wxWidgets 2.6.2: A portable C++ and Python GUI
toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

September, 2005

Contents

(07070174 To | 10 o o] 1ot ST PP OPTOPTPP Xvi
gL oTo [o 1o T o SR 1
WAL IS WXWIHGETS? ...ttt e e neeeaeeeeens 1
Why another cross-platform development tool?oovviiiiiiii e 1
Ao [T (R = To [U =T o =T) 3
Availability and location Of WXWIAQELSuueiiiiiiiiiiiiie e e 3
ACKNOWIBAGEIMENTS ...ttt r et reeeaeeeeens 4
Multi-platform development with WXWIAQELS.......... cooiiiiiiiii e 5
INCIUAE FIlES ...ttt e e e et e e e e e e e aeeeeas 5
[o] = = 5
(@] 1110 U] =1 1o o SRR PURSP 5
= 1 1= 6
WiINAOWS-SPECITIC FIlES ... 6
Allocating and deleting WXWidgets ODJECES.coviiiiiiiiiiiie e 7
ArChiteCtUre dEPENUENCYuiiiiiiiiiiie it eeaeeee s 7
Conditional COMPIIALIONccciiiiiiiiiee e e e e e e e e e e e et seeeaeeaaeeesrenns 8
(O L= U1 OSSPSR 8
1 L= o= U o |11 T 9
Utilities and libraries supplied with WXWIdgetS.... e 10
Programming StratEQIESccvvviiiii i cetee et e e et 12
Strategies for reducing pProgramming EITOISuuuuuieieeeeeeeeeeeiitiiisaeseeeeeeeeerearen e aeaseeeenne 12
Strategies fOr POItADIIITYooiei i e 12
Strategies for deDUGGINGcooiiiiieii e e e e e e e e e e e e aaaaa 12
[o = V=S] P 15
Alphabetical Class refErENCEuvvuiiiiii i i e 18
WXACCEIEIALOINENTIY ...t et r e e e e e e e e eeeens 18
N o] (=T = 1o 1= o[SRR 19
WXACCESSIDIE <.ttt e et e e e e e e e e e e e e e 22
WXACHVAIEEVENTttt e e et e e e e e e e e e e e aaaaaeeas 29
1T o] o PSPPSR 30
WXATCHIVECIASSFACIONY ...ttt et e e 41
WXATCRIVEENTIY ..ttt e e e e e e e e e 42
WXATCHIVEINDUISTIIEAIM ...ttt e e e e e e e e s 45

CONTENTS

WXATCNIVEITEIALON ...ttt e et e e e e e e e e e e e e eas 46
WXATFCHIVENOLITIEE ... e et e e e e e e e e e e e aeneaeanns 48
WXATCHIVEOULIPULSTIIEAIM ...ttt ettt e et e e e e e e e ae e e e e s 49
110N = PO PP PP 51
WXATTAY STIING .ottt et et e e e e e e e e e e e e e et e et e et e e e eeeeeaeeeaaeeeens 63
AN U (Vo [OSSP PPPPPPPPPPPPPRPPN 68
(VAU 1 o] =Y o] 1@ o 1= od (U 72
LTS 4T o 76
WXBIEMAPBULTON ...ttt e et r e et e e e aaaeaeens 89
WXBItMAPDATAODJECT ...ttt e e 94
WXBIIMAPHANGIET ... et e e e e e e e e 95
(=T3S] 4] SRR 98
WXBIUSK ...ttt e e oo oottt et e e et e e e e e e e e aaaaeas 99
4TS U T I SRR 105
WXBUFFEIEADIC ...ttt e e e e e et e e ettt bbb b e e eeeeeee s 107
WXBUFFEFEAPAINTDC ...ttt bbb eeeeeee e 108
VST U1 (=1 =To LT 01U A =T Uy o R 109
WXBUFFEr@AOULPULSTIEAIM ...ttt e 110
WXBUSYCUISOI ... eeenenanaees 110
WXBUSYINTO ..ottt e e e et e e e 111
WWXBIULEON ¢ e et ettt e ettt e e ettt e e et e e e e e e e e e e enn s 112
WXCAlCUIALELAYOULEVENTviiiiii et e e e e e e e s e e e e e e eeaearaanens 116
11O 1= g T P 1 4 USSR 117
WXCAIENAAIDALEALT ...ttt eea e 122
WXCAIENAAIEVENT ...ttt e et bbbttt eeeeeeeeens 125
(O T = PP PRPPPPPRPPTPTR 126
1T (O 1= o124 = o) SRR 128
WXCRNECKLISTBOX. ... ettt ettt ettt ettt e ettt e e e e e e e e e e e eeeteeat ae e e e e aeeeeeeaennnnnnns 132
17704 g T o] SRR 134
WXCROICEDOOK. ... e et e e e e e e e e eeaenaaannns 138
WXCIASSINTO ..o bbb eea s 138
117 (O 11T o | USSP 140
WXCHENEIDIC ...ttt et e e et e e e e e e e e e e e o e o e e bbbttt bbb bbb e e e b e e e eeeeeeeas 141
WXCHIENEDALA.cei e ittt ettt e et e e e e e e e e et e e e bbbttt bbbt e b e e e e e ee e s 142
WXClIENIDATACONTAINET ...ttt e e bbbttt eeeeeeeeeas 143
WXCHIPOOAIT ... 144
WXCIOSEEVENT ...ttt e e e e e e e ettt e e e e e e e e e e eeeaennnnnnns 147
WXCMALINEPAISEYo e e e ettt e e e e e e e e eeeaeeanennns 149
177 o] o 11T U UPTR 157
WXCOIOUIDALA ... ettt ettt e e e e e e e e e e e e e e et bbbttt bbb e bbb e e eeeeeee s 160

CONTENTS

WXCOIOUIDAIADASE ...ttt bbb ee e 162
WXCOIOUIDIAIOT . ..ottt 163
11O o] 1] o Yo = o) SRR 165
WXCOIMMIBNG ...ttt ettt e e et e e e e e e e e e e e ae o e e bb bbb bbbt e bt e bt e e e beeeeeeeeees 171
WXCOMMANAEVENT ...ttt e e e e e e e e eee ettt e e e e e eeeeeeaennnnnnns 172
WXCOMMEANAPTOCESSON ...ttt ettt ettt e e e e e e e e e e e e e e bbb bbbttt e e e et e e eeeeeeeees 178
WXCONAILION ..ottt e et e e e e e e e e e e o e e bbb bbbt bbbt b e e b e e e eeeeeeeas 181
11O o g i{e] == Y= S 184
11O o] T g T=Tox 1o o SRR 198
WXCONIEXIMENUEVENT ... et et e e e e aann s 202
WXCONTEXTHEID ..ttt e e 203
WXCONTEXTHEIDBULIION ...t e e 204
WXCONIOL. ..ottt e ettt e et e e e e e e e e e e oo o e bbb bbbttt e bt e e beeeeeeeeeeas 205
WXCONITOIWIENITEMS ... et e e e e e e e e eeaeeenennns 206
11O o 10 gl T gTo @ TU1 o]0 1] 1= o o S 213
WXCIIHICAISECHION ...ttt eeeeeee e 214
WXCHItICAISECHONLOCKET ...t 215
1 (O3S] o] 0 | TSP 216
1 (O U €] o ST UPPPTT 217
WXCUSTOMDALAODJECT. ...t 222
WXDAEAFOIMAL. ... et 224
(B L= 1= 1] o1 1 6S] £ (Y= 1 o SRR 226
WXDALAODJECT. ...ttt e e e et e 229
B =10 L o] [=Tod (@0 g o To 1] (= 232
(VB T =T L o] T=Tod 6] [4] o R 233
WXDATAOULPULSTIEAM ... ieiii ettt e e et e e e b e e e b e e e e e aenn s 235
WXDAEEEVENT ... ettt e e e 237
1B T 1 =] o] (T 3 o USSR 238
WXDAIESPAN ... 241
1T T = I o = TSR 246
WXDate TImeHONAaYAUNOKILY........ccco i e e e e 272
WXDAtETIMEWOIKDAYS ...ttt ettt e e e e e e e e e e eeeees 272
WXDID. .ot e e oo e bbbt r et e e eea e 272
WXDBDCOIDALAPLE ...ttt e e et bbb eea e 304
WXDBDCOIDET ...ttt e et ee e 304
1T 1@]| o T USSR 305
117254 o T o] 1 | PR 306
WXDBCONNECHINT. ... et e e e e e e e e e e e aenaneaens 307
WXDBIAXDET ... et e e e e et e ettt e e e e e e e e e e e e nanannns 312
WXDIDINT e ettt et e e e e e oo e e e oo bbbt e e e e ea e 312

CONTENTS

WX DD T ADIE ..ttt oot eee s 313
1T o =] 1= [o | SRR 348
110 1€ ¢ Te [0 1 o] {1 USSR 349
WXDDGHATADIEBASE ... 351
WX D C e et e e e et e e et e e annn s 353
1T L O 1o o 1T R 372
WXDDECHENT. ..ottt e e e e e e e e e e e e ettt bbbt e e e e e e e e 373
WXDDECONNECHION ...ttt e e e e e e e e e e e e e e e e e e e bbbt bbb et bbb e e eeeeeeee s 374
WXDDESEIVET ...ttt ettt e ettt e e ettt e e et e e e e e aan e e e s 378
WXDEDUGCONTEXL ...ttt e e e e e e e e e e et eeeeeeeee s 379
WXDEDUGSIIEAMBUT ... 383
WXDEDUGREPOIT ...ttt 384
WXDEDUGREPOICOMPIESS ...vviniiiieeeeeie ettt et e e e e e e e et e s e e e e e e e e e ae e st e e e e e e e e eeeaesnnnnnns 388
WXDEDUGREPOITPIEVIEW ...ttt 389
WXDEDUGREPOIMPIEVIEWSEAot e e e e e s e e e e e e e e aeaaaaanes 390
(VBT oT0To | 2T=T oo 48] o] (o =T HE R 390
WXDelegateRENAEIEINGLIVEcccceiiiee e e e s e e e e e e eeaearaeanes 391
WXDIAIOG ...ttt e e e 392
WXDIAIUDEVENL......ciiiii ittt e et e e e e e e e e ettt eeeeeeeees 401
WXDIAIUDMEANAGET ...ttt ettt e e e e e e e e e e e et e e e eeee s 402
17 L USRI 405
1T T 1T o T R 409
1T T I = V7= ==Y USSR 411
1T 1] o] - 2SR 412
12 T T- Vo = OO PO P PPPPPPPPPPPP 415
WXDOCCRIHARTAME ...ttt eeeeeeeee s 418
WXDOCMENAGET ... e e e e e e e e e e e e e e e 419
WXDOCMDICHIAFTAME ..ot e e e e e e e eeeeeanennns 428
WXDOCMDIPArENtFIamMEc..uiiiiiii et et e e 429
WXDOCPAIENTFTAIME. ... ittt et e et e e e annn s 431
1T Lo Tl =T 1 4]] - L= R 432
WXDOCUMEBNT ... ettt e ettt e e ettt e e et e e e e e an e e e e annn s 437
WX AG MBI . ettt e e e e e ean 444
1T (] o T[] =Y o R 449
(] de] o110 18] {od RSP 450
D o] ol =T o =T PP TPUPTPTRT 453
WXDYNAMICLIDIAIY ...t e e eee e 456
WXDYNAMICLIDIAryDELAIISuuruiiiiiiiiieiii ettt 459
WXENCOAINGCONVEITET ...ttt e et e e e eeee s 460
WXETASEEVENT ...t e e e ettt n e e e e e e e e e e 463

CONTENTS

WXEVEINT .t e ettt e e et e e e e e e e e e e e 464
1T Y =Y o |1 USSP 468
WX <.ttt ettt e e e e e e e e e e eeeba e e e e e e e e e eeeaenannanns 475
WXFFIEINPUESTIEAM ... e e s e e e e e e e e e e e e e e e e e e eeeaenannnnes 481
WXFFIIEOULPUESTIEAMttt e e e e e eeee s 482
WX B ST AM ..ttt e e e e e e e e ettt e e ee e 483
WXIFIIE e ettt ettt e et e e e e e oo e e e o e bbbt eeeeeeeeeas 483
1T LT o oo R 490
WXFIEDAtAODJECT ... 491
WXFIEDIAIOQT. . ..ottt 492
WXFIEDIOPTAIGEL ...ttt e e et 496
WXFTIEHISTOIY ...t e e ee e 497
1T LT LT o TU T 53 =Yg o SR 500
1T [V=T T SRR 501
(T LT @ U 11 01U £ =T U SR 517
WXFTIESIFTEAIM ..ttt e e e e e e e e ettt b e e eeeeeee s 518
1T 121535 (=1 o o R 518
WXFIESYStEMHANUIET ... e 521
2 1= Y o= TP PP PPPPPPPPPPPPPP 523
WXFIEITNPUESTIEAIM ...t e e eeeee s 527
WXFIEIOULPUESTIEAIM. ...ttt e et e e eeeee s 528
WXFINADIAIOGEVENT ... e e e e e et e e et e e e e e e e e eeeaearnnnnns 528
WXFINAREPIACEDALA ...ttt ee e 530
AT Te 1R =T o] =Tt =Y T 1 oo R 531
WXFIEXGIIASIZET ...ttt eeeeeeeee s 532
WX OCUSEVENT. ...ttt e e ettt e et a e e e e e e e e eeenenranaeas 535
1o] | ST RUPPPTTR 536
WXFONMEDALA. ...t ettt e et e e e e e e e 546
WXFONEDIAIOQ ..ottt e e e e e e e e e e 549
WXFONTENUMEIATON ... ettt ettt e e e e e annn s 550
WX ONELIST. ..ottt e et e e e e e e e e e e o e bbbttt e b e e e e eee e s 551
WXFONIMBPPET ... e e e e e s e e e e e e e e e 552
T = 10 1= PP P PR PPPPPPTPTP 556
WX SR . e ettt e e e e oo oo oo bbbt e e eea e 566
WX TP et e ettt ettt e e e e e e e e 569
11T LU o PP UPTPTT 575
1] =] 011 1o o 1 USSR 579
WXGBSIZEITIEIM ... e e e e e e e e ettt e e e e e e e e e e e eeannanennns 580
WXGBSPAN ... e 582
110 (@] 1o R 583

CONTENTS

WXGENEIICDIICEIT ..ttt e e oo et bbbttt bbb eeeeeeeees 583
WXGENEICVAIITALON ...t e e e e et e ee ettt e e e e e e e e eeeaenanennns 587
WXGLCANVEAS. ..ttt ettt ettt e e et e ettt e e et et e e et e et e e et e e e e e e et eaeannn s 589
WXGLCONIEXE ...ttt ettt e e e e e e et e e e e e e et a e e e e e e e e eeennnnananas 592
177 o TR 594
WXGHIACRIALLE <.ttt et e e e oo e e e e e e bbb bbbt en b eeeeeeeee s 626
1T o |2 7= 1o [4 -1 629
WXGHIACEIBOOIEGILON ...ttt e e eee e 632
110 o [OF=1 1[04 oo =] o 1 (o] USSR 632
11 1o [=1 | = 1 o USSR 633
110 g To [OF=1 | To T= 11 o [o USSR 635
WXGHACEINUMBDEIEITON ...t e e e e e ee e 636
WXGHIACRITEXIEAILON ...t e e 637
WXGHAEAITOrCreatedEVENTo e e e e e aeeeaeaens 637
WXGTIAEVENT. ...t e e e e et bbbt bbbt e e e eeeeeeeas 639
WXGHARANGESEIECIEVENT.uiiiii i e e e e e e e s e e e e e eeeaeaaananns 642
WXGHISIZEEVENT ...t eeeeeee e 644
(0] o [OF=1 1121 To] | 2 {=T s o [=T = oSSR 646
WXGHACEIFIOBIRENUEIEN ... et e e e e e e eeaeaanennns 646
WXGHACEINUMDEIRENAEIET e 648
1] 1o [OF=] 1| ST=T o T =T = USSR 648
(V] g To [OF = 1 RS (g aTo 2 =T g o (=T =T SR 649
WXGHATADIEBASE ... e e et e e e e e e e e eeaenanennns 649
WXGIIUSIZEN ..ottt et e e e e e e e e e e e oo e bbb bbbt bbb e e e b e e e eeeeeeeas 653
1T = T 11, o IR 655
WXHBSNSEL. ... et e e e bbb e e e 659
1T o T T 1= 1] SRR 663
WXHEIDCONTIOIET ...ttt e e eeee s 666
WXHeIPCONLrollerHEIPPIOVIAETouiiiiiieiiiieeiiee e 671
WXHEIDEVENT ...ttt e e e e e e et e e 672
1T L= 10 o £ 01V o = S 673
WXHEMICEIL. ...t e e e e e e e ettt e e e e e e e e e eeeaennnnnnns 674
WXHEMICOIOUICEIL. ...t e e eee s 679
WXHEMICONTAINEICEIL....... e 680
WXHEMID CRENUEIET ...ttt e e e e e e e et e bbb bbbttt e bbb e e eeeeeeeens 685
WXHEMIEASYPIINTING ... eeee e 687
1T 0 1= RPN 690
WXHEMIHEIPCONTIOIET ... 691
WXHEMIHEIPDALA ... 695
WXHEMIHEIDFTAME. ... e e e e e e e et e e e e e e e eee e aranaens 697

vi

CONTENTS

WXHEMILINKINTO. ... ee s 700
WXHEMILISTBOX ...ttt e e e e e e e e ettt e e e e e e e e e e eeeaenennnnns 701
WXHEMIPAISEY ...ttt ettt e e e e e e e e e e eeeteea e ae e e e e eeeeeeeaennnnnnns 703
WXHEMIPTINTOUL ... bbbt eeeeeeeeeas 708
WXHEMITAG oottt e e e e e e e e e e et 710
1T L 1= Te | =Y T | =T SR 714
WXHEMITAGSMOUUIE ... e e e e et e e e e e e e e eee e arananns 715
1T 0 1 TAT Ao Fo = (O | SR 716
WXHEMIWINAOW ...t e e e e et e e ettt e e e e e e e e eeeaennnnnnns 716
WXHEMIWINPAISET ...t e e e e e e e ettt e e e e e e e e eeeaenannnnns 725
WXHEMIWINTAGHANAIET ... 730
1172 1 I PP 731
1T (o] o PP PPPRPPTPTPT 732
1T o] o] =8 T o o | 1= SRR 739
WXICONLOCALION ...ttt e et e e e e e e e e e bbbt b bbbt e b eeeeeeeee s 741
WXICOMIZEEVENT ...ttt e et e et e e e et oot b bt bbbt e beeeeeeeeee s 741
WXIAIBEVENL ...ttt e e e e e e e e e e e bbbt bbb beeeeeeeeeeas 742
1T 1T [TP UPT PR 744
WXIMAGEHBNAIET ...t ee e 768
WXIMAGELIST ...ttt e e e e e e e e e e e e et 771
WXINAIVIAUAILAYOULCONSTIAINTettiriiiiiiiiiiiiee ittt 776
1T LTI T= 1o | V=T o | S 779
WXINPUESTIEAIM ... e e e e e e e e e e e e e e e e e e anannnaees 779
WXTPAAUIESS ...ttt e et e e e e e e e e e e oo e bbbt bbbttt e e e e eeeeeee s 782
WXIPVAGAAIESS ...ttt e e e e e e e e e e oottt bbbt bbb e e eeeeeee s 784
1T [0} 4o R 785
WXJOYSHICKEVENT ...ttt e e e e e et e e eeeee s 791
WXKEYEVENT ... e 794
WXLAYOULAIGOTTNIM ... e 798
WXLAYOULCONSEIAINTS ...ttt ettt e et e e e e e e e e e e e et eeeeeeeeees 801
L] SO PP PPOPPPPPPPPPP 803
1T 13 o T T | USRI 809
WXLISEBOX. .. ettt ettt ettt et e et e e e e e e e e e oo oo e bbbt b e e eeeeeeeas 810
L] (O 1 OO PPPPPPPPPPPP 815
WXLISTEVENT. ...ttt e et e e e e e e e e e oo oo bbbttt bbb et eeeeeeeeeas 833
1T =3 41 =T o SRR 837
1T LS A1 =T 0 1 1 SRR 841
Sets a NeW teXt COlOMWXLISTVIBWoiiie et eeeeeeeeees 842
1T e o= LSRR 845
172 o T TP 852

Vi

CONTENTS

117 o o @ = 1o R 858
WXLOGGUI ..ttt ettt ettt e et e e e e e e e e e e e e e ee s 860
WXLOGNUIL ...t e e e e e e et e e e e eeeee s 860
WXLOGPASSTRIOUQGN ... e e et e e e e e e e e e e e arannens 861
WXL OGSTARIT ...ttt ettt e et e e e e e e e e e e e e ettt e e e e e e e e e 862
e T 1] £ (=T U o RSP PPPT 862
1T o o 1= {1 SR 863
1T oo VAV o o 1 S 863
WXLONGLONG ..o e e e e e e e e e e e e e e e 865
WWXIMIBSK .. ettt ettt e e e e e e et e et ettt ta e e e e e e e e e e eenaa e e e e e e e eeeeeaennnnnnns 868
WXMBXIMIZEEVENT ...ttt e e e e e e e e e e e ettt e e e e e e e e eeeaenennnnns 870
WXIMBICONV ... et e ettt e e ettt e e ettt e e e e e an e e e e annn s 871
WXMBCONVIIIE ... bbbt eeeeeeeeeas 873
WXMB CONVUT T <.ttt ettt e et e e e e e e e e e e e esaae e s e e e eenteeeteestennesnseeeeeeeeeees 874
WXIMBECONVUTES ...ttt e e e e et et n e e e e e e eeeannnenaens 875
WXMBECONVUTELG ...ttt e e et et e e ettt e e e e e e eeennnnanaees 876
WXMBECONVUTESZ ...ttt e e e e et e et e r e e e e e e eeeaennanaens 876
WXMDICRHITAFTAME ... e e e e e e e e ettt e e e e e e e e eeeaenennnens 877
WXMDICHENIWINGOW ...ttt e e e e e e e e e e e eeete e e e e e e e e eeeaenennnnns 880
WXMDIPArENTFEIAME ... e ettt e e e e e et e e e ennn s 882
1T =T L= 4 1 g USSR 888
WXMEAIAEVENT. ...ttt e et e e e e e e et e bbbttt bbb e e eeeeeee s 894
WXMEMOTYBUTTEE ...t e e ee e 894
1YL= 1T] Y/ B L TSP 897
(VY =T aaTo] Y S = T o | R 898
WXMEMOTYINPUESTIEAMeiiiii it e e e et e e e e et e e e e e aann s 899
WXMEMOTYOULPUESTIEAMouiiiiii e e e s 900
WWXIMIEINU <.ttt et e e ettt e ettt e e e et et s e e e bt e e e e e an e e e e ennn s 901
WXIMIBNUBAT ... ettt e ettt e et e e e e et e e e annn s 914
WXMENUEVENT ... e ettt e e e e e e e e e ennn s 923
Y =T U1 (=T o PP PRP PP PR PPTPTP 924
WXMESSAQGEDIAIOG ...ttt 929
WXIMBLATIIE ..ot e e 931
WXMELAFIIEDIC ...ttt e et oo e et oottt bbb e e e e ee e 932
WXMIMETYPESMANAGET ...evveitiin i et e e ettt e e e e e e e e e e e ettt e s e e e e e e e eeaestetat e e s eeeeeeeesesrnnnnns 933
WXIVIINTFTAIMIE ... et e ettt e e e e e e e e e e eeeeeta e an e e e e eeeeeeeaennnnnnns 936
1T (] I USSR 939
WXIMIOQUIE... ...ttt ettt e e e e e e e e e e eeeae e ae e e e e aeeeeeeaenrnnnnns 940
WXMOoUSECaptUreChaNgEAEVENTuueiiiiiiiiiiiiii et 941
WXIMOUSEEVENT. ...ttt e e et et e et e et e e e e e e e e eeennnnnnaees 942

viii

CONTENTS

WXIMIOVEEVENT. ...ttt e e e e et et n et a e e e e e e e e eeeaennanaeas 950
WXMUIEICNOICEDIAIOQ ...ttt e e e 951
WUXIMIUEEX et ettt ettt et ettt e e ettt e ettt et e e et et e e e e bbe e e e e e an e e e e ennnns 953
WXIMUEEXLOCKET ...ttt eeeeeeeee s 956
17 LT LR 956
WXNOEEDOOK ... e e 958
WXNOLEDOOKEVENT ...t eeee e 966
WXNOLEDOOKSIZET ... e e 967
WXNOTFYEVENT ...t e et e e e ee e e 968
WXODJECE ...ttt ettt e et e e e e e e e e et e e 969
WXODJECIRETDALA ...t e et et 973
WXOULPUESTIEAIM ... e e e e e e e e e e e e e e e e e e nnnneees 973
(T ad= (o [Ty (U o] BT 1o Yo R 975
WXPageSetupDialOgDALa.uuuuriiiiiiieiii ettt 976
WXPAINIDC ...ttt e e et e e e e e e e e et o e e o e bbbt e bbbt e bt e et b e e eeeee e s 981
WXPAINTEVENT ...t e e e bbbttt eeeeeeeee s 982
WXPAIBTEE ...ttt e oo e e e oo e e e e e bbb e e eeeaeas 983
1Tz 1 = SRR 987
WXPaSSWOIAENTIYDIAIOFueiiiiriitiiiiie et 990
1T 11] SRR 991
1 = o TSP UPPPTT 993
WXPENLISE ...ttt e et e e e e e e e e e e o e bbbt e e e eee e 999
1T 1 | S USSR 1001
WXPOSESCIIPIDC ... ettt s e e e e e e e e e e et ae e e e e e e aeeeeaasata e aeeaeeaeeeaenrares 1002
WXPTEVIEWCAINVAS ...ttt ettt e e e e e e e e et e e e e e e kbbbt e et e et et eeeeeaeeaaeeeeas 1003
WXPTEVIEWC ONITOIBA ...ttt e e e e e e e e e aeeee s 1004
WXPTEVIEWTAIME ... ettt e e e e et ettt e e e e e e e e e eeeenentn e aeeaeeeeeeeeernnns 1005
(R E D - | - USRI 1007
WXPTINEDIAIOQ - ..ottt e e e 1013
WXPTINEDIAIOGDALA. ...t 1014
1 1101 S TP PPPPPPPPRPON 1018
1T €11 (= 1 USSP 1020
WXPTINEOUL ...ttt ettt e e e e oo bbbttt bbbt et e et e e e eeaeeeeeaeeas 1021
WXPTINEPTEVIEW ...ttt bbbttt e e et e e eeeeeaaeeeaas 1025
WXPTOCESS ...ttt ettt ettt e et e e et e ettt ae bbbt e e e e e e et e e eee b e a e e e e e e e e e eenrane 1028
WXPTOCESSEVENT. ... et e et e e e e e e eeaen s 1033
WXPTOGIESSDIAIOQ ...ttt 1033
WXPTOPEIrtYSNEELDIAIOGuvviriiiiiiieiiee ettt 1036
1T d (0] o Tt o | SRR 1038
WXQUANLIZE ...ttt e e et e e et e e e e e e e e e e e et e e e ee e e e e ee it e e eeeranas 1040

CONTENTS

WXQUETYLAYOULINFOEVENTvvieiiii i e e e e e e e s e e e e e eeaeeraees 1041
(TR Lo o] =0) USSP 1043
WXRAAIOBULLON. ...ttt e ettt e e e e e e e e e eeeentat e e e e e e eeeeeeeeenens 1050
WXREAIPOINT ...ttt e e et e e e e e e e eeeaeaas 1052
12T o TP PPPPPRTT 1053
WXRECUISIONGUAIT. ...ttt ettt bbbttt et et e e eeeaeeaeeeeeas 1058
WXRECUISIONGUAIAFIAQvvvveie i e e e e e e e e e e e e eeaeeranes 1060
WWXR EGEX . .1ttt e 1060
WXREGION ..ottt ettt e e e e e et e e e e e et et e e e ae e e e s 1064
WXREGIONITEIALION ...ttt e n et e e e e eeeeeees 1068
WXREGKEY ... e 1070
WXRENAEIEINALIVE. ...ttt e e e e e e e e e ee e e tata e e e e e e eeeeeaeennnns 1075
WXRENAEIEIVEISION ...ttt bbbttt ettt eeeeeaeeaaeeeeas 1078
WXSASNEVENT ...ttt oottt e e e e e e e e et et eneat e e e e e e e eeeaenaaaas 1079
TS T= 1] 1= 1Y 10 AT T To (o PR 1081
WXSASHWINAOW. ...t e e e et e e e e e eeaeeas 1084
1ol] o 1= To VAN 4 - YU 1089
WXSCOPEAPTT ...ttt e e et e e e e e et s e e e e e e ettt e e e e tr e e neeee s 1090
WXSCOPEATIEAP ...ttt e et e e e e e e eeeeeaeeeeeas 1093
WXSCIEENDC ...ttt e et e et et e et e e e e ae e 1094
1T e o1 - T USSP 1095
WXSCIOIEAWINTOW ...ttt e e e e ee e e e aeeae s 1101
WXSCEOIBEVENT ...ttt e e et e ettt e s e e e e e e e e eeeeeean e e e e eeeeeeeeeeenens 1110
WXSCIOIMINEVENT ...ttt bbbttt e e e et e e eeeaeaaeaeeas 1113
1T ST =T o] T = PP 1114
WXSEECUISOIEVEINT ...ttt ettt e e e e e e ettt e bbb e r e e e e e e e eeeenrnnes 1116
e 1= A= TP TPPPPRTT 1118
WXSTIMPIEHEIPPIOVIART ... 1119
WXSINGIECNOICEDIAIOGttt e e 1119
WXSINGIEINSTANCECNECKET ...ttt 1121
WXSIZ ettt ettt e e oo e e oo e oo oo bbb e ettt et e e e e et e e aeeaeeas 1123
WXSIZEEVENT ...t e et e e ettt ettt e e e e e e e e e eeeaetan e e e e e e eeeaeaeerana 1126
S Tr=] SO PPPPPPRPON 1127
1T 4= = o USRI 1135
WXSIZEITERIM ..ottt e e oo oo bbb bbbttt et e et e e e eeaeeaeeeeaas 1137
1T o = PR 1141
WXSOCKAGUIESS ...ttt e et e e et ettt e e e e e e e e e eeeeeeatn e aeaaeeeeeeneennnns 1150
WXSOCKEIBASE ...ttt e e e e e e e et e e et e e e e e e e e e eeaeenaens 1151
WXSOCKEICHENT ...ttt e e e e e e e e e e e e aetet e e e e e e e eeeeeenrnnns 1167
WXSOCKEIEVENT ...ttt e e et e e e e e eeaeeas 1169

CONTENTS

WXSOCKELINPUESTIEAM ... i e s e e e e e e e e e e e e a e e e e eeeeeeeernnes 1170
WXSOCKETOULPULSTIIEAMitiiiiiiiie ittt r e n e e eeeee s 1170
WXSOCKEESEIVET ...ttt oot e e ettt ettt e st e e e e e e e eeeaneata e e e e eeeeeeeeeernnns 1171
1S Lo 10 o o (PSP P P P PP PPPPPPPPRPON 1173
WXSPINBULTON ...ttt e et e e et r e e e e eeaeeeeeeeees 1175
11T o1 L5 4 PSP 1178
WXSPINEVENT ... e e e e e e ettt ae e e e e e e eeeeeae e e aaeeeeaeeeaanrare 1181
WXSPIASNSCIEEN ... e e e e e e e e e e e e e e e aaara—a 1182
WXSPHEEEIEVENT ... r et r e e e eeeeeees 1184
WXSPHEEEIVWINTOW ...t r e e e e e e e e e ee s 1186
WXSPHEEIRENUEIPAIAIMS ...ttt e e e e e e 1197
1T = Lol L = U 1= SRR 1197
WXSTACKWALKET ...t e e e e e e e aeeeeeas 1199
WXSTANAAIAPALNS ... e e e e e ettt e e e e e e e e e aeerneas 1201
1T 2= L1 (o1 21 1 - o PSPPI 1204
WXSTATICBOX ..ot eiie ittt e et e e e e e e e e e e ookt b bbbttt e e e e e e e e e e aaeeeeas 1206
WXSTALICBOXSIZET ...ttt bbbttt et e e e e e aeaeeaeeae s 1208
1T = LA [IR T USSR 1209
1T = LA [= USSP 1210
WXSTATUSBAN ... ettt et e e e e e e e e e e ae s 1213
WXSTADIAIOGBUIIONSIZET ...ttt e e 1218
1T 00 o)A =] o PP 1220
WXSTITEAMBASE ... et et e e 1221
WXSTTEAMBUTTEE .. e e e e e e e 1223
WXSTrEAMTOTEXIREAINECLON ...ttt 1228
1T 1 1 o PP 1229
WXSTIINGBUTTEI r e e ae e e es 1252
WXSTHNGBUIEILENGIN ... e 1253
WXSTINGCHENIDALA. ...t e e e e e e es 1254
WXSTIINGINPUESTIEAM ...ttt e e e e e e eeeeeeeeeeees 1255
WXSEINGOULPULSIIEAIM ..ot e e e e e ee e e e e e e e e e e e ae et e e e e e eaeeeaeesnnes 1255
WX SN TOKENIZET ...ttt e et e e e e aeeee s 1256
WXSYSCOIOUrChaNQEAEVENTcccii i e e e e e e s e s e e e eeaeeranes 1258
1) (=11 1@ o] 1o o =PRSS 1259
1SS (=T P 1T 11T T PP 1262
WXTASKBAIICON ...ttt e e e e e e et e e et e e e e e e e e eeeeeenneas 1267
LTI 2 1 =T o | PP 1269
WXTCPCONMNECTION ...ttt ettt e e e e e e e e e eeeaetata e e e e aeeeeeeenenens 1270
WXT CP SEIVET ... ettt e e et e e e et e e e e et e e e e ee e e eeeren s 1274
1T IC=T 10T o 1L PP 1275

Xi

CONTENTS

WXTEMPFIEOULPULSIIEAM ...uviii i e e e e e e e e e e e e s e e e e e eeaeeranes 1277
{2 =X YA A1 ST P PP PPUPPRTT 1278
1T QI = 1 USRI 1282
L Q=) i BT L= 1O o =T o S USUPPPPP 1300
WXTEXIDIOPTAIGEL. ... e e e e e e e e e eennenes 1302
LT I=Y e =11 D= 1T PP 1303
WXTEXEFIIR ...ttt e e e e e eeeeeeaeeeaas 1304
WXTEXEINPUESTIEAM ..eeuiiiie it e e e et e e e e e e e e e e e ee bt e e e eeeanneeeaeren s 1310
WXTEXEOULPULSTIIEBIM. ...t e e e e e e e e e e e e e e e eennenes 1313
1 QI =Y AV 11 o F= 1o) USRI 1315
1T I 1= T USSP 1318
WXTRIEAAHEIDEN ...t r e e e e e e es 1324
1 L1 SO PPPP PP PPPPPPPPPRPON 1326
WXTIMEIEVENT ...ttt et e ettt e e e e e e e e e eeeaneat e e e e e aeeeeeeenennns 1328
1T I =TS o - Lo T PP 1329
1T I 0] = £V o = PP 1335
1T I AT T To (o PP 1336
WXTOQIEBULION ... e e e e e e 1337
1T QI 0101 = T S UTUPRPRRTRR 1340
WX T OOITIP ettt ettt e e e e e e e e e e e e e e e ee e e e aeeee s 1356
WXTOPLEVEIWINAOW ...ttt e r e e e e e e e ee s 1357
WXTTEECI .. ettt ettt e e e e oo e oot bbbttt ettt et e e e e e e e eeeaeeas 1362
WXTTEEEVENT ... et e et e e e e e e et e e e e e e e e eenen s 1380
WXTTEEITEIMDALA. ... e e eieeeeeieiii et e e e e e et e et e e e e e e e e eeeennnnes 1383
WXUPAATEUIEVENT ... it e e e e et s e e e e e e e e e e e aeta e aeeaeeeeeeeenrnnes 1384
WXURI et e ettt e e e e e e e et e e eeneeeen e 1388
1172 SRR 1395
1TV £z U T =1 (o SRR 1397
1TV £= L4 =Yg | USSP 1399
V£ L= gL - T RPN 1407
WXVIBW .ttt ettt ettt ettt e e e e e e e e e e oo oo oo ook kbbb bbb bbbttt bbbttt ettt e e e e e e e e aaeeeeas 1408
1Y A 1S3 1= T) USSP 1412
WXV SCIOIEAWINTOWt e e e e e e e e e aeeaeeas 1419
WXWVINAOW. ...ttt et e e e e e e e e oo oo ookttt bttt e e ettt e e eeaeeeeeeeeas 1424
WXWINAOWCTEALEEVENT ...ttt et et e e e e e e e ee s 1479
WXWINAOWDC ...ttt e oo e e ettt a e e e e e e e e eeeanentn e aeeaeeaeeeeeernnns 1479
WXWINAOWDESTIOYEVENTouiiiiiiiiiiiiiiiiiic e 1480
WXWINAOWDISADIET ... et e e e e e e e e eeeeeenees 1481
WXWVIZAID ..ottt e oot e e e e et ettt e e e e e e e e e eeeeenan e e e e eeeeeeeeeernnns 1481
WXWIZAIAEVENT ...ttt e bbbttt e e e et e e e eeeeeeaeeeeas 1486

Xii

CONTENTS

2= T o | = o = PP 1488
WXWIZArdPAgESIMPIE ...t 1489
WXXIMIRESOUICE ...ttt ettt ettt e e e e e e e e e eeeeeeata e e e e e e eeeeeeeeennas 1491
WXXMIRESOUICEHANIET ...ttt 1495
WXZIPCIASSFACIONY ...ttt r e e e e e aeeee s 1499
LT AT o] 24U 1500
(VAT o g o181 5] (== Vg o PP 1506
1T o N[11 = USRS 1508
WXZIPDOULPULSIIEAIM. ...ttt ettt e e e e e et e et e e e e e e e eeeeeaeeeeeas 1508
WXZIIBDINPUESTIIEAIM ...t e e e e e ee s 1510
WXZIIDOULPULSTIIEAM ...ttt e en e e e eeeee s 1512
U T o) o £SO 1514
Alphabetical functions and Macros liSt..........ccoeiiiiiiiiiiiii e 1514
V72T 6710 I o £ = o] 0 LSRR 1519
Application initialization and terminationccccvviiiiiiiiii e 1520
Process CONtrol FUNCHONSoooiiiiiiii e e e ee e e 1523
THread fUNCHIONSot e e e e e e e e e eee et a e e e e e e eeeeeeenens 1527
FIle FUNCHIONS ... e e et ettt e e e e e e e e e aeeenanenn s 1529
Network, user and OS fUNCHIONSouuuueiii e e e ee e 1535
IS Ao I {0 o 1 o o 1539
(DT 1o I {1 Tox 1 o] o =P 1543
MALth FUNCHIONS. ..o e 1552
LTI {0 Tox 1o o SR 1553
PrINTEE SETHNGS .. eeiieeiee ettt e e e et e et e e e e e 1555
CliPDOAI FUNCHIONSeeeiieiie ettt e e e e e e a e e e e e e ne e 1557
MiISCellaNEOUS FUNCHIONSot e e e ee e e e es 1559
(2 Lo o (=T gl 4= ol (o P 1569
L I I 11T 1o o PR 1571
(o To 18] 1 1T 1P 1577
TIME FUNCHIONS. ...t et e ettt e e e e e e e e e e e eee bt e e e e e aeeeeeeeeenens 1583
Debugging macros and fUNCLIONSuiiiiiii i s 1586
Environment acCess fUNCLIONSooiuiiiiiii e 1589
(6101011 r= 1 0| £ TP 1591
Preprocesser symbols defined by WXWIAQeLScuvvviiiiiiiiiiiieieee e 1591
Standard event IdeNtifierS...... ... 1596
() oo o =P 1598
Language identifiers.........oooi it 1600
SEOCK TEEIMS ..ttt ettt et e 1608

Xiii

CONTENTS

(O Fo TS ST o)V o= =T (o] /USSR 1611
TOPIC OVEIVIBWS ...ttt ettt ettt eee e e e e e ettt et et e et et e e te et e e e e e e e e aesnne s s enas 1627
(O g F= T [0 Lo g (ot 3 G 1627
NOtes 0N USING the rEfEIENCE........oiiiiee e 1632
Writing a wxWidgets application: a rough guideocoooiiiiiiiiiii e 1632
wxWidgets Hello World Sampleooooiiiiiiiii e e e e e aeeaanes 1633
WXWIOAQEES SAMPIES. ... e e e e e e 1635
WXADD OVEIVIEW ...ttt et e e et e e e e e e e e e e e e e ekttt et e e et e eeeeeeeeeeeeenas 1645
Runtime class information (aka RTTI) OVEIVIEWccoviiiiiiiiiiiiiii e 1647
WXSTITING OVEIVIEW ...ttt ettt e e e e e e e r e e e et e e e e e e e e eeeeeeeeeenes 1649
BUFfEr ClaSSES OVEIVIBWottt 1654
Date and time ClaSSES OVEIVIEWuuuuiuiiiiiiiiiiiiiieeeteeete e e e e e e e e e e e e e bbb 1654
Unicode support in WXWIAQELSoevvviiiiiieie et e e e e s e e e e e e e e aaaa s 1658
WXMBCONV ClASSES OVEIVIEWiiieeiiiieiieiit e e e e e e e e e ettt a e e e e e e e e e eeeaetaea e e s e e e e eeeeeeernens 1661
INtErNAtIONAIIZALION ... 1664
Writing NoN-ENglish appliCatIONSeviiiiiiiiieiiieeeee e 1665
CONtAINET ClASSES OVEIVIEW ...ttt e e e e e et ettt e e e e e e e e e eeaeenn e e e e aeaeeas 1668
File classes and fuNCLIONS OVEIVIEWcoii i 1669
WXSEIEAMS OVEIVIEW ...ttt et e e e e e ettt ettt e e e e e e e e e e e ee ettt a e e e e e e eeeeeeentntnnnaeeaeeeeeeeeennnn 1669
WXLOQ ClaSSES OVEIVIEWvevviiiiisi e s e e ee ettt et e e e e e e e e e et ae e e e e e e e e eeeaetataaaeeaeeaeeeaeernnes 1671
(D=1 0T [[TaTo J0 1 V2= oV o P 1674
WXCONFiIQ ClaSSES OVEIVIEBW......uuiiii e e et s et e e e e e e e e e e an e e e e e e eeaeeranes 1676
WX S Y STOIM ..ttt e ettt e e e e e 1677
Event handliNg OVEIVIEW.coiiiit ettt 1679
CH+ XCEPLIONS OVEIVIEW ...eeiiiiiieieee ettt et e e e e e e e e e s e e s e e s e ae e s ne s 1689
WINAOW SEYIES ...t e e ettt e e e e e e e eeeeeeas 1690
WiINAOW DEIELION OVEIVIEWuuiiiiiiiiiiieiiiee ettt e e 1690
WXDIAlOG OVEIVIEW ...ttt e e et e e e nee e e e e eeeeeees 1693
WXV AIHALOT OVEIVIEW. ...ttt bbbttt e et e e e aeeeeeaeaeeas 1693
CONSITAINTS OVEIVIEW ...ttt e e e e e e e e e et ettt e e e e e e e e e e e eeabnnnn e e e eeeaeeas 1695
SHZEI OVEIVIBW. ...ttt ettt ettt et e e e e e e e e e e e e e e e e e e aneasaasaa e 1698
XML-based reSource SYSIEM OVEIVIEWcccviieiiiiiriiiiiine ettt e e e e e e 1705
SCIOIING OVEIVIBW ...ttt e e e e e e e e e n e e e e e e e ae e s 1714
Bitmaps and ICONS OVEIVIEW ...ttt ettt ettt e e e e e e e e e 1715
DEVICE CONEXE OVEIVIEW iieeeeee ettt e ettt e e e e e e e e e e e eee ettt e e e e e e e e e eeeennnnnnn e es 1718
WXIFONE OVEIVIEW ...ttt ettt e e e e e e oottt et e et e e e eeeeeeeeaeeas 1719
FONt €NCOAING OVEIVIEW.ciiiiiie ittt e e e e e e 1720
WXSPIIttErWINAOW OVEIVIEWe it e e a s e e e e e e e e e et e an s e e e e e eeaensnne 1721
WXTTEECHIT OVEIVIEW ...ttt ettt e e e e e e e e et e et tat e e e e e e e eeeeeeennnas 1722
WXLISECETT OVEIVIBW ...ttt bbbttt e et e eeeeeeeaeeae s 1724

Xiv

CONTENTS

WXIMAGELIST OVEIVIEBW ...ceiiiiiiii s ettt e e e e e ettt s s e e e e e e e e e e e aasat s e e e e eaeeeaeernnes 1724
WXBOOKCHT OVEIVIEW ...ttt e e e e et ettt e e e e e e e e eeeeeenneas 1724
CommON dIalOgS OVEIVIEWcceeiieieiieiiie ittt e e e e e e e e e e e e e e e n e 1725
DOCUMENTVIEW OVEIVIEW ...ttt ettt et e e e e e e e e e e e e e e e e e e e s bbb bbb e e 1729
TOOIDAN OVEIVIEW ...ttt e e e ettt e e e e e e e e e e e eeeat e e e e e e eeeeeeeeennas 1735
WXGIA ClASSES OVEIVIBW ...ttt bbbttt e e e e e e e e e e e e ee s 1740
WXTIPPTOVIOEI OVEIVIEW. ... eiiiiities e e e e et e s e e e e e e et e e e e e e e e e e ee e vetaranaeeaeeaeeesensnnes 1741
PrINtING OVEIVIEW ...t e e e e e e e e et e e et e e e e e eeeeeanraraa s 1742
Printing under UNiX (GTK) ..ot e e e e e e e eneeenn s 1743
MUIIENIEAdING OVEIVIEW......oiiiii ittt e e e e e e e e 1743
Drag and drOP OVEIVIEWoceiieiiiiittire ittt ettt et e e et e e e e e e e e e e e s e e 1744
WXDAtAODECT OVEIVIEWuviiiiiiiiiiiiiee ettt e e e e e 1746
Database ClaSSES OVEIVIEWcciiciiiiiiiiiiiieiie ettt et e e e e e e e e e e e e e e bbb e e 1747
Interprocess COMMUNICALION OVEIVIEWccieiiiiiiireiiieiie i e e n e e e 1769
WXHTIML OVEIVIEW ...ttt bbbttt et et e eeeeaeeaaeeeeas 1772
ENVIrONMENt VariabIesoooiiiii e 1781
WXPYENON OVEIVIEBW ...t e e e e e e e e e e e et e e e e e e e e eeeaeesnne 1782
Syntax of the builtin regular expression lirary ... 1793
Archive formats SUCH @S ZIP.....uuurriiieiiiiiiiii e 1806
Backward COmMPAatiDIlitycoiieiii e 1813
g Fo Va0 g g0 =T = TP 1817
12 I G oo ¢ TSP 1817
WXIMSWV POIT. ..o e e e e e e e e e e e e e e e e e e eennenes 1817
WXIVIBIC DOIT .o eennenes 1825
WXPAIMOS POI ...ttt r et e e e e e eeee s 1825
L@ IS YA o Lo] PP UPPRRTPRPN 1825
17211, [©7 I o o TSP 1825
1120, B o o ¢ PR UTPTRTPRPN 1826
10 =) OO PPPPPPPPRPRP 1828

XV

Copyright notice

Copyright (c) 1992-2002 Julian Smart, Robert Roebling, Vadim Zeitlin and other
members of the wxWidgets team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, Igpl.txt, gpl.txt, licence.txt,
licendoc.txt) for conditions of software and documentation use. Note that we use the old
name wxWindows in the license, pending recognition of the new name by OSI.

wxWindows Library License, Version 3.1

Copyright (c) 1998-2005 Julian Smart, Robert Roebling et al

Everyone is permitted to copy and distribute verbatim copies of this licence document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENCE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Library General Public Licence as published by the Free Software Foundation;
either version 2 of the Licence, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public Licence for
more details.

You should have received a copy of the GNU Library General Public Licence along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licenced under the
wxWindows Library Licence, applying either version 3.1 of the Licence, or (at your
option) any later version of the Licence as published by the copyright holders of version
3.1 of the Licence document.

2. The exception is that you may use, copy, link, modify and distribute under your own
terms, binary object code versions of works based on the Library.

3. If you copy code from files distributed under the terms of the GNU General Public
Licence or the GNU Library General Public Licence into a copy of this library, as this
licence permits, the exception does not apply to the code that you add in this way. To
avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice

XVi

COPYRIGHT

accordingly.

4. If you write modifications of your own for this library, it is your choice whether to permit
this exception to apply to your modifications. If you do not wish that, you must delete the
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by

XVii

COPYRIGHT

someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

Xviii

COPYRIGHT

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification™.)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d

XiX

COPYRIGHT

requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.

XX

COPYRIGHT

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a

XXi

COPYRIGHT

special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,
link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you

XXii

COPYRIGHT

could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY

XXiii

COPYRIGHT

PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libr aries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's name and a brief id ea of what it
does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library Genera | Public
License as published by the Free Software Foundatio n; either
version 2 of the License, or (at your option) any | ater version.
This library is distributed in the hope that it wil | be useful,
but WITHOUT ANY WARRANTY:; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to t he Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your schoal, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright inte restin the

library "Frob' (a library for tweaking knobs) writt en by James

Random Hacker.

<signature of Ty Coon>, 1 April 1990

XXiV

COPYRIGHT

Ty Coon, President of Vice

That's all there is to it!

XXV

Introduction

What is wxWidgets?

wxWidgets is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports all desktop versions of
MS Windows, Unix with GTK+, Unix with Motif, and MacOS. An OS/2 port is in progress.

wxWidgets was originally developed at the Artificial Intelligence Applications Institute,

University of Edinburgh, for internal use, and was first made publicly available in 1992.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin, Vaclav Slavik and many others.

This manual contains a class reference and topic overviews. For a selection of
wxWidgets tutorials, please see the documentation page on the wxWidgets web site
(http:/mvww.wxwidgets.org).

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWidgets was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

1. low price;

2. source availability;

3. simplicity of programming;

4. support for a wide range of compilers.

Since wxWidgets was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWidgets has.

As open source software, wxWidgets has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWidgets a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those

CHAPTER 2

produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWidgets helps to insulate the programmer
from these winds of change. Although wxWidgets may not be suitable for every
application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming interface
than the native APIs. Programmers may find it worthwhile to use wxWidgets even if they
are developing on only one platform.

It is impossible to sum up the functionality of wxWidgets in a few paragraphs, but here
are some of the benefits:

e« Low cost (free, in fact!)

* You get the source.

e Available on a variety of popular platforms.

* Works with almost all popular C++ compilers and Python.
e Over 50 example programs.

e Over 1000 pages of printable and on-line documentation.

e Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

e Simple-to-use, object-oriented API.

* Flexible event system.

e Graphics calls include lines, rounded rectangles, splines, polylines, etc.

e Constraint-based and sizer-based layouts.

» Print/preview and document/view architectures.

* Toolbar, notebook, tree control, advanced list control classes.

» PostScript generation under Unix, normal MS Windows printing on the PC.
e MDI (Multiple Document Interface) support.

e Can be used to create DLLs under Windows, dynamic libraries on Unix.

« Common dialogs for file browsing, printing, colour selection, etc.

 Under MS Windows, support for creating metafiles and copying them to the
clipboard.

CHAPTER 2

An API for invoking help from applications.

Ready-to-use HTML window (supporting a subset of HTML).
Network support via a family of socket and protocol classes.
Support for platform independent image processing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

wxWidgets requirements

To make use of wxWidgets, you currently need one of the following setups.

(a) MS-Windows:

1.
2.

A 32-bit or 64-bit PC running MS Windows.

A Windows compiler: MS Visual C++ (embedded Visual C++ for wxWinCE port),
Borland C++, Watcom C++, Cygwin, MinGW, Metrowerks CodeWarrior, Digital
Mars C++. See install.txt for details about compiler version supported.

At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(b) Unix:

1.
2.

Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

Almost any Unix workstation, and one of: GTK+ 1.2, GTK+ 2.0, Motif 1.2 or
higher, Lesstif. If using the wxX11 port, no such widget set is required.

At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(c) Mac OS/Mac OS X:

1.
2.
3.

A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.
CodeWarrior 5.3, 6 or 7 for Classic Mac OS.

The Apple Developer Tools (eg. GNU C++), CodeWarrior 7 or above for Mac
oS X.

At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

Availability and location of wxWidgets

wxWidgets is available by anonymous FTP and World Wide Web from
ftp://biolpc22.york.ac.uk/pub (ftp://biolpc22.york.ac.uk/pub) and/or
http://mww.wxwidgets.org (http://www.wxwidgets.org).

CHAPTER 2

You can also buy a CD-ROM using the form on the Web site.

Acknowledgements

Thanks are due to AlAl for being willing to release the original version of wxWidgets into
the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWidgets, and
the many others who have been involved in the project over the years. Apologies for any
unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar, Alejandro
Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Mattia Barbon, Michael Bedward,
Kai Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Marco Cavallini, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Stefan Csomor,
Andrew Davison, Gilles Depeyrot, Neil Dudman, Robin Dunn, Hermann Dunkel, Jos van
Eijndhoven, Chris Elliott, David Elliott, Tom Felici, Thomas Fettig, Matthew Flatt,
Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher, Guillermo Rodriguez
Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale, Patrick Halke, Stefan
Hammes, Guillaume Helle, Harco de Hilster, Kevin Hock, Cord Hockemeyer, Markus
Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhnem Lavaux, Ron Lee, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindgvist, Thomas Runge, Tatu Mannisto,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Ryan Norton, Hernan
Otero, lan Perrigo, Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti,
Garrett Potts, Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach,
Arthur Seaton, Paul Shirley, Wlodzimierz 'ABX' Skiba, Vaclav Slavik, Julian Smart, Stein
Somers, Petr Smilauer, Neil Smith, Kari Systa, George Tasker, Arthur Tetzlaff-Deas,
Jonathan Tonberg, Jyrki Tuomi, Janos Vegh, Andrea Venturoli, David Webster, Otto
Wyss, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

'‘Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.l.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Multi-platform development with wxWidgets

This chapter describes the practical details of using wxWidgets. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is "wx/wx.h" ; this includes the most commonly used modules of
wxWidgets.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

/I For compilers that support precompilation, inclu des "wx.h".
#include <wx/wxprec.h>

#ifdef _ BORLANDC
#pragma hdrstop
#endif

#ifndef WX_PRECOMP

/I Include your minimal set of headers here, or wx. h
#include <wx/wx.h>

#endif

... how your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation which is largely automatic for compilers with necessary
support. Currently it is used for Visual C++ (including embedded Visual C++), Borland
C++, Open Watcom C++, Digital Mars C++ and newer versions of GCC. Some
compilers might need extra work from the application developer to set the build
environment up as necessary for the support.

Libraries

Most ports of wxWidgets can create either a static library or a shared library. wxWidgets
can also be built in multilib and monolithic variants. See the libraries list (p. 15) for more
information on these.

Configuration

When using project files and makefiles directly to build wxWidgets, options are
configurable in the file "wx/XXX/setup.h" where XXX is the required platform (such
as msw, motif, gtk, mac). Some settings are a matter of taste, some help with platform-
specific problems, and others can be set to minimize the size of the library. Please see

CHAPTER 3

the setup.h file and install.txt files for details on configuration.

When using the ‘configure’ script to configure wxWidgets (on Unix and other platforms
where configure is available), the corresponding setup.h files are generated
automatically along with suitable makefiles. When using the RPM packages for installing
wxWidgets on Linux, a correct setup.h is shipped in the package and this must not be
changed.

Makefiles

On Microsoft Windows, wxWidgets has a different set of makefiles for each compiler,
because each compiler's 'make’ tool is slightly different. Popular Windows compilers that
we cater for, and the corresponding makefile extensions, include: Microsoft Visual C++
(.vc), Borland C++ (.bcc), OpenWatcom C++ (.wat) and MinGW/Cygwin (.gcc). Makefiles
are provided for the wxWidgets library itself, samples, demos, and utilities.

On Linux, Mac and OS/2, you use the ‘configure' command to generate the necessary
makefiles. You should also use this method when building with MinGW/Cygwin on
Windows.

We also provide project files for some compilers, such as Microsoft VC++. However, we
recommend using makefiles to build the wxWidgets library itself, because makefiles can
be more powerful and less manual intervention is required.

On Windows using a compiler other than MinGW/Cygwin, you would build the
wxWidgets library from the build/msw directory which contains the relevant makefiles.

On Windows using MinGW/Cygwin, and on Unix, MacOS X and OS/2, you invoke
‘configure’ (found in the top-level of the wxWidgets source hierarchy), from within a
suitable empty directory for containing makefiles, object files and libraries.

For details on using makefiles, configure, and project files, please see docs/xxx/install.txt
in your distribution, where xxx is the platform of interest, such as msw, gtk, x11, mac.

Windows-specific files

wxWidgets application compilation under MS Windows requires at least one extra file: a
resource file.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

#include "wx/msw/wx.rc"

which includes essential internal wxWidgets definitions. The resource script may also
contain references to icons, cursors, etc., for example:

wxicon icon wx.ico

CHAPTER 3

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Allocating and deleting wxWidgets objects

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWidgets
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWidgets, make sure you delete the array explicitly before wxWidgets has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWidgets defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUintl6 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Byte order macros (p. 1569) section.

CHAPTER 3

Conditional compilation

One of the purposes of wxWidgets is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWidgets does not use templates (except for some advanced features that are
switched off by default) since it is a notoriously unportable feature.

RTTI

wxWidgets does not use C++ run-time type information since wxWidgets provides its
own run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK+ port use
an explicit conversion such as

wxWindow *my_window = (wxWindow*) NULL;

It is recommended to adhere to this in all code using wxWidgets as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile "wx.h" | using this precompiled header for compiling both wxWidgets itself
and any wxWidgets applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLS) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWidgets, everything needs to be recompiled since
everything includes "wx.h")

A related problem is that for compilers that don't have precompiled headers, including a

CHAPTER 3

lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx.h . This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the flename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

Utilities and libraries supplied with wxWidgets

In addition to the core wxWidgets library, a number of further libraries and utilities are
supplied with each distribution.

Some are under the 'contrib' hierarchy which mirrors the structure of the main
wxWidgets hierarchy. See also the 'utils' hierarchy. The first place to look for
documentation about these tools and libraries is under the wxWidgets 'docs' hierarchy,
for example docs/htmlhelp/fl.chm

For other user-contributed packages, please see the Contributions page on the
wxWidgets Web site (http://www.wxwidgets.org).

Helpview Helpview is a program for displaying wxWidgets HTML Help files. In many
cases, you may wish to use the wxWidgets HTML Help classes from within your
application, but this provides a handy stand-alone viewer. See wxHTML Notes
(p. 1772) for more details. You can find it in samples/html/helpview

Tex2RTF Supplied with wxWidgets is a utility called Tex2RTF for converting LaTeX
manuals HTML, MS HTML Help, wxHTML Help, RTF, and Windows Help RTF
formats. Tex2RTF is used for the wxWidgets manuals and can be used
independently by authors wishing to create on-line and printed manuals from the
same LaTeX source. Please see the separate documentation for Tex2RTF. You
can find it under utils/tex2rtf

Helpgen Helpgen takes C++ header files and generates a Tex2RTF-compatible
documentation file for each class it finds, using comments as appropriate. This
is a good way to start a reference for a set of classes. Helpgen can be found in
utils/HelpGen

Emulator Xnest-based display emulator for X11-based PDA applications. On some
systems, the Xnest window does not synchronise with the 'skin' window. This
program can be found in utils/emulator

Configuration Tool The wxWidgets Configuration Tool is a work in progress
intended to make it easier to configure wxWidgets features in detail. It exports
setup.h configurations and will eventually generate makefile config files.
Invoking compilers is also on the cards. Since configurations are handled one at
a time, the tool is of limited used until further development can be done. The
program can be found in utils/configtool

XRC resource system This is the sizer-aware resource system, and uses XML-
based resource specifications that can be generated by tools such as
wxDesigner (http://www.roebling.de). You can find this in src/xrc
include/wx/xrc , samples/xrc . For more information, see the XML-based
resource system overview (p. 1705).

Object Graphics Library OGL defines an API for applications that need to display
objects connected by lines. The objects can be moved around and interacted
with. You can find this in contrib/src/og| , contrib/include/wx/og| ,
and contrib/samples/og|

10

CHAPTER 4

Frame Layout library FL provides sophisticated pane dragging and docking
facilities. You can find this in contrib/src/fl , contrib/include/wx/fl ,
and contrib/samples/fl

Gizmos library Gizmos is a collection of useful widgets and other classes. Classes
include wxLEDNumberCtrl, wxEditableListBox, wxMultiCellCanvas. You can find
this in contrib/src/gizmos , contrib/include/wx/gizmos , and
contrib/samples/gizmos

Net library Net is a collection of very simple mail and web related classes. Currently
there is only wxEmail, which makes it easy to send email messages via MAPI on
Windows or sendmail on Unix. You can find this in contrib/src/net and
contrib/include/wx/net

Animate library Animate allows you to load animated GIFs and play them on a
window. The library can be extended to use other animation formats. You can
find this in contrib/src/animate , contrib/include/wx/animate , and
contrib/samples/animate

MMedia library Mmedia supports a variety of multimedia functionality. The status of
this library is currently unclear. You can find this in contrib/src/mmedia ,
contrib/include/wx/mmedia , and contrib/samples/mmedia

Styled Text Control library ~ STC is a wrapper around Scintilla, a syntax-highlighting
text editor. You can find this in contrib/src/stc ,
contrib/include/wx/stc , and contrib/samples/stc

Plot Plotis a simple curve plotting library. You can find this in contrib/src/plot ,
contrib/include/wx/plot , and contrib/samples/plot

11

Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWidgets programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWidgets, it is good practice to use ASSERT
statements liberally, that check for conditions that should or should not hold, and print
out appropriate error messages. These can be compiled out of a non-debugging version
of wxWidgets and your application. Using ASSERT is an example of 'defensive
programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWidgets resource files) on different

platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

Use wxWidgets resource files

Use .xrc (wxWidgets resource files) where possible, because they can be easily
changed independently of source code.

Strategies for debugging

12

CHAPTERS

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1577).

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWidgets debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWidgets will automatically check for memory leaks at the end of the
program if wxWidgets is suitably configured. Depending on the operating system and
compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1586) as part of a 'defensive programming'
strategy, scattering WxASSERTS liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

13

CHAPTERS

See the debugging overview (p. 1674) for further information.

14

Libraries list

Starting from version 2.5.0 wxWidgets can be built either as a single large library (this is
called the monolithic build) or as several smaller libraries (multilib build). Multilib build is

the default.

wxWidgets library is divided into libraries briefly described below. This diagram show

dependencies between them:

Y

—

wxBase

______ I
_l I - — === g:- wiCore |- —

wxMedia j= !

wxBase

—

= wxXRC

=

|

wix ODBC

- wxDbGrid

O

—_— e e e e e e - - - = === =T

Every wxWidgets application must link against this library. It contains mandatory classes
that any wxWidgets code depends on (e.g. wxString (p. 1229)) and portability classes
that abstract differences between platforms. wxBase can be used to develop console
mode applications, it does not require any GUI libraries or running X Window System on

Unix.
wxNet

Classes for network access:

e wxSocket classes (wxSocketClient (p. 1167), wxSocketServer (p. 1171) and

related classes)

* wxSocketOutputStream (p. 1170) and wxSocketinputStream (p. 1170)

» sockets-based IPC classes (wWxTCPServer (p. 378), wxTCPClient (p. 373) and

15

CHAPTER 6

wxXTCPConnection (p. 374))
* WxURL (p. 1395)
« wxInternetFSHandler (a wxFileSystem handler (p. 1677)) Requires wxBase.
WxXML

This library contains simple classes for parsing XML documents. Note that their API will
change in the future and backward compatibility will not be preserved. Use of this library
in your applications is not recommended, it is only meant for use by XML resources
system. Future versions of wxWidgets will contain new XML handling classes with DOM-
like API. Requires wxBase.

wxCore

Basic GUI classes such as GDI classes or controls are in this library. All wxWidgets GUI
applications must link against this library, only console mode applications don't.

wxAdvanced
Advanced or rarely used GUI classes:
* wxBufferedDC
e wxCalendarCtrl (p. 117)
* wxGrid classes (p. 1740)
* wxJoystick (p. 785)
e wxLayoutAlgorithm (p. 798)
» wxSplashScreen (p. 1182)
* wxTaskBarlcon (p. 1267)
* wxSound (p. 1173)
wxWizard (p. 1481)
e wxSashLayoutWindow (p. 1081)
e wxSashWindow (p. 1084)
Requires wxCore and wxBase.
wxMedia

Miscellaneous classes related to multimedia. Currently this library only contains
wxMediaCtrl (p. 888) but more classes will be added in the future.

Requires wxCore and wxBase.

16

CHAPTER 6

wxGL

This library contains wxGLCanvas (p. 589) class for integrating OpenGL library with
wxWidgets. Unlike all others, this library is not part of the monolithic library, it is always
built as separate library. Requires wxCore and wxBase.

wWXHTML

Simple HTML renderer and other HTML rendering classes (p. 1772) are contained in this
library, as well as wxHtmIHelpController (p. 691), wxBestHelpController (p. 666) and
wxHtmIListBox (p. 701). Requires wxCore and wxBase.

wxODBC
Database classes (p. 1747). Requires wxBase.
WXQA

This is the library containing extra classes for quality assurance. Currently it only
contains wxDebugReport (p. 384) and related classes, but more will be added to it in the
future.

Requires wxCore, wxBase and wxXML.
wxDbGrid

wxDbGridTableBase (p. 351) class which combines wxGrid (p. 594) and wxDbTable (p.
313). Requires wxODBC and wxAdvanced.

WXXRC

This library contains wxXmlIResource (p. 1491) class that provides access to XML
resource files in XRC format. Requires wxXML, wxCore, wxAdvanced and wxHTML.

17

Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 19).
Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 19), wxWindow::SetAcceleratorTable (p. 1459)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry ()

Default constructor.

wxAcceleratorEntry (int flags, int keyCode, int cmd)
Constructor.

Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1598) for a full list of keycodes.
cmd

The menu or control command identifier.

wxAcceleratorEntry::GetCommand

int GetCommand () const

Returns the command identifier for the accelerator table entry.

18

CHAPTER7

wxAcceleratorEntry::GetFlags

int GetFlags () const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode () const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)
Sets the accelerator entry parameters.
Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1598) for a full list of keycodes.
cmd

The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

Derived from
wxObject (p. 969)
Include files
<wx/accel.h>

Example

wxAcceleratorEntry entries[4];

19

CHAPTER7

entries[0].Set(wxACCEL_CTRL, (int)'N’, ID_N EW_WINDOW);
entries[1].Set(wxACCEL_CTRL, (int)'X', wxID _EXIT);
entries[2].Set(wxACCEL_SHIFT, (int) ‘A", ID_A BOUT);
entries[3].Set(WxACCEL_NORMAL, WXK_DELETE, wx ID_CUT);

wxAcceleratorTable accel(4, entries);
frame->SetAcceleratorTable(accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK+ at present).

See also

wxAcceleratorEntry (p. 18), wxWindow::SetAcceleratorTable (p. 1459)

wxAcceleratorTable::wxAcceleratorTable

wxAcceleratorTable ()
Default constructor.
wxAcceleratorTable (const wxAcceleratorTable& bitmap)
Copy constructor.
wxAcceleratorTable (int n, wxAcceleratorEntry entries[])
Creates from an array of wxAcceleratorEntry (p. 18) objects.
wxAcceleratorTable (const wxString& resource)
Loads the accelerator table from a Windows resource (Windows only).
Parameters
n

Number of accelerator entries.
entries

The array of entries.
resource

Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

20

CHAPTER7

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry
objects or references to 3-element arrays (flags, keyCode, cmd), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable ()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns true if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator = (const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters
accel

Accelerator table to assign.
Return value

Returns reference to this object.

wxAcceleratorTable::operator ==

bool operator == (const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters
accel

Accelerator table to compare with
Return value

Returns true if the accelerator tables were effectively equal, false otherwise.

wxAcceleratorTable::operator =

21

CHAPTER7

bool operator != (const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters
accel

Accelerator table to compare with
Return value

Returns true if the accelerator tables were unequal, false otherwise.

wxAccessible

The wxAccessible class allows wxWidgets applications, and wxWidgets itself, to return
extended information about user interface elements to client applications such as screen
readers. This is the main way in which wxWidgets implements accessibility features.

At present, only Microsoft Active Accessibility is supported by this class.

To use this class, derive from wxAccessible, implement appropriate functions, and
associate an object of the class with a window using wxWindow::SetAccessible (p.
1459).

All functions return an indication of success, failure, or not implemented using values of
the wxAccStatus enum type.

If you return wxACC_NOT_IMPLEMENTED from any function, the system will try to
implement the appropriate functionality. However this will not work with all functions.

Most functions work with an object id, which can be zero to refer to 'this' Ul element, or
greater than zero to refer to the nth child element. This allows you to specify elements
that don't have a corresponding wxWindow or wxAccessible; for example, the sash of a
splitter window.

For details on the semantics of functions and types, please refer to the Microsoft Active
Accessibility 1.2 documentation.

This class is compiled into wxWidgets only if the wxUSE_ACCESSIBILITY setup symbol
is set to 1.

Derived from
wxObiject (p. 969)
Include files
<wx/access.h>

Data structures

22

CHAPTER7

Functions return a wxAccStatus error code, which may be one of the following:

typedef enum

WXACC_FAIL, /I The function failed

WXACC_FALSE, /I The function returned false
WXACC_OK, /I The function complete d successfully
WXACC_NOT_IMPLEMENTED, // The function is not i mplemented
WXACC_NOT_SUPPORTED // The function is not s upported

} wxAccStatus

Directions of navigation are represented by the following:
typedef enum

WXNAVDIR_DOWN,
WXNAVDIR_FIRSTCHILD,
WXNAVDIR_LASTCHILD,
wWXNAVDIR_LEFT,
WXNAVDIR_NEXT,
WXNAVDIR_PREVIOUS,
WXNAVDIR_RIGHT,
WXNAVDIR_UP

} wxNavDir

The role of a user interface element is represented by the following type:

typedef enum {
wxROLE_NONE,
WXROLE_SYSTEM_ALERT,
WXROLE_SYSTEM_ANIMATION,
WXROLE_SYSTEM_APPLICATION,
WXROLE_SYSTEM_BORDER,
WXROLE_SYSTEM_BUTTONDROPDOWN,
WXROLE_SYSTEM_BUTTONDROPDOWNGRID,
WXROLE_SYSTEM_BUTTONMENU,
WXROLE_SYSTEM_CARET,
WXROLE_SYSTEM_CELL,
WXROLE_SYSTEM_CHARACTER,
WXROLE_SYSTEM_CHART,
WXROLE_SYSTEM_CHECKBUTTON,
WXROLE_SYSTEM_CLIENT,
WXROLE_SYSTEM_CLOCK,
WXROLE_SYSTEM_COLUMN,
WXROLE_SYSTEM_COLUMNHEADER,
WXROLE_SYSTEM_COMBOBOX,
WXROLE_SYSTEM_CURSOR,
WXROLE_SYSTEM_DIAGRAM,
WXROLE_SYSTEM_DIAL,
WXROLE_SYSTEM_DIALOG,
WXROLE_SYSTEM_DOCUMENT,
WXROLE_SYSTEM_DROPLIST,
WXROLE_SYSTEM_EQUATION,
WXROLE_SYSTEM_GRAPHIC,
WXROLE_SYSTEM_GRIP,
WXROLE_SYSTEM_GROUPING,
WXROLE_SYSTEM_HELPBALLOON,
WXROLE_SYSTEM_HOTKEYFIELD,

23

CHAPTER7

WXROLE_SYSTEM_INDICATOR,
WXROLE_SYSTEM_LINK,
WXROLE_SYSTEM_LIST,
WXROLE_SYSTEM_LISTITEM,
WXROLE_SYSTEM_MENUBAR,
WXROLE_SYSTEM_MENUITEM,
WXROLE_SYSTEM_MENUPOPUP,
WXROLE_SYSTEM_OUTLINE,
WXROLE_SYSTEM_OUTLINEITEM,
wWXROLE_SYSTEM_PAGETAB,
WXROLE_SYSTEM_PAGETABLIST,
WXROLE_SYSTEM_PANE,
WXROLE_SYSTEM_PROGRESSBAR,
wWXROLE_SYSTEM_PROPERTYPAGE,
WXROLE_SYSTEM_PUSHBUTTON,
WXROLE_SYSTEM_RADIOBUTTON,
WXROLE_SYSTEM_ROW,
WXROLE_SYSTEM_ROWHEADER,
WXROLE_SYSTEM_SCROLLBAR,
WXROLE_SYSTEM_SEPARATOR,
WXROLE_SYSTEM_SLIDER,
WXROLE_SYSTEM_SOUND,
WXROLE_SYSTEM_SPINBUTTON,
WXROLE_SYSTEM_STATICTEXT,
WXROLE_SYSTEM_STATUSBAR,
WXROLE_SYSTEM_TABLE,
WXROLE_SYSTEM_TEXT,
WXROLE_SYSTEM_TITLEBAR,
WXROLE_SYSTEM_TOOLBAR,
WXROLE_SYSTEM_TOOLTIP,
WXROLE_SYSTEM_WHITESPACE,
WXROLE_SYSTEM_WINDOW

} wxAccRole

Objects are represented by the following type:

typedef enum {
wxOBJID_WINDOW = 0x00000000,
wxOBJID_SYSMENU = OxFFFFFFFF,
wxOBJID_TITLEBAR = OxFFFFFFFE,
wxOBJID_MENU = OxFFFFFFFD,
wxOBJID_CLIENT = OxFFFFFFFC,
wxOBJID_VSCROLL = OxFFFFFFFB,
wxOBJID_HSCROLL = OxFFFFFFFA,
wxOBJID_SIZEGRIP = OxFFFFFFF9,
wxOBJID_CARET = OxFFFFFFFS8,
wxOBJID_CURSOR = OxFFFFFFF7,
wxOBJID_ALERT = OxFFFFFFF8,
wxOBJID_SOUND = OxFFFFFFF5

} wxAccObject

Selection actions are identified by this type:
typedef enum

WXACC_SEL_NONE =0,
WXACC_SEL_TAKEFOCUS =1,
WXACC_SEL_TAKESELECTION =2,
WXACC_SEL_EXTENDSELECTION = 4,

24

CHAPTER7

wxACC_SEL_ADDSELECTION =38,
WXACC_SEL_REMOVESELECTION = 16
} wxAccSelectionFlags

States are represented by the following:

#define wxACC_STATE_SYSTEM_ALERT HIGH 0x00000 001
#define wxACC_STATE_SYSTEM_ALERT_MEDIUM 0x00000 002
#define wxACC_STATE_SYSTEM_ALERT_LOW 0x00000 004

#define wxACC_STATE_SYSTEM_ANIMATED 0x00000 008
#define wxACC_STATE_SYSTEM_BUSY 0x00000 010
#define wxACC_STATE_SYSTEM_CHECKED 0x00000 020
#define wxACC_STATE_SYSTEM_COLLAPSED 0x00000 040
#define wxACC_STATE_SYSTEM_DEFAULT 0x00000 080
#define wxACC_STATE_SYSTEM_EXPANDED 0x00000 100
#define wxACC_STATE_SYSTEM_EXTSELECTABLE 0x00000 200
#define wxACC_STATE_SYSTEM_FLOATING 0x00000 400
#define wxACC_STATE_SYSTEM_FOCUSABLE 0x00000 800
#define wxACC_STATE_SYSTEM_FOCUSED 0x00001 000
#define wxACC_STATE_SYSTEM_HOTTRACKED 0x00002 000
#define wxACC_STATE_SYSTEM_INVISIBLE 0x00004 000
#define wxACC_STATE_SYSTEM_MARQUEED 0x00008 000
#define wxACC_STATE_SYSTEM_MIXED 0x00010 000

#define wxACC_STATE_SYSTEM_MULTISELECTABLE 0x00020 000
#define wxACC_STATE_SYSTEM_OFFSCREEN 0x00040 000

#define wxACC_STATE_SYSTEM_PRESSED 0x00080 000
#define wxACC_STATE_SYSTEM_PROTECTED 0x00100 000
#define wxACC_STATE_SYSTEM_READONLY 0x00200 000
#define wxACC_STATE_SYSTEM_SELECTABLE 0x00400 000
#define wxACC_STATE_SYSTEM_SELECTED 0x00800 000

#define wxACC_STATE_SYSTEM_SELFVOICING 0x01000 000
#define wxACC_STATE_SYSTEM_UNAVAILABLE 0x02000 000

Event identifiers that can be sent via wxAccessible::NotifyEvent (p. 29) are as follows:

#define wxACC_EVENT_SYSTEM_SOUND 0x000

#define wxACC_EVENT_SYSTEM_ALERT 0x000

#define wxACC_EVENT_SYSTEM_FOREGROUND 0x000
#define wxACC_EVENT_SYSTEM_MENUSTART 0x000
#define wxACC_EVENT_SYSTEM_MENUEND 0x000
#define wxACC_EVENT_SYSTEM_MENUPOPUPSTART ~ 0x000
#define wxACC_EVENT_SYSTEM_MENUPOPUPEND 0x000
#define wxACC_EVENT_SYSTEM_CAPTURESTART 0x000
#define wxACC_EVENT_SYSTEM_CAPTUREEND 0x000
#define wxACC_EVENT_SYSTEM_MOVESIZESTART ~ 0x000
#define wxACC_EVENT_SYSTEM_MOVESIZEEND 0x000
#define wxACC_EVENT_SYSTEM_CONTEXTHELPSTART 0x000 C
#define wxACC_EVENT_SYSTEM_CONTEXTHELPEND 0x000 D
#define wxACC_EVENT_SYSTEM_DRAGDROPSTART 0x000 E
#define wxACC_EVENT_SYSTEM_DRAGDROPEND 0x000

WP>OO~NOOITAWNE

T

#define wxACC_EVENT_SYSTEM_DIALOGSTART 0x001 0
#define wxACC_EVENT_SYSTEM_DIALOGEND 0x001 1
#define wxACC_EVENT_SYSTEM_SCROLLINGSTART 0x001 2
#define wxACC_EVENT_SYSTEM_SCROLLINGEND 0x001 3
#define wxACC_EVENT_SYSTEM_SWITCHSTART 0x001 4
#define wxACC_EVENT_SYSTEM_SWITCHEND 0x001 5
#define wxACC_EVENT_SYSTEM_MINIMIZESTART 0x001 6
#define wxACC_EVENT_SYSTEM_MINIMIZEEND 0x001 7
#define wxACC_EVENT_OBJECT_CREATE 0 x8000

25

CHAPTER7

#define wxACC_EVENT_OBJECT_DESTROY 0 x8001
#define wxACC_EVENT_OBJECT_SHOW 0 x8002
#define wxACC_EVENT_OBJECT_HIDE 0 x8003
#define wxACC_EVENT_OBJECT_REORDER 0 x8004
#define wxACC_EVENT_OBJECT_FOCUS 0 x8005
#define wxACC_EVENT_OBJECT_SELECTION 0 x8006
#define wxACC_EVENT_OBJECT_SELECTIONADD 0 x8007

#define wxACC_EVENT_OBJECT_SELECTIONREMOVE 0 x8008
#define wxACC_EVENT_OBJECT_SELECTIONWITHIN 0 x8009

#define wxACC_EVENT_OBJECT_STATECHANGE 0 Xx800A
#define wxACC_EVENT_OBJECT_LOCATIONCHANGE 0 x800B
#define wxACC_EVENT_OBJECT_NAMECHANGE 0 x800C
#define wxACC_EVENT_OBJECT_DESCRIPTIONCHANGE 0 x800D
#define wxACC_EVENT_OBJECT_VALUECHANGE 0 X800E
#define wxACC_EVENT_OBJECT_PARENTCHANGE 0 x800F
#define wxACC_EVENT_OBJECT_HELPCHANGE 0 x8010

#define wxACC_EVENT_OBJECT_DEFACTIONCHANGE 0 x8011
#define wxACC_EVENT_OBJECT_ACCELERATORCHANGE 0 x8012

wxAccessible::wxAccessible

wxAccessible (wxWindow* win = NULL)

Constructor, taking an optional window. The object can be associated with a window
later.

wxAccessible::~wxAccessible

~wxAccessible ()

Destructor.

wxAccessible::DoDefaultAction

virtual wxAccStatus DoDefaultAction (int childld)
Performs the default action for the object. childld is O (the action for this object) or

greater than 0 (the action for a child). Return wxACC_NOT_SUPPORTED if there is no
default action for this window (e.g. an edit control).

wxAccessible::GetChild

virtual wxAccStatus GetChild (int childld, wxAccessible** child)

Gets the specified child (starting from 1). If child is NULL and the return value is
wWxACC_OK, this means that the child is a simple element and not an accessible object.

wxAccessible::GetChildCount

virtual wxAccStatus GetChildCount (int* childCount)

26

CHAPTER7

Returns the number of children in childCount.

wxAccessible::GetDefaultAction

virtual wxAccStatus GetDefaultAction (int childld, wxString* actionName)

Gets the default action for this object (0) or a child (greater than 0). Return wxACC_OK
even if there is no action. actionName is the action, or the empty string if there is no
action. The retrieved string describes the action that is performed on an object, not what

the object does as a result. For example, a toolbar button that prints a document has a
default action of "Press" rather than "Prints the current document.”

wxAccessible::GetDescription

virtual wxAccStatus GetDescription (int childld, wxString* description)
Returns the description for this object or a child.
wxAccessible::GetFocus

virtual wxAccStatus GetFocus (int* childld, wxAccessible** child)

Gets the window with the keyboard focus. If childld is 0 and child is NULL, no object in
this subhierarchy has the focus. If this object has the focus, child should be ‘this'.

wxAccessible::GetHelpText

virtual wxAccStatus GetHelpText (int childld, wxString* helpText)

Returns help text for this object or a child, similar to tooltip text.
wxAccessible::GetKeyboardShortcut

virtual wxAccStatus GetKeyboardShortcut (int childld, wxString* shortcut)
Returns the keyboard shortcut for this object or child. Return e.g. ALT+K.
wxAccessible::GetLocation

virtual wxAccStatus GetlLocation (wxRect& rect, int elementld)

Returns the rectangle for this object (id is 0) or a child element (id is greater than 0).rect
is in screen coordinates.

wxAccessible::GetName

virtual wxAccStatus GetName(int childld, wxString* name)

Gets the name of the specified object.

27

CHAPTER7

wxAccessible::GetParent

virtual wxAccStatus GetParent (wxAccessible** parent)

Returns the parent of this object, or NULL.

wxAccessible::GetRole

virtual wxAccStatus GetRole (int childld, wxAccRole* role)

Returns a role constant describing this object. See wxAccessible (p. 22) for a list of
these roles.

wxAccessible::GetSelections

virtual wxAccStatus GetSelections (wxVariant* selections)
Gets a variant representing the selected children of this object.
Acceptable values are:

. a null variant (IsNull() returns TRUE)

. a list variant (GetType() == wxT("list"))

. an integer representing the selected child element, or 0O if this object is selected
(GetType() == wxT("long"))

e a'void*" pointer to a wxAccessible child object

wxAccessible::GetState

virtual wxAccStatus GetState (int childld, long* state)

Returns a state constant. See wxAccessible (p. 22) for a list of these states.
wxAccessible::GetValue

virtual wxAccStatus GetValue (int childld, wxString* strValue)

Returns a localized string representing the value for the object or child.
wxAccessible::GetWindow

wxWindow* GetWindow ()

Returns the window associated with this object.

wxAccessible::HitTest

virtual wxAccStatus HitTest (const wxPoint& pt, int* childld, wxAccessible**

28

CHAPTER7

childObject)

Returns a status value and object id to indicate whether the given point was on this or a
child object. Can return either a child object, or an integer representing the child
element, starting from 1.

ptis in screen coordinates.

wxAccessible::Navigate

virtual wxAccStatus Navigate (wxNavDir navDir, int fromld, int* told, wxAccessible**
toObject)

Navigates from fromld to told/toObject.

wxAccessible::NotifyEvent

virtual static void NotifyEvent (int eventType, wxWindow* window, wxAccObject
objectType, int objectType)

Allows the application to send an event when something changes in an accessible
object.

wxAccessible::Select

virtual wxAccStatus Select (int childld, wxAccSelectionFlags selectFlags)

Selects the object or child. See wxAccessible (p. 22) for a list of the selection actions.

wxAccessible::SetWindow

void SetWindow (wxWindow* window)

Sets the window associated with this object.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 464)
wxObject (p. 969)

Include files
<wx/event.h>
Event table macros

To process an activate event, use these event handler macros to direct input to a

29

CHAPTER7

member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.
EVT_HIBERNATE(func) Process a hibernate event, supplying the

member function. This event applies to wxApp
only, and only on Windows SmartPhone and
PocketPC. It is generated when the system is
low on memory; the application should free up
as much memory as possible, and restore full
working state when it receives a
WXEVT_ACTIVATE or
WXEVT_ACTIVATE_APP event.

Remarks

A top-level window (a dialog or frame) receives an activate event when it is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivated resulting in all application frames being inactive. (Windows

only)

Please note that usually you should call event.Skip() (p. 467) in your handlers for these
events as not doing so can result in strange effects.

See also

Event handling overview (p. 1679), wxApp::IsActive (p. 34)

wxActivateEvent::wxActivateEvent

wxActivateEvent (WXTYPE eventType = 0, bool active = true, int id = 0)
Constructor.

wxActivateEvent::GetActive

bool GetActive () const

Returns true if the application or window is being activated, false otherwise.

WXApPP

The wxApp class represents the application itself. It is used to:

« set and get application-wide properties;

30

CHAPTER7

* implement the windowing system message or event loop;
e initiate application processing via wxApp::Oninit (p. 37);

» allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWidgets how to create an instance of your application class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 468)
wxObject (p. 969)

Include files
<wx/app.h>
See also

WXApPp overview (p. 1645)

WXApPP::WXApPpP

WXAPP ()

Constructor. Called implicitly with a definition of a wxApp object.
WXApPP::~WXApp

virtual ~wxApp ()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

WXApp::argc

int argc

Number of command line arguments (after environment-specific processing).
WXApp::argv

wxChar ** argv

Command line arguments (after environment-specific processing).

31

CHAPTER7

wxApp::CreateLogTarget

virtual wxLog* CreateLogTarget ()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 852)

wxApp::Dispatch
virtual void Dispatch ()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

while (app.Pending())
Dispatch();

See also

wxApp::Pending (p. 38)

wxApp::ExitMainLoop
virtual void ExitMainLoop ()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::FilterEvent

int FilterEvent (wxEvent& event)

This function is called before processing any event and allows the application to preempt
the processing of some events. If this method returns -1 the event is processed
normally, otherwise either true or false should be returned and the event processing
stops immediately considering that the event had been already processed (for the former
return value) or that it is not going to be processed at all (for the latter one).

wxApp:.GetAppName
wxString GetAppName () const
Returns the application name.
Remarks

wxWidgets sets this to a reasonable default before calling wxApp::Oninit (p. 37), but the

32

CHAPTER7

application can reset it at will.

wxApp::GetClassName

wxString GetClassName () const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 39)

wxApp::GetExitOnFrameDelete

bool GetExitOnFrameDelete () const

Returns true if the application will exit when the top-level window is deleted, false
otherwise.

See also

wxApp::SetExitOnFrameDelete (p. 39),
wxApp shutdown overview (p. 1646)

wxApp::Getinstance

static wxAppConsole * Getlnstance ()
Returns the one and only global application object. Usually wxTheApp is usead instead.
See also

WxApp::Setinstance (p. 39)

wxApp::GetTopWindow

virtual wxWindow * GetTopWindow () const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 39), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 39)

wxApp::GetUseBestVisual

33

CHAPTER7

bool GetUseBestVisual () const

Returns true if the application will use the best visual on systems that support different
visuals, false otherwise.

See also

SetUseBestVisual (p. 40)

wxApp::GetVendorName

wxString GetVendorName () const

Returns the application's vendor name.

wxApp::IsActive

bool IsActive () const

Returns true if the application is active, i.e. if one of its windows is currently in the
foreground. If this function returns false and you need to attract users attention to the
application, you may use wxTopLevelWindow::RequestUserAttention (p. 1359) to do it.

wxApp::IsMainLoopRunning

static bool IsMainLoopRunning ()

Returns true if the main event loop is currently running, i.e. if the application is inside
OnRun (p. 37).

This can be useful to test whether the events can be dispatched. For example, if this
function returns false , non-blocking sockets cannot be used because the events from
them would never be processed.

WxApp::MainLoop
virtual int MainLoop ()

Called by wxWidgets on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

wWxApp::OnAssert

void OnAssert (const wxChar *file, int line, const wxChar *cond, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
WXASSERT (p. 1586) macro evaluated to false . Itis only called in debug mode (when
__ WXDEBUG _is defined) as asserts are not left in the release code at all.

34

CHAPTER7

The base class version show the default assert failure dialog box proposing to the user
to stop the program, continue or ignore all subsequent asserts.

Parameters
file

the name of the source file where the assert occurred
line

the line number in this file where the assert occurred
cond

the condition of the failed assert in string form
msg

the message specified as argument to WXASSERT_MSG (p. 1587) or
WXFAIL_MSG (p. 1588), will be NULL if just WwxASSERT (p. 1586) or wxFAIL (p.
1588) was used

wxApp::OnCmdLineError

bool OnCmdLineError (wxCmdLineParser& parser)

Called when command line parsing fails (i.e. an incorrect command line option was
specified by the user). The default behaviour is to show the program usage text and
abort the program.

Return true to continue normal execution or false to return false from Onlinit (p. 37)
thus terminating the program.

See also

OnlInitCmdLine (p. 37)

wxApp::OnCmdLineHelp

bool OnCmdLineHelp (wxCmdLineParser& parser)

Called when the help option (--help) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return true to continue normal execution or false to return false from Onlnit (p. 37)
thus terminating the program.

See also

OnlInitCmdLine (p. 37)

wxApp::OnCmdLineParsed

35

CHAPTER7

bool OnCmdLineParsed (wxCmdLineParser& parser)

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return true to continue normal execution or false to return false from Onlnit (p. 37)
thus terminating the program.

See also

OnlInitCmdLine (p. 37)

WxApp::OnExceptioninMainLoop

virtual bool OnExceptioninMainLoop ()

This function is called if an unhandled exception occurs inside the main application event
loop. It can return true to ignore the exception and to continue running the loop or

false to exit the loop and terminate the program. In the latter case it can also use C++
throw keyword to rethrow the current exception.

The default behaviour of this function is the latter in all ports except under Windows
where a dialog is shown to the user which allows him to choose between the different
options. You may override this function in your class to do something more appropriate.

Finally note that if the exception is rethrown from here, it can be caught in
OnUnhandledException (p. 37).

WXxApp::OnExit
virtual int OnExit ()

Override this member function for any processing which needs to be done as the
application is about to exit. OnExit is called after destroying all application windows and
controls, but before wxWidgets cleanup. Note that it is not called at all if Onlnit (p. 37)
failed.

The return value of this function is currently ignored, return the same value as returned
by the base class method if you override it.

wxApp::OnFatalException

void OnFatalException ()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1521) to enable this.

36

CHAPTER7

Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExceptions (p. 1521)

wxApp::Onlnit
bool Onlnit ()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 39). You may use OnExit (p. 36) to
clean up anything initialized here, provided that the function returns true .

Notice that if you want to to use the command line processing provided by wxWidgets
you have to call the base class version in the derived class Onlnit().

Return true to continue processing, false to exit the application immediately.

wxApp::OnlnitCmdLine

void OnInitCmdLine (wxCmdLineParser& parser)

Called from Onlnit (p. 37) and may be used to initialize the parser with the command line
options for this application. The base class versions adds support for a few standard
options only.

WxApp::OnRun

virtual int OnRun ()

This virtual function is where the execution of a program written in wxWidgets starts. The
default implementation just enters the main loop and starts handling the events until it
terminates, either because ExitMainLoop (p. 32) has been explicitly called or because
the last frame has been deleted and GetExitOnFrameDelete (p. 33) flag is true (this is
the default).

The return value of this function becomes the exit code of the program, so it should
return O in case of successful termination.

wxApp::OnUnhandledException

virtual void OnUnhandledException ()

This function is called when an unhandled C++ exception occurs inside OnRun() (p. 37)
(the exceptions which occur during the program startup and shutdown might not be
caught at all). Note that the exception type is lost by now, so if you want to really handle
the exception you should override OnRun() (p. 37) and put a try/catch clause around the
call to the base class version there.

37

CHAPTER7

wxApp::ProcessMessage

bool ProcessMessage (WXMSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
true if the message was processed, false otherwise. If you use wxWidgets with another
class library with its own message loop, you should make sure that this function is called
to allow wxWidgets to receive messages. For example, to allow co-existence with the
Microsoft Foundation Classes, override the PreTranslateMessage function:

/I Provide wxWidgets message loop compatibility
BOOL CTheApp::PreTranslateMessage(MSG *msg)

{
if (WwxTheApp && wxTheApp->ProcessMessage((WXMSW *)msQ))
return true;
else
return CWinApp::PreTranslateMessage(msg);

wxApp::Pending

virtual bool Pending ()

Returns true if unprocessed events are in the window system event queue.
See also

wxApp::Dispatch (p. 32)

wxApp::SendldleEvents

bool SendldleEvents (wxWindow* win, wxldleEvent& event)
Sends idle events to a window and its children.

Please note that this function is internal to wxWidgets and shouldn't be used by user
code.

Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If true is returned, more Onldle processing is requested by one or more window.

See also

wxldleEvent (p. 742)

WXApp::SetAppName

void SetAppName (const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWidgets.

38

CHAPTER7

See also

wxApp::GetAppName (p. 32)

wxApp::SetClassName

void SetClassName (const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

wxApp::GetClassName (p. 33)

wxApp::SetExitOnFrameDelete

void SetExitOnFrameDelete (bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters
flag

If true (the default), the application will exit when the top-level frame is deleted. If
false, the application will continue to run.

See also

WxApp::GetExitOnFrameDelete (p. 33),
wxApp shutdown overview (p. 1646)

WXApp::Setinstance

static void Setlnstance (wxAppConsole* app)

Allows external code to modify global wxTheApp, but you should really know what you're
doing if you call it.

Parameters
app

Replacement for the global application object.
See also

wxApp::Getinstance (p. 33)

WxApp::SetTopWindow

39

CHAPTER7

void SetTopWindow (wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::Onlnit (p. 37) to let
wxWidgets know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWidgets just uses the first frame or dialog in its top-level window list, when it needs to
use the top window.

Parameters
window

The new top window.
See also

wxApp::GetTopWindow (p. 33), wxApp::Oninit (p. 37)

wxApp::SetVendorName

void SetVendorName (const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWidgets.

See also

wxApp::GetVendorName (p. 34)

wxApp::SetUseBestVisual

void SetUseBestVisual (bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain applications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters
flag

If true, the app will use the best visual.

wxApp::HandleEvent

virtual void HandleEvent (wxEvtHandler *handler, wxEventFunction func, wxEvent&

40

CHAPTER7

event) const

This function simply invokes the given method func of the specified event handler
handler with the event as parameter. It exists solely to allow to catch the C++ exceptions
which could be thrown by all event handlers in the application in one place: if you want to
do this, override this function in your wxApp-derived class and add try/catch clause(s) to
it.

wxApp::Yield

bool Yield (bool onlylfNeeded = false)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and on systems with
cooperative multitasking, such as Windows 3.1 other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.
1522) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 857).

Calling Yield() recursively is normally an error and an assert failure is raised in debug
build if such situation is detected. However if the onlylfNeeded parameter is true , the
method will just silently return false instead.

wxArchiveClassFactory

An abstract base class which serves as a common interface to archive class factories
such as wxZipClassFactory (p. 1499).

For each supported archive type (such as zip) there is a class factory derived from
wxArchiveClassFactory, which allows archive objects to be created in a generic way,
without knowing the particular type of archive being used.

Derived from
wxObject (p. 969)
Include files
<wx/archive.h>
See also

Archive formats such as zip (p. 1806)
Generic archive programming (p. 1810)

41

CHAPTER7

wxArchiveEntry (p. 42)
wxArchivelnputStream (p. 45)
wxArchiveOutputStream (p. 49)

wxArchiveClassFactory::Get/SetConv

wxMBConv& GetConv () const
void SetConv (wxMBConv& conv)

The wxMBConv (p. 871) object that the created streams will use when translating meta-
data. The initial default, set by the constructor, is wxConvLocal.

wxArchiveClassFactory::GetInternalName

wxString GetlnternalName (const wxString& name, wxPathFormat format =
WXPATH_NATIVE) const

Calls the static GetinternalName() function for the archive entry type, for example
wxZipEntry::GetinternalName() (p. 1504).

wxArchiveClassFactory::NewEntry

wxArchiveEntry* NewEntry () const

Create a new wxArchiveEntry (p. 42) object of the appropriate type.

wxArchiveClassFactory::NewStream

wxArchivelnputStream* NewStream (wxInputStream& stream) const
wxArchiveOutputStream* NewStream (wxOutputStream& stream) const

Create a new wxArchivelnputStream (p. 45)or wxArchiveOutputStream (p. 49) of the
appropriate type.

wxArchiveEntry

An abstract base class which serves as a common interface to archive entry classes
such as wxZipEntry (p. 1500). These hold the meta-data (filename, timestamp, etc.), for
entries in archive files such as zips and tars.

Derived from
wxObiject (p. 969)
Include files

<wx/archive.h>

42

CHAPTER7

See also

Archive formats such as zip (p. 1806)
Generic archive programming (p. 1810)
wxArchivelnputStream (p. 45)
wxArchiveOutputStream (p. 49)
wxArchiveNotifier (p. 48)

Non-seekable streams

This information applies only when reading archives from non-seekable streams. When
the stream is seekable GetNextEntry() (p. 46)returns a fully populated wxArchiveEntry
(p. 42). See 'Archives on non-seekable streams (p. 1811)' for more information.

For generic programming, when the worst case must be assumed, you can rely on all
the fields of wxArchiveEntry being fully populated when GetNextEntry() returns, with the
the following exceptions:

GetSize() (p. 44) Guaranteed to be available after the entry has been read to Eof() (p.
780), or CloseEntry() (p. 45) has been called

IsReadOnly() (p. 44) Guaranteed to be available after the end of the
archive has been reached, i.e. after GetNextEntry() returns NULL and
Eof() is true

wxArchiveEntry::Clone

wxArchiveEntry* Clone () const

Returns a copy of this entry object.

wxArchiveEntry::Get/SetDateTime

wxDateTime GetDateTime () const
void SetDateTime (const wxDateTime& dt)

The entry's timestamp.

wxArchiveEntry::GetInternalFormat

wxPathFormat GetlnternalFormat () const

Returns the path format used internally within the archive to store filenames.

wxArchiveEntry::GetinternalName

wxString GetlnternalName () const

Returns the entry's filename in the internal format used within the archive. The name can

CHAPTER7

include directory components, i.e. it can be a full path.

The names of directory entries are returned without any trailing path separator. This
gives a canonical name that can be used in comparisons.

See also

Looking up an archive entry by name (p. 1808)

wxArchiveEntry::Get/SetName

wxString GetName (wxPathFormat format = wxPATH_NATIVE) const
void SetName (const wxString& name, wxPathFormat format = wxPATH_NATIVE)

The entry's name, by default in the native format. The name can include directory
components, i.e. it can be a full path.

If this is a directory entry, (i.e. if IsDir() (p. 44)is true) then GetName() returns the name
with a trailing path separator.

Similarly, setting a name with a trailing path separator sets IsDir().

wxArchiveEntry::GetOffset

off t GetOffset () const

Returns a numeric value unique to the entry within the archive.

wxArchiveEntry::Get/SetSize

off t GetSize() const
void SetSize (off t size)

The size of the entry's data in bytes.

wxArchiveEntry::IsDir/SetlsDir

bool IsDir () const
void SetlsDir (bool isDir = true)
True if this is a directory entry.

Directory entries are entries with no data, which are used to store the meta-data of
directories. They also make it possible for completely empty directories to be stored.

The names of entries within an archive can be complete paths, and unarchivers typically
create whatever directories are necessary as they restore files, even if the archive
contains no explicit directory entries.

CHAPTER7

wxArchiveEntry::IsReadOnly/SetisReadOnly

bool IsReadOnly () const
void SetlsReadOnly (bool isReadOnly = true)

True if the entry is a read-only file.

wxArchiveEntry::Set/UnsetNotifier

void SetNotifier (wxArchiveNotifier& notifier)
void UnsetNotifier ()

Sets the notifier (p. 48) for this entry. Whenever the wxArchivelnputStream (p. 45)
updates this entry, it will then invoke the associated notifier's OnEntryUpdated (p.
49)method.

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams).

See also

Archives on non-seekable streams (p. 1811)
wxArchiveNotifier (p. 48)

wxArchivelnputStream

An abstract base class which serves as a common interface to archive input streams
such as wxZiplnputStream (p. 1506).

GetNextEntry() (p. 46) returns an wxArchiveEntry (p. 42) object containing the meta-data
for the next entry in the archive (and gives away ownership). Reading from the
wxArchivelnputStream then returns the entry's data. Eof() becomes true after an attempt
has been made to read past the end of the entry's data. When there are no more entries,
GetNextEntry() returns NULL and sets Eof().

Derived from
wxFilterInputStream (p. 527)
Include files
<wx/archive.h>
Data structures typedef wxArchiveEntry entry_type
See also

Archive formats such as zip (p. 1806)
wxArchiveEntry (p. 42)
wxArchiveOutputStream (p. 49)

45

CHAPTER7

wxArchivelnputStream::CloseEntry

bool CloseEntry ()

Closes the current entry. On a nhon-seekable stream reads to the end of the current entry
first.

wxArchivelnputStream::GetNextEntry

wxArchiveEntry* GetNextEntry ()

Closes the current entry if one is open, then reads the meta-data for the next entry and
returns it in a wxArchiveEntry (p. 42)object, giving away ownership. Reading this
wxArchivelnputStream then returns the entry's data.

wxArchivelnputStream::OpenEntry

bool OpenEntry (wxArchiveEntry& entry)

Closes the current entry if one is open, then opens the entry specified by the
wxArchiveEntry (p. 42) object.

entry must be from the same archive file that this wxArchivelnputStream is reading, and
it must be reading it from a seekable stream.

See also

Looking up an archive entry by name (p. 1808)

wxArchivelterator

An input iterator template class that can be used to transfer an archive's catalogue to a
container. It is only available if wxXUSE_STL is set to 1 in setup.h, and the uses for it
outlined below require a compiler which supports member templates.

template <class Arc, class T = typename Arc::entry_ type*>
class wxArchivelterator

/I this constructor creates an 'end of sequence ' object
wxArchivelterator();

/I template parameter 'Arc' should be the type of an archive
input stream
wxArchivelterator(Arc& arc) {

[F 0%
J»

The first template parameter should be the type of archive input stream (e.g.
wxArchivelnputStream (p. 45)) and the second can either be a pointer to an entry (e.g.

46

CHAPTER7

wxArchiveEntry (p. 42)*), or a string/pointer pair (e.g. std::pair<wxString,
wxArchiveEntry*>).

The <wx/archive.h> header defines the following typedefs:
typedef wxArchivelterator<wxArchivelnputStream> wxArchivelter;

typedef wxArchivelterator<wxArchivelnputStream,
std::pair<wxString, wxArchiveEntry*> >
wxArchivePairlter;

The header for any implementation of this interface should define similar typedefs for its
types, for example in <wx/zipstrm.h> there is:

typedef wxArchivelterator<wxZiplnputStream> wxZ iplter;

typedef wxArchivelterator<wxZiplnputStream,
std::pair<wxString, wxZipEntry*> > wxZ ipPairlter;

Transferring the catalogue of an archive arc to a vector cat, can then be done something
like this:

std::vector<wxArchiveEntry*> cat((wxArchivelter)arc,
wxArchivelter());

When the iterator is dereferenced, it gives away ownership of an entry object. So in the
above example, when you have finished with catyou must delete the pointers it contains.

If you have smart pointers with normal copy semantics (i.e. not auto_ptr or wxScopedPtr
(p. 1090)), then you can create an iterator which uses them instead. For example, with a
smart pointer class for zip entries ZipEntryPtr:

typedef std::vector<ZipEntryPtr> ZipCatalog;

typedef wxArchivelterator<wxZiplnputStream, Zip EntryPtr>
Ziplter;

ZipCatalog cat((Ziplter)zip, Ziplter());

Iterators that return std::pair objects can be used to populate a std::multimap, to allow
entries to be looked up by name. The string is initialised using the wxArchiveEntry
object's GetinternalName() (p. 43) function.

typedef std::multimap<wxString, wxZipEntry*> Zi pCatalog;
ZipCatalog cat((wxZipPairlter)zip, wxZipPairlte r();

Note that this iterator also gives away ownership of an entry object each time it is
dereferenced. So in the above example, when you have finished with cat you must
delete the pointers it contains.

Or if you have them, a pair containing a smart pointer can be used (again ZipEntryPtr),
no worries about ownership:

typedef std::multimap<wxString, ZipEntryPtr> Zi pCatalog;
typedef wxArchivelterator<wxZiplnputStream,

47

CHAPTER7

std::pair<wxString, ZipEntryPtr> > ZipPairlter,;
ZipCatalog cat((ZipPairlter)zip, ZipPairlter()) ;
Derived from
No base class
Include files
<wx/archive.h>
See also

wxArchiveEntry (p. 42)
wxArchivelnputStream (p. 45)
wxArchiveOutputStream (p. 49)

Data structures typedef std::input_iterator_tag iterator_category
typedef T value_type

typedef ptrdiff_t difference_type

typedef T* pointer

typedef T& reference

wxArchivelterator::wxArchivelterator

wxArchivelterator ()
Construct an 'end of sequence' instance.
wxArchivelterator (Arc& arc)

Construct iterator that returns all the entries in the archive input stream arc.
wxArchivelterator::operator*

const T& operator* () const

Returns an entry object from the archive input stream, giving away ownership.
wxArchivelterator::operator++

wxArchivelterator& operator++ ()
wxArchivelterator& operator++ (int)

Position the input iterator at the next entry in the archive input stream.

wxArchiveNotifier

If you need to know when a wxArchivelnputStream (p. 45) updates a wxArchiveEntry (p.

48

CHAPTER7

42) object, you can create a notifier by deriving from this abstract base class, overriding
OnEntryUpdated() (p. 49). An instance of your notifier class can then be assigned to the
wxArchiveEntry object using wxArchiveEntry::SetNotifier() (p. 45). Your
OnEntryUpdated() method will then be invoked whenever the input stream updates the
entry.

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams). See Archives on
non-seekable streams (p. 1811).

Derived from
No base class
Include files
<wx/archive.h>
See also

Archives on non-seekable streams (p. 1811)
wxArchiveEntry (p. 42)
wxArchivelnputStream (p. 45)
wxArchiveOutputStream (p. 49)

wxArchiveNotifier::OnEntryUpdated

void OnEntryUpdated (class wxArchiveEntry& entry)

This method must be overridden in your derived class.

wxArchiveOutputStream

An abstract base class which serves as a common interface to archive output streams
such as wxZipOutputStream (p. 1508).

PutNextEntry() (p. 51) is used to create a new entry in the output archive, then the
entry's data is written to the wxArchiveOutputStream. Another call to PutNextEntry()
closes the current entry and begins the next.

Derived from
wxFilterOutputStream (p. 528)
Include files

<wx/archive.h>

See also

Archive formats such as zip (p. 1806)

49

CHAPTER7

wxArchiveEntry (p. 42)
wxArchivelnputStream (p. 45)

wxArchiveOutputStream::~wxArchiveOutputStream

~wxArchiveOutputStream ()

Calls Close() (p. 50) if it has not already been called.

wxArchiveOutputStream::Close

bool Close()

Closes the archive, returning true if it was successfully written. Called by the destructor if
not called explicitly.

wxArchiveOutputStream::CloseEntry

bool CloseEntry ()

Close the current entry. It is called implicitly whenever another new entry is created with
CopyEntry() (p. 50)or PutNextEntry() (p. 51), or when the archive is closed.

wxArchiveOutputStream::CopyArchiveMetaData

bool CopyArchiveMetaData (wxArchivelnputStream& stream)

Some archive formats have additional meta-data that applies to the archive as a whole.
For example in the case of zip there is a comment, which is stored at the end of the zip
file. CopyArchiveMetaData() can be used to transfer such information when writing a
modified copy of an archive.

Since the position of the meta-data can vary between the various archive formats, it is
best to call CopyArchiveMetaData() before transferring the entries. The
wxArchiveOutputStream (p. 49)will then hold on to the meta-data and write it at the
correct point in the output file.

When the input archive is being read from a non-seekable stream, the meta-data may
not be available when CopyArchiveMetaData() is called, in which case the two streams
set up a link and transfer the data when it becomes available.

wxArchiveOutputStream::CopyEntry

bool CopyEntry (wxArchiveEntry* entry, wxArchivelnputStream& stream)

Takes ownership of entry and uses it to create a new entry in the archive. entry is then
opened in the input stream streamand its contents copied to this stream.

For archive types which compress entry data, CopyEntry() is likely to be much more

50

CHAPTER7

efficient than transferring the data using Read() and Write() since it will copy them
without decompressing and recompressing them.

entry must be from the same archive file that stream is accessing. For non-seekable
streams, entry must also be the last thing read from stream.

wxArchiveOutputStream::PutNextDirEntry

bool PutNextDirEntry (const wxString& name, const wxDateTime& dt =
wxDateTime::Now())

Create a new directory entry (see wxArchiveEntry::I1sDir() (p. 44)) with the given name
and timestamp.

PutNextEntry() (p. 51) can also be used to create directory entries, by supplying a name
with a trailing path separator.

wxArchiveOutputStream::PutNextEntry

bool PutNextEntry (wxArchiveEntry* entry)

Takes ownership of entry and uses it to create a new entry in the archive. The entry's
data can then be written by writing to this wxArchiveOutputStream.

bool PutNextEntry (const wxString& nhame, const wxDateTime& dt =
wxDateTime::Now(), off t size = wxInvalidOffset)

Create a new entry with the given name, timestamp and size. The entry's data can then
be written by writing to this wxArchiveOutputStream.

WXArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1674) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 803)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 55) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

51

CHAPTER7

wxWidgets has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and

WX _DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template” names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWidgets internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWidgets).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it is Index() (p. 60) function execution time is
O(log(N)) instead ofO(N) for the usual arrays but the Add() (p. 59) method is slower: it is
O(log(N)) instead of constant time (neglecting time spent in memory allocation routine).
However, in a usual situation elements are added to an array much less often than
searched inside it, so wxSortedArray may lead to huge performance improvements
compared to wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can
be only used for storing integral types or pointers.

wxObjArray class treats its elements like "objects"”. It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
'forward’) declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#include <wx/dynarray.h>

/I we must forward declare the array because it is used inside the
class

/I declaration

class MyDirectory;

class MyFile;

52

CHAPTER7

/I this defines two new types: ArrayOfDirectories a nd ArrayOfFiles
which can be

/l now used as shown below

WX_DECLARE_OBJARRAY (MyDirectory, ArrayOfDirectories);
WX_DECLARE_OBJARRAY(MyFile, ArrayOfFiles);

class MyDirectory

{

ArrayOfDirectories m_subdirectories; // all sub directories
ArrayOfFiles m_files; /1 all fil es in this

directory

/I now that we have MyDirectory declaration in scop e we may finish

the

/I definition of ArrayOfDirectories -- note that th is expands into

some C++

/I code and so should only be compiled once (i.e., don't put this

in the

// header, but into a source file or you will get | inking errors)

#include <wx/arrimpl.cpp> // this is a magic incant ation which

must be done!
WX_DEFINE_OBJARRAY (ArrayOfDirectories);

/l that's all!

It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayOfDirectories ;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WX_DEFINE_ARRAY (int, ArrayOfDirectories);
WX_DEFINE_SORTED_ARRAY(int, ArrayOfFiles);

i.e. there is only one DEFINE macro and no need for separate DECLAREone.
See also:

Container classes overview (p. 1668), wxList (p. 803)

Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared

53

CHAPTER7

for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 56)
WX_DEFINE_EXPORTED_ARRAY (p. 56)
WX_DEFINE_USER_EXPORTED_ARRAY (p. 56)
WX_DEFINE_SORTED_ARRAY (p. 56)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 56)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (p. 56)
WX_DECLARE_EXPORTED_OBJARRAY (p. 57)
WX_DECLARE_USER_EXPORTED_OBJARRAY (p. 57)
WX_DEFINE_OBJARRAY (p. 57)
WX_DEFINE_EXPORTED_OBJARRAY (p. 57)
WX_DEFINE_USER_EXPORTED_OBJARRAY (p. 57)

To slightly complicate the matters even further, the operator -> defined by default for the
array iterators by these macros only makes sense if the array element type is not a
pointer itself and, although it still works, this provokes warnings from some compilers
and to avoid them you should use the _PTRversions of the macros above. For example,
to define an array of pointers to double you should use.

Note that the above macros are generally only useful for wxObject types. There are
separate macros for declaring an array of a simple type, such as an int.

The following simple types are supported:
int

long

size t

double

To create an array of a simple type, simply append the type you want in CAPS to the
array definition.

For example, for an integer array, you'd use one of the following variants:

WX_DEFINE_ARRAY_INT (p. 56)
WX_DEFINE_EXPORTED_ARRAY_INT (p. 56)
WX_DEFINE_USER_EXPORTED_ARRAY_INT (p. 56)
WX_DEFINE_SORTED_ARRAY_INT (p. 56)
WX_DEFINE_SORTED_EXPORTED_ARRAY_INT (p. 56)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY_INT (p. 56)

WX_DEFINE_ARRAY_PTR(double *, MyArrayOfDoublePointe rs);

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which

54

CHAPTER7

has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 58)
wxArray copy constructors and assignment operators (p. 58)
~wxArray (p. 59)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT _INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 62) function is provided to deallocate the
extra memory. The Alloc() (p. 59) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 59)
Shrink (p. 62)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 61) method.

Count (p. 60)
GetCount (p. 60)
ISEmpty (p. 61)
Item (p. 61)

Last (p. 61)

Adding items

Add (p. 59)

Insert (p. 61)

SetCount (p. 62)
WX_APPEND_ARRAY (p. 58)

Removing items

WX_CLEAR_ARRAY (p. 58)
Empty (p. 60)

Clear (p. 59)

RemoveAt (p. 62)

55

CHAPTER7

Remove (p. 61)

Searching and sorting

Index (p. 60)
Sort (p. 62)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY (T, name)
WX_DEFINE_EXPORTED_ARRAY (T, name)
WX_DEFINE_USER_EXPORTED_ARRAY (T, name, exportspec)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling wxWidgets as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:
WX_DEFINE_ARRAY_INT(wxArraylInt);

class MyClass;
WX_DEFINE_ARRAY(MyClass *, wxArrayOfMyClass);

Note that wxWidgets predefines the following standard array classes: wxArraylint,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

WX_DEFINE_SORTED_ARRAY (T, name)
WX_DEFINE_SORTED_EXPORTED_ARRAY (T, name)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling wxWidgets as a DLL under Windows
and array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

WX_DEFINE_SORTED_ARRAY_INT(wxSortedArrayint);

class MyClass;
WX_DEFINE_SORTED_ARRAY (MyClass *, wxArrayOfMyClass)

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

56

CHAPTER7

int Comparelnts(int n1, int n2)

return nl - n2;

}
wxSortedArrayInt sorted(Comparelnts);
int CompareMyClassObjects(MyClass *item1, MyClass * item2)

/I sort the items by their address...
return Stricmp(item1->GetAddress(), item2->GetA ddress());
}

wxArrayOfMyClass another(CompareMyClassObijects);

WX_DECLARE_OBJARRAY

WX_DECLARE_OBJARRAY (T, name)
WX_DECLARE_EXPORTED_OBJARRAY (T, name)
WX_DECLARE_USER_EXPORTED_OBJARRAY (T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling wxWidgets as a DLL under Windows
and array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

class MyClass;
WX_DECLARE_OBJARRAY (MyClass, wxArrayOfMyClass); // note: not
"MyClass *"!

You must use WX_DEFINE_OBJARRAY() (p. 57) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

WX_DEFINE_OBJARRAY (name)
WX_DEFINE_EXPORTED_OBJARRAY (name)
WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p. 57) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called. The latter two forms are merely aliases of the first to satisfy some
people's sense of symmetry when using the exported declarations.

Example of usage:

57

CHAPTER7

/I first declare the class!
class MyClass

{
public:
MyClass(const MyClass&);

virtual ~MyClass();

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY (wxArrayOfMyClass);

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, WxArray& other)

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call

Empty().
Default constructors

wxArray ()

wxObjArray ()

Default constructor initializes an empty array object.
wxSortedArray (int (*)(T first, T second) compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or
positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

wxArray (const wxArray& array)
wxSortedArray (const wxSortedArray& array)
wxODbjArray (const wxObjArray& array)

wxArray& operator= (const wxArray& array)

58

CHAPTER7

wxSortedArray& operator= (const wxSortedArray& array)
wxObjArray& operator= (const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer
type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

WXArray::-~wxArray

~wxArray ()
~wxSortedArray ()
~wxObjArray ()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 58) macro
for this.

wxArray::Add

void Add (T item, size_t copies = 1)
void Add (T *item)

void Add (T &item, size_t copies = 1)

Appends the given number of copies of the item to the array consisting of the elements
of type T.

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements. Also note that you cannot append more than one pointer as reusing it would
lead to deleting it twice (or more) and hence to a crash.

You may also use WX_APPEND_ARRAY (p. 58) macro to append all elements of one
array to another one but it is more efficient to use copies parameter and modify the
elements in place later if you plan to append a lot of items.

wxArray::Alloc

void Alloc (size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for

59

CHAPTER7

the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 60) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count () const

Same as GetCount() (p. 60). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach
T * Detach (size_t index)

Removes the element from the array, but, unlike, Remove() (p. 61) doesn't delete it. The
function returns the pointer to the removed element.

wxArray::Empty
void Empty ()

Empties the array. For wxObjArray classes, this destroys all of the array elements. For
wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 59) for this.

wxArray::GetCount

size_t GetCount () const

Return the number of items in the array.

wxArray::Index

int Index (T& item, bool searchFromEnd = false)
int Index (T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUNIDB returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't

60

CHAPTER7

make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

void Insert (T item, size_t n, size_t copies = 1)
void Insert (T *item, size_t n)

void Insert (T &item, size_t n, size_t copies = 1)

Insert the given number of copies of the item into the array before the existing item n -
thus, Insert(something, Ou) will insert an item in such way that it will become the first
array element.

Please see Add() (p. 59) for explanation of the differences between the overloaded
versions of this function.

WxArray::IsEmpty
bool IsEmpty () const

Returns true if the array is empty, false otherwise.

WxArray::ltem

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Last

T& Last () const

Returns the last element in the array, i.e. is the same as Iltem(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

Remove (T item)

61

CHAPTER7

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()
(p. 60) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item = array[n];

delete item;
array.Remove(n)

See also WX_CLEAR_ARRAY (p. 58) macro which deletes all elements of a wxArray
(supposed to contain pointers).

WxArray::RemoveAt

RemoveAt (size_t index, size_t count = 1)

Removes count elements starting at index from the array. When an element is removed
from wxObjArray it is deleted by the array - useDetach() (p. 60) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete it manually if required:

T *item = array[n];
delete item;
array.RemoveAt(n)

See also WX_CLEAR_ARRAY (p. 58) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::SetCount

void SetCount (size_t count, T defval = T(0))

This function ensures that the number of array elements is at least count. If the array has
already count or more items, nothing is done. Otherwise, count - GetCount()
elements are added and initialized to the value defval.

See also

GetCount (p. 60)

wxArray::Shrink

void Shrink ()

Frees all memory unused by the array. If the program knows that no new items will be
added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

WxArray::Sort

62

CHAPTER7

void Sort (CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wxArrayString

wxArrayString is an efficient container for storing wxString (p. 1229) objects. It has the
same features as all wxArray (p. 51) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 51), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 66), Last (p. 67) or operator[] (p. 65) are not
constant, so the array elements may be modified in place like this

array.Last().MakeUpper();

There is also a variant of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 66) function
(instead of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basically, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a

63

CHAPTER7

specialization of wxArray (p. 51) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files
<wx/arrstr.h>
See also

wxArray (p. 51), wxString (p. 1229), wxString overview (p. 1649)

wxArrayString::wxArrayString

wxArrayString ()
Default constructor.
wxArrayString (const wxArrayString& array)

Copy constructor. Note that when an array is assigned to a sorted array, its contents is
automatically sorted during construction.

wxArrayString (size_t sz, const wxChar** arr)
Constructor from a C string array. Pass a size sz and array arr.
wxArrayString (size_t sz, const wxString* arr)

Constructor from a wxString array. Pass a size sz and array art.

wxArrayString::~wxArrayString
~wxArrayString ()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=
wxArrayString & operator = (const wxArrayString& array)

Assignment operator.

wxArrayString::operator==
bool operator == (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true only if the arrays have the same
number of elements and the same strings in the same order.

64

CHAPTER7

wxArrayString::operator!=

bool operator = (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true if the arrays have different number
of elements or if the elements don't match pairwise.

wxArrayString::operator|]

wxString& operator[] (size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of Item (p. 66) method.

wxArrayString::Add
size_t Add (const wxString& str, size_t copies = 1)

Appends the given number of copies of the new item str to the array and returns the
index of the first new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 66) - 1 because the item is inserted at the correct position to keep the
array sorted and not appended.

See also: Insert (p. 66)

wxArrayString::Alloc

void Alloc (size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 55)

wxArrayString::Clear

void Clear()

Clears the array contents and frees memory.
See also: Empty (p. 65)
wxArrayString::Count

size_t Count () const

65

CHAPTER7

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 66) instead.

wxArrayString::Empty
void Empty ()

Empties the array: after a call to this function GetCount (p. 66) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 65) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount () const

Returns the number of items in the array.

wxArrayString::Index

int Index (const char * sz, bool bCase = true, bool bFromEnd = false)

Search the element in the array, starting from the beginning ifoFromEnd is false or from
end otherwise. If bCase, comparison is case sensitive (default), otherwise the case is
ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUN there is no match.

wxArrayString::Insert

void Insert (const wxString& str, size_t nindex, size t copies = 1)

Insert the given number of copies of the new element in the array before the position
nindex. Thus, for example, to insert the string in the beginning of the array you would
write

Insert("*foo", 0);

If nindex is equal to GetCount() this function behaves as Add (p. 65).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 66) would then not work!

wxArrayString::ISEmpty

bool IsEmpty ()

66

CHAPTER7

Returns true if the array is empty, false otherwise. This function returns the same result
as GetCount() == 0 but is probably easier to read.

wxArrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator([] (p. 65) for the operator version.

wxArrayString::Last

wxString& Last()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove (const char * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 66)

wxArrayString::RemoveAt

void RemoveAt (size_t nindex, size_t count = 1)

Removes count items starting at position nindex from the array.

wxArrayString::Shrink

void Shrink ()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 65), Dynamic array memory management (p. 55)

wxArrayString::Sort

void Sort(bool reverseOrder = false)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
true. The sort is case-sensitive.

67

CHAPTER7

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 66) would then not work!

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than O if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int CompareStringLen(const wxString& first, const wxString&
second)

return first.length() - second.length();

}

wxArrayString array;

array.Add("one");
array.Add("two");
array.Add("three");
array.Add("four");

array.Sort(CompareStringLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 66) would then not work!

wxArtProvider

wxArtProvider class is used to customize the look of wxWidgets application. When
wxWidgets needs to display an icon or a bitmap (e.qg. in the standard file dialog), it does
not use a hard-coded resource but asks wxArtProvider for it instead. This way users can
plug in their own wxArtProvider class and easily replace standard art with their own
version. All that is needed is to derive a class from wxArtProvider, override
itsCreateBitmap (p. 71) method and register the provider
withwxArtProvider::PushProvider (p. 72):

class MyProvider : public wxArtProvider

protected:
wxBitmap CreateBitmap(const wxArtID& id,
const wxArtClient& client
const wxSize size)
{..}
h

\'/Q/'xArtProvider::PushProvider(new MyProvider);

There's another way of taking advantage of this class: you can use it in your code and

68

CHAPTER7

use platform native icons as provided by wxArtProvider::GetBitmap (p. 71) or
wxArtProvider::Getlcon (p. 72) (NB: this is not yet really possible as of wxWidgets 2.3.3,
the set of wxArtProvider bitmaps is too small).

Identifying art resources

Every bitmap is known to wxArtProvider under an unique ID that is used by when
requesting a resource from it. The ID is represented by wxArtID type and can have one
of these predefined values (you can see bitmaps represented by these constants in the
artprov (p. 1636) sample):

« WxXART_ADD_BOOKMARK
« WXART_DEL_BOOKMARK
* WxART_HELP_SIDE_PANEL
* WXART_HELP_SETTINGS
e WXART_HELP_BOOK

e WXART_HELP_FOLDER

e WxXART_HELP_PAGE

* WXART_GO_BACK

e WXART_GO_FORWARD

¢« WxART_GO_UP

« WXART_GO_DOWN

e WXART_GO_TO_PARENT
* WxXART_GO_HOME

e WxART_FILE_OPEN

e WXART_PRINT

e WXART_HELP

e WXART_TIP

* WXART_REPORT_VIEW

e WXART_LIST_VIEW

e WXART_NEW_DIR

e WXART_FOLDER

« WXART_GO_DIR_UP

69

CHAPTER7

« WXART_EXECUTABLE_FILE
« WXART_NORMAL_FILE

« WXART_TICK_MARK

« WXART_CROSS_MARK

« WXART_ERROR

« WXART_QUESTION

« WXART_WARNING

« WXART_INFORMATION

« WXART_MISSING_IMAGE

Additionally, any string recognized by custom art providers registered usingPushProvider
(p- 72) may be used.

GTK+ Note

When running under GTK+ 2, GTK+ stock item IDs (e.g. "gtk-cdrom™) may be used
as well. Additionally, if wxGTK was compiled against GTK+ >= 2.4, then it is also
possible to load icons from current icon theme by specifying their name (without
extension and directory components). Icon themes recognized by GTK+ follow
thefreedesktop.org Icon Themes specification
(http://freedesktop.org/Standards/icon-theme-spec). Note that themes
are not guaranteed to contain all icons, so wxArtProvider may return wxNullBitmap or
wxNulllcon . Default theme is typically installed in /usr/share/icons/hicolor

Clients

Client is the entity that calls wxArtProvider's GetBitmap or Getlcon function. It is
represented by wxClientID type and can have one of these values:

« WXART_TOOLBAR

« WXART_MENU

« WXART_BUTTON

« WXART_FRAME_ICON

« WXART_CMN_DIALOG

« WXART_HELP_BROWSER
« WXART_MESSAGE_BOX

« WxART_OTHER (used for all requests that don't fit into any of the categories
above)Client ID servers as a hint to wxArtProvider that is supposed to help it to

70

CHAPTER7

choose the best looking bitmap. For example it is often desirable to use slightly
different icons in menus and toolbars even though they represent the same
action (e.g. wx_ART_FILE_OPEN. Remember that this is really only a hint for
wxArtProvider -- it is common thatwxArtProvider::GetBitmap (p. 71) returns
identical bitmap for different client values!

See also

See the artprov (p. 1636) sample for an example of wxArtProvider usage.
Derived from

wxObject (p. 969)

Include files

<wx/artprov.h>

wxArtProvider::CreateBitmap

wxBitmap CreateBitmap (const wxArtID& id, const wxArtClient& client, const
wxSize& size)

Derived art provider classes must override this method to create requested art resource.
Note that returned bitmaps are cached by wxArtProvider and it is therefore not
necessary to optimize CreateBitmap for speed (e.g. you may create wxBitmap objects
from XPMs here).

Parameters
id

wxArtID unique identifier of the bitmap.
client

wxArtClient identifier of the client (i.e. who is asking for the bitmap). This only
servers as a hint.

size

Preferred size of the bitmap. The function may return a bitmap of different
dimensions, it will be automatically rescaled to meet client's request.

Note

This is not part of wxArtProvider's public API, usewxArtProvider::GetBitmap (p. 71) or
wxArtProvider::Getlcon (p. 72)to query wxArtProvider for a resource.

wxArtProvider::GetBitmap

static wxBitmap GetBitmap (const wxArtID& id, const wxArtClient& client =

71

CHAPTER7

WXART_OTHER, const wxSize& size = wxDefaultSize)
Query registered providers for bitmap with given ID.
Parameters
id
wxArtID unique identifier of the bitmap.
client
wxArtClient identifier of the client (i.e. who is asking for the bitmap).
size
Size of the returned bitmap or wxDefaultSize if size doesn't matter.
Return value

The bitmap if one of registered providers recognizes the ID or wxNullBitmap otherwise.

wxArtProvider::Getlcon

static wxlcon Getlcon (const wxArtID& id, const wxArtClient& client =
WXART_OTHER, const wxSize& size = wxDefaultSize)

Same as wxArtProvider::GetBitmap (p. 71), but return a wxlcon object (or wxNulllcon on
failure).

static wxSize GetSizeHint (const wxArtClient& client, bool platform_default = false)

Returns a suitable size hint for the given wxArtClient. If platform_default is true , return
a size based on the current platform, otherwise return the size from the topmost
wxArtProvider. wxDefaultSize may be returned if the client doesn't have a specified
size, like wxART_OTHER for example.

wxArtProvider::PopProvider

static bool PopProvider ()

Remove latest added provider and delete it.
wxArtProvider::PushProvider

static void PushProvider (wxArtProvider* provider)
Register new art provider (add it to the top of providers stack).
wxArtProvider::RemoveProvider

static bool RemoveProvider (wxArtProvider* provider)

72

CHAPTER7

Remove a provider from the stack. The provider must have been added previously and
is not deleted.

wxAutomationObject

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1399) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
API is high-level, and the application can specify multiple properties in a single string.
The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAutomationObject excelObject;
if (excelObject.Getlnstance("Excel.Application"))
excelObject.PutProperty("ActiveCell.Font.Bold " true);

Note that this class obviously works under Windows only.
Derived from

wxObiject (p. 969)

Include files

<wx/mswj/ole/automtn.h>

See also

wxVariant (p. 1399)

wxAutomationObject::wxAutomationObject

wxAutomationObject (WXIDISPATCH?* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject ()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

73

CHAPTER7

wxVariant CallMethod (const wxString& method, int noArgs, wxVariant args[]) const
wxVariant CallMethod (const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res = obj.CallMethod("Sum®”, wxVariant(1 .2),
wxVariant(3.4));
wxVariant res = obj.CallMethod("Sum®, 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

object.CallMethod("ActiveCell.Font.ShowDialog", " My caption");

wxAutomationObject::Createlnstance

bool Createlnstance (const wxString& classld) const

Creates a new object based on the class id, returning true if the object was successfully
created, or false if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr () const

Gets the IDispatch pointer.

wxAutomationObject::Getlnstance

bool Getlnstance (const wxString& classld) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns true if a pointer was successfully retrieved, false
otherwise.

Note that this cannot cope with two instances of a given OLE object being active
simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject (wxAutomationObject& obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

74

CHAPTER7

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 75) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.
See also

wxAutomationObject::GetProperty (p. 75)

wxAutomationObject::GetProperty

wxVariant GetProperty (const wxString& property, int noArgs, wxVariant argsl])
const

wxVariant GetProperty (const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res = obj.GetProperty("Range”, wxVarian t("A1"));
wxVariant res = obj.GetProperty("Range”, "Al");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke (const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters
member

The member function or property name.
action

Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.

retValue

75

CHAPTER7

Return value (ignored if there is no return value)

NoArgs
Number of arguments in args or ptrArgs.
args
If non-null, contains an array of variants.
ptrArgs
If non-null, contains an array of constant pointers to variants.
Return value
true if the operation was successful, false otherwise.
Remarks

Two types of argument array are provided, so that when possible pointers are used for
efficiency.

wxAutomationObject::PutProperty

bool PutProperty (const wxString& property, int noArgs, wxVariant args[]) const
bool PutProperty (const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj.PutProperty(*Value", wxVariant(23));
obj.PutProperty("Value", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr (WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

76

CHAPTER7

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour or colour with alpha channel support.

Derived from

wxGDIObject (p. 583)
wxObject (p. 969)

Include files
<wx/bitmap.h>
Predefined objects
Objects:
wxNullBitmap

See also

wxBitmap overview (p. 1715),supported bitmap file formats (p. 1716),wxDC::Blit (p.
354),wxlcon (p. 732), wxCursor (p. 217), wxBitmap (p. 76),wxMemoryDC (p. 897)

wxBitmap::wxBitmap

wxBitmap ()

Default constructor.

wxBitmap (const wxBitmap& bitmap)

Copy constructor. Note that this does not take a fresh copy of the data, but instead
makes the internal data point to bitmap's data. So changing one bitmap will change the
other. To make a real copy, you can use:

wxBitmap newBitmap = oldBitmap.GetSubBitmap(
wxRect(0, 0, oldBitmap .GetWidth(),
oldBitmap.GetHeight()));

wxBitmap (void* data, int type, int width, int height, int depth =-1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap (const char bits[], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable

77

CHAPTER7

programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxIimage (p. 744) should be used for creating colour bitmaps from static data.

wxBitmap (int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.
Beginning with version 2.5.4 of wxWidgets a depth of 32 including an alpha channel is
supported under MSW, Mac and GTK+.

wxBitmap (const char** bits)

Creates a bitmap from XPM data.

wxBitmap (const wxString& name, long type)
Loads a bitmap from a file or resource.

wxBitmap (const wxlmage& img, int depth = -1)

Creates bitmap object from the image. This has to be done to actually display an image
as you cannot draw an image directly on a window. The resulting bitmap will use the
provided colour depth (or that of the current system if depth is -1) which entails that a
colour reduction has to take place.

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created
on program start-up to look up colors. This ensures a very fast conversion, but the image
quality won't be perfect (and could be better for photo images using more sophisticated
dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when
creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

Parameters
bits

Specifies an array of pixel values.
width

Specifies the width of the bitmap.
height

Specifies the height of the bitmap.
depth

Specifies the depth of the bitmap. If this is omitted, the display depth of the screen

78

CHAPTER7

is used.
name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:
wxBITMAP_TYPE_BMP Load a Windows bitmap file.

WxBITMAP_TYPE_BMP_RESOURCELoad a Windows bitmap resource from the
executable. Windows only.

WxBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

WxBITMAP_TYPE_GIF Load a GIF bitmap file.
WXBITMAP_TYPE_XBM Load an X bitmap file.
WXBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration. If
all possible wxWidgets settings are used, the Windows platform supports BMP file,
BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMoatif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wximage (p. 744) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
WXBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.
img
Platform-independent wxlmage object.
Remarks

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

79

CHAPTER7

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWidgets has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

wxBitmap *bitmap = new wxBitmap(mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 85)

wxPython note: Constructors supported by wxPython are:
wxBitmap(name, flag) Loads a bitmap from a file

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM
data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

wxBitmapFromIimage(image, depth=-1) Convert a wxlmage to a
wxBitmap.

wxPerl note: Constructors supported by wxPerl are:
«::Bitmap->new(width, height, depth = -1)
«::Bitmap->new(name, type)
«::Bitmap->new(icon)
«::Bitmap->newFromBits(bits, width, height, depth = 1)

«::Bitmap->newFromXPM(data)

wxBitmap::~wxBitmap

80

CHAPTER7

~wxBitmap ()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWidgets when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler (wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.
handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 95)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers ()
Deletes all bitmap handlers.

This function is called by wxWidgets on exit.

wxBitmap::ConvertTolmage

wxlmage ConvertTolmage ()

Creates an image from a platform-dependent bitmap. This preserves mask information
so that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::CopyFromlcon

bool CopyFromlcon (const wxlcon& icon)

Creates the bitmap from an icon.

wxBitmap::Create

virtual bool Create(int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is

81

CHAPTER7

used.
virtual bool Create(void* data, int type, int width, int height, int depth =-1)
Creates a bitmap from the given data, which can be of arbitrary type.
Parameters
width

The width of the bitmap in pixels.
height

The height of the bitmap in pixels.
depth

The depth of the bitmap in pixels. If this is -1, the screen depth is used.
data

Data whose type depends on the value of type.
type

A bitmap type identifier - see wxBitmap::wxBitmap (p. 77) for a list of possible
values.

Return value
true if the call succeeded, false otherwise.
Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 77)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler (const wxString& name)
Finds the handler with the given name.

static wxBitmapHandler* FindHandler (const wxString& extension, wxBitmapType
bitmapType)

Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler (wxBitmapType bitmapType)

82

CHAPTER7

Finds the handler associated with the given bitmap type.
name
The handler name.
extension
The file extension, such as "bmp".
bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.
Return value
A pointer to the handler if found, NULL otherwise.
See also

wxBitmapHandler (p. 95)

wxBitmap::GetDepth
int GetDepth () const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers ()
Returns the static list of bitmap format handlers.
See also

wxBitmapHandler (p. 95)

wxBitmap::GetHeight
int GetHeight () const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette () const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

83

CHAPTER7

wxPalette (p. 983)

wxBitmap::GetMask

wxMask* GetMask () const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 87), wxMask (p. 868)

wxBitmap::GetWidth

int GetWidth () const

Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 83)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap (const wxRect& rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers ()

Adds the standard bitmap format handlers, which, depending on wxWidgets
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWidgets on startup.
See also

wxBitmapHandler (p. 95)

wxBitmap::InsertHandler

static void InsertHandler (wxBitmapHandler* handler)
Adds a handler at the start of the static list of format handlers.

handler

84

CHAPTER7

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 95)

wxBitmap::LoadFile

bool LoadFile (const wxString& name, wxBitmapType type)
Loads a bitmap from a file or resource.

Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:
wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap resource
from the executable.

WXxBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

WxBITMAP_TYPE_GIF Load a GIF bitmap file.

WXBITMAP_TYPE_XBM Load an X bitmap file.

WXBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

In addition, wxBitmap can read all formats that wximage (p. 744) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
WXBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxImage handlers loaded.)

Return value
true if the operation succeeded, false otherwise.
Remarks

A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 83) member.

85

CHAPTER7

See also

wxBitmap::SaveFile (p. 86)

wxBitmap::0Ok
bool Ok() const

Returns true if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler (const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.
name
The handler name.
Return value
true if the handler was found and removed, false otherwise.
See also

wxBitmapHandler (p. 95)

wxBitmap::SaveFile

bool SaveFile (const wxString& name, wxBitmapType type, wxPalette* palette =
NULL)

Saves a bitmap in the named file.
Parameters
name
A filename. The meaning of name is determined by the type parameter.
type
One of the following values:
wWxBITMAP_TYPE_BMP Save a Windows bitmap file.
WxBITMAP_TYPE_GIF Save a GIF bitmap file.
WxBITMAP_TYPE_XBM Save an X bitmap file.
WXBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

CHAPTER7

In addition, wxBitmap can save all formats that wximage (p. 744) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxImage handlers loaded.)

palette
An optional palette used for saving the bitmap.
Return value
true if the operation succeeded, false otherwise.
Remarks
Depending on how wxWidgets has been configured, not all formats may be available.
See also

wxBitmap::LoadFile (p. 85)

wxBitmap::SetDepth
void SetDepth (int depth)
Sets the depth member (does not affect the bitmap data).
Parameters
depth
Bitmap depth.

wxBitmap::SetHeight

void SetHeight (int height)

Sets the height member (does not affect the bitmap data).
Parameters

height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask (wxMask* mask)
Sets the mask for this bitmap.
Remarks

The bitmap object owns the mask once this has been called.

87

CHAPTER7

See also

wxBitmap::GetMask (p. 83), wxMask (p. 868)

wxBitmap::SetPalette

void SetPalette (const wxPalette& palette)
Sets the associated palette. (Not implemented under GTK+).
Parameters
palette
The palette to set.
See also

wxPalette (p. 983)

wxBitmap::SetWidth

void SetWidth (int width)

Sets the width member (does not affect the bitmap data).
Parameters

width

Bitmap width in pixels.

wxBitmap::operator =
wxBitmap& operator = (const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters
bitmap

Bitmap to assign.
Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator == (const wxBitmap& bitmap)

88

CHAPTER7

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters
bitmap

Bitmap to compare with 'this'
Return value

Returns true if the bitmaps were effectively equal, false otherwise.

wxBitmap::operator !=
bool operator = (const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters
bitmap

Bitmap to compare with 'this'
Return value

Returns true if the bitmaps were unequal, false otherwise.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
392) or panel (p. 987), or indeed almost any other window.

Derived from

wxButton (p. 112)
wxControl (p. 205)
wxWindow (p. 1424)
wxEvtHandler (p. 468)
wxObiject (p. 969)

Include files
<wx/bmpbuttn.h>
Remarks

A bitmap button can be supplied with a single bitmap, and wxWidgets will draw all button
states using this bitmap. If the application needs more control, additional bitmaps for the
selected state, unpressed focused state, and greyed-out state may be supplied.

89

CHAPTER7

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32
only.

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM Alilgns the bitmap label to the bottom of the button. WIN32
only.

Note that wxBU_EXACTFIT supported by wxButton (p. 112) is not used by this class as
bitmap buttons don't have any minimal standard size by default.

See also window styles overview (p. 1690).
Event handling

EVT_BUTTON(id, func) Process a
WXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 112)

wxBitmapButton::wxBitmapButton

wxBitmapButton ()
Default constructor.

wxBitmapButton (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button”)

Constructor, creating and showing a button.
Parameters
parent

Parent window. Must not be NULL.

90

CHAPTER7

Button identifier. A value of -1 indicates a default value.
bitmap

Bitmap to be displayed.
pos

Button position.
size

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 89).
validator
Window validator.
name
Window name.
Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWidgets
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 93),
wxBitmapButton::SetBitmapFocus (p. 93), wxBitmapButton::SetBitmapDisabled (p. 92).

Note that the bitmap passed is smaller than the actual button created.
See also

wxBitmapButton::Create (p. 91), wxValidator (p. 1397)

wxBitmapButton::~wxBitmapButton

~wxBitmapButton ()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button™)

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 90).

91

CHAPTER7

wxBitmapButton::GetBitmapDisabled
wxBitmap& GetBitmapDisabled () const
Returns the bitmap for the disabled state.
Return value

A reference to the disabled state bitmap.
See also

wxBitmapButton::SetBitmapDisabled (p. 92)

wxBitmapButton::GetBitmapFocus
wxBitmap& GetBitmapFocus () const
Returns the bitmap for the focused state.
Return value

A reference to the focused state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 93)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel () const

Returns the label bitmap (the one passed to the constructor).

Return value
A reference to the button's label bitmap.
See also

wxBitmapButton::SetBitmapLabel (p. 93)

wxBitmapButton::GetBitmapSelected
wxBitmap& GetBitmapSelected () const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.

See also

92

CHAPTER7

wxBitmapButton::SetBitmapSelected (p. 93)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled (const wxBitmap& bitmap)
Sets the bitmap for the disabled button appearance.
Parameters
bitmap

The bitmap to set.
See also

wxBitmapButton::GetBitmapDisabled (p. 91), wxBitmapButton::SetBitmapLabel (p. 93),
wxBitmapButton::SetBitmapSelected (p. 93), wxBitmapButton::SetBitmapFocus (p. 93)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus (const wxBitmap& bitmap)
Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters
bitmap
The bitmap to set.
See also

wxBitmapButton::GetBitmapFocus (p. 92), wxBitmapButton::SetBitmapLabel (p. 93),
wxBitmapButton::SetBitmapSelected (p. 93), wxBitmapButton::SetBitmapDisabled (p.
92)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel (const wxBitmap& bitmap)
Sets the bitmap label for the button.
Parameters
bitmap
The bitmap label to set.
Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

93

CHAPTER7

See also

wxBitmapButton::GetBitmapLabel (p. 92)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected (const wxBitmap& bitmap)
Sets the bitmap for the selected (depressed) button appearance.
Parameters
bitmap
The bitmap to set.
See also

wxBitmapButton::GetBitmapSelected (p. 92), wxBitmapButton::SetBitmapLabel (p. 93),
wxBitmapButton::SetBitmapFocus (p. 93), wxBitmapButton::SetBitmapDisabled (p. 92)

wxBitmapDataObject

wxBitmapDataObiject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 144) or a wxDropSource (p. 450).
A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObiject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 94) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 233)
wxDataObject (p. 229)

Include files
<wx/dataobj.h>
See also

Clipboard and drag and drop overview (p. 1744), wxDataObject (p. 229),
wxDataObjectSimple (p. 233), wxFileDataObject (p. 491), wxTextDataObject (p. 1300),
wxDataObject (p. 229)

94

CHAPTER7

wxBitmapDataObject (const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 95) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap () const

Returns the bitmap associated with the data object. You may wish to override this
method when offering data on-demand, but this is not required by wxWidgets' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 144).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap (const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBitmapHandler

Overview (p. 1715)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 81) in your application initialisation.

Derived from
wxObject (p. 969)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 76), wxlcon (p. 732), wxCursor (p. 217)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandler ()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

95

CHAPTER7

~wxBitmapHandler ()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create (wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters
bitmap
The wxBitmap object.
width
The width of the bitmap in pixels.
height
The height of the bitmap in pixels.
depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.
data
Data whose type depends on the value of type.
type

A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 77) for a list
of possible values.

Return value

true if the call succeeded, false otherwise (the default).
wxBitmapHandler::GetName

wxString GetName () const

Gets the name of this handler.
wxBitmapHandler::GetExtension

wxString GetExtension () const

Gets the file extension associated with this handler.

96

CHAPTER7

wxBitmapHandler::GetType

long GetType () const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile (wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters
bitmap

The bitmap object which is to be affected by this operation.
name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 77) for values this can take.
Return value
true if the operation succeeded, false otherwise.
See also

wxBitmap::LoadFile (p. 85)
wxBitmap::SaveFile (p. 86)
wxBitmapHandler::SaveFile (p. 97)

wxBitmapHandler::SaveFile

bool SaveFile (wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.
Parameters
bitmap
The bitmap object which is to be affected by this operation.
name

A filename. The meaning of name is determined by the type parameter.

97

CHAPTER7

type

See wxBitmap::wxBitmap (p. 77) for values this can take.

palette

An optional palette used for saving the bitmap.
Return value
true if the operation succeeded, false otherwise.
See also

wxBitmap::LoadFile (p. 85)
wxBitmap::SaveFile (p. 86)
wxBitmapHandler::LoadFile (p. 97)

wxBitmapHandler::SetName

void SetName (const wxString& name)
Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension (const wxString& extension)
Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType
void SetType (long type)
Sets the handler type.
Parameters

name

Handler type.

98

CHAPTER7

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

For more information, please see Programming with wxBoxSizer (p. 1701).
Derived from

wxSizer (p. 1127)
wxObiject (p. 969)

Include files
<wx/sizer.h>
See also

wxSizer (p. 1127), Sizer overview (p. 1698)

wxBoxSizer::.wxBoxSizer

wxBoxSizer (int orient)

Constructor for a wxBoxSizer. orient may be either of wxVERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes ()
Implements the calculation of a box sizer's dimensions and then sets the size of its

children (calling wxWindow::SetSize (p. 1469) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin ()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation ()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

99

CHAPTER7

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 583)
wxObiject (p. 969)

Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

WxBLUE_BRUSH
WXGREEN_BRUSH
WXWHITE_BRUSH
WXBLACK_BRUSH
WXGREY_BRUSH
WXxMEDIUM_GREY_BRUSH
wWxLIGHT_GREY_BRUSH
WXTRANSPARENT BRUSH
WXCYAN_BRUSH
WXRED_BRUSH

Remarks

On a monochrome display, wxWidgets shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::Oninit (p. 37) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList , and calling the member function FindOrCreateBrush .

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 105), wxDC (p. 353), wxDC::SetBrush (p. 369)

100

CHAPTER7

wxBrush::.wxBrush

wxBrush ()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 103) will return

false.
wxBrush (const wxColour& colour, int style = wxSCLI D)
Constructs a brush from a colour object and style.
wxBrush (const wxString& colourName, int style)
Constructs a brush from a colour name and style.
wxBrush (const wxBitmap& stippleBitmap)
Constructs a stippled brush using a bitmap.
wxBrush (const wxBrush& brush)
Copy constructor. This uses reference counting so is a cheap operation.
Parameters
colour

Colour object.
colourName

Colour name. The name will be looked up in the colour database.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
WXSTIPPLE Uses a bitmap as a stipple.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wXCROSS HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.

101

CHAPTER7

brush
Pointer or reference to a brush to copy.
stippleBitmap
A bitmap to use for stippling.
Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 105), wxColour (p. 157), wxColourDatabase (p. 162)

wxBrush::~wxBrush

~wxBrush ()
Destructor.
Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWidgets cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour () const
Returns a reference to the brush colour.
See also

wxBrush::SetColour (p. 103)

wxBrush::GetStipple

wxBitmap * GetStipple () const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 85) returns false).

See also

wxBrush::SetStipple (p. 104)

102

CHAPTER7

wxBrush::GetStyle

int GetStyle () const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wXCROSS HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
wWxVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
wWXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 104), wxBrush::SetColour (p. 103), wxBrush::SetStipple (p. 104)

wxBrush::IsHatch

bool IsHatch () const

Returns true if the style of the brush is any of hatched fills.
See also

wxBrush::GetStyle (p. 102)

wxBrush::Ok

bool Ok() const

Returns true if the brush is initialised. It will return false if the default constructor has
been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour (wxColour& colour)

Sets the brush colour using a reference to a colour object.

103

CHAPTER7

void SetColour (const wxString& colourName)
Sets the brush colour using a colour name from the colour database.

void SetColour (const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.
See also

wxBrush::GetColour (p. 102)

wxBrush::SetStipple

void SetStipple (const wxBitmap& bitmap)
Sets the stipple bitmap.
Parameters
bitmap

The bitmap to use for stippling.
Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_ OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 76)

wxBrush::SetStyle

void SetStyle (int style)
Sets the brush style.
style

One of:

WXTRANSPARENT Transparent (no fill).

104

CHAPTER7

wxSOLID Solid.

wxBDIAGONAL_HATCH Backward diagonal hatch.

WXCROSSDIAG_HATCH Cross-diagonal hatch.

wWxFDIAGONAL_HATCH Forward diagonal hatch.

wXxCROSS HATCH Cross hatch.

WXHORIZONTAL_HATCH Horizontal hatch.

WXVERTICAL_HATCH Vertical hatch.

WXSTIPPLE Stippled using a bitmap.

WxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::GetStyle (p. 102)

wxBrush::operator =

wxBrush& operator = (const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator == (const wxBrush& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator =

bool operator = (const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.
Derived from

wxList (p. 803)
wxObject (p. 969)

105

CHAPTER7

Include files
<wx/gdicmn.h>
Remarks

There is only one instance of this class: wxTheBrushList . Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWidgets which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a reference counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the reference
counting does it for you. For example, you can set a brush in a device context, and then
immediately delete the brush you passed, because the brush is ‘copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWidgets to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWidgets.

See also

wxBrush (p. 99)

wxBrushList::wxBrushList

void wxBrushList ()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList .

wxBrushList::AddBrush

void AddBrush (wxBrush * brush)

Used internally by wxWidgets to add a brush to the list.
wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush (const wxColour& colour, int style = wxSOLID)

106

CHAPTER7

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Parameters
colour

Colour object.
style

Brush style. See wxBrush::SetStyle (p. 104) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush (wxBrush * brush)

Used by wxWidgets to remove a brush from the list.

wxBufferedDC

This simple class provides a simple way to avoid flicker: when drawing on it, everything
is in fact first drawn on an in-memory buffer (a wxBitmap (p. 76)) and then copied to the
screen only once, when this object is destroyed.

It can be used in the same way as any other device context. wxBufferedDC itself
typically replaces wxClientDC (p. 141), if you want to use it in your OnPaint() handler,
you should look atwxBufferedPaintDC (p. 108).

Derived from

wxMemoryDC (p. 897)
wxDC (p. 353)
wxObject (p. 969)

Include files
<wx/dcbuffer.h>
See also

wxDC (p. 353)

wxBufferedDC::wxBufferedDC

wxBufferedDC ()

wxBufferedDC (wxDC *dc, const wxSize& area, int style =
wWXxBUFFER_CLIENT_AREA)

107

CHAPTER7

wxBufferedDC (wxDC *dc, const wxBitmap& buffer, int style =
wWxBUFFER_CLIENT_AREA)

If you use the first, default, constructor, you must call one of the Init (p. 108) methods
later in order to use the object.

The other constructors initialize the object immediately and Init() must not be called
after using them.

Parameters
dc

The underlying DC: everything drawn to this object will be flushed to this DC when
this object is destroyed. You may pass NULL in order to just initialize the buffer,
and not flush it.

area

The size of the bitmap to be used for buffering (this bitmap is created internally
when it is not given explicitly).

buffer

Explicitly provided bitmap to be used for buffering: this is the most efficient solution
as the bitmap doesn't have to be recreated each time but it also requires more
memory as the bitmap is never freed. The bitmap should have appropriate size,
anything drawn outside of its bounds is clipped.

style

wWxBUFFER_CLIENT_AREA to indicate that just the client area of the window is
buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the buffer bitmap covers
the virtual area (in which case PrepareDC is automatically called for the actual
window device context).

wxBufferedDC::Init

void Init (wxDC *dc, const wxSize& area, int style = wxBUFFER_CLIENT_AREA)
void Init (wxDC *dc, const wxBitmap& buffer, int style = wxBUFFER_CLIENT_AREA)

These functions initialize the object created using the default constructor. Please see
constructors documentation (p. 107) for details.

wxBufferedDC::~wxBufferedDC

Copies everything drawn on the DC so far to the underlying DC associated with this
object, if any.

wxBufferedPaintDC

108

CHAPTER7

This is a subclass of wxBufferedDC (p. 107) which can be used inside of an OnPaint()
event handler. Just create an object of this class instead of wxPaintDC (p. 981) and
that's all you have to do to (mostly) avoid flicker. The only thing to watch out for is that if
you are using this class together with wxScrolledWindow (p. 1101), you probably do not
want to call PrepareDC (p. 1108) on it as it already does this internally for the real
underlying wxPaintDC.

Derived from

wxMemoryDC (p. 897)
wxDC (p. 353)
wxObject (p. 969)

Include files

<wx/dcbuffer.h>

wxBufferedPaintDC::wxBufferedPaintDC

wxBufferedPaintDC (wxWindow * window, const wxBitmap& buffer, int style =
wxBUFFER_CLIENT_AREA)

wxBufferedPaintDC (wxWindow * window, int style = wxBUFFER_CLIENT_AREA)

As with wxBufferedDC (p. 107), you may either provide the bitmap to be used for
buffering or let this object create one internally (in the latter case, the size of the client
part of the window is used).

Pass wxBUFFER_CLIENT_AREA for the style parameter to indicate that just the client
area of the window is buffered, or wxBUFFER_VIRTUAL AREA to indicate that the
buffer bitmap covers the virtual area (in which case PrepareDC is automatically called
for the actual window device context).

wxBufferedPaintDC::~wxBufferedPaintDC

Copies everything drawn on the DC so far to the window associated with this object,
using a wxPaintDC (p. 981).

wxBufferedinputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterlnputStream (p. 527)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 hytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterInputStream (p. 527)

109

CHAPTER7

Include files
<wx/stream.h>
See also

wxStreamBuffer (p. 1223), wxInputStream (p. 779),wxBufferedOutputStream (p. 110)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 528)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from
wxFilterOutputStream (p. 528)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1223), wxOutputStream (p. 973)

wxBufferedOutputStream::wxBufferedOutputStream

wxBufferedOutputStream (const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream
~wxBufferedOutputStream ()

Destructor. Calls Sync() and destroys the internal buffer.
wxBufferedOutputStream::SeekO

off t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

110

CHAPTER7

void Sync ()

Flushes the buffer and calls Sync() on the parent stream.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:
wxBusyCursor walit;

for (inti=0; i< 100000; i++)
DoAcCalculation();

It works by calling wxBeginBusyCursor (p. 1544) in the constructor, and
wxEndBusyCursor (p. 1546) in the destructor.

Derived from
None
Include files
<wx/utils.h>
See also

wxBeginBusyCursor (p. 1544), wxEndBusyCursor (p. 1546), wxWindowDisabler (p.
1481)

wxBusyCursor::wxBusyCursor

wxBusyCursor (wxCursor* cursor = wxHOURGLASS CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1544).

wxBusyCursor::~wxBusyCursor

~wxBusyCursor ()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1546).

wxBusylnfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusylInfo object on the stack, and within the current scope, a message
window will be shown.

111

CHAPTER7

For example:
wxBusylInfo wait("Please wait, working...");
for (inti=0; i <100000; i++)
DoAcCalculation();

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case
it had been obscured by other windows, for example) like this:

wxWindowDisabler disableAll;

wxBusylInfo wait("Please wait, working...");

for (inti=0; i <100000; i++)
DoAcCalculation();

if (1(i % 1000))
) wxTheApp->Yield();

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield()
(p. 41) for more details). The simplest way to do it is to use wxWindowDisabler (p. 1481)
class as illustrated in the above example.

Derived from
None
Include files

<wx/busyinfo.h>

wxBusylnfo::wxBusylnfo
wxBusyInfo (const wxString& msg, wxWindow* parent = NULL)
Constructs a busy info window as child of parent and displays msgin it.

NB: If parent is not NULL you must ensure that it is not closed while the busy info is
shown.

wxBusylnfo::~wxBusylnfo

~wxBusylnfo ()

Hides and closes the window containing the information text.

112

CHAPTER7

wxButton

A button is a control that contains a text string, and is one of the most common elements
of a GUI. It may be placed on a dialog box (p. 392) or panel (p. 987), or indeed almost
any other window.

Derived from

wxControl (p. 205)
wxWindow (p. 1424)
wxEvtHandler (p. 468)
wxObject (p. 969)

Include files
<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. Windows and GTK+ only.

wxBU_TOP Aligns the label to the top of the button. Windows and
GTK+ only.

wxBU_RIGHT Right-justifies the bitmap label. Windows and GTK+ only.

wxBU_BOTTOM Aligns the label to the bottom of the button. Windows and
GTK+ only.

wxBU_EXACTFIT Creates the button as small as possible instead of making

it of the standard size (which is the default behaviour).
wxNO_BORDER Creates a flat button. Windows and GTK+ only.
See also window styles overview (p. 1690).
Event handling

EVT_BUTTON(id, func) Process a
WXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 89)

wxButton::wxButton

wxButton ()

Default constructor.

113

CHAPTER7

wxButton (wxWindow* parent, wxWindowID id, const wxString& label =
WXEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "button")

Constructor, creating and showing a button.

The preferred way to create standard buttons is to use default value oflabel. If no label is
supplied and id is one of standard IDs fromthis list (p. 1608), standard label will be used.
In addition to that, the button will be decorated with stock icons under GTK+ 2.

Parameters
parent

Parent window. Must not be NULL.

Button identifier. A value of wxID_ANY indicates a default value.
label

Text to be displayed on the button.
pos

Button position.
size

Button size. If the default size is specified then the button is sized appropriately for
the text.

style
Window style. See wxButton (p. 112).
validator
Window validator.
name
Window name.
See also

wxButton::Create (p. 114), wxValidator (p. 1397)

wxButton::~wxButton

~wxButton ()

Destructor, destroying the button.

114

CHAPTER7

wxButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label =
wxEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = 0, const wxValidator& validator, const wxString& nhame =
"button™)

Button creation function for two-step creation. For more details, seewxButton::wxButton
(p. 113).

wxButton::GetLabel

wxString GetLabel () const

Returns the string label for the button.
Return value

The button's label.

See also

wxButton::SetLabel (p. 115)

wxButton::GetDefaultSize

wxSize GetDefaultSize ()

Returns the default size for the buttons. It is advised to make all the dialog buttons of the
same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault ()
This sets the button to be the default item for the panel or dialog box.
Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1465) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultitem (p. 990).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWidgets will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

115

CHAPTER7

void SetLabel (const wxString& label)
Sets the string label for the button.
Parameters
label

The label to set.
See also

wxButton::GetLabel (p. 115)

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 798) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 464)
wxObiject (p. 969)

Include files
<wx/laywin.h>
Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite’
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 1041), wxSashLayoutWindow (p. 1081),
wxLayoutAlgorithm (p. 798).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

wxCalculateLayoutEvent (wxWindowID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags () const

Returns the flags associated with this event. Not currently used.

116

CHAPTER7

wxCalculateLayoutEvent::GetRect

wxRect GetRect () const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags (int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect (const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date. For this, it displays a window
containing several parts: a control at the top to pick the month and the year (either or
both of them may be disabled), and a month area below them which shows all the days
in the month. The user can move the current selection using the keyboard and select the
date (generating EVT_CALENDARvent) by pressing <Return> or double clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 122)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 122) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not recognized as
one by wxDateTime (p. 1658) using SetHoliday (p. 123) method.

As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_MONHEdent
handler.

Derived from

wxControl (p. 205)
wxWindow (p. 1424)
wxEvtHandler (p. 468)

117

CHAPTER7

wxObiject (p. 969)

Include files

<wx/calctrl.h>

Window styles

wxCAL_SUNDAY_FIRST Show Sunday as the first day in the week
wxCAL_MONDAY_FIRST Show Monday as the first day in the week
wxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar
wxCAL_NO_YEAR_CHANGE Disable the year changing

wxCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

wWXCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

WXCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wxCAL_SHOW_HOLIDAYS
Event table macros

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 125) argument.

EVT_CALENDAR(id, func) A day was double clicked in the calendar.
EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.
EVT_CALENDAR_DAY(id, func) The selected day changed.

EVT_CALENDAR_MONTH(id, func) The selected month changed.

EVT_CALENDAR_YEAR(id, func) The selected year changed.
EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day
header

Note that changing the selected date will result in either of EVT_CALENDAR_DAYONTH
or YEARevents and EVT_CALENDAR_SEL_CHANGEDe.
Constants

The following are the possible return values for HitTest (p. 122) method:

enum wxCalendarHitTestResult

wxCAL_HITTEST_NOWHERE, // outside of anyth ing
WXCAL_HITTEST_HEADER, I/l on the header (w eekdays)
WXCAL_HITTEST_DAY /I on a day in the calendar

}

118

CHAPTER7

See also

Calendar sample (p. 1636)
wxCalendarDateAttr (p. 122)
wxCalendarEvent (p. 125)

wxCalendarCtrl::.wxCalendarCitrl

wxCalendarCtrl ()
Default constructor, use Create (p. 119) after it.

wxCalendarCtrl (wxWindow* parent, wxWindowlID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 119) method.

wxCalendarCitrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Creates the control. See wxWindow (p. 1426) for the meaning of the parameters and the
control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl
~wxCalendarCtrl ()

Destroys the control.
wxCalendarCtrl::SetDate

void SetDate (const wxDateTime& date)
Sets the current date.
wxCalendarCtrl::GetDate

const wxDateTime& GetDate () const

Gets the currently selected date.

119

CHAPTER7

wxCalendarCitrl::EnableYearChange

void EnableYearChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_YEAR_CHANGile bit
directly. It allows or disallows the user to change the year interactively.

wxCalendarCitrl::EnableMonthChange

void EnableMonthChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_MONTH_CHAN&He bit.
It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCitrl::EnableHolidayDisplay

void EnableHolidayDisplay (bool display = true)

This function should be used instead of changing wxCAL_SHOW_HOLIDAXg/le bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

void SetHeaderColours (const wxColour& colFg, const wxColour& colBg)

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg () const
Gets the foreground colour of the header part of the calendar window.
See also

SetHeaderColours (p. 120)

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg () const
Gets the background colour of the header part of the calendar window.
See also

SetHeaderColours (p. 120)

wxCalendarCitrl::SetHighlightColours

void SetHighlightColours (const wxColour& colFg, const wxColour& colBg)

120

CHAPTER7

Set the colours to be used for highlighting the currently selected date.

wxCalendarCitrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg () const
Gets the foreground highlight colour.
See also

SetHighlightColours (p. 120)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg () const
Gets the background highlight colour.

See also

SetHighlightColours (p. 120)

wxCalendarCitrl::SetHolidayColours

void SetHolidayColours (const wxColour& colFg, const wxColour& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wxCAL_SHOW_HOLIDAYf&ag).

wxCalendarCitrl::GetHolidayColourFg

const wxColour& GetHolidayColourFg () const

Return the foreground colour currently used for holiday highlighting.
See also

SetHolidayColours (p. 121)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg () const
Return the background colour currently used for holiday highlighting.
See also

SetHolidayColours (p. 121)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr (size_t day) const

121

CHAPTER7

Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL

wxCalendarCitrl::SetAttr
void SetAttr (size_t day, wxCalendarDateAttr* attr)
Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCitrl::SetHoliday

void SetHoliday (size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr (size_t day)

Clears any attributes associated with the given day (in the rangel...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest (const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAL_HITTEST_XXXconstants (p. 117) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 117).

Derived from
No base class
Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCalendarDateBorder

wxCAL_BORDER_NO