HELP.

pos

211

CHAPTER7

Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the question mark bitmap.

style
Window style.

Remarks

Normally you need pass only the parent window to the constructor, and use the defaults
for the remaining parameters.

wxControl

This is the base class for a control or "widget".

A control is generally a small window which processes user input and/or displays one or
more item of data.

Derived from

wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files
<wx/control.h>
See also

wxValidator (p. 1482)

wxControl::Command

void Command (wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 184).

wxControl::GetLabel

wxString& GetlLabel ()
Returns the control's text.

Note that the returned string contains the mnemonics (& characters) if any.

212

CHAPTER7

wxControl::SetLabel

void SetlLabel (const wxString& label)
Sets the item's text.

The & characters in the label are special and indicate that the following character is a
mnemonic for this control and can be used to activate it from the keyboard (typically by
using Alt key in combination with it). To insert a literal ampersand character, you need to
double it, i.e. use "&&" .

wxControlWithltems

This class is an abstract base class for some wxWidgets controls which contain several
items, such as wxListBox (p. 858) andwxCheckListBox (p. 142) derived from it,wxChoice
(p. 145) and wxComboBox (p. 176).

It defines the methods for accessing the controls items and although each of the derived
classes implements them differently, they still all conform to the same interface.

The items in a wxControlWithltems have (hon empty) string labels and, optionally, client
data associated with them. Client data may be of two different kinds: either simple
untyped (void *) pointers which are simply stored by the control but not used in any
way by it, or typed pointers (wxClientData *) which are owned by the control
meaning that the typed client data (and only it) will be deleted when an item isdeleted (p.
220) or the entire control iscleared (p. 220) (which also happens when it is destroyed).
Finally note that in the same control all items must have client data of the same type
(typed or untyped), if any. This type is determined by the first call to Append (p. 219) (the
version with client data pointer) or SetClientData (p. 224).

Derived from

wxControl (p. 218)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files

<wx/ctrlsub.h> but usually never included directly

wxControlWithltems::Append

int Append (const wxString& item)

Adds the item to the end of the list box.

int Append (const wxString& item, void * clientData)

int Append (const wxString& item, wxClientData * clientData)

213

CHAPTER7

Adds the item to the end of the list box, associating the given, typed or untyped, client
data pointer with the item.

void Append (const wxArrayString& strings)

Appends several items at once to the control. Notice that calling this method may be
much faster than appending the items one by one if you need to add a lot of items.

Parameters
item
String to add.
clientData
Client data to associate with the item.
Return value

When appending a single item, the return value is the index of the newly added item
which may be different from the last one if the control is sorted (e.g. has wxLB_SORTor
wxCB_SORTstyle).

wxControlWithltems::Clear

void Clear|()
Removes all items from the control.

Clear() also deletes the client data of the existing items if it is owned by the control.

wxControlWithltems::Delete

void Delete (unsigned int n)

Deletes an item from the control. The client data associated with the item will be also
deleted if it is owned by the control.

Note that it is an error (signalled by an assert failure in debug builds) to remove an item
with the index negative or greater or equal than the number of items in the control.

Parameters
n

The zero-based item index.
See also

Clear (p. 220)

wxControlWithltems::FindString

214

CHAPTER7

int FindString (const wxString& string, bool caseSensitive = false)
Finds an item whose label matches the given string.
Parameters
string
String to find.
caseSensitive
Whether search is case sensitive (default is not).
Return value

The zero-based position of the item, or wxNOT_FOUND the string was not found.

wxControlWithltems::GetClientData

void * GetClientData (unsigned int n) const

Returns a pointer to the client data associated with the given item (if any). It is an error to
call this function for a control which doesn't have untyped client data at all although it is
ok to call it even if the given item doesn't have any client data associated with it (but
other items do).

Parameters
n

The zero-based position of the item.
Return value

A pointer to the client data, or NULL if not present.

wxControlWithltems::GetClientObject

wxClientData * GetClientObject (unsigned int n) const

Returns a pointer to the client data associated with the given item (if any). It is an error to
call this function for a control which doesn't have typed client data at all although it is ok
to call it even if the given item doesn't have any client data associated with it (but other
items do).

Parameters
n
The zero-based position of the item.

Return value

215

CHAPTER7

A pointer to the client data, or NULL if not present.

wxControlWithltems::GetCount

unsigned int GetCount () const
Returns the number of items in the control.
See also

ISEmpty (p. 223)

wxControlWithltems::GetSelection

int GetSelection () const

Returns the index of the selected item or wxNOT_FOUND no item is selected.

Return value
The position of the current selection.

Remarks

This method can be used with single selection list boxes only, you should

usewxListBox::GetSelections (p. 861) for the list boxes with wxLB_MULTIPLE style.

See also

SetSelection (p. 225), GetStringSelection (p. 223)

wxControlWithltems::GetString

wxString GetString (unsigned int n) const
Returns the label of the item with the given index.
Parameters
n

The zero-based index.

Return value

The label of the item or an empty string if the position was invalid.

wxControlWithltems::GetStringSelection

wxString GetStringSelection () const

Returns the label of the selected item or an empty string if no item is selected.

216

CHAPTER7

See also

GetSelection (p. 222)

wxControlWithltems::Insert

int Insert (const wxString& item, unsigned int pos)

Inserts the item into the list before pos. Not valid for wxLB_SORTor wxCB_SORTstyles,
use Append instead.

int Insert (const wxString& item, unsigned int pos, void * clientData)
int Insert (const wxString& item, unsigned int pos, wxClientData * clientData)

Inserts the item into the list before pos, associating the given, typed or untyped, client
data pointer with the item. Not valid for wxLB_SORTor wxCB_SORTstyles, use Append
instead.

Parameters
item

String to add.
pos

Position to insert item before, zero based.
clientData

Client data to associate with the item.
Return value

The return value is the index of the newly inserted item. If the insertion failed for some
reason, -1 is returned.

wxControlWithltems::ISEmpty

bool IsEmpty () const
Returns true if the control is empty or false if it has some items.
See also

GetCount (p. 222)

wxControlWithltems::Number

int Number () const

Obsolescence note: This method is obsolete and was replaced withGetCount (p. 222),
please use the new method in the new code. This method is only available if wxWidgets

217

CHAPTER7

was compiled withWXWIN_COMPATIBILITY_2_2defined and will disappear completely
in future versions.

wxControlWithltems::Select

void Select(int n)

This is the same as SetSelection (p. 225) and exists only because it is slightly more
natural for controls which support multiple selection.

wxControlWithltems::SetClientData

void SetClientData (unsigned int n, void * data)

Associates the given untyped client data pointer with the given item. Note that it is an
error to call this function if any typed client data pointers had been associated with the
control items before.

Parameters
n

The zero-based item index.
data

The client data to associate with the item.

wxControlWithltems::SetClientObject

void SetClientObject (unsigned int n, wxClientData * data)

Associates the given typed client data pointer with the given item: thedata object will be
deleted when the item is deleted (either explicitly by using Deletes (p. 220) or implicitly
when the control itself is destroyed).

Note that it is an error to call this function if any untyped client data pointers had been
associated with the control items before.

Parameters
n

The zero-based item index.
data

The client data to associate with the item.

wxControlWithltems::SetSelection

void SetSelection (int n)

218

CHAPTER7

Sets the selection to the given item n or removes the selection entirely if n ==
wxNOT_FOUND

Note that this does not cause any command events to be emitted nor does it deselect
any other items in the controls which support multiple selections.

Parameters
n

The string position to select, starting from zero.
See also

SetString (p. 225), SetStringSelection (p. 225)

wxControlWithltems::SetString

void SetString (unsigned int n, const wxString& string)
Sets the label for the given item.
Parameters
n
The zero-based item index.
string

The label to set.

wxControlWithltems::SetStringSelection

bool SetStringSelection (const wxString& string)

Selects the item with the specified string in the control. This doesn't cause any command
events being emitted.

Parameters
string
The string to select.
Return value
true if the specified string has been selected, false if it wasn't found in the control.

See also

SetSelection (p. 225)wxCountingOutputStream

219

CHAPTER7

wxCountingOutputStream is a specialized output stream which does not write any data
anyway, instead it counts how many bytes would get written if this were a normal
stream. This can sometimes be useful or required if some data gets serialized to a
stream or compressed by using stream compression and thus the final size of the
stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of
memory and the memory has to be allocated before writing to it (which is probably
always the case when writing to a memory stream).

Derived from
wxOutputStream (p. 1032)wxStreamBase (p. 1291)
Include files

<wx/stream.h>

wxCountingOutputStream::wxCountingOutputStream

wxCountingOutputStream ()

Creates a wxCountingOutputStream object.

wxCountingOutputStream::~wxCountingOutputStream

~wxCountingOutputStream ()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize() const

Returns the current size of the stream.

wxCriticalSection

A critical section object is used for exactly the same purpose as mutexes (p. 1010). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

Finally, you should try to use wxCriticalSectionLocker (p. 228) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p.
1013) is preferrable to wxMutex (p. 1010) - please see wxMutex for an example.

Derived from

220

CHAPTER7

None.

Include files
<wx/thread.h>
See also

wxThread (p. 1391), wxCondition (p. 193), wxCriticalSectionLocker (p. 228)

wxCriticalSection::wxCriticalSection

wxCriticalSection ()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

~wxCriticalSection ()

Destructor frees the resources.

wxCriticalSection::Enter

void Enter()

Enter the critical section (same as locking a mutex). There is no error return for this
function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

void Leave()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

wxCriticalSectionLocker

This is a small helper class to be used with wxCriticalSection (p. 227) objects. A
wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Example of using it:
void Set Foo()

Il gs_critSect is some (global) critical sectio n guarding
access to the

221

CHAPTER7

/I object "foo"
wxCriticalSectionLocker locker(gs_critSect);

if(...)
{

/I do something

return;

}

/I do something else

return;

}

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each return

Derived from
None.

Include files
<wx/thread.h>
See also

wxCriticalSection (p. 227), wxMutexLocker (p. 1013)

wxCriticalSectionLocker::wxCriticalSectionLocker

wxCriticalSectionLocker (wxCriticalSection& criticalsection)

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and
enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker

~wxCriticalSectionLocker ()

Destructor leaves the critical section.

wxCSConv

This class converts between any character sets and Unicode. It has one predefined
instance, wxConvLocal , for the default user character set.

Derived from

wxMBConv (p. 923)

222

CHAPTER7

Include files
<wx/strconv.h>
See also

wxMBConv (p. 923), wxEncodingConverter (p. 482), wxMBConv classes overview (p.
1777)

wXxCSConv::.wxCSConv

wxCSConv (const wxChar* charset)
wxCSConv (wxFontEncoding encoding)

Constructor. You may specify either the name of the character set you want to convert
from/to or an encoding constant. If the character set name is not recognized, ISO 8859-1
is used as fall back.

wXCSConv::~wxCSConv

~wxCSConv ()

Destructor frees any resources needed to perform the conversion.

wxCSConv::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from the selected character set to Unicode. Returns length of string written to
destination buffer.

wxCSConv::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to the selected character set. Returns length of string written to
destination buffer.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxlcon (p. 778) for an example).

A single cursor object may be used in many windows (any subwindow type). The

223

CHAPTER7

wxWidgets convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 1659) is also available
for MS Windows use.

Derived from

wxBitmap (p. 84)
wxGDIObject (p. 609)
wxObiject (p. 1027)

Include files
<wx/cursor.h>
Predefined objects
Objects:
wxNullCursor
Pointers:

WXSTANDARD_CURSOR
WXxHOURGLASS_CURSOR
wxCROSS_CURSOR

See also

wxBitmap (p. 84), wxlcon (p. 778), wxWindow::SetCursor (p. 1552), ::wxSetCursor (p.
1659)

wxCursor::wxCursor

wxCursor ()
Default constructor.

wxCursor (const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[][=NULL, wxColour* fg=NULL, wxColour* bg=NULL)

Constructs a cursor by passing an array of bits (Motif and GTK+ only). maskBits is used
only under Motif and GTK+. The parameters fg and bg are only present on GTK+, and
force the cursor to use particular background and foreground colours.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

wxCursor (const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)
Constructs a cursor by passing a string resource name or filename.

On MacOS when specifying a string resource name, first the color cursors ‘crsr' and then

224

CHAPTER7

the black/white cursors 'CURS' in the resource chain are scanned through.

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

wxCursor (int cursorld)
Constructs a cursor using a cursor identifier.
wxCursor (const wximage& image)

Constructs a cursor from a wxlmage. The cursor is monochrome, colors with the RGB
elements all greater than 127 will be foreground, colors less than this background. The
mask (if any) will be used as transparent.

In MSW the foreground will be white and the background black. If the cursor is larger
than 32x32 it is resized. In GTK, the two most frequent colors will be used for foreground
and background. The cursor will be displayed at the size of the image. On MacOS if the
cursor is larger than 16x16 it is resized and currently only shown as black/white (mask
respected).

wxCursor (const wxCursor& cursor)
Copy constructor. This uses reference counting so is a cheap operation.
Parameters
bits
An array of bits.
maskBits
Bits for a mask bitmap.
width
Cursor width.
height
Cursor height.
hotSpotX
Hotspot x coordinate.
hotSpotY
Hotspot y coordinate.
type

Icon type to load. Under Motif, type defaults to wxBITMAP_TYPE_XBM . Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE . Under MacOS, it
defaults to wxBITMAP_TYPE_MACCURSOR_RESOURCE .

225

CHAPTER7

Under X, the permitted cursor types are:
WXxBITMAP_TYPE_XBM Load an X bitmap file.
Under Windows, the permitted types are:

wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).

WxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).

WxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.

cursorld
A stock cursor identifier. May be one of:
WXCURSOR_ARROW A standard arrow cursor.
WXCURSOR_RIGHT_ARROW A standard arrow cursor pointing to the right.

WXCURSOR_BLANK Transparent cursor.

WXCURSOR_BULLSEYE Bullseye cursor.

WXCURSOR_CHAR Rectangular character cursor.

wWXCURSOR_CROSS A cross cursor.

wWXCURSOR_HAND A hand cursor.

WXCURSOR_IBEAM An I-beam cursor (vertical line).

WXCURSOR_LEFT BUTTON Represents a mouse with the left button
depressed.

WXCURSOR_MAGNIFIER A magpnifier icon.

WXCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button
depressed.

WXCURSOR_NO_ENTRY A no-entry sign cursor.

wWXCURSOR_PAINT_BRUSH A paintbrush cursor.
WXCURSOR_PENCIL A pencil cursor.
WXCURSOR_POINT_LEFT A cursor that points left.
WXCURSOR_POINT_RIGHT A cursor that points right.

226

CHAPTER7

WXCURSOR_QUESTION_ARROW An arrow and question mark.

WXCURSOR_RIGHT _BUTTON Represents a mouse with the right button

depressed.
WXCURSOR_SIZENESW A sizing cursor pointing NE-SW.
WXCURSOR_SIZENS A sizing cursor pointing N-S.
WXCURSOR_SIZENWSE A sizing cursor pointing NW-SE.
WXCURSOR_SIZEWE A sizing cursor pointing W-E.
WXCURSOR_SIZING A general sizing cursor.
WXCURSOR_SPRAYCAN A spraycan cursor.
WXCURSOR_WAIT A wait cursor.
WXCURSOR_WATCH A watch cursor.
WXCURSOR_ARROWWAIT A cursor with both an arrow and an hourglass,

(windows.)

Note that not all cursors are available on all platforms.
cursor

Pointer or reference to a cursor to copy.
wxPython note: Constructors supported by wxPython are:

wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor
from a filename

wxStockCursor(id) Constructs a stock cursor

wxPerl note: Constructors supported by wxPerl are:

«::Cursor->new(hame, type, hotSpotX = 0, hotSpotY =0)

«::Cursor->new(id)

«::Cursor->new(image)

«::Cursor->newData(bits, width, height, hotSpotX = -1, hotSpotY = -1, maskBits =0)
Example

The following is an example of creating a cursor from 32x32 bitmap data (down_bits)
and a mask (down_mask) where 1 is black and 0 is white for the bits, and 1 is opaque
and 0 is transparent for the mask. It works on Windows and GTK+.

static char down_bits[] = { 255, 255, 255, 255, 31,

227

CHAPTER7

255, 255, 255, 31, 255, 255, 255, 31, 255, 255, 2 55,
31, 255, 255, 255, 31, 255, 255, 255, 31, 255, 25 5,
255, 31, 255, 255, 255, 31, 255, 255, 255, 25, 24 3,
255, 255, 19, 249, 255, 255, 7, 252, 255, 255, 15 , 254,
255, 255, 31, 255, 255, 255, 191, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255};

static char down_mask[] = { 240, 1, 0, 0, 240, 1,
0,0, 240, 1,0, 0, 240, 1, 0, 0, 240, 1,0, 0, 2 40, 1,
0,0, 240, 1, 0, 0, 240, 1, 0, 0, 255, 31, 0, O, 255,
31,0,0, 254, 15,0, 0, 252, 7, 0, 0, 248, 3, 0, 0,
240, 1,0, 0, 224,0,0,0, 64,0,0,0,0, 0, 0, 0, 0,
o,0000000000000000 , 0,
o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 , 0,
o,0000000,000000000 , 0,
0,0,0,0,0}

#ifdef __ WXMSW__

wxBitmap down_bitmap(down_bits, 32, 32);

wxBitmap down_mask_bitmap(down_mask, 32, 32);

down_bitmap.SetMask(new wxMask(down_mask_bitmap));

wxlmage down_image = down_bitmap.ConvertTolmage();

down_image.SetOption(WXIMAGE_OPTION_CUR_HOTSPOT_X, 6);

down_image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y, 14);

wxCursor down_cursor = wxCursor(down_image);

#else

wxCursor down_cursor = wxCursor(down_bits, 32, 32,
6, 14, down_mask, wxWHITE, wxBLACK);

#endif

wxCursor::~wxCursor

~wxCursor ()

Destroys the cursor. A cursor can be reused for more than one window, and does not
get destroyed when the window is destroyed. wxWidgets destroys all cursors on
application exit, although it is best to clean them up explicitly.

wxCursor::Ok

bool Ok() const

Returns true if cursor data is present.

wxCursor::operator =

wxCursor& operator = (const wxCursor& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

228

CHAPTER7

wxCursor:.operator ==

bool operator == (const wxCursor& cursor)

Equality operator. Two cursors are equal if they contain pointers to the same underlying
cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor:.operator =

bool operator = (const wxCursor& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxCustomDataObiject

wxCustomDataObiject is a specialization of wxDataObjectSimple (p. 247) for some
application-specific data in arbitrary (either custom or one of the standard ones). The
only restriction is that it is supposed that this data can be copied bitwise (i.e. with
memcpy()), so it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 237) or TakeData (p. 237) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should override GetSize (p. 237), GetData (p. 237)
and SetData (p. 237) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 247)
wxDataObject (p. 242)

Include files
<wx/dataobj.h>
See also

wxDataObject (p. 242)

229

CHAPTER7

wxCustombDataObject::wxCustomDataObject

wxCustomDataObject (const wxDataFormat& format = wxFormatinvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here, SetFormat (p. 248) should be used.

wxCustomDataObject::~wxCustomDataObject

~wxCustomDataObject ()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 237) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Free() , you
should override the destructor in your class as well (which would probably just call the
derived class' version of Free()).

wxCustomDataObject::Alloc

virtual void * Alloc (size_t size)

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

virtual void Free()

This function is called when the data is freed, you may override it to anything you want
(or may be nothing at all). The default version calls operator delete[] on the data.

wxCustomDataObject::GetSize

virtual size_t GetSize() const

Returns the data size in bytes.

wxCustomDataObject::GetData

virtual void * GetData() const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData(size _t size, const void *data)
Set the data. The data object will make an internal copy.

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

230

CHAPTER7

wxCustomDataObject::TakeData

virtual void TakeData(size_t size, const void *data)

Like SetData (p. 237), but doesn't copy the data - instead the object takes ownership of
the pointer.

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

wxDataFormat

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

On the system level, a data format is usually just a number (CLIPFORMATinder
Windows or Atom under X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

WXDF_TEXT Text format (wxString)

wxDF_BITMAP A bitmap (wxBitmap)

wxDF_METAFILE A metafile (wxMetafile, Windows only)

wxDF_FILENAME A list of filenames

wxDF_HTML An HTML string. This is only valid when passed to

wxSetClipboardData when compiled with Visual C++ in
non-Unicode mode

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDataFormat::NativeFormat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!

Virtual functions to override

231

CHAPTER7

None
Derived from
None

See also

Clipboard and drag and drop overview (p. 1865), DnD sample (p. 1753), wxDataObject
(p. 242)

Include files

<wx/dataobj.h>

wxDataFormat::wxDataFormat

wxDataFormat (NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 239) or Setld (p. 239) later in this case)

wxPerl note: In wxPerl this function is named newNative .

wxDataFormat::wxDataFormat

wxDataFormat (const wxChar *format)
Constructs a data format object for a custom format identified by its name format.

wxPerl note: In wxPerl this function is named newUser .
wxDataFormat::operator ==

bool operator == (const wxDataFormat& format) const
Returns true if the formats are equal.
wxDataFormat::operator !=

bool operator = (const wxDataFormat& format) const
Returns true if the formats are different.

wxDataFormat::Getld

wxString Getld () const

Returns the name of a custom format (this function will fail for a standard format).

232

CHAPTER7

wxDataFormat::GetType

NativeFormat GetType () const

Returns the platform-specific number identifying the format.

wxDataFormat::Setld

void Setld(const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType (NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

wxDatalnputStream

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or little-endian format, little-endian being the default on all
architectures.

If you want to read data from text files (or streams) use wxTextinputStream (p. 1383)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:
wxFilelnputStream input("mytext.dat");
wxDatalnputStream store(input);
wxUint8 i1;
float f2;
wxString line;
store >>i1; /I read a 8 bit integer.

store >> i1 >>{2; // read a 8 bit integer follow ed by float.
store >> line; //read a text line

See also wxDataOutputStream (p. 248).
Derived from
None

Include files

233

CHAPTER7

<wx/datstrm.h>

wxDatalnputStream::wxDatalnputStream

wxDatalnputStream (wxInputStreamé& stream)
wxDatalnputStream (wxInputStream& stream, wxMBConv& conv = wxMBConvUTF8)

Constructs a datastream object from an input stream. Only read methods will be
available. The second form is only available in Unicode build of wxWidgets.

Parameters
stream

The input stream.
conv

Charset conversion object object used to decode strings in Unicode mode (see
wxDatalnputStream::ReadString (p. 242)documentation for detailed description).
Note that you must not destroyconv before you destroy this wxDatalnputStream
instance!

wxDatalnputStream::~wxDatalnputStream

~wxDatalnputStream ()

Destroys the wxDatalnputStream object.

wxDatalnputStream::BigEndianOrdered

void BigEndianOrdered (bool be_order)

If be_order is true, all data will be read in big-endian order , such as written
by programs on a big endian architecture (e.g. Spa rc) or written by Java-
Streams (which always use big-endian order). wxDa talnputStream::Read8

wxUint8 Read8()
Reads a single byte from the stream.
void Read8(wxUint8 * buffer, size_t size)

Reads bytes from the stream in a specified buffer. The amount of bytes to read is
specified by the size variable.

wxDatalnputStream::Read16

wxUintl6 Read16()

234

CHAPTER7

Reads a 16 bit unsigned integer from the stream.
void Readl16(wxUintl16 * buffer, size t size)

Reads 16 bit unsigned integers from the stream in a specified buffer. the amount of 16
bit unsigned integer to read is specified by the size variable.

wxDatalnputStream::Read32

wxUint32 Read32()
Reads a 32 bit unsigned integer from the stream.
void Read32(wxUint32 * buffer, size_t size)

Reads 32 bit unsigned integers from the stream in a specified buffer. the amount of 32
bit unsigned integer to read is specified by the size variable.

wxDatalnputStream::Read64

wxUint64 Read64()
Reads a 64 bit unsigned integer from the stream.
void Read64(wxUint64 * buffer, size t size)

Reads 64 bit unsigned integers from the stream in a specified buffer. the amount of 64
bit unsigned integer to read is specified by the size variable.

wxDatalnputStream::ReadDouble

double ReadDouble ()
Reads a double (IEEE encoded) from the stream.
void ReadDouble (double * buffer, size_t size)

Reads double data (IEEE encoded) from the stream in a specified buffer. the amount of
double to read is specified by the size variable.

wxDatalnputStream::ReadString

wxString ReadString ()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

In Unicode build of wxWidgets, the fuction first reads multibyte (char*) string from the
stream and then converts it to Unicode using the convobject passed to constructor and
returns the result as wxString. You are responsible for using the same convertor as
when writing the stream.

235

CHAPTER7

See also wxDataOutputStream::WriteString (p. 251).

wxDataObiject

A wxDataObject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a ‘'smart’ piece of
data unlike 'dumb’ data containers such as memory buffers or files. Being ‘'smart' here
means that the data object itself should know what data formats it supports and how to
render itself in each of its supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on ‘input’ and 'output’, i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Direction

Get =0x01, //format is supported by GetDa taHere()
Set =0x02 // format is supported by SetDa ta()

J§

which distinguishes between them. See wxDataFormat (p. 237) documentation for more
about formats.

Not surprisingly, being 'smart’ comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWidgets has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 247) and wxDataObjectComposite
(p. 246). wxDataObjectSimple (p. 247) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
246) is the simplest way to implement a wxDataObject that does support multiple
formats because it achieves this by simply holding several wxDataObjectSimple objects.

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or

236

CHAPTER7

custom if you combine it with the previous solution).

4. Use wxDataObiject directly This is the solution for maximal flexibility and
efficiency, but it is also the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK+ data transfer mechanisms for clipboard and drag and drop,
nor OLE data transfer, copy any data until another application actually requests the data.
This is in contrast to the 'feel' offered to the user of a program who would normally think
that the data resides in the clipboard after having pressed '‘Copy' - in reality it is only
declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 514), wxTextDataObject (p. 1373) and wxBitmapDataObject (p.
103) which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 235)
for user-defined types. The format of user-defined data is given as a mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK+) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows
is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 247) instead.

wxPerl note: This class is not currently usable from wxPerl; you may use
Wx::PIDataObjectSimple (p. 247) instead.

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 245).

Derived from
None

Include files
<wx/dataobj.h>

See also

237

CHAPTER7

Clipboard and drag and drop overview (p. 1865), DnD sample (p. 1753),
wxFileDataObject (p. 514), wxTextDataObject (p. 1373), wxBitmapDataObject (p. 103),
wxCustomDataObject (p. 235), wxDropTarget (p. 475), wxDropSource (p. 472),
wxTextDropTarget (p. 1375), wxFileDropTarget (p. 519)

wxDataObject::wxDataObject

wxDataObiject ()

Constructor.

wxDataObject::~wxDataObject

~wxDataObiject ()

Destructor.

wxDataObject::GetAllFormats

virtual void GetAllFormats (wxDataFormat * formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.

wxPerl note: In wxPerl this method only takes the dir parameter. In scalar context it
returns the first format, in list context it returns a list containing all the supported formats.

wxDataObject::GetDataHere

virtual bool GetDataHere (const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return true on
success, false on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize (const wxDataFormat& format) const
Returns the data size of the given format format.
wxDataObject::GetFormatCount

virtual size_t GetFormatCount (Direction dir = Get) const

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

238

CHAPTER7

virtual wxDataFormat GetPreferredFormat (Direction dir = Get) const

Returns the preferred format for either rendering the data (if dir is Get, its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData(const wxDataFormat& format, size t len, const void *buf)
Set the data in the format format of the length len provided in the buffer buf.

Returns true on success, false on failure.

wxDataObjectComposite

wxDataObjectComposite is the simplest wxDataObject (p. 242) derivation which may be
used to support multiple formats. It contains several wxDataObjectSimple (p. 247)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 247)) and its format determines the preferred format of the
composite data object as well.

See wxDataObject (p. 242) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.
Derived from

wxDataObject (p. 242)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1865), wxDataObject (p. 242),
wxDataObjectSimple (p. 247), wxFileDataObject (p. 514), wxTextDataObject (p. 1373),
wxBitmapDataObject (p. 103)

wxDataObjectComposite::wxDataObjectComposite

wxDataObjectComposite ()

The default constructor.

wxDataObjectComposite::Add

239

CHAPTER7

void Add(wxDataObjectSimple *dataObject, bool preferred = false)

Adds the dataObiject to the list of supported objects and it becomes the preferred object
if preferred is true.

wxDataObjectSimple

This is the simplest possible implementation of the wxDataObject (p. 242) class. The
data object of (a class derived from) this class only supports one format, so the number
of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

wxPerl note: In wxPerl, you need to derive your data object class from
Wx::PIDataObjectSimple.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 248) and
GetDataHere (p. 248) while the objects which may be set must override SetData (p.
248). Of course, the objects supporting both operations must override all three methods.

Derived from
wxDataObject (p. 242)
Include files
<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1865), DnD sample (p. 1753),
wxFileDataObject (p. 514), wxTextDataObject (p. 1373), wxBitmapDataObject (p. 103)

wxDataObjectSimple::wxDataObjectSimple

wxDataObjectSimple (const wxDataFormat& format = wxFormatinvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 248).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat () const

240

CHAPTER7

Returns the (one and only one) format supported by this object. It is supposed that the
format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat (const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize () const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere (void *buf) const

Copy the data to the buffer, return true on success. Must be implemented in the derived
class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

wxDataObjectSimple::SetData

virtual bool SetData(size_t len, const void *buf)

Copy the data from the buffer, return true on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDataOutputStream

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or little-endian format, little-endian being the default on all
architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. 1387)
instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDatalnputStream (p. 239) for its usage and caveats.

See also wxDatalnputStream (p. 239).

Derived from

241

CHAPTER7

None
Include files

<wx/datstrm.h>

wxDataOutputStream::wxDataOutputStream

wxDataOutputStream (wxOutputStream& stream)

wxDataOutputStream (wxOutputStream& stream, wxMBConv& conv =
wxMBConvUTF8)

Constructs a datastream object from an output stream. Only write methods will be
available. The second form is only available in Unicode build of wxWidgets.

Parameters
stream

The output stream.
conv

Charset conversion object object used to encoding Unicode strings before writing
them to the stream in Unicode mode (see wxDataOutputStream::WriteString (p.
251)documentation for detailed description). Note that you must not destroyconv
before you destroy this wxDataOutputStream instance! It is recommended to use
default value (UTF-8).

wxDataOutputStream::~wxDataOutputStream

~wxDataOutputStream ()

Destroys the wxDataOutputStream object.

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered (bool be_order)

If be_order is true, all data will be written in big-endian or der, e.g. for
reading on a Sparc or from Java-Streams (which alwa ys use big-endian
order), otherwise data will be written in little-en dian order.
wxDataOutputStream::Write8

void Write8 (wxUint8 i8)
Writes the single byte i8 to the stream.

void Write8 (const wxUint8 * buffer, size_t size)

242

CHAPTER7

Writes an array of bytes to the stream. The amount of bytes to write is specified with the
size variable.

wxDataOutputStream::Write16

void Writel6 (wxUintl6 i16)
Writes the 16 bit unsigned integer i16 to the stream.
void Writel6 (const wxUintl6 * buffer, size_t size)

Writes an array of 16 bit unsigned integer to the stream. The amount of 16 bit unsigned
integer to write is specified with the size variable.

wxDataOutputStream::Write32

void Write32 (wxUint32 i32)
Writes the 32 bit unsigned integer i32 to the stream.
void Write32 (const wxUint32 * buffer, size t size)

Writes an array of 32 bit unsigned integer to the stream. The amount of 32 bit unsigned
integer to write is specified with the size variable.

wxDataOutputStream::Write64

void Write64 (wxUint64 i64)
Writes the 64 bit unsigned integer i64 to the stream.
void Write64 (const wxUint64 * buffer, size_t size)

Writes an array of 64 bit unsigned integer to the stream. The amount of 64 bit unsigned
integer to write is specified with the size variable.

wxDataOutputStream::WriteDouble

void WriteDouble (double f)

Writes the double f to the stream using the IEEE format.
void WriteDouble (const double * buffer, size_t size)

Writes an array of double to the stream. The amount of double to write is specified with
the size variable.

wxDataOutputStream::WriteString

void WriteString (const wxString& string)

Writes string to the stream. Actually, this method writes the size of the string before

243

CHAPTER7

writing string itself.

In ANSI build of wxWidgets, the string is written to the stream in exactly same way it is
represented in memory. In Unicode build, however, the string is first converted to
multibyte representation with conv object passed to stream's constructor (consequently,
ANSI application can read data written by Unicode application, as long as they agree on
encoding) and this representation is written to the stream. UTF-8 is used by default.

wxDateEvent

This event class holds information about a date change and is used together with
wxDatePickerCtrl (p. 251). It also serves as a base class for wxCalendarEvent (p. 135).

Derived from

wxCommandEvent (p. 184)
wxEvent (p. 487)
wxObiject (p. 1027)

Include files

<wx/dateevt.h>

wxDateEvent::GetDate

const wxDateTime& GetDate () const

Returns the date.

wxDateEvent::SetDate

void SetDate (const wxDateTime& date)

Sets the date carried by the event, normally only used by the library internally.

wxDatePickerCitrl

This control allows the user to select a date. Unlike wxCalendarCtrl (p. 127), which is a
relatively big control, wxDatePickerCtrl is implemented as a small window showing the
currently selected date. The control can be edited using the keyboard, and can also
display a popup window for more user-friendly date selection, depending on the styles
used and the platform, except PalmOS where date is selected using native dialog.

It is only available if wxUSE_DATEPICKCTRIs set to 1.
Derived from

wxControl (p. 218)

244

CHAPTER7

wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files

<wx/datectrl.h>

(only available if wxUSE_DATEPICKCTRIs set to 1)
Window styles

wxDP_SPIN Creates a control without a month calendar drop down but
with spin-control-like arrows to change individual date
components. This style is not supported by the generic
version.

wxDP_DROPDOWN Creates a control with a month calendar drop-down part
from which the user can select a date.

wxDP_DEFAULT Creates a control with the style that is best supported for
the current platform (currently wxDP_SPIN under Windows
and wxDP_DROPDOWN elsewhere).

wxDP_ALLOWNONE With this style, the control allows the user to not enter any
valid date at all. Without it - the default - the control always
has some valid date.

wxDP_SHOWCENTURY Forces display of the century in the default date format.
Without this style the century could be displayed, or not,
depending on the default date representation in the
system.

Event handling

EVT_DATE_CHANGED(id, func) This event fires when the user changes the
current selection in the control.

See also

wxCalendarCtrl (p. 127),
wxDateEvent (p. 251)

wxDatePickerCtrl::wxDatePickerCtrl

wxDatePickerCtrl (wxWindow * parent, wxWindowID id, const wxDateTime& dt=
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDP_DEFAULT | wxDP_SHOWCENTURY, const
wxValidator& validator = wxDefaultValidator,const wxString& name = "datectrl")

Initializes the object and calls Create (p. 253) with all the parameters.

245

CHAPTER7

wxDatePickerCtrl::Create

bool Create (wxWindow * parent, wxWindowID id, const wxDateTime& dt =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDP_DEFAULT | wxDP_SHOWCENTURY, const
wxValidator& validator = wxDefaultValidator,const wxString& name = "datectrl")

Parameters
parent

Parent window, must not be non-NULL

id
The identifier for the control.

dt
The initial value of the control, if an invalid date (such as the default value) is used,
the control is set to today.

pos
Initial position.

size
Initial size. If left at default value, the control chooses its own best size by using the
height approximately equal to a text control and width large enough to show the
date string fully.

style
The window style, should be left at 0 as there are no special styles for this control
in this version.

validator
Validator which can be used for additional date checks.

name

Control name.
Return value

true if the control was successfully created or false if creation failed.

wxDatePickerCtrl::GetRange

bool GetRange (wxDateTime * dtl, wxDateTime *dt2) const

If the control had been previously limited to a range of dates using SetRange() (p. 254),
returns the lower and upper bounds of this range. If no range is set (or only one of the

246

CHAPTER7

bounds is set), dtl and/or dt2 are set to be invalid.
Parameters
dtl

Pointer to the object which receives the lower range limit or becomes invalid if it is
not set. May be NULL if the caller is not interested in lower limit

dt2
Same as above but for the upper limit
Return value

false if no range limits are currently set, true if at least one bound is set.

wxDatePickerCtrl::GetValue

wxDateTime GetValue () const

Returns the currently selected. If there is no selection or the selection is outside of the
current range, an invalid object is returned.

wxDatePickerCtrl::SetFormat

void SetFormat (const wxChar* format)

Sets the display format for the date in the control. See wxDateTime for the meaning of
format strings.

Remarks

If the format parameter is invalid, the behaviour is undefined.

wxDatePickerCtrl::SetRange

void SetRange (const wxDateTime& dtl, const wxDateTime& dt2)

Sets the valid range for the date selection. If dtl is valid, it becomes the earliest date
(inclusive) accepted by the control. If dt2 is valid, it becomes the latest possible date.

Remarks

If the current value of the control is outside of the newly set range bounds, the behaviour
is undefined.

wxDatePickerCtrl::SetValue

void SetValue (const wxDateTime& dt)

Changes the current value of the control. The date should be valid and included in the
currently selected range, if any.

247

CHAPTER7

Calling this method does not result in a date change event.

wxDateSpan

This class is a "logical time span" and is useful for implementing program logic for such
things as "add one month to the date" which, in general, doesn't mean to add
60*60*24*31 seconds to it, but to take the same date the next month (to understand that
this is indeed different consider adding one month to Feb, 15 -- we want to get Mar, 15,
of course).

When adding a month to the date, all lesser components (days, hours, ...) won't be
changed unless the resulting date would be invalid: for example, Jan 31 + 1 month will
be Feb 28, not (non existing) Feb 31.

Because of this feature, adding and subtracting back again the same wxDateSpan will
not, in general give back the original date: Feb 28 - 1 month will be Jan 28, not Jan 31!

wxDateSpan objects can be either positive or negative. They may be multiplied by
scalars which multiply all deltas by the scalar: i.e.2*(1 month and 1 day) is 2 months
and 2 days. They can be added together and with wxDateTime (p. 260) or wxTimeSpan
(p. 1404), but the type of result is different for each case.

Beware about weeks: if you specify both weeks and days, the total number of days
added will be 7*weeks + days! See also GetTotalDays() function.

Equality operators are defined for wxDateSpans. Two datespans are equal if and only if
they both give the same target date when added to every source date. Thus
wxDateSpan::Months(1) is not equal to wxDateSpan::Days(30), because they don't give
the same date when added to 1 Feb. But wxDateSpan::Days(14) is equal to
wxDateSpan::Weeks(2)

Finally, notice that for adding hours, minutes and so on you don't need this class at all:
wxTimeSpan (p. 1404) will do the job because there are no subtleties associated with
those (we don't support leap seconds).

Derived from

No base class
Include files
<wx/datetime.h>
See also

Date classes overview (p. 1770), wxDateTime (p. 260)

wxDateSpan::wxDateSpan

wxDateSpan (int years = 0, int months = 0, int weeks = 0, int days = 0)

248

CHAPTER7

Constructs the date span object for the given number of years, months, weeks and days.
Note that the weeks and days add together if both are given.

wxDateSpan::Add

wxDateSpan Add (const wxDateSpan& other) const
wxDateSpan& Add (const wxDateSpan& other)
wxDateSpan& operator+= (const wxDateSpan& other)

Returns the sum of two date spans. The first version returns a new object, the second
and third ones modify this object in place.

wxDateSpan::Day

static wxDateSpan Day()

Returns a date span object corresponding to one day.
See also

Days (p. 256)

wxDateSpan::Days

static wxDateSpan Days (int days)

Returns a date span object corresponding to the given number of days.
See also

Day (p. 256)

wxDateSpan::GetDays

int GetDays () const

Returns the number of days (only, that it not counting the weeks component!) in this date
span.

See also

GetTotalDays (p. 257)

wxDateSpan::GetMonths

int GetMonths () const

Returns the number of the months (not counting the years) in this date span.

wxDateSpan::GetTotalDays

249

CHAPTER7

int GetTotalDays () const

Returns the combined number of days in this date span, counting both weeks and days.
It still doesn't take neither months nor years into the account.

See also

GetWeeks (p. 257), GetDays (p. 256)

wxDateSpan::GetWeeks

int GetWeeks () const
Returns the number of weeks in this date span.
See also

GetTotalDays (p. 257)

wxDateSpan::GetYears

int GetYears () const

Returns the number of years in this date span.

wxDateSpan::Month

static wxDateSpan Month ()
Returns a date span object corresponding to one month.
See also

Months (p. 258)

wxDateSpan::Months

static wxDateSpan Months (int mon)
Returns a date span object corresponding to the given number of months.
See also

Month (p. 257)

wxDateSpan::Multiply
wxDateSpan Multiply (int factor) const
wxDateSpan& Multiply (int factor)

wxDateSpan& operator*= (int factor)

250

CHAPTER7

Returns the product of the date span by the specified factor. The product is computed by
multiplying each of the components by the factor.

The first version returns a new object, the second and third ones modify this object in
place.

wxDateSpan::Negate

wxDateSpan Negate () const
Returns the date span with the opposite sign.
See also

Neg (p. 258)

wxDateSpan::Neg

wxDateSpan& Neg()
wxDateSpan& operator- ()
Changes the sign of this date span.
See also

Negate (p. 258)

wxDateSpan::SetDays

wxDateSpan& SetDays (int n)

Sets the number of days (without modifying any other components) in this date span.

wxDateSpan::SetYears

wxDateSpan& SetYears (int n)

Sets the number of years (without modifying any other components) in this date span.

wxDateSpan::SetMonths

wxDateSpan& SetMonths (int n)

Sets the number of months (without modifying any other components) in this date span.

wxDateSpan::SetWeeks

wxDateSpan& SetWeeks (int n)

Sets the number of weeks (without modifying any other components) in this date span.

251

CHAPTER7

wxDateSpan::Subtract

wxDateSpan Subtract (const wxDateSpan& other) const
wxDateSpan& Subtract (const wxDateSpan& other)
wxDateSpan& operator+= (const wxDateSpan& other)

Returns the difference of two date spans. The first version returns a new object, the
second and third ones modify this object in place.

wxDateSpan::Week

static wxDateSpan Week()
Returns a date span object corresponding to one week.
See also

Weeks (p. 259)

wxDateSpan::Weeks

static wxDateSpan Weeks (int weeks)
Returns a date span object corresponding to the given number of weeks.
See also

Week (p. 259)

wxDateSpan::Year

static wxDateSpan Year()
Returns a date span object corresponding to one year.
See also

Years (p. 260)

wxDateSpan::Years

static wxDateSpan Years(int years)
Returns a date span object corresponding to the given number of years.
See also

Year (p. 259)

wxDateSpan::operator==

252

CHAPTER7

bool operator== (wxDateSpan& other) const

Returns true if this date span is equal to the other one. Two date spans are considered
equal if and only if they have the same number of years and months and the same total
number of days (counting both days and weeks).

wxDateSpan::operator!=

bool operator!= (wxDateSpan& other) const
Returns true if this date span is different from the other one.
See also

operator== (p. 260)

wxDateTime

wxDateTime class represents an absolute moment in the time.
Types

The type wxDateTime_t is typedefed as unsigned short and is used to contain the
number of years, hours, minutes, seconds and milliseconds.

Constants

Global constant wxDefaultDateTime and synonym for it wxInvalidDateTime are
defined. This constant will be different from any valid wxDateTime object.

All the following constants are defined inside wxDateTime class (i.e., to refer to them you
should prepend their names with wxDateTime::).

Time zone symbolic names:
enum TZ

/I the time in the current time zone

Local,

I/l zones from GMT (= Greenwhich Mean Time): they're
guaranteed to be

/I consequent numbers, so writing something like "GMTO +
offset' is

/I safe if abs(offset) <= 12

/I underscore stands for minus

GMT_12, GMT_11, GMT_10, GMT_9, GMT_8, GMT_7 ,

GMT_6, GMT_5, GMT_4, GMT_3, GMT_2, GMT_1,

GMTO,

GMT1, GMT2, GMT3, GMT4, GMT5, GMT6,

GMT7, GMT8, GMT9, GMT10, GMT11, GMT12,

/I Note that GMT12 and GMT_12 are not the s ame: there is a
difference

/I of exactly one day between them

253

CHAPTER7

/I some symbolic names for TZ

/I Europe

WET = GMTO, /I West ern Europe Time

WEST = GMT1, /I West ern Europe
Summer Time

CET = GMTL, /I Cent ral Europe Time

CEST = GMT2, /I Cent ral Europe
Summer Time

EET = GMT2, I/l East ern Europe Time

EEST = GMT3, /l East ern Europe
Summer Time

MSK = GMTS, / Mosc ow Time

MSD = GMT4, /I Mosc ow Summer Time

/' US and Canada

AST = GMT_4, /I Atla ntic Standard
Time

ADT = GMT_3, I Atla ntic Daylight
Time

EST = GMT_5, /I East ern Standard
Time

EDT = GMT_4, /I East ern Daylight
Saving Time

CST = GMT_S6, /I Cent ral Standard
Time

CDT = GMT_5, /I Cent ral Daylight
Saving Time

MST = GMT_7, /l Moun tain Standard
Time

MDT = GMT_6, /I Moun tain Daylight
Saving Time

PST = GMT_8, /I Paci fic Standard
Time

PDT = GMT_7, /I Paci fic Daylight
Saving Time

HST = GMT_10, /I Hawa iilan Standard
Time

AKST = GMT_9, Il Alas ka Standard
Time

AKDT = GMT_S, Il Alas ka Daylight
Saving Time

Il Australia

A_WST = GMTS, /I West ern Standard
Time

A_CST =GMT12 + 1, /I Cent ral Standard
Time (+9.5)

A_EST = GMT10, /I East ern Standard
Time

A_ESST =GMT11, /I East ern Summer Time

/I Universal Coordinated Time = the new and politically
correct name

Il for GMT

) UTC = GMTO

Month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec and
Inv_Month for an invalid.month value are the values of wxDateTime::Month enum.

Likewise, Sun, Mon, Tue, Wed, Thu, Fri, Sat, and Inv_WeekDay are the values

254

CHAPTER7

inwxDateTime::WeekDay enum.
Finally, Inv_Year is defined to be an invalid value for year parameter.

GetMonthName() (p. 269) andGetWeekDayName (p. 270) functions use the following
flags:

enum NameFlags

Name_Full = 0x01, /I return full name
Name_Abbr = 0x02 [l return abbreviat ed name

Several functions accept an extra parameter specifying the calendar to use (although
most of them only support now the Gregorian calendar). This parameters is one of the
following values:

enum Calendar

Gregorian, // calendar currently in use in Western
countries
Julian // calendar in use since -45 un til the 1582

(or later)

Date calculations often depend on the country and wxDateTime allows to set the country
whose conventions should be used usingSetCountry (p. 271). It takes one of the
following values as parameter:

enum Country

Country_Unknown, // no special information for this
country
Country_Default, // set the default country with
SetCountry() method
/I or use the default coun try with any
other

Country_WesternEurope_Start,

Country_EEC = Country_WesternEurope_Start,
France,

Germany,

UK,

Country_WesternEurope_End = UK,

Russia,
USA
3

Different parts of the world use different conventions for the week start. In some
countries, the week starts on Sunday, while in others -- on Monday. The ISO standard
doesn't address this issue, so we support both conventions in the functions whose result
depends on it (GetWeekOfYear (p. 277) andGetWeekOfMonth (p. 277)).

The desired behvaiour may be specified by giving one of the following constants as
argument to these functions:

enum WeekFlags

255

CHAPTER7

Default_First, // Sunday_First for US, Mo nday_First for
the rest

Monday_First, // week starts with a Mond ay

Sunday_First // week starts with a Sund ay

h
Derived from
No base class
Include files
<wx/datetime.h>
See also

Date classes overview (p. 1770), wxTimeSpan (p. 1404), wxDateSpan (p. 255),
wxCalendarCtrl (p. 127)

Static functions

For convenience, all static functions are collected here. These functions either set or
return the static variables of wxDateSpan (the country), return the current moment, year,
month or number of days in it, or do some general calendar-related actions.

Please note that although several function accept an extra Calendarparameter, it is
currently ignored as only the Gregorian calendar is supported. Future versions will
support other calendars.

wxPython note: These methods are standalone functions
namedwxDateTime_<StaticMethodName> in wxPython.

SetCountry (p. 271)
GetCountry (p. 269)
IsWestEuropeanCountry (p. 271)
GetCurrentYear (p. 269)
ConvertYearToBC (p. 268)
GetCurrentMonth (p. 269)
IsLeapYear (p. 271)
GetCentury (p. 269)
GetNumberOfDays (p. 270)
GetNumberOfDays (p. 270)
GetMonthName (p. 269)
GetWeekDayName (p. 270)
GetAmPmStrings (p. 268)
IsDSTApplicable (p. 271)
GetBeginDST (p. 268)
GetEndDST (p. 269)

Now (p. 271)

UNow (p. 272)

Today (p. 272)

256

CHAPTER7

Constructors, assignment operators and setters

Constructors and various Set() methods are collected here. If you construct a date
object from separate values for day, month and year, you should use IsValid (p. 275)
method to check that the values were correct as constructors can not return an error
code.

wxDateTime() (p. 272)
wxDateTime(time_t) (p. 272)
wxDateTime(struct tm) (p. 272)
wxDateTime(double jdn) (p. 272)
wxDateTime(h, m, s, ms) (p. 273)
wxDateTime(day, mon, year, h, m, s, ms) (p. 273)
SetToCurrent (p. 273)

Set(time_t) (p. 273)

Set(struct tm) (p. 273)

Set(double jdn) (p. 273)

Set(h, m, s, ms) (p. 274)

Set(day, mon, year, h, m, s, ms) (p. 274)
SetFromDOS(unsigned long ddt) (p. 278)
ResetTime (p. 274)

SetYear (p. 274)

SetMonth (p. 274)

SetDay (p. 274)

SetHour (p. 275)

SetMinute (p. 275)

SetSecond (p. 275)

SetMillisecond (p. 275)
operator=(time_t) (p. 275)
operator=(struct tm) (p. 275)

Accessors

Here are the trivial accessors. Other functions, which might have to perform some more
complicated calculations to find the answer are under theCalendar calculations (p. 267)
section.

IsValid (p. 275)

GetTicks (p. 275)
GetYear (p. 276)
GetMonth (p. 276)
GetDay (p. 276)
GetWeekDay (p. 276)
GetHour (p. 276)
GetMinute (p. 276)
GetSecond (p. 276)
GetMillisecond (p. 276)
GetDayOfYear (p. 277)
GetWeekOfYear (p. 277)
GetWeekOfMonth (p. 277)
GetYearDay (p. 285)

257

CHAPTER7

IsWorkDay (p. 277)
IsGregorianDate (p. 277)
GetAsDOS (p. 278)

Date comparison

There are several function to allow date comparison. To supplement them, a few global
operators >, < etc taking wxDateTime are defined.

IsEqualTo (p. 278)
IsEarlierThan (p. 278)
IsLaterThan (p. 278)
IsStrictlyBetween (p. 278)
IsBetween (p. 278)
IsSameDate (p. 279)
IsSameTime (p. 279)
IsEqualUpTo (p. 279)

Date arithmetics

These functions carry out arithmetics (p. 1772) on the wxDateTime objects. As explained
in the overview, either wxTimeSpan or wxDateSpan may be added to wxDateTime,
hence all functions are overloaded to accept both arguments.

Also, both Add() and Subtract() have both const and non-const version. The first
one returns a new object which represents the sum/difference of the original one with the
argument while the second form modifies the object to which it is applied. The operators
-= and += are defined to be equivalent to the second forms of these functions.

Add(wxTimeSpan) (p. 279)
Add(wxDateSpan) (p. 279)
Subtract(wxTimeSpan) (p. 279)
Subtract(wxDateSpan) (p. 280)
Subtract(wxDateTime) (p. 280)
oparator+=(wxTimeSpan) (p. 279)
oparator+=(wxDateSpan) (p. 279)
oparator-=(wxTimeSpan) (p. 279)
oparator-=(wxDateSpan) (p. 280)

Parsing and formatting dates

These functions convert wxDateTime objects to and from text. The conversions to text
are mostly trivial: you can either do it using the default date and time representations for
the current locale (FormatDate (p. 282) andFormatTime (p. 282)), using the international
standard representation defined by ISO 8601 (FormatlSODate (p. 282)
andFormatlSOTime (p. 282)) or by specifying any format at all and using Format (p. 282)
directly.

The conversions from text are more interesting, as there are much more possibilities to
care about. The simplest cases can be taken care of withParseFormat (p. 280) which
can parse any date in the given (rigid) format. ParseRfc822Date (p. 280) is another

258

CHAPTER7

function for parsing dates in predefined format -- the one of RFC 822 which (still...)
defines the format of email messages on the Internet. This format can not be described
with strptime(3) -like format strings used byFormat (p. 282), hence the need for a
separate function.

But the most interesting functions areParseTime (p. 281),ParseDate (p. 281)
andParseDateTime (p. 281). They try to parse the date ans time (or only one of them) in
'free' format, i.e. allow them to be specified in any of possible ways. These functions will
usually be used to parse the (interactive) user input which is not bound to be in any
predefined format. As an example, ParseDateTime (p. 281) can parse the strings such
as "tomorrow" , "March first" and even'next Sunday"”

ParseRfc822Date (p. 280)
ParseFormat (p. 280)
ParseDateTime (p. 281)
ParseDate (p. 281)
ParseTime (p. 281)
Format (p. 282)
FormatDate (p. 282)
FormatTime (p. 282)
FormatlSODate (p. 282)
FormatlSOTime (p. 282)

Calendar calculations

The functions in this section perform the basic calendar calculations, mostly related to
the week days. They allow to find the given week day in the week with given number
(either in the month or in the year) and so on.

All (non-const) functions in this section don't modify the time part of the wxDateTime --
they only work with the date part of it.

SetToWeekDaylnSameWeek (p. 282)
GetWeekDayIlnSameWeek (p. 283)
SetToNextWeekDay (p. 283)
GetNextWeekDay (p. 283)
SetToPrevWeekDay (p. 283)
GetPrevWeekDay (p. 283)
SetToWeekDay (p. 283)
GetWeekDay (p. 284)
SetToLastWeekDay (p. 284)
GetLastWeekDay (p. 284)
SetToWeekOfYear (p. 284)
SetTolLastMonthDay (p. 284)
GetLastMonthDay (p. 285)
SetToYearDay (p. 285)
GetYearDay (p. 285)

Astronomical/historical functions

Some degree of support for the date units used in astronomy and/or history is provided.

259

CHAPTER7

You can construct a wxDateTime object from aJDN (p. 273) and you may also get its
JDN,MJD (p. 285) orRata Die number (p. 286) from it.

wxDateTime(double jdn) (p. 272)
Set(double jdn) (p. 273)
GetJulianDayNumber (p. 285)
GetJDN (p. 285)
GetModifiedJulianDayNumber (p. 285)
GetMJD (p. 286)

GetRataDie (p. 286)

Time zone and DST support

Please see the time zone overview (p. 1772) for more information about time zones.
Normally, these functions should be rarely used.

FromTimezone (p. 286)
ToTimezone (p. 286)
MakeTimezone (p. 286)
MakeFromTimezone (p. 286)
ToUTC (p. 287)

MakeUTC (p. 287)
GetBeginDST (p. 268)
GetEndDST (p. 269)

ISDST (p. 287)

wxDateTime::ConvertYearToBC

static int ConvertYearToBC (int year)

Converts the year in absolute notation (i.e. a number which can be negative, positive or
zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year
0 is year 1 BC and so for other years there is a difference of 1.

This function should be used like this:
wxDateTime dt(...);
inty = dt.GetYear();

printf("The year is %d%s", wxDateTime::ConvertY earToBC(y), y >
0 ? "AD":"BC");

wxDateTime::GetAmPmStrings

static void GetAmPmStrings (wxString * am, wxString * pm)

Returns the translations of the strings AMand PMused for time formatting for the current
locale. Either of the pointers may be NULL if the corresponding value is not needed.

wxDateTime::GetBeginDST

260

CHAPTER7

static wxDateTime GetBeginDST (int year = Inv_Year, Country country =
Country_Default)

Get the beginning of DST for the given country in the given year (current one by default).
This function suffers from limitations described inDST overview (p. 1773).

See also

GetEndDST (p. 269)

wxDateTime::GetCountry

static Country GetCountry ()

Returns the current default country. The default country is used for DST calculations, for
example.

See also

SetCountry (p. 271)

wxDateTime::GetCurrentYear

static int GetCurrentYear (Calendar cal = Gregorian)

Get the current year in given calendar (only Gregorian is currently supported).

wxDateTime::GetCurrentMonth

static Month GetCurrentMonth (Calendar cal = Gregorian)

Get the current month in given calendar (only Gregorian is currently supported).

wxDateTime::GetCentury

static int GetCentury (int year = Inv_Year)

Get the current century, i.e. first two digits of the year, in given calendar (only Gregorian
is currently supported).

wxDateTime::GetEndDST

static wxDateTime GetEndDST (int year = Inv_Year, Country country =
Country_Default)

Returns the end of DST for the given country in the given year (current one by default).
See also

GetBeginDST (p. 268)

261

CHAPTER7

wxDateTime::GetMonthName

static wxString GetMonthName (Month month, NameFlags flags = Name_Full)
Gets the full (default) or abbreviated (specify Name_Abbr name of the given month.
See also

GetWeekDayName (p. 270)

wxDateTime::GetNumberOfDays

static wxDateTime_t GetNumberOfDays (int year, Calendar cal = Gregorian)

static wxDateTime_t GetNumberOfDays (Month month, int year = Inv_Year, Calendar
cal = Gregorian)

Returns the number of days in the given year or in the given month of the year.
The only supported value for cal parameter is currently Gregorian

wxPython note: These two methods are named GetNumberOfDaysInYear and
GetNumberOfDaysIinMonth in wxPython.

wxDateTime::GetTimeNow

static time_t GetTimeNow ()

Returns the current time.

wxDateTime::GetTmNow

static struct tm * GetTmNow (struct tm * tm)

Returns the current time broken down, uses the buffer whose adress is passed to the
function via tm to store the result.

wxDateTime::GetTmNow

static struct tm * GetTmNow ()

Returns the current time broken down. Note that this function returns a pointer to a static
buffer that's reused by calls to this function and certain C library functions (e.g.
localtime). If there is any chance your code might be used in a multi-threaded
application, you really should use the flavour of function wxDateTime::GetTmNow (p.
270)taking a parameter.

wxDateTime::GetWeekDayName

static wxString GetWeekDayName (WeekDay weekday, NameFlags flags =
Name_Full)

262

CHAPTER7

Gets the full (default) or abbreviated (specify Name_Abbr name of the given week day.
See also

GetMonthName (p. 269)

wxDateTime::IsLeapYear

static bool IsLeapYear (int year = Inv_Year, Calendar cal = Gregorian)
Returns true if the year is a leap one in the specified calendar.

This functions supports Gregorian and Julian calendars.

wxDateTime::IsWestEuropeanCountry

static bool IsWestEuropeanCountry (Country country = Country Default)

This function returns true if the specified (or default) country is one of Western
European ones. It is used internally by wxDateTime to determine the DST convention
and date and time formatting rules.

wxDateTime::ISDSTApplicable

static bool IsDSTApplicable (int year = Inv_Year, Country country = Country_Default)

Returns true if DST was used n the given year (the current one by default) in the given
country.

wxDateTime::Now

static wxDateTime Now ()
Returns the object corresponding to the current time.

Example:

wxDateTime now = wxDateTime::Now();
printf("Current time in Paris:\t%s\n", now.Form at("%c",
wxDateTime::CET).c_str());

Note that this function is accurate up to second:wxDateTime::UNow (p. 272) should be
used for better precision (but it is less efficient and might not be available on all
platforms).

See also

Today (p. 272)

wxDateTime::SetCountry

static void SetCountry (Country country)

263

CHAPTER7

Sets the country to use by default. This setting influences the DST calculations, date
formatting and other things.

The possible values for country parameter are enumerated inwxDateTime constants
section (p. 260).

See also

GetCountry (p. 269)

wxDateTime::Today

static wxDateTime Today ()

Returns the object corresponding to the midnight of the current day (i.e. the same as
Now() (p. 271), but the time part is set to 0).

See also

Now (p. 271)

wxDateTime::UNow

static wxDateTime UNow ()

Returns the object corresponding to the current time including the milliseconds if a
function to get time with such precision is available on the current platform (supported
under most Unices and Win32).

See also

Now (p. 271)

wxDateTime::wxDateTime

wxDateTime ()

Default constructor. Use one of Set() functions to initialize the object later.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (time_t timet)
Same as Set (p. 272).

wxPython note: This constructor is named wxDateTimeFromTimeT in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (const struct tm& tm)

Same as Set (p. 272)

264

CHAPTER7

wxPython note: Unsupported.

wxDateTime::wxDateTime
wxDateTime& wxDateTime (double jdn)
Same as Set (p. 272)

wxPython note: This constructor is named wxDateTimeFromJDN in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (wxDateTime_t hour, wxDateTime_t minute = 0,
wxDateTime_t second = 0, wxDateTime_t millisec = 0)

Same as Set (p. 273)

wxPython note: This constructor is named wxDateTimeFromHMS in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (wxDateTime_t day, Month month = Inv_Month, int
Inv_Year,wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second =
0, wxDateTime_t millisec = 0)

Same as Set (p. 274)

wxPython note: This constructor is named wxDateTimeFromDMY in wxPython.

wxDateTime::SetToCurrent

wxDateTime& SetToCurrent ()

Sets the date and time of to the current values. Same as assigning the result of Now()
(p. 271) to this object.

wxDateTime::Set
wxDateTime& Set(time_t timet)
Constructs the object from timet value holding the number of seconds since Jan 1, 1970.

wxPython note: This method is named SetTimeT in wxPython.

wxDateTime::Set

wxDateTime& Set(const struct tm& tm)
Sets the date and time from the broken down representation in the standardtm structure.

wxPython note: Unsupported.

265

CHAPTER7

wxDateTime::Set

wxDateTime& Set(double jdn)
Sets the date from the so-called Julian Day Number.
By definition, the Julian Day Number, usually abbreviated as JDN, of a particular instant

is the fractional number of days since 12 hours Universal Coordinated Time (Greenwich
mean noon) on January 1 of the year -4712 in the Julian proleptic calendar.

wxPython note: This method is named SetJDN in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t
second = 0, wxDateTime_t millisec = 0)

Sets the date to be equal to Today (p. 272) and the time from supplied parameters.
wxPython note: This method is named SetHMS in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t day, Month month = Inv_Month, int year = Inv_Year,

wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second =0,
wxDateTime_t millisec = 0)

Sets the date and time from the parameters.
wxDateTime::ResetTime

wxDateTime& ResetTime ()

Reset time to midnight (00:00:00) without changing the date.
wxDateTime::SetYear

wxDateTime& SetYear(int year)

Sets the year without changing other date components.
wxDateTime::SetMonth

wxDateTime& SetMonth (Month month)

Sets the month without changing other date components.
wxDateTime::SetDay

wxDateTime& SetDay(wxDateTime_t day)

266

CHAPTER7

Sets the day without changing other date components.

wxDateTime::SetHour

wxDateTime& SetHour (wxDateTime_t hour)

Sets the hour without changing other date components.

wxDateTime::SetMinute

wxDateTime& SetMinute (wxDateTime_t minute)

Sets the minute without changing other date components.

wxDateTime::SetSecond

wxDateTime& SetSecond (wxDateTime_t second)

Sets the second without changing other date components.

wxDateTime::SetMillisecond

wxDateTime& SetMillisecond (wxDateTime_t millisecond)

Sets the millisecond without changing other date components.

wxDateTime::operator=

wxDateTime& operator (time_t timet)

Same as Set (p. 273).

wxDateTime::operator=

wxDateTime& operator (const struct tm& tm)

Same as Set (p. 273).

wxDateTime::IsValid

bool IsValid () const

Returns true if the object represents a valid time moment.

wxDateTime::GetTm

Tm GetTm (const TimeZone& tz = Local) const

Returns broken down representation of the date and time.

267

CHAPTER7

wxDateTime::GetTicks

time_t GetTicks () const

Returns the number of seconds since Jan 1, 1970. An assert failure will occur if the date
is not in the range covered by time_t type.

wxDateTime::GetYear

int GetYear(const TimeZone& tz = Local) const

Returns the year in the given timezone (local one by default).
wxDateTime::GetMonth

Month GetMonth (const TimeZone& tz = Local) const

Returns the month in the given timezone (local one by default).
wxDateTime::GetDay

wxDateTime_t GetDay(const TimeZone& tz = Local) const
Returns the day in the given timezone (local one by default).
wxDateTime::GetWeekDay

WeekDay GetWeekDay (const TimeZone& tz = Local) const
Returns the week day in the given timezone (local one by default).
wxDateTime::GetHour

wxDateTime_t GetHour (const TimeZone& tz = Local) const
Returns the hour in the given timezone (local one by default).
wxDateTime::GetMinute

wxDateTime_t GetMinute (const TimeZone& tz = Local) const
Returns the minute in the given timezone (local one by default).
wxDateTime::GetSecond

wxDateTime_t GetSecond (const TimeZone& tz = Local) const

Returns the seconds in the given timezone (local one by default).

wxDateTime::GetMillisecond

268

CHAPTER7

wxDateTime_t GetMillisecond (const TimeZone& tz = Local) const

Returns the milliseconds in the given timezone (local one by default).

wxDateTime::GetDayOfYear

wxDateTime_t GetDayOfYear (const TimeZone& tz = Local) const

Returns the day of the year (in 1...366 range) in the given timezone (local one by
default).

wxDateTime::GetWeekOfYear

wxDateTime_t GetWeekOfYear (WeekFlags flags = Monday_First, const TimeZone&
tz = Local) const

Returns the number of the week of the year this date is in. The first week of the year is,
according to international standards, the one containing Jan 4 or, equivalently, the first
week which has Thursday in this year. Both of these definitions are the same as saying
that the first week of the year must contain more than half of its days in this year.
Accordingly, the week number will always be in 1...53 range (52 for non leap years).

The function depends on the week start (p. 260) convention specified by the flags
argument but its results forSunday_First are not well-defined as the ISO definition
guoted above applies to the weeks starting on Monday only.

wxDateTime::GetWeekOfMonth

wxDateTime_t GetWeekOfMonth (WeekFlags flags = Monday_First, const
TimeZone& tz = Local) const

Returns the ordinal number of the week in the month (in 1...5 range).

As GetWeekOfYear (p. 277), this function supports both conventions for the week start.
See the description of theseweek start (p. 260) conventions.

wxDateTime::IsWorkDay

bool IsWorkDay (Country country = Country_Default) const
Returns true is this day is not a holiday in the given country.
wxDateTime::IsGregorianDate

bool IsGregorianDate (GregorianAdoption country = Gr_Standard) const

Returns true if the given date is later than the date of adoption of the Gregorian
calendar in the given country (and hence the Gregorian calendar calculations make
sense for it).

wxDateTime::SetFromDOS

269

CHAPTER7

wxDateTime& Set(unsigned long ddt)

Sets the date from the date and time inDOS
(http://developer.novell.com/ndk/doc/smscomp/index.h tml?page=/ndk
/doc/smscomp/sms_docs/data/hc2viu5i.html Yformat.

wxDateTime::GetAsDOS

unsigned long GetAsDOS () const

Returns the date and time inDOS
(http://developer.novell.com/ndk/doc/smscomp/index.h tml?page=/ndk
/doc/smscomp/sms_docs/data/hc2viu5i.html Yformat.

wxDateTime::IsEqualTo

bool IsEqualTo (const wxDateTime& datetime) const

Returns true if the two dates are strictly identical.

wxDateTime::IsEarlierThan

bool IsEarlierThan (const wxDateTime& datetime) const

Returns true if this date precedes the given one.

wxDateTime::IsLaterThan

bool IsLaterThan (const wxDateTime& datetime) const

Returns true if this date is later than the given one.

wxDateTime::IsStrictlyBetween

bool IsStrictlyBetween (const wxDateTime& tl1, const wxDateTime& t2) const
Returns true if this date lies strictly between the two others,
See also

IsBetween (p. 278)

wxDateTime::IsBetween

bool IsBetween (const wxDateTime& tl1, const wxDateTime& t2) const

Returns true if IsStrictlyBetween (p. 278)is true or if the date is equal to one of the
limit values.

See also

270

CHAPTER7

IsStrictlyBetween (p. 278)

wxDateTime::IsSameDate

bool IsSameDate (const wxDateTime& dt) const

Returns true if the date is the same without comparing the time parts.

wxDateTime::IsSameTime

bool IsSameTime (const wxDateTime& dt) const

Returns true if the time is the same (although dates may differ).

wxDateTime::IsEqualUpTo

bool IsEqualUpTo (const wxDateTime& dt, const wxTimeSpan& ts) const

Returns true if the date is equal to another one up to the given time interval, i.e. if the
absolute difference between the two dates is less than this interval.

wxDateTime::Add

wxDateTime Add (const wxTimeSpan& diff) const
wxDateTime& Add (const wxTimeSpan& diff)
wxDateTime& operator+= (const wxTimeSpan& diff)
Adds the given time span to this object.

wxPython note: This method is named AddTS in wxPython.

wxDateTime::Add

wxDateTime Add (const wxDateSpan& diff) const
wxDateTime& Add (const wxDateSpan& diff)
wxDateTime& operator+= (const wxDateSpan& diff)
Adds the given date span to this object.

wxPython note: This method is named AddDSin wxPython.

wxDateTime::Subtract

wxDateTime Subtract (const wxTimeSpan& diff) const
wxDateTime& Subtract (const wxTimeSpan& diff)

wxDateTime& operator-= (const wxTimeSpan& diff)

271

CHAPTER7

Subtracts the given time span from this object.

wxPython note: This method is named SubtractTS in wxPython.

wxDateTime::Subtract

wxDateTime Subtract (const wxDateSpan& diff) const
wxDateTime& Subtract (const wxDateSpan& diff)
wxDateTime& operator-= (const wxDateSpan& diff)
Subtracts the given date span from this object.

wxPython note: This method is nhamed SubtractDS in wxPython.

wxDateTime::Subtract

wxTimeSpan Subtract (const wxDateTime& dt) const

Subtracts another date from this one and returns the difference between them as
wxTimeSpan.

wxDateTime::ParseRfc822Date

const wxChar * ParseRfc822Date (const wxChar* date)

Parses the string date looking for a date formatted according to the RFC 822 in it. The
exact description of this format may, of course, be found in the RFC (section 5), but,
briefly, this is the format used in the headers of Internet email messages and one of the
most common strings expressing date in this format may be something like "Sat, 18
Dec 1999 00:48:30 +0100"

Returns NULL if the conversion failed, otherwise return the pointer to the character
immediately following the part of the string which could be parsed. If the entire string
contains only the date in RFC 822 format, the returned pointer will be pointing to a NUL
character.

This function is intentionally strict, it will return an error for any string which is not RFC
822 compliant. If you need to parse date formatted in more free ways, you should use
ParseDateTime (p. 281) orParseDate (p. 281) instead.

wxDateTime::ParseFormat

const wxChar * ParseFormat (const wxChar * date, const wxChar * format =
wxDefaultDateTimeFormat, const wxDateTime& dateDef = wxDefaultDateTime)

This function parses the string date according to the givenformat. The system
strptime(3) function is used whenever available, but even if it is not, this function is
still implemented, although support for locale-dependent format specifiers such as "%c" ,
"%x" or "%X" may not be perfect and GNU extensions such as "%z" and "%Z" are not
implemented. This function does handle the month and weekday names in the current

272

CHAPTER7

locale on all platforms, however.

Please see the description of the ANSI C function strftime(3) for the syntax of the
format string.

The dateDef parameter is used to fill in the fields which could not be determined from the
format string. For example, if the format is "%d" (the ay of the month), the month and
the year are taken from dateDef. If it is not specified, Today (p. 272) is used as the
default date.

Returns NULL f the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDateTime

const wxChar * ParseDateTime (const wxChar * datetime)

Parses the string datetime containing the date and time in free format. This function tries
as hard as it can to interpret the given string as date and time. Unlike ParseRfc822Date
(p. 280), it will accept anything that may be accepted and will only reject strings which
can not be parsed in any way at all.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDate

const wxChar * ParseDate (const wxChar * date)

This function is like ParseDateTime (p. 281), but it only allows the date to be specified. It
is thus less flexible thenParseDateTime (p. 281), but also has less chances to
misinterpret the user input.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseTime

const wxChar * ParseTime (const wxChar * time)

This functions is like ParseDateTime (p. 281), but only allows the time to be specified in
the input string.

Returns NULL f the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::Format

wxString Format (const wxChar * format = wxDefaultDateTimeFormat, const
TimeZone& tz = Local) const

This function does the same as the standard ANSI C strftime(3) function. Please

273

CHAPTER7

see its description for the meaning of format parameter.

It also accepts a few wxWidgets-specific extensions: you can optionally specify the width
of the field to follow using printf(3) -like syntax and the format specification %l can be
used to get the number of milliseconds.

See also

ParseFormat (p. 280)

wxDateTime::FormatDate

wxString FormatDate () const

Identical to calling Format() (p. 282) with "%x" argument (which means 'preferred date
representation for the current locale’).

wxDateTime::FormatTime

wxString FormatTime () const

Identical to calling Format() (p. 282) with "%X" argument (which means 'preferred time
representation for the current locale’).

wxDateTime::FormatlSODate

wxString FormatlSODate () const

This function returns the date representation in the ISO 8601 format (YYYY-MM-DD).

wxDateTime::FormatISOTime

wxString FormatlSOTime () const

This function returns the time representation in the ISO 8601 format (HH:MM:SS).

wxDateTime::SetToWeekDaylnSameWeek

wxDateTime& SetToWeekDaylnSameWeek (WeekDay weekday, WeekFlags flags =
Monday_Fi rst)

Adjusts the date so that it will still lie in the same week as before, but its week day will be
the given one.

Returns the reference to the modified object itself.

wxDateTime::GetWeekDaylnSameWeek

wxDateTime GetWeekDaylnSameWeek (WeekDay weekday, WeekFlags flags =
Monday_ Fi r st) const

274

CHAPTER7

Returns the copy of this object to whichSetToWeekDaylnSameWeek (p. 282) was
applied.

wxDateTime::SetToNextWeekDay

wxDateTime& SetToNextWeekDay (WeekDay weekday)
Sets the date so that it will be the first weekday following the current date.

Returns the reference to the modified object itself.

wxDateTime::GetNextWeekDay

wxDateTime GetNextWeekDay (WeekDay weekday) const

Returns the copy of this object to whichSetToNextWeekDay (p. 283) was applied.

wxDateTime::SetToPrevWeekDay

wxDateTime& SetToPrevWeekDay (WeekDay weekday)
Sets the date so that it will be the last weekday before the current date.

Returns the reference to the modified object itself.

wxDateTime::GetPrevWeekDay

wxDateTime GetPrevWeekDay (WeekDay weekday) const

Returns the copy of this object to whichSetToPrevWeekDay (p. 283) was applied.

wxDateTime::SetToWeekDay

bool SetToWeekDay (WeekDay weekday, int n =1, Month month = Inv_Month, int
year = Inv_Year)

Sets the date to the n-th weekday in the given month of the given year (the current
month and year are used by default). The parameter nmay be either positive (counting
from the beginning of the month) or negative (counting from the end of it).

For example, SetToWeekDay(2, wxDateTime::Wed) will set the date to the second
Wednesday in the current month andSetToWeekDay(-1, wxDateTime::Sun) --to
the last Sunday in it.

Returns true if the date was modified successfully, false otherwise meaning that the
specified date doesn't exist.

wxDateTime::GetWeekDay

wxDateTime GetWeekDay (WeekDay weekday, int n = 1, Month month = Inv_Month,
int year = Inv_Year) const

275

CHAPTER7

Returns the copy of this object to whichSetToWeekDay (p. 283) was applied.

wxDateTime::SetToLastWeekDay

bool SetToLastWeekDay (WeekDay weekday, Month month = Inv_Month, int year =
Inv_Year)

The effect of calling this function is the same as of callingSetToWeekDay(-1,
weekday, month, year) . The date will be set to the lastweekday in the given month
and year (the current ones by default).

Always returns true .

wxDateTime::GetLastWeekDay

wxDateTime GetLastWeekDay (WeekDay weekday, Month month = Inv_Month, int
year = Inv_Year)

Returns the copy of this object to whichSetToLastWeekDay (p. 284) was applied.

wxDateTime::SetToWeekOfYear

static wxDateTime SetToWeekOfYear (int year, wxDateTime_t numWeek, WeekDay
weekday = Mon)

Set the date to the given weekday in the week number numWeek of the given year . The
number should be in range 1...53.

Note that the returned date may be in a different year than the one passed to this
function because both the week 1 and week 52 or 53 (for leap years) contain days from
different years. SeeGetWeekOfYear (p. 277) for the explanation of how the year weeks
are counted.

wxDateTime::SetToLastMonthDay

wxDateTime& SetToLastMonthDay (Month month = Inv_Month, int year = Inv_Year)
Sets the date to the last day in the specified month (the current one by default).

Returns the reference to the modified object itself.

wxDateTime::GetLastMonthDay

wxDateTime GetLastMonthDay (Month month = Inv_Month, int year = Inv_Year)
const

Returns the copy of this object to whichSetToLastMonthDay (p. 284) was applied.

wxDateTime::SetToYearDay

wxDateTime& SetToYearDay (wxDateTime_t yday)

276

CHAPTER7

Sets the date to the day number yday in the same year (i.e., unlike the other functions,
this one does not use the current year). The day number should be in the range 1...366
for the leap years and 1...365 for the other ones.

Returns the reference to the modified object itself.

wxDateTime::GetYearDay

wxDateTime GetYearDay (wxDateTime_t yday) const

Returns the copy of this object to whichSetToYearDay (p. 285) was applied.

wxDateTime::GetJulianDayNumber

double GetJulianDayNumber () const

Returns the JDN (p. 273) corresponding to this date. Beware of rounding errors!
See also

GetModifiedJulianDayNumber (p. 285)

wxDateTime::GetJDN

double GetJDN() const

Synonym for GetJulianDayNumber (p. 285).

wxDateTime::GetModifiedJulianDayNumber

double GetModifiedJulianDayNumber () const

Returns the Modified Julian Day Number (MJD) which is, by definition, equal to JDN -
2400000.5. The MJDs are simpler to work with as the integral MJDs correspond to
midnights of the dates in the Gregorian calendar and not th noons like JDN. The MJD 0
is Nov 17, 1858.

wxDateTime::GetMJD

double GetMJD () const

Synonym for GetModifiedJulianDayNumber (p. 285).

wxDateTime::GetRataDie
double GetRataDie () const
Return the Rata Die number of this date.

By definition, the Rata Die number is a date specified as the number of days relative to a
base date of December 31 of the year 0. Thus January 1 of the year 1 is Rata Die day 1.

277

CHAPTER7

wxDateTime::FromTimezone

wxDateTime FromTimezone (const TimeZone& tz, bool noDST = false) const

Transform the date from the given time zone to the local one. If noDST is true , no DST
adjustments will be made.

Returns the date in the local time zone.

wxDateTime::ToTimezone

wxDateTime ToTimezone (const TimeZone& tz, bool noDST = false) const

Transform the date to the given time zone. If noDST is true , no DST adjustments will
be made.

Returns the date in the new time zone.

wxDateTime::MakeTimezone

wxDateTime& MakeTimezone (const TimeZone& tz, bool noDST = false)

Modifies the object in place to represent the date in another time zone. IfnoDST is true
no DST adjustments will be made.

wxDateTime::MakeFromTimezone

wxDateTime& MakeFromTimezone (const TimeZone& tz, bool noDST = false)

Same as FromTimezone (p. 286) but modifies the object in place.

wxDateTime:: ToUTC

wxDateTime ToUTC(bool noDST = false) const

This is the same as calling ToTimezone (p. 286) with the argument GMTO
wxDateTime::MakeUTC

wxDateTime& MakeUTC(bool noDST = false)

This is the same as calling MakeTimezone (p. 286) with the argument GMTO
wxDateTime::IsDST

int IsDST(Country country = Country_Default) const
Returns true if the DST is applied for this date in the given country.

See also

278

CHAPTER7

GetBeginDST (p. 268) andGetEndDST (p. 269)

wxDateTimeHolidayAuthority

TODO

wxDateTimeWorkDays

TODO

wxDb

A wxDb instance is a connection to an ODBC datasource which may be opened, closed,
and re-opened an unlimited number of times. A database connection allows function to
be performed directly on the datasource, as well as allowing access to any tables/views
defined in the datasource to which the user has sufficient privileges.

See the database classes overview (p. 1868) for an introduction to using the ODBC
classes.

Include files
<wx/db.h>
Helper classes and data structures
The following classes and structs are defined in db.cpp/.h for use with the wxDb class.
 wxDbColFor (p. 321)
« wxDbCollnf (p. 322)
 wxDbTablelnf (p. 367)
e wxDbinf (p. 329)
Constants

NOTE: In a future release, all ODBC class constants will be prefaced with ‘wx'.

wxDB_PATH_MAX Maximum path length all owed to be
passed to
the ODBC driver to indi cate where the
data

file(s) are located.

DB_MAX_COLUMN_NAME_LEN Maximum supported lengt h for the name

of a
column
DB_MAX_ERROR_HISTORY Maximum number of error messages
retained in
the queue before being overwritten by

279

CHAPTER7

new
errors.
DB_MAX _ERROR_MSG_LEN Maximum supported lengt h of an error
message
returned by the ODBC cl asses
DB_MAX_STATEMENT_LEN Maximum supported lengt h for a
complete SQL
statement to be passed to the ODBC
driver
DB_MAX_TABLE_NAME_LEN Maximum supported lengt h for the name
of a
table
DB_MAX_WHERE_CLAUSE_LEN Maximum supported WHERE clause length
that
can be passed to the OD BC driver
DB_TYPE_NAME_LEN Maximum length of the n ame of a
column's
data type

Enumerated types

Enumerated types

enum wxDbSqglLogState
sglLogOFF, sglLogON

enum wxDBMS

These are the databases currently tested and working with the ODBC classes. A call to
wxDb::Dbms (p. 299) will return one of these enumerated values listed below.

« DB2

 DBase (IV, V)**

* Firebird

« INFORMIX

* Interbase

e MS SQL Server (v7 - minimal testing)

e« MS Access (97, 2000, 2002, and 2003)

« MySQL (2.x and 3.5 - use the 2.5x drivers though)
e Oracle (v7, v8, v8i)

e Pervasive SQL

280

CHAPTER7

PostgreSQL
Sybase (ASA and ASE)
XBase Sequiter

VIRTUOSO

See the remarks in wxDb::Dbms (p. 299) for exceptions/issues with each of these
database engines.

Public member variables

SWORD wxDb::cbErrorMsg

This member variable is populated as a result of calling wxDb::GetNextError (p.

308). Contains the count of bytes in the wxDb::errorMsg string.

int wxDb::DB_STATUS

The last ODBC error/status that occurred on this data connection. Possible codes

are:

DB_ERR_GENERAL_WARNING 11'Sq
'01000'

DB_ERR_DISCONNECT_ERROR I1'Sq
'01002'

DB_ERR_DATA_TRUNCATED =
'01004'

DB_ERR_PRIV_NOT_REVOKED I Sq
'01006'

DB_ERR_INVALID_CONN_STR_ATTR 11 Sq
'01S00’

DB_ERR_ERROR_IN_ROW 1 Sq
'01S01"

DB_ERR_OPTION_VALUE_CHANGED I Sq
'01S02'

DB_ERR_NO_ROWS_UPD_OR_DEL I Sq
'01S03'

DB_ERR_MULTI_ROWS_UPD_OR_DEL Il Sq
'01S04'

DB_ERR_WRONG_NO_OF PARAMS /' Sq
'07001'

DB_ERR_DATA_TYPE_ATTR_VIOL Il Sq
'07006'

DB_ERR_UNABLE_TO_CONNECT I Sq
'08001'

DB_ERR_CONNECTION_IN_USE I Sq
'08002'

DB_ERR_CONNECTION_NOT_OPEN Il Sq
'08003'

DB_ERR_REJECTED_CONNECTION I Sq
'08004'

DB_ERR_CONN_FAIL_IN_TRANS /' Sq
'08007'

DB_ERR_COMM_LINK_FAILURE I Sq
'08S01"

DB_ERR_INSERT_VALUE_LIST_MISMATCH Il Sq
'21S01"

DB_ERR_DERIVED_TABLE_MISMATCH 11 Sq

'21S02'

[State =
[State =
IState =
IState =
IState =
[State =
IState =
IState =
[State =
IState =
[State =
[State =
IState =
IState =
[State =
IState =
IState =
[State =
IState =

281

CHAPTER7

DB_ERR_STRING_RIGHT_TRUNC I Sq
'22001'

DB_ERR_NUMERIC_VALUE_OUT_OF_RNG I Sq
'22003'

DB_ERR_ERROR_IN_ASSIGNMENT 11 Sq
'22005'

DB_ERR_DATETIME_FLD_OVERFLOW /' Sq
'22008'

DB_ERR_DIVIDE_BY_ZERO I Sq
'22012'

DB_ERR_STR_DATA_LENGTH_MISMATCH I'Sq
'22026'

DB_ERR_INTEGRITY_CONSTRAINT_VIOL 11 Sq
'23000'

DB_ERR_INVALID_CURSOR_STATE I1'Sq
'24000'

DB_ERR_INVALID_TRANS_STATE I'Sq
'25000'

DB_ERR_INVALID_AUTH_SPEC 1 Sq
'28000'

DB_ERR_INVALID_CURSOR_NAME I Sq

'34000'

DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL I Sq
'37000'

DB_ERR_DUPLICATE_CURSOR_NAME I Sq
'3C000'

DB_ERR_SERIALIZATION_FAILURE /' Sq
'40001"

DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL2 /I Sq
'42000'

DB_ERR_OPERATION_ABORTED I Sq
'70100'

DB_ERR_UNSUPPORTED_FUNCTION Il Sq
'M001’

DB_ERR_NO_DATA_SOURCE /' Sq
'M002'

DB_ERR_DRIVER_LOAD_ERROR I1'Sq
'M003'

DB_ERR_SQLALLOCENV_FAILED 11 Sq
'M004'

DB_ERR_SQLALLOCCONNECT_FAILED Il Sq
'IMOO5'

DB_ERR_SQLSETCONNECTOPTION_FAILED 11 Sq
'IM00B'

DB_ERR_NO_DATA_SOURCE_DLG_PROHIB /' Sq
'M007'

DB_ERR_DIALOG_FAILED I Sq
'IMO0B'

DB_ERR_UNABLE_TO_LOAD_TRANSLATION_DLL // Sq
'IM009'

DB_ERR_DATA_SOURCE_NAME_TOO_LONG I Sq
'MO10’

DB_ERR_DRIVER_NAME_TOO_LONG 1 Sq
'MO11’

DB_ERR_DRIVER_KEYWORD_SYNTAX_ERROR 11 Sq
'MO12'

DB_ERR_TRACE_FILE_ERROR Il Sq
'MO13'

DB_ERR_TABLE_OR_VIEW_ALREADY_EXISTS //Sq
'S0001"

DB_ERR_TABLE_NOT_FOUND 11 Sq
'S0002'

DB_ERR_INDEX_ALREADY_EXISTS 11 Sq

'S0011'

[State =
[State =
[State =
IState =
IState =
IState =
IState =
[State =
IState =
[State =
[State =
[State =
IState =
IState =
IState =
IState =
[State =
IState =
[State =
[State =
[State =
IState =
IState =
IState =
IState =
[State =
IState =
[State =
[State =
[State =
IState =

IState =

282

CHAPTER7

DB_ERR_INDEX_NOT_FOUND

'S0012'

DB_ERR_COLUMN_ALREADY_EXISTS

'S0021'

DB_ERR_COLUMN_NOT_FOUND

'S0022'

DB_ERR_NO_DEFAULT_FOR_COLUMN

'S0023'

DB_ERR_GENERAL_ERROR

'S1000'

DB_ERR_MEMORY_ALLOCATION_FAILURE

'S1001'

DB_ERR_INVALID_COLUMN_NUMBER

'S1002'

DB_ERR_PROGRAM_TYPE_OUT_OF_RANGE

'S1003'

DB_ERR_SQL_DATA_TYPE_OUT_OF RANGE

'S1004'

DB_ERR_OPERATION_CANCELLED

'S1008'

DB_ERR_INVALID_ARGUMENT_VALUE

'S1009'

DB_ERR_FUNCTION_SEQUENCE_ERROR

'S1010'

DB_ERR_OPERATION_INVALID_AT_THIS_TIME

'S1011'

DB_ERR_INVALID_TRANS_OPERATION_CODE

'S1012'

DB_ERR_NO_CURSOR_NAME_AVAIL

'S1015'

DB_ERR_INVALID_STR_OR_BUF_LEN

'S1090'

DB_ERR_DESCRIPTOR_TYPE_OUT_OF_RANGE

'S1091'

DB_ERR_OPTION_TYPE_OUT_OF_RANGE

'S1092'

DB_ERR_INVALID_PARAM_NO

'S1093'

DB_ERR_INVALID_SCALE_VALUE

'S1094'

DB_ERR_FUNCTION_TYPE_OUT_OF_RANGE

'S1095'

DB_ERR_INF_TYPE_OUT_OF RANGE

'S1096'

DB_ERR_COLUMN_TYPE_OUT_OF_RANGE

'S1097'

DB_ERR_SCOPE_TYPE_OUT_OF_RANGE

'S1098'

DB_ERR_NULLABLE_TYPE_OUT_OF RANGE

'S1099'

Il Sq
Il Sq
Il Sq
Il Sq

[State =
[State =
[State =
[State =
Il Sq IState =
I1'Sq IState =
/Il Sq
Il Sq
Il Sq
/I Sq
Il Sq
11 Sq
11'Sq
Il Sq
Il Sq

Il Sq

[State =
[State =
[State =
[State =
[State =
[State =
[State =
[State =
[State =
[State =
Il Sq IState =
Il Sq IState =
Il Sq

Il Sq

[State =
[State =
11 Sq IState =
Il Sq
Il Sq
Il Sq

11 Sq

IState =
IState =
IState =

IState =

DB_ERR_UNIQUENESS_OPTION_TYPE_OUT_OF_RANGE // SqlState =

'S1100'

DB_ERR_ACCURACY_OPTION_TYPE_OUT_OF RANGE // Sq IState =

'S1101

DB_ERR_DIRECTION_OPTION_OUT_OF RANGE

'S1103'

DB_ERR_INVALID_PRECISION_VALUE

'S1104'

DB_ERR_INVALID_PARAM_TYPE

'S1105'

DB_ERR_FETCH_TYPE_OUT_OF RANGE

'S1106'

DB_ERR_ROW_VALUE_OUT_OF_RANGE

'S1107'

Il Sq IState =

Il Sq IState =
11 Sq
Il Sq

11 Sq

IState =
IState =

IState =

283

CHAPTER7

DB_ERR_CONCURRENCY_OPTION_OUT_OF RANGE

'S1108'

DB_ERR_INVALID_CURSOR_POSITION Il Sq
'S1109'

DB_ERR_INVALID_DRIVER_COMPLETION 11 Sq
'S1110°

DB_ERR_INVALID_BOOKMARK_VALUE 11 Sq
'S1111°

DB_ERR_DRIVER_NOT_CAPABLE =
'S1C00"

DB_ERR_TIMEOUT_EXPIRED 1 Sq
'S1T00

struct wxDb::dbInf

/I Sq IState =

[State =
[State =
IState =
IState =

IState =

This structure is internal to the wxDb class and contains details of the ODBC
datasource that the current instance of the wxDb is connected to in its members.
When the datasource is opened, all of the information contained in the dbinf
structure is queried from the datasource. This information is used almost
exclusively within the ODBC class library. Where there may be a need for
particular portions of this information outside of the class library, member functions
(e.g.wxDbTable::IsCursorClosedOnCommit (p. 350)) have been added for ease of

use.
wxChar dbmsName[40] - Name of the dbms pr
wxChar dbmsVer[64] - Version # of the db
wxChar driverName[40] - Driver name
wxChar odbcVer[60] - ODBC version of the
wxChar drvMgrOdbcVer[60] - ODBC version of the
wxChar driverVer[60] - Driver version
wxChar serverName[80] - Server Name, typica
string
wxChar databaseName[128] - Database filename
~ wxChar outerJoins[2] - Does datasource sup
joins
wxChar procedureSupport[2] - Does datasource sup
procedures
UWORD maxConnections - Maximum # of connec
datasource
supports
UWORD maxStmts - Maximum # of HSTMTs
UWORD apiConfLuvl - ODBC API conformanc
UWORD cliConfLuvl - Is datasource SAG ¢
UWORD sqlConfLvl - SQL conformance lev
UWORD cursorCommitBehavior - How cursors are
commit
UWORD cursorRollbackBehavior - How cursors are
rollback

UWORD supportNotNullClause - Does datasource
NULL
clause
wxChar supportlEF[2] - Integrity Enhanceme
(Ref.
Integrity)
UDWORD txnlsolation - Transaction isolati
supported by
driver
UDWORD txnlsolationOptions - Transaction isolati
options

available
UDWORD fetchDirections - Fetch directions su
UDWORD lockTypes - Lock types supporte

oduct
ms product

driver
driver manager

lly a connect

port outer

port stored
tions

per HDBC

e level
ompliant

el

affected on db
affected on db

support NOT

nt Facility

on level

on level

pported
d in SQLSetPos

284

CHAPTER7

UDWORD posOperations - Position operations supported in
SQLSetPos
UDWORD posStmts - Position statements supported
UDWORD scrollConcurrency - Scrollable cursor ¢ oncurrency
options
supported
UDWORD scrollOptions - Scrollable cursor o ptions
supported
UDWORD staticSensitivity - Can additions/delet ions/updates be
detected
UWORD txnCapable - Indicates if dataso urce supports
transactions
UDWORD loginTimeout - Number seconds to w ait for a login
request

wxChar wxDb::errorListiDB_MAX_ERROR_HISTORY][DB_MAX ERROR_MSG_LEN]
The last n ODBC errors that have occurred on this database connection.
wxChar wxDb::errorMsg[SQL_MAX_MESSAGE_LENGTH]

This member variable is populated as a result of calling wxDb::GetNextError (p.
308). It contains the ODBC error message text.

SDWORD wxDb::nativeError

Set by wxDb::DispAllErrors, wxDb::GetNextError, and wxDb::DispNextError. It
contains the datasource-specific error code returned by the datasource to the
ODBC driver. Used for reporting ODBC errors.

wxChar wxDb::sqlState[20]

Set by wxDb::TranslateSqlState(). Indicates the error state after a failed ODBC
operation. Used for reporting ODBC errors.

Remarks

Default cursor scrolling is defined by wxODBC_FWD_ONLY_CURSORS in setup.h
when the wxWidgets library is built. This behavior can be overridden when an instance
of a wxDb is created (see wxDb constructor (p. 296)). Default setting of this value true,
as not all databases/drivers support both types of cursors.

See also

wxDbColFor (p. 321), wxDbColiInf (p. 322),wxDbTable (p. 329), wxDbTablelnf (p.
367),wxDbinf (p. 329)

Associated non-class functions

The following functions are used in conjunction with the wxDb class.
void wxDbCloseConnections ()

Remarks

Closes all cached connections that have been made through use of

285

CHAPTER7

thewxDbGetConnection (p. 294) function.

NOTE: These connections are closed regardless of whether they are in use or not. This
function should only be called after the program has finished using the connections and
all wxDbTable instances that use any of the connections have been closed.

This function performs a wxDb::CommitTrans (p. 298)on the connection before closing it
to commit any changes that are still pending, as well as to avoid any function sequence
errors upon closing each connection.

int wxDbConnectionsinUse ()
Remarks

Returns a count of how many database connections are currently free (not being used)
that have been cached through use of the wxDbGetConnection (p. 294)function.

bool wxDbFreeConnection (wxDb *pDb)
Remarks

Searches the list of cached database connections connection for one matching the
passed in wxDb instance. If found, that cached connection is freed.

Freeing a connection means that it is marked as available (free) in the cache of
connections, so that a call to wxDbGetConnection (p. 294)is able to return a pointer to
the wxDb instance for use. Freeing a connection does NOT close the connection, it only
makes the connection available again.

wxDb * wxDbGetConnection (wxDbConnectinf* pDbConfig,bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Remarks

This function is used to request a "new" wxDb instance for use by the program. The
wxDb instance returned is also opened (see wxDb::Open (p. 312)).

This function (along with wxDbFreeConnection() and wxDbCloseConnection()) maintain
a cache of wxDb instances for user/re-use by a program. When a program needs a
wxDb instance, it may call this function to obtain a wxDb instance. If there is a wxDb
instance in the cache that is currently unused that matches the connection requirements
specified in 'pDbConfig' then that cached connection is marked as no longer being free,
and a pointer to the wxDb instance is returned.

If there are no connections available in the cache that meet the requirements given in
'pDbConfig’, then a new wxDb instance is created to connect to the datasource specified
in 'pDbConfig’ using the userID and password given in 'pDbConfig'.

NOTE: The caching routine also uses the wxDb::Open (p. 312)connection datatype
copying code. If the call to wxDbGetConnection() requests a connection to a
datasource, and there is not one available in the cache, a new connection is created.
But when the connection is opened, instead of polling the datasource over again for its
datatypes, if a connection to the same datasource (using the same userlD/password)
has already been done previously, the new connection skips querying the datasource for

286

CHAPTER7

its datatypes, and uses the same datatypes determined previously by the other
connection(s) for that same datasource. This cuts down greatly on network traffic,
database load, and connection creation time.

When the program is done using a connection created through a call to
wxDbGetConnection(), the program should call wxDbFreeConnection() to release the
wxDb instance back to the cache. DO NOT DELETE THE wxDb INSTANCE! Deleting
the wxDb instance returned can cause a crash/memaory corruption later in the program
when the cache is cleaned up.

When exiting the program, call wxDbCloseConnections() to close all the cached
connections created by calls to wxDbGetConnection().

const wxChar * wxDbLogExtendedErrorMsg (const wxChar * userText, wxDb * pDb,
wxChar * ErrFile, int ErrLine)

Writes a message to the wxLog window (stdout usually) when an internal error situation
occurs.

bool wxDbSqlLog (wxDbSglLogState state, const wxString & filename =
SQL_LOG_FILENAME)

Remarks
This function sets the sql log state for all open wxDb objects

bool wxDbGetDataSource (HENV henv, wxChar * Dsn, SWORD DsnMax, wxChar
*DsDesc, SWORD DsDescMax, UWORD direction = SQL_FETCH_NEXT)

Remarks

This routine queries the ODBC driver manager for a list of available datasources.
Repeatedly call this function to obtain all the datasources available through the ODBC
driver manager on the current workstation.

wxArrayString strArray;

while (wxDbGetDataSource(DbConnectinf.GetHenv() , Dsn,
SQL_MAX_DSN_LENGTH+1, DsDesc, 255))
strArray.Add(Dsn);

wxDb::wxDb

wxDb ()
Default constructor.

wxDb (const HENV & aHenv, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Constructor, used to create an ODBC connection to a datasource.

Parameters

287

CHAPTER7

aHenv

Environment handle used for this connection. SeewxDConnectinf::AllocHenv (p.
325)

FwdOnlyCursors

Will cursors created for use with this datasource connection only allow forward
scrolling cursors.

Remarks

This is the constructor for the wxDb class. The wxDb object must be created and
opened before any database activity can occur.

Example

wxDbConnectIinf Connectinf;
....Set values for member variables of Connectin f here

wxDb sampleDB(Connectinf.GetHenv());
if (lsampleDB.Open(Connectinf.GetDsn(), Connectl nf.GetUserlD(),
Connectinf.GetPassword()))

/I Error opening datasource

See also

wxDbGetConnection (p. 294)

wxDb::Catalog

bool Catalog (wxChar * userID, const wxString & fileName =
SQL_CATALOG_FILENAME)

Allows a data "dictionary" of the datasource to be created, dumping pertinent information
about all data tables to which the user specified in userID has access.

Parameters
userlD

Database user name to use in accessing the database. All tables to which this
user has rights will be evaluated in the catalog.

fileName

OPTIONAL. Name of the text file to create and write the DB catalog to. Default is
SQL_CATALOG_FILENAME.

Return value

Returns true if the catalog request was successful, or false if there was some reason
that the catalog could not be generated.

288

CHAPTER7

Example
TABLE NAME _EOLUMN NAME DATA TYPE PREC ISION LENGTH
EMPLOYEE RECID (0O008)NUMBER 15 8
EMPLOYEE USER_ID (0012)VARCHAR?2 13 13
EMPLOYEE FULL_NAME (0012)VARCHAR2 26 26
EMPLOYEE PASSWORD (0012)VARCHAR2 26 26
EMPLOYEE START_DATE (0011)DATE 19 16

wxDb::Close

void Close ()
Closes the database connection.

Remarks

At the end of your program, when you have finished all of your database work, you must
close the ODBC connection to the datasource. There are actually four steps involved in
doing this as illustrated in the example.

Any wxDbTable instances which use this connection must be deleted before closing the
database connection.

Example

/Il Commit any open transactions on the datasourc e
sampleDB.CommitTrans();

/I Delete any remaining wxDbTable objects alloca ted with new
delete parts;

/I Close the wxDb connection when finished with it
sampleDB.Close();

wxDb::CommitTrans

bool CommitTrans ()

Permanently "commits” changes (insertions/deletions/updates) to the database.
Return value

Returns true if the commit was successful, or false if the commit failed.
Remarks

Transactions begin implicitly as soon as you make a change to the database with an
insert/update/delete, or any other direct SQL command that performs one of these
operations against the datasource. At any time thereafter, to save the changes to disk
permanently, "commit" them by calling this function.

Calling this member function commits ALL open transactions on this ODBC connection.
For example, if three different wxDbTable instances used the same connection to the

289

CHAPTER7

datasource, committing changes made on one of those wxDbTable instances commits
any pending transactions on all three wxDbTable instances.

Until a call to wxDb::CommitTrans() is made, no other user or cursor is able to see any
changes made to the row(s) that have been inserted/modified/deleted.

Special Note : Cursors

It is important to understand that different database/ODBC driver combinations handle
transactions differently. One thing in particular that you must pay attention to is cursors,
in regard to transactions. Cursors are what allow you to scroll through records forward
and backward and to manipulate records as you scroll through them. When you issue a
query, a cursor is created behind the scenes. The cursor keeps track of the query and
keeps track of the current record pointer. After you commit or rollback a transaction, the
cursor may be closed automatically. This is database dependent, and with some
databases this behavior can be controlled through management functions. This means
you would need to requery the datasource before you can perform any additional work
using this cursor. This is only necessary however if the datasource closes the cursor
after a commit or rollback. Use thewxDbTable::IsCursorClosedOnCommit (p.
350)member function to determine the datasource's transaction behavior. Note, in many
situations it is very inefficient to assume the cursor is closed and always requery. This
could put a significant, unnecessary load on datasources that leave the cursors open
after a transaction.

wxDb::CreateView

bool CreateView (const wxString & viewName,const wxString & colList, const
wxString & pSqlStmt)

Creates a SQL VIEW of one or more tables in a single datasource. Note that this
function will only work against databases which support views (currently only Oracle as
of November 21 2000).

Parameters
viewName

The name of the view. e.g. PARTS_V
colList

OPTIONAL Pass in a comma delimited list of column names if you wish to
explicitly name each column in the result set. If not desired, pass in an empty
string and the column names from the associated table(s) will be used.

pSqlStmt

Pointer to the select statement portion of the CREATE VIEW statement. Must be a
complete, valid SQL SELECT statement.

Remarks

A 'view' is a logical table that derives columns from one or more other tables or views.

290

CHAPTER7

Once the view is created, it can be queried exactly like any other table in the database.

NOTE: Views are not available with all datasources. Oracle is one example of a
datasource which does support views.

Example

/I Incomplete code sample
db.CreateView("PARTS_SD1", "PN, PD, QTY",
"SELECT PART_NUM, PART_DESC, QTY_O N_HAND * 1.1
FROM PARTS \
WHERE STORAGE_DEVICE = 1");

/I PARTS_SD1 can now be queried just as if it we re a data
table.
/I e.g. SELECT PN, PD, QTY FROM PARTS_SD1

wxDb::Dbms

wxDBMS Dbms ()
Remarks

The return value will be of the enumerated type wxDBMS. This enumerated type
contains a list of all the currently tested and supported databases.

Additional databases may work with these classes, but the databases returned by this
function have been tested and confirmed to work with these ODBC classes.

Possible values returned by this function can be viewed in theEnumerated types (p. 288)
section of wxDb.

There are known issues with conformance to the ODBC standards with several
datasources supported by the wxWidgets ODBC classes. Please see the overview for
specific details on which datasource have which issues.

Return value

The return value will indicate which of the supported datasources is currently connected
to by this connection. In the event that the datasource is not recognized, a value of
'dbmsUNIDENTIFIED' is returned.

wxDb::DispAllErrors

bool DispAllErrors (HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
= SQL_NULL_HSTMT)

Used to log all database errors that occurred as a result of an executed database
command. This logging is automatic and also includes debug logging when compiled in
debug mode via wxLogDebug (p. 1685). If logging is turned on via
wxDb::SetSqlLogging (p. 315), then an entry is also logged to the defined log file.

Parameters

291

CHAPTER7

aHenv
Handle to the ODBC environment.
aHdbc

Handle to the ODBC connection. Pass this in if the ODBC function call that erred
required a hdbc or hstmt argument.

aHstmt

Handle to the ODBC statement being executed against. Pass this in if the ODBC
function call that failed required a hstmt argument.

Remarks

This member function will log all of the ODBC error messages for the last ODBC function
call that was made. This function is normally used internally within the ODBC class
library, but can be used programmatically after calling ODBC functions directly (i.e.
SQLFreeEnv()).

Return value

The function always returns false, so a call to this function can be made in the return
statement of a code block in the event of a failure to perform an action (see the example
below).

See also
wxDb::SetSqlLogging (p. 315), wxDbSqlLog

Example

if (SQLExecDirect(hstmt, (UCHAR FAR *) pSqlStmt, SQL_NTS) I=
SQL_SUCCESS)
/I Display all ODBC errors for this stmt
return(db.DispAllErrors(db.henv, db.hdbc, hst mt));

wxDb::DispNextError

void DispNextError ()
Remarks

This function is normally used internally within the ODBC class library. It could be used
programmatically after calling ODBC functions directly. This function works in
conjunction with wxDb::GetNextError (p. 308) when errors (or sometimes informational
messages) returned from ODBC need to be analyzed rather than simply displaying
them as an error. GetNextError() retrieves the next ODBC error from the ODBC error
gueue. The wxDb member variables "sqlState", "nativeError" and "errorMsg" could then
be evaluated. To display the error retrieved, DispNextError() could then be called. The
combination of GetNextError() and DispNextError() can be used to iteratively step
through the errors returned from ODBC evaluating each one in context and displaying
the ones you choose.

292

CHAPTER7

Example

// Drop the table before attempting to create it

sprintf(sqlStmt, "DROP TABLE %s", tableName);

/I Execute the drop table statement

if (SQLExecDirect(hstmt,(UCHAR FAR *)sqlStmt,SQL _NTS) I=
S({QL_SUCCESS)

/I Check for sglState = S0002, "Table or view not found".
/I Ignore this error, bomb out on any other e rror.
pDb->GetNextError(henv, hdbc, hstmt);

if (wxStrcemp(pDb->sqlState, "S0002"))

pDb->DispNextError(); // Displayed error retrieved

pDb->DispAllErrors(henv, hdbc, hstmt); // Display all
other errors, if any

pDb->RollbackTrans(); // Rollback the tr ansaction

CloseCursor(); /I Close the curso r

return(false); /I Return Failure

wxDb::DropView
bool DropView (const wxString & viewName)
Drops the data table view named in 'viewName'.
Parameters
viewName

Name of the view to be dropped.
Remarks

If the view does not exist, this function will return true. Note that views are not supported
with all datasources.

wxDb::ExecSql

bool ExecSql (const wxString & pSqlStmt)
bool ExecSqgl (const wxString & pSqlStmt, wxDbColInf ** columns, short & numcols)

Allows a native SQL command to be executed directly against the datasource. In
addition to being able to run any standard SQL command, use of this function allows a
user to (potentially) utilize features specific to the datasource they are connected to that
may not be available through ODBC. The ODBC driver will pass the specified command
directly to the datasource.

To get column amount and column names or other information about returned columns,
pass ‘columns' and 'numcols' parameters to the function also.

Parameters

293

CHAPTER7

pSqlStmt
Pointer to the SQL statement to be executed.
columns

On success, this function will set this pointer to point to array of wxDbColInf (p.
322) objects, holding information about columns returned by the query. You need
to call delete]] for the pointer you pass here after you don't use it anymore to
prevent memory leak.

numcols
Reference to variable where amount of objects in ‘columns'-parameter will be set.
Remarks

This member extends the wxDb class and allows you to build and execute ANY VALID
SQL statement against the datasource. This allows you to extend the class library by
being able to issue any SQL statement that the datasource is capable of processing.

See also

wxDb::GetData (p. 305), wxDb::GetNext (p. 308)

wxDb::FwdOnlyCursors

bool IsFwdOnlyCursors ()

Older form (pre-2.3/2.4 of wxWidgets) of thewxDb::IsFwdOnlyCursors (p. 310). This
method is provided for backward compatibility only. The
methodwxDb::IsFwdOnlyCursors (p. 310) should be used in place of this method.

wxDblnf * GetCatalog (const wxChar * userID)

wxDb::GetCatalog

wxDblnf * GetCatalog (const wxChar * userID)

Returns a wxDblInf (p. 329) pointer that points to the catalog (datasource) name,
schema, number of tables accessible to the current user, and a wxDbTablelnf pointer to
all data pertaining to all tables in the users catalog.

Parameters
userlD

Owner/Schema of the table. Specify a userlD when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. userlID is evaluated as follows:

userID == NULL ... UserID is ignored (DEF AULT)
userID =="" ... UserlD set equal to 't his->uid'
userID =" ... UserID set equal to 'u serlD'

294

CHAPTER7

Remarks

The returned catalog will only contain catalog entries for tables to which the user
specified in 'userID' has sufficient privileges. If no user is specified (NULL passed in), a
catalog pertaining to all tables in the datasource accessible to the connected user
(permissions apply) via this connection will be returned.

wxDb::GetColumnCount
int GetColumnCount (const wxString & tableName, const wxChar * userID)
Parameters
tableName
The table name you wish to obtain column information about.
userlD

Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userlD is evaluated in the
following manner:

userlD == NULL ... UserID is ignored (DEF AULT)
userID =="" ... UserlD set equal to 't his->uid'
userID =" ... UserID set equal to 'u serlD'

Return value

Returns a count of how many columns are in the specified table. If an error occurs
retrieving the number of columns, this function will return a -1.

wxDb::GetColumns

wxDbColInf * GetColumns (const wxString & tableName, UWORD *numCals, const
wxChar * userID=NULL)

wxDbColInf * GetColumns (wxChar * tableName[], const wxChar * userlD)
Parameters
tableName

The table name you wish to obtain column information about.
numcCols

Pointer to a UWORD which will hold a count of the number of columns returned by
this function

tableName[]

295

CHAPTER7

An array of pointers to table names you wish to obtain column information about.
The last element of this array must be a NULL string.

userliD

Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userlD is evaluated in the
following manner:

userlD == NULL ... UserID is ignored (DEF AULT)
userID =="" ... UserlD set equal to 't his->uid'
userID I="" ... UserID set equal to 'u serlD’

Return value

This function returns a pointer to an array of wxDbColInf (p. 322)structures, allowing you
to obtain information regarding the columns of the named table(s). If no columns were
found, or an error occurred, this pointer will be NULL.

THE CALLING FUNCTION IS RESPONSIBLE FOR DELETING THE wxDbCollnf
MEMORY WHEN IT IS FINISHED WITH IT.

ALL column bindings associated with this wxDb instance are unbound by this function,
including those used by any wxDbTable instances that use this wxDb instance. This
function should use its own wxDb instance to avoid undesired unbinding of columns.

See also
wxDbColInf (p. 322)

Example
wxChar *tableList[] = {"PARTS", 0},
wxDbCollnf *collnf = pDb->GetColumns(tableList);
if (colInf)
/I Use the column inf

/I Destroy the memory
delete [] collnf;

wxDb::GetData

bool GetData(UWORD colNumber, SWORD cType,PTR pData, SDWORD maxLen,
SDWORD FAR * cbReturned)

Used to retrieve result set data without binding column values to memory variables (i.e.
not using a wxDbTable instance to access table data).

Parameters

colNumber

296

CHAPTER7

Ordinal number of the desired column in the result set to be returned.
cType

The C data type that is to be returned. See a patrtial list in wxDbTable::SetColDefs
(p. 358)

pData
Memory buffer which will hold the data returned by the call to this function.

maxLen

Maximum size of the buffer ‘pData’ in characters. NOTE: Not UNICODE safe. If
this is a numeric field, a value of 0 may be passed for this parameter, as the API
knows the size of the expected return value.

cbReturned

Pointer to the buffer containing the length of the actual data returned. If this value
comes back as SQL_NULL_DATA, then thewxDb::GetData (p. 305) call has failed.

See also
wxDb::GetNext (p. 308), wxDb::ExecSql (p. 302)
Example

SDWORD cb;
ULONG reqQty;
wxString sqlStmt;
sqIStmt = "SELECT SUM(REQUIRED_QTY - PICKED_QTY) FROM
ORDER_TABLE WHERE \
PART_RECID = 1450 AND REQUIRED_QTY > PICKED_QTY";

/I Perform the query
if (\pDb->ExecSql(sqlStmt.c_str()))

/l ERROR
return(0);

/I Request the first row of the result set
if (pDb->GetNext())

/l ERROR
return(0);

/I Read column #1 of the row returned by the ca Il to
:GetNext()

/I and return the value in 'reqQty’

if (pDb->GetData(1, SQL_C_ULONG, &reqQty, 0, & ch))

/l ERROR
return(0);

/I Check for a NULL result
if (cb == SQL_NULL_DATA)

297

CHAPTER7

return(0);

Remarks

When requesting multiple columns to be returned from the result set (for example, the
SQL query requested 3 columns be returned), the calls to this function must request the
columns in ordinal sequence (1,2,3 or 1,3 or 2,3).

wxDb::GetDatabaseName

const wxChar * GetDatabaseName ()

Returns the name of the database engine.

wxDb::GetDatasourceName

const wxString & GetDatasourceName ()

Returns the ODBC datasource name.

wxDb::GetHDBC

HDBC GetHDBC ()

Returns the ODBC handle to the database connection.

wxDb::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDb::GetHSTMT

HSTMT GetHSTMT()

Returns the ODBC statement handle associated with this database connection.

wxDb::GetKeyFields

int GetKeyFields (const wxString & tableName, wxDbCollnf * collnf, UWORD
numColumns)

Used to determine which columns are members of primary or non-primary indexes on
the specified table. If a column is a member of a foreign key for some other table, that
information is detected also.

This function is primarily for use by the wxDb::GetColumns (p. 304) function, but may be
called if desired from the client application.

Parameters

298

CHAPTER7

tableName

Name of the table for which the columns will be evaluated as to their inclusion in
any indexes.

colinf

Data structure containing the column definitions (obtained with wxDb::GetColumns
(p. 304)). This function populates the PkCol, PkTableName, and FkTableName
members of the collnf structure.

numColumns
Number of columns defined in the instance of colinf.
Return value
Currently always returns true.
See also

wxDbColInf (p. 322), wxDb::GetColumns (p. 304)

wxDb::GetNext

bool GetNext|()

Called after executing a query, this function requests the next row in the result set after
the current position of the cursor.

See also

wxDb::ExecSql (p. 302), wxDb::GetData (p. 305)

wxDb::GetNextError

bool GetNextError (HENV aHenv,HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt =
SQL_NULL_HSTMT)

Parameters
aHenv

A handle to the ODBC environment.
aHdbc

OPTIONAL. A handle to the ODBC connection. Pass this in if the ODBC function
call that failed required a hdbc or hstmt argument.

AHstmt

OPTIONAL.A handle to the ODBC statement being executed against. Pass this in
if the ODBC function call that failed requires a hstmt argument.

299

CHAPTER7

Example
if (SQLExecDirect(hstmt, (UCHAR FAR *) pSqlStmt, SQL_NTS) I=
SQL_SUCCESS)
{
return(db.GetNextError(db.henv, db.hdbc, hstm 1);
See also

wxDb::DispNextError (p. 301),wxDb::DispAllErrors (p. 300)

wxDb::GetPassword

const wxString & GetPassword ()

Returns the password used to establish this connection to the datasource.

wxDb::GetTableCount

int GetTableCount ()

Returns the number of wxDbTable() instances currently using this datasource
connection.

wxDb::GetUsername

const wxString & GetUsername ()

Returns the user name (uid) used to establish this connection to the datasource.

wxDb::Grant

bool Grant(int privileges, const wxString & tableName,const wxString & userList =
"PUBLIC")

Use this member function to GRANT privileges to users for accessing tables in the
datasource.

Parameters
privileges

Use this argument to select which privileges you want to grant. Pass
DB_GRANT_ALL to grant all privileges. To grant individual privileges pass one
more of the following OR'd together:

DB_GRANT_SELECT =1

DB_GRANT_INSERT =2

DB_GRANT_UPDATE =4

DB_GRANT_DELETE =8

DB_GRANT_ALL =DB_GRANT_SELECT | DB_GR ANT_INSERT |
DB_GRANT_UPDATE [DB_GR ANT_DELETE

or

300

CHAPTER7

tableName
The name of the table you wish to grant privileges on.
userList

OPTIONAL. A comma delimited list of users to grant the privileges to. If this
argument is not passed in, the privileges will be given to the general PUBLIC.

Remarks

Some databases require user names to be specified in all capital letters (i.e. Oracle).
This function does not automatically capitalize the user names passed in the comma-
separated list. This is the responsibility of the calling routine.

The currently logged in user must have sufficient grantor privileges for this function to be
able to successfully grant the indicated privileges.

Example

db.Grant(DB_GRANT_SELECT | DB_GRANT_INSERT, "PAR TS", "mary,
sue";

wxDb::IsFwdOnlyCursors

bool IsFwdOnlyCursors ()

This setting indicates whether this database connection was created as being capable of
using only forward scrolling cursors.

This function does NOT indicate if the ODBC driver or datasource supports backward
scrolling cursors. There is no standard way of detecting if the driver or datasource can
support backward scrolling cursors.

If a wxDb instance was created as being capable of only forward scrolling cursors, then
even if the datasource and ODBC driver support backward scrolling cursors, tables
using this database connection would only be able to use forward scrolling cursors.

The default setting of whether a wxDb connection to a database allows forward-only or
also backward scrolling cursors is defined in setup.h by the value of
wxODBC_FWD_ONLY_CURSORS. This default setting can be overridden when the
wxDb connection is initially created (seewxDb constructor (p. 296) and
wxDbGetConnection (p. 294)).

Return value

Returns true if this datasource connection is defined as using only forward scrolling
cursors, or false if the connection is defined as being allowed to use backward scrolling
cursors and their associated functions (see note above).

Remarks

Added as of wxWidgets v2.4 release, this function is a renamed version of
wxDb::FwdOnlyCursors() to match the normal wxWidgets haming conventions for class

301

CHAPTER7

member functions.

This function is not available in versions prior to v2.4. You should use
wxDb::FwdOnlyCursors (p. 303) for wxWidgets versions prior to 2.4.

See also

wxDb constructor (p. 296), wxDbGetConnection (p. 294)

wxDb::1sOpen

bool 1sOpen ()
Indicates whether the database connection to the datasource is currently opened.
Remarks

This function may indicate that the database connection is open, even if the call to
wxDb::Open (p. 312) may have failed to fully initialize the connection correctly. The
connection to the databaseis open and can be used via the direct SQL commands, if this
function returns true. Other functions which depend on thewxDb::Open (p. 312) to have
completed correctly may not function as expected. The return result from wxDb::Open
(p. 312) is the only way to know if complete initialization of this wxDb connection was
successful or not. See wxDb::Open (p. 312) for more details on partial failures to open a
connection instance.

wxDb::LogError

void LogError (const wxString & errMsg const wxString & SQLState="")
errMsg

Free-form text to display describing the error/text to be logged.
SQLState

OPTIONAL. Native SQL state error. Default is O.
Remarks

Calling this function will enter a log message in the error list maintained for the database
connection. This log message is free form and can be anything the programmer wants
to enter in the error list.

If SQL logging is turned on, the call to this function will also log the text into the SQL log
file.

See also

wxDb::WriteSqlLog (p. 319)

wxDb::ModifyColumn

302

CHAPTER7

void ModifyColumn (const wxString & tableName const wxString & ColumnNameint
dataType ULONG columnLength=0 const wxString & optionalParam="")

Used to change certain properties of a column such as the length, or whether a column
allows NULLs or not.

tableName
Name of the table that the column to be modified is in.
columnName

Name of the column to be modified. NOTE: Name of column cannot be changed
with this function.

dataType

Any one of DB_DATA_TYPE_VARCHAR, DB_DATA_TYPE_INTEGER,
DB_DATA_TYPE_FLOAT, DB_DATA_TYPE_DATE.

columnLength

New size of the column. Valid only for DB_DATA_TYPE_VARCHAR dataType
fields. Default is O.

optionalParam
Default is "".
Remarks

Cannot be used to modify the precision of a numeric column, therefore '‘columnLength' is
ignored unless the dataType is DB_DATA_TYPE_VARCHAR.

Some datasources do not allow certain properties of a column to be changed if any rows
currently have data stored in that column. Those datasources that do allow columns to
be changed with data in the rows many handle truncation and/or expansion in different
ways. Please refer to the reference material for the datasource being used for
behavioral descriptions.

Example

ok = pDb->ModifyColumn("CONTACTS", "ADDRESS2",
DB_, colDefs[j].SzDataO bj,
wxT("NOT NULL"));

wxDb::Open

bool Open(const wxString & Dsn, const wxString & Uid,const wxString & AuthStr,
bool failOnDataTypeUnsupported)

bool Open(const wxString & inConnectStr, bool failOnDataTypeUnsupported)

bool Open(wxDbConnectinf* dbConnectinf, bool failOnDataTypeUnsupported)

303

CHAPTER7

bool Open(wxDb * copyDb)

Opens a connection to the datasource, sets certain behaviors of the datasource to
confirm to the accepted behaviors (e.g. cursor position maintained on commits), and
gueries the datasource for its representations of the basic datatypes to determine the
form in which the data going to/from columns in the data tables are to be handled.

The second form of this function, which accepts a "wxDb *" as a parameter, can be used
to avoid the overhead (execution time, database load, network traffic) which are needed
to determine the data types and representations of data that are necessary for cross-
datasource support by these classes.

Normally the first form of the wxDb::Open() function will open the connection and then
send a series of queries to the datasource asking it for its representation of data types,
and all the features it supports. If one connection to the datasource has already been
made previously, the information gathered when that connection was created can just be
copied to any new connections to the same datasource by passing a pointer to the first
connection in as a parameter to the wxDb::Open() function. Note that this new
connection created from the first connections information will use the same
Dsn/Uid/AuthStr as the first connection used.

Parameters
Dsn

datasource name. The name of the ODBC datasource as assigned when the
datasource is initially set up through the ODBC data source manager.

Uid

User ID. The name (ID) of the user you wish to connect as to the datasource. The
user name (ID) determines what objects you have access to in the datasource and
what datasource privileges you have. Privileges include being able to create new
objects, update objects, delete objects and so on. Users and privileges are
normally administered by the database administrator.

AuthStr
The password associated with the Uid.
failOnDataTypeUnsupporte

As part of connecting to a database, the wxDb::Open() function will query the
database to find out the native types that it supports. With some databases, some
data types may not be supported, or not sufficiently supported, for use with the
wxODBC classes. Normally a program should fail in this case, so as not to try to
use a data type that is not supported. This parameter allows the programmer to
override the failure if they wish and continue on using the connection.

dbConnectlInf

Contains a DSN, Uid, Password, or a connection string to be used in opening a
new connection to the database. If a connection string is present, then the
connection string will be used. If there is no connection string present, then the

304

CHAPTER7

DSN, Uid, and Password are used.
inConnectStr

A valid ODBC connection string used to connect to a database
copyDb

Already completely configured and opened datasource connection from which all
Dsn, Uid, AuthStr, connection string, and data typing information is to be copied
from for use by this datasource connection. If ‘copyDb' used a connection string
to create its connection originally, then the connection being made by this call to
wxDb::Open() will use that same connection string.

Remarks

After a wxDb instance is created, it must then be opened. When opening a datasource,
there must be three pieces of information passed. The data source name, user name
(ID) and the password for the user. No database activity on the datasource can be
performed until the connection is opened. This is normally done at program startup and
the datasource remains open for the duration of the program/module run.

It is possible to have connections to multiple datasources open at the same time to
support distributed database connections by having separate instances of wxDb objects
that use either the same or different Dsn/Uid/AuthStr settings.

If this function returns a value of false, it does not necessarily mean that the connection
to the datasource was not opened. It may mean that some portion of the initialization of
the connection failed (such as a datatype not being able to be determined how the
datasource represents it). To determine if the connection to the database failed, use the
wxDb::1sOpen (p. 311)function after receiving a false result back from this function to
determine if the connection was opened or not. If this function returns false, but
wxDb::IsOpen (p. 311)returns true, then direct SQL commands may be passed to the
database connection and can be successfully executed, but use of the datatypes (such
as by a wxDbTable instance) that are normally determined during open will not be
possible.

The Dsn, Uid, and AuthStr string pointers that are passed in are copied. NOT the strings
themselves, only the pointers. The calling routine must maintain the memory for these
three strings for the life of the wxDb instance.

Example
wxDb sampleDB(DbConnectinf.GetHenv());
if ('sampleDB.Open("Oracle 7.1 HP/UX", "gtasker" ,
"myPassword"))
if (sampleDb.IsOpen())

/I Connection is open, but the initializati on of
/I datatypes and parameter settings failed

else

I/l Error opening datasource

305

CHAPTER7

wxDb::RollbackTrans

bool RollbackTrans ()

Function to "undo” changes made to the database. After an insert/update/delete, the
operation may be "undone" by issuing this command any time before a
wxDb::CommitTrans (p. 298) is called on the database connection.

Remarks

Transactions begin implicitly as soon as you make a change to the database. The
transaction continues until either a commit or rollback is executed. Calling
wxDb::RollbackTrans() will result in ALL changes done using this database connection
that have not already been committed to be "undone" back to the last commit/rollback
that was successfully executed.

Calling this member function rolls back ALL open (uncommitted) transactions on this
ODBC connection, including all wxDbTable instances that use this connection.

See also

wxDb::CommitTrans (p. 298) for a special note on cursors

wxDb::SetDebugErrorMessages

void SetDebugErrorMessages (bool state)
state

Either true (debug messages are logged) or false (debug messages are not
logged).

Remarks

Turns on/off debug error messages from the ODBC class library. When this function is
passed true, errors are reported to the user/logged automatically in a text or pop-up
dialog when an ODBC error occurs. When passed false, errors are silently handled.

When compiled in release mode (FINAL=1), this setting has no affect.
See also

wxDb constructor (p. 296)

wxDb::SetSqlLogging

bool SetSqglLogging (wxDbSglLogState state, const wxString & filename =
SQL_LOG_FILENAME, bool append = false)

Parameters

306

CHAPTER7

State

Either sqlLogOFF or sqlLogON (see enum wxDbSglLogState (p. 321)). Turns
logging of SQL commands sent to the datasource OFF or ON.

filename

OPTIONAL. Name of the file to which the log text is to be written. Default is
SQL_LOG_FILENAME.

append
OPTIONAL. Whether the file is appended to or overwritten. Default is false.
Remarks

When called with sqlLogON, all commands sent to the datasource engine are logged to
the file specified by filename. Logging is done by embedded wxDb::WriteSqglLog (p.
319) calls in the database member functions, or may be manually logged by adding calls
to wxDb::WriteSglLog (p. 319) in your own source code.

When called with sqlLogOFF, the logging file is closed, and any calls to
wxDb::WriteSqglLog (p. 319) are ignored.

wxDb::SQLColumnName

const wxString SQLColumnName (const char * colName)

Returns the column name in a form ready for use in SQL statements. In most cases, the
column name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in column names, which must be specially quoted. For
example, if the datasource allows spaces in the column name, the returned string will
have the correct enclosing marks around the name to allow it to be properly included in a
SQL statement for the DBMS that is currently connected to with this connection.

Parameters
colName

Native name of the column in the table that is to be evaluated to determine if any
special quoting marks needed to be added to it before including the column name
in a SQL statement

See also

wxDb::SQLTableName (p. 316)

wxDb::SQLTableName

const wxString SQLTableName (const char * tableName)

Returns the table name in a form ready for use in SQL statements. In most cases, the
table name is returned verbatim. But some databases (e.g. MS Access, SQL Server,

307

CHAPTER7

MSDE) allow for spaces in table names, which must be specially quoted. For example,
if the datasource allows spaces in the table name, the returned string will have the
correct enclosing marks around the name to allow it to be properly included in a SQL
statement for the data source that is currently connected to with this connection.

Parameters
tableName

Native name of the table that is to be evaluated to determine if any special quoting
marks needed to be added to it before including the table name in a SQL
statement

See also

wxDb::SQLColumnName (p. 316)

wxDb:: TableExists

bool TableExists (const wxString & tableName, const wxChar * userID=NULL, const
wxString & path="")

Checks the ODBC datasource for the existence of a table. If a userIDis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters
tableName

Name of the table to check for the existence of.
userlD

Owner of the table (also referred to as schema). Specify a userlD when the
datasource you are connected to allows multiple unique tables with the same
name to be owned by different users. userlDis evaluated as follows:

userlD == NULL ... UserID is ignored (DEF AULT)
userID=="" ... UserlD set equal to 't his->uid'
userID I="" ... UserID set equal to 'u serlD’

Remarks
tableName may refer to a table, view, alias or synonym.

This function does not indicate whether or not the user has privileges to query or perform
other functions on the table. Use the wxDb::TablePrivileges (p. 318) to determine if the
user has sufficient privileges or not.

See also

wxDb::TablePrivileges (p. 318)

308

CHAPTER7

wxDb:: TablePrivileges

bool TablePrivileges (const wxString & tableName, const wxString & priv,const
wxChar * userID=NULL, const wxChar * schema=NULL,const wxString & path="")

Checks the ODBC datasource for the existence of a table. If a userIDis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters
tableName

Name of the table on which to check privileges.tableName may refer to a table,
view, alias or synonym.

priv
The table privilege being evaluated. May be one of the following (or a datasource
specific privilege):
SELECT : The connected user is permitted t o retrieve data
for
one or more columns of the table.
INSERT : The connected user is permitted t 0 insert new
rows
containing data for one or more ¢ olumns into the
table.
UPDATE : The connected user is permitted t 0 update the
data in
one or more columns of the table.
DELETE : The connected user is permitted t o delete rows
of
data from the table.
REFERENCES : Is the connected user permitted t o refer to one
or
more columns of the table within a constraint
(for
example, a unique, referential, o r table check
constraint).
useriD
OPTIONAL. User for which to determine if the privilege specified to be checked is
granted or not. Default is "".userlD is evaluated as follows:
userID == NULL ... NOT ALLOWED!
userID =="" ... UserlD set equal to 't his->uid'
userID =" ... UserID set equal to 'u serlD'
schema

OPTIONAL. Owner of the table. Specify a userlD when the datasource you are
connected to allows multiple unique tables with the same name to be owned by

309

CHAPTER7

different users. Specifying the table owner makes determination of the users
privileges MUCH faster. Default is NULL. userID is evaluated as follows:

schema == NULL ... Any owner (DEFAULT)
schema =="" ... Owned by 'this->uid'
schema !="" ... Owned by userID specif ied in 'schema’

path
OPTIONAL. Path to the table. Default is ™. Currently unused.
Remarks

The scope of privilege allowed to the connected user by a given table privilege is
datasource dependent.

For example, the privilege UPDATE might allow the connected user to update all
columns in a table on one datasource, but only those columns for which the grantor (the
user that granted the connected user) has the UPDATE privilege on another datasource.

Looking up a user's privileges to a table can be time consuming depending on the
datasource and ODBC driver. This time can be minimized by passing a schemaas a
parameter. With some datasources/drivers, the difference can be several seconds of
time difference.

wxDb:: TranslateSqglState

int TranslateSqglState (const wxString & SQLState)
Converts an ODBC sqlstate to an internal error code.
Parameters
SQLState

State to be converted.
Return value

Returns the internal class DB_ERR code. See wxDb::DB_STATUS (p. 287) definition.

wxDb::WriteSqglLog

bool WriteSqglLog (const wxString & logMsg)
Parameters
logMsg

Free form string to be written to the log file.
Remarks

Very useful debugging tool that may be turned on/off during run time (see (see

310

CHAPTER7

wxDb::SetSqlLogging (p. 315) for details on turning logging on/off). The passed in string
logMsg will be written to a log file if SQL logging is turned on.

Return value

If SQL logging is off when a call to WriteSqlLog() is made, or there is a failure to write
the log message to the log file, the function returns false without performing the
requested log, otherwise true is returned.

See also

wxDb::SetSqlLogging (p. 315)

wxDbColDataPtr

Pointer to dynamic column definitions for use with a wxDbTable instance. Currently there
are no member functions for this class.

See the database classes overview (p. 1868) for an introduction to using the ODBC
classes.

void *PtrDataObj;
int SzDataObj;
SWORD SqlCtype;

wxDbColDef

This class is used to hold information about the columns bound to an instance of a
wxDbTable object.

Each instance of this class describes one column in the wxDbTable object. When
calling the wxDb constructor (p. 296), a parameter passed in indicates the number of
columns that will be defined for the wxDbTable object. The constructor uses this
information to allocate adequate memory for all of the column descriptions in your
wxDbTable object. Private member wxDbTable::colDefs is a pointer to this chunk of
memory maintained by the wxDbTable class (and can be retrieved using
thewxDbTable::GetColDefs (p. 344) function). To access the nth column definition of
your wxDbTable object, just reference wxDbColDefs element [n - 1].

Typically, wxDbTable::SetColDefs (p. 358) is used to populate an array of these data
structures for the wxDbTable instance.

Currently there are no accessor functions for this class, so all members are public.

wxChar ColName[DB_MAX_COLUMN_NAME_LEN+1]; // Column Name
int DbDataType; - Logical Data Type;
e.g. DB_DATA_TYPE_INTE GER
SWORD SqlICtype; - C data type; e.g. SQL_ C_LONG
void *PtrDataObj; - Address of the data ob ject
int SzDataObj; - Size, in bytes, of the data object
bool KeyField; - Is column part of the PRIMARY KEY for
the
table? -- Date fields should NOT be

311

CHAPTER7

KeyFields
bool Updateable; - Column is updateable?
bool InsertAllowed; - Column included in INS ERT statements?
bool DerivedCol; - Column is a derived va lue?
SDWORD ChbhValue; - Minternal use only!! !
bool Null; - NOT FULLY IMPLEMENTED
Allows NULL values in Inserts and
Updates
See also

database classes overview (p. 1868),wxDbTable::GetColDefs (p. 344), wxDb constructor
(p. 296)

Include files

<wx/db.h>

wxDbColDef::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbColFor
Beginning support for handling international formatting specifically on dates and floats.
wxString s_Field; /I Formatted Stri ng for Output
wxString s_Format[7]; // Formatted Obje cts - TIMESTAMP
has
the biggest (7
wxString s_Amount[7]; // Formatted Obje cts - amount of
things that ca n be formatted
int i_Amount[7]; // Formatted Obje cts -
TT MM YYYY HH MM SS m
int i_Nation; // 0 =timestamp
1=EU
2=UK
3 = Internatio nal
4=US
int i_dbDataType; // conversion of the
'sqlDataType'
to the generic data type used
by
these classes
SWORD i_sqlDataType;

The constructor for this class initializes all the values to zero or NULL.
The destructor does nothing at this time.
Only one function is provided with this class currently.

See the database classes overview (p. 1868) for an introduction to using the ODBC
classes.

312

CHAPTER7

Include files

<wx/db.h>

wxDbColFor::Format

int Format (int Nation, int dbDataType,SWORD sqlDataType, short columnSize,short
decimalDigits)

Work in progress, and should be inter-related with wxLocale eventually.

wxDbColFor::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbCollnf

Used with the wxDb::GetColumns (p. 304) functions for obtaining all retrievable
information about a column's definition.

wxChar catalog[128+1];

wxChar schema[128+1];

wxChar tableName[DB_MAX_TABLE_NAME_LEN+1] ;
wxChar colName[DB_MAX_COLUMN_NAME_LEN+1];
SWORD sqlDataType;

wxChar typeName[128+1];

SWORD columnSize;

SWORD bufferLength;

short decimalDigits;

short numPrecRadix;

short nullable;

wxChar remarks[254+1];

int dbDataType; // conversion of the 'sqlDataType'
/I to the generic dat a type used by
Il these classes
int PkCol; /I Primary key column
0=No
1 = First Key
2 = Second Key, etc...
wxChar PkTableName[DB_MAX_TABLE_NAME_LEN+ 1];
/I Tables that use th is PKey as a
FKey
int FkCol; /I Foreign key column
0=No
1 = First Key
2 = Second Key, etc...
wxChar FkTableName[DB_MAX_TABLE_NAME_LEN+ 1];
/I Foreign key table name
wxDbColFor *pColFor; // How should this co lumn be
formatted

The constructor for this class initializes all the values to zero, ", or NULL.

313

CHAPTER7

The destructor for this class takes care of deleting the pColFor member if it is non-NULL.

See the database classes overview (p. 1868) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

wxDbCollnf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectInf

This class is used for holding the data necessary for connecting to the ODBC
datasource. That information includes: SQL environment handle, datasource name,
user ID, password and default directory path (used with dBase). Other optional fields
held in this class are and file type, both for future functions planned to be added for
creating/manipulating datasource definitions.

wxDbConnectInf::wxDbConnectInf

wxDbConnectinf ()
Default constructor.

wxDbConnectinf (HENV henv, const wxString & dsn,const wxString & useriD="",
const wxString & password,const wxString & defaultDir="", const wxString
&description="",const wxString & fileType="")

Constructor which allows initial settings of all the classes member variables.

See the special note below on the henv parameter for forcing this constructor to create a
SQL environment handle automatically, rather than needing to pass one in to the
function.

Parameters
henv

Environment handle used for this connection. See wxDConnectinf::AllocHenv (p.
325) for how to create an SQL environment handle. NOTE: Passing in a NULL for
this parameter will inform the constructor that it should create its own SQL
environment handle. If NULL is passed for this parameter, the constructor will call
wxDConnectInf::AllocHenv (p. 325) internally. A flag is set internally also to
indicate that the HENV was created by the constructor so that when the default
class destructor is called, the destructor will call wxDConnectinf::FreeHenv (p.

314

CHAPTER7

325) to free the environment handle automatically.
dsn

Name of the datasource to be used in creating wxDb instances for creating
connection(s) to a datasource.

userlD

OPTIONAL Many datasources allow (or even require) use of a username to
determine privileges that connecting user is allowed to have when accessing the

datasource or the data tables. Default is ™.
password

OPTIONAL Password to be associated with the user ID specified in 'userID'.

Default is "
defaultDir

OPTIONAL Used for datasources which require the path to where the data file is
stored to be specified. dBase is one example of the type of datasource which

requires this information. Default is ™.
description

OPTIONAL FUTURE USE Default is ™.
fileType

OPTIONAL FUTURE USE Default is .
Remarks

It is strongly recommended that programs use the longer form of the constructor and
allow the constructor to create the SQL environment handle automatically, and manage
the destruction of the handle.

Example
wxDbConnectInf *DbConnectinf;

DbConnectinf = new wxDbConnectInf(0,"MY_DSN", "MY _ USER",
"MY_PASSWORD");

....the rest of the program

delete DbConnectInf;

See also

wxDConnectInf::AllocHenv (p. 325),wxDConnectinf::FreeHenv (p. 325)

wxDbConnectInf::~wxDbConnectlnf

~wxDbConnectinf ()

315

CHAPTER7

Handles the default destruction of the instance of the class. If the long form of the
wxDConnectInf (p. 323) was used, then this destructor also takes care of calling
wxDConnectInf::FreeHenv (p. 325) to free the SQL environment handle.

wxDbConnectInf::AllocHenv

bool AllocHenv ()

Allocates a SQL environment handle that will be used to interface with an ODBC
datasource.

Remarks

This function can be automatically called by the long from of thewxDbConnectinf (p. 323)
constructor.

wxDbConnectInf::FreeHenv

void FreeHenv ()
Frees the SQL environment handle being managed by the instance of this class.
Remarks

If the SQL environment handle was created using the long form of the wxDbConnectinf
(p. 323) constructor, then the flag indicating that the HENV should be destroyed when
the classes destructor is called is reset to be false, so that any future handles created
using the wxDbConnectInf::AllocHenv (p. 325) function must be manually released with
a call to this function.

wxDbConnectlInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectInf::GetAuthStr

const wxChar * GetAuthStr ()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectinf::GetPassword (p. 326)

wxDbConnectInf::GetDefaultDir

const wxChar * GetDefaultDir ()

Accessor function to return the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-

316

CHAPTER7

Access.

wxDbConnectInf::GetDescription

const wxChar * GetDescription ()
Accessor function to return the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetDsn

const wxChar * GetDsn ()

Accessor function to return the datasource name assigned for this class instance.

wxDbConnectinf.:GetFileType

const wxChar * GetFileType ()

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetHenv

const HENV GetHenv ()

Accessor function to return the SQL environment handle being managed by this class
instance.

wxDbConnectInf::GetPassword

const wxChar * GetPassword ()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectInf::GetAuthStr (p. 325)
wxDbConnectinf::GetUid

const wxChar * GetUid ()

Accessor function to return the user ID assigned for this class instance.
wxDbConnectInf::GetUserID

const wxChar * GetUserlID ()

317

CHAPTER7

Accessor function to return the user ID assigned for this class instance.

wxDbConnectInf::SetAuthStr

SetAuthStr (const wxString &authstr)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectinf::SetPassword (p. 328)

wxDbConnectInf::SetDefaultDir

SetDefaultDir (const wxString &defDir)
Accessor function to assign the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access

does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectInf::SetDescription

SetDescription (const wxString &desc)
Accessor function to assign the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectInf::SetDsn

SetDsn (const wxString &dsn)

Accessor function to assign the datasource name for this class instance.

wxDbConnectInf.:SetFileType

SetFileType (const wxString &)

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::SetHenv

void SetHenv (const HENV henv)

Accessor function to set the SQL environment handle for this class instance.

wxDbConnectInf::SetPassword

318

CHAPTER7

SetPassword (const wxString &password)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectinf::SetAuthStr (p. 327)

wxDbConnectInf::SetUid

SetUid (const wxString &uid)

Accessor function to set the user ID for this class instance.

wxDbConnectInf::SetUserID

SetUserlD (const wxString &useriD)

Accessor function to assign the user ID for this class instance.

wxDbldxDef

Used in creation of non-primary indexes. Currently there are no member functions for
this class.
wxChar ColName[DB_MAX_COLUMN_NAME_LEN+1]
/l Name of column

bool Ascending /I s index maint ained in
ASCENDING sequ ence?

There are no constructors/destructors as of this time, and no member functions.

See the database classes overview (p. 1868) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

wxDblInf

Contains information regarding the database connection (datasource name, number of
tables, etc). A pointer to a wxDbTablelnf is included in this class so a program can
create a wxDbTablelnf array instance to maintain all information about all tables in the
datasource to have all the datasource's information in one memory structure.

Primarily, this class is used internally by the wxWidgets ODBC classes.

wxChar catalog[128+1];

wxChar schema[128+1]; // typically mean s owner of
table(s)
int numTables; // How many table s does this
datasource hav e

319

CHAPTER7

wxDbTablelnf *pTableInf, // Equals a new
wxDbTablelnf[n umTables];

The constructor for this class initializes all the values to zero, ", or NULL.

The destructor for this class takes care of deleting the pTablelnf member if it is non-
NULL.

See the database classes overview (p. 1868) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

wxDblnf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbTable

A wxDbTable instance provides re-usable access to rows of data in a table contained
within the associated ODBC datasource

See the database classes overview (p. 1868) for an introduction to using the ODBC
classes.

Include files

<wx/dbtable.h>
<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in dbtable.cpp/.h for use with the
wxDbTable class.

wxDbColDef (p. 320)
« wxDbColDataPtr (p. 320)
* wxDbldxDef (p. 328)

Constants
wxDB_DEFAULT_CURSOR Primary cursor normally us ed for cursor
based
operations.
wxDB_QUERY_ONLY Used to indicate whether a table that is
opened

320

CHAPTER7

is for query only, or if
insert/update/deletes

will be performed on the t able. Less
overhead

(cursors and memory) are a llocated for
query

only tables, plus read acc ess times are
faster

with some datasources.

wxDB_ROWID_LEN [Oracle only] - Used when
CanUpdateByRowlID()

is true. Optimizes update s so they are
faster

by updating on the Oracle- specific ROWID
column

rather than some other ind ex.

wxDB_DISABLE_VIEW Use to indicate when a dat abase view

should not

be if a table is normally set up to use a
view.

[Currently unsupported.]

wxDbTable::wxDbTable

wxDbTable (wxDb * pwxDb, const wxString & tbIName, const UWORD numColumns,
const wxString & qgryTbIName =", bool gryOnly = lwxDB_QUERY_ONLY, const
wxString & tblIPath ="")

Default constructor.
Parameters
pwxDb
Pointer to the wxDb instance to be used by this wxDbTable instance.
tbIName
The name of the table in the RDBMS.
numColumns

The number of columns in the table. (Do NOT include the ROWID column in the
count if using Oracle).

gryTbIName

OPTIONAL. The name of the table or view to base your queries on. This
argument allows you to specify a table/view other than the base table for this
object to base your queries on. This allows you to query on a view for example,
but all of the INSERT, UPDATE and DELETES will still be performed on the base
table for this wxDbTable object. Basing your queries on a view can provide a

321

CHAPTER7

substantial performance increase in cases where your queries involve many tables

with multiple joins. Default is ™.

gryOnly

OPTIONAL. Indicates whether the table will be accessible for query purposes
only, or should the table create the necessary cursors to be able to insert, update,
and delete data from the table. Default is 'wxDB_QUERY_ONLY.

tblPath

OPTIONAL. Some datasources (such as dBase) require a path to where the table

is stored on the system. Default is ™.

wxDbTable::wxDbTable

virtual ~wxDbTable ()

Virtual default destructor.

wxDbTable::BuildDeleteStmt

void BuildDeleteStmt (wxString & pSqlStmt,int typeOfDel, const wxString
&pWhereClause="")

Constructs the full SQL statement that can be used to delete all rows matching the
criteria in the pWhereClause.

Parameters
pSqlStmt

Pointer to buffer for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_ MAX_STATEMENT_LEN
bytes.

typeOfDel

The type of delete statement being performed. Can be one of three values:
DB_DEL_KEYFIELDS, DB_DEL_WHERE or DB_DEL_MATCHING

pWhereClause

OPTIONAL. If the typeOfDel is DB_DEL_WHERE, then you must also pass in a
SQL WHERE clause in this argument. Default is ™.

Remarks

This member function constructs a SQL DELETE statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

322

CHAPTER7

wxDbTable::BuildSelectStmt

void BuildSelectStmt (wxString & pSqlStmt,int typeOfSelect, bool distinct)

Constructs the full SQL statement that can be used to select all rows matching the
criteria in the pWhereClause. This function is called internally in the wxDbTable class
whenever the function wxDbTable::Query (p. 353)is called.

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 358)statements are
included in the list of columns returned by the SQL statement created by a call to this
function.

Parameters
pSqlStmt

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_ MAX_STATEMENT_LEN
bytes.

typeOfSelect

The type of select statement being performed. Can be one of four values:
DB_SELECT_KEYFIELDS, DB_SELECT_WHERE, DB_SELECT_MATCHING or
DB_SELECT_STATEMENT.

distinct
Whether to select distinct records only.
Remarks

This member function constructs a SQL SELECT statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified usingwxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

wxDbTable::BuildUpdateStmt

void BuildUpdateStmt (wxString & pSqlStmt, int typeOfUpd,const wxString
&pWhereClause="")

Constructs the full SQL statement that can be used to update all rows matching the
criteria in the pWhereClause.

If typeOfUpdate is DB_UPD_KEYFIELDS, then the current values in the bound columns
are used to determine which row(s) in the table are to be updated. The exception to this
is when a datasource supports ROW IDs (Oracle). The ROW ID column is used for
efficiency purposes when available.

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 358)statements are
included in the list of columns updated by the SQL statement created by a call to this
function. Any column definitions that were defined as being non-updateable will be

323

CHAPTER7

excluded from the SQL UPDATE statement created by this function.
Parameters
pSqlStmt

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfUpdate

The type of update statement being performed. Can be one of two values:
DB_UPD_KEYFIELDS or DB_UPD_WHERE.

pWhereClause

OPTIONAL. If the typeOfUpdate is DB_UPD_WHERE, then you must also pass in
a SQL WHERE clause in this argument. Default is ™.

Remarks

This member function allows you to see what the SQL UPDATE statement looks like that
the ODBC class library builds. This can be used for debugging purposes if you are
having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

wxDbTable::BuildWhereClause

void BuildWhereClause (wxString & pWhereClause,int typeOfWhere, const wxString
&qualTableName="",bool useLikeComparison=false)

Constructs the portion of a SQL statement which would follow the word 'WHERE' in a
SQL statement to be passed to the datasource. The returned string does NOT include
the word 'WHERE'.

Parameters
pWhereClause

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfWhere

The type of where clause to generate. Can be one of two values:
DB_WHERE_KEYFIELDS or DB_WHERE_MATCHING.

qualTableName

OPTIONAL. Prepended to all base table column names. For use when a FROM

324

CHAPTER7

clause has been specified with thewxDbTable::SetFromClause (p. 361), to clarify

which table a column name reference belongs to. Default is ™.
useLikeComparison

OPTIONAL. Should the constructed WHERE clause utilize the LIKE comparison
operator. If false, then the '=' operator is used. Default is false.

Remarks

This member function allows you to see what the SQL WHERE clause looks like that the
ODBC class library builds. This can be used for debugging purposes if you are having
problems executing your own SQL statements.

If using 'typeOfWhere' set to DB_ WHERE_MATCHING, any bound columns currently
containing a NULL value are not included in the WHERE clause's list of columns to use
in the comparison.

wxDbTable::CanSelectForUpdate

bool CanSelectForUpdate ()

Use this function to determine if the datasource supports SELECT ... FOR UPDATE.
When the keywords "FOR UPDATE" are included as part of your SQL SELECT
statement, all records retrieved (not just queried, but actually retrieved
usingwxDbTable::GetNext (p. 347), etc) from the result set are locked.

Remarks

Not all datasources support the "FOR UPDATE" clause, so you must use this member
function to determine if the datasource currently connected to supports this behavior or
not before trying to select using "FOR UPDATE".

If the wxDbTable instance was created with the parameter wxDB_QUERY_ONLY, then
this function will return false. For all known databases which do not support the FOR
UPDATE clause, this function will return false also.

wxDbTable::CanUpdateByROWID

bool CanUpdateByROWID ()
CURRENTLY ONLY POSSIBLE IF USING ORACLE.
--- CURRENTLY DISABLED FOR *ALL* DATASOURCES --- NOV 1 2000 - gt

Every Oracle table has a hidden column named ROWID. This is a pointer to the
physical location of the record in the datasource and allows for very fast updates and
deletes. The key is to retrieve this ROWID during your query so it is available during an
update or delete operation.

Use of the ROWID feature is always handled by the class library except in the case of
wxDbTable::QueryBySqlStmt (p. 354). Since you are passing in the SQL SELECT
statement, it is up to you to include the ROWID column in your query. If you do not, the

325

CHAPTER7

application will still work, but may not be as optimized. The ROWID is always the last
column in the column list in your SQL SELECT statement. The ROWID is not a column
in the normal sense and should not be considered part of the column definitions for the
wxDbTable object.

Remarks

The decision to include the ROWID in your SQL SELECT statement must be deferred
until runtime since it depends on whether you are connected to an Oracle datasource or
not.

Example

/I Incomplete code sample
wxDbTable parts;

if (parts.CanUpdateByROWID())

/I Note that the ROWID column must always b e the last
column selected
sglStmt = "SELECT PART_NUM, PART_DESC, ROWI D" FROM PARTS";
else
sglStmt = "SELECT PART_NUM, PART_DESC FROM PARTS";

wxDbTable::ClearMemberVar

void ClearMemberVar (UWORD colNumber, bool setToNull=false)

Same as wxDbTable::ClearMemberVars (p. 336) except that this function clears only the
specified column of its values, and optionally sets the column to be a NULL column.

colNumber

Column number that is to be cleared. This number (between 0 and (numColumns-
1)) is the index of the column definition created using thewxDbTable::SetColDefs
(p. 358) function.

setToNull

OPTIONAL. Indicates whether the column should be flagged as being a NULL
value stored in the bound memory variable. If true, then any value stored in the
bound member variable is cleared. Default is false.

wxDbTable::ClearMemberVars

void ClearMemberVars (bool setToNull=false)

Initializes all bound columns of the wxDbTable instance to zero. In the case of a string,
zero is copied to the first byte of the string.

setToNull

OPTIONAL. Indicates whether all columns should be flagged as having a NULL
value stored in the bound memory variable. If true, then any value stored in the

326

CHAPTER7

bound member variable is cleared. Default is false.
Remarks

This is useful before calling functions such aswxDbTable::QueryMatching (p. 356)
orwxDbTable::DeleteMatching (p. 341) since these functions build their WHERE clauses
from non-zero columns. To call eitherwxDbTable::QueryMatching (p. 356)
orwxDbTable::DeleteMatching (p. 341) use this sequence:

1) ClearMemberVars()
2) Assign columns values you wish to match on
3) Call wxDbTable::QueryMatching() or wxDbTable::D eleteMatching()

wxDbTable::CloseCursor

bool CloseCursor (HSTMTcursor)
Closes the specified cursor associated with the wxDbTable object.
Parameters
cursor
The cursor to be closed.
Remarks

Typically handled internally by the ODBC class library, but may be used by the
programmer if desired.

|[DO NOT CLOSE THE wxDB_DEFAULT_CURSOR!

wxDbTable::Count

ULONG Count (const wxString & args="*")

Returns the number of records which would be in the result set using the current query
parameters specified in the WHERE and FROM clauses.

Parameters
args

OPTIONAL. This argument allows the use of the DISTINCT keyword against a
column name to cause the returned count to only indicate the number of rows in
the result set that have a unique value in the specified column. An example is
shown below. Default is "*", meaning a count of the total number of rows matching
is returned, regardless of uniqueness.

Remarks

This function can be called before or after an actual query to obtain the count of records
in the result set. Count() uses its own cursor, so result set cursor positioning is not
affected by calls to Count().

327

CHAPTER7

WHERE and FROM clauses specified usingwxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) ARE used by this function.

Example
USERS TABLE
FIRST_NAME LAST_NAME

John Doe
Richard Smith
Michael Jones
John Carpenter

/I Incomplete code sample
wxDbTable users;

users.SetWhereClause(");

/I This Count() will return 4, as there are fou r users listed
above

/I that match the query parameters

totalNumberOfUsers = users.Count();

/I This Count() will return 3, as there are onl y 3 unique
first names

/I in the table above - John, Richard, Michael.

totalNumberOfUniqueFirstNames = users.Count("DI STINCT
FIRST_NAME");

wxDbTable::Createlndex

bool Createlndex (const wxString & IndexName, bool unique,UWORD
numindexColumns, wxDbldxDef * pIndexDefs,bool attemptDrop=true)

This member function allows you to create secondary (non primary) indexes on your
tables. You first create your table, normally specifying a primary index, and then create
any secondary indexes on the table. Indexes in relational model are not required. You
do not need indexes to look up records in a table or to join two tables together. In the
relational model, indexes, if available, provide a quicker means to look up data in a table.
To enjoy the performance benefits of indexes, the indexes must be defined on the
appropriate columns and your SQL code must be written in such a way as to take
advantage of those indexes.

Parameters
IndexName

Name of the Index. Name must be unique within the table space of the
datasource.

unique
Indicates if this index is unique.

numlindexColumns

328

CHAPTER7

Number of columns in the index.
pindexDefs

A pointer to an array wxDbldxDef (p. 328) structures.
attemptDrop

OPTIONAL. Indicates if the function should try to execute a
wxDbTable::Dropindex (p. 343) on the index name provided before trying to create
the index name. Default is true.

Remarks

The first parameter, index name, must be unique and should be given a meaningful

name. Common practice is to include the table name as a prefix in the index name (e.qg.
For table PARTS, you might want to call your index PARTS_Index1). This will allow you
to easily view all of the indexes defined for a given table grouped together alphabetically.

The second parameter indicates if the index is unique or not. Uniqueness is enforced at
the RDBMS level preventing rows which would have duplicate indexes from being
inserted into the table when violating a unique index’s uniqueness.

In the third parameter, specify how many columns are in your index. This number must
match the number of columns defined in the 'pindexDefs' parameter.

The fourth parameter specifies which columns make up the index using thewxDbldxDef
(p. 328) structure. For each column in the index, you must specify two things, the
column name and the sort order (ascending / descending). See the example below to
see how to build and pass in the wxDbldxDef (p. 328) structure.

The fifth parameter is provided to handle the differences in datasources as to whether
they will automatically overwrite existing indexes with the same name or not. Some
datasources require that the existing index must be dropped first, so this is the default
behavior.

Some datasources (MySQL, and possibly others) require columns which are to be part
of an index to be defined as NOT NULL. When this function is called, if a column is not
defined to be NOT NULL, a call to this function will modify the column definition to
change any columns included in the index to be NOT NULL. In this situation, if a NULL
value already exists in one of the columns that is being modified, creation of the index
will fail.

PostGres is unable to handle index definitions which specify whether the index is
ascending or descending, and defaults to the system default when the index is created.

It is not necessary to call wxDb::CommitTrans (p. 298)after executing this function.

Example
/I Create a secondary index on the PARTS table
wxDbldxDef IndexDef[2]; // 2 columns make up the index
wxStrcpy(IndexDef[0].ColName, "PART_DESC"); // Column 1

IndexDef[0].Ascending = true;

329

CHAPTER7

wxStrcpy(IndexDef[1].ColName, "SERIAL_NO"); // Column 2
IndexDef[1].Ascending = false;

/I Create a name for the index based on the tab le's name
wxString indexName;

indexName.Printf("%s_Index1",parts->GetTableNam e());
parts->Createlndex(indexName, true, 2, IndexDef);

wxDbTable::CreateTable

bool CreateTable (bool attemptDrop=true)

Creates a table based on the definitions previously defined for this wxDbTable instance.
Parameters

attemptDrop

OPTIONAL. Indicates whether the driver should attempt to drop the table before
trying to create it. Some datasources will not allow creation of a table if the table
already exists in the table space being used. Default is true.

Remarks

This function creates the table and primary index (if any) in the table space associated
with the connected datasource. The owner of these objects will be the user id that was
given when wxDb::Open (p. 312) was called. The objects will be created in the default

schemal/table space for that user.

In your derived wxDbTable object constructor, the columns and primary index of the
table are described through the wxDbColDef (p. 320) structure.wxDbTable::CreateTable
(p. 339) uses this information to create the table and to add the primary index.
SeewxDbTable (p. 329) ctor and wxDbColDef description for additional information on
describing the columns of the table.

It is not necessary to call wxDb::CommitTrans (p. 298)after executing this function.

wxDbTable::DB_STATUS

bool DB_STATUS()

Accessor function that returns the wxDb private member variable DB_STATUS for the
database connection used by this instance of wxDbTable.

wxDbTable::Delete

bool Delete()
Deletes the row from the table indicated by the current cursor.
Remarks

Use wxDbTable::GetFirst (p. 345),wxDbTable::GetLast (p. 346),wxDbTable::GetNext (p.

330

CHAPTER7

347) orwxDbTable::GetPrev (p. 347) to position the cursor to a valid record. Once
positioned on a record, call this function to delete the row from the table.

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use
of this function to commit or rollback the deletion.

NOTE: Most datasources have a limited size "rollback” segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

wxDbTable::DeleteCursor

bool DeleteCursor (HSTMT *hstmtDel)
Allows a program to delete a cursor.
Parameters
hstmtDel

Handle of the cursor to delete.
Remarks

For default cursors associated with the instance of wxDbTable, it is not necessary to
specifically delete the cursors. This is automatically done in the wxDbTable destructor.

NOTE: If the cursor could not be deleted for some reason, an error is logged indicating
the reason. Even if the cursor could not be deleted, the HSTMT that is passed in is
deleted, and the pointer is set to NULL.

DO NOT DELETE THE wxDB_DEFAULT_CURSOR!

wxDbTable::DeleteMatching

bool DeleteMatching ()

This member function allows you to delete records from your wxDbTable object by
specifying the data in the columns to match on.

Remarks

To delete all users with a first name of "JOHN", do the following:
1. Clear all "columns" using wxDbTable::ClearMemberVars().
2. Setthe FIRST_NAME column equal to "JOHN".
3. Call wxDbTable::DeleteMatching().

331

CHAPTER7

The WHERE clause is built by the ODBC class library based on all non-NULL columns.
This allows deletion of records by matching on any column(s) in your wxDbTable
instance, without having to write the SQL WHERE clause.

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use
of this function to commit or rollback the deletion.

NOTE: Row(s) should be locked before deleting them to make sure they are not already
in use. This can be achieved by callingwxDbTable::QueryMatching (p. 356), and then
retrieving the records, locking each as you go (assuming FOR UPDATE is allowed on
the datasource). After the row(s) have been successfully locked, call this function.

NOTE: Most datasources have a limited "rollback" segment. This means that it is only
possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

Example

/I Incomplete code sample to delete all users w ith a first
name

/I of "JOHN"

users.ClearMemberVars();

wxStrepy(users.FirstName,"JOHN");

users.DeleteMatching();

wxDbTable::DeleteWhere

bool DeleteWhere (const wxString & pWhereClause)

Deletes all rows from the table which match the criteria specified in the WHERE clause
that is passed in.

Parameters
pWhereClause

SQL WHERE clause. This WHERE clause determines which records will be
deleted from the table interfaced through the wxDbTable instance. The WHERE
clause passed in must be compliant with the SQL 92 grammar. Do not include the
keyword 'WHERE'

Remarks

This is the most powerful form of the wxDbTable delete functions. This function gives
access to the full power of SQL. This function can be used to delete records by passing
a valid SQL WHERE clause. Sophisticated deletions can be performed based on
multiple criteria using the full functionality of the SQL language.

A wxDb::CommitTrans (p. 298) must be called after use of this function to commit the
deletions.

332

CHAPTER7

Note: This function is limited to deleting records from the table associated with this
wxDbTable object only. Deletions on joined tables is not possible.

NOTE: Most datasources have a limited size "rollback” segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

Example
/I Delete parts 1 thru 10 from containers 'X', 'Y'and 'Z'
that
/I are magenta in color
parts.DeleteWhere("(PART_NUMBER BETWEEN 1 AND 1 0) AND\

CONTAINER IN (X', 'Y', 'Z') AND \
UPPER(COLOR) = 'MAGENTA™);

wxDbTable::Droplndex

bool Droplndex (const wxString & IndexName)

Allows an index on the associated table to be dropped (deleted) if the user login has
sufficient privileges to do so.

Parameters
IndexName

Name of the index to be dropped.
Remarks

If the index specified in the 'IndexName' parameter does not exist, an error will be
logged, and the function will return a result of false.

It is not necessary to call wxDb::CommitTrans (p. 298)after executing this function.

wxDbTable::DropTable

bool DropTable ()
Deletes the associated table if the user has sufficient privileges to do so.
Remarks

This function returns true if the table does not exist, but only for supported databases
(see wxDb::Dbms (p. 299)). If a datasource is not specifically supported, and this
function is called, the function will return false.

333

CHAPTER7

Most datasources/ODBC drivers will delete any indexes associated with the table
automatically, and others may not. Check the documentation for your database to
determine the behavior.

It is not necessary to call wxDb::CommitTrans (p. 298)after executing this function.

wxDbTable::From

const wxString & From ()
void From (const wxString & From)

Accessor function for the private class member wxDbTable::from. Can be used as a
synonym for wxDbTable::GetFromClause (p. 346)(the first form of this function)
orwxDbTable::SetFromClause (p. 361) (the second form of this function).

Parameters
From

A comma separated list of table names that are to be inner joined with the base
table's columns so that the joined table's columns may be returned in the result set
or used as a portion of a comparison with the base table's columns. NOTE that
the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::from.

The second form of the function has no return value, as it will always set the from clause
successfully.

See also

wxDbTable::GetFromClause (p. 346),wxDbTable::SetFromClause (p. 361)

wxDbTable::GetColDefs

wxDbColDef * GetColDefs ()

Accessor function that returns a pointer to the array of column definitions that are bound
to the columns that this wxDbTable instance is associated with.

To determine the number of elements pointed to by the returnedwxDbColDef (p. 320)
pointer, use thewxDbTable::GetNumberOfColumns (p. 347) function.

Remarks

These column definitions must not be manually redefined after they have been set.

wxDbTable::GetCursor

334

CHAPTER7

HSTMT GetCursor ()
Returns the HSTMT value of the current cursor for this wxDbTable object.
Remarks

This function is typically used just before changing to use a different cursor so that after
the program is finished using the other cursor, the current cursor can be set back to
being the cursor in use.

See also

wxDbTable::SetCursor (p. 360), wxDbTable::GetNewCursor (p. 346)

wxDbTable::GetDb

wxDb * GetDb()

Accessor function for the private member variable pDb which is a pointer to the
datasource connection that this wxDbTable instance uses.

wxDbTable::GetFirst

bool GetFirst ()

Retrieves the FIRST row in the record set as defined by the current query. Before
retrieving records, a query must be performed usingwxDbTable::Query (p.
353),wxDbTable::QueryOnKeyFields (p. 357),wxDbTable::QueryMatching (p. 356)
orwxDbTable::QueryBySqlStmt (p. 354).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to false. If the connection does not allow
backward scrolling cursors, this function will return false, and the data contained in the
bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 310)

wxDbTable::GetFromClause

const wxString & GetFromClause ()

Accessor function that returns the current FROM setting assigned with
thewxDbTable::SetFromClause (p. 361).

See also

wxDbTable::From (p. 344)

335

CHAPTER7

wxDbTable::GetLast

bool GetLast ()

Retrieves the LAST row in the record set as defined by the current query. Before
retrieving records, a query must be performed usingwxDbTable::Query (p.
353),wxDbTable::QueryOnKeyFields (p. 357),wxDbTable::QueryMatching (p. 356)
orwxDbTable::QueryBySqlStmt (p. 354).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to false. If the connection does not allow
backward scrolling cursors, this function will return false, and the data contained in the
bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 310)

wxDbTable::GetNewCursor

HSTMT * GetNewCursor (bool setCursor=false,bool bindColumns=true)

This function will create a new cursor that can be used to access the table being
referenced by this wxDbTable instance, or to execute direct SQL commands on without
affecting the cursors that are already defined and possibly positioned.

Parameters
setCursor

OPTIONAL. Should this new cursor be set to be the current cursor after
successfully creating the new cursor. Default is false.

bindColumns

OPTIONAL. Should this new cursor be bound to all the memory variables that the
default cursor is bound to. Default is true.

Remarks

This new cursor must be closed usingwxDbTable::DeleteCursor (p. 341)by the calling
program before the wxDbTable instance is deleted, or both memory and resource leaks
will occur.

wxDbTable::GetNext

bool GetNext()

Retrieves the NEXT row in the record set after the current cursor position as defined by
the current query. Before retrieving records, a query must be performed using
wxDbTable::Query (p. 353),wxDbTable::QueryOnKeyFields (p.

336

CHAPTER7

357),wxDbTable::QueryMatching (p. 356) orwxDbTable::QueryBySqlStmt (p. 354).
Return value

This function returns false when the current cursor has reached the end of the result set.
When false is returned, data in the bound columns is undefined.

Remarks
This function works with both forward and backward scrolling cursors.

See alsowxDbTable::++ (p. 366)

wxDbTable::GetNumberOfColumns

UWORD GetNumberOfColumns ()

Accessor function that returns the number of columns that are statically bound for
access by the wxDbTable instance.

wxDbTable::GetOrderByClause

const wxString & GetOrderByClause ()

Accessor function that returns the current ORDER BY setting assigned with the
wxDbTable::SetOrderByClause (p. 363).

See also

wxDbTable::OrderBy (p. 352)

wxDbTable::GetPrev

bool GetPrev ()

Retrieves the PREVIOUS row in the record set before the current cursor position as
defined by the current query. Before retrieving records, a query must be performed
using wxDbTable::Query (p. 353),wxDbTable::QueryOnKeyFields (p.
357),wxDbTable::QueryMatching (p. 356) orwxDbTable::QueryBySqlStmt (p. 354).

Return value

This function returns false when the current cursor has reached the beginning of the
result set and there are now other rows prior to the cursors current position. When false
is returned, data in the bound columns is undefined.

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to false. If the connection does not allow
backward scrolling cursors, this function will return false, and the data contained in the
bound columns will be undefined.

337

CHAPTER7

See also

wxDb::IsFwdOnlyCursors (p. 310),wxDbTable::-- (p. 366)

wxDbTable::GetQueryTableName

const wxString & GetQueryTableName ()

Accessor function that returns the name of the table/view that was indicated as being the
table/view to query against when this wxDbTable instance was created.

See also

wxDbTable constructor (p. 330)

wxDbTable::GetRowNum

UWORD GetRowNum ()
Returns the ODBC row number for performing positioned updates and deletes.
Remarks

This function is not being used within the ODBC class library and may be a candidate for
removal if no use is found for it.

Row number with some datasources/ODBC drivers is the position in the result set, while
in others it may be a physical position in the database. Check your database
documentation to find out which behavior is supported.

wxDbTable::GetTableName

const wxString & GetTableName ()

Accessor function that returns the name of the table that was indicated as being the
table that this wxDbTable instance was associated with.

wxDbTable::GetTablePath

const wxString & GetTablePath ()

Accessor function that returns the path to the data table that was indicated during
creation of this wxDbTable instance.

Remarks
Currently only applicable to dBase and MS-Access datasources.
wxDbTable::GetWhereClause

const wxString & GetWhereClause ()

338

CHAPTER7

Accessor function that returns the current WHERE setting assigned with
thewxDbTable::SetWhereClause (p. 364)

See also

wxDbTable::Where (p. 366)

wxDbTable::Insert

int Insert()

Inserts a new record into the table being referenced by this wxDbTable instance. The
values in the member variables of the wxDbTable instance are inserted into the columns
of the new row in the database.

Return value

DB_SUCCESS Record inserted success fully (value =
1)
DB_FAILURE Insert failed (value = 0)
DB_ERR_INTEGRITY_CONSTRAINT_VIOL
The insert failed due t 0 an integrity
constraint violation (d uplicate non-
unigue
index entry) is attempt ed.
Remarks

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use
of this function to commit or rollback the insertion.

Example

/I Incomplete code snippet
wxStrcpy(parts->PartName, "10");
wxStrepy(parts->PartDesc, "Part #10");
parts->Qty = 1000;

RETCODE retcode = parts->Insert();
switch(retcode)

case DB_SUCCESS:
parts->GetDb()->CommitTrans();
return(true);

case DB_ERR_INTEGRITY_CONSTRAINT_VIOL:
[/l Current data would result in a dupli cate key
/I on one or more indexes that do not a llow duplicates
parts->GetDb()->RollbackTrans();
return(false);

default:
/I Insert failed for some unexpected re ason
parts->GetDb()->RollbackTrans();
return(false);

wxDbTable::IsColNull

339

CHAPTER7

bool IsColNull (UWORD colNumber) const

Used primarily in the ODBC class library to determine if a column value is set to "NULL".
Works for all data types supported by the ODBC class library.

Parameters
colNumber

The column number of the bound column as defined by
thewxDbTable::SetColDefs (p. 358)calls which defined the columns accessible to
this wxDbTable instance.

Remarks

NULL column support is currently not fully implemented as of wxWidgets 2.4.

wxDbTable::IsCursorClosedOnCommit

bool IsCursorClosedOnCommit ()

Accessor function to return information collected during the opening of the datasource
connection that is used by this wxDbTable instance. The result returned by this function
indicates whether an implicit closing of the cursor is done after a commit on the
database connection.

Return value

Returns true if the cursor associated with this wxDbTable object is closed after a commit
or rollback operation. Returns false otherwise.

Remarks

If more than one wxDbTable instance used the same database connection, all cursors
which use the database connection are closed on the commit if this function indicates
true.

wxDbTable::1IsQueryOnly

bool IsQueryOnly ()

Accessor function that returns a value indicating if this wxDbTable instance was created
to allow only queries to be performed on the bound columns. If this function returns true,
then no actions may be performed using this wxDbTable instance that would modify
(insert/delete/update) the table's data.

wxDbTable::Open

bool Open(bool checkPrivileges=false, bool checkTableExists=true)

Every wxDbTable instance must be opened before it can be used. This function checks
for the existence of the requested table, binds columns, creates required cursors,
(insert/select and update if connection is not wxDB_QUERY_ONLY) and constructs the

340

CHAPTER7

insert statement that is to be used for inserting data as a new row in the datasource.

NOTE: To retrieve data into an opened table, the of the table must be bound to the
variables in the program via call(s) to wxDbTable::SetColDefs (p. 358) before calling
Open().

See the database classes overview (p. 1868) for an introduction to using the ODBC
classes.

Parameters
checkPrivileges

Indicates whether the Open() function should check whether the current connected
user has at least SELECT privileges to access the table to which they are trying to
open. Default is false.

checkTableExists

Indicates whether the Open() function should check whether the table exists in the
database or not before opening it. Default is true.

Remarks

If the function returns a false value due to the table not existing, a log entry is recorded
for the datasource connection indicating the problem that was detected when checking
for table existence. Note that it is usually best for the calling routine to check for the
existence of the table and for sufficient user privileges to access the table in the mode
(wxDB_QUERY_ONLY or !'wxDB_QUERY_ONLY) before trying to open the table for the
best possible explanation as to why a table cannot be opened.

Checking the user's privileges on a table can be quite time consuming during the open
phase. With most applications, the programmer already knows that the user has
sufficient privileges to access the table, so this check is normally not required.

For best performance, open the table, and then use thewxDb::TablePrivileges (p. 318)
function to check the users privileges. Passing a schema to the TablePrivileges()
function can significantly speed up the privileges checks.

See also

wxDb::TableExists (p. 317),wxDb::TablePrivileges (p. 318)wxDbTable::SetColDefs (p.
358)

wxDbTable::OrderBy

const wxString & OrderBy ()
void OrderBy (const wxString & OrderBy)

Accessor function for the private class member wxDbTable::orderBy. Can be used as a
synonym forwxDbTable::GetOrderByClause (p. 347)(the first form of this function)
orwxDbTable::SetOrderByClause (p. 363)(the second form of this function).

341

CHAPTER7

Parameters
OrderBy

A comma separated list of column names that indicate the alphabetized/numeric
sorting sequence that the result set is to be returned in. If a FROM clause has
also been specified, each column name specified in the ORDER BY clause should
be prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::orderBy.

The second form of the function has no return value.
See also

wxDbTable::GetOrderByClause (p. 347),wxDbTable::SetFromClause (p. 361)

wxDbTable::Query

virtual bool Query(bool forUpdate=false, bool distinct=false)
Parameters
forUpdate

OPTIONAL. Gives you the option of locking records as they are retrieved. If the
RDBMS is not capable of the FOR UPDATE clause, this argument is ignored.
SeewxDbTable::CanSelectForUpdate (p. 334) for additional information regarding
this argument. Default is false.

distinct

OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is false.

Remarks

This function queries records from the datasource based on the three wxDbTable
members: "where", "orderBy", and "from". UsewxDbTable::SetWhereClause (p. 364) to
filter on records to be retrieved (e.g. All users with a first name of "JOHN"). Use
wxDbTable::SetOrderByClause (p. 363) to change the sequence in which records are
returned in the result set from the datasource (e.g. Ordered by LAST_NAME).
UsewxDbTable::SetFromClause (p. 361) to allow inner joining of the base table (the one
being associated with this instance of wxDbTable) with other tables which share a

related field.

After each of these clauses are set/cleared, call wxDbTable::Query() to fetch the result
set from the datasource.

342

CHAPTER7

This scheme has an advantage if you have to requery your record set frequently in that
you only have to set your WHERE, ORDER BY, and FROM clauses once. Then to
refresh the record set, simply call wxDbTable::Query() as frequently as needed.

Note that repeated calls to wxDbTable::Query() may tax the database server and make
your application sluggish if done too frequently or unnecessarily.

The base table name is automatically prepended to the base column names in the event
that the FROM clause has been set (is non-null) usingwxDbTable::SetFromClause (p.
361).

The cursor for the result set is positioned before the first record in the result set after the
query. To retrieve the first record, call eitherwxDbTable::GetFirst (p. 345) (only if
backward scrolling cursors are available) orwxDbTable::GetNext (p. 347). Typically, no
data from the result set is returned to the client driver until a request such
aswxDbTable::GetNext (p. 347) is performed, so network traffic and database load are
not overwhelmed transmitting data until the data is actually requested by the client. This
behavior is solely dependent on the ODBC driver though, so refer to the ODBC driver's
reference material for information on its behaviors.

Values in the bound columns' memory variables are undefined after executing a call to
this function and remain that way until a row in the result set is requested to be returned.

The wxDbTable::Query() function is defined as "virtual” so that it may be overridden for
application specific purposes.

Be sure to set the wxDbTable's "where", "orderBy", and "from" member variables to "™ if
they are not to be used in the query. Otherwise, the results returned may have
unexpected results (or no results) due to improper or incorrect query parameters
constructed from the uninitialized clauses.

Example

/I Incomplete code sample

parts->SetWhereClause("DESCRIPTION = 'FOOD™);

parts->SetOrderByClause("EXPIRATION_DATE");

parts->SetFromClause(");

/I Query the records based on the where, orderB y and from
clauses

/I specified above

parts->Query();

/I Display all records queried

while(parts->GetNext())

dispPart(parts); // user defined function

wxDbTable::QueryBySqlStmt

bool QueryBySqlStmt (const wxString & pSqlStmt)

Performs a query against the datasource by accepting and passing verbatim the SQL
SELECT statement passed to the function.

Parameters

pSqlStmt

CHAPTER7

Pointer to the SQL SELECT statement to be executed.
Remarks

This is the most powerful form of the query functions available. This member function
allows a programmer to write their own custom SQL SELECT statement for requesting
data from the datasource. This gives the programmer access to the full power of SQL
for performing operations such as scalar functions, aggregate functions, table joins, and
sub-queries, as well as datasource specific function calls.

The requirements of the SELECT statement are the following:

1. Must return the correct number of columns. In the derived wxDbTable
constructor, it is specified how many columns are in the wxDbTable object. The
SELECT statement must return exactly that many columns.

2. The columns must be returned in the same sequence as specified when defining
the bounds columns wxDbTable::SetColDefs (p. 358), and the columns returned
must be of the proper data type. For example, if column 3 is defined in the
wxDbTable bound column definitions to be a float, the SELECT statement must
return a float for column 3 (e.g. PRICE * 1.10 to increase the price by 10

3. The ROWID can be included in your SELECT statement as the last column
selected, if the datasource supports it. Use wxDbTable::CanUpdateByROWID()
to determine if the ROWID can be selected from the datasource. If it can, much
better performance can be achieved on updates and deletes by including the
ROWID in the SELECT statement.

Even though data can be selected from multiple tables (joins) in your select statement,
only the base table associated with this wxDbTable object is automatically updated
through the ODBC class library. Data from multiple tables can be selected for display
purposes however. Include columns in the wxDbTable object and mark them as non-
updateable (SeewxDbColDef (p. 320) for details). This way columns can be selected
and displayed from other tables, but only the base table will be updated automatically
when performed through thewxDbTable::Update (p. 365) function after using this type of
query. To update tables other than the base table, use thewxDbTable::Update (p. 365)
function passing a SQL statement.

After this function has been called, the cursor is positioned before the first record in the
record set. To retrieve the first record, call either wxDbTable::GetFirst (p. 345)
orwxDbTable::GetNext (p. 347).

Example

/I Incomplete code samples
wxString sqlStmt;
sqlStmt = "SELECT * FROM PARTS WHERE STORAGE_DE VICE ='SD98' \
AND CONTAINER = 12"
/I Query the records using the SQL SELECT state ment above
parts->QueryBySqlStmt(sqlStmt);
/I Display all records queried
while(parts->GetNext())
dispPart(&parts);

Example SQL statements

CHAPTER7

/I Table Join returning 3 columns
SELECT PART_NUM, part_desc, sd_name
from parts, storage_devices
where parts.storage_device_id =
storage_devices.storage_device_id

/I Aggregate function returning total number of
/l parts in container 99
SELECT count(*) from PARTS where container = 99

/I Order by clause; ROWID, scalar function

SELECT PART_NUM, substring(part_desc, 1, 10), q ty_on_hand + 1,
ROWID
from parts
where warehouse = 10
order by PART_NUM desc /l descend ing order
/I Subquery

SELECT * from parts
where container in (select container
from storage_devices
where device_id = 12)

wxDbTable::QueryMatching

virtual bool QueryMatching (bool forUpdate=false,bool distinct=false)

QueryMatching allows querying of records from the table associated with the wxDbTable
object by matching "columns" to values.

For example: To query the datasource for the row with a PART_NUMBER column value
of "32", clear all column variables of the wxDbTable object, set the PartNumber variable
that is bound to the PART_NUMBER column in the wxDbTable object to 32", and then

call wxDbTable::QueryMatching().

Parameters
forUpdate

OPTIONAL. Gives you the option of locking records as they are queried (SELECT
... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE clause, this
argument is ignored. SeewxDbTable::CanSelectForUpdate (p. 334) for additional
information regarding this argument. Default is false.

distinct

OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is false.

Remarks

The SQL WHERE clause is built by the ODBC class library based on all non-zero/non-
NULL columns in your wxDbTable object. Matches can be on one, many or all of the
wxDbTable's columns. The base table name is prepended to the column names in the

345

CHAPTER7

event that the wxDbTable's FROM clause is non-null.

This function cannot be used to perform queries which will check for columns that are 0
or NULL, as the automatically constructed WHERE clause only will contain comparisons
on column member variables that are non-zero/non-NULL.

The primary difference between this function and wxDbTable::QueryOnKeyFields (p.
357)is that this function can query on any column(s) in the wxDbTable object. Note
however that this may not always be very efficient. Searching on non-indexed columns
will always require a full table scan.

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either wxDbTable::GetFirst
(p. 345) orwxDbTable::GetNext (p. 347).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

Example
/I Incomplete code sample
parts->ClearMemberVars(); /I Set all columns to zero
wxStrcpy(parts->PartNumber,"32"); // Set colu mns to query on
parts->OnHold = true;
parts->QueryMatching(); Il Query

/I Display all records queried
while(parts->GetNext())
dispPart(parts); // Some application defin ed function

wxDbTable::QueryOnKeyFields

bool QueryOnKeyFields (bool forUpdate=false,bool distinct=false)

QueryOnKeyFields provides an easy mechanism to query records in the table
associated with the wxDbTable object by the primary index column(s). Simply assign
the primary index column(s) values and then call this member function to retrieve the
record.

Note that since primary indexes are always unique, this function implicitly always returns
a single record from the database. The base table name is prepended to the column
names in the event that the wxDbTable's FROM clause is non-null.

Parameters
forUpdate

OPTIONAL. Gives you the option of locking records as they are queried (SELECT
... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE clause, this
argument is ignored. SeewxDbTable::CanSelectForUpdate (p. 334) for additional
information regarding this argument. Default is false.

distinct

OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned

346

CHAPTER7

in the result set, not individual columns. Default is false.
Remarks

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either wxDbTable::GetFirst
(p. 345) orwxDbTable::GetNext (p. 347).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 364)and
wxDbTable::SetFromClause (p. 361) are ignored by this function.

Example

/I Incomplete code sample
wxStrcpy(parts->PartNumber, "32");
parts->QueryOnKeyFields();
/I Display all records queried
while(parts->GetNext())
dispPart(parts); // Some application defin ed function

wxDbTable::Refresh

bool Refresh ()

This function re-reads the bound columns into the memory variables, setting them to the
current values stored on the disk.

The cursor position and result set are unaffected by calls to this function. (The one
exception is in the case where the record to be refreshed has been deleted by some
other user or transaction since it was originally retrieved as part of the result set. For
most datasources, the default behavior in this situation is to return the value that was
originally queried for the result set, even though it has been deleted from the database.
But this is datasource dependent, and should be tested before relying on this behavior.)

Remarks

This routine is only guaranteed to work if the table has a unique primary index defined
for it. Otherwise, more than one record may be fetched and there is no guarantee that
the correct record will be refreshed. The table's columns are refreshed to reflect the
current data in the database.

wxDbTable::SetColDefs

bool SetColDefs (UWORD index, const wxString & fieldName,int dataType, void
*pData, SWORD cType,int size, bool keyField = false, bool updateable = true,bool
insertAllowed = true, bool derivedColumn = false)

wxDbColDataPtr * SetColDefs (wxDbColInf * collnfs, UWORD numCaols)
Parameters
index

Column number (0 to n-1, where n is the number of columns specified as being

347

CHAPTER7

defined for this wxDbTable instance when the wxDbTable constructor was called.

fieldName

Column name from the associated data table.

dataType

Logical data type. Valid logical types include:

pData

DB_DATA_TYPE_VARCHAR : strings

DB_DATA_TYPE_INTEGER : non-floating poin t numbers
DB_DATA_TYPE_FLOAT : floating point nu mbers
DB_DATA TYPE_DATE : dates

DB_DATA_TYPE_BLOB : binary large obje cts
DB_DATA_TYPE_MEMO : large strings

Pointer to the data object that will hold the column's value when a row of data is
returned from the datasource.

cType

SQL C Type. This defines the data type that the SQL representation of the data is
converted to to be stored in pData. Other valid types are available also, but these
are the most common ones:

size

SQL_C_CHAR /I string - deprecated: use SQL _C_WXCHAR
SQL_C_WXCHAR // string - Used transparently in unicode or

non-unicode builds

SQL_C_LONG
SQL_C_ULONG
SQL_C_SHORT
SQL_C_USHORT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_NUMERIC
SQL_C_TIMESTAMP

SQL_C_BOOLEAN // defined in db.h
SQL_C_ENUM /I defined in db.h

Maximum size in bytes of the pData object.

keyField

OPTIONAL. Indicates if this column is part of the primary index. Default is false.

updateable

OPTIONAL. Are updates allowed on this column? Default is true.

insertAllowed

OPTIONAL. Inserts allowed on this column? Default is true.

348

CHAPTER7

derivedColumn

OPTIONAL. Is this a derived column (non-base table column for query only)?
Default is false.

colinfs

Pointer to an array of wxDbColInf instances which contains all the information
necessary to create numCols column definitions.

numcCols

Number of elements of wxDbCollnf type that are pointed to by colinfs, which are to
have column definitions created from them.

Remarks

If pData is to hold a string of characters, be sure to include enough space for the NULL
terminator in pData and in the byte count of size.

Using the first form of this function, if the column definition is not able to be created, a
value of false is returned. If the specified index of the column exceeds the number of
columns defined in the wxDbTable instance, an assert is thrown and logged (in debug
builds) and a false is returned.

A failure to create the column definition in the second form results in a value of NULL
being returned.

Both forms of this function provide a shortcut for defining the columns in your wxDbTable
object. Use this function in any derived wxDbTable constructor when describing the
column/columns in the wxDbTable object.

The second form of this function is primarily used when thewxDb::GetColumns (p. 304)
function was used to query the datasource for the column definitions, so that the column
definitions are already stored in wxDbColInf form. One example use of
usingwxDb::GetColumns (p. 304) then using this function is if a data table existed in one
datasource, and the table's column definitions were to be copied over to another
datasource or table.

Example

/I Long way not using this function
wxStrcpy(colDefs[0].ColName, "PART_NUM");
colDefs[0].DbDataType = DB_DATA_TYPE_VARCHAR;

colDefs[0].PtrDataObj = PartNumber;

colDefs[0].SqICtype =SQL_C_WXCHAR,;

colDefs[0].SzDataObj = PART_NUMBER_LEN;

colDefs[0].KeyField = true;

colDefs[0].Updateable = false;

colDefs[0].InsertAllowed= true;

colDefs[0].DerivedCol = false;

/I Shortcut using this function

SetColDefs(0, "PART_NUM", DB_DATA_TYPE_VARCHAR, PartNumber,

SQL_C_WXCHAR, PART_NUMBER_LEN, true, false, true,

false);

349

CHAPTER7

wxDbTable::SetCursor

void SetCursor (HSTMT *hstmtActivate = (void **) wxDB_DEFAULT_CURSOR)
Parameters
hstmtActivate

OPTIONAL. Pointer to the cursor that is to become the current cursor. Passing no
cursor handle will reset the cursor back to the wxDbTable's default (original) cursor
that was created when the wxDbTable instance was first created. Default is
wxDB_DEFAULT_CURSOR.

Remarks

When swapping between cursors, the member variables of the wxDbTable object are
automatically refreshed with the column values of the row that the current cursor is
positioned at (if any). If the cursor is not positioned, then the data in member variables
is undefined.

The only way to return back to the cursor that was in use before this function was called
is to programmatically determine the current cursor's HSTMTBEFORE calling this
function using wxDbTable::GetCursor (p. 345)and saving a pointer to that cursor.

See also

wxDbTable::GetNewCursor (p. 346),wxDbTable::GetCursor (p.
345),wxDbTable::SetCursor (p. 360)

wxDbTable::SetFromClause

void SetFromClause (const wxString & From)

Accessor function for setting the private class member wxDbTable::from that indicates
what other tables should be inner joined with the wxDbTable's base table for access to
the columns in those other tables.

Synonym to this function is one form of wxDbTable::From (p. 344)
Parameters
From

A comma separated list of table names that are to be inner joined with the base
table's columns so that the joined table's columns may be returned in the result set
or used as a portion of a comparison with the base table's columns. NOTE that
the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Remarks

Used by the wxDbTable::Query (p. 353) andwxDbTable::Count (p. 337) member

350

CHAPTER7

functions to allow inner joining of records from multiple tables.
Do not include the keyword "FROM" when setting the FROM clause.

If using the FROM clause when performing a query, be certain to include in the
corresponding WHERE clause a comparison of a column from either the base table or
one of the other joined tables to each other joined table to ensure the datasource knows
on which column values the tables should be joined on.

Example

/I Base table is the "LOCATION" table, and it i S being

/I inner joined to the "PART" table via the fie Id
"PART_NUMBER"

/ that can be related between the two tables.

location->SetWhereClause("LOCATION.PART_NUMBER
PART.PART_NUMBER")

location->SetFromClause("PART");

See also

wxDbTable::From (p. 344),wxDbTable::GetFromClause (p. 346)

wxDbTable::SetColNull

bool SetColNull (UWORD colNumber, bool set=true)
bool SetColNull (const wxString & colName,bool set=true)

Both forms of this function allow a member variable representing a column in the table
associated with this wxDbTable object to be set to NULL.

The first form allows the column to be set by the index into the column definitions used
to create the wxDbTable instance, while the second allows the actual column name to
be specified.

Parameters
colNumber

Index into the column definitions used when first defining this wxDbTable object.
colName

Actual data table column name that is to be set to NULL.

set
Whether the column is set to NULL or not. Passing true sets the column to NULL,
passing false sets the column to be non-NULL. Default is true.

Remarks

No database updates are done by this function. It only operates on the member

351

CHAPTER7

variables in memory. Use and insert or update function to store this value to disk.

wxDbTable::SetOrderByClause

void SetOrderByClause (const wxString & OrderBY)

Accessor function for setting the private class member wxDbTable::orderBy which
determines sequence/ordering of the rows returned in the result set of a query.

A synonym to this function is one form of the function wxDbTable::OrderBy (p. 352)
Parameters
OrderBy

A comma separated list of column names that indicate the alphabetized sorting
sequence that the result set is to be returned in. If a FROM clause has also been
specified, each column name specified in the ORDER BY clause should be
prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks
Do not include the keywords "ORDER BY" when setting the ORDER BY clause.

Example

parts->SetOrderByClause("PART_DESCRIP, QUANTITY "):

iacation->SetOrderByCIause("LOCATION .POSITION,
PART.PART_NUMBER);
See also

wxDbTable::OrderBy (p. 352),wxDbTable::GetOrderByClause (p. 347)

wxDbTable::SetQueryTimeout

bool SetQueryTimeout (UDWORD nSeconds)
Allows a time period to be set as the timeout period for queries.
Parameters
nSeconds
The number of seconds to wait for the query to complete before timing out.
Remarks

Neither Oracle or Access support this function as of yet. Other databases should be

352

CHAPTER7

evaluated for support before depending on this function working correctly.

wxDbTable::SetWhereClause

void SetWhereClause (const wxString & Where)

Accessor function for setting the private class member wxDbTable::where that
determines which rows are returned in the result set by the datasource.

A synonym to this function is one form of the function wxDbTable::Where (p. 366)
Parameters
Where

SQL "where" clause. This clause can contain any SQL language that is legal in
standard where clauses. If a FROM clause has also been specified, each column
name specified in the ORDER BY clause should be prefaced with the table name
to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks
Do not include the keywords "WHERE" when setting the WHERE clause.

Example

}}'Simple where clause
parts->SetWhereClause("PART_NUMBER = '32");

)}'Any comparison operators

parts->SetWhereClause("PART_DESCRIP LIKE 'HAMME R%™);

}}'Multiple comparisons, including a function c all

parts->Where("QTY > 0 AND {fn UCASE(PART_DESCRI P)} LIKE
'%DRILL%™);

}}'Using parameters and multiple logical combin ations

parts->Where("((QTY > 10) OR (ON_ORDER > 0)) AN D ON_HOLD =
0");

/I This query uses an inner join (requiring a F ROM clause
also)

/ that joins the PART and LOCATION table on he common field

/l PART_NUMBER.

parts->Where("PART.ON_HOLD =0 AND\
PART.PART_NUMBER = LOCATION.PART_ NUMBER AND \
LOCATION.PART_NUMBER > 0");

See also

wxDbTable::Where (p. 366),wxDbTable::GetWhereClause (p. 349)

wxDbTable::Update

bool Update ()

353

CHAPTER7

bool Update (const wxString & pSqlStmt)

The first form of this function will update the row that the current cursor is currently
positioned at with the values in the memory variables that are bound to the columns.
The actual SQL statement to perform the update is automatically created by the ODBC
class, and then executed.

The second form of the function allows full access through SQL statements for updating
records in the database. Write any valid SQL UPDATE statement and submit it to this
function for execution. Sophisticated updates can be performed using the full power of
the SQL dialect. The full SQL statement must have the exact syntax required by the
driver/datasource for performing the update. This usually is in the form of:

UPDATE tablename SET col1=X, col2=Y, ... where
Parameters
pSqlStmt
Pointer to SQL UPDATE statement to be executed.
Remarks

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use
of this function to commit or rollback the update.

Example

wxString sqglStmt;
sqlStmt = "update PART set QTY = 0 where PART_N UMBER ="'32";

wxDbTable::UpdateWhere

bool UpdateWhere (const wxString & pWhereClause)

Performs updates to the base table of the wxDbTable object, updating only the rows
which match the criteria specified in the pWhereClause.

All columns that are bound to member variables for this wxDbTable instance that were
defined with the "updateable" parameter set to true will be updated with the information
currently held in the memory variable.

Parameters
pWhereClause

Pointer to a valid SQL WHERE clause. Do not include the keyword 'WHERE'.
Remarks

Care should be used when updating columns that are part of indexes with this function
S0 as not to violate an unique key constraints.

A wxDb::CommitTrans (p. 298) orwxDb::RollbackTrans (p. 315) must be called after use

354

CHAPTER7

of this function to commit or rollback the update(s).

wxDbTable::Where

const wxString & Where()
void Where (const wxString& Where)

Accessor function for the private class member wxDbTable::where. Can be used as a
synonym for wxDbTable::GetWhereClause (p. 349)(the first form of this function) to
return the current where clause orwxDbTable::SetWhereClause (p. 364) (the second
form of this function) to set the where clause for this table instance.

Parameters
Where

A valid SQL WHERE clause. Do not include the keyword 'WHERE'.
Return value

The first form of this function returns the current value of the wxDbTable member
variable ::where.

The second form of the function has no return value, as it will always set the where
clause successfully.

See also

wxDbTable::GetWhereClause (p. 349),wxDbTable::SetWhereClause (p. 364)

wxDbTable::operator ++

bool operator ++ ()

Synonym for wxDbTable::GetNext (p. 347)
See also

wxDbTable::GetNext (p. 347)

wxDbTable::operator --

bool operator -- ()
Synonym for wxDbTable::GetPrev (p. 347)
See also

wxDbTable::GetPrev (p. 347)

wxDbTablelnf

355

CHAPTER7

tableName[0] =0;
tableType[0] =0;
tableRemarks[0] = O;
numcCols =0;
pColinf = NULL;

Currently only used by wxDb::GetCatalog (p. 303) internally and wxDblnf (p. 329) class,
but may be used in future releases for user functions. Contains information describing
the table (Name, type, etc). A pointer to a wxDbCollnf array instance is included so a
program can create awxDbColInf (p. 322) array instance (usingwxDb::GetColumns (p.
304)) to maintain all information about the columns of a table in one memory structure.

Eventually, accessor functions will be added for this class

See the database classes overview (p. 1868) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

wxDbTablelnf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbGridCollnfo

This class is used to define columns to be shown, names of the columns, order and
type of data, when using wxdbGridTableBase (p. 369) to display a Table or query in a
wxGrid (p. 621)

See the database grid example in wxDbGridTableBase (p. 369) for an introduction to
using the wxDbGrid classes.

Include files

<wx/dbgrid.h>

wxDbGridCollnfo::wxDbGridCollnfo

wxDbGridColIinfo (int colNumber, wxString type, wxString title, wxDbGridCollnfo
*next)

Default constructor. See the database grid example in wxDbGridTableBase (p. 369) to
see two different ways for adding columns.

Parameters

356

CHAPTER7

colNumber
Column number in the wxDbTable (p. 329) instance to be used (first column is 0).
type

Column type ,wxString specifying the grid name for the datatype in this column, or
use wxGRID_VALUE_DBAUTO to determine the type automatically from the
wxDbColDef (p. 320) definition

title
The column label to be used in the grid display
next

A pointer to the next wxDbGridCollnfo structure if using one-step construction,
NULL terminates the list. Use Null also if using two step construction.

See the database grid example in wxDbGridTableBase (p. 369) to see two different
ways for adding columns.

wxDbGridCollnfo::~wxDbGridCollnfo

~wxDbGridColinfo ()

Destructor.

wxDbGridCollnfo::AddColinfo

void AddColinfo (int colNumber,wxString type, wxString title)

Use this member function for adding columns. See the database grid example in
wxDbGridTableBase (p. 369) to see two different ways for adding columns.

It is important to note that this class is merely a specifier to the wxDbGridTableBase (p.
369) constructor. Changes made to this datatype after the wxDbGridTableBase (p. 369)
is called will not have any effect.

Parameters colNumber
Column number in the wxDbTable (p. 329) instance to be used (first column is 0).
type

Column type ,wxString specifying the grid name for the datatype in this column, or
use wxGRID_VALUE_DBAUTO to determine the type automatically from the
wxDbColDef (p. 320) definition

title
The column label to be used in the grid display

Remarks

357

CHAPTER7

As wxDbTable must be defined with to have columns which match those to by a
wxDbGridCollnfo info structure as this is the structure which informs the grid of how you
want to display your wxDbTable (p. 329). If no datatype conversion or the referenced
column number does not exist the the behavior is undefined.

See the example at wxDbGridColinfo::wxDbGridCollnfo (p. 368).

wxDbGridTableBase

You can view a database table in a grid using this class.

If you are deriving your own wxDbTable subclass for your table , then you may consider
overriding GetCol() and SetCol() to provide calculated fields. This does work but care
should be taken when using wxDbGridTableBase in this way.

The constructor and AssignDbTable() call allows you to specify the ownership if the
wxDbTable object pointer. If you tell wxGridTableBase to take ownership , it will delete
the passed wxDbTable when an new on is assigned or wxGridTableBase's destructor is
called. However no checks for aliasing are done so Assign(table,..,true);
Assign(table,..,true); is an error. If you need to requery an table object the preferred
way is that the client keeps ownership.

Derived From
wxGridTableBase (p. 678)
Include files
<wx/dbgrid.h>

Example

/I First step, let's define wxDbTable
int numColumns = 2;
wxDbTable *table = new wxDbTable (db, thiIName, num Columns);
int int_var,;
wxChar string_name[255];
table->SetColDef (0, "column 0", DB_DATA_TYPE_INTE GER,
&int_var,
SQL_C_LONG, sizeof(int_var), true);
table->SetColDef (1, "column 1", DB_DATA_TYPE_VARC HAR,
&string_name,
SQL_C_LONG, sizeof(string_name), false);

/I now let's define columns in the grid

/I first way to do it
wxDbGridCollnfo *columns;

columns = new wxDbGridColInfo(0, wxGRID_VALUE_L ONG, "first
column”,
new wxDbGridCollnfo(1, wxGRID_VALUE_S TRING, "second
column”,
NULL);

/I second way to do it
wxDbGridCollnfo *columns;
/I first column is special

358

CHAPTER7

columns = new wxDbGridColInfo(0, wxGRID_VALUE_L ONG, "first
column”, NULL);
/I all the rest

columns->AddColinfo (1, wxGRID_VALUE_STRING, "s econd column");
/I second way may be better when columns are no t known at
compile time

/I now, let's open the table and make a Query()

table->Open();

/I this step is very important

table->SetRowMode (wxDbTable::WX_ROW_MODE_QUERY ;

/I in the grid we will see only the rows of the result query

m_dbTable->Query();

wxDbGridTableBase *dbgrid = new wxDbGridTableBa se(table,
columns, wxUSE_QUERY, true);

delete columns; // not needed anymore

wxGrid *grid = new wxGrid (...);

grid->SetTable(dbgrid, true);

grid->Fit();

Include files
<wx/dbgrid.h>

Helper classes and data structures

wxDbGridTableBase::wxDbGridTableBase

wxDbGridTableBase (wxDbTable * tab, wxDbGridColinfo * Colinfo, int count =
wxUSE_QUERY, bool takeOwnership = true)

Constructor.
Parameters
tab

The database table you want to display. Must be opened and queried before
display the grid. See the example above (p. 369).

Collnfo
Columns titles, and other values. See wxDbGridCollnfo (p. 367).
count

You can use a query result set (WXUSE_QUERY, to use
wxDbTable::Count(wxDbTable::Count() or you can fix the total number of rows
(count >= 0) to display, or specify it if you already know the size in avoid calling

takeOwnership

If true, this class deletes wxDbTable when it stops referring to it, if false
application must take care of deleting it.

359

CHAPTER7

wxDbGridTableBase::ValidateRow

void ValidateRow (int row)

It ensures that the row data is fetched from the database, and it the wxDbTable local
buffer, the row number passed should be the grid row.

Parameters
row

Row where validation must be done.

wxDbGridTableBase::UpdateRow

bool UpdateRow (int row)

If row has changed it forces that row to be written back to the database, however
support for detecting whether insert/update is required is currently not in wxDbTable, so
this function is currently unsupported.

Parameters
row

Row you want to update.

wxDbGridTableBase::AssignDbTable

bool AssignDbTable (wxDbTable * tab,int count = wxUSE_QUERY ,bool
takeOwnership = true)

Resets the grid for using with a new database table, but using the same columns
definition. This can be useful when re-querying the database and want to see the
changes.

Parameters
tab
Database table you want to assign to the grid.
count
Number of rows you want to show or wxUSE_QUERY for using a query.
takeOwnership

If false, user must take care of deleting tab after deleting the wxDbGridTableBase.
If true, deletion is made by destructor class.

wxDC

360

CHAPTER7

A wxDC is a device context onto which graphics and text can be drawn. It is intended to
represent a number of output devices in a generic way, so a window can have a device
context associated with it, and a printer also has a device context. In this way, the same
piece of code may write to a number of different devices, if the device context is used as
a parameter.

Notice that wxDC is an abstract base class and can't be created directly, please use
wxPaintDC (p. 1040), wxClientDC (p. 151), wxWindowDC (p. 1571), wxScreenDC (p.
1157), wxMemoryDC (p. 952) or wxPrinterDC (p. 1080).

Please note that in addition to the versions of the methods documented here, there are
also versions which accept single wxPoint parameter instead of two wxCoord ones or
wxPoint and wxSize instead of four of them.

Derived from
wxObject (p. 1027)
Include files
<wx/dc.h>

See also

Overview (p. 1837)

wxDC::Blit

bool Blit (wxCoord xdest, wxCoord ydest, wxCoord width, wxCoord height, wxDC*
source, wxCoord xsrc, wxCoord ysrc, int logicalFunc = wxCOPY, bool useMask =
false, wxCoord xsrcMask = -1, wxCoord ysrcMask = -1)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to
copy, source DC, source coordinates, logical function, whether to use a bitmap mask,
and mask source position.

Parameters
xdest

Destination device context x position.
ydest

Destination device context y position.
width

Width of source area to be copied.

height

361

CHAPTER7

Height of source area to be copied.

source

Source device context.

Xsrc

Source device context x position.

ysrc

Source device context y position.

logicalFunc

Logical function to use: see wxDC::SetLogicalFunction (p. 389).

useMask

If true, Blit does a transparent blit using the mask that is associated with the bitmap
selected into the source device context. The Windows implementation does the
following if MaskBIt cannot be used:

1.
2.

5.
6.

Creates a temporary bitmap and copies the destination area into it.

Copies the source area into the temporary bitmap using the specified
logical function.

Sets the masked area in the temporary bitmap to BLACK by ANDing the
mask bitmap with the temp bitmap with the foreground colour set to
WHITE and the bg colour set to BLACK.

Sets the unmasked area in the destination area to BLACK by ANDing the
mask bitmap with the destination area with the foreground colour set to
BLACK and the background colour set to WHITE.

ORs the temporary bitmap with the destination area.

Deletes the temporary bitmap.

This sequence of operations ensures that the source's transparent area need not
be black, and logical functions are supported.

Note: on Windows, blitting with masks can be speeded up considerably by
compiling wxWidgets with the wxUSE_DC_CACHE option enabled. You can also
influence whether MaskBIt or the explicit mask blitting code above is used, by
using wxSystemOptions (p. 1330) and setting the no-maskblt option to 1.

xsrcMask

Source x position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on

362

CHAPTER7

Windows.
ysrcMask

Source y position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on
Windows.

Remarks

There is partial support for Blit in wxPostScriptDC, under X.
See wxMemoryDC (p. 952) for typical usage.

See also

wxMemoryDC (p. 952), wxBitmap (p. 84), wxMask (p. 920)

wxDC::CalcBoundingBox

void CalcBoundingBox (wxCoord x, wxCoord vy)

Adds the specified point to the bounding box which can be retrieved with MinX (p. 387),
MaxX (p. 386) and MinY (p. 387), MaxY (p. 386) functions.

See also

ResetBoundingBox (p. 387)

wxDC::Clear

void Clear()

Clears the device context using the current background brush.

wxDC::ComputeScaleAndOrigin

virtual void ComputeScaleAndOrigin ()

Performs all necessary computations for given platform and context type after each
change of scale and origin parameters. Usually called automatically internally after such
changes.

wxDC::CrossHair

void CrossHair (wxCoord x, wxCoord)

Displays a cross hair using the current pen. This is a vertical and horizontal line the
height and width of the window, centred on the given point.

wxDC::DestroyClippingRegion

363

CHAPTER7

void DestroyClippingRegion ()

Destroys the current clipping region so that none of the DC is clipped. See also
wxDC::SetClippingRegion (p. 388).

wxDC::DeviceTolLogicalX

wxCoord DeviceToLogicalX (wxCoord Xx)

Convert device X coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalXRel

wxCoord DeviceToLogicalXRel (wxCoord X)

Convert device X coordinate to relative logical coordinate, using the current mapping
mode but ignoring the x axis orientation. Use this function for converting a width, for
example.

wxDC::DeviceTolLogicalY

wxCoord DeviceToLogicalY (wxCoord vy)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalYRel

wxCoord DeviceToLogicalYRel (wxCoord vy)

Convert device Y coordinate to relative logical coordinate, using the current mapping
mode but ignoring the y axis orientation. Use this function for converting a height, for
example.

wxDC::DrawArc

void DrawArc (wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, wxCoord Xxc,
wxCoord yc)

Draws an arc of a circle, centred on (xc, yc), with starting point (x1, y1) and ending at
(x2,y2). The current pen is used for the outline and the current brush for filling the
shape.

The arc is drawn in an anticlockwise direction from the start point to the end point.

wxDC::DrawBitmap

void DrawBitmap (const wxBitmap& bitmap, wxCoord x, wxCoord 'y, bool
transparent)

Draw a bitmap on the device context at the specified point. If transparent is true and the
bitmap has a transparency mask, the bitmap will be drawn transparently.

364

CHAPTER7

When drawing a mono-bitmap, the current text foreground colour will be used to draw
the foreground of the bitmap (all bits set to 1), and the current text background colour to
draw the background (all bits set to 0). See also SetTextForeground (p. 391),
SetTextBackground (p. 390) and wxMemoryDC (p. 952).

wxDC::DrawCheckMark

void DrawCheckMark (wxCoord x, wxCoord y, wxCoord width, wxCoord height)
void DrawCheckMark (const wxRect & rect)

Draws a check mark inside the given rectangle.

wxDC::DrawCircle

void DrawCircle (wxCoord x, wxCoord y, wxCoord radius)
void DrawCircle (const wxPoint& pt, wxCoord radius)
Draws a circle with the given centre and radius.

See also

DrawEllipse (p. 377)

wxDC::DrawEllipse

void DrawEllipse (wxCoord x, wxCoord y, wxCoord width, wxCoord height)
void DrawEllipse (const wxPoint& pt, const wxSize& size)
void DrawEllipse (const wxRect& rect)

Draws an ellipse contained in the rectangle specified either with the given top left corner
and the given size or directly. The current pen is used for the outline and the current
brush for filling the shape.

See also

DrawCircle (p. 376)

wxDC::DrawEllipticArc

void DrawEllipticArc (wxCoord x, wxCoord y, wxCoord width, wxCoord height,
double start, double end)

Draws an arc of an ellipse. The current pen is used for drawing the arc and the current
brush is used for drawing the pie.

x and y specify the x and y coordinates of the upper-left corner of the rectangle that
contains the ellipse.

365

CHAPTER7

width and height specify the width and height of the rectangle that contains the ellipse.

start and end specify the start and end of the arc relative to the three-o'clock position
from the center of the rectangle. Angles are specified in degrees (360 is a complete
circle). Positive values mean counter-clockwise motion. If start is equal to end, a
complete ellipse will be drawn.

wxDC::Drawlcon

void Drawlcon (const wxlcon& icon, wxCoord X, wxCoord)

Draw an icon on the display (does nothing if the device context is PostScript). This can
be the simplest way of drawing bitmaps on a window.

wxDC::DrawLabel

virtual void DrawLabel (const wxString& text, const wxBitmap&
image, const wxRect& rect, int alignment =
WXALIGN_LEFT | wxALIGN_TOP, int indexAccel = -1,

wxRect * rectBounding = NULL)

void DrawlLabel (const wxString& text, const wxRect& rect, int
alignment = wxALIGN_LEFT | wxALIGN_TOP, int indexAccel = -1)

Draw optional bitmap and the text into the given rectangle and aligns it as specified by
alignment parameter; it also will emphasize the character with the given index if itis I= -1
and return the bounding rectangle if required.

wxDC::DrawLine

void DrawLine (wxCoord x1, wxCoord yl1, wxCoord x2, wxCoord y2)

Draws a line from the first point to the second. The current pen is used for drawing the
line. Note that the point (x2, y2) is not part of the line and is not drawn by this function
(this is consistent with the behaviour of many other toolkits).

wxDC::DrawLines

void DrawlLines (int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0)
void DrawLines (wxList * points, wxCoord xoffset = 0, wxCoord yoffset = 0)

Draws lines using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate. The current pen is used for drawing the lines. The
programmer is responsible for deleting the list of points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

366

CHAPTER7

wxDC::DrawPolygon

void DrawPolygon (int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0,
int fill_style = wxODDEVEN_RULE)

void DrawPolygon (wxList * points, wxCoord xoffset = 0, wxCoord yoffset = 0,
int fill_style = wxODDEVEN_RULE)

Draws a filled polygon using an array of points of size n, or list of pointers to points,
adding the optional offset coordinate.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wWXWINDING_RULE .

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling. The programmer is responsible for
deleting the list of points.

Note that wxWidgets automatically closes the first and last points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

wxDC::DrawPolyPolygon

void DrawPolyPolygon (int n, int count[], wxPoint points[], wxCoord xoffset = 0,
wxCoord yoffset =0,
int fill_style = wxODDEVEN_RULE)

Draws two or more filled polygons using an array of points, adding the optional offset
coordinates.

Notice that for the platforms providing a native implementation of this function (Windows
and PostScript-based wxDC currently), this is more efficient than using DrawPolygon (p.
378) in a loop.

n specifies the number of polygons to draw, the array count of size n specifies the
number of points in each of the polygons in the points array.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
WXWINDING_RULE .

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling.

The polygons maybe disjoint or overlapping. Each polygon specified in a call
toDrawPolyPolygon must be closed. Unlike polygons created by theDrawPolygon (p.
378) member function, the polygons created byDrawPolyPolygon are not closed
automatically.

367

CHAPTER7

wxPython note: Not implemented yet

wxPerl note: Not implemented yet

wxDC::DrawPoint

void DrawPoint (wxCoord x, wxCoord YY)

Draws a point using the color of the current pen. Note that the other properties of the
pen are not used, such as width etc..

wxDC::DrawRectangle

void DrawRectangle (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Draws a rectangle with the given top left corner, and with the given size. The current
pen is used for the outline and the current brush for filling the shape.

wxDC::DrawRotated Text

void DrawRotatedText (const wxString& text, wxCoord x, wxCoord y, double angle)
Draws the text rotated by angle degrees.

NB: Under Win9x only TrueType fonts can be drawn by this function. In particular, a font
different from wxNORMAL_FON3hould be used as the latter is not a TrueType font.
wxSWISS_FONTis an example of a font which is.

See also

DrawText (p. 380)

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle (wxCoord x, wxCoord y, wxCoord width, wxCoord
height, double radius)

Draws a rectangle with the given top left corner, and with the given size. The corners
are quarter-circles using the given radius. The current pen is used for the outline and the
current brush for filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If
radius is negative, the absolute value is assumed to be the proportion of the smallest
dimension of the rectangle. This means that the corner can be a sensible size relative to
the size of the rectangle, and also avoids the strange effects X produces when the
corners are too big for the rectangle.

wxDC::DrawSpline

void DrawSpline (int n, wxPoint points[])

368

CHAPTER7

Draws a spline between all given control points, using the current pen.
void DrawSpline (wxList * points)

Draws a spline between all given control points, using the current pen. Doesn't delete
the wxList and contents.

void DrawSpline (wxCoord x1, wxCoord yl, wxCoord x2, wxCoord y2, wxCoord x3,
wxCoord y3)

Draws a three-point spline using the current pen.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts a reference to an array of
wxPoint objects.

wxDC::DrawText

void DrawText (const wxString& text, wxCoord X, wxCoord Y)

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

The coordinates refer to the top-left corner of the rectangle bounding the string. See
wxDC::GetTextExtent (p. 384) for how to get the dimensions of a text string, which can
be used to position the text more precisely.

NB: under wxGTK the current logical function (p. 382) is used by this function but it is
ignored by wxMSW. Thus, you should avoid using logical functions with this function in
portable programs.

wxDC::EndDoc

void EndDoc ()

Ends a document (only relevant when outputting to a printer).

wxDC::EndPage

void EndPage ()

Ends a document page (only relevant when outputting to a printer).

wxDC::FloodFill

bool FloodFill (wxCoord x, wxCoord Yy, const wxColour& colour, int
style=wxFLOOD_SURFACE)

Flood fills the device context starting from the given point, using the current brush colour,
and using a style:

369

CHAPTER7

« wXFLOOD_SURFACE: the flooding occurs until a colour other than the given
colour is encountered.

« wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.
Returns false if the operation failed.

Note: The present implementation for non-Windows platforms may fail to find colour
borders if the pixels do not match the colour exactly. However the function will still return
true.

wxDC::GetBackground

const wxBrush& GetBackground () const

Gets the brush used for painting the background (see wxDC::SetBackground (p. 388)).

wxDC::GetBackgroundMode

int GetBackgroundMode () const
Returns the current background mode: wxSOLID or wxTRANSPARENT
See also

SetBackgroundMode (p. 388)

wxDC::GetBrush

const wxBrush& GetBrush () const

Gets the current brush (see wxDC::SetBrush (p. 388)).

wxDC::GetCharHeight

wxCoord GetCharHeight ()

Gets the character height of the currently set font.
wxDC::GetCharWidth

wxCoord GetCharWidth ()

Gets the average character width of the currently set font.

wxDC::GetClippingBox

void GetClippingBox (wxCoord *x, wxCoord *y, wxCoord *width, wxCoord *height)

Gets the rectangle surrounding the current clipping region.

370

CHAPTER7

wxPython note: No arguments are required and the four values defining the rectangle
are returned as a tuple.

wxPerl note: This method takes no arguments and returns a four element list(x, vy,
width, height)

wxDC::GetFont

const wxFont& GetFont () const

Gets the current font. Notice that even although each device context object has some
default font after creation, this method would return a wxNullFont initially and only
after calling wxDC::SetFont (p. 389) a valid font is returned.

wxDC::GetLogicalFunction

int GetLogicalFunction ()

Gets the current logical function (see wxDC::SetLogicalFunction (p. 389)).

wxDC::GetMapMode

int GetMapMode ()

Gets the mapping mode for the device context (see wxDC::SetMapMode (p. 389)).

wxDC::GetPartial TextExtents

bool GetPartialTextExtents (const wxString& text, wxArraylnt& widths) const

Fills the widths array with the widths from the beginning of text to the corresponding
character of text. The generic version simply builds a running total of the widths of each
character using GetTextExtent (p. 384), however if the various platforms have a native
API function that is faster or more accurate than the generic implementation then it
should be used instead.

wxPython note: This method only takes the text parameter and returns a Python list of
integers.

wxDC::GetPen

const wxPen& GetPen() const

Gets the current pen (see wxDC::SetPen (p. 390)).

wxDC::GetPixel

bool GetPixel (wxCoord x, wxCoord Yy, wxColour * colour)

Gets in colour the colour at the specified location. Not available for wxPostScriptDC or
wxMetafileDC.

371

CHAPTER7

Note that setting a pixel can be done using DrawPoint (p. 379).

wxPython note: For wxPython the wxColour value is returned and is not required as a
parameter.

wxPerl note: This method only takes the parameters x and y and returns a Wx::Colour
value

wxDC::GetPPI

wxSize GetPPI() const

Returns the resolution of the device in pixels per inch.

wxDC::GetSize

void GetSize (wxCoord * width, wxCoord * height) const
wxSize GetSize() const

This gets the horizontal and vertical resolution in device units. It can be used to scale
graphics to fit the page. For example, if maxX and maxY represent the maximum
horizontal and vertical 'pixel' values used in your application, the following code will scale
the graphic to fit on the printer page:

wxCoord w, h;

dc.GetSize(&w, &h);

double scaleX=(double)(maxX/w);

double scaleY=(double)(maxY/h);
dc.SetUserScale(min(scaleX,scaleY),min(scaleX,sca leY));

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize

GetSizeTuple() Returns a 2-tuple (width, height)

wxPerl note: In place of a single overloaded method, wxPerl uses:
GetSize() Returns a Wx::Size

GetSizeWH() Returns a 2-element list (
width, height)

wxDC::GetSizeMM

void GetSizeMM (wxCoord * width, wxCoord * height) const
wxSize GetSizeMM () const

Returns the horizontal and vertical resolution in millimetres.

372

CHAPTER7

wxDC::GetTextBackground

const wxColour& GetTextBackground () const

Gets the current text background colour (see wxDC::SetTextBackground (p. 390)).

wxDC::GetTextExtent

void GetTextExtent (const wxString& string, wxCoord * w, wxCoord * h,
wxCoord * descent = NULL, wxCoord * externalLeading = NULL, wxFont * font =
NULL)

Gets the dimensions of the string using the currently selected font. string is the text
string to measure, w and h are the total width and height respectively, descent is the
dimension from the baseline of the font to the bottom of the descender, and
externalLeading is any extra vertical space added to the font by the font designer
(usually is zero).

If the optional parameter font is specified and valid, then it is used for the text extent
calculation. Otherwise the currently selected font is.

See also wxFont (p. 561), wxDC::SetFont (p. 389).
wxPython note: The following methods are implemented in wxPython:
GetTextExtent(string) Returns a 2-tuple, (width, height)

GetFullTextExtent(string, font=NULL) Returns a 4-tuple, (width, height,
descent, externalLeading)

wxPerl note: In wxPerl this method is implemented as GetTextExtent(string, font =
undef) returning a four element array (width, height, descent,
externalLeading)

wxDC::GetTextForeground

const wxColour& GetTextForeground () const

Gets the current text foreground colour (see wxDC::SetTextForeground (p. 391)).

wxDC::GetUserScale

void GetUserScale (double *x, double *y)
Gets the current user scale factor (set by SetUserScale (p. 391)).

wxPerl note: In wxPerl this method takes no arguments and return a two element array
(x,y)

wxDC::GradientFillConcentric

373

CHAPTER7

void GradientFillConcentric (const wxRect& rect, const wxColour& initialColour,
const wxColour& destColour)

void GradientFillConcentric (const wxRect& rect, const wxColour& initialColour,
const wxColour& destColour, const wxPoint& circleCenter)

Fill the area specified by rect with a radial gradient, starting from initialColour at the
centre of the circle and fading to destColour on the circle outside.

circleCenter are the relative coordinates of centre of the circle in the specified rect. If not
specified, the cercle is placed at the centre of rect.

Note: Currently this function is very slow, don't use it for real-time drawing.

wxDC::GradientFillLinear

void GradientFillLinear (const wxRect& rect, const wxColour& initialColour, const
wxColour& destColour, wxDirection nDirection = WxEAST)

Fill the area specified by rect with a linear gradient, starting from initialColour and
eventually fading to destColour. The nDirection specifies the direction of the colour

change, default is to use initialColour on the left part of the rectangle and destColour on
the right one.

wxDC::LogicalToDeviceX

wxCoord LogicalToDeviceX (wxCoord Xx)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceXRel

wxCoord LogicalToDeviceXRel (wxCoord Xx)

Converts logical X coordinate to relative device coordinate, using the current mapping
mode but ignoring the x axis orientation. Use this for converting a width, for example.

wxDC::LogicalToDeviceY

wxCoord LogicalToDeviceY (wxCoord vYy)

Converts logical Y coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceYRel

wxCoord LogicalToDeviceYRel (wxCoord vy)

Converts logical Y coordinate to relative device coordinate, using the current mapping
mode but ignoring the y axis orientation. Use this for converting a height, for example.

wxDC::MaxX

374

CHAPTER7

wxCoord MaxX()

Gets the maximum horizontal extent used in drawing commands so far.

wxDC::MaxyY

wxCoord MaxY ()

Gets the maximum vertical extent used in drawing commands so far.

wxDC::MinX
wxCoord MinX()

Gets the minimum horizontal extent used in drawing commands so far.

wxDC::MinY
wxCoord MinY ()

Gets the minimum vertical extent used in drawing commands so far.

wxDC::Ok

bool Ok()

Returns true if the DC is ok to use.

wxDC::ResetBoundingBox

void ResetBoundingBox ()

Resets the bounding box: after a call to this function, the bounding box doesn't contain
anything.

See also

CalcBoundingBox (p. 374)

wxDC::SetAxisOrientation

void SetAxisOrientation (bool xLeftRight, bool yBottomUp)

Sets the x and y axis orientation (i.e., the direction from lowest to highest values on the
axis). The default orientation is x axis from left to right and y axis from top down.

Parameters
xLeftRight

True to set the x axis orientation to the natural left to right orientation, false to

375

CHAPTER7

invert it.

yBottomUp
True to set the y axis orientation to the natural bottom up orientation, false to invert
it.

wxDC::SetBackground

void SetBackground (const wxBrush& brush)

Sets the current background brush for the DC.

wxDC::SetBackgroundMode

void SetBackgroundMode (int mode)

mode may be one of wxSOLID and wxTRANSPARENT. This setting determines whether
text will be drawn with a background colour or not.

wxDC::SetBrush

void SetBrush (const wxBrush& brush)
Sets the current brush for the DC.

If the argument is wxNullBrush, the current brush is selected out of the device context,
and the original brush restored, allowing the current brush to be destroyed safely.

See also wxBrush (p. 108).

See also wxMemoryDC (p. 952) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetClippingRegion

void SetClippingRegion (wxCoord x, wxCoord Yy, wxCoord width, wxCoord height)
void SetClippingRegion (const wxPoint& pt, const wxSize& sz)

void SetClippingRegion (const wxRect& rect)

void SetClippingRegion (const wxRegion& region)

Sets the clipping region for this device context to the intersection of the given region
described by the parameters of this method and the previously set clipping region. You
should call DestroyClippingRegion (p. 375) if you want to set the clipping region exactly
to the region specified.

The clipping region is an area to which drawing is restricted. Possible uses for the
clipping region are for clipping text or for speeding up window redraws when only a
known area of the screen is damaged.

376

CHAPTER7

See also

wxDC::DestroyClippingRegion (p. 375), wxRegion (p. 1126)

wxDC::SetDeviceOrigin

void SetDeviceOrigin (wxCoord X, wxCoord V)
Sets the device origin (i.e., the origin in pixels after scaling has been applied).

This function may be useful in Windows printing operations for placing a graphic on a
page.

wxDC::SetFont

void SetFont (const wxFont& font)

Sets the current font for the DC. It must be a valid font, in particular you should not pass
wxNullFont to this method.

See also wxFont (p. 561).

wxDC::SetLogicalFunction

void SetLogicalFunction (int function)

Sets the current logical function for the device context. This determines how a source
pixel (from a pen or brush colour, or source device context if using wxDC::Blit (p. 373))
combines with a destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values
are as follows:

WXAND src AND dst
WXAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)
WXxCLEAR 0

wxCOPY src

WXEQUIV (NOT src) XOR dst
wWXINVERT NOT dst

WXNAND (NOT src) OR (NOT dst)
WXNOR (NOT src) AND (NOT dst)
wxNO_OP dst

wxOR src OR dst
WXOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
WXSET 1

WxSRC_INVERT NOT src

WxXOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine
the current colour and the background using a logical operation. wxINVERT is
commonly used for drawing rubber bands or moving outlines, since drawing twice
reverts to the original colour.

377

CHAPTER7

wxDC::SetMapMode

void SetMapMode (int int)

The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units. Note that in X, text drawing isn't handled
consistently with the mapping mode; a font is always specified in point size. However,
setting the user scale (see wxDC::SetUserScale (p. 391)) scales the text appropriately.
In Windows, scalable TrueType fonts are always used; in X, results depend on
availability of fonts, but usually a reasonable match is found.

The coordinate origin is always at the top left of the screen/printer.

Drawing to a Windows printer device context uses the current mapping mode, but
mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

WXMM_TWIPS Each logical unit is 1/20 of a point, or 1/1440 of
an inch.

WXMM_POINTS Each logical unit is a point, or 1/72 of an inch.

wWXMM_METRIC Each logical unitis 1 mm.

WXMM_LOMETRIC Each logical unit is 1/10 of a mm.

WXMM_TEXT Each logical unit is 1 pixel.

wxDC::SetPalette

void SetPalette (const wxPalette& palette)

If this is a window DC or memory DC, assigns the given palette to the window or bitmap
associated with the DC. If the argument is wxNullPalette, the current palette is selected
out of the device context, and the original palette restored.

See wxPalette (p. 1042) for further details.

wxDC::SetPen

void SetPen(const wxPen& pen)
Sets the current pen for the DC.

If the argument is wxNullPen, the current pen is selected out of the device context, and
the original pen restored.

See also wxMemoryDC (p. 952) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetTextBackground

378

CHAPTER7

void SetTextBackground (constwxColour& colour)

Sets the current text background colour for the DC.

wxDC::SetTextForeground
void SetTextForeground (const wxColour& colour)
Sets the current text foreground colour for the DC.

See also wxMemoryDC (p. 952) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetUserScale

void SetUserScale (double xScale, double yScale)

Sets the user scaling factor, useful for applications which require 'zooming'.

wxDC::StartDoc

bool StartDoc (const wxString& message)

Starts a document (only relevant when outputting to a printer). Message is a message to
show while printing.

wxDC::StartPage

bool StartPage ()

Starts a document page (only relevant when outputting to a printer).

wxDCClipper

This is a small helper class which sets the specified DC to its constructor clipping region
and then automatically destroys it in its destructor. Using it ensures that an unwanted
clipping region is not left set on the DC.

Derived from
No base class
Include files
<wx/dc.h>
See also

wxDC (p. 372)

379

CHAPTER7

wxDCClipper::wxDCClipper

wxDCClipper (wxDC& dc, wxCoord x,wxCoord y,wxCoord w,wxCoord h,)
wxDCClipper (wxDC& dc, const wxRect& rect)

Constructor: sets the clipping region for the given device context to the specified
rectangle.

wxDCClipper::~wxDCClipper

~wxDCClipper ()

Destructor: destroys the clipping region set in the constructor.

wxDDEClient

A wxDDECIient object represents the client part of a client-server DDE (Dynamic Data
Exchange) conversation.

To create a client which can communicate with a suitable server, you need to derive a
class from wxDDEConnection and another from wxDDEClIient. The custom
wxDDEConnection class will intercept communications in a ‘conversation’ with a server,
and the custom wxDDEServer is required so that a user-overridden
wxDDEClIient::OnMakeConnection (p. 393) member can return a wxDDEConnection of
the required class, when a connection is made.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPClient (p. 1341).

Derived from

wxClientBase
wxObject (p. 1027)

Include files
<wx/dde.h>
See also

wxDDEServer (p. 397), wxDDEConnection (p. 393), Interprocess communications
overview (p. 1891)

wxDDEClIlient::wxDDEClIlient

wxDDEClient ()

Constructs a client object.

380

CHAPTER7

wxDDECIient::MakeConnection

wxConnectionBase * MakeConnection (const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server specified by the host (machine name under
UNIX, ignored under Windows), service name (must contain an integer port number
under UNIX), and topic string. If the server allows a connection, a wxDDEConnection
object will be returned. The type of wxDDEConnection returned can be altered by
overriding the wxDDECIient::OnMakeConnection (p. 393) member to return your own
derived connection object.

wxDDEClient::OnMakeConnection

wxConnectionBase * OnMakeConnection ()

The type of wxDDEConnection (p. 393) returned from a wxDDEClIient::MakeConnection
(p. 393) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxDDEConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxDDEConnection::OnAdvise (p.
212). You may also want to store application-specific data in instances of the new class.

wxDDEClient::ValidHost

bool ValidHost (const wxString& host)

Returns true if this is a valid host name, false otherwise. This always returns true
under MS Windows.

wxDDEConnection

A wxDDEConnection object represents the connection between a client and a server. It
can be created by making a connection using a wxDDECIient (p. 392) object, or by the
acceptance of a connection by a wxDDEServer (p. 397) object. The bulk of a DDE
(Dynamic Data Exchange) conversation is controlled by calling members in a
wxDDEConnection object or by overriding its members.

An application should normally derive a new connection class from wxDDEConnection,
in order to override the communication event handlers to do something interesting.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPConnection (p.
1342).

Derived from

wxConnectionBase
wxObject (p. 1027)

381

CHAPTER7

Include files
<wx/dde.h>
Types

wxIPCFormat is defined as follows:

enum wxIPCFormat

{
wxIPC_INVALID = 0,
wxIPC_TEXT = 1, I* CF_TEXT */
wxIPC_BITMAP = 2, * CE_BITMAP */
wxIPC_METAFILE = 3, /* CF_METAFILEPICT * /
wxIPC_SYLK = 4,
wxIPC_DIF = 5,
wxIPC_TIFF = 6,
wxIPC_OEMTEXT = 7, I* CF_OEMTEXT */
wxIPC_DIB = 8, /* CF_DIB */
wxIPC_PALETTE = 9,
wxIPC_PENDATA = 10,
wxIPC_RIFF = 11,
wxIPC_WAVE = 12,

wxIPC_UNICODETEXT = 13,
wxIPC_ENHMETAFILE = 14,

wxIPC_FILENAME = 15, /* CF_HDROP */
wxIPC_LOCALE = 16,
wxIPC_PRIVATE = 20
3
See also

wxDDEClient (p. 392), wxDDEServer (p. 397), Interprocess communications overview
(p. 1891)

wxDDEConnection::wxDDEConnection

wxDDEConnection ()
wxDDEConnection (char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxDDEConnection, then the constructor should not be called directly, since the
default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxDDEServer::OnAcceptConnection (p. 398) and/or wxDDECIlient::OnMakeConnection
(p. 393) members should be replaced by functions which construct the new connection
object. If the arguments of the wxDDEConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

wxDDEConnection::Advise

bool Advise (const wxString& item, char* data, int size = -1, wxIPCFormat format =

382

CHAPTER7

WXCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxDDEConnection::OnAdvise (p.
395)member to be called. Returns true if successful.

wxDDEConnection::Execute

bool Execute (char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxDDEConnection::Poke (p. 396) in
that respect). Causes the server connection's wxDDEConnection::OnExecute (p. 395)
member to be called. Returns true if successful.

wxDDEConnection::Disconnect

bool Disconnect ()

Called by the client or server application to disconnect from the other program; it causes
the wxDDEConnection::OnDisconnect (p. 395) message to be sent to the corresponding
connection object in the other program. The default behaviour of OnDisconnect is to
delete the connection, but the calling application must explicitly delete its side of the
connection having called Disconnect . Returns true if successful.

wxDDEConnection::OnAdvise

virtual bool OnAdvise (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

wxDDEConnection::OnDisconnect

virtual bool OnDisconnect ()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.

wxDDEConnection::OnExecute

virtual bool OnExecute (const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.

wxDDEConnection::OnPoke

383

CHAPTER7

virtual bool OnPoke (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxDDEConnection::OnRequest

virtual char* OnRequest (const wxString& topic, const wxString& item, int * size,
wxIPCFormat format)

Message sent to the server application when the client calls
wxDDEConnection::Request (p. 397). The server should respond by returning a
character string from OnRequest , or NULL to indicate no data.

wxDDEConnection::OnStartAdvise

virtual bool OnStartAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
‘advise loop' for the given topic and item. The server can refuse to participate by
returning false.

wxDDEConnection::OnStopAdvise

virtual bool OnStopAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
‘advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning false, although this doesn't have much meaning in practice.

wxDDEConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wWxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxDDEConnection::OnPoke
(p. 396) member to be called. Returns true if successful.

wxDDEConnection::Request

char* Request (const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxDDEConnection::OnRequest (p. 396) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL
otherwise.

wxDDEConnection::StartAdvise

384

CHAPTER7

bool StartAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxDDEConnection::OnStartAdvise (p. 396) member to
be called. Returns true if the server okays it, false otherwise.

wxDDEConnection::StopAdvise

bool StopAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxDDEConnection::OnStopAdvise (p. 396) member to be called.
Returns true if the server okays it, false otherwise.

wxDDEServer

A wxDDEServer object represents the server part of a client-server DDE (Dynamic Data
Exchange) conversation.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this APl is available using wxTCPServer (p. 1346).

Derived from
wxServerBase
Include files
<wx/dde.h>
See also

wxDDEClient (p. 392), wxDDEConnection (p. 393), IPC overview (p. 1891)

wxDDEServer::wxDDEServer

wxDDEServer ()

Constructs a server object.

wxDDEServer::Create

bool Create(const wxString& service)

Registers the server using the given service name. Under UNIX, the string must contain
an integer id which is used as an Internet port number. false is returned if the call failed
(for example, the port number is already in use).

wxDDEServer::OnAcceptConnection

385

CHAPTER7

virtual wxConnectionBase * OnAcceptConnection (const wxString& topic)

When a client calls MakeConnection , the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxDDEConnection type, or of a user-
derived type. If the topic is "STDIO", the application may wish to refuse the connection.
Under UNIX, when a server is created the OnAcceptConnection message is always sent
for standard input and output, but in the context of DDE messages it doesn't make a lot
of sense.

wxDebugContext

A class for performing various debugging and memory tracing operations. Full
functionality (such as printing out objects currently allocated) is only present in a
debugging build of wxWidgets, i.e. if the _ WXDEBUG__ symbol is defined.
wxDebugContext and related functions and macros can be compiled out by setting
WXUSE_DEBUG_CONTEXT to 0 is setup.h

Derived from
No parent class.
Include files
<wx/memory.h>
See also

Overview (p. 1792)

wxDebugContext::Check

int Check ()
Checks the memory blocks for errors, starting from the currently set checkpoint.
Return value

Returns the number of errors, so a value of zero represents success. Returns -1 if an
error was detected that prevents further checking.

wxDebugContext::Dump

bool Dump ()

Performs a memory dump from the currently set checkpoint, writing to the current debug
stream. Calls the Dump member function for each wxObject derived instance.

Return value

386

CHAPTER7

true if the function succeeded, false otherwise.

wxDebugContext::GetCheckPrevious

bool GetCheckPrevious ()

Returns true if the memory allocator checks all previous memory blocks for errors. By
default, this is false since it slows down execution considerably.

See also

wxDebugContext::SetCheckPrevious (p. 401)

wxDebugContext::GetDebugMode

bool GetDebugMode ()

Returns true if debug mode is on. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

See also

wxDebugContext::SetDebugMode (p. 402)

wxDebugContext::GetLevel

int GetLevel ()

Gets the debug level (default 1). The debug level is used by the wxTracelLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 903) functionality.
See also

wxDebugContext::SetLevel (p. 402)

wxDebugContext::GetStream

ostream& GetStream ()

Returns the output stream associated with the debug context.
This is obsolete, replaced by wxLog (p. 903) functionality.
See also

wxDebugContext::SetStream (p. 403)

387

CHAPTER7

wxDebugContext::GetStreamBuf

streambuf* GetStreamBuf ()

Returns a pointer to the output stream buffer associated with the debug context. There
may not necessarily be a stream buffer if the stream has been set by the user.

This is obsolete, replaced by wxLog (p. 903) functionality.

wxDebugContext::HasStream

bool HasStream ()

Returns true if there is a stream currently associated with the debug context.
This is obsolete, replaced by wxLog (p. 903) functionality.

See also

wxDebugContext::SetStream (p. 403), wxDebugContext::GetStream (p. 400)

wxDebugContext::PrintClasses

bool PrintClasses ()

Prints a list of the classes declared in this application, giving derivation and whether
instances of this class can be dynamically created.

See also

wxDebugContext::PrintStatistics (p. 401)

wxDebugContext::PrintStatistics

bool PrintStatistics (bool detailed = true)

Performs a statistics analysis from the currently set checkpoint, writing to the current
debug stream. The number of object and non-object allocations is printed, together with
the total size.

Parameters
detailed

If true, the function will also print how many objects of each class have been
allocated, and the space taken by these class instances.

See also

wxDebugContext::PrintStatistics (p. 401)

wxDebugContext::SetCheckpoint

388

CHAPTER7

void SetCheckpoint (bool all = false)

Sets the current checkpoint: Dump and PrintStatistics operations will be performed from
this point on. This allows you to ignore allocations that have been performed up to this
point.

Parameters
all

If true, the checkpoint is reset to include all memory allocations since the program
started.

wxDebugContext::SetCheckPrevious

void SetCheckPrevious (bool check)

Tells the memory allocator to check all previous memory blocks for errors. By default,
this is false since it slows down execution considerably.

See also

wxDebugContext::GetCheckPrevious (p. 399)

wxDebugContext::SetDebugMode

void SetDebugMode (bool debug)

Sets the debug mode on or off. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

By default, debug mode is on if __ WXDEBUG___is defined. If the application uses this
function, it should make sure that all object memory allocated is deallocated with the
same value of debug mode. Otherwise, the delete operator might try to look for memory
information that does not exist.

See also

wxDebugContext::GetDebugMode (p. 399)

wxDebugContext::SetFile

bool SetFile (const wxString& filename)
Sets the current debug file and creates a stream. This will delete any existing stream

and stream buffer. By default, the debug context stream outputs to the debugger
(Windows) or standard error (other platforms).

wxDebugContext::SetLevel

void SetLevel (int level)

389

CHAPTER7

Sets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 903) functionality.
See also

wxDebugContext::GetLevel (p. 399)

wxDebugContext::SetStandardError

bool SetStandardError ()

Sets the debugging stream to be the debugger (Windows) or standard error (other
platforms). This is the default setting. The existing stream will be flushed and deleted.

This is obsolete, replaced by wxLog (p. 903) functionality.

wxDebugContext::SetStream

void SetStream (ostream* stream, streambuf* streamBuf = NULL)

Sets the stream and optionally, stream buffer associated with the debug context. This
operation flushes and deletes the existing stream (and stream buffer if any).

This is obsolete, replaced by wxLog (p. 903) functionality.
Parameters
stream
Stream to associate with the debug context. Do not set this to NULL.
streamBuf
Stream buffer to associate with the debug context.
See also

wxDebugContext::GetStream (p. 400), wxDebugContext::HasStream (p. 400)

wxDebugStreamBuf

This class allows you to treat debugging output in a similar (stream-based) fashion on
different platforms. Under Windows, an ostream constructed with this buffer outputs to
the debugger, or other program that intercepts debugging output. On other platforms, the
output goes to standard error (cerr).

This is soon to be obsolete, replaced by wxLog (p. 903) functionality.

390

CHAPTER7

Derived from
streambuf
Include files
<wx/memory.h>

Example

wxDebugStreamBuf streamBuf;
ostream stream(&streamBuf);

stream << "Hello world!" << endI;

See also

Overview (p. 1792)

wxDebugReport

wxDebugReport is used to generate a debug report, containing information about the
program current state. It is usually used from wxApp::OnFatalException() (p. 42) as
shown in the sample (p. 1752).

A wxDebugReport object contains one or more files. A few of them can be created by
the class itself but more can be created from the outside and then added to the report.
Also note that several virtual functions may be overridden to further customize the class
behaviour.

Once a report is fully assembled, it can simply be left in the temporary directory so that
the user can email it to the developers (in which case you should still use
wxDebugReportCompress (p. 408) to compress it in a single file) or uploaded to a Web
server using wxDebugReportUpload (p. 410) (setting up the Web server to accept
uploads is your responsibility, of course). Other handlers, for example for automatically
emailing the report, can be defined as well but are not currently included in wxWidgets.

Example of use

wxDebugReport report;
wxDebugReportPreviewStd preview;

report. AddCurrentContext(); // could also use AddAlI()
report. AddCurrentDump(); //to do both at o nce

if (preview.Show(report))
report.Process();

Derived from
No base class
Include files

<wx/debugrpt.h>

391

CHAPTER7

Data structures

This enum is used for functions that report either the current state or the state during the
last (fatal) exception:

enum wxDebugReport::Context

Context_Current,
Context_Exception

I3

wxDebugReport::.wxDebugReport

wxDebugReport ()

The constructor creates a temporary directory where the files that will be included in the
report are created. Use I1sOk() (p. 407) to check for errors.

wxDebugReport::~wxDebugReport

~wxDebugReport ()

The destructor normally destroys the temporary directory created in the constructor with
all the files it contains. Call Reset() (p. 408) to prevent this from happening.

wxDebugReport::AddAll

void AddAll (Context context = Context_Exception)

Adds all available information to the report. Currently this includes a text (XML) file
describing the process context and, under Win32, a minidump file.

wxDebugReport::AddContext

bool AddContext (Context ctx)

Add an XML file containing the current or exception context and the stack trace.

wxDebugReport::AddCurrentContext

bool AddCurrentContext ()

The same as AddContext(Context_Current) (p. 405).

wxDebugReport::AddCurrentDump

bool AddCurrentDump ()
The same as AddDump(Context_Current) (p. 405).

392

CHAPTER7

wxDebugReport::AddDump

bool AddDump (Context ctx)
Adds the minidump file to the debug report.

Minidumps are only available under recent Win32 versions (dbghlp32.dll can be
installed under older systems to make minidumps available).

wxDebugReport::AddExceptionContext

bool AddExceptionContext ()

The same as AddContext(Context_Exception) (p. 405).

wxDebugReport::AddExceptionDump

bool AddExceptionDump ()
The same as AddDump(Context_Exception) (p. 405).

wxDebugReport::AddFile

void AddFile (const wxString& filename, const wxString& description)

Add another file to the report. If filename is an absolute path, it is copied to a file in the
debug report directory with the same name. Otherwise the file should already exist in
this directory

description only exists to be displayed to the user in the report summary shown by
wxDebugReportPreview (p. 409).

See also

GetDirectory() (p. 407),
AddText() (p. 406)

wxDebugReport::AddText

bool AddText (const wxString& filename, const wxString& text, const wxString&
description)

This is a convenient wrapper around AddFile (p. 406). It creates the file with the given
name and writes text to it, then adds the file to the report. The filename shouldn't contain
the path.

Returns true if file could be added successfully, false if an 10 error occurred.

wxDebugReport::DoAddCustomContext

void DoAddCustomContext (wxXmlINode * nodeRoot)

393

CHAPTER7

This function may be overridden to add arbitrary custom context to the XML context file
created by AddContext (p. 405). By default, it does nothing.

wxDebugReport::DoAddExceptioninfo

bool DoAddExceptioninfo (wxXmINode* nodeContext)

This function may be overridden to modify the contents of the exception tag in the XML
context file.

wxDebugReport::DoAddLoadedModules

bool DoAddLoadedModules (wxXmINode* nodeModules)

This function may be overridden to modify the contents of the modules tag in the XML
context file.

wxDebugReport::DoAddSystemIinfo

bool DoAddSysteminfo (wxXmlINode* nodeSysteminfo)

This function may be overridden to modify the contents of the system tag in the XML
context file.

wxDebugReport::GetDirectory

const wxString& GetDirectory () const
Returns the name of the temporary directory used for the files in this report.

This method should be used to construct the full name of the files which you wish to add
to the report using AddFile (p. 406).

wxDebugReport::GetFile

bool GetFile (size_t n, wxString* name, wxString* desc) const

Retrieves the name (relative to GetDirectory() (p. 407)) and the description of the file
with the given index. If n is greater than or equal to the number of filse, false s
returned.

wxDebugReport::GetFilesCount

size_t GetFilesCount () const

Gets the current number files in this report.
wxDebugReport::GetReportName

wxString GetReportName () const

394

CHAPTER7

Gets the name used as a base name for various files, by default wxApp::GetAppName()
(p. 38) is used.

wxDebugReport::IsOk

bool 1sOk() const

Returns true if the object was successfully initialized. If this method returns false the
report can't be used.

wxDebugReport::Process

bool Process ()

Processes this report: the base class simply notifies the user that the report has been
generated. This is usually not enough -- instead you should override this method to do
something more useful to you.

wxDebugReport::RemoveFile

void RemoveFile (const wxString& name)

Removes the file from report: this is used by wxDebugReportPreview (p. 409) to allow
the user to remove files potentially containing private information from the report.

wxDebugReport::Reset

void Reset()

Resets the directory name we use. The object can't be used any more after this as it
becomes uninitialized and invalid.

wxDebugReportCompress

wxDebugReportCompress is a wxDebugReport (p. 404) which compresses all the files
in this debug report into a single .ZIP file in itsPr ocess() function.

Derived from
wxDebugReport (p. 404)
Include files

<wx/debugrpt.h>

wxDebugReportCompress::.wxDebugReportCompress

wxDebugReportCompress ()

395

CHAPTER7

Default constructor does nothing special.

wxDebugReportCompress::GetCompressedFileName

const wxString& GetCompressedFileName () const

Returns the full path of the compressed file (empty if creation failed).

wxDebugReportPreview

This class presents the debug report to the user and allows him to veto report entirely or
remove some parts of it. Although not mandatory, using this class is strongly
recommended as data included in the debug report might contain sensitive private
information and the user should be notified about it as well as having a possibility to
examine the data which had been gathered to check whether this is effectively the case
and discard the debug report if it is.

wxDebugReportPreview is an abstract base class, currently the only concrete class
deriving from it is wxDebugReportPreviewStd (p. 409).

Derived from
No base class
Include files

<wx/debugrpt.h>

wxDebugReportPreview::wxDebugReportPreview

wxDebugReportPreview ()

Trivial default constructor.

wxDebugReportPreview::~wxDebugReportPreview

~wxDebugReportPreview ()

dtor is trivial as well but should be virtual for a base class

wxDebugReportPreview::Show

bool Show (wxDebugReport& dbgrpt) const

Present the report to the user and allow him to modify it by removing some or all of the
files and, potentially, adding some notes. Return true if the report should be processed
or false if the user chose to cancel report generation or removed all files from it.

396

CHAPTER7

wxDebugReportPreviewStd

wxDebugReportPreviewStd is a standard debug report preview window. It displays a
GUIdialog allowing the user to examine the contents of a debug report, remove files from
and add notes to it.

Derived from
wxDebugReportPreview (p. 409)
Include files

<wx/debugrpt.h>

wxDebugReportPreviewStd::wxDebugReportPreviewStd

wxDebugReportPreviewStd ()

Trivial default constructor.

wxDebugReportPreviewStd::Show

bool Show (wxDebugReport& dbgrpt) const

Show the dialog, see wxDebugReportPreview::Show() (p. 409) for more information.

wxDebugReportUpload

This class is used to upload a compressed file using HTTP POST request. As this class
derives from wxDebugReportCompress, before upload the report is compressed in a
single .ZIP file.

Derived from
wxDebugReportCompress (p. 408)
Include files

<wx/debugrpt.h>

wxDebugReportUpload::wxDebugReportUpload

wxDebugReportUpload (const wxString& url, const wxString& input, const
wxString& action, const wxString& curl = _T("curl™)

This class will upload the compressed file created by its base class to an HTML
multipart/form-data form at the specified address. The url is the upload page address,

397

CHAPTER7

input is the name of the "type=file" control on the form used for the file name and
action is the value of the form action field. The report is uploaded using cur | program
which should be available, the curl parameter may be used to specify the full path to it.

wxDebugReportUpload::OnServerReply

bool OnServerReply (const wxArrayString& WXUNUSED(reply))

This function may be overridden in a derived class to show the output from curl: this may
be an HTML page or anything else that the server returned. Value returned by this
function becomes the return value of wxDebugReport::Process() (p. 408).

wxDelegateRendererNative

wxDelegateRendererNative allows reuse of renderers code by forwarding all the
wxRendererNative (p. 1137) methods to the given object and thus allowing you to only
modify some of its methods -- without having to reimplement all of them.

Note that the "normal”, inheritance-based approach, doesn't work with the renderers as
it is impossible to derive from a class unknown at compile-time and the renderer is only
chosen at run-time. So suppose that you want to only add something to the drawing of
the tree control buttons but leave all the other methods unchanged -- the only way to do
it, considering that the renderer class which you want to customize might not even be
written yet when you write your code (it could be written later and loaded from a DLL
during run-time), is by using this class.

Except for the constructor, it has exactly the same methods as wxRendererNative (p.
1137) and their implementation is trivial: they are simply forwarded to the real renderer.
Note that the "real” renderer may, in turn, be a wxDelegateRendererNative as well and
that there may be arbitrarily many levels like this -- but at the end of the chain there must
be a real renderer which does the drawing.

Derived from
wxRendererNative (p. 1137)
Include files

<wx/renderer.h>

wxDelegateRendererNative::wxDelegateRendererNative
wxDelegateRendererNative ()
wxDelegateRendererNative (wxRendererNative& rendererNative)

The default constructor does the same thing as the other one except that it uses the
generic renderer (p. 1140) instead of the user-specified rendererNative.

398

CHAPTER7

In any case, this sets up the delegate renderer object to follow all calls to the specified
real renderer.

Note that this object does not take ownership of (i.e. won't delete)rendererNative.

wxDelegateRendererNative::Draw XXX

DrawXXX(...)

This class also provides all the virtual methods of wxRendererNative (p. 1137), please
refer to that class documentation for the details.

wxDialog

A dialog box is a window with a title bar and sometimes a system menu, which can be
moved around the screen. It can contain controls and other windows and is usually used
to allow the user to make some choice or to answer a question.

Derived from

wxTopLevelWindow (p. 1434)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files
<wx/dialog.h>
Remarks

There are two kinds of dialog -- modal and modeless. A modal dialog blocks program
flow and user input on other windows until it is dismissed, whereas a modeless dialog
behaves more like a frame in that program flow continues, and input in other windows is
still possible. To show a modal dialog you should use the ShowModal (p. 421) method
while to show a dialog modelessly you simply use Show (p. 421), just as with frames.

Note that the modal dialog is one of the very few examples of wxWindow-derived objects
which may be created on the stack and not on the heap. In other words, although this
code snippet:

void AskUser()

MyAskDialog *dlg = new MyAskDialog(...);
if (dlg->ShowModal() == wxID_OK)

llelse: dialog was cancelled or some anothe r button
pressed

dlg->Destroy();

works, you can also achieve the same result by using a simpler code fragment below:

399

CHAPTER7

void AskUser()

MyAskDialog dlg(...);
if (dlg.ShowModal() == wxID_OK))

/I no need to call Destroy() here

}

An application can define a wxCloseEvent (p. 157) handler for the dialog to respond to

system close events.
Window styles

WXCAPTION

Puts a caption on the dialog box.

WXDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION,

WXRESIZE_BORDER
WxSYSTEM_MENU
wxCLOSE_BOX
WXMAXIMIZE_BOX
WXMINIMIZE_BOX
WXTHICK_FRAME
WXSTAY_ON_TOP
wxNO_3D

WXDIALOG_NO_PARENT

wxCLOSE_BOX and wxSYSTEM_MENU (the last one is
not used under Unix)

Display a resizeable frame around the window.
Display a system menu.

Displays a close box on the frame.

Displays a maximize box on the dialog.
Displays a minimize box on the dialog.

Display a thick frame around the window.

The dialog stays on top of all other windows.

Under Windows, specifies that the child controls should not
have 3D borders unless specified in the control.

By default, a dialog created with a NULL parent window will
be given theapplication's top level window (p. 39) as
parent. Use this style to prevent this from happening and
create an orphan dialog. This is not recommended for
modal dialogs.

WXDIALOG_EX CONTEXTHELP Under Windows, puts a query button on the

wxDIALOG_EX_METAL

caption. When pressed, Windows will go into a context-
sensitive help mode and wxWidgets will send a
wWXEVT_HELP event if the user clicked on an application
window. Note that this is an extended style and must be
set by calling SetExtraStyle (p. 1553) before Create is
called (two-step construction).

On Mac OS X, frames with this style will be shown with a
metallic look. This is an extra style.

Under Unix or Linux, MWM (the Motif Window Manager) or other window managers
recognizing the MHM hints should be running for any of these styles to have an effect.

400

CHAPTER7

See also Generic window styles (p. 1808).
See also

wxDialog overview (p. 1810), wxFrame (p. 582), Validator overview (p. 1811)

wxDialog::wxDialog
wxDialog ()
Default constructor.

wxDialog (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
WXDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Constructor.
Parameters
parent

Can be NULL, a frame or another dialog box.

id
An identifier for the dialog. A value of -1 is taken to mean a default.

title
The title of the dialog.

pos
The dialog position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWidgets, depending on platform.

size
The dialog size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWidgets, depending on platform.

style
The window style. See wxDialog (p. 412).

name
Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

401

CHAPTER7

wxDialog::Create (p. 415)

wxDialog::~wxDialog
~wxDialog ()

Destructor. Deletes any child windows before deleting the physical window.

wxDialog::Centre

void Centre (int direction = wxBOTH)
Centres the dialog box on the display.
Parameters

direction

May be wxHORIZONTAL wxVERTICAL or wxBOTH

wxDialog::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
WXDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Used for two-step dialog box construction. See wxDialog::wxDialog (p. 414) for details.

wxDialog::CreateButtonSizer

wxSizer* CreateButtonSizer (long flags)

Creates a sizer with standard buttons. flags is a bit list of the following flags: wxOK,
WXCANCEL, wxYES, wxNO, wxHELP, wxNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

This function simply calls CreateStdDialogButtonSizer (p. 415).

wxDialog::CreateStdDialogButtonSizer

wxStdDialogButtonSizer* CreateStdDialogButtonSizer (long flags)

Creates a wxStdDialogButtonSizer (p. 1288) with standard buttons. flags is a bit list of
the following flags: wxOK, wxCANCEL, wxYES, wxNO, wxHELP, wxNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

wxDialog::DoOK

virtual bool DoOK()

402

CHAPTER7

This function is called when the titlebar OK button is pressed (PocketPC only). A
command event for the identifier returned by GetAffirmativeld is sent by default. You can
override this function. If the function returns false, wxWidgets will call Close() for the
dialog.

wxDialog::EndModal

void EndModal (int retCode)

Ends a modal dialog, passing a value to be returned from the wxDialog::ShowModal (p.
421) invocation.

Parameters
retCode

The value that should be returned by ShowModal .
See also

wxDialog::ShowModal (p. 421), wxDialog::GetReturnCode (p. 417),
wxDialog::SetReturnCode (p. 420)

wxDialog::GetAffirmativeld

int GetAffirmativeld () const

Gets the identifier to be used when the user presses an OK button in a PocketPC
titlebar.

See also

wxDialog::SetAffirmativeld (p. 419)

wxDialog::GetEscapeld

int GetEscapeld () const
Gets the identifier of the button to map presses of ESGhutton to.
See also

wxDialog::SetEscapeld (p. 419)

wxDialog::GetReturnCode

int GetReturnCode ()

Gets the return code for this window.
Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal

403

CHAPTER7

(p- 421) returns a code to the application.
See also

wxDialog::SetReturnCode (p. 420), wxDialog::ShowModal (p. 421), wxDialog::EndModal
(p. 416)

wxDialog::GetToolBar

wxToolBar* GetToolBar () const

On PocketPC, a dialog is automatically provided with an empty toolbar. GetToolBar
allows you to access the toolbar and add tools to it. Removing tools and adding arbitrary
controls are not currently supported.

This function is not available on any other platform.

wxDialog::Iconize
void Iconize (const bool iconize)
Iconizes or restores the dialog. Windows only.
Parameters
iconize
If true, iconizes the dialog box; if false, shows and restores it.
Remarks

Note that in Windows, iconization has no effect since dialog boxes cannot be iconized.
However, applications may need to explicitly restore dialog boxes under Motif which
have user-iconizable frames, and under Windows calling Iconize(false) will bring
the window to the front, as does Show(true)

wxDialog::Islconized

bool Islconized () const
Returns true if the dialog box is iconized. Windows only.
Remarks

Always returns false under Windows since dialogs cannot be iconized.

wxDialog::IsModal

bool IsModal () const

Returns true if the dialog box is modal, false otherwise.

404

CHAPTER7

wxDialog::OnApply

void OnApply (wxCommandEvent& event)

The default handler for the wxID_APPLY identifier.
Remarks

This function calls wxWindow::Validate (p. 1569) and
wxWindow::TransferDataFromWindow (p. 1566).

See also

wxDialog::0OnOK (p. 418), wxDialog::OnCancel (p. 418)

wxDialog::OnCancel

void OnCancel (wxCommandEvent& event)
The default handler for the wxID_CANCEL identifier.
Remarks

The function either calls EndModal(wxID_CANCEL) if the dialog is modal, or sets the
return value to wxID_CANCEL and calls Show(false) if the dialog is modeless.

See also

wxDialog::OnOK (p. 418), wxDialog::OnApply (p. 418)

wxDialog::OnOK

void OnOK (wxCommandEvent& event)
The default handler for the wxID_OK identifier.
Remarks

The function calls wxWindow::Validate (p. 1569), then

wxWindow:: TransferDataFromWindow (p. 1566). If this returns true, the function either
calls EndModal(wxID_OK) if the dialog is modal, or sets the return value to wxID_OK
and calls Show(false) if the dialog is modeless.

See also

wxDialog::OnCancel (p. 418), wxDialog::OnApply (p. 418)

wxDialog::OnSysColourChanged

void OnSysColourChanged (wxSysColourChangedEvent& event)
The default handler for wxEVT_SYS_COLOUR_CHANGED.

405

CHAPTER7

Parameters
event

The colour change event.
Remarks

Changes the dialog's colour to conform to the current settings (Windows only). Add an
event table entry for your dialog class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxEvent::Skip to propagate the notification to child windows and controls.

See also

wxSysColourChangedEvent (p. 1330)

wxDialog::SetAffirmativeld

void SetAffirmativeld (int id)

Sets the identifier to be used when the user presses an OK button in a PocketPC
titlebar. By default, this is wxID_OK.

See also

wxDialog::GetAffirmativeld (p. 416)

wxDialog::SetEscapeld

void SetEscapeld (int id)

Sets the identifier to be used when the user presses ESChutton in the dialog. By default,
this is wxID_ANY meaning that the first suitable button is used: if there a wxID_CANCEL
button, it is activated, otherwise wxID_OK button is activated if present. Another possible
special value for id is wxID_NONEmeaning thatESCpresses should be ignored. If
another value is given, it is interpreted as the id of the button to map the escape key to.

wxDialog::Setlcon

void Setlcon (const wxlcon& icon)
Sets the icon for this dialog.
Parameters
icon
The icon to associate with this dialog.

See also wxlcon (p. 778).

wxDialog::Setlcons

406

CHAPTER7

void Setlcons (const wxlconBundle& icons)
Sets the icons for this dialog.
Parameters
icons
The icons to associate with this dialog.

See also wxlconBundle (p. 785).

wxDialog::SetModal

void SetModal (const bool flag)

NB: This function is deprecated and doesn't work for all ports, just useShowModal (p.
421) to show a modal dialog instead.

Allows the programmer to specify whether the dialog box is modal (wxDialog::Show
blocks control until the dialog is hidden) or modeless (control returns immediately).

Parameters
flag

If true, the dialog will be modal, otherwise it will be modeless.

wxDialog::SetReturnCode

void SetReturnCode (int retCode)
Sets the return code for this window.
Parameters
retCode
The integer return code, usually a control identifier.
Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 421) returns a code to the application. The function wxDialog::EndModal (p. 416)
calls SetReturnCode .

See also

wxDialog::GetReturnCode (p. 417), wxDialog::ShowModal (p. 421), wxDialog::EndModal
(p- 416)

wxDialog::Show

bool Show (const bool show)

407

CHAPTER7

Hides or shows the dialog.
Parameters
show

If true, the dialog box is shown and brought to the front; otherwise the box is
hidden. If false and the dialog is modal, control is returned to the calling program.

Remarks

The preferred way of dismissing a modal dialog is to use wxDialog::EndModal (p. 416).

wxDialog::ShowModal

int ShowModal ()

Shows a modal dialog. Program flow does not return until the dialog has been dismissed
with wxDialog::EndModal (p. 416).

Return value
The return value is the value set with wxDialog::SetReturnCode (p. 420).

See also

wxDialog::EndModal (p. 416), wxDialog:GetReturnCode
(p. 417), wxDialog::SetReturnCode (p.
420)wxDialUpEvent

This is the event class for the dialup events sent by wxDialUpManager (p. 422).
Derived from

wxEvent (p. 487)
wxObiject (p. 1027)

Include files

<wx/dialup.h>

wxDialUpEvent::wxDialUpEvent

wxDialUpEvent (bool isConnected, bool isOwnEvent)

Constructor is only used by wxDialUpManager (p. 422).

wxDialUpEvent::IsConnectedEvent

408

CHAPTER7

bool IsConnectedEvent () const

Is this a CONNECTEDr DISCONNECTEI@vent? In other words, does it notify about
transition from offline to online state or vice versa?

wxDialUpEvent::IsOwnEvent

bool IsOwnEvent () const

Does this event come from wxDialUpManager::Dial() or from some extrenal process (i.e.
does it result from our own attempt to establish the connection)?

wxDialUpManager

This class encapsulates functions dealing with verifying the connection status of the
workstation (connected to the Internet via a direct connection, connected through a
modem or not connected at all) and to establish this connection if possible/required (i.e.
in the case of the modem).

The program may also wish to be notified about the change in the connection status (for
example, to perform some action when the user connects to the network the next time
or, on the contrary, to stop receiving data from the net when the user hangs up the
modem). For this, you need to use one of the event macros described below.

This class is different from other wxWidgets classes in that there is at most one instance
of this class in the program accessed via wxDialUpManager::Create() (p. 423) and you
can't create the objects of this class directly.

Derived from

No base class
Include files
<wx/dialup.h>
Event table macros

To be notified about the change in the network connection status, use these event
handler macros to direct input to member functions that take a wxDialUpEvent (p. 422)
argument.

EVT_DIALUP_CONNECTED(func) A connection with the network was established.
EVT_DIALUP_DISCONNECTED(func) The connection with the network was lost.

See also
dialup sample (p. 1752)
wxDialUpEvent (p. 422)

409

CHAPTER7

wxDialUpManager::Create

wxDialUpManager* Create()

This function should create and return the object of the platform-specific class derived
from wxDialUpManager. You should delete the pointer when you are done with it.

wxDialUpManager::IsOk

bool IsOk() const

Returns true if the dialup manager was initialized correctly. If this function returns
false , no other functions will work neither, so it is a good idea to call this function and
check its result before calling any other wxDialUpManager methods

wxDialUpManager::~wxDialUpManager

~wxDialUpManager ()

Destructor.

wxDialUpManager::GetISPNames

size_t GetlISPNames (wxArrayString& names) const
This function is only implemented under Windows.

Fills the array with the names of all possible values for the first parameter to Dial() (p.
424) on this machine and returns their number (may be 0).

wxDialUpManager::Dial

bool Dial(const wxString& nameOfISP = wxEmptyString, const wxString& username
= wxEmptyString, const wxString& password = wxEmptyString, bool async = true)

Dial the given ISP, use username and password to authenticate.

The parameters are only used under Windows currently, for Unix you should use
SetConnectCommand (p. 426) to customize this functions behaviour.

If no nameOfISP is given, the function will select the default one (proposing the user to
choose among all connections defined on this machine) and if no username and/or
password are given, the function will try to do without them, but will ask the user if really
needed.

If async parameter is false , the function waits until the end of dialing and returns true
upon successful completion.

If async is true , the function only initiates the connection and returns immediately - the
result is reported via events (an event is sent anyhow, but if dialing failed it will be a
DISCONNECTED one).

410

CHAPTER7

wxDialUpManager::IsDialing

bool IsDialing () const

Returns true if (async) dialing is in progress.
See also

Dial (p. 424)

wxDialUpManager::CancelDialing

bool CancelDialing ()

Cancel dialing the number initiated with Dial (p. 424) with async parameter equal to
true .

Note that this won't result in DISCONNECTED event being sent.
See also

IsDialing (p. 424)

wxDialUpManager::HangUp
bool HangUp ()

Hang up the currently active dial up connection.

wxDialUpManager::IsAlwaysOnline

bool IsAlwaysOnline () const

Returns true if the computer has a permanent network connection (i.e. is on a LAN)
and so there is no need to use Dial() function to go online.

NB: this functions tries to guess the result and it is not always guaranteed to be correct,
so it is better to ask user for confirmation or give him a possibility to override it.

wxDialUpManager::IsOnline

bool 1sOnline () const

Returns true if the computer is connected to the network: under Windows, this just
means that a RAS connection exists, under Unix we check that the "well-known host"
(as specified by SetWellKnownHost (p. 426)) is reachable.

wxDialUpManager::SetOnlineStatus

void SetOnlineStatus (bool isOnline = true)

Sometimes the built-in logic for determining the online status may fail, so, in general, the

411

CHAPTER7

user should be allowed to override it. This function allows to forcefully set the online
status - whatever our internal algorithm may think about it.

See also

IsOnline (p. 425)

wxDialUpManager::EnableAutoCheckOnlineStatus

bool EnableAutoCheckOnlineStatus (size_t nSeconds = 60)

Enable automatic checks for the connection status and sending of
WXEVT_DIALUP_CONNECTED/WXEVT_DIALUP_DISCONNECTE{Ents. The interval
parameter is only for Unix where we do the check manually and specifies how often
should we repeat the check (each minute by default). Under Windows, the notification
about the change of connection status is sent by the system and so we don't do any
polling and this parameter is ignored.

Returns false if couldn't set up automatic check for online status.

wxDialUpManager::DisableAutoCheckOnlineStatus

void DisableAutoCheckOnlineStatus ()

Disable automatic check for connection status change - notice that
thewxEVT_DIALUP_XXXevents won't be sent any more neither.

wxDialUpManager::SetWellKknownHost

void SetWellKnownHost (const wxString& hostname, int portno = 80)
This method is for Unix only.

Under Unix, the value of well-known host is used to check whether we're connected to
the internet. It is unused under Windows, but this function is always safe to call. The
default value is www.yahoo.com:80

wxDialUpManager::SetConnectCommand

void SetConnectCommand (const wxString& commandDial = wxT("/usr/bin/pon"),
const wxString& commandHangup = wxT ("/usr/bin/poff"))

This method is for Unix only.
Sets the commands to start up the network and to hang up again.
See also

Dial (p. 424)

wxDir

412

CHAPTER7

wxDir is a portable equivalent of Unix open/read/closedir functions which allow
enumerating of the files in a directory. wxDir allows enumerate files as well as
directories.

wxDir also provides a flexible way to enumerate files recursively using Traverse (p. 429)
or a simpler GetAllFiles (p. 428) function.

Example of use:

wxDir dir(wxGetCwd());
if (!dir.IsOpened())

/I deal with the error here - wxDir would a

error message

/I explaining the exact reason of the failu
return;

}
puts("Enumerating object files in current direc
wxString filename;

bool cont = dir.GetFirst(&filename, filespec, f
while (cont)

printf("%s\n", filename.c_str());

cont = dir.GetNext(&filename);

}

Derived from

No base class

Constants

Iready log an

re

tory:");

lags);

These flags define what kind of filename is included in the list of files enumerated by
GetFirst/GetNext.

enum

{

wxDIR_FILES = 0x0001, /l include file
wxDIR_DIRS = 0x0002, /l'include dire
wxDIR_HIDDEN = 0x0004, /l'include hidd
wxDIR_DOTDOT = 0x0008, /l'include "'

/I by default, enumerate everything except .’
WXDIR_DEFAULT = wxDIR_FILES | wxDIR_DIRS | wx

Include files

<wx/dir.h>

S
ctories
en files
and ..

and '..'
DIR_HIDDEN

413

CHAPTER7

wxDir::wxDir

wxDir ()

Default constructor, use Open() (p. 429) afterwards.
wxDir (const wxString& dir)

Opens the directory for enumeration, use IsOpened() (p. 429) to test for errors.

wxDir::~wxDir
~wxDir ()

Destructor cleans up the associated resources. It is not virtual and so this class is not
meant to be used polymaorphically.

wxDir::Exists
static bool Exists (const wxString& dir)

Test for existence of a directory with the given name

wxDir::GetAllFiles

static size_t GetAllFiles (const wxString& dirname, wxArrayString * files, const
wxString& filespec = wxEmptyString, int flags = wxDIR_DEFAULT)

The function appends the names of all the files under directory dirname to the array files
(note that its old content is preserved). Only files matching the filespec are taken, with
empty spec matching all the files.

The flags parameter should always include wxDIR_FILES or the array would be
unchanged and should include wxDIR_DIRS flag to recurse into subdirectories (both
flags are included in the value by default).

See also: Traverse (p. 429)

wxDir::GetFirst

bool GetFirst (wxString* filename, const wxString& filespec = wxEmptyString, int
flags = wxDIR_DEFAULT) const

Start enumerating all files matching filespec (or all files if it is empty) and flags, return
true on success.

wxDir::GetName

wxString GetName () const

Returns the name of the directory itself. The returned string does not have the trailing

414

CHAPTER7

path separator (slash or backslash).

wxDir::GetNext

bool GetNext (wxString* filename) const

Continue enumerating files satisfying the criteria specified by the last call to GetFirst (p.
428).

wxDir::HasFiles

bool HasFiles (const wxString& filespec = wxEmptyString)

Returns true if the directory contains any files matching the given filespec. If filespec is
empty, look for any files at all. In any case, even hidden files are taken into account.

wxDir::HasSubDirs

bool HasSubDirs (const wxString& dirspec = wxEmptyString)

Returns true if the directory contains any subdirectories (if a non empty filespec is
given, only check for directories matching it). The hidden subdirectories are taken into
account as well.

wxDir::IsOpened

bool I1sOpened () const

Returns true if the directory was successfully opened by a previous call to Open (p. 429).

wxDir::Open
bool Open(const wxString& dir)

Open the directory for enumerating, returns true on success or false if an error occurred.

wxDir:: Traverse

size_t Traverse (wxDirTraverser& sink, const wxString& filespec = wxEmptyString,
int flags = wxDIR_DEFAULT)

Enumerate all files and directories under the given directory recursively calling the
element of the provided wxDirTraverser (p. 432) object for each of them.

More precisely, the function will really recurse into subdirectories if flags contains
wxDIR_DIRS flag. It will ignore the files (but still possibly recurse into subdirectories) if
wxDIR_FILES flag is given.

For each found directory, sink.OnDir() (p. 433) is called and sink.OnFile() (p. 433) is
called for every file. Depending on the return value, the enumeration may continue or
stop.

415

CHAPTER7

The function returns the total number of files found or (size_t)-1 on error.

See also: GetAllFiles (p. 428)

wxDirDialog

This class represents the directory chooser dialog.
Derived from

wxDialog (p. 412)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files
<wx/dirdlg.h> <wx/generic/dirdlgg.h>
Window styles

wxDD_DEFAULT_STYLE Equivalent to a combination of
WXDEFAULT_DIALOG_STYLE,
wxDD_NEW_DIR_BUTTON and wxRESIZE_BORDER
(the last one is not used under wxWinCE).

wxDD_NEW_DIR_BUTTON Add "Create new directory" button and allow directory
names to be editable. On Windows the new directory
button is only available with recent versions of the common
dialogs.

See also Generic window styles (p. 1808).
See also

wxDirDialog overview (p. 1848), wxFileDialog (p. 515)

wxDirDialog::wxDirDialog

wxDirDialog (wxWindow* parent, const wxString& message = "Choose a directory”,
const wxString& defaultPath =™, long style = wxDD_DEFAULT_STYLE, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, const
wxString& name = "wxDirCtrl")

Constructor. Use wxDirDialog::ShowModal (p. 432) to show the dialog.
Parameters
parent

Parent window.

416

CHAPTER7

message

Message to show on the dialog.
defaultPath

The default path, or the empty string.
style

The dialog style. See wxDirDialog (p. 429)
pos

Dialog position. Ignored under Windows.
size

Dialog size. Ignored under Windows.
name

The dialog name, not used.
wxDirDialog::~wxDirDialog
~wxDirDialog ()
Destructor.
wxDirDialog::GetPath
wxString GetPath () const
Returns the default or user-selected path.
wxDirDialog::GetMessage
wxString GetMessage () const
Returns the message that will be displayed on the dialog.
wxDirDialog::GetStyle
long GetStyle () const
Returns the dialog style.
wxDirDialog::SetMessage

void SetMessage (const wxString& message)

Sets the message that will be displayed on the dialog.

417

CHAPTER7

wxDirDialog::SetPath

void SetPath (const wxString& path)

Sets the default path.

wxDirDialog::SetStyle
void SetStyle (long style)

Sets the dialog style. This is currently unused.

wxDirDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxDirTraverser

wxDirTraverser is an abstract interface which must be implemented by objects passed to
Traverse (p. 429) function.

Example of use (this works almost like GetAllFiles (p. 428)):
class wxDirTraverserSimple : public wxDirTraver ser

{
public:
wxDirTraverserSimple(wxArrayString& files)
m_files(files) { }

virtual wxDirTraverseResult OnFile(const wx String&
filename)

m_files.Add(filename);
return wxDIR_CONTINUE;

}

virtual wxDirTraverseResult OnDir(const wxS tring&
WXUNUSED(dirname))
{

return wxDIR_CONTINUE;
}

private:
wxArrayString& m_files;

/I get the names of all files in the array
wxArrayString files;
wxDirTraverserSimple traverser(files);

wxDir dir(dirname);
dir.Traverse(traverser);

418

CHAPTER7

Derived from
No base class
Constants

The elements of wxDirTraverseResult are the possible return values of the callback
functions:

enum wxDirTraverseResult

wxDIR_IGNORE =-1, //ignore this director y but continue
with others
wxDIR_STOP, /I stop traversing
wxDIR_CONTINUE /I continue into this d irectory
3
Include files
<wx/dir.h>

wxDirTraverser::OnDir

virtual wxDirTraverseResult OnDir (const wxString& dirname)

This function is called for each directory. It may return wxSIR_STOP to abort traversing
completely, wxDIR_IGNOREto skip this directory but continue with others or
wxDIR_CONTINUEto enumerate all files and subdirectories in this directory.

This is a pure virtual function and must be implemented in the derived class.

wxDirTraverser::OnFile

virtual wxDirTraverseResult OnFile (const wxString& filename)

This function is called for each file. It may return wxDIR_STOPto abort traversing (for
example, if the file being searched is found) or wxDIR_CONTINUEto proceed.

This is a pure virtual function and must be implemented in the derived class.

wxOpenErrorTraverser::OnOpenError

virtual wxOpenErrorTraverseResult OnOpenError (const wxString& openerrorname)

This function is called for each directory which we failed to open for enumerating. It may
return wxSIR_STOPto abort traversing completely,wxDIR_IGNOREto skip this directory
but continue with others or wxDIR_CONTINUEto retry opening this directory once again.

The base class version always returns wxDIR_IGNORE

419

CHAPTER7

wxDisplay

Determines the sizes and locations of displays connected to the system.
Derived from

None

Include files

<wx/display.h>

See also

wxClientDisplayRect (p. 1657), wxDisplaySize (p. 1657), wxDisplaySizeMM (p. 1657)

wxDisplay::wxDisplay

wxDisplay (size_t index = 0)

Constructor, setting up a wxDisplay instance with the specified display.
Parameters

index

The index of the display to use. This must be non-negative and lower than the
value returned by GetCount() (p. 435).

wxDisplay::~wxDisplay
void ~wxDisplay ()

Destructor.

wxDisplay::ChangeMode
bool ChangeMode (const wxVideoMode& mode = wxDefaultVideoMode)
Changes the video mode of this display to the mode specified in the mode parameter.

If wxDefaultVideoMode is passed in as the mode parameter, the defined behaviour is
that wxDisplay will reset the video mode to the default mode used by the display. On
Windows, the behavior is normal. However, there are differences on other platforms.
On Unix variations using X11 extensions it should behave as defined, but some
irregularities may occur.

On wxMac passing in wxDefaultVideoMode as the mode parameter does nothing. This
happens because carbon no longer has access to DMUseScreenPrefs, an
undocumented function that changed the video mode to the system default by using the
system's 'scrn' resource.

420

CHAPTER7

wxDisplay::GetClientArea

wxRect GetClientArea () const

Returns the client area of the display. The client area is the part of the display available
for the normal (non full screen) windows, usually it is the same as GetGeometry (p. 436)
but it could be less if there is a taskbar (or equivalent) on this display.

See also:

wxClientDisplayRect (p. 1657)

wxDisplay::GetCount

static size_t GetCount ()

Returns the number of connected displays.

wxDisplay::GetCurrentMode

wxVideoMode GetCurrentMode () const

Returns the current video mode that this display is in.

wxDisplay::GetDepth
int GetDepth () const

Returns the bit depth of the display whose index was passed to the constructor.

wxDisplay::GetFromPoint

static int GetFromPoint (const wxPoint& pt)

Returns the index of the display on which the given point lies. Returns wxNOT_FOUNID
the point is not on any connected display.

Parameters
pt

The point to locate.
wxDisplay::GetFromWindow
static int GetFromWindow (wxWindow* win)

Returns the index of the display on which the given window lies.

If the window is on more than one display it gets the display that overlaps the window
the most.

421

CHAPTER7

Returns wxNOT_FOUNIM the window is not on any connected display.
Parameters
win

The window to locate.

wxDisplay::GetGeometry

wxRect GetGeometry () const

Returns the bounding rectangle of the display whose index was passed to the
constructor.

See also:

GetClientArea (p. 434), wxDisplaySize (p. 1657)

wxDisplay::GetModes

wxArrayVideoModes GetModes (const wxVideoMode& mode =
wxDefaultVideoMode) const

Fills and returns an array with all the video modes that are supported by this display, or
video modes that are supported by this display and match the mode parameter (if mode
is not wxDefaultVideoMode).

wxDisplay::GetName
wxString GetName () const

Returns the display's name. A name is not available on all platforms.

wxDisplay::IsPrimary
bool IsPrimary ()

Returns true if the display is the primary display. The primary display is the one whose
index is 0.

wxDlILoader

Deprecation note: This class is deprecated since version 2.4 and is not compiled in by
default in version 2.6 and will be removed in 2.8. Please use wxDynamicLibrary (p. 478)
instead.

wxDlILoader is a class providing an interface similar to Unix's dlopen() . Itis used by
the wxLibrary framework and manages the actual loading of shared libraries and the
resolving of symbols in them. There are no instances of this class, it simply serves as a
namespace for its static member functions.

422

CHAPTER7

Please note that class wxDynamicLibrary (p. 478) provides alternative, friendlier
interface to wxDlILoader.

The terms DLL and shared library/object will both be used in the documentation to refer

to the same thing: a .dll file under Windows or .so or .sl one under Unix.

Example of using this class to dynamically load the strlen() function:

#if defined(__ WXMSW___

static const wxChar *LIB_NAME = _T("kernel32");

static const wxChar *FUNC_NAME = _T("IstrlenA") ;
#elif defined(__UNIX_)

static const wxChar *LIB_NAME = _T("/lib/libc-2 .0.7.s0");
static const wxChar *FUNC_NAME = _T("strlen");
#endif
wxDIIType dlIHandle = wxDlIILoader::LoadLibrary(LIB_NAME);
if (!dlIHandle)
{
... error ...
else

typedef int (*strlenType)(char *);
strlenType pfnStrlen =
(strlenType)wxDlILoader::GetSymbol(dliHandle, FUNC _ NAME);
if (!pfnStrlen)
{
... error ...
else
if (pfnStrlen("*foo") I=3)
{
... error ...
else
{
... Okl ...
}
}
wxDlILoader::UnloadLibrary(dliHandle);

Derived from
No base class
Include files
<wx/dynlib.h>

Data structures

This header defines a platform-dependent wxDIIType typedef which stores a handle to

a loaded DLLs on the given platform.

423

CHAPTER7

wxDllLoader::GetDIIExt

static wxString GetDIIExt ()

Returns the string containing the usual extension for shared libraries for the given
systems (including the leading dot if not empty).

For example, this function will return ".dll" under Windows or (usually) ".so" under
Unix.

wxDlILoader::GetProgramHandle

wxDlIType GetProgramHandle ()

This function returns a valid handle for the main program itself. Notice that the NULL
return value is valid for some systems (i.e. doesn't mean that the function failed).

NB: This function is Unix specific. It will always fail under Windows or OS/2.

wxDIILoader::GetSymbol

void * GetSymbol (wxDlIType dllHandle, const wxString& name)
This function resolves a symbol in a loaded DLL, such as a variable or function name.

Returned value will be NULL if the symbol was not found in the DLL or if an error
occurred.

Parameters
diiHandle

Valid handle previously returned by LoadLibrary (p. 438)
name

Name of the symbol.

wxDIILoader::LoadLibrary

wxDIIType LoadLibrary (const wxString & libname, bool* success = NULL)

This function loads a shared library into memory, with libname being the name of the
library: it may be either the full name including path and (platform-dependent) extension,
just the basename (no path and no extension) or a basename with extension. In the last
two cases, the library will be searched in all standard locations.

Returns a handle to the loaded DLL. Use success parameter to test if it is valid. If the
handle is valid, the library must be unloaded later with UnloadLibrary (p. 439).

Parameters

libname

424

CHAPTER7

Name of the shared object to load.
success

May point to a bool variable which will be set to true or false; may also be NULL

wxDIILoader::UnloadLibrary

void UnloadLibrary (wxDlIType dllhandle)

This function unloads the shared library. The handle dllhandle must have been returned
by LoadLibrary (p. 438) previously.

wxDocChildFrame

The wxDocChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for SDI (not MDI) child frames.

The class is part of the document/view framework supported by wxWidgets, and
cooperates with the wxView (p. 1494), wxDocument (p. 459), wxDocManager (p. 441)
and wxDocTemplate (p. 454) classes.

See the example application in samples/docview
Derived from

wxFrame (p. 582)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files
<wx/docview.h>
See also

Document/view overview (p. 1849), wxFrame (p. 582)
wxDocChildFrame::m_childDocument
wxDocument* m_childDocument

The document associated with the frame.

wxDocChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

425

CHAPTER7

wxDocChildFrame::wxDocChildFrame
wxDocChildFrame (wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,

const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocChildFrame::~wxDocChildFrame

~wxDocChildFrame ()

Destructor.

wxDocChildFrame::GetDocument
wxDocument* GetDocument () const

Returns the document associated with this frame.
wxDocChildFrame::GetView

wxView* GetView () const

Returns the view associated with this frame.

wxDocChildFrame::OnActivate

void OnActivate (wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocChildFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)
Closes and deletes the current view and document.
wxDocChildFrame::SetDocument

void SetDocument (wxDocument * doc)

Sets the document for this frame.
wxDocChildFrame::SetView

void SetView (wxView * view)

426

CHAPTER7

Sets the view for this frame.

wxDocManager

The wxDocManager class is part of the document/view framework supported by
wxWidgets, and cooperates with the wxView (p. 1494), wxDocument (p. 459) and
wxDocTemplate (p. 454) classes.

Derived from

wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files
<wx/docview.h>
See also

wxDocManager overview (p. 1852), wxDocument (p. 459), wxView (p. 1494),
wxDocTemplate (p. 454), wxFileHistory (p. 520)

wxDocManager::m_currentView

wxView* m_currentView

The currently active view.

wxDocManager::m_defaultDocumentNameCounter

int m_defaultDocumentNameCounter

Stores the integer to be used for the next default document name.

wxDocManager::m_fileHistory

wxFileHistory* m_fileHistory

A pointer to an instance of wxFileHistory (p. 520), which manages the history of recently-
visited files on the File menu.

wxDocManager::m_maxDocsOpen

int m_maxDocsOpen

Stores the maximum number of documents that can be opened before existing
documents are closed. By default, this is 10,000.

427

CHAPTER7

wxDocManager::m_docs

wxList m_docs

A list of all documents.

wxDocManager::m_flags
long m_flags

Stores the flags passed to the constructor.

wxDocManager::m_lastDirectory

The directory last selected by the user when opening a file.

wxFileHistory* m_fileHistory

wxDocManager::m_templates

wxList m_templates

A list of all document templates.

wxDocManager::.wxDocManager

wxDocManager (long flags = wxDEFAULT_DOCMAN_FLAGS, bool initialize = true)

Constructor. Create a document manager instance dynamically near the start of your
application before doing any document or view operations.

flags is currently unused.

If initialize is true, the Initialize (p. 446) function will be called to create a default history
list object. If you derive from wxDocManager, you may wish to call the base constructor
with false, and then call Initialize in your own constructor, to allow your own Initialize or
OnCreateFileHistory functions to be called.

wxDocManager::~wxDocManager

void ~wxDocManager ()

Destructor.

wxDocManager::ActivateView

void ActivateView (wxView* doc, bool activate = true)

Sets the current view.

428

CHAPTER7

wxDocManager::AddDocument

void AddDocument (wxDocument * doc)

Adds the document to the list of documents.

wxDocManager::AddFileToHistory

void AddFileToHistory (const wxString& filename)

Adds a file to the file history list, if we have a pointer to an appropriate file menu.

wxDocManager::AssociateTemplate

void AssociateTemplate (wxDocTemplate * temp)

Adds the template to the document manager's template list.

wxDocManager::CloseDocuments

bool CloseDocuments (bool force = true)

Closes all currently opened documents.

wxDocManager::CreateDocument

wxDocument* CreateDocument (const wxString& path, long flags)

Creates a new document in a manner determined by the flags parameter, which can be:
« wxDOC_NEW Creates a fresh document.
« wxDOC_SILENT Silently loads the given document file.

If wxDOC_NEW is present, a new document will be created and returned, possibly after
asking the user for a template to use if there is more than one document template. If
wxDOC_SILENT is present, a new document will be created and the given file loaded
into it. If neither of these flags is present, the user will be presented with a file selector
for the file to load, and the template to use will be determined by the extension
(Windows) or by popping up a template choice list (other platforms).

If the maximum number of documents has been reached, this function will delete the
oldest currently loaded document before creating a new one.

wxDocManager::CreateView

wxView* CreateView (wxDocument* doc, long flags)

Creates a new view for the given document. If more than one view is allowed for the
document (by virtue of multiple templates mentioning the same document type), a choice
of view is presented to the user.

429

CHAPTER7

wxDocManager::DisassociateTemplate

void DisassociateTemplate (wxDocTemplate * temp)

Removes the template from the list of templates.

wxDocManager::FileHistoryAddFilesToMenu

void FileHistoryAddFilesToMenu ()
Appends the files in the history list, to all menus managed by the file history object.
void FileHistoryAddFilesToMenu (wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxDocManager::FileHistoryLoad

void FileHistoryLoad (wxConfigBase& config)
Loads the file history from a config object.
See also

wxConfig (p. 196)

wxDocManager::FileHistoryRemoveMenu

void FileHistoryRemoveMenu (wxMenu* menu)

Removes the given menu from the list of menus managed by the file history object.

wxDocManager::FileHistorySave

void FileHistorySave (wxConfigBase& resourceFile)

Saves the file history into a config object. This must be called explicitly by the
application.

See also

wxConfig (p. 196)

wxDocManager::FileHistoryUseMenu

void FileHistoryUseMenu (wxMenu* menu)

Use this menu for appending recently-visited document filenames, for convenient
access. Calling this function with a valid menu pointer enables the history list
functionality.

Note that you can add multiple menus using this function, to be managed by the file

430

CHAPTER7

history object.

wxDocManager::FindTemplateForPath

wxDocTemplate * FindTemplateForPath (const wxString& path)

Given a path, try to find template that matches the extension. This is only an
approximate method of finding a template for creating a document.

wxDocManager::GetCurrentDocument

wxDocument * GetCurrentDocument ()

Returns the document associated with the currently active view (if any).

wxDocManager::GetCurrentView

wxView * GetCurrentView ()

Returns the currently active view

wxDocManager::GetDocuments

wxList& GetDocuments ()

Returns a reference to the list of documents.

wxDocManager::GetFileHistory

wxFileHistory * GetFileHistory ()

Returns a pointer to file history.

wxDocManager::GetLastDirectory

wxString GetlLastDirectory () const

Returns the directory last selected by the user when opening a file. Initially empty.

wxDocManager::GetMaxDocsOpen

int GetMaxDocsOpen ()

Returns the number of documents that can be open simultaneously.

wxDocManager::GetHistoryFilesCount

size_t GetHistoryFilesCount ()

Returns the number of files currently stored in the file history.

431

CHAPTER7

wxDocManager::GetTemplates

wxList& GetTemplates ()

Returns a reference to the list of associated templates.

wxDocManager::Initialize

bool Initialize ()

Initializes data; currently just calls OnCreateFileHistory. Some data cannot always be
initialized in the constructor because the programmer must be given the opportunity to
override functionality. If OnCreateFileHistory was called from the constructor, an
overridden virtual OnCreateFileHistory would not be called due to C++'s 'interesting’
constructor semantics. In fact Initialize is called from the wxDocManager constructor, but
this can be vetoed by passing false to the second argument, allowing the derived class's
constructor to call Initialize, possibly calling a different OnCreateFileHistory from the
default.

The bottom line: if you're not deriving from Initialize, forget it and construct
wxDocManager with no arguments.

wxDocManager::MakeDefaultName

bool MakeDefaultName (const wxString& buf)

Copies a suitable default name into buf. This is implemented by appending an integer
counter to the string unnamed and incrementing the counter.

wxPerl note: In wxPerl this function must return the modified name rather than just
modifying the argument.

wxDocManager::OnCreateFileHistory

wxFileHistory * OnCreateFileHistory ()

A hook to allow a derived class to create a different type of file history. Called from
Initialize (p. 446).

wxDocManager::OnFileClose

void OnFileClose (wxCommandEvent& event)
Closes and deletes the currently active document.
wxDocManager::OnFileCloseAll

void OnFileCloseAll (wxCommandEvent& event)

Closes and deletes all the currently opened documents.

432

CHAPTER7

wxDocManager::OnFileNew

void OnFileNew (wxCommandEvent& event)

Creates a document from a list of templates (if more than one template).

wxDocManager::OnFileOpen

void OnFileOpen (wxCommandEvent& event)

Creates a new document and reads in the selected file.

wxDocManager::OnFileRevert

void OnFileRevert (wxCommandEvent& event)

Reverts the current document by calling wxDocument::Revert for the current document.

wxDocManager::OnFileSave

void OnFileSave (wxCommandEvent& event)

Saves the current document by calling wxDocument::Save for the current document.

wxDocManager::OnFileSaveAs

void OnFileSaveAs (wxCommandEvent& event)

Calls wxDocument::SaveAs for the current document.

wxDocManager::RemoveDocument

void RemoveDocument (wxDocument * doc)

Removes the document from the list of documents.

wxDocManager::SelectDocumentPath

wxDocTemplate * SelectDocumentPath (wxDocTemplate ** templates, int
noTemplates, wxString& path, long flags, bool save)

Under Windows, pops up a file selector with a list of filters corresponding to document
templates. The wxDocTemplate corresponding to the selected file's extension is
returned.

On other platforms, if there is more than one document template a choice list is popped
up, followed by a file selector.

This function is used in wxDocManager::CreateDocument.

wxPerl note: In wxPerl templates is a reference to a list of templates. If you override

433

CHAPTER7

this method in your document manager it must return two values, eg:

(doctemplate, path) = My::DocManager->SelectDocumentPath(...);

wxDocManager::SelectDocumentType

wxDocTemplate * SelectDocumentType (wxDocTemplate ** templates, int
noTemplates, bool sort=false)

Returns a document template by asking the user (if there is more than one template).
This function is used in wxDocManager::CreateDocument.

Parameters
templates
Pointer to an array of templates from which to choose a desired template.
noTemplates
Number of templates being pointed to by the templates pointer.
sort

If more than one template is passed in in templates, then this parameter indicates
whether the list of templates that the user will have to choose from is sorted or not
when shown the choice box dialog. Default is false.

wxPerl note: In wxPerl templates is a reference to a list of templates.

wxDocManager::SelectViewType

wxDocTemplate * SelectViewType (wxDocTemplate ** templates, int noTemplates,
bool sort=false)

Returns a document template by asking the user (if there is more than one template),
displaying a list of valid views. This function is used in wxDocManager::CreateView. The
dialog normally will not appear because the array of templates only contains those
relevant to the document in question, and often there will only be one such.

Parameters
templates
Pointer to an array of templates from which to choose a desired template.
noTemplates
Number of templates being pointed to by the templates pointer.
sort

If more than one template is passed in in templates, then this parameter indicates
whether the list of templates that the user will have to choose from is sorted or not

434

CHAPTER7

when shown the choice box dialog. Default is false.

wxPerl note: In wxPerl templates is a reference to a list of templates.

wxDocManager::SetLastDirectory

void SetlLastDirectory (const wxString& dir)

Sets the directory to be displayed to the user when opening a file. Initially this is empty.

wxDocManager::SetMaxDocsOpen

void SetMaxDocsOpen (int n)

Sets the maximum number of documents that can be open at a time. By default, this is
10,000. If you set it to 1, existing documents will be saved and deleted when the user
tries to open or create a new one (similar to the behaviour of Windows Write, for
example). Allowing multiple documents gives behaviour more akin to MS Word and
other Multiple Document Interface applications.

wxDocMDIChildFrame

The wxDocMDIChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for MDI child frames.

The class is part of the document/view framework supported by wxWidgets, and
cooperates with the wxView (p. 1494), wxDocument (p. 459), wxDocManager (p. 441)
and wxDocTemplate (p. 454) classes.

See the example application in samples/docview
Derived from

wxMDIChildFrame (p. 929)
wxFrame (p. 582)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files
<wx/docmdi.h>
See also

Document/view overview (p. 1849), wxMDIChildFrame (p. 929)

wxDocMDIChildFrame::m_childDocument

wxDocument* m_childDocument

435

CHAPTER7

The document associated with the frame.

wxDocMDIChildFrame::m_childView

wxView* m_childView

The view associated with the frame.
wxDocMDIChildFrame::wxDocMDIChildFrame

wxDocMDIChildFrame (wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowlID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,

const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.
wxDocMDIChildFrame::~wxDocMDIChildFrame
~wxDocMDIChildFrame ()

Destructor.
wxDocMDIChildFrame::GetDocument
wxDocument* GetDocument () const

Returns the document associated with this frame.
wxDocMDIChildFrame::GetView

wxView* GetView () const

Returns the view associated with this frame.
wxDocMDIChildFrame::OnActivate

void OnActivate (wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocMDIChildFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocMDIChildFrame::SetDocument

436

CHAPTER7

void SetDocument (wxDocument * doc)

Sets the document for this frame.

wxDocMDIChildFrame::SetView

void SetView (wxView * view)

Sets the view for this frame.

wxDocMDIParentFrame

The wxDocMDIParentFrame class provides a default top-level frame for applications
using the document/view framework. This class can only be used for MDI parent frames.

It cooperates with the wxView (p. 1494), wxDocument (p. 459), wxDocManager (p. 441)
and wxDocTemplates (p. 454) classes.

See the example application in samples/docview
Derived from

wxMDIParentFrame (p. 934)
wxFrame (p. 582)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files
<wx/docmdi.h>
See also

Document/view overview (p. 1849), wxMDIParentFrame (p. 934)

wxDocMDIParentFrame::wxDocMDIParentFrame

wxDocMDIParentFrame ()

wxDocMDIParentFrame (wxDocManager* manager, wxFrame * parent, wxWindowID
id, const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString&
name = "frame")

Constructor.

wxDocMDIParentFrame::~wxDocMDIParentFrame

~wxDocMDIParentFrame ()

437

CHAPTER7

Destructor.

wxDocMDIParentFrame::Create

bool Create(wxDocManager* manager, wxFrame * parent, wxWindowID id, const
wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Creates the window.

wxDocMDIParentFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
if (m_docManager->Clear(!event.CanVeto()))
{
this->Destroy();

else
event.Veto();

wxDocParentFrame

The wxDocParentFrame class provides a default top-level frame for applications using
the document/view framework. This class can only be used for SDI (not MDI) parent
frames.

It cooperates with the wxView (p. 1494), wxDocument (p. 459), wxDocManager (p. 441)
and wxDocTemplates (p. 454) classes.

See the example application in samples/docview
Derived from

wxFrame (p. 582)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files

<wx/docview.h>

438

CHAPTER7

See also

Document/view overview (p. 1849), wxFrame (p. 582)

wxDocParentFrame::wxDocParentFrame

wxDocParentFrame (wxDocManager* manager, wxFrame * parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocParentFrame::~wxDocParentFrame

~wxDocParentFrame ()

Destructor.

wxDocParentFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
if (m_docManager->Clear(!event.CanVeto()))
this->Destroy();
}

else
event.Veto();

wxDocTemplate

The wxDocTemplate class is used to model the relationship between a document class
and a view class.

Derived from
wxObiject (p. 1027)

Include files

439

CHAPTER7

<wx/docview.h>
See also

wxDocTemplate overview (p. 1852), wxDocument (p. 459), wxView (p. 1494)

wxDocTemplate::m_defaultExt

wxString m_defaultExt

The default extension for files of this type.
wxDocTemplate::m_description
wxString m_description

A short description of this template.
wxDocTemplate::m_directory

wxString m_directory

The default directory for files of this type.

wxDocTemplate::m_docClassiInfo

wxClassInfo* m_docClassinfo

Run-time class information that allows document instances to be constructed
dynamically.

wxDocTemplate::m_docTypeName

wxString m_docTypeName

The named type of the document associated with this template.
wxDocTemplate::m_documentManager

wxDocTemplate* m_documentManager

A pointer to the document manager for which this template was created.

wxDocTemplate::m_fileFilter

wxString m_fileFilter

The file filter (such as *.txt) to be used in file selector dialogs.

440

CHAPTER7

wxDocTemplate::m_flags
long m_flags

The flags passed to the constructor.

wxDocTemplate::m_viewClassInfo

wxClassInfo* m_viewClassInfo

Run-time class information that allows view instances to be constructed dynamically.

wxDocTemplate::m_viewTypeName

wxString m_viewTypeName

The named type of the view associated with this template.

wxDocTemplate::wxDocTemplate

wxDocTemplate (wxDocManager* manager, const wxString& descr, const
wxString& filter, const wxString& dir, const wxString& ext, const wxString&
docTypeName, const wxString& viewTypeName, wxClassInfo* docClassinfo = NULL,
wxClassInfo* viewClassInfo = NULL, long flags = wxDEFAULT_TEMPLATE_FLAGS)

Constructor. Create instances dynamically near the start of your application after
creating a wxDocManager instance, and before doing any document or view operations.

manager is the document manager object which manages this template.

descr is a short description of what the template is for. This string will be displayed in the
file filter list of Windows file selectors.

filter is an appropriate file filter such as *.txt
dir is the default directory to use for file selectors.
ext is the default file extension (such as txt).

docTypeName is a name that should be unique for a given type of document, used for
gathering a list of views relevant to a particular document.

viewTypeName is a hame that should be unique for a given view.

docClassinfo is a pointer to the run-time document class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyDocumentClass). If this is not supplied, you
will need to derive a new wxDocTemplate class and override the CreateDocument
member to return a new document instance on demand.

viewClassinfo is a pointer to the run-time view class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyViewClass). If this is not supplied, you will
need to derive a new wxDocTemplate class and override the CreateView member to

441

CHAPTER7

return a new view instance on demand.
flags is a bit list of the following:
« WXTEMPLATE_VISIBLE The template may be displayed to the user in dialogs.

« WXTEMPLATE_INVISIBLE The template may not be displayed to the user in
dialogs.

« WXDEFAULT_TEMPLATE_FLAGS Defined as WwxXTEMPLATE_VISIBLE.

wxPerl note: In wxPerl docClassIinfo and viewClassInfo can be either
Wx::ClassInfo objects or strings which contain the name of the perl packages which
are to be used as Wx::Document andWx::View classes (they must have a constructor
named new):

Wx::DocTemplate->new(docmgr, descr, filter, dir, e xt, docTypeName,
viewTypeName, docClasslInfo,
viewClasslnfo, flags) will construct
document and view objects from the class
information

Wx::DocTemplate->new(docmgr, descr, filter, dir, e xt, docTypeName,
viewTypeName, docClassName,
viewClassName, flags) will construct
document and view objects from perl packages

Wx::DocTemplate->new(docmgr, descr, filter, dir, e xt, docTypeName,
viewTypeName)
Wx::DocTemplate::CreateDocument(

) andWx::DocTemplate::CreateView()
must be overridden

wxDocTemplate::~wxDocTemplate

void ~wxDocTemplate ()

Destructor.

wxDocTemplate::CreateDocument

wxDocument * CreateDocument (const wxString& path, long flags = 0)

Creates a new instance of the associated document class. If you have not supplied a
wxClasslInfo parameter to the template constructor, you will need to override this
function to return an appropriate document instance.

This function calls wxDocTemplate::InitDocument which in turns calls
wxDocument::OnCreate.

wxDocTemplate::CreateView

442

CHAPTER7

wxView * CreateView (wxDocument * doc, long flags = 0)

Creates a new instance of the associated view class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate view instance.

wxDocTemplate::GetDefaultExtension

wxString GetDefaultExtension ()

Returns the default file extension for the document data, as passed to the document
template constructor.

wxDocTemplate::GetDescription

wxString GetDescription ()

Returns the text description of this template, as passed to the document template
constructor.

wxDocTemplate::GetDirectory

wxString GetDirectory ()

Returns the default directory, as passed to the document template constructor.

wxDocTemplate::GetDocumentManager

wxDocManager * GetDocumentManager ()

Returns a pointer to the document manager instance for which this template was
Created.

wxDocTemplate::GetDocumentName

wxString GetDocumentName ()

Returns the document type name, as passed to the document template constructor.

wxDocTemplate::GetFileFilter

wxString GetFileFilter ()

Returns the file filter, as passed to the document template constructor.
wxDocTemplate::GetFlags

long GetFlags ()

Returns the flags, as passed to the document template constructor.

CHAPTER7

wxDocTemplate::GetViewName

wxString GetViewName ()

Returns the view type name, as passed to the document template constructor.

wxDocTemplate::InitDocument

bool InitDocument (wxDocument* doc, const wxString& path, long flags = 0)

Initialises the document, calling wxDocument::OnCreate. This is called from
wxDocTemplate::CreateDocument.

wxDocTemplate::IsVisible

bool IsVisible ()

Returns true if the document template can be shown in user dialogs, false otherwise.

wxDocTemplate::SetDefaultExtension

void SetDefaultExtension (const wxString& ext)

Sets the default file extension.

wxDocTemplate::SetDescription

void SetDescription (const wxString& descr)

Sets the template description.
wxDocTemplate::SetDirectory

void SetDirectory (const wxString& dir)
Sets the default directory.

wxDocTemplate::SetDocumentManager

void SetDocumentManager (wxDocManager * manager)

Sets the pointer to the document manager instance for which this template was created.
Should not be called by the application.

wxDocTemplate::SetFileFilter

void SetFileFilter (const wxString& filter)

Sets the file filter.

CHAPTER7

wxDocTemplate::SetFlags

void SetFlags (long flags)

Sets the internal document template flags (see the constructor description for more
details).

wxDocument

The document class can be used to model an application's file-based data. It is part of
the document/view framework supported by wxWidgets, and cooperates with the
wxView (p. 1494), wxDocTemplate (p. 454) and wxDocManager (p. 441) classes.

Derived from

wxEvtHandler (p. 490)
wxObiject (p. 1027)

Include files
<wx/docview.h>
See also

wxDocument overview (p. 1850), wxView (p. 1494), wxDocTemplate (p. 454),
wxDocManager (p. 441)

wxDocument::m_commandProcessor

wxCommandProcessor* m_commandProcessor

A pointer to the command processor associated with this document.
wxDocument::m_documentFile

wxString m_documentFile

Filename associated with this document (" if none).
wxDocument::m_documentModified

bool m_documentMaodified

true if the document has been modified, false otherwise.
wxDocument::m_documentTemplate

wxDocTemplate * m_documentTemplate

445

CHAPTER7

A pointer to the template from which this document was created.

wxDocument::m_documentTitle

wxString m_documentTitle

Document title. The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.

wxDocument::m_documentTypeName

wxString m_documentTypeName

The document type name given to the wxDocTemplate constructor, copied to this
variable when the document is created. If several document templates are created that
use the same document type, this variable is used in wxDocManager::CreateView to
collate a list of alternative view types that can be used on this kind of document. Do not
change the value of this variable.

wxDocument::m_documentViews

wxList m_documentViews

List of wxView instances associated with this document.
wxDocument::wxDocument

wxDocument ()

Constructor. Define your own default constructor to initialize application-specific data.
wxDocument::~wxDocument

~wxDocument ()

Destructor. Removes itself from the document manager.

wxDocument::AddView

virtual bool AddView (wxView * view)

If the view is not already in the list of views, adds the view and calls
OnChangedViewList.

wxDocument::Close

virtual bool Close ()

Closes the document, by calling OnSaveModified and then (if this returned true)
OnCloseDocument. This does not normally delete the document object: use

446

CHAPTER7

DeleteAllViews to do this implicitly.

wxDocument::DeleteAllViews

virtual bool DeleteAllViews ()

Calls wxView::Close and deletes each view. Deleting the final view will implicitly delete
the document itself, because the wxView destructor calls RemoveView. This in turns
calls wxDocument::OnChangedViewList, whose default implemention is to save and
delete the document if no views exist.

wxDocument::GetCommandProcessor

wxCommandProcessor* GetCommandProcessor () const
Returns a pointer to the command processor associated with this document.

See wxCommandProcessor (p. 189).
wxDocument::GetDocumentTemplate
wxDocTemplate* GetDocumentTemplate () const

Gets a pointer to the template that created the document.
wxDocument::GetDocumentManager
wxDocManager* GetDocumentManager () const

Gets a pointer to the associated document manager.
wxDocument::GetDocumentName

wxString GetDocumentName () const

Gets the document type name for this document. See the comment for
documentTypeName (p. 460).

wxDocument::GetDocumentWindow

wxWindow* GetDocumentWindow () const

Intended to return a suitable window for using as a parent for document-related dialog
boxes. By default, uses the frame associated with the first view.

wxDocument::GetFilename

wxString GetFilename () const

Gets the filename associated with this document, or " if none is associated.

447

CHAPTER7

wxDocument::GetFirstView

wxView * GetFirstView () const

A convenience function to get the first view for a document, because in many cases a
document will only have a single view.

See also: GetViews (p. 462)

wxDocument::GetPrintableName

virtual void GetPrintableName (wxString& name) const

Copies a suitable document name into the supplied name buffer. The default function
uses the title, or if there is no title, uses the filename; or if no filename, the string
unnamed .

wxPerl note: In wxPerl this function must return the modified name rather than just
modifying the argument.

wxDocument::GetTitle

wxString GetTitle () const

Gets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.

wxDocument::GetViews

wxList & GetViews () const
Returns the list whose elements are the views on the document.

See also: GetFirstView (p. 462)

wxDocument::IsModified

virtual bool IsModified () const

Returns true if the document has been modified since the last save, false otherwise. You
may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

See also Modify (p. 463).
wxDocument::LoadObject

virtual istream& LoadObject (istream& stream)

virtual wxinputStream& LoadObject (wxInputStream& stream)

448

CHAPTER7

Override this function and call it from your own LoadObject before streaming your own
data. LoadObject is called by the framework automatically when the document contents
need to be loaded.

Note that only one of these forms exists, depending on how wxWidgets was configured.

wxDocument::Modify

virtual void Modify (bool modify)

Call with true to mark the document as modified since the last save, false otherwise. You
may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

See also IsModified (p. 462).

wxDocument::OnChangedViewList

virtual void OnChangedViewList ()

Called when a view is added to or deleted from this document. The default
implementation saves and deletes the document if no views exist (the last one has just
been removed).

wxDocument::OnCloseDocument

virtual bool OnCloseDocument ()

The default implementation calls DeleteContents (an empty implementation) sets the
modified flag to false. Override this to supply additional behaviour when the document is
closed with Close.

wxDocument::OnCreate

virtual bool OnCreate (const wxString& path, long flags)

Called just after the document object is created to give it a chance to initialize itself. The
default implementation uses the template associated with the document to create an
initial view. If this function returns false, the document is deleted.

wxDocument::OnCreateCommandProcessor

virtual wxCommandProcessor* OnCreateCommandProcessor ()

Override this function if you want a different (or no) command processor to be created
when the document is created. By default, it returns an instance of
wxCommandProcessor.

See wxCommandProcessor (p. 189).

wxDocument::OnNewDocument

449

CHAPTER7

virtual bool OnNewDocument ()

The default implementation calls OnSaveModified and DeleteContents, makes a default
title for the document, and notifies the views that the filename (in fact, the title) has
changed.

wxDocument::OnOpenDocument

virtual bool OnOpenDocument (const wxString& filename)

Constructs an input file stream for the given filename (which must not be empty), and
calls LoadObject. If LoadObject returns true, the document is set to unmodified,
otherwise, an error message box is displayed. The document's views are notified that
the filename has changed, to give windows an opportunity to update their titles. All of the
document's views are then updated.

wxDocument::OnSaveDocument

virtual bool OnSaveDocument (const wxString& filename)

Constructs an output file stream for the given filename (which must not be empty), and
calls SaveObject. If SaveObject returns true, the document is set to unmodified;
otherwise, an error message box is displayed.

wxDocument::OnSaveModified

virtual bool OnSaveModified ()

If the document has been modified, prompts the user to ask if the changes should be
changed. If the user replies Yes, the Save function is called. If No, the document is
marked as unmodified and the function succeeds. If Cancel, the function fails.

wxDocument::RemoveView

virtual bool RemoveView (wxView* view)

Removes the view from the document's list of views, and calls OnChangedViewList.

wxDocument::Save

virtual bool Save()

Saves the document by calling OnSaveDocument if there is an associated filename, or
SaveAs if there is no filename.

wxDocument::SaveAs

virtual bool SaveAs()

Prompts the user for a file to save to, and then calls OnSaveDocument.

450

CHAPTER7

wxDocument::SaveObject

virtual ostream& SaveObject (ostream& stream)
virtual wxOutputStream& SaveObject (wxOutputStream& stream)

Override this function and call it from your own SaveObject before streaming your own
data. SaveObiject is called by the framework automatically when the document contents
need to be saved.

Note that only one of these forms exists, depending on how wxWidgets was configured.

wxDocument::SetCommandProcessor

virtual void SetCommandProcessor (wxCommandProcessor * processor)

Sets the command processor to be used for this document. The document will then be
responsible for its deletion. Normally you should not call this; override
OnCreateCommandProcessor instead.

See wxCommandProcessor (p. 189).

wxDocument::SetDocumentName

void SetDocumentName (const wxString& name)

Sets the document type name for this document. See the comment for
documentTypeName (p. 460).

wxDocument::SetDocumentTemplate

void SetDocumentTemplate (wxDocTemplate* templ)

Sets the pointer to the template that created the document. Should only be called by the
framework.

wxDocument::SetFilename
void SetFilename (const wxString& filename, bool notifyViews = false)
Sets the filename for this document. Usually called by the framework.

If notifyViews is true, wxView::OnChangeFilename is called for all views.

wxDocument::SetTitle

void SetTitle (const wxString& title)

Sets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.

451

CHAPTER7

wxDocument::UpdateAllViews

void UpdateAllViews (wxView* sender = NULL, wxObject* hint = NULL)
Updates all views. If sender is non-NULL, does not update this view.

hint represents optional information to allow a view to optimize its update.

wxDraglmage

This class is used when you wish to drag an object on the screen, and a simple cursor is
not enough.

On Windows, the WIN32 API is used to do achieve smooth dragging. On other
platforms, wxGenericDragimage is used. Applications may also prefer to use
wxGenericDraglmage on Windows, too.

wxPython note: wxPython uses wxGenericDraglmage on all platforms, but uses the
wxDraglmage name.

To use this class, when you wish to start dragging an image, create a wxDraglmage
object and store it somewhere you can access it as the drag progresses. Call BeginDrag
to start, and EndDrag to stop the drag. To move the image, initially call Show and then
Move. If you wish to update the screen contents during the drag (for example, highlight
an item as in the dragimag sample), first call Hide, update the screen, call Move, and
then call Show.

You can drag within one window, or you can use full-screen dragging either across the
whole screen, or just restricted to one area of the screen to save resources. If you want
the user to drag between two windows, then you will need to use full-screen dragging.

If you wish to draw the image yourself, use wxGenericDraglmage and override
wxDraglmage::DoDrawlmage (p. 469) and wxDraglmage::GetlmageRect (p. 469).

Please see samples/dragimag for an example.
Derived from

wxObject (p. 1027)

Include files

<wx/dragimag.h>
<wx/generic/dragimgg.h>

wxDraglmage::wxDraglmage

wxDraglmage ()

Default constructor.

452

CHAPTER7

wxDraglmage (const wxBitmap& image, const wxCursor& cursor = wxNullCursor,
const wxPoint& cursorHotspot = wxPoint(0, 0))

Constructs a drag image from a bitmap and optional cursor.

wxDraglmage (const wxlcon& image, const wxCursor& cursor = wxNullCursor,
const wxPoint& cursorHotspot = wxPoint(0, 0))

Constructs a drag image from an icon and optional cursor.
wxPython note: This constructor is called wxDraglcon in wxPython.

wxDraglmage (const wxString& text, const wxCursor& cursor = wxNullCursor, const
wxPoint& cursorHotspot = wxPoint(0, 0))

Constructs a drag image from a text string and optional cursor.

wxPython note: This constructor is called wxDragString in wxPython.

wxDraglmage (const wxTreeCtrl& treeCtrl, wxTreeltemld& id)

Constructs a drag image from the text in the given tree control item, and optional cursor.
wxPython note: This constructor is called wxDragTreeltem in wxPython.

wxDraglmage (const wxListCtrl& treeCtrl, long id)

Constructs a drag image from the text in the given tree control item, and optional cursor.
wxPython note: This constructor is called wxDragListltem in wxPython.

wxDraglmage (const wxCursor& cursor = wxNullCursor, const wxPoint&
cursorHotspot = wxPoint(0, 0))

Constructs a drag image an optional cursor. This constructor is only available for
wxGenericDragimage, and can be used when the application supplies
wxDraglmage::DoDrawlmage (p. 469) and wxDraglmage::GetimageRect (p. 469).

Parameters
image
Icon or bitmap to be used as the drag image. The bitmap can have a mask.
text
Text used to construct a drag image.
cursor
Optional cursor to combine with the image.
hotspot

This parameter is deprecated.

453

CHAPTER7

treeCtrl
Tree control for constructing a tree drag image.
listCtrl

List control for constructing a list drag image.

Tree or list control item id.

wxDraglmage::BeginDrag

bool BeginDrag (const wxPoint& hotspot, wxWindow* window, bool fullScreen =
false, wxRect* rect = NULL)

Start dragging the image, in a window or full screen.

bool BeginDrag (const wxPoint& hotspot, wxWindow* window, wxWindow*
boundingWindow)

Start dragging the image, using the first window to capture the mouse and the second to
specify the bounding area. This form is equivalent to using the first form, but more
convenient than working out the bounding rectangle explicitly.

You need to then call wxDragimage::Show (p. 470) and wxDragimage::Move (p. 470) to
show the image on the screen.

Call wxDraglmage::EndDrag (p. 469) when the drag has finished.
Note that this call automatically calls CaptureMouse.
Parameters
hotspot
The location of the drag position relative to the upper-left corner of the image.
window

The window that captures the mouse, and within which the dragging is limited
unless fullScreen is true.

boundingWindow
In the second form of the function, specifies the area within which the drag occurs.
fullScreen

If true, specifies that the drag will be visible over the full screen, or over as much of
the screen as is specified by rect. Note that the mouse will still be captured in
window.

rect

454

CHAPTER7

If non-NULL, specifies the rectangle (in screen coordinates) that bounds the
dragging operation. Specifying this can make the operation more efficient by
cutting down on the area under consideration, and it can also make a visual

difference since the drag is clipped to this area.

wxDraglmage::DoDrawlmage

virtual bool DoDrawlmage (wxDC& dc, const wxPoint& pos)
Draws the image on the device context with top-left corner at the given position.

This function is only available with wxGenericDraglmage, to allow applications to draw
their own image instead of using an actual bitmap. If you override this function, you must
also override wxDraglmage::GetimageRect (p. 469).

wxDraglmage::EndDrag

bool EndDrag ()
Call this when the drag has finished.

Note that this call automatically calls ReleaseMouse.

wxDraglmage::GetimageRect

virtual wxRect GetlmageRect (const wxPoint& pos) const

Returns the rectangle enclosing the image, assuming that the image is drawn with its
top-left corner at the given point.

This function is available in wxGenericDragimage only, and may be overridden (together
with wxDraglmage::DoDrawlmage (p. 469)) to provide a virtual drawing capability.

wxDraglmage::Hide
bool Hide()

Hides the image. You may wish to call this before updating the window contents
(perhaps highlighting an item). Then call wxDragimage::Move (p. 470) and
wxDraglmage::Show (p. 470).

wxDraglmage::Move

bool Move (const wxPoint& pt)

Call this to move the image to a new position. The image will only be shown if
wxDraglmage::Show (p. 470) has been called previously (for example at the start of the
drag).

pt is the position in client coordinates (relative to the window specified in BeginDrag).

455

CHAPTER7

You can move the image either when the image is hidden or shown, but in general
dragging will be smoother if you move the image when it is shown.

wxDraglmage::Show

bool Show ()

Shows the image. Call this at least once when dragging.

wxDraglmage::UpdateBackingFromWindow

bool UpdateBackingFromWindow (wxDC& windowDC, wxMemoryDC& destDC,
const wxRect& sourceRect, const wxRect& destRect) const

Override this if you wish to draw the window contents to the backing bitmap yourself.
This can be desirable if you wish to avoid flicker by not having to redraw the updated
window itself just before dragging, which can cause a flicker just as the drag starts.
Instead, paint the drag image's backing bitmap to show the appropriate graphic minus
the objects to be dragged, and leave the window itself to be updated by the drag image.
This can provide eerily smooth, flicker-free drag behaviour.

The default implementation copies the window contents to the backing bitmap. A new
implementation will normally copy information from another source, such as from its own
backing bitmap if it has one, or directly from internal data structures.

This function is available in wxGenericDraglmage only.

wxDropFilesEvent

This class is used for drop files events, that is, when files have been dropped onto the
window. This functionality is currently only available under Windows. The window must
have previously been enabled for dropping by calling wxWindow::DragAcceptFiles (p.
1520).

Important note: this is a separate implementation to the more general drag and drop
implementation documented here (p. 1865). It uses the older, Windows message-based
approach of dropping files.

Derived from

wxEvent (p. 487)
wxObject (p. 1027)

Include files
<wx/event.h>
Event table macros

To process a drop files event, use these event handler macros to direct input to a
member function that takes a wxDropFilesEvent argument.

456

CHAPTER7

EVT_DROP_FILES(func) Process a wxEVT_DROP_FILES event.

See also
Event handling overview (p. 1795)

wxDropFilesEvent::wxDropFilesEvent

wxDropFilesEvent (WXTYPE id = 0, int noFiles = 0, wxString* files = NULL)

Constructor.

wxDropFilesEvent::m_files
wxString* m_files

An array of filenames.
wxDropFilesEvent::m_noFiles

int m_noFiles

The number of files dropped.
wxDropFilesEvent::m_pos

wxPoint m_pos

The point at which the drop took place.
wxDropFilesEvent::GetFiles
wxString* GetFiles () const

Returns an array of filenames.
wxDropFilesEvent::GetNumberOfFiles
int GetNumberOfFiles () const
Returns the number of files dropped.
wxDropFilesEvent::GetPosition

wxPoint GetPosition () const
Returns the position at which the files were dropped.

Returns an array of filenames.

457

CHAPTER7

wxDropSource

This class represents a source for a drag and drop operation.

See Drag and drop overview (p. 1865) and wxDataObject overview (p. 1866) for more
information.

Derived from
None
Include files
<wx/dnd.h>
Types

wxDragResult is defined as follows:

enum wxDragResult

wxDragError, // error prevented the d&d oper ation from
completing
wxDragNone, // drag target didn't accept th e data
wxDragCopy, /I the data was successfully co pied
wxDragMove, // the data was successfully mo ved (MSW only)
wxDragLink, // operation is a drag-link
wxDragCancel // the operation was cancelled by user (not an
error)
3
See also

wxDropTarget (p. 475), wxTextDropTarget (p. 1375), wxFileDropTarget (p. 519)

wxDropSource::wxDropSource

wxDropSource (wxWindow* win = NULL,const wxlconOrCursor& iconCopy =
wxNulllconOrCursor, const wxlconOrCursor& iconMove = wxNulllconOrCursor, const
wxlconOrCursor& iconNone = wxNulllconOrCursor)

wxDropSource (wxDataObject& data, wxWindow* win = NULL,const
wxlconOrCursor& iconCopy = wxNulllconOrCursor, const wxlconOrCursor&
iconMove = wxNulllconOrCursor, const wxlconOrCursor& iconNone =
wxNulllconOrCursor)

The constructors for wxDataObject.
If you use the constructor without data parameter you must call SetData (p. 474) later.

Note that the exact type of iconCopy and subsequent parameters differs between
wxMSW and wxGTK: these are cursors under Windows but icons for GTK. You should
use the macro wxDROP_ICON (p. 1658) in portable programs instead of directly using

458

CHAPTER7

either of these types.
Parameters
win
The window which initiates the drag and drop operation.
iconCopy
The icon or cursor used for feedback for copy operation.
iconMove
The icon or cursor used for feedback for move operation.
iconNone
The icon or cursor used for feedback when operation can't be done.

win is the window which initiates the drag and drop operation.

wxDropSource::~wxDropSource

virtual ~wxDropSource ()

wxDropSource::SetData

void SetData(wxDataObject& data)

Sets the data wxDataObject (p. 242) associated with the drop source. This will not
delete any previously associated data.

wxDropSource::DoDragDrop

virtual wxDragResult DoDragDrop (int flags = wxDr ag_CopyOnl y)

Do it (call this in response to a mouse button press, for example). This starts the drag-
and-drop operation which will terminate when the user releases the mouse.

Parameters
flags

If wxDrag_AllowMove s included in the flags, data may be moved and not only
copied (default). If wxDrag_DefaultMove is specified (which includes the
previous flag), this is even the default operation

Return value

Returns the operation requested by the user, may be wxDragCopy , wxDragMove,
wxDragLink , wxDragCancel or wxDragNone if an error occurred.

459

CHAPTER7

wxDropSource::GetDataObject

wxDataObject * GetDataObject ()

Returns the wxDataObject object that has been assigned previously.

wxDropSource::GiveFeedback

virtual bool GiveFeedback (wxDragResult effect)

Overridable: you may give some custom Ul feedback during the drag and drop operation
in this function. It is called on each mouse move, so your implementation must not be
too slow.

Parameters
effect

The effect to implement. One of wxDragCopy , wxDragMove , wxDragLink and
wxDragNone .

scrolling
true if the window is scrolling. MSW only.
Return value

Return false if you want default feedback, or true if you implement your own feedback.
The return values is ignored under GTK.

wxDropSource::SetCursor

void SetCursor (wxDragResult res, const wxCursor& cursor)
Set the icon to use for a certain drag result.
Parameters
res
The drag result to set the icon for.
cursor

The ion to show when this drag result occurs.

wxDropTarget

This class represents a target for a drag and drop operation. A wxDataObject (p.
242)can be associated with it and by default, this object will be filled with the data from
the drag source, if the data formats supported by the data object match the drag source
data format.

460

CHAPTER7

There are various virtual handler functions defined in this class which may be overridden
to give visual feedback or react in a more fine-tuned way, e.g. by not accepting data on
the whole window area, but only a small portion of it. The normal sequence of calls
isOnEnter (p. 477), possibly many times OnDragOver (p. 477),0nDrop (p. 476) and
finally OnData (p. 476).

See Drag and drop overview (p. 1865) and wxDataObject overview (p. 1866)for more
information.

Derived from
None
Include files
<wx/dnd.h>
Types

wxDragResult is defined as follows:

enum wxDragResult

wxDragError, // error prevented the d&d oper ation from
completing
wxDragNone, // drag target didn't accept th e data
wxDragCopy, /I the data was successfully co pied
wxDragMove, /I the data was successfully mo ved (MSW only)
wxDragLink, // operation is a drag-link
wxDragCancel // the operation was cancelled by user (not an
error)
h
See also

wxDropSource (p. 472), wxTextDropTarget (p. 1375), wxFileDropTarget (p.
519),wxDataFormat (p. 237), wxDataObject (p. 242)

wxDropTarget::wxDropTarget

wxDropTarget (wxDataObject* data = NULL)

Constructor. data is the data to be associated with the drop target.
wxDropTarget::~wxDropTarget

~wxDropTarget ()

Destructor. Deletes the associated data object, if any.
wxDropTarget::GetData

virtual void GetData()

461

CHAPTER7

This method may only be called from within OnData (p. 476). By default, this method
copies the data from the drop source to the wxDataObject (p. 242) associated with this
drop target, calling its wxDataObject::SetData (p. 246) method.

wxDropTarget::OnData

virtual wxDragResult OnData(wxCoord x, wxCoord y, wxDragResult def)

Called after OnDrop (p. 476) returns true. By default this will usually GetData (p. 476)
and will return the suggested default value def.

wxDropTarget::OnDrop

virtual bool OnDrop (wxCoord X, wxCoord)

Called when the user drops a data object on the target. Return false to veto the
operation.

Parameters
X

The x coordinate of the mouse.

The y coordinate of the mouse.
Return value

Return true to accept the data, false to veto the operation.

wxDropTarget::OnEnter

virtual wxDragResult OnEnter (wxCoord x, wxCoord y, wxDragResult def)

Called when the mouse enters the drop target. By default, this calls OnDragOver (p.
477).

Parameters
X

The x coordinate of the mouse.

The y coordinate of the mouse.
def
Suggested default for return value. Determined by SHIFT or CONTROL key states.

Return value

462

CHAPTER7

Returns the desired operation or wxDragNone . This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.

wxDropTarget::OnDragOver

virtual wxDragResult OnDragOver (wxCoord X, wxCoord Yy, wxDragResult def)

Called when the mouse is being dragged over the drop target. By default, this calls
functions return the suggested return value def.

Parameters
X

The x coordinate of the mouse.

The y coordinate of the mouse.
def

Suggested value for return value. Determined by SHIFT or CONTROL key states.
Return value

Returns the desired operation or wxDragNone . This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.

wxDropTarget::OnLeave

virtual void OnLeave ()

Called when the mouse leaves the drop target.

wxDropTarget::SetDataObject

void SetDataObject (wxDataObject* data)

Sets the data wxDataObject (p. 242) associated with the drop target and deletes any
previously associated data object.

wxDynamicLibrary

wxDynamicLibrary is a class representing dynamically loadable library (Windows DLL,
shared library under Unix etc.). Just create an object of this class to load a library and
don't worry about unloading it -- it will be done in the objects destructor automatically.

Derived from

No base class.

463

CHAPTER7

Include files
<wx/dynlib.h>
(only available if wxUSE_DYNLIB_CLASSs setto 1)

wxDynamicLibrary::.wxDynamicLibrary

wxDynamicLibrary ()
wxDynamicLibrary (const wxString& name, int flags = wxDL_DEFAULT)

Constructor. Second form calls Load (p. 481).

wxDynamicLibrary::CanonicalizeName

static wxString CanonicalizeName (const wxString& name,
wxDynamicLibraryCategory cat = wxDL_LIBRARY)

Returns the platform-specific full name for the library called name. E.g. it adds a ".dll"
extension under Windows and "lib" prefix and ".s0" ,".sl" or maybe ".dylib"
extension under Unix.

The possible values for cat are:

wxDL_LIBRARY normal library
wxDL_MODULE a loadable module or plugin
See also

CanonicalizePluginName (p. 479)

wxDynamicLibrary::CanonicalizePluginName

static wxString CanonicalizePluginName (const wxString& name,
wxPluginCategory cat =wxDL_PLUGIN_GUI)

This function does the same thing as CanonicalizeName (p. 479) but for wxWidgets
plugins. The only difference is that compiler and version information are added to the
name to ensure that the plugin which is going to be loaded will be compatible with the
main program.

The possible values for cat are:
wxDL_PLUGIN_GUI plugin which uses GUI classes (default)

wxDL_PLUGIN_BASE plugin which only uses wxBase

wxDynamicLibrary::Detach

464

CHAPTER7

wxDIIType Detach ()

Detaches this object from its library handle, i.e. the object will not unload the library any
longer in its destructor but it is now the callers responsibility to do this using Unload (p.
481).

wxDynamicLibrary::GetSymbol

void * GetSymbol (const wxString& name) const

Returns pointer to symbol name in the library or NULL if the library contains no such
symbol.

See also

wxDYNLIB_FUNCTION (p. 1663)

wxDynamicLibrary::GetSymbolAorwW

void * GetSymbolAorW (const wxString& name) const

This function is available only under Windows as it is only useful when dynamically
loading symbols from standard Windows DLLs. Such functions have either ‘A" (in ANSI
build) or 'W' (in Unicode, or wide character build) suffix if they take string parameters.
Using this function you can use just the base name of the function and the correct suffix
is appende automatically depending on the current build. Otherwise, this method is
identical to GetSymbol (p. 479).

wxDynamicLibrary::GetProgramHandle

static wxDlIType GetProgramHandle ()

Return a valid handle for the main program itself or NULL if symbols from the main
program can't be loaded on this platform.

wxDynamicLibrary::HasSymbol

bool HasSymbol (const wxString& name) const

Returns true if the symbol with the given nhame is present in the dynamic library, false
otherwise. Unlike GetSymbol (p. 479), this function doesn't log an error message if the
symbol is not found.

This function is new since wxWidgets version 2.5.4

wxDynamicLibrary::IsLoaded

bool IsLoaded () const

Returns true if the library was successfully loaded, false otherwise.

465

CHAPTER7

wxDynamicLibrary::ListLoaded

static wxDynamicLibraryDetailsArray ListLoaded ()

This static method returns an array (p. 57) containing the details of all modules loaded
into the address space of the current project, the array elements are object of
wxDynamicLibraryDetails class. The array will be empty if an error occurred.

This method is currently implemented only under Win32 and Linux and is useful mostly
for diagnostics purposes.

wxDynamicLibrary::Load

bool Load (const wxString& name, int flags = wxDL_DEFAULT)

Loads DLL with the given name into memory. The flags argument can be a combination
of the following bits:

wxDL_LAZY equivalent of RTLD_LAZY under Unix, ignored
elsewhere

wxDL_NOW equivalent of RTLD_NOW under Unix, ignored
elsewhere

wxDL_GLOBAL equivalent of RTLD_GLOBAL under Unix,

ignored elsewhere

wxDL_VERBATIM don't try to append the appropriate extension to
the library name (this is done by default).

wxDL_DEFAULT default flags, same as wxDL_NOW currently

Returns true if the library was successfully loaded, false otherwise.

wxDynamicLibrary::Unload

void Unload ()
static void Unload (wxDIlIType handle)

Unloads the library from memory. wxDynamicLibrary object automatically calls this
method from its destructor if it had been successfully loaded.

The second version is only used if you need to keep the library in memory during a
longer period of time than the scope of the wxDynamicLibrary object. In this case you
may call Detach (p. 479) and store the handle somewhere and call this static method
later to unload it.

wxDynamicLibraryDetails

This class is used for the objects returned by wxDynamicLibrary::ListLoaded (p. 480)
method and contains the information about a single module loaded into the address

466

CHAPTER7

space of the current process. A module in this context may be either a dynamic library or
the main program itself.

Derived from
No base class.
Include files
<wx/dynlib.h>

(only available if wxUSE_DYNLIB_CLASSs set to 1)

wxDynamicLibraryDetails::GetName

wxString GetName () const

Returns the base name of this module, e.g. kernel32.dlI or libc-2.3.2.s0

wxDynamicLibraryDetails::GetPath

wxString GetPath () const

Returns the full path of this module if available, e.qg.
c:\windows\system32\kernel32.dll or /lib/libc-2.3.2.s0

wxDynamicLibraryDetails::GetAddress

bool GetAddress (void ** addr, size_t *len) const
Retrieves the load address and the size of this module.
Parameters
addr
the pointer to the location to return load address in, may beNULL
len
pointer to the location to return the size of this module in memory in, may be NULL
Return value

true if the load address and module size were retrieved, false if this information is not
available.

wxDynamicLibraryDetails::GetVersion

wxString GetVersion () const

467

CHAPTER7

Returns the version of this module, e.g. 5.2.3790.0 or 2.3.2 . The returned string is
empty if the version information is not available.

wxEncodingConverter

This class is capable of converting strings between two 8-bit encodings/charsets. It can
also convert from/to Unicode (but only if you compiled wxWidgets with
WXUSE_WCHAR_T set to 1). Only a limited subset of encodings is supported by
wxEncodingConverter:wxFONTENCODING_IS0O8859 1..15,
WXFONTENCODING_CP1250..1257 and wxFONTENCODING_KOI8

Note

Please use wxMBConv classes (p. 1777) instead if possible. wxCSConv (p. 229) has
much better support for various encodings than wxEncodingConverter.
wxEncodingConverter is useful only if you rely on wxCONVERT_SUBSTITUTEode of
operation (see Init (p. 483)).

Derived from
wxObject (p. 1027)
Include files
<wx/encconv.h>
See also

wxFontMapper (p. 578), wxMBConv (p. 923), Writing non-English applications (p. 1781)

wxEncodingConverter::wxEncodingConverter

wxEncodingConverter ()

Constructor.

wxEncodingConverter::Init

bool Init(wxFontEncoding input_enc, wxFontEncoding output_enc, int method =
WXCONVERT_STRICT)

Initialize conversion. Both output or input encoding may be
WXFONTENCODING_UNICODE, but only if wxUSE_ENCODING is set to 1. All
subsequent calls to Convert() (p. 484) will interpret its argument as a string in input_enc
encoding and will output string in output_enc encoding. You must call this method before
calling Convert. You may call it more than once in order to switch to another
conversion.Method affects behaviour of Convert() in case input character cannot be
converted because it does not exist in output encoding:

WXCONVERT_STRICT follow behaviour of GNU Recode - just copy

468

CHAPTER7

unconvertible characters to output and don't
change them (its integer value will stay the
same)

wXCONVERT_SUBSTITUTE try some (lossy) substitutions - e.g. replace
unconvertible latin capitals with acute by
ordinary capitals, replace en-dash or em-dash
by '-' etc.

Both modes guarantee that output string will have same length as input string.
Return value

false if given conversion is impossible, true otherwise (conversion may be impossible
either if you try to convert to Unicode with non-Unicode build of wxWidgets or if input or
output encoding is not supported.)

wxEncodingConverter::CanConvert

static bool CanConvert (wxFontEncoding encln, wxFontEncoding encOut)

Return true if (any text in) multibyte encoding encln can be converted to another one
(encOut) losslessly.

Do not call this method with wxFONTENCODING_UNICOLHS either parameter, it doesn't
make sense (always works in one sense and always depends on the text to convert in
the other).

wxEncodingConverter::Convert

bool Convert (const char* input, char* output) const

bool Convert (const wchar_t* input, wchar_t* output) const
bool Convert (const char* input, wchar_t* output) const
bool Convert (const wchar_t* input, char* output) const

Convert input string according to settings passed tolnit (p. 483) and writes the result to
output.

bool Convert (char* str) const
bool Convert (wchar_t* str) const

Convert input string according to settings passed tolnit (p. 483) in-place, i.e. write the
result to the same memory area.

All of the versions above return true if the conversion was lossless andfalse if at least
one of the characters couldn't be converted and was replaced with '?* in the output.
Note that if WxCONVERT_SUBSTITUTRas passed to Init (p. 483), substitution is
considered lossless operation.

469

CHAPTER7

wxString Convert (const wxString& input) const
Convert wxString and return new wxString object.
Notes

You must call Init (p. 483) before using this method!

wchar_t versions of the method are not available if wxWidgets was compiled with
wxUSE_WCHAR_Sget to O.

wxEncodingConverter::GetPlatformEquivalents

static wxFontEncodingArray GetPlatformEquivalents (wxFontEncoding enc, int
platform = wxPLATFORM_CURRENT)

Return equivalents for given font that are used under given platform. Supported
platforms:

* WXPLATFORM_UNIX

* WXPLATFORM_WINDOWS
* WXPLATFORM_OS2

* WXPLATFORM_MAC

* WXPLATFORM_CURRENT

WXPLATFORM_CURRENT means the platform this binary was compiled for.

Examples:
current platform enc returned value
unix CP1250 {ISO8859_2}
unix ISO8859_2 {ISO8859_2}
windows 1SO8859 2 {CP1250}
unix CP1252 {ISO8859 1,ISO8859 15}

Equivalence is defined in terms of convertibility: two encodings are equivalent if you can
convert text between then without losing information (it may - and will - happen that you
lose special chars like quotation marks or em-dashes but you shouldn't lose any
diacritics and language-specific characters when converting between equivalent
encodings).

Remember that this function does NOT check for presence of fonts in system. It only
tells you what are most suitable encodings. (It usually returns only one encoding.)

Notes

* Note that argument enc itself may be present in the returned array, so that you
can, as a side-effect, detect whether the encoding is native for this platform or
not.

470

CHAPTER7

* Convert (p. 484) is not limited to converting between equivalent encodings, it
can convert between two arbitrary encodings.

« If encis present in the returned array, then it is always the first item of it.

» Please note that the returned array may contain no items at all.

wxEncodingConverter::GetAllEquivalents

static wxFontEncodingArray GetAllEquivalents (wxFontEncoding enc)

Similar to GetPlatformEquivalents (p. 485), but this one will return ALL equivalent
encodings, regardless of the platform, and including itself.

This platform's encodings are before others in the array. And again, if enc is in the array,
it is the very first item in it.

WXEraseEkEvent

An erase event is sent when a window's background needs to be repainted.

On some platforms, such as GTK+, this event is simulated (simply generated just before
the paint event) and may cause flicker. It is therefore recommended that you set the text
background colour explicitly in order to prevent flicker. The default background colour
under GTK+ is grey.

To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table
definition.

You must call wxEraseEvent::GetDC and use the returned device context if it is non-
NULL. If it is NULL, create your own temporary wxClientDC object.

Derived from

wxEvent (p. 487)
wxObiject (p. 1027)

Include files
<wx/event.h>
Event table macros

To process an erase event, use this event handler macro to direct input to a member
function that takes a wxEraseEvent argument.

EVT_ERASE_BACKGROUND(func) Process a wxEVT_ERASE_BACKGROUND
event.

Remarks
Use the device context returned by GetDC (p. 487) to draw on, don't create a wxPaintDC
in the event handler.

471

CHAPTER7

See also

Event handling overview (p. 1795)

wWXxEraseEvent::wxEraseEvent

wxEraseEvent (int id = 0, wxDC* dc = NULL)

Constructor.

wxEraseEvent::GetDC

wxDC* GetDC() const

Returns the device context associated with the erase event to draw on.

wWXxEvent

An event is a structure holding information about an event passed to a callback or
member function. wxEvent used to be a multipurpose event object, and is an abstract
base class for other event classes (see below).

For more information about events, see the Event handling overview (p. 1795).

wxPerl note: In wxPerl custom event classes should be derived fromWx::PIEvent and
Wx::PICommandEvent .

Derived from
wxObiject (p. 1027)
Include files
<wx/event.h>

See also

wxCommandEvent (p. 184), wxMouseEvent (p. 999)

wxEvent::wxEvent

wxEvent (int id = 0, wxEventType eventType = wxEVT_NULL)

Constructor. Should not need to be used directly by an application.

wxEvent::m_propagationLevel

472

CHAPTER7

int m_propagationLevel

Indicates how many levels the event can propagate. This member is protected and
should typically only be set in the constructors of the derived classes. It may be
temporarily changed by StopPropagation (p. 490) and ResumePropagation (p. 489) and
tested with ShouldPropagate (p. 490).

The initial value is set to either WxXEVENT_PROPAGATE_NORy default) meaning that
the event shouldn't be propagated at all or to wxEVENT_PROPAGATE_MAr command
events) meaning that it should be propagated as much as necessary.

Any positive number means that the event should be propagated but no more than the
given number of times. E.g. the propagation level may be set to 1 to propagate the event
to its parent only, but not to its grandparent.

wxEvent::Clone

virtual wxEvent* Clone () const
Returns a copy of the event.

Any event that is posted to the wxWidgets event system for later action
(viawxEvtHandler::AddPendingEvent (p. 491) orwxPostEvent (p. 1672)) must implement
this method. All wxWidgets events fully implement this method, but any derived events
implemented by the user should also implement this method just in case they (or some
event derived from them) are ever posted.

All wxWidgets events implement a copy constructor, so the easiest way of implementing
the Clone function is to implement a copy constructor for a new event (call it MyEvent)
and then define the Clone function like this:

wxEvent *Clone(void) const { return new MyEvent (*this); }

wxEvent::GetEventObject

wxObject* GetEventObject ()

Returns the object (usually a window) associated with the event, if any.

wxEvent::GetEventType

WXTYPE GetEventType ()

Returns the identifier of the given event type, such as
WXEVENT_TYPE_BUTTON_COMMAND.

wxEvent::Getld

int Getld() const

Returns the identifier associated with this event, such as a button command id.

473

CHAPTER7

wxEvent::GetSkipped

bool GetSkipped () const

Returns true if the event handler should be skipped, false otherwise.

wxEvent::GetTimestamp

long GetTimestamp ()

Gets the timestamp for the event.

wxEvent::IsCommandEvent

bool IsCommandEvent () const

Returns true if the event is or is derived fromwxCommandEvent (p. 184) else it returns
false. Note: Exists only for optimization purposes.

wxEvent::ResumePropagation

void ResumePropagation (int propagationLevel)

Sets the propagation level to the given value (for example returned from an earlier call to
StopPropagation (p. 490)).

wxEvent::SetEventObject

void SetEventObject (wxObject* object)

Sets the originating object.

wxEvent::SetEventType

void SetEventType (WXTYPE typ)

Sets the event type.

wxEvent::Setld

void Setld(int id)

Sets the identifier associated with this event, such as a button command id.
wxEvent::SetTimestamp

void SetTimestamp (long timeStamp)

Sets the timestamp for the event.

474

CHAPTER7

wxEvent::ShouldPropagate

bool ShouldPropagate () const

Test if this event should be propagated or not, i.e. if the propagation level is currently
greater than O.

wxEvent::Skip

void Skip (bool skip = true)

Called by an event handler, it controls whether additional event handlers bound to this
event will be called after the current event handler returns. Skip(false) (the default
behavior) will prevent additional event handlers from being called and control will be
returned to the sender of the event immediately after the current handler has finished.
Skip(true) will cause the event processing system to continue searching for a handler
function for this event.

wxEvent::StopPropagation
int StopPropagation ()
Stop the event from propagating to its parent window.

Returns the old propagation level value which may be later passed to
ResumePropagation (p. 489) to allow propagating the event again.

wxEvtHandler

A class that can handle events from the windowing system. wxWindow (and therefore all
window classes) are derived from this class.

When events are received, wxEvtHandler invokes the method listed in the event table
using itself as the object. When using multiple inheritance it is imperative that the
wxEvtHandler(-derived) class be the first class inherited such that the "this" pointer for
the overall object will be identical to the "this" pointer for the wxEvtHandler portion.

Derived from
wxObject (p. 1027)
Include files
<wx/event.h>

See also

Event handling overview (p. 1795)

475

CHAPTER7

wxEvtHandler::wxEvtHandler

wxEvtHandler ()

Constructor.

wxEvtHandler::~wxEvtHandler

~wxEvtHandler ()

Destructor. If the handler is part of a chain, the destructor will unlink itself and restore the
previous and next handlers so that they point to each other.

wxEvtHandler::AddPendingEvent

void AddPendingEvent (wxEvent& event)
This function posts an event to be processed later.
Parameters
event
Event to add to process queue.
Remarks

The difference between sending an event (using theProcessEvent (p. 495) method) and
posting it is that in the first case the event is processed before the function returns, while
in the second case, the function returns immediately and the event will be processed
sometime later (usually during the next event loop iteration).

A copy of event is made by the function, so the original can be deleted as soon as
function returns (it is common that the original is created on the stack). This requires
that the wxEvent::Clone (p. 488) method be implemented by event so that it can be
duplicated and stored until it gets processed.

This is also the method to call for inter-thread communication---it will post events safely
between different threads which means that this method is thread-safe by using critical
sections where needed. In a multi-threaded program, you often need to inform the main
GUI thread about the status of other working threads and such notification should be
done using this method.

This method automatically wakes up idle handling if the underlying window system is
currently idle and thus would not send any idle events. (Waking up idle handling is done
calling ::.wxWakeUpldle (p. 1625).)

wxEvtHandler::Connect

void Connect (int id, int lastld, wxEventType eventType, wxObjectEventFunction
function, wxObject* userData = NULL, wxEvtHandler* eventSink = NULL)

476

CHAPTER7

void Connect (int id, wxEventType eventType, wxObjectEventFunction function,
wxObject* userData = NULL, wxEvtHandler* eventSink = NULL)

void Connect (WxEventType eventType, wxObjectEventFunction function, wxObject*
userData = NULL, wxEvtHandler* eventSink = NULL)

Connects the given function dynamically with the event handler, id and event type. This
is an alternative to the use of static event tables. See the 'event' or the old 'dynamic’
sample for usage.

Parameters
id

The identifier (or first of the identifier range) to be associated with the event
handler function. For the version not taking this argument, it defaults to wxID_ANY.

lastld

The second part of the identifier range to be associated with the event handler
function.

eventType
The event type to be associated with this event handler.
function

The event handler function. Note that this function should be explicitly converted to
the correct type which can be done using a macro called wxFooHandler for the
handler for any wxFooEvent .

userData
Data to be associated with the event table entry.
eventSink
Object whose member function should be called. If this is NULL,this will be used.

Example

frame->Connect(wxID_EXIT,
wWXEVT_COMMAND_MENU_SELECTED,
wxCommandEventHandler(MyFrame::OnQuit));

wxPerl note: In wxPerl this function takes 4 arguments: id, lastid, type,
method ; if method is undef , the handler is disconnected.

wxEvtHandler::Disconnect

bool Disconnect (wxEventType eventType = wxEVT_NULL, wxObjectEventFunction
function = NULL, wxObject* userData = NULL, wxEvtHandler* eventSink = NULL)

bool Disconnect (int id = wxl D_ANY, wxEventType eventType = wxEVT_NULL,

477

CHAPTER7

wxObjectEventFunction function = NULL, wxObject* userData = NULL,
wxEvtHandler* eventSink = NULL)

bool Disconnect (int id, int lastld = wxl D_ANY, wxEventType eventType =
WXEVT_NULL, wxObjectEventFunction function = NULL, wxObject* userData =
NULL, wxEvtHandler* eventSink = NULL)

Disconnects the given function dynamically from the event handler, using the specified
parameters as search criteria and returning true if a matching function has been found
and removed. This method can only disconnect functions which have been added using
the wxEvtHandler::Connect (p. 492) method. There is no way to disconnect functions
connected using the (static) event tables.

Parameters
id

The identifier (or first of the identifier range) associated with the event handler
function.

lastld
The second part of the identifier range associated with the event handler function.
eventType
The event type associated with this event handler.
function
The event handler function.
userData
Data associated with the event table entry.
eventSink
Object whose member function should be called.

wxPerl note: In wxPerl this function takes 3 arguments: id, lastid, type

wxEvtHandler::GetClientData

void* GetClientData ()
Gets user-supplied client data.
Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members.

See also

478

CHAPTER7

wxEvtHandler::SetClientData (p. 497)

wxEvtHandler::GetClientObject

wxClientData* GetClientObject () const
Get a pointer to the user-supplied client data object.
See also

wxEvtHandler::SetClientObject (p. 497),wxClientData (p. 152)

wxEvtHandler::GetEvtHandlerEnabled

bool GetEvtHandlerEnabled ()
Returns true if the event handler is enabled, false otherwise.
See also

wxEvtHandler::SetEvtHandlerEnabled (p. 497)

wxEvtHandler::GetNextHandler

wxEvtHandler* GetNextHandler ()
Gets the pointer to the next handler in the chain.
See also

wxEvtHandler::SetNextHandler (p. 498), wxEvtHandler::GetPreviousHandler (p. 494),
wxEvtHandler::SetPreviousHandler (p. 498), wxWindow::PushEventHandler (p. 1543),
wxWindow::PopEventHandler (p. 1542)

wxEvtHandler::GetPreviousHandler

wxEvtHandler* GetPreviousHandler ()
Gets the pointer to the previous handler in the chain.
See also

wxEvtHandler::SetPreviousHandler (p. 498), wxEvtHandler::GetNextHandler (p. 494),
wxEvtHandler::SetNextHandler (p. 498), wxWindow::PushEventHandler (p. 1543),
wxWindow::PopEventHandler (p. 1542)

wxEvtHandler::ProcessEvent

virtual bool ProcessEvent (wxEvent& event)

Processes an event, searching event tables and calling zero or more suitable event
handler function(s).

479

CHAPTER7

Parameters
event

Event to process.
Return value

true if a suitable event handler function was found and executed, and the function did not
call wxEvent::Skip (p. 490).

Remarks

Normally, your application would not call this function: it is called in the wxWidgets
implementation to dispatch incoming user interface events to the framework (and
application).

However, you might need to call it if implementing new functionality (such as a new
control) where you define new event types, as opposed to allowing the user to override
virtual functions.

An instance where you might actually override the ProcessEvent function is where you
want to direct event processing to event handlers not normally noticed by wxWidgets.
For example, in the document/view architecture, documents and views are potential
event handlers. When an event reaches a frame, ProcessEvent will need to be called
on the associated document and view in case event handler functions are associated
with these objects. The property classes library (wxProperty) also overrides
ProcessEvent for similar reasons.

The normal order of event table searching is as follows:

1. If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled (p.
497)) the function skips to step (6).

2. If the object is a wxWindow, ProcessEvent is recursively called on the window's
wxValidator (p. 1482). If this returns true, the function exits.

3. SearchEventTable is called for this event handler. If this fails, the base class
table is tried, and so on until no more tables exist or an appropriate function was
found, in which case the function exits.

4. The search is applied down the entire chain of event handlers (usually the chain
has a length of one). If this succeeds, the function exits.

5. If the object is a wxWindow and the event is a wxCommandEvent,
ProcessEvent is recursively applied to the parent window's event handler. If
this returns true, the function exits.

6. Finally, ProcessEvent is called on the wxApp object.
See also

wxEvtHandler::SearchEventTable (p. 496)

480

CHAPTER7

wxEvtHandler::SearchEventTable

virtual bool SearchEventTable (wxEventTable& table, wxEvent& event)

Searches the event table, executing an event handler function if an appropriate one is
found.

Parameters
table
Event table to be searched.
event
Event to be matched against an event table entry.
Return value

true if a suitable event handler function was found and executed, and the function did not
call wxEvent::Skip (p. 490).

Remarks

This function looks through the object's event table and tries to find an entry that will
match the event.

An entry will match if:
1. The event type matches, and

2. the identifier or identifier range matches, or the event table entry's identifier is
zero.

If a suitable function is called but calls wxEvent::Skip (p. 490), this function will fail, and
searching will continue.

See also

wxEvtHandler::ProcessEvent (p. 495)

wxEvtHandler::SetClientData

void SetClientData (void* data)
Sets user-supplied client data.
Parameters
data
Data to be associated with the event handler.

Remarks

481

CHAPTER7

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members. You must not call this
method andSetClientObject (p. 497) on the same class - only one of them.

See also

wxEvtHandler::GetClientData (p. 493)

wxEvtHandler::SetClientObject

void SetClientObject (wxClientData* data)
Set the client data object. Any previous object will be deleted.
See also

wxEvtHandler::GetClientObject (p. 494),wxClientData (p. 152)

wxEvtHandler::SetEvtHandlerEnabled

void SetEvtHandlerEnabled (bool enabled)
Enables or disables the event handler.
Parameters
enabled
true if the event handler is to be enabled, false if it is to be disabled.
Remarks

You can use this function to avoid having to remove the event handler from the chain, for
example when implementing a dialog editor and changing from edit to test mode.

See also

wxEvtHandler::GetEvtHandlerEnabled (p. 494)

wxEvtHandler::SetNextHandler

void SetNextHandler (wxEvtHandler* handler)
Sets the pointer to the next handler.
Parameters
handler

Event handler to be set as the next handler.
See also

wxEvtHandler::GetNextHandler (p. 494), wxEvtHandler::SetPreviousHandler (p. 498),

482

CHAPTER7

wxEvtHandler::GetPreviousHandler (p. 494), wxWindow::PushEventHandler (p. 1543),
wxWindow::PopEventHandler (p. 1542)

wxEvtHandler::SetPreviousHandler

void SetPreviousHandler (wxEvtHandler* handler)
Sets the pointer to the previous handler.
Parameters
handler

Event handler to be set as the previous handler.
See also

wxEvtHandler::GetPreviousHandler (p. 494), wxEvtHandler::SetNextHandler (p. 498),
wxEvtHandler::GetNextHandler (p. 494), wxWindow::PushEventHandler (p. 1543),
wxWindow::PopEventHandler (p. 1542)

wxFFile

wxFFile implements buffered file I/O. This is a very small class designed to minimize the
overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers. It
wraps inside it a FILE * handle used by standard C 10 library (also known as stdio).

Derived from

None.

Include files

<wx/ffile.h>

wxFromStart Count offset from the start of the file

wxFromCurrent Count offset from the current position of the file
pointer

wxFromEnd Count offset from the end of the file
(backwards)

wxFFile::wxFFile

wxFFile ()

Default constructor.

483

CHAPTER7

wxFFile (const char* filename, const char* mode = "r")

Opens a file with the given mode. As there is no way to return whether the operation was
successful or not from the constructor you should test the return value of IsOpened (p.
501) to check that it didn't fail.

wxFFile (FILE* fp)
Opens a file with the given file pointer, which has already been opened.
Parameters
filename
The filename.
mode

The mode in which to open the file using standard C strings. Note that you should
use "b" flag if you use binary files under Windows or the results might be
unexpected due to automatic newline conversion done for the text files.

fp
An existing file descriptor, such as stderr.

wxFFile::~wxFFile

~wxFFile ()
Destructor will close the file.

NB: it is not virtual so you should not derive from wxFFile!

wxFFile::Attach

void Attach (FILE* fp)
Attaches an existing file pointer to the wxFFile object.

The descriptor should be already opened and it will be closed by wxFFile object.

wxFFile::Close

bool Close()

Closes the file and returns true on success.

wxFFile::Detach

void Detach ()

Get back a file pointer from wxFFile object -- the caller is responsible for closing the file if

484

CHAPTER7

this descriptor is opened. IsOpened() (p. 501) will return false after call to Detach().

wxFFile:fp
FILE * fp() const

Returns the file pointer associated with the file.

wxFFile::Eof

bool Eof() const
Returns true if the an attempt has been made to read pastthe end of the file.

Note that the behaviour of the file descriptor based classwxFile (p. 506) is different as
wxFile::Eof (p. 509)will return true here as soon as the last byte of the file has been
read.

Also note that this method may only be called for opened files and may crash if the file is
not opened.

See also

IsOpened (p. 501)

wxFFile::Error

Returns true if an error has occurred on this file, similar to the standardferror()
function.

Please note that this method may only be called for opened files and may crash if the file
is not opened.

See also

IsOpened (p. 501)

wxFFile::Flush

bool Flush ()

Flushes the file and returns true on success.

wxFFile::GetKind

wxFileKind GetKind () const

Returns the type of the file. Possible return values are:
enum wxFileKind

{
WXFILE_KIND_UNKNOWN,
WXFILE_KIND_DISK, // afile supporting seekin g to arbitrary

485

CHAPTER7

offsets
WXFILE_KIND_TERMINAL, // a tty
wxFILE_KIND_PIPE // a pipe

J§

wxFFile::IsOpened

bool I1sOpened () const

Returns true if the file is opened. Most of the methods of this class may only be used
for an opened file.

wxFFile::Length

wxFileOffset Length () const

Returns the length of the file.

wxFFile::Open
bool Open(const char* filename, const char* mode = "r")
Opens the file, returning true if successful.
Parameters
filename
The filename.
mode

The mode in which to open the file.

wxFFile::Read

size_t Read(void* buffer, size_t count)
Reads the specified number of bytes into a buffer, returning the actual number read.
Parameters
buffer
A buffer to receive the data.
count
The number of bytes to read.
Return value

The number of bytes read.

486

CHAPTER7

wxFFile::ReadAll

bool ReadAll (wxString * str, wxMBConv& conv =wxConvUTF8)
Reads the entire contents of the file into a string.
Parameters
str
String to read data into.
conv

Conversion object to use in Unicode build; by default supposes that file contents is
encoded in UTF-8.

Return value

true if file was read successfully, false otherwise.

wxFFile::Seek

bool Seek(wxFileOffset ofs, wxSeekMode mode = wxFromStart)
Seeks to the specified position and returns true on success.
Parameters
ofs

Offset to seek to.
mode

One of wxFromStart , wxFromEnd , wxFromCurrent .

wxFFile::SeekEnd

bool SeekEnd (wxFileOffset ofs = 0)

Moves the file pointer to the specified number of bytes before the end of the file and
returns true on success.

Parameters
ofs

Number of bytes before the end of the file.

wxFFile::Tell

wxFileOffset Tell() const

487

CHAPTER7

Returns the current position.

wxFFile::Write

size_t Write (const void* buffer, size_t count)
Writes the specified number of bytes from a buffer.
Parameters
buffer

A buffer containing the data.
count

The number of bytes to write.
Return value

Number of bytes written.

wxFFile::Write

bool Write (const wxString& s, wxMBConv& conv = wxConvUTF8)
Writes the contents of the string to the file, returns true on success.

The second argument is only meaningful in Unicode build of wxWidgets whenconv is
used to convert s to multibyte representation.

wxFFilelnputStream

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 499) whereas wxFilelnputStream (p. 523) is
based in the wxFile (p. 506) class.

Note that Seekl() (p. 828) can seek beyond the end of the stream (file) and will thus not
return wxlInvalidOffset for that.

Derived from
wxInputStream (p. 826)
Include files
<wx/wfstream.h>

See also

wxBufferedinputStream (p. 118), wxFFileOutputStream (p. 505), wxFileOutputStream (p.
541)

488

CHAPTER7

wxFFilelnputStream::wxFFilelnputStream

wxFFilelnputStream (const wxString& filename, const wxChar * mode = "rb")
Opens the specified file using its filename name using the specified mode.
wxFFilelnputStream (wxFFile& file)

Initializes a file stream in read-only mode using the file 1/O object file.
wxFFilelnputStream (FILE * fp)

Initializes a file stream in read-only mode using the specified file pointer fp.

wxFFilelnputStream::~wxFFilelnputStream

~wxFFilelnputStream ()

Destructor.

wxFFilelnputStream::0Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFFileOutputStream

This class represents data written to a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 499) whereas wxFilelnputStream (p. 504) is
based in the wxFile (p. 506) class.

Note that SeekO() (p. 1033) can seek beyond the end of the stream (file) and will thus
not return wxInvalidOffset for that.

Derived from
wxOutputStream (p. 1032)
Include files
<wx/wfstream.h>

See also

wxBufferedOutputStream (p. 119), wxFFilelnputStream (p. 504), wxFilelnputStream (p.
523)

489

CHAPTER7

wxFFileOutputStream::wxFFileOutputStream

wxFFileOutputStream (const wxString& filename, const wxChar * mode="w+b")
Opens the file with the given filename name in the specified mode.
wxFFileOutputStream (wxFFile& file)

Initializes a file stream in write-only mode using the file I/O object file.
wxFFileOutputStream (FILE * fp)

Initializes a file stream in write-only mode using the file descriptor fp.

wxFFileOutputStream::~wxFFileOutputStream

~wxFFileOutputStream ()

Destructor.

wxFFileOutputStream::Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFFileStream

Derived from

wxFFileOutputStream (p. 505), wxFFilelnputStream (p. 504)
Include files

<wx/wfstream.h>

See also

wxStreamBuffer (p. 1293)

wxFFileStream::wxFFileStream

wxFFileStream (const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

wxFile

A wxFile performs raw file I/O. This is a very small class designed to minimize the

490

CHAPTER7

overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers. wxFile
also automatically closes the file in its destructor making it unnecessary to worry about
forgetting to do it. wxFile is a wrapper around file descriptor. - see also wxFFile
(p. 499) for a wrapper around FILE structure.

wxFileOffset is used by the wxFile functions which require offsets as parameter or
return them. If the platform supports it, wxFileOffset if a typedef for a native 64 bit
integer, else a 32 bit integer is used for wxFileOffset.

Derived from
None.
Include files
<wx/file.h>
Constants

wx/file.h defines the following constants:

#define wxS_IRUSR 00400
#define wxS_IWUSR 00200
#define wxS_IXUSR 00100

#define wxS_IRGRP 00040
#define wxS_IWGRP 00020
#define wxS_IXGRP 00010

#define wxS_IROTH 00004
#define wxS_IWOTH 00002
#define wxS_IXOTH 00001

/I default mode for the new files: corresponds to u mask 022
#define wxS_DEFAULT (wxS_IRUSR | wxS_IWUSR | wxS_| RGRP |
wxS_IWGRP | wxS_IROTH | wxS_IWOTH)

These constants define the file access rights and are used with wxFile::Create (p. 509)
and wxFile::Open (p. 510).

The OpenMode enumeration defines the different modes for opening a file, it is defined
inside wxFile class so its members should be specified with wxFile:: scope resolution
prefix. It is also used with wxFile::Access (p. 508) function.

wxFile::read Open file for reading or test if it can be opened
for reading with Access()

wxFile::write Open file for writing deleting the contents of the
file if it already exists or test if it can be opened
for writing with Access()

wxFile::read_write Open file for reading and writing; can not be
used with Access()

wxFile::write_append Open file for appending: the file is opened for
writing, but the old contents of the file is not

491

CHAPTER7

erased and the file pointer is initially placed at
the end of the file; can not be used with
Access(). This is the same as wxFile::write if
the file doesn't exist.

wxFile::write_excl Open the file securely for writing (Uses
O_EXCL | O_CREAT). Will fail if the file
already exists, else create and open it
atomically. Useful for opening temporary files
without being vulnerable to race exploits.

Other constants defined elsewhere but used by wxFile functions are wxInvalidOffset
which represents an invalid value of type wxFileOffset and is returned by functions
returning wxFileOffset on error and the seek mode constants used with Seek() (p. 511):

wxFromStart Count offset from the start of the file

wxFromCurrent Count offset from the current position of the file
pointer

wxFromEnd Count offset from the end of the file
(backwards)

wxFile::wxFile

wxFile ()
Default constructor.
wxFile (const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens a file with the given mode. As there is no way to return whether the operation was
successful or not from the constructor you should test the return value of IsOpened (p.
510) to check that it didn't fail.

wxFile (int fd)
Associates the file with the given file descriptor, which has already been opened.
Parameters
filename
The filename.
mode

The mode in which to open the file. May be one of wxFile::read , wxFile::write
and wxFile::read_write .

fd

492

CHAPTER7

An existing file descriptor (see Attach() (p. 509) for the list of predefined
descriptors)

wxFile::~wxFile

~wxFile ()
Destructor will close the file.

NB: it is not virtual so you should not use wxFile polymorphically.

wxFile::Access

static bool Access (const char * name, OpenMode mode)

This function verifies if we may access the given file in specified mode. Only values of
wxFile::read or wxFile::write really make sense here.

wxFile::Attach

void Attach (int fd)
Attaches an existing file descriptor to the wxFile object. Example of predefined file

descriptors are 0, 1 and 2 which correspond to stdin, stdout and stderr (and have
symbolic names of wxFile::fd_stdin , wxFile::fd_stdout and wxFile::fd_stderr).

The descriptor should be already opened and it will be closed by wxFile object.

wxFile::Close

void Close ()

Closes the file.

wxFile::Create

bool Create(const char* filename, bool overwrite = false, int access = wxS_DEFAULT)

Creates a file for writing. If the file already exists, setting overwrite to true will ensure it
is overwritten.

wxFile::Detach

void Detach ()

Get back a file descriptor from wxFile object - the caller is responsible for closing the file
if this descriptor is opened. IsOpened() (p. 510) will return false after call to Detach().

wxFile::fd

493

CHAPTER7

int fd() const

Returns the file descriptor associated with the file.

wxFile::Eof

bool Eof() const
Returns true if the end of the file has been reached.

Note that the behaviour of the file pointer based class wxFFile (p. 499) is different as
wxFFile::Eof (p. 500) will return true here only if an attempt has been made to read past
the last byte of the file, while wxFile::Eof() will return true even before such attempt is
made if the file pointer is at the last position in the file.

Note also that this function doesn't work on unseekable file descriptors (examples
include pipes, terminals and sockets under Unix) and an attempt to use it will result in an
error message in such case. So, to read the entire file into memory, you should write a
loop which uses Read (p. 511) repeatedly and tests its return condition instead of using
Eof() as this will not work for special files under Unix.

wxFile::Exists

static bool EXxists (const char* filename)

Returns true if the given name specifies an existing regular file (not a directory or a link)

wxFile::Flush

bool Flush ()
Flushes the file descriptor.

Note that wxFile::Flush is not implemented on some Windows compilers due to a
missing fsync function, which reduces the usefulness of this function (it can still be called
but it will do nothing on unsupported compilers).

wxFile::GetKind

wxFileKind GetKind () const

Returns the type of the file. Possible return values are:
enum wxFileKind

wXFILE_KIND_UNKNOWN,

wxFILE_KIND_DISK, // a file supporting seekin g to arbitrary
offsets
wxFILE_KIND_TERMINAL, // a tty
wxFILE_KIND_PIPE // a pipe

J§

494

CHAPTER7

wxFile::IsOpened

bool 1sOpened () const

Returns true if the file has been opened.

wxFile::Length
wxFileOffset Length () const

Returns the length of the file.

wxFile::Open
bool Open(const char* filename, wxFile::OpenMode mode = wxFile::read)
Opens the file, returning true if successful.
Parameters
filename
The filename.
mode

The mode in which to open the file. May be one of wxFile::read , wxFile::write
and wxFile::read_write .

wxFile::Read

size_t Read(void* buffer, size_t count)
Reads the specified number of bytes into a buffer, returning the actual number read.
Parameters
buffer
A buffer to receive the data.
count
The number of bytes to read.
Return value

The number of bytes read, or the symbol wxInvalidOffset (-1) if there was an error.

wxFile::Seek

wxFileOffset Seek(wxFileOffset ofs, wxSeekMode mode = wxFromStart)

495

CHAPTER7

Seeks to the specified position.
Parameters
ofs
Offset to seek to.
mode
One of wxFromStart , wxFromEnd , wxFromCurrent .
Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::SeekEnd

wxFileOffset SeekEnd (wxFileOffset ofs = 0)

Moves the file pointer to the specified number of bytes relative to the end of the file. For
example, SeekEnd(-5) would position the pointer 5bytes before the end.

Parameters
ofs

Number of bytes before the end of the file.
Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::Tell

wxFileOffset Tell() const

Returns the current position or wxInvalidOffset if file is not opened or if another error
occurred.

wxFile::Write
size_t Write (const void* buffer, size_t count)
Writes the specified number of bytes from a buffer.
Parameters
buffer

A buffer containing the data.

count

496

CHAPTER7

The number of bytes to write.
Return value

the number of bytes actually written

wxFile::Write
bool Write (const wxString& s, wxMBConv& conv = wxConvUTF8)
Writes the contents of the string to the file, returns true on success.

The second argument is only meaningful in Unicode build of wxWidgets whenconv is
used to convert s to multibyte representation.

Note that this method only works with NUL-terminated strings, if you want to write data
with embedded NULs to the file you should use the other Write() overload (p. 512).

wxFileConfig

wxFileConfig implements wxConfigBase (p. 196) interface for storing and retrieving
configuration information using plain text files. The files have a simple format reminiscent
of Windows INI files with lines of the form key = value defining the keys and lines of
special form[group] indicating the start of each group.

This class is used by default for wxConfig on Unix platforms but may also be used
explicitly if you want to use files and not the registry even under Windows.

Derived from
wxConfigBase (p. 196)
Include files

<wx/fileconf.h>

wxFileConfig::wxFileConfig

wxFileConfig (wxInputStream& is, wxMBConv& conv = wxConvUTFS8)
Read the config data from the specified stream instead of the associated file, as usual.
See also

Save (p. 513)

wxFileConfig::Save

bool Save(wxOutputStream& o0s, wxMBConv& conv = wxConvUTF8)

497

CHAPTER7

Saves all config data to the given stream, returns true if data was saved successfully or
false on error.

Note the interaction of this function with the internal "dirty flag": the data is saved
unconditionally, i.e. even if the object is not dirty. However after saving it successfully,
the dirty flag is reset so no changes will be written back to the file this object is
associated with until you change its contents again.

See also

Flush (p. 204)

wxFileConfig::SetUmask

void SetUmask (int mode)

Allows to set the mode to be used for the config file creation. For example, to create a
config file which is not readable by other users (useful if it stores some sensitive
information, such as passwords), you could use SetUmask(0077)

This function doesn't do anything on non-Unix platforms.
See also

WXCHANGE_UMASK (p. 1635)

wxFileDataObject

wxFileDataObiject is a specialization of wxDataObject (p. 242) for file names. The
program works with it just as if it were a list of absolute file names, but internally it uses
the same format as Explorer and other compatible programs under Windows or
GNOME/KDE filemanager under Unix which makes it possible to receive files from them
using this class.

Warning: Under all non-Windows platforms this class is currently "input-only”, i.e. you
can receive the files from another application, but copying (or dragging) file(s) from a
wxWidgets application is not currently supported. PS: GTK2 should work as well.

Virtual functions to override
None.
Derived from

wxDataObjectSimple (p. 247)
wxDataObject (p. 242)

Include files
<wx/dataobj.h>

See also

498

CHAPTER7

wxDataObject (p. 242), wxDataObjectSimple (p. 247), wxTextDataObject (p. 1373),
wxBitmapDataObject (p. 103), wxDataObiject (p. 242)

wxFileDataObject

wxFileDataObject ()

Constructor.

wxFileDataObject::AddFile

virtual void AddFile (const wxString& file)

MSW only: adds a file to the file list represented by this data object.

wxFileDataObject::GetFilenames

const wxArrayString& GetFilenames () const

Returns the array (p. 70) of file names.

wxFileDialog

This class represents the file chooser dialog.
Derived from

wxDialog (p. 412)
wxWindow (p. 1510)
wxEvtHandler (p. 490)
wxObject (p. 1027)

Include files

<wx/filedlg.h>

See also

wxFileDialog overview (p. 1847), wxFileSelector (p. 1648)
Remarks

Pops up a file selector box. In Windows and GTK2.4+, this is the common file selector
dialog. In X, this is a file selector box with somewhat less functionality. The path and
filename are distinct elements of a full file pathname. If path is ", the current directory
will be used. If filename is ", no default filename will be supplied. The wildcard
determines what files are displayed in the file selector, and file extension supplies a type
extension for the required filename. Flags may be a combination of wxOPEN, wxSAVE,
WXOVERWRITE_PROMPT, wxHIDE_READONLY, wxFILE_MUST_EXIST,

499

CHAPTER7

WXMULTIPLE, wxCHANGE_DIR or 0.

Both the X and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed. The wildcard may be a specification for
multiple types of file with a description for each, such as:

"BMP and GIF files (*.bmp;*.gif)|*.bmp;*.gif|PNG f iles
(*-png)[*.png"

It must be noted that wildcard support in the native Motif file dialog is quite limited: only
one alternative is supported, and it is displayed without the descriptive test; "BMP files
(*.bmp)|*.bmp" is displayed as "*.bmp", and both "BMP files (*.bmp)|*.bomp|GIF files
(*.gif)|*.gif" and "Image files|*.bmp;*.gif" are errors.

wxFileDialog::wxFileDialog

wxFileDialog (wxWindow* parent, const wxString& message = "Choose a file", const
wxString& defaultDir =", const wxString& defaultFile =", const wxString& wildcard
="**""long style =0, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxFileDialog::ShowModal (p. 519) to show the dialog.
Parameters
parent
Parent window.
message
Message to show on the dialog.
defaultDir
The default directory, or the empty string.
defaultFile
The default filename, or the empty string.
wildcard
A wildcard, such as "*.*" or "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif".

Note that the native Motif dialog has some limitations with respect to wildcards;
see the Remarks section above.

style
A dialog style. A hitlist of:

WxOPEN This is an open dialog.

500

CHAPTER7

WXSAVE This is a save dialog.

WXOVERWRITE_PROMPT For save dialog only: prompt for a confirmation if a
file will be overwritten.

wxHIDE_READONLY Do not display the checkbox to toggle display of
read-only files. Deprecated in 2.6; the checkbox is
never shown.

WXFILE_MUST_EXIST The user may only select files that actually exist.
WXMULTIPLE For open dialog only: allows selecting multiple files.
wWxCHANGE_DIR Change the current working directory to the directory

where the file(s) chosen by the user are.

pos
Dialog position. Not implemented.

NB: Previous versions of wxWidgets used wxCHANGE_DIRy default under MS
Windows which allowed the program to simply remember the last directory where user
selected the files to open/save. This (desired) functionality must be implemented in the
program itself now (manually remember the last path used and pass it to the dialog the
next time it is called) or by using this flag.

wxFileDialog::~wxFileDialog

~wxFileDialog ()

Destructor.

wxFileDialog::GetDirectory

wxString GetDirectory () const

Returns the default directory.

wxFileDialog::GetFilename

wxString GetFilename () const

Returns the default filename.

wxFileDialog::GetFilenames

void GetFilenames (wxArrayString& filenames) const

Fills the array filenames with the names of the files chosen. This function should only be
used with the dialogs which have wxMULTIPLE style, use GetFilename (p. 517) for the
others.

501

CHAPTER7

Note that under Windows, if the user selects shortcuts, the filenames include paths,
since the application cannot determine the full path of each referenced file by appending
the directory containing the shortcuts to the filename.

wxFileDialog::GetFilterindex

int GetFilterindex () const

Returns the index into the list of filters supplied, optionally, in the wildcard parameter.
Before the dialog is shown, this is the index which will be used when the dialog is first
displayed. After the dialog is shown, this is the index selected by the user.

wxFileDialog::GetMessage

wxString GetMessage () const

Returns the message that will be displayed on the dialog.

wxFileDialog::GetPath

wxString GetPath () const

Returns the full path (directory and filename) of the selected file.

wxFileDialog::GetPaths

void GetPaths (wxArrayString& paths) const

Fills the array paths with the full paths of the files chosen. This function should only be
used with the dialogs which have wxMULTIPLE style, use GetPath (p. 518) for the
others.

wxFileDialog::GetStyle

long GetStyle () const

Returns the dialog style.
wxFileDialog::GetWildcard
wxString GetWildcard () const
Returns the file dialog wildcard.

wxFileDialog::SetDirectory

void SetDirectory (const wxString& directory)

Sets the default directory.

502

CHAPTER7

wxFileDialog::SetFilename

void SetFilename (const wxString& setfilename)

Sets the default filename.

wxFileDialog::SetFilterindex

void SetFilterindex (int filterindex)

Sets the default filter index, starting from zero.

wxFileDialog::SetMessage

void SetMessage (const wxString& message)

Sets the message that will be displayed on the dialog.

wxFileDialog::SetPath

void SetPath (const wxString& path)

Sets the path (the combined directory and filename that will be returned when the dialog
is dismissed).

wxFileDialog::SetStyle

void SetStyle (long style)
Sets the dialog style. See wxFileDialog::wxFileDialog (p. 516) for details.

wxFileDialog::SetWildcard

void SetWildcard (const wxString& wildCard)
Sets the wildcard, which can contain multiple file types, for example:
"BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.qgif"

Note that the native Motif dialog has some limitations with respect to wildcards; see the
Remarks section above.

wxFileDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxFileDropTarget

503

CHAPTER7

This is a drop target (p. 475) which accepts files (dragged from File Manager or
Explorer).

Derived from
wxDropTarget (p. 475)
Include files
<wx/dnd.h>

See also

Drag and drop overview (p. 1865), wxDropSource (p. 472), wxDropTarget (p. 475),
wxTextDropTarget (p. 1375)

wxFileDropTarget::wxFileDropTarget

wxFileDropTarget ()

Constructor.

wxFileDropTarget::OnDrop

virtual bool OnDrop (long X, long y, const void *data, size_t size)

See wxDropTarget::OnDrop (p. 476). This function is implemented appropriately for files,
and calls wxFileDropTarget::OnDropFiles (p. 520).

wxFileDropTarget::OnDropFiles

virtual bool OnDropFiles (wxCoord x, wxCoord Yy, const wxArrayString& filenames)
Override this function to receive dropped files.

Parameters

X

The x coordinate of the mouse.

The y coordinate of the mouse.
filenames

An array of filenames.
Return value

Return true to accept the data, false to veto the operation.

504

CHAPTER7

wxFileHistory

The wxFileHistory encapsulates a user interface convenience, the list of most recently
visited files as shown on a menu (usually the File menu).

wxFileHistory can manage one or more file menus. More than one menu may be
required in an MDI application, where the file history should appear on each MDI child
menu as well as the MDI parent frame.

Derived from
wxObiject (p. 1027)
Include files
<wx/docview.h>
See also

wxFileHistory overview (p. 1854), wxDocManager (p. 441)

wxFileHistory::m_fileHistory
char** m_fileHistory

A character array of strings corresponding to the most recently opened files.
wxFileHistory::m_fileHistoryN

size_t m_fileHistoryN

The number of files stored in the history array.
wxFileHistory::m_fileMaxFiles

size_t m_fileMaxFiles

The maximum number of files to be stored and displayed on the menu.
wxFileHistory::m_fileMenu

wxMenu* m_fileMenu

The file menu used to display the file history list (if enabled).
wxFileHistory::wxFileHistory

wxFileHistory (size_t maxFiles =9, wxWindowID idBase = wxID_FILE1)

Constructor. Pass the maximum number of files that should be stored and displayed.

505

CHAPTER7

idBase defaults to wxID_FILE1 and represents the id given to the first history menu item.
Since menu items can't share the same ID you should change idBase (To one of your
own defined IDs) when using more than one wxFileHistory in your application.

wxFileHistory::~wxFileHistory

~wxFileHistory ()

Destructor.

wxFileHistory::AddFileToHistory

void AddFileToHistory (const wxString& filename)

Adds a file to the file history list, if the object has a pointer to an appropriate file menu.

wxFileHistory::AddFilesToMenu

void AddFilesToMenu ()
Appends the files in the history list, to all menus managed by the file history object.
void AddFilesToMenu (wxMenu* menu)

Appends the files in the history list, to the given menu only.
wxFileHistory::GetCount

size_t GetCount () const

Returns the number of files currently stored in the file history.
wxFileHistory::GetHistoryFile

wxString GetHistoryFile (size_t index) const

Returns the file at this index (zero-based).
wxFileHistory::GetMaxFiles

int GetMaxFiles () const

Returns the maximum number of files that can be stored.

wxFileHistory::GetMenus

const wxList& GetMenus () const
Returns the list of menus that are managed by this file history object.

See also

506

CHAPTER7

wxFileHistory::UseMenu (p. 523)

wxFileHistory::Load

void Load (wxConfigBase& config)

Loads the file history from the given config object. This function should be called
explicitly by the application.

See also

wxConfig (p. 196)

wxFileHistory::RemoveFileFromHistory

void RemoveFileFromHistory (size_t i)

Removes the specified file from the history.

wxFileHistory::RemoveMenu

void RemoveMenu (wxMenu* menu)

Removes this menu from the list of those managed by this object.

wxFileHistory::Save

void Save(wxConfigBase& config)

Saves the file history into the given config object. This must be called explicitly by the
application.

See also

wxConfig (p. 196)

wxFileHistory::UseMenu

void UseMenu (wxMenu* menu)

Adds this menu to the list of those menus that are managed by this file history object.
Also see AddFilesToMenu() (p. 522) for initializing the menu with filenames that are
already in the history when this function is called, as this is not done automatically.

wxFilelnputStream

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFile (p. 506) whereas wxFFilelnputStream (p. 504) is
based in the wxFFile (p. 499) class.

507

CHAPTER7

Note that Seekl() (p. 828) can seek beyond the end of the stream (file) and will thus not
return wxInvalidOffset for that.

Derived from
wxInputStream (p. 826)
Include files
<wx/wfstream.h>

See also

wxBufferedInputStream (p. 118), wxFileOutputStream (p. 541), wxFFileOutputStream (p.
505)

wxFilelnputStream::wxFilelnputStream

wxFilelnputStream (const wxString& ifileName)

Opens the specified file using its iflename name in read-only mode.
wxFilelnputStream (wxFile& file)

Initializes a file stream in read-only mode using the file 1/O object file.
wxFilelnputStream (int fd)

Initializes a file stream in read-only mode using the specified file descriptor.

wxFilelnputStream::~wxFilelnputStream

~wxFilelnputStream ()

Destructor.

wxFilelnputStream::Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFileName

wxFileName encapsulates a file name. This class serves two purposes: first, it provides
the functions to split the file names into components and to recombine these
components in the full file name which can then be passed to the OS file functions (and
wxWidgets functions (p. 1632) wrapping them). Second, it includes the functions for
working with the files itself. Note that to change the file data you should use wxFile (p.
506) class instead. wxFileName provides functions for working with the file attributes.

508

CHAPTER7

Derived from

No base class
Include files
<wx/filename.h>
Data structures

Many wxFileName methods accept the path format argument which is by
wWxPATH_NATIVEby default meaning to use the path format native for the current
platform.

The path format affects the operation of wxFileName functions in several ways: first and
foremost, it defines the path separator character to use, but it also affects other things
such as whether the path has the drive part or not.

enum wxPathFormat

WXPATH_NATIVE =0, // the path format for the current
platform

WXPATH_UNIX,

WXPATH_BEOS = wxPATH_UNIX,

WXPATH_MAC,

wxPATH_DOS,

WXPATH_WIN = wxPATH_DOS,

wxPATH_OS2 = wxPATH_DOS,

WXPATH_VMS,

wWXPATH_MAX // Not a valid value for specifying path format

File name format

wxFileName currently supports the file names in the Unix, DOS/Windows, Mac OS and
VMS formats. Although these formats are quite different, wxFileName tries to treat them
all in the same generic way. It supposes that all file names consist of the following parts:
the volume (also known as drive under Windows or device under VMS), the path which
is a sequence of directory names separated by the path separators (p. 533) and the full
filename itself which, in turn, is composed from the base file name and the extension. All
of the individual components of the file name may be empty and, for example, the
volume name is always empty under Unix, but if they are all empty simultaneously, the
filename object is considered to be in an invalid state and IsOk (p. 534) returns false

for it.

File names can be case-sensitive or not, the function IsCaseSensitive (p. 534) allows to
determine this.

The rules for determining if the file name is absolute or relative also depends on the file
name format and the only portable way to answer to this question is to use IsAbsolute
(p- 534) method. To ensure that the filename is absolute you may use MakeAbsolute (p.
535). There is also an inverse function MakeRelativeTo (p. 536) which undoes

509

CHAPTER7

whatNormalize(WxPATH_NORM_DOTS) (p. 537) does.

Other functions returning information about the file format provided by this class are
GetVolumeSeparator (p. 534), IsPathSeparator (p. 535).

IsRelative (p. 535)

File name construction

TODO.

File tests

Before doing the other tests you should use IsOk (p. 534) to verify that the filename is
well defined. If it is, FileExists (p. 530) can be used to test if a file with such name exists
and DirExists (p. 530) - if a directory with this name exists.

File names should be compared using SameAs (p. 538) method or == (p. 540).

File name components

These functions allow to examine and modify the individual directories of the path:

AppendDir (p. 528)

InsertDir (p. 534)

GetDirCount (p. 531)PrependDir (p. 537)
RemoveDir (p. 537)

RemoveLastDir (p. 538)

To change the components of the file name individually you can use the following
functions:

GetExt (p. 531)
GetName (p. 532)
GetVolume (p. 533)
HasExt (p. 534)
HasName (p. 534)
HasVolume (p. 534)
SetExt (p. 538)
ClearExt (p. 529)
SetEmptyExt (p. 538)
SetName (p. 539)
SetVolume (p. 539)

Operations

These methods allow to work with the file creation, access and modification times. Note
that not all filesystems under all platforms implement these times in the same way. For
example, the access time under Windows has a resolution of one day (so it is really the
access date and not time). The access time may be updated when the file is executed or

510

CHAPTER7

not depending on the platform.

GetModificationTime (p. 532)
GetTimes (p. 533)

SetTimes (p. 539)

Touch (p. 540)

Other file system operations functions are:

Mkdir (p. 536)
Rmdir (p. 538)

wxFileName::wxFileName

wxFileName ()

Default constructor.

wxFileName (const wxFileName& filename)

Copy constructor.

wxFileName (const wxString& fullpath, wxPathFormat format = wxPATH_NATIVE)

Constructor taking a full filename. If it terminates with a /', a directory path is constructed
(the name will be empty), otherwise a file name and extension are extracted from it.

wxFileName (const wxString& path, const wxString& name, wxPathFormat format =
WXPATH_NATIVE)

Constructor from a directory name and a file name.

wxFileName (const wxString& path, const wxString& name, const wxString& ext,
wxPathFormat format = wxPATH_NATIVE)

Constructor from a directory name, base file name and extension.

wxFileName (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, wxPathFormat format = wxPATH_NATIVE)

Constructor from a volume name, a directory name, base file name and extension.

wxFileName::AppendDir

void AppendDir (const wxString& dir)

Appends a directory component to the path. This component should contain a single
directory name level, i.e. not contain any path or volume separators nor should it be
empty, otherwise the function does nothing (and generates an assert failure in debug
build).

511

CHAPTER7

wxFileName::Assign

void Assign (const wxFileName& filepath)
void Assign (const wxString& fullpath, wxPathFormat format = wxPATH_NATIVE)

void Assign (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, bool hasExt, wxPathFormat format = wxPATH_NATIVE)

void Assign (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, wxPathFormat format = wxPATH_NATIVE)

void Assign (const wxString& path, const wxString& name, wxPathFormat format =
WXPATH_NATIVE)

void Assign (const wxString& path, const wxString& name, const wxString& ext,
wxPathFormat format = wxPATH_NATIVE)

Creates the file name from various combinations of data.

wxFileName::AssignCwd

static void AssignCwd (const wxString& volume = wxEmptyString)

Makes this object refer to the current working directory on the specified volume (or
current volume if volume is empty).

See also

GetCwd (p. 530)

wxFileName::AssignDir

void AssignDir (const wxString& dir, wxPathFormat format = wxPATH_NATIVE)

Sets this file name object to the given directory name. The name and extension will be
empty.

wxFileName::AssignHomeDir

void AssignHomeDir ()

Sets this file name object to the home directory.

wxFileName::AssignTempFileName

void AssignTempFileName (const wxString& prefix, wxFile * fileTemp = NULL)

The function calls CreateTempFileName (p. 529) to create a temporary file and sets this
object to the name of the file. If a temporary file couldn't be created, the object is put into
the invalid (p. 534) state.

512

CHAPTER7

wxFileName::Clear

void Clear()

Reset all components to default, uninitialized state.

wxFileName::ClearExt

void SetClearExt ()
Removes the extension from the file name resulting in a file hame with no trailing dot.
See also

SetExt (p. 538)SetEmptyExt (p. 538)

wxFileName::CreateTempFileName

static wxString CreateTempFileName (const wxString& prefix, wxFile * fileTemp =
NULL)

Returns a temporary file name starting with the given prefix. If the prefix is an absolute
path, the temporary file is created in this directory, otherwise it is created in the default
system directory for the temporary files or in the current directory.

If the function succeeds, the temporary file is actually created. If fileTemp is not NULL,
this file will be opened using the name of the temporary file. When possible, this is done
in an atomic way ensuring that no race condition occurs between the temporary file
name generation and opening it which could often lead to security compromise on the
multiuser systems. If fileTemp is NULL, the file is only created, but not opened.

Under Unix, the temporary file will have read and write permissions for the owner only to
minimize the security problems.

Parameters
prefix
Prefix to use for the temporary file name construction
fileTemp
The file to open or NULL to just get the name
Return value

The full temporary file name or an empty string on error.

wxFileName::DirExists

bool DirExists () const

static bool DirExists (const wxString& dir)

513

CHAPTER7

Returns true if the directory with this name exists.

wxFileName::DirName

static wxFileName DirName (const wxString& dir, wxPathFormat format =
WXPATH_NATIVE)

Returns the object corresponding to the directory with the given name. The dir
parameter may have trailing path separator or not.

wxFileName::FileExists

bool FileExists () const

static bool FileExists (const wxString& file)
Returns true if the file with this name exists.
See also

DirExists (p. 530)

wxFileName::FileName

static wxFileName FileName (const wxString& file, wxPathFormat format =
WXPATH_NATIVE)

Returns the file name object corresponding to the given file. This function exists mainly
for symmetry with DirName (p. 530).

wxFileName::GetCwd

static wxString GetCwd (const wxString& volume ="")

Retrieves the value of the current working directory on the specified volume. If the
volume is empty, the program's current working directory is returned for the current
volume.

Return value
The string containing the current working directory or an empty string on error.
See also

AssignCwd (p. 528)

wxFileName::GetDirCount

size_t GetDirCount () const

Returns the number of directories in the file name.

514

CHAPTER7

wxFileName::GetDirs

const wxArrayString& GetDirs () const

Returns the directories in string array form.
wxFileName::GetExt

wxString GetExt () const

Returns the file name extension.

wxFileName::GetForbiddenChars

static wxString GetForbiddenChars (wxPathFormat format = wxPATH_NATIVE)

Returns the characters that can't be used in filenames and directory names for the
specified format.

wxFileName::GetFormat

static wxPathFormat GetFormat (wxPathFormat format = wxPATH_NATIVE)

Returns the canonical path format for this platform.
wxFileName::GetFullName

wxString GetFullName () const

Returns the full name (including extension but excluding directories).
wxFileName::GetFullPath

wxString GetFullPath (wxPathFormat format = wxPATH_NATIVE) const
Returns the full path with name and extension.
wxFileName::GetHomeDir

static wxString GetHomeDir ()

Returns the home directory.

wxFileName::GetLongPath

wxString GetLongPath () const

Return the long form of the path (returns identity on non-Windows platforms)

wxFileName::GetModificationTime

515

CHAPTER7

wxDateTime GetModificationTime () const

Returns the last time the file was last modified.

wxFileName::GetName

wxString GetName() const
Returns the name part of the filename (without extension).
See also

GetFullName (p. 531)

wxFileName::GetPath

wxString GetPath (int flags = wxPATH_CGET_VOLUVME, wxPathFormat format =
wWXxPATH_NATIVE) const

Returns the path part of the filename (without the name or extension). The possible flags
values are:

wxPATH_GET_VOLUME Return the path with the volume (does nothing for the
filename formats without volumes), otherwise the path
without volume part is returned.

wxPATH_GET_SEPARATOR Return the path with the trailing separator, if this
flag is not given there will be no separator at the end of the
path.

wxFileName::GetPathSeparator

static wxChar GetPathSeparator (wxPathFormat format = wxPATH_NATIVE)

Returns the usually used path separator for this format. For all formats but wxPATH_DOS
there is only one path separator anyhow, but for DOS there are two of them and the
native one, i.e. the backslash is returned by this method.

See also

GetPathSeparators (p. 533)

wxFileName::GetPathSeparators

static wxString GetPathSeparators (wxPathFormat format = wxPATH_NATIVE)

Returns the string containing all the path separators for this format. For all formats but
wxPATH_DOS$his string contains only one character but for DOS and Windows both '/’
and'\' may be used as separators.

See also

516

CHAPTER7

GetPathSeparator (p. 532)

wxFileName::GetPathTerminators

static wxString GetPathTerminators (wxPathFormat format = wxPATH_NATIVE)

Returns the string of characters which may terminate the path part. This is the same as
GetPathSeparators (p. 533) except for VMS path format where] is used at the end of the
path part.

wxFileName::GetShortPath

wxString GetShortPath () const

Return the short form of the path (returns identity on non-Windows platforms).

wxFileName::GetTimes

bool GetTimes (wxDateTime* dtAccess, wxDateTime* dtMod, wxDateTime* dtCreate)
const

Returns the last access, last maodification and creation times. The last access time is
updated whenever the file is read or written (or executed in the case of Windows), last
modification time is only changed when the file is written to. Finally, the creation time is
indeed the time when the file was created under Windows and the inode change time
under Unix (as it is impossible to retrieve the real file creation time there anyhow) which
can also be changed by many operations after the file creation.

Any of the pointers may be NULL if the corresponding time is not needed.
Return value

true on success, false if we failed to retrieve the times.

wxFileName::GetVolume

wxString GetVolume () const

Returns the string containing the volume for this file name, empty if it doesn't have one
or if the file system doesn't support volumes at all (for example, Unix).

wxFileName::GetVolumeSeparator

static wxString GetVolumeSeparator (wxPathFormat format = wxPATH_NATIVE)
Returns the string separating the volume from the path for this format.
wxFileName::HasExt

bool HasExt () const

517

CHAPTER7

Returns true if an extension is present.

wxFileName::HasName

bool HasName () const

Returns true if a name is present.

wxFileName::HasVolume

bool HasVolume () const

Returns true if a volume specifier is present.

wxFileName::InsertDir

void InsertDir (size_t before, const wxString& dir)

Inserts a directory component before the zero-based position in the directory list. Please
see AppendDir (p. 528) for important notes.

wxFileName::IsAbsolute

bool IsAbsolute (wxPathFormat format = wxPATH_NATIVE)

Returns true if this filename is absolute.

wxFileName::IsCaseSensitive

static bool IsCaseSensitive (wxPathFormat format = wxPATH_NATIVE)

Returns true if the file names of this type are case-sensitive.

wxFileName::IsOk

bool IsOk() const

Returns true if the filename is valid, false if it is not initialized yet. The assignment
functions andClear (p. 529) may reset the object to the uninitialized, invalid state (the
former only do it on failure).

wxFileName::IsPathSeparator

static bool IsPathSeparator (wxChar ch, wxPathFormat format = wxPATH_NATIVE)

Returns true if the char is a path separator for this format.

wxFileName::IsRelative

bool IsRelative (wxPathFormat format = wxPATH_NATIVE)

518

CHAPTER7

Returns true if this filename is not absolute.

wxFileName::IsDir

bool IsDir () const

Returns true if this object represents a directory, false otherwise (i.e. if it is a file).
Note that this method doesn't test whether the directory or file really exists, you should
use DirExists (p. 530) or FileExists (p. 530) for this.

wxFileName::MacFindDefaultTypeAndCreator

static bool MacFindDefaultTypeAndCreator (const wxString& ext, wxUint32* type,
wxUint32* creator)

On Mac OS, gets the common type and creator for the given extension.

wxFileName::MacRegisterDefaultTypeAndCreator

static void MacRegisterDefaultTypeAndCreator (const wxString& ext, wxUint32
type, wxUint32 creator)

On Mac OS, registers application defined extensions and their default type and creator.

wxFileName::MacSetDefaultTypeAndCreator

bool MacSetDefaultTypeAndCreator ()

On Mac OS, looks up the appropriate type and creator from the registration and then
sets it.

wxFileName::MakeAbsolute

bool MakeAbsolute (const wxString& cwd = wxEmptyString, wxPathFormat format =
WXPATH_NATIVE)

Make the file name absolute. This is a shortcut forNor mal i ze (p.
537)(WxPATH_NORM_DOTS | wxPATH_NORM_ABSOLUTE | wxPATH_NORM_TILDE,
cwd, format)

See also

MakeRelativeTo (p. 536),Normalize (p. 537),IsAbsolute (p. 534)

wxFileName::MakeRelativeTo

bool MakeRelativeTo (const wxString& pathBase = wxEmptyString, wxPathFormat
format = wxPATH_NATIVE)

This function tries to put this file name in a form relative to pathBase. In other words, it
returns the file name which should be used to access this file if the current directory

519

CHAPTER7

were pathBase.
pathBase
the directory to use as root, current directory is used by default
format
the file name format, native by default
Return value

true if the file name has been changed, false if we failed to do anything with it
(currently this only happens if the file name is on a volume different from the volume
specified by pathBase).

See also

Normalize (p. 537)

wxFileName::Mkdir
bool Mkdir (int perm = 0777, int flags = 0)
static bool Mkdir (const wxString& dir, int perm = 0777, int flags = 0)
dir
the directory to create
parm
the permissions for the newly created directory
flags

if the flags contain wxPATH_MKDIR_FULLflag, try to create each directory in the
path and also don't return an error if the target directory already exists.

Return value

Returns true if the directory was successfully created, false otherwise.

wxFileName::Normalize

bool Normalize (int flags = wxPATH_NORM_ALL, const wxString& cwd =
wxEmptyString, wxPathFormat format = wxPATH_NATIVE)

Normalize the path. With the default flags value, the path will be made absolute, without

any ".." and "." and all environment variables will be expanded in it.
flags

The kind of normalization to do with the file name. It can be any or-combination of

520

CHAPTER7

the following constants:

wxPATH_NORM_ENV_VARS replace env vars with their values
wxPATH_NORM_DOTS squeeze all .. and . and prepend cwd
wxPATH_NORM_TILDE Unix only: replace ~ and ~user

wxPATH_NORM_CASE if filesystem is case insensitive, transform to lower
case

WxPATH_NORM_ABSOLUTE make the path absolute
WXPATH_NORM_LONG make the path the long form
WXPATH_NORM_SHORTCUT resolve if it is a shortcut (Windows only)

wWxPATH_NORM_ALL all of previous flags except wxPATH_NORM_CASE
cwd
If not empty, this directory will be used instead of current working directory in
normalization.
format

The file name format, native by default.

wxFileName::PrependDir

void PrependDir (const wxString& dir)

Prepends a directory to the file path. Please see AppendDir (p. 528) for important notes.
wxFileName::RemoveDir

void RemoveDir (size_t pos)
Removes the specified directory component from the path.
See also

GetDirCount (p. 531)

wxFileName::RemovelLastDir

void RemovelastDir ()

Removes last directory component from the path.

wxFileName::Rmdir

521

CHAPTER7

bool Rmdir ()
static bool Rmdir (const wxString& dir)

Deletes the specified directory from the file system.

wxFileName::SameAs

bool SameAs (const wxFileName& filepath, wxPathFormat format =
WXPATH_NATIVE) const

Compares the filename using the rules of this platform.

wxFileName::SetCwd

bool SetCwd ()
static bool SetCwd (const wxString& cwd)

Changes the current working directory.

wxFileName::SetExt

void SetExt(const wxString& ext)

Sets the extension of the file name. Setting an empty string as the extension will remove
the extension resulting in a file name without a trailing dot, unlike a call to SetEmptyExt
(p. 538).

See also

SetEmptyExt (p. 538)ClearExt (p. 529)

wxFileName::SetEmptyExt

void SetEmptyExt ()

Sets the extension of the file name to be an empty extension. This is different from
having no extension at all as the file name will have a trailing dot after a call to this
method.

See also

SetExt (p. 538)ClearExt (p. 529)

wxFileName::SetFullName

void SetFullName (const wxString& fullname)

The full name is the file name and extension (but without the path).

522

CHAPTER7

wxFileName::SetName

void SetName (const wxString& name)
Sets the name part (without extension).
See also

SetFullName (p. 539)

wxFileName::SetTimes

bool SetTimes (const wxDateTime* dtAccess, const wxDateTime* dtMod, const
wxDateTime* dtCreate)

Sets the file creation and last access/modification times (any of the pointers may be
NULL).

wxFileName::SetVolume

void SetVolume (const wxString& volume)

Sets the volume specifier.

wxFileName::SplitPath

static void SplitPath (const wxString& fullpath, wxString* volume, wxString* path,
wxString* name, wxString* ext, bool *hasExt = NULL, wxPathFormat format =
WXPATH_NATIVE)

static void SplitPath (const wxString& fullpath, wxString* volume, wxString* path,
wxString* name, wxString* ext, wxPathFormat format = wxPATH_NATIVE)

static void SplitPath (const wxString& fullpath, wxString* path, wxString* name,
wxString* ext, wxPathFormat format = wxPATH_NATIVE)

This function splits a full file name into components: the volume (with the first version)
path (including the volume in the second version), the base name and the extension.
Any of the output parameters (volume, path, name or ext) may be NULL if you are not
interested in the value of a particular component. Also, fullpath may be empty on entry.

On return, path contains the file path (without the trailing separator), name contains the
file name and ext contains the file extension without leading dot. All three of them may

be empty if the corresponding component is. The old contents of the strings pointed to

by these parameters will be overwritten in any case (if the pointers are not NULL).

Note that for a filename "foo." the extension is present, as indicated by the trailing dot,
but empty. If you need to cope with such cases, you should use hasExt instead of relying
on testing whether ext is empty or not.

wxFileName::SplitVolume

523

CHAPTER7

static void SplitVolume (const wxString& fullpath, wxString* volume, wxString* path,
wxPathFormat format = wxPATH_NATIVE)

Splits the given fullpath into the volume part (which may be empty) and the pure path
part, not containing any volume.

See also

SplitPath (p. 539)

wxFileName::Touch

bool Touch ()

Sets the access and modification times to the current moment.

wxFileName::operator=

wxFileName& operator operator= (const wxFileName& filename)
wxFileName& operator operator= (const wxString& filename)

Assigns the new value to this filename object.

wxFileName::operator==

bool operator operator== (const wxFileName& filename) const
bool operator operator== (const wxString& filename) const

Returns true if the filenames are equal. The string filenames is interpreted as a path in
the native filename format.

wxFileName::operator!=

bool operator operator!= (const wxFileName& filename) const
bool operator operator!= (const wxString& filename) const

Returns true if the filenames are different. The string filenamesis interpreted as a path
in the native filename format.

wxFileOutputStream

This class represents data written to a file. There are actually two such groups of
classes: this one is based on wxFile (p. 506) whereas wxFFilelnputStream (p. 504) is
based in the wxFFile (p. 499) class.

Note that SeekO() (p. 1033) can seek beyond the end of the stream (file) and will thus
not return wxInvalidOffset for that.

524

CHAPTER7

Derived from
wxOutputStream (p. 1032)
Include files
<wx/wfstream.h>

See also

wxBufferedOutputStream (p. 119), wxFilelnputStream (p. 523), wxFFilelnputStream (p.
504)

wxFileOutputStream::wxFileOutputStream

wxFileOutputStream (const wxString& ofileName)

Creates a new file with ofilename name and initializes the stream in write-only mode.
wxFileOutputStream (wxFile& file)

Initializes a file stream in write-only mode using the file I/O object file.
wxFileOutputStream (int fd)

Initializes a file stream in write-only mode using the file descriptor fd.

wxFileOutputStream::~wxFileOutputStream

~wxFileOutputStream ()

Destructor.

wxFileOutputStream::Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFileStream

Derived from

wxFileOutputStream (p. 541), wxFilelnputStream (p. 523)
Include files

<wx/wfstream.h>

See also

525

CHAPTER7

wxStreamBuffer (p. 1293)

wxFileStream::wxFileStream

wxFileStream (const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

wxFileSystem

This class provides an interface for opening files on different file systems. It can handle
absolute and/or local filenames. It uses a system of handlers (p. 545) to provide access
to user-defined virtual file systems.

Derived from
wxObject (p. 1027)
Include files
<wx/filesys.h>

See Also

wxFileSystemHandler (p. 545), wxFSFile (p. 593), Overview (p. 1793)

wxFileSystem::wxFileSystem

wxFileSystem ()

Constructor.

wxFileSystem::AddHandler

static void AddHandler (wxFileSystemHandler *handler)

This static function adds new handler into the list of handlers. The handlers (p. 545)
provide access to virtual FS.

Note
You can call:

wxFileSystem::AddHandler(new My_FS_Handler);

This is because (a) AddHandler is a static method, and (b) the handlers are deleted in
wxFileSystem's destructor so that you don't have to care about it.

526

CHAPTER7

wxFileSystem::ChangePathTo

void ChangePathTo (const wxString& location, bool is_dir = false)

Sets the current location. location parameter passed to OpenFile (p. 544) is relative to
this path.

Caution! Unless is_dir is true the location parameter is not the directory name but the
name of the file in this directory. All these commands change the path to "dir/subdir/":

ChangePathTo("dir/subdir/xh.htm");
ChangePathTo("dir/subdir", true);
ChangePathTo("dir/subdir/", true);

Parameters
location
the new location. Its meaning depends on the value of is_dir
is_dir
if true location is new directory. If false (default) location is file in the new directory.

Example

f = fs -> OpenFile("hello.htm™); // opens file 'h ello.htm'
fs -> ChangePathTo("subdir/folder", true);
f = fs -> OpenFile("hello.htm"); // opens file

'subdir/folder/hello.htm' !!

wxFileSystem::GetPath

wxString GetPath ()

Returns actual path (set by ChangePathTo (p. 543)).

wxFileSystem::FileNameToURL

static wxString FileNameToURL (wxFileName filename)
Converts filename into URL.
See also

wxFileSystem::URLToFileName (p. 544),wxFileName (p. 524)

wxFileSystem::FindFirst

wxString FindFirst (const wxString& wildcard, int flags = 0)

Works like wxFindFirstFile (p. 1633). Returns name of the first filename (within
filesystem's current path) that matches wildcard. flags may be one of wxFILE (only files),
wxDIR (only directories) or 0 (both).

527

CHAPTER7

wxFileSystem::FindNext

wxString FindNext ()

Returns the next filename that matches parameters passed to FindFirst (p. 544).

wxFileSystem::OpenFile

wxFSFile* OpenFile (const wxString& location)

Opens the file and returns a pointer to a wxFSFile (p. 593) object or NULL if failed. It first
tries to open the file in relative scope (based on value passed to ChangePathTo()
method) and then as an absolute path. Note that the user is responsible for deleting the
returned wxFSFile.

wxFileSystem::URLToFileName

static wxFileName URLToFileName (const wxString& url)
Converts URL into a well-formed filename. The URL must use the file protocol.
See also

wxFileSystem::FileNameToURL (p. 544), wxFileName (p. 524)

wxFileSystemHandler

Classes derived from wxFileSystemHandler are used to access virtual file systems. Its
public interface consists of two methods: CanOpen (p. 545) and OpenFile (p. 547). It
provides additional protected methods to simplify the process of opening the file:
GetProtocol, GetLeftLocation, GetRightLocation, GetAnchor, GetMimeTypeFromExt.

Please have a look at overview (p. 1793) if you don't know how locations are
constructed.

Also consult list of available handlers (p. 1793).

wxPerl note: In wxPerl, you need to derive your file system handler class from
Wx::PIFileSystemHandler.

Notes
e The handlers are shared by all instances of wxFileSystem.
wWxHTML library provides handlers for local files and HTTP or FTP protocol

e The location parameter passed to OpenFile or CanOpen methods is always an
absolute path. You don't need to check the FS's current path.

Derived from

wxObiject (p. 1027)

528

CHAPTER7

Include files
<wx/filesys.h>
See also

wxFileSystem (p. 542), wxFSFile (p. 593), Overview (p. 1793)

wxFileSystemHandler::wxFileSystemHandler

wxFileSystemHandler ()

Constructor.

wxFileSystemHandler::CanOpen

virtual bool CanOpen (const wxString& location)

Returns true if the handler is able to open this file. This function doesn't check whether
the file exists or not, it only checks if it knows the protocol. Example:

bool MyHand::CanOpen(const wxString& location)

return (GetProtocol(location) == "http");

Must be overridden in derived handlers.

wxFileSystemHandler::GetAnchor

wxString GetAnchor (const wxString& location) const

Returns the anchor if present in the location. See wxFSFile (p. 594) for details.
Example: GetAnchor("index.htm#chapter2") == "chapter2"

Note: the anchor is NOT part of the left location.

wxFileSystemHandler::GetLeftLocation

wxString GetlLeftLocation (const wxString& location) const
Returns the left location string extracted from location.

Example: GetLeftLocation("file:myzipfile.zip#zip:index.htm") == "file:myzipfile.zip"

wxFileSystemHandler::GetMimeTypeFromExt

wxString GetMimeTypeFromExt (const wxString& location)

Returns the MIME type based on extension of location. (While wxFSFile::GetMimeType

529

CHAPTER7

returns real MIME type - either extension-based or queried from HTTP.)

Example : GetMimeTypeFromExt("index.htm") == "text/html"

wxFileSystemHandler::GetProtocol

wxString GetProtocol (const wxString& location) const
Returns the protocol string extracted from location.

Example: GetProtocol("file:myzipfile.zip#zip:index.htm") == "zip"

wxFileSystemHandler::GetRightLocation

wxString GetRightLocation (const wxString& location) const
Returns the right location string extracted from location.

Example : GetRightLocation("file:myzipfile.zip#zip:index.htm") == "index.htm"

wxFileSystemHandler::FindFirst

virtual wxString FindFirst (const wxString& wildcard, int flags = 0)

Works like wxFindFirstFile (p. 1633). Returns name of the first filename (within
filesystem's current path) that matches wildcard. flags may be one of wxFILE (only files),
wxDIR (only directories) or 0 (both).

This method is only called if CanOpen (p. 545) returns true.

wxFileSystemHandler::FindNext

virtual wxString FindNext ()
Returns next flename that matches parameters passed to FindFirst (p. 544).

This method is only called if CanOpen (p. 545) returns true and FindFirst returned a non-
empty string.

wxFileSystemHandler::OpenFile

virtual wxFSFile* OpenFile (wxFileSystemé& fs, const wxString& location)
Opens the file and returns wxFSFile pointer or NULL if failed.

Must be overridden in derived handlers.

Parameters

fs

Parent FS (the FS from that OpenFile was called). See ZIP handler for details of

530

CHAPTER7

how to use it.
location

The absolute location of file.

wxFileType

This class holds information about a given file type. File type is the same as MIME type
under Unix, but under Windows it corresponds more to an extension than to MIME type
(in fact, several extensions may correspond to a file type). This object may be created in
several different ways: the program might know the file extension and wish to find out
the corresponding MIME type or, conversely, it might want to find the right extension for
the file to which it writes the contents of given MIME type. Depending on how it was
created some fields may be unknown so the return value of all the accessors must be
checked: false will be returned if the corresponding information couldn't be found.

The objects of this class are never created by the application code but are returned by
wxMimeTypesManager::GetFileTypeFromMimeType (p. 993) and
wxMimeTypesManager::GetFileTypeFromExtension (p. 992) methods. But it is your
responsibility to delete the returned pointer when you're done with it!

A brief reminder about what the MIME types are (see the RFC 1341 for more
information): basically, it is just a pair category/type (for example, "text/plain") where the
category is a basic indication of what a file is. Examples of categories are "application”,

"image”, "text", "binary”, and type is a precise definition of the document format: "plain”

in the example above means just ASCII text without any formatting, while "text/html" is
the HTML document source.

A MIME type may have one or more associated extensions: "text/plain” will typically
correspond to the extension ".txt", but may as well be associated with ".ini" or ".conf".

Derived from
None

Include files
<wx/mimetype.h>
See also

wxMimeTypesManager (p. 990)

MessageParameters class

One of the most common usages of MIME is to encode an e-mail message. The MIME
type of the encoded message is an example of a message parameter. These
parameters are found in the message headers ("Content-XXX"). At the very least, they
must specify the MIME type and the version of MIME used, but almost always they

531

CHAPTER7

provide additional information about the message such as the original file name or the
charset (for the text documents).

These parameters may be useful to the program used to open, edit, view or print the
message, so, for example, an e-mail client program will have to pass them to this
program. Because wxFileType itself can not know about these parameters, it uses
MessageParameters class to query them. The default implementation only requires the
caller to provide the file name (always used by the program to be called - it must know
which file to open) and the MIME type and supposes that there are no other parameters.
If you wish to supply additional parameters, you must derive your own class from
MessageParameters and override GetParamValue() function, for example:

Il provide the message parameters for the MIME type manager

class MailMessageParameters : public wxFileType::Me ssageParameters
{

public:

MailMessageParameters(const wxString& filename,
const wxString& mimetype)
: wxFileType::MessageParameters(filename, mim etype)

{
}
virtual wxString GetParamValue(const wxString& n ame) const
/| parameter names are not case-sensitive
if (name.CmpNoCase("charset”) ==0)
return "US-ASCII";
else

return
wxFileType::MessageParameters::GetParamValue(name);

3

Now you only need to create an object of this class and pass it to, for example,
GetOpenCommand (p. 550) like this:

wxString command;
if (filetype->GetOpenCommand(&command,

MailMessageParameters ("foo.txt",
"text/plain™)))
/I the full command for opening the text docume nts is in
‘command'
/I (it might be "notepad foo.txt" under Windows or "cat

foo.txt" under Unix)
else

/l we don't know how to handle such files...

Windows: As only the file name is used by the program associated with the given
extension anyhow (but no other message parameters), there is no need to ever derive
from MessageParameters class for a Windows-only program.

wxFileType::wxFileType

wxFileType ()

532

CHAPTER7

The default constructor is private because you should never create objects of this type:
they are only returned by wxMimeTypesManager (p. 990) methods.

wxFileType::~wxFileType
~wxFileType ()

The destructor of this class is not virtual, so it should not be derived from.

wxFileType::GetMimeType

bool GetMimeType (wxString* mimeType)

If the function returns true , the string pointed to by mimeType is filled with full MIME
type specification for this file type: for example, "text/plain”.

wxFileType::GetMimeTypes

bool GetMimeType (wxArrayString& mimeTypes)

Same as GetMimeType (p. 549) but returns array of MIME types. This array will contain
only one item in most cases but sometimes, notably under Unix with KDE, may contain
more MIME types. This happens when one file extension is mapped to different MIME
types by KDE, mailcap and mime.types.

wxFileType::GetExtensions

bool GetExtensions (wxArrayString& extensions)

If the function returns true , the array extensions is filled with all extensions associated
with this file type: for example, it may contain the following two elements for the MIME
type "text/html” (notice the absence of the leading dot): "html" and "htm".

Windows: This function is currently not implemented: there is no (efficient) way to
retrieve associated extensions from the given MIME type on this platform, so it will only
return true if the wxFileType object was created by GetFileTypeFromExtension (p. 992)
function in the first place.

wxFileType::Getlcon

bool Getlcon (wxlconLocation * iconLoc)

If the function returns true , the iconLoc is filled with the location of the icon for this
MIME type. A wxlcon (p. 778) may be created from iconLoc later.

Windows: The function returns the icon shown by Explorer for the files of the specified
type.

Mac: This function is not implemented and always returns false

Unix: MIME manager gathers information about icons from GNOME and KDE settings

533

CHAPTER7

and thus Getlcon's success depends on availability of these desktop environments.

wxFileType::GetDescription

bool GetDescription (wxString* desc)

If the function returns true , the string pointed to by desc is filled with a brief description
for this file type: for example, "text document” for the "text/plain" MIME type.

wxFileType::GetOpenCommand

bool GetOpenCommand (wxString* command, MessageParameters& params)
wxString GetOpenCommand (const wxString& filename)

With the first version of this method, if the true is returned, the string pointed to by
command is filled with the command which must be executed (see wxExecute (p. 1625))
in order to open the file of the given type. In this case, the name of the file as well as any
other parameters is retrieved from MessageParameters (p. 548) class.

In the second case, only the filename is specified and the command to be used to open
this kind of file is returned directly. An empty string is returned to indicate that an error
occurred (typically meaning that there is no standard way to open this kind of files).

wxFileType::GetPrintCommand

bool GetPrintCommand (wxString* command,MessageParameters& params)

If the function returns true , the string pointed to by command is filled with the command
which must be executed (see wxExecute (p. 1625)) in order to print the file of the given
type. The name of the file is retrieved from MessageParameters (p. 548) class.

wxFileType::ExpandCommand

static wxString ExpandCommand (const wxString& command,
MessageParameters& params)

This function is primarily intended for GetOpenCommand and GetPrintCommand usage
but may be also used by the application directly if, for example, you want to use some
non default command to open the file.

The function replaces all occurrences of

format specification with

%s the full file name

%t the MIME type

%{param} the value of the parameter param

using the MessageParameters object you pass to it.

534

CHAPTER7

If there is no '%s' in the command string (and the string is not empty), it is assumed that
the command reads the data on stdin and so the effect is the same as "< %s" were
appended to the string.

Unlike all other functions of this class, there is no error return for this function.

wxFilterInputStream

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can uncompress or decrypt the data which are read
from another stream and pass it to the requester.

Derived from

wxInputStream (p. 826)
wxStreamBase (p. 1291)

Include files
<wx/stream.h>
Note

The interface of this class is the same as that of wxInputStream. Only a constructor
differs and it is documented below.

wxFilterinputStream::wxFilterinputStream

wxFilterinputStream (wxInputStream& stream)

Initializes a "filter" stream.

wxFilterOutputStream

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can compress, encrypt the data which are passed to
it and write them to another stream.

Derived from

wxOutputStream (p. 1032)
wxStreamBase (p. 1291)

Include files
<wx/stream.h>
Note

The use of this class is exactly the same as of wxOutputStream. Only a constructor

535

CHAPTER7

differs and it is documented below.

wxFilterOutputStream::wxFilterOutputStream

wxFilterOutputStream (wxOutputStream& stream)

Initializes a "filter" stream.

wxFindDialogEvent

wxFindReplaceDialog events
Derived from
wxCommandEvent (p. 184)
Include files

<wx/fdrepdlg.h>

Event table macros

To process a command event from wxFindReplaceDialog (p. 556), use these event
handler macros to direct input to member functions that take a wxFindDialogEvent
argument. The id parameter is the identifier of the find dialog and you may usually
specify -1 for it unless you plan to have several find dialogs sending events to the same
owner window simultaneously.

EVT_FIND(id, func) Find button was pressed in the dialog.
EVT_FIND_NEXT(id, func) Find next button was pressed in the dialog.
EVT_FIND_REPLACE(id, func) Replace button was pressed in the dialog.

EVT_FIND_REPLACE_ALL(id, func) Replace all button was pressed in the dialog.

EVT_FIND_CLOSE(id, func) The dialog is being destroyed, any pointers to it
cannot be used any longer.

wxFindDialogEvent::wxFindDialogEvent

wxFindDialogEvent (wxEventType commandType = wxEVT_NULL, int id = 0)
Constuctor used by wxWidgets only.

wxFindDialogEvent::GetFlags

int GetFlags () const

536

CHAPTER7

Get the currently selected flags: this is the combination of
wxFR_DOWMXFR_WHOLEWORBd wxFR_MATCHCASHags.

wxFindDialogEvent::GetFindString

wxString GetFindString () const

Return the string to find (never empty).

wxFindDialogEvent::GetReplaceString

const wxString& GetReplaceString () const
Return the string to replace the search string with (only for replace and replace all
events).

wxFindDialogEvent::GetDialog

wxFindReplaceDialog* GetDialog () const

Return the pointer to the dialog which generated this event.

wxFindReplaceData

wxFindReplaceData holds the data for wxFindReplaceDialog (p. 556). It is used to
initialize the dialog with the default values and will keep the last values from the dialog
when it is closed. It is also updated each time a wxFindDialogEvent (p. 553) is generated
so instead of using the wxFindDialogEvent methods you can also directly query this
object.

Note that all SetXXX() methods may only be called before showing the dialog and
calling them has no effect later.

Include files

#include <wx/fdrepdlg.h>

Derived from
wxObiject (p. 1027)
Data structures

Flags used by wxFindReplaceData::GetFlags() (p. 555)
andwxFindDialogEvent::GetFlags() (p. 553):

enum wxFindReplaceFlags

/I downward search/replace selected (otherwise - upwards)
wxFR_DOWN =1,

/I whole word search/replace selected
wxFR_WHOLEWORD =2,

537

CHAPTER7

/I case sensitive search/replace selected (othe rwise - case
insensitive)
wxFR_MATCHCASE =4

These flags can be specified in wxFindReplaceDialog ctor (p. 556) or Create() (p. 556):

enum wxFindReplaceDialogStyles

{

I replace dialog (otherwise find dialog)
wxFR_REPLACEDIALOG =1,

/l don't allow changing the search direction
wxFR_NOUPDOWN =2,

/I don't allow case sensitive searching
wxFR_NOMATCHCASE =4,

/I don't allow whole word searching
wWxFR_NOWHOLEWORD =8

wxFindReplaceData::wxFindReplaceData
wxFindReplaceData (wxUint32 flags = 0)
Constuctor initializes the flags to default value (0).
wxFindReplaceData::GetFindString

const wxString& GetFindString ()

Get the string to find.
wxFindReplaceData::GetReplaceString

const wxString& GetReplaceString ()

Get the replacement string.
wxFindReplaceData::GetFlags

int GetFlags () const

Get the combination of wxFindReplaceFlags values.
wxFindReplaceData::SetFlags

void SetFlags (wxUint32 flags)

Set the flags to use to initialize the controls of the dialog.

538

CHAPTER7

wxFindReplaceData::SetFindString

void SetFindString (const wxString& str)

Set the string to find (used as initial value by the dialog).

wxFindReplaceData::SetReplaceString

void SetReplaceString (const wxString& str)

Set the replacement string (used as initial value by the dialog).

wxFindReplaceDialog

wxFindReplaceDialog is a standard modeless dialog which is used to allow the user to
search for some text (and possibly replace it with something else). The actual searching
is supposed to be done in the owner window which is the parent of this dialog. Note that
it means that unlike for the other standard dialogs this one must have a parent window.
Also note that there is no way to use this dialog in a modal way; it is always, by design
and implementation, modeless.

Please see the dialogs sample for an example of using it.
Include files

#include <wx/fdrepdig.h>
Derived from

wxDialog (p. 412)

wxFindReplaceDialog::wxFindReplaceDialog

wxFindReplaceDialog ()

wxFindReplaceDialog (wxWindow * parent, wxFindReplaceData* data, const
wxString& title, int style = 0)

After using default constructor Create() (p. 556) must be called.

The parent and data parameters must be non-NULL

wxFindReplaceDialog::~wxFindReplaceDialog

~wxFindReplaceDialog ()

Destructor.

wxFindReplaceDialog::Create

539

CHAPTER7

bool Create(wxWindow * parent, wxFindReplaceData* data, const wxString& title,
int style = 0)

Creates the dialog; use Show (p. 1566) to show it on screen.

The parent and data parameters must be non-
NULL.wxFindReplaceDialog::GetData

const wxFindReplaceData* GetData() const

Get the wxFindReplaceData (p. 554) object used by this dialog.

wxFlexGridSizer

A flex grid sizer is a sizer which lays out its children in a two-dimensional table with all
table fields in one row having the same height and all fields in one column having the
same width, but all rows or all columns are not necessarily the same height or width as
in the wxGridSizer (p. 682).

Since wxWidgets 2.5.0, wxFlexGridSizer can also size items equally in one direction but
unequally ("flexibly") in the other. If the sizer is only flexible in one direction (this can be
changed using SetFlexibleDrection (p. 559)), it needs to be decided how the sizer should
grow in the other ("non flexible™) direction in order to fill the available space. The
SetNonFlexibleGrowMode (p. 559) method serves this purpose.

Derived from

wxGridSizer (p. 682)
wxSizer (p. 1191)
wxObject (p. 1027)

Include files
<wx/sizer.h>
See also

wxSizer (p. 1191), Sizer overview (p. 1816)

wxFlexGridSizer::wxFlexGridSizer

wxFlexGridSizer (int rows, int cols, int vgap, int hgap)
wxFlexGridSizer (int cols, int vgap = 0, int hgap = 0)

Constructor for a wxGridSizer. rows and cols determine the number of columns and
rows in the sizer - if either of the parameters is zero, it will be calculated to form the total
number of children in the sizer, thus making the sizer grow dynamically. vgap and hgap
define extra space between all children.

540

CHAPTER7

wxFlexGridSizer::AddGrowableCol

void AddGrowableCol (size_t idx, int proportion = 0)

Specifies that column idx (starting from zero) should be grown if there is extra space
available to the sizer.

The proportion parameter has the same meaning as the stretch factor for the sizers (p.
1816) except that if all proportions are 0, then all columns are resized equally (instead of
not being resized at all).

wxFlexGridSizer::AddGrowableRow

void AddGrowableRow (size_t idx, int proportion = 0)

Specifies that row idx (starting from zero) should be grown if there is extra space
available to the sizer.

See AddGrowableCol (p. 558) for the description of proportion parameter.

wxFlexGridSizer::GetFlexibleDirection

int GetFlexibleDirections () const

Returns a wxOrientation value that specifies whether the sizer flexibly resizes its
columns, rows, or both (default).

Return value

One of the following values:

WXVERTICAL Rows are flexibly sized.
WXHORIZONTAL Columns are flexibly sized.
wxBOTH Both rows and columns are flexibly sized (this

is the default value).
See also

SetFlexibleDrection (p. 559)

wxFlexGridSizer::GetNonFlexibleGrowMode

int GetNonFlexibleGrowMode () const

Returns the value that specifies how the sizer grows in the "non flexible" direction if there
is one.

Return value

One of the following values:

541

CHAPTER7

wXxFLEX_GROWMODE_NONE Sizer doesn't grow in the non flexible direction.

wWXFLEX_GROWMODE_SPECIFIED Sizer honors growable columns/rows set
withAddGrowableCol (p. 558) and
AddGrowableRow (p. 558). In this case equal
sizing applies to minimum sizes of columns or
rows (this is the default value).

wXFLEX_GROWMODE_ALL Sizer equally stretches all columns or rows in
the non flexible direction, whether they are
growable or not in the flexible direction.

See also

SetFlexibleDrection (p. 559), SetNonFlexibleGrowMode (p. 559)

wxFlexGridSizer::RemoveGrowableCol

void RemoveGrowableCol (size_t idx)

Specifies that column idx is no longer growable.

wxFlexGridSizer::RemoveGrowableRow

void RemoveGrowableRow (size_t idx)

Specifies that row idx is no longer growable.

wxFlexGridSizer::SetFlexibleDirection

void SetFlexibleDirections (int direction)

Specifies whether the sizer should flexibly resize its columns, rows, or both. Argument
direction can be wxVERTICAL, wxHORIZONTAL or wxBOTH(which is the default
value). Any other value is ignored. SeeGetFlexibleDirection() (p. 558) for the explanation
of these values.

Note that this method does not trigger relayout.

wxFlexGridSizer::SetNonFlexibleGrowMode

void SetNonFlexibleGrowMode (wxFlexSizerGrowMode mode)

Specifies how the sizer should grow in the non flexible direction if there is one
(soSetFlexibleDirections() (p. 559) must have been called previously). Argument mode
can be one of those documented inGetNonFlexibleGrowMode (p. 558), please see there
for their explanation.

Note that this method does not trigger relayout.

wXxFocusEvent

542

CHAPTER7

A focus event is sent when a window's focus changes. The window losing focus receives
a "kill focus" event while the window gaining it gets a "set focus" one.

Notice that the set focus event happens both when the user gives focus to the window
(whether using the mouse or keyboard) and when it is done from the program itself using
SetFocus (p. 1554).

Derived from

wxEvent (p. 487)
wxObiject (p. 1027)

Include files
<wx/event.h>
Event table macros

To process a focus event, use these event handler macros to direct input to a member
function that takes a wxFocusEvent argument.

EVT_SET _FOCUS(func) Process a wxEVT_SET_FOCUS event.
EVT_KILL_FOCUS(func) Process a wxEVT_KILL_FOCUS event.
See also

Event handling overview (p. 1795)

wxFocusEvent::wxFocusEvent

wxFocusEvent (WXTYPE eventType = 0, int id = 0)

Constructor.

wxFocusEvent::GetWindow

Returns the window associated with this event, that is the window which had the focus
before for the wxEVT_SET_FOCU®vent and the window which is going to receive focus
for the wxEVT_KILL_FOCUSone.

Warning: the window pointer may be NULL!

wxFont

A font is an object which determines the appearance of text. Fonts are used for drawing
text to a device context, and setting the appearance of a window's text.

You can retrieve the current system font settings with wxSystemSettings (p. 1334).

wxSystemSettings (p. 1334)

CHAPTER7

Derived from

wxGDIObject (p. 609)
wxObiject (p. 1027)

Include files

<wx/font.h>

Constants

The possible values for the family parameter of wxFont constructor (p. 563) are (the old
names are for compatibility only):

enum wxFontFamily

{

3

WXFONTFAMILY_DEFAULT = wxDEFAULT,

WXFONTFAMILY_DECORATIVE = wxDECORATIVE,

WXFONTFAMILY_ROMAN = wxROMAN,
WXFONTFAMILY_SCRIPT = wxSCRIPT,
WXFONTFAMILY_SWISS = wxSWISS,
WXFONTFAMILY_MODERN = wxMODERN,
WXFONTFAMILY_TELETYPE = wxTELETYPE,
WXFONTFAMILY_MAX

The possible values for the weight parameter are (the old names are for compatibility

only):

enum wxFontWeight

{

3

The font flags which can be used during the font creation are:

WXFONTWEIGHT_NORMAL = wxNORMAL,
WXFONTWEIGHT_LIGHT = wxLIGHT,
WXFONTWEIGHT_BOLD = wxBOLD,
WXFONTWEIGHT_MAX

enum

/I no special flags: font with default weight/s

aliasing
WXFONTFLAG_DEFAULT =0,
/I slant flags (default: no slant)
WXFONTFLAG_ITALIC =1<<0,
WXFONTFLAG_SLANT =1<<1,
/I weight flags (default: medium)
WXFONTFLAG_LIGHT =1<<2,
wxFONTFLAG_BOLD =1<<3,

/I anti-aliasing flag: force on or off (default

system default)

WXFONTFLAG_ANTIALIASED =1<<4,
WXFONTFLAG_NOT_ANTIALIASED =1<<35,

/I underlined/strikethrough flags (default: no
WXFONTFLAG_UNDERLINED =1<<6,
WXFONTFLAG_STRIKETHROUGH =1<<7,

lant/anti-

: the current

lines)

CHAPTER7

k

The known font encodings are:

enum wxFontEncoding

{
WXFONTENCODING_SYSTEM =-1, // system defau
WXFONTENCODING_DEFAULT, Il current defa

// 1SO8859 standard defines a number of single-
WXFONTENCODING_1S08859 1, /l West Europea
WXFONTENCODING_1S08859 2, /I Central and
(Latin2)
WXFONTENCODING_1S08859_3, /I Esperanto (L
WXFONTENCODING_1S08859 4, / Baltic (old)
WXFONTENCODING_1S08859 5, /I Cyrillic
wxFONTENCODING_1S08859_6, /I Arabic
wxFONTENCODING_1S08859 7, Il Greek
WXFONTENCODING_1S08859 8, /l Hebrew
wxFONTENCODING_1S08859 9, Il Turkish (Lat
WXFONTENCODING_1S08859 10, // Variation of
(Latin6)
wxFONTENCODING_IS08859 11, // Thai
WXFONTENCODING_1S08859 12, // doesn't exis
but put it
I/l here anyhow
1ISO8859
I/l consecutive
wxFONTENCODING_1S08859 13, // Baltic (Lati
wxFONTENCODING_1S08859 14, // Latin8
wxFONTENCODING_1S08859_15, // Latin9 (a.k.
includes euro)
wxFONTENCODING_IS08859_MAX,

/I Cyrillic charset soup (see
http://czyborra.com/charsets/cyrillic.html)

WXFONTENCODING_KOIS, /I we don't sup
KOI8 variants

WXFONTENCODING_ALTERNATIVE, // same as MS-D

wxFONTENCODING_BULGARIAN, I/ used under L
Bulgaria

/I what would we do without Microsoft? They hav
encodings

Il for DOS
wXFONTENCODING_CP437,
wxFONTENCODING_CP850,
wxFONTENCODING_CP852,
wXxFONTENCODING_CP855,
wxFONTENCODING_CP866,

/l and for Windows
wXFONTENCODING_CP874, I WinThai

/I original MS-
/l CP437 merged
/I CP437 merged
/I another cyri
/I 'and another

WXFONTENCODING_CP1250, /I WinLatin2
WXFONTENCODING_CP1251, [l WinCyrillic
WXFONTENCODING_CP1252, /I WinLatinl
WXFONTENCODING_CP1253, I WinGreek (88
WXFONTENCODING_CP1254, [l WinTurkish
WXFONTENCODING_CP1255, /I WinHebrew
wWXFONTENCODING CP1256, /l WinArabic

wWxFONTENCODING_CP1257, /I WinBaltic (s
WXFONTENCODING_CP12_MAX,
wxFONTENCODING_UTF7,
wXFONTENCODING_UTFS,

/I UTF-7 Unicod
/I UTF-8 Unicod

It
ult encoding

byte charsets
n (Latinl)
East European

atin3)
(Latin4)

in5)

Latin4

t currently,
to make all

numbers
n7)

a. LatinO,

port any of
OS CP866
inux in

e their own

DOS codepage
with Latinl
with Latin2

llic encoding
one

59-7)

ame as Latin 7)

e encoding
e encoding

545

CHAPTER7

WXFONTENCODING_UNICODE, /I Unicode - cu rrently used
only by
/I wxEncodingCo nverter class

WXFONTENCODING_MAX

Predefined objects
Objects:
wxNullFont
Pointers:

WXNORMAL_FONT
WXSMALL_FONT
WXITALIC_FONT
WXSWISS_FONT

See also

wxFont overview (p. 1838), wxDC::SetFont (p. 389), wxDC::DrawText (p. 380),
wxDC::GetTextExtent (p. 384), wxFontDialog (p. 574), wxSystemSettings (p. 1334)

wxFont::wxFont

wxFont ()
Default constructor.

wxFont (int pointSize, wxFontFamily family, int style, wxFontWeight weight, const
bool underline = false, const wxString& faceName ="", wxFontEncoding encoding =
WXFONTENCODING_DEFAULT)

wxFont (const wxSize& pixelSize, wxFontFamily family, int style, wxFontWeight

weight, const bool underline = false, const wxString& faceName ="",
wxFontEncoding encoding = wxFONTENCODING_DEFAULT)

Creates a font object with the specified attributes.
Parameters
pointSize
Size in points.
pixelSize

Size in pixels: this is directly supported only under MSW currently where this
constructor can be used directly, under other platforms a font with the closest size
to the given one is found using binary search and the static New (p. 567) method

546

CHAPTER7

must be used.
family

Font family, a generic way of referring to fonts without specifying actual facename.
One of:

WXFONTFAMILY_DEFAULT Chooses a default font.
WXFONTFAMILY_DECORATIVE A decorative font.
WXFONTFAMILY_ROMAN A formal, serif font.
WXFONTFAMILY_SCRIPT A handwriting font.
WXFONTFAMILY_SWISS A sans-serif font.
WXFONTFAMILY_MODERN A fixed pitch font.
WXFONTFAMILY_TELETYPE A teletype font.

style

One of WxXFONTSTYLE_NORMAL , wxFONTSTYLE_SLANT and
WXFONTSTYLE_ITALIC .

weight
Font weight, sometimes also referred to as font boldness. One of:
WXFONTWEIGHT_NORMAL Normal font.
WXFONTWEIGHT _LIGHT Light font.
WXFONTWEIGHT_BOLD Bold font.

underline

The value can be true or false. At present this has an effect on Windows and Motif
2.x only.

faceName

An optional string specifying the actual typeface to be used. If it is an empty string,
a default typeface will be chosen based on the family.

encoding

An encoding which may be one ofwxFONTENCODING_SYSTEM Default
system encoding.

WXFONTENCODING_DEFAULT Default application encoding: this is the
encoding set by calls toSetDefaultEncoding (p. 568)
and which may be set to, say, KOI8 to create all fonts

547

CHAPTER7

by default with KOI8 encoding. Initially, the default
application encoding is the same as default system
encoding.

WXFONTENCODING_1S08859 1...151S08859 encodings.
WXFONTENCODING_KOI8 The standard Russian encoding for Internet.

WXFONTENCODING_CP1250...1252 Windows encodings similar to 1ISO8859 (but
not identical).

If the specified encoding isn't available, no font is created (see also font encoding
overview (p. 1839)).
Remarks

If the desired font does not exist, the closest match will be chosen. Under Windows, only
scalable TrueType fonts are used.

See also wxDC::SetFont (p. 389), wx