

i

wxWidgets 2.6.2: A portable C++ and Python GUI
toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

June, 2005

i

Contents

Copyright notice................................... .. xvi

Introduction....................................... .. 1
What is wxWidgets?... 1
Why another cross-platform development tool? .. 1
wxWidgets requirements .. 3
Availability and location of wxWidgets .. 3
Acknowledgements .. 4

Multi-platform development with wxWidgets.......... ... 5
Include files.. 5
Libraries ... 5
Configuration.. 5
Makefiles.. 6
Windows-specific files .. 6
Allocating and deleting wxWidgets objects.. 7
Architecture dependency.. 7
Conditional compilation .. 8
C++ issues... 8
File handling .. 9

Utilities and libraries supplied with wxWidgets.... ... 10

Programming strategies 12
Strategies for reducing programming errors.. 12
Strategies for portability.. 12
Strategies for debugging .. 12

Libraries list 15

Alphabetical class reference 18
wxAcceleratorEntry .. 18
wxAcceleratorTable.. 19
wxAccessible ... 22
wxActivateEvent... 29
wxApp.. 30
wxArchiveClassFactory .. 41
wxArchiveEntry .. 42
wxArchiveInputStream ... 45

CONTENTS

ii

wxArchiveIterator ... 46
wxArchiveNotifier ... 48
wxArchiveOutputStream... 49
wxArray.. 51
wxArrayString... 63
wxArtProvider... 68
wxAutomationObject .. 72
wxBitmap ... 76
wxBitmapButton ... 89
wxBitmapDataObject.. 94
wxBitmapHandler ... 95
wxBoxSizer .. 98
wxBrush... 99
wxBrushList ... 105
wxBufferedDC.. 107
wxBufferedPaintDC.. 108
wxBufferedInputStream.. 109
wxBufferedOutputStream ... 110
wxBusyCursor.. 110
wxBusyInfo .. 111
wxButton.. 112
wxCalculateLayoutEvent .. 116
wxCalendarCtrl .. 117
wxCalendarDateAttr ... 122
wxCalendarEvent ... 125
wxCaret ... 126
wxCheckBox .. 128
wxCheckListBox... 132
wxChoice ... 134
wxChoicebook.. 137
wxClassInfo ... 138
wxClient ... 140
wxClientDC .. 141
wxClientData.. 142
wxClientDataContainer... 142
wxClipboard ... 144
wxCloseEvent .. 147
wxCmdLineParser.. 149
wxColour.. 157
wxColourData .. 160

CONTENTS

iii

wxColourDatabase... 162
wxColourDialog.. 163
wxComboBox... 164
wxCommand.. 171
wxCommandEvent ... 172
wxCommandProcessor .. 177
wxCondition ... 181
wxConfigBase .. 184
wxConnection .. 198
wxContextMenuEvent .. 202
wxContextHelp... 202
wxContextHelpButton... 204
wxControl... 205
wxControlWithItems ... 206
wxCountingOutputStream .. 213
wxCriticalSection.. 213
wxCriticalSectionLocker ... 214
wxCSConv ... 216
wxCursor.. 216
wxCustomDataObject... 222
wxDataFormat.. 224
wxDataInputStream.. 226
wxDataObject... 229
wxDataObjectComposite .. 232
wxDataObjectSimple .. 233
wxDataOutputStream ... 234
wxDateEvent.. 237
wxDatePickerCtrl.. 237
wxDateSpan .. 241
wxDateTime... 246
wxDateTimeHolidayAuthority.. 271
wxDateTimeWorkDays... 271
wxDb.. 271
wxDbColDataPtr... 303
wxDbColDef ... 303
wxDbColFor ... 304
wxDbColInf .. 305
wxDbConnectInf... 306
wxDbIdxDef ... 311
wxDbInf.. 312

CONTENTS

iv

wxDbTable... 312
wxDbTableInf ... 348
wxDbGridColInfo .. 348
wxDbGridTableBase .. 350
wxDC ... 353
wxDCClipper .. 372
wxDDEClient.. 372
wxDDEConnection ... 374
wxDDEServer .. 377
wxDebugContext.. 378
wxDebugStreamBuf ... 383
wxDebugReport ... 383
wxDebugReportCompress ... 388
wxDebugReportPreview ... 388
wxDebugReportPreviewStd.. 389
wxDebugReportUpload .. 390
wxDelegateRendererNative.. 390
wxDialog .. 391
wxDialUpEvent... 401
wxDialUpManager.. 401
wxDir.. 405
wxDirDialog.. 408
wxDirTraverser... 410
wxDisplay... 412
wxDllLoader ... 414
wxDocChildFrame.. 417
wxDocManager .. 419
wxDocMDIChildFrame ... 427
wxDocMDIParentFrame ... 429
wxDocParentFrame.. 430
wxDocTemplate ... 431
wxDocument .. 437
wxDragImage... 444
wxDropFilesEvent .. 448
wxDropSource ... 449
wxDropTarget .. 452
wxDynamicLibrary.. 455
wxDynamicLibraryDetails ... 458
wxEncodingConverter .. 459
wxEraseEvent .. 463

CONTENTS

v

wxEvent ... 464
wxEvtHandler... 467
wxFFile .. 475
wxFFileInputStream ... 480
wxFFileOutputStream... 481
wxFFileStream ... 482
wxFile .. 482
wxFileConfig .. 489
wxFileDataObject ... 490
wxFileDialog... 491
wxFileDropTarget... 495
wxFileHistory.. 496
wxFileInputStream ... 499
wxFileName ... 500
wxFileOutputStream... 516
wxFileStream ... 517
wxFileSystem... 517
wxFileSystemHandler... 520
wxFileType... 522
wxFilterInputStream ... 526
wxFilterOutputStream... 527
wxFindDialogEvent .. 527
wxFindReplaceData ... 529
wxFindReplaceDialog... 530
wxFlexGridSizer ... 531
wxFocusEvent.. 534
wxFont ... 535
wxFontData.. 545
wxFontDialog ... 548
wxFontEnumerator... 549
wxFontList.. 550
wxFontMapper ... 551
wxFrame.. 555
wxFSFile .. 565
wxFTP ... 567
wxGauge.. 574
wxGBPosition... 578
wxGBSizerItem .. 579
wxGBSpan... 580
wxGDIObject.. 582

CONTENTS

vi

wxGenericDirCtrl .. 582
wxGenericValidator .. 586
wxGLCanvas.. 588
wxGLContext ... 591
wxGrid ... 593
wxGridCellAttr .. 624
wxGridBagSizer ... 627
wxGridCellBoolEditor ... 630
wxGridCellChoiceEditor.. 631
wxGridCellEditor .. 632
wxGridCellFloatEditor... 634
wxGridCellNumberEditor .. 635
wxGridCellTextEditor.. 635
wxGridEditorCreatedEvent ... 636
wxGridEvent... 637
wxGridRangeSelectEvent... 641
wxGridSizeEvent.. 643
wxGridCellBoolRenderer .. 644
wxGridCellFloatRenderer ... 645
wxGridCellNumberRenderer... 646
wxGridCellRenderer ... 647
wxGridCellStringRenderer .. 647
wxGridTableBase... 648
wxGridSizer ... 652
wxHashMap ... 653
wxHashSet... 658
wxHashTable ... 662
wxHelpController.. 664
wxHelpControllerHelpProvider.. 669
wxHelpEvent .. 670
wxHelpProvider .. 671
wxHtmlCell... 673
wxHtmlColourCell... 678
wxHtmlContainerCell.. 678
wxHtmlDCRenderer ... 683
wxHtmlEasyPrinting ... 685
wxHtmlFilter ... 688
wxHtmlHelpController... 689
wxHtmlHelpData .. 694
wxHtmlHelpFrame.. 695

CONTENTS

vii

wxHtmlLinkInfo... 699
wxHtmlListBox ... 700
wxHtmlParser... 702
wxHtmlPrintout ... 706
wxHtmlTag... 709
wxHtmlTagHandler... 712
wxHtmlTagsModule.. 713
wxHtmlWidgetCell .. 714
wxHtmlWindow .. 715
wxHtmlWinParser... 723
wxHtmlWinTagHandler... 729
wxHTTP... 729
wxIcon ... 730
wxIconBundle... 737
wxIconLocation .. 739
wxIconizeEvent .. 739
wxIdleEvent ... 740
wxImage .. 742
wxImageHandler .. 766
wxImageList ... 769
wxIndividualLayoutConstraint ... 774
wxInitDialogEvent... 777
wxInputStream ... 777
wxIPaddress .. 780
wxIPV4address .. 782
wxJoystick.. 783
wxJoystickEvent... 789
wxKeyEvent ... 792
wxLayoutAlgorithm... 796
wxLayoutConstraints .. 799
wxList... 801
wxListbook ... 807
wxListBox... 808
wxListCtrl ... 813
wxListEvent.. 831
wxListItem.. 835
wxListItemAttr .. 839
Sets a new text color.wxListView.. 840
wxLocale.. 843
wxLog .. 850

CONTENTS

viii

wxLogChain ... 856
wxLogGui... 858
wxLogNull .. 858
wxLogPassThrough ... 859
wxLogStderr... 860
wxLogStream... 860
wxLogTextCtrl .. 861
wxLogWindow.. 861
wxLongLong .. 863
wxMask.. 866
wxMaximizeEvent .. 868
wxMBConv... 869
wxMBConvFile ... 871
wxMBConvUTF7 .. 872
wxMBConvUTF8 .. 873
wxMBConvUTF16 .. 874
wxMBConvUTF32 .. 874
wxMDIChildFrame.. 875
wxMDIClientWindow .. 878
wxMDIParentFrame ... 880
wxMediaCtrl ... 886
Normally, when you use wxMediaCtrl it is just a window for the video to play in. However,
platforms generally have their own media player interface, like quicktime has a bar below the
video with a slider etc.. If you want that native interface instead of making your own use this
function. There are several options for the flags parameter, however you can look at the
mediactrl header for these. The two general flags are
wxMEDIACTRLPLAYERCONTROLS_NONE which turns off the native interface, and
wxMEDIACTRLPLAYERCONTROLS_DEFAULT which lets wxMediaCtrl decide what native
controls on the interface.wxMediaEvent.. 892
wxMemoryBuffer .. 892
wxMemoryDC .. 895
wxMemoryFSHandler... 896
wxMemoryInputStream .. 898
wxMemoryOutputStream.. 898
wxMenu ... 899
wxMenuBar .. 912
wxMenuEvent .. 921
wxMenuItem... 922
wxMessageDialog .. 927
wxMetafile.. 929
wxMetafileDC... 930
wxMimeTypesManager .. 931

CONTENTS

ix

wxMiniFrame.. 934
wxMirrorDC.. 937
wxModule... 938
wxMouseCaptureChangedEvent .. 939
wxMouseEvent... 940
wxMoveEvent... 948
wxMultiChoiceDialog .. 949
wxMutex .. 951
wxMutexLocker .. 954
wxNode.. 954
wxNotebook ... 956
wxNotebookEvent .. 964
wxNotebookSizer ... 965
wxNotifyEvent .. 966
wxObject .. 967
wxObjectRefData ... 971
wxOutputStream .. 971
wxPageSetupDialog... 973
wxPageSetupDialogData.. 974
wxPaintDC ... 979
wxPaintEvent ... 980
wxPalette ... 981
wxPanel ... 985
wxPasswordEntryDialog... 988
wxPathList ... 989
wxPen.. 991
wxPenList .. 997
wxPoint .. 999
wxPostScriptDC ... 1000
wxPreviewCanvas.. 1001
wxPreviewControlBar ... 1001
wxPreviewFrame.. 1003
wxPrintData ... 1004
wxPrintDialog ... 1011
wxPrintDialogData.. 1012
wxPrinter.. 1016
wxPrinterDC... 1018
wxPrintout .. 1019
wxPrintPreview .. 1022
wxProcess ... 1025

CONTENTS

x

wxProcessEvent... 1030
wxProgressDialog .. 1031
wxPropertySheetDialog.. 1033
wxProtocol ... 1036
wxQuantize .. 1038
wxQueryLayoutInfoEvent ... 1039
wxRadioBox... 1041
wxRadioButton... 1047
wxRealPoint ... 1050
wxRect... 1050
wxRecursionGuard... 1056
wxRecursionGuardFlag.. 1057
wxRegEx.. 1057
wxRegion ... 1061
wxRegionIterator .. 1066
wxRegKey.. 1068
wxRendererNative.. 1072
wxRendererVersion.. 1076
wxSashEvent ... 1077
wxSashLayoutWindow ... 1079
wxSashWindow.. 1082
wxScopedArray.. 1086
wxScopedPtr.. 1088
wxScopedTiedPtr ... 1090
wxScreenDC.. 1091
wxScrollBar .. 1092
wxScrolledWindow ... 1098
wxScrollEvent .. 1107
wxScrollWinEvent .. 1110
wxSemaphore .. 1111
wxSetCursorEvent ... 1114
wxServer.. 1115
wxSimpleHelpProvider ... 1116
wxSingleChoiceDialog.. 1116
wxSingleInstanceChecker .. 1119
wxSize ... 1121
wxSizeEvent .. 1123
wxSizer .. 1124
wxSizerFlags.. 1132
wxSizerItem ... 1134

CONTENTS

xi

wxSlider ... 1138
wxSockAddress ... 1148
wxSocketBase ... 1148
wxSocketClient .. 1164
wxSocketEvent .. 1166
wxSocketInputStream .. 1167
wxSocketOutputStream.. 1167
wxSocketServer ... 1168
wxSound.. 1170
wxSpinButton ... 1172
wxSpinCtrl.. 1175
wxSpinEvent .. 1178
wxSplashScreen .. 1179
wxSplitterEvent .. 1181
wxSplitterWindow... 1183
wxSplitterRenderParams.. 1194
wxStackFrame ... 1194
wxStackWalker .. 1196
wxStandardPaths ... 1198
wxStaticBitmap .. 1201
wxStaticBox ... 1203
wxStaticBoxSizer ... 1205
wxStaticLine... 1206
wxStaticText... 1208
wxStatusBar... 1210
wxStdDialogButtonSizer ... 1215
wxStopWatch ... 1217
wxStreamBase... 1218
wxStreamBuffer ... 1220
wxStreamToTextRedirector .. 1225
wxString... 1226
wxStringBuffer.. 1249
wxStringBufferLength ... 1250
wxStringClientData... 1251
wxStringInputStream.. 1252
wxStringOutputStream ... 1252
wxStringTokenizer.. 1253
wxSysColourChangedEvent ... 1255
wxSystemOptions .. 1256
wxSystemSettings.. 1259

CONTENTS

xii

wxTaskBarIcon .. 1264
wxTCPClient .. 1266
wxTCPConnection ... 1267
wxTCPServer... 1271
wxTempFile ... 1272
wxTempFileOutputStream.. 1274
wxTextAttr.. 1275
wxTextCtrl.. 1279
wxTextDataObject.. 1297
wxTextDropTarget.. 1299
wxTextEntryDialog ... 1300
wxTextFile.. 1301
wxTextInputStream .. 1307
wxTextOutputStream.. 1310
wxTextValidator ... 1312
wxThread ... 1315
wxThreadHelper... 1321
wxTimer ... 1323
wxTimerEvent .. 1325
wxTimeSpan .. 1326
wxTipProvider .. 1332
wxTipWindow... 1333
wxToggleButton ... 1335
wxToolBar.. 1337
wxToolTip .. 1353
wxTopLevelWindow ... 1354
wxTreeCtrl ... 1359
wxTreeEvent .. 1377
wxTreeItemData... 1380
wxUpdateUIEvent .. 1381
wxURI .. 1386
wxURL ... 1392
wxValidator .. 1394
wxVariant ... 1396
wxVariantData.. 1404
wxView .. 1405
wxVListBox .. 1409
wxVScrolledWindow... 1416
wxWindow.. 1421
wxWindowCreateEvent .. 1476

CONTENTS

xiii

wxWindowDC... 1476
wxWindowDestroyEvent... 1477
wxWindowDisabler ... 1478
wxWizard ... 1478
wxWizardEvent .. 1483
wxWizardPage ... 1484
wxWizardPageSimple .. 1486
wxXmlResource ... 1487
wxXmlResourceHandler ... 1492
wxZipClassFactory... 1496
wxZipEntry ... 1496
wxZipInputStream .. 1503
wxZipNotifier .. 1504
wxZipOutputStream.. 1505
wxZlibInputStream ... 1507
wxZlibOutputStream... 1508

Functions.. ... 1510
Alphabetical functions and macros list .. 1510
Version macros .. 1515
Application initialization and termination ... 1516
Process control functions ... 1519
Thread functions .. 1523
File functions.. 1525
Network, user and OS functions ... 1531
String functions .. 1535
Dialog functions ... 1539
Math functions.. 1548
GDI functions ... 1549
Printer settings ... 1551
Clipboard functions .. 1553
Miscellaneous functions ... 1555
Byte order macros.. 1565
RTTI functions.. 1567
Log functions.. 1573
Time functions.. 1579
Debugging macros and functions ... 1581
Environment access functions .. 1585

Constants 1587
Preprocesser symbols defined by wxWidgets ... 1587

CONTENTS

xiv

Standard event identifiers... 1592
Keycodes ... 1594
Language identifiers... 1596
Stock items .. 1604

Classes by category................................ .. 1607

Topic overviews 1623
Changes since 2.4.x... 1623
Notes on using the reference.. 1628
Writing a wxWidgets application: a rough guide .. 1628
wxWidgets Hello World sample .. 1629
wxWidgets samples.. 1631
wxApp overview ... 1641
Runtime class information (aka RTTI) overview .. 1643
wxString overview .. 1645
Buffer classes overview.. 1650
Date and time classes overview ... 1650
Unicode support in wxWidgets ... 1654
wxMBConv classes overview ... 1657
Internationalization ... 1660
Writing non-English applications... 1661
Container classes overview.. 1664
File classes and functions overview.. 1665
wxStreams overview .. 1665
wxLog classes overview ... 1667
Debugging overview... 1670
wxConfig classes overview... 1672
wxFileSystem... 1673
Event handling overview... 1674
C++ exceptions overview ... 1685
Window styles .. 1686
Window deletion overview .. 1686
wxDialog overview ... 1688
wxValidator overview.. 1689
Constraints overview .. 1691
Sizer overview.. 1694
XML-based resource system overview ... 1700
Scrolling overview .. 1709
Bitmaps and icons overview ... 1711
Device context overview... 1714

CONTENTS

xv

wxFont overview .. 1715
Font encoding overview.. 1716
wxSplitterWindow overview .. 1717
wxTreeCtrl overview... 1718
wxListCtrl overview .. 1719
wxImageList overview .. 1720
wxBookCtrl overview .. 1720
Common dialogs overview ... 1721
Document/view overview.. 1725
Toolbar overview.. 1731
wxGrid classes overview .. 1736
wxTipProvider overview.. 1737
Printing overview.. 1738
Printing under Unix (GTK+) .. 1739
Multithreading overview.. 1739
Drag and drop overview ... 1740
wxDataObject overview.. 1741
Database classes overview .. 1742
Interprocess communication overview .. 1765
wxHTML overview.. 1768
Environment variables.. 1777
wxPython overview .. 1777
Syntax of the builtin regular expression library.. 1789
Archive formats such as zip.. 1802

Platform details 1810
wxGTK port .. 1810
wxMSW port... 1810
wxMac port .. 1818
wxPalmOS port .. 1818
wxOS2 port .. 1818
wxMGL port ... 1818
wxX11 port... 1819

Backward compatibility 1820

Index 1824

xvi

Copyright notice

Copyright (c) 1992-2002 Julian Smart, Robert Roebling, Vadim Zeitlin and other
members of the wxWidgets team

Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, lgpl.txt, gpl.txt, licence.txt,
licendoc.txt) for conditions of software and documentation use. Note that we use the old
name wxWindows in the license, pending recognition of the new name by OSI.

wxWindows Library License, Version 3.1

Copyright (c) 1998-2005 Julian Smart, Robert Roebling et al

Everyone is permitted to copy and distribute verbatim copies of this licence document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENCE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Library General Public Licence as published by the Free Software Foundation;
either version 2 of the Licence, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public Licence for
more details.

You should have received a copy of the GNU Library General Public Licence along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licenced under the
wxWindows Library Licence, applying either version 3.1 of the Licence, or (at your
option) any later version of the Licence as published by the copyright holders of version
3.1 of the Licence document.

2. The exception is that you may use, copy, link, modify and distribute under your own
terms, binary object code versions of works based on the Library.

3. If you copy code from files distributed under the terms of the GNU General Public
Licence or the GNU Library General Public Licence into a copy of this library, as this
licence permits, the exception does not apply to the code that you add in this way. To
avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice

COPYRIGHT

xvii

accordingly.

4. If you write modifications of your own for this library, it is your choice whether to permit
this exception to apply to your modifications. If you do not wish that, you must delete the
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by

COPYRIGHT

xviii

someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

 GNU LIBRARY GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

COPYRIGHT

xix

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d

COPYRIGHT

xx

requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.

COPYRIGHT

xxi

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a

COPYRIGHT

xxii

special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,
link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you

COPYRIGHT

xxiii

could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY

COPYRIGHT

xxiv

PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Libr aries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's name and a brief id ea of what it
does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library Genera l Public
License as published by the Free Software Foundatio n; either
version 2 of the License, or (at your option) any l ater version.

This library is distributed in the hope that it wil l be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to t he Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright inte rest in the
library `Frob' (a library for tweaking knobs) writt en by James
Random Hacker.

<signature of Ty Coon>, 1 April 1990

COPYRIGHT

xxv

Ty Coon, President of Vice

That's all there is to it!

1

Introduction

What is wxWidgets?

wxWidgets is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports all desktop versions of
MS Windows, Unix with GTK+, Unix with Motif, and MacOS. An OS/2 port is in progress.

wxWidgets was originally developed at the Artificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1992.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin, Vaclav Slavik and many others.

This manual contains a class reference and topic overviews. For a selection of
wxWidgets tutorials, please see the documentation page on the wxWidgets web site
(http://www.wxwidgets.org).

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWidgets was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

 1. low price;

 2. source availability;

 3. simplicity of programming;

 4. support for a wide range of compilers.

Since wxWidgets was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWidgets has.

As open source software, wxWidgets has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWidgets a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those

CHAPTER 2

2

produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWidgets helps to insulate the programmer
from these winds of change. Although wxWidgets may not be suitable for every
application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming interface
than the native APIs. Programmers may find it worthwhile to use wxWidgets even if they
are developing on only one platform.

It is impossible to sum up the functionality of wxWidgets in a few paragraphs, but here
are some of the benefits:

 • Low cost (free, in fact!)

 • You get the source.

 • Available on a variety of popular platforms.

 • Works with almost all popular C++ compilers and Python.

 • Over 50 example programs.

 • Over 1000 pages of printable and on-line documentation.

 • Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

 • Simple-to-use, object-oriented API.

 • Flexible event system.

 • Graphics calls include lines, rounded rectangles, splines, polylines, etc.

 • Constraint-based and sizer-based layouts.

 • Print/preview and document/view architectures.

 • Toolbar, notebook, tree control, advanced list control classes.

 • PostScript generation under Unix, normal MS Windows printing on the PC.

 • MDI (Multiple Document Interface) support.

 • Can be used to create DLLs under Windows, dynamic libraries on Unix.

 • Common dialogs for file browsing, printing, colour selection, etc.

 • Under MS Windows, support for creating metafiles and copying them to the
clipboard.

CHAPTER 2

3

 • An API for invoking help from applications.

 • Ready-to-use HTML window (supporting a subset of HTML).

 • Network support via a family of socket and protocol classes.

 • Support for platform independent image processing.

 • Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

wxWidgets requirements

To make use of wxWidgets, you currently need one of the following setups.

(a) MS-Windows:

 1. A 32-bit or 64-bit PC running MS Windows.

 2. A Windows compiler: MS Visual C++ (embedded Visual C++ for wxWinCE port),
Borland C++, Watcom C++, Cygwin, MinGW, Metrowerks CodeWarrior, Digital
Mars C++. See install.txt for details about compiler version supported.

 3. At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(b) Unix:

 1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

 2. Almost any Unix workstation, and one of: GTK+ 1.2, GTK+ 2.0, Motif 1.2 or
higher, Lesstif. If using the wxX11 port, no such widget set is required.

 3. At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(c) Mac OS/Mac OS X:

 1. A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.

 2. CodeWarrior 5.3, 6 or 7 for Classic Mac OS.

 3. The Apple Developer Tools (eg. GNU C++), CodeWarrior 7 or above for Mac
OS X.

 4. At least 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

Availability and location of wxWidgets

wxWidgets is available by anonymous FTP and World Wide Web from
ftp://biolpc22.york.ac.uk/pub (ftp://biolpc22.york.ac.uk/pub) and/or
http://www.wxwidgets.org (http://www.wxwidgets.org).

CHAPTER 2

4

You can also buy a CD-ROM using the form on the Web site.

Acknowledgements

Thanks are due to AIAI for being willing to release the original version of wxWidgets into
the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWidgets, and
the many others who have been involved in the project over the years. Apologies for any
unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar, Alejandro
Aguilar-Sierra, AIAI, Patrick Albert, Karsten Ballueder, Mattia Barbon, Michael Bedward,
Kai Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, Ian Brown, C.
Buckley, Marco Cavallini, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Stefan Csomor,
Andrew Davison, Gilles Depeyrot, Neil Dudman, Robin Dunn, Hermann Dunkel, Jos van
Eijndhoven, Chris Elliott, David Elliott, Tom Felici, Thomas Fettig, Matthew Flatt,
Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher, Guillermo Rodriguez
Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale, Patrick Halke, Stefan
Hammes, Guillaume Helle, Harco de Hilster, Kevin Hock, Cord Hockemeyer, Markus
Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Ron Lee, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Thomas Runge, Tatu Männistö,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Ryan Norton, Hernan
Otero, Ian Perrigo, Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti,
Garrett Potts, Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach,
Arthur Seaton, Paul Shirley, Wlodzimierz 'ABX' Skiba, Vaclav Slavik, Julian Smart, Stein
Somers, Petr Smilauer, Neil Smith, Kari Systä, George Tasker, Arthur Tetzlaff-Deas,
Jonathan Tonberg, Jyrki Tuomi, Janos Vegh, Andrea Venturoli, David Webster, Otto
Wyss, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

'Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is'' without
express or implied warranty.

5

Multi-platform development with wxWidgets

This chapter describes the practical details of using wxWidgets. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is "wx/wx.h" ; this includes the most commonly used modules of
wxWidgets.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

// For compilers that support precompilation, inclu des "wx.h".
#include <wx/wxprec.h>

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
// Include your minimal set of headers here, or wx. h
#include <wx/wx.h>
#endif

... now your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation which is largely automatic for compilers with necessary
support. Currently it is used for Visual C++ (including embedded Visual C++), Borland
C++, Open Watcom C++, Digital Mars C++ and newer versions of GCC. Some
compilers might need extra work from the application developer to set the build
environment up as necessary for the support.

Libraries

Most ports of wxWidgets can create either a static library or a shared library. wxWidgets
can also be built in multilib and monolithic variants. See the libraries list (p. 15) for more
information on these.

Configuration

When using project files and makefiles directly to build wxWidgets, options are
configurable in the file "wx/XXX/setup.h" where XXX is the required platform (such
as msw, motif, gtk, mac). Some settings are a matter of taste, some help with platform-
specific problems, and others can be set to minimize the size of the library. Please see

CHAPTER 3

6

the setup.h file and install.txt files for details on configuration.

When using the 'configure' script to configure wxWidgets (on Unix and other platforms
where configure is available), the corresponding setup.h files are generated
automatically along with suitable makefiles. When using the RPM packages for installing
wxWidgets on Linux, a correct setup.h is shipped in the package and this must not be
changed.

Makefiles

On Microsoft Windows, wxWidgets has a different set of makefiles for each compiler,
because each compiler's 'make' tool is slightly different. Popular Windows compilers that
we cater for, and the corresponding makefile extensions, include: Microsoft Visual C++
(.vc), Borland C++ (.bcc), OpenWatcom C++ (.wat) and MinGW/Cygwin (.gcc). Makefiles
are provided for the wxWidgets library itself, samples, demos, and utilities.

On Linux, Mac and OS/2, you use the 'configure' command to generate the necessary
makefiles. You should also use this method when building with MinGW/Cygwin on
Windows.

We also provide project files for some compilers, such as Microsoft VC++. However, we
recommend using makefiles to build the wxWidgets library itself, because makefiles can
be more powerful and less manual intervention is required.

On Windows using a compiler other than MinGW/Cygwin, you would build the
wxWidgets library from the build/msw directory which contains the relevant makefiles.

On Windows using MinGW/Cygwin, and on Unix, MacOS X and OS/2, you invoke
'configure' (found in the top-level of the wxWidgets source hierarchy), from within a
suitable empty directory for containing makefiles, object files and libraries.

For details on using makefiles, configure, and project files, please see docs/xxx/install.txt
in your distribution, where xxx is the platform of interest, such as msw, gtk, x11, mac.

Windows-specific files

wxWidgets application compilation under MS Windows requires at least one extra file: a
resource file.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

#include "wx/msw/wx.rc"

which includes essential internal wxWidgets definitions. The resource script may also
contain references to icons, cursors, etc., for example:

wxicon icon wx.ico

CHAPTER 3

7

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Allocating and deleting wxWidgets objects

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWidgets
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWidgets, make sure you delete the array explicitly before wxWidgets has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWidgets defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Byte order macros (p. 1565) section.

CHAPTER 3

8

Conditional compilation

One of the purposes of wxWidgets is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWidgets does not use templates (except for some advanced features that are
switched off by default) since it is a notoriously unportable feature.

RTTI

wxWidgets does not use C++ run-time type information since wxWidgets provides its
own run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be 0L so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK+ port use
an explicit conversion such as

 wxWindow *my_window = (wxWindow*) NULL;

It is recommended to adhere to this in all code using wxWidgets as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile "wx.h" , using this precompiled header for compiling both wxWidgets itself
and any wxWidgets applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLs) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWidgets, everything needs to be recompiled since
everything includes "wx.h" !)

A related problem is that for compilers that don't have precompiled headers, including a

CHAPTER 3

9

lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx.h . This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

10

Utilities and libraries supplied with wxWidgets

In addition to the core wxWidgets library, a number of further libraries and utilities are
supplied with each distribution.

Some are under the 'contrib' hierarchy which mirrors the structure of the main
wxWidgets hierarchy. See also the 'utils' hierarchy. The first place to look for
documentation about these tools and libraries is under the wxWidgets 'docs' hierarchy,
for example docs/htmlhelp/fl.chm .

For other user-contributed packages, please see the Contributions page on the
wxWidgets Web site (http://www.wxwidgets.org).

 Helpview Helpview is a program for displaying wxWidgets HTML Help files. In many
cases, you may wish to use the wxWidgets HTML Help classes from within your
application, but this provides a handy stand-alone viewer. See wxHTML Notes
(p. 1768) for more details. You can find it in samples/html/helpview .

 Tex2RTF Supplied with wxWidgets is a utility called Tex2RTF for converting LaTeX
manuals HTML, MS HTML Help, wxHTML Help, RTF, and Windows Help RTF
formats. Tex2RTF is used for the wxWidgets manuals and can be used
independently by authors wishing to create on-line and printed manuals from the
same LaTeX source. Please see the separate documentation for Tex2RTF. You
can find it under utils/tex2rtf .

 Helpgen Helpgen takes C++ header files and generates a Tex2RTF-compatible
documentation file for each class it finds, using comments as appropriate. This
is a good way to start a reference for a set of classes. Helpgen can be found in
utils/HelpGen .

 Emulator Xnest-based display emulator for X11-based PDA applications. On some
systems, the Xnest window does not synchronise with the 'skin' window. This
program can be found in utils/emulator .

 Configuration Tool The wxWidgets Configuration Tool is a work in progress
intended to make it easier to configure wxWidgets features in detail. It exports
setup.h configurations and will eventually generate makefile config files.
Invoking compilers is also on the cards. Since configurations are handled one at
a time, the tool is of limited used until further development can be done. The
program can be found in utils/configtool .

 XRC resource system This is the sizer-aware resource system, and uses XML-
based resource specifications that can be generated by tools such as
wxDesigner (http://www.roebling.de). You can find this in src/xrc ,
include/wx/xrc , samples/xrc . For more information, see the XML-based
resource system overview (p. 1700).

 Object Graphics Library OGL defines an API for applications that need to display
objects connected by lines. The objects can be moved around and interacted
with. You can find this in contrib/src/ogl , contrib/include/wx/ogl ,
and contrib/samples/ogl .

CHAPTER 4

11

 Frame Layout library FL provides sophisticated pane dragging and docking
facilities. You can find this in contrib/src/fl , contrib/include/wx/fl ,
and contrib/samples/fl .

 Gizmos library Gizmos is a collection of useful widgets and other classes. Classes
include wxLEDNumberCtrl, wxEditableListBox, wxMultiCellCanvas. You can find
this in contrib/src/gizmos , contrib/include/wx/gizmos , and
contrib/samples/gizmos .

 Net library Net is a collection of very simple mail and web related classes. Currently
there is only wxEmail, which makes it easy to send email messages via MAPI on
Windows or sendmail on Unix. You can find this in contrib/src/net and
contrib/include/wx/net .

 Animate library Animate allows you to load animated GIFs and play them on a
window. The library can be extended to use other animation formats. You can
find this in contrib/src/animate , contrib/include/wx/animate , and
contrib/samples/animate .

 MMedia library Mmedia supports a variety of multimedia functionality. The status of
this library is currently unclear. You can find this in contrib/src/mmedia ,
contrib/include/wx/mmedia , and contrib/samples/mmedia .

 Styled Text Control library STC is a wrapper around Scintilla, a syntax-highlighting
text editor. You can find this in contrib/src/stc ,
contrib/include/wx/stc , and contrib/samples/stc .

 Plot Plot is a simple curve plotting library. You can find this in contrib/src/plot ,
contrib/include/wx/plot , and contrib/samples/plot .

12

Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWidgets programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although I haven't done this myself within wxWidgets, it is good practice to use ASSERT
statements liberally, that check for conditions that should or should not hold, and print
out appropriate error messages. These can be compiled out of a non-debugging version
of wxWidgets and your application. Using ASSERT is an example of 'defensive
programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, I
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWidgets resource files) on different
platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

Use wxWidgets resource files

Use .xrc (wxWidgets resource files) where possible, because they can be easily
changed independently of source code.

Strategies for debugging

CHAPTER 5

13

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1573).

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWidgets debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWidgets will automatically check for memory leaks at the end of the
program if wxWidgets is suitably configured. Depending on the operating system and
compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1581) as part of a 'defensive programming'
strategy, scattering wxASSERTs liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

CHAPTER 5

14

See the debugging overview (p. 1670) for further information.

15

Libraries list

Starting from version 2.5.0 wxWidgets can be built either as a single large library (this is
called the monolithic build) or as several smaller libraries (multilib build). Multilib build is
the default.

wxWidgets library is divided into libraries briefly described below. This diagram show
dependencies between them:

wxBase

Every wxWidgets application must link against this library. It contains mandatory classes
that any wxWidgets code depends on (e.g. wxString (p. 1226)) and portability classes
that abstract differences between platforms. wxBase can be used to develop console
mode applications, it does not require any GUI libraries or running X Window System on
Unix.

wxNet

Classes for network access:

 • wxSocket classes (wxSocketClient (p. 1164), wxSocketServer (p. 1168) and
related classes)

 • wxSocketOutputStream (p. 1167) and wxSocketInputStream (p. 1167)

 • sockets-based IPC classes (wxTCPServer (p. 377), wxTCPClient (p. 372) and

CHAPTER 6

16

wxTCPConnection (p. 374))

 • wxURL (p. 1392)

 • wxInternetFSHandler (a wxFileSystem handler (p. 1673)) Requires wxBase.

wxXML

This library contains simple classes for parsing XML documents. Note that their API will
change in the future and backward compatibility will not be preserved. Use of this library
in your applications is not recommended, it is only meant for use by XML resources
system. Future versions of wxWidgets will contain new XML handling classes with DOM-
like API. Requires wxBase.

wxCore

Basic GUI classes such as GDI classes or controls are in this library. All wxWidgets GUI
applications must link against this library, only console mode applications don't.

wxAdvanced

Advanced or rarely used GUI classes:

 • wxBufferedDC

 • wxCalendarCtrl (p. 117)

 • wxGrid classes (p. 1736)

 • wxJoystick (p. 783)

 • wxLayoutAlgorithm (p. 796)

 • wxSplashScreen (p. 1179)

 • wxTaskBarIcon (p. 1264)

 • wxSound (p. 1170)

 • wxWizard (p. 1478)

 • wxSashLayoutWindow (p. 1079)

 • wxSashWindow (p. 1082)

Requires wxCore and wxBase.

wxMedia

Miscellaneous classes related to multimedia. Currently this library only contains
wxMediaCtrl (p. 886) but more classes will be added in the future.

Requires wxCore and wxBase.

CHAPTER 6

17

wxGL

This library contains wxGLCanvas (p. 588) class for integrating OpenGL library with
wxWidgets. Unlike all others, this library is not part of the monolithic library, it is always
built as separate library. Requires wxCore and wxBase.

wxHTML

Simple HTML renderer and other HTML rendering classes (p. 1768) are contained in this
library, as well as wxHtmlHelpController (p. 689), wxBestHelpController (p. 664) and
wxHtmlListBox (p. 700). Requires wxCore and wxBase.

wxODBC

Database classes (p. 1742). Requires wxBase.

wxQA

This is the library containing extra classes for quality assurance. Currently it only
contains wxDebugReport (p. 383) and related classes, but more will be added to it in the
future.

Requires wxCore, wxBase and wxXML.

wxDbGrid

wxDbGridTableBase (p. 350) class which combines wxGrid (p. 593) and wxDbTable (p.
312). Requires wxODBC and wxAdvanced.

wxXRC

This library contains wxXmlResource (p. 1487) class that provides access to XML
resource files in XRC format. Requires wxXML, wxCore, wxAdvanced and wxHTML.

18

Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 19).

Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 19), wxWindow::SetAcceleratorTable (p. 1456)

wxAcceleratorEntry::wxAcceleratorEntry

 wxAcceleratorEntry ()

Default constructor.

 wxAcceleratorEntry (int flags, int keyCode, int cmd)

Constructor.

Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode

The keycode to be detected. See Keycodes (p. 1594) for a full list of keycodes.

cmd

The menu or control command identifier.

wxAcceleratorEntry::GetCommand

int GetCommand () const

Returns the command identifier for the accelerator table entry.

CHAPTER 7

19

wxAcceleratorEntry::GetFlags

int GetFlags () const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode () const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)

Sets the accelerator entry parameters.

Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode

The keycode to be detected. See Keycodes (p. 1594) for a full list of keycodes.

cmd

The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

Derived from

wxObject (p. 967)

Include files

<wx/accel.h>

Example

 wxAcceleratorEntry entries[4];

CHAPTER 7

20

 entries[0].Set(wxACCEL_CTRL, (int) 'N', ID_N EW_WINDOW);
 entries[1].Set(wxACCEL_CTRL, (int) 'X', wxID _EXIT);
 entries[2].Set(wxACCEL_SHIFT, (int) 'A', ID_A BOUT);
 entries[3].Set(wxACCEL_NORMAL, WXK_DELETE, wx ID_CUT);
 wxAcceleratorTable accel(4, entries);
 frame->SetAcceleratorTable(accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK+ at present).

See also

wxAcceleratorEntry (p. 18), wxWindow::SetAcceleratorTable (p. 1456)

wxAcceleratorTable::wxAcceleratorTable

 wxAcceleratorTable ()

Default constructor.

 wxAcceleratorTable (const wxAcceleratorTable& bitmap)

Copy constructor.

 wxAcceleratorTable (int n, wxAcceleratorEntry entries[])

Creates from an array of wxAcceleratorEntry (p. 18) objects.

 wxAcceleratorTable (const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

Parameters

n

Number of accelerator entries.

entries

The array of entries.

resource

Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

CHAPTER 7

21

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry
objects or references to 3-element arrays (flags, keyCode, cmd), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

 ~wxAcceleratorTable ()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns true if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator = (const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel

Accelerator table to assign.

Return value

Returns reference to this object.

wxAcceleratorTable::operator ==

bool operator == (const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel

Accelerator table to compare with

Return value

Returns true if the accelerator tables were effectively equal, false otherwise.

wxAcceleratorTable::operator !=

CHAPTER 7

22

bool operator != (const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel

Accelerator table to compare with

Return value

Returns true if the accelerator tables were unequal, false otherwise.

wxAccessible

The wxAccessible class allows wxWidgets applications, and wxWidgets itself, to return
extended information about user interface elements to client applications such as screen
readers. This is the main way in which wxWidgets implements accessibility features.

At present, only Microsoft Active Accessibility is supported by this class.

To use this class, derive from wxAccessible, implement appropriate functions, and
associate an object of the class with a window using wxWindow::SetAccessible (p.
1456).

All functions return an indication of success, failure, or not implemented using values of
the wxAccStatus enum type.

If you return wxACC_NOT_IMPLEMENTED from any function, the system will try to
implement the appropriate functionality. However this will not work with all functions.

Most functions work with an object id, which can be zero to refer to 'this' UI element, or
greater than zero to refer to the nth child element. This allows you to specify elements
that don't have a corresponding wxWindow or wxAccessible; for example, the sash of a
splitter window.

For details on the semantics of functions and types, please refer to the Microsoft Active
Accessibility 1.2 documentation.

This class is compiled into wxWidgets only if the wxUSE_ACCESSIBILITY setup symbol
is set to 1.

Derived from

wxObject (p. 967)

Include files

<wx/access.h>

Data structures

CHAPTER 7

23

Functions return a wxAccStatus error code, which may be one of the following:

typedef enum
{
 wxACC_FAIL, // The function failed
 wxACC_FALSE, // The function returned false
 wxACC_OK, // The function complete d successfully
 wxACC_NOT_IMPLEMENTED, // The function is not i mplemented
 wxACC_NOT_SUPPORTED // The function is not s upported
} wxAccStatus

Directions of navigation are represented by the following:

typedef enum
{
 wxNAVDIR_DOWN,
 wxNAVDIR_FIRSTCHILD,
 wxNAVDIR_LASTCHILD,
 wxNAVDIR_LEFT,
 wxNAVDIR_NEXT,
 wxNAVDIR_PREVIOUS,
 wxNAVDIR_RIGHT,
 wxNAVDIR_UP
} wxNavDir

The role of a user interface element is represented by the following type:

typedef enum {
 wxROLE_NONE,
 wxROLE_SYSTEM_ALERT,
 wxROLE_SYSTEM_ANIMATION,
 wxROLE_SYSTEM_APPLICATION,
 wxROLE_SYSTEM_BORDER,
 wxROLE_SYSTEM_BUTTONDROPDOWN,
 wxROLE_SYSTEM_BUTTONDROPDOWNGRID,
 wxROLE_SYSTEM_BUTTONMENU,
 wxROLE_SYSTEM_CARET,
 wxROLE_SYSTEM_CELL,
 wxROLE_SYSTEM_CHARACTER,
 wxROLE_SYSTEM_CHART,
 wxROLE_SYSTEM_CHECKBUTTON,
 wxROLE_SYSTEM_CLIENT,
 wxROLE_SYSTEM_CLOCK,
 wxROLE_SYSTEM_COLUMN,
 wxROLE_SYSTEM_COLUMNHEADER,
 wxROLE_SYSTEM_COMBOBOX,
 wxROLE_SYSTEM_CURSOR,
 wxROLE_SYSTEM_DIAGRAM,
 wxROLE_SYSTEM_DIAL,
 wxROLE_SYSTEM_DIALOG,
 wxROLE_SYSTEM_DOCUMENT,
 wxROLE_SYSTEM_DROPLIST,
 wxROLE_SYSTEM_EQUATION,
 wxROLE_SYSTEM_GRAPHIC,
 wxROLE_SYSTEM_GRIP,
 wxROLE_SYSTEM_GROUPING,
 wxROLE_SYSTEM_HELPBALLOON,
 wxROLE_SYSTEM_HOTKEYFIELD,

CHAPTER 7

24

 wxROLE_SYSTEM_INDICATOR,
 wxROLE_SYSTEM_LINK,
 wxROLE_SYSTEM_LIST,
 wxROLE_SYSTEM_LISTITEM,
 wxROLE_SYSTEM_MENUBAR,
 wxROLE_SYSTEM_MENUITEM,
 wxROLE_SYSTEM_MENUPOPUP,
 wxROLE_SYSTEM_OUTLINE,
 wxROLE_SYSTEM_OUTLINEITEM,
 wxROLE_SYSTEM_PAGETAB,
 wxROLE_SYSTEM_PAGETABLIST,
 wxROLE_SYSTEM_PANE,
 wxROLE_SYSTEM_PROGRESSBAR,
 wxROLE_SYSTEM_PROPERTYPAGE,
 wxROLE_SYSTEM_PUSHBUTTON,
 wxROLE_SYSTEM_RADIOBUTTON,
 wxROLE_SYSTEM_ROW,
 wxROLE_SYSTEM_ROWHEADER,
 wxROLE_SYSTEM_SCROLLBAR,
 wxROLE_SYSTEM_SEPARATOR,
 wxROLE_SYSTEM_SLIDER,
 wxROLE_SYSTEM_SOUND,
 wxROLE_SYSTEM_SPINBUTTON,
 wxROLE_SYSTEM_STATICTEXT,
 wxROLE_SYSTEM_STATUSBAR,
 wxROLE_SYSTEM_TABLE,
 wxROLE_SYSTEM_TEXT,
 wxROLE_SYSTEM_TITLEBAR,
 wxROLE_SYSTEM_TOOLBAR,
 wxROLE_SYSTEM_TOOLTIP,
 wxROLE_SYSTEM_WHITESPACE,
 wxROLE_SYSTEM_WINDOW
} wxAccRole

Objects are represented by the following type:

typedef enum {
 wxOBJID_WINDOW = 0x00000000,
 wxOBJID_SYSMENU = 0xFFFFFFFF,
 wxOBJID_TITLEBAR = 0xFFFFFFFE,
 wxOBJID_MENU = 0xFFFFFFFD,
 wxOBJID_CLIENT = 0xFFFFFFFC,
 wxOBJID_VSCROLL = 0xFFFFFFFB,
 wxOBJID_HSCROLL = 0xFFFFFFFA,
 wxOBJID_SIZEGRIP = 0xFFFFFFF9,
 wxOBJID_CARET = 0xFFFFFFF8,
 wxOBJID_CURSOR = 0xFFFFFFF7,
 wxOBJID_ALERT = 0xFFFFFFF6,
 wxOBJID_SOUND = 0xFFFFFFF5
} wxAccObject

Selection actions are identified by this type:

typedef enum
{
 wxACC_SEL_NONE = 0,
 wxACC_SEL_TAKEFOCUS = 1,
 wxACC_SEL_TAKESELECTION = 2,
 wxACC_SEL_EXTENDSELECTION = 4,

CHAPTER 7

25

 wxACC_SEL_ADDSELECTION = 8,
 wxACC_SEL_REMOVESELECTION = 16
} wxAccSelectionFlags

States are represented by the following:

#define wxACC_STATE_SYSTEM_ALERT_HIGH 0x00000 001
#define wxACC_STATE_SYSTEM_ALERT_MEDIUM 0x00000 002
#define wxACC_STATE_SYSTEM_ALERT_LOW 0x00000 004
#define wxACC_STATE_SYSTEM_ANIMATED 0x00000 008
#define wxACC_STATE_SYSTEM_BUSY 0x00000 010
#define wxACC_STATE_SYSTEM_CHECKED 0x00000 020
#define wxACC_STATE_SYSTEM_COLLAPSED 0x00000 040
#define wxACC_STATE_SYSTEM_DEFAULT 0x00000 080
#define wxACC_STATE_SYSTEM_EXPANDED 0x00000 100
#define wxACC_STATE_SYSTEM_EXTSELECTABLE 0x00000 200
#define wxACC_STATE_SYSTEM_FLOATING 0x00000 400
#define wxACC_STATE_SYSTEM_FOCUSABLE 0x00000 800
#define wxACC_STATE_SYSTEM_FOCUSED 0x00001 000
#define wxACC_STATE_SYSTEM_HOTTRACKED 0x00002 000
#define wxACC_STATE_SYSTEM_INVISIBLE 0x00004 000
#define wxACC_STATE_SYSTEM_MARQUEED 0x00008 000
#define wxACC_STATE_SYSTEM_MIXED 0x00010 000
#define wxACC_STATE_SYSTEM_MULTISELECTABLE 0x00020 000
#define wxACC_STATE_SYSTEM_OFFSCREEN 0x00040 000
#define wxACC_STATE_SYSTEM_PRESSED 0x00080 000
#define wxACC_STATE_SYSTEM_PROTECTED 0x00100 000
#define wxACC_STATE_SYSTEM_READONLY 0x00200 000
#define wxACC_STATE_SYSTEM_SELECTABLE 0x00400 000
#define wxACC_STATE_SYSTEM_SELECTED 0x00800 000
#define wxACC_STATE_SYSTEM_SELFVOICING 0x01000 000
#define wxACC_STATE_SYSTEM_UNAVAILABLE 0x02000 000

Event identifiers that can be sent via wxAccessible::NotifyEvent (p. 29) are as follows:

#define wxACC_EVENT_SYSTEM_SOUND 0x000 1
#define wxACC_EVENT_SYSTEM_ALERT 0x000 2
#define wxACC_EVENT_SYSTEM_FOREGROUND 0x000 3
#define wxACC_EVENT_SYSTEM_MENUSTART 0x000 4
#define wxACC_EVENT_SYSTEM_MENUEND 0x000 5
#define wxACC_EVENT_SYSTEM_MENUPOPUPSTART 0x000 6
#define wxACC_EVENT_SYSTEM_MENUPOPUPEND 0x000 7
#define wxACC_EVENT_SYSTEM_CAPTURESTART 0x000 8
#define wxACC_EVENT_SYSTEM_CAPTUREEND 0x000 9
#define wxACC_EVENT_SYSTEM_MOVESIZESTART 0x000 A
#define wxACC_EVENT_SYSTEM_MOVESIZEEND 0x000 B
#define wxACC_EVENT_SYSTEM_CONTEXTHELPSTART 0x000 C
#define wxACC_EVENT_SYSTEM_CONTEXTHELPEND 0x000 D
#define wxACC_EVENT_SYSTEM_DRAGDROPSTART 0x000 E
#define wxACC_EVENT_SYSTEM_DRAGDROPEND 0x000 F
#define wxACC_EVENT_SYSTEM_DIALOGSTART 0x001 0
#define wxACC_EVENT_SYSTEM_DIALOGEND 0x001 1
#define wxACC_EVENT_SYSTEM_SCROLLINGSTART 0x001 2
#define wxACC_EVENT_SYSTEM_SCROLLINGEND 0x001 3
#define wxACC_EVENT_SYSTEM_SWITCHSTART 0x001 4
#define wxACC_EVENT_SYSTEM_SWITCHEND 0x001 5
#define wxACC_EVENT_SYSTEM_MINIMIZESTART 0x001 6
#define wxACC_EVENT_SYSTEM_MINIMIZEEND 0x001 7
#define wxACC_EVENT_OBJECT_CREATE 0 x8000

CHAPTER 7

26

#define wxACC_EVENT_OBJECT_DESTROY 0 x8001
#define wxACC_EVENT_OBJECT_SHOW 0 x8002
#define wxACC_EVENT_OBJECT_HIDE 0 x8003
#define wxACC_EVENT_OBJECT_REORDER 0 x8004
#define wxACC_EVENT_OBJECT_FOCUS 0 x8005
#define wxACC_EVENT_OBJECT_SELECTION 0 x8006
#define wxACC_EVENT_OBJECT_SELECTIONADD 0 x8007
#define wxACC_EVENT_OBJECT_SELECTIONREMOVE 0 x8008
#define wxACC_EVENT_OBJECT_SELECTIONWITHIN 0 x8009
#define wxACC_EVENT_OBJECT_STATECHANGE 0 x800A
#define wxACC_EVENT_OBJECT_LOCATIONCHANGE 0 x800B
#define wxACC_EVENT_OBJECT_NAMECHANGE 0 x800C
#define wxACC_EVENT_OBJECT_DESCRIPTIONCHANGE 0 x800D
#define wxACC_EVENT_OBJECT_VALUECHANGE 0 x800E
#define wxACC_EVENT_OBJECT_PARENTCHANGE 0 x800F
#define wxACC_EVENT_OBJECT_HELPCHANGE 0 x8010
#define wxACC_EVENT_OBJECT_DEFACTIONCHANGE 0 x8011
#define wxACC_EVENT_OBJECT_ACCELERATORCHANGE 0 x8012

wxAccessible::wxAccessible

 wxAccessible (wxWindow* win = NULL)

Constructor, taking an optional window. The object can be associated with a window
later.

wxAccessible::~wxAccessible

 ~wxAccessible ()

Destructor.

wxAccessible::DoDefaultAction

virtual wxAccStatus DoDefaultAction (int childId)

Performs the default action for the object. childId is 0 (the action for this object) or
greater than 0 (the action for a child). Return wxACC_NOT_SUPPORTED if there is no
default action for this window (e.g. an edit control).

wxAccessible::GetChild

virtual wxAccStatus GetChild (int childId, wxAccessible** child)

Gets the specified child (starting from 1). If child is NULL and the return value is
wxACC_OK, this means that the child is a simple element and not an accessible object.

wxAccessible::GetChildCount

virtual wxAccStatus GetChildCount (int* childCount)

CHAPTER 7

27

Returns the number of children in childCount.

wxAccessible::GetDefaultAction

virtual wxAccStatus GetDefaultAction (int childId, wxString* actionName)

Gets the default action for this object (0) or a child (greater than 0). Return wxACC_OK
even if there is no action. actionName is the action, or the empty string if there is no
action. The retrieved string describes the action that is performed on an object, not what
the object does as a result. For example, a toolbar button that prints a document has a
default action of "Press" rather than "Prints the current document."

wxAccessible::GetDescription

virtual wxAccStatus GetDescription (int childId, wxString* description)

Returns the description for this object or a child.

wxAccessible::GetFocus

virtual wxAccStatus GetFocus (int* childId, wxAccessible** child)

Gets the window with the keyboard focus. If childId is 0 and child is NULL, no object in
this subhierarchy has the focus. If this object has the focus, child should be 'this'.

wxAccessible::GetHelpText

virtual wxAccStatus GetHelpText (int childId, wxString* helpText)

Returns help text for this object or a child, similar to tooltip text.

wxAccessible::GetKeyboardShortcut

virtual wxAccStatus GetKeyboardShortcut (int childId, wxString* shortcut)

Returns the keyboard shortcut for this object or child. Return e.g. ALT+K.

wxAccessible::GetLocation

virtual wxAccStatus GetLocation (wxRect& rect, int elementId)

Returns the rectangle for this object (id is 0) or a child element (id is greater than 0).rect
is in screen coordinates.

wxAccessible::GetName

virtual wxAccStatus GetName (int childId, wxString* name)

Gets the name of the specified object.

CHAPTER 7

28

wxAccessible::GetParent

virtual wxAccStatus GetParent (wxAccessible** parent)

Returns the parent of this object, or NULL.

wxAccessible::GetRole

virtual wxAccStatus GetRole (int childId, wxAccRole* role)

Returns a role constant describing this object. See wxAccessible (p. 22) for a list of
these roles.

wxAccessible::GetSelections

virtual wxAccStatus GetSelections (wxVariant* selections)

Gets a variant representing the selected children of this object.

Acceptable values are:

 • a null variant (IsNull() returns TRUE)

 • a list variant (GetType() == wxT("list"))

 • an integer representing the selected child element, or 0 if this object is selected
(GetType() == wxT("long"))

 • a "void*" pointer to a wxAccessible child object

wxAccessible::GetState

virtual wxAccStatus GetState (int childId, long* state)

Returns a state constant. See wxAccessible (p. 22) for a list of these states.

wxAccessible::GetValue

virtual wxAccStatus GetValue (int childId, wxString* strValue)

Returns a localized string representing the value for the object or child.

wxAccessible::GetWindow

wxWindow* GetWindow ()

Returns the window associated with this object.

wxAccessible::HitTest

virtual wxAccStatus HitTest (const wxPoint& pt, int* childId, wxAccessible**

CHAPTER 7

29

childObject)

Returns a status value and object id to indicate whether the given point was on this or a
child object. Can return either a child object, or an integer representing the child
element, starting from 1.

pt is in screen coordinates.

wxAccessible::Navigate

virtual wxAccStatus Navigate (wxNavDir navDir, int fromId, int* toId, wxAccessible**
toObject)

Navigates from fromId to toId/toObject.

wxAccessible::NotifyEvent

virtual static void NotifyEvent (int eventType, wxWindow* window, wxAccObject
objectType, int objectType)

Allows the application to send an event when something changes in an accessible
object.

wxAccessible::Select

virtual wxAccStatus Select (int childId, wxAccSelectionFlags selectFlags)

Selects the object or child. See wxAccessible (p. 22) for a list of the selection actions.

wxAccessible::SetWindow

void SetWindow (wxWindow* window)

Sets the window associated with this object.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a

CHAPTER 7

30

member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.

EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.

EVT_HIBERNATE(func) Process a hibernate event, supplying the
member function. This event applies to wxApp
only, and only on Windows SmartPhone and
PocketPC. It is generated when the system is
low on memory; the application should free up
as much memory as possible, and restore full
working when it receives a wxEVT_ACTIVATE
or wxEVT_ACTIVATE_APP event.

Remarks
A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows
only)

Please note that usually you should call event.Skip() (p. 466) in your handlers for these
events as not doing so can result in strange effects.

See also

Event handling overview (p. 1674), wxApp::IsActive (p. 34)

wxActivateEvent::wxActivateEvent

 wxActivateEvent (WXTYPE eventType = 0, bool active = true, int id = 0)

Constructor.

wxActivateEvent::GetActive

bool GetActive () const

Returns true if the application or window is being activated, false otherwise.

wxApp

The wxApp class represents the application itself. It is used to:

 • set and get application-wide properties;

 • implement the windowing system message or event loop;

CHAPTER 7

31

 • initiate application processing via wxApp::OnInit (p. 37);

 • allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWidgets how to create an instance of your application class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/app.h>

See also

wxApp overview (p. 1641)

wxApp::wxApp

 wxApp ()

Constructor. Called implicitly with a definition of a wxApp object.

wxApp::~wxApp

 ~wxApp ()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

wxApp::argc

int argc

Number of command line arguments (after environment-specific processing).

wxApp::argv

wxChar ** argv

Command line arguments (after environment-specific processing).

wxApp::CreateLogTarget

CHAPTER 7

32

virtual wxLog* CreateLogTarget ()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 850)

wxApp::Dispatch

virtual void Dispatch ()

Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

 while (app.Pending())
 Dispatch();

See also

wxApp::Pending (p. 38)

wxApp::ExitMainLoop

virtual void ExitMainLoop ()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::FilterEvent

int FilterEvent (wxEvent& event)

This function is called before processing any event and allows the application to preempt
the processing of some events. If this method returns -1 the event is processed
normally, otherwise either true or false should be returned and the event processing
stops immediately considering that the event had been already processed (for the former
return value) or that it is not going to be processed at all (for the latter one).

wxApp::GetAppName

wxString GetAppName () const

Returns the application name.

Remarks

wxWidgets sets this to a reasonable default before calling wxApp::OnInit (p. 37), but the
application can reset it at will.

CHAPTER 7

33

wxApp::GetClassName

wxString GetClassName () const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 39)

wxApp::GetExitOnFrameDelete

bool GetExitOnFrameDelete () const

Returns true if the application will exit when the top-level window is deleted, false
otherwise.

See also

wxApp::SetExitOnFrameDelete (p. 39),
wxApp shutdown overview (p. 1642)

wxApp::GetInstance

static wxAppConsole * GetInstance ()

Returns the one and only global application object. Usually wxTheApp is usead instead.

See also

wxApp::SetInstance (p. 39)

wxApp::GetTopWindow

virtual wxWindow * GetTopWindow () const

Returns a pointer to the top window.

Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 39), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 39)

wxApp::GetUseBestVisual

bool GetUseBestVisual () const

Returns true if the application will use the best visual on systems that support different

CHAPTER 7

34

visuals, false otherwise.

See also

SetUseBestVisual (p. 40)

wxApp::GetVendorName

wxString GetVendorName () const

Returns the application's vendor name.

wxApp::IsActive

bool IsActive () const

Returns true if the application is active, i.e. if one of its windows is currently in the
foreground. If this function returns false and you need to attract users attention to the
application, you may use wxTopLevelWindow::RequestUserAttention (p. 1356) to do it.

wxApp::IsMainLoopRunning

static bool IsMainLoopRunning ()

Returns true if the main event loop is currently running, i.e. if the application is inside
OnRun (p. 37).

This can be useful to test whether the events can be dispatched. For example, if this
function returns false , non-blocking sockets cannot be used because the events from
them would never be processed.

wxApp::MainLoop

virtual int MainLoop ()

Called by wxWidgets on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

wxApp::OnAssert

void OnAssert (const wxChar *file, int line, const wxChar *cond, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
wxASSERT (p. 1582) macro evaluated to false . It is only called in debug mode (when
__WXDEBUG__ is defined) as asserts are not left in the release code at all.

The base class version show the default assert failure dialog box proposing to the user
to stop the program, continue or ignore all subsequent asserts.

CHAPTER 7

35

Parameters

file

the name of the source file where the assert occurred

line

the line number in this file where the assert occurred

cond

the condition of the failed assert in string form

msg

the message specified as argument to wxASSERT_MSG (p. 1583) or
wxFAIL_MSG (p. 1584), will be NULL if just wxASSERT (p. 1582) or wxFAIL (p.
1583) was used

wxApp::OnCmdLineError

bool OnCmdLineError (wxCmdLineParser& parser)

Called when command line parsing fails (i.e. an incorrect command line option was
specified by the user). The default behaviour is to show the program usage text and
abort the program.

Return true to continue normal execution or false to return false from OnInit (p. 37)
thus terminating the program.

See also

OnInitCmdLine (p. 37)

wxApp::OnCmdLineHelp

bool OnCmdLineHelp (wxCmdLineParser& parser)

Called when the help option (--help) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return true to continue normal execution or false to return false from OnInit (p. 37)
thus terminating the program.

See also

OnInitCmdLine (p. 37)

wxApp::OnCmdLineParsed

bool OnCmdLineParsed (wxCmdLineParser& parser)

CHAPTER 7

36

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return true to continue normal execution or false to return false from OnInit (p. 37)
thus terminating the program.

See also

OnInitCmdLine (p. 37)

wxApp::OnExceptionInMainLoop

virtual bool OnExceptionInMainLoop ()

This function is called if an unhandled exception occurs inside the main application event
loop. It can return true to ignore the exception and to continue running the loop or
false to exit the loop and terminate the program. In the latter case it can also use C++
throw keyword to rethrow the current exception.

The default behaviour of this function is the latter in all ports except under Windows
where a dialog is shown to the user which allows him to choose between the different
options. You may override this function in your class to do something more appropriate.

Finally note that if the exception is rethrown from here, it can be caught in
OnUnhandledException (p. 37).

wxApp::OnExit

virtual int OnExit ()

Override this member function for any processing which needs to be done as the
application is about to exit. OnExit is called after destroying all application windows and
controls, but before wxWidgets cleanup. Note that it is not called at all if OnInit (p. 37)
failed.

The return value of this function is currently ignored, return the same value as returned
by the base class method if you override it.

wxApp::OnFatalException

void OnFatalException ()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1517) to enable this.

Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,

CHAPTER 7

37

probably won't.

See also

wxHandleFatalExceptions (p. 1517)

wxApp::OnInit

bool OnInit ()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 39). You may use OnExit (p. 36) to
clean up anything initialized here, provided that the function returns true .

Notice that if you want to to use the command line processing provided by wxWidgets
you have to call the base class version in the derived class OnInit().

Return true to continue processing, false to exit the application immediately.

wxApp::OnInitCmdLine

void OnInitCmdLine (wxCmdLineParser& parser)

Called from OnInit (p. 37) and may be used to initialize the parser with the command line
options for this application. The base class versions adds support for a few standard
options only.

wxApp::OnRun

virtual int OnRun ()

This virtual function is where the execution of a program written in wxWidgets starts. The
default implementation just enters the main loop and starts handling the events until it
terminates, either because ExitMainLoop (p. 32) has been explicitly called or because
the last frame has been deleted and GetExitOnFrameDelete (p. 33) flag is true (this is
the default).

The return value of this function becomes the exit code of the program, so it should
return 0 in case of successful termination.

wxApp::OnUnhandledException

virtual void OnUnhandledException ()

This function is called when an unhandled C++ exception occurs inside OnRun() (p. 37)
(the exceptions which occur during the program startup and shutdown might not be
caught at all). Note that the exception type is lost by now, so if you want to really handle
the exception you should override OnRun() (p. 37) and put a try/catch clause around the
call to the base class version there.

wxApp::ProcessMessage

CHAPTER 7

38

bool ProcessMessage (WXMSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
true if the message was processed, false otherwise. If you use wxWidgets with another
class library with its own message loop, you should make sure that this function is called
to allow wxWidgets to receive messages. For example, to allow co-existence with the
Microsoft Foundation Classes, override the PreTranslateMessage function:

// Provide wxWidgets message loop compatibility
BOOL CTheApp::PreTranslateMessage(MSG *msg)
{
 if (wxTheApp && wxTheApp->ProcessMessage((WXMSW *)msg))
 return true;
 else
 return CWinApp::PreTranslateMessage(msg);
}

wxApp::Pending

virtual bool Pending ()

Returns true if unprocessed events are in the window system event queue.

See also

wxApp::Dispatch (p. 32)

wxApp::SendIdleEvents

bool SendIdleEvents (wxWindow* win, wxIdleEvent& event)

Sends idle events to a window and its children.

Please note that this function is internal to wxWidgets and shouldn't be used by user
code.

Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If true is returned, more OnIdle processing is requested by one or more window.

See also

wxIdleEvent (p. 740)

wxApp::SetAppName

void SetAppName (const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWidgets.

See also

CHAPTER 7

39

wxApp::GetAppName (p. 32)

wxApp::SetClassName

void SetClassName (const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

wxApp::GetClassName (p. 32)

wxApp::SetExitOnFrameDelete

void SetExitOnFrameDelete (bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag

If true (the default), the application will exit when the top-level frame is deleted. If
false, the application will continue to run.

See also

wxApp::GetExitOnFrameDelete (p. 33),
wxApp shutdown overview (p. 1642)

wxApp::SetInstance

static void SetInstance (wxAppConsole* app)

Allows external code to modify global wxTheApp, but you should really know what you're
doing if you call it.

Parameters

app

Replacement for the global application object.

See also

wxApp::GetInstance (p. 33)

wxApp::SetTopWindow

void SetTopWindow (wxWindow* window)

CHAPTER 7

40

Sets the 'top' window. You can call this from within wxApp::OnInit (p. 37) to let
wxWidgets know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWidgets just uses the first frame or dialog in its top-level window list, when it needs to
use the top window.

Parameters

window

The new top window.

See also

wxApp::GetTopWindow (p. 33), wxApp::OnInit (p. 37)

wxApp::SetVendorName

void SetVendorName (const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWidgets.

See also

wxApp::GetVendorName (p. 34)

wxApp::SetUseBestVisual

void SetUseBestVisual (bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain applications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.

Parameters

flag

If true, the app will use the best visual.

wxApp::HandleEvent

virtual void HandleEvent (wxEvtHandler *handler, wxEventFunction func, wxEvent&
event) const

CHAPTER 7

41

This function simply invokes the given method func of the specified event handler
handler with the event as parameter. It exists solely to allow to catch the C++ exceptions
which could be thrown by all event handlers in the application in one place: if you want to
do this, override this function in your wxApp-derived class and add try/catch clause(s) to
it.

wxApp::Yield

bool Yield (bool onlyIfNeeded = false)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and on systems with
cooperative multitasking, such as Windows 3.1 other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.
1518) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 855).

Calling Yield() recursively is normally an error and an assert failure is raised in debug
build if such situation is detected. However if the onlyIfNeeded parameter is true , the
method will just silently return false instead.

wxArchiveClassFactory

An abstract base class which serves as a common interface to archive class factories
such as wxZipClassFactory (p. 1496).

For each supported archive type (such as zip) there is a class factory derived from
wxArchiveClassFactory, which allows archive objects to be created in a generic way,
without knowing the particular type of archive being used.

Derived from

wxObject (p. 967)

Include files

<wx/archive.h>

See also

Archive formats such as zip (p. 1802)
Generic archive programming (p. 1806)
wxArchiveEntry (p. 42)
wxArchiveInputStream (p. 45)

CHAPTER 7

42

wxArchiveOutputStream (p. 49)

wxArchiveClassFactory::Get/SetConv

wxMBConv& GetConv () const

void SetConv (wxMBConv& conv)

The wxMBConv (p. 869) object that the created streams will use when translating meta-
data. The initial default, set by the constructor, is wxConvLocal.

wxArchiveClassFactory::GetInternalName

wxString GetInternalName (const wxString& name, wxPathFormat format =
wxPATH_NATIVE) const

Calls the static GetInternalName() function for the archive entry type, for example
wxZipEntry::GetInternalName() (p. 1501).

wxArchiveClassFactory::NewEntry

wxArchiveEntry* NewEntry () const

Create a new wxArchiveEntry (p. 42) object of the appropriate type.

wxArchiveClassFactory::NewStream

wxArchiveInputStream* NewStream (wxInputStream& stream) const

wxArchiveOutputStream* NewStream (wxOutputStream& stream) const

Create a new wxArchiveInputStream (p. 45)or wxArchiveOutputStream (p. 49) of the
appropriate type.

wxArchiveEntry

An abstract base class which serves as a common interface to archive entry classes
such as wxZipEntry (p. 1496). These hold the meta-data (filename, timestamp, etc.), for
entries in archive files such as zips and tars.

Derived from

wxObject (p. 967)

Include files

<wx/archive.h>

See also

CHAPTER 7

43

Archive formats such as zip (p. 1802)
Generic archive programming (p. 1806)
wxArchiveInputStream (p. 45)
wxArchiveOutputStream (p. 49)
wxArchiveNotifier (p. 48)

Non-seekable streams

This information applies only when reading archives from non-seekable streams. When
the stream is seekable GetNextEntry() (p. 46)returns a fully populated wxArchiveEntry
(p. 42). See 'Archives on non-seekable streams (p. 1807)' for more information.

For generic programming, when the worst case must be assumed, you can rely on all
the fields of wxArchiveEntry being fully populated when GetNextEntry() returns, with the
the following exceptions:

GetSize() (p. 44) Guaranteed to be available after the entry has been read to Eof() (p.
778), or CloseEntry() (p. 45) has been called

IsReadOnly() (p. 44) Guaranteed to be available after the end of the
archive has been reached, i.e. after GetNextEntry() returns NULL and
Eof() is true

wxArchiveEntry::Clone

wxArchiveEntry* Clone () const

Returns a copy of this entry object.

wxArchiveEntry::Get/SetDateTime

wxDateTime GetDateTime () const

void SetDateTime (const wxDateTime& dt)

The entry's timestamp.

wxArchiveEntry::GetInternalFormat

wxPathFormat GetInternalFormat () const

Returns the path format used internally within the archive to store filenames.

wxArchiveEntry::GetInternalName

wxString GetInternalName () const

Returns the entry's filename in the internal format used within the archive. The name can
include directory components, i.e. it can be a full path.

CHAPTER 7

44

The names of directory entries are returned without any trailing path separator. This
gives a canonical name that can be used in comparisons.

See also

Looking up an archive entry by name (p. 1804)

wxArchiveEntry::Get/SetName

wxString GetName (wxPathFormat format = wxPATH_NATIVE) const

void SetName (const wxString& name, wxPathFormat format = wxPATH_NATIVE)

The entry's name, by default in the native format. The name can include directory
components, i.e. it can be a full path.

If this is a directory entry, (i.e. if IsDir() (p. 44)is true) then GetName() returns the name
with a trailing path separator.

Similarly, setting a name with a trailing path separator sets IsDir().

wxArchiveEntry::GetOffset

off_t GetOffset () const

Returns a numeric value unique to the entry within the archive.

wxArchiveEntry::Get/SetSize

off_t GetSize () const

void SetSize (off_t size)

The size of the entry's data in bytes.

wxArchiveEntry::IsDir/SetIsDir

bool IsDir () const

void SetIsDir (bool isDir = true)

True if this is a directory entry.

Directory entries are entries with no data, which are used to store the meta-data of
directories. They also make it possible for completely empty directories to be stored.

The names of entries within an archive can be complete paths, and unarchivers typically
create whatever directories are necessary as they restore files, even if the archive
contains no explicit directory entries.

wxArchiveEntry::IsReadOnly/SetIsReadOnly

CHAPTER 7

45

bool IsReadOnly () const

void SetIsReadOnly (bool isReadOnly = true)

True if the entry is a read-only file.

wxArchiveEntry::Set/UnsetNotifier

void SetNotifier (wxArchiveNotifier& notifier)

void UnsetNotifier ()

Sets the notifier (p. 48) for this entry. Whenever the wxArchiveInputStream (p. 45)
updates this entry, it will then invoke the associated notifier's OnEntryUpdated (p.
49)method.

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams).

See also

Archives on non-seekable streams (p. 1807)
wxArchiveNotifier (p. 48)

wxArchiveInputStream

An abstract base class which serves as a common interface to archive input streams
such as wxZipInputStream (p. 1503).

GetNextEntry() (p. 46) returns an wxArchiveEntry (p. 42) object containing the meta-data
for the next entry in the archive (and gives away ownership). Reading from the
wxArchiveInputStream then returns the entry's data. Eof() becomes true after an attempt
has been made to read past the end of the entry's data. When there are no more entries,
GetNextEntry() returns NULL and sets Eof().

Derived from

wxFilterInputStream (p. 526)

Include files

<wx/archive.h>

Data structures typedef wxArchiveEntry entry_type

See also

Archive formats such as zip (p. 1802)
wxArchiveEntry (p. 42)
wxArchiveOutputStream (p. 49)

CHAPTER 7

46

wxArchiveInputStream::CloseEntry

bool CloseEntry ()

Closes the current entry. On a non-seekable stream reads to the end of the current entry
first.

wxArchiveInputStream::GetNextEntry

wxArchiveEntry* GetNextEntry ()

Closes the current entry if one is open, then reads the meta-data for the next entry and
returns it in a wxArchiveEntry (p. 42)object, giving away ownership. Reading this
wxArchiveInputStream then returns the entry's data.

wxArchiveInputStream::OpenEntry

bool OpenEntry (wxArchiveEntry& entry)

Closes the current entry if one is open, then opens the entry specified by the
wxArchiveEntry (p. 42) object.

entry must be from the same archive file that this wxArchiveInputStream is reading, and
it must be reading it from a seekable stream.

See also

Looking up an archive entry by name (p. 1804)

wxArchiveIterator

An input iterator template class that can be used to transfer an archive's catalogue to a
container. It is only available if wxUSE_STL is set to 1 in setup.h, and the uses for it
outlined below require a compiler which supports member templates.

template <class Arc, class T = typename Arc::entry_ type*>
class wxArchiveIterator
{
 // this constructor creates an 'end of sequence ' object
 wxArchiveIterator();

 // template parameter 'Arc' should be the type of an archive
input stream
 wxArchiveIterator(Arc& arc) {

 /* ... */
};

The first template parameter should be the type of archive input stream (e.g.
wxArchiveInputStream (p. 45)) and the second can either be a pointer to an entry (e.g.
wxArchiveEntry (p. 42)*), or a string/pointer pair (e.g. std::pair<wxString,
wxArchiveEntry*>).

CHAPTER 7

47

The <wx/archive.h> header defines the following typedefs:

 typedef wxArchiveIterator<wxArchiveInputStream> wxArchiveIter;

 typedef wxArchiveIterator<wxArchiveInputStream,
 std::pair<wxString, wxArchiveEntry*> >
wxArchivePairIter;

The header for any implementation of this interface should define similar typedefs for its
types, for example in <wx/zipstrm.h> there is:

 typedef wxArchiveIterator<wxZipInputStream> wxZ ipIter;

 typedef wxArchiveIterator<wxZipInputStream,
 std::pair<wxString, wxZipEntry*> > wxZ ipPairIter;

Transferring the catalogue of an archive arc to a vector cat, can then be done something
like this:

 std::vector<wxArchiveEntry*> cat((wxArchiveIter)arc,
wxArchiveIter());

When the iterator is dereferenced, it gives away ownership of an entry object. So in the
above example, when you have finished with catyou must delete the pointers it contains.

If you have smart pointers with normal copy semantics (i.e. not auto_ptr or wxScopedPtr
(p. 1088)), then you can create an iterator which uses them instead. For example, with a
smart pointer class for zip entries ZipEntryPtr:

 typedef std::vector<ZipEntryPtr> ZipCatalog;
 typedef wxArchiveIterator<wxZipInputStream, Zip EntryPtr>
ZipIter;
 ZipCatalog cat((ZipIter)zip, ZipIter());

Iterators that return std::pair objects can be used to populate a std::multimap, to allow
entries to be looked up by name. The string is initialised using the wxArchiveEntry
object's GetInternalName() (p. 43) function.

 typedef std::multimap<wxString, wxZipEntry*> Zi pCatalog;
 ZipCatalog cat((wxZipPairIter)zip, wxZipPairIte r());

 Note that this iterator also gives away ownership of an entry object each time it is
dereferenced. So in the above example, when you have finished with cat you must
delete the pointers it contains.

Or if you have them, a pair containing a smart pointer can be used (again ZipEntryPtr),
no worries about ownership:

 typedef std::multimap<wxString, ZipEntryPtr> Zi pCatalog;
 typedef wxArchiveIterator<wxZipInputStream,
 std::pair<wxString, ZipEntryPtr> > ZipPairIter;
 ZipCatalog cat((ZipPairIter)zip, ZipPairIter()) ;

CHAPTER 7

48

Derived from

No base class

Include files

<wx/archive.h>

See also

wxArchiveEntry (p. 42)
wxArchiveInputStream (p. 45)
wxArchiveOutputStream (p. 49)

Data structures typedef std::input_iterator_tag iterator_category
typedef T value_type
typedef ptrdiff_t difference_type
typedef T* pointer
typedef T& reference

wxArchiveIterator::wxArchiveIterator

 wxArchiveIterator ()

Construct an 'end of sequence' instance.

 wxArchiveIterator (Arc& arc)

Construct iterator that returns all the entries in the archive input stream arc.

wxArchiveIterator::operator*

const T& operator* () const

Returns an entry object from the archive input stream, giving away ownership.

wxArchiveIterator::operator++

wxArchiveIterator& operator++ ()

wxArchiveIterator& operator++ (int)

Position the input iterator at the next entry in the archive input stream.

wxArchiveNotifier

If you need to know when a wxArchiveInputStream (p. 45) updates a wxArchiveEntry (p.
42) object, you can create a notifier by deriving from this abstract base class, overriding
OnEntryUpdated() (p. 49). An instance of your notifier class can then be assigned to the

CHAPTER 7

49

wxArchiveEntry object using wxArchiveEntry::SetNotifier() (p. 45). Your
OnEntryUpdated() method will then be invoked whenever the input stream updates the
entry.

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams). See Archives on
non-seekable streams (p. 1807).

Derived from

No base class

Include files

<wx/archive.h>

See also

Archives on non-seekable streams (p. 1807)
wxArchiveEntry (p. 42)
wxArchiveInputStream (p. 45)
wxArchiveOutputStream (p. 49)

wxArchiveNotifier::OnEntryUpdated

void OnEntryUpdated (class wxArchiveEntry& entry)

This method must be overridden in your derived class.

wxArchiveOutputStream

An abstract base class which serves as a common interface to archive output streams
such as wxZipOutputStream (p. 1505).

PutNextEntry() (p. 51) is used to create a new entry in the output archive, then the
entry's data is written to the wxArchiveOutputStream. Another call to PutNextEntry()
closes the current entry and begins the next.

Derived from

wxFilterOutputStream (p. 527)

Include files

<wx/archive.h>

See also

Archive formats such as zip (p. 1802)
wxArchiveEntry (p. 42)
wxArchiveInputStream (p. 45)

CHAPTER 7

50

wxArchiveOutputStream::~wxArchiveOutputStream

 ~wxArchiveOutputStream ()

Calls Close() (p. 50) if it has not already been called.

wxArchiveOutputStream::Close

bool Close ()

Closes the archive, returning true if it was successfully written. Called by the destructor if
not called explicitly.

wxArchiveOutputStream::CloseEntry

bool CloseEntry ()

Close the current entry. It is called implicitly whenever another new entry is created with
CopyEntry() (p. 50)or PutNextEntry() (p. 51), or when the archive is closed.

wxArchiveOutputStream::CopyArchiveMetaData

bool CopyArchiveMetaData (wxArchiveInputStream& stream)

Some archive formats have additional meta-data that applies to the archive as a whole.
For example in the case of zip there is a comment, which is stored at the end of the zip
file. CopyArchiveMetaData() can be used to transfer such information when writing a
modified copy of an archive.

Since the position of the meta-data can vary between the various archive formats, it is
best to call CopyArchiveMetaData() before transferring the entries. The
wxArchiveOutputStream (p. 49)will then hold on to the meta-data and write it at the
correct point in the output file.

When the input archive is being read from a non-seekable stream, the meta-data may
not be available when CopyArchiveMetaData() is called, in which case the two streams
set up a link and transfer the data when it becomes available.

wxArchiveOutputStream::CopyEntry

bool CopyEntry (wxArchiveEntry* entry, wxArchiveInputStream& stream)

Takes ownership of entry and uses it to create a new entry in the archive. entry is then
opened in the input stream streamand its contents copied to this stream.

For archive types which compress entry data, CopyEntry() is likely to be much more
efficient than transferring the data using Read() and Write() since it will copy them
without decompressing and recompressing them.

CHAPTER 7

51

entry must be from the same archive file that stream is accessing. For non-seekable
streams, entry must also be the last thing read from stream.

wxArchiveOutputStream::PutNextDirEntry

bool PutNextDirEntry (const wxString& name, const wxDateTime& dt =
wxDateTime::Now())

Create a new directory entry (see wxArchiveEntry::IsDir() (p. 44)) with the given name
and timestamp.

PutNextEntry() (p. 51) can also be used to create directory entries, by supplying a name
with a trailing path separator.

wxArchiveOutputStream::PutNextEntry

bool PutNextEntry (wxArchiveEntry* entry)

Takes ownership of entry and uses it to create a new entry in the archive. The entry's
data can then be written by writing to this wxArchiveOutputStream.

bool PutNextEntry (const wxString& name, const wxDateTime& dt =
wxDateTime::Now(), off_t size = wxInvalidOffset)

Create a new entry with the given name, timestamp and size. The entry's data can then
be written by writing to this wxArchiveOutputStream.

wxArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1670) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 801)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 55) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWidgets has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros

CHAPTER 7

52

WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWidgets internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWidgets).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it is Index() (p. 60) function execution time is
O(log(N)) instead ofO(N) for the usual arrays but the Add() (p. 59) method is slower: it is
O(log(N)) instead of constant time (neglecting time spent in memory allocation routine).
However, in a usual situation elements are added to an array much less often than
searched inside it, so wxSortedArray may lead to huge performance improvements
compared to wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can
be only used for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
'forward') declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#include <wx/dynarray.h>

// we must forward declare the array because it is used inside the
class
// declaration
class MyDirectory;
class MyFile;

// this defines two new types: ArrayOfDirectories a nd ArrayOfFiles
which can be
// now used as shown below

CHAPTER 7

53

WX_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);
WX_DECLARE_OBJARRAY(MyFile, ArrayOfFiles);

class MyDirectory
{
...
 ArrayOfDirectories m_subdirectories; // all sub directories
 ArrayOfFiles m_files; // all fil es in this
directory
};

...

// now that we have MyDirectory declaration in scop e we may finish
the
// definition of ArrayOfDirectories -- note that th is expands into
some C++
// code and so should only be compiled once (i.e., don't put this
in the
// header, but into a source file or you will get l inking errors)
#include <wx/arrimpl.cpp> // this is a magic incant ation which
must be done!
WX_DEFINE_OBJARRAY(ArrayOfDirectories);

// that's all!

It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayOfDirectories ;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WX_DEFINE_ARRAY(int, ArrayOfDirectories);
WX_DEFINE_SORTED_ARRAY(int, ArrayOfFiles);

i.e. there is only one DEFINE macro and no need for separate DECLARE one.

See also:

Container classes overview (p. 1664), wxList (p. 801)

Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use

CHAPTER 7

54

WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 56)
WX_DEFINE_EXPORTED_ARRAY (p. 56)
WX_DEFINE_USER_EXPORTED_ARRAY (p. 56)
WX_DEFINE_SORTED_ARRAY (p. 56)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 56)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (p. 56)
WX_DECLARE_EXPORTED_OBJARRAY (p. 57)
WX_DECLARE_USER_EXPORTED_OBJARRAY (p. 57)
WX_DEFINE_OBJARRAY (p. 57)
WX_DEFINE_EXPORTED_OBJARRAY (p. 57)
WX_DEFINE_USER_EXPORTED_OBJARRAY (p. 57)

To slightly complicate the matters even further, the operator -> defined by default for the
array iterators by these macros only makes sense if the array element type is not a
pointer itself and, although it still works, this provokes warnings from some compilers
and to avoid them you should use the _PTR versions of the macros above. For example,
to define an array of pointers to double you should use.

Note that the above macros are generally only useful for wxObject types. There are
separate macros for declaring an array of a simple type, such as an int.

The following simple types are supported:
int
long
size_t
double

To create an array of a simple type, simply append the type you want in CAPS to the
array definition.

For example, for an integer array, you'd use one of the following variants:

WX_DEFINE_ARRAY_INT (p. 56)
WX_DEFINE_EXPORTED_ARRAY_INT (p. 56)
WX_DEFINE_USER_EXPORTED_ARRAY_INT (p. 56)
WX_DEFINE_SORTED_ARRAY_INT (p. 56)
WX_DEFINE_SORTED_EXPORTED_ARRAY_INT (p. 56)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY_INT (p. 56)

WX_DEFINE_ARRAY_PTR(double *, MyArrayOfDoublePointe rs);

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray

CHAPTER 7

55

anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 58)
wxArray copy constructors and assignment operators (p. 58)
~wxArray (p. 59)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 62) function is provided to deallocate the
extra memory. The Alloc() (p. 59) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 59)
Shrink (p. 62)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 61) method.

Count (p. 60)
GetCount (p. 60)
IsEmpty (p. 61)
Item (p. 61)
Last (p. 61)

Adding items

Add (p. 59)
Insert (p. 61)
SetCount (p. 62)
WX_APPEND_ARRAY (p. 58)

Removing items

WX_CLEAR_ARRAY (p. 58)
Empty (p. 60)
Clear (p. 59)
RemoveAt (p. 62)
Remove (p. 61)

CHAPTER 7

56

Searching and sorting

Index (p. 60)
Sort (p. 62)

WX_DEFINE_ARRAY

 WX_DEFINE_ARRAY (T, name)

 WX_DEFINE_EXPORTED_ARRAY (T, name)

 WX_DEFINE_USER_EXPORTED_ARRAY (T, name, exportspec)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling wxWidgets as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

WX_DEFINE_ARRAY_INT(wxArrayInt);

class MyClass;
WX_DEFINE_ARRAY(MyClass *, wxArrayOfMyClass);

Note that wxWidgets predefines the following standard array classes: wxArrayInt,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

 WX_DEFINE_SORTED_ARRAY (T, name)

 WX_DEFINE_SORTED_EXPORTED_ARRAY (T, name)

 WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling wxWidgets as a DLL under Windows
and array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

WX_DEFINE_SORTED_ARRAY_INT(wxSortedArrayInt);

class MyClass;
WX_DEFINE_SORTED_ARRAY(MyClass *, wxArrayOfMyClass) ;

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int CompareInts(int n1, int n2)
{

CHAPTER 7

57

 return n1 - n2;
}

wxSortedArrayInt sorted(CompareInts);

int CompareMyClassObjects(MyClass *item1, MyClass * item2)
{
 // sort the items by their address...
 return Stricmp(item1->GetAddress(), item2->GetA ddress());
}

wxArrayOfMyClass another(CompareMyClassObjects);

WX_DECLARE_OBJARRAY

 WX_DECLARE_OBJARRAY (T, name)

 WX_DECLARE_EXPORTED_OBJARRAY (T, name)

 WX_DECLARE_USER_EXPORTED_OBJARRAY (T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling wxWidgets as a DLL under Windows
and array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

class MyClass;
WX_DECLARE_OBJARRAY(MyClass, wxArrayOfMyClass); // note: not
"MyClass *"!

You must use WX_DEFINE_OBJARRAY() (p. 57) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

 WX_DEFINE_OBJARRAY (name)

 WX_DEFINE_EXPORTED_OBJARRAY (name)

 WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p. 57) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called. The latter two forms are merely aliases of the first to satisfy some
people's sense of symmetry when using the exported declarations.

Example of usage:

// first declare the class!

CHAPTER 7

58

class MyClass
{
public:
 MyClass(const MyClass&);

 ...

 virtual ~MyClass();
};

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY(wxArrayOfMyClass);

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call
Empty().

Default constructors

 wxArray ()

 wxObjArray ()

Default constructor initializes an empty array object.

 wxSortedArray (int (*)(T first, T second) compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or
positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

 wxArray (const wxArray& array)

 wxSortedArray (const wxSortedArray& array)

 wxObjArray (const wxObjArray& array)

wxArray& operator= (const wxArray& array)

CHAPTER 7

59

wxSortedArray& operator= (const wxSortedArray& array)

wxObjArray& operator= (const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer
type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

wxArray::~wxArray

 ~wxArray ()

 ~wxSortedArray ()

 ~wxObjArray ()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 58) macro
for this.

wxArray::Add

void Add (T item, size_t copies = 1)

void Add (T *item)

void Add (T &item, size_t copies = 1)

Appends the given number of copies of the item to the array consisting of the elements
of type T.

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements. Also note that you cannot append more than one pointer as reusing it would
lead to deleting it twice (or more) and hence to a crash.

You may also use WX_APPEND_ARRAY (p. 58) macro to append all elements of one
array to another one but it is more efficient to use copies parameter and modify the
elements in place later if you plan to append a lot of items.

wxArray::Alloc

void Alloc (size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for

CHAPTER 7

60

the given number of items, nothing happens.

wxArray::Clear

void Clear ()

This function does the same as Empty() (p. 60) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count () const

Same as GetCount() (p. 60). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach

T * Detach (size_t index)

Removes the element from the array, but, unlike, Remove() (p. 61) doesn't delete it. The
function returns the pointer to the removed element.

wxArray::Empty

void Empty ()

Empties the array. For wxObjArray classes, this destroys all of the array elements. For
wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 59) for this.

wxArray::GetCount

size_t GetCount () const

Return the number of items in the array.

wxArray::Index

int Index (T& item, bool searchFromEnd = false)

int Index (T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't

CHAPTER 7

61

make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

void Insert (T item, size_t n, size_t copies = 1)

void Insert (T *item, size_t n)

void Insert (T &item, size_t n, size_t copies = 1)

Insert the given number of copies of the item into the array before the existing item n -
thus, Insert(something, 0u) will insert an item in such way that it will become the first
array element.

Please see Add() (p. 59) for explanation of the differences between the overloaded
versions of this function.

wxArray::IsEmpty

bool IsEmpty () const

Returns true if the array is empty, false otherwise.

wxArray::Item

T& Item (size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Last

T& Last () const

Returns the last element in the array, i.e. is the same as Item(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

 Remove (T item)

CHAPTER 7

62

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()
(p. 60) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item = array[n];
delete item;
array.Remove(n)

See also WX_CLEAR_ARRAY (p. 58) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::RemoveAt

 RemoveAt (size_t index, size_t count = 1)

Removes count elements starting at index from the array. When an element is removed
from wxObjArray it is deleted by the array - useDetach() (p. 60) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete it manually if required:

T *item = array[n];
delete item;
array.RemoveAt(n)

See also WX_CLEAR_ARRAY (p. 58) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::SetCount

void SetCount (size_t count, T defval = T(0))

This function ensures that the number of array elements is at least count. If the array has
already count or more items, nothing is done. Otherwise, count - GetCount()
elements are added and initialized to the value defval.

See also

GetCount (p. 60)

wxArray::Shrink

void Shrink ()

Frees all memory unused by the array. If the program knows that no new items will be
added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

wxArray::Sort

CHAPTER 7

63

void Sort (CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

where T is the type of the array elements. I.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wxArrayString

wxArrayString is an efficient container for storing wxString (p. 1226) objects. It has the
same features as all wxArray (p. 51) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 51), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 66), Last (p. 67) or operator[] (p. 65) are not
constant, so the array elements may be modified in place like this

 array.Last().MakeUpper();

There is also a variant of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 66) function
(instead of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basically, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a

CHAPTER 7

64

specialization of wxArray (p. 51) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/arrstr.h>

See also

wxArray (p. 51), wxString (p. 1226), wxString overview (p. 1645)

wxArrayString::wxArrayString

 wxArrayString ()

Default constructor.

 wxArrayString (const wxArrayString& array)

Copy constructor. Note that when an array is assigned to a sorted array, its contents is
automatically sorted during construction.

 wxArrayString (size_t sz, const wxChar** arr)

Constructor from a C string array. Pass a size sz and array arr.

 wxArrayString (size_t sz, const wxString* arr)

Constructor from a wxString array. Pass a size sz and array arr.

wxArrayString::~wxArrayString

 ~wxArrayString ()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=

wxArrayString & operator = (const wxArrayString& array)

Assignment operator.

wxArrayString::operator==

bool operator == (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true only if the arrays have the same
number of elements and the same strings in the same order.

CHAPTER 7

65

wxArrayString::operator!=

bool operator != (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true if the arrays have different number
of elements or if the elements don't match pairwise.

wxArrayString::operator[]

wxString& operator[] (size_t nIndex)

Return the array element at position nIndex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of Item (p. 66) method.

wxArrayString::Add

size_t Add (const wxString& str, size_t copies = 1)

Appends the given number of copies of the new item str to the array and returns the
index of the first new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 66) - 1 because the item is inserted at the correct position to keep the
array sorted and not appended.

See also: Insert (p. 66)

wxArrayString::Alloc

void Alloc (size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 55)

wxArrayString::Clear

void Clear ()

Clears the array contents and frees memory.

See also: Empty (p. 65)

wxArrayString::Count

size_t Count () const

CHAPTER 7

66

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 66) instead.

wxArrayString::Empty

void Empty ()

Empties the array: after a call to this function GetCount (p. 66) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 65) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount () const

Returns the number of items in the array.

wxArrayString::Index

int Index (const char * sz, bool bCase = true, bool bFromEnd = false)

Search the element in the array, starting from the beginning ifbFromEnd is false or from
end otherwise. If bCase, comparison is case sensitive (default), otherwise the case is
ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert

void Insert (const wxString& str, size_t nIndex, size_t copies = 1)

Insert the given number of copies of the new element in the array before the position
nIndex. Thus, for example, to insert the string in the beginning of the array you would
write

Insert("foo", 0);

If nIndex is equal to GetCount() this function behaves as Add (p. 65).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 66) would then not work!

wxArrayString::IsEmpty

bool IsEmpty ()

CHAPTER 7

67

Returns true if the array is empty, false otherwise. This function returns the same result
as GetCount() == 0 but is probably easier to read.

wxArrayString::Item

wxString& Item (size_t nIndex) const

Return the array element at position nIndex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator[] (p. 65) for the operator version.

wxArrayString::Last

wxString& Last ()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove (const char * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 66)

wxArrayString::RemoveAt

void RemoveAt (size_t nIndex, size_t count = 1)

Removes count items starting at position nIndex from the array.

wxArrayString::Shrink

void Shrink ()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 65), Dynamic array memory management (p. 55)

wxArrayString::Sort

void Sort (bool reverseOrder = false)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
true. The sort is case-sensitive.

CHAPTER 7

68

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 66) would then not work!

void Sort (CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than 0 if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int CompareStringLen(const wxString& first, const wxString&
second)
{
 return first.length() - second.length();
}

...

wxArrayString array;

array.Add("one");
array.Add("two");
array.Add("three");
array.Add("four");

array.Sort(CompareStringLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 66) would then not work!

wxArtProvider

wxArtProvider class is used to customize the look of wxWidgets application. When
wxWidgets needs to display an icon or a bitmap (e.g. in the standard file dialog), it does
not use a hard-coded resource but asks wxArtProvider for it instead. This way users can
plug in their own wxArtProvider class and easily replace standard art with their own
version. All that is needed is to derive a class from wxArtProvider, override
itsCreateBitmap (p. 71) method and register the provider
withwxArtProvider::PushProvider (p. 72):

 class MyProvider : public wxArtProvider
 {
 protected:
 wxBitmap CreateBitmap(const wxArtID& id,
 const wxArtClient& client ,
 const wxSize size)
 { ... }
 };
 ...
 wxArtProvider::PushProvider(new MyProvider);

There's another way of taking advantage of this class: you can use it in your code and

CHAPTER 7

69

use platform native icons as provided by wxArtProvider::GetBitmap (p. 71) or
wxArtProvider::GetIcon (p. 72) (NB: this is not yet really possible as of wxWidgets 2.3.3,
the set of wxArtProvider bitmaps is too small).

Identifying art resources

Every bitmap is known to wxArtProvider under an unique ID that is used by when
requesting a resource from it. The ID is represented by wxArtID type and can have one
of these predefined values (you can see bitmaps represented by these constants in the
artprov (p. 1632) sample):

 • wxART_ADD_BOOKMARK

 • wxART_DEL_BOOKMARK

 • wxART_HELP_SIDE_PANEL

 • wxART_HELP_SETTINGS

 • wxART_HELP_BOOK

 • wxART_HELP_FOLDER

 • wxART_HELP_PAGE

 • wxART_GO_BACK

 • wxART_GO_FORWARD

 • wxART_GO_UP

 • wxART_GO_DOWN

 • wxART_GO_TO_PARENT

 • wxART_GO_HOME

 • wxART_FILE_OPEN

 • wxART_PRINT

 • wxART_HELP

 • wxART_TIP

 • wxART_REPORT_VIEW

 • wxART_LIST_VIEW

 • wxART_NEW_DIR

 • wxART_FOLDER

 • wxART_GO_DIR_UP

CHAPTER 7

70

 • wxART_EXECUTABLE_FILE

 • wxART_NORMAL_FILE

 • wxART_TICK_MARK

 • wxART_CROSS_MARK

 • wxART_ERROR

 • wxART_QUESTION

 • wxART_WARNING

 • wxART_INFORMATION

 • wxART_MISSING_IMAGE

Additionally, any string recognized by custom art providers registered usingPushProvider
(p. 72) may be used.

GTK+ Note

When running under GTK+ 2, GTK+ stock item IDs (e.g. "gtk-cdrom") may be used
as well. Additionally, if wxGTK was compiled against GTK+ >= 2.4, then it is also
possible to load icons from current icon theme by specifying their name (without
extension and directory components). Icon themes recognized by GTK+ follow
thefreedesktop.org Icon Themes specification
(http://freedesktop.org/Standards/icon-theme-spec). Note that themes
are not guaranteed to contain all icons, so wxArtProvider may return wxNullBitmap or
wxNullIcon . Default theme is typically installed in /usr/share/icons/hicolor .

Clients

Client is the entity that calls wxArtProvider's GetBitmap or GetIcon function. It is
represented by wxClientID type and can have one of these values:

 • wxART_TOOLBAR

 • wxART_MENU

 • wxART_BUTTON

 • wxART_FRAME_ICON

 • wxART_CMN_DIALOG

 • wxART_HELP_BROWSER

 • wxART_MESSAGE_BOX

 • wxART_OTHER (used for all requests that don't fit into any of the categories
above)Client ID servers as a hint to wxArtProvider that is supposed to help it to

CHAPTER 7

71

choose the best looking bitmap. For example it is often desirable to use slightly
different icons in menus and toolbars even though they represent the same
action (e.g. wx_ART_FILE_OPEN). Remember that this is really only a hint for
wxArtProvider -- it is common thatwxArtProvider::GetBitmap (p. 71) returns
identical bitmap for different client values!

See also

See the artprov (p. 1632) sample for an example of wxArtProvider usage.

Derived from

wxObject (p. 967)

Include files

<wx/artprov.h>

wxArtProvider::CreateBitmap

wxBitmap CreateBitmap (const wxArtID& id, const wxArtClient& client, const
wxSize& size)

Derived art provider classes must override this method to create requested art resource.
Note that returned bitmaps are cached by wxArtProvider and it is therefore not
necessary to optimize CreateBitmap for speed (e.g. you may create wxBitmap objects
from XPMs here).

Parameters

id

wxArtID unique identifier of the bitmap.

client

wxArtClient identifier of the client (i.e. who is asking for the bitmap). This only
servers as a hint.

size

Preferred size of the bitmap. The function may return a bitmap of different
dimensions, it will be automatically rescaled to meet client's request.

Note

This is not part of wxArtProvider's public API, usewxArtProvider::GetBitmap (p. 71) or
wxArtProvider::GetIcon (p. 72)to query wxArtProvider for a resource.

wxArtProvider::GetBitmap

static wxBitmap GetBitmap (const wxArtID& id, const wxArtClient& client =

CHAPTER 7

72

wxART_OTHER, const wxSize& size = wxDefaultSize)

Query registered providers for bitmap with given ID.

Parameters

id

wxArtID unique identifier of the bitmap.

client

wxArtClient identifier of the client (i.e. who is asking for the bitmap).

size

Size of the returned bitmap or wxDefaultSize if size doesn't matter.

Return value

The bitmap if one of registered providers recognizes the ID or wxNullBitmap otherwise.

wxArtProvider::GetIcon

static wxIcon GetIcon (const wxArtID& id, const wxArtClient& client =
wxART_OTHER, const wxSize& size = wxDefaultSize)

Same as wxArtProvider::GetBitmap (p. 71), but return a wxIcon object (or wxNullIcon on
failure).

static wxSize GetSizeHint (const wxArtClient& client, bool platform_default = false)

Returns a suitable size hint for the given wxArtClient. If platform_default is true , return
a size based on the current platform, otherwise return the size from the topmost
wxArtProvider. wxDefaultSize may be returned if the client doesn't have a specified
size, like wxART_OTHER for example.

wxArtProvider::PopProvider

static bool PopProvider ()

Remove latest added provider and delete it.

wxArtProvider::PushProvider

static void PushProvider (wxArtProvider* provider)

Register new art provider (add it to the top of providers stack).

wxArtProvider::RemoveProvider

static bool RemoveProvider (wxArtProvider* provider)

CHAPTER 7

73

Remove a provider from the stack. The provider must have been added previously and
is not deleted.

wxAutomationObject

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1396) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
API is high-level, and the application can specify multiple properties in a single string.
The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

 wxAutomationObject excelObject;
 if (excelObject.GetInstance("Excel.Application"))
 excelObject.PutProperty("ActiveCell.Font.Bold ", true);

Note that this class obviously works under Windows only.

Derived from

wxObject (p. 967)

Include files

<wx/msw/ole/automtn.h>

See also

wxVariant (p. 1396)

wxAutomationObject::wxAutomationObject

 wxAutomationObject (WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

 ~wxAutomationObject ()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

CHAPTER 7

74

wxVariant CallMethod (const wxString& method, int noArgs, wxVariant args[]) const

wxVariant CallMethod (const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 wxVariant res = obj.CallMethod("Sum", wxVariant(1 .2),
wxVariant(3.4));
 wxVariant res = obj.CallMethod("Sum", 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

 object.CallMethod("ActiveCell.Font.ShowDialog", " My caption");

wxAutomationObject::CreateInstance

bool CreateInstance (const wxString& classId) const

Creates a new object based on the class id, returning true if the object was successfully
created, or false if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr () const

Gets the IDispatch pointer.

wxAutomationObject::GetInstance

bool GetInstance (const wxString& classId) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns true if a pointer was successfully retrieved, false
otherwise.

Note that this cannot cope with two instances of a given OLE object being active
simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject (wxAutomationObject& obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

CHAPTER 7

75

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 75) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 75)

wxAutomationObject::GetProperty

wxVariant GetProperty (const wxString& property, int noArgs, wxVariant args[])
const

wxVariant GetProperty (const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 wxVariant res = obj.GetProperty("Range", wxVarian t("A1"));
 wxVariant res = obj.GetProperty("Range", "A1");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke (const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member

The member function or property name.

action

Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.

retValue

CHAPTER 7

76

Return value (ignored if there is no return value)

.

noArgs

Number of arguments in args or ptrArgs.

args

If non-null, contains an array of variants.

ptrArgs

If non-null, contains an array of constant pointers to variants.

Return value

true if the operation was successful, false otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for
efficiency.

wxAutomationObject::PutProperty

bool PutProperty (const wxString& property, int noArgs, wxVariant args[]) const

bool PutProperty (const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 obj.PutProperty("Value", wxVariant(23));
 obj.PutProperty("Value", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr (WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

CHAPTER 7

77

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour or colour with alpha channel support.

Derived from

wxGDIObject (p. 582)
wxObject (p. 967)

Include file

<wx/bitmap.h>

Predefined objects

Objects:

wxNullBitmap

See also

wxBitmap overview (p. 1711),supported bitmap file formats (p. 1712),wxDC::Blit (p.
354),wxIcon (p. 730), wxCursor (p. 216), wxBitmap (p. 76),wxMemoryDC (p. 895)

wxBitmap::wxBitmap

 wxBitmap ()

Default constructor.

 wxBitmap (const wxBitmap& bitmap)

Copy constructor. Note that this does not take a fresh copy of the data, but instead
makes the internal data point to bitmap's data. So changing one bitmap will change the
other. To make a real copy, you can use:

 wxBitmap newBitmap = oldBitmap.GetSubBitmap(
 wxRect(0, 0, oldBitmap .GetWidth(),
oldBitmap.GetHeight()));

 wxBitmap (void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

 wxBitmap (const char bits[], int width, int height
 int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable

CHAPTER 7

78

programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxImage (p. 742) should be used for creating colour bitmaps from static data.

 wxBitmap (int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.
Beginning with version 2.5.4 of wxWidgets a depth of 32 including an alpha channel is
supported under MSW, Mac and GTK+.

 wxBitmap (const char** bits)

Creates a bitmap from XPM data.

 wxBitmap (const wxString& name, long type)

Loads a bitmap from a file or resource.

 wxBitmap (const wxImage& img, int depth = -1)

Creates bitmap object from the image. This has to be done to actually display an image
as you cannot draw an image directly on a window. The resulting bitmap will use the
provided colour depth (or that of the current system if depth is -1) which entails that a
colour reduction has to take place.

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created
on program start-up to look up colors. This ensures a very fast conversion, but the image
quality won't be perfect (and could be better for photo images using more sophisticated
dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when
creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

Parameters

bits

Specifies an array of pixel values.

width

Specifies the width of the bitmap.

height

Specifies the height of the bitmap.

depth

Specifies the depth of the bitmap. If this is omitted, the display depth of the screen

CHAPTER 7

79

is used.

name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type

May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCELoad a Windows bitmap resource from the
executable. Windows only.

wxBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration. If
all possible wxWidgets settings are used, the Windows platform supports BMP file,
BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wxImage (p. 742) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wxImage handlers loaded.

img

Platform-independent wxImage object.

Remarks

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

CHAPTER 7

80

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWidgets has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

...

wxBitmap *bitmap = new wxBitmap(mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 85)

wxPython note: Constructors supported by wxPython are:

wxBitmap(name, flag) Loads a bitmap from a file

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM
data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

wxBitmapFromImage(image, depth=-1) Convert a wxImage to a
wxBitmap.

wxPerl note: Constructors supported by wxPerl are:

 •::Bitmap->new(width, height, depth = -1)

 •::Bitmap->new(name, type)

 •::Bitmap->new(icon)

 •::Bitmap->newFromBits(bits, width, height, depth = 1)

 •::Bitmap->newFromXPM(data)

wxBitmap::~wxBitmap

CHAPTER 7

81

 ~wxBitmap ()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWidgets when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler (wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 95)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers ()

Deletes all bitmap handlers.

This function is called by wxWidgets on exit.

wxBitmap::ConvertToImage

wxImage ConvertToImage ()

Creates an image from a platform-dependent bitmap. This preserves mask information
so that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::CopyFromIcon

bool CopyFromIcon (const wxIcon& icon)

Creates the bitmap from an icon.

wxBitmap::Create

virtual bool Create (int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is

CHAPTER 7

82

used.

virtual bool Create (void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type.

Parameters

width

The width of the bitmap in pixels.

height

The height of the bitmap in pixels.

depth

The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data

Data whose type depends on the value of type.

type

A bitmap type identifier - see wxBitmap::wxBitmap (p. 77) for a list of possible
values.

Return value

true if the call succeeded, false otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 77)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler (const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler (const wxString& extension, wxBitmapType
bitmapType)

Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler (wxBitmapType bitmapType)

CHAPTER 7

83

Finds the handler associated with the given bitmap type.

name

The handler name.

extension

The file extension, such as "bmp".

bitmapType

The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value

A pointer to the handler if found, NULL otherwise.

See also

wxBitmapHandler (p. 95)

wxBitmap::GetDepth

int GetDepth () const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers ()

Returns the static list of bitmap format handlers.

See also

wxBitmapHandler (p. 95)

wxBitmap::GetHeight

int GetHeight () const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette () const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

CHAPTER 7

84

wxPalette (p. 981)

wxBitmap::GetMask

wxMask* GetMask () const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 87), wxMask (p. 866)

wxBitmap::GetWidth

int GetWidth () const

Gets the width of the bitmap in pixels.

See also

wxBitmap::GetHeight (p. 83)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap (const wxRect& rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers ()

Adds the standard bitmap format handlers, which, depending on wxWidgets
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWidgets on startup.

See also

wxBitmapHandler (p. 95)

wxBitmap::InsertHandler

static void InsertHandler (wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler

CHAPTER 7

85

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 95)

wxBitmap::LoadFile

bool LoadFile (const wxString& name, wxBitmapType type)

Loads a bitmap from a file or resource.

Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type

One of the following values:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap resource
from the executable.

wxBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

In addition, wxBitmap can read all formats that wxImage (p. 742) can
(wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
wxBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxImage handlers loaded.)

Return value

true if the operation succeeded, false otherwise.

Remarks

A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 83) member.

CHAPTER 7

86

See also

wxBitmap::SaveFile (p. 86)

wxBitmap::Ok

bool Ok() const

Returns true if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler (const wxString& name)

Finds the handler with the given name, and removes it. The handler is not deleted.

name

The handler name.

Return value

true if the handler was found and removed, false otherwise.

See also

wxBitmapHandler (p. 95)

wxBitmap::SaveFile

bool SaveFile (const wxString& name, wxBitmapType type, wxPalette* palette =
NULL)

Saves a bitmap in the named file.

Parameters

name

A filename. The meaning of name is determined by the type parameter.

type

One of the following values:

wxBITMAP_TYPE_BMP Save a Windows bitmap file.

wxBITMAP_TYPE_GIF Save a GIF bitmap file.

wxBITMAP_TYPE_XBM Save an X bitmap file.

wxBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

CHAPTER 7

87

In addition, wxBitmap can save all formats that wxImage (p. 742) can
(wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxImage handlers loaded.)

palette

An optional palette used for saving the bitmap.

Return value

true if the operation succeeded, false otherwise.

Remarks

Depending on how wxWidgets has been configured, not all formats may be available.

See also

wxBitmap::LoadFile (p. 85)

wxBitmap::SetDepth

void SetDepth (int depth)

Sets the depth member (does not affect the bitmap data).

Parameters

depth

Bitmap depth.

wxBitmap::SetHeight

void SetHeight (int height)

Sets the height member (does not affect the bitmap data).

Parameters

height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask (wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.

CHAPTER 7

88

See also

wxBitmap::GetMask (p. 83), wxMask (p. 866)

wxBitmap::SetPalette

void SetPalette (const wxPalette& palette)

Sets the associated palette. (Not implemented under GTK+).

Parameters

palette

The palette to set.

See also

wxPalette (p. 981)

wxBitmap::SetWidth

void SetWidth (int width)

Sets the width member (does not affect the bitmap data).

Parameters

width

Bitmap width in pixels.

wxBitmap::operator =

wxBitmap& operator = (const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap

Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator == (const wxBitmap& bitmap)

CHAPTER 7

89

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap

Bitmap to compare with 'this'

Return value

Returns true if the bitmaps were effectively equal, false otherwise.

wxBitmap::operator !=

bool operator != (const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap

Bitmap to compare with 'this'

Return value

Returns true if the bitmaps were unequal, false otherwise.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
391) or panel (p. 985), or indeed almost any other window.

Derived from

wxButton (p. 112)
wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWidgets will draw all button
states using this bitmap. If the application needs more control, additional bitmaps for the
selected state, unpressed focused state, and greyed-out state may be supplied.

CHAPTER 7

90

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32
only.

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. WIN32
only.

Note that wxBU_EXACTFIT supported by wxButton (p. 112) is not used by this class as
bitmap buttons don't have any minimal standard size by default.

See also window styles overview (p. 1686).

Event handling

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 112)

wxBitmapButton::wxBitmapButton

 wxBitmapButton ()

Default constructor.

 wxBitmapButton (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent

Parent window. Must not be NULL.

id

CHAPTER 7

91

Button identifier. A value of -1 indicates a default value.

bitmap

Bitmap to be displayed.

pos

Button position.

size

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style

Window style. See wxBitmapButton (p. 89).

validator

Window validator.

name

Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWidgets
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 93),
wxBitmapButton::SetBitmapFocus (p. 93), wxBitmapButton::SetBitmapDisabled (p. 92).

Note that the bitmap passed is smaller than the actual button created.

See also

wxBitmapButton::Create (p. 91), wxValidator (p. 1394)

wxBitmapButton::~wxBitmapButton

 ~wxBitmapButton ()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 90).

CHAPTER 7

92

wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapDisabled () const

Returns the bitmap for the disabled state.

Return value

A reference to the disabled state bitmap.

See also

wxBitmapButton::SetBitmapDisabled (p. 92)

wxBitmapButton::GetBitmapFocus

wxBitmap& GetBitmapFocus () const

Returns the bitmap for the focused state.

Return value

A reference to the focused state bitmap.

See also

wxBitmapButton::SetBitmapFocus (p. 93)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel () const

Returns the label bitmap (the one passed to the constructor).

Return value

A reference to the button's label bitmap.

See also

wxBitmapButton::SetBitmapLabel (p. 93)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected () const

Returns the bitmap for the selected state.

Return value

A reference to the selected state bitmap.

See also

CHAPTER 7

93

wxBitmapButton::SetBitmapSelected (p. 93)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled (const wxBitmap& bitmap)

Sets the bitmap for the disabled button appearance.

Parameters

bitmap

The bitmap to set.

See also

wxBitmapButton::GetBitmapDisabled (p. 91), wxBitmapButton::SetBitmapLabel (p. 93),
wxBitmapButton::SetBitmapSelected (p. 93), wxBitmapButton::SetBitmapFocus (p. 93)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus (const wxBitmap& bitmap)

Sets the bitmap for the button appearance when it has the keyboard focus.

Parameters

bitmap

The bitmap to set.

See also

wxBitmapButton::GetBitmapFocus (p. 92), wxBitmapButton::SetBitmapLabel (p. 93),
wxBitmapButton::SetBitmapSelected (p. 93), wxBitmapButton::SetBitmapDisabled (p.
92)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel (const wxBitmap& bitmap)

Sets the bitmap label for the button.

Parameters

bitmap

The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

CHAPTER 7

94

See also

wxBitmapButton::GetBitmapLabel (p. 92)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected (const wxBitmap& bitmap)

Sets the bitmap for the selected (depressed) button appearance.

Parameters

bitmap

The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 92), wxBitmapButton::SetBitmapLabel (p. 93),
wxBitmapButton::SetBitmapFocus (p. 93), wxBitmapButton::SetBitmapDisabled (p. 92)

wxBitmapDataObject

wxBitmapDataObject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 144) or a wxDropSource (p. 449).
A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 94) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 233)
wxDataObject (p. 229)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1740), wxDataObject (p. 229),
wxDataObjectSimple (p. 233), wxFileDataObject (p. 490), wxTextDataObject (p. 1297),
wxDataObject (p. 229)

CHAPTER 7

95

 wxBitmapDataObject (const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 95) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap () const

Returns the bitmap associated with the data object. You may wish to override this
method when offering data on-demand, but this is not required by wxWidgets' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 144).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap (const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBitmapHandler

Overview (p. 1711)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 81) in your application initialisation.

Derived from

wxObject (p. 967)

Include files

<wx/bitmap.h>

See also

wxBitmap (p. 76), wxIcon (p. 730), wxCursor (p. 216)

wxBitmapHandler::wxBitmapHandler

 wxBitmapHandler ()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

CHAPTER 7

96

 ~wxBitmapHandler ()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create (wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap

The wxBitmap object.

width

The width of the bitmap in pixels.

height

The height of the bitmap in pixels.

depth

The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data

Data whose type depends on the value of type.

type

A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 77) for a list
of possible values.

Return value

true if the call succeeded, false otherwise (the default).

wxBitmapHandler::GetName

wxString GetName () const

Gets the name of this handler.

wxBitmapHandler::GetExtension

wxString GetExtension () const

Gets the file extension associated with this handler.

CHAPTER 7

97

wxBitmapHandler::GetType

long GetType () const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile (wxBitmap* bitmap, const wxString& name, long type)

Loads a bitmap from a file or resource, putting the resulting data into bitmap.

Parameters

bitmap

The bitmap object which is to be affected by this operation.

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type

See wxBitmap::wxBitmap (p. 77) for values this can take.

Return value

true if the operation succeeded, false otherwise.

See also

wxBitmap::LoadFile (p. 85)
wxBitmap::SaveFile (p. 86)
wxBitmapHandler::SaveFile (p. 97)

wxBitmapHandler::SaveFile

bool SaveFile (wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.

Parameters

bitmap

The bitmap object which is to be affected by this operation.

name

A filename. The meaning of name is determined by the type parameter.

CHAPTER 7

98

type

See wxBitmap::wxBitmap (p. 77) for values this can take.

palette

An optional palette used for saving the bitmap.

Return value

true if the operation succeeded, false otherwise.

See also

wxBitmap::LoadFile (p. 85)
wxBitmap::SaveFile (p. 86)
wxBitmapHandler::LoadFile (p. 97)

wxBitmapHandler::SetName

void SetName (const wxString& name)

Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension (const wxString& extension)

Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType

void SetType (long type)

Sets the handler type.

Parameters

name

Handler type.

CHAPTER 7

99

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

For more information, please see Programming with wxBoxSizer (p. 1697).

Derived from

wxSizer (p. 1124)
wxObject (p. 967)

Include files

<wx/sizer.h>

See also

wxSizer (p. 1124), Sizer overview (p. 1694)

wxBoxSizer::wxBoxSizer

 wxBoxSizer (int orient)

Constructor for a wxBoxSizer. orient may be either of wxVERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes ()

Implements the calculation of a box sizer's dimensions and then sets the size of its
children (calling wxWindow::SetSize (p. 1466) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin ()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation ()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

CHAPTER 7

100

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 582)
wxObject (p. 967)

Include files

<wx/brush.h>

Predefined objects

Objects:

wxNullBrush

Pointers:

wxBLUE_BRUSH
wxGREEN_BRUSH
wxWHITE_BRUSH
wxBLACK_BRUSH
wxGREY_BRUSH
wxMEDIUM_GREY_BRUSH
wxLIGHT_GREY_BRUSH
wxTRANSPARENT_BRUSH
wxCYAN_BRUSH
wxRED_BRUSH

Remarks

On a monochrome display, wxWidgets shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::OnInit (p. 37) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList , and calling the member function FindOrCreateBrush .

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 105), wxDC (p. 353), wxDC::SetBrush (p. 368)

CHAPTER 7

101

wxBrush::wxBrush

 wxBrush ()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 103) will return
false.

 wxBrush (const wxColour& colour, int style = wxSOLID)

Constructs a brush from a colour object and style.

 wxBrush (const wxString& colourName, int style)

Constructs a brush from a colour name and style.

 wxBrush (const wxBitmap& stippleBitmap)

Constructs a stippled brush using a bitmap.

 wxBrush (const wxBrush& brush)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

colour

Colour object.

colourName

Colour name. The name will be looked up in the colour database.

style

One of:

wxTRANSPARENT Transparent (no fill).

wxSOLID Solid.

wxSTIPPLE Uses a bitmap as a stipple.

wxBDIAGONAL_HATCH Backward diagonal hatch.

wxCROSSDIAG_HATCH Cross-diagonal hatch.

wxFDIAGONAL_HATCH Forward diagonal hatch.

wxCROSS_HATCH Cross hatch.

wxHORIZONTAL_HATCH Horizontal hatch.

wxVERTICAL_HATCH Vertical hatch.

CHAPTER 7

102

brush

Pointer or reference to a brush to copy.

stippleBitmap

A bitmap to use for stippling.

Remarks

If a stipple brush is created, the brush style will be set to wxSTIPPLE.

See also

wxBrushList (p. 105), wxColour (p. 157), wxColourDatabase (p. 162)

wxBrush::~wxBrush

 ~wxBrush ()

Destructor.

Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWidgets cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour () const

Returns a reference to the brush colour.

See also

wxBrush::SetColour (p. 103)

wxBrush::GetStipple

wxBitmap * GetStipple () const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 85) returns false).

See also

wxBrush::SetStipple (p. 104)

CHAPTER 7

103

wxBrush::GetStyle

int GetStyle () const

Returns the brush style, one of:

wxTRANSPARENT Transparent (no fill).

wxSOLID Solid.

wxBDIAGONAL_HATCH Backward diagonal hatch.

wxCROSSDIAG_HATCH Cross-diagonal hatch.

wxFDIAGONAL_HATCH Forward diagonal hatch.

wxCROSS_HATCH Cross hatch.

wxHORIZONTAL_HATCH Horizontal hatch.

wxVERTICAL_HATCH Vertical hatch.

wxSTIPPLE Stippled using a bitmap.

wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::SetStyle (p. 104), wxBrush::SetColour (p. 103), wxBrush::SetStipple (p. 104)

wxBrush::IsHatch

bool IsHatch () const

Returns true if the style of the brush is any of hatched fills.

See also

wxBrush::GetStyle (p. 102)

wxBrush::Ok

bool Ok() const

Returns true if the brush is initialised. It will return false if the default constructor has
been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour (wxColour& colour)

Sets the brush colour using a reference to a colour object.

CHAPTER 7

104

void SetColour (const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour (const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.

See also

wxBrush::GetColour (p. 102)

wxBrush::SetStipple

void SetStipple (const wxBitmap& bitmap)

Sets the stipple bitmap.

Parameters

bitmap

The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 76)

wxBrush::SetStyle

void SetStyle (int style)

Sets the brush style.

style

One of:

wxTRANSPARENT Transparent (no fill).

CHAPTER 7

105

wxSOLID Solid.

wxBDIAGONAL_HATCH Backward diagonal hatch.

wxCROSSDIAG_HATCH Cross-diagonal hatch.

wxFDIAGONAL_HATCH Forward diagonal hatch.

wxCROSS_HATCH Cross hatch.

wxHORIZONTAL_HATCH Horizontal hatch.

wxVERTICAL_HATCH Vertical hatch.

wxSTIPPLE Stippled using a bitmap.

wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::GetStyle (p. 102)

wxBrush::operator =

wxBrush& operator = (const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator == (const wxBrush& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

bool operator != (const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.

Derived from

wxList (p. 801)
wxObject (p. 967)

CHAPTER 7

106

Include files

<wx/gdicmn.h>

Remarks

There is only one instance of this class: wxTheBrushList . Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWidgets which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a reference counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the reference
counting does it for you. For example, you can set a brush in a device context, and then
immediately delete the brush you passed, because the brush is 'copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWidgets to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWidgets.

See also

wxBrush (p. 99)

wxBrushList::wxBrushList

void wxBrushList ()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList .

wxBrushList::AddBrush

void AddBrush (wxBrush * brush)

Used internally by wxWidgets to add a brush to the list.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush (const wxColour& colour, int style = wxSOLID)

CHAPTER 7

107

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Parameters

colour

Colour object.

style

Brush style. See wxBrush::SetStyle (p. 104) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush (wxBrush * brush)

Used by wxWidgets to remove a brush from the list.

wxBufferedDC

This simple class provides a simple way to avoid flicker: when drawing on it, everything
is in fact first drawn on an in-memory buffer (a wxBitmap (p. 76)) and then copied to the
screen only once, when this object is destroyed.

It can be used in the same way as any other device context. wxBufferedDC itself
typically replaces wxClientDC (p. 141), if you want to use it in your OnPaint() handler,
you should look atwxBufferedPaintDC (p. 108).

Derived from

wxMemoryDC (p. 895)
wxDC (p. 353)
wxObject (p. 967)

Include files

<wx/dcbuffer.h>

See also

wxDC (p. 353)

wxBufferedDC::wxBufferedDC

 wxBufferedDC ()

 wxBufferedDC (wxDC *dc, const wxSize& area, int style =
wxBUFFER_CLIENT_AREA)

CHAPTER 7

108

 wxBufferedDC (wxDC *dc, const wxBitmap& buffer, int style =
wxBUFFER_CLIENT_AREA)

If you use the first, default, constructor, you must call one of the Init (p. 108) methods
later in order to use the object.

The other constructors initialize the object immediately and Init() must not be called
after using them.

Parameters

dc

The underlying DC: everything drawn to this object will be flushed to this DC when
this object is destroyed. You may pass NULL in order to just initialize the buffer,
and not flush it.

area

The size of the bitmap to be used for buffering (this bitmap is created internally
when it is not given explicitly).

buffer

Explicitly provided bitmap to be used for buffering: this is the most efficient solution
as the bitmap doesn't have to be recreated each time but it also requires more
memory as the bitmap is never freed. The bitmap should have appropriate size,
anything drawn outside of its bounds is clipped.

style

wxBUFFER_CLIENT_AREA to indicate that just the client area of the window is
buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the buffer bitmap covers
the virtual area (in which case PrepareDC is automatically called for the actual
window device context).

wxBufferedDC::Init

void Init (wxDC *dc, const wxSize& area, int style = wxBUFFER_CLIENT_AREA)

void Init (wxDC *dc, const wxBitmap& buffer, int style = wxBUFFER_CLIENT_AREA)

These functions initialize the object created using the default constructor. Please see
constructors documentation (p. 107) for details.

wxBufferedDC::~wxBufferedDC

Copies everything drawn on the DC so far to the underlying DC associated with this
object, if any.

wxBufferedPaintDC

CHAPTER 7

109

This is a subclass of wxBufferedDC (p. 107) which can be used inside of an OnPaint()
event handler. Just create an object of this class instead of wxPaintDC (p. 979) and
that's all you have to do to (mostly) avoid flicker. The only thing to watch out for is that if
you are using this class together with wxScrolledWindow (p. 1098), you probably do not
want to call PrepareDC (p. 1105) on it as it already does this internally for the real
underlying wxPaintDC.

Derived from

wxMemoryDC (p. 895)
wxDC (p. 353)
wxObject (p. 967)

Include files

<wx/dcbuffer.h>

wxBufferedPaintDC::wxBufferedPaintDC

 wxBufferedPaintDC (wxWindow * window, const wxBitmap& buffer, int style =
wxBUFFER_CLIENT_AREA)

 wxBufferedPaintDC (wxWindow * window, int style = wxBUFFER_CLIENT_AREA)

As with wxBufferedDC (p. 107), you may either provide the bitmap to be used for
buffering or let this object create one internally (in the latter case, the size of the client
part of the window is used).

Pass wxBUFFER_CLIENT_AREA for the style parameter to indicate that just the client
area of the window is buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the
buffer bitmap covers the virtual area (in which case PrepareDC is automatically called
for the actual window device context).

wxBufferedPaintDC::~wxBufferedPaintDC

Copies everything drawn on the DC so far to the window associated with this object,
using a wxPaintDC (p. 979).

wxBufferedInputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterInputStream (p. 526)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterInputStream (p. 526)

CHAPTER 7

110

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1220), wxInputStream (p. 777),wxBufferedOutputStream (p. 110)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 527)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from

wxFilterOutputStream (p. 527)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1220), wxOutputStream (p. 971)

wxBufferedOutputStream::wxBufferedOutputStream

 wxBufferedOutputStream (const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

 ~wxBufferedOutputStream ()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

CHAPTER 7

111

void Sync ()

Flushes the buffer and calls Sync() on the parent stream.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:

 wxBusyCursor wait;

 for (int i = 0; i < 100000; i++)
 DoACalculation();

It works by calling wxBeginBusyCursor (p. 1540) in the constructor, and
wxEndBusyCursor (p. 1542) in the destructor.

Derived from

None

Include files

<wx/utils.h>

See also

wxBeginBusyCursor (p. 1540), wxEndBusyCursor (p. 1542), wxWindowDisabler (p.
1478)

wxBusyCursor::wxBusyCursor

 wxBusyCursor (wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1540).

wxBusyCursor::~wxBusyCursor

 ~wxBusyCursor ()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1542).

wxBusyInfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyInfo object on the stack, and within the current scope, a message
window will be shown.

CHAPTER 7

112

For example:

 wxBusyInfo wait("Please wait, working...");

 for (int i = 0; i < 100000; i++)
 {
 DoACalculation();
 }

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case
it had been obscured by other windows, for example) like this:

 wxWindowDisabler disableAll;

 wxBusyInfo wait("Please wait, working...");

 for (int i = 0; i < 100000; i++)
 {
 DoACalculation();

 if (!(i % 1000))
 wxTheApp->Yield();
 }

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield()
(p. 41) for more details). The simplest way to do it is to use wxWindowDisabler (p. 1478)
class as illustrated in the above example.

Derived from

None

Include files

<wx/busyinfo.h>

wxBusyInfo::wxBusyInfo

 wxBusyInfo (const wxString& msg, wxWindow* parent = NULL)

Constructs a busy info window as child of parent and displays msgin it.

NB: If parent is not NULL you must ensure that it is not closed while the busy info is
shown.

wxBusyInfo::~wxBusyInfo

 ~wxBusyInfo ()

Hides and closes the window containing the information text.

CHAPTER 7

113

wxButton

A button is a control that contains a text string, and is one of the most common elements
of a GUI. It may be placed on a dialog box (p. 391) or panel (p. 985), or indeed almost
any other window.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. Windows and GTK+ only.

wxBU_TOP Aligns the label to the top of the button. Windows and
GTK+ only.

wxBU_RIGHT Right-justifies the bitmap label. Windows and GTK+ only.

wxBU_BOTTOM Aligns the label to the bottom of the button. Windows and
GTK+ only.

wxBU_EXACTFIT Creates the button as small as possible instead of making
it of the standard size (which is the default behaviour).

wxNO_BORDER Creates a flat button. Windows and GTK+ only.

See also window styles overview (p. 1686).

Event handling

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 89)

wxButton::wxButton

 wxButton ()

Default constructor.

CHAPTER 7

114

 wxButton (wxWindow* parent, wxWindowID id, const wxString& label =
wxEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "button")

Constructor, creating and showing a button.

The preferred way to create standard buttons is to use default value oflabel. If no label is
supplied and id is one of standard IDs fromthis list (p. 1604), standard label will be used.
In addition to that, the button will be decorated with stock icons under GTK+ 2.

Parameters

parent

Parent window. Must not be NULL.

id

Button identifier. A value of wxID_ANY indicates a default value.

label

Text to be displayed on the button.

pos

Button position.

size

Button size. If the default size is specified then the button is sized appropriately for
the text.

style

Window style. See wxButton (p. 112).

validator

Window validator.

name

Window name.

See also

wxButton::Create (p. 114), wxValidator (p. 1394)

wxButton::~wxButton

 ~wxButton ()

Destructor, destroying the button.

CHAPTER 7

115

wxButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label =
wxEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = 0, const wxValidator& validator, const wxString& name =
"button")

Button creation function for two-step creation. For more details, seewxButton::wxButton
(p. 113).

wxButton::GetLabel

wxString GetLabel () const

Returns the string label for the button.

Return value

The button's label.

See also

wxButton::SetLabel (p. 115)

wxButton::GetDefaultSize

wxSize GetDefaultSize ()

Returns the default size for the buttons. It is advised to make all the dialog buttons of the
same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault ()

This sets the button to be the default item for the panel or dialog box.

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1462) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultItem (p. 988).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWidgets will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

CHAPTER 7

116

void SetLabel (const wxString& label)

Sets the string label for the button.

Parameters

label

The label to set.

See also

wxButton::GetLabel (p. 115)

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 796) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/laywin.h>

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite'
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutInfoEvent (p. 1039), wxSashLayoutWindow (p. 1079),
wxLayoutAlgorithm (p. 796).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

 wxCalculateLayoutEvent (wxWindowID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags () const

Returns the flags associated with this event. Not currently used.

CHAPTER 7

117

wxCalculateLayoutEvent::GetRect

wxRect GetRect () const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags (int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect (const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date. For this, it displays a window
containing several parts: a control at the top to pick the month and the year (either or
both of them may be disabled), and a month area below them which shows all the days
in the month. The user can move the current selection using the keyboard and select the
date (generating EVT_CALENDAR event) by pressing <Return> or double clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 122)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 122) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not recognized as
one by wxDateTime (p. 1654) using SetHoliday (p. 123) method.

As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_MONTH event
handler.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)

CHAPTER 7

118

wxObject (p. 967)

Include files

<wx/calctrl.h>

Window styles

wxCAL_SUNDAY_FIRST Show Sunday as the first day in the week

wxCAL_MONDAY_FIRST Show Monday as the first day in the week

wxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar

wxCAL_NO_YEAR_CHANGE Disable the year changing

wxCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

wxCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

wxCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wxCAL_SHOW_HOLIDAYS.

Event table macros

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 125) argument.

EVT_CALENDAR(id, func) A day was double clicked in the calendar.

EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.

EVT_CALENDAR_DAY(id, func) The selected day changed.

EVT_CALENDAR_MONTH(id, func) The selected month changed.

EVT_CALENDAR_YEAR(id, func) The selected year changed.

EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day
header

Note that changing the selected date will result in either of EVT_CALENDAR_DAY, MONTH
or YEAR events and EVT_CALENDAR_SEL_CHANGED one.
Constants

The following are the possible return values for HitTest (p. 122) method:

enum wxCalendarHitTestResult
{
 wxCAL_HITTEST_NOWHERE, // outside of anyth ing
 wxCAL_HITTEST_HEADER, // on the header (w eekdays)
 wxCAL_HITTEST_DAY // on a day in the calendar
}

CHAPTER 7

119

See also

Calendar sample (p. 1632)
wxCalendarDateAttr (p. 122)
wxCalendarEvent (p. 125)

wxCalendarCtrl::wxCalendarCtrl

 wxCalendarCtrl ()

Default constructor, use Create (p. 119) after it.

 wxCalendarCtrl (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 119) method.

wxCalendarCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Creates the control. See wxWindow (p. 1423) for the meaning of the parameters and the
control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl

 ~wxCalendarCtrl ()

Destroys the control.

wxCalendarCtrl::SetDate

void SetDate (const wxDateTime& date)

Sets the current date.

wxCalendarCtrl::GetDate

const wxDateTime& GetDate () const

Gets the currently selected date.

CHAPTER 7

120

wxCalendarCtrl::EnableYearChange

void EnableYearChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_YEAR_CHANGEstyle bit
directly. It allows or disallows the user to change the year interactively.

wxCalendarCtrl::EnableMonthChange

void EnableMonthChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_MONTH_CHANGE style bit.
It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay (bool display = true)

This function should be used instead of changing wxCAL_SHOW_HOLIDAYSstyle bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

void SetHeaderColours (const wxColour& colFg, const wxColour& colBg)

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg () const

Gets the foreground colour of the header part of the calendar window.

See also

SetHeaderColours (p. 120)

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg () const

Gets the background colour of the header part of the calendar window.

See also

SetHeaderColours (p. 120)

wxCalendarCtrl::SetHighlightColours

void SetHighlightColours (const wxColour& colFg, const wxColour& colBg)

CHAPTER 7

121

Set the colours to be used for highlighting the currently selected date.

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg () const

Gets the foreground highlight colour.

See also

SetHighlightColours (p. 120)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg () const

Gets the background highlight colour.

See also

SetHighlightColours (p. 120)

wxCalendarCtrl::SetHolidayColours

void SetHolidayColours (const wxColour& colFg, const wxColour& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wxCAL_SHOW_HOLIDAYS flag).

wxCalendarCtrl::GetHolidayColourFg

const wxColour& GetHolidayColourFg () const

Return the foreground colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 121)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg () const

Return the background colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 121)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr (size_t day) const

CHAPTER 7

122

Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL.

wxCalendarCtrl::SetAttr

void SetAttr (size_t day, wxCalendarDateAttr* attr)

Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCtrl::SetHoliday

void SetHoliday (size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr (size_t day)

Clears any attributes associated with the given day (in the range1...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest (const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAL_HITTEST_XXX constants (p. 117) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 117).

Derived from

No base class

Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCalendarDateBorder
{
 wxCAL_BORDER_NONE, // no border (defau lt)
 wxCAL_BORDER_SQUARE, // a rectangular bo rder
 wxCAL_BORDER_ROUND // a round border
}

CHAPTER 7

123

See also

wxCalendarCtrl (p. 117)

Include files

<wx/calctrl.h>

wxCalendarDateAttr::wxCalendarDateAttr

 wxCalendarDateAttr ()

 wxCalendarDateAttr (const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER_NONE)

 wxCalendarDateAttr (wxCalendarDateBorder border, const wxColour& colBorder =
wxNullColour)

The constructors.

wxCalendarDateAttr::SetTextColour

void SetTextColour (const wxColour& colText)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

void SetBackgroundColour (const wxColour& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour (const wxColour& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont (const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder (wxCalendarDateBorder border)

CHAPTER 7

124

Sets the border kind (p. 122)

wxCalendarDateAttr::SetHoliday

void SetHoliday (bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

bool HasTextColour () const

Returns true if this item has a non default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour () const

Returns true if this attribute specifies a non default text background colour.

wxCalendarDateAttr::HasBorderColour

bool HasBorderColour () const

Returns true if this attribute specifies a non default border colour.

wxCalendarDateAttr::HasFont

bool HasFont () const

Returns true if this attribute specifies a non default font.

wxCalendarDateAttr::HasBorder

bool HasBorder () const

Returns true if this attribute specifies a non default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday () const

Returns true if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour () const

Returns the text colour to use for the item with this attribute.

CHAPTER 7

125

wxCalendarDateAttr::GetBackgroundColour

const wxColour& GetBackgroundColour () const

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour () const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

const wxFont& GetFont () const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder () const

Returns the border (p. 122) to use for the item with this attribute.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 117).

Derived from

wxDateEvent (p. 237)
wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/calctrl.h>

See also

wxCalendarCtrl (p. 117)

wxCalendarEvent::GetWeekDay

wxDateTime::WeekDay GetWeekDay () const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler. It doesn't make sense to call this function in other handlers.

CHAPTER 7

126

wxCalendarEvent::SetWeekDay

void SetWeekDay (wxDateTime::WeekDay day)

Sets the week day carried by the event, normally only used by the library internally.

wxCaret

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1435). The same caret can't be reused in two different
windows.

Derived from

No base class

Include files

<wx/caret.h>

Data structures

wxCaret::wxCaret

 wxCaret ()

Default constructor: you must use one of Create() functions later.

 wxCaret (wxWindow* window, int width, int height)

 wxCaret (wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window.

wxCaret::Create

bool Create (wxWindowBase* window, int width, int height)

bool Create (wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window (same as constructor).

CHAPTER 7

127

wxCaret::GetBlinkTime

static int GetBlinkTime ()

Returns the blink time which is measured in milliseconds and is the time elapsed
between 2 inversions of the caret (blink time of the caret is the same for all carets, so
this functions is static).

wxCaret::GetPosition

void GetPosition (int* x, int* y) const

wxPoint GetPosition () const

Get the caret position (in pixels).

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list (x, y)

wxCaret::GetSize

void GetSize (int* width, int* height) const

wxSize GetSize () const

Get the caret size.

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size

GetSizeWH() Returns a 2-element list (width,
height)

wxCaret::GetWindow

wxWindow* GetWindow () const

Get the window the caret is associated with.

wxCaret::Hide

void Hide ()

Same as wxCaret::Show(false) (p. 128).

wxCaret::IsOk

CHAPTER 7

128

bool IsOk () const

Returns true if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible () const

Returns true if the caret is visible and false if it is permanently hidden (if it is is blinking
and not shown currently but will be after the next blink, this method still returns true).

wxCaret::Move

void Move (int x, int y)

void Move (const wxPoint& pt)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime (int milliseconds)

Sets the blink time for all the carets.

Remarks

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 126)

wxCaret::SetSize

void SetSize (int width, int height)

void SetSize (const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show (bool show = true)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown
N times as well to reappear on the screen.

wxCheckBox

CHAPTER 7

129

A checkbox is a labelled box which by default is either on (checkmark is visible) or off
(no checkmark). Optionally (when the wxCHK_3STATE style flag is set) it can have a
third state, called the mixed or undetermined state. Often this is used as a "Does Not
Apply" state.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/checkbox.h>

Window styles

wxCHK_2STATE Create a 2-state checkbox. This is the default.

wxCHK_3STATE Create a 3-state checkbox. Not implemented in
wxMGL, wxOS2 and wxGTK built against
GTK+ 1.2.

wxCHK_ALLOW_3RD_STATE_FOR_USER By default a user can't set a 3-state
checkbox to the third state. It can only be done
from code. Using this flags allows the user to
set the checkbox to the third state by clicking.

wxALIGN_RIGHT Makes the text appear on the left of the
checkbox.

See also window styles overview (p. 1686).

Event handling

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 1047), wxCommandEvent (p. 172)

wxCheckBox::wxCheckBox

 wxCheckBox ()

Default constructor.

 wxCheckBox (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =

CHAPTER 7

130

0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent

Parent window. Must not be NULL.

id

Checkbox identifier. A value of -1 indicates a default value.

label

Text to be displayed next to the checkbox.

pos

Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.

size

Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxCheckBox (p. 128).

validator

Window validator.

name

Window name.

See also

wxCheckBox::Create (p. 130), wxValidator (p. 1394)

wxCheckBox::~wxCheckBox

 ~wxCheckBox ()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

CHAPTER 7

131

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p.
129) for details.

wxCheckBox::GetValue

bool GetValue () const

Gets the state of a 2-state checkbox.

Return value

Returns true if it is checked, false otherwise.

wxCheckBox::Get3StateValue

wxCheckBoxState Get3StateValue () const

Gets the state of a 3-state checkbox.

Return value

Returns wxCHK_UNCHECKED when the checkbox is unchecked, wxCHK_CHECKED
when it is checked and wxCHK_UNDETERMINED when it's in the undetermined state.
Asserts when the function is used with a 2-state checkbox.

wxCheckBox::Is3rdStateAllowedForUser

bool Is3rdStateAllowedForUser () const

Returns whether or not the user can set the checkbox to the third state.

Return value

Returns true if the user can set the third state of this checkbox, false if it can only be
set programmatically or if it's a 2-state checkbox.

wxCheckBox::Is3State

bool Is3State () const

Returns whether or not the checkbox is a 3-state checkbox.

Return value

Returns true if this checkbox is a 3-state checkbox, false if it's a 2-state checkbox.

wxCheckBox::IsChecked

bool IsChecked () const

This is just a maybe more readable synonym for GetValue (p. 130): just as the latter, it
returns true if the checkbox is checked and false otherwise.

CHAPTER 7

132

wxCheckBox::SetValue

void SetValue (bool state)

Sets the checkbox to the given state. This does not cause a
wxEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state

If true , the check is on, otherwise it is off.

wxCheckBox::Set3StateValue

void Set3StateValue (const wxCheckBoxState state)

Sets the checkbox to the given state. This does not cause a
wxEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state

Can be one of: wxCHK_UNCHECKED (Check is off), wxCHK_CHECKED (Check
is on) or wxCHK_UNDETERMINED (Check is mixed). Asserts when the checkbox
is a 2-state checkbox and setting the state to wxCHK_UNDETERMINED.

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

When using this class under Windows wxWidgets must be compiled with
USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 808).

Please note that wxCheckListBox uses client data in its implementation, and therefore
this is not available to the application.

Derived from

wxListBox (p. 808)
wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/checklst.h>

Window styles

CHAPTER 7

133

See wxListBox (p. 808).

Event handling

EVT_CHECKLISTBOX(id, func) Process a
wxEVT_COMMAND_CHECKLISTBOX_TOGG
LED event, when an item in the check list box
is checked or unchecked.

See also

wxListBox (p. 808), wxChoice (p. 134), wxComboBox (p. 164), wxListCtrl (p. 813),
wxCommandEvent (p. 172)

wxCheckListBox::wxCheckListBox

 wxCheckListBox ()

Default constructor.

 wxCheckListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

 wxCheckListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n

Number of strings with which to initialise the control.

CHAPTER 7

134

choices

An array of strings with which to initialise the control.

style

Window style. See wxCheckListBox (p. 132).

validator

Window validator.

name

Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox ()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check (int item, bool check = true)

Checks the given item. Note that calling this method doesn't result in
wxEVT_COMMAND_CHECKLISTBOX_TOGGLE being emitted.

Parameters

item

Index of item to check.

check

true if the item is to be checked, false otherwise.

wxCheckListBox::IsChecked

bool IsChecked (int item) const

Returns true if the given item is checked, false otherwise.

Parameters

item

CHAPTER 7

135

Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from

wxControlWithItems (p. 206)
wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1686).

Event handling

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 808), wxComboBox (p. 164), wxCommandEvent (p. 172)

wxChoice::wxChoice

 wxChoice ()

Default constructor.

 wxChoice (wxWindow * parent, wxWindowID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

 wxChoice (wxWindow * parent, wxWindowID id, const wxPoint& pos, const wxSize&
size, const wxArrayString& choices, long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

CHAPTER 7

136

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.

n

Number of strings with which to initialise the choice control.

choices

An array of strings with which to initialise the choice control.

style

Window style. See wxChoice (p. 134).

validator

Window validator.

name

Window name.

See also

wxChoice::Create (p. 136), wxValidator (p. 1394)

wxPython note: The wxChoice constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

wxChoice::~wxChoice

 ~wxChoice ()

Destructor, destroying the choice item.

wxChoice::Create

CHAPTER 7

137

bool Create (wxWindow * parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices[], long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "choice")

bool Create (wxWindow * parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 135).

wxChoice::Delete

void Delete (int n)

Deletes the item with the given index from the control.

Parameters

n

The item to delete.

wxChoice::GetColumns

int GetColumns () const

Gets the number of columns in this choice item.

Remarks

This is implemented for Motif only and always returns 1 for the other platforms.

wxChoice::SetColumns

void SetColumns (int n = 1)

Sets the number of columns in this choice item.

Parameters

n

Number of columns.

Remarks

This is implemented for Motif only and doesn't do anything under other platforms.

wxChoicebook

wxChoicebook is a class similar to wxNotebook (p. 956) but which uses a wxChoice (p.
134) to show the labels instead of the tabs.

CHAPTER 7

138

There is no documentation for this class yet but its usage is identical to wxNotebook
(except for the features clearly related to tabs only), so please refer to that class
documentation for now. You can also use the notebook sample (p. 1638) to see
wxChoicebook in action.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/choicebk.h>

Window styles

wxCHB_DEFAULT Choose the default location for the labels depending on the
current platform (left everywhere except Mac where it is
top).

wxCHB_TOP Place labels above the page area.

wxCHB_LEFT Place labels on the left side.

wxCHB_RIGHT Place labels on the right side.

wxCHB_BOTTOM Place labels below the page area.

See also

wxBookCtrl (p. 1720), wxNotebook (p. 956), notebook sample (p. 1638)

wxClassInfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS .

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1644), wxObject (p. 967)

CHAPTER 7

139

wxClassInfo::wxClassInfo

 wxClassInfo (const wxChar * className, const wxClassInfo * baseClass1, const
wxClassInfo * baseClass2, int size, wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassInfo::CreateObject

wxObject* CreateObject ()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

wxClassInfo::FindClass

static wxClassInfo * FindClass (wxChar * name)

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassName1

wxChar * GetBaseClassName1 () const

Returns the name of the first base class (NULL if none).

wxClassInfo::GetBaseClassName2

wxChar * GetBaseClassName2 () const

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName

wxChar * GetClassName () const

Returns the string form of the class name.

wxClassInfo::GetSize

int GetSize () const

Returns the size of the class.

wxClassInfo::InitializeClasses

static void InitializeClasses ()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in

CHAPTER 7

140

base wxWidgets library initialization.

wxClassInfo::IsKindOf

bool IsKindOf (wxClassInfo* info)

Returns true if this class is a kind of (inherits from) the given class.

wxClient

A wxClient object represents the client part of a client-server DDE-like (Dynamic Data
Exchange) conversation. The actual DDE-based implementation using wxDDEClient is
available on Windows only, but a platform-independent, socket-based version of this API
is available using wxTCPClient, which has the same API.

To create a client which can communicate with a suitable server, you need to derive a
class from wxConnection and another from wxClient. The custom wxConnection class
will intercept communications in a 'conversation' with a server, and the custom wxClient
is required so that a user-overriddenwxClient::OnMakeConnection (p. 141) member can
return a wxConnection of the required class, when a connection is made. Look at the
IPC sample and the Interprocess communications overview (p. 1765) for an example of
how to do this.

Derived from

wxClientBase
wxObject (p. 967)

Include files

<wx/ipc.h>

See also

wxServer (p. 1115), wxConnection (p. 198), Interprocess communications overview (p.
1765)

wxClient::wxClient

 wxClient ()

Constructs a client object.

wxClient::MakeConnection

wxConnectionBase * MakeConnection (const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server by host (machine name under UNIX - use

CHAPTER 7

141

'localhost' for same machine; ignored when using native DDE in Windows), service
name and topic string. If the server allows a connection, a wxConnection object will be
returned. The type of wxConnection returned can be altered by overriding the
wxClient::OnMakeConnection (p. 141) member to return your own derived connection
object.

Under Unix, the service name may be either an integer port identifier in which case an
Internet domain socket will be used for the communications, or a valid file name (which
shouldn't exist and will be deleted afterwards) in which case a Unix domain socket is
created.

SECURITY NOTE: Using Internet domain sockets if extremely insecure for IPC as there
is absolutely no access control for them, use Unix domain sockets whenever possible!

wxClient::OnMakeConnection

wxConnectionBase * OnMakeConnection ()

Called by wxClient::MakeConnection (p. 140), by default this simply returns a new
wxConnection object. Override this method to return a wxConnection descendant
customised for the application.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxConnection::OnAdvise (p. 200).
You may also want to store application-specific data in instances of the new class.

wxClient::ValidHost

bool ValidHost (const wxString& host)

Returns true if this is a valid host name, false otherwise. This always returns true under
MS Windows.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint , construct a wxPaintDC (p. 979) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1476)
object (Windows only).

Derived from

wxWindowDC (p. 1476)
wxDC (p. 353)

Include files

CHAPTER 7

142

<wx/dcclient.h>

See also

wxDC (p. 353), wxMemoryDC (p. 895), wxPaintDC (p. 979), wxWindowDC (p. 1476),
wxScreenDC (p. 1091)

wxClientDC::wxClientDC

 wxClientDC (wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClientData

All classes deriving from wxEvtHandler (p. 467)(such as all controls and wxApp (p. 30))
can hold arbitrary data which is here referred to as "client data". This is useful e.g. for
scripting languages which need to handle shadow objects for most of wxWidgets'
classes and which store a handle to such a shadow class as client data in that class.
This data can either be of type void - in which case the datacontainer does not take care
of freeing the data again or it is of type wxClientData or its derivatives. In that case the
container (e.g. a control) will free the memory itself later. Note that you must not assign
both void data and data derived from the wxClientData class to a container.

Some controls can hold various items and these controls can additionally hold client data
for each item. This is the case forwxChoice (p. 134), wxComboBox (p. 164)and
wxListBox (p. 808). wxTreeCtrl (p. 1359)has a specialized class wxTreeItemData (p.
1380)for each item in the tree.

If you want to add client data to your own classes, you may use the mix-in class
wxClientDataContainer (p. 142).

Include files

<wx/clntdata.h>

See also

wxEvtHandler (p. 467), wxTreeItemData (p. 1380),wxStringClientData (p. 1251),
wxClientDataContainer (p. 142)

wxClientData::wxClientData

 wxClientData ()

Constructor.

CHAPTER 7

143

wxClientData::~wxClientData

 ~wxClientData ()

Virtual destructor.

wxClientDataContainer

This class is a mixin that provides storage and management of "client data." This data
can either be of type void - in which case the datacontainer does not take care of freeing
the data again or it is of type wxClientData or its derivatives. In that case the container
will free the memory itself later. Note that you must not assign both void data and data
derived from the wxClientData class to a container.

NOTE: This functionality is currently duplicated in wxEvtHandler in order to avoid having
more than one vtable in that class hierarchy.

See also

wxEvtHandler (p. 467), wxClientData (p. 142)

Derived from

No base class

Include files

<wx/clntdata.h>

Data structures

wxClientDataContainer::wxClientDataContainer

 wxClientDataContainer ()

wxClientDataContainer::~wxClientDataContainer

 ~wxClientDataContainer ()

wxClientDataContainer::GetClientData

void* GetClientData () const

Get the untyped client data.

wxClientDataContainer::GetClientObject

wxClientData* GetClientObject () const

CHAPTER 7

144

Get a pointer to the client data object.

wxClientDataContainer::SetClientData

void SetClientData (void* data)

Set the untyped client data.

wxClientDataContainer::SetClientObject

void SetClientObject (wxClientData* data)

Set the client data object. Any previous object will be deleted.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWidgets 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.

See also the wxDataObject overview (p. 1741) for further information.

Call wxClipboard::Open (p. 146) to get ownership of the clipboard. If this operation
returns true, you now own the clipboard. Call wxClipboard::SetData (p. 146) to put data
on the clipboard, or wxClipboard::GetData (p. 145) to retrieve data from the clipboard.
Call wxClipboard::Close (p. 145) to close the clipboard and relinquish ownership. You
should keep the clipboard open only momentarily.

For example:

 // Write some text to the clipboard
 if (wxTheClipboard->Open())
 {
 // This data objects are held by the clipboard,
 // so do not delete them in the app.
 wxTheClipboard->SetData(new wxTextDataObject(" Some text"));
 wxTheClipboard->Close();
 }

 // Read some text
 if (wxTheClipboard->Open())
 {
 if (wxTheClipboard->IsSupported(wxDF_TEXT))
 {
 wxTextDataObject data;
 wxTheClipboard->GetData(data);
 wxMessageBox(data.GetText());
 }
 wxTheClipboard->Close();
 }

Derived from

wxObject (p. 967)

CHAPTER 7

145

Include files

<wx/clipbrd.h>

See also

Drag and drop overview (p. 1740), wxDataObject (p. 229)

wxClipboard::wxClipboard

 wxClipboard ()

Constructor.

wxClipboard::~wxClipboard

 ~wxClipboard ()

Destructor.

wxClipboard::AddData

bool AddData (wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 145).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 146)

wxClipboard::Clear

void Clear ()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

void Close ()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
146).

wxClipboard::Flush

CHAPTER 7

146

bool Flush ()

Flushes the clipboard: this means that the data which is currently on clipboard will stay
available even after the application exits (possibly eating memory), otherwise the
clipboard will be emptied on exit. Returns false if the operation is unsuccessful for any
reason.

wxClipboard::GetData

bool GetData (wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns true on success.

wxClipboard::IsOpened

bool IsOpened () const

Returns true if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported (const wxDataFormat& format)

Returns true if there is data which matches the data format of the given data object
currently available (IsSupported sounds like a misnomer, FIXME: better deprecate this
name?) on the clipboard.

wxClipboard::Open

bool Open ()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 146) and
wxClipboard::GetData (p. 145).

Call wxClipboard::Close (p. 145) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns true on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData (wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

CHAPTER 7

147

wxClipboard::AddData (p. 145)

wxClipboard::UsePrimarySelection

void UsePrimarySelection (bool primary = true)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is true.

wxCloseEvent

This event class contains information about window and session close events.

The handler function for EVT_CLOSE is called when the user has tried to close a a
frame or dialog box using the window manager (X) or system menu (Windows). It can
also be invoked by the application itself programmatically, for example by calling the
wxWindow::Close (p. 1427) function.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::CanVeto (p. 148). If this is false , you must destroy the window using
wxWindow::Destroy (p. 1429). If the return value is true, it is up to you whether you
respond by destroying the window.

If you don't destroy the window, you should call wxCloseEvent::Veto (p. 148) to let the
calling code know that you did not destroy the window. This allows the wxWindow::Close
(p. 1427) function to return true or false depending on whether the close instruction
was honoured or not.

Derived from

wxEvent (p. 464)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
wxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

CHAPTER 7

148

See also
wxWindow::Close (p. 1427), Window deletion overview (p. 1686)

wxCloseEvent::wxCloseEvent

 wxCloseEvent (WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto ()

Returns true if you can veto a system shutdown or a window close event. Vetoing a
window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff () const

Returns true if the user is just logging off or false if the system is shutting down. This
method can only be called for end session and query end session events, it doesn't
make sense for close window event.

wxCloseEvent::GetForce

bool GetForce () const

Returns true if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto (bool canVeto)

Sets the 'can veto' flag.

wxCloseEvent::SetForce

void SetForce (bool force) const

Sets the 'force' flag.

wxCloseEvent::SetLoggingOff

void SetLoggingOff (bool loggingOff) const

CHAPTER 7

149

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto (bool veto = true)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 148) returns true.

wxCmdLineParser

wxCmdLineParser is a class for parsing the command line.

It has the following features:

 1. distinguishes options, switches and parameters; allows option grouping

 2. allows both short and long options

 3. automatically generates the usage message from the command line description

 4. does type checks on the options values (number, date, ...).

To use it you should follow these steps:

 1. construct (p. 151) an object of this class giving it the command line to parse and
optionally its description or use AddXXX() functions later

 2. call Parse()

 3. use Found() to retrieve the results

In the documentation below the following terminology is used:

switch This is a boolean option which can be given or
not, but which doesn't have any value. We use
the word switch to distinguish such boolean
options from more generic options like those
described below. For example, -v might be a
switch meaning "enable verbose mode".

option Option for us here is something which comes
with a value 0 unlike a switch. For example, -
o:filename might be an option which allows
to specify the name of the output file.

parameter This is a required program argument.

Derived from

No base class

CHAPTER 7

150

Include files

<wx/cmdline.h>

Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 155).
Also, the meanings of parameters of the AddXXX() functions are the same as of the
corresponding fields in this structure:

struct wxCmdLineEntryDesc
{
 wxCmdLineEntryType kind;
 const wxChar *shortName;
 const wxChar *longName;
 const wxChar *description;
 wxCmdLineParamType type;
 int flags;
};

The type of a command line entity is in the kind field and may be one of the following
constants:

enum wxCmdLineEntryType
{
 wxCMD_LINE_SWITCH,
 wxCMD_LINE_OPTION,
 wxCMD_LINE_PARAM,
 wxCMD_LINE_NONE // use this to terminat e the list
}

The field shortName is the usual, short, name of the switch or the option.longName is
the corresponding long name or NULL if the option has no long name. Both of these
fields are unused for the parameters. Both the short and long option names can contain
only letters, digits and the underscores.

description is used by the Usage() (p. 156) method to construct a help message
explaining the syntax of the program.

The possible values of type which specifies the type of the value accepted by an option
or parameter are:

enum wxCmdLineParamType
{
 wxCMD_LINE_VAL_STRING, // default
 wxCMD_LINE_VAL_NUMBER,
 wxCMD_LINE_VAL_DATE,
 wxCMD_LINE_VAL_NONE
}

Finally, the flags field is a combination of the following bit masks:

enum

CHAPTER 7

151

{
 wxCMD_LINE_OPTION_MANDATORY = 0x01, // this opt ion must be
given
 wxCMD_LINE_PARAM_OPTIONAL = 0x02, // the para meter may be
omitted
 wxCMD_LINE_PARAM_MULTIPLE = 0x04, // the para meter may be
repeated
 wxCMD_LINE_OPTION_HELP = 0x08, // this opt ion is a help
request
 wxCMD_LINE_NEEDS_SEPARATOR = 0x10, // must hav e sep before
the value
}

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to
AddParam() (p. 156) allows one more parameter - this may be changed by giving non-
default flags to it, i.e. use wxCMD_LINE_OPTION_MANDATORY to require that the option
is given and wxCMD_LINE_PARAM_OPTIONAL to make a parameter optional. Also,
wxCMD_LINE_PARAM_MULTIPLE may be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command
line description. If you use this flag, you will probably need to use GetParamCount (p.
157) to retrieve the number of parameters effectively specified after calling Parse (p.
156).

The last flag wxCMD_LINE_NEEDS_SEPARATOR can be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

wxApp::argc (p. 31) and wxApp::argv (p. 31)
console sample

Construction

Before Parse (p. 156) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and
parameters are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 156).

To specify the command line to parse you may use either one of constructors accepting
it (wxCmdLineParser(argc, argv) (p. 152) or wxCmdLineParser (p. 153) usually) or, if
you use the default constructor (p. 152), you can do it later by calling SetCmdLine (p.
153).

The same holds for command line description: it can be specified either in the
constructor (without command line (p. 153) or together with it (p. 153)) or constructed
later using either SetDesc (p. 155) or combination of AddSwitch (p. 155), AddOption (p.
155) and AddParam (p. 156) methods.

CHAPTER 7

152

Using constructors or SetDesc (p. 155) uses a (usually const static) table containing
the command line description. If you want to decide which options to accept during the
run-time, using one of the AddXXX() functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 156).

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes ("--") and look like this: --verbose ,
i.e. they generally are complete words and not some abbreviations of them. As long
options are used by more and more applications, they are enabled by default, but may
be disabled with DisableLongOptions (p. 154).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,
'-' is always used, but Windows has at least two common choices for this: '-' and
'/' . Some programs also use '+' . The default is to use what suits most the current
platform, but may be changed with SetSwitchChars (p. 154) method.

Finally, SetLogo (p. 155) can be used to show some application-specific text before the
explanation given by Usage (p. 156) function.

Parsing command line

After the command line description was constructed and the desired options were set,
you can finally call Parse (p. 156) method. It returns 0 if the command line was correct
and was parsed, -1 if the help option was specified (this is a separate case as, normally,
the program will terminate after this) or a positive number if there was an error during the
command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWidgets logging functions.

Getting results

After calling Parse (p. 156) (and if it returned 0), you may access the results of parsing
using one of overloaded Found() methods.

For a simple switch, you will simply call Found (p. 156) to determine if the switch was
given or not, for an option or a parameter, you will call a version of Found() which also
returns the associated value in the provided variable. All Found() functions return true if
the switch or option were found in the command line or false if they were not specified.

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser ()

CHAPTER 7

153

Default constructor. You must use SetCmdLine (p. 153) later.

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (int argc, char** argv)

 wxCmdLineParser (int argc, wchar_t** argv)

Constructor specifies the command line to parse. This is the traditional (Unix) command
line format. The parameters argc and argv have the same meaning as for main()
function.

The second overloaded constructor is only available in Unicode build. The first one is
available in both ANSI and Unicode modes because under some platforms the
command line arguments are passed as ASCII strings even to Unicode programs.

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (const wxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of WinMain() .

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 152), but also specifies the command line description (p.
155).

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 152), but also specifies the command line description (p.
155).

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser (const wxCmdLineEntryDesc* desc, const wxString& cmdline)

Same as wxCmdLineParser (p. 153), but also specifies the command line description (p.
155).

wxCmdLineParser::ConvertStringToArgs

static wxArrayString ConvertStringToArgs (const wxChar *cmdline)

Breaks down the string containing the full command line in words. The words are
separated by whitespace. The quotes can be used in the input string to quote the white
space and the back slashes can be used to quote the quotes.

CHAPTER 7

154

wxCmdLineParser::SetCmdLine

void SetCmdLine (int argc, char** argv)

void SetCmdLine (int argc, wchar_t** argv)

Set command line to parse after using one of the constructors which don't do it. The
second overload of this function is only available in Unicode build.

See also

wxCmdLineParser (p. 152)

wxCmdLineParser::SetCmdLine

void SetCmdLine (const wxString& cmdline)

Set command line to parse after using one of the constructors which don't do it.

See also

wxCmdLineParser (p. 153)

wxCmdLineParser::~wxCmdLineParser

 ~wxCmdLineParser ()

Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars (const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is
"-" for Unix, "-/" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions (bool enable = true)

Enable or disable support for the long options.

As long options are not (yet) POSIX-compliant, this option allows to disable them.

See also

Customization (p. 151) and AreLongOptionsEnabled (p. 154)

wxCmdLineParser::DisableLongOptions

CHAPTER 7

155

void DisableLongOptions ()

Identical to EnableLongOptions(false) (p. 154).

wxCmdLineParser::AreLongOptionsEnabled

bool AreLongOptionsEnabled ()

Returns true if long options are enabled, otherwise false.

See also

EnableLongOptions (p. 154)

wxCmdLineParser::SetLogo

void SetLogo (const wxString& logo)

logo is some extra text which will be shown by Usage (p. 156) method.

wxCmdLineParser::SetDesc

void SetDesc (const wxCmdLineEntryDesc* desc)

Construct the command line description

Take the command line description from the wxCMD_LINE_NONE terminated table.

Example of usage:

static const wxCmdLineEntryDesc cmdLineDesc[] =
{
 { wxCMD_LINE_SWITCH, "v", "verbose", "be verbos e" },
 { wxCMD_LINE_SWITCH, "q", "quiet", "be quiet" },

 { wxCMD_LINE_OPTION, "o", "output", "output fi le" },
 { wxCMD_LINE_OPTION, "i", "input", "input dir " },
 { wxCMD_LINE_OPTION, "s", "size", "output bl ock size",
wxCMD_LINE_VAL_NUMBER },
 { wxCMD_LINE_OPTION, "d", "date", "output fi le date",
wxCMD_LINE_VAL_DATE },

 { wxCMD_LINE_PARAM, NULL, NULL, "input file",
wxCMD_LINE_VAL_STRING, wxCMD_LINE_PARAM_MULTIPLE },

 { wxCMD_LINE_NONE }
};

wxCmdLineParser parser;

parser.SetDesc(cmdLineDesc);

wxCmdLineParser::AddSwitch

void AddSwitch (const wxString& name, const wxString& lng = wxEmptyString,

CHAPTER 7

156

const wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long name lng (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption

void AddOption (const wxString& name, const wxString& lng = wxEmptyString,
const wxString& desc = wxEmptyString, wxCmdLineParamType type =
wxCMD_LINE_VAL_STRING, int flags = 0)

Add an option name with an optional long name lng (no long name if it is empty, which is
default) taking a value of the given type (string by default) to the command line
description.

wxCmdLineParser::AddParam

void AddParam (const wxString& desc = wxEmptyString, wxCmdLineParamType
type = wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

wxCmdLineParser::Parse

int Parse (bool giveUsage = true)

Parse the command line, return 0 if ok, -1 if "-h" or "--help" option was encountered
and the help message was given or a positive value if a syntax error occurred.

Parameters

giveUsage

If true (default), the usage message is given if a syntax error was encountered
while parsing the command line or if help was requested. If false , only error
messages about possible syntax errors are given, use Usage (p. 156) to show the
usage message from the caller if needed.

wxCmdLineParser::Usage

void Usage ()

Give the standard usage message describing all program options. It will use the options
and parameters descriptions specified earlier, so the resulting message will not be
helpful to the user unless the descriptions were indeed specified.

See also

SetLogo (p. 155)

wxCmdLineParser::Found

CHAPTER 7

157

bool Found (const wxString& name) const

Returns true if the given switch was found, false otherwise.

wxCmdLineParser::Found

bool Found (const wxString& name, wxString* value) const

Returns true if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found (const wxString& name, long* value) const

Returns true if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found (const wxString& name, wxDateTime* value) const

Returns true if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount () const

Returns the number of parameters found. This function makes sense mostly if you had
used wxCMD_LINE_PARAM_MULTIPLE flag.

wxCmdLineParser::GetParam

wxString GetParam (size_t n = 0u) const

Returns the value of Nth parameter (as string only for now).

See also

GetParamCount (p. 157)

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 162) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

CHAPTER 7

158

You can retrieve the current system colour settings with wxSystemSettings (p. 1259).

Derived from

wxObject (p. 967)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

wxBLACK
wxWHITE
wxRED
wxBLUE
wxGREEN
wxCYAN
wxLIGHT_GREY

See also

wxColourDatabase (p. 162), wxPen (p. 991), wxBrush (p. 99), wxColourDialog (p. 163),
wxSystemSettings (p. 1259)

wxColour::wxColour

 wxColour ()

Default constructor.

 wxColour (const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

 wxColour (const wxString& colourNname)

Constructs a colour object using a colour name listed in wxTheColourDatabase .

 wxColour (const wxColour& colour)

Copy constructor.

Parameters

red

CHAPTER 7

159

The red value.

green

The green value.

blue

The blue value.

colourName

The colour name.

colour

The colour to copy.

See also

wxColourDatabase (p. 162)

wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)

wxNamedColour(name)

wxColour::Blue

unsigned char Blue () const

Returns the blue intensity.

wxColour::GetPixel

long GetPixel () const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

wxColour::Green

unsigned char Green () const

Returns the green intensity.

wxColour::Ok

bool Ok() const

CHAPTER 7

160

Returns true if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(const unsigned char red, const unsigned char green, const unsigned char
blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator = (const wxColour& colour)

Assignment operator, taking another colour object.

wxColour& operator = (const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.

See also

wxColourDatabase (p. 162)

wxColour::operator ==

bool operator == (const wxColour& colour)

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator !=

bool operator != (const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wxColourData

This class holds a variety of information related to colour dialogs.

Derived from

wxObject (p. 967)

Include files

CHAPTER 7

161

<wx/cmndata.h>

See also

wxColour (p. 157), wxColourDialog (p. 163), wxColourDialog overview (p. 1721)

wxColourData::wxColourData

 wxColourData ()

Constructor. Initializes the custom colours to wxNullColour , the data colour setting to
black, and the choose full setting to true.

wxColourData::~wxColourData

 ~wxColourData ()

Destructor.

wxColourData::GetChooseFull

bool GetChooseFull () const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Under PalmOS, determines whether colour
dialog will display full rgb colour picker or only available palette indexer. Has no meaning
under other platforms.

The default value is true.

wxColourData::GetColour

wxColour& GetColour () const

Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour (int i) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are invalid colours.

wxColourData::SetChooseFull

CHAPTER 7

162

void SetChooseFull (const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is true.

wxColourData::SetColour

void SetColour (const wxColour& colour)

Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetCustomColour (int i, const wxColour& colour)

Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are invalid colours.

wxColourData::operator =

void operator = (const wxColourData& data)

Assignment operator for the colour data.

wxColourDatabase

wxWidgets maintains a database of standard RGB colours for a predefined set of named
colours (such as "BLACK'', "LIGHT GREY''). The application may add to this set if
desired by using AddColour (p. 163) and may use it to look up colours by names using
Find (p. 163) or find the names for the standard colour suing FindName (p. 163).

There is one predefined instance of this class called wxTheColourDatabase .

Derived from

None

Include files

<wx/gdicmn.h>

Remarks

The standard database contains at least the following colours:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,

CHAPTER 7

163

DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

wxColour (p. 157)

wxColourDatabase::wxColourDatabase

 wxColourDatabase ()

Constructs the colour database. It will be initialized at the first use.

wxColourDatabase::AddColour

void AddColour (const wxString& colourName, const wxColour& colour)

void AddColour (const wxString& colourName, wxColour* colour)

Adds a colour to the database. If a colour with the same name already exists, it is
replaced.

Please note that the overload taking a pointer is deprecated and will be removed in the
next wxWidgets version, please don't use it.

wxColourDatabase::Find

wxColour Find (const wxString& colourName)

Finds a colour given the name. Returns an invalid colour object (that is, such that its
Ok() (p. 159) method returns false) if the colour wasn't found in the database.

wxColourDatabase::FindName

wxString FindName (const wxColour& colour) const

Finds a colour name given the colour. Returns an empty string if the colour is not found
in the database.

wxColourDialog

CHAPTER 7

164

This class represents the colour chooser dialog.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/colordlg.h>

See also

wxColourDialog Overview (p. 1721),
wxColour (p. 157),
wxColourData (p. 160),
wxGetColourFromUser (p. 1542)

wxColourDialog::wxColourDialog

 wxColourDialog (wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data. Custom colours from colour data
object will be be used in dialog's colour palette. Invalid entries in custom colours list will
be ignored on some platforms (GTK) or replaced with white colour on platforms where
custom colours palette has fixed size (MSW).

See also

wxColourData (p. 160)

wxColourDialog::~wxColourDialog

 ~wxColourDialog ()

Destructor.

wxColourDialog::Create

bool Create (wxWindow* parent, wxColourData* data = NULL)

Same as constructor (p. 164).

wxColourDialog::GetColourData

wxColourData& GetColourData ()

CHAPTER 7

165

Returns the colour data (p. 160) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.

Derived from

wxControlWithItems (p. 206)
wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/combobox.h>

Window styles

wxCB_SIMPLE Creates a combobox with a permanently
displayed list. Windows only.

wxCB_DROPDOWN Creates a combobox with a drop-down list.

wxCB_READONLY Same as wxCB_DROPDOWN but only the
strings specified as the combobox choices can
be selected, it is impossible to select (even
from a program) a string which is not in the
choices list.

wxCB_SORT Sorts the entries in the list alphabetically.

See also window styles overview (p. 1686).

Event handling

EVT_COMBOBOX(id, func) Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.
Note that callingGetValue (p. 168) returns the

CHAPTER 7

166

new value of selection.

EVT_TEXT(id, func) Process a
wxEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
event, when <RETURN> is pressed in the
combobox.

See also

wxListBox (p. 808), wxTextCtrl (p. 1279), wxChoice (p. 134), wxCommandEvent (p. 172)

wxComboBox::wxComboBox

 wxComboBox ()

Default constructor.

 wxComboBox (wxWindow* parent, wxWindowID id, const wxString& value = "",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n,
const wxString choices[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "comboBox")

 wxComboBox (wxWindow* parent, wxWindowID id, const wxString& value, const
wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style = 0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboBox")

Constructor, creating and showing a combobox.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

value

Initial selection string. An empty string indicates no selection.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized

CHAPTER 7

167

appropriately.

n

Number of strings with which to initialise the control.

choices

An array of strings with which to initialise the control.

style

Window style. See wxComboBox (p. 164).

validator

Window validator.

name

Window name.

See also

wxComboBox::Create (p. 167), wxValidator (p. 1394)

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

wxComboBox::~wxComboBox

 ~wxComboBox ()

Destructor, destroying the combobox.

wxComboBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices[], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

bool Create (wxWindow* parent, wxWindowID id, const wxString& value, const
wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style = 0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 166) for further details.

wxComboBox::CanCopy

CHAPTER 7

168

bool CanCopy () const

Returns true if the combobox is editable and there is a text selection to copy to the
clipboard. Only available on Windows.

wxComboBox::CanCut

bool CanCut () const

Returns true if the combobox is editable and there is a text selection to copy to the
clipboard. Only available on Windows.

wxComboBox::CanPaste

bool CanPaste () const

Returns true if the combobox is editable and there is text on the clipboard that can be
pasted into the text field. Only available on Windows.

wxComboBox::CanRedo

bool CanRedo () const

Returns true if the combobox is editable and the last undo can be redone. Only available
on Windows.

wxComboBox::CanUndo

bool CanUndo () const

Returns true if the combobox is editable and the last edit can be undone. Only available
on Windows.

wxComboBox::Copy

void Copy ()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut ()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::GetInsertionPoint

long GetInsertionPoint () const

Returns the insertion point for the combobox's text field.

CHAPTER 7

169

wxComboBox::GetLastPosition

virtual wxTextPos GetLastPosition () const

Returns the last position in the combobox text field.

wxComboBox::GetValue

wxString GetValue () const

Returns the current value in the combobox text field.

wxComboBox::Paste

void Paste ()

Pastes text from the clipboard to the text field.

wxComboBox::Redo

void Redo ()

Redoes the last undo in the text field. Windows only.

wxComboBox::Replace

void Replace (long from, long to, const wxString& text)

Replaces the text between two positions with the given text, in the combobox text field.

Parameters

from

The first position.

to

The second position.

text

The text to insert.

wxComboBox::Remove

void Remove (long from, long to)

Removes the text between the two positions in the combobox text field.

Parameters

CHAPTER 7

170

from

The first position.

to

The last position.

wxComboBox::SetInsertionPoint

void SetInsertionPoint (long pos)

Sets the insertion point in the combobox text field.

Parameters

pos

The new insertion point.

wxComboBox::SetInsertionPointEnd

void SetInsertionPointEnd ()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection (long from, long to)

Selects the text between the two positions, in the combobox text field.

Parameters

from

The first position.

to

The second position.

wxPython note: This method is called SetMark in wxPython, SetSelection name is
kept forwxControlWithItems::SetSelection (p. 212).

wxComboBox::SetValue

void SetValue (const wxString& text)

Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONLY style the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

CHAPTER 7

171

Parameters

text

The text to set.

wxComboBox::Undo

void Undo ()

Undoes the last edit in the text field. Windows only.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObject (p. 967)

Include files

<wx/cmdproc.h>

See also

Overview (p. 1729)

wxCommand::wxCommand

 wxCommand (bool canUndo = false, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependent).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

 ~wxCommand ()

Destructor.

CHAPTER 7

172

wxCommand::CanUndo

bool CanUndo ()

Returns true if the command can be undone, false otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return
true to indicate that the action has taken place, false otherwise. Returning false will
indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName ()

Returns the command name.

wxCommand::Undo

bool Undo ()

Override this member function to un-execute a previous Do. Return true to indicate that
the action has taken place, false otherwise. Returning false will indicate to the command
processor that the action is not redoable and no change should be made to the
command history.

How you implement this command is totally application dependent, but typical strategies
include:

 • Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.

 • Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. 1359), have
separate command event classes.

CHAPTER 7

173

Derived from

wxEvent (p. 464)

Include files

<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

EVT_COMBOBOX(id, func) Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

EVT_LISTBOX(id, func) Process a
wxEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

EVT_LISTBOX_DCLICK(id, func) Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

EVT_MENU(id, func) Process a
wxEVT_COMMAND_MENU_SELECTED

CHAPTER 7

174

command, which is generated by a menu item.

EVT_MENU_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

EVT_CONTEXT_MENU(func) Process the event generated when the user
has requested a popup menu to appear by
pressing a special keyboard key (under
Windows) or by right clicking the mouse.

EVT_RADIOBOX(id, func) Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a
wxRadioBox control.

EVT_RADIOBUTTON(id, func) Process a
wxEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

EVT_SCROLLBAR(id, func) Process a
wxEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be
used instead (see wxScrollEvent (p. 1107)).

EVT_SLIDER(id, func) Process a
wxEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

EVT_TEXT(id, func) Process a
wxEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control. Note that you must use
wxTE_PROCESS_ENTER flag when creating
the control if you want it to generate such
events.

EVT_TEXT_MAXLEN(id, func) Process a
wxEVT_COMMAND_TEXT_MAXLEN
command, which is generated by a wxTextCtrl
control when the user tries to enter more
characters into it than the limit previously set
with SetMaxLength (p. 1294).

CHAPTER 7

175

EVT_TOOL(id, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_TOOL_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event
for a range of identifiers. Pass the ids of the
tools.

EVT_TOOL_RCLICKED(id, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a
wxEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a
wxEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a
wxEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_SET_FOCUS(id, func) Process a
wxEVT_COMMAND_SET_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_KILL_FOCUS(id, func) Process a
wxEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

CHAPTER 7

176

wxCommandEvent::wxCommandEvent

 wxCommandEvent (WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCommandEvent::Checked

bool Checked () const

Deprecated, use IsChecked (p. 176) instead.

wxCommandEvent::GetClientData

void* GetClientData ()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetClientObject

wxClientData * GetClientObject ()

Returns client object pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtraLong ()

Returns extra information dependant on the event objects type. If the event comes from
a listbox selection, it is a boolean determining whether the event was a selection (true)
or a deselection (false). A listbox deselection only occurs for multiple-selection boxes,
and in this case the index and string values are indeterminate and the listbox must be
examined by the application.

wxCommandEvent::GetInt

int GetInt ()

Returns the integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::GetSelection

int GetSelection ()

Returns item index for a listbox or choice selection event (not valid for a deselection).

CHAPTER 7

177

wxCommandEvent::GetString

wxString GetString ()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked () const

This method can be used with checkbox and menu events: for the checkboxes, the
method returns true for a selection event and false for a deselection one. For the
menu events, this method indicates if the menu item just has become checked or
unchecked (and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection

bool IsSelection ()

For a listbox or similar event, returns true if it is a selection, false if it is a deselection.

wxCommandEvent::SetClientData

void SetClientData (void* clientData)

Sets the client data for this event.

wxCommandEvent::SetClientObject

void SetClientObject (wxClientData* clientObject)

Sets the client object for this event. The client object is not owned by the event object
and the event object will not delete the client object in its destructor. The client object
must be owned and deleted by another object (e.g. a control) that has longer life time
than the event object.

wxCommandEvent::SetExtraLong

void SetExtraLong (int extraLong)

Sets the m_extraLong member.

wxCommandEvent::SetInt

void SetInt (int intCommand)

Sets the m_commandInt member.

wxCommandEvent::SetString

CHAPTER 7

178

void SetString (const wxString& string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

Derived from

wxObject (p. 967)

Include files

<wx/cmdproc.h>

See also

wxCommandProcessor overview (p. 1729), wxCommand (p. 171)

wxCommandProcessor::wxCommandProcessor

 wxCommandProcessor (int maxCommands = -1)

Constructor.

maxCommands may be set to a positive integer to limit the number of commands stored
to it, otherwise (and by default) the list of commands can grow arbitrarily.

wxCommandProcessor::~wxCommandProcessor

 ~wxCommandProcessor ()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo ()

Returns true if the currently-active command can be undone, false otherwise.

wxCommandProcessor::ClearCommands

virtual void ClearCommands ()

Deletes all the commands in the list and sets the current command pointer to NULL.

CHAPTER 7

179

wxCommandProcessor::Redo

virtual bool Redo ()

Executes (redoes) the current command (the command that has just been undone if
any).

wxCommandProcessor::GetCommands

wxList& GetCommands () const

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands () const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu () const

Returns the edit menu associated with the command processor.

wxCommandProcessor::GetRedoAccelerator

const wxString& GetRedoAccelerator () const

Returns the string that will be appended to the Redo menu item.

wxCommandProcessor::GetRedoMenuLabel

wxString GetRedoMenuLabel () const

Returns the string that will be shown for the redo menu item.

wxCommandProcessor::GetUndoAccelerator

const wxString& GetUndoAccelerator () const

Returns the string that will be appended to the Undo menu item.

wxCommandProcessor::GetUndoMenuLabel

wxString GetUndoMenuLabel () const

Returns the string that will be shown for the undo menu item.

wxCommandProcessor::Initialize

CHAPTER 7

180

virtual void Initialize ()

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::IsDirty

virtual bool IsDirty ()

Returns a boolean value that indicates if changes have been made since the last save
operation. This only works if wxCommandProcessor::MarkAsSaved (p. 180)is called
whenever the project is saved.

wxCommandProcessor::MarkAsSaved

virtual void MarkAsSaved ()

You must call this method whenever the project is saved if you plan to use
wxCommandProcessor::IsDirty (p. 179).

wxCommandProcessor::SetEditMenu

void SetEditMenu (wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::SetMenuStrings

void SetMenuStrings ()

Sets the menu labels according to the currently set menu and the current command
state.

wxCommandProcessor::SetRedoAccelerator

void SetRedoAccelerator (const wxString& accel)

Sets the string that will be appended to the Redo menu item.

wxCommandProcessor::SetUndoAccelerator

void SetUndoAccelerator (const wxString& accel)

Sets the string that will be appended to the Undo menu item.

wxCommandProcessor::Submit

CHAPTER 7

181

virtual bool Submit (wxCommand * command, bool storeIt = true)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storeIt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

virtual bool Undo ()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true
which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. 1321) for the worker thread, but if there are several
worker threads it already makes much more sense).

Note that a call to Signal() (p. 183) may happen before the other thread calls Wait() (p.
183) and, just as with the pthread conditions, the signal is then lost and so if you want to
be sure that you don't miss it you must keep the mutex associated with the condition
initially locked and lock it again before calling Signal() (p. 183). Of course, this means
that this call is going to block until Wait() (p. 183) is called by another thread.

Example

This example shows how a main thread may launch a worker thread which starts
running and then waits until the main thread signals it to continue:

class MySignallingThread : public wxThread
{
public:
 MySignallingThread(wxMutex *mutex, wxCondition *condition)
 {
 m_mutex = mutex;
 m_condition = condition;

 Create();
 }

 virtual ExitCode Entry()
 {
 ... do our job ...

CHAPTER 7

182

 // tell the other(s) thread(s) that we're a bout to
terminate: we must
 // lock the mutex first or we might signal the condition
before the
 // waiting threads start waiting on it!
 wxMutexLocker lock(m_mutex);
 m_condition.Broadcast(); // same as Signal() here -- one
waiter only

 return 0;
 }

private:
 wxCondition *m_condition;
 wxMutex *m_mutex;
};

int main()
{
 wxMutex mutex;
 wxCondition condition(mutex);

 // the mutex should be initially locked
 mutex.Lock();

 // create and run the thread but notice that it won't be able
to
 // exit (and signal its exit) before we unlock the mutex below
 MySignallingThread *thread = new MySignallingTh read(&mutex,
&condition);

 thread->Run();

 // wait for the thread termination: Wait() atom ically unlocks
the mutex
 // which allows the thread to continue and star ts waiting
 condition.Wait();

 // now we can exit
 return 0;
}

Of course, here it would be much better to simply use a joinable thread and call
wxThread::Wait (p. 1321) on it, but this example does illustrate the importance of
properly locking the mutex when using wxCondition.

Constants

The following return codes are returned by wxCondition member functions:

enum wxCondError
{
 wxCOND_NO_ERROR = 0, // successful completio n
 wxCOND_INVALID, // object hasn't been i nitialized
successfully
 wxCOND_TIMEOUT, // WaitTimeout() has ti med out
 wxCOND_MISC_ERROR // some other error
};

Derived from

None.

CHAPTER 7

183

Include files

<wx/thread.h>

See also

wxThread (p. 1315), wxMutex (p. 951)

wxCondition::wxCondition

 wxCondition (wxMutex& mutex)

Default and only constructor. The mutex must be locked by the caller before calling Wait
(p. 183) function.

Use IsOk (p. 183) to check if the object was successfully initialized.

wxCondition::~wxCondition

 ~wxCondition ()

Destroys the wxCondition object. The destructor is not virtual so this class should not be
used polymorphically.

wxCondition::Broadcast

void Broadcast ()

Broadcasts to all waiting threads, waking all of them up. Note that this method may be
called whether the mutex associated with this condition is locked or not.

See also

wxCondition::Signal (p. 183)

wxCondition::IsOk

bool IsOk () const

Returns true if the object had been initialized successfully, false if an error occurred.

wxCondition::Signal

void Signal ()

Signals the object waking up at most one thread. If several threads are waiting on the
same condition, the exact thread which is woken up is undefined. If no threads are
waiting, the signal is lost and the condition would have to be signalled again to wake up
any thread which may start waiting on it later.

CHAPTER 7

184

Note that this method may be called whether the mutex associated with this condition is
locked or not.

See also

wxCondition::Broadcast (p. 183)

wxCondition::Wait

wxCondError Wait ()

Waits until the condition is signalled.

This method atomically releases the lock on the mutex associated with this condition
(this is why it must be locked prior to calling Wait) and puts the thread to sleep until
Signal (p. 183) or Broadcast (p. 183) is called.

Note that even if Signal (p. 183) had been called before Wait without waking up any
thread, the thread would still wait for another one and so it is important to ensure that the
condition will be signalled after Wait or the thread may sleep forever.

Return value

Returns wxCOND_NO_ERROR on success, another value if an error occurred.

See also

WaitTimeout (p. 184)

wxCondition::WaitTimeout

wxCondError WaitTimeout (unsigned long milliseconds)

Waits until the condition is signalled or the timeout has elapsed.

This method is identical to Wait (p. 183) except that it returns, with the return code of
wxCOND_TIMEOUT as soon as the given timeout expires.

Parameters

milliseconds

Timeout in milliseconds

Return value

Returns wxCOND_NO_ERROR if the condition was signalled, wxCOND_TIMEOUT if the
timeout elapsed before this happened or another error code from wxCondError enum.

wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used

CHAPTER 7

185

by itself (it is an abstract base class) and you will always use one of its derivations:
wxFileConfig (p. 489), wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWidgets provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32 and wxFileConfig otherwise.

See config overview (p. 1672) for the descriptions of all features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a
look at them. (p. 186)

Derived from

No base class

Include files

<wx/config.h> (to let wxWidgets choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)
<wx/fileconf.h> (wxFileConfig class)
<wx/msw/regconf.h> (wxRegConfig class)

Example

Here is how you would typically use this class:

 // using wxConfig instead of writing wxFileConfig or wxRegConfig
enhances
 // portability of the code
 wxConfig *config = new wxConfig("MyAppName");

 wxString str;
 if (config->Read("LastPrompt", &str)) {
 // last prompt was found in the config file/reg istry and its
value is now
 // in str
 ...
 }
 else {
 // no last prompt...
 }

 // another example: using default values and the full path
instead of just
 // key name: if the key is not found , the value 17 is returned
 long value = config->Read("/LastRun/CalculatedVal ues/MaxValue",
17);
 ...
 ...
 ...
 // at the end of the program we would save everyt hing back
 config->Write("LastPrompt", str);
 config->Write("/LastRun/CalculatedValues/MaxValue ", value);

CHAPTER 7

186

 // the changes will be written back automatically
 delete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"
for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Note that
you must delete this object (usually in wxApp::OnExit (p. 36)) in order to avoid memory
leaks, wxWidgets won't do it automatically.

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWidgets library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
551) or Unix version of wxFileDialog (p. 491) have the ability to use wxConfig class.

Set (p. 197)
Get (p. 192)
Create (p. 191)
DontCreateOnDemand (p. 191)

Constructor and destructor

wxConfigBase (p. 190)
~wxConfigBase (p. 191)

Path management

As explained in config overview (p. 1672), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion
of the current group, which makes it possible to use the relative paths. To clarify all this,

CHAPTER 7

187

here is an example (it is only for the sake of demonstration, it doesn't do anything
sensible!):

 wxConfig *config = new wxConfig("FooBarApp");

 // right now the current path is '/'
 conf->Write("RootEntry", 1);

 // go to some other place: if the group(s) don't exist, they
will be created
 conf->SetPath("/Group/Subgroup");

 // create an entry in subgroup
 conf->Write("SubgroupEntry", 3);

 // '..' is understood
 conf->Write("../GroupEntry", 2);
 conf->SetPath("..");

 wxASSERT(conf->Read("Subgroup/SubgroupEntry", 0l) == 3);

 // use absolute path: it is allowed, too
 wxASSERT(conf->Read("/RootEntry", 0l) == 1);

Warning: it is probably a good idea to always restore the path to its old value on function
exit:

 void foo(wxConfigBase *config)
 {
 wxString strOldPath = config->GetPath();

 config->SetPath("/Foo/Data");
 ...

 config->SetPath(strOldPath);
 }

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

 void bar(wxConfigBase *config)
 {
 config->Write("Test", 17);

 foo(config);

 // we're reading "/Foo/Data/Test" here! -1 will probably be
returned...
 wxASSERT(config->Read("Test", -1) == 17);
 }

Finally, the path separator in wxConfigBase and derived classes is always '/', regardless
of the platform (i.e. it is not '\\' under Windows).

SetPath (p. 197)
GetPath (p. 194)

Enumeration

CHAPTER 7

188

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return false when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it is not the index of the current item (you will have some great surprises with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

 wxConfigBase *config = ...;
 wxArrayString aNames;

 // enumeration variables
 wxString str;
 long dummy;

 // first enum all entries
 bool bCont = config->GetFirstEntry(str, dummy);
 while (bCont) {
 aNames.Add(str);

 bCont = GetConfig()->GetNextEntry(str, dummy);
 }

 ... we have all entry names in aNames...

 // now all groups...
 bCont = GetConfig()->GetFirstGroup(str, dummy);
 while (bCont) {
 aNames.Add(str);

 bCont = GetConfig()->GetNextGroup(str, dummy);
 }

 ... we have all group (and entry) names in aNames ...

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 193)
GetNextGroup (p. 193)
GetFirstEntry (p. 193)
GetNextEntry (p. 193)
GetNumberOfEntries (p. 194)
GetNumberOfGroups (p. 194)

Tests of existence

HasGroup (p. 194)
HasEntry (p. 194)
Exists (p. 192)
GetEntryType (p. 192)

CHAPTER 7

189

Miscellaneous functions

GetAppName (p. 192)
GetVendorName (p. 194)
SetUmask (p. 490)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that sizeof(bool) ==
sizeof(int) == sizeof(long) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 195)
Write (p. 197)
Flush (p. 192)

Rename entries/groups

The functions in this section allow to rename entries or subgroups of the current group.
They will return false on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 196)
RenameGroup (p. 196)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:
for example, when you uninstall it.

DeleteEntry (p. 192)
DeleteGroup (p. 192)
DeleteAll (p. 192)

CHAPTER 7

190

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

 # config file for my program
 UserData = $HOME/data

 # the following syntax is valud only under Window s
 UserData = %windir%\\data.dat

the call to config->Read("UserData") will return something
like"/home/zeitlin/data" if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(false) just before reading this value and
SetExpandEnvVars(true) just after. Another solution would be to prefix the offending
symbols with a backslash.

The following functions control this option:

IsExpandingEnvVars (p. 194)
SetExpandEnvVars (p. 197)
SetRecordDefaults (p. 197)
IsRecordingDefaults (p. 195)

wxConfigBase::wxConfigBase

 wxConfigBase (const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0, wxMBConv& conv
= wxConvUTF8)

This is the default and only constructor of the wxConfigBase class, and derived classes.

Parameters

appName

The application name. If this is empty, the class will normally use
wxApp::GetAppName (p. 32) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName

The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

CHAPTER 7

191

localFilename

Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename

Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style

Can be one of wxCONFIG_USE_LOCAL_FILE and
wxCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logically or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths. For
wxFileConfig, you can also add wxCONFIG_USE_NO_ESCAPE_CHARACTERS
which will turn off character escaping for the values of entries stored in the config
file: for example a foo key with some backslash characters will be stored as
foo=C:\mydir instead of the usual storage of foo=C:\\mydir . For
wxRegConfig, this flag refers to HKLM, and provides read-only access.

The wxCONFIG_USE_NO_ESCAPE_CHARACTERS style can be helpful if your
config file must be read or written to by a non-wxWidgets program (which might
not understand the escape characters). Note, however, that if
wxCONFIG_USE_NO_ESCAPE_CHARACTERS style is used, it is is now your
application's responsibility to ensure that there is no newline or other illegal
characters in a value, before writing that value to the file.

conv

This parameter is only used by wxFileConfig when compiled in Unicode mode. It
specifies the encoding in which the configuration file is written.

Remarks

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase

 ~wxConfigBase ()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create ()

Create a new config object: this function will create the "best" implementation of

CHAPTER 7

192

wxConfig available for the current platform, see comments near the definition of
wxCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

void DontCreateOnDemand ()

Calling this function will prevent Get() from automatically creating a new config object if
the current one is NULL. It might be useful to call it near the program end to prevent
"accidental" creation of a new config object.

wxConfigBase::DeleteAll

bool DeleteAll ()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
uninstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry (const wxString& key, bool bDeleteGroupIfEmpty = true)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

bool DeleteGroup (const wxString& key)

Delete the group (with all subgroups)

wxConfigBase::Exists

bool Exists (wxString& strName) const

returns true if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush (bool bCurrentOnly = false)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

static wxConfigBase * Get(bool CreateOnDemand = true)

Get the current config object. If there is no current object andCreateOnDemand is true,
creates one (using Create) unless DontCreateOnDemand was called previously.

CHAPTER 7

193

wxConfigBase::GetAppName

wxString GetAppName () const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType (const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:

 enum EntryType
 {
 Type_Unknown,
 Type_String,
 Type_Boolean,
 Type_Integer,
 Type_Float
 };

wxConfigBase::GetFirstGroup

bool GetFirstGroup (wxString& str, long& index) const

Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index) .

wxConfigBase::GetFirstEntry

bool GetFirstEntry (wxString& str, long& index) const

Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index) .

wxConfigBase::GetNextGroup

bool GetNextGroup (wxString& str, long& index) const

CHAPTER 7

194

Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index) .

wxConfigBase::GetNextEntry

bool GetNextEntry (wxString& str, long& index) const

Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index) .

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries (bool bRecursive = false) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups (bool bRecursive = false) const

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath

const wxString& GetPath () const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName () const

Returns the vendor name.

wxConfigBase::HasEntry

bool HasEntry (wxString& strName) const

returns true if the entry by this name exists

wxConfigBase::HasGroup

CHAPTER 7

195

bool HasGroup (const wxString& strName) const

returns true if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars () const

Returns true if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults () const

Returns true if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString* str) const

Read a string from the key, returning true if the value was read. If the key was not
found, str is not changed.

bool Read(const wxString& key, wxString* str, const wxString& defaultVal) const

Read a string from the key. The default value is returned if the key was not found.

Returns true if value was really read, false if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* l) const

Reads a long value, returning true if the value was found. If the value was not found, l
is not changed.

bool Read(const wxString& key, long* l,long defaultVal) const

Reads a long value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, long defaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

 conf->Read("key", 0);

CHAPTER 7

196

won't work because the call is ambiguous: compiler can not choose between twoRead
functions. Instead, write:

 conf->Read("key", 0l);

bool Read(const wxString& key, double* d) const

Reads a double value, returning true if the value was found. If the value was not found,
d is not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

Reads a bool value, returning true if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default="") Returns a string.

ReadInt(key, default=0) Returns an int.

ReadFloat(key, default=0.0) Returns a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Read(key, default="") Returns a string

ReadInt(key, default=0) Returns an integer

ReadFloat(key, default=0.0) Returns a floating point number

ReadBool(key, default=0) Returns a boolean

wxConfigBase::RenameEntry

bool RenameEntry (const wxString& oldName, const wxString& newName)

Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

CHAPTER 7

197

Returns false if oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup (const wxString& oldName, const wxString& newName)

Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns false if oldName doesn't exist or if newName already exists.

wxConfigBase::Set

static wxConfigBase * Set(wxConfigBase * pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandEnvVars

void SetExpandEnvVars (bool bDoIt = true)

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath (const wxString& strPath)

Set current path: if the first character is '/', it is the absolute path, otherwise it is a relative
path. '..' is supported. If strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults (bool bDoIt = true)

Sets whether defaults are recorded to the config file whenever an attempt to read the
value which is not present in it is done.

If on (default is off) all default values for the settings used by the program are written
back to the config file. This allows the user to see what config options may be changed
and is probably useful only for wxFileConfig.

wxConfigBase::Write

bool Write (const wxString& key, const wxString& value)

bool Write (const wxString& key, long value)

bool Write (const wxString& key, double value)

CHAPTER 7

198

bool Write (const wxString& key, bool value)

These functions write the specified value to the config file and return true on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.

WriteInt(key, value) Writes an int.

WriteFloat(key, value) Writes a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Write(key, value) Writes a string

WriteInt(key, value) Writes an integer

WriteFloat(key, value) Writes a floating point number

WriteBool(key, value) Writes a boolean

wxConnection

A wxConnection object represents the connection between a client and a server. It is
created by making a connection using a wxClient (p. 140) object, or by the acceptance
of a connection by a wxServer (p. 1115) object. The bulk of a DDE-like (Dynamic Data
Exchange) conversation is controlled by calling members in a wxConnection object or
by overriding its members. The actual DDE-based implementation using
wxDDEConnection is available on Windows only, but a platform-independent, socket-
based version of this API is available using wxTCPConnection, which has the same API.

An application should normally derive a new connection class from wxConnection, in
order to override the communication event handlers to do something interesting.

Derived from

wxConnectionBase
wxObject (p. 967)

Include files

<wx/ipc.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat
{
 wxIPC_INVALID = 0,

CHAPTER 7

199

 wxIPC_TEXT = 1, /* CF_TEXT */
 wxIPC_BITMAP = 2, /* CF_BITMAP */
 wxIPC_METAFILE = 3, /* CF_METAFILEPICT * /
 wxIPC_SYLK = 4,
 wxIPC_DIF = 5,
 wxIPC_TIFF = 6,
 wxIPC_OEMTEXT = 7, /* CF_OEMTEXT */
 wxIPC_DIB = 8, /* CF_DIB */
 wxIPC_PALETTE = 9,
 wxIPC_PENDATA = 10,
 wxIPC_RIFF = 11,
 wxIPC_WAVE = 12,
 wxIPC_UNICODETEXT = 13,
 wxIPC_ENHMETAFILE = 14,
 wxIPC_FILENAME = 15, /* CF_HDROP */
 wxIPC_LOCALE = 16,
 wxIPC_PRIVATE = 20
};

See also

wxClient (p. 140), wxServer (p. 1115),Interprocess communications overview (p. 1765)

wxConnection::wxConnection

 wxConnection ()

 wxConnection (char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxConnection, then the constructor should not be called directly, since the default
connection object will be provided on requesting (or accepting) a connection. However, if
the user defines his or her own derived connection object, the
wxServer::OnAcceptConnection (p. 1116) and/or wxClient::OnMakeConnection (p. 141)
members should be replaced by functions which construct the new connection object.

If the arguments of the wxConnection constructor are void then the wxConnection object
manages its own connection buffer, allocating memory as needed. A programmer-
supplied buffer cannot be increased if necessary, and the program will assert if it is not
large enough. The programmer-supplied buffer is included mainly for backwards
compatibility.

wxConnection::Advise

bool Advise (const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxConnection::OnAdvise (p. 200)
member to be called. Returns true if successful.

wxConnection::Execute

CHAPTER 7

200

bool Execute (char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxConnection::Poke (p. 201) in that
respect). Causes the server connection's wxConnection::OnExecute (p. 200) member to
be called. Returns true if successful.

wxConnection::Disconnect

bool Disconnect ()

Called by the client or server application to disconnect from the other program; it causes
the wxConnection::OnDisconnect (p. 200) message to be sent to the corresponding
connection object in the other program. Returns true if successful or already
disconnected. The application that calls Disconnect must explicitly delete its side of the
connection.

wxConnection::OnAdvise

virtual bool OnAdvise (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item, usingAdvise (p. 199).

wxConnection::OnDisconnect

virtual bool OnDisconnect ()

Message sent to the client or server application when the other application notifies it to
end the connection. The default behaviour is to delete the connection object and return
true, so applications should generally override OnDisconnect (finally calling the inherited
method as well) so that they know the connection object is no longer available.

wxConnection::OnExecute

virtual bool OnExecute (const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data, using Execute (p. 199). Note that there is no item associated with this message.

wxConnection::OnPoke

virtual bool OnPoke (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

CHAPTER 7

201

wxConnection::OnRequest

virtual char* OnRequest (const wxString& topic, const wxString& item, int * size,
wxIPCFormat format)

Message sent to the server application when the client calls wxConnection::Request (p.
201). The server's OnRequest (p. 200) method should respond by returning a character
string, or NULL to indicate no data, and setting *size. The character string must of
course persist after the call returns.

wxConnection::OnStartAdvise

virtual bool OnStartAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning false.

wxConnection::OnStopAdvise

virtual bool OnStopAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning false, although this doesn't have much meaning in practice.

wxConnection::Poke

bool Poke (const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxConnection::OnPoke (p.
200) member to be called. If size is -1 the size is computed from the string length of
data.

Returns true if successful.

wxConnection::Request

char* Request (const wxString& item, int * size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxConnection::OnRequest (p. 200) member to be called. Size may be
NULL or a pointer to a variable to receive the size of the requested item.

Returns a character string (actually a pointer to the connection's buffer) if successful,
NULL otherwise. This buffer does not need to be deleted.

wxConnection::StartAdvise

CHAPTER 7

202

bool StartAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxConnection::OnStartAdvise (p. 200) member to be
called. Returns true if the server okays it, false otherwise.

wxConnection::StopAdvise

bool StopAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxConnection::OnStopAdvise (p. 201) member to be called.
Returns true if the server okays it, false otherwise.

wxContextMenuEvent

This class is used for context menu events, sent to give the application a chance to
show a context (popup) menu.

Derived from

wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process a menu event, use these event handler macros to direct input to member
functions that take a wxContextMenuEvent argument.

EVT_CONTEXT_MENU(func) A right click (or other context menu command
depending on platform) has been detected.

See also

Command events (p. 172),
Event handling overview (p. 1674)

wxContextMenuEvent::wxContextMenuEvent

 wxContextMenuEvent (WXTYPE id = 0, int id = 0, const wxPoint&
pos=wxDefaultPosition)

Constructor.

wxContextMenuEvent::GetPosition

CHAPTER 7

203

wxPoint GetPosition () const

Returns the position at which the menu should be shown.

wxContextMenuEvent::SetPosition

void SetPosition (const wxPoint& point)

Sets the position at which the menu should be shown.

wxContextHelp

This class changes the cursor to a query and puts the application into a 'context-
sensitive help mode'. When the user left-clicks on a window within the specified window,
a wxEVT_HELP event is sent to that control, and the application may respond to it by
popping up some help.

For example:

 wxContextHelp contextHelp(myWindow);

There are a couple of ways to invoke this behaviour implicitly:

 • Use the wxDIALOG_EX_CONTEXTHELP style for a dialog (Windows only).
This will put a question mark in the titlebar, and Windows will put the application
into context-sensitive help mode automatically, with further programming.

 • Create a wxContextHelpButton (p. 204), whose predefined behaviour is to
create a context help object. Normally you will write your application so that this
button is only added to a dialog for non-Windows platforms (use
wxDIALOG_EX_CONTEXTHELP on Windows).

Note that on Mac OS X, the cursor does not change when in context-sensitive help
mode.

Derived from

wxObject (p. 967)

Include files

<wx/cshelp.h>

See also

wxHelpEvent (p. 670), wxHelpController (p. 664), wxContextHelpButton (p. 204)

wxContextHelp::wxContextHelp

 wxContextHelp (wxWindow* window = NULL, bool doNow = true)

CHAPTER 7

204

Constructs a context help object, calling BeginContextHelp (p. 203) if doNow is true (the
default).

If window is NULL, the top window is used.

wxContextHelp::~wxContextHelp

 ~wxContextHelp ()

Destroys the context help object.

wxContextHelp::BeginContextHelp

bool BeginContextHelp (wxWindow* window = NULL)

Puts the application into context-sensitive help mode. window is the window which will
be used to catch events; if NULL, the top window will be used.

Returns true if the application was successfully put into context-sensitive help mode.
This function only returns when the event loop has finished.

wxContextHelp::EndContextHelp

bool EndContextHelp ()

Ends context-sensitive help mode. Not normally called by the application.

wxContextHelpButton

Instances of this class may be used to add a question mark button that when pressed,
puts the application into context-help mode. It does this by creating a wxContextHelp (p.
202) object which itself generates a wxEVT_HELP event when the user clicks on a
window.

On Windows, you may add a question-mark icon to a dialog by use of the
wxDIALOG_EX_CONTEXTHELP extra style, but on other platforms you will have to add
a button explicitly, usually next to OK, Cancel or similar buttons.

Derived from

wxBitmapButton (p. 89)
wxButton (p. 112)
wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/cshelp.h>

CHAPTER 7

205

See also

wxBitmapButton (p. 89), wxContextHelp (p. 202)

wxContextHelpButton::wxContextHelpButton

 wxContextHelpButton ()

Default constructor.

 wxContextHelpButton (wxWindow* parent, wxWindowID id =
wxID_CONTEXT_HELP, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxBU_AUTODRAW)

Constructor, creating and showing a context help button.

Parameters

parent

Parent window. Must not be NULL.

id

Button identifier. Defaults to wxID_CONTEXT_HELP.

pos

Button position.

size

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the question mark bitmap.

style

Window style.

Remarks

Normally you need pass only the parent window to the constructor, and use the defaults
for the remaining parameters.

wxControl

This is the base class for a control or "widget''.

A control is generally a small window which processes user input and/or displays one or
more item of data.

Derived from

CHAPTER 7

206

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/control.h>

See also

wxValidator (p. 1394)

wxControl::Command

void Command (wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 172).

wxControl::GetLabel

wxString& GetLabel ()

Returns the control's text.

wxControl::SetLabel

void SetLabel (const wxString& label)

Sets the item's text.

wxControlWithItems

This class is an abstract base class for some wxWidgets controls which contain several
items, such as wxListBox (p. 808) and wxCheckListBox (p. 132) derived from it,
wxChoice (p. 134) and wxComboBox (p. 164).

It defines the methods for accessing the controls items and although each of the derived
classes implements them differently, they still all conform to the same interface.

The items in a wxControlWithItems have (non empty) string labels and, optionally, client
data associated with them. Client data may be of two different kinds: either simple
untyped (void *) pointers which are simply stored by the control but not used in any
way by it, or typed pointers (wxClientData *) which are owned by the control
meaning that the typed client data (and only it) will be deleted when an item is deleted
(p. 207) or the entire control is cleared (p. 207) (which also happens when it is
destroyed). Finally note that in the same control all items must have client data of the
same type (typed or untyped), if any. This type is determined by the first call to Append
(p. 207) (the version with client data pointer) or SetClientData (p. 211).

CHAPTER 7

207

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/ctrlsub.h> but usually never included directly

wxControlWithItems::Append

int Append (const wxString& item)

Adds the item to the end of the list box.

int Append (const wxString& item, void * clientData)

int Append (const wxString& item, wxClientData * clientData)

Adds the item to the end of the list box, associating the given, typed or untyped, client
data pointer with the item.

void Append (const wxArrayString& strings)

Appends several items at once to the control. Notice that calling this method may be
much faster than appending the items one by one if you need to add a lot of items.

Parameters

item

String to add.

clientData

Client data to associate with the item.

Return value

When appending a single item, the return value is the index of the newly added item
which may be different from the last one if the control is sorted (e.g. has wxLB_SORT or
wxCB_SORT style).

wxControlWithItems::Clear

void Clear ()

Removes all items from the control.

Clear() also deletes the client data of the existing items if it is owned by the control.

CHAPTER 7

208

wxControlWithItems::Delete

void Delete (int n)

Deletes an item from the control. The client data associated with the item will be also
deleted if it is owned by the control.

Note that it is an error (signalled by an assert failure in debug builds) to remove an item
with the index negative or greater or equal than the number of items in the control.

Parameters

n

The zero-based item index.

See also

Clear (p. 207)

wxControlWithItems::FindString

int FindString (const wxString& string)

Finds an item whose label matches the given string.

Parameters

string

String to find.

Return value

The zero-based position of the item, or wxNOT_FOUND if the string was not found.

wxControlWithItems::GetClientData

void * GetClientData (int n) const

Returns a pointer to the client data associated with the given item (if any). It is an error to
call this function for a control which doesn't have untyped client data at all although it is
ok to call it even if the given item doesn't have any client data associated with it (but
other items do).

Parameters

n

The zero-based position of the item.

Return value

A pointer to the client data, or NULL if not present.

CHAPTER 7

209

wxControlWithItems::GetClientObject

wxClientData * GetClientObject (int n) const

Returns a pointer to the client data associated with the given item (if any). It is an error to
call this function for a control which doesn't have typed client data at all although it is ok
to call it even if the given item doesn't have any client data associated with it (but other
items do).

Parameters

n

The zero-based position of the item.

Return value

A pointer to the client data, or NULL if not present.

wxControlWithItems::GetCount

int GetCount () const

Returns the number of items in the control.

See also

IsEmpty (p. 210)

wxControlWithItems::GetSelection

int GetSelection () const

Returns the index of the selected item or wxNOT_FOUND if no item is selected.

Return value

The position of the current selection.

Remarks

This method can be used with single selection list boxes only, you should use
wxListBox::GetSelections (p. 811) for the list boxes with wxLB_MULTIPLE style.

See also

SetSelection (p. 212), GetStringSelection (p. 210)

wxControlWithItems::GetString

wxString GetString (int n) const

Returns the label of the item with the given index.

CHAPTER 7

210

Parameters

n

The zero-based index.

Return value

The label of the item or an empty string if the position was invalid.

wxControlWithItems::GetStringSelection

wxString GetStringSelection () const

Returns the label of the selected item or an empty string if no item is selected.

See also

GetSelection (p. 209)

wxControlWithItems::Insert

int Insert (const wxString& item, int pos)

Inserts the item into the list before pos. Not valid for wxLB_SORT or wxCB_SORT styles,
use Append instead.

int Insert (const wxString& item, int pos, void * clientData)

int Insert (const wxString& item, int pos, wxClientData * clientData)

Inserts the item into the list before pos, associating the given, typed or untyped, client
data pointer with the item. Not valid for wxLB_SORT or wxCB_SORT styles, use Append
instead.

Parameters

item

String to add.

pos

Position to insert item before, zero based.

clientData

Client data to associate with the item.

Return value

The return value is the index of the newly inserted item. If the insertion failed for some
reason, -1 is returned.

CHAPTER 7

211

wxControlWithItems::IsEmpty

bool IsEmpty () const

Returns true if the control is empty or false if it has some items.

See also

GetCount (p. 209)

wxControlWithItems::Number

int Number () const

Obsolescence note: This method is obsolete and was replaced withGetCount (p. 209),
please use the new method in the new code. This method is only available if wxWidgets
was compiled with WXWIN_COMPATIBILITY_2_2 defined and will disappear completely
in future versions.

wxControlWithItems::Select

void Select (int n)

This is the same as SetSelection (p. 212) and exists only because it is slightly more
natural for controls which support multiple selection.

wxControlWithItems::SetClientData

void SetClientData (int n, void * data)

Associates the given untyped client data pointer with the given item. Note that it is an
error to call this function if any typed client data pointers had been associated with the
control items before.

Parameters

n

The zero-based item index.

data

The client data to associate with the item.

wxControlWithItems::SetClientObject

void SetClientObject (int n, wxClientData * data)

Associates the given typed client data pointer with the given item: the data object will be
deleted when the item is deleted (either explicitly by using Deletes (p. 207) or implicitly
when the control itself is destroyed).

CHAPTER 7

212

Note that it is an error to call this function if any untyped client data pointers had been
associated with the control items before.

Parameters

n

The zero-based item index.

data

The client data to associate with the item.

wxControlWithItems::SetSelection

void SetSelection (int n)

Sets the selection to the given item n or removes the selection entirely if n ==
wxNOT_FOUND.

Note that this does not cause any command events to be emitted nor does it deselect
any other items in the controls which support multiple selections.

Parameters

n

The string position to select, starting from zero.

See also

SetString (p. 212), SetStringSelection (p. 212)

wxControlWithItems::SetString

void SetString (int n, const wxString& string)

Sets the label for the given item.

Parameters

n

The zero-based item index.

string

The label to set.

wxControlWithItems::SetStringSelection

bool SetStringSelection (const wxString& string)

Selects the item with the specified string in the control. This doesn't cause any command

CHAPTER 7

213

events being emitted.

Parameters

string

The string to select.

Return value

true if the specified string has been selected, false if it wasn't found in the control.

See also

SetSelection (p. 212)

wxCountingOutputStream

wxCountingOutputStream is a specialized output stream which does not write any data
anyway, instead it counts how many bytes would get written if this were a normal
stream. This can sometimes be useful or required if some data gets serialized to a
stream or compressed by using stream compression and thus the final size of the
stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of
memory and the memory has to be allocated before writing to it (which is probably
always the case when writing to a memory stream).

Derived from

wxOutputStream (p. 971)wxStreamBase (p. 1218)

Include files

<wx/stream.h>

wxCountingOutputStream::wxCountingOutputStream

 wxCountingOutputStream ()

Creates a wxCountingOutputStream object.

wxCountingOutputStream::~wxCountingOutputStream

 ~wxCountingOutputStream ()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize () const

CHAPTER 7

214

Returns the current size of the stream.

wxCriticalSection

A critical section object is used for exactly the same purpose as mutexes (p. 951). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

Finally, you should try to use wxCriticalSectionLocker (p. 214) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p. 954)
is preferrable to wxMutex (p. 951) - please see wxMutex for an example.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 1315), wxCondition (p. 181), wxCriticalSectionLocker (p. 214)

wxCriticalSection::wxCriticalSection

 wxCriticalSection ()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

 ~wxCriticalSection ()

Destructor frees the resources.

wxCriticalSection::Enter

void Enter ()

Enter the critical section (same as locking a mutex). There is no error return for this
function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

CHAPTER 7

215

void Leave ()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

wxCriticalSectionLocker

This is a small helper class to be used with wxCriticalSection (p. 213) objects. A
wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Example of using it:

void Set Foo()
{
 // gs_critSect is some (global) critical sectio n guarding
access to the
 // object "foo"
 wxCriticalSectionLocker locker(gs_critSect);

 if (...)
 {
 // do something
 ...

 return;
 }

 // do something else
 ...

 return;
}

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each return .

Derived from

None.

Include files

<wx/thread.h>

See also

wxCriticalSection (p. 213), wxMutexLocker (p. 954)

wxCriticalSectionLocker::wxCriticalSectionLocker

 wxCriticalSectionLocker (wxCriticalSection& criticalsection)

CHAPTER 7

216

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and
enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker

 ~wxCriticalSectionLocker ()

Destructor leaves the critical section.

wxCSConv

This class converts between any character sets and Unicode. It has one predefined
instance, wxConvLocal , for the default user character set.

Derived from

wxMBConv (p. 869)

Include files

<wx/strconv.h>

See also

wxMBConv (p. 869), wxEncodingConverter (p. 459), wxMBConv classes overview (p.
1657)

wxCSConv::wxCSConv

 wxCSConv (const wxChar* charset)

 wxCSConv (wxFontEncoding encoding)

Constructor. You may specify either the name of the character set you want to convert
from/to or an encoding constant. If the character set name is not recognized, ISO 8859-1
is used as fall back.

wxCSConv::~wxCSConv

 ~wxCSConv ()

Destructor frees any resources needed to perform the conversion.

wxCSConv::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from the selected character set to Unicode. Returns length of string written to
destination buffer.

CHAPTER 7

217

wxCSConv::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to the selected character set. Returns length of string written to
destination buffer.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxIcon (p. 730) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWidgets convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 1551) is also available
for MS Windows use.

Derived from

wxBitmap (p. 76)
wxGDIObject (p. 582)
wxObject (p. 967)

Include files

<wx/cursor.h>

Predefined objects

Objects:

wxNullCursor

Pointers:

wxSTANDARD_CURSOR
wxHOURGLASS_CURSOR
wxCROSS_CURSOR

See also

wxBitmap (p. 76), wxIcon (p. 730), wxWindow::SetCursor (p. 1459), ::wxSetCursor (p.
1551)

wxCursor::wxCursor

CHAPTER 7

218

 wxCursor ()

Default constructor.

 wxCursor (const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL, wxColour* fg=NULL, wxColour* bg=NULL)

Constructs a cursor by passing an array of bits (Motif and GTK+ only). maskBits is used
only under Motif and GTK+. The parameters fg and bg are only present on GTK+, and
force the cursor to use particular background and foreground colours.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

 wxCursor (const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)

Constructs a cursor by passing a string resource name or filename.

On MacOS when specifying a string resource name, first the color cursors 'crsr' and then
the black/white cursors 'CURS' in the resource chain are scanned through.

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

 wxCursor (int cursorId)

Constructs a cursor using a cursor identifier.

 wxCursor (const wxImage& image)

Constructs a cursor from a wxImage. The cursor is monochrome, colors with the RGB
elements all greater than 127 will be foreground, colors less than this background. The
mask (if any) will be used as transparent.

In MSW the foreground will be white and the background black. If the cursor is larger
than 32x32 it is resized. In GTK, the two most frequent colors will be used for foreground
and background. The cursor will be displayed at the size of the image. On MacOS if the
cursor is larger than 16x16 it is resized and currently only shown as black/white (mask
respected).

 wxCursor (const wxCursor& cursor)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

bits

An array of bits.

maskBits

Bits for a mask bitmap.

width

CHAPTER 7

219

Cursor width.

height

Cursor height.

hotSpotX

Hotspot x coordinate.

hotSpotY

Hotspot y coordinate.

type

Icon type to load. Under Motif, type defaults to wxBITMAP_TYPE_XBM . Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE . Under MacOS, it
defaults to wxBITMAP_TYPE_MACCURSOR_RESOURCE .

Under X, the permitted cursor types are:

wxBITMAP_TYPE_XBM Load an X bitmap file.

Under Windows, the permitted types are:

wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).

wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).

wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.

cursorId

A stock cursor identifier. May be one of:

wxCURSOR_ARROW A standard arrow cursor.

wxCURSOR_RIGHT_ARROW A standard arrow cursor pointing to the right.

wxCURSOR_BLANK Transparent cursor.

wxCURSOR_BULLSEYE Bullseye cursor.

wxCURSOR_CHAR Rectangular character cursor.

wxCURSOR_CROSS A cross cursor.

wxCURSOR_HAND A hand cursor.

CHAPTER 7

220

wxCURSOR_IBEAM An I-beam cursor (vertical line).

wxCURSOR_LEFT_BUTTON Represents a mouse with the left button
depressed.

wxCURSOR_MAGNIFIER A magnifier icon.

wxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button
depressed.

wxCURSOR_NO_ENTRY A no-entry sign cursor.

wxCURSOR_PAINT_BRUSH A paintbrush cursor.

wxCURSOR_PENCIL A pencil cursor.

wxCURSOR_POINT_LEFT A cursor that points left.

wxCURSOR_POINT_RIGHT A cursor that points right.

wxCURSOR_QUESTION_ARROW An arrow and question mark.

wxCURSOR_RIGHT_BUTTON Represents a mouse with the right button
depressed.

wxCURSOR_SIZENESW A sizing cursor pointing NE-SW.

wxCURSOR_SIZENS A sizing cursor pointing N-S.

wxCURSOR_SIZENWSE A sizing cursor pointing NW-SE.

wxCURSOR_SIZEWE A sizing cursor pointing W-E.

wxCURSOR_SIZING A general sizing cursor.

wxCURSOR_SPRAYCAN A spraycan cursor.

wxCURSOR_WAIT A wait cursor.

wxCURSOR_WATCH A watch cursor.

wxCURSOR_ARROWWAIT A cursor with both an arrow and an hourglass,
(windows.)

Note that not all cursors are available on all platforms.

cursor

Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:

wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor
from a filename

CHAPTER 7

221

wxStockCursor(id) Constructs a stock cursor

wxPerl note: Constructors supported by wxPerl are:

 •::Cursor->new(name, type, hotSpotX = 0, hotSpotY = 0)

 •::Cursor->new(id)

 •::Cursor->new(image)

 •::Cursor->newData(bits, width, height, hotSpotX = -1, hotSpotY = -1, maskBits = 0)

Example

The following is an example of creating a cursor from 32x32 bitmap data (down_bits)
and a mask (down_mask) where 1 is black and 0 is white for the bits, and 1 is opaque
and 0 is transparent for the mask. It works on Windows and GTK+.

static char down_bits[] = { 255, 255, 255, 255, 31,
 255, 255, 255, 31, 255, 255, 255, 31, 255, 255, 2 55,
 31, 255, 255, 255, 31, 255, 255, 255, 31, 255, 25 5,
 255, 31, 255, 255, 255, 31, 255, 255, 255, 25, 24 3,
 255, 255, 19, 249, 255, 255, 7, 252, 255, 255, 15 , 254,
 255, 255, 31, 255, 255, 255, 191, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 255 };

static char down_mask[] = { 240, 1, 0, 0, 240, 1,
 0, 0, 240, 1, 0, 0, 240, 1, 0, 0, 240, 1, 0, 0, 2 40, 1,
 0, 0, 240, 1, 0, 0, 240, 1, 0, 0, 255, 31, 0, 0, 255,
 31, 0, 0, 254, 15, 0, 0, 252, 7, 0, 0, 248, 3, 0, 0,
 240, 1, 0, 0, 224, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0,
 0, 0, 0, 0, 0 };

#ifdef __WXMSW__
wxBitmap down_bitmap(down_bits, 32, 32);
wxBitmap down_mask_bitmap(down_mask, 32, 32);

down_bitmap.SetMask(new wxMask(down_mask_bitmap));
wxImage down_image = down_bitmap.ConvertToImage();
down_image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_X, 6);
down_image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y, 14);
wxCursor down_cursor = wxCursor(down_image);
#else
wxCursor down_cursor = wxCursor(down_bits, 32, 32,
 6, 14, down_mask, wxWHITE, wxBLACK);
#endif

wxCursor::~wxCursor

CHAPTER 7

222

 ~wxCursor ()

Destroys the cursor. A cursor can be reused for more than one window, and does not
get destroyed when the window is destroyed. wxWidgets destroys all cursors on
application exit, although it is best to clean them up explicitly.

wxCursor::Ok

bool Ok() const

Returns true if cursor data is present.

wxCursor::operator =

wxCursor& operator = (const wxCursor& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator == (const wxCursor& cursor)

Equality operator. Two cursors are equal if they contain pointers to the same underlying
cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor::operator !=

bool operator != (const wxCursor& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxCustomDataObject

wxCustomDataObject is a specialization of wxDataObjectSimple (p. 233) for some
application-specific data in arbitrary (either custom or one of the standard ones). The
only restriction is that it is supposed that this data can be copied bitwise (i.e. with
memcpy()), so it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 224) or TakeData (p. 224) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

CHAPTER 7

223

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should override GetSize (p. 223), GetData (p. 223)
and SetData (p. 224) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 233)
wxDataObject (p. 229)

Include files

<wx/dataobj.h>

See also

wxDataObject (p. 229)

wxCustomDataObject::wxCustomDataObject

 wxCustomDataObject (const wxDataFormat& format = wxFormatInvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here, SetFormat (p. 234) should be used.

wxCustomDataObject::~wxCustomDataObject

 ~wxCustomDataObject ()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 223) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Free() , you
should override the destructor in your class as well (which would probably just call the
derived class' version of Free()).

wxCustomDataObject::Alloc

virtual void * Alloc (size_t size)

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

virtual void Free()

This function is called when the data is freed, you may override it to anything you want
(or may be nothing at all). The default version calls operator delete[] on the data.

CHAPTER 7

224

wxCustomDataObject::GetSize

virtual size_t GetSize () const

Returns the data size in bytes.

wxCustomDataObject::GetData

virtual void * GetData () const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData (size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

wxCustomDataObject::TakeData

virtual void TakeData (size_t size, const void *data)

Like SetData (p. 224), but doesn't copy the data - instead the object takes ownership of
the pointer.

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

wxDataFormat

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

On the system level, a data format is usually just a number (CLIPFORMATunder
Windows or Atom under X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)

wxDF_BITMAP A bitmap (wxBitmap)

wxDF_METAFILE A metafile (wxMetafile, Windows only)

CHAPTER 7

225

wxDF_FILENAME A list of filenames

wxDF_HTML An HTML string. This is only valid when passed to
wxSetClipboardData when compiled with Visual C++ in
non-Unicode mode

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDataFormat::NativeFormat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!

Virtual functions to override

None

Derived from

None

See also

Clipboard and drag and drop overview (p. 1740), DnD sample (p. 1634), wxDataObject
(p. 229)

Include files

<wx/dataobj.h>

wxDataFormat::wxDataFormat

 wxDataFormat (NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 226) or SetId (p. 226) later in this case)

wxPerl note: In wxPerl this function is named newNative .

wxDataFormat::wxDataFormat

 wxDataFormat (const wxChar *format)

Constructs a data format object for a custom format identified by its name format.

CHAPTER 7

226

wxPerl note: In wxPerl this function is named newUser .

wxDataFormat::operator ==

bool operator == (const wxDataFormat& format) const

Returns true if the formats are equal.

wxDataFormat::operator !=

bool operator != (const wxDataFormat& format) const

Returns true if the formats are different.

wxDataFormat::GetId

wxString GetId () const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType

NativeFormat GetType () const

Returns the platform-specific number identifying the format.

wxDataFormat::SetId

void SetId (const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType (NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

wxDataInputStream

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or little-endian format, little-endian being the default on all
architectures.

If you want to read data from text files (or streams) use wxTextInputStream (p. 1307)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as

CHAPTER 7

227

signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:

 wxFileInputStream input("mytext.dat");
 wxDataInputStream store(input);
 wxUint8 i1;
 float f2;
 wxString line;

 store >> i1; // read a 8 bit integer.
 store >> i1 >> f2; // read a 8 bit integer follow ed by float.
 store >> line; // read a text line

See also wxDataOutputStream (p. 234).

Derived from

None

Include files

<wx/datstrm.h>

wxDataInputStream::wxDataInputStream

 wxDataInputStream (wxInputStream& stream)

 wxDataInputStream (wxInputStream& stream, wxMBConv& conv = wxMBConvUTF8)

Constructs a datastream object from an input stream. Only read methods will be
available. The second form is only available in Unicode build of wxWidgets.

Parameters

stream

The input stream.

conv

Charset conversion object object used to decode strings in Unicode mode (see
wxDataInputStream::ReadString (p. 228)documentation for detailed description).
Note that you must not destroyconv before you destroy this wxDataInputStream
instance!

wxDataInputStream::~wxDataInputStream

 ~wxDataInputStream ()

Destroys the wxDataInputStream object.

CHAPTER 7

228

wxDataInputStream::BigEndianOrdered

void BigEndianOrdered (bool be_order)

If be_order is true, all data will be read in big-endian order , such as written
by programs on a big endian architecture (e.g. Spa rc) or written by Java-
Streams (which always use big-endian order). wxDa taInputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

void Read8(wxUint8 * buffer, size_t size)

Reads bytes from the stream in a specified buffer. The amount of bytes to read is
specified by the size variable.

wxDataInputStream::Read16

wxUint16 Read16()

Reads a 16 bit unsigned integer from the stream.

void Read16(wxUint16 * buffer, size_t size)

Reads 16 bit unsigned integers from the stream in a specified buffer. the amount of 16
bit unsigned integer to read is specified by the size variable.

wxDataInputStream::Read32

wxUint32 Read32()

Reads a 32 bit unsigned integer from the stream.

void Read32(wxUint32 * buffer, size_t size)

Reads 32 bit unsigned integers from the stream in a specified buffer. the amount of 32
bit unsigned integer to read is specified by the size variable.

wxDataInputStream::Read64

wxUint64 Read64()

Reads a 64 bit unsigned integer from the stream.

void Read64(wxUint64 * buffer, size_t size)

Reads 64 bit unsigned integers from the stream in a specified buffer. the amount of 64
bit unsigned integer to read is specified by the size variable.

wxDataInputStream::ReadDouble

CHAPTER 7

229

double ReadDouble ()

Reads a double (IEEE encoded) from the stream.

void ReadDouble (double * buffer, size_t size)

Reads double data (IEEE encoded) from the stream in a specified buffer. the amount of
double to read is specified by the size variable.

wxDataInputStream::ReadString

wxString ReadString ()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

In Unicode build of wxWidgets, the fuction first reads multibyte (char*) string from the
stream and then converts it to Unicode using the convobject passed to constructor and
returns the result as wxString. You are responsible for using the same convertor as
when writing the stream.

See also wxDataOutputStream::WriteString (p. 237).

wxDataObject

A wxDataObject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a 'smart' piece of
data unlike 'dumb' data containers such as memory buffers or files. Being 'smart' here
means that the data object itself should know what data formats it supports and how to
render itself in each of its supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on 'input' and 'output', i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Direction
{
 Get = 0x01, // format is supported by GetDa taHere()
 Set = 0x02 // format is supported by SetDa ta()
};

which distinguishes between them. See wxDataFormat (p. 224) documentation for more
about formats.

Not surprisingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWidgets has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 233) and wxDataObjectComposite
(p. 232). wxDataObjectSimple (p. 233) is the simplest wxDataObject possible and only

CHAPTER 7

230

holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
232) is the simplest way to implement a wxDataObject that does support multiple
formats because it achieves this by simply holding several wxDataObjectSimple objects.

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or
custom if you combine it with the previous solution).

4. Use wxDataObject directly This is the solution for maximal flexibility and
efficiency, but it is also the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK+ data transfer mechanisms for clipboard and drag and drop,
nor OLE data transfer, copy any data until another application actually requests the data.
This is in contrast to the 'feel' offered to the user of a program who would normally think
that the data resides in the clipboard after having pressed 'Copy' - in reality it is only
declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 490), wxTextDataObject (p. 1297) and wxBitmapDataObject (p.
94) which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 222)
for user-defined types. The format of user-defined data is given as a mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK+) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows
is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 233) instead.

CHAPTER 7

231

wxPerl note: This class is not currently usable from wxPerl; you may use
Wx::PlDataObjectSimple (p. 233) instead.

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 232).

Derived from

None

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1740), DnD sample (p. 1634),
wxFileDataObject (p. 490), wxTextDataObject (p. 1297), wxBitmapDataObject (p. 94),
wxCustomDataObject (p. 222), wxDropTarget (p. 452), wxDropSource (p. 449),
wxTextDropTarget (p. 1299), wxFileDropTarget (p. 495)

wxDataObject::wxDataObject

 wxDataObject ()

Constructor.

wxDataObject::~wxDataObject

 ~wxDataObject ()

Destructor.

wxDataObject::GetAllFormats

virtual void GetAllFormats (wxDataFormat * formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.

wxPerl note: In wxPerl this method only takes the dir parameter. In scalar context it
returns the first format, in list context it returns a list containing all the supported formats.

wxDataObject::GetDataHere

CHAPTER 7

232

virtual bool GetDataHere (const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return true on
success, false on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize (const wxDataFormat& format) const

Returns the data size of the given format format.

wxDataObject::GetFormatCount

virtual size_t GetFormatCount (Direction dir = Get) const

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

virtual wxDataFormat GetPreferredFormat (Direction dir = Get) const

Returns the preferred format for either rendering the data (if dir is Get , its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData (const wxDataFormat& format, size_t len, const void *buf)

Set the data in the format format of the length len provided in the buffer buf.

Returns true on success, false on failure.

wxDataObjectComposite

wxDataObjectComposite is the simplest wxDataObject (p. 229) derivation which may be
used to support multiple formats. It contains several wxDataObjectSimple (p. 233)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 233)) and its format determines the preferred format of the
composite data object as well.

See wxDataObject (p. 229) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.

Derived from

wxDataObject (p. 229)

CHAPTER 7

233

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1740), wxDataObject (p. 229),
wxDataObjectSimple (p. 233), wxFileDataObject (p. 490), wxTextDataObject (p. 1297),
wxBitmapDataObject (p. 94)

wxDataObjectComposite::wxDataObjectComposite

 wxDataObjectComposite ()

The default constructor.

wxDataObjectComposite::Add

void Add (wxDataObjectSimple *dataObject, bool preferred = false)

Adds the dataObject to the list of supported objects and it becomes the preferred object
if preferred is true.

wxDataObjectSimple

This is the simplest possible implementation of the wxDataObject (p. 229) class. The
data object of (a class derived from) this class only supports one format, so the number
of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

wxPerl note: In wxPerl, you need to derive your data object class from
Wx::PlDataObjectSimple.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 234) and
GetDataHere (p. 234) while the objects which may be set must override SetData (p.
234). Of course, the objects supporting both operations must override all three methods.

Derived from

wxDataObject (p. 229)

Include files

CHAPTER 7

234

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1740), DnD sample (p. 1634),
wxFileDataObject (p. 490), wxTextDataObject (p. 1297), wxBitmapDataObject (p. 94)

wxDataObjectSimple::wxDataObjectSimple

 wxDataObjectSimple (const wxDataFormat& format = wxFormatInvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 234).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat () const

Returns the (one and only one) format supported by this object. It is supposed that the
format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat (const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize () const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere (void *buf) const

Copy the data to the buffer, return true on success. Must be implemented in the derived
class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

wxDataObjectSimple::SetData

virtual bool SetData (size_t len, const void *buf)

Copy the data from the buffer, return true on success. Must be implemented in the

CHAPTER 7

235

derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDataOutputStream

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or little-endian format, little-endian being the default on all
architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. 1310)
instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDataInputStream (p. 226) for its usage and caveats.

See also wxDataInputStream (p. 226).

Derived from

None

Include files

<wx/datstrm.h>

wxDataOutputStream::wxDataOutputStream

 wxDataOutputStream (wxOutputStream& stream)

 wxDataOutputStream (wxOutputStream& stream, wxMBConv& conv =
wxMBConvUTF8)

Constructs a datastream object from an output stream. Only write methods will be
available. The second form is only available in Unicode build of wxWidgets.

Parameters

stream

The output stream.

conv

Charset conversion object object used to encoding Unicode strings before writing
them to the stream in Unicode mode (see wxDataOutputStream::WriteString (p.
237)documentation for detailed description). Note that you must not destroyconv
before you destroy this wxDataOutputStream instance! It is recommended to use
default value (UTF-8).

CHAPTER 7

236

wxDataOutputStream::~wxDataOutputStream

 ~wxDataOutputStream ()

Destroys the wxDataOutputStream object.

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered (bool be_order)

If be_order is true, all data will be written in big-endian or der, e.g. for
reading on a Sparc or from Java-Streams (which alwa ys use big-endian
order), otherwise data will be written in little-en dian order.
wxDataOutputStream::Write8

void Write8 (wxUint8 i8)

Writes the single byte i8 to the stream.

void Write8 (const wxUint8 * buffer, size_t size)

Writes an array of bytes to the stream. The amount of bytes to write is specified with the
size variable.

wxDataOutputStream::Write16

void Write16 (wxUint16 i16)

Writes the 16 bit unsigned integer i16 to the stream.

void Write16 (const wxUint16 * buffer, size_t size)

Writes an array of 16 bit unsigned integer to the stream. The amount of 16 bit unsigned
integer to write is specified with the size variable.

wxDataOutputStream::Write32

void Write32 (wxUint32 i32)

Writes the 32 bit unsigned integer i32 to the stream.

void Write32 (const wxUint32 * buffer, size_t size)

Writes an array of 32 bit unsigned integer to the stream. The amount of 32 bit unsigned
integer to write is specified with the size variable.

wxDataOutputStream::Write64

void Write64 (wxUint64 i64)

Writes the 64 bit unsigned integer i64 to the stream.

CHAPTER 7

237

void Write64 (const wxUint64 * buffer, size_t size)

Writes an array of 64 bit unsigned integer to the stream. The amount of 64 bit unsigned
integer to write is specified with the size variable.

wxDataOutputStream::WriteDouble

void WriteDouble (double f)

Writes the double f to the stream using the IEEE format.

void WriteDouble (const double * buffer, size_t size)

Writes an array of double to the stream. The amount of double to write is specified with
the size variable.

wxDataOutputStream::WriteString

void WriteString (const wxString& string)

Writes string to the stream. Actually, this method writes the size of the string before
writing string itself.

In ANSI build of wxWidgets, the string is written to the stream in exactly same way it is
represented in memory. In Unicode build, however, the string is first converted to
multibyte representation with conv object passed to stream's constructor (consequently,
ANSI application can read data written by Unicode application, as long as they agree on
encoding) and this representation is written to the stream. UTF-8 is used by default.

wxDateEvent

This event class holds information about a date change and is used together with
wxDatePickerCtrl (p. 237). It also serves as a base class for wxCalendarEvent (p. 125).

Derived from

wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/dateevt.h>

wxDateEvent::GetDate

const wxDateTime& GetDate () const

Returns the date.

CHAPTER 7

238

wxDateEvent::SetDate

void SetDate (const wxDateTime& date)

Sets the date carried by the event, normally only used by the library internally.

wxDatePickerCtrl

This control allows the user to select a date. Unlike wxCalendarCtrl (p. 117), which is a
relatively big control, wxDatePickerCtrl is implemented as a small window showing the
currently selected date. The control can be edited using the keyboard, and can also
display a popup window for more user-friendly date selection, depending on the styles
used and the platform, except PalmOS where date is selected using native dialog.

It is only available if wxUSE_DATEPICKCTRL is set to 1.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/datectrl.h>

(only available if wxUSE_DATEPICKCTRL is set to 1)

Window styles

wxDP_SPIN Creates a control without a month calendar drop down but
with spin-control-like arrows to change individual date
components. This style is not supported by the generic
version.

wxDP_DROPDOWN Creates a control with a month calendar drop-down part
from which the user can select a date.

wxDP_DEFAULT Creates a control with the style that is best supported for
the current platform (currently wxDP_SPIN under Windows
and wxDP_DROPDOWN elsewhere).

wxDP_ALLOWNONE With this style, the control allows the user to not enter any
valid date at all. Without it - the default - the control always
has some valid date.

wxDP_SHOWCENTURY Forces display of the century in the default date format.
Without this style the century could be displayed, or not,
depending on the default date representation in the
system.

Event handling

CHAPTER 7

239

EVT_DATE_CHANGED(id, func) This event fires when the user changes the
current selection in the control.

See also

wxCalendarCtrl (p. 117),
wxDateEvent (p. 237)

wxDatePickerCtrl::wxDatePickerCtrl

 wxDatePickerCtrl (wxWindow * parent, wxWindowID id, const wxDateTime& dt =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDP_DEFAULT | wxDP_SHOWCENTURY, const
wxValidator& validator = wxDefaultValidator,const wxString& name = "datectrl")

Initializes the object and calls Create (p. 239) with all the parameters.

wxDatePickerCtrl::Create

bool Create (wxWindow * parent, wxWindowID id, const wxDateTime& dt =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDP_DEFAULT | wxDP_SHOWCENTURY, const
wxValidator& validator = wxDefaultValidator,const wxString& name = "datectrl")

Parameters

parent

Parent window, must not be non-NULL.

id

The identifier for the control.

dt

The initial value of the control, if an invalid date (such as the default value) is used,
the control is set to today.

pos

Initial position.

size

Initial size. If left at default value, the control chooses its own best size by using the
height approximately equal to a text control and width large enough to show the
date string fully.

style

The window style, should be left at 0 as there are no special styles for this control

CHAPTER 7

240

in this version.

validator

Validator which can be used for additional date checks.

name

Control name.

Return value

true if the control was successfully created or false if creation failed.

wxDatePickerCtrl::GetRange

bool GetRange (wxDateTime * dt1, wxDateTime *dt2) const

If the control had been previously limited to a range of dates using SetRange() (p. 240),
returns the lower and upper bounds of this range. If no range is set (or only one of the
bounds is set), dt1 and/or dt2 are set to be invalid.

Parameters

dt1

Pointer to the object which receives the lower range limit or becomes invalid if it is
not set. May be NULL if the caller is not interested in lower limit

dt2

Same as above but for the upper limit

Return value

false if no range limits are currently set, true if at least one bound is set.

wxDatePickerCtrl::GetValue

wxDateTime GetValue () const

Returns the currently selected. If there is no selection or the selection is outside of the
current range, an invalid object is returned.

wxDatePickerCtrl::SetRange

void SetRange (const wxDateTime& dt1, const wxDateTime& dt2)

Sets the valid range for the date selection. If dt1 is valid, it becomes the earliest date
(inclusive) accepted by the control. If dt2 is valid, it becomes the latest possible date.

Remarks

If the current value of the control is outside of the newly set range bounds, the behaviour

CHAPTER 7

241

is undefined.

wxDatePickerCtrl::SetValue

void SetValue (const wxDateTime& dt)

Changes the current value of the control. The date should be valid and included in the
currently selected range, if any.

Calling this method does not result in a date change event.

wxDateSpan

This class is a "logical time span" and is useful for implementing program logic for such
things as "add one month to the date" which, in general, doesn't mean to add
60*60*24*31 seconds to it, but to take the same date the next month (to understand that
this is indeed different consider adding one month to Feb, 15 -- we want to get Mar, 15,
of course).

When adding a month to the date, all lesser components (days, hours, ...) won't be
changed unless the resulting date would be invalid: for example, Jan 31 + 1 month will
be Feb 28, not (non existing) Feb 31.

Because of this feature, adding and subtracting back again the same wxDateSpan will
not , in general give back the original date: Feb 28 - 1 month will be Jan 28, not Jan 31!

wxDateSpan objects can be either positive or negative. They may be multiplied by
scalars which multiply all deltas by the scalar: i.e.2*(1 month and 1 day) is 2 months
and 2 days. They can be added together and with wxDateTime (p. 246) or wxTimeSpan
(p. 1326), but the type of result is different for each case.

Beware about weeks: if you specify both weeks and days, the total number of days
added will be 7*weeks + days! See also GetTotalDays() function.

Equality operators are defined for wxDateSpans. Two datespans are equal if and only if
they both give the same target date when added to every source date. Thus
wxDateSpan::Months(1) is not equal to wxDateSpan::Days(30), because they don't give
the same date when added to 1 Feb. But wxDateSpan::Days(14) is equal to
wxDateSpan::Weeks(2)

Finally, notice that for adding hours, minutes and so on you don't need this class at all:
wxTimeSpan (p. 1326) will do the job because there are no subtleties associated with
those (we don't support leap seconds).

Derived from

No base class

Include files

<wx/datetime.h>

CHAPTER 7

242

See also

Date classes overview (p. 1650), wxDateTime (p. 246)

wxDateSpan::wxDateSpan

 wxDateSpan (int years = 0, int months = 0, int weeks = 0, int days = 0)

Constructs the date span object for the given number of years, months, weeks and days.
Note that the weeks and days add together if both are given.

wxDateSpan::Add

wxDateSpan Add (const wxDateSpan& other) const

wxDateSpan& Add (const wxDateSpan& other)

wxDateSpan& operator+= (const wxDateSpan& other)

Returns the sum of two date spans. The first version returns a new object, the second
and third ones modify this object in place.

wxDateSpan::Day

static wxDateSpan Day()

Returns a date span object corresponding to one day.

See also

Days (p. 242)

wxDateSpan::Days

static wxDateSpan Days (int days)

Returns a date span object corresponding to the given number of days.

See also

Day (p. 242)

wxDateSpan::GetDays

int GetDays () const

Returns the number of days (only, that it not counting the weeks component!) in this date
span.

See also

CHAPTER 7

243

GetTotalDays (p. 242)

wxDateSpan::GetMonths

int GetMonths () const

Returns the number of the months (not counting the years) in this date span.

wxDateSpan::GetTotalDays

int GetTotalDays () const

Returns the combined number of days in this date span, counting both weeks and days.
It still doesn't take neither months nor years into the account.

See also

GetWeeks (p. 243), GetDays (p. 242)

wxDateSpan::GetWeeks

int GetWeeks () const

Returns the number of weeks in this date span.

See also

GetTotalDays (p. 242)

wxDateSpan::GetYears

int GetYears () const

Returns the number of years in this date span.

wxDateSpan::Month

static wxDateSpan Month ()

Returns a date span object corresponding to one month.

See also

Months (p. 243)

wxDateSpan::Months

static wxDateSpan Months (int mon)

Returns a date span object corresponding to the given number of months.

See also

CHAPTER 7

244

Month (p. 243)

wxDateSpan::Multiply

wxDateSpan Multiply (int factor) const

wxDateSpan& Multiply (int factor)

wxDateSpan& operator*= (int factor)

Returns the product of the date span by the specified factor. The product is computed by
multiplying each of the components by the factor.

The first version returns a new object, the second and third ones modify this object in
place.

wxDateSpan::Negate

wxDateSpan Negate () const

Returns the date span with the opposite sign.

See also

Neg (p. 244)

wxDateSpan::Neg

wxDateSpan& Neg()

wxDateSpan& operator- ()

Changes the sign of this date span.

See also

Negate (p. 244)

wxDateSpan::SetDays

wxDateSpan& SetDays (int n)

Sets the number of days (without modifying any other components) in this date span.

wxDateSpan::SetYears

wxDateSpan& SetYears (int n)

Sets the number of years (without modifying any other components) in this date span.

wxDateSpan::SetMonths

CHAPTER 7

245

wxDateSpan& SetMonths (int n)

Sets the number of months (without modifying any other components) in this date span.

wxDateSpan::SetWeeks

wxDateSpan& SetWeeks (int n)

Sets the number of weeks (without modifying any other components) in this date span.

wxDateSpan::Subtract

wxDateSpan Subtract (const wxDateSpan& other) const

wxDateSpan& Subtract (const wxDateSpan& other)

wxDateSpan& operator+= (const wxDateSpan& other)

Returns the difference of two date spans. The first version returns a new object, the
second and third ones modify this object in place.

wxDateSpan::Week

static wxDateSpan Week()

Returns a date span object corresponding to one week.

See also

Weeks (p. 245)

wxDateSpan::Weeks

static wxDateSpan Weeks (int weeks)

Returns a date span object corresponding to the given number of weeks.

See also

Week (p. 245)

wxDateSpan::Year

static wxDateSpan Year()

Returns a date span object corresponding to one year.

See also

Years (p. 245)

wxDateSpan::Years

CHAPTER 7

246

static wxDateSpan Years (int years)

Returns a date span object corresponding to the given number of years.

See also

Year (p. 245)

wxDateSpan::operator==

bool operator== (wxDateSpan& other) const

Returns true if this date span is equal to the other one. Two date spans are considered
equal if and only if they have the same number of years and months and the same total
number of days (counting both days and weeks).

wxDateSpan::operator!=

bool operator!= (wxDateSpan& other) const

Returns true if this date span is different from the other one.

See also

operator== (p. 245)

wxDateTime

wxDateTime class represents an absolute moment in the time.

Types

The type wxDateTime_t is typedefed as unsigned short and is used to contain the
number of years, hours, minutes, seconds and milliseconds.

Constants

Global constant wxDefaultDateTime and synonym for it wxInvalidDateTime are
defined. This constant will be different from any valid wxDateTime object.

All the following constants are defined inside wxDateTime class (i.e., to refer to them you
should prepend their names with wxDateTime::).

Time zone symbolic names:

 enum TZ
 {
 // the time in the current time zone
 Local,

 // zones from GMT (= Greenwhich Mean Time): they're
guaranteed to be
 // consequent numbers, so writing something like `GMT0 +
offset' is

CHAPTER 7

247

 // safe if abs(offset) <= 12

 // underscore stands for minus
 GMT_12, GMT_11, GMT_10, GMT_9, GMT_8, GMT_7 ,
 GMT_6, GMT_5, GMT_4, GMT_3, GMT_2, GMT_1,
 GMT0,
 GMT1, GMT2, GMT3, GMT4, GMT5, GMT6,
 GMT7, GMT8, GMT9, GMT10, GMT11, GMT12,
 // Note that GMT12 and GMT_12 are not the s ame: there is a
difference
 // of exactly one day between them

 // some symbolic names for TZ

 // Europe
 WET = GMT0, // West ern Europe Time
 WEST = GMT1, // West ern Europe
Summer Time
 CET = GMT1, // Cent ral Europe Time
 CEST = GMT2, // Cent ral Europe
Summer Time
 EET = GMT2, // East ern Europe Time
 EEST = GMT3, // East ern Europe
Summer Time
 MSK = GMT3, // Mosc ow Time
 MSD = GMT4, // Mosc ow Summer Time

 // US and Canada
 AST = GMT_4, // Atla ntic Standard
Time
 ADT = GMT_3, // Atla ntic Daylight
Time
 EST = GMT_5, // East ern Standard
Time
 EDT = GMT_4, // East ern Daylight
Saving Time
 CST = GMT_6, // Cent ral Standard
Time
 CDT = GMT_5, // Cent ral Daylight
Saving Time
 MST = GMT_7, // Moun tain Standard
Time
 MDT = GMT_6, // Moun tain Daylight
Saving Time
 PST = GMT_8, // Paci fic Standard
Time
 PDT = GMT_7, // Paci fic Daylight
Saving Time
 HST = GMT_10, // Hawa iian Standard
Time
 AKST = GMT_9, // Alas ka Standard
Time
 AKDT = GMT_8, // Alas ka Daylight
Saving Time

 // Australia

 A_WST = GMT8, // West ern Standard
Time
 A_CST = GMT12 + 1, // Cent ral Standard
Time (+9.5)
 A_EST = GMT10, // East ern Standard
Time
 A_ESST = GMT11, // East ern Summer Time

CHAPTER 7

248

 // Universal Coordinated Time = the new and politically
correct name
 // for GMT
 UTC = GMT0
 };

Month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec and
Inv_Month for an invalid.month value are the values of wxDateTime::Month enum.

Likewise, Sun, Mon, Tue, Wed, Thu, Fri, Sat, and Inv_WeekDay are the values
inwxDateTime::WeekDay enum.

Finally, Inv_Year is defined to be an invalid value for year parameter.

GetMonthName() (p. 254) andGetWeekDayName (p. 255) functions use the following
flags:

 enum NameFlags
 {
 Name_Full = 0x01, // return full name
 Name_Abbr = 0x02 // return abbreviat ed name
 };

Several functions accept an extra parameter specifying the calendar to use (although
most of them only support now the Gregorian calendar). This parameters is one of the
following values:

 enum Calendar
 {
 Gregorian, // calendar currently in use in Western
countries
 Julian // calendar in use since -45 un til the 1582
(or later)
 };

Date calculations often depend on the country and wxDateTime allows to set the country
whose conventions should be used usingSetCountry (p. 256). It takes one of the
following values as parameter:

 enum Country
 {
 Country_Unknown, // no special information for this
country
 Country_Default, // set the default country with
SetCountry() method
 // or use the default coun try with any
other

 Country_WesternEurope_Start,
 Country_EEC = Country_WesternEurope_Start,
 France,
 Germany,
 UK,
 Country_WesternEurope_End = UK,

 Russia,

 USA
 };

CHAPTER 7

249

Different parts of the world use different conventions for the week start. In some
countries, the week starts on Sunday, while in others -- on Monday. The ISO standard
doesn't address this issue, so we support both conventions in the functions whose result
depends on it (GetWeekOfYear (p. 261) andGetWeekOfMonth (p. 262)).

The desired behvaiour may be specified by giving one of the following constants as
argument to these functions:

 enum WeekFlags
 {
 Default_First, // Sunday_First for US, Mo nday_First for
the rest
 Monday_First, // week starts with a Mond ay
 Sunday_First // week starts with a Sund ay
 };

Derived from

No base class

Include files

<wx/datetime.h>

See also

Date classes overview (p. 1650), wxTimeSpan (p. 1326), wxDateSpan (p. 241),
wxCalendarCtrl (p. 117)

Static functions

For convenience, all static functions are collected here. These functions either set or
return the static variables of wxDateSpan (the country), return the current moment, year,
month or number of days in it, or do some general calendar-related actions.

Please note that although several function accept an extra Calendarparameter, it is
currently ignored as only the Gregorian calendar is supported. Future versions will
support other calendars.

wxPython note: These methods are standalone functions
namedwxDateTime_<StaticMethodName> in wxPython.

SetCountry (p. 256)
GetCountry (p. 254)
IsWestEuropeanCountry (p. 255)
GetCurrentYear (p. 254)
ConvertYearToBC (p. 253)
GetCurrentMonth (p. 254)
IsLeapYear (p. 255)
GetCentury (p. 254)
GetNumberOfDays (p. 255)

CHAPTER 7

250

GetNumberOfDays (p. 255)
GetMonthName (p. 254)
GetWeekDayName (p. 255)
GetAmPmStrings (p. 253)
IsDSTApplicable (p. 256)
GetBeginDST (p. 253)
GetEndDST (p. 254)
Now (p. 256)
UNow (p. 257)
Today (p. 256)

Constructors, assignment operators and setters

Constructors and various Set() methods are collected here. If you construct a date
object from separate values for day, month and year, you should use IsValid (p. 260)
method to check that the values were correct as constructors can not return an error
code.

wxDateTime() (p. 257)
wxDateTime(time_t) (p. 257)
wxDateTime(struct tm) (p. 257)
wxDateTime(double jdn) (p. 257)
wxDateTime(h, m, s, ms) (p. 257)
wxDateTime(day, mon, year, h, m, s, ms) (p. 258)
SetToCurrent (p. 258)
Set(time_t) (p. 258)
Set(struct tm) (p. 258)
Set(double jdn) (p. 258)
Set(h, m, s, ms) (p. 258)
Set(day, mon, year, h, m, s, ms) (p. 259)
SetFromDOS(unsigned long ddt) (p. 262)
ResetTime (p. 259)
SetYear (p. 259)
SetMonth (p. 259)
SetDay (p. 259)
SetHour (p. 259)
SetMinute (p. 259)
SetSecond (p. 260)
SetMillisecond (p. 260)
operator=(time_t) (p. 260)
operator=(struct tm) (p. 260)

Accessors

Here are the trivial accessors. Other functions, which might have to perform some more
complicated calculations to find the answer are under theCalendar calculations (p. 252)
section.

IsValid (p. 260)
GetTicks (p. 260)
GetYear (p. 260)

CHAPTER 7

251

GetMonth (p. 260)
GetDay (p. 261)
GetWeekDay (p. 261)
GetHour (p. 261)
GetMinute (p. 261)
GetSecond (p. 261)
GetMillisecond (p. 261)
GetDayOfYear (p. 261)
GetWeekOfYear (p. 261)
GetWeekOfMonth (p. 262)
GetYearDay (p. 269)
IsWorkDay (p. 262)
IsGregorianDate (p. 262)
GetAsDOS (p. 262)

Date comparison

There are several function to allow date comparison. To supplement them, a few global
operators >, < etc taking wxDateTime are defined.

IsEqualTo (p. 263)
IsEarlierThan (p. 263)
IsLaterThan (p. 263)
IsStrictlyBetween (p. 263)
IsBetween (p. 263)
IsSameDate (p. 263)
IsSameTime (p. 263)
IsEqualUpTo (p. 264)

Date arithmetics

These functions carry out arithmetics (p. 1652) on the wxDateTime objects. As explained
in the overview, either wxTimeSpan or wxDateSpan may be added to wxDateTime,
hence all functions are overloaded to accept both arguments.

Also, both Add() and Subtract() have both const and non-const version. The first
one returns a new object which represents the sum/difference of the original one with the
argument while the second form modifies the object to which it is applied. The operators
-= and += are defined to be equivalent to the second forms of these functions.

Add(wxTimeSpan) (p. 264)
Add(wxDateSpan) (p. 264)
Subtract(wxTimeSpan) (p. 264)
Subtract(wxDateSpan) (p. 264)
Subtract(wxDateTime) (p. 265)
oparator+=(wxTimeSpan) (p. 264)
oparator+=(wxDateSpan) (p. 264)
oparator-=(wxTimeSpan) (p. 264)
oparator-=(wxDateSpan) (p. 264)

CHAPTER 7

252

Parsing and formatting dates

These functions convert wxDateTime objects to and from text. The conversions to text
are mostly trivial: you can either do it using the default date and time representations for
the current locale (FormatDate (p. 266) andFormatTime (p. 267)), using the international
standard representation defined by ISO 8601 (FormatISODate (p. 267)
andFormatISOTime (p. 267)) or by specifying any format at all and using Format (p. 266)
directly.

The conversions from text are more interesting, as there are much more possibilities to
care about. The simplest cases can be taken care of withParseFormat (p. 265) which
can parse any date in the given (rigid) format. ParseRfc822Date (p. 265) is another
function for parsing dates in predefined format -- the one of RFC 822 which (still...)
defines the format of email messages on the Internet. This format can not be described
with strptime(3) -like format strings used byFormat (p. 266), hence the need for a
separate function.

But the most interesting functions areParseTime (p. 266),ParseDate (p. 266)
andParseDateTime (p. 266). They try to parse the date ans time (or only one of them) in
'free' format, i.e. allow them to be specified in any of possible ways. These functions will
usually be used to parse the (interactive) user input which is not bound to be in any
predefined format. As an example, ParseDateTime (p. 266) can parse the strings such
as "tomorrow" , "March first" and even"next Sunday" .

ParseRfc822Date (p. 265)
ParseFormat (p. 265)
ParseDateTime (p. 266)
ParseDate (p. 266)
ParseTime (p. 266)
Format (p. 266)
FormatDate (p. 266)
FormatTime (p. 267)
FormatISODate (p. 267)
FormatISOTime (p. 267)

Calendar calculations

The functions in this section perform the basic calendar calculations, mostly related to
the week days. They allow to find the given week day in the week with given number
(either in the month or in the year) and so on.

All (non-const) functions in this section don't modify the time part of the wxDateTime --
they only work with the date part of it.

SetToWeekDayInSameWeek (p. 267)
GetWeekDayInSameWeek (p. 267)
SetToNextWeekDay (p. 267)
GetNextWeekDay (p. 267)
SetToPrevWeekDay (p. 268)
GetPrevWeekDay (p. 268)
SetToWeekDay (p. 268)

CHAPTER 7

253

GetWeekDay (p. 268)
SetToLastWeekDay (p. 268)
GetLastWeekDay (p. 269)
SetToWeekOfYear (p. 269)
SetToLastMonthDay (p. 269)
GetLastMonthDay (p. 269)
SetToYearDay (p. 269)
GetYearDay (p. 269)

Astronomical/historical functions

Some degree of support for the date units used in astronomy and/or history is provided.
You can construct a wxDateTime object from aJDN (p. 258) and you may also get its
JDN,MJD (p. 270) orRata Die number (p. 270) from it.

wxDateTime(double jdn) (p. 257)
Set(double jdn) (p. 258)
GetJulianDayNumber (p. 270)
GetJDN (p. 270)
GetModifiedJulianDayNumber (p. 270)
GetMJD (p. 270)
GetRataDie (p. 270)

Time zone and DST support

Please see the time zone overview (p. 1653) for more information about time zones.
Normally, these functions should be rarely used.

ToTimezone (p. 270)
MakeTimezone (p. 270)
ToGMT (p. 271)
MakeGMT (p. 271)
GetBeginDST (p. 253)
GetEndDST (p. 254)
IsDST (p. 271)

wxDateTime::ConvertYearToBC

static int ConvertYearToBC (int year)

Converts the year in absolute notation (i.e. a number which can be negative, positive or
zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year
0 is year 1 BC and so for other years there is a difference of 1.

This function should be used like this:

 wxDateTime dt(...);
 int y = dt.GetYear();
 printf("The year is %d%s", wxDateTime::ConvertY earToBC(y), y >
0 ? "AD" : "BC");

CHAPTER 7

254

wxDateTime::GetAmPmStrings

static void GetAmPmStrings (wxString * am, wxString * pm)

Returns the translations of the strings AM and PM used for time formatting for the current
locale. Either of the pointers may be NULL if the corresponding value is not needed.

wxDateTime::GetBeginDST

static wxDateTime GetBeginDST (int year = Inv_Year, Country country =
Country_Default)

Get the beginning of DST for the given country in the given year (current one by default).
This function suffers from limitations described inDST overview (p. 1654).

See also

GetEndDST (p. 254)

wxDateTime::GetCountry

static Country GetCountry ()

Returns the current default country. The default country is used for DST calculations, for
example.

See also

SetCountry (p. 256)

wxDateTime::GetCurrentYear

static int GetCurrentYear (Calendar cal = Gregorian)

Get the current year in given calendar (only Gregorian is currently supported).

wxDateTime::GetCurrentMonth

static Month GetCurrentMonth (Calendar cal = Gregorian)

Get the current month in given calendar (only Gregorian is currently supported).

wxDateTime::GetCentury

static int GetCentury (int year = Inv_Year)

Get the current century, i.e. first two digits of the year, in given calendar (only Gregorian
is currently supported).

wxDateTime::GetEndDST

CHAPTER 7

255

static wxDateTime GetEndDST (int year = Inv_Year, Country country =
Country_Default)

Returns the end of DST for the given country in the given year (current one by default).

See also

GetBeginDST (p. 253)

wxDateTime::GetMonthName

static wxString GetMonthName (Month month, NameFlags flags = Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given month.

See also

GetWeekDayName (p. 255)

wxDateTime::GetNumberOfDays

static wxDateTime_t GetNumberOfDays (int year, Calendar cal = Gregorian)

static wxDateTime_t GetNumberOfDays (Month month, int year = Inv_Year, Calendar
cal = Gregorian)

Returns the number of days in the given year or in the given month of the year.

The only supported value for cal parameter is currently Gregorian .

wxPython note: These two methods are named GetNumberOfDaysInYear and
GetNumberOfDaysInMonth in wxPython.

wxDateTime::GetTimeNow

static time_t GetTimeNow ()

Returns the current time.

wxDateTime::GetTmNow

static struct tm * GetTmNow ()

Returns the current time broken down.

wxDateTime::GetWeekDayName

static wxString GetWeekDayName (WeekDay weekday, NameFlags flags =
Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given week day.

CHAPTER 7

256

See also

GetMonthName (p. 254)

wxDateTime::IsLeapYear

static bool IsLeapYear (int year = Inv_Year, Calendar cal = Gregorian)

Returns true if the year is a leap one in the specified calendar.

This functions supports Gregorian and Julian calendars.

wxDateTime::IsWestEuropeanCountry

static bool IsWestEuropeanCountry (Country country = Country_Default)

This function returns true if the specified (or default) country is one of Western
European ones. It is used internally by wxDateTime to determine the DST convention
and date and time formatting rules.

wxDateTime::IsDSTApplicable

static bool IsDSTApplicable (int year = Inv_Year, Country country = Country_Default)

Returns true if DST was used n the given year (the current one by default) in the given
country.

wxDateTime::Now

static wxDateTime Now ()

Returns the object corresponding to the current time.

Example:

 wxDateTime now = wxDateTime::Now();
 printf("Current time in Paris:\t%s\n", now.Form at("%c",
wxDateTime::CET).c_str());

Note that this function is accurate up to second:wxDateTime::UNow (p. 257) should be
used for better precision (but it is less efficient and might not be available on all
platforms).

See also

Today (p. 256)

wxDateTime::SetCountry

static void SetCountry (Country country)

Sets the country to use by default. This setting influences the DST calculations, date

CHAPTER 7

257

formatting and other things.

The possible values for country parameter are enumerated inwxDateTime constants
section (p. 246).

See also

GetCountry (p. 254)

wxDateTime::Today

static wxDateTime Today ()

Returns the object corresponding to the midnight of the current day (i.e. the same as
Now() (p. 256), but the time part is set to 0).

See also

Now (p. 256)

wxDateTime::UNow

static wxDateTime UNow ()

Returns the object corresponding to the current time including the milliseconds if a
function to get time with such precision is available on the current platform (supported
under most Unices and Win32).

See also

Now (p. 256)

wxDateTime::wxDateTime

 wxDateTime ()

Default constructor. Use one of Set() functions to initialize the object later.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (time_t timet)

Same as Set (p. 257).

wxPython note: This constructor is named wxDateTimeFromTimeT in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (const struct tm& tm)

Same as Set (p. 257)

CHAPTER 7

258

wxPython note: Unsupported.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (double jdn)

Same as Set (p. 257)

wxPython note: This constructor is named wxDateTimeFromJDN in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (wxDateTime_t hour, wxDateTime_t minute = 0,
wxDateTime_t second = 0, wxDateTime_t millisec = 0)

Same as Set (p. 257)

wxPython note: This constructor is named wxDateTimeFromHMS in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (wxDateTime_t day, Month month = Inv_Month, int
Inv_Year,wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second =
0, wxDateTime_t millisec = 0)

Same as Set (p. 259)

wxPython note: This constructor is named wxDateTimeFromDMY in wxPython.

wxDateTime::SetToCurrent

wxDateTime& SetToCurrent ()

Sets the date and time of to the current values. Same as assigning the result of Now()
(p. 256) to this object.

wxDateTime::Set

wxDateTime& Set(time_t timet)

Constructs the object from timet value holding the number of seconds since Jan 1, 1970.

wxPython note: This method is named SetTimeT in wxPython.

wxDateTime::Set

wxDateTime& Set(const struct tm& tm)

Sets the date and time from the broken down representation in the standardtm structure.

wxPython note: Unsupported.

CHAPTER 7

259

wxDateTime::Set

wxDateTime& Set(double jdn)

Sets the date from the so-called Julian Day Number.

By definition, the Julian Day Number, usually abbreviated as JDN, of a particular instant
is the fractional number of days since 12 hours Universal Coordinated Time (Greenwich
mean noon) on January 1 of the year -4712 in the Julian proleptic calendar.

wxPython note: This method is named SetJDN in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t
second = 0, wxDateTime_t millisec = 0)

Sets the date to be equal to Today (p. 256) and the time from supplied parameters.

wxPython note: This method is named SetHMS in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t day, Month month = Inv_Month, int year = Inv_Year,
wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0,
wxDateTime_t millisec = 0)

Sets the date and time from the parameters.

wxDateTime::ResetTime

wxDateTime& ResetTime ()

Reset time to midnight (00:00:00) without changing the date.

wxDateTime::SetYear

wxDateTime& SetYear (int year)

Sets the year without changing other date components.

wxDateTime::SetMonth

wxDateTime& SetMonth (Month month)

Sets the month without changing other date components.

wxDateTime::SetDay

wxDateTime& SetDay(wxDateTime_t day)

CHAPTER 7

260

Sets the day without changing other date components.

wxDateTime::SetHour

wxDateTime& SetHour (wxDateTime_t hour)

Sets the hour without changing other date components.

wxDateTime::SetMinute

wxDateTime& SetMinute (wxDateTime_t minute)

Sets the minute without changing other date components.

wxDateTime::SetSecond

wxDateTime& SetSecond (wxDateTime_t second)

Sets the second without changing other date components.

wxDateTime::SetMillisecond

wxDateTime& SetMillisecond (wxDateTime_t millisecond)

Sets the millisecond without changing other date components.

wxDateTime::operator=

wxDateTime& operator (time_t timet)

Same as Set (p. 258).

wxDateTime::operator=

wxDateTime& operator (const struct tm& tm)

Same as Set (p. 258).

wxDateTime::IsValid

bool IsValid () const

Returns true if the object represents a valid time moment.

wxDateTime::GetTm

Tm GetTm (const TimeZone& tz = Local) const

Returns broken down representation of the date and time.

CHAPTER 7

261

wxDateTime::GetTicks

time_t GetTicks () const

Returns the number of seconds since Jan 1, 1970. An assert failure will occur if the date
is not in the range covered by time_t type.

wxDateTime::GetYear

int GetYear (const TimeZone& tz = Local) const

Returns the year in the given timezone (local one by default).

wxDateTime::GetMonth

Month GetMonth (const TimeZone& tz = Local) const

Returns the month in the given timezone (local one by default).

wxDateTime::GetDay

wxDateTime_t GetDay(const TimeZone& tz = Local) const

Returns the day in the given timezone (local one by default).

wxDateTime::GetWeekDay

WeekDay GetWeekDay (const TimeZone& tz = Local) const

Returns the week day in the given timezone (local one by default).

wxDateTime::GetHour

wxDateTime_t GetHour (const TimeZone& tz = Local) const

Returns the hour in the given timezone (local one by default).

wxDateTime::GetMinute

wxDateTime_t GetMinute (const TimeZone& tz = Local) const

Returns the minute in the given timezone (local one by default).

wxDateTime::GetSecond

wxDateTime_t GetSecond (const TimeZone& tz = Local) const

Returns the seconds in the given timezone (local one by default).

wxDateTime::GetMillisecond

CHAPTER 7

262

wxDateTime_t GetMillisecond (const TimeZone& tz = Local) const

Returns the milliseconds in the given timezone (local one by default).

wxDateTime::GetDayOfYear

wxDateTime_t GetDayOfYear (const TimeZone& tz = Local) const

Returns the day of the year (in 1...366 range) in the given timezone (local one by
default).

wxDateTime::GetWeekOfYear

wxDateTime_t GetWeekOfYear (WeekFlags flags = Monday_First, const TimeZone&
tz = Local) const

Returns the number of the week of the year this date is in. The first week of the year is,
according to international standards, the one containing Jan 4 or, equivalently, the first
week which has Thursday in this year. Both of these definitions are the same as saying
that the first week of the year must contain more than half of its days in this year.
Accordingly, the week number will always be in 1...53 range (52 for non leap years).

The function depends on the week start (p. 246) convention specified by the flags
argument but its results forSunday_First are not well-defined as the ISO definition
quoted above applies to the weeks starting on Monday only.

wxDateTime::GetWeekOfMonth

wxDateTime_t GetWeekOfMonth (WeekFlags flags = Monday_First, const
TimeZone& tz = Local) const

Returns the ordinal number of the week in the month (in 1...5 range).

As GetWeekOfYear (p. 261), this function supports both conventions for the week start.
See the description of theseweek start (p. 246) conventions.

wxDateTime::IsWorkDay

bool IsWorkDay (Country country = Country_Default) const

Returns true is this day is not a holiday in the given country.

wxDateTime::IsGregorianDate

bool IsGregorianDate (GregorianAdoption country = Gr_Standard) const

Returns true if the given date is later than the date of adoption of the Gregorian
calendar in the given country (and hence the Gregorian calendar calculations make
sense for it).

wxDateTime::SetFromDOS

CHAPTER 7

263

wxDateTime& Set(unsigned long ddt)

Sets the date from the date and time inDOS
(http://developer.novell.com/ndk/doc/smscomp/index.h tml?page=/ndk
/doc/smscomp/sms_docs/data/hc2vlu5i.html)format.

wxDateTime::GetAsDOS

unsigned long GetAsDOS () const

Returns the date and time inDOS
(http://developer.novell.com/ndk/doc/smscomp/index.h tml?page=/ndk
/doc/smscomp/sms_docs/data/hc2vlu5i.html)format.

wxDateTime::IsEqualTo

bool IsEqualTo (const wxDateTime& datetime) const

Returns true if the two dates are strictly identical.

wxDateTime::IsEarlierThan

bool IsEarlierThan (const wxDateTime& datetime) const

Returns true if this date precedes the given one.

wxDateTime::IsLaterThan

bool IsLaterThan (const wxDateTime& datetime) const

Returns true if this date is later than the given one.

wxDateTime::IsStrictlyBetween

bool IsStrictlyBetween (const wxDateTime& t1, const wxDateTime& t2) const

Returns true if this date lies strictly between the two others,

See also

IsBetween (p. 263)

wxDateTime::IsBetween

bool IsBetween (const wxDateTime& t1, const wxDateTime& t2) const

Returns true if IsStrictlyBetween (p. 263)is true or if the date is equal to one of the
limit values.

See also

CHAPTER 7

264

IsStrictlyBetween (p. 263)

wxDateTime::IsSameDate

bool IsSameDate (const wxDateTime& dt) const

Returns true if the date is the same without comparing the time parts.

wxDateTime::IsSameTime

bool IsSameTime (const wxDateTime& dt) const

Returns true if the time is the same (although dates may differ).

wxDateTime::IsEqualUpTo

bool IsEqualUpTo (const wxDateTime& dt, const wxTimeSpan& ts) const

Returns true if the date is equal to another one up to the given time interval, i.e. if the
absolute difference between the two dates is less than this interval.

wxDateTime::Add

wxDateTime Add (const wxTimeSpan& diff) const

wxDateTime& Add (const wxTimeSpan& diff)

wxDateTime& operator+= (const wxTimeSpan& diff)

Adds the given time span to this object.

wxPython note: This method is named AddTS in wxPython.

wxDateTime::Add

wxDateTime Add (const wxDateSpan& diff) const

wxDateTime& Add (const wxDateSpan& diff)

wxDateTime& operator+= (const wxDateSpan& diff)

Adds the given date span to this object.

wxPython note: This method is named AddDS in wxPython.

wxDateTime::Subtract

wxDateTime Subtract (const wxTimeSpan& diff) const

wxDateTime& Subtract (const wxTimeSpan& diff)

wxDateTime& operator-= (const wxTimeSpan& diff)

CHAPTER 7

265

Subtracts the given time span from this object.

wxPython note: This method is named SubtractTS in wxPython.

wxDateTime::Subtract

wxDateTime Subtract (const wxDateSpan& diff) const

wxDateTime& Subtract (const wxDateSpan& diff)

wxDateTime& operator-= (const wxDateSpan& diff)

Subtracts the given date span from this object.

wxPython note: This method is named SubtractDS in wxPython.

wxDateTime::Subtract

wxTimeSpan Subtract (const wxDateTime& dt) const

Subtracts another date from this one and returns the difference between them as
wxTimeSpan.

wxDateTime::ParseRfc822Date

const wxChar * ParseRfc822Date (const wxChar* date)

Parses the string date looking for a date formatted according to the RFC 822 in it. The
exact description of this format may, of course, be found in the RFC (section 5), but,
briefly, this is the format used in the headers of Internet email messages and one of the
most common strings expressing date in this format may be something like "Sat, 18
Dec 1999 00:48:30 +0100" .

Returns NULL if the conversion failed, otherwise return the pointer to the character
immediately following the part of the string which could be parsed. If the entire string
contains only the date in RFC 822 format, the returned pointer will be pointing to a NUL
character.

This function is intentionally strict, it will return an error for any string which is not RFC
822 compliant. If you need to parse date formatted in more free ways, you should use
ParseDateTime (p. 266) orParseDate (p. 266) instead.

wxDateTime::ParseFormat

const wxChar * ParseFormat (const wxChar * date, const wxChar * format =
wxDefaultDateTimeFormat, const wxDateTime& dateDef = wxDefaultDateTime)

This function parses the string date according to the givenformat. The system
strptime(3) function is used whenever available, but even if it is not, this function is
still implemented, although support for locale-dependent format specifiers such as "%c" ,
"%x" or "%X" may not be perfect and GNU extensions such as "%z" and "%Z" are not
implemented. This function does handle the month and weekday names in the current

CHAPTER 7

266

locale on all platforms, however.

Please see the description of the ANSI C function strftime(3) for the syntax of the
format string.

The dateDef parameter is used to fill in the fields which could not be determined from the
format string. For example, if the format is "%d" (the ay of the month), the month and
the year are taken from dateDef. If it is not specified, Today (p. 256) is used as the
default date.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDateTime

const wxChar * ParseDateTime (const wxChar * datetime)

Parses the string datetime containing the date and time in free format. This function tries
as hard as it can to interpret the given string as date and time. Unlike ParseRfc822Date
(p. 265), it will accept anything that may be accepted and will only reject strings which
can not be parsed in any way at all.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan. This method is currently not implemented, so always returns NULL.

wxDateTime::ParseDate

const wxChar * ParseDate (const wxChar * date)

This function is like ParseDateTime (p. 266), but it only allows the date to be specified. It
is thus less flexible thenParseDateTime (p. 266), but also has less chances to
misinterpret the user input.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseTime

const wxChar * ParseTime (const wxChar * time)

This functions is like ParseDateTime (p. 266), but only allows the time to be specified in
the input string.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::Format

wxString Format (const wxChar * format = wxDefaultDateTimeFormat, const
TimeZone& tz = Local) const

This function does the same as the standard ANSI C strftime(3) function. Please

CHAPTER 7

267

see its description for the meaning of format parameter.

It also accepts a few wxWidgets-specific extensions: you can optionally specify the width
of the field to follow using printf(3) -like syntax and the format specification %l can be
used to get the number of milliseconds.

See also

ParseFormat (p. 265)

wxDateTime::FormatDate

wxString FormatDate () const

Identical to calling Format() (p. 266) with "%x" argument (which means 'preferred date
representation for the current locale').

wxDateTime::FormatTime

wxString FormatTime () const

Identical to calling Format() (p. 266) with "%X"argument (which means 'preferred time
representation for the current locale').

wxDateTime::FormatISODate

wxString FormatISODate () const

This function returns the date representation in the ISO 8601 format (YYYY-MM-DD).

wxDateTime::FormatISOTime

wxString FormatISOTime () const

This function returns the time representation in the ISO 8601 format (HH:MM:SS).

wxDateTime::SetToWeekDayInSameWeek

wxDateTime& SetToWeekDayInSameWeek (WeekDay weekday, WeekFlags flags =
Monday_First)

Adjusts the date so that it will still lie in the same week as before, but its week day will be
the given one.

Returns the reference to the modified object itself.

wxDateTime::GetWeekDayInSameWeek

wxDateTime GetWeekDayInSameWeek (WeekDay weekday, WeekFlags flags =
Monday_First) const

CHAPTER 7

268

Returns the copy of this object to whichSetToWeekDayInSameWeek (p. 267) was
applied.

wxDateTime::SetToNextWeekDay

wxDateTime& SetToNextWeekDay (WeekDay weekday)

Sets the date so that it will be the first weekday following the current date.

Returns the reference to the modified object itself.

wxDateTime::GetNextWeekDay

wxDateTime GetNextWeekDay (WeekDay weekday) const

Returns the copy of this object to whichSetToNextWeekDay (p. 267) was applied.

wxDateTime::SetToPrevWeekDay

wxDateTime& SetToPrevWeekDay (WeekDay weekday)

Sets the date so that it will be the last weekday before the current date.

Returns the reference to the modified object itself.

wxDateTime::GetPrevWeekDay

wxDateTime GetPrevWeekDay (WeekDay weekday) const

Returns the copy of this object to whichSetToPrevWeekDay (p. 268) was applied.

wxDateTime::SetToWeekDay

bool SetToWeekDay (WeekDay weekday, int n = 1, Month month = Inv_Month, int
year = Inv_Year)

Sets the date to the n-th weekday in the given month of the given year (the current
month and year are used by default). The parameter nmay be either positive (counting
from the beginning of the month) or negative (counting from the end of it).

For example, SetToWeekDay(2, wxDateTime::Wed) will set the date to the second
Wednesday in the current month andSetToWeekDay(-1, wxDateTime::Sun) -- to
the last Sunday in it.

Returns true if the date was modified successfully, false otherwise meaning that the
specified date doesn't exist.

wxDateTime::GetWeekDay

wxDateTime GetWeekDay (WeekDay weekday, int n = 1, Month month = Inv_Month,
int year = Inv_Year) const

CHAPTER 7

269

Returns the copy of this object to whichSetToWeekDay (p. 268) was applied.

wxDateTime::SetToLastWeekDay

bool SetToLastWeekDay (WeekDay weekday, Month month = Inv_Month, int year =
Inv_Year)

The effect of calling this function is the same as of callingSetToWeekDay(-1,
weekday, month, year) . The date will be set to the lastweekday in the given month
and year (the current ones by default).

Always returns true .

wxDateTime::GetLastWeekDay

wxDateTime GetLastWeekDay (WeekDay weekday, Month month = Inv_Month, int
year = Inv_Year)

Returns the copy of this object to whichSetToLastWeekDay (p. 268) was applied.

wxDateTime::SetToWeekOfYear

static wxDateTime SetToWeekOfYear (int year, wxDateTime_t numWeek, WeekDay
weekday = Mon)

Set the date to the given weekday in the week number numWeek of the given year . The
number should be in range 1...53.

Note that the returned date may be in a different year than the one passed to this
function because both the week 1 and week 52 or 53 (for leap years) contain days from
different years. SeeGetWeekOfYear (p. 261) for the explanation of how the year weeks
are counted.

wxDateTime::SetToLastMonthDay

wxDateTime& SetToLastMonthDay (Month month = Inv_Month, int year = Inv_Year)

Sets the date to the last day in the specified month (the current one by default).

Returns the reference to the modified object itself.

wxDateTime::GetLastMonthDay

wxDateTime GetLastMonthDay (Month month = Inv_Month, int year = Inv_Year)
const

Returns the copy of this object to whichSetToLastMonthDay (p. 269) was applied.

wxDateTime::SetToYearDay

wxDateTime& SetToYearDay (wxDateTime_t yday)

CHAPTER 7

270

Sets the date to the day number yday in the same year (i.e., unlike the other functions,
this one does not use the current year). The day number should be in the range 1...366
for the leap years and 1...365 for the other ones.

Returns the reference to the modified object itself.

wxDateTime::GetYearDay

wxDateTime GetYearDay (wxDateTime_t yday) const

Returns the copy of this object to whichSetToYearDay (p. 269) was applied.

wxDateTime::GetJulianDayNumber

double GetJulianDayNumber () const

Returns the JDN (p. 258) corresponding to this date. Beware of rounding errors!

See also

GetModifiedJulianDayNumber (p. 270)

wxDateTime::GetJDN

double GetJDN () const

Synonym for GetJulianDayNumber (p. 270).

wxDateTime::GetModifiedJulianDayNumber

double GetModifiedJulianDayNumber () const

Returns the Modified Julian Day Number (MJD) which is, by definition, equal to JDN -
2400000.5. The MJDs are simpler to work with as the integral MJDs correspond to
midnights of the dates in the Gregorian calendar and not th noons like JDN. The MJD 0
is Nov 17, 1858.

wxDateTime::GetMJD

double GetMJD () const

Synonym for GetModifiedJulianDayNumber (p. 270).

wxDateTime::GetRataDie

double GetRataDie () const

Return the Rata Die number of this date.

By definition, the Rata Die number is a date specified as the number of days relative to a
base date of December 31 of the year 0. Thus January 1 of the year 1 is Rata Die day 1.

CHAPTER 7

271

wxDateTime::ToTimezone

wxDateTime ToTimezone (const TimeZone& tz, bool noDST = false) const

Transform the date to the given time zone. If noDST is true , no DST adjustments will
be made.

Returns the date in the new time zone.

wxDateTime::MakeTimezone

wxDateTime& MakeTimezone (const TimeZone& tz, bool noDST = false)

Modifies the object in place to represent the date in another time zone. IfnoDST is true ,
no DST adjustments will be made.

wxDateTime::ToGMT

wxDateTime ToGMT(bool noDST = false) const

This is the same as calling ToTimezone (p. 270) with the argument GMT0.

wxDateTime::MakeGMT

wxDateTime& MakeGMT(bool noDST = false)

This is the same as calling MakeTimezone (p. 270) with the argument GMT0.

wxDateTime::IsDST

int IsDST(Country country = Country_Default) const

Returns true if the DST is applied for this date in the given country.

See also

GetBeginDST (p. 253) andGetEndDST (p. 254)

wxDateTimeHolidayAuthority

TODO

wxDateTimeWorkDays

TODO

wxDb

CHAPTER 7

272

A wxDb instance is a connection to an ODBC datasource which may be opened, closed,
and re-opened an unlimited number of times. A database connection allows function to
be performed directly on the datasource, as well as allowing access to any tables/views
defined in the datasource to which the user has sufficient privileges.

See the database classes overview (p. 1742) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in db.cpp/.h for use with the wxDb class.

 • wxDbColFor (p. 304)

 • wxDbColInf (p. 305)

 • wxDbTableInf (p. 348)

 • wxDbInf (p. 312)

Constants

NOTE: In a future release, all ODBC class constants will be prefaced with 'wx'.

 wxDB_PATH_MAX Maximum path length all owed to be
passed to
 the ODBC driver to indi cate where the
data
 file(s) are located.

 DB_MAX_COLUMN_NAME_LEN Maximum supported lengt h for the name
of a
 column

 DB_MAX_ERROR_HISTORY Maximum number of error messages
retained in
 the queue before being overwritten by
new
 errors.

 DB_MAX_ERROR_MSG_LEN Maximum supported lengt h of an error
message
 returned by the ODBC cl asses

 DB_MAX_STATEMENT_LEN Maximum supported lengt h for a
complete SQL
 statement to be passed to the ODBC
driver

 DB_MAX_TABLE_NAME_LEN Maximum supported lengt h for the name
of a
 table

 DB_MAX_WHERE_CLAUSE_LEN Maximum supported WHERE clause length
that
 can be passed to the OD BC driver

CHAPTER 7

273

 DB_TYPE_NAME_LEN Maximum length of the n ame of a
column's
 data type

Enumerated types

Enumerated types

enum wxDbSqlLogState

sqlLogOFF, sqlLogON

enum wxDBMS

These are the databases currently tested and working with the ODBC classes. A call to
wxDb::Dbms (p. 283) will return one of these enumerated values listed below.

 • DB2

 • DBase (IV, V)**

 • Firebird

 • INFORMIX

 • Interbase

 • MS SQL Server (v7 - minimal testing)

 • MS Access (97, 2000, 2002, and 2003)

 • MySQL (2.x and 3.5 - use the 2.5x drivers though)

 • Oracle (v7, v8, v8i)

 • Pervasive SQL

 • PostgreSQL

 • Sybase (ASA and ASE)

 • XBase Sequiter

 • VIRTUOSO

See the remarks in wxDb::Dbms (p. 283) for exceptions/issues with each of these
database engines.

Public member variables

SWORD wxDb::cbErrorMsg

This member variable is populated as a result of calling wxDb::GetNextError (p.
292). Contains the count of bytes in the wxDb::errorMsg string.

CHAPTER 7

274

int wxDb::DB_STATUS

The last ODBC error/status that occurred on this data connection. Possible codes
are:

 DB_ERR_GENERAL_WARNING // Sq lState =
'01000'
 DB_ERR_DISCONNECT_ERROR // Sq lState =
'01002'
 DB_ERR_DATA_TRUNCATED // Sq lState =
'01004'
 DB_ERR_PRIV_NOT_REVOKED // Sq lState =
'01006'
 DB_ERR_INVALID_CONN_STR_ATTR // Sq lState =
'01S00'
 DB_ERR_ERROR_IN_ROW // Sq lState =
'01S01'
 DB_ERR_OPTION_VALUE_CHANGED // Sq lState =
'01S02'
 DB_ERR_NO_ROWS_UPD_OR_DEL // Sq lState =
'01S03'
 DB_ERR_MULTI_ROWS_UPD_OR_DEL // Sq lState =
'01S04'
 DB_ERR_WRONG_NO_OF_PARAMS // Sq lState =
'07001'
 DB_ERR_DATA_TYPE_ATTR_VIOL // Sq lState =
'07006'
 DB_ERR_UNABLE_TO_CONNECT // Sq lState =
'08001'
 DB_ERR_CONNECTION_IN_USE // Sq lState =
'08002'
 DB_ERR_CONNECTION_NOT_OPEN // Sq lState =
'08003'
 DB_ERR_REJECTED_CONNECTION // Sq lState =
'08004'
 DB_ERR_CONN_FAIL_IN_TRANS // Sq lState =
'08007'
 DB_ERR_COMM_LINK_FAILURE // Sq lState =
'08S01'
 DB_ERR_INSERT_VALUE_LIST_MISMATCH // Sq lState =
'21S01'
 DB_ERR_DERIVED_TABLE_MISMATCH // Sq lState =
'21S02'
 DB_ERR_STRING_RIGHT_TRUNC // Sq lState =
'22001'
 DB_ERR_NUMERIC_VALUE_OUT_OF_RNG // Sq lState =
'22003'
 DB_ERR_ERROR_IN_ASSIGNMENT // Sq lState =
'22005'
 DB_ERR_DATETIME_FLD_OVERFLOW // Sq lState =
'22008'
 DB_ERR_DIVIDE_BY_ZERO // Sq lState =
'22012'
 DB_ERR_STR_DATA_LENGTH_MISMATCH // Sq lState =
'22026'
 DB_ERR_INTEGRITY_CONSTRAINT_VIOL // Sq lState =
'23000'
 DB_ERR_INVALID_CURSOR_STATE // Sq lState =
'24000'
 DB_ERR_INVALID_TRANS_STATE // Sq lState =
'25000'
 DB_ERR_INVALID_AUTH_SPEC // Sq lState =
'28000'
 DB_ERR_INVALID_CURSOR_NAME // Sq lState =

CHAPTER 7

275

'34000'
 DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL // Sq lState =
'37000'
 DB_ERR_DUPLICATE_CURSOR_NAME // Sq lState =
'3C000'
 DB_ERR_SERIALIZATION_FAILURE // Sq lState =
'40001'
 DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL2 // Sq lState =
'42000'
 DB_ERR_OPERATION_ABORTED // Sq lState =
'70100'
 DB_ERR_UNSUPPORTED_FUNCTION // Sq lState =
'IM001'
 DB_ERR_NO_DATA_SOURCE // Sq lState =
'IM002'
 DB_ERR_DRIVER_LOAD_ERROR // Sq lState =
'IM003'
 DB_ERR_SQLALLOCENV_FAILED // Sq lState =
'IM004'
 DB_ERR_SQLALLOCCONNECT_FAILED // Sq lState =
'IM005'
 DB_ERR_SQLSETCONNECTOPTION_FAILED // Sq lState =
'IM006'
 DB_ERR_NO_DATA_SOURCE_DLG_PROHIB // Sq lState =
'IM007'
 DB_ERR_DIALOG_FAILED // Sq lState =
'IM008'
 DB_ERR_UNABLE_TO_LOAD_TRANSLATION_DLL // Sq lState =
'IM009'
 DB_ERR_DATA_SOURCE_NAME_TOO_LONG // Sq lState =
'IM010'
 DB_ERR_DRIVER_NAME_TOO_LONG // Sq lState =
'IM011'
 DB_ERR_DRIVER_KEYWORD_SYNTAX_ERROR // Sq lState =
'IM012'
 DB_ERR_TRACE_FILE_ERROR // Sq lState =
'IM013'
 DB_ERR_TABLE_OR_VIEW_ALREADY_EXISTS // Sq lState =
'S0001'
 DB_ERR_TABLE_NOT_FOUND // Sq lState =
'S0002'
 DB_ERR_INDEX_ALREADY_EXISTS // Sq lState =
'S0011'
 DB_ERR_INDEX_NOT_FOUND // Sq lState =
'S0012'
 DB_ERR_COLUMN_ALREADY_EXISTS // Sq lState =
'S0021'
 DB_ERR_COLUMN_NOT_FOUND // Sq lState =
'S0022'
 DB_ERR_NO_DEFAULT_FOR_COLUMN // Sq lState =
'S0023'
 DB_ERR_GENERAL_ERROR // Sq lState =
'S1000'
 DB_ERR_MEMORY_ALLOCATION_FAILURE // Sq lState =
'S1001'
 DB_ERR_INVALID_COLUMN_NUMBER // Sq lState =
'S1002'
 DB_ERR_PROGRAM_TYPE_OUT_OF_RANGE // Sq lState =
'S1003'
 DB_ERR_SQL_DATA_TYPE_OUT_OF_RANGE // Sq lState =
'S1004'
 DB_ERR_OPERATION_CANCELLED // Sq lState =
'S1008'
 DB_ERR_INVALID_ARGUMENT_VALUE // Sq lState =

CHAPTER 7

276

'S1009'
 DB_ERR_FUNCTION_SEQUENCE_ERROR // Sq lState =
'S1010'
 DB_ERR_OPERATION_INVALID_AT_THIS_TIME // Sq lState =
'S1011'
 DB_ERR_INVALID_TRANS_OPERATION_CODE // Sq lState =
'S1012'
 DB_ERR_NO_CURSOR_NAME_AVAIL // Sq lState =
'S1015'
 DB_ERR_INVALID_STR_OR_BUF_LEN // Sq lState =
'S1090'
 DB_ERR_DESCRIPTOR_TYPE_OUT_OF_RANGE // Sq lState =
'S1091'
 DB_ERR_OPTION_TYPE_OUT_OF_RANGE // Sq lState =
'S1092'
 DB_ERR_INVALID_PARAM_NO // Sq lState =
'S1093'
 DB_ERR_INVALID_SCALE_VALUE // Sq lState =
'S1094'
 DB_ERR_FUNCTION_TYPE_OUT_OF_RANGE // Sq lState =
'S1095'
 DB_ERR_INF_TYPE_OUT_OF_RANGE // Sq lState =
'S1096'
 DB_ERR_COLUMN_TYPE_OUT_OF_RANGE // Sq lState =
'S1097'
 DB_ERR_SCOPE_TYPE_OUT_OF_RANGE // Sq lState =
'S1098'
 DB_ERR_NULLABLE_TYPE_OUT_OF_RANGE // Sq lState =
'S1099'
 DB_ERR_UNIQUENESS_OPTION_TYPE_OUT_OF_RANGE // SqlState =
'S1100'
 DB_ERR_ACCURACY_OPTION_TYPE_OUT_OF_RANGE // Sq lState =
'S1101'
 DB_ERR_DIRECTION_OPTION_OUT_OF_RANGE // Sq lState =
'S1103'
 DB_ERR_INVALID_PRECISION_VALUE // Sq lState =
'S1104'
 DB_ERR_INVALID_PARAM_TYPE // Sq lState =
'S1105'
 DB_ERR_FETCH_TYPE_OUT_OF_RANGE // Sq lState =
'S1106'
 DB_ERR_ROW_VALUE_OUT_OF_RANGE // Sq lState =
'S1107'
 DB_ERR_CONCURRENCY_OPTION_OUT_OF_RANGE // Sq lState =
'S1108'
 DB_ERR_INVALID_CURSOR_POSITION // Sq lState =
'S1109'
 DB_ERR_INVALID_DRIVER_COMPLETION // Sq lState =
'S1110'
 DB_ERR_INVALID_BOOKMARK_VALUE // Sq lState =
'S1111'
 DB_ERR_DRIVER_NOT_CAPABLE // Sq lState =
'S1C00'
 DB_ERR_TIMEOUT_EXPIRED // Sq lState =
'S1T00'

struct wxDb::dbInf

This structure is internal to the wxDb class and contains details of the ODBC
datasource that the current instance of the wxDb is connected to in its members.
When the datasource is opened, all of the information contained in the dbInf
structure is queried from the datasource. This information is used almost

CHAPTER 7

277

exclusively within the ODBC class library. Where there may be a need for
particular portions of this information outside of the class library, member functions
(e.g.wxDbTable::IsCursorClosedOnCommit (p. 332)) have been added for ease of
use.

 wxChar dbmsName[40] - Name of the dbms pr oduct
 wxChar dbmsVer[64] - Version # of the db ms product
 wxChar driverName[40] - Driver name
 wxChar odbcVer[60] - ODBC version of the driver
 wxChar drvMgrOdbcVer[60] - ODBC version of the driver manager
 wxChar driverVer[60] - Driver version
 wxChar serverName[80] - Server Name, typica lly a connect
string
 wxChar databaseName[128] - Database filename
 wxChar outerJoins[2] - Does datasource sup port outer
joins
 wxChar procedureSupport[2] - Does datasource sup port stored
 procedures
 UWORD maxConnections - Maximum # of connec tions
datasource
 supports
 UWORD maxStmts - Maximum # of HSTMTs per HDBC
 UWORD apiConfLvl - ODBC API conformanc e level
 UWORD cliConfLvl - Is datasource SAG c ompliant
 UWORD sqlConfLvl - SQL conformance lev el
 UWORD cursorCommitBehavior - How cursors are affected on db
commit
 UWORD cursorRollbackBehavior - How cursors are affected on db
 rollback
 UWORD supportNotNullClause - Does datasource support NOT
NULL
 clause
 wxChar supportIEF[2] - Integrity Enhanceme nt Facility
(Ref.
 Integrity)
 UDWORD txnIsolation - Transaction isolati on level
supported by
 driver
 UDWORD txnIsolationOptions - Transaction isolati on level
options
 available
 UDWORD fetchDirections - Fetch directions su pported
 UDWORD lockTypes - Lock types supporte d in SQLSetPos
 UDWORD posOperations - Position operations supported in
 SQLSetPos
 UDWORD posStmts - Position statements supported
 UDWORD scrollConcurrency - Scrollable cursor c oncurrency
options
 supported
 UDWORD scrollOptions - Scrollable cursor o ptions
supported
 UDWORD staticSensitivity - Can additions/delet ions/updates be
 detected
 UWORD txnCapable - Indicates if dataso urce supports
 transactions
 UDWORD loginTimeout - Number seconds to w ait for a login
 request

wxChar wxDb::errorList[DB_MAX_ERROR_HISTORY][DB_MAX_ERROR_MSG_LEN]

The last n ODBC errors that have occurred on this database connection.

CHAPTER 7

278

wxChar wxDb::errorMsg[SQL_MAX_MESSAGE_LENGTH]

This member variable is populated as a result of calling wxDb::GetNextError (p.
292). It contains the ODBC error message text.

SDWORD wxDb::nativeError

Set by wxDb::DispAllErrors, wxDb::GetNextError, and wxDb::DispNextError. It
contains the datasource-specific error code returned by the datasource to the
ODBC driver. Used for reporting ODBC errors.

wxChar wxDb::sqlState[20]

Set by wxDb::TranslateSqlState(). Indicates the error state after a failed ODBC
operation. Used for reporting ODBC errors.

Remarks

Default cursor scrolling is defined by wxODBC_FWD_ONLY_CURSORS in setup.h
when the wxWidgets library is built. This behavior can be overridden when an instance
of a wxDb is created (see wxDb constructor (p. 280)). Default setting of this value true,
as not all databases/drivers support both types of cursors.

See also

wxDbColFor (p. 304), wxDbColInf (p. 305),wxDbTable (p. 312), wxDbTableInf (p.
348),wxDbInf (p. 312)

Associated non-class functions

The following functions are used in conjunction with the wxDb class.

void wxDbCloseConnections ()

Remarks

Closes all cached connections that have been made through use of
thewxDbGetConnection (p. 278) function.

NOTE: These connections are closed regardless of whether they are in use or not. This
function should only be called after the program has finished using the connections and
all wxDbTable instances that use any of the connections have been closed.

This function performs a wxDb::CommitTrans (p. 282)on the connection before closing it
to commit any changes that are still pending, as well as to avoid any function sequence
errors upon closing each connection.

int wxDbConnectionsInUse ()

Remarks

Returns a count of how many database connections are currently free (not being used)
that have been cached through use of the wxDbGetConnection (p. 278)function.

CHAPTER 7

279

bool wxDbFreeConnection (wxDb * pDb)

Remarks

Searches the list of cached database connections connection for one matching the
passed in wxDb instance. If found, that cached connection is freed.

Freeing a connection means that it is marked as available (free) in the cache of
connections, so that a call to wxDbGetConnection (p. 278)is able to return a pointer to
the wxDb instance for use. Freeing a connection does NOT close the connection, it only
makes the connection available again.

wxDb * wxDbGetConnection (wxDbConnectInf * pDbConfig,bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Remarks

This function is used to request a "new" wxDb instance for use by the program. The
wxDb instance returned is also opened (see wxDb::Open (p. 296)).

This function (along with wxDbFreeConnection() and wxDbCloseConnection()) maintain
a cache of wxDb instances for user/re-use by a program. When a program needs a
wxDb instance, it may call this function to obtain a wxDb instance. If there is a wxDb
instance in the cache that is currently unused that matches the connection requirements
specified in 'pDbConfig' then that cached connection is marked as no longer being free,
and a pointer to the wxDb instance is returned.

If there are no connections available in the cache that meet the requirements given in
'pDbConfig', then a new wxDb instance is created to connect to the datasource specified
in 'pDbConfig' using the userID and password given in 'pDbConfig'.

NOTE: The caching routine also uses the wxDb::Open (p. 296)connection datatype
copying code. If the call to wxDbGetConnection() requests a connection to a
datasource, and there is not one available in the cache, a new connection is created.
But when the connection is opened, instead of polling the datasource over again for its
datatypes, if a connection to the same datasource (using the same userID/password)
has already been done previously, the new connection skips querying the datasource for
its datatypes, and uses the same datatypes determined previously by the other
connection(s) for that same datasource. This cuts down greatly on network traffic,
database load, and connection creation time.

When the program is done using a connection created through a call to
wxDbGetConnection(), the program should call wxDbFreeConnection() to release the
wxDb instance back to the cache. DO NOT DELETE THE wxDb INSTANCE! Deleting
the wxDb instance returned can cause a crash/memory corruption later in the program
when the cache is cleaned up.

When exiting the program, call wxDbCloseConnections() to close all the cached
connections created by calls to wxDbGetConnection().

const wxChar * wxDbLogExtendedErrorMsg (const wxChar * userText, wxDb * pDb,
wxChar * ErrFile, int ErrLine)

CHAPTER 7

280

Writes a message to the wxLog window (stdout usually) when an internal error situation
occurs.

bool wxDbSqlLog (wxDbSqlLogState state, const wxString & filename =
SQL_LOG_FILENAME)

Remarks

This function sets the sql log state for all open wxDb objects

bool wxDbGetDataSource (HENV henv, wxChar * Dsn, SWORD DsnMax, wxChar
*DsDesc, SWORD DsDescMax, UWORD direction = SQL_FETCH_NEXT)

Remarks

This routine queries the ODBC driver manager for a list of available datasources.
Repeatedly call this function to obtain all the datasources available through the ODBC
driver manager on the current workstation.

 wxArrayString strArray;

 while (wxDbGetDataSource(DbConnectInf.GetHenv() , Dsn,
SQL_MAX_DSN_LENGTH+1, DsDesc, 255))
 strArray.Add(Dsn);

wxDb::wxDb

 wxDb ()

Default constructor.

 wxDb (const HENV & aHenv, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Constructor, used to create an ODBC connection to a datasource.

Parameters

aHenv

Environment handle used for this connection. SeewxDConnectInf::AllocHenv (p.
308)

FwdOnlyCursors

Will cursors created for use with this datasource connection only allow forward
scrolling cursors.

Remarks

This is the constructor for the wxDb class. The wxDb object must be created and
opened before any database activity can occur.

CHAPTER 7

281

Example

 wxDbConnectInf ConnectInf;
 Set values for member variables of ConnectIn f here

 wxDb sampleDB(ConnectInf.GetHenv());
 if (!sampleDB.Open(ConnectInf.GetDsn(), ConnectI nf.GetUserID(),
 ConnectInf.GetPassword()))
 {
 // Error opening datasource
 }

See also

wxDbGetConnection (p. 278)

wxDb::Catalog

bool Catalog (wxChar * userID, const wxString & fileName =
SQL_CATALOG_FILENAME)

Allows a data "dictionary" of the datasource to be created, dumping pertinent information
about all data tables to which the user specified in userID has access.

Parameters

userID

Database user name to use in accessing the database. All tables to which this
user has rights will be evaluated in the catalog.

fileName

OPTIONAL. Name of the text file to create and write the DB catalog to. Default is
SQL_CATALOG_FILENAME.

Return value

Returns true if the catalog request was successful, or false if there was some reason
that the catalog could not be generated.

Example

============== ============== ================ ==== ===== =======
TABLE NAME COLUMN NAME DATA TYPE PREC ISION LENGTH
============== ============== ================ ==== ===== =======
EMPLOYEE RECID (0008)NUMBER 15 8
EMPLOYEE USER_ID (0012)VARCHAR2 13 13
EMPLOYEE FULL_NAME (0012)VARCHAR2 26 26
EMPLOYEE PASSWORD (0012)VARCHAR2 26 26
EMPLOYEE START_DATE (0011)DATE 19 16

wxDb::Close

void Close ()

CHAPTER 7

282

Closes the database connection.

Remarks

At the end of your program, when you have finished all of your database work, you must
close the ODBC connection to the datasource. There are actually four steps involved in
doing this as illustrated in the example.

Any wxDbTable instances which use this connection must be deleted before closing the
database connection.

Example

 // Commit any open transactions on the datasourc e
 sampleDB.CommitTrans();

 // Delete any remaining wxDbTable objects alloca ted with new
 delete parts;

 // Close the wxDb connection when finished with it
 sampleDB.Close();

wxDb::CommitTrans

bool CommitTrans ()

Permanently "commits" changes (insertions/deletions/updates) to the database.

Return value

Returns true if the commit was successful, or false if the commit failed.

Remarks

Transactions begin implicitly as soon as you make a change to the database with an
insert/update/delete, or any other direct SQL command that performs one of these
operations against the datasource. At any time thereafter, to save the changes to disk
permanently, "commit" them by calling this function.

Calling this member function commits ALL open transactions on this ODBC connection.
For example, if three different wxDbTable instances used the same connection to the
datasource, committing changes made on one of those wxDbTable instances commits
any pending transactions on all three wxDbTable instances.

Until a call to wxDb::CommitTrans() is made, no other user or cursor is able to see any
changes made to the row(s) that have been inserted/modified/deleted.

Special Note : Cursors

It is important to understand that different database/ODBC driver combinations handle
transactions differently. One thing in particular that you must pay attention to is cursors,
in regard to transactions. Cursors are what allow you to scroll through records forward
and backward and to manipulate records as you scroll through them. When you issue a
query, a cursor is created behind the scenes. The cursor keeps track of the query and
keeps track of the current record pointer. After you commit or rollback a transaction, the

CHAPTER 7

283

cursor may be closed automatically. This is database dependent, and with some
databases this behavior can be controlled through management functions. This means
you would need to requery the datasource before you can perform any additional work
using this cursor. This is only necessary however if the datasource closes the cursor
after a commit or rollback. Use thewxDbTable::IsCursorClosedOnCommit (p.
332)member function to determine the datasource's transaction behavior. Note, in many
situations it is very inefficient to assume the cursor is closed and always requery. This
could put a significant, unnecessary load on datasources that leave the cursors open
after a transaction.

wxDb::CreateView

bool CreateView (const wxString & viewName,const wxString & colList, const
wxString & pSqlStmt)

Creates a SQL VIEW of one or more tables in a single datasource. Note that this
function will only work against databases which support views (currently only Oracle as
of November 21 2000).

Parameters

viewName

The name of the view. e.g. PARTS_V

colList

OPTIONAL Pass in a comma delimited list of column names if you wish to
explicitly name each column in the result set. If not desired, pass in an empty
string and the column names from the associated table(s) will be used.

pSqlStmt

Pointer to the select statement portion of the CREATE VIEW statement. Must be a
complete, valid SQL SELECT statement.

Remarks

A 'view' is a logical table that derives columns from one or more other tables or views.
Once the view is created, it can be queried exactly like any other table in the database.

NOTE: Views are not available with all datasources. Oracle is one example of a
datasource which does support views.

Example

 // Incomplete code sample
 db.CreateView("PARTS_SD1", "PN, PD, QTY",
 "SELECT PART_NUM, PART_DESC, QTY_O N_HAND * 1.1
FROM PARTS \
 WHERE STORAGE_DEVICE = 1");

 // PARTS_SD1 can now be queried just as if it we re a data
table.
 // e.g. SELECT PN, PD, QTY FROM PARTS_SD1

CHAPTER 7

284

wxDb::Dbms

wxDBMS Dbms ()

Remarks

The return value will be of the enumerated type wxDBMS. This enumerated type
contains a list of all the currently tested and supported databases.

Additional databases may work with these classes, but the databases returned by this
function have been tested and confirmed to work with these ODBC classes.

Possible values returned by this function can be viewed in theEnumerated types (p. 272)
section of wxDb.

There are known issues with conformance to the ODBC standards with several
datasources supported by the wxWidgets ODBC classes. Please see the overview for
specific details on which datasource have which issues.

Return value

The return value will indicate which of the supported datasources is currently connected
to by this connection. In the event that the datasource is not recognized, a value of
'dbmsUNIDENTIFIED' is returned.

wxDb::DispAllErrors

bool DispAllErrors (HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
= SQL_NULL_HSTMT)

Used to log all database errors that occurred as a result of an executed database
command. This logging is automatic and also includes debug logging when compiled in
debug mode via wxLogDebug (p. 1576). If logging is turned on via
wxDb::SetSqlLogging (p. 299), then an entry is also logged to the defined log file.

Parameters

aHenv

Handle to the ODBC environment.

aHdbc

Handle to the ODBC connection. Pass this in if the ODBC function call that erred
required a hdbc or hstmt argument.

aHstmt

Handle to the ODBC statement being executed against. Pass this in if the ODBC
function call that failed required a hstmt argument.

Remarks

CHAPTER 7

285

This member function will log all of the ODBC error messages for the last ODBC function
call that was made. This function is normally used internally within the ODBC class
library, but can be used programmatically after calling ODBC functions directly (i.e.
SQLFreeEnv()).

Return value

The function always returns false, so a call to this function can be made in the return
statement of a code block in the event of a failure to perform an action (see the example
below).

See also

wxDb::SetSqlLogging (p. 299), wxDbSqlLog

Example

 if (SQLExecDirect(hstmt, (UCHAR FAR *) pSqlStmt, SQL_NTS) !=
SQL_SUCCESS)
 // Display all ODBC errors for this stmt
 return(db.DispAllErrors(db.henv, db.hdbc, hst mt));

wxDb::DispNextError

void DispNextError ()

Remarks

This function is normally used internally within the ODBC class library. It could be used
programmatically after calling ODBC functions directly. This function works in
conjunction with wxDb::GetNextError (p. 292) when errors (or sometimes informational
messages) returned from ODBC need to be analyzed rather than simply displaying
them as an error. GetNextError() retrieves the next ODBC error from the ODBC error
queue. The wxDb member variables "sqlState", "nativeError" and "errorMsg" could then
be evaluated. To display the error retrieved, DispNextError() could then be called. The
combination of GetNextError() and DispNextError() can be used to iteratively step
through the errors returned from ODBC evaluating each one in context and displaying
the ones you choose.

Example

 // Drop the table before attempting to create it
 sprintf(sqlStmt, "DROP TABLE %s", tableName);
 // Execute the drop table statement
 if (SQLExecDirect(hstmt,(UCHAR FAR *)sqlStmt,SQL _NTS) !=
SQL_SUCCESS)
 {
 // Check for sqlState = S0002, "Table or view not found".
 // Ignore this error, bomb out on any other e rror.
 pDb->GetNextError(henv, hdbc, hstmt);
 if (wxStrcmp(pDb->sqlState, "S0002"))
 {
 pDb->DispNextError(); // Displayed error retrieved
 pDb->DispAllErrors(henv, hdbc, hstmt); // Display all
other errors, if any
 pDb->RollbackTrans(); // Rollback the tr ansaction

CHAPTER 7

286

 CloseCursor(); // Close the curso r
 return(false); // Return Failure
 }
 }

wxDb::DropView

bool DropView (const wxString & viewName)

Drops the data table view named in 'viewName'.

Parameters

viewName

Name of the view to be dropped.

Remarks

If the view does not exist, this function will return true. Note that views are not supported
with all datasources.

wxDb::ExecSql

bool ExecSql (const wxString & pSqlStmt)

bool ExecSql (const wxString & pSqlStmt, wxDbColInf ** columns, short & numcols)

Allows a native SQL command to be executed directly against the datasource. In
addition to being able to run any standard SQL command, use of this function allows a
user to (potentially) utilize features specific to the datasource they are connected to that
may not be available through ODBC. The ODBC driver will pass the specified command
directly to the datasource.

To get column amount and column names or other information about returned columns,
pass 'columns' and 'numcols' parameters to the function also.

Parameters

pSqlStmt

Pointer to the SQL statement to be executed.

columns

On success, this function will set this pointer to point to array of wxDbColInf (p.
305) objects, holding information about columns returned by the query. You need
to call delete[] for the pointer you pass here after you don't use it anymore to
prevent memory leak.

numcols

Reference to variable where amount of objects in 'columns'-parameter will be set.

CHAPTER 7

287

Remarks

This member extends the wxDb class and allows you to build and execute ANY VALID
SQL statement against the datasource. This allows you to extend the class library by
being able to issue any SQL statement that the datasource is capable of processing.

See also

wxDb::GetData (p. 289), wxDb::GetNext (p. 291)

wxDb::FwdOnlyCursors

bool IsFwdOnlyCursors ()

Older form (pre-2.3/2.4 of wxWidgets) of thewxDb::IsFwdOnlyCursors (p. 293). This
method is provided for backward compatibility only. The
methodwxDb::IsFwdOnlyCursors (p. 293) should be used in place of this method.

wxDbInf * GetCatalog (const wxChar * userID)

wxDb::GetCatalog

wxDbInf * GetCatalog (const wxChar * userID)

Returns a wxDbInf (p. 312) pointer that points to the catalog (datasource) name,
schema, number of tables accessible to the current user, and a wxDbTableInf pointer to
all data pertaining to all tables in the users catalog.

Parameters

userID

Owner/Schema of the table. Specify a userID when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. userID is evaluated as follows:

 userID == NULL ... UserID is ignored (DEF AULT)
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

Remarks

The returned catalog will only contain catalog entries for tables to which the user
specified in 'userID' has sufficient privileges. If no user is specified (NULL passed in), a
catalog pertaining to all tables in the datasource accessible to the connected user
(permissions apply) via this connection will be returned.

wxDb::GetColumnCount

int GetColumnCount (const wxString & tableName, const wxChar * userID)

Parameters

CHAPTER 7

288

tableName

The table name you wish to obtain column information about.

userID

Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userID is evaluated in the
following manner:

 userID == NULL ... UserID is ignored (DEF AULT)
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

Return value

Returns a count of how many columns are in the specified table. If an error occurs
retrieving the number of columns, this function will return a -1.

wxDb::GetColumns

wxDbColInf * GetColumns (const wxString & tableName, UWORD *numCols, const
wxChar * userID=NULL)

wxDbColInf * GetColumns (wxChar * tableName[], const wxChar * userID)

Parameters

tableName

The table name you wish to obtain column information about.

numCols

Pointer to a UWORD which will hold a count of the number of columns returned by
this function

tableName[]

An array of pointers to table names you wish to obtain column information about.
The last element of this array must be a NULL string.

userID

Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userID is evaluated in the
following manner:

 userID == NULL ... UserID is ignored (DEF AULT)
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

Return value

CHAPTER 7

289

This function returns a pointer to an array of wxDbColInf (p. 305)structures, allowing you
to obtain information regarding the columns of the named table(s). If no columns were
found, or an error occurred, this pointer will be NULL.

THE CALLING FUNCTION IS RESPONSIBLE FOR DELETING THE wxDbColInf
MEMORY WHEN IT IS FINISHED WITH IT.

ALL column bindings associated with this wxDb instance are unbound by this function,
including those used by any wxDbTable instances that use this wxDb instance. This
function should use its own wxDb instance to avoid undesired unbinding of columns.

See also

wxDbColInf (p. 305)

Example

 wxChar *tableList[] = {"PARTS", 0};
 wxDbColInf *colInf = pDb->GetColumns(tableList);
 if (colInf)
 {
 // Use the column inf

 // Destroy the memory
 delete [] colInf;
 }

wxDb::GetData

bool GetData (UWORD colNumber, SWORD cType,PTR pData, SDWORD maxLen,
SDWORD FAR * cbReturned)

Used to retrieve result set data without binding column values to memory variables (i.e.
not using a wxDbTable instance to access table data).

Parameters

colNumber

Ordinal number of the desired column in the result set to be returned.

cType

The C data type that is to be returned. See a partial list in wxDbTable::SetColDefs
(p. 340)

pData

Memory buffer which will hold the data returned by the call to this function.

maxLen

Maximum size of the buffer 'pData' in characters. NOTE: Not UNICODE safe. If
this is a numeric field, a value of 0 may be passed for this parameter, as the API
knows the size of the expected return value.

CHAPTER 7

290

cbReturned

Pointer to the buffer containing the length of the actual data returned. If this value
comes back as SQL_NULL_DATA, then thewxDb::GetData (p. 289) call has failed.

See also

wxDb::GetNext (p. 291), wxDb::ExecSql (p. 286)

Example

 SDWORD cb;
 ULONG reqQty;
 wxString sqlStmt;
 sqlStmt = "SELECT SUM(REQUIRED_QTY - PICKED_QTY) FROM
ORDER_TABLE WHERE \
 PART_RECID = 1450 AND REQUIRED_QTY > PICKED_QTY";

 // Perform the query
 if (!pDb->ExecSql(sqlStmt.c_str()))
 {
 // ERROR
 return(0);
 }

 // Request the first row of the result set
 if (!pDb->GetNext())
 {
 // ERROR
 return(0);
 }

 // Read column #1 of the row returned by the ca ll to
::GetNext()
 // and return the value in 'reqQty'
 if (!pDb->GetData(1, SQL_C_ULONG, &reqQty, 0, & cb))
 {
 // ERROR
 return(0);
 }

 // Check for a NULL result
 if (cb == SQL_NULL_DATA)
 return(0);

Remarks

When requesting multiple columns to be returned from the result set (for example, the
SQL query requested 3 columns be returned), the calls to this function must request the
columns in ordinal sequence (1,2,3 or 1,3 or 2,3).

wxDb::GetDatabaseName

const wxChar * GetDatabaseName ()

Returns the name of the database engine.

wxDb::GetDatasourceName

CHAPTER 7

291

const wxString & GetDatasourceName ()

Returns the ODBC datasource name.

wxDb::GetHDBC

HDBC GetHDBC ()

Returns the ODBC handle to the database connection.

wxDb::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDb::GetHSTMT

HSTMT GetHSTMT()

Returns the ODBC statement handle associated with this database connection.

wxDb::GetKeyFields

int GetKeyFields (const wxString & tableName, wxDbColInf * colInf, UWORD
numColumns)

Used to determine which columns are members of primary or non-primary indexes on
the specified table. If a column is a member of a foreign key for some other table, that
information is detected also.

This function is primarily for use by the wxDb::GetColumns (p. 288) function, but may be
called if desired from the client application.

Parameters

tableName

Name of the table for which the columns will be evaluated as to their inclusion in
any indexes.

colInf

Data structure containing the column definitions (obtained with wxDb::GetColumns
(p. 288)). This function populates the PkCol, PkTableName, and FkTableName
members of the colInf structure.

numColumns

Number of columns defined in the instance of colInf.

Return value

CHAPTER 7

292

Currently always returns true.

See also

wxDbColInf (p. 305), wxDb::GetColumns (p. 288)

wxDb::GetNext

bool GetNext ()

Called after executing a query, this function requests the next row in the result set after
the current position of the cursor.

See also

wxDb::ExecSql (p. 286), wxDb::GetData (p. 289)

wxDb::GetNextError

bool GetNextError (HENV aHenv,HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt =
SQL_NULL_HSTMT)

Parameters

aHenv

A handle to the ODBC environment.

aHdbc

OPTIONAL. A handle to the ODBC connection. Pass this in if the ODBC function
call that failed required a hdbc or hstmt argument.

AHstmt

OPTIONAL.A handle to the ODBC statement being executed against. Pass this in
if the ODBC function call that failed requires a hstmt argument.

Example

 if (SQLExecDirect(hstmt, (UCHAR FAR *) pSqlStmt, SQL_NTS) !=
SQL_SUCCESS)
 {
 return(db.GetNextError(db.henv, db.hdbc, hstm t));
 }

See also

wxDb::DispNextError (p. 285),wxDb::DispAllErrors (p. 284)

wxDb::GetPassword

const wxString & GetPassword ()

CHAPTER 7

293

Returns the password used to establish this connection to the datasource.

wxDb::GetTableCount

int GetTableCount ()

Returns the number of wxDbTable() instances currently using this datasource
connection.

wxDb::GetUsername

const wxString & GetUsername ()

Returns the user name (uid) used to establish this connection to the datasource.

wxDb::Grant

bool Grant (int privileges, const wxString & tableName,const wxString & userList =
"PUBLIC")

Use this member function to GRANT privileges to users for accessing tables in the
datasource.

Parameters

privileges

Use this argument to select which privileges you want to grant. Pass
DB_GRANT_ALL to grant all privileges. To grant individual privileges pass one or
more of the following OR'd together:

 DB_GRANT_SELECT = 1
 DB_GRANT_INSERT = 2
 DB_GRANT_UPDATE = 4
 DB_GRANT_DELETE = 8
 DB_GRANT_ALL = DB_GRANT_SELECT | DB_GR ANT_INSERT |
 DB_GRANT_UPDATE | DB_GR ANT_DELETE

tableName

The name of the table you wish to grant privileges on.

userList

OPTIONAL. A comma delimited list of users to grant the privileges to. If this
argument is not passed in, the privileges will be given to the general PUBLIC.

Remarks

Some databases require user names to be specified in all capital letters (i.e. Oracle).
This function does not automatically capitalize the user names passed in the comma-
separated list. This is the responsibility of the calling routine.

The currently logged in user must have sufficient grantor privileges for this function to be

CHAPTER 7

294

able to successfully grant the indicated privileges.

Example

 db.Grant(DB_GRANT_SELECT | DB_GRANT_INSERT, "PAR TS", "mary,
sue");

wxDb::IsFwdOnlyCursors

bool IsFwdOnlyCursors ()

This setting indicates whether this database connection was created as being capable of
using only forward scrolling cursors.

This function does NOT indicate if the ODBC driver or datasource supports backward
scrolling cursors. There is no standard way of detecting if the driver or datasource can
support backward scrolling cursors.

If a wxDb instance was created as being capable of only forward scrolling cursors, then
even if the datasource and ODBC driver support backward scrolling cursors, tables
using this database connection would only be able to use forward scrolling cursors.

The default setting of whether a wxDb connection to a database allows forward-only or
also backward scrolling cursors is defined in setup.h by the value of
wxODBC_FWD_ONLY_CURSORS. This default setting can be overridden when the
wxDb connection is initially created (seewxDb constructor (p. 280) and
wxDbGetConnection (p. 278)).

Return value

Returns true if this datasource connection is defined as using only forward scrolling
cursors, or false if the connection is defined as being allowed to use backward scrolling
cursors and their associated functions (see note above).

Remarks

Added as of wxWidgets v2.4 release, this function is a renamed version of
wxDb::FwdOnlyCursors() to match the normal wxWidgets naming conventions for class
member functions.

This function is not available in versions prior to v2.4. You should use
wxDb::FwdOnlyCursors (p. 286) for wxWidgets versions prior to 2.4.

See also

wxDb constructor (p. 280), wxDbGetConnection (p. 278)

wxDb::IsOpen

bool IsOpen ()

Indicates whether the database connection to the datasource is currently opened.

CHAPTER 7

295

Remarks

This function may indicate that the database connection is open, even if the call to
wxDb::Open (p. 296) may have failed to fully initialize the connection correctly. The
connection to the databaseis open and can be used via the direct SQL commands, if this
function returns true. Other functions which depend on thewxDb::Open (p. 296) to have
completed correctly may not function as expected. The return result from wxDb::Open
(p. 296) is the only way to know if complete initialization of this wxDb connection was
successful or not. See wxDb::Open (p. 296) for more details on partial failures to open a
connection instance.

wxDb::LogError

void LogError (const wxString & errMsg const wxString & SQLState="")

errMsg

Free-form text to display describing the error/text to be logged.

SQLState

OPTIONAL. Native SQL state error. Default is 0.

Remarks

Calling this function will enter a log message in the error list maintained for the database
connection. This log message is free form and can be anything the programmer wants
to enter in the error list.

If SQL logging is turned on, the call to this function will also log the text into the SQL log
file.

See also

wxDb::WriteSqlLog (p. 303)

wxDb::ModifyColumn

void ModifyColumn (const wxString & tableName const wxString & ColumnNameint
dataType ULONG columnLength=0 const wxString & optionalParam="")

Used to change certain properties of a column such as the length, or whether a column
allows NULLs or not.

tableName

Name of the table that the column to be modified is in.

columnName

Name of the column to be modified. NOTE: Name of column cannot be changed
with this function.

CHAPTER 7

296

dataType

Any one of DB_DATA_TYPE_VARCHAR, DB_DATA_TYPE_INTEGER,
DB_DATA_TYPE_FLOAT, DB_DATA_TYPE_DATE.

columnLength

New size of the column. Valid only for DB_DATA_TYPE_VARCHAR dataType
fields. Default is 0.

optionalParam

Default is "".

Remarks

Cannot be used to modify the precision of a numeric column, therefore 'columnLength' is
ignored unless the dataType is DB_DATA_TYPE_VARCHAR.

Some datasources do not allow certain properties of a column to be changed if any rows
currently have data stored in that column. Those datasources that do allow columns to
be changed with data in the rows many handle truncation and/or expansion in different
ways. Please refer to the reference material for the datasource being used for
behavioral descriptions.

Example

 ok = pDb->ModifyColumn("CONTACTS", "ADDRESS2",
 DB_, colDefs[j].SzDataO bj,
 wxT("NOT NULL"));

wxDb::Open

bool Open (const wxString & Dsn, const wxString & Uid,const wxString & AuthStr,
bool failOnDataTypeUnsupported)

bool Open (const wxString & inConnectStr, bool failOnDataTypeUnsupported)

bool Open (wxDbConnectInf * dbConnectInf, bool failOnDataTypeUnsupported)

bool Open (wxDb * copyDb)

Opens a connection to the datasource, sets certain behaviors of the datasource to
confirm to the accepted behaviors (e.g. cursor position maintained on commits), and
queries the datasource for its representations of the basic datatypes to determine the
form in which the data going to/from columns in the data tables are to be handled.

The second form of this function, which accepts a "wxDb *" as a parameter, can be used
to avoid the overhead (execution time, database load, network traffic) which are needed
to determine the data types and representations of data that are necessary for cross-
datasource support by these classes.

Normally the first form of the wxDb::Open() function will open the connection and then
send a series of queries to the datasource asking it for its representation of data types,

CHAPTER 7

297

and all the features it supports. If one connection to the datasource has already been
made previously, the information gathered when that connection was created can just be
copied to any new connections to the same datasource by passing a pointer to the first
connection in as a parameter to the wxDb::Open() function. Note that this new
connection created from the first connections information will use the same
Dsn/Uid/AuthStr as the first connection used.

Parameters

Dsn

datasource name. The name of the ODBC datasource as assigned when the
datasource is initially set up through the ODBC data source manager.

Uid

User ID. The name (ID) of the user you wish to connect as to the datasource. The
user name (ID) determines what objects you have access to in the datasource and
what datasource privileges you have. Privileges include being able to create new
objects, update objects, delete objects and so on. Users and privileges are
normally administered by the database administrator.

AuthStr

The password associated with the Uid.

failOnDataTypeUnsupporte

As part of connecting to a database, the wxDb::Open() function will query the
database to find out the native types that it supports. With some databases, some
data types may not be supported, or not sufficiently supported, for use with the
wxODBC classes. Normally a program should fail in this case, so as not to try to
use a data type that is not supported. This parameter allows the programmer to
override the failure if they wish and continue on using the connection.

dbConnectInf

Contains a DSN, Uid, Password, or a connection string to be used in opening a
new connection to the database. If a connection string is present, then the
connection string will be used. If there is no connection string present, then the
DSN, Uid, and Password are used.

inConnectStr

A valid ODBC connection string used to connect to a database

copyDb

Already completely configured and opened datasource connection from which all
Dsn, Uid, AuthStr, connection string, and data typing information is to be copied
from for use by this datasource connection. If 'copyDb' used a connection string
to create its connection originally, then the connection being made by this call to
wxDb::Open() will use that same connection string.

CHAPTER 7

298

Remarks

After a wxDb instance is created, it must then be opened. When opening a datasource,
there must be three pieces of information passed. The data source name, user name
(ID) and the password for the user. No database activity on the datasource can be
performed until the connection is opened. This is normally done at program startup and
the datasource remains open for the duration of the program/module run.

It is possible to have connections to multiple datasources open at the same time to
support distributed database connections by having separate instances of wxDb objects
that use either the same or different Dsn/Uid/AuthStr settings.

If this function returns a value of false, it does not necessarily mean that the connection
to the datasource was not opened. It may mean that some portion of the initialization of
the connection failed (such as a datatype not being able to be determined how the
datasource represents it). To determine if the connection to the database failed, use the
wxDb::IsOpen (p. 294)function after receiving a false result back from this function to
determine if the connection was opened or not. If this function returns false, but
wxDb::IsOpen (p. 294)returns true, then direct SQL commands may be passed to the
database connection and can be successfully executed, but use of the datatypes (such
as by a wxDbTable instance) that are normally determined during open will not be
possible.

The Dsn, Uid, and AuthStr string pointers that are passed in are copied. NOT the strings
themselves, only the pointers. The calling routine must maintain the memory for these
three strings for the life of the wxDb instance.

Example

 wxDb sampleDB(DbConnectInf.GetHenv());
 if (!sampleDB.Open("Oracle 7.1 HP/UX", "gtasker" ,
"myPassword"))
 {
 if (sampleDb.IsOpen())
 {
 // Connection is open, but the initializati on of
 // datatypes and parameter settings failed
 }
 else
 {
 // Error opening datasource
 }
 }

wxDb::RollbackTrans

bool RollbackTrans ()

Function to "undo" changes made to the database. After an insert/update/delete, the
operation may be "undone" by issuing this command any time before a
wxDb::CommitTrans (p. 282) is called on the database connection.

Remarks

Transactions begin implicitly as soon as you make a change to the database. The

CHAPTER 7

299

transaction continues until either a commit or rollback is executed. Calling
wxDb::RollbackTrans() will result in ALL changes done using this database connection
that have not already been committed to be "undone" back to the last commit/rollback
that was successfully executed.

Calling this member function rolls back ALL open (uncommitted) transactions on this
ODBC connection, including all wxDbTable instances that use this connection.

See also

wxDb::CommitTrans (p. 282) for a special note on cursors

wxDb::SetDebugErrorMessages

void SetDebugErrorMessages (bool state)

state

Either true (debug messages are logged) or false (debug messages are not
logged).

Remarks

Turns on/off debug error messages from the ODBC class library. When this function is
passed true, errors are reported to the user/logged automatically in a text or pop-up
dialog when an ODBC error occurs. When passed false, errors are silently handled.

When compiled in release mode (FINAL=1), this setting has no affect.

See also

wxDb constructor (p. 280)

wxDb::SetSqlLogging

bool SetSqlLogging (wxDbSqlLogState state, const wxString & filename =
SQL_LOG_FILENAME, bool append = false)

Parameters

state

Either sqlLogOFF or sqlLogON (see enum wxDbSqlLogState (p. 304)). Turns
logging of SQL commands sent to the datasource OFF or ON.

filename

OPTIONAL. Name of the file to which the log text is to be written. Default is
SQL_LOG_FILENAME.

append

OPTIONAL. Whether the file is appended to or overwritten. Default is false.

CHAPTER 7

300

Remarks

When called with sqlLogON, all commands sent to the datasource engine are logged to
the file specified by filename. Logging is done by embedded wxDb::WriteSqlLog (p.
303) calls in the database member functions, or may be manually logged by adding calls
to wxDb::WriteSqlLog (p. 303) in your own source code.

When called with sqlLogOFF, the logging file is closed, and any calls to
wxDb::WriteSqlLog (p. 303) are ignored.

wxDb::SQLColumnName

const wxString SQLColumnName (const char * colName)

Returns the column name in a form ready for use in SQL statements. In most cases, the
column name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in column names, which must be specially quoted. For
example, if the datasource allows spaces in the column name, the returned string will
have the correct enclosing marks around the name to allow it to be properly included in a
SQL statement for the DBMS that is currently connected to with this connection.

Parameters

colName

Native name of the column in the table that is to be evaluated to determine if any
special quoting marks needed to be added to it before including the column name
in a SQL statement

See also

wxDb::SQLTableName (p. 300)

wxDb::SQLTableName

const wxString SQLTableName (const char * tableName)

Returns the table name in a form ready for use in SQL statements. In most cases, the
table name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in table names, which must be specially quoted. For example,
if the datasource allows spaces in the table name, the returned string will have the
correct enclosing marks around the name to allow it to be properly included in a SQL
statement for the data source that is currently connected to with this connection.

Parameters

tableName

Native name of the table that is to be evaluated to determine if any special quoting
marks needed to be added to it before including the table name in a SQL
statement

See also

CHAPTER 7

301

wxDb::SQLColumnName (p. 299)

wxDb::TableExists

bool TableExists (const wxString & tableName, const wxChar * userID=NULL, const
wxString & path="")

Checks the ODBC datasource for the existence of a table. If a userIDis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName

Name of the table to check for the existence of.

userID

Owner of the table (also referred to as schema). Specify a userID when the
datasource you are connected to allows multiple unique tables with the same
name to be owned by different users. userIDis evaluated as follows:

 userID == NULL ... UserID is ignored (DEF AULT)
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

Remarks

tableName may refer to a table, view, alias or synonym.

This function does not indicate whether or not the user has privileges to query or perform
other functions on the table. Use the wxDb::TablePrivileges (p. 301) to determine if the
user has sufficient privileges or not.

See also

wxDb::TablePrivileges (p. 301)

wxDb::TablePrivileges

bool TablePrivileges (const wxString & tableName, const wxString & priv,const
wxChar * userID=NULL, const wxChar * schema=NULL,const wxString & path="")

Checks the ODBC datasource for the existence of a table. If a userIDis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName

Name of the table on which to check privileges.tableName may refer to a table,
view, alias or synonym.

CHAPTER 7

302

priv

The table privilege being evaluated. May be one of the following (or a datasource
specific privilege):

 SELECT : The connected user is permitted t o retrieve data
for
 one or more columns of the table.

 INSERT : The connected user is permitted t o insert new
rows
 containing data for one or more c olumns into the
 table.

 UPDATE : The connected user is permitted t o update the
data in
 one or more columns of the table.

 DELETE : The connected user is permitted t o delete rows
of
 data from the table.

 REFERENCES : Is the connected user permitted t o refer to one
or
 more columns of the table within a constraint
(for
 example, a unique, referential, o r table check
 constraint).

userID

OPTIONAL. User for which to determine if the privilege specified to be checked is
granted or not. Default is "".userID is evaluated as follows:

 userID == NULL ... NOT ALLOWED!
 userID == "" ... UserID set equal to 't his->uid'
 userID != "" ... UserID set equal to 'u serID'

schema

OPTIONAL. Owner of the table. Specify a userID when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. Specifying the table owner makes determination of the users
privileges MUCH faster. Default is NULL. userID is evaluated as follows:

 schema == NULL ... Any owner (DEFAULT)
 schema == "" ... Owned by 'this->uid'
 schema != "" ... Owned by userID specif ied in 'schema'

path

OPTIONAL. Path to the table. Default is "". Currently unused.

Remarks

The scope of privilege allowed to the connected user by a given table privilege is
datasource dependent.

For example, the privilege UPDATE might allow the connected user to update all

CHAPTER 7

303

columns in a table on one datasource, but only those columns for which the grantor (the
user that granted the connected user) has the UPDATE privilege on another datasource.

Looking up a user's privileges to a table can be time consuming depending on the
datasource and ODBC driver. This time can be minimized by passing a schemaas a
parameter. With some datasources/drivers, the difference can be several seconds of
time difference.

wxDb::TranslateSqlState

int TranslateSqlState (const wxString & SQLState)

Converts an ODBC sqlstate to an internal error code.

Parameters

SQLState

State to be converted.

Return value

Returns the internal class DB_ERR code. See wxDb::DB_STATUS (p. 271) definition.

wxDb::WriteSqlLog

bool WriteSqlLog (const wxString & logMsg)

Parameters

logMsg

Free form string to be written to the log file.

Remarks

Very useful debugging tool that may be turned on/off during run time (see (see
wxDb::SetSqlLogging (p. 299) for details on turning logging on/off). The passed in string
logMsg will be written to a log file if SQL logging is turned on.

Return value

If SQL logging is off when a call to WriteSqlLog() is made, or there is a failure to write
the log message to the log file, the function returns false without performing the
requested log, otherwise true is returned.

See also

wxDb::SetSqlLogging (p. 299)

wxDbColDataPtr

CHAPTER 7

304

Pointer to dynamic column definitions for use with a wxDbTable instance. Currently there
are no member functions for this class.

See the database classes overview (p. 1742) for an introduction to using the ODBC
classes.

 void *PtrDataObj;
 int SzDataObj;
 SWORD SqlCtype;

wxDbColDef

This class is used to hold information about the columns bound to an instance of a
wxDbTable object.

Each instance of this class describes one column in the wxDbTable object. When
calling the wxDb constructor (p. 280), a parameter passed in indicates the number of
columns that will be defined for the wxDbTable object. The constructor uses this
information to allocate adequate memory for all of the column descriptions in your
wxDbTable object. Private member wxDbTable::colDefs is a pointer to this chunk of
memory maintained by the wxDbTable class (and can be retrieved using
thewxDbTable::GetColDefs (p. 327) function). To access the nth column definition of
your wxDbTable object, just reference wxDbColDefs element [n - 1].

Typically, wxDbTable::SetColDefs (p. 340) is used to populate an array of these data
structures for the wxDbTable instance.

Currently there are no accessor functions for this class, so all members are public.

 wxChar ColName[DB_MAX_COLUMN_NAME_LEN+1]; // Column Name
 int DbDataType; - Logical Data Type;
 e.g. DB_DATA_TYPE_INTE GER
 SWORD SqlCtype; - C data type; e.g. SQL_ C_LONG
 void *PtrDataObj; - Address of the data ob ject
 int SzDataObj; - Size, in bytes, of the data object
 bool KeyField; - Is column part of the PRIMARY KEY for
the
 table? -- Date fields should NOT be
 KeyFields
 bool Updateable; - Column is updateable?
 bool InsertAllowed; - Column included in INS ERT statements?
 bool DerivedCol; - Column is a derived va lue?
 SDWORD CbValue; - !!!Internal use only!! !
 bool Null; - NOT FULLY IMPLEMENTED
 Allows NULL values in Inserts and
Updates

See also

database classes overview (p. 1742),wxDbTable::GetColDefs (p. 327), wxDb constructor
(p. 280)

Include files

<wx/db.h>

CHAPTER 7

305

wxDbColDef::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbColFor

Beginning support for handling international formatting specifically on dates and floats.

 wxString s_Field; // Formated Strin g for Output
 wxString s_Format[7]; // Formated Objec ts - TIMESTAMP
has
 the biggest (7)
 wxString s_Amount[7]; // Formated Objec ts - amount of
 things that ca n be formatted
 int i_Amount[7]; // Formated Objec ts -
 TT MM YYYY HH MM SS m
 int i_Nation; // 0 = timestamp
 1 = EU
 2 = UK
 3 = Internatio nal
 4 = US
 int i_dbDataType; // conversion of the
'sqlDataType'
 to the generic data type used
by
 these classes
 SWORD i_sqlDataType;

The constructor for this class initializes all the values to zero or NULL.

The destructor does nothing at this time.

Only one function is provided with this class currently.

See the database classes overview (p. 1742) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

wxDbColFor::Format

int Format (int Nation, int dbDataType,SWORD sqlDataType, short columnSize,short
decimalDigits)

Work in progress, and should be inter-related with wxLocale eventually.

wxDbColFor::Initialize

CHAPTER 7

306

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbColInf

Used with the wxDb::GetColumns (p. 288) functions for obtaining all retrievable
information about a column's definition.

 wxChar catalog[128+1];
 wxChar schema[128+1];
 wxChar tableName[DB_MAX_TABLE_NAME_LEN+1] ;
 wxChar colName[DB_MAX_COLUMN_NAME_LEN+1];
 SWORD sqlDataType;
 wxChar typeName[128+1];
 SWORD columnSize;
 SWORD bufferLength;
 short decimalDigits;
 short numPrecRadix;
 short nullable;
 wxChar remarks[254+1];
 int dbDataType; // conversion of the 'sqlDataType'
 // to the generic dat a type used by
 // these classes
 int PkCol; // Primary key column
 0 = No
 1 = First Key
 2 = Second Key, etc...
 wxChar PkTableName[DB_MAX_TABLE_NAME_LEN+ 1];
 // Tables that use th is PKey as a
FKey
 int FkCol; // Foreign key column
 0 = No
 1 = First Key
 2 = Second Key, etc...
 wxChar FkTableName[DB_MAX_TABLE_NAME_LEN+ 1];
 // Foreign key table name
 wxDbColFor *pColFor; // How should this co lumn be
formatted

The constructor for this class initializes all the values to zero, "", or NULL.

The destructor for this class takes care of deleting the pColFor member if it is non-NULL.

See the database classes overview (p. 1742) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

wxDbColInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

CHAPTER 7

307

wxDbConnectInf

This class is used for holding the data necessary for connecting to the ODBC
datasource. That information includes: SQL environment handle, datasource name,
user ID, password and default directory path (used with dBase). Other optional fields
held in this class are and file type, both for future functions planned to be added for
creating/manipulating datasource definitions.

wxDbConnectInf::wxDbConnectInf

 wxDbConnectInf ()

Default constructor.

 wxDbConnectInf (HENV henv, const wxString & dsn,const wxString & userID="",
const wxString & password,const wxString & defaultDir="", const wxString
&description="",const wxString & fileType="")

Constructor which allows initial settings of all the classes member variables.

See the special note below on the henv parameter for forcing this constructor to create a
SQL environment handle automatically, rather than needing to pass one in to the
function.

Parameters

henv

Environment handle used for this connection. See wxDConnectInf::AllocHenv (p.
308) for how to create an SQL environment handle. NOTE: Passing in a NULL for
this parameter will inform the constructor that it should create its own SQL
environment handle. If NULL is passed for this parameter, the constructor will call
wxDConnectInf::AllocHenv (p. 308) internally. A flag is set internally also to
indicate that the HENV was created by the constructor so that when the default
class destructor is called, the destructor will call wxDConnectInf::FreeHenv (p.
308) to free the environment handle automatically.

dsn

Name of the datasource to be used in creating wxDb instances for creating
connection(s) to a datasource.

userID

OPTIONAL Many datasources allow (or even require) use of a username to
determine privileges that connecting user is allowed to have when accessing the
datasource or the data tables. Default is "".

password

OPTIONAL Password to be associated with the user ID specified in 'userID'.
Default is "".

CHAPTER 7

308

defaultDir

OPTIONAL Used for datasources which require the path to where the data file is
stored to be specified. dBase is one example of the type of datasource which
requires this information. Default is "".

description

OPTIONAL FUTURE USE Default is "".

fileType

OPTIONAL FUTURE USE Default is "".

Remarks

It is strongly recommended that programs use the longer form of the constructor and
allow the constructor to create the SQL environment handle automatically, and manage
the destruction of the handle.

Example

 wxDbConnectInf *DbConnectInf;

 DbConnectInf = new wxDbConnectInf(0,"MY_DSN", "MY_ USER",
"MY_PASSWORD");

the rest of the program

 delete DbConnectInf;

See also

wxDConnectInf::AllocHenv (p. 308),wxDConnectInf::FreeHenv (p. 308)

wxDbConnectInf::~wxDbConnectInf

 ~wxDbConnectInf ()

Handles the default destruction of the instance of the class. If the long form of the
wxDConnectInf (p. 306) was used, then this destructor also takes care of calling
wxDConnectInf::FreeHenv (p. 308) to free the SQL environment handle.

wxDbConnectInf::AllocHenv

bool AllocHenv ()

Allocates a SQL environment handle that will be used to interface with an ODBC
datasource.

Remarks

This function can be automatically called by the long from of thewxDbConnectInf (p. 306)
constructor.

CHAPTER 7

309

wxDbConnectInf::FreeHenv

void FreeHenv ()

Frees the SQL environment handle being managed by the instance of this class.

Remarks

If the SQL environment handle was created using the long form of the wxDbConnectInf
(p. 306) constructor, then the flag indicating that the HENV should be destroyed when
the classes destructor is called is reset to be false, so that any future handles created
using the wxDbConnectInf::AllocHenv (p. 308) function must be manually released with
a call to this function.

wxDbConnectInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectInf::GetAuthStr

const wxChar * GetAuthStr ()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectInf::GetPassword (p. 310)

wxDbConnectInf::GetDefaultDir

const wxChar * GetDefaultDir ()

Accessor function to return the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectInf::GetDescription

const wxChar * GetDescription ()

Accessor function to return the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetDsn

const wxChar * GetDsn ()

Accessor function to return the datasource name assigned for this class instance.

CHAPTER 7

310

wxDbConnectInf::GetFileType

const wxChar * GetFileType ()

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetHenv

const HENV GetHenv ()

Accessor function to return the SQL environment handle being managed by this class
instance.

wxDbConnectInf::GetPassword

const wxChar * GetPassword ()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectInf::GetAuthStr (p. 309)

wxDbConnectInf::GetUid

const wxChar * GetUid ()

Accessor function to return the user ID assigned for this class instance.

wxDbConnectInf::GetUserID

const wxChar * GetUserID ()

Accessor function to return the user ID assigned for this class instance.

wxDbConnectInf::SetAuthStr

 SetAuthStr (const wxString &authstr)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectInf::SetPassword (p. 311)

wxDbConnectInf::SetDefaultDir

 SetDefaultDir (const wxString &defDir)

Accessor function to assign the default directory in which the datasource's data table is

CHAPTER 7

311

stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectInf::SetDescription

 SetDescription (const wxString &desc)

Accessor function to assign the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectInf::SetDsn

 SetDsn (const wxString &dsn)

Accessor function to assign the datasource name for this class instance.

wxDbConnectInf::SetFileType

 SetFileType (const wxString &)

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::SetHenv

void SetHenv (const HENV henv)

Accessor function to set the SQL environment handle for this class instance.

wxDbConnectInf::SetPassword

 SetPassword (const wxString &password)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectInf::SetAuthStr (p. 310)

wxDbConnectInf::SetUid

 SetUid (const wxString &uid)

Accessor function to set the user ID for this class instance.

wxDbConnectInf::SetUserID

CHAPTER 7

312

 SetUserID (const wxString &userID)

Accessor function to assign the user ID for this class instance.

wxDbIdxDef

Used in creation of non-primary indexes. Currently there are no member functions for
this class.

 wxChar ColName[DB_MAX_COLUMN_NAME_LEN+1]
 // Name of column
 bool Ascending // Is index maint ained in
 ASCENDING sequ ence?

There are no constructors/destructors as of this time, and no member functions.

See the database classes overview (p. 1742) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

wxDbInf

Contains information regarding the database connection (datasource name, number of
tables, etc). A pointer to a wxDbTableInf is included in this class so a program can
create a wxDbTableInf array instance to maintain all information about all tables in the
datasource to have all the datasource's information in one memory structure.

Primarily, this class is used internally by the wxWidgets ODBC classes.

 wxChar catalog[128+1];
 wxChar schema[128+1]; // typically mean s owner of
table(s)
 int numTables; // How many table s does this
 datasource hav e
 wxDbTableInf *pTableInf; // Equals a new
 wxDbTableInf[n umTables];

The constructor for this class initializes all the values to zero, "", or NULL.

The destructor for this class takes care of deleting the pTableInf member if it is non-
NULL.

See the database classes overview (p. 1742) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

CHAPTER 7

313

wxDbInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbTable

A wxDbTable instance provides re-usable access to rows of data in a table contained
within the associated ODBC datasource

See the database classes overview (p. 1742) for an introduction to using the ODBC
classes.

Include files

<wx/dbtable.h>
<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in dbtable.cpp/.h for use with the
wxDbTable class.

 • wxDbColDef (p. 303)

 • wxDbColDataPtr (p. 303)

 • wxDbIdxDef (p. 311)

Constants

 wxDB_DEFAULT_CURSOR Primary cursor normally us ed for cursor
based
 operations.

 wxDB_QUERY_ONLY Used to indicate whether a table that is
opened
 is for query only, or if
insert/update/deletes
 will be performed on the t able. Less
overhead
 (cursors and memory) are a llocated for
query
 only tables, plus read acc ess times are
faster
 with some datasources.

 wxDB_ROWID_LEN [Oracle only] - Used when
CanUpdateByRowID()
 is true. Optimizes update s so they are
faster
 by updating on the Oracle- specific ROWID
column
 rather than some other ind ex.

 wxDB_DISABLE_VIEW Use to indicate when a dat abase view

CHAPTER 7

314

should not
 be if a table is normally set up to use a
view.
 [Currently unsupported.]

wxDbTable::wxDbTable

 wxDbTable (wxDb * pwxDb, const wxString & tblName, const UWORD numColumns,
const wxString & qryTblName = "", bool qryOnly = !wxDB_QUERY_ONLY, const
wxString & tblPath = "")

Default constructor.

Parameters

pwxDb

Pointer to the wxDb instance to be used by this wxDbTable instance.

tblName

The name of the table in the RDBMS.

numColumns

The number of columns in the table. (Do NOT include the ROWID column in the
count if using Oracle).

qryTblName

OPTIONAL. The name of the table or view to base your queries on. This
argument allows you to specify a table/view other than the base table for this
object to base your queries on. This allows you to query on a view for example,
but all of the INSERT, UPDATE and DELETES will still be performed on the base
table for this wxDbTable object. Basing your queries on a view can provide a
substantial performance increase in cases where your queries involve many tables
with multiple joins. Default is "".

qryOnly

OPTIONAL. Indicates whether the table will be accessible for query purposes
only, or should the table create the necessary cursors to be able to insert, update,
and delete data from the table. Default is !wxDB_QUERY_ONLY.

tblPath

OPTIONAL. Some datasources (such as dBase) require a path to where the table
is stored on the system. Default is "".

wxDbTable::wxDbTable

CHAPTER 7

315

virtual ~wxDbTable ()

Virtual default destructor.

wxDbTable::BuildDeleteStmt

void BuildDeleteStmt (wxString & pSqlStmt,int typeOfDel, const wxString
&pWhereClause="")

Constructs the full SQL statement that can be used to delete all rows matching the
criteria in the pWhereClause.

Parameters

pSqlStmt

Pointer to buffer for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfDel

The type of delete statement being performed. Can be one of three values:
DB_DEL_KEYFIELDS, DB_DEL_WHERE or DB_DEL_MATCHING

pWhereClause

OPTIONAL. If the typeOfDel is DB_DEL_WHERE, then you must also pass in a
SQL WHERE clause in this argument. Default is "".

Remarks

This member function constructs a SQL DELETE statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 345)and
wxDbTable::SetFromClause (p. 342) are ignored by this function.

wxDbTable::BuildSelectStmt

void BuildSelectStmt (wxString & pSqlStmt,int typeOfSelect, bool distinct)

Constructs the full SQL statement that can be used to select all rows matching the
criteria in the pWhereClause. This function is called internally in the wxDbTable class
whenever the function wxDbTable::Query (p. 334)is called.

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 340)statements are
included in the list of columns returned by the SQL statement created by a call to this
function.

Parameters

pSqlStmt

CHAPTER 7

316

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfSelect

The type of select statement being performed. Can be one of four values:
DB_SELECT_KEYFIELDS, DB_SELECT_WHERE, DB_SELECT_MATCHING or
DB_SELECT_STATEMENT.

distinct

Whether to select distinct records only.

Remarks

This member function constructs a SQL SELECT statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified usingwxDbTable::SetWhereClause (p. 345)and
wxDbTable::SetFromClause (p. 342) are ignored by this function.

wxDbTable::BuildUpdateStmt

void BuildUpdateStmt (wxString & pSqlStmt, int typeOfUpd,const wxString
&pWhereClause="")

Constructs the full SQL statement that can be used to update all rows matching the
criteria in the pWhereClause.

If typeOfUpdate is DB_UPD_KEYFIELDS, then the current values in the bound columns
are used to determine which row(s) in the table are to be updated. The exception to this
is when a datasource supports ROW IDs (Oracle). The ROW ID column is used for
efficiency purposes when available.

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 340)statements are
included in the list of columns updated by the SQL statement created by a call to this
function. Any column definitions that were defined as being non-updateable will be
excluded from the SQL UPDATE statement created by this function.

Parameters

pSqlStmt

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfUpdate

The type of update statement being performed. Can be one of two values:
DB_UPD_KEYFIELDS or DB_UPD_WHERE.

pWhereClause

CHAPTER 7

317

OPTIONAL. If the typeOfUpdate is DB_UPD_WHERE, then you must also pass in
a SQL WHERE clause in this argument. Default is "".

Remarks

This member function allows you to see what the SQL UPDATE statement looks like that
the ODBC class library builds. This can be used for debugging purposes if you are
having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 345)and
wxDbTable::SetFromClause (p. 342) are ignored by this function.

wxDbTable::BuildWhereClause

 void BuildWhereClause (wxString & pWhereClause,int typeOfWhere, const wxString
&qualTableName="",bool useLikeComparison=false)

Constructs the portion of a SQL statement which would follow the word 'WHERE' in a
SQL statement to be passed to the datasource. The returned string does NOT include
the word 'WHERE'.

Parameters

pWhereClause

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfWhere

The type of where clause to generate. Can be one of two values:
DB_WHERE_KEYFIELDS or DB_WHERE_MATCHING.

qualTableName

OPTIONAL. Prepended to all base table column names. For use when a FROM
clause has been specified with thewxDbTable::SetFromClause (p. 342), to clarify
which table a column name reference belongs to. Default is "".

useLikeComparison

OPTIONAL. Should the constructed WHERE clause utilize the LIKE comparison
operator. If false, then the '=' operator is used. Default is false.

Remarks

This member function allows you to see what the SQL WHERE clause looks like that the
ODBC class library builds. This can be used for debugging purposes if you are having
problems executing your own SQL statements.

If using 'typeOfWhere' set to DB_WHERE_MATCHING, any bound columns currently
containing a NULL value are not included in the WHERE clause's list of columns to use
in the comparison.

CHAPTER 7

318

wxDbTable::CanSelectForUpdate

bool CanSelectForUpdate ()

Use this function to determine if the datasource supports SELECT ... FOR UPDATE.
When the keywords "FOR UPDATE" are included as part of your SQL SELECT
statement, all records retrieved (not just queried, but actually retrieved
usingwxDbTable::GetNext (p. 329), etc) from the result set are locked.

Remarks

Not all datasources support the "FOR UPDATE" clause, so you must use this member
function to determine if the datasource currently connected to supports this behavior or
not before trying to select using "FOR UPDATE".

If the wxDbTable instance was created with the parameter wxDB_QUERY_ONLY, then
this function will return false. For all known databases which do not support the FOR
UPDATE clause, this function will return false also.

wxDbTable::CanUpdateByROWID

bool CanUpdateByROWID ()

CURRENTLY ONLY POSSIBLE IF USING ORACLE.

--- CURRENTLY DISABLED FOR *ALL* DATASOURCES --- NOV 1 2000 - gt

Every Oracle table has a hidden column named ROWID. This is a pointer to the
physical location of the record in the datasource and allows for very fast updates and
deletes. The key is to retrieve this ROWID during your query so it is available during an
update or delete operation.

Use of the ROWID feature is always handled by the class library except in the case of
wxDbTable::QueryBySqlStmt (p. 336). Since you are passing in the SQL SELECT
statement, it is up to you to include the ROWID column in your query. If you do not, the
application will still work, but may not be as optimized. The ROWID is always the last
column in the column list in your SQL SELECT statement. The ROWID is not a column
in the normal sense and should not be considered part of the column definitions for the
wxDbTable object.

Remarks

The decision to include the ROWID in your SQL SELECT statement must be deferred
until runtime since it depends on whether you are connected to an Oracle datasource or
not.

Example

 // Incomplete code sample
 wxDbTable parts;

 if (parts.CanUpdateByROWID())
 {
 // Note that the ROWID column must always b e the last

CHAPTER 7

319

column selected
 sqlStmt = "SELECT PART_NUM, PART_DESC, ROWI D" FROM PARTS";
 }
 else
 sqlStmt = "SELECT PART_NUM, PART_DESC FROM PARTS";

wxDbTable::ClearMemberVar

void ClearMemberVar (UWORD colNumber, bool setToNull=false)

Same as wxDbTable::ClearMemberVars (p. 319) except that this function clears only the
specified column of its values, and optionally sets the column to be a NULL column.

colNumber

Column number that is to be cleared. This number (between 0 and (numColumns-
1)) is the index of the column definition created using thewxDbTable::SetColDefs
(p. 340) function.

setToNull

OPTIONAL. Indicates whether the column should be flagged as being a NULL
value stored in the bound memory variable. If true, then any value stored in the
bound member variable is cleared. Default is false.

wxDbTable::ClearMemberVars

void ClearMemberVars (bool setToNull=false)

Initializes all bound columns of the wxDbTable instance to zero. In the case of a string,
zero is copied to the first byte of the string.

setToNull

OPTIONAL. Indicates whether all columns should be flagged as having a NULL
value stored in the bound memory variable. If true, then any value stored in the
bound member variable is cleared. Default is false.

Remarks

This is useful before calling functions such aswxDbTable::QueryMatching (p. 337)
orwxDbTable::DeleteMatching (p. 324) since these functions build their WHERE clauses
from non-zero columns. To call eitherwxDbTable::QueryMatching (p. 337)
orwxDbTable::DeleteMatching (p. 324) use this sequence:

1) ClearMemberVars()
2) Assign columns values you wish to match on
3) Call wxDbTable::QueryMatching() or wxDbTable::D eleteMatching()

wxDbTable::CloseCursor

bool CloseCursor (HSTMTcursor)

CHAPTER 7

320

Closes the specified cursor associated with the wxDbTable object.

Parameters

cursor

The cursor to be closed.

Remarks

Typically handled internally by the ODBC class library, but may be used by the
programmer if desired.

DO NOT CLOSE THE wxDB_DEFAULT_CURSOR!

wxDbTable::Count

ULONG Count (const wxString & args="*")

Returns the number of records which would be in the result set using the current query
parameters specified in the WHERE and FROM clauses.

Parameters

args

OPTIONAL. This argument allows the use of the DISTINCT keyword against a
column name to cause the returned count to only indicate the number of rows in
the result set that have a unique value in the specified column. An example is
shown below. Default is "*", meaning a count of the total number of rows matching
is returned, regardless of uniqueness.

Remarks

This function can be called before or after an actual query to obtain the count of records
in the result set. Count() uses its own cursor, so result set cursor positioning is not
affected by calls to Count().

WHERE and FROM clauses specified usingwxDbTable::SetWhereClause (p. 345)and
wxDbTable::SetFromClause (p. 342) ARE used by this function.

Example

 USERS TABLE

 FIRST_NAME LAST_NAME
 ----------- ----------
 John Doe
 Richard Smith
 Michael Jones
 John Carpenter

 // Incomplete code sample
 wxDbTable users;

 users.SetWhereClause("");

CHAPTER 7

321

 // This Count() will return 4, as there are fou r users listed
above
 // that match the query parameters
 totalNumberOfUsers = users.Count();

 // This Count() will return 3, as there are onl y 3 unique
first names
 // in the table above - John, Richard, Michael.
 totalNumberOfUniqueFirstNames = users.Count("DI STINCT
FIRST_NAME");

wxDbTable::CreateIndex

bool CreateIndex (const wxString & IndexName, bool unique,UWORD
numIndexColumns, wxDbIdxDef * pIndexDefs,bool attemptDrop=true)

This member function allows you to create secondary (non primary) indexes on your
tables. You first create your table, normally specifying a primary index, and then create
any secondary indexes on the table. Indexes in relational model are not required. You
do not need indexes to look up records in a table or to join two tables together. In the
relational model, indexes, if available, provide a quicker means to look up data in a table.
To enjoy the performance benefits of indexes, the indexes must be defined on the
appropriate columns and your SQL code must be written in such a way as to take
advantage of those indexes.

Parameters

IndexName

Name of the Index. Name must be unique within the table space of the
datasource.

unique

Indicates if this index is unique.

numIndexColumns

Number of columns in the index.

pIndexDefs

A pointer to an array wxDbIdxDef (p. 311) structures.

attemptDrop

OPTIONAL. Indicates if the function should try to execute a
wxDbTable::DropIndex (p. 325) on the index name provided before trying to create
the index name. Default is true.

Remarks

The first parameter, index name, must be unique and should be given a meaningful
name. Common practice is to include the table name as a prefix in the index name (e.g.

CHAPTER 7

322

For table PARTS, you might want to call your index PARTS_Index1). This will allow you
to easily view all of the indexes defined for a given table grouped together alphabetically.

The second parameter indicates if the index is unique or not. Uniqueness is enforced at
the RDBMS level preventing rows which would have duplicate indexes from being
inserted into the table when violating a unique index's uniqueness.

In the third parameter, specify how many columns are in your index. This number must
match the number of columns defined in the 'pIndexDefs' parameter.

The fourth parameter specifies which columns make up the index using thewxDbIdxDef
(p. 311) structure. For each column in the index, you must specify two things, the
column name and the sort order (ascending / descending). See the example below to
see how to build and pass in the wxDbIdxDef (p. 311) structure.

The fifth parameter is provided to handle the differences in datasources as to whether
they will automatically overwrite existing indexes with the same name or not. Some
datasources require that the existing index must be dropped first, so this is the default
behavior.

Some datasources (MySQL, and possibly others) require columns which are to be part
of an index to be defined as NOT NULL. When this function is called, if a column is not
defined to be NOT NULL, a call to this function will modify the column definition to
change any columns included in the index to be NOT NULL. In this situation, if a NULL
value already exists in one of the columns that is being modified, creation of the index
will fail.

PostGres is unable to handle index definitions which specify whether the index is
ascending or descending, and defaults to the system default when the index is created.

It is not necessary to call wxDb::CommitTrans (p. 282)after executing this function.

Example

 // Create a secondary index on the PARTS table
 wxDbIdxDef IndexDef[2]; // 2 columns make up the index

 wxStrcpy(IndexDef[0].ColName, "PART_DESC"); // Column 1
 IndexDef[0].Ascending = true;

 wxStrcpy(IndexDef[1].ColName, "SERIAL_NO"); // Column 2
 IndexDef[1].Ascending = false;

 // Create a name for the index based on the tab le's name
 wxString indexName;
 indexName.Printf("%s_Index1",parts->GetTableNam e());
 parts->CreateIndex(indexName, true, 2, IndexDef);

wxDbTable::CreateTable

bool CreateTable (bool attemptDrop=true)

Creates a table based on the definitions previously defined for this wxDbTable instance.

Parameters

CHAPTER 7

323

attemptDrop

OPTIONAL. Indicates whether the driver should attempt to drop the table before
trying to create it. Some datasources will not allow creation of a table if the table
already exists in the table space being used. Default is true.

Remarks

This function creates the table and primary index (if any) in the table space associated
with the connected datasource. The owner of these objects will be the user id that was
given when wxDb::Open (p. 296) was called. The objects will be created in the default
schema/table space for that user.

In your derived wxDbTable object constructor, the columns and primary index of the
table are described through the wxDbColDef (p. 303) structure.wxDbTable::CreateTable
(p. 322) uses this information to create the table and to add the primary index.
SeewxDbTable (p. 312) ctor and wxDbColDef description for additional information on
describing the columns of the table.

It is not necessary to call wxDb::CommitTrans (p. 282)after executing this function.

wxDbTable::DB_STATUS

bool DB_STATUS ()

Accessor function that returns the wxDb private member variable DB_STATUS for the
database connection used by this instance of wxDbTable.

wxDbTable::Delete

bool Delete ()

Deletes the row from the table indicated by the current cursor.

Remarks

Use wxDbTable::GetFirst (p. 327),wxDbTable::GetLast (p. 328),wxDbTable::GetNext (p.
329) orwxDbTable::GetPrev (p. 330) to position the cursor to a valid record. Once
positioned on a record, call this function to delete the row from the table.

A wxDb::CommitTrans (p. 282) orwxDb::RollbackTrans (p. 298) must be called after use
of this function to commit or rollback the deletion.

NOTE: Most datasources have a limited size "rollback" segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 282) orwxDb::RollbackTrans (p. 298). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

wxDbTable::DeleteCursor

CHAPTER 7

324

bool DeleteCursor (HSTMT *hstmtDel)

Allows a program to delete a cursor.

Parameters

hstmtDel

Handle of the cursor to delete.

Remarks

For default cursors associated with the instance of wxDbTable, it is not necessary to
specifically delete the cursors. This is automatically done in the wxDbTable destructor.

NOTE: If the cursor could not be deleted for some reason, an error is logged indicating
the reason. Even if the cursor could not be deleted, the HSTMT that is passed in is
deleted, and the pointer is set to NULL.

DO NOT DELETE THE wxDB_DEFAULT_CURSOR!

wxDbTable::DeleteMatching

bool DeleteMatching ()

This member function allows you to delete records from your wxDbTable object by
specifying the data in the columns to match on.

Remarks

To delete all users with a first name of "JOHN", do the following:

 1. Clear all "columns" using wxDbTable::ClearMemberVars().

 2. Set the FIRST_NAME column equal to "JOHN".

 3. Call wxDbTable::DeleteMatching().

The WHERE clause is built by the ODBC class library based on all non-NULL columns.
This allows deletion of records by matching on any column(s) in your wxDbTable
instance, without having to write the SQL WHERE clause.

A wxDb::CommitTrans (p. 282) orwxDb::RollbackTrans (p. 298) must be called after use
of this function to commit or rollback the deletion.

NOTE: Row(s) should be locked before deleting them to make sure they are not already
in use. This can be achieved by callingwxDbTable::QueryMatching (p. 337), and then
retrieving the records, locking each as you go (assuming FOR UPDATE is allowed on
the datasource). After the row(s) have been successfully locked, call this function.

NOTE: Most datasources have a limited "rollback" segment. This means that it is only
possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 282) orwxDb::RollbackTrans (p. 298). Size of the rollback
segment varies from database to database, and is user configurable in most databases.

CHAPTER 7

325

Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

Example

 // Incomplete code sample to delete all users w ith a first
name
 // of "JOHN"
 users.ClearMemberVars();
 wxStrcpy(users.FirstName,"JOHN");
 users.DeleteMatching();

wxDbTable::DeleteWhere

bool DeleteWhere (const wxString & pWhereClause)

Deletes all rows from the table which match the criteria specified in the WHERE clause
that is passed in.

Parameters

pWhereClause

SQL WHERE clause. This WHERE clause determines which records will be
deleted from the table interfaced through the wxDbTable instance. The WHERE
clause passed in must be compliant with the SQL 92 grammar. Do not include the
keyword 'WHERE'

Remarks

This is the most powerful form of the wxDbTable delete functions. This function gives
access to the full power of SQL. This function can be used to delete records by passing
a valid SQL WHERE clause. Sophisticated deletions can be performed based on
multiple criteria using the full functionality of the SQL language.

A wxDb::CommitTrans (p. 282) must be called after use of this function to commit the
deletions.

Note: This function is limited to deleting records from the table associated with this
wxDbTable object only. Deletions on joined tables is not possible.

NOTE: Most datasources have a limited size "rollback" segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 282) orwxDb::RollbackTrans (p. 298). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 345)and
wxDbTable::SetFromClause (p. 342) are ignored by this function.

Example

CHAPTER 7

326

 // Delete parts 1 thru 10 from containers 'X', 'Y' and 'Z'
that
 // are magenta in color
 parts.DeleteWhere("(PART_NUMBER BETWEEN 1 AND 1 0) AND \
 CONTAINER IN ('X', 'Y', 'Z') AND \
 UPPER(COLOR) = 'MAGENTA'");

wxDbTable::DropIndex

bool DropIndex (const wxString & IndexName)

Allows an index on the associated table to be dropped (deleted) if the user login has
sufficient privileges to do so.

Parameters

IndexName

Name of the index to be dropped.

Remarks

If the index specified in the 'IndexName' parameter does not exist, an error will be
logged, and the function will return a result of false.

It is not necessary to call wxDb::CommitTrans (p. 282)after executing this function.

wxDbTable::DropTable

bool DropTable ()

Deletes the associated table if the user has sufficient privileges to do so.

Remarks

This function returns true if the table does not exist, but only for supported databases
(see wxDb::Dbms (p. 283)). If a datasource is not specifically supported, and this
function is called, the function will return false.

Most datasources/ODBC drivers will delete any indexes associated with the table
automatically, and others may not. Check the documentation for your database to
determine the behavior.

It is not necessary to call wxDb::CommitTrans (p. 282)after executing this function.

wxDbTable::From

const wxString & From ()

void From (const wxString & From)

Accessor function for the private class member wxDbTable::from. Can be used as a
synonym for wxDbTable::GetFromClause (p. 328)(the first form of this function)
orwxDbTable::SetFromClause (p. 342) (the second form of this function).

CHAPTER 7

327

Parameters

From

A comma separated list of table names that are to be outer joined with the base
table's columns so that the joined table's columns may be returned in the result set
or used as a portion of a comparison with the base table's columns. NOTE that
the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::from.

The second form of the function has no return value, as it will always set the from clause
successfully.

See also

wxDbTable::GetFromClause (p. 328),wxDbTable::SetFromClause (p. 342)

wxDbTable::GetColDefs

wxDbColDef * GetColDefs ()

Accessor function that returns a pointer to the array of column definitions that are bound
to the columns that this wxDbTable instance is associated with.

To determine the number of elements pointed to by the returnedwxDbColDef (p. 303)
pointer, use thewxDbTable::GetNumberOfColumns (p. 329) function.

Remarks

These column definitions must not be manually redefined after they have been set.

wxDbTable::GetCursor

HSTMT GetCursor ()

Returns the HSTMT value of the current cursor for this wxDbTable object.

Remarks

This function is typically used just before changing to use a different cursor so that after
the program is finished using the other cursor, the current cursor can be set back to
being the cursor in use.

See also

wxDbTable::SetCursor (p. 342), wxDbTable::GetNewCursor (p. 328)

wxDbTable::GetDb

CHAPTER 7

328

wxDb * GetDb ()

Accessor function for the private member variable pDb which is a pointer to the
datasource connection that this wxDbTable instance uses.

wxDbTable::GetFirst

bool GetFirst ()

Retrieves the FIRST row in the record set as defined by the current query. Before
retrieving records, a query must be performed usingwxDbTable::Query (p.
334),wxDbTable::QueryOnKeyFields (p. 338),wxDbTable::QueryMatching (p. 337)
orwxDbTable::QueryBySqlStmt (p. 336).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to false. If the connection does not allow
backward scrolling cursors, this function will return false, and the data contained in the
bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 293)

wxDbTable::GetFromClause

const wxString & GetFromClause ()

Accessor function that returns the current FROM setting assigned with
thewxDbTable::SetFromClause (p. 342).

See also

wxDbTable::From (p. 326)

wxDbTable::GetLast

bool GetLast ()

Retrieves the LAST row in the record set as defined by the current query. Before
retrieving records, a query must be performed usingwxDbTable::Query (p.
334),wxDbTable::QueryOnKeyFields (p. 338),wxDbTable::QueryMatching (p. 337)
orwxDbTable::QueryBySqlStmt (p. 336).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to false. If the connection does not allow
backward scrolling cursors, this function will return false, and the data contained in the
bound columns will be undefined.

See also

CHAPTER 7

329

wxDb::IsFwdOnlyCursors (p. 293)

wxDbTable::GetNewCursor

HSTMT * GetNewCursor (bool setCursor=false,bool bindColumns=true)

This function will create a new cursor that can be used to access the table being
referenced by this wxDbTable instance, or to execute direct SQL commands on without
affecting the cursors that are already defined and possibly positioned.

Parameters

setCursor

OPTIONAL. Should this new cursor be set to be the current cursor after
successfully creating the new cursor. Default is false.

bindColumns

OPTIONAL. Should this new cursor be bound to all the memory variables that the
default cursor is bound to. Default is true.

Remarks

This new cursor must be closed usingwxDbTable::DeleteCursor (p. 323)by the calling
program before the wxDbTable instance is deleted, or both memory and resource leaks
will occur.

wxDbTable::GetNext

bool GetNext ()

Retrieves the NEXT row in the record set after the current cursor position as defined by
the current query. Before retrieving records, a query must be performed using
wxDbTable::Query (p. 334),wxDbTable::QueryOnKeyFields (p.
338),wxDbTable::QueryMatching (p. 337) orwxDbTable::QueryBySqlStmt (p. 336).

Return value

This function returns false when the current cursor has reached the end of the result set.
When false is returned, data in the bound columns is undefined.

Remarks

This function works with both forward and backward scrolling cursors.

See also wxDbTable::++ (p. 347)

wxDbTable::GetNumberOfColumns

UWORD GetNumberOfColumns ()

Accessor function that returns the number of columns that are statically bound for

CHAPTER 7

330

access by the wxDbTable instance.

wxDbTable::GetOrderByClause

const wxString & GetOrderByClause ()

Accessor function that returns the current ORDER BY setting assigned with the
wxDbTable::SetOrderByClause (p. 344).

See also

wxDbTable::OrderBy (p. 334)

wxDbTable::GetPrev

bool GetPrev ()

Retrieves the PREVIOUS row in the record set before the current cursor position as
defined by the current query. Before retrieving records, a query must be performed
using wxDbTable::Query (p. 334),wxDbTable::QueryOnKeyFields (p.
338),wxDbTable::QueryMatching (p. 337) orwxDbTable::QueryBySqlStmt (p. 336).

Return value

This function returns false when the current cursor has reached the beginning of the
result set and there are now other rows prior to the cursors current position. When false
is returned, data in the bound columns is undefined.

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to false. If the connection does not allow
backward scrolling cursors, this function will return false, and the data contained in the
bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 293),wxDbTable::-- (p. 348)

wxDbTable::GetQueryTableName

const wxString & GetQueryTableName ()

Accessor function that returns the name of the table/view that was indicated as being the
table/view to query against when this wxDbTable instance was created.

See also

wxDbTable constructor (p. 313)

wxDbTable::GetRowNum

CHAPTER 7

331

UWORD GetRowNum ()

Returns the ODBC row number for performing positioned updates and deletes.

Remarks

This function is not being used within the ODBC class library and may be a candidate for
removal if no use is found for it.

Row number with some datasources/ODBC drivers is the position in the result set, while
in others it may be a physical position in the database. Check your database
documentation to find out which behavior is supported.

wxDbTable::GetTableName

const wxString & GetTableName ()

Accessor function that returns the name of the table that was indicated as being the
table that this wxDbTable instance was associated with.

wxDbTable::GetTablePath

const wxString & GetTablePath ()

Accessor function that returns the path to the data table that was indicated during
creation of this wxDbTable instance.

Remarks

Currently only applicable to dBase and MS-Access datasources.

wxDbTable::GetWhereClause

const wxString & GetWhereClause ()

Accessor function that returns the current WHERE setting assigned with
thewxDbTable::SetWhereClause (p. 345)

See also

wxDbTable::Where (p. 347)

wxDbTable::Insert

int Insert ()

Inserts a new record into the table being referenced by this wxDbTable instance. The
values in the member variables of the wxDbTable instance are inserted into the columns
of the new row in the database.

Return value

 DB_SUCCESS Record inserted success fully (value =

CHAPTER 7

332

1)

 DB_FAILURE Insert failed (value = 0)

 DB_ERR_INTEGRITY_CONSTRAINT_VIOL
 The insert failed due t o an integrity
 constraint violation (d uplicate non-
unique
 index entry) is attempt ed.

Remarks

A wxDb::CommitTrans (p. 282) orwxDb::RollbackTrans (p. 298) must be called after use
of this function to commit or rollback the insertion.

Example

 // Incomplete code snippet
 wxStrcpy(parts->PartName, "10");
 wxStrcpy(parts->PartDesc, "Part #10");
 parts->Qty = 1000;
 RETCODE retcode = parts->Insert();
 switch(retcode)
 {
 case DB_SUCCESS:
 parts->GetDb()->CommitTrans();
 return(true);
 case DB_ERR_INTEGRITY_CONSTRAINT_VIOL:
 // Current data would result in a dupli cate key
 // on one or more indexes that do not a llow duplicates
 parts->GetDb()->RollbackTrans();
 return(false);
 default:
 // Insert failed for some unexpected re ason
 parts->GetDb()->RollbackTrans();
 return(false);
 }

wxDbTable::IsColNull

bool IsColNull (UWORD colNumber) const

Used primarily in the ODBC class library to determine if a column value is set to "NULL".
Works for all data types supported by the ODBC class library.

Parameters

colNumber

The column number of the bound column as defined by
thewxDbTable::SetColDefs (p. 340)calls which defined the columns accessible to
this wxDbTable instance.

Remarks

NULL column support is currently not fully implemented as of wxWidgets 2.4.

wxDbTable::IsCursorClosedOnCommit

CHAPTER 7

333

bool IsCursorClosedOnCommit ()

Accessor function to return information collected during the opening of the datasource
connection that is used by this wxDbTable instance. The result returned by this function
indicates whether an implicit closing of the cursor is done after a commit on the
database connection.

Return value

Returns true if the cursor associated with this wxDbTable object is closed after a commit
or rollback operation. Returns false otherwise.

Remarks

If more than one wxDbTable instance used the same database connection, all cursors
which use the database connection are closed on the commit if this function indicates
true.

wxDbTable::IsQueryOnly

bool IsQueryOnly ()

Accessor function that returns a value indicating if this wxDbTable instance was created
to allow only queries to be performed on the bound columns. If this function returns true,
then no actions may be performed using this wxDbTable instance that would modify
(insert/delete/update) the table's data.

wxDbTable::Open

bool Open (bool checkPrivileges=false, bool checkTableExists=true)

Every wxDbTable instance must be opened before it can be used. This function checks
for the existence of the requested table, binds columns, creates required cursors,
(insert/select and update if connection is not wxDB_QUERY_ONLY) and constructs the
insert statement that is to be used for inserting data as a new row in the datasource.

NOTE: To retrieve data into an opened table, the of the table must be bound to the
variables in the program via call(s) to wxDbTable::SetColDefs (p. 340) before calling
Open().

See the database classes overview (p. 1742) for an introduction to using the ODBC
classes.

Parameters

checkPrivileges

Indicates whether the Open() function should check whether the current connected
user has at least SELECT privileges to access the table to which they are trying to
open. Default is false.

checkTableExists

CHAPTER 7

334

Indicates whether the Open() function should check whether the table exists in the
database or not before opening it. Default is true.

Remarks

If the function returns a false value due to the table not existing, a log entry is recorded
for the datasource connection indicating the problem that was detected when checking
for table existence. Note that it is usually best for the calling routine to check for the
existence of the table and for sufficient user privileges to access the table in the mode
(wxDB_QUERY_ONLY or !wxDB_QUERY_ONLY) before trying to open the table for the
best possible explanation as to why a table cannot be opened.

Checking the user's privileges on a table can be quite time consuming during the open
phase. With most applications, the programmer already knows that the user has
sufficient privileges to access the table, so this check is normally not required.

For best performance, open the table, and then use thewxDb::TablePrivileges (p. 301)
function to check the users privileges. Passing a schema to the TablePrivileges()
function can significantly speed up the privileges checks.

See also

wxDb::TableExists (p. 300),wxDb::TablePrivileges (p. 301)wxDbTable::SetColDefs (p.
340)

wxDbTable::OrderBy

const wxString & OrderBy ()

void OrderBy (const wxString & OrderBy)

Accessor function for the private class member wxDbTable::orderBy. Can be used as a
synonym forwxDbTable::GetOrderByClause (p. 329)(the first form of this function)
orwxDbTable::SetOrderByClause (p. 344)(the second form of this function).

Parameters

OrderBy

A comma separated list of column names that indicate the alphabetized/numeric
sorting sequence that the result set is to be returned in. If a FROM clause has
also been specified, each column name specified in the ORDER BY clause should
be prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::orderBy.

The second form of the function has no return value.

See also

CHAPTER 7

335

wxDbTable::GetOrderByClause (p. 329),wxDbTable::SetFromClause (p. 342)

wxDbTable::Query

virtual bool Query (bool forUpdate=false, bool distinct=false)

Parameters

forUpdate

OPTIONAL. Gives you the option of locking records as they are retrieved. If the
RDBMS is not capable of the FOR UPDATE clause, this argument is ignored.
SeewxDbTable::CanSelectForUpdate (p. 317) for additional information regarding
this argument. Default is false.

distinct

OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is false.

Remarks

This function queries records from the datasource based on the three wxDbTable
members: "where", "orderBy", and "from". UsewxDbTable::SetWhereClause (p. 345) to
filter on records to be retrieved (e.g. All users with a first name of "JOHN"). Use
wxDbTable::SetOrderByClause (p. 344) to change the sequence in which records are
returned in the result set from the datasource (e.g. Ordered by LAST_NAME).
UsewxDbTable::SetFromClause (p. 342) to allow outer joining of the base table (the one
being associated with this instance of wxDbTable) with other tables which share a
related field.

After each of these clauses are set/cleared, call wxDbTable::Query() to fetch the result
set from the datasource.

This scheme has an advantage if you have to requery your record set frequently in that
you only have to set your WHERE, ORDER BY, and FROM clauses once. Then to
refresh the record set, simply call wxDbTable::Query() as frequently as needed.

Note that repeated calls to wxDbTable::Query() may tax the database server and make
your application sluggish if done too frequently or unnecessarily.

The base table name is automatically prepended to the base column names in the event
that the FROM clause has been set (is non-null) usingwxDbTable::SetFromClause (p.
342).

The cursor for the result set is positioned before the first record in the result set after the
query. To retrieve the first record, call eitherwxDbTable::GetFirst (p. 327) (only if
backward scrolling cursors are available) orwxDbTable::GetNext (p. 329). Typically, no
data from the result set is returned to the client driver until a request such
aswxDbTable::GetNext (p. 329) is performed, so network traffic and database load are
not overwhelmed transmitting data until the data is actually requested by the client. This
behavior is solely dependent on the ODBC driver though, so refer to the ODBC driver's

CHAPTER 7

336

reference material for information on its behaviors.

Values in the bound columns' memory variables are undefined after executing a call to
this function and remain that way until a row in the result set is requested to be returned.

The wxDbTable::Query() function is defined as "virtual" so that it may be overridden for
application specific purposes.

Be sure to set the wxDbTable's "where", "orderBy", and "from" member variables to "" if
they are not to be used in the query. Otherwise, the results returned may have
unexpected results (or no results) due to improper or incorrect query parameters
constructed from the uninitialized clauses.

Example

 // Incomplete code sample
 parts->SetWhereClause("DESCRIPTION = 'FOOD'");
 parts->SetOrderByClause("EXPIRATION_DATE");
 parts->SetFromClause("");
 // Query the records based on the where, orderB y and from
clauses
 // specified above
 parts->Query();
 // Display all records queried
 while(parts->GetNext())
 dispPart(parts); // user defined function

wxDbTable::QueryBySqlStmt

bool QueryBySqlStmt (const wxString & pSqlStmt)

Performs a query against the datasource by accepting and passing verbatim the SQL
SELECT statement passed to the function.

Parameters

pSqlStmt

Pointer to the SQL SELECT statement to be executed.

Remarks

This is the most powerful form of the query functions available. This member function
allows a programmer to write their own custom SQL SELECT statement for requesting
data from the datasource. This gives the programmer access to the full power of SQL
for performing operations such as scalar functions, aggregate functions, table joins, and
sub-queries, as well as datasource specific function calls.

The requirements of the SELECT statement are the following:

 1. Must return the correct number of columns. In the derived wxDbTable
constructor, it is specified how many columns are in the wxDbTable object. The
SELECT statement must return exactly that many columns.

 2. The columns must be returned in the same sequence as specified when defining

CHAPTER 7

337

the bounds columns wxDbTable::SetColDefs (p. 340), and the columns returned
must be of the proper data type. For example, if column 3 is defined in the
wxDbTable bound column definitions to be a float, the SELECT statement must
return a float for column 3 (e.g. PRICE * 1.10 to increase the price by 10

 3. The ROWID can be included in your SELECT statement as the last column
selected, if the datasource supports it. Use wxDbTable::CanUpdateByROWID()
to determine if the ROWID can be selected from the datasource. If it can, much
better performance can be achieved on updates and deletes by including the
ROWID in the SELECT statement.

Even though data can be selected from multiple tables (joins) in your select statement,
only the base table associated with this wxDbTable object is automatically updated
through the ODBC class library. Data from multiple tables can be selected for display
purposes however. Include columns in the wxDbTable object and mark them as non-
updateable (SeewxDbColDef (p. 303) for details). This way columns can be selected
and displayed from other tables, but only the base table will be updated automatically
when performed through thewxDbTable::Update (p. 346) function after using this type of
query. To update tables other than the base table, use thewxDbTable::Update (p. 346)
function passing a SQL statement.

After this function has been called, the cursor is positioned before the first record in the
record set. To retrieve the first record, call either wxDbTable::GetFirst (p. 327)
orwxDbTable::GetNext (p. 329).

Example

 // Incomplete code samples
 wxString sqlStmt;
 sqlStmt = "SELECT * FROM PARTS WHERE STORAGE_DE VICE = 'SD98' \
 AND CONTAINER = 12";
 // Query the records using the SQL SELECT state ment above
 parts->QueryBySqlStmt(sqlStmt);
 // Display all records queried
 while(parts->GetNext())
 dispPart(&parts);

 Example SQL statements

 // Table Join returning 3 columns
 SELECT PART_NUM, part_desc, sd_name
 from parts, storage_devices
 where parts.storage_device_id =
 storage_devices.storage_device_id

 // Aggregate function returning total number of
 // parts in container 99
 SELECT count(*) from PARTS where container = 99

 // Order by clause; ROWID, scalar function
 SELECT PART_NUM, substring(part_desc, 1, 10), q ty_on_hand + 1,
ROWID
 from parts
 where warehouse = 10
 order by PART_NUM desc // descend ing order

 // Subquery

CHAPTER 7

338

 SELECT * from parts
 where container in (select container
 from storage_devices
 where device_id = 12)

wxDbTable::QueryMatching

virtual bool QueryMatching (bool forUpdate=false,bool distinct=false)

QueryMatching allows querying of records from the table associated with the wxDbTable
object by matching "columns" to values.

For example: To query the datasource for the row with a PART_NUMBER column value
of "32", clear all column variables of the wxDbTable object, set the PartNumber variable
that is bound to the PART_NUMBER column in the wxDbTable object to "32", and then
call wxDbTable::QueryMatching().

Parameters

forUpdate

OPTIONAL. Gives you the option of locking records as they are queried (SELECT
... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE clause, this
argument is ignored. SeewxDbTable::CanSelectForUpdate (p. 317) for additional
information regarding this argument. Default is false.

distinct

OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is false.

Remarks

The SQL WHERE clause is built by the ODBC class library based on all non-zero/non-
NULL columns in your wxDbTable object. Matches can be on one, many or all of the
wxDbTable's columns. The base table name is prepended to the column names in the
event that the wxDbTable's FROM clause is non-null.

This function cannot be used to perform queries which will check for columns that are 0
or NULL, as the automatically constructed WHERE clause only will contain comparisons
on column member variables that are non-zero/non-NULL.

The primary difference between this function and wxDbTable::QueryOnKeyFields (p.
338)is that this function can query on any column(s) in the wxDbTable object. Note
however that this may not always be very efficient. Searching on non-indexed columns
will always require a full table scan.

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either wxDbTable::GetFirst
(p. 327) orwxDbTable::GetNext (p. 329).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 345)and
wxDbTable::SetFromClause (p. 342) are ignored by this function.

CHAPTER 7

339

Example

 // Incomplete code sample
 parts->ClearMemberVars(); // Set all columns to zero
 wxStrcpy(parts->PartNumber,"32"); // Set colu mns to query on
 parts->OnHold = true;
 parts->QueryMatching(); // Query
 // Display all records queried
 while(parts->GetNext())
 dispPart(parts); // Some application defin ed function

wxDbTable::QueryOnKeyFields

bool QueryOnKeyFields (bool forUpdate=false,bool distinct=false)

QueryOnKeyFields provides an easy mechanism to query records in the table
associated with the wxDbTable object by the primary index column(s). Simply assign
the primary index column(s) values and then call this member function to retrieve the
record.

Note that since primary indexes are always unique, this function implicitly always returns
a single record from the database. The base table name is prepended to the column
names in the event that the wxDbTable's FROM clause is non-null.

Parameters

forUpdate

OPTIONAL. Gives you the option of locking records as they are queried (SELECT
... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE clause, this
argument is ignored. SeewxDbTable::CanSelectForUpdate (p. 317) for additional
information regarding this argument. Default is false.

distinct

OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is false.

Remarks

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either wxDbTable::GetFirst
(p. 327) orwxDbTable::GetNext (p. 329).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 345)and
wxDbTable::SetFromClause (p. 342) are ignored by this function.

Example

 // Incomplete code sample
 wxStrcpy(parts->PartNumber, "32");
 parts->QueryOnKeyFields();
 // Display all records queried
 while(parts->GetNext())
 dispPart(parts); // Some application defin ed function

CHAPTER 7

340

wxDbTable::Refresh

bool Refresh ()

This function re-reads the bound columns into the memory variables, setting them to the
current values stored on the disk.

The cursor position and result set are unaffected by calls to this function. (The one
exception is in the case where the record to be refreshed has been deleted by some
other user or transaction since it was originally retrieved as part of the result set. For
most datasources, the default behavior in this situation is to return the value that was
originally queried for the result set, even though it has been deleted from the database.
But this is datasource dependent, and should be tested before relying on this behavior.)

Remarks

This routine is only guaranteed to work if the table has a unique primary index defined
for it. Otherwise, more than one record may be fetched and there is no guarantee that
the correct record will be refreshed. The table's columns are refreshed to reflect the
current data in the database.

wxDbTable::SetColDefs

bool SetColDefs (UWORD index, const wxString & fieldName,int dataType, void
*pData, SWORD cType,int size, bool keyField = false, bool updateable = true,bool
insertAllowed = true, bool derivedColumn = false)

wxDbColDataPtr * SetColDefs (wxDbColInf * colInfs, UWORD numCols)

Parameters

index

Column number (0 to n-1, where n is the number of columns specified as being
defined for this wxDbTable instance when the wxDbTable constructor was called.

fieldName

Column name from the associated data table.

dataType

Logical data type. Valid logical types include:

 DB_DATA_TYPE_VARCHAR : strings
 DB_DATA_TYPE_INTEGER : non-floating poin t numbers
 DB_DATA_TYPE_FLOAT : floating point nu mbers
 DB_DATA_TYPE_DATE : dates

pData

Pointer to the data object that will hold the column's value when a row of data is
returned from the datasource.

CHAPTER 7

341

cType

SQL C Type. This defines the data type that the SQL representation of the data is
converted to to be stored in pData. Other valid types are available also, but these
are the most common ones:

 SQL_C_CHAR // string - deprecated: use SQL _C_WXCHAR
 SQL_C_WXCHAR // string - Used transparently in unicode or
non-unicode builds
 SQL_C_LONG
 SQL_C_ULONG
 SQL_C_SHORT
 SQL_C_USHORT
 SQL_C_FLOAT
 SQL_C_DOUBLE
 SQL_C_NUMERIC
 SQL_C_TIMESTAMP

 SQL_C_BOOLEAN // defined in db.h
 SQL_C_ENUM // defined in db.h

size

Maximum size in bytes of the pData object.

keyField

OPTIONAL. Indicates if this column is part of the primary index. Default is false.

updateable

OPTIONAL. Are updates allowed on this column? Default is true.

insertAllowed

OPTIONAL. Inserts allowed on this column? Default is true.

derivedColumn

OPTIONAL. Is this a derived column (non-base table column for query only)?
Default is false.

colInfs

Pointer to an array of wxDbColInf instances which contains all the information
necessary to create numCols column definitions.

numCols

Number of elements of wxDbColInf type that are pointed to by colInfs, which are to
have column definitions created from them.

Remarks

If pData is to hold a string of characters, be sure to include enough space for the NULL
terminator in pData and in the byte count of size.

CHAPTER 7

342

Using the first form of this function, if the column definition is not able to be created, a
value of false is returned. If the specified index of the column exceeds the number of
columns defined in the wxDbTable instance, an assert is thrown and logged (in debug
builds) and a false is returned.

A failure to create the column definition in the second form results in a value of NULL
being returned.

Both forms of this function provide a shortcut for defining the columns in your wxDbTable
object. Use this function in any derived wxDbTable constructor when describing the
column/columns in the wxDbTable object.

The second form of this function is primarily used when thewxDb::GetColumns (p. 288)
function was used to query the datasource for the column definitions, so that the column
definitions are already stored in wxDbColInf form. One example use of
usingwxDb::GetColumns (p. 288) then using this function is if a data table existed in one
datasource, and the table's column definitions were to be copied over to another
datasource or table.

Example

 // Long way not using this function
 wxStrcpy(colDefs[0].ColName, "PART_NUM");
 colDefs[0].DbDataType = DB_DATA_TYPE_VARCHAR;
 colDefs[0].PtrDataObj = PartNumber;
 colDefs[0].SqlCtype = SQL_C_WXCHAR;
 colDefs[0].SzDataObj = PART_NUMBER_LEN;
 colDefs[0].KeyField = true;
 colDefs[0].Updateable = false;
 colDefs[0].InsertAllowed= true;
 colDefs[0].DerivedCol = false;

 // Shortcut using this function
 SetColDefs(0, "PART_NUM", DB_DATA_TYPE_VARCHAR, PartNumber,
 SQL_C_WXCHAR, PART_NUMBER_LEN, true, false, true,
false);

wxDbTable::SetCursor

void SetCursor (HSTMT *hstmtActivate = (void **) wxDB_DEFAULT_CURSOR)

Parameters

hstmtActivate

OPTIONAL. Pointer to the cursor that is to become the current cursor. Passing no
cursor handle will reset the cursor back to the wxDbTable's default (original) cursor
that was created when the wxDbTable instance was first created. Default is
wxDB_DEFAULT_CURSOR.

Remarks

When swapping between cursors, the member variables of the wxDbTable object are
automatically refreshed with the column values of the row that the current cursor is
positioned at (if any). If the cursor is not positioned, then the data in member variables

CHAPTER 7

343

is undefined.

The only way to return back to the cursor that was in use before this function was called
is to programmatically determine the current cursor's HSTMTBEFORE calling this
function using wxDbTable::GetCursor (p. 327)and saving a pointer to that cursor.

See also

wxDbTable::GetNewCursor (p. 328),wxDbTable::GetCursor (p.
327),wxDbTable::SetCursor (p. 342)

wxDbTable::SetFromClause

void SetFromClause (const wxString & From)

Accessor function for setting the private class member wxDbTable::from that indicates
what other tables should be outer joined with the wxDbTable's base table for access to
the columns in those other tables.

Synonym to this function is one form of wxDbTable::From (p. 326)

Parameters

From

A comma separated list of table names that are to be outer joined with the base
table's columns so that the joined table's columns may be returned in the result set
or used as a portion of a comparison with the base table's columns. NOTE that
the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Remarks

Used by the wxDbTable::Query (p. 334) andwxDbTable::Count (p. 320) member
functions to allow outer joining of records from multiple tables.

Do not include the keyword "FROM" when setting the FROM clause.

If using the FROM clause when performing a query, be certain to include in the
corresponding WHERE clause a comparison of a column from either the base table or
one of the other joined tables to each other joined table to ensure the datasource knows
on which column values the tables should be joined on.

Example

 ...
 // Base table is the "LOCATION" table, and it i s being
 // outer joined to the "PART" table via the fie ld
"PART_NUMBER"
 // that can be related between the two tables.
 location->SetWhereClause("LOCATION.PART_NUMBER =
PART.PART_NUMBER")
 location->SetFromClause("PART");
 ...

CHAPTER 7

344

See also

wxDbTable::From (p. 326),wxDbTable::GetFromClause (p. 328)

wxDbTable::SetColNull

bool SetColNull (UWORD colNumber, bool set=true)

bool SetColNull (const wxString & colName,bool set=true)

Both forms of this function allow a member variable representing a column in the table
associated with this wxDbTable object to be set to NULL.

The first form allows the column to be set by the index into the column definitions used
to create the wxDbTable instance, while the second allows the actual column name to
be specified.

Parameters

colNumber

Index into the column definitions used when first defining this wxDbTable object.

colName

Actual data table column name that is to be set to NULL.

set

Whether the column is set to NULL or not. Passing true sets the column to NULL,
passing false sets the column to be non-NULL. Default is true.

Remarks

No database updates are done by this function. It only operates on the member
variables in memory. Use and insert or update function to store this value to disk.

wxDbTable::SetOrderByClause

void SetOrderByClause (const wxString & OrderBy)

Accessor function for setting the private class member wxDbTable::orderBy which
determines sequence/ordering of the rows returned in the result set of a query.

A synonym to this function is one form of the function wxDbTable::OrderBy (p. 334)

Parameters

OrderBy

A comma separated list of column names that indicate the alphabetized sorting
sequence that the result set is to be returned in. If a FROM clause has also been
specified, each column name specified in the ORDER BY clause should be
prefaced with the table name to which the column belongs using DOT notation

CHAPTER 7

345

(TABLE_NAME.COLUMN_NAME).

Remarks

Do not include the keywords "ORDER BY" when setting the ORDER BY clause.

Example

 ...
 parts->SetOrderByClause("PART_DESCRIP, QUANTITY ");
 ...

 ...
 location->SetOrderByClause("LOCATION.POSITION,
PART.PART_NUMBER);
 ...

See also

wxDbTable::OrderBy (p. 334),wxDbTable::GetOrderByClause (p. 329)

wxDbTable::SetQueryTimeout

bool SetQueryTimeout (UDWORD nSeconds)

Allows a time period to be set as the timeout period for queries.

Parameters

nSeconds

The number of seconds to wait for the query to complete before timing out.

Remarks

Neither Oracle or Access support this function as of yet. Other databases should be
evaluated for support before depending on this function working correctly.

wxDbTable::SetWhereClause

void SetWhereClause (const wxString & Where)

Accessor function for setting the private class member wxDbTable::where that
determines which rows are returned in the result set by the datasource.

A synonym to this function is one form of the function wxDbTable::Where (p. 347)

Parameters

Where

SQL "where" clause. This clause can contain any SQL language that is legal in
standard where clauses. If a FROM clause has also been specified, each column
name specified in the ORDER BY clause should be prefaced with the table name
to which the column belongs using DOT notation

CHAPTER 7

346

(TABLE_NAME.COLUMN_NAME).

Remarks

Do not include the keywords "WHERE" when setting the WHERE clause.

Example

 ...
 // Simple where clause
 parts->SetWhereClause("PART_NUMBER = '32'");
 ...
 // Any comparison operators
 parts->SetWhereClause("PART_DESCRIP LIKE 'HAMME R%'");
 ...
 // Multiple comparisons, including a function c all
 parts->Where("QTY > 0 AND {fn UCASE(PART_DESCRI P)} LIKE
'%DRILL%'");
 ...
 // Using parameters and multiple logical combin ations
 parts->Where("((QTY > 10) OR (ON_ORDER > 0)) AN D ON_HOLD =
0");
 ...
 // This query uses an outer join (requiring a F ROM clause
also)
 // that joins the PART and LOCATION table on he common field
 // PART_NUMBER.
 parts->Where("PART.ON_HOLD = 0 AND \
 PART.PART_NUMBER = LOCATION.PART_ NUMBER AND \
 LOCATION.PART_NUMBER > 0");

See also

wxDbTable::Where (p. 347),wxDbTable::GetWhereClause (p. 331)

wxDbTable::Update

bool Update ()

bool Update (const wxString & pSqlStmt)

The first form of this function will update the row that the current cursor is currently
positioned at with the values in the memory variables that are bound to the columns.
The actual SQL statement to perform the update is automatically created by the ODBC
class, and then executed.

The second form of the function allows full access through SQL statements for updating
records in the database. Write any valid SQL UPDATE statement and submit it to this
function for execution. Sophisticated updates can be performed using the full power of
the SQL dialect. The full SQL statement must have the exact syntax required by the
driver/datasource for performing the update. This usually is in the form of:

 UPDATE tablename SET col1=X, col2=Y, ... where ...

Parameters

pSqlStmt

CHAPTER 7

347

Pointer to SQL UPDATE statement to be executed.

Remarks

A wxDb::CommitTrans (p. 282) orwxDb::RollbackTrans (p. 298) must be called after use
of this function to commit or rollback the update.

Example

 wxString sqlStmt;
 sqlStmt = "update PART set QTY = 0 where PART_N UMBER = '32'";

wxDbTable::UpdateWhere

bool UpdateWhere (const wxString & pWhereClause)

Performs updates to the base table of the wxDbTable object, updating only the rows
which match the criteria specified in the pWhereClause.

All columns that are bound to member variables for this wxDbTable instance that were
defined with the "updateable" parameter set to true will be updated with the information
currently held in the memory variable.

Parameters

pWhereClause

Pointer to a valid SQL WHERE clause. Do not include the keyword 'WHERE'.

Remarks

Care should be used when updating columns that are part of indexes with this function
so as not to violate an unique key constraints.

A wxDb::CommitTrans (p. 282) orwxDb::RollbackTrans (p. 298) must be called after use
of this function to commit or rollback the update(s).

wxDbTable::Where

const wxString & Where ()

void Where (const wxString& Where)

Accessor function for the private class member wxDbTable::where. Can be used as a
synonym for wxDbTable::GetWhereClause (p. 331)(the first form of this function) to
return the current where clause orwxDbTable::SetWhereClause (p. 345) (the second
form of this function) to set the where clause for this table instance.

Parameters

Where

A valid SQL WHERE clause. Do not include the keyword 'WHERE'.

CHAPTER 7

348

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::where.

The second form of the function has no return value, as it will always set the where
clause successfully.

See also

wxDbTable::GetWhereClause (p. 331),wxDbTable::SetWhereClause (p. 345)

wxDbTable::operator ++

bool operator ++ ()

Synonym for wxDbTable::GetNext (p. 329)

See also

wxDbTable::GetNext (p. 329)

wxDbTable::operator --

bool operator -- ()

Synonym for wxDbTable::GetPrev (p. 330)

See also

wxDbTable::GetPrev (p. 330)

wxDbTableInf
 tableName[0] = 0;
 tableType[0] = 0;
 tableRemarks[0] = 0;
 numCols = 0;
 pColInf = NULL;

Currently only used by wxDb::GetCatalog (p. 287) internally and wxDbInf (p. 312) class,
but may be used in future releases for user functions. Contains information describing
the table (Name, type, etc). A pointer to a wxDbColInf array instance is included so a
program can create awxDbColInf (p. 305) array instance (usingwxDb::GetColumns (p.
288)) to maintain all information about the columns of a table in one memory structure.

Eventually, accessor functions will be added for this class

See the database classes overview (p. 1742) for an introduction to using the ODBC
classes.

Include files

CHAPTER 7

349

<wx/db.h>

wxDbTableInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbGridColInfo

This class is used to define columns to be shown, names of the columns, order and
type of data, when using wxdbGridTableBase (p. 350) to display a Table or query in a
wxGrid (p. 593)

See the database grid example in wxDbGridTableBase (p. 350) for an introduction to
using the wxDbGrid classes.

Include files

<wx/dbgrid.h>

wxDbGridColInfo::wxDbGridColInfo

 wxDbGridColInfo (int colNumber, wxString type, wxString title, wxDbGridColInfo
*next)

Default constructor. See the database grid example in wxDbGridTableBase (p. 350) to
see two different ways for adding columns.

Parameters

colNumber

Column number in the wxDbTable (p. 312) instance to be used (first column is 0).

type

Column type ,wxString specifying the grid name for the datatype in this column, or
use wxGRID_VALUE_DBAUTO to determine the type automatically from the
wxDbColDef (p. 303) definition

title

The column label to be used in the grid display

next

A pointer to the next wxDbGridColInfo structure if using one-step construction,
NULL terminates the list. Use Null also if using two step construction.

CHAPTER 7

350

See the database grid example in wxDbGridTableBase (p. 350) to see two different
ways for adding columns.

wxDbGridColInfo::~wxDbGridColInfo

 ~wxDbGridColInfo ()

Destructor.

wxDbGridColInfo::AddColInfo

void AddColInfo (int colNumber,wxString type, wxString title)

Use this member function for adding columns. See the database grid example in
wxDbGridTableBase (p. 350) to see two different ways for adding columns.

It is important to note that this class is merely a specifier to the wxDbGridTableBase (p.
350) constructor. Changes made to this datatype after the wxDbGridTableBase (p. 350)
is called will not have any effect.

Parameters colNumber

Column number in the wxDbTable (p. 312) instance to be used (first column is 0).

type

Column type ,wxString specifying the grid name for the datatype in this column, or
use wxGRID_VALUE_DBAUTO to determine the type automatically from the
wxDbColDef (p. 303) definition

title

The column label to be used in the grid display

Remarks

As wxDbTable must be defined with to have columns which match those to by a
wxDbGridColInfo info structure as this is the structure which informs the grid of how you
want to display your wxDbTable (p. 312). If no datatype conversion or the referenced
column number does not exist the the behavior is undefined.

See the example at wxDbGridColInfo::wxDbGridColInfo (p. 349).

wxDbGridTableBase

You can view a database table in a grid using this class.

If you are deriving your own wxDbTable subclass for your table , then you may consider
overriding GetCol() and SetCol() to provide calculated fields. This does work but care
should be taken when using wxDbGridTableBase in this way.

The constructor and AssignDbTable() call allows you to specify the ownership if the

CHAPTER 7

351

wxDbTable object pointer. If you tell wxGridTableBase to take ownership , it will delete
the passed wxDbTable when an new on is assigned or wxGridTableBase's destructor is
called. However no checks for aliasing are done so Assign(table,..,true);
Assign(table,..,true); is an error. If you need to requery an table object the preferred
way is that the client keeps ownership.

Derived From

wxGridTableBase (p. 648)

Include files

<wx/dbgrid.h>

Example

 // First step, let's define wxDbTable
 int numColumns = 2;
 wxDbTable *table = new wxDbTable (db, tblName, num Columns);
 int int_var;
 wxChar string_name[255];
 table->SetColDef (0, "column 0", DB_DATA_TYPE_INTE GER,
&int_var,
 SQL_C_LONG, sizeof(int_var), true);
 table->SetColDef (1, "column 1", DB_DATA_TYPE_VARC HAR,
&string_name,
 SQL_C_LONG, sizeof(string_name), false);

 // now let's define columns in the grid

 // first way to do it
 wxDbGridColInfo *columns;
 columns = new wxDbGridColInfo(0, wxGRID_VALUE_L ONG, "first
column",
 new wxDbGridColInfo(1, wxGRID_VALUE_S TRING, "second
column",
 NULL);

 // second way to do it
 wxDbGridColInfo *columns;
 // first column is special
 columns = new wxDbGridColInfo(0, wxGRID_VALUE_L ONG, "first
column", NULL);
 // all the rest
 columns->AddColInfo (1, wxGRID_VALUE_STRING, "s econd column");

 // second way may be better when columns are no t known at
compile time

 // now, let's open the table and make a Query()
 table->Open();
 // this step is very important
 table->SetRowMode (wxDbTable::WX_ROW_MODE_QUERY);
 // in the grid we will see only the rows of the result query
 m_dbTable->Query();

 wxDbGridTableBase *dbgrid = new wxDbGridTableBa se(table,
columns, wxUSE_QUERY, true);
 delete columns; // not needed anymore
 wxGrid *grid = new wxGrid (...);
 grid->SetTable(dbgrid, true);
 grid->Fit();

CHAPTER 7

352

Include files

<wx/dbgrid.h>

Helper classes and data structures

wxDbGridTableBase::wxDbGridTableBase

 wxDbGridTableBase (wxDbTable * tab, wxDbGridColInfo * ColInfo, int count =
wxUSE_QUERY, bool takeOwnership = true)

Constructor.

Parameters

tab

 The database table you want to display. Must be opened and queried before
display the grid. See the example above (p. 350).

ColInfo

 Columns titles, and other values. See wxDbGridColInfo (p. 348).

count

You can use a query result set (wxUSE_QUERY, to use
wxDbTable::Count(wxDbTable::Count() or you can fix the total number of rows
(count >= 0) to display, or specify it if you already know the size in avoid calling

takeOwnership

 If true, this class deletes wxDbTable when it stops referring to it, if false
application must take care of deleting it.

wxDbGridTableBase::ValidateRow

void ValidateRow (int row)

It ensures that the row data is fetched from the database, and it the wxDbTable local
buffer, the row number passed should be the grid row.

Parameters

row

 Row where validation must be done.

wxDbGridTableBase::UpdateRow

bool UpdateRow (int row)

CHAPTER 7

353

If row has changed it forces that row to be written back to the database, however
support for detecting whether insert/update is required is currently not in wxDbTable, so
this function is currently unsupported.

Parameters

row

 Row you want to update.

wxDbGridTableBase::AssignDbTable

bool AssignDbTable (wxDbTable * tab,int count = wxUSE_QUERY,bool
takeOwnership = true)

Resets the grid for using with a new database table, but using the same columns
definition. This can be useful when re-querying the database and want to see the
changes.

Parameters

tab

 Database table you want to assign to the grid.

count

 Number of rows you want to show or wxUSE_QUERY for using a query.

takeOwnership

 If false, user must take care of deleting tab after deleting the wxDbGridTableBase.
If true, deletion is made by destructor class.

wxDC

A wxDC is a device context onto which graphics and text can be drawn. It is intended to
represent a number of output devices in a generic way, so a window can have a device
context associated with it, and a printer also has a device context. In this way, the same
piece of code may write to a number of different devices, if the device context is used as
a parameter.

Derived types of wxDC have documentation for specific features only, so refer to this
section for most device context information.

Please note that in addition to the versions of the methods documented here, there are
also versions which accept single wxPoint parameter instead of two wxCoord ones or
wxPoint and wxSize instead of four of them.

Derived from

wxObject (p. 967)

CHAPTER 7

354

Include files

<wx/dc.h>

See also

Overview (p. 1714)

wxDC::wxDC

 wxDC ()

Constructor.

wxDC::~wxDC

 ~wxDC ()

Destructor.

wxDC::BeginDrawing

void BeginDrawing ()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

Drawing to a wxDialog panel device context outside of a system-generated OnPaint
event requires this pair of calls to enclose drawing code. This is because a Windows
dialog box does not have a retained device context associated with it, and selections
such as pen and brush settings would be lost if the device context were obtained and
released for each drawing operation.

wxDC::Blit

bool Blit (wxCoord xdest, wxCoord ydest, wxCoord width, wxCoord height, wxDC*
source, wxCoord xsrc, wxCoord ysrc, int logicalFunc = wxCOPY, bool useMask =
false, wxCoord xsrcMask = -1, wxCoord ysrcMask = -1)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to
copy, source DC, source coordinates, logical function, whether to use a bitmap mask,
and mask source position.

Parameters

xdest

Destination device context x position.

ydest

CHAPTER 7

355

Destination device context y position.

width

Width of source area to be copied.

height

Height of source area to be copied.

source

Source device context.

xsrc

Source device context x position.

ysrc

Source device context y position.

logicalFunc

Logical function to use: see wxDC::SetLogicalFunction (p. 369).

useMask

If true, Blit does a transparent blit using the mask that is associated with the bitmap
selected into the source device context. The Windows implementation does the
following if MaskBlt cannot be used:

 1. Creates a temporary bitmap and copies the destination area into it.

 2. Copies the source area into the temporary bitmap using the specified
logical function.

 3. Sets the masked area in the temporary bitmap to BLACK by ANDing the
mask bitmap with the temp bitmap with the foreground colour set to
WHITE and the bg colour set to BLACK.

 4. Sets the unmasked area in the destination area to BLACK by ANDing the
mask bitmap with the destination area with the foreground colour set to
BLACK and the background colour set to WHITE.

 5. ORs the temporary bitmap with the destination area.

 6. Deletes the temporary bitmap.

This sequence of operations ensures that the source's transparent area need not
be black, and logical functions are supported.

Note: on Windows, blitting with masks can be speeded up considerably by
compiling wxWidgets with the wxUSE_DC_CACHE option enabled. You can also
influence whether MaskBlt or the explicit mask blitting code above is used, by

CHAPTER 7

356

using wxSystemOptions (p. 1256) and setting the no-maskblt option to 1.

xsrcMask

Source x position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on
Windows.

ysrcMask

Source y position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on
Windows.

Remarks

There is partial support for Blit in wxPostScriptDC, under X.

See wxMemoryDC (p. 895) for typical usage.

See also

wxMemoryDC (p. 895), wxBitmap (p. 76), wxMask (p. 866)

wxDC::CalcBoundingBox

void CalcBoundingBox (wxCoord x, wxCoord y)

Adds the specified point to the bounding box which can be retrieved with MinX (p. 367),
MaxX (p. 367) and MinY (p. 367), MaxY (p. 367) functions.

See also

ResetBoundingBox (p. 368)

wxDC::Clear

void Clear ()

Clears the device context using the current background brush.

wxDC::ComputeScaleAndOrigin

virtual void ComputeScaleAndOrigin ()

Performs all necessary computations for given platform and context type after each
change of scale and origin parameters. Usually called automatically internally after such
changes.

wxDC::CrossHair

CHAPTER 7

357

void CrossHair (wxCoord x, wxCoord y)

Displays a cross hair using the current pen. This is a vertical and horizontal line the
height and width of the window, centred on the given point.

wxDC::DestroyClippingRegion

void DestroyClippingRegion ()

Destroys the current clipping region so that none of the DC is clipped. See also
wxDC::SetClippingRegion (p. 369).

wxDC::DeviceToLogicalX

wxCoord DeviceToLogicalX (wxCoord x)

Convert device X coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalXRel

wxCoord DeviceToLogicalXRel (wxCoord x)

Convert device X coordinate to relative logical coordinate, using the current mapping
mode but ignoring the x axis orientation. Use this function for converting a width, for
example.

wxDC::DeviceToLogicalY

wxCoord DeviceToLogicalY (wxCoord y)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalYRel

wxCoord DeviceToLogicalYRel (wxCoord y)

Convert device Y coordinate to relative logical coordinate, using the current mapping
mode but ignoring the y axis orientation. Use this function for converting a height, for
example.

wxDC::DrawArc

void DrawArc (wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, wxCoord xc,
wxCoord yc)

Draws an arc of a circle, centred on (xc, yc), with starting point (x1, y1) and ending at
(x2, y2). The current pen is used for the outline and the current brush for filling the
shape.

The arc is drawn in an anticlockwise direction from the start point to the end point.

CHAPTER 7

358

wxDC::DrawBitmap

void DrawBitmap (const wxBitmap& bitmap, wxCoord x, wxCoord y, bool
transparent)

Draw a bitmap on the device context at the specified point. If transparent is true and the
bitmap has a transparency mask, the bitmap will be drawn transparently.

When drawing a mono-bitmap, the current text foreground colour will be used to draw
the foreground of the bitmap (all bits set to 1), and the current text background colour to
draw the background (all bits set to 0). See also SetTextForeground (p. 371),
SetTextBackground (p. 371) and wxMemoryDC (p. 895).

wxDC::DrawCheckMark

void DrawCheckMark (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void DrawCheckMark (const wxRect & rect)

Draws a check mark inside the given rectangle.

wxDC::DrawCircle

void DrawCircle (wxCoord x, wxCoord y, wxCoord radius)

void DrawCircle (const wxPoint& pt, wxCoord radius)

Draws a circle with the given centre and radius.

See also

DrawEllipse (p. 358)

wxDC::DrawEllipse

void DrawEllipse (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void DrawEllipse (const wxPoint& pt, const wxSize& size)

void DrawEllipse (const wxRect& rect)

Draws an ellipse contained in the rectangle specified either with the given top left corner
and the given size or directly. The current pen is used for the outline and the current
brush for filling the shape.

See also

DrawCircle (p. 358)

wxDC::DrawEllipticArc

void DrawEllipticArc (wxCoord x, wxCoord y, wxCoord width, wxCoord height,

CHAPTER 7

359

double start, double end)

Draws an arc of an ellipse. The current pen is used for drawing the arc and the current
brush is used for drawing the pie.

x and y specify the x and y coordinates of the upper-left corner of the rectangle that
contains the ellipse.

width and height specify the width and height of the rectangle that contains the ellipse.

start and end specify the start and end of the arc relative to the three-o'clock position
from the center of the rectangle. Angles are specified in degrees (360 is a complete
circle). Positive values mean counter-clockwise motion. If start is equal to end, a
complete ellipse will be drawn.

wxDC::DrawIcon

void DrawIcon (const wxIcon& icon, wxCoord x, wxCoord y)

Draw an icon on the display (does nothing if the device context is PostScript). This can
be the simplest way of drawing bitmaps on a window.

wxDC::DrawLabel

virtual void DrawLabel (const wxString& text, const wxBitmap&
image, const wxRect& rect, int alignment =
wxALIGN_LEFT | wxALIGN_TOP, int indexAccel = -1,
wxRect * rectBounding = NULL)

void DrawLabel (const wxString& text, const wxRect& rect, int
alignment = wxALIGN_LEFT | wxALIGN_TOP, int indexAccel = -1)

Draw optional bitmap and the text into the given rectangle and aligns it as specified by
alignment parameter; it also will emphasize the character with the given index if it is != -1
and return the bounding rectangle if required.

wxDC::DrawLine

void DrawLine (wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2)

Draws a line from the first point to the second. The current pen is used for drawing the
line. Note that the point (x2, y2) is not part of the line and is not drawn by this function
(this is consistent with the behaviour of many other toolkits).

wxDC::DrawLines

void DrawLines (int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0)

void DrawLines (wxList * points, wxCoord xoffset = 0, wxCoord yoffset = 0)

Draws lines using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate. The current pen is used for drawing the lines. The

CHAPTER 7

360

programmer is responsible for deleting the list of points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

wxDC::DrawPolygon

void DrawPolygon (int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

void DrawPolygon (wxList * points, wxCoord xoffset = 0, wxCoord yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

Draws a filled polygon using an array of points of size n, or list of pointers to points,
adding the optional offset coordinate.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE .

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling. The programmer is responsible for
deleting the list of points.

Note that wxWidgets automatically closes the first and last points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

wxDC::DrawPolyPolygon

void DrawPolyPolygon (int n, int count[], wxPoint points[], wxCoord xoffset = 0,
wxCoord yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

Draws two or more filled polygons using an array of points, adding the optional offset
coordinates.

Notice that for the platforms providing a native implementation of this function (Windows
and PostScript-based wxDC currently), this is more efficient than using DrawPolygon (p.
359) in a loop.

n specifies the number of polygons to draw, the array count of size n specifies the
number of points in each of the polygons in the points array.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE .

CHAPTER 7

361

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling.

The polygons maybe disjoint or overlapping. Each polygon specified in a call
toDrawPolyPolygon must be closed. Unlike polygons created by theDrawPolygon (p.
359) member function, the polygons created byDrawPolyPolygon are not closed
automatically.

wxPython note: Not implemented yet

wxPerl note: Not implemented yet

wxDC::DrawPoint

void DrawPoint (wxCoord x, wxCoord y)

Draws a point using the color of the current pen. Note that the other properties of the
pen are not used, such as width etc..

wxDC::DrawRectangle

void DrawRectangle (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Draws a rectangle with the given top left corner, and with the given size. The current
pen is used for the outline and the current brush for filling the shape.

wxDC::DrawRotatedText

void DrawRotatedText (const wxString& text, wxCoord x, wxCoord y, double angle)

Draws the text rotated by angle degrees.

NB: Under Win9x only TrueType fonts can be drawn by this function. In particular, a font
different from wxNORMAL_FONT should be used as the latter is not a TrueType font.
wxSWISS_FONT is an example of a font which is.

See also

DrawText (p. 362)

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle (wxCoord x, wxCoord y, wxCoord width, wxCoord
height, double radius)

Draws a rectangle with the given top left corner, and with the given size. The corners
are quarter-circles using the given radius. The current pen is used for the outline and the
current brush for filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If
radius is negative, the absolute value is assumed to be the proportion of the smallest
dimension of the rectangle. This means that the corner can be a sensible size relative to

CHAPTER 7

362

the size of the rectangle, and also avoids the strange effects X produces when the
corners are too big for the rectangle.

wxDC::DrawSpline

void DrawSpline (int n, wxPoint points[])

Draws a spline between all given control points, using the current pen.

void DrawSpline (wxList * points)

Draws a spline between all given control points, using the current pen. Doesn't delete
the wxList and contents.

void DrawSpline (wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, wxCoord x3,
wxCoord y3)

Draws a three-point spline using the current pen.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts a reference to an array of
wxPoint objects.

wxDC::DrawText

void DrawText (const wxString& text, wxCoord x, wxCoord y)

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

The coordinates refer to the top-left corner of the rectangle bounding the string. See
wxDC::GetTextExtent (p. 366) for how to get the dimensions of a text string, which can
be used to position the text more precisely.

NB: under wxGTK the current logical function (p. 364) is used by this function but it is
ignored by wxMSW. Thus, you should avoid using logical functions with this function in
portable programs.

wxDC::EndDoc

void EndDoc ()

Ends a document (only relevant when outputting to a printer).

wxDC::EndDrawing

void EndDrawing ()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

CHAPTER 7

363

wxDC::EndPage

void EndPage ()

Ends a document page (only relevant when outputting to a printer).

wxDC::FloodFill

bool FloodFill (wxCoord x, wxCoord y, const wxColour& colour, int
style=wxFLOOD_SURFACE)

Flood fills the device context starting from the given point, using the current brush colour,
and using a style:

 • wxFLOOD_SURFACE: the flooding occurs until a colour other than the given
colour is encountered.

 • wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.

Returns false if the operation failed.

Note: The present implementation for non-Windows platforms may fail to find colour
borders if the pixels do not match the colour exactly. However the function will still return
true.

wxDC::GetBackground

const wxBrush& GetBackground () const

Gets the brush used for painting the background (see wxDC::SetBackground (p. 368)).

wxDC::GetBackgroundMode

int GetBackgroundMode () const

Returns the current background mode: wxSOLID or wxTRANSPARENT.

See also

SetBackgroundMode (p. 368)

wxDC::GetBrush

const wxBrush& GetBrush () const

Gets the current brush (see wxDC::SetBrush (p. 368)).

wxDC::GetCharHeight

wxCoord GetCharHeight ()

Gets the character height of the currently set font.

CHAPTER 7

364

wxDC::GetCharWidth

wxCoord GetCharWidth ()

Gets the average character width of the currently set font.

wxDC::GetClippingBox

void GetClippingBox (wxCoord *x, wxCoord *y, wxCoord *width, wxCoord *height)

Gets the rectangle surrounding the current clipping region.

wxPython note: No arguments are required and the four values defining the rectangle
are returned as a tuple.

wxPerl note: This method takes no arguments and returns a four element list(x, y,
width, height)

wxDC::GetFont

const wxFont& GetFont () const

Gets the current font (see wxDC::SetFont (p. 369)).

wxDC::GetLogicalFunction

int GetLogicalFunction ()

Gets the current logical function (see wxDC::SetLogicalFunction (p. 369)).

wxDC::GetMapMode

int GetMapMode ()

Gets the mapping mode for the device context (see wxDC::SetMapMode (p. 370)).

wxDC::GetPartialTextExtents

bool GetPartialTextExtents (const wxString& text, wxArrayInt& widths) const

Fills the widths array with the widths from the beginning of text to the corresponding
character of text. The generic version simply builds a running total of the widths of each
character using GetTextExtent (p. 366), however if the various platforms have a native
API function that is faster or more accurate than the generic implementation then it
should be used instead.

wxPython note: This method only takes the text parameter and returns a Python list of
integers.

wxDC::GetPen

CHAPTER 7

365

const wxPen& GetPen () const

Gets the current pen (see wxDC::SetPen (p. 371)).

wxDC::GetPixel

bool GetPixel (wxCoord x, wxCoord y, wxColour * colour)

Gets in colour the colour at the specified location. Not available for wxPostScriptDC or
wxMetafileDC.

Note that setting a pixel can be done using DrawPoint (p. 360).

wxPython note: For wxPython the wxColour value is returned and is not required as a
parameter.

wxPerl note: This method only takes the parameters x and y and returns a Wx::Colour
value

wxDC::GetPPI

wxSize GetPPI() const

Returns the resolution of the device in pixels per inch.

wxDC::GetSize

void GetSize (wxCoord * width, wxCoord * height) const

wxSize GetSize () const

This gets the horizontal and vertical resolution in device units. It can be used to scale
graphics to fit the page. For example, if maxX and maxY represent the maximum
horizontal and vertical 'pixel' values used in your application, the following code will scale
the graphic to fit on the printer page:

 wxCoord w, h;
 dc.GetSize(&w, &h);
 double scaleX=(double)(maxX/w);
 double scaleY=(double)(maxY/h);
 dc.SetUserScale(min(scaleX,scaleY),min(scaleX,sca leY));

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize

GetSizeTuple() Returns a 2-tuple (width, height)

wxPerl note: In place of a single overloaded method, wxPerl uses:

GetSize() Returns a Wx::Size

CHAPTER 7

366

GetSizeWH() Returns a 2-element list (
width, height)

wxDC::GetSizeMM

void GetSizeMM (wxCoord * width, wxCoord * height) const

wxSize GetSizeMM () const

Returns the horizontal and vertical resolution in millimetres.

wxDC::GetTextBackground

const wxColour& GetTextBackground () const

Gets the current text background colour (see wxDC::SetTextBackground (p. 371)).

wxDC::GetTextExtent

void GetTextExtent (const wxString& string, wxCoord * w, wxCoord * h,
 wxCoord * descent = NULL, wxCoord * externalLeading = NULL, wxFont * font =
NULL)

Gets the dimensions of the string using the currently selected font. string is the text
string to measure, w and h are the total width and height respectively, descent is the
dimension from the baseline of the font to the bottom of the descender, and
externalLeading is any extra vertical space added to the font by the font designer
(usually is zero).

The optional parameter font specifies an alternative to the currently selected font: but
note that this does not yet work under Windows, so you need to set a font for the device
context first.

See also wxFont (p. 535), wxDC::SetFont (p. 369).

wxPython note: The following methods are implemented in wxPython:

GetTextExtent(string) Returns a 2-tuple, (width, height)

GetFullTextExtent(string, font=NULL) Returns a 4-tuple, (width, height,
descent, externalLeading)

wxPerl note: In wxPerl this method is implemented as GetTextExtent(string, font =
undef) returning a four element array (width, height, descent,
externalLeading)

wxDC::GetTextForeground

const wxColour& GetTextForeground () const

CHAPTER 7

367

Gets the current text foreground colour (see wxDC::SetTextForeground (p. 371)).

wxDC::GetUserScale

void GetUserScale (double *x, double *y)

Gets the current user scale factor (set by SetUserScale (p. 371)).

wxPerl note: In wxPerl this method takes no arguments and return a two element array
(x, y)

wxDC::LogicalToDeviceX

wxCoord LogicalToDeviceX (wxCoord x)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceXRel

wxCoord LogicalToDeviceXRel (wxCoord x)

Converts logical X coordinate to relative device coordinate, using the current mapping
mode but ignoring the x axis orientation. Use this for converting a width, for example.

wxDC::LogicalToDeviceY

wxCoord LogicalToDeviceY (wxCoord y)

Converts logical Y coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceYRel

wxCoord LogicalToDeviceYRel (wxCoord y)

Converts logical Y coordinate to relative device coordinate, using the current mapping
mode but ignoring the y axis orientation. Use this for converting a height, for example.

wxDC::MaxX

wxCoord MaxX()

Gets the maximum horizontal extent used in drawing commands so far.

wxDC::MaxY

wxCoord MaxY()

Gets the maximum vertical extent used in drawing commands so far.

wxDC::MinX

CHAPTER 7

368

wxCoord MinX ()

Gets the minimum horizontal extent used in drawing commands so far.

wxDC::MinY

wxCoord MinY ()

Gets the minimum vertical extent used in drawing commands so far.

wxDC::Ok

bool Ok()

Returns true if the DC is ok to use.

wxDC::ResetBoundingBox

void ResetBoundingBox ()

Resets the bounding box: after a call to this function, the bounding box doesn't contain
anything.

See also

CalcBoundingBox (p. 356)

wxDC::SetAxisOrientation

void SetAxisOrientation (bool xLeftRight, bool yBottomUp)

Sets the x and y axis orientation (i.e., the direction from lowest to highest values on the
axis). The default orientation is x axis from left to right and y axis from top down.

Parameters

xLeftRight

True to set the x axis orientation to the natural left to right orientation, false to
invert it.

yBottomUp

True to set the y axis orientation to the natural bottom up orientation, false to invert
it.

wxDC::SetBackground

void SetBackground (const wxBrush& brush)

Sets the current background brush for the DC.

CHAPTER 7

369

wxDC::SetBackgroundMode

void SetBackgroundMode (int mode)

mode may be one of wxSOLID and wxTRANSPARENT. This setting determines whether
text will be drawn with a background colour or not.

wxDC::SetBrush

void SetBrush (const wxBrush& brush)

Sets the current brush for the DC.

If the argument is wxNullBrush, the current brush is selected out of the device context,
and the original brush restored, allowing the current brush to be destroyed safely.

See also wxBrush (p. 99).

See also wxMemoryDC (p. 895) for the interpretation of colours when drawing into a
monochrome bitmap.

 wxDC::SetClippingRegion

void SetClippingRegion (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void SetClippingRegion (const wxPoint& pt, const wxSize& sz)

void SetClippingRegion (const wxRect& rect)

void SetClippingRegion (const wxRegion& region)

Sets the clipping region for this device context to the intersection of the given region
described by the parameters of this method and the previously set clipping region. You
should call DestroyClippingRegion (p. 356) if you want to set the clipping region exactly
to the region specified.

The clipping region is an area to which drawing is restricted. Possible uses for the
clipping region are for clipping text or for speeding up window redraws when only a
known area of the screen is damaged.

See also

wxDC::DestroyClippingRegion (p. 356), wxRegion (p. 1061)

wxDC::SetDeviceOrigin

void SetDeviceOrigin (wxCoord x, wxCoord y)

Sets the device origin (i.e., the origin in pixels after scaling has been applied).

This function may be useful in Windows printing operations for placing a graphic on a
page.

CHAPTER 7

370

wxDC::SetFont

void SetFont (const wxFont& font)

Sets the current font for the DC. It must be a valid font, in particular you should not pass
wxNullFont to this method.

See also wxFont (p. 535).

wxDC::SetLogicalFunction

void SetLogicalFunction (int function)

Sets the current logical function for the device context. This determines how a source
pixel (from a pen or brush colour, or source device context if using wxDC::Blit (p. 354))
combines with a destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values
are as follows:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)
wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst
wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxXOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine
the current colour and the background using a logical operation. wxINVERT is
commonly used for drawing rubber bands or moving outlines, since drawing twice
reverts to the original colour.

wxDC::SetMapMode

void SetMapMode (int int)

The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units. Note that in X, text drawing isn't handled
consistently with the mapping mode; a font is always specified in point size. However,
setting the user scale (see wxDC::SetUserScale (p. 371)) scales the text appropriately.
In Windows, scalable TrueType fonts are always used; in X, results depend on
availability of fonts, but usually a reasonable match is found.

The coordinate origin is always at the top left of the screen/printer.

CHAPTER 7

371

Drawing to a Windows printer device context uses the current mapping mode, but
mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

wxMM_TWIPS Each logical unit is 1/20 of a point, or 1/1440 of
an inch.

wxMM_POINTS Each logical unit is a point, or 1/72 of an inch.

wxMM_METRIC Each logical unit is 1 mm.

wxMM_LOMETRIC Each logical unit is 1/10 of a mm.

wxMM_TEXT Each logical unit is 1 pixel.

wxDC::SetPalette

void SetPalette (const wxPalette& palette)

If this is a window DC or memory DC, assigns the given palette to the window or bitmap
associated with the DC. If the argument is wxNullPalette, the current palette is selected
out of the device context, and the original palette restored.

See wxPalette (p. 981) for further details.

wxDC::SetPen

void SetPen (const wxPen& pen)

Sets the current pen for the DC.

If the argument is wxNullPen, the current pen is selected out of the device context, and
the original pen restored.

See also wxMemoryDC (p. 895) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetTextBackground

void SetTextBackground (const wxColour& colour)

Sets the current text background colour for the DC.

wxDC::SetTextForeground

void SetTextForeground (const wxColour& colour)

Sets the current text foreground colour for the DC.

See also wxMemoryDC (p. 895) for the interpretation of colours when drawing into a
monochrome bitmap.

CHAPTER 7

372

wxDC::SetUserScale

void SetUserScale (double xScale, double yScale)

Sets the user scaling factor, useful for applications which require 'zooming'.

wxDC::StartDoc

bool StartDoc (const wxString& message)

Starts a document (only relevant when outputting to a printer). Message is a message to
show while printing.

wxDC::StartPage

bool StartPage ()

Starts a document page (only relevant when outputting to a printer).

wxDCClipper

This is a small helper class which sets the specified DC to its constructor clipping region
and then automatically destroys it in its destructor. Using it ensures that an unwanted
clipping region is not left set on the DC.

Derived from

No base class

Include files

<wx/dc.h>

See also

wxDC (p. 353)

wxDCClipper::wxDCClipper

 wxDCClipper (wxDC& dc, wxCoord x,wxCoord y,wxCoord w,wxCoord h,)

 wxDCClipper (wxDC& dc, const wxRect& rect)

Constructor: sets the clipping region for the given device context to the specified
rectangle.

wxDCClipper::~wxDCClipper

 ~wxDCClipper ()

CHAPTER 7

373

Destructor: destroys the clipping region set in the constructor.

wxDDEClient

A wxDDEClient object represents the client part of a client-server DDE (Dynamic Data
Exchange) conversation.

To create a client which can communicate with a suitable server, you need to derive a
class from wxDDEConnection and another from wxDDEClient. The custom
wxDDEConnection class will intercept communications in a 'conversation' with a server,
and the custom wxDDEServer is required so that a user-overridden
wxDDEClient::OnMakeConnection (p. 373) member can return a wxDDEConnection of
the required class, when a connection is made.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPClient (p. 1266).

Derived from

wxClientBase
wxObject (p. 967)

Include files

<wx/dde.h>

See also

wxDDEServer (p. 377), wxDDEConnection (p. 374), Interprocess communications
overview (p. 1765)

wxDDEClient::wxDDEClient

 wxDDEClient ()

Constructs a client object.

wxDDEClient::MakeConnection

wxConnectionBase * MakeConnection (const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server specified by the host (machine name under
UNIX, ignored under Windows), service name (must contain an integer port number
under UNIX), and topic string. If the server allows a connection, a wxDDEConnection
object will be returned. The type of wxDDEConnection returned can be altered by
overriding the wxDDEClient::OnMakeConnection (p. 373) member to return your own
derived connection object.

CHAPTER 7

374

wxDDEClient::OnMakeConnection

wxConnectionBase * OnMakeConnection ()

The type of wxDDEConnection (p. 374) returned from a wxDDEClient::MakeConnection
(p. 373) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxDDEConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxDDEConnection::OnAdvise (p.
200). You may also want to store application-specific data in instances of the new class.

wxDDEClient::ValidHost

bool ValidHost (const wxString& host)

Returns true if this is a valid host name, false otherwise. This always returns true
under MS Windows.

wxDDEConnection

A wxDDEConnection object represents the connection between a client and a server. It
can be created by making a connection using a wxDDEClient (p. 372) object, or by the
acceptance of a connection by a wxDDEServer (p. 377) object. The bulk of a DDE
(Dynamic Data Exchange) conversation is controlled by calling members in a
wxDDEConnection object or by overriding its members.

An application should normally derive a new connection class from wxDDEConnection,
in order to override the communication event handlers to do something interesting.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPConnection (p.
1267).

Derived from

wxConnectionBase
wxObject (p. 967)

Include files

<wx/dde.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat
{
 wxIPC_INVALID = 0,
 wxIPC_TEXT = 1, /* CF_TEXT */
 wxIPC_BITMAP = 2, /* CF_BITMAP */
 wxIPC_METAFILE = 3, /* CF_METAFILEPICT * /

CHAPTER 7

375

 wxIPC_SYLK = 4,
 wxIPC_DIF = 5,
 wxIPC_TIFF = 6,
 wxIPC_OEMTEXT = 7, /* CF_OEMTEXT */
 wxIPC_DIB = 8, /* CF_DIB */
 wxIPC_PALETTE = 9,
 wxIPC_PENDATA = 10,
 wxIPC_RIFF = 11,
 wxIPC_WAVE = 12,
 wxIPC_UNICODETEXT = 13,
 wxIPC_ENHMETAFILE = 14,
 wxIPC_FILENAME = 15, /* CF_HDROP */
 wxIPC_LOCALE = 16,
 wxIPC_PRIVATE = 20
};

See also

wxDDEClient (p. 372), wxDDEServer (p. 377), Interprocess communications overview
(p. 1765)

wxDDEConnection::wxDDEConnection

 wxDDEConnection ()

 wxDDEConnection (char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxDDEConnection, then the constructor should not be called directly, since the
default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxDDEServer::OnAcceptConnection (p. 378) and/or wxDDEClient::OnMakeConnection
(p. 373) members should be replaced by functions which construct the new connection
object. If the arguments of the wxDDEConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

wxDDEConnection::Advise

bool Advise (const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxDDEConnection::OnAdvise (p.
375)member to be called. Returns true if successful.

wxDDEConnection::Execute

bool Execute (char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxDDEConnection::Poke (p. 377) in

CHAPTER 7

376

that respect). Causes the server connection's wxDDEConnection::OnExecute (p. 376)
member to be called. Returns true if successful.

wxDDEConnection::Disconnect

bool Disconnect ()

Called by the client or server application to disconnect from the other program; it causes
the wxDDEConnection::OnDisconnect (p. 376) message to be sent to the corresponding
connection object in the other program. The default behaviour of OnDisconnect is to
delete the connection, but the calling application must explicitly delete its side of the
connection having called Disconnect . Returns true if successful.

wxDDEConnection::OnAdvise

virtual bool OnAdvise (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

wxDDEConnection::OnDisconnect

virtual bool OnDisconnect ()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.

wxDDEConnection::OnExecute

virtual bool OnExecute (const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.

wxDDEConnection::OnPoke

virtual bool OnPoke (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxDDEConnection::OnRequest

virtual char* OnRequest (const wxString& topic, const wxString& item, int * size,
wxIPCFormat format)

Message sent to the server application when the client calls

CHAPTER 7

377

wxDDEConnection::Request (p. 377). The server should respond by returning a
character string from OnRequest , or NULL to indicate no data.

wxDDEConnection::OnStartAdvise

virtual bool OnStartAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning false.

wxDDEConnection::OnStopAdvise

virtual bool OnStopAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning false, although this doesn't have much meaning in practice.

wxDDEConnection::Poke

bool Poke (const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxDDEConnection::OnPoke
(p. 376) member to be called. Returns true if successful.

wxDDEConnection::Request

char* Request (const wxString& item, int * size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxDDEConnection::OnRequest (p. 376) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL
otherwise.

wxDDEConnection::StartAdvise

bool StartAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxDDEConnection::OnStartAdvise (p. 376) member to
be called. Returns true if the server okays it, false otherwise.

wxDDEConnection::StopAdvise

bool StopAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the

CHAPTER 7

378

server connection's wxDDEConnection::OnStopAdvise (p. 376) member to be called.
Returns true if the server okays it, false otherwise.

wxDDEServer

A wxDDEServer object represents the server part of a client-server DDE (Dynamic Data
Exchange) conversation.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPServer (p. 1271).

Derived from

wxServerBase

Include files

<wx/dde.h>

See also

wxDDEClient (p. 372), wxDDEConnection (p. 374), IPC overview (p. 1765)

wxDDEServer::wxDDEServer

 wxDDEServer ()

Constructs a server object.

wxDDEServer::Create

bool Create (const wxString& service)

Registers the server using the given service name. Under UNIX, the string must contain
an integer id which is used as an Internet port number. false is returned if the call failed
(for example, the port number is already in use).

wxDDEServer::OnAcceptConnection

virtual wxConnectionBase * OnAcceptConnection (const wxString& topic)

When a client calls MakeConnection , the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxDDEConnection type, or of a user-
derived type. If the topic is "STDIO'', the application may wish to refuse the connection.
Under UNIX, when a server is created the OnAcceptConnection message is always sent
for standard input and output, but in the context of DDE messages it doesn't make a lot
of sense.

CHAPTER 7

379

wxDebugContext

A class for performing various debugging and memory tracing operations. Full
functionality (such as printing out objects currently allocated) is only present in a
debugging build of wxWidgets, i.e. if the __WXDEBUG__ symbol is defined.
wxDebugContext and related functions and macros can be compiled out by setting
wxUSE_DEBUG_CONTEXT to 0 is setup.h

Derived from

No parent class.

Include files

<wx/memory.h>

See also

Overview (p. 1671)

wxDebugContext::Check

int Check ()

Checks the memory blocks for errors, starting from the currently set checkpoint.

Return value

Returns the number of errors, so a value of zero represents success. Returns -1 if an
error was detected that prevents further checking.

wxDebugContext::Dump

bool Dump ()

Performs a memory dump from the currently set checkpoint, writing to the current debug
stream. Calls the Dump member function for each wxObject derived instance.

Return value

true if the function succeeded, false otherwise.

wxDebugContext::GetCheckPrevious

bool GetCheckPrevious ()

Returns true if the memory allocator checks all previous memory blocks for errors. By
default, this is false since it slows down execution considerably.

See also

CHAPTER 7

380

wxDebugContext::SetCheckPrevious (p. 381)

wxDebugContext::GetDebugMode

bool GetDebugMode ()

Returns true if debug mode is on. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

See also

wxDebugContext::SetDebugMode (p. 381)

wxDebugContext::GetLevel

int GetLevel ()

Gets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 850) functionality.

See also

wxDebugContext::SetLevel (p. 382)

wxDebugContext::GetStream

ostream& GetStream ()

Returns the output stream associated with the debug context.

This is obsolete, replaced by wxLog (p. 850) functionality.

See also

wxDebugContext::SetStream (p. 382)

wxDebugContext::GetStreamBuf

streambuf* GetStreamBuf ()

Returns a pointer to the output stream buffer associated with the debug context. There
may not necessarily be a stream buffer if the stream has been set by the user.

This is obsolete, replaced by wxLog (p. 850) functionality.

wxDebugContext::HasStream

CHAPTER 7

381

bool HasStream ()

Returns true if there is a stream currently associated with the debug context.

This is obsolete, replaced by wxLog (p. 850) functionality.

See also

wxDebugContext::SetStream (p. 382), wxDebugContext::GetStream (p. 380)

wxDebugContext::PrintClasses

bool PrintClasses ()

Prints a list of the classes declared in this application, giving derivation and whether
instances of this class can be dynamically created.

See also

wxDebugContext::PrintStatistics (p. 381)

wxDebugContext::PrintStatistics

bool PrintStatistics (bool detailed = true)

Performs a statistics analysis from the currently set checkpoint, writing to the current
debug stream. The number of object and non-object allocations is printed, together with
the total size.

Parameters

detailed

If true, the function will also print how many objects of each class have been
allocated, and the space taken by these class instances.

See also

wxDebugContext::PrintStatistics (p. 381)

wxDebugContext::SetCheckpoint

void SetCheckpoint (bool all = false)

Sets the current checkpoint: Dump and PrintStatistics operations will be performed from
this point on. This allows you to ignore allocations that have been performed up to this
point.

Parameters

all

If true, the checkpoint is reset to include all memory allocations since the program

CHAPTER 7

382

started.

wxDebugContext::SetCheckPrevious

void SetCheckPrevious (bool check)

Tells the memory allocator to check all previous memory blocks for errors. By default,
this is false since it slows down execution considerably.

See also

wxDebugContext::GetCheckPrevious (p. 379)

wxDebugContext::SetDebugMode

void SetDebugMode (bool debug)

Sets the debug mode on or off. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

By default, debug mode is on if __WXDEBUG__ is defined. If the application uses this
function, it should make sure that all object memory allocated is deallocated with the
same value of debug mode. Otherwise, the delete operator might try to look for memory
information that does not exist.

See also

wxDebugContext::GetDebugMode (p. 379)

wxDebugContext::SetFile

bool SetFile (const wxString& filename)

Sets the current debug file and creates a stream. This will delete any existing stream
and stream buffer. By default, the debug context stream outputs to the debugger
(Windows) or standard error (other platforms).

wxDebugContext::SetLevel

void SetLevel (int level)

Sets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 850) functionality.

See also

wxDebugContext::GetLevel (p. 379)

CHAPTER 7

383

wxDebugContext::SetStandardError

bool SetStandardError ()

Sets the debugging stream to be the debugger (Windows) or standard error (other
platforms). This is the default setting. The existing stream will be flushed and deleted.

This is obsolete, replaced by wxLog (p. 850) functionality.

wxDebugContext::SetStream

void SetStream (ostream* stream, streambuf* streamBuf = NULL)

Sets the stream and optionally, stream buffer associated with the debug context. This
operation flushes and deletes the existing stream (and stream buffer if any).

This is obsolete, replaced by wxLog (p. 850) functionality.

Parameters

stream

Stream to associate with the debug context. Do not set this to NULL.

streamBuf

Stream buffer to associate with the debug context.

See also

wxDebugContext::GetStream (p. 380), wxDebugContext::HasStream (p. 380)

wxDebugStreamBuf

This class allows you to treat debugging output in a similar (stream-based) fashion on
different platforms. Under Windows, an ostream constructed with this buffer outputs to
the debugger, or other program that intercepts debugging output. On other platforms, the
output goes to standard error (cerr).

This is soon to be obsolete, replaced by wxLog (p. 850) functionality.

Derived from

streambuf

Include files

<wx/memory.h>

Example

 wxDebugStreamBuf streamBuf;
 ostream stream(&streamBuf);

CHAPTER 7

384

 stream << "Hello world!" << endl;

See also

Overview (p. 1671)

wxDebugReport

wxDebugReport is used to generate a debug report, containing information about the
program current state. It is usually used from wxApp::OnFatalException() (p. 36) as
shown in the sample (p. 1634).

A wxDebugReport object contains one or more files. A few of them can be created by
the class itself but more can be created from the outside and then added to the report.
Also note that several virtual functions may be overridden to further customize the class
behaviour.

Once a report is fully assembled, it can simply be left in the temporary directory so that
the user can email it to the developers (in which case you should still use
wxDebugReportCompress (p. 388) to compress it in a single file) or uploaded to a Web
server using wxDebugReportUpload (p. 390) (setting up the Web server to accept
uploads is your responsibility, of course). Other handlers, for example for automatically
emailing the report, can be defined as well but are not currently included in wxWidgets.

Example of use

 wxDebugReport report;
 wxDebugReportPreviewStd preview;

 report.AddCurrentContext(); // could also use AddAll()
 report.AddCurrentDump(); // to do both at o nce

 if (preview.Show(report))
 report.Process();

Derived from

No base class

Include files

<wx/debugrpt.h>

Data structures

This enum is used for functions that report either the current state or the state during the
last (fatal) exception:

enum wxDebugReport::Context
{
 Context_Current,
 Context_Exception
};

CHAPTER 7

385

wxDebugReport::wxDebugReport

 wxDebugReport ()

The constructor creates a temporary directory where the files that will be included in the
report are created. Use IsOk() (p. 387) to check for errors.

wxDebugReport::~wxDebugReport

 ~wxDebugReport ()

The destructor normally destroys the temporary directory created in the constructor with
all the files it contains. Call Reset() (p. 388) to prevent this from happening.

wxDebugReport::AddAll

void AddAll (Context context = Context_Exception)

Adds all available information to the report. Currently this includes a text (XML) file
describing the process context and, under Win32, a minidump file.

wxDebugReport::AddContext

bool AddContext (Context ctx)

Add an XML file containing the current or exception context and the stack trace.

wxDebugReport::AddCurrentContext

bool AddCurrentContext ()

The same as AddContext(Context_Current) (p. 385).

wxDebugReport::AddCurrentDump

bool AddCurrentDump ()

The same as AddDump(Context_Current) (p. 385).

wxDebugReport::AddDump

bool AddDump (Context ctx)

Adds the minidump file to the debug report.

Minidumps are only available under recent Win32 versions (dbghlp32.dll can be
installed under older systems to make minidumps available).

wxDebugReport::AddExceptionContext

CHAPTER 7

386

bool AddExceptionContext ()

The same as AddContext(Context_Exception) (p. 385).

wxDebugReport::AddExceptionDump

bool AddExceptionDump ()

The same as AddDump(Context_Exception) (p. 385).

wxDebugReport::AddFile

void AddFile (const wxString& filename, const wxString& description)

Add another file to the report. If filename is an absolute path, it is copied to a file in the
debug report directory with the same name. Otherwise the file should already exist in
this directory

description only exists to be displayed to the user in the report summary shown by
wxDebugReportPreview (p. 388).

See also

GetDirectory() (p. 387),
AddText() (p. 386)

wxDebugReport::AddText

bool AddText (const wxString& filename, const wxString& text, const wxString&
description)

This is a convenient wrapper around AddFile (p. 385). It creates the file with the given
name and writes text to it, then adds the file to the report. The filename shouldn't contain
the path.

Returns true if file could be added successfully, false if an IO error occurred.

wxDebugReport::DoAddCustomContext

void DoAddCustomContext (wxXmlNode * nodeRoot)

This function may be overridden to add arbitrary custom context to the XML context file
created by AddContext (p. 385). By default, it does nothing.

wxDebugReport::DoAddExceptionInfo

bool DoAddExceptionInfo (wxXmlNode* nodeContext)

This function may be overridden to modify the contents of the exception tag in the XML
context file.

CHAPTER 7

387

wxDebugReport::DoAddLoadedModules

bool DoAddLoadedModules (wxXmlNode* nodeModules)

This function may be overridden to modify the contents of the modules tag in the XML
context file.

wxDebugReport::DoAddSystemInfo

bool DoAddSystemInfo (wxXmlNode* nodeSystemInfo)

This function may be overridden to modify the contents of the system tag in the XML
context file.

wxDebugReport::GetDirectory

const wxString& GetDirectory () const

Returns the name of the temporary directory used for the files in this report.

This method should be used to construct the full name of the files which you wish to add
to the report using AddFile (p. 385).

wxDebugReport::GetFile

bool GetFile (size_t n, wxString* name, wxString* desc) const

Retrieves the name (relative to GetDirectory() (p. 387)) and the description of the file
with the given index. If n is greater than or equal to the number of filse, false is
returned.

wxDebugReport::GetFilesCount

size_t GetFilesCount () const

Gets the current number files in this report.

wxDebugReport::GetReportName

wxString GetReportName () const

Gets the name used as a base name for various files, by default wxApp::GetAppName()
(p. 32) is used.

wxDebugReport::IsOk

bool IsOk () const

Returns true if the object was successfully initialized. If this method returns false the
report can't be used.

CHAPTER 7

388

wxDebugReport::Process

bool Process ()

Processes this report: the base class simply notifies the user that the report has been
generated. This is usually not enough -- instead you should override this method to do
something more useful to you.

wxDebugReport::RemoveFile

void RemoveFile (const wxString& name)

Removes the file from report: this is used by wxDebugReportPreview (p. 388) to allow
the user to remove files potentially containing private information from the report.

wxDebugReport::Reset

void Reset ()

Resets the directory name we use. The object can't be used any more after this as it
becomes uninitialized and invalid.

wxDebugReportCompress

wxDebugReportCompress is a wxDebugReport (p. 383) which compresses all the files
in this debug report into a single .ZIP file in itsProcess() function.

Derived from

wxDebugReport (p. 383)

Include files

<wx/debugrpt.h>

wxDebugReportCompress::wxDebugReportCompress

 wxDebugReportCompress ()

Default constructor does nothing special.

wxDebugReportCompress::GetCompressedFileName

const wxString& GetCompressedFileName () const

Returns the full path of the compressed file (empty if creation failed).

wxDebugReportPreview

CHAPTER 7

389

This class presents the debug report to the user and allows him to veto report entirely or
remove some parts of it. Although not mandatory, using this class is strongly
recommended as data included in the debug report might contain sensitive private
information and the user should be notified about it as well as having a possibility to
examine the data which had been gathered to check whether this is effectively the case
and discard the debug report if it is.

wxDebugReportPreview is an abstract base class, currently the only concrete class
deriving from it is wxDebugReportPreviewStd (p. 389).

Derived from

No base class

Include files

<wx/debugrpt.h>

wxDebugReportPreview::wxDebugReportPreview

 wxDebugReportPreview ()

Trivial default constructor.

wxDebugReportPreview::~wxDebugReportPreview

 ~wxDebugReportPreview ()

dtor is trivial as well but should be virtual for a base class

wxDebugReportPreview::Show

bool Show (wxDebugReport& dbgrpt) const

Present the report to the user and allow him to modify it by removing some or all of the
files and, potentially, adding some notes. Return true if the report should be processed
or false if the user chose to cancel report generation or removed all files from it.

wxDebugReportPreviewStd

wxDebugReportPreviewStd is a standard debug report preview window. It displays a
GUIdialog allowing the user to examine the contents of a debug report, remove files from
and add notes to it.

Derived from

wxDebugReportPreview (p. 388)

Include files

CHAPTER 7

390

<wx/debugrpt.h>

wxDebugReportPreviewStd::wxDebugReportPreviewStd

 wxDebugReportPreviewStd ()

Trivial default constructor.

wxDebugReportPreviewStd::Show

bool Show (wxDebugReport& dbgrpt) const

Show the dialog, see wxDebugReportPreview::Show() (p. 389) for more information.

wxDebugReportUpload

This class is used to upload a compressed file using HTTP POST request. As this class
derives from wxDebugReportCompress, before upload the report is compressed in a
single .ZIP file.

Derived from

wxDebugReportCompress (p. 388)

Include files

<wx/debugrpt.h>

wxDebugReportUpload::wxDebugReportUpload

 wxDebugReportUpload (const wxString& url, const wxString& input, const
wxString& action, const wxString& curl = _T("curl"))

This class will upload the compressed file created by its base class to an HTML
multipart/form-data form at the specified address. The url is the upload page address,
input is the name of the "type=file" control on the form used for the file name and
action is the value of the form action field. The report is uploaded using curl program
which should be available, the curl parameter may be used to specify the full path to it.

wxDebugReportUpload::OnServerReply

bool OnServerReply (const wxArrayString& WXUNUSED(reply))

This function may be overridden in a derived class to show the output from curl: this may
be an HTML page or anything else that the server returned. Value returned by this
function becomes the return value of wxDebugReport::Process() (p. 387).

CHAPTER 7

391

wxDelegateRendererNative

wxDelegateRendererNative allows reuse of renderers code by forwarding all the
wxRendererNative (p. 1072) methods to the given object and thus allowing you to only
modify some of its methods -- without having to reimplement all of them.

Note that the "normal'', inheritance-based approach, doesn't work with the renderers as
it is impossible to derive from a class unknown at compile-time and the renderer is only
chosen at run-time. So suppose that you want to only add something to the drawing of
the tree control buttons but leave all the other methods unchanged -- the only way to do
it, considering that the renderer class which you want to customize might not even be
written yet when you write your code (it could be written later and loaded from a DLL
during run-time), is by using this class.

Except for the constructor, it has exactly the same methods as wxRendererNative (p.
1072) and their implementation is trivial: they are simply forwarded to the real renderer.
Note that the "real'' renderer may, in turn, be a wxDelegateRendererNative as well and
that there may be arbitrarily many levels like this -- but at the end of the chain there must
be a real renderer which does the drawing.

Derived from

wxRendererNative (p. 1072)

Include files

<wx/renderer.h>

wxDelegateRendererNative::wxDelegateRendererNative

 wxDelegateRendererNative ()

 wxDelegateRendererNative (wxRendererNative& rendererNative)

The default constructor does the same thing as the other one except that it uses the
generic renderer (p. 1075) instead of the user-specified rendererNative.

In any case, this sets up the delegate renderer object to follow all calls to the specified
real renderer.

Note that this object does not take ownership of (i.e. won't delete)rendererNative.

wxDelegateRendererNative::DrawXXX

 DrawXXX (...)

This class also provides all the virtual methods of wxRendererNative (p. 1072), please
refer to that class documentation for the details.

CHAPTER 7

392

wxDialog

A dialog box is a window with a title bar and sometimes a system menu, which can be
moved around the screen. It can contain controls and other windows and is usually used
to allow the user to make some choice or to answer a question.

Derived from

wxTopLevelWindow (p. 1354)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/dialog.h>

Remarks

There are two kinds of dialog -- modal and modeless. A modal dialog blocks program
flow and user input on other windows until it is dismissed, whereas a modeless dialog
behaves more like a frame in that program flow continues, and input in other windows is
still possible. To show a modal dialog you should use the ShowModal (p. 400) method
while to show a dialog modelessly you simply use Show (p. 400), just as with frames.

Note that the modal dialog is one of the very few examples of wxWindow-derived objects
which may be created on the stack and not on the heap. In other words, although this
code snippet:

 void AskUser()
 {
 MyAskDialog *dlg = new MyAskDialog(...);
 if (dlg->ShowModal() == wxID_OK)
 ...
 //else: dialog was cancelled or some anothe r button
pressed

 dlg->Destroy();
 }

works, you can also achieve the same result by using a simpler code fragment below:

 void AskUser()
 {
 MyAskDialog dlg(...);
 if (dlg.ShowModal() == wxID_OK)
 ...

 // no need to call Destroy() here
 }

An application can define a wxCloseEvent (p. 147) handler for the dialog to respond to
system close events.

Window styles

CHAPTER 7

393

wxCAPTION Puts a caption on the dialog box.

wxDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION,
wxCLOSE_BOX and wxSYSTEM_MENU (the last one is
not used under Unix)

wxRESIZE_BORDER Display a resizeable frame around the window.

wxSYSTEM_MENU Display a system menu.

wxCLOSE_BOX Displays a close box on the frame.

wxMAXIMIZE_BOX Displays a maximize box on the dialog.

wxMINIMIZE_BOX Displays a minimize box on the dialog.

wxTHICK_FRAME Display a thick frame around the window.

wxSTAY_ON_TOP The dialog stays on top of all other windows.

wxNO_3D Under Windows, specifies that the child controls should not
have 3D borders unless specified in the control.

wxDIALOG_NO_PARENT By default, a dialog created with a NULL parent window will
be given the application's top level window (p. 33) as
parent. Use this style to prevent this from happening and
create an orphan dialog. This is not recommended for
modal dialogs.

wxDIALOG_EX_CONTEXTHELP Under Windows, puts a query button on the
caption. When pressed, Windows will go into a context-
sensitive help mode and wxWidgets will send a
wxEVT_HELP event if the user clicked on an application
window. Note that this is an extended style and must be
set by calling SetExtraStyle (p. 1461) before Create is
called (two-step construction).

wxDIALOG_EX_METAL On Mac OS X, frames with this style will be shown with a
metallic look. This is an extra style.

Under Unix or Linux, MWM (the Motif Window Manager) or other window managers
recognizing the MHM hints should be running for any of these styles to have an effect.

See also Generic window styles (p. 1686).

See also

wxDialog overview (p. 1688), wxFrame (p. 555), Validator overview (p. 1689)

wxDialog::wxDialog

 wxDialog ()

CHAPTER 7

394

Default constructor.

 wxDialog (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Constructor.

Parameters

parent

Can be NULL, a frame or another dialog box.

id

An identifier for the dialog. A value of -1 is taken to mean a default.

title

The title of the dialog.

pos

The dialog position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWidgets, depending on platform.

size

The dialog size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWidgets, depending on platform.

style

The window style. See wxDialog (p. 391).

name

Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxDialog::Create (p. 394)

wxDialog::~wxDialog

 ~wxDialog ()

Destructor. Deletes any child windows before deleting the physical window.

wxDialog::Centre

void Centre (int direction = wxBOTH)

CHAPTER 7

395

Centres the dialog box on the display.

Parameters

direction

May be wxHORIZONTAL, wxVERTICAL or wxBOTH.

wxDialog::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Used for two-step dialog box construction. See wxDialog::wxDialog (p. 393) for details.

wxDialog::CreateButtonSizer

wxSizer* CreateButtonSizer (long flags)

Creates a sizer with standard buttons. flags is a bit list of the following flags: wxOK,
wxCANCEL, wxYES, wxNO, wxHELP, wxNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

This function simply calls CreateStdDialogButtonSizer (p. 395).

wxDialog::CreateStdDialogButtonSizer

wxStdDialogButtonSizer* CreateStdDialogButtonSizer (long flags)

Creates a wxStdDialogButtonSizer (p. 1215) with standard buttons. flags is a bit list of
the following flags: wxOK, wxCANCEL, wxYES, wxNO, wxHELP, wxNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

wxDialog::DoOK

virtual bool DoOK ()

This function is called when the titlebar OK button is pressed (PocketPC only). A
command event for the identifier returned by GetAffirmativeId is sent by default. You can
override this function. If the function returns false, wxWidgets will call Close() for the
dialog.

wxDialog::EndModal

void EndModal (int retCode)

Ends a modal dialog, passing a value to be returned from the wxDialog::ShowModal (p.
400) invocation.

CHAPTER 7

396

Parameters

retCode

The value that should be returned by ShowModal .

See also

wxDialog::ShowModal (p. 400), wxDialog::GetReturnCode (p. 396),
wxDialog::SetReturnCode (p. 399)

wxDialog::GetAffirmativeId

int GetAffirmativeId () const

Gets the identifier to be used when the user presses an OK button in a PocketPC
titlebar.

See also

wxDialog::SetAffirmativeId (p. 398)

wxDialog::GetReturnCode

int GetReturnCode ()

Gets the return code for this window.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 400) returns a code to the application.

See also

wxDialog::SetReturnCode (p. 399), wxDialog::ShowModal (p. 400), wxDialog::EndModal
(p. 395)

wxDialog::GetTitle

wxString GetTitle () const

Returns the title of the dialog box.

wxDialog::GetToolBar

wxToolBar* GetToolBar () const

On PocketPC, a dialog is automatically provided with an empty toolbar. GetToolBar
allows you to access the toolbar and add tools to it. Removing tools and adding arbitrary
controls are not currently supported.

This function is not available on any other platform.

CHAPTER 7

397

wxDialog::Iconize

void Iconize (const bool iconize)

Iconizes or restores the dialog. Windows only.

Parameters

iconize

If true, iconizes the dialog box; if false, shows and restores it.

Remarks

Note that in Windows, iconization has no effect since dialog boxes cannot be iconized.
However, applications may need to explicitly restore dialog boxes under Motif which
have user-iconizable frames, and under Windows calling Iconize(false) will bring
the window to the front, as does Show(true) .

wxDialog::IsIconized

bool IsIconized () const

Returns true if the dialog box is iconized. Windows only.

Remarks

Always returns false under Windows since dialogs cannot be iconized.

wxDialog::IsModal

bool IsModal () const

Returns true if the dialog box is modal, false otherwise.

wxDialog::OnApply

void OnApply (wxCommandEvent& event)

The default handler for the wxID_APPLY identifier.

Remarks

This function calls wxWindow::Validate (p. 1475) and
wxWindow::TransferDataToWindow (p. 1473).

See also

wxDialog::OnOK (p. 397), wxDialog::OnCancel (p. 397)

wxDialog::OnCancel

void OnCancel (wxCommandEvent& event)

CHAPTER 7

398

The default handler for the wxID_CANCEL identifier.

Remarks

The function either calls EndModal(wxID_CANCEL) if the dialog is modal, or sets the
return value to wxID_CANCEL and calls Show(false) if the dialog is modeless.

See also

wxDialog::OnOK (p. 397), wxDialog::OnApply (p. 397)

wxDialog::OnOK

void OnOK (wxCommandEvent& event)

The default handler for the wxID_OK identifier.

Remarks

The function calls wxWindow::Validate (p. 1475), then
wxWindow::TransferDataFromWindow (p. 1473). If this returns true, the function either
calls EndModal(wxID_OK) if the dialog is modal, or sets the return value to wxID_OK
and calls Show(false) if the dialog is modeless.

See also

wxDialog::OnCancel (p. 397), wxDialog::OnApply (p. 397)

wxDialog::OnSysColourChanged

void OnSysColourChanged (wxSysColourChangedEvent& event)

The default handler for wxEVT_SYS_COLOUR_CHANGED.

Parameters

event

The colour change event.

Remarks

Changes the dialog's colour to conform to the current settings (Windows only). Add an
event table entry for your dialog class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxEvent::Skip to propagate the notification to child windows and controls.

See also

wxSysColourChangedEvent (p. 1255)

wxDialog::SetAffirmativeId

CHAPTER 7

399

void SetAffirmativeId (int id)

Sets the identifier to be used when the user presses an OK button in a PocketPC
titlebar. By default, this is wxID_OK.

See also

wxDialog::GetAffirmativeId (p. 395)

wxDialog::SetIcon

void SetIcon (const wxIcon& icon)

Sets the icon for this dialog.

Parameters

icon

The icon to associate with this dialog.

See also wxIcon (p. 730).

wxDialog::SetIcons

void SetIcons (const wxIconBundle& icons)

Sets the icons for this dialog.

Parameters

icons

The icons to associate with this dialog.

See also wxIconBundle (p. 737).

wxDialog::SetModal

void SetModal (const bool flag)

NB: This function is deprecated and doesn't work for all ports, just use ShowModal (p.
400) to show a modal dialog instead.

Allows the programmer to specify whether the dialog box is modal (wxDialog::Show
blocks control until the dialog is hidden) or modeless (control returns immediately).

Parameters

flag

If true, the dialog will be modal, otherwise it will be modeless.

CHAPTER 7

400

wxDialog::SetReturnCode

void SetReturnCode (int retCode)

Sets the return code for this window.

Parameters

retCode

The integer return code, usually a control identifier.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 400) returns a code to the application. The function wxDialog::EndModal (p. 395)
calls SetReturnCode .

See also

wxDialog::GetReturnCode (p. 396), wxDialog::ShowModal (p. 400), wxDialog::EndModal
(p. 395)

wxDialog::SetTitle

void SetTitle (const wxString& title)

Sets the title of the dialog box.

Parameters

title

The dialog box title.

wxDialog::Show

bool Show (const bool show)

Hides or shows the dialog.

Parameters

show

If true, the dialog box is shown and brought to the front; otherwise the box is
hidden. If false and the dialog is modal, control is returned to the calling program.

Remarks

The preferred way of dismissing a modal dialog is to use wxDialog::EndModal (p. 395).

wxDialog::ShowModal

CHAPTER 7

401

int ShowModal ()

Shows a modal dialog. Program flow does not return until the dialog has been dismissed
with wxDialog::EndModal (p. 395).

Return value

The return value is the value set with wxDialog::SetReturnCode (p. 399).

See also

wxDialog::EndModal (p. 395), wxDialog:GetReturnCode (p. 396),
wxDialog::SetReturnCode (p. 399)

wxDialUpEvent

This is the event class for the dialup events sent by wxDialUpManager (p. 401).

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/dialup.h>

wxDialUpEvent::wxDialUpEvent

 wxDialUpEvent (bool isConnected, bool isOwnEvent)

Constructor is only used by wxDialUpManager (p. 401).

wxDialUpEvent::IsConnectedEvent

bool IsConnectedEvent () const

Is this a CONNECTED or DISCONNECTED event? In other words, does it notify about
transition from offline to online state or vice versa?

wxDialUpEvent::IsOwnEvent

bool IsOwnEvent () const

Does this event come from wxDialUpManager::Dial() or from some extrenal process (i.e.
does it result from our own attempt to establish the connection)?

wxDialUpManager

CHAPTER 7

402

This class encapsulates functions dealing with verifying the connection status of the
workstation (connected to the Internet via a direct connection, connected through a
modem or not connected at all) and to establish this connection if possible/required (i.e.
in the case of the modem).

The program may also wish to be notified about the change in the connection status (for
example, to perform some action when the user connects to the network the next time
or, on the contrary, to stop receiving data from the net when the user hangs up the
modem). For this, you need to use one of the event macros described below.

This class is different from other wxWidgets classes in that there is at most one instance
of this class in the program accessed via wxDialUpManager::Create() (p. 402) and you
can't create the objects of this class directly.

Derived from

No base class

Include files

<wx/dialup.h>

Event table macros

To be notified about the change in the network connection status, use these event
handler macros to direct input to member functions that take a wxDialUpEvent (p. 401)
argument.

EVT_DIALUP_CONNECTED(func) A connection with the network was established.

EVT_DIALUP_DISCONNECTED(func) The connection with the network was lost.

See also
dialup sample (p. 1634)
wxDialUpEvent (p. 401)

wxDialUpManager::Create

wxDialUpManager* Create ()

This function should create and return the object of the platform-specific class derived
from wxDialUpManager. You should delete the pointer when you are done with it.

wxDialUpManager::IsOk

bool IsOk () const

Returns true if the dialup manager was initialized correctly. If this function returns
false , no other functions will work neither, so it is a good idea to call this function and
check its result before calling any other wxDialUpManager methods

CHAPTER 7

403

wxDialUpManager::~wxDialUpManager

 ~wxDialUpManager ()

Destructor.

wxDialUpManager::GetISPNames

size_t GetISPNames (wxArrayString& names) const

This function is only implemented under Windows.

Fills the array with the names of all possible values for the first parameter to Dial() (p.
403) on this machine and returns their number (may be 0).

wxDialUpManager::Dial

bool Dial (const wxString& nameOfISP = wxEmptyString, const wxString& username
= wxEmptyString, const wxString& password = wxEmptyString, bool async = true)

Dial the given ISP, use username and password to authenticate.

The parameters are only used under Windows currently, for Unix you should use
SetConnectCommand (p. 405) to customize this functions behaviour.

If no nameOfISP is given, the function will select the default one (proposing the user to
choose among all connections defined on this machine) and if no username and/or
password are given, the function will try to do without them, but will ask the user if really
needed.

If async parameter is false , the function waits until the end of dialing and returns true
upon successful completion.

If async is true , the function only initiates the connection and returns immediately - the
result is reported via events (an event is sent anyhow, but if dialing failed it will be a
DISCONNECTED one).

wxDialUpManager::IsDialing

bool IsDialing () const

Returns true if (async) dialing is in progress.

See also

Dial (p. 403)

wxDialUpManager::CancelDialing

bool CancelDialing ()

Cancel dialing the number initiated with Dial (p. 403) with async parameter equal to

CHAPTER 7

404

true .

Note that this won't result in DISCONNECTED event being sent.

See also

IsDialing (p. 403)

wxDialUpManager::HangUp

bool HangUp ()

Hang up the currently active dial up connection.

wxDialUpManager::IsAlwaysOnline

bool IsAlwaysOnline () const

Returns true if the computer has a permanent network connection (i.e. is on a LAN)
and so there is no need to use Dial() function to go online.

NB: this functions tries to guess the result and it is not always guaranteed to be correct,
so it is better to ask user for confirmation or give him a possibility to override it.

wxDialUpManager::IsOnline

bool IsOnline () const

Returns true if the computer is connected to the network: under Windows, this just
means that a RAS connection exists, under Unix we check that the "well-known host"
(as specified by SetWellKnownHost (p. 404)) is reachable.

wxDialUpManager::SetOnlineStatus

void SetOnlineStatus (bool isOnline = true)

Sometimes the built-in logic for determining the online status may fail, so, in general, the
user should be allowed to override it. This function allows to forcefully set the online
status - whatever our internal algorithm may think about it.

See also

IsOnline (p. 404)

wxDialUpManager::EnableAutoCheckOnlineStatus

bool EnableAutoCheckOnlineStatus (size_t nSeconds = 60)

Enable automatic checks for the connection status and sending of
wxEVT_DIALUP_CONNECTED/wxEVT_DIALUP_DISCONNECTED events. The interval
parameter is only for Unix where we do the check manually and specifies how often
should we repeat the check (each minute by default). Under Windows, the notification

CHAPTER 7

405

about the change of connection status is sent by the system and so we don't do any
polling and this parameter is ignored.

Returns false if couldn't set up automatic check for online status.

wxDialUpManager::DisableAutoCheckOnlineStatus

void DisableAutoCheckOnlineStatus ()

Disable automatic check for connection status change - notice that
thewxEVT_DIALUP_XXX events won't be sent any more neither.

wxDialUpManager::SetWellKnownHost

void SetWellKnownHost (const wxString& hostname, int portno = 80)

This method is for Unix only.

Under Unix, the value of well-known host is used to check whether we're connected to
the internet. It is unused under Windows, but this function is always safe to call. The
default value is www.yahoo.com:80 .

wxDialUpManager::SetConnectCommand

void SetConnectCommand (const wxString& commandDial = wxT("/usr/bin/pon"),
const wxString& commandHangup = wxT("/usr/bin/poff"))

This method is for Unix only.

Sets the commands to start up the network and to hang up again.

See also

Dial (p. 403)

wxDir

wxDir is a portable equivalent of Unix open/read/closedir functions which allow
enumerating of the files in a directory. wxDir allows enumerate files as well as
directories.

wxDir also provides a flexible way to enumerate files recursively using Traverse (p. 408)
or a simpler GetAllFiles (p. 406) function.

Example of use:

 wxDir dir(wxGetCwd());

 if (!dir.IsOpened())
 {
 // deal with the error here - wxDir would a lready log an
error message
 // explaining the exact reason of the failu re

CHAPTER 7

406

 return;
 }

 puts("Enumerating object files in current direc tory:");

 wxString filename;

 bool cont = dir.GetFirst(&filename, filespec, f lags);
 while (cont)
 {
 printf("%s\n", filename.c_str());

 cont = dir.GetNext(&filename);
 }

Derived from

No base class

Constants

These flags define what kind of filename is included in the list of files enumerated by
GetFirst/GetNext.

enum
{
 wxDIR_FILES = 0x0001, // include file s
 wxDIR_DIRS = 0x0002, // include dire ctories
 wxDIR_HIDDEN = 0x0004, // include hidd en files
 wxDIR_DOTDOT = 0x0008, // include '.' and '..'

 // by default, enumerate everything except '.' and '..'
 wxDIR_DEFAULT = wxDIR_FILES | wxDIR_DIRS | wx DIR_HIDDEN
}

Include files

<wx/dir.h>

wxDir::wxDir

 wxDir ()

Default constructor, use Open() (p. 408) afterwards.

 wxDir (const wxString& dir)

Opens the directory for enumeration, use IsOpened() (p. 407) to test for errors.

wxDir::~wxDir

 ~wxDir ()

CHAPTER 7

407

Destructor cleans up the associated resources. It is not virtual and so this class is not
meant to be used polymorphically.

wxDir::Exists

static bool Exists (const wxString& dir)

Test for existence of a directory with the given name

wxDir::GetAllFiles

static size_t GetAllFiles (const wxString& dirname, wxArrayString * files, const
wxString& filespec = wxEmptyString, int flags = wxDIR_DEFAULT)

The function appends the names of all the files under directory dirname to the array files
(note that its old content is preserved). Only files matching the filespec are taken, with
empty spec matching all the files.

The flags parameter should always include wxDIR_FILES or the array would be
unchanged and should include wxDIR_DIRS flag to recurse into subdirectories (both
flags are included in the value by default).

See also: Traverse (p. 408)

wxDir::GetFirst

bool GetFirst (wxString* filename, const wxString& filespec = wxEmptyString, int
flags = wxDIR_DEFAULT) const

Start enumerating all files matching filespec (or all files if it is empty) and flags, return
true on success.

wxDir::GetName

wxString GetName () const

Returns the name of the directory itself. The returned string does not have the trailing
path separator (slash or backslash).

wxDir::GetNext

bool GetNext (wxString* filename) const

Continue enumerating files satisfying the criteria specified by the last call to GetFirst (p.
407).

wxDir::HasFiles

bool HasFiles (const wxString& filespec = wxEmptyString)

Returns true if the directory contains any files matching the given filespec. If filespec is

CHAPTER 7

408

empty, look for any files at all. In any case, even hidden files are taken into account.

wxDir::HasSubDirs

bool HasSubDirs (const wxString& dirspec = wxEmptyString)

Returns true if the directory contains any subdirectories (if a non empty filespec is
given, only check for directories matching it). The hidden subdirectories are taken into
account as well.

wxDir::IsOpened

bool IsOpened () const

Returns true if the directory was successfully opened by a previous call to Open (p. 408).

wxDir::Open

bool Open (const wxString& dir)

Open the directory for enumerating, returns true on success or false if an error occurred.

wxDir::Traverse

size_t Traverse (wxDirTraverser& sink, const wxString& filespec = wxEmptyString,
int flags = wxDIR_DEFAULT)

Enumerate all files and directories under the given directory recursively calling the
element of the provided wxDirTraverser (p. 410) object for each of them.

More precisely, the function will really recurse into subdirectories if flags contains
wxDIR_DIRS flag. It will ignore the files (but still possibly recurse into subdirectories) if
wxDIR_FILES flag is given.

For each found directory, sink.OnDir() (p. 411) is called and sink.OnFile() (p. 411) is
called for every file. Depending on the return value, the enumeration may continue or
stop.

The function returns the total number of files found or (size_t)-1 on error.

See also: GetAllFiles (p. 406)

wxDirDialog

This class represents the directory chooser dialog.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)

CHAPTER 7

409

wxObject (p. 967)

Include files

<wx/dirdlg.h> <wx/generic/dirdlgg.h>

Window styles

wxDD_NEW_DIR_BUTTON Add "Create new directory" button and allow directory
names to be editable. On Windows the new directory
button is only available with recent versions of the common
dialogs.

See also Generic window styles (p. 1686).

See also

wxDirDialog overview (p. 1724), wxFileDialog (p. 491)

wxDirDialog::wxDirDialog

 wxDirDialog (wxWindow* parent, const wxString& message = "Choose a directory",
const wxString& defaultPath = "", long style = 0, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, const wxString& name =
"wxDirCtrl")

Constructor. Use wxDirDialog::ShowModal (p. 410) to show the dialog.

Parameters

parent

Parent window.

message

Message to show on the dialog.

defaultPath

The default path, or the empty string.

style

A dialog style, currently unused.

pos

Dialog position. Ignored under Windows.

size

Dialog size. Ignored under Windows.

CHAPTER 7

410

name

The dialog name, not used.

wxDirDialog::~wxDirDialog

 ~wxDirDialog ()

Destructor.

wxDirDialog::GetPath

wxString GetPath () const

Returns the default or user-selected path.

wxDirDialog::GetMessage

wxString GetMessage () const

Returns the message that will be displayed on the dialog.

wxDirDialog::GetStyle

long GetStyle () const

Returns the dialog style.

wxDirDialog::SetMessage

void SetMessage (const wxString& message)

Sets the message that will be displayed on the dialog.

wxDirDialog::SetPath

void SetPath (const wxString& path)

Sets the default path.

wxDirDialog::SetStyle

void SetStyle (long style)

Sets the dialog style. This is currently unused.

wxDirDialog::ShowModal

int ShowModal ()

CHAPTER 7

411

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxDirTraverser

wxDirTraverser is an abstract interface which must be implemented by objects passed to
Traverse (p. 408) function.

Example of use (this works almost like GetAllFiles (p. 406)):

 class wxDirTraverserSimple : public wxDirTraver ser
 {
 public:
 wxDirTraverserSimple(wxArrayString& files) :
m_files(files) { }

 virtual wxDirTraverseResult OnFile(const wx String&
filename)
 {
 m_files.Add(filename);
 return wxDIR_CONTINUE;
 }

 virtual wxDirTraverseResult OnDir(const wxS tring&
WXUNUSED(dirname))
 {
 return wxDIR_CONTINUE;
 }

 private:
 wxArrayString& m_files;
 };

 // get the names of all files in the array
 wxArrayString files;
 wxDirTraverserSimple traverser(files);

 wxDir dir(dirname);
 dir.Traverse(traverser);

Derived from

No base class

Constants

The elements of wxDirTraverseResult are the possible return values of the callback
functions:

enum wxDirTraverseResult
{
 wxDIR_IGNORE = -1, // ignore this director y but continue
with others
 wxDIR_STOP, // stop traversing
 wxDIR_CONTINUE // continue into this d irectory
};

CHAPTER 7

412

Include files

<wx/dir.h>

wxDirTraverser::OnDir

virtual wxDirTraverseResult OnDir (const wxString& dirname)

This function is called for each directory. It may return wxSIR_STOP to abort traversing
completely, wxDIR_IGNORE to skip this directory but continue with others or
wxDIR_CONTINUE to enumerate all files and subdirectories in this directory.

This is a pure virtual function and must be implemented in the derived class.

wxDirTraverser::OnFile

virtual wxDirTraverseResult OnFile (const wxString& filename)

This function is called for each file. It may return wxDIR_STOP to abort traversing (for
example, if the file being searched is found) or wxDIR_CONTINUE to proceed.

This is a pure virtual function and must be implemented in the derived class.

wxOpenErrorTraverser::OnOpenError

virtual wxOpenErrorTraverseResult OnOpenError (const wxString& openerrorname)

This function is called for each directory which we failed to open for enumerating. It may
return wxSIR_STOP to abort traversing completely,wxDIR_IGNORE to skip this directory
but continue with others or wxDIR_CONTINUE to retry opening this directory once again.

The base class version always returns wxDIR_IGNORE.

wxDisplay

Determines the sizes and locations of displays connected to the system.

Derived from

None

Include files

<wx/display.h>

See also

wxClientDisplayRect (p. 1549), wxDisplaySize (p. 1550), wxDisplaySizeMM (p. 1550)

CHAPTER 7

413

wxDisplay::wxDisplay

 wxDisplay (size_t index = 0)

Constructor, setting up a wxDisplay instance with the specified display.

Parameters

index

The index of the display to use. This must be non-negative and lower than the
value returned by GetCount() (p. 413).

wxDisplay::~wxDisplay

void ~wxDisplay ()

Destructor.

wxDisplay::ChangeMode

bool ChangeMode (const wxVideoMode& mode = wxDefaultVideoMode)

Changes the video mode of this display to the mode specified in the mode parameter.

If wxDefaultVideoMode is passed in as the mode parameter, the defined behaviour is
that wxDisplay will reset the video mode to the default mode used by the display. On
Windows, the behavior is normal. However, there are differences on other platforms.
On Unix variations using X11 extensions it should behave as defined, but some
irregularities may occur.

On wxMac passing in wxDefaultVideoMode as the mode parameter does nothing. This
happens because carbon no longer has access to DMUseScreenPrefs, an
undocumented function that changed the video mode to the system default by using the
system's 'scrn' resource.

wxDisplay::GetCount

static size_t GetCount ()

Returns the number of connected displays.

wxDisplay::GetCurrentMode

wxVideoMode GetCurrentMode () const

Returns the current video mode that this display is in.

wxDisplay::GetDepth

int GetDepth () const

CHAPTER 7

414

Returns the bit depth of the display whose index was passed to the constructor.

wxDisplay::GetFromPoint

static int GetFromPoint (const wxPoint& pt)

Returns the index of the display on which the given point lies. Returns -1 if the point is
not on any connected display.

Parameters

pt

The point to locate.

wxDisplay::GetFromWindow

static int GetFromWindow (wxWindow* win)

Returns the index of the display on which the given window lies.

If the window is on more than one display it gets the display that overlaps the window
the most.

Returns -1 if the window is not on any connected display.

Currently wxMSW only.

Parameters

win

The window to locate.

wxDisplay::GetGeometry

wxRect GetGeometry () const

Returns the bounding rectangle of the display whose index was passed to the
constructor.

wxDisplay::GetModes

wxArrayVideoModes GetModes (const wxVideoMode& mode =
wxDefaultVideoMode) const

Fills and returns an array with all the video modes that are supported by this display, or
video modes that are supported by this display and match the mode parameter (if mode
is not wxDefaultVideoMode).

wxDisplay::GetName

CHAPTER 7

415

wxString GetName () const

Returns the display's name. A name is not available on all platforms.

wxDisplay::IsPrimary

bool IsPrimary ()

Returns true if the display is the primary display. The primary display is the one whose
index is 0.

wxDllLoader

Deprecation note: This class is deprecated since version 2.4 and is not compiled in by
default in version 2.6 and will be removed in 2.8. Please use wxDynamicLibrary (p. 455)
instead.

wxDllLoader is a class providing an interface similar to Unix's dlopen() . It is used by
the wxLibrary framework and manages the actual loading of shared libraries and the
resolving of symbols in them. There are no instances of this class, it simply serves as a
namespace for its static member functions.

Please note that class wxDynamicLibrary (p. 455) provides alternative, friendlier
interface to wxDllLoader.

The terms DLL and shared library/object will both be used in the documentation to refer
to the same thing: a .dll file under Windows or .so or .sl one under Unix.

Example of using this class to dynamically load the strlen() function:

#if defined(__WXMSW__)
 static const wxChar *LIB_NAME = _T("kernel32");
 static const wxChar *FUNC_NAME = _T("lstrlenA") ;
#elif defined(__UNIX__)
 static const wxChar *LIB_NAME = _T("/lib/libc-2 .0.7.so");
 static const wxChar *FUNC_NAME = _T("strlen");
#endif

 wxDllType dllHandle = wxDllLoader::LoadLibrary(LIB_NAME);
 if (!dllHandle)
 {
 ... error ...
 }
 else
 {
 typedef int (*strlenType)(char *);
 strlenType pfnStrlen =
(strlenType)wxDllLoader::GetSymbol(dllHandle, FUNC_ NAME);
 if (!pfnStrlen)
 {
 ... error ...
 }
 else
 {
 if (pfnStrlen("foo") != 3)
 {
 ... error ...

CHAPTER 7

416

 }
 else
 {
 ... ok! ...
 }
 }

 wxDllLoader::UnloadLibrary(dllHandle);
 }

Derived from

No base class

Include files

<wx/dynlib.h>

Data structures

This header defines a platform-dependent wxDllType typedef which stores a handle to
a loaded DLLs on the given platform.

wxDllLoader::GetDllExt

static wxString GetDllExt ()

Returns the string containing the usual extension for shared libraries for the given
systems (including the leading dot if not empty).

For example, this function will return ".dll" under Windows or (usually) ".so" under
Unix.

wxDllLoader::GetProgramHandle

wxDllType GetProgramHandle ()

This function returns a valid handle for the main program itself. Notice that the NULL
return value is valid for some systems (i.e. doesn't mean that the function failed).

NB: This function is Unix specific. It will always fail under Windows or OS/2.

wxDllLoader::GetSymbol

void * GetSymbol (wxDllType dllHandle, const wxString& name)

This function resolves a symbol in a loaded DLL, such as a variable or function name.

Returned value will be NULL if the symbol was not found in the DLL or if an error
occurred.

Parameters

CHAPTER 7

417

dllHandle

Valid handle previously returned by LoadLibrary (p. 416)

name

Name of the symbol.

wxDllLoader::LoadLibrary

wxDllType LoadLibrary (const wxString & libname, bool* success = NULL)

This function loads a shared library into memory, with libname being the name of the
library: it may be either the full name including path and (platform-dependent) extension,
just the basename (no path and no extension) or a basename with extension. In the last
two cases, the library will be searched in all standard locations.

Returns a handle to the loaded DLL. Use success parameter to test if it is valid. If the
handle is valid, the library must be unloaded later with UnloadLibrary (p. 417).

Parameters

libname

Name of the shared object to load.

success

May point to a bool variable which will be set to true or false; may also be NULL.

wxDllLoader::UnloadLibrary

void UnloadLibrary (wxDllType dllhandle)

This function unloads the shared library. The handle dllhandle must have been returned
by LoadLibrary (p. 416) previously.

wxDocChildFrame

The wxDocChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for SDI (not MDI) child frames.

The class is part of the document/view framework supported by wxWidgets, and
cooperates with the wxView (p. 1405), wxDocument (p. 437), wxDocManager (p. 419)
and wxDocTemplate (p. 431) classes.

See the example application in samples/docview .

Derived from

wxFrame (p. 555)
wxWindow (p. 1421)

CHAPTER 7

418

wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/docview.h>

See also

Document/view overview (p. 1725), wxFrame (p. 555)

wxDocChildFrame::m_childDocument

wxDocument* m_childDocument

The document associated with the frame.

wxDocChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

wxDocChildFrame::wxDocChildFrame

 wxDocChildFrame (wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocChildFrame::~wxDocChildFrame

 ~wxDocChildFrame ()

Destructor.

wxDocChildFrame::GetDocument

wxDocument* GetDocument () const

Returns the document associated with this frame.

wxDocChildFrame::GetView

wxView* GetView () const

Returns the view associated with this frame.

wxDocChildFrame::OnActivate

CHAPTER 7

419

void OnActivate (wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocChildFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocChildFrame::SetDocument

void SetDocument (wxDocument * doc)

Sets the document for this frame.

wxDocChildFrame::SetView

void SetView (wxView * view)

Sets the view for this frame.

wxDocManager

The wxDocManager class is part of the document/view framework supported by
wxWidgets, and cooperates with the wxView (p. 1405), wxDocument (p. 437) and
wxDocTemplate (p. 431) classes.

Derived from

wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/docview.h>

See also

wxDocManager overview (p. 1728), wxDocument (p. 437), wxView (p. 1405),
wxDocTemplate (p. 431), wxFileHistory (p. 496)

wxDocManager::m_currentView

wxView* m_currentView

The currently active view.

CHAPTER 7

420

wxDocManager::m_defaultDocumentNameCounter

int m_defaultDocumentNameCounter

Stores the integer to be used for the next default document name.

wxDocManager::m_fileHistory

wxFileHistory* m_fileHistory

A pointer to an instance of wxFileHistory (p. 496), which manages the history of recently-
visited files on the File menu.

wxDocManager::m_maxDocsOpen

int m_maxDocsOpen

Stores the maximum number of documents that can be opened before existing
documents are closed. By default, this is 10,000.

wxDocManager::m_docs

wxList m_docs

A list of all documents.

wxDocManager::m_flags

long m_flags

Stores the flags passed to the constructor.

wxDocManager::m_lastDirectory

The directory last selected by the user when opening a file.

wxFileHistory* m_fileHistory

wxDocManager::m_templates

wxList m_templates

A list of all document templates.

wxDocManager::wxDocManager

 wxDocManager (long flags = wxDEFAULT_DOCMAN_FLAGS, bool initialize = true)

Constructor. Create a document manager instance dynamically near the start of your
application before doing any document or view operations.

CHAPTER 7

421

flags is currently unused.

If initialize is true, the Initialize (p. 424) function will be called to create a default history
list object. If you derive from wxDocManager, you may wish to call the base constructor
with false, and then call Initialize in your own constructor, to allow your own Initialize or
OnCreateFileHistory functions to be called.

wxDocManager::~wxDocManager

void ~wxDocManager ()

Destructor.

wxDocManager::ActivateView

void ActivateView (wxView* doc, bool activate = true)

Sets the current view.

wxDocManager::AddDocument

void AddDocument (wxDocument * doc)

Adds the document to the list of documents.

wxDocManager::AddFileToHistory

void AddFileToHistory (const wxString& filename)

Adds a file to the file history list, if we have a pointer to an appropriate file menu.

wxDocManager::AssociateTemplate

void AssociateTemplate (wxDocTemplate * temp)

Adds the template to the document manager's template list.

wxDocManager::CloseDocuments

bool CloseDocuments (bool force = true)

Closes all currently opened documents.

wxDocManager::CreateDocument

wxDocument* CreateDocument (const wxString& path, long flags)

Creates a new document in a manner determined by the flags parameter, which can be:

 • wxDOC_NEW Creates a fresh document.

CHAPTER 7

422

 • wxDOC_SILENT Silently loads the given document file.

If wxDOC_NEW is present, a new document will be created and returned, possibly after
asking the user for a template to use if there is more than one document template. If
wxDOC_SILENT is present, a new document will be created and the given file loaded
into it. If neither of these flags is present, the user will be presented with a file selector
for the file to load, and the template to use will be determined by the extension
(Windows) or by popping up a template choice list (other platforms).

If the maximum number of documents has been reached, this function will delete the
oldest currently loaded document before creating a new one.

wxDocManager::CreateView

wxView* CreateView (wxDocument* doc, long flags)

Creates a new view for the given document. If more than one view is allowed for the
document (by virtue of multiple templates mentioning the same document type), a choice
of view is presented to the user.

wxDocManager::DisassociateTemplate

void DisassociateTemplate (wxDocTemplate * temp)

Removes the template from the list of templates.

wxDocManager::FileHistoryAddFilesToMenu

void FileHistoryAddFilesToMenu ()

Appends the files in the history list, to all menus managed by the file history object.

void FileHistoryAddFilesToMenu (wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxDocManager::FileHistoryLoad

void FileHistoryLoad (wxConfigBase& config)

Loads the file history from a config object.

See also

wxConfig (p. 184)

wxDocManager::FileHistoryRemoveMenu

void FileHistoryRemoveMenu (wxMenu* menu)

Removes the given menu from the list of menus managed by the file history object.

CHAPTER 7

423

wxDocManager::FileHistorySave

void FileHistorySave (wxConfigBase& resourceFile)

Saves the file history into a config object. This must be called explicitly by the
application.

See also

wxConfig (p. 184)

wxDocManager::FileHistoryUseMenu

void FileHistoryUseMenu (wxMenu* menu)

Use this menu for appending recently-visited document filenames, for convenient
access. Calling this function with a valid menu pointer enables the history list
functionality.

Note that you can add multiple menus using this function, to be managed by the file
history object.

wxDocManager::FindTemplateForPath

wxDocTemplate * FindTemplateForPath (const wxString& path)

Given a path, try to find template that matches the extension. This is only an
approximate method of finding a template for creating a document.

wxDocManager::GetCurrentDocument

wxDocument * GetCurrentDocument ()

Returns the document associated with the currently active view (if any).

wxDocManager::GetCurrentView

wxView * GetCurrentView ()

Returns the currently active view

wxDocManager::GetDocuments

wxList& GetDocuments ()

Returns a reference to the list of documents.

wxDocManager::GetFileHistory

wxFileHistory * GetFileHistory ()

CHAPTER 7

424

Returns a pointer to file history.

wxDocManager::GetLastDirectory

wxString GetLastDirectory () const

Returns the directory last selected by the user when opening a file. Initially empty.

wxDocManager::GetMaxDocsOpen

int GetMaxDocsOpen ()

Returns the number of documents that can be open simultaneously.

wxDocManager::GetHistoryFilesCount

size_t GetHistoryFilesCount ()

Returns the number of files currently stored in the file history.

wxDocManager::GetTemplates

wxList& GetTemplates ()

Returns a reference to the list of associated templates.

wxDocManager::Initialize

bool Initialize ()

Initializes data; currently just calls OnCreateFileHistory. Some data cannot always be
initialized in the constructor because the programmer must be given the opportunity to
override functionality. If OnCreateFileHistory was called from the constructor, an
overridden virtual OnCreateFileHistory would not be called due to C++'s 'interesting'
constructor semantics. In fact Initialize is called from the wxDocManager constructor, but
this can be vetoed by passing false to the second argument, allowing the derived class's
constructor to call Initialize, possibly calling a different OnCreateFileHistory from the
default.

The bottom line: if you're not deriving from Initialize, forget it and construct
wxDocManager with no arguments.

wxDocManager::MakeDefaultName

bool MakeDefaultName (const wxString& buf)

Copies a suitable default name into buf. This is implemented by appending an integer
counter to the string unnamed and incrementing the counter.

wxPerl note: In wxPerl this function must return the modified name rather than just
modifying the argument.

CHAPTER 7

425

wxDocManager::OnCreateFileHistory

wxFileHistory * OnCreateFileHistory ()

A hook to allow a derived class to create a different type of file history. Called from
Initialize (p. 424).

wxDocManager::OnFileClose

void OnFileClose (wxCommandEvent& event)

Closes and deletes the currently active document.

wxDocManager::OnFileCloseAll

void OnFileCloseAll (wxCommandEvent& event)

Closes and deletes all the currently opened documents.

wxDocManager::OnFileNew

void OnFileNew (wxCommandEvent& event)

Creates a document from a list of templates (if more than one template).

wxDocManager::OnFileOpen

void OnFileOpen (wxCommandEvent& event)

Creates a new document and reads in the selected file.

wxDocManager::OnFileRevert

void OnFileRevert (wxCommandEvent& event)

Reverts the current document by calling wxDocument::Revert for the current document.

wxDocManager::OnFileSave

void OnFileSave (wxCommandEvent& event)

Saves the current document by calling wxDocument::Save for the current document.

wxDocManager::OnFileSaveAs

void OnFileSaveAs (wxCommandEvent& event)

Calls wxDocument::SaveAs for the current document.

wxDocManager::RemoveDocument

CHAPTER 7

426

void RemoveDocument (wxDocument * doc)

Removes the document from the list of documents.

wxDocManager::SelectDocumentPath

wxDocTemplate * SelectDocumentPath (wxDocTemplate ** templates, int
noTemplates, wxString& path, long flags, bool save)

Under Windows, pops up a file selector with a list of filters corresponding to document
templates. The wxDocTemplate corresponding to the selected file's extension is
returned.

On other platforms, if there is more than one document template a choice list is popped
up, followed by a file selector.

This function is used in wxDocManager::CreateDocument.

wxPerl note: In wxPerl templates is a reference to a list of templates. If you override
this method in your document manager it must return two values, eg:

 (doctemplate, path) = My::DocManager->SelectDocumentPath(...);

wxDocManager::SelectDocumentType

wxDocTemplate * SelectDocumentType (wxDocTemplate ** templates, int
noTemplates, bool sort=false)

Returns a document template by asking the user (if there is more than one template).
This function is used in wxDocManager::CreateDocument.

Parameters

templates

Pointer to an array of templates from which to choose a desired template.

noTemplates

Number of templates being pointed to by the templates pointer.

sort

If more than one template is passed in in templates, then this parameter indicates
whether the list of templates that the user will have to choose from is sorted or not
when shown the choice box dialog. Default is false.

wxPerl note: In wxPerl templates is a reference to a list of templates.

wxDocManager::SelectViewType

wxDocTemplate * SelectViewType (wxDocTemplate ** templates, int noTemplates,
bool sort=false)

CHAPTER 7

427

Returns a document template by asking the user (if there is more than one template),
displaying a list of valid views. This function is used in wxDocManager::CreateView. The
dialog normally will not appear because the array of templates only contains those
relevant to the document in question, and often there will only be one such.

Parameters

templates

Pointer to an array of templates from which to choose a desired template.

noTemplates

Number of templates being pointed to by the templates pointer.

sort

If more than one template is passed in in templates, then this parameter indicates
whether the list of templates that the user will have to choose from is sorted or not
when shown the choice box dialog. Default is false.

wxPerl note: In wxPerl templates is a reference to a list of templates.

wxDocManager::SetLastDirectory

void SetLastDirectory (const wxString& dir)

Sets the directory to be displayed to the user when opening a file. Initially this is empty.

wxDocManager::SetMaxDocsOpen

void SetMaxDocsOpen (int n)

Sets the maximum number of documents that can be open at a time. By default, this is
10,000. If you set it to 1, existing documents will be saved and deleted when the user
tries to open or create a new one (similar to the behaviour of Windows Write, for
example). Allowing multiple documents gives behaviour more akin to MS Word and
other Multiple Document Interface applications.

wxDocMDIChildFrame

The wxDocMDIChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for MDI child frames.

The class is part of the document/view framework supported by wxWidgets, and
cooperates with the wxView (p. 1405), wxDocument (p. 437), wxDocManager (p. 419)
and wxDocTemplate (p. 431) classes.

See the example application in samples/docview .

Derived from

CHAPTER 7

428

wxMDIChildFrame (p. 875)
wxFrame (p. 555)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. 1725), wxMDIChildFrame (p. 875)

wxDocMDIChildFrame::m_childDocument

wxDocument* m_childDocument

The document associated with the frame.

wxDocMDIChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

wxDocMDIChildFrame::wxDocMDIChildFrame

 wxDocMDIChildFrame (wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocMDIChildFrame::~wxDocMDIChildFrame

 ~wxDocMDIChildFrame ()

Destructor.

wxDocMDIChildFrame::GetDocument

wxDocument* GetDocument () const

Returns the document associated with this frame.

wxDocMDIChildFrame::GetView

wxView* GetView () const

CHAPTER 7

429

Returns the view associated with this frame.

wxDocMDIChildFrame::OnActivate

void OnActivate (wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocMDIChildFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocMDIChildFrame::SetDocument

void SetDocument (wxDocument * doc)

Sets the document for this frame.

wxDocMDIChildFrame::SetView

void SetView (wxView * view)

Sets the view for this frame.

wxDocMDIParentFrame

The wxDocMDIParentFrame class provides a default top-level frame for applications
using the document/view framework. This class can only be used for MDI parent frames.

It cooperates with the wxView (p. 1405), wxDocument (p. 437), wxDocManager (p. 419)
and wxDocTemplates (p. 431) classes.

See the example application in samples/docview .

Derived from

wxMDIParentFrame (p. 880)
wxFrame (p. 555)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/docmdi.h>

See also

CHAPTER 7

430

Document/view overview (p. 1725), wxMDIParentFrame (p. 880)

wxDocMDIParentFrame::wxDocMDIParentFrame

 wxDocMDIParentFrame (wxDocManager* manager, wxFrame * parent, wxWindowID
id, const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString&
name = "frame")

Constructor.

wxDocMDIParentFrame::~wxDocMDIParentFrame

 ~wxDocMDIParentFrame ()

Destructor.

wxDocMDIParentFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
{
 if (m_docManager->Clear(!event.CanVeto()))
 {
 this->Destroy();
 }
 else
 event.Veto();
}

wxDocParentFrame

The wxDocParentFrame class provides a default top-level frame for applications using
the document/view framework. This class can only be used for SDI (not MDI) parent
frames.

It cooperates with the wxView (p. 1405), wxDocument (p. 437), wxDocManager (p. 419)
and wxDocTemplates (p. 431) classes.

See the example application in samples/docview .

Derived from

CHAPTER 7

431

wxFrame (p. 555)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/docview.h>

See also

Document/view overview (p. 1725), wxFrame (p. 555)

wxDocParentFrame::wxDocParentFrame

 wxDocParentFrame (wxDocManager* manager, wxFrame * parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocParentFrame::~wxDocParentFrame

 ~wxDocParentFrame ()

Destructor.

wxDocParentFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
{
 if (m_docManager->Clear(!event.CanVeto()))
 {
 this->Destroy();
 }
 else
 event.Veto();
}

wxDocTemplate

CHAPTER 7

432

The wxDocTemplate class is used to model the relationship between a document class
and a view class.

Derived from

wxObject (p. 967)

Include files

<wx/docview.h>

See also

wxDocTemplate overview (p. 1727), wxDocument (p. 437), wxView (p. 1405)

wxDocTemplate::m_defaultExt

wxString m_defaultExt

The default extension for files of this type.

wxDocTemplate::m_description

wxString m_description

A short description of this template.

wxDocTemplate::m_directory

wxString m_directory

The default directory for files of this type.

wxDocTemplate::m_docClassInfo

wxClassInfo* m_docClassInfo

Run-time class information that allows document instances to be constructed
dynamically.

wxDocTemplate::m_docTypeName

wxString m_docTypeName

The named type of the document associated with this template.

wxDocTemplate::m_documentManager

wxDocTemplate* m_documentManager

CHAPTER 7

433

A pointer to the document manager for which this template was created.

wxDocTemplate::m_fileFilter

wxString m_fileFilter

The file filter (such as *.txt) to be used in file selector dialogs.

wxDocTemplate::m_flags

long m_flags

The flags passed to the constructor.

wxDocTemplate::m_viewClassInfo

wxClassInfo* m_viewClassInfo

Run-time class information that allows view instances to be constructed dynamically.

wxDocTemplate::m_viewTypeName

wxString m_viewTypeName

The named type of the view associated with this template.

wxDocTemplate::wxDocTemplate

 wxDocTemplate (wxDocManager* manager, const wxString& descr, const
wxString& filter, const wxString& dir, const wxString& ext, const wxString&
docTypeName, const wxString& viewTypeName, wxClassInfo* docClassInfo = NULL,
wxClassInfo* viewClassInfo = NULL, long flags = wxDEFAULT_TEMPLATE_FLAGS)

Constructor. Create instances dynamically near the start of your application after
creating a wxDocManager instance, and before doing any document or view operations.

manager is the document manager object which manages this template.

descr is a short description of what the template is for. This string will be displayed in the
file filter list of Windows file selectors.

filter is an appropriate file filter such as *.txt .

dir is the default directory to use for file selectors.

ext is the default file extension (such as txt).

docTypeName is a name that should be unique for a given type of document, used for
gathering a list of views relevant to a particular document.

viewTypeName is a name that should be unique for a given view.

CHAPTER 7

434

docClassInfo is a pointer to the run-time document class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyDocumentClass). If this is not supplied, you
will need to derive a new wxDocTemplate class and override the CreateDocument
member to return a new document instance on demand.

viewClassInfo is a pointer to the run-time view class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyViewClass). If this is not supplied, you will
need to derive a new wxDocTemplate class and override the CreateView member to
return a new view instance on demand.

flags is a bit list of the following:

 • wxTEMPLATE_VISIBLE The template may be displayed to the user in dialogs.

 • wxTEMPLATE_INVISIBLE The template may not be displayed to the user in
dialogs.

 • wxDEFAULT_TEMPLATE_FLAGS Defined as wxTEMPLATE_VISIBLE.

wxPerl note: In wxPerl docClassInfo and viewClassInfo can be either
Wx::ClassInfo objects or strings which contain the name of the perl packages which
are to be used as Wx::Document andWx::View classes (they must have a constructor
named new):

Wx::DocTemplate->new(docmgr, descr, filter, dir, e xt, docTypeName,
viewTypeName, docClassInfo,
viewClassInfo, flags) will construct
document and view objects from the class
information

Wx::DocTemplate->new(docmgr, descr, filter, dir, e xt, docTypeName,
viewTypeName, docClassName,
viewClassName, flags) will construct
document and view objects from perl packages

Wx::DocTemplate->new(docmgr, descr, filter, dir, e xt, docTypeName,
viewTypeName)
 Wx::DocTemplate::CreateDocument(
) andWx::DocTemplate::CreateView()
must be overridden

wxDocTemplate::~wxDocTemplate

void ~wxDocTemplate ()

Destructor.

wxDocTemplate::CreateDocument

wxDocument * CreateDocument (const wxString& path, long flags = 0)

CHAPTER 7

435

Creates a new instance of the associated document class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate document instance.

This function calls wxDocTemplate::InitDocument which in turns calls
wxDocument::OnCreate.

wxDocTemplate::CreateView

wxView * CreateView (wxDocument * doc, long flags = 0)

Creates a new instance of the associated view class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate view instance.

wxDocTemplate::GetDefaultExtension

wxString GetDefaultExtension ()

Returns the default file extension for the document data, as passed to the document
template constructor.

wxDocTemplate::GetDescription

wxString GetDescription ()

Returns the text description of this template, as passed to the document template
constructor.

wxDocTemplate::GetDirectory

wxString GetDirectory ()

Returns the default directory, as passed to the document template constructor.

wxDocTemplate::GetDocumentManager

wxDocManager * GetDocumentManager ()

Returns a pointer to the document manager instance for which this template was
created.

wxDocTemplate::GetDocumentName

wxString GetDocumentName ()

Returns the document type name, as passed to the document template constructor.

wxDocTemplate::GetFileFilter

CHAPTER 7

436

wxString GetFileFilter ()

Returns the file filter, as passed to the document template constructor.

wxDocTemplate::GetFlags

long GetFlags ()

Returns the flags, as passed to the document template constructor.

wxDocTemplate::GetViewName

wxString GetViewName ()

Returns the view type name, as passed to the document template constructor.

wxDocTemplate::InitDocument

bool InitDocument (wxDocument* doc, const wxString& path, long flags = 0)

Initialises the document, calling wxDocument::OnCreate. This is called from
wxDocTemplate::CreateDocument.

wxDocTemplate::IsVisible

bool IsVisible ()

Returns true if the document template can be shown in user dialogs, false otherwise.

wxDocTemplate::SetDefaultExtension

void SetDefaultExtension (const wxString& ext)

Sets the default file extension.

wxDocTemplate::SetDescription

void SetDescription (const wxString& descr)

Sets the template description.

wxDocTemplate::SetDirectory

void SetDirectory (const wxString& dir)

Sets the default directory.

wxDocTemplate::SetDocumentManager

void SetDocumentManager (wxDocManager * manager)

CHAPTER 7

437

Sets the pointer to the document manager instance for which this template was created.
Should not be called by the application.

wxDocTemplate::SetFileFilter

void SetFileFilter (const wxString& filter)

Sets the file filter.

wxDocTemplate::SetFlags

void SetFlags (long flags)

Sets the internal document template flags (see the constructor description for more
details).

wxDocument

The document class can be used to model an application's file-based data. It is part of
the document/view framework supported by wxWidgets, and cooperates with the
wxView (p. 1405), wxDocTemplate (p. 431) and wxDocManager (p. 419) classes.

Derived from

wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/docview.h>

See also

wxDocument overview (p. 1726), wxView (p. 1405), wxDocTemplate (p. 431),
wxDocManager (p. 419)

wxDocument::m_commandProcessor

wxCommandProcessor* m_commandProcessor

A pointer to the command processor associated with this document.

wxDocument::m_documentFile

wxString m_documentFile

Filename associated with this document ("" if none).

CHAPTER 7

438

wxDocument::m_documentModified

bool m_documentModified

true if the document has been modified, false otherwise.

wxDocument::m_documentTemplate

wxDocTemplate * m_documentTemplate

A pointer to the template from which this document was created.

wxDocument::m_documentTitle

wxString m_documentTitle

Document title. The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.

wxDocument::m_documentTypeName

wxString m_documentTypeName

The document type name given to the wxDocTemplate constructor, copied to this
variable when the document is created. If several document templates are created that
use the same document type, this variable is used in wxDocManager::CreateView to
collate a list of alternative view types that can be used on this kind of document. Do not
change the value of this variable.

wxDocument::m_documentViews

wxList m_documentViews

List of wxView instances associated with this document.

wxDocument::wxDocument

 wxDocument ()

Constructor. Define your own default constructor to initialize application-specific data.

wxDocument::~wxDocument

 ~wxDocument ()

Destructor. Removes itself from the document manager.

wxDocument::AddView

virtual bool AddView (wxView * view)

CHAPTER 7

439

If the view is not already in the list of views, adds the view and calls
OnChangedViewList.

wxDocument::Close

virtual bool Close ()

Closes the document, by calling OnSaveModified and then (if this returned true)
OnCloseDocument. This does not normally delete the document object: use
DeleteAllViews to do this implicitly.

wxDocument::DeleteAllViews

virtual bool DeleteAllViews ()

Calls wxView::Close and deletes each view. Deleting the final view will implicitly delete
the document itself, because the wxView destructor calls RemoveView. This in turns
calls wxDocument::OnChangedViewList, whose default implemention is to save and
delete the document if no views exist.

wxDocument::GetCommandProcessor

wxCommandProcessor* GetCommandProcessor () const

Returns a pointer to the command processor associated with this document.

See wxCommandProcessor (p. 177).

wxDocument::GetDocumentTemplate

wxDocTemplate* GetDocumentTemplate () const

Gets a pointer to the template that created the document.

wxDocument::GetDocumentManager

wxDocManager* GetDocumentManager () const

Gets a pointer to the associated document manager.

wxDocument::GetDocumentName

wxString GetDocumentName () const

Gets the document type name for this document. See the comment for
documentTypeName (p. 438).

wxDocument::GetDocumentWindow

wxWindow* GetDocumentWindow () const

CHAPTER 7

440

Intended to return a suitable window for using as a parent for document-related dialog
boxes. By default, uses the frame associated with the first view.

wxDocument::GetFilename

wxString GetFilename () const

Gets the filename associated with this document, or "" if none is associated.

wxDocument::GetFirstView

wxView * GetFirstView () const

A convenience function to get the first view for a document, because in many cases a
document will only have a single view.

See also: GetViews (p. 440)

wxDocument::GetPrintableName

virtual void GetPrintableName (wxString& name) const

Copies a suitable document name into the supplied name buffer. The default function
uses the title, or if there is no title, uses the filename; or if no filename, the string
unnamed .

wxPerl note: In wxPerl this function must return the modified name rather than just
modifying the argument.

wxDocument::GetTitle

wxString GetTitle () const

Gets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.

wxDocument::GetViews

wxList & GetViews () const

Returns the list whose elements are the views on the document.

See also: GetFirstView (p. 439)

wxDocument::IsModified

virtual bool IsModified () const

Returns true if the document has been modified since the last save, false otherwise. You
may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

CHAPTER 7

441

See also Modify (p. 440).

wxDocument::LoadObject

virtual istream& LoadObject (istream& stream)

virtual wxInputStream& LoadObject (wxInputStream& stream)

Override this function and call it from your own LoadObject before streaming your own
data. LoadObject is called by the framework automatically when the document contents
need to be loaded.

Note that only one of these forms exists, depending on how wxWidgets was configured.

wxDocument::Modify

virtual void Modify (bool modify)

Call with true to mark the document as modified since the last save, false otherwise. You
may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

See also IsModified (p. 440).

wxDocument::OnChangedViewList

virtual void OnChangedViewList ()

Called when a view is added to or deleted from this document. The default
implementation saves and deletes the document if no views exist (the last one has just
been removed).

wxDocument::OnCloseDocument

virtual bool OnCloseDocument ()

The default implementation calls DeleteContents (an empty implementation) sets the
modified flag to false. Override this to supply additional behaviour when the document is
closed with Close.

wxDocument::OnCreate

virtual bool OnCreate (const wxString& path, long flags)

Called just after the document object is created to give it a chance to initialize itself. The
default implementation uses the template associated with the document to create an
initial view. If this function returns false, the document is deleted.

wxDocument::OnCreateCommandProcessor

virtual wxCommandProcessor* OnCreateCommandProcessor ()

CHAPTER 7

442

Override this function if you want a different (or no) command processor to be created
when the document is created. By default, it returns an instance of
wxCommandProcessor.

See wxCommandProcessor (p. 177).

wxDocument::OnNewDocument

virtual bool OnNewDocument ()

The default implementation calls OnSaveModified and DeleteContents, makes a default
title for the document, and notifies the views that the filename (in fact, the title) has
changed.

wxDocument::OnOpenDocument

virtual bool OnOpenDocument (const wxString& filename)

Constructs an input file stream for the given filename (which must not be empty), and
calls LoadObject. If LoadObject returns true, the document is set to unmodified;
otherwise, an error message box is displayed. The document's views are notified that
the filename has changed, to give windows an opportunity to update their titles. All of the
document's views are then updated.

wxDocument::OnSaveDocument

virtual bool OnSaveDocument (const wxString& filename)

Constructs an output file stream for the given filename (which must not be empty), and
calls SaveObject. If SaveObject returns true, the document is set to unmodified;
otherwise, an error message box is displayed.

wxDocument::OnSaveModified

virtual bool OnSaveModified ()

If the document has been modified, prompts the user to ask if the changes should be
changed. If the user replies Yes, the Save function is called. If No, the document is
marked as unmodified and the function succeeds. If Cancel, the function fails.

wxDocument::RemoveView

virtual bool RemoveView (wxView* view)

Removes the view from the document's list of views, and calls OnChangedViewList.

wxDocument::Save

virtual bool Save()

CHAPTER 7

443

Saves the document by calling OnSaveDocument if there is an associated filename, or
SaveAs if there is no filename.

wxDocument::SaveAs

virtual bool SaveAs ()

Prompts the user for a file to save to, and then calls OnSaveDocument.

wxDocument::SaveObject

virtual ostream& SaveObject (ostream& stream)

virtual wxOutputStream& SaveObject (wxOutputStream& stream)

Override this function and call it from your own SaveObject before streaming your own
data. SaveObject is called by the framework automatically when the document contents
need to be saved.

Note that only one of these forms exists, depending on how wxWidgets was configured.

wxDocument::SetCommandProcessor

virtual void SetCommandProcessor (wxCommandProcessor * processor)

Sets the command processor to be used for this document. The document will then be
responsible for its deletion. Normally you should not call this; override
OnCreateCommandProcessor instead.

See wxCommandProcessor (p. 177).

wxDocument::SetDocumentName

void SetDocumentName (const wxString& name)

Sets the document type name for this document. See the comment for
documentTypeName (p. 438).

wxDocument::SetDocumentTemplate

void SetDocumentTemplate (wxDocTemplate* templ)

Sets the pointer to the template that created the document. Should only be called by the
framework.

wxDocument::SetFilename

void SetFilename (const wxString& filename, bool notifyViews = false)

Sets the filename for this document. Usually called by the framework.

CHAPTER 7

444

If notifyViews is true, wxView::OnChangeFilename is called for all views.

wxDocument::SetTitle

void SetTitle (const wxString& title)

Sets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.

wxDocument::UpdateAllViews

void UpdateAllViews (wxView* sender = NULL, wxObject* hint = NULL)

Updates all views. If sender is non-NULL, does not update this view.

hint represents optional information to allow a view to optimize its update.

wxDragImage

This class is used when you wish to drag an object on the screen, and a simple cursor is
not enough.

On Windows, the WIN32 API is used to do achieve smooth dragging. On other
platforms, wxGenericDragImage is used. Applications may also prefer to use
wxGenericDragImage on Windows, too.

wxPython note: wxPython uses wxGenericDragImage on all platforms, but uses the
wxDragImage name.

To use this class, when you wish to start dragging an image, create a wxDragImage
object and store it somewhere you can access it as the drag progresses. Call BeginDrag
to start, and EndDrag to stop the drag. To move the image, initially call Show and then
Move. If you wish to update the screen contents during the drag (for example, highlight
an item as in the dragimag sample), first call Hide, update the screen, call Move, and
then call Show.

You can drag within one window, or you can use full-screen dragging either across the
whole screen, or just restricted to one area of the screen to save resources. If you want
the user to drag between two windows, then you will need to use full-screen dragging.

If you wish to draw the image yourself, use wxGenericDragImage and override
wxDragImage::DoDrawImage (p. 446) and wxDragImage::GetImageRect (p. 447).

Please see samples/dragimag for an example.

Derived from

wxObject (p. 967)

Include files

<wx/dragimag.h>

CHAPTER 7

445

<wx/generic/dragimgg.h>

wxDragImage::wxDragImage

 wxDragImage ()

Default constructor.

 wxDragImage (const wxBitmap& image, const wxCursor& cursor = wxNullCursor,
const wxPoint& cursorHotspot = wxPoint(0, 0))

Constructs a drag image from a bitmap and optional cursor.

 wxDragImage (const wxIcon& image, const wxCursor& cursor = wxNullCursor,
const wxPoint& cursorHotspot = wxPoint(0, 0))

Constructs a drag image from an icon and optional cursor.

wxPython note: This constructor is called wxDragIcon in wxPython.

 wxDragImage (const wxString& text, const wxCursor& cursor = wxNullCursor, const
wxPoint& cursorHotspot = wxPoint(0, 0))

Constructs a drag image from a text string and optional cursor.

wxPython note: This constructor is called wxDragString in wxPython.

 wxDragImage (const wxTreeCtrl& treeCtrl, wxTreeItemId& id)

Constructs a drag image from the text in the given tree control item, and optional cursor.

wxPython note: This constructor is called wxDragTreeItem in wxPython.

 wxDragImage (const wxListCtrl& treeCtrl, long id)

Constructs a drag image from the text in the given tree control item, and optional cursor.

wxPython note: This constructor is called wxDragListItem in wxPython.

 wxDragImage (const wxCursor& cursor = wxNullCursor, const wxPoint&
cursorHotspot = wxPoint(0, 0))

Constructs a drag image an optional cursor. This constructor is only available for
wxGenericDragImage, and can be used when the application supplies
wxDragImage::DoDrawImage (p. 446) and wxDragImage::GetImageRect (p. 447).

Parameters

image

Icon or bitmap to be used as the drag image. The bitmap can have a mask.

text

CHAPTER 7

446

Text used to construct a drag image.

cursor

Optional cursor to combine with the image.

hotspot

This parameter is deprecated.

treeCtrl

Tree control for constructing a tree drag image.

listCtrl

List control for constructing a list drag image.

id

Tree or list control item id.

wxDragImage::BeginDrag

bool BeginDrag (const wxPoint& hotspot, wxWindow* window, bool fullScreen =
false, wxRect* rect = NULL)

Start dragging the image, in a window or full screen.

bool BeginDrag (const wxPoint& hotspot, wxWindow* window, wxWindow*
boundingWindow)

Start dragging the image, using the first window to capture the mouse and the second to
specify the bounding area. This form is equivalent to using the first form, but more
convenient than working out the bounding rectangle explicitly.

You need to then call wxDragImage::Show (p. 447) and wxDragImage::Move (p. 447) to
show the image on the screen.

Call wxDragImage::EndDrag (p. 447) when the drag has finished.

Note that this call automatically calls CaptureMouse.

Parameters

hotspot

The location of the drag position relative to the upper-left corner of the image.

window

The window that captures the mouse, and within which the dragging is limited
unless fullScreen is true.

boundingWindow

CHAPTER 7

447

In the second form of the function, specifies the area within which the drag occurs.

fullScreen

If true, specifies that the drag will be visible over the full screen, or over as much of
the screen as is specified by rect. Note that the mouse will still be captured in
window.

rect

If non-NULL, specifies the rectangle (in screen coordinates) that bounds the
dragging operation. Specifying this can make the operation more efficient by
cutting down on the area under consideration, and it can also make a visual
difference since the drag is clipped to this area.

wxDragImage::DoDrawImage

virtual bool DoDrawImage (wxDC& dc, const wxPoint& pos)

Draws the image on the device context with top-left corner at the given position.

This function is only available with wxGenericDragImage, to allow applications to draw
their own image instead of using an actual bitmap. If you override this function, you must
also override wxDragImage::GetImageRect (p. 447).

wxDragImage::EndDrag

bool EndDrag ()

Call this when the drag has finished.

Note that this call automatically calls ReleaseMouse.

wxDragImage::GetImageRect

virtual wxRect GetImageRect (const wxPoint& pos) const

Returns the rectangle enclosing the image, assuming that the image is drawn with its
top-left corner at the given point.

This function is available in wxGenericDragImage only, and may be overridden (together
with wxDragImage::DoDrawImage (p. 446)) to provide a virtual drawing capability.

wxDragImage::Hide

bool Hide ()

Hides the image. You may wish to call this before updating the window contents
(perhaps highlighting an item). Then call wxDragImage::Move (p. 447) and
wxDragImage::Show (p. 447).

CHAPTER 7

448

wxDragImage::Move

bool Move (const wxPoint& pt)

Call this to move the image to a new position. The image will only be shown if
wxDragImage::Show (p. 447) has been called previously (for example at the start of the
drag).

pt is the position in client coordinates (relative to the window specified in BeginDrag).

You can move the image either when the image is hidden or shown, but in general
dragging will be smoother if you move the image when it is shown.

wxDragImage::Show

bool Show ()

Shows the image. Call this at least once when dragging.

wxDragImage::UpdateBackingFromWindow

bool UpdateBackingFromWindow (wxDC& windowDC, wxMemoryDC& destDC,
const wxRect& sourceRect, const wxRect& destRect) const

Override this if you wish to draw the window contents to the backing bitmap yourself.
This can be desirable if you wish to avoid flicker by not having to redraw the updated
window itself just before dragging, which can cause a flicker just as the drag starts.
Instead, paint the drag image's backing bitmap to show the appropriate graphic minus
the objects to be dragged, and leave the window itself to be updated by the drag image.
This can provide eerily smooth, flicker-free drag behaviour.

The default implementation copies the window contents to the backing bitmap. A new
implementation will normally copy information from another source, such as from its own
backing bitmap if it has one, or directly from internal data structures.

This function is available in wxGenericDragImage only.

wxDropFilesEvent

This class is used for drop files events, that is, when files have been dropped onto the
window. This functionality is currently only available under Windows. The window must
have previously been enabled for dropping by calling wxWindow::DragAcceptFiles (p.
1431).

Important note: this is a separate implementation to the more general drag and drop
implementation documented here (p. 1740). It uses the older, Windows message-based
approach of dropping files.

Derived from

wxEvent (p. 464)

CHAPTER 7

449

wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process a drop files event, use these event handler macros to direct input to a
member function that takes a wxDropFilesEvent argument.

EVT_DROP_FILES(func) Process a wxEVT_DROP_FILES event.

See also
Event handling overview (p. 1674)

wxDropFilesEvent::wxDropFilesEvent

 wxDropFilesEvent (WXTYPE id = 0, int noFiles = 0, wxString* files = NULL)

Constructor.

wxDropFilesEvent::m_files

wxString* m_files

An array of filenames.

wxDropFilesEvent::m_noFiles

int m_noFiles

The number of files dropped.

wxDropFilesEvent::m_pos

wxPoint m_pos

The point at which the drop took place.

wxDropFilesEvent::GetFiles

wxString* GetFiles () const

Returns an array of filenames.

wxDropFilesEvent::GetNumberOfFiles

int GetNumberOfFiles () const

CHAPTER 7

450

Returns the number of files dropped.

wxDropFilesEvent::GetPosition

wxPoint GetPosition () const

Returns the position at which the files were dropped.

Returns an array of filenames.

wxDropSource

This class represents a source for a drag and drop operation.

See Drag and drop overview (p. 1740) and wxDataObject overview (p. 1741) for more
information.

Derived from

None

Include files

<wx/dnd.h>

Types

wxDragResult is defined as follows:

enum wxDragResult
{
 wxDragError, // error prevented the d&d oper ation from
completing
 wxDragNone, // drag target didn't accept th e data
 wxDragCopy, // the data was successfully co pied
 wxDragMove, // the data was successfully mo ved (MSW only)
 wxDragLink, // operation is a drag-link
 wxDragCancel // the operation was cancelled by user (not an
error)
};

See also

wxDropTarget (p. 452), wxTextDropTarget (p. 1299), wxFileDropTarget (p. 495)

wxDropSource::wxDropSource

 wxDropSource (wxWindow* win = NULL,const wxIconOrCursor& iconCopy =
wxNullIconOrCursor, const wxIconOrCursor& iconMove = wxNullIconOrCursor, const
wxIconOrCursor& iconNone = wxNullIconOrCursor)

 wxDropSource (wxDataObject& data, wxWindow* win = NULL,const

CHAPTER 7

451

wxIconOrCursor& iconCopy = wxNullIconOrCursor, const wxIconOrCursor&
iconMove = wxNullIconOrCursor, const wxIconOrCursor& iconNone =
wxNullIconOrCursor)

The constructors for wxDataObject.

If you use the constructor without data parameter you must call SetData (p. 451) later.

Note that the exact type of iconCopy and subsequent parameters differs between
wxMSW and wxGTK: these are cursors under Windows but icons for GTK. You should
use the macro wxDROP_ICON (p. 1550) in portable programs instead of directly using
either of these types.

Parameters

win

The window which initiates the drag and drop operation.

iconCopy

The icon or cursor used for feedback for copy operation.

iconMove

The icon or cursor used for feedback for move operation.

iconNone

The icon or cursor used for feedback when operation can't be done.

win is the window which initiates the drag and drop operation.

wxDropSource::~wxDropSource

virtual ~wxDropSource ()

wxDropSource::SetData

void SetData (wxDataObject& data)

Sets the data wxDataObject (p. 229) associated with the drop source. This will not
delete any previously associated data.

wxDropSource::DoDragDrop

virtual wxDragResult DoDragDrop (int flags = wxDrag_CopyOnly)

Do it (call this in response to a mouse button press, for example). This starts the drag-
and-drop operation which will terminate when the user releases the mouse.

Parameters

CHAPTER 7

452

flags

If wxDrag_AllowMove is included in the flags, data may be moved and not only
copied (default). If wxDrag_DefaultMove is specified (which includes the
previous flag), this is even the default operation

.

Return value

Returns the operation requested by the user, may be wxDragCopy , wxDragMove ,
wxDragLink , wxDragCancel or wxDragNone if an error occurred.

wxDropSource::GetDataObject

wxDataObject * GetDataObject ()

Returns the wxDataObject object that has been assigned previously.

wxDropSource::GiveFeedback

virtual bool GiveFeedback (wxDragResult effect)

Overridable: you may give some custom UI feedback during the drag and drop operation
in this function. It is called on each mouse move, so your implementation must not be
too slow.

Parameters

effect

The effect to implement. One of wxDragCopy , wxDragMove , wxDragLink and
wxDragNone .

scrolling

true if the window is scrolling. MSW only.

Return value

Return false if you want default feedback, or true if you implement your own feedback.
The return values is ignored under GTK.

wxDropSource::SetCursor

void SetCursor (wxDragResult res, const wxCursor& cursor)

Set the icon to use for a certain drag result.

Parameters

res

CHAPTER 7

453

The drag result to set the icon for.

cursor

The ion to show when this drag result occurs.

wxDropTarget

This class represents a target for a drag and drop operation. A wxDataObject (p.
229)can be associated with it and by default, this object will be filled with the data from
the drag source, if the data formats supported by the data object match the drag source
data format.

There are various virtual handler functions defined in this class which may be overridden
to give visual feedback or react in a more fine-tuned way, e.g. by not accepting data on
the whole window area, but only a small portion of it. The normal sequence of calls
isOnEnter (p. 454), possibly many times OnDragOver (p. 454),OnDrop (p. 454) and
finally OnData (p. 453).

See Drag and drop overview (p. 1740) and wxDataObject overview (p. 1741)for more
information.

Derived from

None

Include files

<wx/dnd.h>

Types

wxDragResult is defined as follows:

enum wxDragResult
{
 wxDragError, // error prevented the d&d oper ation from
completing
 wxDragNone, // drag target didn't accept th e data
 wxDragCopy, // the data was successfully co pied
 wxDragMove, // the data was successfully mo ved (MSW only)
 wxDragLink, // operation is a drag-link
 wxDragCancel // the operation was cancelled by user (not an
error)
};

See also

wxDropSource (p. 449), wxTextDropTarget (p. 1299), wxFileDropTarget (p.
495),wxDataFormat (p. 224), wxDataObject (p. 229)

wxDropTarget::wxDropTarget

CHAPTER 7

454

 wxDropTarget (wxDataObject* data = NULL)

Constructor. data is the data to be associated with the drop target.

wxDropTarget::~wxDropTarget

 ~wxDropTarget ()

Destructor. Deletes the associated data object, if any.

wxDropTarget::GetData

virtual void GetData ()

This method may only be called from within OnData (p. 453). By default, this method
copies the data from the drop source to the wxDataObject (p. 229) associated with this
drop target, calling its wxDataObject::SetData (p. 232) method.

wxDropTarget::OnData

virtual wxDragResult OnData (wxCoord x, wxCoord y, wxDragResult def)

Called after OnDrop (p. 454) returns true. By default this will usually GetData (p. 453)
and will return the suggested default value def.

wxDropTarget::OnDrop

virtual bool OnDrop (wxCoord x, wxCoord y)

Called when the user drops a data object on the target. Return false to veto the
operation.

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

Return value

Return true to accept the data, false to veto the operation.

wxDropTarget::OnEnter

virtual wxDragResult OnEnter (wxCoord x, wxCoord y, wxDragResult def)

Called when the mouse enters the drop target. By default, this calls OnDragOver (p.
454).

CHAPTER 7

455

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

def

Suggested default for return value. Determined by SHIFT or CONTROL key states.

Return value

Returns the desired operation or wxDragNone . This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.

wxDropTarget::OnDragOver

virtual wxDragResult OnDragOver (wxCoord x, wxCoord y, wxDragResult def)

Called when the mouse is being dragged over the drop target. By default, this calls
functions return the suggested return value def.

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

def

Suggested value for return value. Determined by SHIFT or CONTROL key states.

Return value

Returns the desired operation or wxDragNone . This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.

wxDropTarget::OnLeave

virtual void OnLeave ()

Called when the mouse leaves the drop target.

wxDropTarget::SetDataObject

void SetDataObject (wxDataObject* data)

CHAPTER 7

456

Sets the data wxDataObject (p. 229) associated with the drop target and deletes any
previously associated data object.

wxDynamicLibrary

wxDynamicLibrary is a class representing dynamically loadable library (Windows DLL,
shared library under Unix etc.). Just create an object of this class to load a library and
don't worry about unloading it -- it will be done in the objects destructor automatically.

Derived from

No base class.

Include files

<wx/dynlib.h>

(only available if wxUSE_DYNLIB_CLASS is set to 1)

wxDynamicLibrary::wxDynamicLibrary

 wxDynamicLibrary ()

 wxDynamicLibrary (const wxString& name, int flags = wxDL_DEFAULT)

Constructor. Second form calls Load (p. 458).

wxDynamicLibrary::CanonicalizeName

wxString CanonicalizeName (const wxString& name, wxDynamicLibraryCategory
cat = wxDL_LIBRARY)

Returns the platform-specific full name for the library called name. E.g. it adds a ".dll"
extension under Windows and "lib" prefix and ".so" , ".sl" or maybe ".dylib"
extension under Unix.

The possible values for cat are:

 wxDL_LIBRARY normal library

 wxDL_MODULE a loadable module or plugin

See also

CanonicalizePluginName (p. 456)

wxDynamicLibrary::CanonicalizePluginName

wxString CanonicalizePluginName (const wxString& name, wxPluginCategory cat =
wxDL_PLUGIN_GUI)

CHAPTER 7

457

This function does the same thing as CanonicalizeName (p. 456) but for wxWidgets
plugins. The only difference is that compiler and version information are added to the
name to ensure that the plugin which is going to be loaded will be compatible with the
main program.

The possible values for cat are:

 wxDL_PLUGIN_GUI plugin which uses GUI classes (default)

 wxDL_PLUGIN_BASE plugin which only uses wxBase

wxDynamicLibrary::Detach

wxDllType Detach ()

Detaches this object from its library handle, i.e. the object will not unload the library any
longer in its destructor but it is now the callers responsibility to do this using Unload (p.
458).

wxDynamicLibrary::GetSymbol

void * GetSymbol (const wxString& name) const

Returns pointer to symbol name in the library or NULL if the library contains no such
symbol.

See also

wxDYNLIB_FUNCTION (p. 1556)

wxDynamicLibrary::GetSymbolAorW

void * GetSymbolAorW (const wxString& name) const

This function is available only under Windows as it is only useful when dynamically
loading symbols from standard Windows DLLs. Such functions have either 'A' (in ANSI
build) or 'W' (in Unicode, or wide character build) suffix if they take string parameters.
Using this function you can use just the base name of the function and the correct suffix
is appende automatically depending on the current build. Otherwise, this method is
identical to GetSymbol (p. 456).

wxDynamicLibrary::GetProgramHandle

static wxDllType GetProgramHandle ()

Return a valid handle for the main program itself or NULL if symbols from the main
program can't be loaded on this platform.

wxDynamicLibrary::HasSymbol

bool HasSymbol (const wxString& name) const

CHAPTER 7

458

Returns true if the symbol with the given name is present in the dynamic library, false
otherwise. Unlike GetSymbol (p. 456), this function doesn't log an error message if the
symbol is not found.

This function is new since wxWidgets version 2.5.4

wxDynamicLibrary::IsLoaded

bool IsLoaded () const

Returns true if the library was successfully loaded, false otherwise.

wxDynamicLibrary::ListLoaded

static wxDynamicLibraryDetailsArray ListLoaded ()

This static method returns an array (p. 51) containing the details of all modules loaded
into the address space of the current project, the array elements are object of
wxDynamicLibraryDetails class. The array will be empty if an error occurred.

This method is currently implemented only under Win32 and Linux and is useful mostly
for diagnostics purposes.

wxDynamicLibrary::Load

bool Load (const wxString& name, int flags = wxDL_DEFAULT)

Loads DLL with the given name into memory. The flags argument can be a combination
of the following bits:

wxDL_LAZY equivalent of RTLD_LAZY under Unix, ignored
elsewhere

wxDL_NOW equivalent of RTLD_NOW under Unix, ignored
elsewhere

wxDL_GLOBAL equivalent of RTLD_GLOBAL under Unix,
ignored elsewhere

wxDL_VERBATIM don't try to append the appropriate extension to
the library name (this is done by default).

wxDL_DEFAULT default flags, same as wxDL_NOW currently

Returns true if the library was successfully loaded, false otherwise.

wxDynamicLibrary::Unload

void Unload ()

static void Unload (wxDllType handle)

CHAPTER 7

459

Unloads the library from memory. wxDynamicLibrary object automatically calls this
method from its destructor if it had been successfully loaded.

The second version is only used if you need to keep the library in memory during a
longer period of time than the scope of the wxDynamicLibrary object. In this case you
may call Detach (p. 456) and store the handle somewhere and call this static method
later to unload it.

wxDynamicLibraryDetails

This class is used for the objects returned by wxDynamicLibrary::ListLoaded (p. 457)
method and contains the information about a single module loaded into the address
space of the current process. A module in this context may be either a dynamic library or
the main program itself.

Derived from

No base class.

Include files

<wx/dynlib.h>

(only available if wxUSE_DYNLIB_CLASS is set to 1)

wxDynamicLibraryDetails::GetName

wxString GetName () const

Returns the base name of this module, e.g. kernel32.dll or libc-2.3.2.so .

wxDynamicLibraryDetails::GetPath

wxString GetPath () const

Returns the full path of this module if available, e.g.
c:\windows\system32\kernel32.dll or /lib/libc-2.3.2.so .

wxDynamicLibraryDetails::GetAddress

bool GetAddress (void ** addr, size_t *len) const

Retrieves the load address and the size of this module.

Parameters

addr

the pointer to the location to return load address in, may beNULL

CHAPTER 7

460

len

pointer to the location to return the size of this module in memory in, may be NULL

Return value

true if the load address and module size were retrieved, false if this information is not
available.

wxDynamicLibraryDetails::GetVersion

wxString GetVersion () const

Returns the version of this module, e.g. 5.2.3790.0 or 2.3.2 . The returned string is
empty if the version information is not available.

wxEncodingConverter

This class is capable of converting strings between two 8-bit encodings/charsets. It can
also convert from/to Unicode (but only if you compiled wxWidgets with
wxUSE_WCHAR_T set to 1). Only limited subset of encodings in supported by
wxEncodingConverter:wxFONTENCODING_ISO8859_1..15 ,
wxFONTENCODING_CP1250..1257 and wxFONTENCODING_KOI8.

Note

Please use wxMBConv classes (p. 1657) instead if possible. wxCSConv (p. 216) has
much better support for various encodings than wxEncodingConverter.
wxEncodingConverter is useful only if you rely on wxCONVERT_SUBSTITUTE mode of
operation (see Init (p. 460)).

Derived from

wxObject (p. 967)

Include files

<wx/encconv.h>

See also

wxFontMapper (p. 551), wxMBConv (p. 869), Writing non-English applications (p. 1661)

wxEncodingConverter::wxEncodingConverter

 wxEncodingConverter ()

Constructor.

wxEncodingConverter::Init

CHAPTER 7

461

bool Init (wxFontEncoding input_enc, wxFontEncoding output_enc, int method =
wxCONVERT_STRICT)

Initialize conversion. Both output or input encoding may be
wxFONTENCODING_UNICODE, but only if wxUSE_ENCODING is set to 1. All
subsequent calls to Convert() (p. 461) will interpret its argument as a string in input_enc
encoding and will output string in output_enc encoding. You must call this method before
calling Convert. You may call it more than once in order to switch to another
conversion.Method affects behaviour of Convert() in case input character cannot be
converted because it does not exist in output encoding:

wxCONVERT_STRICT follow behaviour of GNU Recode - just copy
unconvertible characters to output and don't
change them (its integer value will stay the
same)

wxCONVERT_SUBSTITUTE try some (lossy) substitutions - e.g. replace
unconvertible latin capitals with acute by
ordinary capitals, replace en-dash or em-dash
by '-' etc.

Both modes guarantee that output string will have same length as input string.

Return value

false if given conversion is impossible, true otherwise (conversion may be impossible
either if you try to convert to Unicode with non-Unicode build of wxWidgets or if input or
output encoding is not supported.)

wxEncodingConverter::CanConvert

static bool CanConvert (wxFontEncoding encIn, wxFontEncoding encOut)

Return true if (any text in) multibyte encoding encIn can be converted to another one
(encOut) losslessly.

Do not call this method with wxFONTENCODING_UNICODE as either parameter, it doesn't
make sense (always works in one sense and always depends on the text to convert in
the other).

wxEncodingConverter::Convert

bool Convert (const char* input, char* output) const

bool Convert (const wchar_t* input, wchar_t* output) const

bool Convert (const char* input, wchar_t* output) const

bool Convert (const wchar_t* input, char* output) const

Convert input string according to settings passed toInit (p. 460) and writes the result to
output.

CHAPTER 7

462

bool Convert (char* str) const

bool Convert (wchar_t* str) const

Convert input string according to settings passed toInit (p. 460) in-place, i.e. write the
result to the same memory area.

All of the versions above return true if the conversion was lossless andfalse if at least
one of the characters couldn't be converted and was replaced with '?' in the output.
Note that if wxCONVERT_SUBSTITUTE was passed to Init (p. 460), substitution is
considered lossless operation.

wxString Convert (const wxString& input) const

Convert wxString and return new wxString object.

Notes

You must call Init (p. 460) before using this method!

wchar_t versions of the method are not available if wxWidgets was compiled with
wxUSE_WCHAR_T set to 0.

wxEncodingConverter::GetPlatformEquivalents

static wxFontEncodingArray GetPlatformEquivalents (wxFontEncoding enc, int
platform = wxPLATFORM_CURRENT)

Return equivalents for given font that are used under given platform. Supported
platforms:

 • wxPLATFORM_UNIX

 • wxPLATFORM_WINDOWS

 • wxPLATFORM_OS2

 • wxPLATFORM_MAC

 • wxPLATFORM_CURRENT

wxPLATFORM_CURRENT means the platform this binary was compiled for.

Examples:

current platform enc returned value
--
unix CP1250 {ISO8859_2}
unix ISO8859_2 {ISO8859_2}
windows ISO8859_2 {CP1250}
unix CP1252 {ISO8859_1,ISO8859_15}

Equivalence is defined in terms of convertibility: two encodings are equivalent if you can
convert text between then without losing information (it may - and will - happen that you
lose special chars like quotation marks or em-dashes but you shouldn't lose any

CHAPTER 7

463

diacritics and language-specific characters when converting between equivalent
encodings).

Remember that this function does NOT check for presence of fonts in system. It only
tells you what are most suitable encodings. (It usually returns only one encoding.)

Notes

 • Note that argument enc itself may be present in the returned array, so that you
can, as a side-effect, detect whether the encoding is native for this platform or
not.

 • Convert (p. 461) is not limited to converting between equivalent encodings, it
can convert between two arbitrary encodings.

 • If enc is present in the returned array, then it is always the first item of it.

 • Please note that the returned array may contain no items at all.

wxEncodingConverter::GetAllEquivalents

static wxFontEncodingArray GetAllEquivalents (wxFontEncoding enc)

Similar to GetPlatformEquivalents (p. 462), but this one will return ALL equivalent
encodings, regardless of the platform, and including itself.

This platform's encodings are before others in the array. And again, if enc is in the array,
it is the very first item in it.

wxEraseEvent

An erase event is sent when a window's background needs to be repainted.

On some platforms, such as GTK+, this event is simulated (simply generated just before
the paint event) and may cause flicker. It is therefore recommended that you set the text
background colour explicitly in order to prevent flicker. The default background colour
under GTK+ is grey.

To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table
definition.

You must call wxEraseEvent::GetDC and use the returned device context if it is non-
NULL. If it is NULL, create your own temporary wxClientDC object.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

CHAPTER 7

464

Event table macros

To process an erase event, use this event handler macro to direct input to a member
function that takes a wxEraseEvent argument.

EVT_ERASE_BACKGROUND(func) Process a wxEVT_ERASE_BACKGROUND
event.

Remarks
Use the device context returned by GetDC (p. 464) to draw on, don't create a wxPaintDC
in the event handler.

See also

Event handling overview (p. 1674)

wxEraseEvent::wxEraseEvent

 wxEraseEvent (int id = 0, wxDC* dc = NULL)

Constructor.

wxEraseEvent::GetDC

wxDC* GetDC() const

Returns the device context associated with the erase event to draw on.

wxEvent

An event is a structure holding information about an event passed to a callback or
member function. wxEvent used to be a multipurpose event object, and is an abstract
base class for other event classes (see below).

For more information about events, see the Event handling overview (p. 1674).

wxPerl note: In wxPerl custom event classes should be derived fromWx::PlEvent and
Wx::PlCommandEvent .

Derived from

wxObject (p. 967)

Include files

<wx/event.h>

See also

wxCommandEvent (p. 172), wxMouseEvent (p. 940)

CHAPTER 7

465

wxEvent::wxEvent

 wxEvent (int id = 0, wxEventType eventType = wxEVT_NULL)

Constructor. Should not need to be used directly by an application.

wxEvent::m_propagationLevel

int m_propagationLevel

Indicates how many levels the event can propagate. This member is protected and
should typically only be set in the constructors of the derived classes. It may be
temporarily changed by StopPropagation (p. 467) and ResumePropagation (p. 466) and
tested with ShouldPropagate (p. 466).

The initial value is set to either wxEVENT_PROPAGATE_NONE (by default) meaning that
the event shouldn't be propagated at all or to wxEVENT_PROPAGATE_MAX (for command
events) meaning that it should be propagated as much as necessary.

Any positive number means that the event should be propagated but no more than the
given number of times. E.g. the propagation level may be set to 1 to propagate the event
to its parent only, but not to its grandparent.

wxEvent::Clone

virtual wxEvent* Clone () const

Returns a copy of the event.

Any event that is posted to the wxWidgets event system for later action
(viawxEvtHandler::AddPendingEvent (p. 468) orwxPostEvent (p. 1563)) must implement
this method. All wxWidgets events fully implement this method, but any derived events
implemented by the user should also implement this method just in case they (or some
event derived from them) are ever posted.

All wxWidgets events implement a copy constructor, so the easiest way of implementing
the Clone function is to implement a copy constructor for a new event (call it MyEvent)
and then define the Clone function like this:

 wxEvent *Clone(void) const { return new MyEvent (*this); }

wxEvent::GetEventObject

wxObject* GetEventObject ()

Returns the object (usually a window) associated with the event, if any.

wxEvent::GetEventType

CHAPTER 7

466

WXTYPE GetEventType ()

Returns the identifier of the given event type, such as
wxEVENT_TYPE_BUTTON_COMMAND.

wxEvent::GetId

int GetId () const

Returns the identifier associated with this event, such as a button command id.

wxEvent::GetSkipped

bool GetSkipped () const

Returns true if the event handler should be skipped, false otherwise.

wxEvent::GetTimestamp

long GetTimestamp ()

Gets the timestamp for the event.

wxEvent::IsCommandEvent

bool IsCommandEvent () const

Returns true if the event is or is derived fromwxCommandEvent (p. 172) else it returns
false. Note: Exists only for optimization purposes.

wxEvent::ResumePropagation

void ResumePropagation (int propagationLevel)

Sets the propagation level to the given value (for example returned from an earlier call to
StopPropagation (p. 467)).

wxEvent::SetEventObject

void SetEventObject (wxObject* object)

Sets the originating object.

wxEvent::SetEventType

void SetEventType (WXTYPE typ)

Sets the event type.

wxEvent::SetId

CHAPTER 7

467

void SetId (int id)

Sets the identifier associated with this event, such as a button command id.

wxEvent::SetTimestamp

void SetTimestamp (long timeStamp)

Sets the timestamp for the event.

wxEvent::ShouldPropagate

bool ShouldPropagate () const

Test if this event should be propagated or not, i.e. if the propagation level is currently
greater than 0.

wxEvent::Skip

void Skip (bool skip = true)

Called by an event handler, it controls whether additional event handlers bound to this
event will be called after the current event handler returns. Skip(false) (the default
behavior) will prevent additional event handlers from being called and control will be
returned to the sender of the event immediately after the current handler has finished.
Skip(true) will cause the event processing system to continue searching for a handler
function for this event.

wxEvent::StopPropagation

int StopPropagation ()

Stop the event from propagating to its parent window.

Returns the old propagation level value which may be later passed to
ResumePropagation (p. 466) to allow propagating the event again.

wxEvtHandler

A class that can handle events from the windowing system. wxWindow (and therefore all
window classes) are derived from this class.

When events are received, wxEvtHandler invokes the method listed in the event table
using itself as the object. When using multiple inheritance it is imperative that the
wxEvtHandler(-derived) class be the first class inherited such that the "this" pointer for
the overall object will be identical to the "this" pointer for the wxEvtHandler portion.

Derived from

wxObject (p. 967)

CHAPTER 7

468

Include files

<wx/event.h>

See also

Event handling overview (p. 1674)

wxEvtHandler::wxEvtHandler

 wxEvtHandler ()

Constructor.

wxEvtHandler::~wxEvtHandler

 ~wxEvtHandler ()

Destructor. If the handler is part of a chain, the destructor will unlink itself and restore the
previous and next handlers so that they point to each other.

wxEvtHandler::AddPendingEvent

void AddPendingEvent (wxEvent& event)

This function posts an event to be processed later.

Parameters

event

Event to add to process queue.

Remarks

The difference between sending an event (using theProcessEvent (p. 471) method) and
posting it is that in the first case the event is processed before the function returns, while
in the second case, the function returns immediately and the event will be processed
sometime later (usually during the next event loop iteration).

A copy of event is made by the function, so the original can be deleted as soon as
function returns (it is common that the original is created on the stack). This requires
that the wxEvent::Clone (p. 465) method be implemented by event so that it can be
duplicated and stored until it gets processed.

This is also the method to call for inter-thread communication---it will post events safely
between different threads which means that this method is thread-safe by using critical
sections where needed. In a multi-threaded program, you often need to inform the main
GUI thread about the status of other working threads and such notification should be
done using this method.

CHAPTER 7

469

This method automatically wakes up idle handling if the underlying window system is
currently idle and thus would not send any idle events. (Waking up idle handling is done
calling ::wxWakeUpIdle (p. 1519).)

wxEvtHandler::Connect

void Connect (int id, int lastId, wxEventType eventType, wxObjectEventFunction
function, wxObject* userData = NULL, wxEvtHandler* eventSink = NULL)

void Connect (int id, wxEventType eventType, wxObjectEventFunction function,
wxObject* userData = NULL, wxEvtHandler* eventSink = NULL)

void Connect (wxEventType eventType, wxObjectEventFunction function, wxObject*
userData = NULL, wxEvtHandler* eventSink = NULL)

Connects the given function dynamically with the event handler, id and event type. This
is an alternative to the use of static event tables. See the 'event' or the old 'dynamic'
sample for usage.

Parameters

id

The identifier (or first of the identifier range) to be associated with the event
handler function. For the version not taking this argument, it defaults to wxID_ANY.

lastId

The second part of the identifier range to be associated with the event handler
function.

eventType

The event type to be associated with this event handler.

function

The event handler function. Note that this function should be explicitly converted to
the correct type which can be done using a macro called wxFooHandler for the
handler for any wxFooEvent .

userData

Data to be associated with the event table entry.

eventSink

Object whose member function should be called. If this is NULL,this will be used.

Example

 frame->Connect(wxID_EXIT,
 wxEVT_COMMAND_MENU_SELECTED,
 wxCommandEventHandler(MyFrame::OnQuit));

CHAPTER 7

470

wxPerl note: In wxPerl this function takes 4 arguments: id, lastid, type,
method ; if method is undef , the handler is disconnected.

wxEvtHandler::Disconnect

bool Disconnect (wxEventType eventType = wxEVT_NULL, wxObjectEventFunction
function = NULL, wxObject* userData = NULL, wxEvtHandler* eventSink = NULL)

bool Disconnect (int id = wxID_ANY, wxEventType eventType = wxEVT_NULL,
wxObjectEventFunction function = NULL, wxObject* userData = NULL,
wxEvtHandler* eventSink = NULL)

bool Disconnect (int id, int lastId = wxID_ANY, wxEventType eventType =
wxEVT_NULL, wxObjectEventFunction function = NULL, wxObject* userData =
NULL, wxEvtHandler* eventSink = NULL)

Disconnects the given function dynamically from the event handler, using the specified
parameters as search criteria and returning true if a matching function has been found
and removed. This method can only disconnect functions which have been added using
the wxEvtHandler::Connect (p. 468) method. There is no way to disconnect functions
connected using the (static) event tables.

Parameters

id

The identifier (or first of the identifier range) associated with the event handler
function.

lastId

The second part of the identifier range associated with the event handler function.

eventType

The event type associated with this event handler.

function

The event handler function.

userData

Data associated with the event table entry.

eventSink

Object whose member function should be called.

wxPerl note: In wxPerl this function takes 3 arguments: id, lastid, type .

wxEvtHandler::GetClientData

void* GetClientData ()

CHAPTER 7

471

Gets user-supplied client data.

Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members.

See also

wxEvtHandler::SetClientData (p. 473)

wxEvtHandler::GetClientObject

wxClientData* GetClientObject () const

Get a pointer to the user-supplied client data object.

See also

wxEvtHandler::SetClientObject (p. 473),wxClientData (p. 142)

wxEvtHandler::GetEvtHandlerEnabled

bool GetEvtHandlerEnabled ()

Returns true if the event handler is enabled, false otherwise.

See also

wxEvtHandler::SetEvtHandlerEnabled (p. 474)

wxEvtHandler::GetNextHandler

wxEvtHandler* GetNextHandler ()

Gets the pointer to the next handler in the chain.

See also

wxEvtHandler::SetNextHandler (p. 474), wxEvtHandler::GetPreviousHandler (p. 471),
wxEvtHandler::SetPreviousHandler (p. 474), wxWindow::PushEventHandler (p. 1451),
wxWindow::PopEventHandler (p. 1450)

wxEvtHandler::GetPreviousHandler

wxEvtHandler* GetPreviousHandler ()

Gets the pointer to the previous handler in the chain.

See also

wxEvtHandler::SetPreviousHandler (p. 474), wxEvtHandler::GetNextHandler (p. 471),
wxEvtHandler::SetNextHandler (p. 474), wxWindow::PushEventHandler (p. 1451),

CHAPTER 7

472

wxWindow::PopEventHandler (p. 1450)

wxEvtHandler::ProcessEvent

virtual bool ProcessEvent (wxEvent& event)

Processes an event, searching event tables and calling zero or more suitable event
handler function(s).

Parameters

event

Event to process.

Return value

true if a suitable event handler function was found and executed, and the function did not
call wxEvent::Skip (p. 466).

Remarks

Normally, your application would not call this function: it is called in the wxWidgets
implementation to dispatch incoming user interface events to the framework (and
application).

However, you might need to call it if implementing new functionality (such as a new
control) where you define new event types, as opposed to allowing the user to override
virtual functions.

An instance where you might actually override the ProcessEvent function is where you
want to direct event processing to event handlers not normally noticed by wxWidgets.
For example, in the document/view architecture, documents and views are potential
event handlers. When an event reaches a frame, ProcessEvent will need to be called
on the associated document and view in case event handler functions are associated
with these objects. The property classes library (wxProperty) also overrides
ProcessEvent for similar reasons.

The normal order of event table searching is as follows:

 1. If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled (p.
474)) the function skips to step (6).

 2. If the object is a wxWindow, ProcessEvent is recursively called on the window's
wxValidator (p. 1394). If this returns true, the function exits.

 3. SearchEventTable is called for this event handler. If this fails, the base class
table is tried, and so on until no more tables exist or an appropriate function was
found, in which case the function exits.

 4. The search is applied down the entire chain of event handlers (usually the chain
has a length of one). If this succeeds, the function exits.

 5. If the object is a wxWindow and the event is a wxCommandEvent,

CHAPTER 7

473

ProcessEvent is recursively applied to the parent window's event handler. If
this returns true, the function exits.

 6. Finally, ProcessEvent is called on the wxApp object.

See also

wxEvtHandler::SearchEventTable (p. 472)

wxEvtHandler::SearchEventTable

virtual bool SearchEventTable (wxEventTable& table, wxEvent& event)

Searches the event table, executing an event handler function if an appropriate one is
found.

Parameters

table

Event table to be searched.

event

Event to be matched against an event table entry.

Return value

true if a suitable event handler function was found and executed, and the function did not
call wxEvent::Skip (p. 466).

Remarks

This function looks through the object's event table and tries to find an entry that will
match the event.

An entry will match if:

 1. The event type matches, and

 2. the identifier or identifier range matches, or the event table entry's identifier is
zero.

If a suitable function is called but calls wxEvent::Skip (p. 466), this function will fail, and
searching will continue.

See also

wxEvtHandler::ProcessEvent (p. 471)

wxEvtHandler::SetClientData

void SetClientData (void* data)

CHAPTER 7

474

Sets user-supplied client data.

Parameters

data

Data to be associated with the event handler.

Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members. You must not call this
method andSetClientObject (p. 473) on the same class - only one of them.

See also

wxEvtHandler::GetClientData (p. 470)

wxEvtHandler::SetClientObject

void SetClientObject (wxClientData* data)

Set the client data object. Any previous object will be deleted.

See also

wxEvtHandler::GetClientObject (p. 470),wxClientData (p. 142)

wxEvtHandler::SetEvtHandlerEnabled

void SetEvtHandlerEnabled (bool enabled)

Enables or disables the event handler.

Parameters

enabled

true if the event handler is to be enabled, false if it is to be disabled.

Remarks

You can use this function to avoid having to remove the event handler from the chain, for
example when implementing a dialog editor and changing from edit to test mode.

See also

wxEvtHandler::GetEvtHandlerEnabled (p. 470)

wxEvtHandler::SetNextHandler

void SetNextHandler (wxEvtHandler* handler)

Sets the pointer to the next handler.

CHAPTER 7

475

Parameters

handler

Event handler to be set as the next handler.

See also

wxEvtHandler::GetNextHandler (p. 471), wxEvtHandler::SetPreviousHandler (p. 474),
wxEvtHandler::GetPreviousHandler (p. 471), wxWindow::PushEventHandler (p. 1451),
wxWindow::PopEventHandler (p. 1450)

wxEvtHandler::SetPreviousHandler

void SetPreviousHandler (wxEvtHandler* handler)

Sets the pointer to the previous handler.

Parameters

handler

Event handler to be set as the previous handler.

See also

wxEvtHandler::GetPreviousHandler (p. 471), wxEvtHandler::SetNextHandler (p. 474),
wxEvtHandler::GetNextHandler (p. 471), wxWindow::PushEventHandler (p. 1451),
wxWindow::PopEventHandler (p. 1450)

wxFFile

wxFFile implements buffered file I/O. This is a very small class designed to minimize the
overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers. It
wraps inside it a FILE * handle used by standard C IO library (also known as stdio).

Derived from

None.

Include files

<wx/ffile.h>

wxFromStart Count offset from the start of the file

wxFromCurrent Count offset from the current position of the file
pointer

wxFromEnd Count offset from the end of the file
(backwards)

CHAPTER 7

476

wxFFile::wxFFile

 wxFFile ()

Default constructor.

 wxFFile (const char* filename, const char* mode = "r")

Opens a file with the given mode. As there is no way to return whether the operation was
successful or not from the constructor you should test the return value of IsOpened (p.
477) to check that it didn't fail.

 wxFFile (FILE* fp)

Opens a file with the given file pointer, which has already been opened.

Parameters

filename

The filename.

mode

The mode in which to open the file using standard C strings. Note that you should
use "b" flag if you use binary files under Windows or the results might be
unexpected due to automatic newline conversion done for the text files.

fp

An existing file descriptor, such as stderr.

wxFFile::~wxFFile

 ~wxFFile ()

Destructor will close the file.

NB: it is not virtual so you should not derive from wxFFile!

wxFFile::Attach

void Attach (FILE* fp)

Attaches an existing file pointer to the wxFFile object.

The descriptor should be already opened and it will be closed by wxFFile object.

wxFFile::Close

bool Close ()

CHAPTER 7

477

Closes the file and returns true on success.

wxFFile::Detach

void Detach ()

Get back a file pointer from wxFFile object -- the caller is responsible for closing the file if
this descriptor is opened. IsOpened() (p. 477) will return false after call to Detach().

wxFFile::fp

FILE * fp () const

Returns the file pointer associated with the file.

wxFFile::Eof

bool Eof () const

Returns true if the an attempt has been made to read pastthe end of the file.

Note that the behaviour of the file descriptor based classwxFile (p. 482) is different as
wxFile::Eof (p. 485)will return true here as soon as the last byte of the file has been
read.

Also note that this method may only be called for opened files and may crash if the file is
not opened.

See also

IsOpened (p. 477)

wxFFile::Error

Returns true if an error has occurred on this file, similar to the standardferror()
function.

Please note that this method may only be called for opened files and may crash if the file
is not opened.

See also

IsOpened (p. 477)

wxFFile::Flush

bool Flush ()

Flushes the file and returns true on success.

wxFFile::GetKind

CHAPTER 7

478

wxFileKind GetKind () const

Returns the type of the file. Possible return values are:

enum wxFileKind
{
 wxFILE_KIND_UNKNOWN,
 wxFILE_KIND_DISK, // a file supporting seekin g to arbitrary
offsets
 wxFILE_KIND_TERMINAL, // a tty
 wxFILE_KIND_PIPE // a pipe
};

wxFFile::IsOpened

bool IsOpened () const

Returns true if the file is opened. Most of the methods of this class may only be used
for an opened file.

wxFFile::Length

wxFileOffset Length () const

Returns the length of the file.

wxFFile::Open

bool Open (const char* filename, const char* mode = "r")

Opens the file, returning true if successful.

Parameters

filename

The filename.

mode

The mode in which to open the file.

wxFFile::Read

size_t Read(void* buffer, size_t count)

Reads the specified number of bytes into a buffer, returning the actual number read.

Parameters

buffer

A buffer to receive the data.

CHAPTER 7

479

count

The number of bytes to read.

Return value

The number of bytes read.

wxFFile::ReadAll

bool ReadAll (wxString * str, wxMBConv& conv = wxConvUTF8)

Reads the entire contents of the file into a string.

Parameters

str

String to read data into.

conv

Conversion object to use in Unicode build; by default supposes that file contents is
encoded in UTF-8.

Return value

true if file was read successfully, false otherwise.

wxFFile::Seek

bool Seek(wxFileOffset ofs, wxSeekMode mode = wxFromStart)

Seeks to the specified position and returns true on success.

Parameters

ofs

Offset to seek to.

mode

One of wxFromStart , wxFromEnd , wxFromCurrent .

wxFFile::SeekEnd

bool SeekEnd (wxFileOffset ofs = 0)

Moves the file pointer to the specified number of bytes before the end of the file and
returns true on success.

Parameters

CHAPTER 7

480

ofs

Number of bytes before the end of the file.

wxFFile::Tell

wxFileOffset Tell () const

Returns the current position.

wxFFile::Write

size_t Write (const void* buffer, size_t count)

Writes the specified number of bytes from a buffer.

Parameters

buffer

A buffer containing the data.

count

The number of bytes to write.

Return value

Number of bytes written.

wxFFile::Write

bool Write (const wxString& s, wxMBConv& conv = wxConvUTF8)

Writes the contents of the string to the file, returns true on success.

The second argument is only meaningful in Unicode build of wxWidgets whenconv is
used to convert s to multibyte representation.

wxFFileInputStream

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 475) whereas wxFileInputStream (p. 499) is
based in the wxFile (p. 482) class.

Note that wxFile (p. 482) and wxFFile (p. 475) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
485) and wxFFile::Eof (p. 476) and the behaviour of the stream classes reflects this
difference, i.e. wxFileInputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFileInputStream will report wxSTREAM_EOF after trying to read past
the last byte. Related to EOF behavior, note that SeekI() (p. 779) can seek beyond the
end of the stream (file) and will thus not return wxInvalidOffset for that.

CHAPTER 7

481

Derived from

wxInputStream (p. 777)

Include files

<wx/wfstream.h>

See also

wxBufferedInputStream (p. 109), wxFFileOutputStream (p. 481), wxFileOutputStream (p.
516)

wxFFileInputStream::wxFFileInputStream

 wxFFileInputStream (const wxString& filename, const wxChar * mode = "rb")

Opens the specified file using its filename name using the specified mode.

 wxFFileInputStream (wxFFile& file)

Initializes a file stream in read-only mode using the file I/O object file.

 wxFFileInputStream (FILE * fp)

Initializes a file stream in read-only mode using the specified file pointer fp.

wxFFileInputStream::~wxFFileInputStream

 ~wxFFileInputStream ()

Destructor.

wxFFileInputStream::Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFFileOutputStream

This class represents data written to a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 475) whereas wxFileInputStream (p. 480) is
based in the wxFile (p. 482) class.

Note that wxFile (p. 482) and wxFFile (p. 475) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
485) and wxFFile::Eof (p. 476) and the behaviour of the stream classes reflects this
difference, i.e. wxFileInputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFileInputStream will report wxSTREAM_EOF after trying to read past

CHAPTER 7

482

the last byte. Related to EOF behavior, note that SeekO() (p. 972) can seek beyond the
end of the stream (file) and will thus not return wxInvalidOffset for that.

Derived from

wxOutputStream (p. 971)

Include files

<wx/wfstream.h>

See also

wxBufferedOutputStream (p. 110), wxFFileInputStream (p. 480), wxFileInputStream (p.
499)

wxFFileOutputStream::wxFFileOutputStream

 wxFFileOutputStream (const wxString& filename, const wxChar * mode="w+b")

Opens the file with the given filename name in the specified mode.

 wxFFileOutputStream (wxFFile& file)

Initializes a file stream in write-only mode using the file I/O object file.

 wxFFileOutputStream (FILE * fp)

Initializes a file stream in write-only mode using the file descriptor fp.

wxFFileOutputStream::~wxFFileOutputStream

 ~wxFFileOutputStream ()

Destructor.

wxFFileOutputStream::Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFFileStream

Derived from

wxFFileOutputStream (p. 481), wxFFileInputStream (p. 480)

Include files

CHAPTER 7

483

<wx/wfstream.h>

See also

wxStreamBuffer (p. 1220)

wxFFileStream::wxFFileStream

 wxFFileStream (const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

wxFile

A wxFile performs raw file I/O. This is a very small class designed to minimize the
overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers. wxFile
also automatically closes the file in its destructor making it unnecessary to worry about
forgetting to do it. wxFile is a wrapper around file descriptor. - see also wxFFile
(p. 475) for a wrapper around FILE structure.

wxFileOffset is used by the wxFile functions which require offsets as parameter or
return them. If the platform supports it, wxFileOffset if a typedef for a native 64 bit
integer, else a 32 bit integer is used for wxFileOffset.

Derived from

None.

Include files

<wx/file.h>

Constants

wx/file.h defines the following constants:

#define wxS_IRUSR 00400
#define wxS_IWUSR 00200
#define wxS_IXUSR 00100

#define wxS_IRGRP 00040
#define wxS_IWGRP 00020
#define wxS_IXGRP 00010

#define wxS_IROTH 00004
#define wxS_IWOTH 00002
#define wxS_IXOTH 00001

// default mode for the new files: corresponds to u mask 022
#define wxS_DEFAULT (wxS_IRUSR | wxS_IWUSR | wxS_I RGRP |
wxS_IWGRP | wxS_IROTH | wxS_IWOTH)

CHAPTER 7

484

These constants define the file access rights and are used with wxFile::Create (p. 485)
and wxFile::Open (p. 487).

The OpenMode enumeration defines the different modes for opening a file, it is defined
inside wxFile class so its members should be specified with wxFile:: scope resolution
prefix. It is also used with wxFile::Access (p. 485) function.

wxFile::read Open file for reading or test if it can be opened
for reading with Access()

wxFile::write Open file for writing deleting the contents of the
file if it already exists or test if it can be opened
for writing with Access()

wxFile::read_write Open file for reading and writing; can not be
used with Access()

wxFile::write_append Open file for appending: the file is opened for
writing, but the old contents of the file is not
erased and the file pointer is initially placed at
the end of the file; can not be used with
Access(). This is the same as wxFile::write if
the file doesn't exist.

wxFile::write_excl Open the file securely for writing (Uses
O_EXCL | O_CREAT). Will fail if the file
already exists, else create and open it
atomically. Useful for opening temporary files
without being vulnerable to race exploits.

Other constants defined elsewhere but used by wxFile functions are wxInvalidOffset
which represents an invalid value of type wxFileOffset and is returned by functions
returning wxFileOffset on error and the seek mode constants used with Seek() (p. 487):

wxFromStart Count offset from the start of the file

wxFromCurrent Count offset from the current position of the file
pointer

wxFromEnd Count offset from the end of the file
(backwards)

wxFile::wxFile

 wxFile ()

Default constructor.

 wxFile (const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens a file with the given mode. As there is no way to return whether the operation was

CHAPTER 7

485

successful or not from the constructor you should test the return value of IsOpened (p.
486) to check that it didn't fail.

 wxFile (int fd)

Associates the file with the given file descriptor, which has already been opened.

Parameters

filename

The filename.

mode

The mode in which to open the file. May be one of wxFile::read , wxFile::write
and wxFile::read_write .

fd

An existing file descriptor (see Attach() (p. 485) for the list of predefined
descriptors)

wxFile::~wxFile

 ~wxFile ()

Destructor will close the file.

NB: it is not virtual so you should not use wxFile polymorphically.

wxFile::Access

static bool Access (const char * name, OpenMode mode)

This function verifies if we may access the given file in specified mode. Only values of
wxFile::read or wxFile::write really make sense here.

wxFile::Attach

void Attach (int fd)

Attaches an existing file descriptor to the wxFile object. Example of predefined file
descriptors are 0, 1 and 2 which correspond to stdin, stdout and stderr (and have
symbolic names of wxFile::fd_stdin , wxFile::fd_stdout and wxFile::fd_stderr).

The descriptor should be already opened and it will be closed by wxFile object.

wxFile::Close

void Close ()

Closes the file.

CHAPTER 7

486

wxFile::Create

bool Create (const char* filename, bool overwrite = false, int access = wxS_DEFAULT)

Creates a file for writing. If the file already exists, setting overwrite to true will ensure it
is overwritten.

wxFile::Detach

void Detach ()

Get back a file descriptor from wxFile object - the caller is responsible for closing the file
if this descriptor is opened. IsOpened() (p. 486) will return false after call to Detach().

wxFile::fd

int fd () const

Returns the file descriptor associated with the file.

wxFile::Eof

bool Eof () const

Returns true if the end of the file has been reached.

Note that the behaviour of the file pointer based class wxFFile (p. 475) is different as
wxFFile::Eof (p. 476) will return true here only if an attempt has been made to read past
the last byte of the file, while wxFile::Eof() will return true even before such attempt is
made if the file pointer is at the last position in the file.

Note also that this function doesn't work on unseekable file descriptors (examples
include pipes, terminals and sockets under Unix) and an attempt to use it will result in an
error message in such case. So, to read the entire file into memory, you should write a
loop which uses Read (p. 487) repeatedly and tests its return condition instead of using
Eof() as this will not work for special files under Unix.

wxFile::Exists

static bool Exists (const char* filename)

Returns true if the given name specifies an existing regular file (not a directory or a link)

wxFile::Flush

bool Flush ()

Flushes the file descriptor.

Note that wxFile::Flush is not implemented on some Windows compilers due to a
missing fsync function, which reduces the usefulness of this function (it can still be called

CHAPTER 7

487

but it will do nothing on unsupported compilers).

wxFile::GetKind

wxFileKind GetKind () const

Returns the type of the file. Possible return values are:

enum wxFileKind
{
 wxFILE_KIND_UNKNOWN,
 wxFILE_KIND_DISK, // a file supporting seekin g to arbitrary
offsets
 wxFILE_KIND_TERMINAL, // a tty
 wxFILE_KIND_PIPE // a pipe
};

wxFile::IsOpened

bool IsOpened () const

Returns true if the file has been opened.

wxFile::Length

wxFileOffset Length () const

Returns the length of the file.

wxFile::Open

bool Open (const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens the file, returning true if successful.

Parameters

filename

The filename.

mode

The mode in which to open the file. May be one of wxFile::read , wxFile::write
and wxFile::read_write .

wxFile::Read

size_t Read(void* buffer, size_t count)

Reads the specified number of bytes into a buffer, returning the actual number read.

CHAPTER 7

488

Parameters

buffer

A buffer to receive the data.

count

The number of bytes to read.

Return value

The number of bytes read, or the symbol wxInvalidOffset (-1) if there was an error.

wxFile::Seek

wxFileOffset Seek(wxFileOffset ofs, wxSeekMode mode = wxFromStart)

Seeks to the specified position.

Parameters

ofs

Offset to seek to.

mode

One of wxFromStart , wxFromEnd , wxFromCurrent .

Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::SeekEnd

wxFileOffset SeekEnd (wxFileOffset ofs = 0)

Moves the file pointer to the specified number of bytes before the end of the file.

Parameters

ofs

Number of bytes before the end of the file.

Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::Tell

wxFileOffset Tell () const

CHAPTER 7

489

Returns the current position or wxInvalidOffset if file is not opened or if another error
occurred.

wxFile::Write

size_t Write (const void* buffer, wxFileOffset count)

Writes the specified number of bytes from a buffer.

Parameters

buffer

A buffer containing the data.

count

The number of bytes to write.

Return value

the number of bytes actually written

wxFile::Write

bool Write (const wxString& s, wxMBConv& conv = wxConvUTF8)

Writes the contents of the string to the file, returns true on success.

The second argument is only meaningful in Unicode build of wxWidgets whenconv is
used to convert s to multibyte representation.

Note that this method only works with NUL-terminated strings, if you want to write data
with embedded NULs to the file you should use the other Write() overload (p. 488).

wxFileConfig

wxFileConfig implements wxConfigBase (p. 184) interface for storing and retrieving
configuration information using plain text files. The files have a simple format reminiscent
of Windows INI files with lines of the form key = value defining the keys and lines of
special form[group] indicating the start of each group.

This class is used by default for wxConfig on Unix platforms but may also be used
explicitly if you want to use files and not the registry even under Windows.

Derived from

wxConfigBase (p. 184)

Include files

<wx/fileconf.h>

CHAPTER 7

490

wxFileConfig::wxFileConfig

 wxFileConfig (wxInputStream& is, wxMBConv& conv = wxConvUTF8)

Read the config data from the specified stream instead of the associated file, as usual.

See also

Save (p. 489)

wxFileConfig::Save

bool Save(wxOutputStream& os, wxMBConv& conv = wxConvUTF8)

Saves all config data to the given stream, returns true if data was saved successfully or
false on error.

Note the interaction of this function with the internal "dirty flag'': the data is saved
unconditionally, i.e. even if the object is not dirty. However after saving it successfully,
the dirty flag is reset so no changes will be written back to the file this object is
associated with until you change its contents again.

See also

Flush (p. 192)

wxFileConfig::SetUmask

void SetUmask (int mode)

Allows to set the mode to be used for the config file creation. For example, to create a
config file which is not readable by other users (useful if it stores some sensitive
information, such as passwords), you could use SetUmask(0077) .

This function doesn't do anything on non-Unix platforms.

See also

wxCHANGE_UMASK (p. 1528)

wxFileDataObject

wxFileDataObject is a specialization of wxDataObject (p. 229) for file names. The
program works with it just as if it were a list of absolute file names, but internally it uses
the same format as Explorer and other compatible programs under Windows or
GNOME/KDE filemanager under Unix which makes it possible to receive files from them
using this class.

Warning: Under all non-Windows platforms this class is currently "input-only", i.e. you

CHAPTER 7

491

can receive the files from another application, but copying (or dragging) file(s) from a
wxWidgets application is not currently supported. PS: GTK2 should work as well.

Virtual functions to override

None.

Derived from

wxDataObjectSimple (p. 233)
wxDataObject (p. 229)

Include files

<wx/dataobj.h>

See also

wxDataObject (p. 229), wxDataObjectSimple (p. 233), wxTextDataObject (p. 1297),
wxBitmapDataObject (p. 94), wxDataObject (p. 229)

wxFileDataObject

 wxFileDataObject ()

Constructor.

wxFileDataObject::AddFile

virtual void AddFile (const wxString& file)

MSW only: adds a file to the file list represented by this data object.

wxFileDataObject::GetFilenames

const wxArrayString& GetFilenames () const

Returns the array (p. 63) of file names.

wxFileDialog

This class represents the file chooser dialog.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

CHAPTER 7

492

Include files

<wx/filedlg.h>

See also

wxFileDialog overview (p. 1723), wxFileSelector (p. 1541)

Remarks

Pops up a file selector box. In Windows and GTK2.4+, this is the common file selector
dialog. In X, this is a file selector box with somewhat less functionality. The path and
filename are distinct elements of a full file pathname. If path is "", the current directory
will be used. If filename is "", no default filename will be supplied. The wildcard
determines what files are displayed in the file selector, and file extension supplies a type
extension for the required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxHIDE_READONLY, wxFILE_MUST_EXIST,
wxMULTIPLE, wxCHANGE_DIR or 0.

Both the X and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed. The wildcard may be a specification for
multiple types of file with a description for each, such as:

 "BMP and GIF files (*.bmp;*.gif)|*.bmp;*.gif|PNG f iles
(*.png)|*.png"

It must be noted that wildcard support in the native Motif file dialog is quite limited: only
one alternative is supported, and it is displayed without the descriptive test; "BMP files
(*.bmp)|*.bmp'' is displayed as "*.bmp'', and both "BMP files (*.bmp)|*.bmp|GIF files
(*.gif)|*.gif'' and "Image files|*.bmp;*.gif'' are errors.

wxFileDialog::wxFileDialog

 wxFileDialog (wxWindow* parent, const wxString& message = "Choose a file", const
wxString& defaultDir = "", const wxString& defaultFile = "", const wxString& wildcard
= "*.*", long style = 0, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxFileDialog::ShowModal (p. 495) to show the dialog.

Parameters

parent

Parent window.

message

Message to show on the dialog.

defaultDir

CHAPTER 7

493

The default directory, or the empty string.

defaultFile

The default filename, or the empty string.

wildcard

A wildcard, such as "*.*" or "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif".

Note that the native Motif dialog has some limitations with respect to wildcards;
see the Remarks section above.

style

A dialog style. A bitlist of:

wxOPEN This is an open dialog.

wxSAVE This is a save dialog.

wxOVERWRITE_PROMPT For save dialog only: prompt for a confirmation if a
file will be overwritten.

wxHIDE_READONLY Do not display the checkbox to toggle display of
read-only files. Deprecated in 2.6; the checkbox is
never shown.

wxFILE_MUST_EXIST The user may only select files that actually exist.

wxMULTIPLE For open dialog only: allows selecting multiple files.

wxCHANGE_DIR Change the current working directory to the directory
where the file(s) chosen by the user are.

pos

Dialog position. Not implemented.

NB: Previous versions of wxWidgets used wxCHANGE_DIR by default under MS
Windows which allowed the program to simply remember the last directory where user
selected the files to open/save. This (desired) functionality must be implemented in the
program itself now (manually remember the last path used and pass it to the dialog the
next time it is called) or by using this flag.

wxFileDialog::~wxFileDialog

 ~wxFileDialog ()

Destructor.

wxFileDialog::GetDirectory

CHAPTER 7

494

wxString GetDirectory () const

Returns the default directory.

wxFileDialog::GetFilename

wxString GetFilename () const

Returns the default filename.

wxFileDialog::GetFilenames

void GetFilenames (wxArrayString& filenames) const

Fills the array filenames with the names of the files chosen. This function should only be
used with the dialogs which have wxMULTIPLE style, use GetFilename (p. 493) for the
others.

Note that under Windows, if the user selects shortcuts, the filenames include paths,
since the application cannot determine the full path of each referenced file by appending
the directory containing the shortcuts to the filename.

wxFileDialog::GetFilterIndex

int GetFilterIndex () const

Returns the index into the list of filters supplied, optionally, in the wildcard parameter.
Before the dialog is shown, this is the index which will be used when the dialog is first
displayed. After the dialog is shown, this is the index selected by the user.

wxFileDialog::GetMessage

wxString GetMessage () const

Returns the message that will be displayed on the dialog.

wxFileDialog::GetPath

wxString GetPath () const

Returns the full path (directory and filename) of the selected file.

wxFileDialog::GetPaths

void GetPaths (wxArrayString& paths) const

Fills the array paths with the full paths of the files chosen. This function should only be
used with the dialogs which have wxMULTIPLE style, use GetPath (p. 494) for the
others.

CHAPTER 7

495

wxFileDialog::GetStyle

long GetStyle () const

Returns the dialog style.

wxFileDialog::GetWildcard

wxString GetWildcard () const

Returns the file dialog wildcard.

wxFileDialog::SetDirectory

void SetDirectory (const wxString& directory)

Sets the default directory.

wxFileDialog::SetFilename

void SetFilename (const wxString& setfilename)

Sets the default filename.

wxFileDialog::SetFilterIndex

void SetFilterIndex (int filterIndex)

Sets the default filter index, starting from zero.

wxFileDialog::SetMessage

void SetMessage (const wxString& message)

Sets the message that will be displayed on the dialog.

wxFileDialog::SetPath

void SetPath (const wxString& path)

Sets the path (the combined directory and filename that will be returned when the dialog
is dismissed).

wxFileDialog::SetStyle

void SetStyle (long style)

Sets the dialog style. See wxFileDialog::wxFileDialog (p. 492) for details.

wxFileDialog::SetWildcard

CHAPTER 7

496

void SetWildcard (const wxString& wildCard)

Sets the wildcard, which can contain multiple file types, for example:

"BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif"

Note that the native Motif dialog has some limitations with respect to wildcards; see the
Remarks section above.

wxFileDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxFileDropTarget

This is a drop target (p. 452) which accepts files (dragged from File Manager or
Explorer).

Derived from

wxDropTarget (p. 452)

Include files

<wx/dnd.h>

See also

Drag and drop overview (p. 1740), wxDropSource (p. 449), wxDropTarget (p. 452),
wxTextDropTarget (p. 1299)

wxFileDropTarget::wxFileDropTarget

 wxFileDropTarget ()

Constructor.

wxFileDropTarget::OnDrop

virtual bool OnDrop (long x, long y, const void *data, size_t size)

See wxDropTarget::OnDrop (p. 454). This function is implemented appropriately for files,
and calls wxFileDropTarget::OnDropFiles (p. 496).

wxFileDropTarget::OnDropFiles

CHAPTER 7

497

virtual bool OnDropFiles (wxCoord x, wxCoord y, const wxArrayString& filenames)

Override this function to receive dropped files.

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

filenames

An array of filenames.

Return value

Return true to accept the data, false to veto the operation.

wxFileHistory

The wxFileHistory encapsulates a user interface convenience, the list of most recently
visited files as shown on a menu (usually the File menu).

wxFileHistory can manage one or more file menus. More than one menu may be
required in an MDI application, where the file history should appear on each MDI child
menu as well as the MDI parent frame.

Derived from

wxObject (p. 967)

Include files

<wx/docview.h>

See also

wxFileHistory overview (p. 1729), wxDocManager (p. 419)

wxFileHistory::m_fileHistory

char** m_fileHistory

A character array of strings corresponding to the most recently opened files.

wxFileHistory::m_fileHistoryN

CHAPTER 7

498

size_t m_fileHistoryN

The number of files stored in the history array.

wxFileHistory::m_fileMaxFiles

size_t m_fileMaxFiles

The maximum number of files to be stored and displayed on the menu.

wxFileHistory::m_fileMenu

wxMenu* m_fileMenu

The file menu used to display the file history list (if enabled).

wxFileHistory::wxFileHistory

 wxFileHistory (size_t maxFiles = 9, wxWindowID idBase = wxID_FILE1)

Constructor. Pass the maximum number of files that should be stored and displayed.

idBase defaults to wxID_FILE1 and represents the id given to the first history menu item.
Since menu items can't share the same ID you should change idBase (To one of your
own defined IDs) when using more than one wxFileHistory in your application.

wxFileHistory::~wxFileHistory

 ~wxFileHistory ()

Destructor.

wxFileHistory::AddFileToHistory

void AddFileToHistory (const wxString& filename)

Adds a file to the file history list, if the object has a pointer to an appropriate file menu.

wxFileHistory::AddFilesToMenu

void AddFilesToMenu ()

Appends the files in the history list, to all menus managed by the file history object.

void AddFilesToMenu (wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxFileHistory::GetHistoryFile

wxString GetHistoryFile (size_t index) const

CHAPTER 7

499

Returns the file at this index (zero-based).

wxFileHistory::GetMaxFiles

size_t GetMaxFiles () const

Returns the maximum number of files that can be stored.

wxFileHistory::GetCount

size_t GetCount () const

Returns the number of files currently stored in the file history.

wxFileHistory::Load

void Load (wxConfigBase& config)

Loads the file history from the given config object. This function should be called
explicitly by the application.

See also

wxConfig (p. 184)

wxFileHistory::RemoveMenu

void RemoveMenu (wxMenu* menu)

Removes this menu from the list of those managed by this object.

wxFileHistory::Save

void Save(wxConfigBase& config)

Saves the file history into the given config object. This must be called explicitly by the
application.

See also

wxConfig (p. 184)

wxFileHistory::UseMenu

void UseMenu (wxMenu* menu)

Adds this menu to the list of those menus that are managed by this file history object.
Also see AddFilesToMenu() (p. 498) for initializing the menu with filenames that are
already in the history when this function is called, as this is not done automatically.

CHAPTER 7

500

wxFileInputStream

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFile (p. 482) whereas wxFFileInputStream (p. 480) is
based in the wxFFile (p. 475) class.

Note that wxFile (p. 482) and wxFFile (p. 475) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
485) and wxFFile::Eof (p. 476) and the behaviour of the stream classes reflects this
difference, i.e. wxFileInputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFileInputStream will report wxSTREAM_EOF after trying to read past
the last byte. Related to EOF behavior, note that SeekI() (p. 779) can seek beyond the
end of the stream (file) and will thus not return wxInvalidOffset for that.

Derived from

wxInputStream (p. 777)

Include files

<wx/wfstream.h>

See also

wxBufferedInputStream (p. 109), wxFileOutputStream (p. 516), wxFFileOutputStream (p.
481)

wxFileInputStream::wxFileInputStream

 wxFileInputStream (const wxString& ifileName)

Opens the specified file using its ifilename name in read-only mode.

 wxFileInputStream (wxFile& file)

Initializes a file stream in read-only mode using the file I/O object file.

 wxFileInputStream (int fd)

Initializes a file stream in read-only mode using the specified file descriptor.

wxFileInputStream::~wxFileInputStream

 ~wxFileInputStream ()

Destructor.

wxFileInputStream::Ok

bool Ok() const

CHAPTER 7

501

Returns true if the stream is initialized and ready.

wxFileName

wxFileName encapsulates a file name. This class serves two purposes: first, it provides
the functions to split the file names into components and to recombine these
components in the full file name which can then be passed to the OS file functions (and
wxWidgets functions (p. 1525) wrapping them). Second, it includes the functions for
working with the files itself. Note that to change the file data you should use wxFile (p.
482) class instead. wxFileName provides functions for working with the file attributes.

Derived from

No base class

Include files

<wx/filename.h>

Data structures

Many wxFileName methods accept the path format argument which is by
wxPATH_NATIVE by default meaning to use the path format native for the current
platform.

The path format affects the operation of wxFileName functions in several ways: first and
foremost, it defines the path separator character to use, but it also affects other things
such as whether the path has the drive part or not.

enum wxPathFormat
{
 wxPATH_NATIVE = 0, // the path format for the current
platform
 wxPATH_UNIX,
 wxPATH_BEOS = wxPATH_UNIX,
 wxPATH_MAC,
 wxPATH_DOS,
 wxPATH_WIN = wxPATH_DOS,
 wxPATH_OS2 = wxPATH_DOS,
 wxPATH_VMS,

 wxPATH_MAX // Not a valid value for specifying path format
}

File name format

wxFileName currently supports the file names in the Unix, DOS/Windows, Mac OS and
VMS formats. Although these formats are quite different, wxFileName tries to treat them
all in the same generic way. It supposes that all file names consist of the following parts:
the volume (also known as drive under Windows or device under VMS), the path which
is a sequence of directory names separated by the path separators (p. 508) and the full
filename itself which, in turn, is composed from the base file name and the extension. All

CHAPTER 7

502

of the individual components of the file name may be empty and, for example, the
volume name is always empty under Unix, but if they are all empty simultaneously, the
filename object is considered to be in an invalid state and IsOk (p. 510) returns false
for it.

File names can be case-sensitive or not, the function IsCaseSensitive (p. 510) allows to
determine this.

The rules for determining if the file name is absolute or relative also depends on the file
name format and the only portable way to answer to this question is to use IsAbsolute
(p. 510) method. To ensure that the filename is absolute you may use MakeAbsolute (p.
511). There is also an inverse function MakeRelativeTo (p. 511) which undoes
whatNormalize(wxPATH_NORM_DOTS) (p. 512) does.

Other functions returning information about the file format provided by this class are
GetVolumeSeparator (p. 509), IsPathSeparator (p. 510).

IsRelative (p. 510)

File name construction

TODO.

File tests

Before doing the other tests you should use IsOk (p. 510) to verify that the filename is
well defined. If it is, FileExists (p. 505) can be used to test if a file with such name exists
and DirExists (p. 505) - if a directory with this name exists.

File names should be compared using SameAs (p. 513) method or == (p. 515).

File name components

These functions allow to examine and modify the individual directories of the path:

AppendDir (p. 503)
InsertDir (p. 509)
GetDirCount (p. 506)PrependDir (p. 513)
RemoveDir (p. 513)
RemoveLastDir (p. 513)

To change the components of the file name individually you can use the following
functions:

GetExt (p. 506)
GetName (p. 507)
GetVolume (p. 509)
HasExt (p. 509)
HasName (p. 509)
HasVolume (p. 509)
SetExt (p. 514)

CHAPTER 7

503

ClearExt (p. 504)
SetEmptyExt (p. 514)
SetName (p. 514)
SetVolume (p. 514)

Operations

These methods allow to work with the file creation, access and modification times. Note
that not all filesystems under all platforms implement these times in the same way. For
example, the access time under Windows has a resolution of one day (so it is really the
access date and not time). The access time may be updated when the file is executed or
not depending on the platform.

GetModificationTime (p. 507)
GetTimes (p. 508)
SetTimes (p. 514)
Touch (p. 515)

Other file system operations functions are:

Mkdir (p. 511)
Rmdir (p. 513)

wxFileName::wxFileName

 wxFileName ()

Default constructor.

 wxFileName (const wxFileName& filename)

Copy constructor.

 wxFileName (const wxString& fullpath, wxPathFormat format = wxPATH_NATIVE)

Constructor taking a full filename. If it terminates with a '/', a directory path is constructed
(the name will be empty), otherwise a file name and extension are extracted from it.

 wxFileName (const wxString& path, const wxString& name, wxPathFormat format =
wxPATH_NATIVE)

Constructor from a directory name and a file name.

 wxFileName (const wxString& path, const wxString& name, const wxString& ext,
wxPathFormat format = wxPATH_NATIVE)

Constructor from a directory name, base file name and extension.

 wxFileName (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, wxPathFormat format = wxPATH_NATIVE)

CHAPTER 7

504

Constructor from a volume name, a directory name, base file name and extension.

wxFileName::AppendDir

void AppendDir (const wxString& dir)

Appends a directory component to the path. This component should contain a single
directory name level, i.e. not contain any path or volume separators nor should it be
empty, otherwise the function does nothing (and generates an assert failure in debug
build).

wxFileName::Assign

void Assign (const wxFileName& filepath)

void Assign (const wxString& fullpath, wxPathFormat format = wxPATH_NATIVE)

void Assign (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, bool hasExt, wxPathFormat format = wxPATH_NATIVE)

void Assign (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, wxPathFormat format = wxPATH_NATIVE)

void Assign (const wxString& path, const wxString& name, wxPathFormat format =
wxPATH_NATIVE)

void Assign (const wxString& path, const wxString& name, const wxString& ext,
wxPathFormat format = wxPATH_NATIVE)

Creates the file name from various combinations of data.

wxFileName::AssignCwd

static void AssignCwd (const wxString& volume = wxEmptyString)

Makes this object refer to the current working directory on the specified volume (or
current volume if volume is empty).

See also

GetCwd (p. 506)

wxFileName::AssignDir

void AssignDir (const wxString& dir, wxPathFormat format = wxPATH_NATIVE)

Sets this file name object to the given directory name. The name and extension will be
empty.

wxFileName::AssignHomeDir

void AssignHomeDir ()

CHAPTER 7

505

Sets this file name object to the home directory.

wxFileName::AssignTempFileName

void AssignTempFileName (const wxString& prefix, wxFile * fileTemp = NULL)

The function calls CreateTempFileName (p. 504) to create a temporary file and sets this
object to the name of the file. If a temporary file couldn't be created, the object is put into
the invalid (p. 510) state.

wxFileName::Clear

void Clear ()

Reset all components to default, uninitialized state.

wxFileName::ClearExt

void SetClearExt ()

Removes the extension from the file name resulting in a file name with no trailing dot.

See also

SetExt (p. 514)SetEmptyExt (p. 514)

wxFileName::CreateTempFileName

static wxString CreateTempFileName (const wxString& prefix, wxFile * fileTemp =
NULL)

Returns a temporary file name starting with the given prefix. If the prefix is an absolute
path, the temporary file is created in this directory, otherwise it is created in the default
system directory for the temporary files or in the current directory.

If the function succeeds, the temporary file is actually created. If fileTemp is not NULL,
this file will be opened using the name of the temporary file. When possible, this is done
in an atomic way ensuring that no race condition occurs between the temporary file
name generation and opening it which could often lead to security compromise on the
multiuser systems. If fileTemp is NULL, the file is only created, but not opened.

Under Unix, the temporary file will have read and write permissions for the owner only to
minimize the security problems.

Parameters

prefix

Prefix to use for the temporary file name construction

fileTemp

CHAPTER 7

506

The file to open or NULL to just get the name

Return value

The full temporary file name or an empty string on error.

wxFileName::DirExists

bool DirExists () const

static bool DirExists (const wxString& dir)

Returns true if the directory with this name exists.

wxFileName::DirName

static wxFileName DirName (const wxString& dir, wxPathFormat format =
wxPATH_NATIVE)

Returns the object corresponding to the directory with the given name. The dir
parameter may have trailing path separator or not.

wxFileName::FileExists

bool FileExists () const

static bool FileExists (const wxString& file)

Returns true if the file with this name exists.

See also

DirExists (p. 505)

wxFileName::FileName

static wxFileName FileName (const wxString& file, wxPathFormat format =
wxPATH_NATIVE)

Returns the file name object corresponding to the given file. This function exists mainly
for symmetry with DirName (p. 505).

wxFileName::GetCwd

static wxString GetCwd (const wxString& volume = "")

Retrieves the value of the current working directory on the specified volume. If the
volume is empty, the program's current working directory is returned for the current
volume.

Return value

CHAPTER 7

507

The string containing the current working directory or an empty string on error.

See also

AssignCwd (p. 504)

wxFileName::GetDirCount

size_t GetDirCount () const

Returns the number of directories in the file name.

wxFileName::GetDirs

const wxArrayString& GetDirs () const

Returns the directories in string array form.

wxFileName::GetExt

wxString GetExt () const

Returns the file name extension.

wxFileName::GetForbiddenChars

static wxString GetForbiddenChars (wxPathFormat format = wxPATH_NATIVE)

Returns the characters that can't be used in filenames and directory names for the
specified format.

wxFileName::GetFormat

static wxPathFormat GetFormat (wxPathFormat format = wxPATH_NATIVE)

Returns the canonical path format for this platform.

wxFileName::GetFullName

wxString GetFullName () const

Returns the full name (including extension but excluding directories).

wxFileName::GetFullPath

wxString GetFullPath (wxPathFormat format = wxPATH_NATIVE) const

Returns the full path with name and extension.

wxFileName::GetHomeDir

CHAPTER 7

508

static wxString GetHomeDir ()

Returns the home directory.

wxFileName::GetLongPath

wxString GetLongPath () const

Return the long form of the path (returns identity on non-Windows platforms)

wxFileName::GetModificationTime

wxDateTime GetModificationTime () const

Returns the last time the file was last modified.

wxFileName::GetName

wxString GetName () const

Returns the name part of the filename.

wxFileName::GetPath

wxString GetPath (int flags = wxPATH_GET_VOLUME, wxPathFormat format =
wxPATH_NATIVE) const

Returns the path part of the filename (without the name or extension). The possible flags
values are:

wxPATH_GET_VOLUME Return the path with the volume (does nothing for the
filename formats without volumes), otherwise the path
without volume part is returned.

wxPATH_GET_SEPARATOR Return the path with the trailing separator, if this
flag is not given there will be no separator at the end of the
path.

wxFileName::GetPathSeparator

static wxChar GetPathSeparator (wxPathFormat format = wxPATH_NATIVE)

Returns the usually used path separator for this format. For all formats but wxPATH_DOS
there is only one path separator anyhow, but for DOS there are two of them and the
native one, i.e. the backslash is returned by this method.

See also

GetPathSeparators (p. 508)

wxFileName::GetPathSeparators

CHAPTER 7

509

static wxString GetPathSeparators (wxPathFormat format = wxPATH_NATIVE)

Returns the string containing all the path separators for this format. For all formats but
wxPATH_DOS this string contains only one character but for DOS and Windows both '/'
and '\' may be used as separators.

See also

GetPathSeparator (p. 508)

wxFileName::GetPathTerminators

static wxString GetPathTerminators (wxPathFormat format = wxPATH_NATIVE)

Returns the string of characters which may terminate the path part. This is the same as
GetPathSeparators (p. 508) except for VMS path format where] is used at the end of the
path part.

wxFileName::GetShortPath

wxString GetShortPath () const

Return the short form of the path (returns identity on non-Windows platforms).

wxFileName::GetTimes

bool GetTimes (wxDateTime* dtAccess, wxDateTime* dtMod, wxDateTime* dtCreate)
const

Returns the last access, last modification and creation times. The last access time is
updated whenever the file is read or written (or executed in the case of Windows), last
modification time is only changed when the file is written to. Finally, the creation time is
indeed the time when the file was created under Windows and the inode change time
under Unix (as it is impossible to retrieve the real file creation time there anyhow) which
can also be changed by many operations after the file creation.

Any of the pointers may be NULL if the corresponding time is not needed.

Return value

true on success, false if we failed to retrieve the times.

wxFileName::GetVolume

wxString GetVolume () const

Returns the string containing the volume for this file name, empty if it doesn't have one
or if the file system doesn't support volumes at all (for example, Unix).

wxFileName::GetVolumeSeparator

CHAPTER 7

510

static wxString GetVolumeSeparator (wxPathFormat format = wxPATH_NATIVE)

Returns the string separating the volume from the path for this format.

wxFileName::HasExt

bool HasExt () const

Returns true if an extension is present.

wxFileName::HasName

bool HasName () const

Returns true if a name is present.

wxFileName::HasVolume

bool HasVolume () const

Returns true if a volume specifier is present.

wxFileName::InsertDir

void InsertDir (size_t before, const wxString& dir)

Inserts a directory component before the zero-based position in the directory list. Please
see AppendDir (p. 503) for important notes.

wxFileName::IsAbsolute

bool IsAbsolute (wxPathFormat format = wxPATH_NATIVE)

Returns true if this filename is absolute.

wxFileName::IsCaseSensitive

static bool IsCaseSensitive (wxPathFormat format = wxPATH_NATIVE)

Returns true if the file names of this type are case-sensitive.

wxFileName::IsOk

bool IsOk () const

Returns true if the filename is valid, false if it is not initialized yet. The assignment
functions andClear (p. 504) may reset the object to the uninitialized, invalid state (the
former only do it on failure).

wxFileName::IsPathSeparator

CHAPTER 7

511

static bool IsPathSeparator (wxChar ch, wxPathFormat format = wxPATH_NATIVE)

Returns true if the char is a path separator for this format.

wxFileName::IsRelative

bool IsRelative (wxPathFormat format = wxPATH_NATIVE)

Returns true if this filename is not absolute.

wxFileName::IsDir

bool IsDir () const

Returns true if this object represents a directory, false otherwise (i.e. if it is a file).
Note that this method doesn't test whether the directory or file really exists, you should
use DirExists (p. 505) or FileExists (p. 505) for this.

wxFileName::MacFindDefaultTypeAndCreator

static bool MacFindDefaultTypeAndCreator (const wxString& ext, wxUint32* type,
wxUint32* creator)

On Mac OS, gets the common type and creator for the given extension.

wxFileName::MacRegisterDefaultTypeAndCreator

static void MacRegisterDefaultTypeAndCreator (const wxString& ext, wxUint32
type, wxUint32 creator)

On Mac OS, registers application defined extensions and their default type and creator.

wxFileName::MacSetDefaultTypeAndCreator

bool MacSetDefaultTypeAndCreator ()

On Mac OS, looks up the appropriate type and creator from the registration and then
sets it.

wxFileName::MakeAbsolute

bool MakeAbsolute (const wxString& cwd = wxEmptyString, wxPathFormat format =
wxPATH_NATIVE)

Make the file name absolute. This is a shortcut forNormalize (p.
512)(wxPATH_NORM_DOTS | wxPATH_NORM_ABSOLUTE | wxPATH_NORM_TILDE,
cwd, format) .

See also

MakeRelativeTo (p. 511),Normalize (p. 512),IsAbsolute (p. 510)

CHAPTER 7

512

wxFileName::MakeRelativeTo

bool MakeRelativeTo (const wxString& pathBase = wxEmptyString, wxPathFormat
format = wxPATH_NATIVE)

This function tries to put this file name in a form relative to pathBase. In other words, it
returns the file name which should be used to access this file if the current directory
were pathBase.

pathBase

the directory to use as root, current directory is used by default

format

the file name format, native by default

Return value

true if the file name has been changed, false if we failed to do anything with it
(currently this only happens if the file name is on a volume different from the volume
specified by pathBase).

See also

Normalize (p. 512)

wxFileName::Mkdir

bool Mkdir (int perm = 0777, int flags = 0)

static bool Mkdir (const wxString& dir, int perm = 0777, int flags = 0)

dir

the directory to create

parm

the permissions for the newly created directory

flags

if the flags contain wxPATH_MKDIR_FULL flag, try to create each directory in the
path and also don't return an error if the target directory already exists.

Return value

Returns true if the directory was successfully created, false otherwise.

wxFileName::Normalize

bool Normalize (int flags = wxPATH_NORM_ALL, const wxString& cwd =
wxEmptyString, wxPathFormat format = wxPATH_NATIVE)

CHAPTER 7

513

Normalize the path. With the default flags value, the path will be made absolute, without
any ".." and "." and all environment variables will be expanded in it.

flags

The kind of normalization to do with the file name. It can be any or-combination of
the following constants:

wxPATH_NORM_ENV_VARS replace env vars with their values

wxPATH_NORM_DOTS squeeze all .. and . and prepend cwd

wxPATH_NORM_TILDE Unix only: replace ~ and ~user

wxPATH_NORM_CASE if filesystem is case insensitive, transform to tolower
case

wxPATH_NORM_ABSOLUTE make the path absolute

wxPATH_NORM_LONG make the path the long form

wxPATH_NORM_SHORTCUT resolve if it is a shortcut (Windows only)

wxPATH_NORM_ALL all of previous flags except wxPATH_NORM_CASE

cwd

If not empty, this directory will be used instead of current working directory in
normalization.

format

The file name format, native by default.

wxFileName::PrependDir

void PrependDir (const wxString& dir)

Prepends a directory to the file path. Please see AppendDir (p. 503) for important notes.

wxFileName::RemoveDir

void RemoveDir (size_t pos)

Removes the specified directory component from the path.

See also

GetDirCount (p. 506)

wxFileName::RemoveLastDir

void RemoveLastDir ()

CHAPTER 7

514

Removes last directory component from the path.

wxFileName::Rmdir

bool Rmdir ()

static bool Rmdir (const wxString& dir)

Deletes the specified directory from the file system.

wxFileName::SameAs

bool SameAs (const wxFileName& filepath, wxPathFormat format =
wxPATH_NATIVE) const

Compares the filename using the rules of this platform.

wxFileName::SetCwd

bool SetCwd ()

static bool SetCwd (const wxString& cwd)

Changes the current working directory.

wxFileName::SetExt

void SetExt (const wxString& ext)

Sets the extension of the file name. Setting an empty string as the extension will remove
the extension resulting in a file name without a trailing dot, unlike a call to SetEmptyExt
(p. 514).

See also

SetEmptyExt (p. 514)ClearExt (p. 504)

wxFileName::SetEmptyExt

void SetEmptyExt ()

Sets the extension of the file name to be an empty extension. This is different from
having no extension at all as the file name will have a trailing dot after a call to this
method.

See also

SetExt (p. 514)ClearExt (p. 504)

wxFileName::SetFullName

CHAPTER 7

515

void SetFullName (const wxString& fullname)

The full name is the file name and extension (but without the path).

wxFileName::SetName

void SetName (const wxString& name)

Sets the name.

wxFileName::SetTimes

bool SetTimes (const wxDateTime* dtAccess, const wxDateTime* dtMod, const
wxDateTime* dtCreate)

Sets the file creation and last access/modification times (any of the pointers may be
NULL).

wxFileName::SetVolume

void SetVolume (const wxString& volume)

Sets the volume specifier.

wxFileName::SplitPath

static void SplitPath (const wxString& fullpath, wxString* volume, wxString* path,
wxString* name, wxString* ext, bool *hasExt = NULL, wxPathFormat format =
wxPATH_NATIVE)

static void SplitPath (const wxString& fullpath, wxString* volume, wxString* path,
wxString* name, wxString* ext, wxPathFormat format = wxPATH_NATIVE)

static void SplitPath (const wxString& fullpath, wxString* path, wxString* name,
wxString* ext, wxPathFormat format = wxPATH_NATIVE)

This function splits a full file name into components: the volume (with the first version)
path (including the volume in the second version), the base name and the extension.
Any of the output parameters (volume, path, name or ext) may be NULL if you are not
interested in the value of a particular component. Also, fullpath may be empty on entry.

On return, path contains the file path (without the trailing separator), name contains the
file name and ext contains the file extension without leading dot. All three of them may
be empty if the corresponding component is. The old contents of the strings pointed to
by these parameters will be overwritten in any case (if the pointers are not NULL).

Note that for a filename "foo.'' the extension is present, as indicated by the trailing dot,
but empty. If you need to cope with such cases, you should use hasExt instead of relying
on testing whether ext is empty or not.

wxFileName::SplitVolume

CHAPTER 7

516

static void SplitVolume (const wxString& fullpath, wxString* volume, wxString* path,
wxPathFormat format = wxPATH_NATIVE)

Splits the given fullpath into the volume part (which may be empty) and the pure path
part, not containing any volume.

See also

SplitPath (p. 514)

wxFileName::Touch

bool Touch ()

Sets the access and modification times to the current moment.

wxFileName::operator=

wxFileName& operator operator= (const wxFileName& filename)

wxFileName& operator operator= (const wxString& filename)

Assigns the new value to this filename object.

wxFileName::operator==

bool operator operator== (const wxFileName& filename) const

bool operator operator== (const wxString& filename) const

Returns true if the filenames are equal. The string filenames is interpreted as a path in
the native filename format.

wxFileName::operator!=

bool operator operator!= (const wxFileName& filename) const

bool operator operator!= (const wxString& filename) const

Returns true if the filenames are different. The string filenamesis interpreted as a path
in the native filename format.

wxFileOutputStream

This class represents data written to a file. There are actually two such groups of
classes: this one is based on wxFile (p. 482) whereas wxFFileInputStream (p. 480) is
based in the wxFFile (p. 475) class.

Note that wxFile (p. 482) and wxFFile (p. 475) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
485) and wxFFile::Eof (p. 476) and the behaviour of the stream classes reflects this

CHAPTER 7

517

difference, i.e. wxFileInputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFileInputStream will report wxSTREAM_EOF after trying to read past
the last byte. Related to EOF behavior, note that SeekO() (p. 972) can seek beyond the
end of the stream (file) and will thus not return wxInvalidOffset for that.

Derived from

wxOutputStream (p. 971)

Include files

<wx/wfstream.h>

See also

wxBufferedOutputStream (p. 110), wxFileInputStream (p. 499), wxFFileInputStream (p.
480)

wxFileOutputStream::wxFileOutputStream

 wxFileOutputStream (const wxString& ofileName)

Creates a new file with ofilename name and initializes the stream in write-only mode.

 wxFileOutputStream (wxFile& file)

Initializes a file stream in write-only mode using the file I/O object file.

 wxFileOutputStream (int fd)

Initializes a file stream in write-only mode using the file descriptor fd.

wxFileOutputStream::~wxFileOutputStream

 ~wxFileOutputStream ()

Destructor.

wxFileOutputStream::Ok

bool Ok() const

Returns true if the stream is initialized and ready.

wxFileStream

Derived from

wxFileOutputStream (p. 516), wxFileInputStream (p. 499)

CHAPTER 7

518

Include files

<wx/wfstream.h>

See also

wxStreamBuffer (p. 1220)

wxFileStream::wxFileStream

 wxFileStream (const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

wxFileSystem

This class provides an interface for opening files on different file systems. It can handle
absolute and/or local filenames. It uses a system of handlers (p. 520) to provide access
to user-defined virtual file systems.

Derived from

wxObject (p. 967)

Include files

<wx/filesys.h>

See Also

wxFileSystemHandler (p. 520), wxFSFile (p. 565), Overview (p. 1673)

wxFileSystem::wxFileSystem

 wxFileSystem ()

Constructor.

wxFileSystem::AddHandler

static void AddHandler (wxFileSystemHandler *handler)

This static function adds new handler into the list of handlers. The handlers (p. 520)
provide access to virtual FS.

Note

You can call:

CHAPTER 7

519

wxFileSystem::AddHandler(new My_FS_Handler);

This is because (a) AddHandler is a static method, and (b) the handlers are deleted in
wxFileSystem's destructor so that you don't have to care about it.

wxFileSystem::ChangePathTo

void ChangePathTo (const wxString& location, bool is_dir = false)

Sets the current location. location parameter passed to OpenFile (p. 519) is relative to
this path.

Caution! Unless is_dir is true the location parameter is not the directory name but the
name of the file in this directory. All these commands change the path to "dir/subdir/":

 ChangePathTo("dir/subdir/xh.htm");
 ChangePathTo("dir/subdir", true);
 ChangePathTo("dir/subdir/", true);

Parameters

location

the new location. Its meaning depends on the value of is_dir

is_dir

if true location is new directory. If false (default) location is file in the new directory.

Example

 f = fs -> OpenFile("hello.htm"); // opens file 'h ello.htm'
 fs -> ChangePathTo("subdir/folder", true);
 f = fs -> OpenFile("hello.htm"); // opens file
'subdir/folder/hello.htm' !!

wxFileSystem::GetPath

wxString GetPath ()

Returns actual path (set by ChangePathTo (p. 518)).

wxFileSystem::FileNameToURL

static wxString FileNameToURL (wxFileName filename)

Converts filename into URL.

See also

wxFileSystem::URLToFileName (p. 519),wxFileName (p. 500)

wxFileSystem::FindFirst

CHAPTER 7

520

wxString FindFirst (const wxString& wildcard, int flags = 0)

Works like wxFindFirstFile (p. 1526). Returns name of the first filename (within
filesystem's current path) that matches wildcard. flags may be one of wxFILE (only files),
wxDIR (only directories) or 0 (both).

wxFileSystem::FindNext

wxString FindNext ()

Returns the next filename that matches parameters passed to FindFirst (p. 519).

wxFileSystem::OpenFile

wxFSFile* OpenFile (const wxString& location)

Opens the file and returns a pointer to a wxFSFile (p. 565) object or NULL if failed. It first
tries to open the file in relative scope (based on value passed to ChangePathTo()
method) and then as an absolute path. Note that the user is responsible for deleting the
returned wxFSFile.

wxFileSystem::URLToFileName

static wxFileName URLToFileName (const wxString& url)

Converts URL into a well-formed filename. The URL must use the file protocol.

See also

wxFileSystem::FileNameToURL (p. 519), wxFileName (p. 500)

wxFileSystemHandler

Classes derived from wxFileSystemHandler are used to access virtual file systems. Its
public interface consists of two methods: CanOpen (p. 520) and OpenFile (p. 522). It
provides additional protected methods to simplify the process of opening the file:
GetProtocol, GetLeftLocation, GetRightLocation, GetAnchor, GetMimeTypeFromExt.

Please have a look at overview (p. 1673) if you don't know how locations are
constructed.

Also consult list of available handlers (p. 1673).

wxPerl note: In wxPerl, you need to derive your file system handler class from
Wx::PlFileSystemHandler.

Notes

 • The handlers are shared by all instances of wxFileSystem.

 • wxHTML library provides handlers for local files and HTTP or FTP protocol

CHAPTER 7

521

 • The location parameter passed to OpenFile or CanOpen methods is always an
absolute path. You don't need to check the FS's current path.

Derived from

wxObject (p. 967)

Include files

<wx/filesys.h>

See also

wxFileSystem (p. 517), wxFSFile (p. 565), Overview (p. 1673)

wxFileSystemHandler::wxFileSystemHandler

 wxFileSystemHandler ()

Constructor.

wxFileSystemHandler::CanOpen

virtual bool CanOpen (const wxString& location)

Returns true if the handler is able to open this file. This function doesn't check whether
the file exists or not, it only checks if it knows the protocol. Example:

bool MyHand::CanOpen(const wxString& location)
{
 return (GetProtocol(location) == "http");
}

Must be overridden in derived handlers.

wxFileSystemHandler::GetAnchor

wxString GetAnchor (const wxString& location) const

Returns the anchor if present in the location. See wxFSFile (p. 567) for details.

Example: GetAnchor("index.htm#chapter2") == "chapter2"

Note: the anchor is NOT part of the left location.

wxFileSystemHandler::GetLeftLocation

wxString GetLeftLocation (const wxString& location) const

Returns the left location string extracted from location.

CHAPTER 7

522

Example: GetLeftLocation("file:myzipfile.zip#zip:index.htm") == "file:myzipfile.zip"

wxFileSystemHandler::GetMimeTypeFromExt

wxString GetMimeTypeFromExt (const wxString& location)

Returns the MIME type based on extension of location. (While wxFSFile::GetMimeType
returns real MIME type - either extension-based or queried from HTTP.)

Example : GetMimeTypeFromExt("index.htm") == "text/html"

wxFileSystemHandler::GetProtocol

wxString GetProtocol (const wxString& location) const

Returns the protocol string extracted from location.

Example: GetProtocol("file:myzipfile.zip#zip:index.htm") == "zip"

wxFileSystemHandler::GetRightLocation

wxString GetRightLocation (const wxString& location) const

Returns the right location string extracted from location.

Example : GetRightLocation("file:myzipfile.zip#zip:index.htm") == "index.htm"

wxFileSystemHandler::FindFirst

virtual wxString FindFirst (const wxString& wildcard, int flags = 0)

Works like wxFindFirstFile (p. 1526). Returns name of the first filename (within
filesystem's current path) that matches wildcard. flags may be one of wxFILE (only files),
wxDIR (only directories) or 0 (both).

This method is only called if CanOpen (p. 520) returns true.

wxFileSystemHandler::FindNext

virtual wxString FindNext ()

Returns next filename that matches parameters passed to FindFirst (p. 519).

This method is only called if CanOpen (p. 520) returns true and FindFirst returned a non-
empty string.

wxFileSystemHandler::OpenFile

virtual wxFSFile* OpenFile (wxFileSystem& fs, const wxString& location)

Opens the file and returns wxFSFile pointer or NULL if failed.

CHAPTER 7

523

Must be overridden in derived handlers.

Parameters

fs

Parent FS (the FS from that OpenFile was called). See ZIP handler for details of
how to use it.

location

The absolute location of file.

wxFileType

This class holds information about a given file type. File type is the same as MIME type
under Unix, but under Windows it corresponds more to an extension than to MIME type
(in fact, several extensions may correspond to a file type). This object may be created in
several different ways: the program might know the file extension and wish to find out
the corresponding MIME type or, conversely, it might want to find the right extension for
the file to which it writes the contents of given MIME type. Depending on how it was
created some fields may be unknown so the return value of all the accessors must be
checked: false will be returned if the corresponding information couldn't be found.

The objects of this class are never created by the application code but are returned by
wxMimeTypesManager::GetFileTypeFromMimeType (p. 934) and
wxMimeTypesManager::GetFileTypeFromExtension (p. 933) methods. But it is your
responsibility to delete the returned pointer when you're done with it!

A brief reminder about what the MIME types are (see the RFC 1341 for more
information): basically, it is just a pair category/type (for example, "text/plain") where the
category is a basic indication of what a file is. Examples of categories are "application",
"image", "text", "binary", and type is a precise definition of the document format: "plain"
in the example above means just ASCII text without any formatting, while "text/html" is
the HTML document source.

A MIME type may have one or more associated extensions: "text/plain" will typically
correspond to the extension ".txt", but may as well be associated with ".ini" or ".conf".

Derived from

None

Include files

<wx/mimetype.h>

See also

wxMimeTypesManager (p. 931)

CHAPTER 7

524

MessageParameters class

One of the most common usages of MIME is to encode an e-mail message. The MIME
type of the encoded message is an example of a message parameter. These
parameters are found in the message headers ("Content-XXX"). At the very least, they
must specify the MIME type and the version of MIME used, but almost always they
provide additional information about the message such as the original file name or the
charset (for the text documents).

These parameters may be useful to the program used to open, edit, view or print the
message, so, for example, an e-mail client program will have to pass them to this
program. Because wxFileType itself can not know about these parameters, it uses
MessageParameters class to query them. The default implementation only requires the
caller to provide the file name (always used by the program to be called - it must know
which file to open) and the MIME type and supposes that there are no other parameters.
If you wish to supply additional parameters, you must derive your own class from
MessageParameters and override GetParamValue() function, for example:

// provide the message parameters for the MIME type manager
class MailMessageParameters : public wxFileType::Me ssageParameters
{
public:
 MailMessageParameters(const wxString& filename,
 const wxString& mimetype)
 : wxFileType::MessageParameters(filename, mim etype)
 {
 }

 virtual wxString GetParamValue(const wxString& n ame) const
 {
 // parameter names are not case-sensitive
 if (name.CmpNoCase("charset") == 0)
 return "US-ASCII";
 else
 return
wxFileType::MessageParameters::GetParamValue(name);
 }
};

Now you only need to create an object of this class and pass it to, for example,
GetOpenCommand (p. 525) like this:

wxString command;
if (filetype->GetOpenCommand(&command,
 MailMessageParamaters ("foo.txt",
"text/plain")))
{
 // the full command for opening the text docume nts is in
'command'
 // (it might be "notepad foo.txt" under Windows or "cat
foo.txt" under Unix)
}
else
{
 // we don't know how to handle such files...
}

Windows: As only the file name is used by the program associated with the given

CHAPTER 7

525

extension anyhow (but no other message parameters), there is no need to ever derive
from MessageParameters class for a Windows-only program.

wxFileType::wxFileType

 wxFileType ()

The default constructor is private because you should never create objects of this type:
they are only returned by wxMimeTypesManager (p. 931) methods.

wxFileType::~wxFileType

 ~wxFileType ()

The destructor of this class is not virtual, so it should not be derived from.

wxFileType::GetMimeType

bool GetMimeType (wxString* mimeType)

If the function returns true , the string pointed to by mimeType is filled with full MIME
type specification for this file type: for example, "text/plain".

wxFileType::GetMimeTypes

bool GetMimeType (wxArrayString& mimeTypes)

Same as GetMimeType (p. 524) but returns array of MIME types. This array will contain
only one item in most cases but sometimes, notably under Unix with KDE, may contain
more MIME types. This happens when one file extension is mapped to different MIME
types by KDE, mailcap and mime.types.

wxFileType::GetExtensions

bool GetExtensions (wxArrayString& extensions)

If the function returns true , the array extensions is filled with all extensions associated
with this file type: for example, it may contain the following two elements for the MIME
type "text/html" (notice the absence of the leading dot): "html" and "htm".

Windows: This function is currently not implemented: there is no (efficient) way to
retrieve associated extensions from the given MIME type on this platform, so it will only
return true if the wxFileType object was created by GetFileTypeFromExtension (p. 933)
function in the first place.

wxFileType::GetIcon

bool GetIcon (wxIconLocation * iconLoc)

If the function returns true , the iconLoc is filled with the location of the icon for this

CHAPTER 7

526

MIME type. A wxIcon (p. 730) may be created from iconLoc later.

Windows: The function returns the icon shown by Explorer for the files of the specified
type.

Mac: This function is not implemented and always returns false .

Unix: MIME manager gathers information about icons from GNOME and KDE settings
and thus GetIcon's success depends on availability of these desktop environments.

wxFileType::GetDescription

bool GetDescription (wxString* desc)

If the function returns true , the string pointed to by desc is filled with a brief description
for this file type: for example, "text document" for the "text/plain" MIME type.

wxFileType::GetOpenCommand

bool GetOpenCommand (wxString* command, MessageParameters& params)

wxString GetOpenCommand (const wxString& filename)

With the first version of this method, if the true is returned, the string pointed to by
command is filled with the command which must be executed (see wxExecute (p. 1519))
in order to open the file of the given type. In this case, the name of the file as well as any
other parameters is retrieved from MessageParameters (p. 523) class.

In the second case, only the filename is specified and the command to be used to open
this kind of file is returned directly. An empty string is returned to indicate that an error
occurred (typically meaning that there is no standard way to open this kind of files).

wxFileType::GetPrintCommand

bool GetPrintCommand (wxString* command,MessageParameters& params)

If the function returns true , the string pointed to by command is filled with the command
which must be executed (see wxExecute (p. 1519)) in order to print the file of the given
type. The name of the file is retrieved from MessageParameters (p. 523) class.

wxFileType::ExpandCommand

static wxString ExpandCommand (const wxString& command,
MessageParameters& params)

This function is primarily intended for GetOpenCommand and GetPrintCommand usage
but may be also used by the application directly if, for example, you want to use some
non default command to open the file.

The function replaces all occurrences of

format specification with

CHAPTER 7

527

%s the full file name

%t the MIME type

%{param} the value of the parameter param

using the MessageParameters object you pass to it.

If there is no '%s' in the command string (and the string is not empty), it is assumed that
the command reads the data on stdin and so the effect is the same as "< %s" were
appended to the string.

Unlike all other functions of this class, there is no error return for this function.

wxFilterInputStream

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can uncompress or decrypt the data which are read
from another stream and pass it to the requester.

Derived from

wxInputStream (p. 777)
wxStreamBase (p. 1218)

Include files

<wx/stream.h>

Note

The interface of this class is the same as that of wxInputStream. Only a constructor
differs and it is documented below.

wxFilterInputStream::wxFilterInputStream

 wxFilterInputStream (wxInputStream& stream)

Initializes a "filter" stream.

wxFilterOutputStream

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can compress, encrypt the data which are passed to
it and write them to another stream.

Derived from

wxOutputStream (p. 971)
wxStreamBase (p. 1218)

CHAPTER 7

528

Include files

<wx/stream.h>

Note

The use of this class is exactly the same as of wxOutputStream. Only a constructor
differs and it is documented below.

wxFilterOutputStream::wxFilterOutputStream

 wxFilterOutputStream (wxOutputStream& stream)

Initializes a "filter" stream.

wxFindDialogEvent

wxFindReplaceDialog events

Derived from

wxCommandEvent (p. 172)

Include files

<wx/fdrepdlg.h>

Event table macros

To process a command event from wxFindReplaceDialog (p. 530), use these event
handler macros to direct input to member functions that take a wxFindDialogEvent
argument. The id parameter is the identifier of the find dialog and you may usually
specify -1 for it unless you plan to have several find dialogs sending events to the same
owner window simultaneously.

EVT_FIND(id, func) Find button was pressed in the dialog.

EVT_FIND_NEXT(id, func) Find next button was pressed in the dialog.

EVT_FIND_REPLACE(id, func) Replace button was pressed in the dialog.

EVT_FIND_REPLACE_ALL(id, func) Replace all button was pressed in the dialog.

EVT_FIND_CLOSE(id, func) The dialog is being destroyed, any pointers to it
cannot be used any longer.

wxFindDialogEvent::wxFindDialogEvent

 wxFindDialogEvent (wxEventType commandType = wxEVT_NULL, int id = 0)

CHAPTER 7

529

Constuctor used by wxWidgets only.

wxFindDialogEvent::GetFlags

int GetFlags () const

Get the currently selected flags: this is the combination of
wxFR_DOWN,wxFR_WHOLEWORD and wxFR_MATCHCASE flags.

wxFindDialogEvent::GetFindString

wxString GetFindString () const

Return the string to find (never empty).

wxFindDialogEvent::GetReplaceString

const wxString& GetReplaceString () const

Return the string to replace the search string with (only for replace and replace all
events).

wxFindDialogEvent::GetDialog

wxFindReplaceDialog* GetDialog () const

Return the pointer to the dialog which generated this event.

wxFindReplaceData

wxFindReplaceData holds the data for wxFindReplaceDialog (p. 530). It is used to
initialize the dialog with the default values and will keep the last values from the dialog
when it is closed. It is also updated each time a wxFindDialogEvent (p. 527) is generated
so instead of using the wxFindDialogEvent methods you can also directly query this
object.

Note that all SetXXX() methods may only be called before showing the dialog and
calling them has no effect later.

Include files

#include <wx/fdrepdlg.h>

Derived from

wxObject (p. 967)

Data structures

Flags used by wxFindReplaceData::GetFlags() (p. 530)
andwxFindDialogEvent::GetFlags() (p. 528):

CHAPTER 7

530

enum wxFindReplaceFlags
{
 // downward search/replace selected (otherwise - upwards)
 wxFR_DOWN = 1,

 // whole word search/replace selected
 wxFR_WHOLEWORD = 2,

 // case sensitive search/replace selected (othe rwise - case
insensitive)
 wxFR_MATCHCASE = 4
}

These flags can be specified in wxFindReplaceDialog ctor (p. 531) or Create() (p. 531):

enum wxFindReplaceDialogStyles
{
 // replace dialog (otherwise find dialog)
 wxFR_REPLACEDIALOG = 1,

 // don't allow changing the search direction
 wxFR_NOUPDOWN = 2,

 // don't allow case sensitive searching
 wxFR_NOMATCHCASE = 4,

 // don't allow whole word searching
 wxFR_NOWHOLEWORD = 8
}

wxFindReplaceData::wxFindReplaceData

 wxFindReplaceData (wxUint32 flags = 0)

Constuctor initializes the flags to default value (0).

wxFindReplaceData::GetFindString

const wxString& GetFindString ()

Get the string to find.

wxFindReplaceData::GetReplaceString

const wxString& GetReplaceString ()

Get the replacement string.

wxFindReplaceData::GetFlags

int GetFlags () const

Get the combination of wxFindReplaceFlags values.

CHAPTER 7

531

wxFindReplaceData::SetFlags

void SetFlags (wxUint32 flags)

Set the flags to use to initialize the controls of the dialog.

wxFindReplaceData::SetFindString

void SetFindString (const wxString& str)

Set the string to find (used as initial value by the dialog).

wxFindReplaceData::SetReplaceString

void SetReplaceString (const wxString& str)

Set the replacement string (used as initial value by the dialog).

wxFindReplaceDialog

wxFindReplaceDialog is a standard modeless dialog which is used to allow the user to
search for some text (and possibly replace it with something else). The actual searching
is supposed to be done in the owner window which is the parent of this dialog. Note that
it means that unlike for the other standard dialogs this one must have a parent window.
Also note that there is no way to use this dialog in a modal way; it is always, by design
and implementation, modeless.

Please see the dialogs sample for an example of using it.

Include files

#include <wx/fdrepdlg.h>

Derived from

wxDialog (p. 391)

wxFindReplaceDialog::wxFindReplaceDialog

 wxFindReplaceDialog ()

 wxFindReplaceDialog (wxWindow * parent, wxFindReplaceData* data, const
wxString& title, int style = 0)

After using default constructor Create() (p. 531) must be called.

The parent and data parameters must be non-NULL.

wxFindReplaceDialog::~wxFindReplaceDialog

CHAPTER 7

532

 ~wxFindReplaceDialog ()

Destructor.

wxFindReplaceDialog::Create

bool Create (wxWindow * parent, wxFindReplaceData* data, const wxString& title,
int style = 0)

Creates the dialog; use Show (p. 1472) to show it on screen.

The parent and data parameters must be non-
NULL.wxFindReplaceDialog::GetData

const wxFindReplaceData* GetData () const

Get the wxFindReplaceData (p. 529) object used by this dialog.

wxFlexGridSizer

A flex grid sizer is a sizer which lays out its children in a two-dimensional table with all
table fields in one row having the same height and all fields in one column having the
same width, but all rows or all columns are not necessarily the same height or width as
in the wxGridSizer (p. 652).

Since wxWidgets 2.5.0, wxFlexGridSizer can also size items equally in one direction but
unequally ("flexibly") in the other. If the sizer is only flexible in one direction (this can be
changed using SetFlexibleDrection (p. 534)), it needs to be decided how the sizer should
grow in the other ("non flexible") direction in order to fill the available space. The
SetNonFlexibleGrowMode (p. 534) method serves this purpose.

Derived from

wxGridSizer (p. 652)
wxSizer (p. 1124)
wxObject (p. 967)

Include files

<wx/sizer.h>

See also

wxSizer (p. 1124), Sizer overview (p. 1694)

wxFlexGridSizer::wxFlexGridSizer

 wxFlexGridSizer (int rows, int cols, int vgap, int hgap)

CHAPTER 7

533

 wxFlexGridSizer (int cols, int vgap = 0, int hgap = 0)

Constructor for a wxGridSizer. rows and cols determine the number of columns and
rows in the sizer - if either of the parameters is zero, it will be calculated to form the total
number of children in the sizer, thus making the sizer grow dynamically. vgap and hgap
define extra space between all children.

wxFlexGridSizer::AddGrowableCol

void AddGrowableCol (size_t idx, int proportion = 0)

Specifies that column idx (starting from zero) should be grown if there is extra space
available to the sizer.

The proportion parameter has the same meaning as the stretch factor for the sizers (p.
1694) except that if all proportions are 0, then all columns are resized equally (instead of
not being resized at all).

wxFlexGridSizer::AddGrowableRow

void AddGrowableRow (size_t idx, int proportion = 0)

Specifies that row idx (starting from zero) should be grown if there is extra space
available to the sizer.

See AddGrowableCol (p. 532) for the description of proportion parameter.

wxFlexGridSizer::GetFlexibleDirection

int GetFlexibleDirections () const

Returns a wxOrientation value that specifies whether the sizer flexibly resizes its
columns, rows, or both (default).

Return value

One of the following values:

wxVERTICAL Rows are flexibly sized.

wxHORIZONTAL Columns are flexibly sized.

wxBOTH Both rows and columns are flexibly sized (this
is the default value).

See also

SetFlexibleDrection (p. 534)

wxFlexGridSizer::GetNonFlexibleGrowMode

int GetNonFlexibleGrowMode () const

CHAPTER 7

534

Returns the value that specifies how the sizer grows in the "non flexible" direction if there
is one.

Return value

One of the following values:

wxFLEX_GROWMODE_NONE Sizer doesn't grow in the non flexible direction.

wxFLEX_GROWMODE_SPECIFIED Sizer honors growable columns/rows set
withAddGrowableCol (p. 532) and
AddGrowableRow (p. 532). In this case equal
sizing applies to minimum sizes of columns or
rows (this is the default value).

wxFLEX_GROWMODE_ALL Sizer equally stretches all columns or rows in
the non flexible direction, whether they are
growable or not in the flexible direction.

See also

SetFlexibleDrection (p. 534), SetNonFlexibleGrowMode (p. 534)

wxFlexGridSizer::RemoveGrowableCol

void RemoveGrowableCol (size_t idx)

Specifies that column idx is no longer growable.

wxFlexGridSizer::RemoveGrowableRow

void RemoveGrowableRow (size_t idx)

Specifies that row idx is no longer growable.

wxFlexGridSizer::SetFlexibleDirection

void SetFlexibleDirections (int direction)

Specifies whether the sizer should flexibly resize its columns, rows, or both. Argument
direction can be wxVERTICAL, wxHORIZONTAL or wxBOTH (which is the default
value). Any other value is ignored. SeeGetFlexibleDirection() (p. 533) for the explanation
of these values.

Note that this method does not trigger relayout.

wxFlexGridSizer::SetNonFlexibleGrowMode

void SetNonFlexibleGrowMode (wxFlexSizerGrowMode mode)

Specifies how the sizer should grow in the non flexible direction if there is one
(soSetFlexibleDirections() (p. 534) must have been called previously). Argument mode

CHAPTER 7

535

can be one of those documented inGetNonFlexibleGrowMode (p. 533), please see there
for their explanation.

Note that this method does not trigger relayout.

wxFocusEvent

A focus event is sent when a window's focus changes. The window losing focus receives
a "kill focus'' event while the window gaining it gets a "set focus'' one.

Notice that the set focus event happens both when the user gives focus to the window
(whether using the mouse or keyboard) and when it is done from the program itself using
SetFocus (p. 1462).

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process a focus event, use these event handler macros to direct input to a member
function that takes a wxFocusEvent argument.

EVT_SET_FOCUS(func) Process a wxEVT_SET_FOCUS event.

EVT_KILL_FOCUS(func) Process a wxEVT_KILL_FOCUS event.

See also
Event handling overview (p. 1674)

wxFocusEvent::wxFocusEvent

 wxFocusEvent (WXTYPE eventType = 0, int id = 0)

Constructor.

wxFocusEvent::GetWindow

Returns the window associated with this event, that is the window which had the focus
before for the wxEVT_SET_FOCUS event and the window which is going to receive focus
for the wxEVT_KILL_FOCUS one.

Warning: the window pointer may be NULL!

CHAPTER 7

536

wxFont

A font is an object which determines the appearance of text. Fonts are used for drawing
text to a device context, and setting the appearance of a window's text.

You can retrieve the current system font settings with wxSystemSettings (p. 1259).

wxSystemSettings (p. 1259)

Derived from

wxGDIObject (p. 582)
wxObject (p. 967)

Include files

<wx/font.h>

Constants

The possible values for the family parameter of wxFont constructor (p. 538) are (the old
names are for compatibility only):

enum wxFontFamily
{
 wxFONTFAMILY_DEFAULT = wxDEFAULT,
 wxFONTFAMILY_DECORATIVE = wxDECORATIVE,
 wxFONTFAMILY_ROMAN = wxROMAN,
 wxFONTFAMILY_SCRIPT = wxSCRIPT,
 wxFONTFAMILY_SWISS = wxSWISS,
 wxFONTFAMILY_MODERN = wxMODERN,
 wxFONTFAMILY_TELETYPE = wxTELETYPE,
 wxFONTFAMILY_MAX
};

The possible values for the weight parameter are (the old names are for compatibility
only):

enum wxFontWeight
{
 wxFONTWEIGHT_NORMAL = wxNORMAL,
 wxFONTWEIGHT_LIGHT = wxLIGHT,
 wxFONTWEIGHT_BOLD = wxBOLD,
 wxFONTWEIGHT_MAX
};

The font flags which can be used during the font creation are:

enum
{
 // no special flags: font with default weight/s lant/anti-
aliasing
 wxFONTFLAG_DEFAULT = 0,

 // slant flags (default: no slant)
 wxFONTFLAG_ITALIC = 1 << 0,
 wxFONTFLAG_SLANT = 1 << 1,

 // weight flags (default: medium)

CHAPTER 7

537

 wxFONTFLAG_LIGHT = 1 << 2,
 wxFONTFLAG_BOLD = 1 << 3,

 // anti-aliasing flag: force on or off (default : the current
system default)
 wxFONTFLAG_ANTIALIASED = 1 << 4,
 wxFONTFLAG_NOT_ANTIALIASED = 1 << 5,

 // underlined/strikethrough flags (default: no lines)
 wxFONTFLAG_UNDERLINED = 1 << 6,
 wxFONTFLAG_STRIKETHROUGH = 1 << 7,
};

The known font encodings are:

enum wxFontEncoding
{
 wxFONTENCODING_SYSTEM = -1, // system defau lt
 wxFONTENCODING_DEFAULT, // current defa ult encoding

 // ISO8859 standard defines a number of single- byte charsets
 wxFONTENCODING_ISO8859_1, // West Europea n (Latin1)
 wxFONTENCODING_ISO8859_2, // Central and East European
(Latin2)
 wxFONTENCODING_ISO8859_3, // Esperanto (L atin3)
 wxFONTENCODING_ISO8859_4, // Baltic (old) (Latin4)
 wxFONTENCODING_ISO8859_5, // Cyrillic
 wxFONTENCODING_ISO8859_6, // Arabic
 wxFONTENCODING_ISO8859_7, // Greek
 wxFONTENCODING_ISO8859_8, // Hebrew
 wxFONTENCODING_ISO8859_9, // Turkish (Lat in5)
 wxFONTENCODING_ISO8859_10, // Variation of Latin4
(Latin6)
 wxFONTENCODING_ISO8859_11, // Thai
 wxFONTENCODING_ISO8859_12, // doesn't exis t currently,
but put it
 // here anyhow to make all
ISO8859
 // consecutive numbers
 wxFONTENCODING_ISO8859_13, // Baltic (Lati n7)
 wxFONTENCODING_ISO8859_14, // Latin8
 wxFONTENCODING_ISO8859_15, // Latin9 (a.k. a. Latin0,
includes euro)
 wxFONTENCODING_ISO8859_MAX,

 // Cyrillic charset soup (see
http://czyborra.com/charsets/cyrillic.html)
 wxFONTENCODING_KOI8, // we don't sup port any of
KOI8 variants
 wxFONTENCODING_ALTERNATIVE, // same as MS-D OS CP866
 wxFONTENCODING_BULGARIAN, // used under L inux in
Bulgaria

 // what would we do without Microsoft? They hav e their own
encodings
 // for DOS
 wxFONTENCODING_CP437, // original MS- DOS codepage
 wxFONTENCODING_CP850, // CP437 merged with Latin1
 wxFONTENCODING_CP852, // CP437 merged with Latin2
 wxFONTENCODING_CP855, // another cyri llic encoding
 wxFONTENCODING_CP866, // and another one
 // and for Windows
 wxFONTENCODING_CP874, // WinThai
 wxFONTENCODING_CP1250, // WinLatin2

CHAPTER 7

538

 wxFONTENCODING_CP1251, // WinCyrillic
 wxFONTENCODING_CP1252, // WinLatin1
 wxFONTENCODING_CP1253, // WinGreek (88 59-7)
 wxFONTENCODING_CP1254, // WinTurkish
 wxFONTENCODING_CP1255, // WinHebrew
 wxFONTENCODING_CP1256, // WinArabic
 wxFONTENCODING_CP1257, // WinBaltic (s ame as Latin 7)
 wxFONTENCODING_CP12_MAX,

 wxFONTENCODING_UTF7, // UTF-7 Unicod e encoding
 wxFONTENCODING_UTF8, // UTF-8 Unicod e encoding

 wxFONTENCODING_UNICODE, // Unicode - cu rrently used
only by
 // wxEncodingCo nverter class

 wxFONTENCODING_MAX
};

Predefined objects

Objects:

wxNullFont

Pointers:

wxNORMAL_FONT
wxSMALL_FONT
wxITALIC_FONT
wxSWISS_FONT

See also

wxFont overview (p. 1715), wxDC::SetFont (p. 369), wxDC::DrawText (p. 362),
wxDC::GetTextExtent (p. 366), wxFontDialog (p. 548), wxSystemSettings (p. 1259)

wxFont::wxFont

 wxFont ()

Default constructor.

 wxFont (int pointSize, wxFontFamily family, int style, wxFontWeight weight, const
bool underline = false, const wxString& faceName = "", wxFontEncoding encoding =
wxFONTENCODING_DEFAULT)

 wxFont (int pixelSize, wxFontFamily family, int style, wxFontWeight weight, const
bool underline = false, const wxString& faceName = "", wxFontEncoding encoding =
wxFONTENCODING_DEFAULT)

Creates a font object with the specified attributes.

Parameters

CHAPTER 7

539

pointSize

Size in points.

pixelSize

Size in pixels: this is directly supported only under MSW currently where this
constructor can be used directly, under other platforms a font with the closest size
to the given one is found using binary search and the static New (p. 541) method
must be used.

family

Font family, a generic way of referring to fonts without specifying actual facename.
One of:

wxFONTFAMILY_DEFAULT Chooses a default font.

wxFONTFAMILY_DECORATIVE A decorative font.

wxFONTFAMILY_ROMAN A formal, serif font.

wxFONTFAMILY_SCRIPT A handwriting font.

wxFONTFAMILY_SWISS A sans-serif font.

wxFONTFAMILY_MODERN A fixed pitch font.

wxFONTFAMILY_TELETYPE A teletype font.

style

One of wxFONTSTYLE_NORMAL , wxFONTSTYLE_SLANT and
wxFONTSTYLE_ITALIC .

weight

Font weight, sometimes also referred to as font boldness. One of:

wxFONTWEIGHT_NORMAL Normal font.

wxFONTWEIGHT_LIGHT Light font.

wxFONTWEIGHT_BOLD Bold font.

underline

The value can be true or false. At present this has an effect on Windows and Motif
2.x only.

faceName

An optional string specifying the actual typeface to be used. If it is an empty string,
a default typeface will be chosen based on the family.

CHAPTER 7

540

encoding

An encoding which may be one ofwxFONTENCODING_SYSTEM Default
system encoding.

wxFONTENCODING_DEFAULT Default application encoding: this is the
encoding set by calls toSetDefaultEncoding (p. 542)
and which may be set to, say, KOI8 to create all fonts
by default with KOI8 encoding. Initially, the default
application encoding is the same as default system
encoding.

wxFONTENCODING_ISO8859_1...15 ISO8859 encodings.

wxFONTENCODING_KOI8 The standard Russian encoding for Internet.

wxFONTENCODING_CP1250...1252 Windows encodings similar to ISO8859 (but
not identical).

If the specified encoding isn't available, no font is created (see also font encoding
overview (p. 1716)).
Remarks

If the desired font does not exist, the closest match will be chosen. Under Windows, only
scalable TrueType fonts are used.

See also wxDC::SetFont (p. 369), wxDC::DrawText (p. 362)and wxDC::GetTextExtent
(p. 366).

wxFont::~wxFont

 ~wxFont ()

Destructor.

Remarks

The destructor may not delete the underlying font object of the native windowing system,
since wxFont uses a reference counting system for efficiency.

Although all remaining fonts are deleted when the application exits, the application
should try to clean up all fonts itself. This is because wxWidgets cannot know if a pointer
to the font object is stored in an application data structure, and there is a risk of double
deletion.

wxFont::IsFixedWidth

bool IsFixedWidth () const

Returns true if the font is a fixed width (or monospaced) font,false if it is a
proportional one or font is invalid.

CHAPTER 7

541

wxFont::GetDefaultEncoding

static wxFontEncoding GetDefaultEncoding ()

Returns the current application's default encoding.

See also

Font encoding overview (p. 1716),SetDefaultEncoding (p. 542)

wxFont::GetFaceName

wxString GetFaceName () const

Returns the typeface name associated with the font, or the empty string if there is no
typeface information.

See also

wxFont::SetFaceName (p. 542)

wxFont::GetFamily

wxFontFamily GetFamily () const

Gets the font family. See wxFont::SetFamily (p. 543) for a list of valid family identifiers.

See also

wxFont::SetFamily (p. 543)

wxFont::GetNativeFontInfoDesc

wxString GetNativeFontInfoDesc () const

Returns the platform-dependent string completely describing this font or an empty string
if the font wasn't constructed using the native font description.

See also

wxFont::SetNativeFontInfo (p. 543)

wxFont::GetPointSize

int GetPointSize () const

Gets the point size.

See also

wxFont::SetPointSize (p. 543)

CHAPTER 7

542

wxFont::GetStyle

int GetStyle () const

Gets the font style. See wxFont::wxFont (p. 538) for a list of valid styles.

See also

wxFont::SetStyle (p. 544)

wxFont::GetUnderlined

bool GetUnderlined () const

Returns true if the font is underlined, false otherwise.

See also

wxFont::SetUnderlined (p. 544)

wxFont::GetWeight

wxFontWeight GetWeight () const

Gets the font weight. See wxFont::wxFont (p. 538) for a list of valid weight identifiers.

See also

wxFont::SetWeight (p. 544)

wxFont::New

static wxFont * New(int pointSize, wxFontFamily family, int style, wxFontWeight
weight, const bool underline = false, const wxString& faceName = "",
wxFontEncoding encoding = wxFONTENCODING_DEFAULT)

static wxFont * New(int pointSize, wxFontFamily family, int flags =
wxFONTFLAG_DEFAULT, const wxString& faceName = "", wxFontEncoding encoding
= wxFONTENCODING_DEFAULT)

static wxFont * New(const wxSize& pixelSize, wxFontFamily family, int style,
wxFontWeight weight, const bool underline = false, const wxString& faceName = "",
wxFontEncoding encoding = wxFONTENCODING_DEFAULT)

static wxFont * New(const wxSize& pixelSize, wxFontFamily family, int flags =
wxFONTFLAG_DEFAULT, const wxString& faceName = "", wxFontEncoding encoding
= wxFONTENCODING_DEFAULT)

These functions take the same parameters as wxFont constructor (p. 538) and return a
new font object allocated on the heap.

Using New() is currently the only way to directly create a font with the given size in
pixels on platforms other than wxMSW.

CHAPTER 7

543

wxFont::Ok

bool Ok() const

Returns true if this object is a valid font, false otherwise.

wxFont::SetDefaultEncoding

static void SetDefaultEncoding (wxFontEncoding encoding)

Sets the default font encoding.

See also

Font encoding overview (p. 1716),GetDefaultEncoding (p. 540)

wxFont::SetFaceName

void SetFaceName (const wxString& faceName)

Sets the facename for the font.

Parameters

faceName

A valid facename, which should be on the end-user's system.

Remarks

To avoid portability problems, don't rely on a specific face, but specify the font family
instead or as well. A suitable font will be found on the end-user's system. If both the
family and the facename are specified, wxWidgets will first search for the specific face,
and then for a font belonging to the same family.

See also

wxFont::GetFaceName (p. 540), wxFont::SetFamily (p. 543)

wxFont::SetFamily

void SetFamily (wxFontFamily family)

Sets the font family.

Parameters

family

One of:

wxFONTFAMILY_DEFAULT Chooses a default font.

wxFONTFAMILY_DECORATIVE A decorative font.

CHAPTER 7

544

wxFONTFAMILY_ROMAN A formal, serif font.

wxFONTFAMILY_SCRIPT A handwriting font.

wxFONTFAMILY_SWISS A sans-serif font.

wxFONTFAMILY_MODERN A fixed pitch font.

wxFONTFAMILY_TELETYPE A teletype font.

See also

wxFont::GetFamily (p. 540), wxFont::SetFaceName (p. 542)

wxFont::SetNativeFontInfo

void SetNativeFontInfo (const wxString& info)

Creates the font corresponding to the given native font description string which must
have been previously returned byGetNativeFontInfoDesc (p. 541). If the string is invalid,
font is unchanged.

wxFont::SetPointSize

void SetPointSize (int pointSize)

Sets the point size.

Parameters

pointSize

Size in points.

See also

wxFont::GetPointSize (p. 541)

wxFont::SetStyle

void SetStyle (int style)

Sets the font style.

Parameters

style

One of wxFONTSTYLE_NORMAL , wxFONTSTYLE_SLANT and
wxFONTSTYLE_ITALIC .

See also

CHAPTER 7

545

wxFont::GetStyle (p. 541)

wxFont::SetUnderlined

void SetUnderlined (const bool underlined)

Sets underlining.

Parameters

underlining

true to underline, false otherwise.

See also

wxFont::GetUnderlined (p. 541)

wxFont::SetWeight

void SetWeight (wxFontWeight weight)

Sets the font weight.

Parameters

weight

One of:

wxFONTWEIGHT_NORMAL Normal font.

wxFONTWEIGHT_LIGHT Light font.

wxFONTWEIGHT_BOLD Bold font.

See also

wxFont::GetWeight (p. 541)

wxFont::operator =

wxFont& operator = (const wxFont& font)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxFont::operator ==

bool operator == (const wxFont& font)

Equality operator. Two fonts are equal if they contain pointers to the same underlying
font data. It does not compare each attribute, so two independently-created fonts using

CHAPTER 7

546

the same parameters will fail the test.

wxFont::operator !=

bool operator != (const wxFont& font)

Inequality operator. Two fonts are not equal if they contain pointers to different
underlying font data. It does not compare each attribute.

wxFontData

wxFontDialog overview (p. 1722)

This class holds a variety of information related to font dialogs.

Derived from

wxObject (p. 967)

Include files

<wx/cmndata.h>

See also

Overview (p. 1722), wxFont (p. 535), wxFontDialog (p. 548)

wxFontData::wxFontData

 wxFontData ()

Constructor. Initializes fontColour to black, showHelp to black, allowSymbols to true,
enableEffects to true, minSize to 0 and maxSize to 0.

wxFontData::EnableEffects

void EnableEffects (bool enable)

Enables or disables 'effects' under MS Windows or generic only. This refers to the
controls for manipulating colour, strikeout and underline properties.

The default value is true.

wxFontData::GetAllowSymbols

bool GetAllowSymbols ()

Under MS Windows, returns a flag determining whether symbol fonts can be selected.
Has no effect on other platforms.

CHAPTER 7

547

The default value is true.

wxFontData::GetColour

wxColour& GetColour ()

Gets the colour associated with the font dialog.

The default value is black.

wxFontData::GetChosenFont

wxFont GetChosenFont ()

Gets the font chosen by the user if the user pressed OK (wxFontDialog::ShowModal
returned wxID_OK).

wxFontData::GetEnableEffects

bool GetEnableEffects ()

Determines whether 'effects' are enabled under Windows. This refers to the controls for
manipulating colour, strikeout and underline properties.

The default value is true.

wxFontData::GetInitialFont

wxFont GetInitialFont ()

Gets the font that will be initially used by the font dialog. This should have previously
been set by the application.

wxFontData::GetShowHelp

bool GetShowHelp ()

Returns true if the Help button will be shown (Windows only).

The default value is false.

wxFontData::SetAllowSymbols

void SetAllowSymbols (bool allowSymbols)

Under MS Windows, determines whether symbol fonts can be selected. Has no effect on
other platforms.

The default value is true.

wxFontData::SetChosenFont

CHAPTER 7

548

void SetChosenFont (const wxFont& font)

Sets the font that will be returned to the user (for internal use only).

wxFontData::SetColour

void SetColour (const wxColour& colour)

Sets the colour that will be used for the font foreground colour.

The default colour is black.

wxFontData::SetInitialFont

void SetInitialFont (const wxFont& font)

Sets the font that will be initially used by the font dialog.

wxFontData::SetRange

void SetRange (int min, int max)

Sets the valid range for the font point size (Windows only).

The default is 0, 0 (unrestricted range).

wxFontData::SetShowHelp

void SetShowHelp (bool showHelp)

Determines whether the Help button will be displayed in the font dialog (Windows only).

The default value is false.

wxFontData::operator =

void operator = (const wxFontData& data)

Assignment operator for the font data.

wxFontDialog

This class represents the font chooser dialog.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

CHAPTER 7

549

Include files

<wx/fontdlg.h>

See also

Overview (p. 1722),
wxFontData (p. 545),
wxGetFontFromUser (p. 1542)

wxFontDialog::wxFontDialog

 wxFontDialog ()

 wxFontDialog (wxWindow* parent)

 wxFontDialog (wxWindow* parent, const wxFontData& data)

Constructor. Pass a parent window, and optionally the font data (p. 545) object to be
used to initialize the dialog controls. If the default constructor is used, Create() (p. 548)
must be called before the dialog can be shown.

wxFontDialog::Create

bool Create (wxWindow* parent)

bool Create (wxWindow* parent, const wxFontData& data)

Creates the dialog if it the wxFontDialog object had been initialized using the default
constructor. Returns true on success and false if an error occurred.

wxFontDialog::GetFontData

const wxFontData& GetFontData () const

wxFontData& GetFontData ()

Returns the font data (p. 545) associated with the font dialog.

wxFontDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed Ok, and wxID_CANCEL
otherwise.

If the user cancels the dialog (ShowModal returns wxID_CANCEL), no font will be
created. If the user presses OK, a new wxFont will be created and stored in the font
dialog's wxFontData structure.

CHAPTER 7

550

wxFontEnumerator

wxFontEnumerator enumerates either all available fonts on the system or only the ones
with given attributes - either only fixed-width (suited for use in programs such as terminal
emulators and the like) or the fonts available in the given encoding (p. 1716).

To do this, you just have to call one of EnumerateXXX() functions - either
EnumerateFacenames (p. 550) or EnumerateEncodings (p. 550) and the corresponding
callback (OnFacename (p. 550) or OnFontEncoding (p. 550)) will be called repeatedly
until either all fonts satisfying the specified criteria are exhausted or the callback returns
false.

Virtual functions to override

Either OnFacename (p. 550) or OnFontEncoding (p. 550) should be overridden
depending on whether you plan to call EnumerateFacenames (p. 550) or
EnumerateEncodings (p. 550). Of course, if you call both of them, you should override
both functions.

Derived from

None

Include files

<wx/fontenum.h>

See also

Font encoding overview (p. 1716), Font sample (p. 1636), wxFont (p. 535),
wxFontMapper (p. 551)

wxFontEnumerator::EnumerateFacenames

virtual bool EnumerateFacenames (wxFontEncoding encoding =
wxFONTENCODING_SYSTEM, bool fixedWidthOnly = false)

Call OnFacename (p. 550) for each font which supports given encoding (only if it is not
wxFONTENCODING_SYSTEM) and is of fixed width (if fixedWidthOnly is true).

Calling this function with default arguments will result in enumerating all fonts available
on the system.

wxFontEnumerator::EnumerateEncodings

virtual bool EnumerateEncodings (const wxString& font = "")

Call OnFontEncoding (p. 550) for each encoding supported by the given font - or for
each encoding supported by at least some font if font is not specified.

CHAPTER 7

551

wxFontEnumerator::GetEncodings

wxArrayString* GetEncodings ()

Return array of strings containing all encodings found by EnumerateEncodings (p. 550).
This is convenience function. It is based on default implementation of OnFontEncoding
(p. 550) so don't expect it to work if you overwrite that method.

wxFontEnumerator::GetFacenames

wxArrayString* GetFacenames ()

Return array of strings containing all facenames found by EnumerateFacenames (p.
550). This is convenience function. It is based on default implementation of
OnFacename (p. 550) so don't expect it to work if you overwrite that method.

wxFontEnumerator::OnFacename

virtual bool OnFacename (const wxString& font)

Called by EnumerateFacenames (p. 550) for each match. Return true to continue
enumeration or false to stop it.

wxFontEnumerator::OnFontEncoding

virtual bool OnFontEncoding (const wxString& font, const wxString& encoding)

Called by EnumerateEncodings (p. 550) for each match. Return true to continue
enumeration or false to stop it.

wxFontList

A font list is a list containing all fonts which have been created. There is only one
instance of this class: wxTheFontList . Use this object to search for a previously
created font of the desired type and create it if not already found. In some windowing
systems, the font may be a scarce resource, so it is best to reuse old resources if
possible. When an application finishes, all fonts will be deleted and their resources
freed, eliminating the possibility of 'memory leaks'.

Derived from

wxList (p. 801)
wxObject (p. 967)

Include files

<wx/gdicmn.h>

See also

wxFont (p. 535)

CHAPTER 7

552

wxFontList::wxFontList

 wxFontList ()

Constructor. The application should not construct its own font list: use the object pointer
wxTheFontList .

wxFontList::AddFont

void AddFont (wxFont * font)

Used by wxWidgets to add a font to the list, called in the font constructor.

wxFontList::FindOrCreateFont

wxFont * FindOrCreateFont (int point_size, int family, int style, int weight, bool
underline = false, const wxString& facename = NULL, wxFontEncoding encoding =
wxFONTENCODING_DEFAULT)

Finds a font of the given specification, or creates one and adds it to the list. See the
wxFont constructor (p. 538) for details of the arguments.

wxFontList::RemoveFont

void RemoveFont (wxFont * font)

Used by wxWidgets to remove a font from the list.

wxFontMapper

wxFontMapper manages user-definable correspondence between logical font names
and the fonts present on the machine.

The default implementations of all functions will ask the user if they are not capable of
finding the answer themselves and store the answer in a config file (configurable via
SetConfigXXX functions). This behaviour may be disabled by giving the value of false to
"interactive" parameter.

However, the functions will always consult the config file to allow the user-defined values
override the default logic and there is no way to disable this - which shouldn't be ever
needed because if "interactive" was never true, the config file is never created anyhow.

In case everything else fails (i.e. there is no record in config file and "interactive" is false
or user denied to choose any replacement), the class queries wxEncodingConverter (p.
459) for "equivalent" encodings (e.g. iso8859-2 and cp1250) and tries them.

Using wxFontMapper in conjunction with wxMBConv cla sses

CHAPTER 7

553

If you need to display text in encoding which is not available at host system (see
IsEncodingAvailable (p. 554)), you may use these two classes to find font in some
similar encoding (see GetAltForEncoding (p. 553)) and convert the text to this encoding
(wxMBConv classes (p. 1657)).

Following code snippet demonstrates it:

if (!wxFontMapper::Get()->IsEncodingAvailable(enc, facename))
{
 wxFontEncoding alternative;
 if (wxFontMapper::Get()->GetAltForEncoding(enc, &alternative,
 facen ame, false))
 {
 wxCSConv convFrom(wxFontMapper::Get()-
>GetEncodingName(enc));
 wxCSConv convTo(wxFontMapper::Get()-
>GetEncodingName(alternative));
 text = wxString(text.mb_str(convFrom), convT o);
 }
 else
 ...failure (or we may try iso8859-1/7bit ASC II)...
}
...display text...

Derived from

No base class

Include files

<wx/fontmap.h>

See also

wxEncodingConverter (p. 459), Writing non-English applications (p. 1661)

wxFontMapper::wxFontMapper

 wxFontMapper ()

Default ctor.

Note

The preferred way of creating a wxFontMapper instance is to call wxFontMapper::Get (p.
553).

wxFontMapper::~wxFontMapper

 ~wxFontMapper ()

Virtual dtor for a base class.

wxFontMapper::CharsetToEncoding

CHAPTER 7

554

wxFontEncoding CharsetToEncoding (const wxString& charset, bool interactive =
true)

Returns the encoding for the given charset (in the form of RFC 2046)
orwxFONTENCODING_SYSTEM if couldn't decode it.

Be careful when using this function with interactive set to true (default value) as the
function then may show a dialog box to the user which may lead to unexpected
reentrancies and may also take a significantly longer time than a simple function call. For
these reasons, it is almost always a bad idea to call this function from the event handlers
for repeatedly generated events such as EVT_PAINT.

wxFontMapper::Get

static wxFontMapper * Get()

Get the current font mapper object. If there is no current object, creates one.

See also

wxFontMapper::Set (p. 555)

wxFontMapper::GetAltForEncoding

bool GetAltForEncoding (wxFontEncoding encoding, wxNativeEncodingInfo* info,
const wxString& facename = wxEmptyString, bool interactive = true)

bool GetAltForEncoding (wxFontEncoding encoding, wxFontEncoding*
alt_encoding, const wxString& facename = wxEmptyString, bool interactive = true)

Find an alternative for the given encoding (which is supposed to not be available on this
system). If successful, return true and fill info structure with the parameters required to
create the font, otherwise return false.

The first form is for wxWidgets' internal use while the second one is better suitable for
general use -- it returns wxFontEncoding which can consequently be passed to wxFont
constructor.

wxFontMapper::GetEncoding

static wxFontEncoding GetEncoding (size_t n)

Returns the n-th supported encoding. Together with GetSupportedEncodingsCount() (p.
554) this method may be used to get all supported encodings.

wxFontMapper::GetEncodingDescription

static wxString GetEncodingDescription (wxFontEncoding encoding)

Return user-readable string describing the given encoding.

CHAPTER 7

555

wxFontMapper::GetEncodingFromName

static wxFontEncoding GetEncodingFromName (const wxString& encoding)

Return the encoding corresponding to the given internal name. This function is the
inverse of GetEncodingName (p. 554) and is intentionally less general than
CharsetToEncoding (p. 553), i.e. it doesn't try to make any guesses nor ever asks the
user. It is meant just as a way of restoring objects previously serialized using
GetEncodingName (p. 554).

wxFontMapper::GetEncodingName

static wxString GetEncodingName (wxFontEncoding encoding)

Return internal string identifier for the encoding (see also GetEncodingDescription() (p.
554))

See also

GetEncodingFromName (p. 554)

wxFontMapper::GetSupportedEncodingsCount

static size_t GetSupportedEncodingsCount ()

Returns the number of the font encodings supported by this class. Together with
GetEncoding (p. 554) this method may be used to get all supported encodings.

wxFontMapper::IsEncodingAvailable

bool IsEncodingAvailable (wxFontEncoding encoding, const wxString& facename =
wxEmptyString)

Check whether given encoding is available in given face or not. If no facename is given,
find any font in this encoding.

wxFontMapper::SetDialogParent

void SetDialogParent (wxWindow* parent)

The parent window for modal dialogs.

wxFontMapper::SetDialogTitle

void SetDialogTitle (const wxString& title)

The title for the dialogs (note that default is quite reasonable).

wxFontMapper::Set

static wxFontMapper * Set(wxFontMapper * mapper)

CHAPTER 7

556

Set the current font mapper object and return previous one (may be NULL). This method
is only useful if you want to plug-in an alternative font mapper into wxWidgets.

See also

wxFontMapper::Get (p. 553)

wxFontMapper::SetConfig

void SetConfig (wxConfigBase* config)

Set the config object to use (may be NULL to use default).

By default, the global one (from wxConfigBase::Get() will be used) and the default root
path for the config settings is the string returned by GetDefaultConfigPath().

wxFontMapper::SetConfigPath

void SetConfigPath (const wxString& prefix)

Set the root config path to use (should be an absolute path).

wxFrame

A frame is a window whose size and position can (usually) be changed by the user. It
usually has thick borders and a title bar, and can optionally contain a menu bar, toolbar
and status bar. A frame can contain any window that is not a frame or dialog.

A frame that has a status bar and toolbar created via the
CreateStatusBar/CreateToolBar functions manages these windows, and adjusts the
value returned by GetClientSize to reflect the remaining size available to application
windows.

Derived from

wxTopLevelWindow (p. 1354)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/frame.h>

Window styles

wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |
wxMAXIMIZE_BOX | wxRESIZE_BORDER |
wxSYSTEM_MENU | wxCAPTION | wxCLOSE_BOX |
wxCLIP_CHILDREN .

wxICONIZE Display the frame iconized (minimized). Windows only.

CHAPTER 7

557

wxCAPTION Puts a caption on the frame.

wxMINIMIZE Identical to wxICONIZE . Windows only.

wxMINIMIZE_BOX Displays a minimize box on the frame.

wxMAXIMIZE Displays the frame maximized. Windows only.

wxMAXIMIZE_BOX Displays a maximize box on the frame.

wxCLOSE_BOX Displays a close box on the frame.

wxSTAY_ON_TOP Stay on top of all other windows, see also
wxFRAME_FLOAT_ON_PARENT.

wxSYSTEM_MENU Displays a system menu.

wxRESIZE_BORDER Displays a resizeable border around the window.

wxFRAME_TOOL_WINDOW Causes a frame with a small titlebar to be created;
the frame does not appear in the taskbar under Windows
or GTK+.

wxFRAME_NO_TASKBAR Creates an otherwise normal frame but it does not appear
in the taskbar under Windows or GTK+ (note that it will
minimize to the desktop window under Windows which
may seem strange to the users and thus it might be better
to use this style only without wxMINIMIZE_BOX style). In
wxGTK, the flag is respected only if GTK+ is at least
version 2.2 and the window manager supports
_NET_WM_STATE_SKIP_TASKBAR
(http://freedesktop.org/Standards/wm-
spec/1.3/ar01s05.html) hint. Has no effect under
other platforms.

wxFRAME_FLOAT_ON_PARENT The frame will always be on top of its parent (unlike
wxSTAY_ON_TOP). A frame created with this style must
have a non-NULL parent.

wxFRAME_EX_CONTEXTHELP Under Windows, puts a query button on the
caption. When pressed, Windows will go into a context-
sensitive help mode and wxWidgets will send a
wxEVT_HELP event if the user clicked on an application
window. Note that this is an extended style and must be
set by calling SetExtraStyle (p. 1461) before Create is
called (two-step construction). You cannot use this style
together with wxMAXIMIZE_BOX or wxMINIMIZE_BOX, so
you should use wxDEFAULT_FRAME_STYLE & ~
(wxMINIMIZE_BOX | wxMAXIMIZE_BOX) for the frames
having this style (the dialogs don't have a minimize or a
maximize box by default)

wxFRAME_SHAPED Windows with this style are allowed to have their shape

CHAPTER 7

558

changed with the SetShape (p. 1358) method.

wxFRAME_EX_METAL On Mac OS X, frames with this style will be shown with a
metallic look. This is an extra style.

The default frame style is for normal, resizeable frames. To create a frame which can not
be resized by user, you may use the following combination of styles:
wxDEFAULT_FRAME_STYLE & ~ (wxRESIZE_BORDER | wxRES IZE_BOX |
wxMAXIMIZE_BOX). See also window styles overview (p. 1686).

Default event processing

wxFrame processes the following events:

wxEVT_SIZE (p. 1123) If the frame has exactly one child window, not counting the
status and toolbar, this child is resized to take the entire
frame client area. If two or more windows are present, they
should be laid out explicitly either by manually handling
wxEVT_SIZE or usingsizers (p. 1694)

wxEVT_MENU_HIGHLIGHT (p. 921) The default implementation displays the
help string (p. 924) associated with the selected item in the
first pane of the status bar, if there is one.

Remarks

An application should normally define an wxCloseEvent (p. 147) handler for the frame to
respond to system close events, for example so that related data and subwindows can
be cleaned up.

See also

wxMDIParentFrame (p. 880), wxMDIChildFrame (p. 875), wxMiniFrame (p. 934),
wxDialog (p. 391)

wxFrame::wxFrame

 wxFrame ()

Default constructor.

 wxFrame (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent

The window parent. This may be NULL. If it is non-NULL, the frame will always be

CHAPTER 7

559

displayed on top of the parent window on Windows.

id

The window identifier. It may take a value of -1 to indicate a default value.

title

The caption to be displayed on the frame's title bar.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWidgets, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWidgets, depending on platform.

style

The window style. See wxFrame (p. 555).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

For Motif, MWM (the Motif Window Manager) should be running for any window styles to
work (otherwise all styles take effect).

See also

wxFrame::Create (p. 559)

wxFrame::~wxFrame

void ~wxFrame ()

Destructor. Destroys all child windows and menu bar if present.

wxFrame::Centre

void Centre (int direction = wxBOTH)

Centres the frame on the display.

Parameters

direction

CHAPTER 7

560

The parameter may be wxHORIZONTAL, wxVERTICAL or wxBOTH.

wxFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxFrame::wxFrame (p. 558) for further details.

wxFrame::CreateStatusBar

virtual wxStatusBar* CreateStatusBar (int number = 1, long style = 0, wxWindowID id
= -1, const wxString& name = "statusBar")

Creates a status bar at the bottom of the frame.

Parameters

number

The number of fields to create. Specify a value greater than 1 to create a multi-field
status bar.

style

The status bar style. See wxStatusBar (p. 1210) for a list of valid styles.

id

The status bar window identifier. If -1, an identifier will be chosen by wxWidgets.

name

The status bar window name.

Return value

A pointer to the status bar if it was created successfully, NULL otherwise.

Remarks

The width of the status bar is the whole width of the frame (adjusted automatically when
resizing), and the height and text size are chosen by the host windowing system.

By default, the status bar is an instance of wxStatusBar. To use a different class,
override wxFrame::OnCreateStatusBar (p. 562).

Note that you can put controls and other windows on the status bar if you wish.

See also

wxFrame::SetStatusText (p. 564), wxFrame::OnCreateStatusBar (p. 562),
wxFrame::GetStatusBar (p. 561)

CHAPTER 7

561

wxFrame::CreateToolBar

virtual wxToolBar* CreateToolBar (long style = wxNO_BORDER |
wxTB_HORIZONTAL, wxWindowID id = -1, const wxString& name = "toolBar")

Creates a toolbar at the top or left of the frame.

Parameters

style

The toolbar style. See wxToolBar (p. 1337) for a list of valid styles.

id

The toolbar window identifier. If -1, an identifier will be chosen by wxWidgets.

name

The toolbar window name.

Return value

A pointer to the toolbar if it was created successfully, NULL otherwise.

Remarks

By default, the toolbar is an instance of wxToolBar (which is defined to be a suitable
toolbar class on each platform, such as wxToolBar95). To use a different class, override
wxFrame::OnCreateToolBar (p. 562).

When a toolbar has been created with this function, or made known to the frame with
wxFrame::SetToolBar (p. 565), the frame will manage the toolbar position and adjust the
return value from wxWindow::GetClientSize (p. 1436) to reflect the available space for
application windows.

Under Pocket PC, you should always use this function for creating the toolbar to be
managed by the frame, so that wxWidgets can use a combined menubar and toolbar.
Where you manage your own toolbars, create a wxToolBar as usual.

See also

wxFrame::CreateStatusBar (p. 559), wxFrame::OnCreateToolBar (p. 562),
wxFrame::SetToolBar (p. 565), wxFrame::GetToolBar (p. 561)

wxFrame::GetClientAreaOrigin

wxPoint GetClientAreaOrigin () const

Returns the origin of the frame client area (in client coordinates). It may be different from
(0, 0) if the frame has a toolbar.

wxFrame::GetMenuBar

CHAPTER 7

562

wxMenuBar* GetMenuBar () const

Returns a pointer to the menubar currently associated with the frame (if any).

See also

wxFrame::SetMenuBar (p. 563), wxMenuBar (p. 912), wxMenu (p. 899)

wxFrame::GetStatusBar

wxStatusBar* GetStatusBar () const

Returns a pointer to the status bar currently associated with the frame (if any).

See also

wxFrame::CreateStatusBar (p. 559), wxStatusBar (p. 1210)

wxFrame::GetStatusBarPane

int GetStatusBarPane ()

Returns the status bar pane used to display menu and toolbar help.

See also

wxFrame::SetStatusBarPane (p. 564)

wxFrame::GetToolBar

wxToolBar* GetToolBar () const

Returns a pointer to the toolbar currently associated with the frame (if any).

See also

wxFrame::CreateToolBar (p. 560), wxToolBar (p. 1337), wxFrame::SetToolBar (p. 565)

wxFrame::OnCreateStatusBar

virtual wxStatusBar* OnCreateStatusBar (int number, long style, wxWindowID id,
const wxString& name)

Virtual function called when a status bar is requested by wxFrame::CreateStatusBar (p.
559).

Parameters

number

The number of fields to create.

style

CHAPTER 7

563

The window style. See wxStatusBar (p. 1210) for a list of valid styles.

id

The window identifier. If -1, an identifier will be chosen by wxWidgets.

name

The window name.

Return value

A status bar object.

Remarks

An application can override this function to return a different kind of status bar. The
default implementation returns an instance of wxStatusBar (p. 1210).

See also

wxFrame::CreateStatusBar (p. 559), wxStatusBar (p. 1210).

wxFrame::OnCreateToolBar

virtual wxToolBar* OnCreateToolBar (long style, wxWindowID id, const wxString&
name)

Virtual function called when a toolbar is requested by wxFrame::CreateToolBar (p. 560).

Parameters

style

The toolbar style. See wxToolBar (p. 1337) for a list of valid styles.

id

The toolbar window identifier. If -1, an identifier will be chosen by wxWidgets.

name

The toolbar window name.

Return value

A toolbar object.

Remarks

An application can override this function to return a different kind of toolbar. The default
implementation returns an instance of wxToolBar (p. 1337).

See also

CHAPTER 7

564

wxFrame::CreateToolBar (p. 560), wxToolBar (p. 1337).

wxFrame::ProcessCommand

void ProcessCommand (int id)

Simulate a menu command.

Parameters

id

The identifier for a menu item.

wxFrame::SendSizeEvent

void SendSizeEvent ()

This function sends a dummy size event (p. 1123) to the frame forcing it to reevaluate its
children positions. It is sometimes useful to call this function after adding or deleting a
children after the frame creation or if a child size changes.

Note that if the frame is using either sizers or constraints for the children layout, it is
enough to call Layout() (p. 1447) directly and this function should not be used in this
case.

wxFrame::SetMenuBar

void SetMenuBar (wxMenuBar* menuBar)

Tells the frame to show the given menu bar.

Parameters

menuBar

The menu bar to associate with the frame.

Remarks

If the frame is destroyed, the menu bar and its menus will be destroyed also, so do not
delete the menu bar explicitly (except by resetting the frame's menu bar to another frame
or NULL).

Under Windows, a size event is generated, so be sure to initialize data members
properly before calling SetMenuBar .

Note that on some platforms, it is not possible to call this function twice for the same
frame object.

See also

wxFrame::GetMenuBar (p. 561), wxMenuBar (p. 912), wxMenu (p. 899).

CHAPTER 7

565

wxFrame::SetStatusBar

void SetStatusBar (wxStatusBar* statusBar)

Associates a status bar with the frame.

See also

wxFrame::CreateStatusBar (p. 559), wxStatusBar (p. 1210), wxFrame::GetStatusBar (p.
561)

wxFrame::SetStatusBarPane

void SetStatusBarPane (int n)

Set the status bar pane used to display menu and toolbar help. Using -1 disables help
display.

wxFrame::SetStatusText

virtual void SetStatusText (const wxString& text, int number = 0)

Sets the status bar text and redraws the status bar.

Parameters

text

The text for the status field.

number

The status field (starting from zero).

Remarks

Use an empty string to clear the status bar.

See also

wxFrame::CreateStatusBar (p. 559), wxStatusBar (p. 1210)

wxFrame::SetStatusWidths

virtual void SetStatusWidths (int n, int * widths)

Sets the widths of the fields in the status bar.

Parameters

nThe number of fields in the status bar. It must be the same used in CreateStatusBar (p.
559).

widths

CHAPTER 7

566

Must contain an array of n integers, each of which is a status field width in pixels. A
value of -1 indicates that the field is variable width; at least one field must be -1.
You should delete this array after calling SetStatusWidths .

Remarks

The widths of the variable fields are calculated from the total width of all fields, minus the
sum of widths of the non-variable fields, divided by the number of variable fields.

wxPython note: Only a single parameter is required, a Python list of integers.

wxPerl note: In wxPerl this method takes the field widths as parameters.

wxFrame::SetToolBar

void SetToolBar (wxToolBar* toolBar)

Associates a toolbar with the frame.

See also

wxFrame::CreateToolBar (p. 560), wxToolBar (p. 1337), wxFrame::GetToolBar (p. 561)

wxFSFile

This class represents a single file opened by wxFileSystem (p. 517). It provides more
information than wxWindow's input stream (stream, filename, mime type, anchor).

Note: Any pointer returned by a method of wxFSFile is valid only as long as the
wxFSFile object exists. For example a call to GetStream() doesn't create the stream but
only returns the pointer to it. In other words after 10 calls to GetStream() you will obtain
ten identical pointers.

Derived from

wxObject (p. 967)

Include files

<wx/filesys.h>

See Also

wxFileSystemHandler (p. 520), wxFileSystem (p. 517), Overview (p. 1673)

wxFSFile::wxFSFile

 wxFSFile (wxInputStream *stream, const wxString& loc, const wxString& mimetype,
const wxString& anchor, wxDateTime modif)

CHAPTER 7

567

Constructor. You probably won't use it. See Notes for details.

Parameters

stream

The input stream that will be used to access data

location

The full location (aka filename) of the file

mimetype

MIME type of this file. Mime type is either extension-based or HTTP Content-Type

anchor

Anchor. See GetAnchor() (p. 567) for details.

If you are not sure of the meaning of these params, see the description of the
GetXXXX() functions.

Notes

It is seldom used by the application programmer but you will need it if you are writing
your own virtual FS. For example you may need something similar to
wxMemoryInputStream, but because wxMemoryInputStream doesn't free the memory
when destroyed and thus passing a memory stream pointer into wxFSFile constructor
would lead to memory leaks, you can write your own class derived from wxFSFile:

class wxMyFSFile : public wxFSFile
{
 private:
 void *m_Mem;
 public:
 wxMyFSFile(.....)
 ~wxMyFSFile() {free(m_Mem);}
 // of course dtor is virtual ;-)
};

wxFSFile::GetAnchor

const wxString& GetAnchor () const

Returns anchor (if present). The term of anchor can be easily explained using few
examples:

index.htm#anchor /* 'anchor' i s anchor */
index/wx001.htm /* NO anchor here! */
archive/main.zip#zip:index.htm#global /* 'global' */
archive/main.zip#zip:index.htm /* NO anchor here! */

Usually an anchor is presented only if the MIME type is 'text/html'. But it may have some
meaning with other files; for example myanim.avi#200 may refer to position in animation
or reality.wrl#MyView may refer to a predefined view in VRML.

CHAPTER 7

568

wxFSFile::GetLocation

const wxString& GetLocation () const

Returns full location of the file, including path and protocol. Examples :

http://www.wxwidgets.org
http://www.ms.mff.cuni.cz/~vsla8348/wxhtml/archive. zip#zip:info.tx
t
file:/home/vasek/index.htm
relative-file.htm

wxFSFile::GetMimeType

const wxString& GetMimeType () const

Returns the MIME type of the content of this file. It is either extension-based (see
wxMimeTypesManager) or extracted from HTTP protocol Content-Type header.

wxFSFile::GetModificationTime

wxDateTime GetModificationTime () const

Returns time when this file was modified.

wxFSFile::GetStream

wxInputStream* GetStream () const

Returns pointer to the stream. You can use the returned stream to directly access data.
You may suppose that the stream provide Seek and GetSize functionality (even in the
case of the HTTP protocol which doesn't provide this by default. wxHtml uses local
cache to work around this and to speed up the connection).

wxFTP

wxFTP can be used to establish a connection to an FTP server and perform all the usual
operations. Please consult the RFC 959 for more details about the FTP protocol.

To use a commands which doesn't involve file transfer (i.e. directory oriented
commands) you just need to call a corresponding member function or use the generic
SendCommand (p. 569) method. However to actually transfer files you just get or give a
stream to or from this class and the actual data are read or written using the usual
stream methods.

Example of using wxFTP for file downloading:

 wxFTP ftp;

 // if you don't use these lines anonymous login will be used
 ftp.SetUser("user");
 ftp.SetPassword("password");

CHAPTER 7

569

 if (!ftp.Connect("ftp.wxwindows.org"))
 {
 wxLogError("Couldn't connect");
 return;
 }

 ftp.ChDir("/pub");
 wxInputStream *in = ftp.GetInputStream("wxWidge ts-
4.2.0.tar.gz");
 if (!in)
 {
 wxLogError("Coudln't get file");
 }
 else
 {
 size_t size = in->GetSize();
 char *data = new char[size];
 if (!in->Read(data, size))
 {
 wxLogError("Read error");
 }
 else
 {
 // file data is in the buffer
 ...
 }

 delete [] data;
 delete in;
 }

To upload a file you would do (assuming the connection to the server was opened
successfully):

 wxOutputStream *out = ftp.GetOutputStream(" filename");
 if (out)
 {
 out->Write(...); // your data
 delete out;
 }

Constants

wxFTP defines constants corresponding to the two supported transfer modes:

enum TransferMode
{
 ASCII,
 BINARY
};

Derived from

wxProtocol (p. 1036)

Include files

<wx/protocol/ftp.h>

See also

CHAPTER 7

570

wxSocketBase (p. 1148)

wxFTP::wxFTP

 wxFTP ()

Default constructor.

wxFTP::~wxFTP

 ~wxFTP ()

Destructor will close the connection if connected.

wxFTP::Abort

bool Abort ()

Aborts the download currently in process, returns true if ok, false if an error
occurred.

wxFTP::CheckCommand

bool CheckCommand (const wxString& command, char ret)

Send the specified command to the FTP server. ret specifies the expected result.

Return value

true if the command has been sent successfully, else false.

wxFTP::SendCommand

char SendCommand (const wxString& command)

Send the specified command to the FTP server and return the first character of the
return code.

wxFTP::GetLastResult

const wxString& GetLastResult ()

Returns the last command result, i.e. the full server reply for the last command.

wxFTP::ChDir

bool ChDir (const wxString& dir)

Change the current FTP working directory. Returns true if successful.

CHAPTER 7

571

wxFTP::MkDir

bool MkDir (const wxString& dir)

Create the specified directory in the current FTP working directory. Returns true if
successful.

wxFTP::RmDir

bool RmDir (const wxString& dir)

Remove the specified directory from the current FTP working directory. Returns true if
successful.

wxFTP::Pwd

wxString Pwd ()

Returns the current FTP working directory.

wxFTP::Rename

bool Rename (const wxString& src, const wxString& dst)

Rename the specified src element to dst. Returns true if successful.

wxFTP::RmFile

bool RmFile (const wxString& path)

Delete the file specified by path. Returns true if successful.

wxFTP::SetAscii

bool SetAscii ()

Sets the transfer mode to ASCII. It will be used for the next transfer.

wxFTP::SetBinary

bool SetBinary ()

Sets the transfer mode to binary (IMAGE). It will be used for the next transfer.

wxFTP::SetPassive

void SetPassive (bool pasv)

If pasv is true , passive connection to the FTP server is used. This is the default as it
works with practically all firewalls. If the server doesn't support passive move, you may

CHAPTER 7

572

call this function with false argument to use active connection.

wxFTP::SetTransferMode

bool SetTransferMode (TransferMode mode)

Sets the transfer mode to the specified one. It will be used for the next transfer.

If this function is never called, binary transfer mode is used by default.

wxFTP::SetUser

void SetUser (const wxString& user)

Sets the user name to be sent to the FTP server to be allowed to log in.

Default value

The default value of the user name is "anonymous".

Remark

This parameter can be included in a URL if you want to use the URL manager. For
example, you can use: "ftp://a_user:a_password@a.host:service/a_directory/a_file" to
specify a user and a password.

wxFTP::SetPassword

void SetPassword (const wxString& passwd)

Sets the password to be sent to the FTP server to be allowed to log in.

Default value

The default value of the user name is your email address. For example, it could be
"username@userhost.domain". This password is built by getting the current user name
and the host name of the local machine from the system.

Remark

This parameter can be included in a URL if you want to use the URL manager. For
example, you can use: "ftp://a_user:a_password@a.host:service/a_directory/a_file" to
specify a user and a password.

wxFTP::FileExists

bool FileExists (const wxString& filename)

Returns true if the given remote file exists, false otherwise.

wxFTP::GetFileSize

CHAPTER 7

573

int GetFileSize (const wxString& filename)

Returns the file size in bytes or -1 if the file doesn't exist or the size couldn't be
determined. Notice that this size can be approximative size only and shouldn't be used
for allocating the buffer in which the remote file is copied, for example.

wxFTP::GetDirList

bool GetDirList (wxArrayString& files, const wxString& wildcard = "")

The GetList function is quite low-level. It returns the list of the files in the current
directory. The list can be filtered using the wildcard string. If wildcard is empty (default), it
will return all files in directory.

The form of the list can change from one peer system to another. For example, for a
UNIX peer system, it will look like this:

-r--r--r-- 1 guilhem lavaux 12738 Jan 16 20 :17 cmndata.cpp
-r--r--r-- 1 guilhem lavaux 10866 Jan 24 16 :41 config.cpp
-rw-rw-rw- 1 guilhem lavaux 29967 Dec 21 19 :17 cwlex_yy.c
-rw-rw-rw- 1 guilhem lavaux 14342 Jan 22 19 :51 cwy_tab.c
-r--r--r-- 1 guilhem lavaux 13890 Jan 29 19 :18 date.cpp
-r--r--r-- 1 guilhem lavaux 3989 Feb 8 19 :18 datstrm.cpp

But on Windows system, it will look like this:

winamp~1 exe 520196 02-25-1999 19:28 winamp204 .exe
 1 file(s) 520 196 bytes

Return value: true if the file list was successfully retrieved, false otherwise.

See also

GetFilesList (p. 572)

wxFTP::GetFilesList

bool GetFilesList (wxArrayString& files, const wxString& wildcard = "")

This function returns the computer-parsable list of the files in the current directory
(optionally only of the files matching the wildcard, all files by default). This list always has
the same format and contains one full (including the directory path) file name per line.

Return value: true if the file list was successfully retrieved, false otherwise.

wxFTP::GetOutputStream

wxOutputStream * GetOutputStream (const wxString& file)

Initializes an output stream to the specified file. The returned stream has all but the seek
functionality of wxStreams. When the user finishes writing data, he has to delete the
stream to close it.

Return value

CHAPTER 7

574

An initialized write-only stream.

See also

wxOutputStream (p. 971)

wxFTP::GetInputStream

wxInputStream * GetInputStream (const wxString& path)

Creates a new input stream on the specified path. You can use all but the seek
functionality of wxStream. Seek isn't available on all streams. For example, HTTP or
FTP streams do not deal with it. Other functions like Tell are not available for this sort of
stream, at present. You will be notified when the EOF is reached by an error.

Return value

Returns NULL if an error occurred (it could be a network failure or the fact that the file
doesn't exist).

Returns the initialized stream. You will have to delete it yourself when you don't need it
anymore. The destructor closes the DATA stream connection but will leave the
COMMAND stream connection opened. It means that you can still send new commands
without reconnecting.

Example of a standalone connection (without wxURL)

 wxFTP ftp;
 wxInputStream *in_stream;
 char *data;

 ftp.Connect("a.host.domain");
 ftp.ChDir("a_directory");
 in_stream = ftp.GetInputStream("a_file_to_get");

 data = new char[in_stream->GetSize()];

 in_stream->Read(data, in_stream->GetSize());
 if (in_stream->LastError() != wxStream_NOERROR) {
 // Do something.
 }

 delete in_stream; /* Close the DATA connection */

 ftp.Close(); /* Close the COMMAND connection */

See also

wxInputStream (p. 777)

wxGauge

A gauge is a horizontal or vertical bar which shows a quantity (often time). There are no
user commands for the gauge.

CHAPTER 7

575

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/gauge.h>

Window styles

wxGA_HORIZONTAL Creates a horizontal gauge.

wxGA_VERTICAL Creates a vertical gauge.

wxGA_SMOOTH Creates smooth progress bar with one pixel wide update
step (not supported by all platforms).

See also window styles overview (p. 1686).

Event handling

wxGauge is read-only so generates no events.

See also

wxSlider (p. 1138), wxScrollBar (p. 1092)

wxGauge::wxGauge

 wxGauge ()

Default constructor.

 wxGauge (wxWindow* parent, wxWindowID id, int range, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxGA_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "gauge")

Constructor, creating and showing a gauge.

Parameters

parent

Window parent.

id

Window identifier.

CHAPTER 7

576

range

Integer range (maximum value) of the gauge.

pos

Window position.

size

Window size.

style

Gauge style. See wxGauge (p. 574).

name

Window name.

See also

wxGauge::Create (p. 575)

wxGauge::~wxGauge

 ~wxGauge ()

Destructor, destroying the gauge.

wxGauge::Create

bool Create (wxWindow* parent, wxWindowID id, int range, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxGA_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "gauge")

Creates the gauge for two-step construction. See wxGauge::wxGauge (p. 574) for
further details.

wxGauge::GetBezelFace

int GetBezelFace () const

Returns the width of the 3D bezel face.

Remarks

This method is not implemented (returns 0) for most platforms.

See also

wxGauge::SetBezelFace (p. 577)

CHAPTER 7

577

wxGauge::GetRange

int GetRange () const

Returns the maximum position of the gauge.

Remarks

This method is not implemented (doesn't do anything) for most platforms.

See also

wxGauge::SetRange (p. 577)

wxGauge::GetShadowWidth

int GetShadowWidth () const

Returns the 3D shadow margin width.

Remarks

This method is not implemented (returns 0) for most platforms.

See also

wxGauge::SetShadowWidth (p. 577)

wxGauge::GetValue

int GetValue () const

Returns the current position of the gauge.

See also

wxGauge::SetValue (p. 577)

wxGauge::IsVertical

bool IsVertical () const

Returns true if the gauge is vertical (has wxGA_VERTICAL style) and false otherwise.

wxGauge::SetBezelFace

void SetBezelFace (int width)

Sets the 3D bezel face width.

Remarks

This method is not implemented (doesn't do anything) for most platforms.

CHAPTER 7

578

See also

wxGauge::GetBezelFace (p. 576)

wxGauge::SetRange

void SetRange (int range)

Sets the range (maximum value) of the gauge.

See also

wxGauge::GetRange (p. 576)

wxGauge::SetShadowWidth

void SetShadowWidth (int width)

Sets the 3D shadow width.

Remarks

This method is not implemented (doesn't do anything) for most platforms.

wxGauge::SetValue

void SetValue (int pos)

Sets the position of the gauge.

Parameters

pos

Position for the gauge level.

See also

wxGauge::GetValue (p. 576)

wxGBPosition

This class represents the position of an item in a virtual grid of rows and columns
managed by a wxGridBagSizer (p. 627).

Derived from

No base class

Include files

<wx/gbsizer.h>

CHAPTER 7

579

wxGBPosition::wxGBPosition

 wxGBPosition ()

 wxGBPosition (int row, int col)

Construct a new wxGBPosition, optionally setting the row and column. The default is
(0,0).

wxGBPosition::GetCol

int GetCol () const

Get the current column value.

wxGBPosition::GetRow

int GetRow () const

Get the current row value.

wxGBPosition::SetCol

void SetCol (int col)

Set a new column value.

wxGBPosition::SetRow

void SetRow (int row)

Set a new row value.

wxGBPosition::operator!

bool operator! (const wxGBPosition& p) const

Is the wxGBPosition valid? (An invalid wxGBPosition is (-1,-1).)

wxGBPosition::operator==

bool operator operator== (const wxGBPosition& p) const

Compare equality of two wxGBPositions.

wxGBSizerItem

CHAPTER 7

580

The wxGBSizerItem class is used by the wxGridBagSizer (p. 627) for tracking the items
in the sizer. It adds grid position and spanning information to the normal wxSizerItem (p.
1134) by addingwxGBPosition (p. 578) and wxGBSpan (p. 580)attrbibutes. Most of the
time you will not need to use a wxGBSizerItem directly in your code, but there are a
couple of cases where it is handy.

Derived from

wxSizerItem (p. 1134)

Include files

<wx/gbsizer.h>

wxGBSizerItem::wxGBSizerItem

 wxGBSizerItem (int width, int height, const wxGBPosition& pos, const wxGBSpan&
span, int flag, int border, wxObject* userData)

Construct a sizer item for tracking a spacer.

 wxGBSizerItem (wxWindow* window, const wxGBPosition& pos, const
wxGBSpan& span, int flag, int border, wxObject* userData)

Construct a sizer item for tracking a window.

 wxGBSizerItem (wxSizer* sizer, const wxGBPosition& pos, const wxGBSpan&
span, int flag, int border, wxObject* userData)

Construct a sizer item for tracking a subsizer.

wxGBSizerItem::GetEndPos

void GetEndPos (int& row, int& col)

Get the row and column of the endpoint of this item

wxGBSizerItem::GetPos

wxGBPosition GetPos () const

void GetPos (int& row, int& col) const

Get the grid position of the item.

wxGBSizerItem::GetSpan

wxGBSpan GetSpan () const

void GetSpan (int& rowspan, int& colspan) const

CHAPTER 7

581

Get the row and column spanning of the item.

wxGBSizerItem::Intersects

bool Intersects (const wxGBSizerItem& other)

Returns true if this item and the other item instersect

bool Intersects (const wxGBPosition& pos, const wxGBSpan& span)

Returns true if the given pos/span would intersect with this item.

wxGBSizerItem::SetPos

bool SetPos (const wxGBPosition& pos)

If the item is already a member of a sizer then first ensure that there is no other item that
would intersect with this one at the new position, then set the new position. Returns true
if the change is successful and after the next Layout the item will be moved.

wxGBSizerItem::SetSpan

bool SetSpan (const wxGBSpan& span)

If the item is already a member of a sizer then first ensure that there is no other item that
would intersect with this one with its new spanning size, then set the new spanning.
Returns true if the change is successful and after the next Layout the item will be
resized.

wxGBSpan

This class is used to hold the row and column spanning attributes of items in a
wxGridBagSizer (p. 627).

Derived from

No base class

Include files

<wx/gbsizer.h>

wxGBSpan::wxGBSpan

 wxGBSpan ()

 wxGBSpan (int rowspan, int colspan)

Construct a new wxGBSpan, optionally setting the rowspan and colspan. The default is

CHAPTER 7

582

(1,1). (Meaning that the item occupies one cell in each direction.

wxGBSpan::GetColspan

int GetColspan () const

Get the current colspan value.

wxGBSpan::GetRowspan

int GetRowspan () const

Get the current rowspan value.

wxGBSpan::SetColspan

void SetColspan (int colspan)

Set a new colspan value.

wxGBSpan::SetRowspan

void SetRowspan (int rowspan)

Set a new rowspan value.

wxGBSpan::operator!

bool operator! (const wxGBSpan& o) const

Is the wxGBSpan valid? (An invalid wxGBSpan is (-1,-1).)

wxGBSpan::operator==

bool operator operator== (const wxGBSpan& o) const

Compare equality of two wxGBSpans.

wxGDIObject

This class allows platforms to implement functionality to optimise GDI objects, such as
wxPen, wxBrush and wxFont. On Windows, the underling GDI objects are a scarce
resource and are cleaned up when a usage count goes to zero. On some platforms this
class may not have any special functionality.

Since the functionality of this class is platform-specific, it is not documented here in
detail.

Derived from

CHAPTER 7

583

wxObject (p. 967)

Include files

<wx/gdiobj.h>

See also

wxPen (p. 991), wxBrush (p. 99), wxFont (p. 535)

wxGDIObject::wxGDIObject

 wxGDIObject ()

Default constructor.

wxGenericDirCtrl

This control can be used to place a directory listing (with optional files) on an arbitrary
window.

The control contains a wxTreeCtrl (p. 1359) window representing the directory hierarchy,
and optionally, a wxChoice (p. 134) window containing a list of filters.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/dirctrl.h>

Window styles

wxDIRCTRL_DIR_ONLY Only show directories, and not files.

wxDIRCTRL_3D_INTERNAL Use 3D borders for internal controls.

wxDIRCTRL_SELECT_FIRST When setting the default path, select the first
file in the directory.

wxDIRCTRL_SHOW_FILTERS Show the drop-down filter list.

wxDIRCTRL_EDIT_LABELS Allow the folder and file labels to be editable.

See also Generic window styles (p. 1686).

Data structures

CHAPTER 7

584

wxGenericDirCtrl::wxGenericDirCtrl

 wxGenericDirCtrl ()

Default constructor.

 wxGenericDirCtrl (wxWindow* parent, const wxWindowID id = -1, const wxString&
dir = wxDirDialogDefaultFolderStr, const wxPoint& pos = wxDefaultPosition, const
wxSize& size = wxDefaultSize, long style =
wxDIRCTRL_3D_INTERNAL|wxSUNKEN_BORDER, const wxString& filter =
wxEmptyString, int defaultFilter = 0, const wxString& name = wxTreeCtrlNameStr)

Main constructor.

Parameters

parent

Parent window.

id

Window identifier.

dir

Initial folder.

pos

Position.

size

Size.

style

Window style. Please see wxGenericDirCtrl (p. 582) for a list of possible styles.

filter

A filter string, using the same syntax as that for wxFileDialog (p. 491). This may be
empty if filters are not being used.

Example: "All files (*.*)|*.*|JPEG files (*.jpg)|*.jpg"

defaultFilter

The zero-indexed default filter setting.

name

CHAPTER 7

585

The window name.

wxGenericDirCtrl::~wxGenericDirCtrl

 ~wxGenericDirCtrl ()

Destructor.

wxGenericDirCtrl::Create

bool Create (wxWindow* parent, const wxWindowID id = -1, const wxString& dir =
wxDirDialogDefaultFolderStr, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxDIRCTRL_3D_INTERNAL|wxSUNKEN_BORDER,
const wxString& filter = wxEmptyString, int defaultFilter = 0, const wxString& name =
wxTreeCtrlNameStr)

Create function for two-step construction. See wxGenericDirCtrl::wxGenericDirCtrl (p.
583) for details.

wxGenericDirCtrl::Init

void Init ()

Initializes variables.

wxGenericDirCtrl::CollapseTree

void CollapseTree ()

Collapses the entire tree.

wxGenericDirCtrl::ExpandPath

bool ExpandPath (const wxString& path)

Tries to expand as much of the given path as possible, so that the filename or directory
is visible in the tree control.

wxGenericDirCtrl::GetDefaultPath

wxString GetDefaultPath () const

Gets the default path.

wxGenericDirCtrl::GetPath

wxString GetPath () const

Gets the currently-selected directory or filename.

CHAPTER 7

586

wxGenericDirCtrl::GetFilePath

wxString GetFilePath () const

Gets selected filename path only (else empty string).

This function doesn't count a directory as a selection.

wxGenericDirCtrl::GetFilter

wxString GetFilter () const

Returns the filter string.

wxGenericDirCtrl::GetFilterIndex

int GetFilterIndex () const

Returns the current filter index (zero-based).

wxGenericDirCtrl::GetFilterListCtrl

wxDirFilterListCtrl* GetFilterListCtrl () const

Returns a pointer to the filter list control (if present).

wxGenericDirCtrl::GetRootId

wxTreeItemId GetRootId ()

Returns the root id for the tree control.

wxGenericDirCtrl::GetTreeCtrl

wxTreeCtrl* GetTreeCtrl () const

Returns a pointer to the tree control.

wxGenericDirCtrl::ReCreateTree

void ReCreateTree ()

Collapse and expand the tree, thus re-creating it from scratch. May be used to update
the displayed directory content.

wxGenericDirCtrl::SetDefaultPath

void SetDefaultPath (const wxString& path)

Sets the default path.

CHAPTER 7

587

wxGenericDirCtrl::SetFilter

void SetFilter (const wxString& filter)

Sets the filter string.

wxGenericDirCtrl::SetFilterIndex

void SetFilterIndex (int n)

Sets the current filter index (zero-based).

wxGenericDirCtrl::SetPath

void SetPath (const wxString& path)

Sets the current path.

wxGenericValidator

wxGenericValidator performs data transfer (but not validation or filtering) for the following
basic controls: wxButton, wxCheckBox, wxListBox, wxStaticText, wxRadioButton,
wxRadioBox, wxChoice, wxComboBox, wxGauge, wxSlider, wxScrollBar, wxSpinButton,
wxTextCtrl, wxCheckListBox.

It checks the type of the window and uses an appropriate type for that window. For
example, wxButton and wxTextCtrl transfer data to and from a wxString variable;
wxListBox uses a wxArrayInt; wxCheckBox uses a bool.

For more information, please see Validator overview (p. 1689).

Derived from

wxValidator (p. 1394)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/valgen.h>

See also

Validator overview (p. 1689), wxValidator (p. 1394),wxTextValidator (p. 1312)

wxGenericValidator::wxGenericValidator

 wxGenericValidator (const wxGenericValidator& validator)

Copy constructor.

CHAPTER 7

588

 wxGenericValidator (bool* valPtr)

Constructor taking a bool pointer. This will be used for wxCheckBox and wxRadioButton.

 wxGenericValidator (wxString* valPtr)

Constructor taking a wxString pointer. This will be used for wxButton, wxComboBox,
wxStaticText, wxTextCtrl.

 wxGenericValidator (int* valPtr)

Constructor taking an integer pointer. This will be used for wxGauge, wxScrollBar,
wxRadioBox, wxSpinButton, wxChoice.

 wxGenericValidator (wxArrayInt* valPtr)

Constructor taking a wxArrayInt pointer. This will be used for wxListBox,
wxCheckListBox.

Parameters

validator

Validator to copy.

valPtr

A pointer to a variable that contains the value. This variable should have a lifetime
equal to or longer than the validator lifetime (which is usually determined by the
lifetime of the window).

wxGenericValidator::~wxGenericValidator

 ~wxGenericValidator ()

Destructor.

wxGenericValidator::Clone

virtual wxValidator* Clone () const

Clones the generic validator using the copy constructor.

wxGenericValidator::TransferFromWindow

virtual bool TransferFromWindow ()

Transfers the value from the window to the appropriate data type.

wxGenericValidator::TransferToWindow

virtual bool TransferToWindow ()

CHAPTER 7

589

Transfers the value to the window.

wxGLCanvas

wxGLCanvas is a class for displaying OpenGL graphics. There are wrappers for
OpenGL on Windows, and GTK+ and Motif.

To use this class, create a wxGLCanvas window, call wxGLCanvas::SetCurrent (p. 591)
to direct normal OpenGL commands to the window, and then call
wxGLCanvas::SwapBuffers (p. 591) to show the OpenGL buffer on the window.

To set up the attributes for the rendering context (number of bits for the depth buffer,
number of bits for the stencil buffer and so on) you should set up the correct values of
the attribList parameter. The values that should be set up and their meanings will be
described below.

To switch wxGLCanvas support on under Windows, edit setup.h and
setwxUSE_GLCANVAS to 1. You may also need to have to addopengl32.lib to the list
of libraries your program is linked with. On Unix, pass --with-opengl to configure to
compile using OpenGL or Mesa.

Derived from

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/glcanvas.h>

Window styles

There are no specific window styles for this class.

See also window styles overview (p. 1686).

Constants

The generic GL implementation doesn't support many of these options, such as stereo,
auxiliary buffers, alpha channel, and accum buffer. Other implementations may support
them.

WX_GL_RGBA Use true colour

WX_GL_BUFFER_SIZE Bits for buffer if not WX_GL_RGBA

WX_GL_LEVEL 0 for main buffer, >0 for overlay, <0 for underlay

WX_GL_DOUBLEBUFFER Use doublebuffer

WX_GL_STEREO Use stereoscopic display

WX_GL_AUX_BUFFERS Number of auxiliary buffers (not all implementation support

CHAPTER 7

590

this option)

WX_GL_MIN_RED Use red buffer with most bits (> MIN_RED bits)

WX_GL_MIN_GREEN Use green buffer with most bits (> MIN_GREEN bits)

WX_GL_MIN_BLUE Use blue buffer with most bits (> MIN_BLUE bits)

WX_GL_MIN_ALPHA Use alpha buffer with most bits (> MIN_ALPHA bits)

WX_GL_DEPTH_SIZE Bits for Z-buffer (0,16,32)

WX_GL_STENCIL_SIZE Bits for stencil buffer

WX_GL_MIN_ACCUM_RED Use red accum buffer with most bits (> MIN_ACCUM_RED
bits)

WX_GL_MIN_ACCUM_GREEN Use green buffer with most bits (>
MIN_ACCUM_GREEN bits)

WX_GL_MIN_ACCUM_BLUE Use blue buffer with most bits (>
MIN_ACCUM_BLUE bits)

WX_GL_MIN_ACCUM_ALPHA Use blue buffer with most bits (>
MIN_ACCUM_ALPHA bits)

See also

wxGLContext (p. 591)

wxGLCanvas::wxGLCanvas

void wxGLCanvas (wxWindow* parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style=0, const
wxString& name="GLCanvas", int* attribList = 0, const wxPalette& palette =
wxNullPalette)

void wxGLCanvas (wxWindow* parent, wxGLCanvas* sharedCanvas = NULL,
wxWindowID id = -1, const wxPoint& pos, const wxSize& size, long style=0, const
wxString& name="GLCanvas", int* attribList = 0, const wxPalette& palette =
wxNullPalette)

void wxGLCanvas (wxWindow* parent, wxGLContext* sharedContext = NULL,
wxWindowID id = -1, const wxPoint& pos, const wxSize& size, long style=0, const
wxString& name="GLCanvas", int* attribList = 0, const wxPalette& palette =
wxNullPalette)

Constructor.

parent

Pointer to a parent window.

CHAPTER 7

591

sharedcontext

Context to share object resources with.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that wxWidgets
should generate a default position for the window.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxWidgets should
generate a default size for the window. If no suitable size can be found, the
window will be sized to 20x20 pixels so that the window is visible but obviously not
correctly sized.

style

Window style.

name

Window name.

attribList

Array of int. With this parameter you can set the device context attributes
associated to this window. This array is zero-terminated: it should be set up with
constants described in the table above. If a constant should be followed by a
value, put it in the next array position. For example, the WX_GL_DEPTH_SIZE
should be followed by the value that indicates the number of bits for the depth
buffer, so:

attribList[index]= WX_GL_DEPTH_SIZE;
attribList[index+1]=32;
and so on.

palette

If the window has the palette, it should by pass this value. Note: palette and
WX_GL_RGBA are mutually exclusive.

wxGLCanvas::GetContext

wxGLContext* GetContext ()

Obtains the context that is associated with this canvas.

wxGLCanvas::SetCurrent

CHAPTER 7

592

void SetCurrent ()

Sets this canvas as the current recipient of OpenGL calls. Each canvas contains an
OpenGL device context that has been created during the creation of this window. So this
call sets the current device context as the target device context for OpenGL operations.

Note that this function may only be called after the window has been shown.

wxGLCanvas::SetColour

void SetColour (const char* colour)

Sets the current colour for this window, using the wxWidgets colour database to find a
named colour.

wxGLCanvas::SwapBuffers

void SwapBuffers ()

Displays the previous OpenGL commands on the window.

wxGLContext

wxGLContext is a class for sharing OpenGL data resources, such as display lists, with
another wxGLCanvas (p. 588).

By sharing data resources, you can prevent code duplication, save memory, and
ultimately help optimize your application.

As an example, let's say you want to draw a ball on two different windows that is
identical on each one, but the dimensions of one is slightly different than the other one.
What you would do is create your display lists in the shared context, and then translate
each ball on the individual canvas's context. This way the actual data for the ball is only
created once (in the shared context), and you won't have to duplicate your development
efforts on the second ball.

Note that some wxGLContext features are extremely platform-specific - its best to check
your native platform's glcanvas header (on windows include/wx/msw/glcanvas.h) to see
what features your native platform provides.

Derived from

wxObject (p. 967)

Include files

<wx/glcanvas.h>

See also

wxGLCanvas (p. 588)

CHAPTER 7

593

wxGLContext::wxGLContext

void wxGLContext (bool isRGB, wxGLCanvas* win, const wxPalette& palette =
wxNullPalette)

void wxGLContext (bool isRGB, wxGLCanvas* win, const wxPalette& palette =
wxNullPalette, const wxGLContext* other)

win

Canvas to associate this shared context with.

other

Context to share data resources with.

wxGLContext::GetWindow

const wxWindow* GetWindow ()

Obtains the window that is associated with this context.

wxGLContext::SetCurrent

void SetCurrent ()

Sets this context as the current recipient of OpenGL calls. Each context contains an
OpenGL device context that has been created during the creation of this window. So this
call sets the current device context as the target device context for OpenGL operations.

wxGLContext::SetColour

void SetColour (const char* colour)

Sets the current colour for this context, using the wxWidgets colour database to find a
named colour.

wxGLContext::SwapBuffers

void SwapBuffers ()

Displays the previous OpenGL commands on the associated window.

wxGrid

wxGrid and its related classes are used for displaying and editing tabular data. They
provide a rich set of features for display, editing, and interacting with a variety of data
sources. For simple applications, and to help you get started, wxGrid is the only class

CHAPTER 7

594

you need to refer to directly. It will set up default instances of the other classes and
manage them for you. For more complex applications you can derive your own classes
for custom grid views, grid data tables, cell editors and renderers. The wxGrid classes
overview (p. 1736) has examples of simple and more complex applications, explains the
relationship between the various grid classes and has a summary of the keyboard
shortcuts and mouse functions provided by wxGrid.

wxGrid has been greatly expanded and redesigned for wxWidgets 2.2 onwards. If you
have been using the old wxGrid class you will probably want to have a look at the
wxGrid classes overview (p. 1736) to see how things have changed. The new grid
classes are reasonably backward-compatible but there are some exceptions. There are
also easier ways of doing many things compared to the previous implementation.

Derived from

wxScrolledWindow (p. 1098)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/grid.h>

Window styles

There are presently no specific window styles for wxGrid.

Event handling

The event handler for the following functions takes a wxGridEvent (p. 637) parameter.
The ..._CMD_... variants also take a window identifier.

EVT_GRID_CELL_LEFT_CLICK(func) The user clicked a cell with the left mouse
button. Processes a
wxEVT_GRID_CELL_LEFT_CLICK.

EVT_GRID_CELL_RIGHT_CLICK(func) The user clicked a cell with the right mouse
button. Processes a
wxEVT_GRID_CELL_RIGHT_CLICK.

EVT_GRID_CELL_LEFT_DCLICK(func) The user double-clicked a cell with the left
mouse button. Processes a
wxEVT_GRID_CELL_LEFT_DCLICK.

EVT_GRID_CELL_RIGHT_DCLICK(func) The user double-clicked a cell with the right
mouse button. Processes a
wxEVT_GRID_CELL_RIGHT_DCLICK.

EVT_GRID_LABEL_LEFT_CLICK(func) The user clicked a label with the left mouse
button. Processes a
wxEVT_GRID_LABEL_LEFT_CLICK.

EVT_GRID_LABEL_RIGHT_CLICK(func) The user clicked a label with the right

CHAPTER 7

595

mouse button. Processes a
wxEVT_GRID_LABEL_RIGHT_CLICK.

EVT_GRID_LABEL_LEFT_DCLICK(func) The user double-clicked a label with the left
mouse button. Processes a
wxEVT_GRID_LABEL_LEFT_DCLICK.

EVT_GRID_LABEL_RIGHT_DCLICK(func) The user double-clicked a label with
the right mouse button. Processes a
wxEVT_GRID_LABEL_RIGHT_DCLICK.

EVT_GRID_CELL_CHANGE(func) The user changed the data in a cell. Processes
a wxEVT_GRID_CELL_CHANGE.

EVT_GRID_SELECT_CELL(func) The user moved to, and selected a cell.
Processes a wxEVT_GRID_SELECT_CELL.

EVT_GRID_EDITOR_HIDDEN(func) The editor for a cell was hidden. Processes a
wxEVT_GRID_EDITOR_HIDDEN.

EVT_GRID_EDITOR_SHOWN(func) The editor for a cell was shown. Processes a
wxEVT_GRID_EDITOR_SHOWN.

EVT_GRID_CMD_CELL_LEFT_CLICK(id, func) The user clicked a cell with the left
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_LEFT_CLICK.

EVT_GRID_CMD_CELL_RIGHT_CLICK(id, func) The user clicked a cell with the right
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_RIGHT_CLICK.

EVT_GRID_CMD_CELL_LEFT_DCLICK(id, func) The user double-clicked a cell with
the left mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_LEFT_DCLICK.

EVT_GRID_CMD_CELL_RIGHT_DCLICK(id, func) The user double-clicked a
cell with the right mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_CELL_RIGHT_DCLICK.

EVT_GRID_CMD_LABEL_LEFT_CLICK(id, func) The user clicked a label with the left
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_LABEL_LEFT_CLICK.

EVT_GRID_CMD_LABEL_RIGHT_CLICK(id, func) The user clicked a label with
the right mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_LABEL_RIGHT_CLICK.

CHAPTER 7

596

EVT_GRID_CMD_LABEL_LEFT_DCLICK(id, func) The user double-clicked a
label with the left mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_LABEL_LEFT_DCLICK.

EVT_GRID_CMD_LABEL_RIGHT_DCLICK(id, func) The user double-clicked a
label with the right mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_LABEL_RIGHT_DCLICK.

EVT_GRID_CMD_CELL_CHANGE(id, func) The user changed the data in a cell;
variant taking a window identifier. Processes a
wxEVT_GRID_CELL_CHANGE.

EVT_GRID_CMD_SELECT_CELL(id, func) The user moved to, and selected a
cell; variant taking a window identifier.
Processes a wxEVT_GRID_SELECT_CELL.

EVT_GRID_CMD_EDITOR_HIDDEN(id, func) The editor for a cell was hidden;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_HIDDEN.

EVT_GRID_CMD_EDITOR_SHOWN(id, func) The editor for a cell was shown;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_SHOWN.

The event handler for the following functions takes a wxGridSizeEvent (p. 643)
parameter. The ..._CMD_... variants also take a window identifier.
EVT_GRID_COL_SIZE(func) The user resized a column by dragging it.

Processes a wxEVT_GRID_COL_SIZE.

EVT_GRID_ROW_SIZE(func) The user resized a row by dragging it.
Processes a wxEVT_GRID_ROW_SIZE.

EVT_GRID_CMD_COL_SIZE(func) The user resized a column by dragging it;
variant taking a window identifier. Processes a
wxEVT_GRID_COL_SIZE.

EVT_GRID_CMD_ROW_SIZE(func) The user resized a row by dragging it; variant
taking a window identifier. Processes a
wxEVT_GRID_ROW_SIZE.

The event handler for the following functions takes a wxGridRangeSelectEvent (p. 641)
parameter. The ..._CMD_... variant also takes a window identifier.
EVT_GRID_RANGE_SELECT(func) The user selected a group of contiguous cells.

Processes a wxEVT_GRID_RANGE_SELECT.

EVT_GRID_CMD_RANGE_SELECT(id, func) The user selected a group of
contiguous cells; variant taking a window
identifier. Processes a
wxEVT_GRID_RANGE_SELECT.

The event handler for the following functions takes a wxGridEditorCreatedEvent (p. 636)

CHAPTER 7

597

parameter. The ..._CMD_... variant also takes a window identifier.
EVT_GRID_EDITOR_CREATED(func) The editor for a cell was created. Processes a

wxEVT_GRID_EDITOR_CREATED.

EVT_GRID_CMD_EDITOR_CREATED(id, func) The editor for a cell was created;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_CREATED.

See also
wxGrid overview (p. 1736)

Constructors and initialization

wxGrid (p. 596)
~wxGrid (p. 597)
CreateGrid (p. 600)
SetTable (p. 623)

Display format

Selection functions

wxGrid::ClearSelection (p. 600)
wxGrid::IsSelection (p. 612)
wxGrid::SelectAll (p. 615)
wxGrid::SelectBlock (p. 615)
wxGrid::SelectCol (p. 615)
wxGrid::SelectRow (p. 616)

wxGrid::wxGrid

 wxGrid ()

Default constructor

 wxGrid (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxWANTS_CHARS, const wxString& name = wxPanelNameStr)

Constructor to create a grid object. Call either wxGrid::CreateGrid (p. 600) or
wxGrid::SetTable (p. 623) directly after this to initialize the grid before using it.

wxGrid::~wxGrid

 ~wxGrid ()

Destructor. This will also destroy the associated grid table unless you passed a table

CHAPTER 7

598

object to the grid and specified that the grid should not take ownership of the table (see
wxGrid::SetTable (p. 623)).

wxGrid::AppendCols

bool AppendCols (int numCols = 1, bool updateLabels = true)

Appends one or more new columns to the right of the grid and returns true if successful.
The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to override
wxGridTableBase::AppendCols (p. 650). See wxGrid::InsertCols (p. 611) for further
information.

wxGrid::AppendRows

bool AppendRows (int numRows = 1, bool updateLabels = true)

Appends one or more new rows to the bottom of the grid and returns true if successful.
The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to override
wxGridTableBase::AppendRows (p. 650). See wxGrid::InsertRows (p. 611) for further
information.

wxGrid::AutoSize

void AutoSize ()

Automatically sets the height and width of all rows and columns to fit their contents.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeColOrRow

void AutoSizeColOrRow (int n, bool setAsMin, bool column)

Common part of AutoSizeColumn/Row() or row?

wxGrid::AutoSizeColumn

void AutoSizeColumn (int col, bool setAsMin = true)

Automatically sizes the column to fit its contents. If setAsMin is true the calculated width
will also be set as the minimal width for the column.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes

CHAPTER 7

599

are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeColumns

void AutoSizeColumns (bool setAsMin = true)

Automatically sizes all columns to fit their contents. If setAsMin is true the calculated
widths will also be set as the minimal widths for the columns.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeRow

void AutoSizeRow (int row, bool setAsMin = true)

Automatically sizes the row to fit its contents. If setAsMin is true the calculated height will
also be set as the minimal height for the row.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeRows

void AutoSizeRows (bool setAsMin = true)

Automatically sizes all rows to fit their contents. If setAsMin is true the calculated heights
will also be set as the minimal heights for the rows.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::BeginBatch

void BeginBatch ()

Increments the grid's batch count. When the count is greater than zero repainting of the
grid is suppressed. Each call to BeginBatch must be matched by a later call to
wxGrid::EndBatch (p. 602). Code that does a lot of grid modification can be enclosed
between BeginBatch and EndBatch calls to avoid screen flicker. The final EndBatch will
cause the grid to be repainted.

wxGrid::BlockToDeviceRect

CHAPTER 7

600

wxRect BlockToDeviceRect (const wxGridCellCoords & topLeft, const
wxGridCellCoords & bottomRight)

This function returns the rectangle that encloses the block of cells limited by TopLeft and
BottomRight cell in device coords and clipped to the client size of the grid window.

wxGrid::CanDragColSize

bool CanDragColSize ()

Returns true if columns can be resized by dragging with the mouse. Columns can be
resized by dragging the edges of their labels. If grid line dragging is enabled they can
also be resized by dragging the right edge of the column in the grid cell area (see
wxGrid::EnableDragGridSize (p. 602)).

wxGrid::CanDragRowSize

bool CanDragRowSize ()

Returns true if rows can be resized by dragging with the mouse. Rows can be resized by
dragging the edges of their labels. If grid line dragging is enabled they can also be
resized by dragging the lower edge of the row in the grid cell area (see
wxGrid::EnableDragGridSize (p. 602)).

wxGrid::CanDragGridSize

bool CanDragGridSize ()

Return true if the dragging of grid lines to resize rows and columns is enabled or false
otherwise.

wxGrid::CanEnableCellControl

bool CanEnableCellControl () const

Returns true if the in-place edit control for the current grid cell can be used and false
otherwise (e.g. if the current cell is read-only).

wxGrid::CanHaveAttributes

bool CanHaveAttributes ()

Do we have some place to store attributes in?

wxGrid::CellToRect

wxRect CellToRect (int row, int col)

wxRect CellToRect (const wxGridCellCoords& coords)

Return the rectangle corresponding to the grid cell's size and position in logical

CHAPTER 7

601

coordinates.

wxGrid::ClearGrid

void ClearGrid ()

Clears all data in the underlying grid table and repaints the grid. The table is not deleted
by this function. If you are using a derived table class then you need to override
wxGridTableBase::Clear (p. 650) for this function to have any effect.

wxGrid::ClearSelection

void ClearSelection ()

Deselects all cells that are currently selected.

wxGrid::CreateGrid

bool CreateGrid (int numRows, int numCols, wxGrid::wxGridSelectionModes
selmode = wxGrid::wxGridSelectCells)

Creates a grid with the specified initial number of rows and columns. Call this directly
after the grid constructor. When you use this function wxGrid will create and manage a
simple table of string values for you. All of the grid data will be stored in memory.

For applications with more complex data types or relationships, or for dealing with very
large datasets, you should derive your own grid table class and pass a table object to
the grid with wxGrid::SetTable (p. 623).

wxGrid::DeleteCols

bool DeleteCols (int pos = 0, int numCols = 1, bool updateLabels = true)

Deletes one or more columns from a grid starting at the specified position and returns
true if successful. The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to override
wxGridTableBase::DeleteCols (p. 650). See wxGrid::InsertCols (p. 611) for further
information.

wxGrid::DeleteRows

bool DeleteRows (int pos = 0, int numRows = 1, bool updateLabels = true)

Deletes one or more rows from a grid starting at the specified position and returns true if
successful. The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to override
wxGridTableBase::DeleteRows (p. 650). See wxGrid::InsertRows (p. 611) for further
information.

CHAPTER 7

602

wxGrid::DisableCellEditControl

void DisableCellEditControl ()

Disables in-place editing of grid cells. Equivalent to calling EnableCellEditControl(false).

wxGrid::DisableDragColSize

void DisableDragColSize ()

Disables column sizing by dragging with the mouse. Equivalent to passing false to
wxGrid::EnableDragColSize (p. 601).

wxGrid::DisableDragGridSize

void DisableDragGridSize ()

Disable mouse dragging of grid lines to resize rows and columns. Equivalent to passing
false to wxGrid::EnableDragGridSize (p. 602)

wxGrid::DisableDragRowSize

void DisableDragRowSize ()

Disables row sizing by dragging with the mouse. Equivalent to passing false to
wxGrid::EnableDragRowSize (p. 602).

wxGrid::EnableCellEditControl

void EnableCellEditControl (bool enable = true)

Enables or disables in-place editing of grid cell data. The grid will issue either a
wxEVT_GRID_EDITOR_SHOWN or wxEVT_GRID_EDITOR_HIDDEN event.

wxGrid::EnableDragColSize

void EnableDragColSize (bool enable = true)

Enables or disables column sizing by dragging with the mouse.

wxGrid::EnableDragGridSize

void EnableDragGridSize (bool enable = true)

Enables or disables row and column resizing by dragging gridlines with the mouse.

wxGrid::EnableDragRowSize

void EnableDragRowSize (bool enable = true)

CHAPTER 7

603

Enables or disables row sizing by dragging with the mouse.

wxGrid::EnableEditing

void EnableEditing (bool edit)

If the edit argument is false this function sets the whole grid as read-only. If the
argument is true the grid is set to the default state where cells may be editable. In the
default state you can set single grid cells and whole rows and columns to be editable or
read-only via wxGridCellAttribute::SetReadOnly (p. 626). For single cells you can also
use the shortcut function wxGrid::SetReadOnly (p. 621).

For more information about controlling grid cell attributes see the wxGridCellAttr (p. 624)
cell attribute class and the wxGrid classes overview (p. 1736).

wxGrid::EnableGridLines

void EnableGridLines (bool enable = true)

Turns the drawing of grid lines on or off.

wxGrid::EndBatch

void EndBatch ()

Decrements the grid's batch count. When the count is greater than zero repainting of the
grid is suppressed. Each previous call to wxGrid::BeginBatch (p. 598) must be matched
by a later call to EndBatch. Code that does a lot of grid modification can be enclosed
between BeginBatch and EndBatch calls to avoid screen flicker. The final EndBatch will
cause the grid to be repainted.

wxGrid::Fit

void Fit ()

Overridden wxWindow method.

wxGrid::ForceRefresh

void ForceRefresh ()

Causes immediate repainting of the grid. Use this instead of the usual
wxWindow::Refresh.

wxGrid::GetBatchCount

int GetBatchCount ()

Returns the number of times that wxGrid::BeginBatch (p. 598) has been called without
(yet) matching calls to wxGrid::EndBatch (p. 602). While the grid's batch count is greater

CHAPTER 7

604

than zero the display will not be updated.

wxGrid::GetCellAlignment

void GetCellAlignment (int row, int col, int* horiz, int* vert)

Sets the arguments to the horizontal and vertical text alignment values for the grid cell at
the specified location.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxPerl note: This method only takes the parameters row and col and returns a 2-
element list (horiz, vert) .

wxGrid::GetCellBackgroundColour

wxColour GetCellBackgroundColour (int row, int col)

Returns the background colour of the cell at the specified location.

wxGrid::GetCellEditor

wxGridCellEditor* GetCellEditor (int row, int col)

Returns a pointer to the editor for the cell at the specified location.

See wxGridCellEditor (p. 632) and the wxGrid overview (p. 1736) for more information
about cell editors and renderers.

wxGrid::GetCellFont

wxFont GetCellFont (int row, int col)

Returns the font for text in the grid cell at the specified location.

wxGrid::GetCellRenderer

wxGridCellRenderer* GetCellRenderer (int row, int col)

Returns a pointer to the renderer for the grid cell at the specified location.

See wxGridCellRenderer (p. 647) and the wxGrid overview (p. 1736) for more
information about cell editors and renderers.

wxGrid::GetCellTextColour

wxColour GetCellTextColour (int row, int col)

CHAPTER 7

605

Returns the text colour for the grid cell at the specified location.

wxGrid::GetCellValue

wxString GetCellValue (int row, int col)

wxString GetCellValue (const wxGridCellCoords& coords)

Returns the string contained in the cell at the specified location. For simple applications
where a grid object automatically uses a default grid table of string values you use this
function together with wxGrid::SetCellValue (p. 617) to access cell values.

For more complex applications where you have derived your own grid table class that
contains various data types (e.g. numeric, boolean or user-defined custom types) then
you only use this function for those cells that contain string values.

See wxGridTableBase::CanGetValueAs (p. 649)and the wxGrid overview (p. 1736) for
more information.

wxGrid::GetColLeft

int GetColLeft (int col) const

wxGrid::GetColLabelAlignment

void GetColLabelAlignment (int* horiz, int* vert)

Sets the arguments to the current column label alignment values.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxPerl note: This method takes no parameters and returns a 2-element list (horiz,
vert) .

wxGrid::GetColLabelSize

int GetColLabelSize ()

Returns the current height of the column labels.

wxGrid::GetColLabelValue

wxString GetColLabelValue (int col)

Returns the specified column label. The default grid table class provides column labels
of the form A,B...Z,AA,AB...ZZ,AAA... If you are using a custom grid table you can
override wxGridTableBase::GetColLabelValue (p. 651) to provide your own labels.

CHAPTER 7

606

wxGrid::GetColMinimalAcceptableWidth

int GetColMinimalAcceptableWidth ()

This returns the value of the lowest column width that can be handled correctly. See
member SetColMinimalAcceptableWidth (p. 618) for details.

wxGrid::GetColMinimalWidth

int GetColMinimalWidth (int col) const

Get the minimal width of the given column/row.

wxGrid::GetColRight

int GetColRight (int col) const

wxGrid::GetColSize

int GetColSize (int col)

Returns the width of the specified column.

wxGrid::GetDefaultCellAlignment

void GetDefaultCellAlignment (int* horiz, int* vert)

Sets the arguments to the current default horizontal and vertical text alignment values.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::GetDefaultCellBackgroundColour

wxColour GetDefaultCellBackgroundColour ()

Returns the current default background colour for grid cells.

wxGrid::GetDefaultCellFont

wxFont GetDefaultCellFont ()

Returns the current default font for grid cell text.

wxGrid::GetDefaultCellTextColour

wxColour GetDefaultCellTextColour ()

CHAPTER 7

607

Returns the current default colour for grid cell text.

wxGrid::GetDefaultColLabelSize

int GetDefaultColLabelSize ()

Returns the default height for column labels.

wxGrid::GetDefaultColSize

int GetDefaultColSize ()

Returns the current default width for grid columns.

wxGrid::GetDefaultEditor

wxGridCellEditor* GetDefaultEditor () const

Returns a pointer to the current default grid cell editor.

See wxGridCellEditor (p. 632) and the wxGrid overview (p. 1736) for more information
about cell editors and renderers.

wxGrid::GetDefaultEditorForCell

wxGridCellEditor* GetDefaultEditorForCell (int row, int col) const

wxGridCellEditor* GetDefaultEditorForCell (const wxGridCellCoords& c) const

wxGrid::GetDefaultEditorForType

wxGridCellEditor* GetDefaultEditorForType (const wxString& typeName) const

wxGrid::GetDefaultRenderer

wxGridCellRenderer* GetDefaultRenderer () const

Returns a pointer to the current default grid cell renderer.

See wxGridCellRenderer (p. 647) and the wxGrid overview (p. 1736) for more
information about cell editors and renderers.

wxGrid::GetDefaultRendererForCell

wxGridCellRenderer* GetDefaultRendererForCell (int row, int col) const

wxGrid::GetDefaultRendererForType

wxGridCellRenderer* GetDefaultRendererForType (const wxString& typeName)
const

CHAPTER 7

608

wxGrid::GetDefaultRowLabelSize

int GetDefaultRowLabelSize ()

Returns the default width for the row labels.

wxGrid::GetDefaultRowSize

int GetDefaultRowSize ()

Returns the current default height for grid rows.

wxGrid::GetGridCursorCol

int GetGridCursorCol ()

Returns the current grid cell column position.

wxGrid::GetGridCursorRow

int GetGridCursorRow ()

Returns the current grid cell row position.

wxGrid::GetGridLineColour

wxColour GetGridLineColour ()

Returns the colour used for grid lines.

wxGrid::GridLinesEnabled

bool GridLinesEnabled ()

Returns true if drawing of grid lines is turned on, false otherwise.

wxGrid::GetLabelBackgroundColour

wxColour GetLabelBackgroundColour ()

Returns the colour used for the background of row and column labels.

wxGrid::GetLabelFont

wxFont GetLabelFont ()

Returns the font used for row and column labels.

wxGrid::GetLabelTextColour

CHAPTER 7

609

wxColour GetLabelTextColour ()

Returns the colour used for row and column label text.

wxGrid::GetNumberCols

int GetNumberCols ()

Returns the total number of grid columns (actually the number of columns in the
underlying grid table).

wxGrid::GetNumberRows

int GetNumberRows ()

Returns the total number of grid rows (actually the number of rows in the underlying grid
table).

wxGrid::GetOrCreateCellAttr

wxGridCellAttr* GetOrCreateCellAttr (int row, int col) const

wxGrid::GetRowMinimalAcceptableHeight

int GetRowMinimalAcceptableHeight ()

This returns the value of the lowest row width that can be handled correctly. See
member SetRowMinimalAcceptableHeight (p. 622) for details.

wxGrid::GetRowMinimalHeight

int GetRowMinimalHeight (int col) const

wxGrid::GetRowLabelAlignment

void GetRowLabelAlignment (int* horiz, int* vert)

Sets the arguments to the current row label alignment values.

Horizontal alignment will be one of wxLEFT, wxCENTRE or wxRIGHT.
Vertical alignment will be one of wxTOP, wxCENTRE or wxBOTTOM.

wxPerl note: This method takes no parameters and returns a 2-element list (horiz,
vert) .

wxGrid::GetRowLabelSize

int GetRowLabelSize ()

Returns the current width of the row labels.

CHAPTER 7

610

wxGrid::GetRowLabelValue

wxString GetRowLabelValue (int row)

Returns the specified row label. The default grid table class provides numeric row labels.
If you are using a custom grid table you can override
wxGridTableBase::GetRowLabelValue (p. 651) to provide your own labels.

wxGrid::GetRowSize

int GetRowSize (int row)

Returns the height of the specified row.

wxGrid::GetScrollLinesX

int GetScrollLinesX () const

Returns the number of pixels per horizontal scroll increment. The default is 15.

wxGrid::GetScrollLinesY

int GetScrollLinesY () const

Returns the number of pixels per vertical scroll increment. The default is 15.

wxGrid::GetSelectionMode

wxGrid::wxGridSelectionModes GetSelectionMode () const

Returns the current selection mode, see wxGrid::SetSelectionMode (p. 623).

wxGrid::GetSelectedCells

wxGridCellCoordsArray GetSelectedCells () const

Returns an array of singly selected cells.

wxGrid::GetSelectedCols

wxArrayInt GetSelectedCols () const

Returns an array of selected cols.

wxGrid::GetSelectedRows

wxArrayInt GetSelectedRows () const

Returns an array of selected rows.

CHAPTER 7

611

wxGrid::GetSelectionBackground

wxColour GetSelectionBackground () const

Access or update the selection fore/back colours

wxGrid::GetSelectionBlockTopLeft

wxGridCellCoordsArray GetSelectionBlockTopLeft () const

Returns an array of the top left corners of blocks of selected cells, see
wxGrid::GetSelectionBlockBottomRight (p. 610).

wxGrid::GetSelectionBlockBottomRight

wxGridCellCoordsArray GetSelectionBlockBottomRight () const

Returns an array of the bottom right corners of blocks of selected cells, see
wxGrid::GetSelectionBlockTopLeft (p. 610).

wxGrid::GetSelectionForeground

wxColour GetSelectionForeground () const

wxGrid::GetTable

wxGridTableBase * GetTable () const

Returns a base pointer to the current table object.

wxGrid::GetViewWidth

int GetViewWidth ()

Returned number of whole cols visible.

wxGrid::HideCellEditControl

void HideCellEditControl ()

Hides the in-place cell edit control.

wxGrid::InitColWidths

void InitColWidths ()

Init the m_colWidths/Rights arrays

wxGrid::InitRowHeights

CHAPTER 7

612

void InitRowHeights ()

NB: never access m_row/col arrays directly because they are created on demand,
always use accessor functions instead!

Init the m_rowHeights/Bottoms arrays with default values.

wxGrid::InsertCols

bool InsertCols (int pos = 0, int numCols = 1, bool updateLabels = true)

Inserts one or more new columns into a grid with the first new column at the specified
position and returns true if successful. The updateLabels argument is not used at
present.

The sequence of actions begins with the grid object requesting the underlying grid table
to insert new columns. If this is successful the table notifies the grid and the grid updates
the display. For a default grid (one where you have called wxGrid::CreateGrid (p. 600))
this process is automatic. If you are using a custom grid table (specified with
wxGrid::SetTable (p. 623)) then you must override wxGridTableBase::InsertCols (p.
650) in your derived table class.

wxGrid::InsertRows

bool InsertRows (int pos = 0, int numRows = 1, bool updateLabels = true)

Inserts one or more new rows into a grid with the first new row at the specified position
and returns true if successful. The updateLabels argument is not used at present.

The sequence of actions begins with the grid object requesting the underlying grid table
to insert new rows. If this is successful the table notifies the grid and the grid updates the
display. For a default grid (one where you have called wxGrid::CreateGrid (p. 600)) this
process is automatic. If you are using a custom grid table (specified with
wxGrid::SetTable (p. 623)) then you must override wxGridTableBase::InsertRows (p.
650) in your derived table class.

wxGrid::IsCellEditControlEnabled

bool IsCellEditControlEnabled () const

Returns true if the in-place edit control is currently enabled.

wxGrid::IsCurrentCellReadOnly

bool IsCurrentCellReadOnly () const

Returns true if the current cell has been set to read-only (see wxGrid::SetReadOnly (p.
621)).

wxGrid::IsEditable

CHAPTER 7

613

bool IsEditable ()

Returns false if the whole grid has been set as read-only or true otherwise. See
wxGrid::EnableEditing (p. 602) for more information about controlling the editing status
of grid cells.

wxGrid::IsInSelection

bool IsInSelection (int row, int col) const

bool IsInSelection (const wxGridCellCoords& coords) const

Is this cell currently selected.

wxGrid::IsReadOnly

bool IsReadOnly (int row, int col) const

Returns true if the cell at the specified location can't be edited. See also
wxGrid::IsReadOnly (p. 612).

wxGrid::IsSelection

bool IsSelection ()

Returns true if there are currently rows, columns or blocks of cells selected.

wxGrid::IsVisible

bool IsVisible (int row, int col, bool wholeCellVisible = true)

bool IsVisible (const wxGridCellCoords& coords, bool wholeCellVisible = true)

Returns true if a cell is either wholly visible (the default) or at least partially visible in the
grid window.

wxGrid::MakeCellVisible

void MakeCellVisible (int row, int col)

void MakeCellVisible (const wxGridCellCoords& coords)

Brings the specified cell into the visible grid cell area with minimal scrolling. Does
nothing if the cell is already visible.

wxGrid::MoveCursorDown

bool MoveCursorDown (bool expandSelection)

Moves the grid cursor down by one row. If a block of cells was previously selected it will
expand if the argument is true or be cleared if the argument is false.

CHAPTER 7

614

Keyboard
This function is called for Down cursor key presses or Shift+Down to expand a selection.

wxGrid::MoveCursorLeft

bool MoveCursorLeft (bool expandSelection)

Moves the grid cursor left by one column. If a block of cells was previously selected it will
expand if the argument is true or be cleared if the argument is false.

Keyboard
This function is called for Left cursor key presses or Shift+Left to expand a selection.

wxGrid::MoveCursorRight

bool MoveCursorRight (bool expandSelection)

Moves the grid cursor right by one column. If a block of cells was previously selected it
will expand if the argument is true or be cleared if the argument is false.

Keyboard
This function is called for Right cursor key presses or Shift+Right to expand a selection.

wxGrid::MoveCursorUp

bool MoveCursorUp (bool expandSelection)

Moves the grid cursor up by one row. If a block of cells was previously selected it will
expand if the argument is true or be cleared if the argument is false.

Keyboard
This function is called for Up cursor key presses or Shift+Up to expand a selection.

wxGrid::MoveCursorDownBlock

bool MoveCursorDownBlock (bool expandSelection)

Moves the grid cursor down in the current column such that it skips to the beginning or
end of a block of non-empty cells. If a block of cells was previously selected it will
expand if the argument is true or be cleared if the argument is false.

Keyboard
This function is called for the Ctrl+Down key combination. Shift+Ctrl+Down expands a
selection.

wxGrid::MoveCursorLeftBlock

bool MoveCursorLeftBlock (bool expandSelection)

Moves the grid cursor left in the current row such that it skips to the beginning or end of
a block of non-empty cells. If a block of cells was previously selected it will expand if the

CHAPTER 7

615

argument is true or be cleared if the argument is false.

Keyboard
This function is called for the Ctrl+Left key combination. Shift+Ctrl+left expands a
selection.

wxGrid::MoveCursorRightBlock

bool MoveCursorRightBlock (bool expandSelection)

Moves the grid cursor right in the current row such that it skips to the beginning or end of
a block of non-empty cells. If a block of cells was previously selected it will expand if the
argument is true or be cleared if the argument is false.

Keyboard
This function is called for the Ctrl+Right key combination. Shift+Ctrl+Right expands a
selection.

wxGrid::MoveCursorUpBlock

bool MoveCursorUpBlock (bool expandSelection)

Moves the grid cursor up in the current column such that it skips to the beginning or end
of a block of non-empty cells. If a block of cells was previously selected it will expand if
the argument is true or be cleared if the argument is false.

Keyboard
This function is called for the Ctrl+Up key combination. Shift+Ctrl+Up expands a
selection.

wxGrid::MovePageDown

bool MovePageDown ()

Moves the grid cursor down by some number of rows so that the previous bottom visible
row becomes the top visible row.

Keyboard
This function is called for PgDn keypresses.

wxGrid::MovePageUp

bool MovePageUp ()

Moves the grid cursor up by some number of rows so that the previous top visible row
becomes the bottom visible row.

Keyboard
This function is called for PgUp keypresses.

wxGrid::RegisterDataType

CHAPTER 7

616

void RegisterDataType (const wxString& typeName, wxGridCellRenderer* renderer,
wxGridCellEditor* editor)

Methods for a registry for mapping data types to Renderers/Editors

wxGrid::SaveEditControlValue

void SaveEditControlValue ()

Sets the value of the current grid cell to the current in-place edit control value. This is
called automatically when the grid cursor moves from the current cell to a new cell. It is
also a good idea to call this function when closing a grid since any edits to the final cell
location will not be saved otherwise.

wxGrid::SelectAll

void SelectAll ()

Selects all cells in the grid.

wxGrid::SelectBlock

void SelectBlock (int topRow, int leftCol, int bottomRow, int rightCol, bool
addToSelected = false)

void SelectBlock (const wxGridCellCoords& topLeft, const wxGridCellCoords&
bottomRight, bool addToSelected = false)

Selects a rectangular block of cells. If addToSelected is false then any existing selection
will be deselected; if true the column will be added to the existing selection.

wxGrid::SelectCol

void SelectCol (int col, bool addToSelected = false)

Selects the specified column. If addToSelected is false then any existing selection will be
deselected; if true the column will be added to the existing selection.

wxGrid::SelectionToDeviceRect

wxRect SelectionToDeviceRect ()

This function returns the rectangle that encloses the selected cells in device coords and
clipped to the client size of the grid window.

wxGrid::SelectRow

void SelectRow (int row, bool addToSelected = false)

Selects the specified row. If addToSelected is false then any existing selection will be
deselected; if true the row will be added to the existing selection.

CHAPTER 7

617

wxGrid::SetCellAlignment

void SetCellAlignment (int row, int col, int horiz, int vert)

void SetCellAlignment (int align, int row, int col)

Sets the horizontal and vertical alignment for grid cell text at the specified location.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetCellBackgroundColour

void SetCellBackgroundColour (int row, int col, const wxColour& colour)

wxGrid::SetCellEditor

void SetCellEditor (int row, int col, wxGridCellEditor* editor)

Sets the editor for the grid cell at the specified location. The grid will take ownership of
the pointer.

See wxGridCellEditor (p. 632) and the wxGrid overview (p. 1736) for more information
about cell editors and renderers.

wxGrid::SetCellFont

void SetCellFont (int row, int col, const wxFont& font)

Sets the font for text in the grid cell at the specified location.

wxGrid::SetCellRenderer

void SetCellRenderer (int row, int col, wxGridCellRenderer* renderer)

Sets the renderer for the grid cell at the specified location. The grid will take ownership
of the pointer.

See wxGridCellRenderer (p. 647) and the wxGrid overview (p. 1736) for more
information about cell editors and renderers.

wxGrid::SetCellTextColour

void SetCellTextColour (int row, int col, const wxColour& colour)

void SetCellTextColour (const wxColour& val, int row, int col)

void SetCellTextColour (const wxColour& colour)

CHAPTER 7

618

Sets the text colour for the grid cell at the specified location.

wxGrid::SetCellValue

void SetCellValue (int row, int col, const wxString& s)

void SetCellValue (const wxGridCellCoords& coords, const wxString& s)

void SetCellValue (const wxString& val, int row, int col)

Sets the string value for the cell at the specified location. For simple applications where
a grid object automatically uses a default grid table of string values you use this function
together with wxGrid::GetCellValue (p. 604) to access cell values.

For more complex applications where you have derived your own grid table class that
contains various data types (e.g. numeric, boolean or user-defined custom types) then
you only use this function for those cells that contain string values.

The last form is for backward compatibility only.

See wxGridTableBase::CanSetValueAs (p. 649)and the wxGrid overview (p. 1736) for
more information.

wxGrid::SetColAttr

void SetColAttr (int col, wxGridCellAttr* attr)

Sets the cell attributes for all cells in the specified column.

For more information about controlling grid cell attributes see the wxGridCellAttr (p. 624)
cell attribute class and the wxGrid classes overview (p. 1736).

wxGrid::SetColFormatBool

void SetColFormatBool (int col)

Sets the specified column to display boolean values. wxGrid displays boolean values
with a checkbox.

wxGrid::SetColFormatNumber

void SetColFormatNumber (int col)

Sets the specified column to display integer values.

wxGrid::SetColFormatFloat

void SetColFormatFloat (int col, int width = -1, int precision = -1)

Sets the specified column to display floating point values with the given width and
precision.

CHAPTER 7

619

wxGrid::SetColFormatCustom

void SetColFormatCustom (int col, const wxString& typeName)

Sets the specified column to display data in a custom format. See the wxGrid overview
(p. 1736) for more information on working with custom data types.

wxGrid::SetColLabelAlignment

void SetColLabelAlignment (int horiz, int vert)

Sets the horizontal and vertical alignment of column label text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetColLabelSize

void SetColLabelSize (int height)

Sets the height of the column labels.

wxGrid::SetColLabelValue

void SetColLabelValue (int col, const wxString& value)

Set the value for the given column label. If you are using a derived grid table you must
override wxGridTableBase::SetColLabelValue (p. 651)for this to have any effect.

wxGrid::SetColMinimalWidth

void SetColMinimalWidth (int col, int width)

Sets the minimal width for the specified column. This should normally be called when
creating the grid because it will not resize a column that is already narrower than the
minimal width. The width argument must be higher than the minimimal acceptable
column width, seewxGrid::GetColMinimalAcceptableWidth (p. 605).

wxGrid::SetColMinimalAcceptableWidth

void SetColMinimalAcceptableWidth (int width)

This modifies the minimum column width that can be handled correctly. Specifying a low
value here allows smaller grid cells to be dealt with correctly. Specifying a value here
which is much smaller than the actual minimum size will incur a performance penalty in
the functions which perform grid cell index lookup on the basis of screen coordinates.
This should normally be called when creating the grid because it will not resize existing
columns with sizes smaller than the value specified here.

CHAPTER 7

620

wxGrid::SetColSize

void SetColSize (int col, int width)

Sets the width of the specified column.

This function does not refresh the grid. If you are calling it outside of a BeginBatch /
EndBatch block you can use wxGrid::ForceRefresh (p. 602) to see the changes.

Automatically sizes the column to fit its contents. If setAsMin is true the calculated width
will also be set as the minimal width for the column.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::SetDefaultCellAlignment

void SetDefaultCellAlignment (int horiz, int vert)

Sets the default horizontal and vertical alignment for grid cell text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetDefaultCellBackgroundColour

void SetDefaultCellBackgroundColour (const wxColour& colour)

Sets the default background colour for grid cells.

wxGrid::SetDefaultCellFont

void SetDefaultCellFont (const wxFont& font)

Sets the default font to be used for grid cell text.

wxGrid::SetDefaultCellTextColour

void SetDefaultCellTextColour (const wxColour& colour)

Sets the current default colour for grid cell text.

wxGrid::SetDefaultEditor

void SetDefaultEditor (wxGridCellEditor* editor)

CHAPTER 7

621

Sets the default editor for grid cells. The grid will take ownership of the pointer.

See wxGridCellEditor (p. 632) and the wxGrid overview (p. 1736) for more information
about cell editors and renderers.

wxGrid::SetDefaultRenderer

void SetDefaultRenderer (wxGridCellRenderer* renderer)

Sets the default renderer for grid cells. The grid will take ownership of the pointer.

See wxGridCellRenderer (p. 647) and the wxGrid overview (p. 1736) for more
information about cell editors and renderers.

wxGrid::SetDefaultColSize

void SetDefaultColSize (int width, bool resizeExistingCols = false)

Sets the default width for columns in the grid. This will only affect columns subsequently
added to the grid unless resizeExistingCols is true.

wxGrid::SetDefaultRowSize

void SetDefaultRowSize (int height, bool resizeExistingRows = false)

Sets the default height for rows in the grid. This will only affect rows subsequently added
to the grid unless resizeExistingRows is true.

wxGrid::SetGridCursor

void SetGridCursor (int row, int col)

Set the grid cursor to the specified cell. This function calls wxGrid::MakeCellVisible (p.
612).

wxGrid::SetGridLineColour

void SetGridLineColour (const wxColour& colour)

Sets the colour used to draw grid lines.

wxGrid::SetLabelBackgroundColour

void SetLabelBackgroundColour (const wxColour& colour)

Sets the background colour for row and column labels.

wxGrid::SetLabelFont

void SetLabelFont (const wxFont& font)

CHAPTER 7

622

Sets the font for row and column labels.

wxGrid::SetLabelTextColour

void SetLabelTextColour (const wxColour& colour)

Sets the colour for row and column label text.

wxGrid::SetMargins

void SetMargins (int extraWidth, int extraHeight)

A grid may occupy more space than needed for its rows/columns. This function allows to
set how big this extra space is

wxGrid::SetOrCalcColumnSizes

int SetOrCalcColumnSizes (bool calcOnly, bool setAsMin = true)

Common part of AutoSizeColumn/Row() and GetBestSize()

wxGrid::SetOrCalcRowSizes

int SetOrCalcRowSizes (bool calcOnly, bool setAsMin = true)

wxGrid::SetReadOnly

void SetReadOnly (int row, int col, bool isReadOnly = true)

Makes the cell at the specified location read-only or editable. See also
wxGrid::IsReadOnly (p. 612).

wxGrid::SetRowAttr

void SetRowAttr (int row, wxGridCellAttr* attr)

Sets the cell attributes for all cells in the specified row. See the wxGridCellAttr (p. 624)
class for more information about controlling cell attributes.

wxGrid::SetRowLabelAlignment

void SetRowLabelAlignment (int horiz, int vert)

Sets the horizontal and vertical alignment of row label text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

CHAPTER 7

623

wxGrid::SetRowLabelSize

void SetRowLabelSize (int width)

Sets the width of the row labels.

wxGrid::SetRowLabelValue

void SetRowLabelValue (int row, const wxString& value)

Set the value for the given row label. If you are using a derived grid table you must
override wxGridTableBase::SetRowLabelValue (p. 651) for this to have any effect.

wxGrid::SetRowMinimalHeight

void SetRowMinimalHeight (int row, int height)

Sets the minimal height for the specified row. This should normally be called when
creating the grid because it will not resize a row that is already shorter than the minimal
height. The height argument must be higher than the minimimal acceptable row height,
seewxGrid::GetRowMinimalAcceptableHeight (p. 608).

wxGrid::SetRowMinimalAcceptableHeight

void SetRowMinimalAcceptableHeight (int height)

This modifies the minimum row width that can be handled correctly. Specifying a low
value here allows smaller grid cells to be dealt with correctly. Specifying a value here
which is much smaller than the actual minimum size will incur a performance penalty in
the functions which perform grid cell index lookup on the basis of screen coordinates.
This should normally be called when creating the grid because it will not resize existing
rows with sizes smaller than the value specified here.

wxGrid::SetRowSize

void SetRowSize (int row, int height)

Sets the height of the specified row.

This function does not refresh the grid. If you are calling it outside of a BeginBatch /
EndBatch block you can use wxGrid::ForceRefresh (p. 602) to see the changes.

Automatically sizes the column to fit its contents. If setAsMin is true the calculated width
will also be set as the minimal width for the column.

Note

wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

CHAPTER 7

624

wxGrid::SetScrollLinesX

void SetScrollLinesX (int x)

Sets the number of pixels per horizontal scroll increment. The default is 15. Sometimes
wxGrid has trouble setting the scrollbars correctly due to rounding errors: setting this to 1
can help.

wxGrid::SetScrollLinesY

void SetScrollLinesY (int y)

Sets the number of pixels per vertical scroll increment. The default is 15. Sometimes
wxGrid has trouble setting the scrollbars correctly due to rounding errors: setting this to 1
can help.

wxGrid::SetSelectionBackground

void SetSelectionBackground (const wxColour& c)

wxGrid::SetSelectionForeground

void SetSelectionForeground (const wxColour& c)

wxGrid::SetSelectionMode

void SetSelectionMode (wxGrid::wxGridSelectionModes selmode)

Set the selection behaviour of the grid.

Parameters

wxGrid::wxGridSelectCells

The default mode where individual cells are selected.

wxGrid::wxGridSelectRows

Selections will consist of whole rows.

wxGrid::wxGridSelectColumns

Selections will consist of whole columns.

wxGrid::SetTable

bool SetTable (wxGridTableBase* table, bool takeOwnership = false,
wxGrid::wxGridSelectionModes selmode = wxGrid::wxGridSelectCells)

Passes a pointer to a custom grid table to be used by the grid. This should be called
after the grid constructor and before using the grid object. If takeOwnership is set to true

CHAPTER 7

625

then the table will be deleted by the wxGrid destructor.

Use this function instead of wxGrid::CreateGrid (p. 600) when your application involves
complex or non-string data or data sets that are too large to fit wholly in memory.

wxGrid::ShowCellEditControl

void ShowCellEditControl ()

Displays the in-place cell edit control for the current cell.

wxGrid::XToCol

int XToCol (int x)

Returns the grid column that corresponds to the logical x coordinate.
ReturnswxNOT_FOUND if there is no column at the x position.

wxGrid::XToEdgeOfCol

int XToEdgeOfCol (int x)

Returns the column whose right hand edge is close to the given logical x position. If no
column edge is near to this position wxNOT_FOUND is returned.

wxGrid::YToEdgeOfRow

int YToEdgeOfRow (int y)

Returns the row whose bottom edge is close to the given logical y position. If no row
edge is near to this position wxNOT_FOUND is returned.

wxGrid::YToRow

int YToRow (int y)

Returns the grid row that corresponds to the logical y coordinate. ReturnswxNOT_FOUND
if there is no row at the y position.

wxGridCellAttr

This class can be used to alter the cells' appearance in the grid by changing their
colour/font/... from default. An object of this class may be returned by
wxGridTable::GetAttr().

Derived from

No base class

Include files

CHAPTER 7

626

<wx/grid.h>

wxGridCellAttr::wxGridCellAttr

 wxGridCellAttr ()

Default constructor. wxGridCellAttr (const wxColour& colText, const
wxColour& colBack, const wxFont& font, int hAlign, int vAlign)

VZ: considering the number of members wxGridCellAttr has now, this ctor seems to be
pretty useless... may be we should just remove it?

wxGridCellAttr::Clone

wxGridCellAttr* Clone () const

Creates a new copy of this object.

wxGridCellAttr::IncRef

void IncRef ()

This class is ref counted: it is created with ref count of 1, so calling DecRef() once will
delete it. Calling IncRef() allows to lock it until the matching DecRef() is called

wxGridCellAttr::DecRef

void DecRef ()

wxGridCellAttr::SetTextColour

void SetTextColour (const wxColour& colText)

Sets the text colour.

wxGridCellAttr::SetBackgroundColour

void SetBackgroundColour (const wxColour& colBack)

Sets the background colour.

wxGridCellAttr::SetFont

void SetFont (const wxFont& font)

Sets the font.

wxGridCellAttr::SetAlignment

CHAPTER 7

627

void SetAlignment (int hAlign, int vAlign)

Sets the alignment.

wxGridCellAttr::SetReadOnly

void SetReadOnly (bool isReadOnly = true)

wxGridCellAttr::SetRenderer

void SetRenderer (wxGridCellRenderer* renderer)

takes ownership of the pointer

wxGridCellAttr::SetEditor

void SetEditor (wxGridCellEditor* editor)

wxGridCellAttr::HasTextColour

bool HasTextColour () const

accessors

wxGridCellAttr::HasBackgroundColour

bool HasBackgroundColour () const

wxGridCellAttr::HasFont

bool HasFont () const

wxGridCellAttr::HasAlignment

bool HasAlignment () const

wxGridCellAttr::HasRenderer

bool HasRenderer () const

wxGridCellAttr::HasEditor

bool HasEditor () const

wxGridCellAttr::GetTextColour

const wxColour& GetTextColour () const

CHAPTER 7

628

wxGridCellAttr::GetBackgroundColour

const wxColour& GetBackgroundColour () const

wxGridCellAttr::GetFont

const wxFont& GetFont () const

wxGridCellAttr::GetAlignment

void GetAlignment (int* hAlign, int* vAlign) const

wxPerl note: This method takes no parameters and returns a 2-element list (hAlign,
vAlign) .

wxGridCellAttr::GetRenderer

wxGridCellRenderer* GetRenderer (wxGrid* grid, int row, int col) const

wxGridCellAttr::GetEditor

wxGridCellEditor* GetEditor (wxGrid* grid, int row, int col) const

wxGridCellAttr::IsReadOnly

bool IsReadOnly () const

wxGridCellAttr::SetDefAttr

void SetDefAttr (wxGridCellAttr* defAttr)

wxGridBagSizer

A wxSizer (p. 1124) that can lay out items in a virtual grid like a wxFlexGridSizer (p. 531)
but in this case explicit positioning of the items is allowed using wxGBPosition (p. 578),
and items can optionally span more than one row and/or column using wxGBSpan (p.
580).

Derived from

wxFlexGridSizer (p. 531)
wxGridSizer (p. 652)
wxSizer (p. 1124)
wxObject (p. 967)

Include files

<wx/gbsizer.h>

CHAPTER 7

629

wxGridBagSizer::wxGridBagSizer

 wxGridBagSizer (int vgap = 0, int hgap = 0)

Constructor, with optional parameters to specify the gap between the rows and columns.

wxGridBagSizer::Add

wxSizerItem* Add (wxWindow* window, const wxGBPosition& pos, const
wxGBSpan& span = wxDefaultSpan, int flag = 0, int border = 0, wxObject* userData =
NULL)

wxSizerItem* Add (wxSizer* sizer, const wxGBPosition& pos, const wxGBSpan&
span = wxDefaultSpan, int flag = 0, int border = 0, wxObject* userData = NULL)

wxSizerItem* Add (int width, int height, const wxGBPosition& pos, const
wxGBSpan& span = wxDefaultSpan, int flag = 0, int border = 0, wxObject* userData =
NULL)

wxSizerItem* Add (wxGBSizerItem* item)

The Add methods return a valid pointer if the item was successfully placed at the given
position, NULL if something was already there.

wxGridBagSizer::CalcMin

wxSize CalcMin ()

Called when the managed size of the sizer is needed or when layout needs done.

wxGridBagSizer::CheckForIntersection

bool CheckForIntersection (wxGBSizerItem* item, wxGBSizerItem* excludeItem =
NULL)

bool CheckForIntersection (const wxGBPosition& pos, const wxGBSpan& span,
wxGBSizerItem* excludeItem = NULL)

Look at all items and see if any intersect (or would overlap) the given item. Returns true
if so, false if there would be no overlap. If an excludeItem is given then it will not be
checked for intersection, for example it may be the item we are checking the position of.

wxGridBagSizer::FindItem

wxGBSizerItem* FindItem (wxWindow* window)

wxGBSizerItem* FindItem (wxSizer* sizer)

Find the sizer item for the given window or subsizer, returns NULL if not found. (non-

CHAPTER 7

630

recursive)

wxGridBagSizer::FindItemAtPoint

wxGBSizerItem* FindItemAtPoint (const wxPoint& pt)

Return the sizer item located at the point given in pt, or NULL if there is no item at that
point. The (x,y) coordinates in pt correspond to the client coordinates of the window
using the sizer for layout. (non-recursive)

wxGridBagSizer::FindItemAtPosition

wxGBSizerItem* FindItemAtPosition (const wxGBPosition& pos)

Return the sizer item for the given grid cell, or NULL if there is no item at that position.
(non-recursive)

wxGridBagSizer::FindItemWithData

wxGBSizerItem* FindItemWithData (const wxObject* userData)

Return the sizer item that has a matching user data (it only compares pointer values) or
NULL if not found. (non-recursive)

wxGridBagSizer::GetCellSize

wxSize GetCellSize (int row, int col) const

Get the size of the specified cell, including hgap and vgap. Only valid after a Layout.

wxGridBagSizer::GetEmptyCellSize

wxSize GetEmptyCellSize () const

Get the size used for cells in the grid with no item.

wxGridBagSizer::GetItemPosition

wxGBPosition GetItemPosition (wxWindow* window)

wxGBPosition GetItemPosition (wxSizer* sizer)

wxGBPosition GetItemPosition (size_t index)

Get the grid position of the specified item.

wxGridBagSizer::GetItemSpan

wxGBSpan GetItemSpan (wxWindow* window)

CHAPTER 7

631

wxGBSpan GetItemSpan (wxSizer* sizer)

wxGBSpan GetItemSpan (size_t index)

Get the row/col spanning of the specified item

wxGridBagSizer::RecalcSizes

void RecalcSizes ()

Called when the managed size of the sizer is needed or when layout needs done.

wxGridBagSizer::SetEmptyCellSize

void SetEmptyCellSize (const wxSize& sz)

Set the size used for cells in the grid with no item.

wxGridBagSizer::SetItemPosition

bool SetItemPosition (wxWindow* window, const wxGBPosition& pos)

bool SetItemPosition (wxSizer* sizer, const wxGBPosition& pos)

bool SetItemPosition (size_t index, const wxGBPosition& pos)

Set the grid position of the specified item. Returns true on success. If the move is not
allowed (because an item is already there) then false is returned.

wxGridBagSizer::SetItemSpan

bool SetItemSpan (wxWindow* window, const wxGBSpan& span)

bool SetItemSpan (wxSizer* sizer, const wxGBSpan& span)

bool SetItemSpan (size_t index, const wxGBSpan& span)

Set the row/col spanning of the specified item. Returns true on success. If the move is
not allowed (because an item is already there) then false is returned.

wxGridCellBoolEditor

The editor for boolean data.

Derived from

wxGridCellEditor (p. 632)

See also

wxGridCellEditor (p. 632), wxGridCellFloatEditor (p. 634), wxGridCellNumberEditor (p.

CHAPTER 7

632

635), wxGridCellTextEditor (p. 635), wxGridCellChoiceEditor (p. 631)

Include files

<wx/grid.h>

wxGridCellBoolEditor::wxGridCellBoolEditor

 wxGridCellBoolEditor ()

Default constructor.

wxGridCellChoiceEditor

The editor for string data allowing to choose from a list of strings.

Derived from

wxGridCellEditor (p. 632)

See also

wxGridCellEditor (p. 632), wxGridCellFloatEditor (p. 634), wxGridCellBoolEditor (p. 630),
wxGridCellTextEditor (p. 635), wxGridCellNumberEditor (p. 635)

wxGridCellChoiceEditor::wxGridCellChoiceEditor

 wxGridCellChoiceEditor (size_t count = 0, const wxString choices[] = NULL, bool
allowOthers = false)

 wxGridCellChoiceEditor (const wxArrayString& choices, bool allowOthers = false)

count

Number of strings from which the user can choose.

choices

An array of strings from which the user can choose.

allowOthers

If allowOthers if true, the user can type a string not in choices array.

wxGridCellChoiceEditor::SetParameters

void SetParameters (const wxString& params)

CHAPTER 7

633

Parameters string format is "item1[,item2[...,itemN]]"

wxGridCellEditor

This class is responsible for providing and manipulating the in-place edit controls for the
grid. Instances of wxGridCellEditor (actually, instances of derived classes since it is an
abstract class) can be associated with the cell attributes for individual cells, rows,
columns, or even for the entire grid.

Derived from

wxGridCellWorker

See also

wxGridCellTextEditor (p. 635), wxGridCellFloatEditor (p. 634), wxGridCellBoolEditor (p.
630), wxGridCellNumberEditor (p. 635), wxGridCellChoiceEditor (p. 631)

Include files

<wx/grid.h>

wxGridCellEditor::wxGridCellEditor

 wxGridCellEditor ()

wxGridCellEditor::IsCreated

bool IsCreated ()

wxGridCellEditor::Create

void Create (wxWindow* parent, wxWindowID id, wxEvtHandler* evtHandler)

Creates the actual edit control.

wxGridCellEditor::SetSize

void SetSize (const wxRect& rect)

Size and position the edit control.

wxGridCellEditor::Show

void Show (bool show, wxGridCellAttr* attr = NULL)

Show or hide the edit control, use the specified attributes to set colours/fonts for it.

CHAPTER 7

634

wxGridCellEditor::PaintBackground

void PaintBackground (const wxRect& rectCell, wxGridCellAttr* attr)

Draws the part of the cell not occupied by the control: the base class version just fills it
with background colour from the attribute.

wxGridCellEditor::BeginEdit

void BeginEdit (int row, int col, wxGrid* grid)

Fetch the value from the table and prepare the edit control to begin editing. Set the focus
to the edit control.

wxGridCellEditor::EndEdit

bool EndEdit (int row, int col, wxGrid* grid)

Complete the editing of the current cell. Returns true if the value has changed. If
necessary, the control may be destroyed.

wxGridCellEditor::Reset

void Reset ()

Reset the value in the control back to its starting value.

wxGridCellEditor::StartingKey

void StartingKey (wxKeyEvent& event)

If the editor is enabled by pressing keys on the grid, this will be called to let the editor do
something about that first key if desired.

wxGridCellEditor::StartingClick

void StartingClick ()

If the editor is enabled by clicking on the cell, this method will be called.

wxGridCellEditor::HandleReturn

void HandleReturn (wxKeyEvent& event)

Some types of controls on some platforms may need some help with the Return key.

wxGridCellEditor::Destroy

void Destroy ()

CHAPTER 7

635

Final cleanup.

wxGridCellEditor::Clone

wxGridCellEditor* Clone () const

Create a new object which is the copy of this one.

wxGridCellEditor::~wxGridCellEditor

 ~wxGridCellEditor ()

The dtor is private because only DecRef() can delete us.

wxGridCellFloatEditor

The editor for floating point numbers data.

Derived from

wxGridCellTextEditor (p. 635)
wxGridCellEditor (p. 632)

See also

wxGridCellEditor (p. 632), wxGridCellNumberEditor (p. 635), wxGridCellBoolEditor (p.
630), wxGridCellTextEditor (p. 635), wxGridCellChoiceEditor (p. 631)

Include files

<wx/grid.h>

wxGridCellFloatEditor::wxGridCellFloatEditor

 wxGridCellFloatEditor (int width = -1, int precision = -1)

width

Minimum number of characters to be shown.

precision

Number of digits after the decimal dot.

wxGridCellFloatEditor::SetParameters

void SetParameters (const wxString& params)

Parameters string format is "width,precision"

CHAPTER 7

636

wxGridCellNumberEditor

The editor for numeric integer data.

Derived from

wxGridCellTextEditor (p. 635)
wxGridCellEditor (p. 632)

See also

wxGridCellEditor (p. 632), wxGridCellFloatEditor (p. 634), wxGridCellBoolEditor (p. 630),
wxGridCellTextEditor (p. 635), wxGridCellChoiceEditor (p. 631)

Include files

<wx/grid.h>

wxGridCellNumberEditor::wxGridCellNumberEditor

 wxGridCellNumberEditor (int min = -1, int max = -1)

Allows to specify the range for acceptable data; if min == max == -1, no range checking
is done

wxGridCellNumberEditor::GetString

wxString GetString () const

String representation of the value.

wxGridCellNumberEditor::HasRange

bool HasRange () const

If the return value is true, the editor uses a wxSpinCtrl to get user input, otherwise it uses
a wxTextCtrl.

wxGridCellNumberEditor::SetParameters

void SetParameters (const wxString& params)

Parameters string format is "min,max".

wxGridCellTextEditor

The editor for string/text data.

Derived from

CHAPTER 7

637

wxGridCellEditor (p. 632)

See also

wxGridCellEditor (p. 632), wxGridCellFloatEditor (p. 634), wxGridCellBoolEditor (p. 630),
wxGridCellNumberEditor (p. 635), wxGridCellChoiceEditor (p. 631)

Include files

<wx/grid.h>

wxGridCellTextEditor::wxGridCellTextEditor

 wxGridCellTextEditor ()

Default constructor.

wxGridCellTextEditor::SetParameters

void SetParameters (const wxString& params)

The parameters string format is "n" where n is a number representing the maximum
width.

wxGridEditorCreatedEvent

Derived from

wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Event handling

The event handler for the following functions takes a wxGridEditorCreatedEvent (p. 636)
parameter. The ..._CMD_... variants also take a window identifier.

EVT_GRID_EDITOR_CREATED(func) The editor for a cell was created. Processes a
wxEVT_GRID_EDITOR_CREATED.

EVT_GRID_CMD_EDITOR_CREATED(id, func) The editor for a cell was created;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_CREATED.

Include files
<wx/grid.h>

wxGridEditorCreatedEvent::wxGridEditorCreatedEvent

CHAPTER 7

638

 wxGridEditorCreatedEvent ()

Default constructor.

 wxGridEditorCreatedEvent (int id, wxEventType type, wxObject* obj, int row, int col,
wxControl* ctrl)

wxGridEditorCreatedEvent::GetCol

int GetCol ()

Returns the column at which the event occurred.

wxGridEditorCreatedEvent::GetControl

wxControl* GetControl ()

Returns the edit control.

wxGridEditorCreatedEvent::GetRow

int GetRow ()

Returns the row at which the event occurred.

wxGridEditorCreatedEvent::SetCol

void SetCol (int col)

Sets the column at which the event occurred.

wxGridEditorCreatedEvent::SetControl

void SetControl (wxControl* ctrl)

Sets the edit control.

wxGridEditorCreatedEvent::SetRow

void SetRow (int row)

Sets the row at which the event occurred.

wxGridEvent

This event class contains information about various grid events.

Derived from

wxNotifyEvent (p. 966)

CHAPTER 7

639

wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/grid.h>

Event handling

The event handler for the following functions takes a wxGridEvent (p. 637) parameter.
The ..._CMD_... variants also take a window identifier.

EVT_GRID_CELL_LEFT_CLICK(func) The user clicked a cell with the left mouse
button. Processes a
wxEVT_GRID_CELL_LEFT_CLICK.

EVT_GRID_CELL_RIGHT_CLICK(func) The user clicked a cell with the right mouse
button. Processes a
wxEVT_GRID_CELL_RIGHT_CLICK.

EVT_GRID_CELL_LEFT_DCLICK(func) The user double-clicked a cell with the left
mouse button. Processes a
wxEVT_GRID_CELL_LEFT_DCLICK.

EVT_GRID_CELL_RIGHT_DCLICK(func) The user double-clicked a cell with the right
mouse button. Processes a
wxEVT_GRID_CELL_RIGHT_DCLICK.

EVT_GRID_LABEL_LEFT_CLICK(func) The user clicked a label with the left mouse
button. Processes a
wxEVT_GRID_LABEL_LEFT_CLICK.

EVT_GRID_LABEL_RIGHT_CLICK(func) The user clicked a label with the right
mouse button. Processes a
wxEVT_GRID_LABEL_RIGHT_CLICK.

EVT_GRID_LABEL_LEFT_DCLICK(func) The user double-clicked a label with the left
mouse button. Processes a
wxEVT_GRID_LABEL_LEFT_DCLICK.

EVT_GRID_LABEL_RIGHT_DCLICK(func) The user double-clicked a label with
the right mouse button. Processes a
wxEVT_GRID_LABEL_RIGHT_DCLICK.

EVT_GRID_CELL_CHANGE(func) The user changed the data in a cell. Processes
a wxEVT_GRID_CELL_CHANGE.

EVT_GRID_SELECT_CELL(func) The user moved to, and selected a cell.
Processes a wxEVT_GRID_SELECT_CELL.

EVT_GRID_EDITOR_HIDDEN(func) The editor for a cell was hidden. Processes a
wxEVT_GRID_EDITOR_HIDDEN.

CHAPTER 7

640

EVT_GRID_EDITOR_SHOWN(func) The editor for a cell was shown. Processes a
wxEVT_GRID_EDITOR_SHOWN.

EVT_GRID_CMD_CELL_LEFT_CLICK(id, func) The user clicked a cell with the left
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_LEFT_CLICK.

EVT_GRID_CMD_CELL_RIGHT_CLICK(id, func) The user clicked a cell with the right
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_RIGHT_CLICK.

EVT_GRID_CMD_CELL_LEFT_DCLICK(id, func) The user double-clicked a cell with
the left mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_CELL_LEFT_DCLICK.

EVT_GRID_CMD_CELL_RIGHT_DCLICK(id, func) The user double-clicked a
cell with the right mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_CELL_RIGHT_DCLICK.

EVT_GRID_CMD_LABEL_LEFT_CLICK(id, func) The user clicked a label with the left
mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_LABEL_LEFT_CLICK.

EVT_GRID_CMD_LABEL_RIGHT_CLICK(id, func) The user clicked a label with
the right mouse button; variant taking a window
identifier. Processes a
wxEVT_GRID_LABEL_RIGHT_CLICK.

EVT_GRID_CMD_LABEL_LEFT_DCLICK(id, func) The user double-clicked a
label with the left mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_LABEL_LEFT_DCLICK.

EVT_GRID_CMD_LABEL_RIGHT_DCLICK(id, func) The user double-clicked a
label with the right mouse button; variant taking
a window identifier. Processes a
wxEVT_GRID_LABEL_RIGHT_DCLICK.

EVT_GRID_CMD_CELL_CHANGE(id, func) The user changed the data in a cell;
variant taking a window identifier. Processes a
wxEVT_GRID_CELL_CHANGE.

EVT_GRID_CMD_SELECT_CELL(id, func) The user moved to, and selected a
cell; variant taking a window identifier.
Processes a wxEVT_GRID_SELECT_CELL.

EVT_GRID_CMD_EDITOR_HIDDEN(id, func) The editor for a cell was hidden;
variant taking a window identifier. Processes a

CHAPTER 7

641

wxEVT_GRID_EDITOR_HIDDEN.

EVT_GRID_CMD_EDITOR_SHOWN(id, func) The editor for a cell was shown;
variant taking a window identifier. Processes a
wxEVT_GRID_EDITOR_SHOWN.

wxGridEvent::wxGridEvent

 wxGridEvent ()

Default constructor.

 wxGridEvent (int id, wxEventType type, wxObject* obj, int row = -1, int col = -1, int x
= -1, int y = -1, bool sel = true, bool control = false, bool shift = false, bool alt = false,
bool meta = false)

Parameters

wxGridEvent::AltDown

bool AltDown ()

Returns true if the Alt key was down at the time of the event.

wxGridEvent::ControlDown

bool ControlDown ()

Returns true if the Control key was down at the time of the event.

wxGridEvent::GetCol

int GetCol ()

Column at which the event occurred.

wxGridEvent::GetPosition

wxPoint GetPosition ()

Position in pixels at which the event occurred.

wxGridEvent::GetRow

int GetRow ()

Row at which the event occurred.

wxGridEvent::MetaDown

CHAPTER 7

642

bool MetaDown ()

Returns true if the Meta key was down at the time of the event.

wxGridEvent::Selecting

bool Selecting ()

Returns true if the user deselected a cell, false if the user deselected a cell.

wxGridEvent::ShiftDown

bool ShiftDown ()

Returns true if the Shift key was down at the time of the event.

wxGridRangeSelectEvent

Derived from

wxNotifyEvent (p. 966)
wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Event handling

The event handler for the following functions takes a wxGridRangeSelectEvent (p. 641)
parameter. The ..._CMD_... variants also take a window identifier.

EVT_GRID_RANGE_SELECT(func) The user selected a group of contiguous cells.
Processes a wxEVT_GRID_RANGE_SELECT.

EVT_GRID_CMD_RANGE_SELECT(func) The user selected a group of contiguous
cells; variant taking a window identifier.
Processes a wxEVT_GRID_RANGE_SELECT.

Include files
<wx/grid.h>

wxGridRangeSelectEvent::wxGridRangeSelectEvent

 wxGridRangeSelectEvent ()

Default constructor.

 wxGridRangeSelectEvent (int id, wxEventType type, wxObject* obj, const
wxGridCellCoords& topLeft, const wxGridCellCoords& bottomRight, bool sel = true,
bool control = false, bool shift = false, bool alt = false, bool meta = false)

CHAPTER 7

643

wxGridRangeSelectEvent::AltDown

bool AltDown ()

Returns true if the Alt key was down at the time of the event.

wxGridRangeSelectEvent::ControlDown

bool ControlDown ()

Returns true if the Control key was down at the time of the event.

wxGridRangeSelectEvent::GetBottomRightCoords

wxGridCellCoords GetBottomRightCoords ()

Top left corner of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetBottomRow

int GetBottomRow ()

Bottom row of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetLeftCol

int GetLeftCol ()

Left column of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetRightCol

int GetRightCol ()

Right column of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetTopLeftCoords

wxGridCellCoords GetTopLeftCoords ()

Top left corner of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::GetTopRow

int GetTopRow ()

Top row of the rectangular area that was (de)selected.

wxGridRangeSelectEvent::MetaDown

CHAPTER 7

644

bool MetaDown ()

Returns true if the Meta key was down at the time of the event.

wxGridRangeSelectEvent::Selecting

bool Selecting ()

Returns true if the area was selected, false otherwise.

wxGridRangeSelectEvent::ShiftDown

bool ShiftDown ()

Returns true if the Shift key was down at the time of the event.

wxGridSizeEvent

This event class contains information about a row/column resize event.

Derived from

wxNotifyEvent (p. 966)
wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/grid.h>

Event handling

The event handler for the following functions takes a wxGridSizeEvent (p. 643)
parameter. The ..._CMD_... variants also take a window identifier.

EVT_GRID_COL_SIZE(func) The user resized a column by dragging it.
Processes a wxEVT_GRID_COL_SIZE.

EVT_GRID_ROW_SIZE(func) The user resized a row by dragging it.
Processes a wxEVT_GRID_ROW_SIZE.

EVT_GRID_CMD_COL_SIZE(func) The user resized a column by dragging it;
variant taking a window identifier. Processes a
wxEVT_GRID_COL_SIZE.

EVT_GRID_CMD_ROW_SIZE(func) The user resized a row by dragging it; variant
taking a window identifier. Processes a
wxEVT_GRID_ROW_SIZE.

wxGridSizeEvent::wxGridSizeEvent

CHAPTER 7

645

 wxGridSizeEvent ()

Default constructor.

 wxGridSizeEvent (int id, wxEventType type, wxObject* obj, int rowOrCol = -1, int x =
-1, int y = -1, bool control = false, bool shift = false, bool alt = false, bool meta = false)

wxGridSizeEvent::AltDown

bool AltDown ()

Returns true if the Alt key was down at the time of the event.

wxGridSizeEvent::ControlDown

bool ControlDown ()

Returns true if the Control key was down at the time of the event.

wxGridSizeEvent::GetPosition

wxPoint GetPosition ()

Position in pixels at which the event occurred.

wxGridSizeEvent::GetRowOrCol

int GetRowOrCol ()

Row or column at that was resized.

wxGridSizeEvent::MetaDown

bool MetaDown ()

Returns true if the Meta key was down at the time of the event.

wxGridSizeEvent::ShiftDown

bool ShiftDown ()

Returns true if the Shift key was down at the time of the event.

wxGridCellBoolRenderer

This class may be used to format boolean data in a cell. for string cells.

Derived from

wxGridCellRenderer (p. 647)

CHAPTER 7

646

See also

wxGridCellRenderer (p. 647), wxGridCellStringRenderer (p. 647),
wxGridCellFloatRenderer (p. 645), wxGridCellNumberRenderer (p. 646)

Include files

<wx/grid.h>

wxGridCellBoolRenderer::wxGridCellBoolRenderer

 wxGridCellBoolRenderer ()

Default constructor

wxGridCellFloatRenderer

This class may be used to format floating point data in a cell.

Derived from

wxGridCellStringRenderer (p. 647)
wxGridCellRenderer (p. 647)

See also

wxGridCellRenderer (p. 647), wxGridCellNumberRenderer (p. 646),
wxGridCellStringRenderer (p. 647), wxGridCellBoolRenderer (p. 644)

Include files

<wx/grid.h>

wxGridCellFloatRenderer::wxGridCellFloatRenderer

 wxGridCellFloatRenderer (int width = -1, int precision = -1)

width

Minimum number of characters to be shown.

precision

Number of digits after the decimal dot.

wxGridCellFloatRenderer::GetPrecision

int GetPrecision () const

CHAPTER 7

647

Returns the precision (see wxGridCellFloatRenderer (p. 645)).

wxGridCellFloatRenderer::GetWidth

int GetWidth () const

Returns the width (see wxGridCellFloatRenderer (p. 645)).

wxGridCellFloatRenderer::SetParameters

void SetParameters (const wxString& params)

Parameters string format is "width[,precision]".

wxGridCellFloatRenderer::SetPrecision

void SetPrecision (int precision)

Sets the precision (see wxGridCellFloatRenderer (p. 645)).

wxGridCellFloatRenderer::SetWidth

void SetWidth (int width)

Sets the width (see wxGridCellFloatRenderer (p. 645))

wxGridCellNumberRenderer

This class may be used to format integer data in a cell.

Derived from

wxGridellStringRenderer (p. 647)
wxGridCellRenderer (p. 647)

See also

wxGridCellRenderer (p. 647), wxGridCellStringRenderer (p. 647),
wxGridCellFloatRenderer (p. 645), wxGridCellBoolRenderer (p. 644)

Include files

<wx/grid.h>

wxGridCellNumberRenderer::wxGridCellNumberRenderer

 wxGridCellNumberRenderer ()

Default constructor

CHAPTER 7

648

wxGridCellRenderer

This class is responsible for actually drawing the cell in the grid. You may pass it to the
wxGridCellAttr (below) to change the format of one given cell or to
wxGrid::SetDefaultRenderer() to change the view of all cells. This is an abstract class,
and you will normally use one of the predefined derived classes or derive your own class
from it.

Derived from

wxGridCellWorker

See also

wxGridCellStringRenderer (p. 647), wxGridCellNumberRenderer (p. 646),
wxGridCellFloatRenderer (p. 645), wxGridCellBoolRenderer (p. 644)

Include files

<wx/grid.h>

wxGridCellRenderer::Draw

void Draw (wxGrid& grid, wxGridCellAttr& attr, wxDC& dc, const wxRect& rect, int
row, int col, bool isSelected)

Draw the given cell on the provided DC inside the given rectangle using the style
specified by the attribute and the default or selected state corresponding to the
isSelected value.

This pure virtual function has a default implementation which will prepare the DC using
the given attribute: it will draw the rectangle with the background colour from attr and set
the text colour and font.

wxGridCellRenderer::GetBestSize

wxSize GetBestSize (wxGrid& grid, wxGridCellAttr& attr, wxDC& dc, int row, int col)

Get the preferred size of the cell for its contents.

wxGridCellRenderer::Clone

wxGridCellRenderer* Clone () const

wxGridCellStringRenderer

This class may be used to format string data in a cell; it is the default for string cells.

Derived from

CHAPTER 7

649

wxGridCellRenderer (p. 647)

See also

wxGridCellRenderer (p. 647), wxGridCellNumberRenderer (p. 646),
wxGridCellFloatRenderer (p. 645), wxGridCellBoolRenderer (p. 644)

Include files

<wx/grid.h>

wxGridCellStringRenderer::wxGridCellStringRenderer

 wxGridCellStringRenderer ()

Default constructor

wxGridTableBase

Grid table classes.

Derived from

wxObject (p. 967)

Include files

<wx/grid.h>

wxGridTableBase::wxGridTableBase

 wxGridTableBase ()

wxGridTableBase::~wxGridTableBase

 ~wxGridTableBase ()

wxGridTableBase::GetNumberRows

int GetNumberRows ()

You must override these functions in a derived table class.

wxGridTableBase::GetNumberCols

int GetNumberCols ()

CHAPTER 7

650

wxGridTableBase::IsEmptyCell

bool IsEmptyCell (int row, int col)

wxGridTableBase::GetValue

wxString GetValue (int row, int col)

wxGridTableBase::SetValue

void SetValue (int row, int col, const wxString& value)

wxGridTableBase::GetTypeName

wxString GetTypeName (int row, int col)

Data type determination and value access.

wxGridTableBase::CanGetValueAs

bool CanGetValueAs (int row, int col, const wxString& typeName)

wxGridTableBase::CanSetValueAs

bool CanSetValueAs (int row, int col, const wxString& typeName)

wxGridTableBase::GetValueAsLong

long GetValueAsLong (int row, int col)

wxGridTableBase::GetValueAsDouble

double GetValueAsDouble (int row, int col)

wxGridTableBase::GetValueAsBool

bool GetValueAsBool (int row, int col)

wxGridTableBase::SetValueAsLong

void SetValueAsLong (int row, int col, long value)

wxGridTableBase::SetValueAsDouble

void SetValueAsDouble (int row, int col, double value)

wxGridTableBase::SetValueAsBool

CHAPTER 7

651

void SetValueAsBool (int row, int col, bool value)

wxGridTableBase::GetValueAsCustom

void* GetValueAsCustom (int row, int col, const wxString& typeName)

For user defined types

wxGridTableBase::SetValueAsCustom

void SetValueAsCustom (int row, int col, const wxString& typeName, void* value)

wxGridTableBase::SetView

void SetView (wxGrid* grid)

Overriding these is optional

wxGridTableBase::GetView

wxGrid * GetView () const

wxGridTableBase::Clear

void Clear ()

wxGridTableBase::InsertRows

bool InsertRows (size_t pos = 0, size_t numRows = 1)

wxGridTableBase::AppendRows

bool AppendRows (size_t numRows = 1)

wxGridTableBase::DeleteRows

bool DeleteRows (size_t pos = 0, size_t numRows = 1)

wxGridTableBase::InsertCols

bool InsertCols (size_t pos = 0, size_t numCols = 1)

wxGridTableBase::AppendCols

bool AppendCols (size_t numCols = 1)

wxGridTableBase::DeleteCols

CHAPTER 7

652

bool DeleteCols (size_t pos = 0, size_t numCols = 1)

wxGridTableBase::GetRowLabelValue

wxString GetRowLabelValue (int row)

wxGridTableBase::GetColLabelValue

wxString GetColLabelValue (int col)

wxGridTableBase::SetRowLabelValue

void SetRowLabelValue (int WXUNUSED(row), const wxString&)

wxGridTableBase::SetColLabelValue

void SetColLabelValue (int WXUNUSED(col), const wxString&)

wxGridTableBase::SetAttrProvider

void SetAttrProvider (wxGridCellAttrProvider* attrProvider)

Attribute handling give us the attr provider to use - we take ownership of the pointer

wxGridTableBase::GetAttrProvider

wxGridCellAttrProvider* GetAttrProvider () const

get the currently used attr provider (may be NULL)

wxGridTableBase::CanHaveAttributes

bool CanHaveAttributes ()

Does this table allow attributes? Default implementation creates a
wxGridCellAttrProvider if necessary.

wxGridTableBase::UpdateAttrRows

void UpdateAttrRows (size_t pos, int numRows)

change row/col number in attribute if needed

wxGridTableBase::UpdateAttrCols

void UpdateAttrCols (size_t pos, int numCols)

wxGridTableBase::GetAttr

CHAPTER 7

653

wxGridCellAttr* GetAttr (int row, int col)

by default forwarded to wxGridCellAttrProvider if any. May be overridden to handle
attributes directly in the table.

wxGridTableBase::SetAttr

void SetAttr (wxGridCellAttr* attr, int row, int col)

these functions take ownership of the pointer

wxGridTableBase::SetRowAttr

void SetRowAttr (wxGridCellAttr* attr, int row)

wxGridTableBase::SetColAttr

void SetColAttr (wxGridCellAttr* attr, int col)

wxGridSizer

A grid sizer is a sizer which lays out its children in a two-dimensional table with all table
fields having the same size, i.e. the width of each field is the width of the widest child,
the height of each field is the height of the tallest child.

Derived from

wxSizer (p. 1124)
wxObject (p. 967)

Include files

<wx/sizer.h>

See also

wxSizer (p. 1124), Sizer overview (p. 1694)

wxGridSizer::wxGridSizer

 wxGridSizer (int rows, int cols, int vgap, int hgap)

 wxGridSizer (int cols, int vgap = 0, int hgap = 0)

Constructor for a wxGridSizer. rows and cols determine the number of columns and
rows in the sizer - if either of the parameters is zero, it will be calculated to form the total
number of children in the sizer, thus making the sizer grow dynamically. vgap and hgap
define extra space between all children.

wxGridSizer::GetCols

CHAPTER 7

654

int GetCols ()

Returns the number of columns in the sizer.

wxGridSizer::GetHGap

int GetHGap ()

Returns the horizontal gap (in pixels) between cells in the sizer.

wxGridSizer::GetRows

int GetRows ()

Returns the number of rows in the sizer.

wxGridSizer::GetVGap

int GetVGap ()

Returns the vertical gap (in pixels) between the cells in the sizer.

wxGridSizer::SetCols

void SetCols (int cols)

Sets the number of columns in the sizer.

wxGridSizer::SetHGap

void SetHGap (int gap)

Sets the horizontal gap (in pixels) between cells in the sizer.

wxGridSizer::SetRows

void SetRows (int rows)

Sets the number of rows in the sizer.

wxGridSizer::SetVGap

void SetVGap (int gap)

Sets the vertical gap (in pixels) between the cells in the sizer.

wxHashMap

This is a simple, type-safe, and reasonably efficient hash map class, whose interface is

CHAPTER 7

655

a subset of the interface of STL containers. In particular, the interface is modeled after
std::map, and the various, non standard, std::hash_map.

Example

 class MyClass { /* ... */ };

 // declare a hash map with string keys and int values
 WX_DECLARE_STRING_HASH_MAP(int, MyHash5);
 // same, with int keys and MyClass* values
 WX_DECLARE_HASH_MAP(int, MyClass*, wxIntegerHa sh,
wxIntegerEqual, MyHash1);
 // same, with wxString keys and int values
 WX_DECLARE_STRING_HASH_MAP(int, MyHash3);
 // same, with wxString keys and values
 WX_DECLARE_STRING_HASH_MAP(wxString, MyHash2) ;

 MyHash1 h1;
 MyHash2 h2;

 // store and retrieve values
 h1[1] = new MyClass(1);
 h1[10000000] = NULL;
 h1[50000] = new MyClass(2);
 h2["Bill"] = "ABC";
 wxString tmp = h2["Bill"];
 // since element with key "Joe" is not present, this will
return
 // the default value, which is an empty string in the case of
wxString
 MyClass tmp2 = h2["Joe"];

 // iterate over all the elements in the class
 MyHash2::iterator it;
 for(it = h2.begin(); it != h2.end(); ++it)
 {
 wxString key = it->first, value = it->secon d;
 // do something useful with key and value
 }

Declaring new hash table types

 WX_DECLARE_STRING_HASH_MAP(VALUE_T, // typ e of the values
 CLASSNAME); // nam e of the class

Declares a hash map class named CLASSNAME, with wxString keys and VALUE_T
values.

 WX_DECLARE_VOIDPTR_HASH_MAP(VALUE_T, // ty pe of the
values
 CLASSNAME); // na me of the class

Declares a hash map class named CLASSNAME, with void* keys and VALUE_T
values.

 WX_DECLARE_HASH_MAP(KEY_T, // type of the keys
 VALUE_T, // type of the values
 HASH_T, // hasher
 KEY_EQ_T, // key equalit y predicate
 CLASSNAME); // name of the class

CHAPTER 7

656

The HASH_T and KEY_EQ_T are the types used for the hashing function and key
comparison. wxWidgets provides three predefined hashing functions:
wxIntegerHash for integer types (int , long , short , and their unsigned counterparts
), wxStringHash for strings (wxString , wxChar* , char*), andwxPointerHash for
any kind of pointer. Similarly three equality predicates:wxIntegerEqual ,
wxStringEqual , wxPointerEqual are provided.

Using this you could declare a hash map mapping int values to wxString like this:

 WX_DECLARE_HASH_MAP(int,
 wxString,
 wxIntegerHash,
 wxIntegerEqual,
 MyHash);

 // using an user-defined class for keys
 class MyKey { /* ... */ };

 // hashing function
 class MyKeyHash
 {
 public:
 MyKeyHash() { }

 unsigned long operator()(const MyKey& k) const
 { /* compute the hash */ }

 MyKeyHash& operator=(const MyKeyHash&) { re turn *this; }
 };

 // comparison operator
 class MyKeyEqual
 {
 public:
 MyKeyEqual() { }
 bool operator()(const MyKey& a, const MyKe y& b) const
 { /* compare for equality */ }

 MyKeyEqual& operator=(const MyKeyEqual&) { return *this; }
 };

 WX_DECLARE_HASH_MAP(MyKey, // type of the keys
 SOME_TYPE, // any type yo u like
 MyKeyHash, // hasher
 MyKeyEqual, // key equalit y predicate
 CLASSNAME); // name of the class

In the documentation below you should replace wxHashMap with the name you used in
the class declaration.

wxHashMap::key_type Type of the hash keys

wxHashMap::mapped_type Type of the values stored in the hash map

wxHashMap::value_type Equivalent tostruct { key_type first;
mapped_type second };

wxHashMap::iterator Used to enumerate all the elements in a hash

CHAPTER 7

657

map; it is similar to a value_type*

wxHashMap::const_iterator Used to enumerate all the elements in a
constant hash map; it is similar to a const
value_type*

wxHashMap::size_type Used for sizes

wxHashMap::Insert_Result The return value forinsert() (p. 657)

Iterators

An iterator is similar to a pointer, and so you can use the usual pointer operations: ++it
(and it++) to move to the next element,*it to access the element pointed to, it-
>first (it->second) to access the key (value) of the element pointed to. Hash
maps provide forward only iterators, this means that you can't use --it , it + 3 , it1
- it2 .

Include files

<wx/hashmap.h>

wxHashMap::wxHashMap

 wxHashMap (size_type size = 10)

The size parameter is just a hint, the table will resize automatically to preserve
performance.

 wxHashMap (const wxHashMap& map)

Copy constructor.

wxHashMap::begin

const_iterator begin () const

iterator begin ()

Returns an iterator pointing at the first element of the hash map. Please remember that
hash maps do not guarantee ordering.

wxHashMap::clear

void clear ()

Removes all elements from the hash map.

wxHashMap::count

size_type count (const key_type& key) const

CHAPTER 7

658

Counts the number of elements with the given key present in the map. This function
returns only 0 or 1.

wxHashMap::empty

bool empty () const

Returns true if the hash map does not contain any elements, false otherwise.

wxHashMap::end

const_iterator end () const

iterator end ()

Returns an iterator pointing at the one-after-the-last element of the hash map. Please
remember that hash maps do not guarantee ordering.

wxHashMap::erase

size_type erase (const key_type& key)

Erases the element with the given key, and returns the number of elements erased
(either 0 or 1).

void erase (iterator it)

void erase (const_iterator it)

Erases the element pointed to by the iterator. After the deletion the iterator is no longer
valid and must not be used.

wxHashMap::find

iterator find (const key_type& key)

const_iterator find (const key_type& key) const

If an element with the given key is present, the functions returns an iterator pointing at
that element, otherwise an invalid iterator is returned (i.e. hashmap.find(
non_existent_key) == hashmap.end()).

wxHashMap::insert

Insert_Result insert (const value_type& v)

Inserts the given value in the hash map. The return value is equivalent to a
std::pair<wxHashMap::iterator, bool> ; the iterator points to the inserted
element, the boolean value is true if v was actually inserted.

wxHashMap::operator[]

CHAPTER 7

659

mapped_type& operator[] (const key_type& key)

Use the key as an array subscript. The only difference is that if the given key is not
present in the hash map, an element with the default value_type() is inserted in the
table.

wxHashMap::size

size_type size () const

Returns the number of elements in the map.

wxHashSet

This is a simple, type-safe, and reasonably efficient hash set class, whose interface is a
subset of the interface of STL containers. In particular, the interface is modeled after
std::set, and the various, non standard, std::hash_map.

Example

 class MyClass { /* ... */ };

 // same, with MyClass* keys (only uses pointer equality!)
 WX_DECLARE_HASH_SET(MyClass*, wxPointerHash, w xPointerEqual,
MySet1);
 // same, with int keys
 WX_DECLARE_HASH_SET(int, wxIntegerHash, wxInte gerEqual,
MySet2);
 // declare a hash set with string keys
 WX_DECLARE_HASH_SET(wxString, wxStringHash, wx StringEqual,
MySet3);

 MySet1 h1;
 MySet2 h1;
 MySet3 h3;

 // store and retrieve values
 h1.insert(new MyClass(1));

 h3.insert("foo");
 h3.insert("bar");
 h3.insert("baz");

 int size = h3.size(); // now is three
 bool has_foo = h3.find("foo") != h3.end();

 h3.insert("bar"); // still has size three

 // iterate over all the elements in the class
 MySet3::iterator it;
 for(it = h3.begin(); it != h3.end(); ++it)
 {
 wxString key = *it;
 // do something useful with key
 }

Declaring new hash set types

CHAPTER 7

660

 WX_DECLARE_HASH_SET(KEY_T, // type of the keys
 HASH_T, // hasher
 KEY_EQ_T, // key equalit y predicate
 CLASSNAME); // name of the class

The HASH_T and KEY_EQ_T are the types used for the hashing function and key
comparison. wxWidgets provides three predefined hashing functions:
wxIntegerHash for integer types (int , long , short , and their unsigned counterparts
), wxStringHash for strings (wxString , wxChar* , char*), andwxPointerHash for
any kind of pointer. Similarly three equality predicates:wxIntegerEqual ,
wxStringEqual , wxPointerEqual are provided.

Using this you could declare a hash set using int values like this:

 WX_DECLARE_HASH_SET(int,
 wxIntegerHash,
 wxIntegerEqual,
 MySet);

 // using an user-defined class for keys
 class MyKey { /* ... */ };

 // hashing function
 class MyKeyHash
 {
 public:
 MyKeyHash() { }

 unsigned long operator()(const MyKey& k) const
 { /* compute the hash */ }

 MyKeyHash& operator=(const MyKeyHash&) { re turn *this; }
 };

 // comparison operator
 class MyKeyEqual
 {
 public:
 MyKeyEqual() { }
 bool operator()(const MyKey& a, const MyKe y& b) const
 { /* compare for equality */ }

 MyKeyEqual& operator=(const MyKeyEqual&) { return *this; }
 };

 WX_DECLARE_HASH_SET(MyKey, // type of the keys
 MyKeyHash, // hasher
 MyKeyEqual, // key equalit y predicate
 CLASSNAME); // name of the class

In the documentation below you should replace wxHashSet with the name you used in
the class declaration.

wxHashSet::key_type Type of the hash keys

wxHashSet::mapped_type Type of hash keys

wxHashSet::value_type Type of hash keys

CHAPTER 7

661

wxHashSet::iterator Used to enumerate all the elements in a hash
set; it is similar to a value_type*

wxHashSet::const_iterator Used to enumerate all the elements in a
constant hash set; it is similar to a const
value_type*

wxHashSet::size_type Used for sizes

wxHashSet::Insert_Result The return value forinsert() (p. 661)

Iterators

An iterator is similar to a pointer, and so you can use the usual pointer operations: ++it
(and it++) to move to the next element,*it to access the element pointed to, *it to
access the value of the element pointed to. Hash sets provide forward only iterators, this
means that you can't use --it , it + 3 , it1 - it2 .

Include files

<wx/hashset.h>

wxHashSet::wxHashSet

 wxHashSet (size_type size = 10)

The size parameter is just a hint, the table will resize automatically to preserve
performance.

 wxHashSet (const wxHashSet& set)

Copy constructor.

wxHashSet::begin

const_iterator begin () const

iterator begin ()

Returns an iterator pointing at the first element of the hash set. Please remember that
hash sets do not guarantee ordering.

wxHashSet::clear

void clear ()

Removes all elements from the hash set.

wxHashSet::count

size_type count (const key_type& key) const

CHAPTER 7

662

Counts the number of elements with the given key present in the set. This function
returns only 0 or 1.

wxHashSet::empty

bool empty () const

Returns true if the hash set does not contain any elements, false otherwise.

wxHashSet::end

const_iterator end () const

iterator end ()

Returns an iterator pointing at the one-after-the-last element of the hash set. Please
remember that hash sets do not guarantee ordering.

wxHashSet::erase

size_type erase (const key_type& key)

Erases the element with the given key, and returns the number of elements erased
(either 0 or 1).

void erase (iterator it)

void erase (const_iterator it)

Erases the element pointed to by the iterator. After the deletion the iterator is no longer
valid and must not be used.

wxHashSet::find

iterator find (const key_type& key)

const_iterator find (const key_type& key) const

If an element with the given key is present, the functions returns an iterator pointing at
that element, otherwise an invalid iterator is returned (i.e. hashset.find(non_existent_key
) == hashset.end()).

wxHashSet::insert

Insert_Result insert (const value_type& v)

Inserts the given value in the hash set. The return value is equivalent to a
std::pair<wxHashMap::iterator, bool> ; the iterator points to the inserted
element, the boolean value is true if v was actually inserted.

wxHashSet::size

CHAPTER 7

663

size_type size () const

Returns the number of elements in the set.

wxHashTable

Please note that this class is retained for backward compatibility reasons; you should
use wxHashMap (p. 653).

This class provides hash table functionality for wxWidgets, and for an application if it
wishes. Data can be hashed on an integer or string key.

Derived from

wxObject (p. 967)

Include files

<wx/hash.h>

Example

Below is an example of using a hash table.

 wxHashTable table(wxKEY_STRING);

 wxPoint *point = new wxPoint(100, 200);
 table.Put("point 1", point);

 wxPoint *found_point = (wxPoint *)table.Get("poin t 1");

A hash table is implemented as an array of pointers to lists. When no data has been
stored, the hash table takes only a little more space than this array (default size is 1000).
When a data item is added, an integer is constructed from the integer or string key that
is within the bounds of the array. If the array element is NULL, a new (keyed) list is
created for the element. Then the data object is appended to the list, storing the key in
case other data objects need to be stored in the list also (when a 'collision' occurs).

Retrieval involves recalculating the array index from the key, and searching along the
keyed list for the data object whose stored key matches the passed key. Obviously this
is quicker when there are fewer collisions, so hashing will become inefficient if the
number of items to be stored greatly exceeds the size of the hash table.

See also

wxList (p. 801)

wxHashTable::wxHashTable

 wxHashTable (unsigned int key_type, int size = 1000)

CHAPTER 7

664

Constructor. key_type is one of wxKEY_INTEGER, or wxKEY_STRING, and indicates
what sort of keying is required. size is optional.

wxHashTable::~wxHashTable

 ~wxHashTable ()

Destroys the hash table.

wxHashTable::BeginFind

void BeginFind ()

The counterpart of Next. If the application wishes to iterate through all the data in the
hash table, it can call BeginFind and then loop on Next.

wxHashTable::Clear

void Clear ()

Clears the hash table of all nodes (but as usual, doesn't delete user data).

wxHashTable::Delete

wxObject * Delete (long key)

wxObject * Delete (const wxString& key)

Deletes entry in hash table and returns the user's data (if found).

wxHashTable::DeleteContents

void DeleteContents (bool flag)

If set to true data stored in hash table will be deleted when hash table object is
destroyed.

wxHashTable::Get

wxObject * Get(long key)

wxObject * Get(const char* key)

Gets data from the hash table, using an integer or string key (depending on which has
table constructor was used).

wxHashTable::MakeKey

long MakeKey (const wxString& string)

CHAPTER 7

665

Makes an integer key out of a string. An application may wish to make a key explicitly
(for instance when combining two data values to form a key).

wxHashTable::Next

wxHashTable::Node * Next ()

If the application wishes to iterate through all the data in the hash table, it can call
BeginFind and then loop on Next. This function returns a wxHashTable::Node pointer
(or NULL if there are no more nodes). The return value is functionally equivalent to
wxNode but might not be implemented as a wxNode . The user will probably only wish
to use theGetData method to retrieve the data; the node may also be deleted.

wxHashTable::Put

void Put (long key, wxObject * object)

void Put (const char* key, wxObject * object)

Inserts data into the hash table, using an integer or string key (depending on which has
table constructor was used). The key string is copied and stored by the hash table
implementation.

wxHashTable::GetCount

size_t GetCount () const

Returns the number of elements in the hash table.

wxHelpController

This is a family of classes by which applications may invoke a help viewer to provide on-
line help.

A help controller allows an application to display help, at the contents or at a particular
topic, and shut the help program down on termination. This avoids proliferation of many
instances of the help viewer whenever the user requests a different topic via the
application's menus or buttons.

Typically, an application will create a help controller instance when it starts, and
immediately call Initialize to associate a filename with it. The help viewer will only get
run, however, just before the first call to display something.

Most help controller classes actually derive from wxHelpControllerBase and have names
of the form wxXXXHelpController or wxHelpControllerXXX. An appropriate class is
aliased to the name wxHelpController for each platform, as follows:

 • On desktop Windows, wxCHMHelpController is used (MS HTML Help).

 • On Windows CE, wxWinceHelpController is used.

CHAPTER 7

666

 • On all other platforms, wxHtmlHelpController is used if wxHTML is compiled into
wxWidgets; otherwise wxExtHelpController is used (for invoking an external
browser).

The remaining help controller classes need to be named explicitly by an application that
wishes to make use of them.

There are currently the following help controller classes defined:

 • wxWinHelpController, for controlling Windows Help.

 • wxCHMHelpController, for controlling MS HTML Help. To use this, you need to
set wxUSE_MS_HTML_HELP to 1 in setup.h and have htmlhelp.h header from
Microsoft's HTML Help kit (you don't need VC++ specific htmlhelp.lib because
wxWidgets loads necessary DLL at runtime and so it works with all compilers).

 • wxBestHelpController, for controlling MS HTML Help or, if Microsoft's runtime is
not available, wxHtmlHelpController (p. 689). You need to provideboth CHM
and HTB versions of the help file. For 32bit Windows only.

 • wxExtHelpController, for controlling external browsers under Unix. The default
browser is Netscape Navigator. The 'help' sample shows its use.

 • wxWinceHelpController, for controlling a simple .htm help controller for
Windows CE applications.

 • wxHtmlHelpController (p. 689), a sophisticated help controller using wxHTML (p.
1768), in a similar style to the Microsoft HTML Help viewer and using some of
the same files. Although it has an API compatible with other help controllers, it
has more advanced features, so it is recommended that you use the specific API
for this class instead. Note that if you use .zip or .htb formats for your books, you
must add this line to your application initialization:
wxFileSystem::AddHandler(new wxZipFSHandler); or nothing will be
shown in your help window.

Derived from

wxHelpControllerBase
wxObject (p. 967)

Include files

<wx/help.h> (wxWidgets chooses the appropriate help controller class)
<wx/helpbase.h> (wxHelpControllerBase class)
<wx/helpwin.h> (Windows Help controller)
<wx/msw/helpchm.h> (MS HTML Help controller)
<wx/generic/helpext.h> (external HTML browser controller)
<wx/html/helpctrl.h> (wxHTML based help controller: wxHtmlHelpController)

See also

wxHtmlHelpController (p. 689), wxHTML (p. 1768)

CHAPTER 7

667

wxHelpController::wxHelpController

 wxHelpController ()

Constructs a help instance object, but does not invoke the help viewer.

wxHelpController::~wxHelpController

 ~wxHelpController ()

Destroys the help instance, closing down the viewer if it is running.

wxHelpController::Initialize

virtual void Initialize (const wxString& file)

virtual void Initialize (const wxString& file, int server)

Initializes the help instance with a help filename, and optionally a server socket number
if using wxHelp (now obsolete). Does not invoke the help viewer. This must be called
directly after the help instance object is created and before any attempts to communicate
with the viewer.

You may omit the file extension and a suitable one will be chosen. For
wxHtmlHelpController, the extensions zip, htb and hhp will be appended while searching
for a suitable file. For WinHelp, the hlp extension is appended.

wxHelpController::DisplayBlock

virtual bool DisplayBlock (long blockNo)

If the help viewer is not running, runs it and displays the file at the given block number.

WinHelp: Refers to the context number.

MS HTML Help: Refers to the context number.

External HTML help: the same as for wxHelpController::DisplaySection (p. 667).

wxHtmlHelpController: sectionNo is an identifier as specified in the .hhc file. See Help
files format (p. 1770).

This function is for backward compatibility only, and applications should use
wxHelpController (p. 667) instead.

wxHelpController::DisplayContents

virtual bool DisplayContents ()

If the help viewer is not running, runs it and displays the contents.

CHAPTER 7

668

wxHelpController::DisplayContextPopup

virtual bool DisplayContextPopup (int contextId)

Displays the section as a popup window using a context id.

Returns false if unsuccessful or not implemented.

wxHelpController::DisplaySection

virtual bool DisplaySection (const wxString& section)

If the help viewer is not running, runs it and displays the given section.

The interpretation of section differs between help viewers. For most viewers, this call is
equivalent to KeywordSearch. For MS HTML Help, wxHTML help and external HTML
help, if section has a .htm or .html extension, that HTML file will be displayed; otherwise
a keyword search is done.

virtual bool DisplaySection (int sectionNo)

If the help viewer is not running, runs it and displays the given section.

WinHelp, MS HTML Help sectionNo is a context id.

External HTML help: wxExtHelpController implements sectionNo as an id in a map file,
which is of the form:

0 wx.html ; Index
1 wx34.html#classref ; Class reference
2 wx204.html ; Function reference

wxHtmlHelpController: sectionNo is an identifier as specified in the .hhc file. See Help
files format (p. 1770).

See also the help sample for notes on how to specify section numbers for various help
file formats.

wxHelpController::DisplayTextPopup

virtual bool DisplayTextPopup (const wxString& text, const wxPoint& pos)

Displays the text in a popup window, if possible.

Returns false if unsuccessful or not implemented.

wxHelpController::GetFrameParameters

virtual wxFrame * GetFrameParameters (const wxSize * size = NULL, const wxPoint
* pos = NULL, bool * newFrameEachTime = NULL)

wxHtmlHelpController returns the frame, size and position.

CHAPTER 7

669

For all other help controllers, this function does nothing and just returns NULL.

Parameters

viewer

This defaults to "netscape" for wxExtHelpController.

flags

This defaults to wxHELP_NETSCAPE for wxExtHelpController, indicating that the
viewer is a variant of Netscape Navigator.

wxHelpController::KeywordSearch

virtual bool KeywordSearch (const wxString& keyWord, wxHelpSearchMode mode
= wxHELP_SEARCH_ALL)

If the help viewer is not running, runs it, and searches for sections matching the given
keyword. If one match is found, the file is displayed at this section. The optional
parameter allows the search the index (wxHELP_SEARCH_INDEX) but this currently
only supported by the wxHtmlHelpController.

WinHelp, MS HTML Help: If more than one match is found, the first topic is displayed.

External HTML help, simple wxHTML help: If more than one match is found, a choice of
topics is displayed.

wxHtmlHelpController: see wxHtmlHelpController::KeywordSearch (p. 693).

wxHelpController::LoadFile

virtual bool LoadFile (const wxString& file = "")

If the help viewer is not running, runs it and loads the given file. If the filename is not
supplied or is empty, the file specified in Initialize is used. If the viewer is already
displaying the specified file, it will not be reloaded. This member function may be used
before each display call in case the user has opened another file.

wxHtmlHelpController ignores this call.

wxHelpController::OnQuit

virtual bool OnQuit ()

Overridable member called when this application's viewer is quit by the user.

This does not work for all help controllers.

wxHelpController::SetFrameParameters

virtual void SetFrameParameters (const wxString & title, const wxSize & size, const

CHAPTER 7

670

wxPoint & pos = wxDefaultPosition, bool newFrameEachTime = false)

For wxHtmlHelpController, the title is set (again with %s indicating the page title) and
also the size and position of the frame if the frame is already open. newFrameEachTime
is ignored.

For all other help controllers this function has no effect.

wxHelpController::SetViewer

virtual void SetViewer (const wxString& viewer, long flags)

Sets detailed viewer information. So far this is only relevant to wxExtHelpController.

Some examples of usage:

 m_help.SetViewer("kdehelp");
 m_help.SetViewer("gnome-help-browser");
 m_help.SetViewer("netscape", wxHELP_NETSCAPE);

wxHelpController::Quit

virtual bool Quit ()

If the viewer is running, quits it by disconnecting.

For Windows Help, the viewer will only close if no other application is using it.

wxHelpControllerHelpProvider

wxHelpControllerHelpProvider is an implementation of wxHelpProvider which supports
both context identifiers and plain text help strings. If the help text is an integer, it is
passed to wxHelpController::DisplayContextPopup. Otherwise, it shows the string in a
tooltip as per wxSimpleHelpProvider. If you use this with a wxCHMHelpController
instance on windows, it will use the native style of tip window instead of wxTipWindow
(p. 1333).

You can use the convenience function wxContextId to convert an integer context id to a
string for passing to wxWindow::SetHelpText (p. 1464).

Derived from

wxSimpleHelpProvider (p. 1116)
wxHelpProvider (p. 671)

Include files

<wx/cshelp.h>

See also

wxHelpProvider (p. 671), wxSimpleHelpProvider (p. 1116), wxContextHelp (p. 202),

CHAPTER 7

671

wxWindow::SetHelpText (p. 1464), wxWindow::GetHelpText (p. 1439)

wxHelpControllerHelpProvider::wxHelpControllerHelpP rovider

 wxHelpControllerHelpProvider (wxHelpControllerBase* hc = NULL)

Note that the instance doesn't own the help controller. The help controller should be
deleted separately.

wxHelpControllerHelpProvider::SetHelpController

void SetHelpController (wxHelpControllerBase* hc)

Sets the help controller associated with this help provider.

wxHelpControllerHelpProvider::GetHelpController

wxHelpControllerBase* GetHelpController () const

Returns the help controller associated with this help provider.

wxHelpEvent

A help event is sent when the user has requested context-sensitive help. This can either
be caused by the application requesting context-sensitive help mode via wxContextHelp
(p. 202), or (on MS Windows) by the system generating a WM_HELP message when the
user pressed F1 or clicked on the query button in a dialog caption.

A help event is sent to the window that the user clicked on, and is propagated up the
window hierarchy until the event is processed or there are no more event handlers. The
application should call wxEvent::GetId to check the identity of the clicked-on window,
and then either show some suitable help or call wxEvent::Skip if the identifier is
unrecognised. Calling Skip is important because it allows wxWidgets to generate further
events for ancestors of the clicked-on window. Otherwise it would be impossible to show
help for container windows, since processing would stop after the first window found.

Derived from

wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a

CHAPTER 7

672

member function that takes a wxHelpEvent argument.

EVT_HELP(id, func) Process a wxEVT_HELP event.

EVT_HELP_RANGE(id1, id2, func) Process a wxEVT_HELP event for a range of
ids.

See also
wxContextHelp (p. 202), wxDialog (p. 391), Event handling overview (p. 1674)

wxHelpEvent::wxHelpEvent

 wxHelpEvent (WXTYPE eventType = 0, wxWindowID id = 0, const wxPoint& point)

Constructor.

wxHelpEvent::GetPosition

const wxPoint& GetPosition () const

Returns the left-click position of the mouse, in screen coordinates. This allows the
application to position the help appropriately.

wxHelpEvent::SetPosition

void SetPosition (const wxPoint& pt)

Sets the left-click position of the mouse, in screen coordinates.

wxHelpProvider

wxHelpProvider is an abstract class used by a program implementing context-sensitive
help to show the help text for the given window.

The current help provider must be explicitly set by the application using
wxHelpProvider::Set().

Derived from

No base class

Include files

<wx/cshelp.h>

See also

wxContextHelp (p. 202), wxContextHelpButton (p. 204), wxSimpleHelpProvider (p.
1116), wxHelpControllerHelpProvider (p. 669), wxWindow::SetHelpText (p. 1464),
wxWindow::GetHelpText (p. 1439)

CHAPTER 7

673

wxHelpProvider::~wxHelpProvider

 ~wxHelpProvider ()

Virtual destructor for any base class.

wxHelpProvider::AddHelp

void AddHelp (wxWindowBase* window, const wxString& text)

Associates the text with the given window or id. Although all help providers have these
functions to allow making wxWindow::SetHelpText (p. 1464) work, not all of them
implement the functions.

wxHelpProvider::Get

wxHelpProvider* Get()

Unlike some other classes, the help provider is not created on demand. This must be
explicitly done by the application.

wxHelpProvider::GetHelp

wxString GetHelp (const wxWindowBase* window)

Gets the help string for this window. Its interpretation is dependent on the help provider
except that empty string always means that no help is associated with the window.

void AddHelp (wxWindowID id, const wxString& text)

This version associates the given text with all windows with this id. May be used to set
the same help string for all Cancel buttons in the application, for example.

wxHelpProvider::RemoveHelp

void RemoveHelp (wxWindowBase* window)

Removes the association between the window pointer and the help text. This is called by
the wxWindow destructor. Without this, the table of help strings will fill up and when
window pointers are reused, the wrong help string will be found.

wxHelpProvider::Set

wxHelpProvider* Set(wxHelpProvider* helpProvider)

Get/set the current, application-wide help provider. Returns the previous one.

wxHelpProvider::ShowHelp

CHAPTER 7

674

bool ShowHelp (wxWindowBase* window)

Shows help for the given window. Uses GetHelp (p. 672) internally if applicable.

Returns true if it was done, or false if no help was available for this window.

wxHtmlCell

Internal data structure. It represents fragments of parsed HTML page, the so-called cell
- a word, picture, table, horizontal line and so on. It is used by wxHtmlWindow (p. 715)
and wxHtmlWinParser (p. 723) to represent HTML page in memory.

You can divide cells into two groups : visible cells with non-zero width and height and
helper cells (usually with zero width and height) that perform special actions such as
color or font change.

Derived from

wxObject (p. 967)

Include files

<wx/html/htmlcell.h>

See Also

Cells Overview (p. 1771),wxHtmlContainerCell (p. 678)

wxHtmlCell::wxHtmlCell

 wxHtmlCell ()

Constructor.

wxHtmlCell::AdjustPagebreak

virtual bool AdjustPagebreak (int * pagebreak)

This method is used to adjust pagebreak position. The parameter is variable that
contains y-coordinate of page break (= horizontal line that should not be crossed by
words, images etc.). If this cell cannot be divided into two pieces (each one on another
page) then it moves the pagebreak few pixels up.

Returns true if pagebreak was modified, false otherwise

Usage: while (container->AdjustPagebreak(&p)) {}

wxHtmlCell::Draw

virtual void Draw (wxDC& dc, int x, int y, int view_y1, int view_y2)

CHAPTER 7

675

Renders the cell.

Parameters

dc

Device context to which the cell is to be drawn

x,y

Coordinates of parent's upper left corner (origin). You must add this to
m_PosX,m_PosY when passing coordinates to dc's methods Example : dc ->
DrawText("hello", x + m_PosX, y + m_PosY)

view_y1

y-coord of the first line visible in window. This is used to optimize rendering speed

view_y2

y-coord of the last line visible in window. This is used to optimize rendering speed

wxHtmlCell::DrawInvisible

virtual void DrawInvisible (wxDC& dc, int x, int y)

This method is called instead of Draw (p. 673) when the cell is certainly out of the screen
(and thus invisible). This is not nonsense - some tags (like wxHtmlColourCell (p. 678)or
font setter) must be drawn even if they are invisible!

Parameters

dc

Device context to which the cell is to be drawn

x,y

Coordinates of parent's upper left corner. You must add this to m_PosX,m_PosY
when passing coordinates to dc's methods Example : dc ->
DrawText("hello", x + m_PosX, y + m_PosY)

wxHtmlCell::Find

virtual const wxHtmlCell* Find (int condition, const void* param)

Returns pointer to itself if this cell matches condition (or if any of the cells following in the
list matches), NULL otherwise. (In other words if you call top-level container's Find it will
return pointer to the first cell that matches the condition)

It is recommended way how to obtain pointer to particular cell or to cell of some type
(e.g. wxHtmlAnchorCell reacts on wxHTML_COND_ISANCHOR condition)

Parameters

CHAPTER 7

676

condition

Unique integer identifier of condition

param

Optional parameters

Defined conditions

wxHTML_COND_ISANCHOR Finds particular anchor. param is pointer to
wxString with name of the anchor.

wxHTML_COND_USER User-defined conditions start from this number.

wxHtmlCell::GetDescent

int GetDescent () const

Returns descent value of the cell (m_Descent member). See explanation:

wxHtmlCell::GetFirstChild

wxHtmlCell* GetFirstChild ()

Returns pointer to the first cell in the list. You can then use child's GetNext (p.
676)method to obtain pointer to the next cell in list.

Note: This shouldn't be used by the end user. If you need some way of finding particular
cell in the list, try Find (p. 674) method instead.

wxHtmlCell::GetHeight

int GetHeight () const

Returns height of the cell (m_Height member).

wxHtmlCell::GetId

virtual wxString GetId () const

CHAPTER 7

677

Returns unique cell identifier if there is any, empty string otherwise.

wxHtmlCell::GetLink

virtual wxHtmlLinkInfo* GetLink (int x = 0, int y = 0) const

Returns hypertext link if associated with this cell or NULL otherwise. See wxHtmlLinkInfo
(p. 699). (Note: this makes sense only for visible tags).

Parameters

x,y

Coordinates of position where the user pressed mouse button. These coordinates
are used e.g. by COLORMAP. Values are relative to the upper left corner of THIS
cell (i.e. from 0 to m_Width or m_Height)

wxHtmlCell::GetNext

wxHtmlCell* GetNext () const

Returns pointer to the next cell in list (see htmlcell.h if you're interested in details).

wxHtmlCell::GetParent

wxHtmlContainerCell* GetParent () const

Returns pointer to parent container.

wxHtmlCell::GetPosX

int GetPosX () const

Returns X position within parent (the value is relative to parent's upper left corner). The
returned value is meaningful only if parent's Layout (p. 676) was called before!

wxHtmlCell::GetPosY

int GetPosY () const

Returns Y position within parent (the value is relative to parent's upper left corner). The
returned value is meaningful only if parent's Layout (p. 676) was called before!

wxHtmlCell::GetWidth

int GetWidth () const

Returns width of the cell (m_Width member).

wxHtmlCell::Layout

CHAPTER 7

678

virtual void Layout (int w)

This method performs two actions:

 1. adjusts the cell's width according to the fact that maximal possible width is w.
(this has sense when working with horizontal lines, tables etc.)

 2. prepares layout (=fill-in m_PosX, m_PosY (and sometimes m_Height) members)
based on actual width w

It must be called before displaying cells structure because m_PosX and m_PosY are
undefined (or invalid) before calling Layout.

wxHtmlCell::OnMouseClick

virtual void OnMouseClick (wxWindow* parent, int x, int y, const wxMouseEvent&
event)

This function is simple event handler. Each time the user clicks mouse button over a cell
within wxHtmlWindow (p. 715) this method of that cell is called. Default behavior is that it
calls wxHtmlWindow::LoadPage (p. 718).

Note

If you need more "advanced" event handling you should use wxHtmlBinderCell instead.

Parameters

parent

parent window (always wxHtmlWindow!)

x, y

coordinates of mouse click (this is relative to cell's origin

left, middle, right

boolean flags for mouse buttons. true if the left/middle/right button is pressed, false
otherwise

wxHtmlCell::SetId

void SetId (const wxString& id)

Sets unique cell identifier. Default value is no identifier, i.e. empty string.

wxHtmlCell::SetLink

void SetLink (const wxHtmlLinkInfo& link)

Sets the hypertext link associated with this cell. (Default value is wxHtmlLinkInfo (p.
699)("", "") (no link))

CHAPTER 7

679

wxHtmlCell::SetNext

void SetNext (wxHtmlCell *cell)

Sets the next cell in the list. This shouldn't be called by user - it is to be used only by
wxHtmlContainerCell::InsertCell (p. 680).

wxHtmlCell::SetParent

void SetParent (wxHtmlContainerCell *p)

Sets parent container of this cell. This is called fromwxHtmlContainerCell::InsertCell (p.
680).

wxHtmlCell::SetPos

void SetPos (int x, int y)

Sets the cell's position within parent container.

wxHtmlColourCell

This cell changes the colour of either the background or the foreground.

Derived from

wxHtmlCell (p. 673)

Include files

<wx/html/htmlcell.h>

wxHtmlColourCell::wxHtmlColourCell

 wxHtmlColourCell (wxColour clr, int flags = wxHTML_CLR_FOREGROUND)

Constructor.

Parameters

clr

The color

flags

Can be one of following:

wxHTML_CLR_FOREGROUND change color of text

CHAPTER 7

680

wxHTML_CLR_BACKGROUND change background color

wxHtmlContainerCell

The wxHtmlContainerCell class is an implementation of a cell that may contain more
cells in it. It is heavily used in the wxHTML layout algorithm.

Derived from

wxHtmlCell (p. 673)

Include files

<wx/html/htmlcell.h>

See Also

Cells Overview (p. 1771)

wxHtmlContainerCell::wxHtmlContainerCell

 wxHtmlContainerCell (wxHtmlContainerCell *parent)

Constructor. parent is pointer to parent container or NULL.

wxHtmlContainerCell::GetAlignHor

int GetAlignHor () const

Returns container's horizontal alignment.

wxHtmlContainerCell::GetAlignVer

int GetAlignVer () const

Returns container's vertical alignment.

wxHtmlContainerCell::GetBackgroundColour

wxColour GetBackgroundColour ()

Returns the background colour of the container or wxNullColour if no background
colour is set.

wxHtmlContainerCell::GetIndent

int GetIndent (int ind) const

CHAPTER 7

681

Returns the indentation. ind is one of the wxHTML_INDENT_* constants.

Note: You must call GetIndentUnits (p. 679) with same ind parameter in order to
correctly interpret the returned integer value. It is NOT always in pixels!

wxHtmlContainerCell::GetIndentUnits

int GetIndentUnits (int ind) const

Returns the units of indentation for ind where ind is one of the wxHTML_INDENT_*
constants.

wxHtmlContainerCell::InsertCell

void InsertCell (wxHtmlCell *cell)

Inserts new cell into the container.

wxHtmlContainerCell::SetAlign

void SetAlign (const wxHtmlTag& tag)

Sets the container's alignment (both horizontal and vertical) according to the values
stored in tag. (Tags ALIGN parameter is extracted.) In fact it is only a front-end to
SetAlignHor (p. 680) and SetAlignVer (p. 680).

wxHtmlContainerCell::SetAlignHor

void SetAlignHor (int al)

Sets the container's horizontal alignment. During Layout (p. 676) each line is aligned
according to al value.

Parameters

al

new horizontal alignment. May be one of these values:

wxHTML_ALIGN_LEFT lines are left-aligned (default)

wxHTML_ALIGN_JUSTIFY lines are justified

wxHTML_ALIGN_CENTER lines are centered

wxHTML_ALIGN_RIGHT lines are right-aligned

wxHtmlContainerCell::SetAlignVer

void SetAlignVer (int al)

CHAPTER 7

682

Sets the container's vertical alignment. This is per-line alignment!

Parameters

al

new vertical alignment. May be one of these values:

wxHTML_ALIGN_BOTTOM cells are over the line (default)

wxHTML_ALIGN_CENTER cells are centered on line

wxHTML_ALIGN_TOP cells are under the line

wxHtmlContainerCell::SetBackgroundColour

void SetBackgroundColour (const wxColour& clr)

Sets the background colour for this container.

wxHtmlContainerCell::SetBorder

void SetBorder (const wxColour& clr1, const wxColour& clr2)

Sets the border (frame) colours. A border is a rectangle around the container.

Parameters

clr1

Colour of top and left lines

clr2

Colour of bottom and right lines

CHAPTER 7

683

wxHtmlContainerCell::SetIndent

void SetIndent (int i, int what, int units = wxHTML_UNITS_PIXELS)

Sets the indentation (free space between borders of container and subcells).

Parameters

i

Indentation value.

what

Determines which of the four borders we're setting. It is OR combination of
following constants:

wxHTML_INDENT_TOP top border

wxHTML_INDENT_BOTTOM bottom

wxHTML_INDENT_LEFT left

wxHTML_INDENT_RIGHT right

wxHTML_INDENT_HORIZONTAL left and right

wxHTML_INDENT_VERTICAL top and bottom

wxHTML_INDENT_ALL all 4 borders

units

Units of i. This parameter affects interpretation of value.

wxHTML_UNITS_PIXELS i is number of pixels

wxHTML_UNITS_PERCENT i is interpreted as percents of width of

CHAPTER 7

684

parent container

wxHtmlContainerCell::SetMinHeight

void SetMinHeight (int h, int align = wxHTML_ALIGN_TOP)

Sets minimal height of the container.

When container's Layout (p. 676) is called, m_Height is set depending on layout of
subcells to the height of area covered by layed-out subcells. Calling this method
guarantees you that the height of container is never smaller than h - even if the subcells
cover much smaller area.

Parameters

h

The minimal height.

align

If height of the container is lower than the minimum height, empty space must be
inserted somewhere in order to ensure minimal height. This parameter is one of
wxHTML_ALIGN_TOP, wxHTML_ALIGN_BOTTOM,
wxHTML_ALIGN_CENTER . It refers to the contents, not to the empty place.

wxHtmlContainerCell::SetWidthFloat

void SetWidthFloat (int w, int units)

void SetWidthFloat (const wxHtmlTag& tag, double pixel_scale = 1.0)

Sets floating width adjustment.

The normal behaviour of container is that its width is the same as the width of parent
container (and thus you can have only one sub-container per line). You can change this
by setting FWA.

pixel_scale is number of real pixels that equals to 1 HTML pixel.

Parameters

w

Width of the container. If the value is negative it means complement to full width of
parent container (e.g.SetWidthFloat(-50, wxHTML_UNITS_PIXELS) sets the
width of container to parent's width minus 50 pixels. This is useful when creating
tables - you can call SetWidthFloat(50) and SetWidthFloat(-50))

units

Units of w This parameter affects the interpretation of value.

CHAPTER 7

685

wxHTML_UNITS_PIXELS w is number of pixels

wxHTML_UNITS_PERCENT w is interpreted as percents of width of
parent container

tag

In the second version of method, w and unitsinfo is extracted from tag's WIDTH
parameter.

wxPython note: The second form of this method is named SetWidthFloatFromTag in
wxPython.

wxHtmlDCRenderer

This class can render HTML document into a specified area of a DC. You can use it in
your own printing code, although use of wxHtmlEasyPrinting (p. 685) or wxHtmlPrintout
(p. 706) is strongly recommended.

Derived from

wxObject (p. 967)

Include files

<wx/html/htmprint.h>

wxHtmlDCRenderer::wxHtmlDCRenderer

 wxHtmlDCRenderer ()

Constructor.

wxHtmlDCRenderer::SetDC

void SetDC(wxDC* dc, double pixel_scale = 1.0)

Assign DC instance to the renderer.

pixel_scale can be used when rendering to high-resolution DCs (e.g. printer) to adjust
size of pixel metrics. (Many dimensions in HTML are given in pixels -- e.g. image sizes.
300x300 image would be only one inch wide on typical printer. With pixel_scale = 3.0 it
would be 3 inches.)

wxHtmlDCRenderer::SetFonts

void SetFonts (wxString normal_face, wxString fixed_face, const int *sizes = NULL)

Sets fonts. See wxHtmlWindow::SetFonts (p. 721) for detailed description.

CHAPTER 7

686

See also SetSize (p. 684).

wxHtmlDCRenderer::SetSize

void SetSize (int width, int height)

Set size of output rectangle, in pixels. Note that you can't change width of the rectangle
between calls to Render (p. 684)! (You can freely change height.)

wxHtmlDCRenderer::SetHtmlText

void SetHtmlText (const wxString& html, const wxString& basepath =
wxEmptyString, bool isdir = true)

Assign text to the renderer. Render (p. 684) then draws the text onto DC.

Parameters

html

HTML text. This is not a filename.

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

isdir

false if basepath is filename, true if it is directory name (see wxFileSystem (p. 517)
for detailed explanation)

wxHtmlDCRenderer::Render

int Render (int x, int y, int from = 0, int dont_render = false)

Renders HTML text to the DC.

Parameters

x,y

 position of upper-left corner of printing rectangle (see SetSize (p. 684))

from

y-coordinate of the very first visible cell

dont_render

if true then this method only returns y coordinate of the next page and does not
output anything

Returned value is y coordinate of first cell than didn't fit onto page. Use this value as

CHAPTER 7

687

from in next call to Render in order to print multipages document.

Caution!

The Following three methods must always be called before any call to Render
(preferably in this order):

 • SetDC (p. 683)

 • SetSize (p. 684)

 • SetHtmlText (p. 684)

Render() changes the DC's user scale and does NOT r estore it.

wxHtmlDCRenderer::GetTotalHeight

int GetTotalHeight ()

Returns the height of the HTML text. This is important if area height (see SetSize (p.
684)) is smaller that total height and thus the page cannot fit into it. In that case you're
supposed to call Render (p. 684) as long as its return value is smaller than
GetTotalHeight's.

wxHtmlEasyPrinting

This class provides very simple interface to printing architecture. It allows you to print
HTML documents using only a few commands.

Note

Do not create this class on the stack only. You should create an instance on app startup
and use this instance for all printing operations. The reason is that this class stores
various settings in it.

Derived from

wxObject (p. 967)

Include files

<wx/html/htmprint.h>

wxHtmlEasyPrinting::wxHtmlEasyPrinting

 wxHtmlEasyPrinting (const wxString& name = "Printing", wxWindow* parentWindow
= NULL)

Constructor.

CHAPTER 7

688

Parameters

name

Name of the printing object. Used by preview frames and setup dialogs.

parentWindow

pointer to the window that will own the preview frame and setup dialogs. May be
NULL.

wxHtmlEasyPrinting::PreviewFile

bool PreviewFile (const wxString& htmlfile)

Preview HTML file.

Returns false in case of error -- callwxPrinter::GetLastError (p. 1017) to get detailed
information about the kind of the error.

wxHtmlEasyPrinting::PreviewText

bool PreviewText (const wxString& htmltext, const wxString& basepath =
wxEmptyString)

Preview HTML text (not file!).

Returns false in case of error -- callwxPrinter::GetLastError (p. 1017) to get detailed
information about the kind of the error.

Parameters

htmltext

HTML text.

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

wxHtmlEasyPrinting::PrintFile

bool PrintFile (const wxString& htmlfile)

Print HTML file.

Returns false in case of error -- callwxPrinter::GetLastError (p. 1017) to get detailed
information about the kind of the error.

wxHtmlEasyPrinting::PrintText

bool PrintText (const wxString& htmltext, const wxString& basepath =

CHAPTER 7

689

wxEmptyString)

Print HTML text (not file!).

Returns false in case of error -- callwxPrinter::GetLastError (p. 1017) to get detailed
information about the kind of the error.

Parameters

htmltext

HTML text.

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

wxHtmlEasyPrinting::PageSetup

void PageSetup ()

Display page setup dialog and allows the user to modify settings.

wxHtmlEasyPrinting::SetFonts

void SetFonts (wxString normal_face, wxString fixed_face, const int *sizes = NULL)

Sets fonts. See wxHtmlWindow::SetFonts (p. 721) for detailed description.

wxHtmlEasyPrinting::SetHeader

void SetHeader (const wxString& header, int pg = wxPAGE_ALL)

Set page header.

Parameters

header

HTML text to be used as header. You can use macros in it:

 • @PAGENUM@ is replaced by page number

 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlEasyPrinting::SetFooter

void SetFooter (const wxString& footer, int pg = wxPAGE_ALL)

CHAPTER 7

690

Set page footer.

Parameters

footer

HTML text to be used as footer. You can use macros in it:

 • @PAGENUM@ is replaced by page number

 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlEasyPrinting::GetPrintData

wxPrintData* GetPrintData ()

Returns pointer to wxPrintData (p. 1004) instance used by this class. You can set its
parameters (via SetXXXX methods).

wxHtmlEasyPrinting::GetPageSetupData

wxPageSetupDialogData* GetPageSetupData ()

Returns a pointer to wxPageSetupDialogData (p. 974) instance used by this class. You
can set its parameters (via SetXXXX methods).

wxHtmlFilter

This class is the parent class of input filters for wxHtmlWindow (p. 715). It allows you to
read and display files of different file formats.

Derived from

wxObject (p. 967)

Include files

<wx/html/htmlfilt.h>

See Also

Overview (p. 1771)

wxHtmlFilter::wxHtmlFilter

 wxHtmlFilter ()

CHAPTER 7

691

Constructor.

wxHtmlFilter::CanRead

bool CanRead (const wxFSFile& file)

Returns true if this filter is capable of reading file file.

Example:

bool MyFilter::CanRead(const wxFSFile& file)
{
 return (file.GetMimeType() == "application/x-ug h");
}

wxHtmlFilter::ReadFile

wxString ReadFile (const wxFSFile& file)

Reads the file and returns string with HTML document.

Example:

wxString MyImgFilter::ReadFile(const wxFSFile& file)
{
 return "<html><body><img src=\"" +
 file.GetLocation() +
 "\"></body></html>";
}

wxHtmlHelpController

WARNING! Although this class has an API compatible with other wxWidgets help
controllers as documented by wxHelpController (p. 664), it is recommended that you use
the enhanced capabilities of wxHtmlHelpController's API.

This help controller provides an easy way of displaying HTML help in your application
(see test sample). The help system is based on books (see AddBook (p. 691)). A book
is a logical section of documentation (for example "User's Guide" or "Programmer's
Guide" or "C++ Reference" or "wxWidgets Reference"). The help controller can handle
as many books as you want.

wxHTML uses Microsoft's HTML Help Workshop project files (.hhp, .hhk, .hhc) as its
native format. The file format is described here (p. 1770). Have a look at docs/html/
directory where sample project files are stored.

You can use Tex2RTF to produce these files when generating HTML, if you set
htmlWorkshopFiles to true in your tex2rtf.ini file.

Note

It is strongly recommended to use preprocessed .hhp.cached version of projects. It can
be either created on-the-fly (see SetTempDir (p. 693)) or you can use hhp2cached

CHAPTER 7

692

utility from utils/hhp2cached to create it and distribute the cached version together with
helpfiles. See samples/html/help sample for demonstration of its use.

See also

Information about wxBestHelpController (p. 664)

Derived from

wxHelpControllerBase

Include files

<wx/html/helpctrl.h>

wxHtmlHelpController::wxHtmlHelpController

 wxHtmlHelpController (int style = wxHF_DEFAULT_STYLE)

Constructor.

Parameters

style is combination of these flags:

wxHF_TOOLBAR Help frame has toolbar.

wxHF_FLAT_TOOLBAR Help frame has toolbar with flat buttons (aka
coolbar).

wxHF_CONTENTS Help frame has contents panel.

wxHF_INDEX Help frame has index panel.

wxHF_SEARCH Help frame has search panel.

wxHF_BOOKMARKS Help frame has bookmarks controls.

wxHF_OPEN_FILES Allow user to open arbitrary HTML document.

wxHF_PRINT Toolbar contains "print" button.

wxHF_MERGE_BOOKS Contents pane does not show book nodes. All
books are merged together and appear as
single book to the user.

wxHF_ICONS_BOOK All nodes in contents pane have a book icon.
This is how Microsoft's HTML help viewer
behaves.

wxHF_ICONS_FOLDER Book nodes in contents pane have a book icon,
book's sections have a folder icon. This is the
default.

CHAPTER 7

693

wxHF_ICONS_BOOK_CHAPTER Both book nodes and nodes of top-level
sections of a book (i.e. chapters) have a book
icon, all other sections (sections, subsections,
...) have a folder icon.

wxHF_DEFAULT_STYLE wxHF_TOOLBAR | wxHF_CONTENTS |
wxHF_INDEX | wxHF_SEARCH |
wxHF_BOOKMARKS | wxHF_PRINT

wxHtmlHelpController::AddBook

bool AddBook (const wxFileName& book_file, bool show_wait_msg)

bool AddBook (const wxString& book_url, bool show_wait_msg)

Adds book (.hhp file (p. 1770) - HTML Help Workshop project file) into the list of loaded
books. This must be called at least once before displaying any help.

book_file or book_url may be either .hhp file or ZIP archive that contains arbitrary
number of .hhp files in top-level directory. This ZIP archive must have .zip or .htb
extension (the latter stands for "HTML book"). In other
words,AddBook(wxFileName("help.zip")) is possible and, in fact, recommended
way.

Parameters

show_wait_msg

If true then a decoration-less window with progress message is displayed.

book_file

Help book filename. It is recommended to use this prototype instead of the one
taking URL, because it is less error-prone.

book_url

Help book URL (note that syntax of filename and URL is different on most
platforms)

Note

Don't forget to install wxFileSystem ZIP handler
withwxFileSystem::AddHandler(new wxZipFSHandler); before calling this
method on a .zip or .htb file!

wxHtmlHelpController::CreateHelpFrame

virtual wxHtmlHelpFrame* CreateHelpFrame (wxHtmlHelpData * data)

This protected virtual method may be overridden so that the controller uses slightly
different frame. See samples/html/helpview sample for an example.

CHAPTER 7

694

wxHtmlHelpController::Display

void Display (const wxString& x)

Displays page x. This is THE important function - it is used to display the help in
application.

You can specify the page in many ways:

 • as direct filename of HTML document

 • as chapter name (from contents) or as a book name

 • as some word from index

 • even as any word (will be searched)

Looking for the page runs in these steps:

 1. try to locate file named x (if x is for example "doc/howto.htm")

 2. try to open starting page of book named x

 3. try to find x in contents (if x is for example "How To ...")

 4. try to find x in index (if x is for example "How To ...")

 5. switch to Search panel and start searching

void Display (const int id)

This alternative form is used to search help contents by numeric IDs.

wxPython note: The second form of this method is named DisplayId in wxPython.

wxHtmlHelpController::DisplayContents

void DisplayContents ()

Displays help window and focuses contents panel.

wxHtmlHelpController::DisplayIndex

void DisplayIndex ()

Displays help window and focuses index panel.

wxHtmlHelpController::KeywordSearch

bool KeywordSearch (const wxString& keyword, wxHelpSearchMode mode =
wxHELP_SEARCH_ALL)

Displays help window, focuses search panel and starts searching. Returns true if the

CHAPTER 7

695

keyword was found. Optionally it searches through the index (mode =
wxHELP_SEARCH_INDEX), default the content (mode = wxHELP_SEARCH_ALL).

Important: KeywordSearch searches only pages listed in .hhc file(s). You should list all
pages in the contents file.

wxHtmlHelpController::ReadCustomization

void ReadCustomization (wxConfigBase* cfg, wxString path = wxEmptyString)

Reads the controller's setting (position of window, etc.)

wxHtmlHelpController::SetTempDir

void SetTempDir (const wxString& path)

Sets the path for storing temporary files - cached binary versions of index and contents
files. These binary forms are much faster to read. Default value is empty string (empty
string means that no cached data are stored). Note that these files are not deleted when
program exits.

Once created these cached files will be used in all subsequent executions of your
application. If cached files become older than corresponding .hhp file (e.g. if you
regenerate documentation) it will be refreshed.

wxHtmlHelpController::SetTitleFormat

void SetTitleFormat (const wxString& format)

Sets format of title of the frame. Must contain exactly one "%s" (for title of displayed
HTML page).

wxHtmlHelpController::UseConfig

void UseConfig (wxConfigBase* config, const wxString& rootpath = wxEmptyString)

Associates config object with the controller.

If there is associated config object, wxHtmlHelpController automatically reads and writes
settings (including wxHtmlWindow's settings) when needed.

The only thing you must do is create wxConfig object and call UseConfig.

If you do not use UseConfig, wxHtmlHelpController will use default wxConfig object if
available (for details see wxConfigBase::Get (p. 192) and wxConfigBase::Set (p. 197)).

wxHtmlHelpController::WriteCustomization

void WriteCustomization (wxConfigBase* cfg, wxString path = wxEmptyString)

Stores controllers setting (position of window etc.)

CHAPTER 7

696

wxHtmlHelpData

This class is used by wxHtmlHelpController (p. 689) and wxHtmlHelpFrame (p. 695) to
access HTML help items. It is internal class and should not be used directly - except for
the case you're writing your own HTML help controller.

Derived from

wxObject (p. 967)

Include files

<wx/html/helpdata.h>

wxHtmlHelpData::wxHtmlHelpData

 wxHtmlHelpData ()

Constructor.

wxHtmlHelpData::AddBook

bool AddBook (const wxString& book_url)

Adds new book. book is URL (not filename!) of HTML help project (hhp) or ZIP file that
contains arbitrary number of .hhp projects (this zip file can have either .zip or .htb
extension, htb stands for "html book"). Returns success.

wxHtmlHelpData::FindPageById

wxString FindPageById (int id)

Returns page's URL based on integer ID stored in project.

wxHtmlHelpData::FindPageByName

wxString FindPageByName (const wxString& page)

Returns page's URL based on its (file)name.

wxHtmlHelpData::GetBookRecArray

const wxHtmlBookRecArray& GetBookRecArray ()

Returns array with help books info.

wxHtmlHelpData::GetContentsArray

const wxHtmlHelpDataItems& GetContentsArray ()

CHAPTER 7

697

Returns reference to array with contents entries.

wxHtmlHelpData::GetIndexArray

const wxHtmlHelpDataItems& GetIndexArray ()

Returns reference to array with index entries.

wxHtmlHelpData::SetTempDir

void SetTempDir (const wxString& path)

Sets temporary directory where binary cached versions of MS HTML Workshop files will
be stored. (This is turned off by default and you can enable this feature by setting non-
empty temp dir.)

wxHtmlHelpFrame

This class is used by wxHtmlHelpController (p. 689) to display help. It is an internal
class and should not be used directly - except for the case when you're writing your own
HTML help controller.

Derived from

wxFrame (p. 555)

Include files

<wx/html/helpfrm.h>

wxHtmlHelpFrame::wxHtmlHelpFrame

 wxHtmlHelpFrame (wxHtmlHelpData* data = NULL)

 wxHtmlHelpFrame (wxWindow* parent, int wxWindowID, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULT_STYLE, wxHtmlHelpData* data = NULL)

Constructor.

style is combination of these flags:

wxHF_TOOLBAR Help frame has toolbar.

wxHF_FLAT_TOOLBAR Help frame has toolbar with flat buttons (aka
coolbar).

wxHF_CONTENTS Help frame has contents panel.

wxHF_INDEX Help frame has index panel.

CHAPTER 7

698

wxHF_SEARCH Help frame has search panel.

wxHF_BOOKMARKS Help frame has bookmarks controls.

wxHF_OPEN_FILES Allow user to open arbitrary HTML document.

wxHF_PRINT Toolbar contains "print" button.

wxHF_MERGE_BOOKS Contents pane does not show book nodes. All
books are merged together and appear as
single book to the user.

wxHF_ICONS_BOOK All nodes in contents pane have a book icon.
This is how Microsoft's HTML help viewer
behaves.

wxHF_ICONS_FOLDER Book nodes in contents pane have a book icon,
book's sections have a folder icon. This is the
default.

wxHF_ICONS_BOOK_CHAPTER Both book nodes and nodes of top-level
sections of a book (i.e. chapters) have a book
icon, all other sections (sections, subsections,
...) have a folder icon.

wxHF_DEFAULT_STYLE wxHF_TOOLBAR | wxHF_CONTENTS |
wxHF_INDEX | wxHF_SEARCH |
wxHF_BOOKMARKS | wxHF_PRINT

wxHtmlHelpFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULT_STYLE)

Creates the frame. See the constructor (p. 695)for parameters description.

wxHtmlHelpFrame::CreateContents

void CreateContents ()

Creates contents panel. (May take some time.)

Protected.

wxHtmlHelpFrame::CreateIndex

void CreateIndex ()

Creates index panel. (May take some time.)

Protected.

CHAPTER 7

699

wxHtmlHelpFrame::CreateSearch

void CreateSearch ()

Creates search panel.

wxHtmlHelpFrame::Display

bool Display (const wxString& x)

bool Display (const int id)

Displays page x. If not found it will give the user the choice of searching books. Looking
for the page runs in these steps:

 1. try to locate file named x (if x is for example "doc/howto.htm")

 2. try to open starting page of book x

 3. try to find x in contents (if x is for example "How To ...")

 4. try to find x in index (if x is for example "How To ...")

The second form takes numeric ID as the parameter. (uses extension to MS format,
<param name="ID" value=id>)

wxPython note: The second form of this method is named DisplayId in wxPython.

wxHtmlHelpFrame::DisplayContents

bool DisplayContents ()

Displays contents panel.

wxHtmlHelpFrame::DisplayIndex

bool DisplayIndex ()

Displays index panel.

wxHtmlHelpFrame::GetData

wxHtmlHelpData* GetData ()

Return wxHtmlHelpData object.

wxHtmlHelpFrame::KeywordSearch

bool KeywordSearch (const wxString& keyword, wxHelpSearchMode mode =
wxHELP_SEARCH_ALL)

Search for given keyword. Optionally it searches through the index (mode =

CHAPTER 7

700

wxHELP_SEARCH_INDEX), default the content (mode = wxHELP_SEARCH_ALL).

wxHtmlHelpFrame::ReadCustomization

void ReadCustomization (wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Reads user's settings for this frame (see wxHtmlHelpController::ReadCustomization (p.
693))

wxHtmlHelpFrame::RefreshLists

void RefreshLists ()

Refresh all panels. This is necessary if a new book was added.

Protected.

wxHtmlHelpFrame::SetTitleFormat

void SetTitleFormat (const wxString& format)

Sets the frame's title format. format must contain exactly one "%s" (it will be replaced by
the page title).

wxHtmlHelpFrame::UseConfig

void UseConfig (wxConfigBase* config, const wxString& rootpath = wxEmptyString)

Add books to search choice panel.

wxHtmlHelpFrame::WriteCustomization

void WriteCustomization (wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Saves user's settings for this frame (see wxHtmlHelpController::WriteCustomization (p.
694)).

wxHtmlHelpFrame::AddToolbarButtons

virtual void AddToolbarButtons (wxToolBar * toolBar, int style)

You may override this virtual method to add more buttons into help frame's toolbar.
toolBar is a pointer to the toolbar and style is the style flag as passed to Create method.

wxToolBar::Realize is called immediately after returning from this function.

See samples/html/helpview for an example.

CHAPTER 7

701

wxHtmlLinkInfo

This class stores all necessary information about hypertext links (as represented by <A>
tag in HTML documents). In current implementation it stores URL and target frame
name. Note that frames are not currently supported by wxHTML!

Derived from

wxObject (p. 967)

Include files

<wx/html/htmlcell.h>

wxHtmlLinkInfo::wxHtmlLinkInfo

 wxHtmlLinkInfo ()

Default ctor.

 wxHtmlLinkInfo (const wxString& href, const wxString& target = wxEmptyString)

Construct hypertext link from HREF (aka URL) and TARGET (name of target frame).

wxHtmlLinkInfo::GetEvent

const wxMouseEvent * GetEvent ()

Return pointer to event that generated OnLinkClicked event. Valid only within
wxHtmlWindow::OnLinkClicked (p. 719), NULL otherwise.

wxHtmlLinkInfo::GetHtmlCell

const wxHtmlCell * GetHtmlCell ()

Return pointer to the cell that was clicked. Valid only within
wxHtmlWindow::OnLinkClicked (p. 719), NULL otherwise.

wxHtmlLinkInfo::GetHref

wxString GetHref ()

Return HREF value of the <A> tag.

wxHtmlLinkInfo::GetTarget

wxString GetTarget ()

Return TARGET value of the <A> tag (this value is used to specify in which frame should

CHAPTER 7

702

be the page pointed by Href (p. 699) opened).

wxHtmlListBox

wxHtmlListBox is an implementation of wxVListBox (p. 1409) which shows HTML
content in the listbox rows. This is still an abstract base class and you will need to derive
your own class from it (see htlbox sample for the example) but you will only need to
override a single OnGetItem() (p. 701) function.

Derived from

wxVListBox (p. 1409)

Include files

<wx/htmllbox.h>

wxHtmlListBox::wxHtmlListBox

 wxHtmlListBox (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint&
pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, size_t countItems = 0,
long style = 0, const wxString& name = wxVListBoxNameStr)

Normal constructor which calls Create() (p. 700)internally.

 wxHtmlListBox ()

Default constructor, you must call Create() (p. 700)later.

wxHtmlListBox::~wxHtmlListBox

 ~wxHtmlListBox ()

Destructor cleans up whatever resources we use.

wxHtmlListBox::Create

bool Create (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxVListBoxNameStr)

Creates the control and optionally sets the initial number of items in it (it may also be set
or changed later with SetItemCount() (p. 1415)).

There are no special styles defined for wxHtmlListBox, in particular the wxListBox styles
can not be used here.

Returns true on success or false if the control couldn't be created

CHAPTER 7

703

wxHtmlListBox::GetFileSystem

wxFileSystem& GetFileSystem ()

const wxFileSystem& GetFileSystem () const

Returns the wxFileSystem (p. 517) used by the HTML parser of this object. The file
system object is used to resolve the paths in HTML fragments displayed in the control
and you should use wxFileSystem::ChangePathTo (p. 518) if you use relative paths for
the images or other resources embedded in your HTML.

wxHtmlListBox::GetSelectedTextBgColour

wxColour GetSelectedTextBgColour (const wxColour& colBg) const

This virtual function may be overridden to change the appearance of the background of
the selected cells in the same way as GetSelectedTextColour (p. 701).

It should be rarely, if ever, used because SetSelectionBackground (p. 1415) allows to
change the selection background for all cells at once and doing anything more fancy is
probably going to look strangely.

See also

GetSelectedTextColour (p. 701)

wxHtmlListBox::GetSelectedTextColour

wxColour GetSelectedTextColour (const wxColour& colFg) const

This virtual function may be overridden to customize the appearance of the selected
cells. It is used to determine how the colour colFg is going to look inside selection. By
default all original colours are completely ignored and the standard, system-dependent,
selection colour is used but the program may wish to override this to achieve some
custom appearance.

See also

GetSelectedTextBgColour (p. 701),
SetSelectionBackground (p. 1415),
wxSystemSettings::GetColour (p. 1259)

wxHtmlListBox::OnGetItem

wxString OnGetItem (size_t n) const

This method must be implemented in the derived class and should return the body (i.e.
without <html> nor <body> tags) of the HTML fragment for the given item.

wxHtmlListBox::OnGetItemMarkup

wxString OnGetItemMarkup (size_t n) const

CHAPTER 7

704

This function may be overridden to decorate HTML returned byOnGetItem() (p. 701).

wxHtmlParser

Classes derived from this handle the generic parsing of HTML documents: it scans the
document and divide it into blocks of tags (where one block consists of beginning and
ending tag and of text between these two tags).

It is independent from wxHtmlWindow and can be used as stand-alone parser (Julian
Smart's idea of speech-only HTML viewer or wget-like utility - see InetGet sample for
example).

It uses system of tag handlers to parse the HTML document. Tag handlers are not
statically shared by all instances but are created for each wxHtmlParser instance. The
reason is that the handler may contain document-specific temporary data used during
parsing (e.g. complicated structures like tables).

Typically the user calls only the Parse (p. 705) method.

Derived from

wxObject

Include files

<wx/html/htmlpars.h>

See also

Cells Overview (p. 1771),Tag Handlers Overview (p. 1772),wxHtmlTag (p. 709)

wxHtmlParser::wxHtmlParser

 wxHtmlParser ()

Constructor.

wxHtmlParser::AddTag

void AddTag (const wxHtmlTag& tag)

This may (and may not) be overwritten in derived class.

This method is called each time new tag is about to be added. tag contains information
about the tag. (See wxHtmlTag (p. 709)for details.)

Default (wxHtmlParser) behaviour is this: First it finds a handler capable of handling this
tag and then it calls handler's HandleTag method.

wxHtmlParser::AddTagHandler

CHAPTER 7

705

virtual void AddTagHandler (wxHtmlTagHandler *handler)

Adds handler to the internal list (& hash table) of handlers. This method should not be
called directly by user but rather by derived class' constructor.

This adds the handler to this instance of wxHtmlParser, not to all objects of this class!
(Static front-end to AddTagHandler is provided by wxHtmlWinParser).

All handlers are deleted on object deletion.

wxHtmlParser::AddText

virtual void AddWord (const char* txt)

Must be overwritten in derived class.

This method is called by DoParsing (p. 703)each time a part of text is parsed. txt is NOT
only one word, it is substring of input. It is not formatted or preprocessed (so white
spaces are unmodified).

wxHtmlParser::DoParsing

void DoParsing (int begin_pos, int end_pos)

void DoParsing ()

Parses the m_Source from begin_pos to end_pos-1. (in noparams version it parses
whole m_Source)

wxHtmlParser::DoneParser

virtual void DoneParser ()

This must be called after DoParsing().

wxHtmlParser::GetFS

wxFileSystem* GetFS() const

Returns pointer to the file system. Because each tag handler has reference to it is parent
parser it can easily request the file by calling

wxFSFile *f = m_Parser -> GetFS() -> OpenFile("imag e.jpg");

wxHtmlParser::GetProduct

virtual wxObject* GetProduct ()

Returns product of parsing. Returned value is result of parsing of the document. The
type of this result depends on internal representation in derived parser (but it must be
derived from wxObject!).

CHAPTER 7

706

See wxHtmlWinParser for details.

wxHtmlParser::GetSource

wxString* GetSource ()

Returns pointer to the source being parsed.

wxHtmlParser::InitParser

virtual void InitParser (const wxString& source)

Setups the parser for parsing the source string. (Should be overridden in derived class)

wxHtmlParser::OpenURL

virtual wxFSFile* OpenURL (wxHtmlURLType type, const wxString& url)

Opens given URL and returns wxFSFile object that can be used to read data from it.
This method may return NULL in one of two cases: either the URL doesn't point to any
valid resource or the URL is blocked by overridden implementation of OpenURL in
derived class.

Parameters

type

Indicates type of the resource. Is one of:

wxHTML_URL_PAGE Opening a HTML page.

wxHTML_URL_IMAGE Opening an image.

wxHTML_URL_OTHER Opening a resource that doesn't fall into
any other category.

url

URL being opened.

Notes

Always use this method in tag handlers instead of GetFS()->OpenFile() because it
can block the URL and is thus more secure.

Default behaviour is to call wxHtmlWindow::OnOpeningURL (p. 719)of the associated
wxHtmlWindow object (which may decide to block the URL or redirect it to another
one),if there's any, and always open the URL if the parser is not used with
wxHtmlWindow.

Returned wxFSFile object is not guaranteed to point to url, it might have been
redirected!

CHAPTER 7

707

wxHtmlParser::Parse

wxObject* Parse (const wxString& source)

Proceeds parsing of the document. This is end-user method. You can simply call it when
you need to obtain parsed output (which is parser-specific)

The method does these things:

 1. calls InitParser(source) (p. 704)

 2. calls DoParsing (p. 703)

 3. calls GetProduct (p. 704)

 4. calls DoneParser (p. 703)

 5. returns value returned by GetProduct

You shouldn't use InitParser, DoParsing, GetProduct or DoneParser directly.

wxHtmlParser::PushTagHandler

void PushTagHandler (wxHtmlTagHandler* handler, wxString tags)

Forces the handler to handle additional tags (not returned by GetSupportedTags (p.
712)). The handler should already be added to this parser.

Parameters

handler

the handler

tags

List of tags (in same format as GetSupportedTags's return value). The parser will
redirect these tags to handler (until call to PopTagHandler (p. 706)).

Example

Imagine you want to parse following pseudo-html structure:

<myitems>
 <param name="one" value="1">
 <param name="two" value="2">
</myitems>

<execute>
 <param program="text.exe">
</execute>

It is obvious that you cannot use only one tag handler for <param> tag. Instead you must
use context-sensitive handlers for <param> inside <myitems> and <param> inside
<execute>.

CHAPTER 7

708

This is the preferred solution:

TAG_HANDLER_BEGIN(MYITEM, "MYITEMS")
 TAG_HANDLER_PROC(tag)
 {
 // ...something...

 m_Parser -> PushTagHandler(this, "PARAM");
 ParseInner(tag);
 m_Parser -> PopTagHandler();

 // ...something...
 }
TAG_HANDLER_END(MYITEM)

wxHtmlParser::PopTagHandler

void PopTagHandler ()

Restores parser's state before last call to PushTagHandler (p. 705).

wxHtmlParser::SetFS

void SetFS(wxFileSystem *fs)

Sets the virtual file system that will be used to request additional files. (For example
 tag handler requests wxFSFile with the image data.)

wxHtmlParser::StopParsing

void StopParsing ()

Call this function to interrupt parsing from a tag handler. No more tags will be parsed
afterward. This function may only be called fromwxHtmlParser::Parse (p. 705) or any
function called by it (i.e. from tag handlers).

wxHtmlPrintout

This class serves as printout class for HTML documents.

Derived from

wxPrintout (p. 1019)

Include files

<wx/html/htmprint.h>

wxHtmlPrintout::wxHtmlPrintout

 wxHtmlPrintout (const wxString& title = "Printout")

CHAPTER 7

709

Constructor.

wxHtmlPrintout::AddFilter

static void AddFilter (wxHtmlFilter* filter)

Adds a filter to the static list of filters for wxHtmlPrintout. See wxHtmlFilter (p. 688) for
further information.

wxHtmlPrintout::SetFonts

void SetFonts (wxString normal_face, wxString fixed_face, const int *sizes = NULL)

Sets fonts. See wxHtmlWindow::SetFonts (p. 721) for detailed description.

wxHtmlPrintout::SetFooter

void SetFooter (const wxString& footer, int pg = wxPAGE_ALL)

Sets page footer.

Parameters

footer

HTML text to be used as footer. You can use macros in it:

 • @PAGENUM@ is replaced by page number

 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlPrintout::SetHeader

void SetHeader (const wxString& header, int pg = wxPAGE_ALL)

Sets page header.

Parameters

header

HTML text to be used as header. You can use macros in it:

 • @PAGENUM@ is replaced by page number

 • @PAGESCNT@ is replaced by total number of pages

pg

CHAPTER 7

710

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlPrintout::SetHtmlFile

void SetHtmlFile (const wxString& htmlfile)

Prepare the class for printing this HTML file . The file may be located on any virtual file
system or it may be normal file.

wxHtmlPrintout::SetHtmlText

void SetHtmlText (const wxString& html, const wxString& basepath =
wxEmptyString, bool isdir = true)

Prepare the class for printing this HTML text.

Parameters

html

HTML text. (NOT file!)

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

isdir

false if basepath is filename, true if it is directory name (see wxFileSystem (p. 517)
for detailed explanation)

wxHtmlPrintout::SetMargins

void SetMargins (float top = 25.2, float bottom = 25.2, float left = 25.2, float right =
25.2, float spaces = 5)

Sets margins in millimeters. Defaults to 1 inch for margins and 0.5cm for space between
text and header and/or footer

wxHtmlTag

This class represents a single HTML tag. It is used by tag handlers (p. 1772).

Derived from

wxObject

Include files

<wx/html/htmltag.h>

CHAPTER 7

711

wxHtmlTag::wxHtmlTag

 wxHtmlTag (wxHtmlTag * parent, const wxString& source, int pos, int end_pos,
wxHtmlTagsCache* cache, wxHtmlEntitiesParser * entParser)

Constructor. You will probably never have to construct a wxHtmlTag object yourself.
Feel free to ignore the constructor parameters. Have a look at src/html/htmlpars.cpp if
you're interested in creating it.

wxHtmlTag::GetAllParams

const wxString& GetAllParams () const

Returns a string containing all parameters.

Example : tag contains . Call to
tag.GetAllParams() would return SIZE=+2 COLOR="#000000" .

wxHtmlTag::GetBeginPos

int GetBeginPos () const

Returns beginning position of the text between this tag and paired ending tag. See
explanation (returned position is marked with '|'):

bla bla bla <MYTAG> bla bla internal text</MYTAG> b la bla
 |

wxHtmlTag::GetEndPos1

int GetEndPos1 () const

Returns ending position of the text between this tag and paired ending tag. See
explanation (returned position is marked with '|'):

bla bla bla <MYTAG> bla bla internal text</MYTAG> b la bla
 |

wxHtmlTag::GetEndPos2

int GetEndPos2 () const

Returns ending position 2 of the text between this tag and paired ending tag. See
explanation (returned position is marked with '|'):

bla bla bla <MYTAG> bla bla internal text</MYTAG> b la bla
 |

wxHtmlTag::GetName

CHAPTER 7

712

wxString GetName () const

Returns tag's name. The name is always in uppercase and it doesn't contain '<' or '/'
characters. (So the name of tag is "FONT" and name of </table>
is "TABLE")

wxHtmlTag::GetParam

wxString GetParam (const wxString& par, bool with_commas = false) const

Returns the value of the parameter. You should check whether the parameter exists or
not (use HasParam (p. 711)) first.

Parameters

par

The parameter's name.

with_commas

true if you want to get commas as well. See example.

Example

...
/* you have wxHtmlTag variable tag which is equal t o
 HTML tag */
dummy = tag.GetParam("SIZE");
 // dummy == "+2"
dummy = tag.GetParam("COLOR");
 // dummy == "#0000FF"
dummy = tag.GetParam("COLOR", true);
 // dummy == "\"#0000FF\"" -- see the difference! !

wxHtmlTag::GetParamAsColour

bool GetParamAsColour (const wxString& par, wxColour * clr) const

Interprets tag parameter par as colour specification and saves its value into wxColour
variable pointed by clr.

Returns true on success and false if par is not colour specification or if the tag has no
such parameter.

wxHtmlTag::GetParamAsInt

bool GetParamAsInt (const wxString& par, int * value) const

Interprets tag parameter par as an integer and saves its value into int variable pointed by
value.

Returns true on success and false if par is not an integer or if the tag has no such
parameter.

CHAPTER 7

713

wxHtmlTag::HasEnding

bool HasEnding () const

Returns true if this tag is paired with ending tag, false otherwise.

See the example of HTML document:

<html><body>
Hello<p>
How are you?
<p align=center>This is centered...</p>
Oops
Oooops!
</body></html>

In this example tags HTML and BODY have ending tags, first P and BR doesn't have
ending tag while the second P has. The third P tag (which is ending itself) of course
doesn't have ending tag.

wxHtmlTag::HasParam

bool HasParam (const wxString& par) const

Returns true if the tag has a parameter of the given name. Example : <FONT SIZE=+2
COLOR="#FF00FF"> has two parameters named "SIZE" and "COLOR".

Parameters

par

the parameter you're looking for.

wxHtmlTag::ScanParam

wxString ScanParam (const wxString& par, const wxChar * format, void * value)
const

This method scans the given parameter. Usage is exactly the same as sscanf's usage
except that you don't pass a string but a parameter name as the first argument and you
can only retrieve one value (i.e. you can use only one "%" element in format).

Parameters

par

The name of the tag you want to query

format

scanf()-like format string.

value

pointer to a variable to store the value in

CHAPTER 7

714

wxHtmlTagHandler

Derived from

wxObject (p. 967)

Include files

<wx/html/htmlpars.h>

See Also

Overview (p. 1772),wxHtmlTag (p. 709)

wxHtmlTagHandler::m_Parser

wxHtmlParser* m_Parser

This attribute is used to access parent parser. It is protected so that it can't be accessed
by user but can be accessed from derived classes.

wxHtmlTagHandler::wxHtmlTagHandler

 wxHtmlTagHandler ()

Constructor.

wxHtmlTagHandler::GetSupportedTags

virtual wxString GetSupportedTags ()

Returns list of supported tags. The list is in uppercase and tags are delimited by ','.
Example : "I,B,FONT,P"

wxHtmlTagHandler::HandleTag

virtual bool HandleTag (const wxHtmlTag& tag)

This is the core method of each handler. It is called each time one of supported tags is
detected. tag contains all necessary info (see wxHtmlTag (p. 709) for details).

Return value

true if ParseInner (p. 713) was called, false otherwise.

Example

bool MyHandler::HandleTag(const wxHtmlTag& tag)
{
 ...
 // change state of parser (e.g. set bold face)

CHAPTER 7

715

 ParseInner(tag);
 ...
 // restore original state of parser
}

You shouldn't call ParseInner if the tag is not paired with an ending one.

wxHtmlTagHandler::ParseInner

void ParseInner (const wxHtmlTag& tag)

This method calls parser's DoParsing (p. 703) method for the string between this tag and
the paired ending tag:

...Hello, world!...

In this example, a call to ParseInner (with tag pointing to A tag) will parse 'Hello, world!'.

wxHtmlTagHandler::SetParser

virtual void SetParser (wxHtmlParser *parser)

Assigns parser to this handler. Each instance of handler is guaranteed to be called only
from the parser.

wxHtmlTagsModule

This class provides easy way of filling wxHtmlWinParser's table of tag handlers. It is
used almost exclusively together with the set ofTAGS_MODULE_* macros (p. 1772)

Derived from

wxModule (p. 938)

Include files

<wx/html/winpars.h>

See Also

Tag Handlers (p. 1772),wxHtmlTagHandler (p. 712),wxHtmlWinTagHandler (p. 729),

wxHtmlTagsModule::FillHandlersTable

virtual void FillHandlersTable (wxHtmlWinParser *parser)

You must override this method. In most common case its body consists only of lines of
the following type:

parser -> AddTagHandler(new MyHandler);

CHAPTER 7

716

I recommend using the TAGS_MODULE_* macros.

Paremeters

parser

Pointer to the parser that requested tables filling.

wxHtmlWidgetCell

wxHtmlWidgetCell is a class that provides a connection between HTML cells and
widgets (an object derived from wxWindow). You can use it to display things like forms,
input boxes etc. in an HTML window.

wxHtmlWidgetCell takes care of resizing and moving window.

Derived from

wxHtmlCell (p. 673)

Include files

<wx/html/htmlcell.h>

wxHtmlWidgetCell::wxHtmlWidgetCell

 wxHtmlWidgetCell (wxWindow* wnd, int w = 0)

Constructor.

Parameters

wnd

Connected window. It is parent window must be the wxHtmlWindow object within
which it is displayed!

w

Floating width. If non-zero width of wnd window is adjusted so that it is always w
percents of parent container's width. (For example w = 100 means that the window
will always have same width as parent container)

wxHtmlWindow

wxHtmlWindow is probably the only class you will directly use unless you want to do
something special (like adding new tag handlers or MIME filters).

The purpose of this class is to display HTML pages (either local file or downloaded via
HTTP protocol) in a window. The width of the window is constant - given in the

CHAPTER 7

717

constructor - and virtual height is changed dynamically depending on page size. Once
the window is created you can set its content by calling SetPage(text) (p.
722),LoadPage(filename) (p. 718) orLoadFile (p. 717).

Note

wxHtmlWindow uses the wxImage (p. 742) class for displaying images. Don't forget to
initialize all image formats you need before loading any page! (See
wxInitAllImageHandlers (p. 1517) andwxImage::AddHandler (p. 747).)

Derived from

wxScrolledWindow (p. 1098)

Include files

<wx/html/htmlwin.h>

Window styles

wxHW_SCROLLBAR_NEVER Never display scrollbars, not even when the page is
larger than the window.

wxHW_SCROLLBAR_AUTO Display scrollbars only if page's size exceeds
window's size.

wxHW_NO_SELECTION Don't allow the user to select text.

wxHtmlWindow::wxHtmlWindow

 wxHtmlWindow ()

Default constructor.

 wxHtmlWindow (wxWindow *parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxHW_DEFAULT_STYLE, const wxString& name = "htmlWindow")

Constructor. The parameters are the same as for the wxScrolledWindow (p. 1098)
constructor.

Parameters

style

Window style. See wxHtmlWindow (p. 715).

wxHtmlWindow::AddFilter

static void AddFilter (wxHtmlFilter *filter)

Adds input filter (p. 1771) to the static list of available filters. These filters are present by
default:

CHAPTER 7

718

 • text/html MIME type

 • image/* MIME types

 • Plain Text filter (this filter is used if no other filter matches)

wxHtmlWindow::AppendToPage

bool AppendToPage (const wxString& source)

Appends HTML fragment to currently displayed text and refreshes the window.

Parameters

source

HTML code fragment

Return value

false if an error occurred, true otherwise.

wxHtmlWindow::GetInternalRepresentation

wxHtmlContainerCell* GetInternalRepresentation () const

Returns pointer to the top-level container.

See also: Cells Overview (p. 1771), Printing Overview (p. 1769)

wxHtmlWindow::GetOpenedAnchor

wxString GetOpenedAnchor ()

Returns anchor within currently opened page (see GetOpenedPage (p. 716)). If no page
is opened or if the displayed page wasn't produced by call to LoadPage, empty string is
returned.

wxHtmlWindow::GetOpenedPage

wxString GetOpenedPage ()

Returns full location of the opened page. If no page is opened or if the displayed page
wasn't produced by call to LoadPage, empty string is returned.

wxHtmlWindow::GetOpenedPageTitle

wxString GetOpenedPageTitle ()

Returns title of the opened page or wxEmptyString if current page does not contain
<TITLE> tag.

CHAPTER 7

719

wxHtmlWindow::GetRelatedFrame

wxFrame* GetRelatedFrame () const

Returns the related frame.

wxHtmlWindow::HistoryBack

bool HistoryBack ()

Moves back to the previous page. (each page displayed using LoadPage (p. 718) is
stored in history list.)

wxHtmlWindow::HistoryCanBack

bool HistoryCanBack ()

Returns true if it is possible to go back in the history (i.e. HistoryBack() won't fail).

wxHtmlWindow::HistoryCanForward

bool HistoryCanForward ()

Returns true if it is possible to go forward in the history (i.e. HistoryBack() won't fail).

wxHtmlWindow::HistoryClear

void HistoryClear ()

Clears history.

wxHtmlWindow::HistoryForward

bool HistoryForward ()

Moves to next page in history.

wxHtmlWindow::LoadFile

virtual bool LoadFile (const wxFileName& filename)

Loads HTML page from file and displays it.

Return value

false if an error occurred, true otherwise

See also

LoadPage (p. 718)

CHAPTER 7

720

wxHtmlWindow::LoadPage

virtual bool LoadPage (const wxString& location)

Unlike SetPage this function first loads HTML page from location and then displays it.
See example:

htmlwin->LoadPage("help/myproject/index.htm");

Parameters

location

The address of document. See wxFileSystem (p. 517) for details on address
format and behaviour of "opener".

Return value

false if an error occurred, true otherwise

See also

LoadFile (p. 717)

wxHtmlWindow::OnCellClicked

virtual void OnCellClicked (wxHtmlCell *cell, wxCoord x, wxCoord y, const
wxMouseEvent& event)

This method is called when a mouse button is clicked inside wxHtmlWindow. The default
behaviour is to call OnLinkClicked (p. 719) if the cell contains a hypertext link.

Parameters

cell

The cell inside which the mouse was clicked, always a simple (i.e. non container)
cell

x, y

The logical coordinates of the click point

event

The mouse event containing other information about the click

wxHtmlWindow::OnCellMouseHover

virtual void OnCellMouseHover (wxHtmlCell *cell, wxCoord x, wxCoord y)

This method is called when a mouse moves over an HTML cell.

Parameters

CHAPTER 7

721

cell

The cell inside which the mouse is currently, always a simple (i.e. non container)
cell

x, y

The logical coordinates of the click point

wxHtmlWindow::OnLinkClicked

virtual void OnLinkClicked (const wxHtmlLinkInfo& link)

Called when user clicks on hypertext link. Default behaviour is to call LoadPage (p. 718)
and do nothing else.

Also see wxHtmlLinkInfo (p. 699).

wxHtmlWindow::OnOpeningURL

virtual wxHtmlOpeningStatus OnOpeningURL (wxHtmlURLType type,const
wxString& url, wxString * redirect)

Called when an URL is being opened (either when the user clicks on a link or an image
is loaded). The URL will be opened only if OnOpeningURL returns wxHTML_OPEN. This
method is called bywxHtmlParser::OpenURL (p. 704). You can override OnOpeningURL
to selectively block some URLs (e.g. for security reasons) or to redirect them elsewhere.
Default behaviour is to always return wxHTML_OPEN.

Parameters

type

Indicates type of the resource. Is one ofwxHTML_URL_PAGE Opening a
HTML page.

wxHTML_URL_IMAGE Opening an image.

wxHTML_URL_OTHER Opening a resource that doesn't fall into any other
category.

url

URL being opened.

redirect

Pointer to wxString variable that must be filled with an URL if OnOpeningURL
returns wxHTML_REDIRECT.

Return value wxHTML_OPEN Open the URL.

wxHTML_BLOCK Deny access to the URL, wxHtmlParser::OpenURL (p.

CHAPTER 7

722

704) will return NULL.

wxHTML_REDIRECT Don't open url, redirect to another URL. OnOpeningURL
must fill *redirect with the new URL. OnOpeningURL will be
called again on returned URL.

wxHtmlWindow::OnSetTitle

virtual void OnSetTitle (const wxString& title)

Called on parsing <TITLE> tag.

wxHtmlWindow::ReadCustomization

virtual void ReadCustomization (wxConfigBase *cfg, wxString path =
wxEmptyString)

This reads custom settings from wxConfig. It uses the path 'path' if given, otherwise it
saves info into currently selected path. The values are stored in sub-path
wxHtmlWindow

Read values: all things set by SetFonts, SetBorders.

Parameters

cfg

wxConfig from which you want to read the configuration.

path

Optional path in config tree. If not given current path is used.

wxHtmlWindow::SelectAll

void SelectAll ()

Selects all text in the window.

See also

SelectLine (p. 721),SelectWord (p. 721)

wxHtmlWindow::SelectionToText

wxString SelectionToText ()

Returns current selection as plain text. Returns empty string if no text is currently
selected.

wxHtmlWindow::SelectLine

CHAPTER 7

723

void SelectLine (const wxPoint& pos)

Selects the line of text that pos points at. Note that posis relative to the top of displayed
page, not to window's origin, useCalcUnscrolledPosition (p. 1101)to convert physical
coordinate.

See also

SelectAll (p. 720),SelectWord (p. 721)

wxHtmlWindow::SelectWord

void SelectWord (const wxPoint& pos)

Selects the word at position pos. Note that posis relative to the top of displayed page,
not to window's origin, useCalcUnscrolledPosition (p. 1101)to convert physical
coordinate.

See also

SelectAll (p. 720),SelectLine (p. 721)

wxHtmlWindow::SetBorders

void SetBorders (int b)

This function sets the space between border of window and HTML contents. See image:

Parameters

b

indentation from borders in pixels

CHAPTER 7

724

wxHtmlWindow::SetFonts

void SetFonts (wxString normal_face, wxString fixed_face, const int *sizes = NULL)

This function sets font sizes and faces.

Parameters

normal_face

This is face name for normal (i.e. non-fixed) font. It can be either empty string
(then the default face is chosen) or platform-specific face name. Examples are
"helvetica" under Unix or "Times New Roman" under Windows.

fixed_face

The same thing for fixed face (<TT>..</TT>)

sizes

This is an array of 7 items of int type. The values represent size of font with HTML
size from -2 to +4 (to). Default sizes are
used if sizesis NULL.

Defaults

Default font sizes are defined by constants wxHTML_FONT_SIZE_1,
wxHTML_FONT_SIZE_2, ..., wxHTML_FONT_SIZE_7. Note that they differ among
platforms. Default face names are empty strings.

wxHtmlWindow::SetPage

bool SetPage (const wxString& source)

Sets HTML page and display it. This won't load the page!! It will display the source. See
example:

htmlwin -> SetPage("<html><body>Hello, world!</body ></html>");

If you want to load a document from some location use LoadPage (p. 718) instead.

Parameters

source

The HTML document source to be displayed.

Return value

false if an error occurred, true otherwise.

wxHtmlWindow::SetRelatedFrame

void SetRelatedFrame (wxFrame* frame, const wxString& format)

CHAPTER 7

725

Sets the frame in which page title will be displayed. format is format of frame title, e.g.
"HtmlHelp : %s". It must contain exactly one %s. This%s is substituted with HTML page
title.

wxHtmlWindow::SetRelatedStatusBar

void SetRelatedStatusBar (int bar)

After calling SetRelatedFrame (p. 722), this sets statusbar slot where messages will be
displayed. (Default is -1 = no messages.)

Parameters

bar

statusbar slot number (0..n)

wxHtmlWindow::ToText

wxString ToText ()

Returns content of currently displayed page as plain text.

wxHtmlWindow::WriteCustomization

virtual void WriteCustomization (wxConfigBase *cfg, wxString path =
wxEmptyString)

Saves custom settings into wxConfig. It uses the path 'path' if given, otherwise it saves
info into currently selected path. Regardless of whether the path is given or not, the
function creates sub-path wxHtmlWindow .

Saved values: all things set by SetFonts, SetBorders.

Parameters

cfg

wxConfig to which you want to save the configuration.

path

Optional path in config tree. If not given, the current path is used.

wxHtmlWinParser

This class is derived from wxHtmlParser (p. 702) and its main goal is to parse HTML
input so that it can be displayed inwxHtmlWindow (p. 715). It uses a special
wxHtmlWinTagHandler (p. 729).

Notes

CHAPTER 7

726

The product of parsing is a wxHtmlCell (resp. wxHtmlContainer) object.

Derived from

wxHtmlParser (p. 702)

Include files

<wx/html/winpars.h>

See Also

Handlers overview (p. 1772)

wxHtmlWinParser::wxHtmlWinParser

 wxHtmlWinParser ()

 wxHtmlWinParser (wxHtmlWindow *wnd)

Constructor. Don't use the default one, use constructor withwnd parameter (wnd is
pointer to associated wxHtmlWindow (p. 715))

wxHtmlWinParser::AddModule

static void AddModule (wxHtmlTagsModule *module)

Adds module (p. 1772) to the list of wxHtmlWinParser tag handler.

wxHtmlWinParser::CloseContainer

wxHtmlContainerCell* CloseContainer ()

Closes the container, sets actual container to the parent one and returns pointer to it
(see Overview (p. 1771)).

wxHtmlWinParser::CreateCurrentFont

virtual wxFont* CreateCurrentFont ()

Creates font based on current setting (see SetFontSize (p. 728), SetFontBold (p. 727),
SetFontItalic (p. 728), SetFontFixed (p. 728), SetFontUnderlined (p. 728)) and returns
pointer to it. If the font was already created only a pointer is returned.

wxHtmlWinParser::GetActualColor

const wxColour& GetActualColor () const

Returns actual text colour.

CHAPTER 7

727

wxHtmlWinParser::GetAlign

int GetAlign () const

Returns default horizontal alignment.

wxHtmlWinParser::GetCharHeight

int GetCharHeight () const

Returns (average) char height in standard font. It is used as DC-independent metrics.

Note: This function doesn't return the actual height. If you want to know the height of the
current font, call GetDC -> GetCharHeight() .

wxHtmlWinParser::GetCharWidth

int GetCharWidth () const

Returns average char width in standard font. It is used as DC-independent metrics.

Note: This function doesn't return the actual width. If you want to know the height of the
current font, call GetDC -> GetCharWidth()

wxHtmlWinParser::GetContainer

wxHtmlContainerCell* GetContainer () const

Returns pointer to the currently opened container (see Overview (p. 1771)). Common
use:

m_WParser -> GetContainer() -> InsertCell(new ...);

wxHtmlWinParser::GetDC

wxDC* GetDC()

Returns pointer to the DC used during parsing.

wxHtmlWinParser::GetEncodingConverter

wxEncodingConverter * GetEncodingConverter () const

Returns wxEncodingConverter (p. 459) class used to do conversion between input
encoding (p. 726) and output encoding (p. 726).

wxHtmlWinParser::GetFontBold

int GetFontBold () const

Returns true if actual font is bold, false otherwise.

CHAPTER 7

728

wxHtmlWinParser::GetFontFace

wxString GetFontFace () const

Returns actual font face name.

wxHtmlWinParser::GetFontFixed

int GetFontFixed () const

Returns true if actual font is fixed face, false otherwise.

wxHtmlWinParser::GetFontItalic

int GetFontItalic () const

Returns true if actual font is italic, false otherwise.

wxHtmlWinParser::GetFontSize

int GetFontSize () const

Returns actual font size (HTML size varies from -2 to +4)

wxHtmlWinParser::GetFontUnderlined

int GetFontUnderlined () const

Returns true if actual font is underlined, false otherwise.

wxHtmlWinParser::GetInputEncoding

wxFontEncoding GetInputEncoding () const

Returns input encoding.

wxHtmlWinParser::GetLink

const wxHtmlLinkInfo& GetLink () const

Returns actual hypertext link. (This value has a non-empty Href (p. 699) string if the
parser is between <A> and tags, wxEmptyString otherwise.)

wxHtmlWinParser::GetLinkColor

const wxColour& GetLinkColor () const

Returns the colour of hypertext link text.

wxHtmlWinParser::GetOutputEncoding

CHAPTER 7

729

wxFontEncoding GetOutputEncoding () const

Returns output encoding, i.e. closest match to document's input encoding that is
supported by operating system.

wxHtmlWinParser::GetWindow

wxHtmlWindow* GetWindow ()

Returns associated window (wxHtmlWindow). This may be NULL! (You should always
test if it is non-NULL. For example TITLE handler sets window title only if some window
is associated, otherwise it does nothing)

wxHtmlWinParser::OpenContainer

wxHtmlContainerCell* OpenContainer ()

Opens new container and returns pointer to it (see Overview (p. 1771)).

wxHtmlWinParser::SetActualColor

void SetActualColor (const wxColour& clr)

Sets actual text colour. Note: this DOESN'T change the colour! You must create
wxHtmlColourCell (p. 678) yourself.

wxHtmlWinParser::SetAlign

void SetAlign (int a)

Sets default horizontal alignment (see wxHtmlContainerCell::SetAlignHor (p. 680).)
Alignment of newly opened container is set to this value.

wxHtmlWinParser::SetContainer

wxHtmlContainerCell* SetContainer (wxHtmlContainerCell * c)

Allows you to directly set opened container. This is not recommended - you should use
OpenContainer wherever possible.

wxHtmlWinParser::SetDC

virtual void SetDC(wxDC *dc, double pixel_scale = 1.0)

Sets the DC. This must be called before Parse (p. 705)!pixel_scale can be used when
rendering to high-resolution DCs (e.g. printer) to adjust size of pixel metrics. (Many
dimensions in HTML are given in pixels -- e.g. image sizes. 300x300 image would be
only one inch wide on typical printer. With pixel_scale = 3.0 it would be 3 inches.)

wxHtmlWinParser::SetFontBold

CHAPTER 7

730

void SetFontBold (int x)

Sets bold flag of actualfont. x is either true of false.

wxHtmlWinParser::SetFontFace

void SetFontFace (const wxString& face)

Sets current font face to face. This affects either fixed size font or proportional,
depending on context (whether the parser is inside <TT> tag or not).

wxHtmlWinParser::SetFontFixed

void SetFontFixed (int x)

Sets fixed face flag of actualfont. x is either true of false.

wxHtmlWinParser::SetFontItalic

void SetFontItalic (int x)

Sets italic flag of actualfont. x is either true of false.

wxHtmlWinParser::SetFontSize

void SetFontSize (int s)

Sets actual font size (HTML size varies from 1 to 7)

wxHtmlWinParser::SetFontUnderlined

void SetFontUnderlined (int x)

Sets underlined flag of actualfont. x is either true of false.

wxHtmlWinParser::SetFonts

void SetFonts (wxString normal_face, wxString fixed_face, const int *sizes = NULL)

Sets fonts. See wxHtmlWindow::SetFonts (p. 721) for detailed description.

wxHtmlWinParser::SetInputEncoding

void SetInputEncoding (wxFontEncoding enc)

Sets input encoding. The parser uses this information to build conversion tables from
document's encoding to some encoding supported by operating system.

wxHtmlWinParser::SetLink

CHAPTER 7

731

void SetLink (const wxHtmlLinkInfo& link)

Sets actual hypertext link. Empty link is represented by wxHtmlLinkInfo (p. 699) with Href
equal to wxEmptyString.

wxHtmlWinParser::SetLinkColor

void SetLinkColor (const wxColour& clr)

Sets colour of hypertext link.

wxHtmlWinTagHandler

This is basically wxHtmlTagHandler except that it is extended with protected member
m_WParser pointing to the wxHtmlWinParser object (value of this member is identical to
wxHtmlParser's m_Parser).

Derived from

wxHtmlTagHandler (p. 712)

Include files

<wx/html/winpars.h>

wxHtmlWinTagHandler::m_WParser

wxHtmlWinParser* m_WParser

Value of this attribute is identical to value of m_Parser. The only different is that
m_WParser points to wxHtmlWinParser object while m_Parser points to wxHtmlParser
object. (The same object, but overcast.)

wxHTTP

Derived from

wxProtocol (p. 1036)

Include files

<wx/protocol/http.h>

See also

wxSocketBase (p. 1148), wxURL (p. 1392)

wxHTTP::GetResponse

CHAPTER 7

732

int GetResponse () const

Returns the HTTP response code returned by the server. Please refer to the RFC 2616
for the list of the responses.

wxHTTP::GetInputStream

wxInputStream * GetInputStream (const wxString& path)

Creates a new input stream on the specified path. You can use all except the seek
functionality of wxStream. Seek isn't available on all streams. For example, http or ftp
streams doesn't deal with it. Other functions like Tell and SeekI for this sort of stream.
You will be notified when the EOF is reached by an error.

Note

You can know the size of the file you are getting using wxStreamBase::GetSize() (p.
1219). But there is a limitation: as HTTP servers aren't obliged to pass the size of the
file, in some case, you will be returned 0xfffffff by GetSize(). In these cases, you should
use the value returned by wxInputStream::LastRead() (p. 778): this value will be 0 when
the stream is finished.

Return value

Returns the initialized stream. You will have to delete it yourself once you don't use it
anymore. The destructor closes the network connection. The next time you will try to get
a file the network connection will have to be reestablished: but you don't have to take
care of this wxHTTP reestablishes it automatically.

See also

wxInputStream (p. 777)

wxHTTP::SetHeader

void SetHeader (const wxString& header, const wxString& h_data)

It sets data of a field to be sent during the next request to the HTTP server. The field
name is specified by header and the content by h_data. This is a low level function and it
assumes that you know what you are doing.

wxHTTP::GetHeader

wxString GetHeader (const wxString& header)

Returns the data attached with a field whose name is specified by header. If the field
doesn't exist, it will return an empty string and not a NULL string.

Note

The header is not case-sensitive: I mean that "CONTENT-TYPE" and "content-type"
represent the same header.

CHAPTER 7

733

wxIcon

An icon is a small rectangular bitmap usually used for denoting a minimized application.
It differs from a wxBitmap in always having a mask associated with it for transparent
drawing. On some platforms, icons and bitmaps are implemented identically, since there
is no real distinction between a wxBitmap with a mask and an icon; and there is no
specific icon format on some platforms (X-based applications usually standardize on
XPMs for small bitmaps and icons). However, some platforms (such as Windows) make
the distinction, so a separate class is provided.

Derived from

wxBitmap (p. 76)
wxGDIObject (p. 582)
wxObject (p. 967)

Include files

<wx/icon.h>

Predefined objects

Objects:

wxNullIcon

Remarks

It is usually desirable to associate a pertinent icon with a frame. Icons can also be used
for other purposes, for example with wxTreeCtrl (p. 1359) and wxListCtrl (p. 813).

Icons have different formats on different platforms. Therefore, separate icons will usually
be created for the different environments. Platform-specific methods for creating a
wxIcon structure are catered for, and this is an occasion where conditional compilation
will probably be required.

Note that a new icon must be created for every time the icon is to be used for a new
window. In Windows, the icon will not be reloaded if it has already been used. An icon
allocated to a frame will be deleted when the frame is deleted.

For more information please see Bitmap and icon overview (p. 1711).

See also

Bitmap and icon overview (p. 1711), supported bitmap file formats (p. 1712),
wxDC::DrawIcon (p. 358), wxCursor (p. 216)

wxIcon::wxIcon

 wxIcon ()

CHAPTER 7

734

Default constructor.

 wxIcon (const wxIcon& icon)

Copy constructor.

 wxIcon (void* data, int type, int width, int height, int depth = -1)

Creates an icon from the given data, which can be of arbitrary type.

 wxIcon (const char bits[], int width, int height
 int depth = 1)

Creates an icon from an array of bits.

 wxIcon (int width, int height, int depth = -1)

Creates a new icon.

 wxIcon (char** bits)

 wxIcon (const char** bits)

Creates an icon from XPM data.

 wxIcon (const wxString& name, wxBitmapType type, int desiredWidth = -1, int
desiredHeight = -1)

Loads an icon from a file or resource.

 wxIcon (const wxIconLocation& loc)

Loads an icon from the specified location (p. 739).

Parameters

bits

Specifies an array of pixel values.

width

Specifies the width of the icon.

height

Specifies the height of the icon.

desiredWidth

Specifies the desired width of the icon. This parameter only has an effect in
Windows (32-bit) where icon resources can contain several icons of different sizes.

desiredWidth

Specifies the desired height of the icon. This parameter only has an effect in

CHAPTER 7

735

Windows (32-bit) where icon resources can contain several icons of different sizes.

depth

Specifies the depth of the icon. If this is omitted, the display depth of the screen is
used.

name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the flags parameter.

loc

The object describing the location of the native icon, see wxIconLocation (p. 739).

type

May be one of the following:

wxBITMAP_TYPE_ICO Load a Windows icon file.

wxBITMAP_TYPE_ICO_RESOURCE Load a Windows icon from the resource
database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration. If
all possible wxWidgets settings are used, the Windows platform supports ICO file,
ICO resource, XPM data, and XPM file. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

Remarks

The first form constructs an icon object with no data; an assignment or another member
function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
icon data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs an icon from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) icon from an array of pixel values,
under both X and Windows.

The sixth form constructs a new icon.

The seventh form constructs an icon from pixmap (XPM) data, if wxWidgets has been

CHAPTER 7

736

configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

...

wxIcon *icon = new wxIcon(mybitmap);

A macro, wxICON, is available which creates an icon using an XPM on the appropriate
platform, or an icon resource on Windows.

wxIcon icon(wxICON(mondrian));

// Equivalent to:

#if defined(__WXGTK__) || defined(__WXMOTIF__)
wxIcon icon(mondrian_xpm);
#endif

#if defined(__WXMSW__)
wxIcon icon("mondrian");
#endif

The eighth form constructs an icon from a file or resource. name can refer to a resource
name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_ICO_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxIcon::CopyFromBitmap

void CopyFromBitmap (const wxBitmap& bmp)

Copies bmp bitmap to this icon. Under MS Windows the bitmap must have mask colour
set.

wxIcon::LoadFile (p. 735)

wxPerl note: Constructors supported by wxPerl are:

 •::Icon->new(width, height, depth = -1)

 •::Icon->new(name, type, desiredWidth = -1, desiredHeight = -1)

 •::Icon->newFromBits(bits, width, height, depth = 1)

 •::Icon->newFromXPM(data)

wxIcon::~wxIcon

 ~wxIcon ()

CHAPTER 7

737

Destroys the wxIcon object and possibly the underlying icon data. Because reference
counting is used, the icon may not actually be destroyed at this point - only when the
reference count is zero will the data be deleted.

If the application omits to delete the icon explicitly, the icon will be destroyed
automatically by wxWidgets when the application exits.

Do not delete an icon that is selected into a memory device context.

wxIcon::GetDepth

int GetDepth () const

Gets the colour depth of the icon. A value of 1 indicates a monochrome icon.

wxIcon::GetHeight

int GetHeight () const

Gets the height of the icon in pixels.

wxIcon::GetWidth

int GetWidth () const

Gets the width of the icon in pixels.

See also

wxIcon::GetHeight (p. 735)

wxIcon::LoadFile

bool LoadFile (const wxString& name, wxBitmapType type)

Loads an icon from a file or resource.

Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type

One of the following values:

wxBITMAP_TYPE_ICO Load a Windows icon file.

wxBITMAP_TYPE_ICO_RESOURCE Load a Windows icon from the resource
database.

CHAPTER 7

738

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

Return value

true if the operation succeeded, false otherwise.

See also

wxIcon::wxIcon (p. 731)

wxIcon::Ok

bool Ok() const

Returns true if icon data is present.

wxIcon::SetDepth

void SetDepth (int depth)

Sets the depth member (does not affect the icon data).

Parameters

depth

Icon depth.

wxIcon::SetHeight

void SetHeight (int height)

Sets the height member (does not affect the icon data).

Parameters

height

Icon height in pixels.

wxIcon::SetWidth

void SetWidth (int width)

Sets the width member (does not affect the icon data).

Parameters

CHAPTER 7

739

width

Icon width in pixels.

wxIcon::operator =

wxIcon& operator = (const wxIcon& icon)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in icon and increments a reference counter. It is a fast operation.

Parameters

icon

Icon to assign.

Return value

Returns 'this' object.

wxIcon::operator ==

bool operator == (const wxIcon& icon)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

icon

Icon to compare with 'this'

Return value

Returns true if the icons were effectively equal, false otherwise.

wxIcon::operator !=

bool operator != (const wxIcon& icon)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

icon

Icon to compare with 'this'

Return value

Returns true if the icons were unequal, false otherwise.

CHAPTER 7

740

wxIconBundle

This class contains multiple copies of an icon in different sizes, see also
wxDialog::SetIcons (p. 399) andwxTopLevelWindow::SetIcons (p. 1357).

Derived from

No base class

wxIconBundle::wxIconBundle

 wxIconBundle ()

Default constructor.

 wxIconBundle (const wxString& file, long type)

Initializes the bundle with the icon(s) found in the file.

 wxIconBundle (const wxIcon& icon)

Initializes the bundle with a single icon.

 wxIconBundle (const wxIconBundle& ic)

Copy constructor.

wxIconBundle::~wxIconBundle

 ~wxIconBundle ()

Destructor.

wxIconBundle::AddIcon

void AddIcon (const wxString& file, long type)

Adds all the icons contained in the file to the bundle; if the collection already contains
icons with the same width and height, they are replaced by the new ones.

void AddIcon (const wxIcon& icon)

Adds the icon to the collection; if the collection already contains an icon with the same
width and height, it is replaced by the new one.

wxIconBundle::GetIcon

const wxIcon& GetIcon (const wxSize& size) const

Returns the icon with the given size; if no such icon exists, returns the icon with size

CHAPTER 7

741

wxSYS_ICON_X/wxSYS_ICON_Y; if no such icon exists, returns the first icon in the
bundle. If size = wxSize(-1, -1), returns the icon with size
wxSYS_ICON_X/wxSYS_ICON_Y.

const wxIcon& GetIcon (wxCoord size = -1) const

Same as GetIcon(wxSize(size, size)).

wxIconBundle::operator=

const wxIconBundle& operator= (const wxIconBundle& ic)

Assignment operator.

wxIconLocation

wxIconLocation is a tiny class describing the location of an (external, i.e. not embedded
into the application resources) icon. For most platforms it simply contains the file name
but under some others (notably Windows) the same file may contain multiple icons and
so this class also stores the index of the icon inside the file.

In any case, its details should be of no interest to the application code and most of them
are not even documented here (on purpose) as it is only meant to be used as an opaque
class: the application may get the object of this class from somewhere and the only
reasonable thing to do with it later is to create a wxIcon (p. 730) from it.

Derived from

None.

Include files

<wx/iconloc.h>

See also

wxIcon (p. 730), wxFileType::GetIcon (p. 525)

wxIconLocation::IsOk

bool IsOk () const

Returns true if the object is valid, i.e. was properly initialized, and false otherwise.

wxIconizeEvent

An event being sent when the frame is iconized (minimized) or restored.

Currently only wxMSW and wxGTK generate such events.

CHAPTER 7

742

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process an iconize event, use this event handler macro to direct input to a member
function that takes a wxIconizeEvent argument.

EVT_ICONIZE(func) Process a wxEVT_ICONIZE event.

See also
Event handling overview (p. 1674), wxTopLevelWindow::Iconize (p. 1355),
wxTopLevelWindow::IsIconized (p. 1356)

wxIconizeEvent::wxIconizeEvent

 wxIconizeEvent (int id = 0, bool iconized = true)

Constructor.

wxIconizeEvent::Iconized

bool Iconized () const

Returns true if the frame has been iconized, false if it has been restored.

wxIdleEvent

This class is used for idle events, which are generated when the system is idle.

By default, idle events are sent to all windows. If this is causing a significant overhead in
your application, you can call wxIdleEvent::SetMode (p. 742) with the value
wxIDLE_PROCESS_SPECIFIED, and set the wxWS_EX_PROCESS_IDLE extra
window style for every window which should receive idle events.

The function wxWindow::OnInternalIdle (p. 1449) is also provided for internal purposes,
and cannot be disabled. wxUpdateUIEvents are sent from OnInternalIdle.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

CHAPTER 7

743

<wx/event.h>

Event table macros

To process an idle event, use this event handler macro to direct input to a member
function that takes a wxIdleEvent argument.

EVT_IDLE(func) Process a wxEVT_IDLE event.

Remarks
Idle events can be caught by the wxApp class, or by top-level window classes.

See also

Event handling overview (p. 1674), wxUpdateUIEvent (p. 1381),
wxWindow::OnInternalIdle (p. 1449)

wxIdleEvent::wxIdleEvent

 wxIdleEvent ()

Constructor.

wxIdleEvent::CanSend

static bool CanSend (wxWindow* window)

Returns true if it is appropriate to send idle events to this window.

This function looks at the mode used (see wxIdleEvent::SetMode (p. 742)), and the
wxWS_EX_PROCESS_IDLE style in window to determine whether idle events should
be sent to this window now. By default this will always return true because the update
mode is initially wxIDLE_PROCESS_ALL. You can change the mode to only send idle
events to windows with the wxWS_EX_PROCESS_IDLE extra window style set.

See also

wxIdleEvent::SetMode (p. 742)

wxIdleEvent::GetMode

static wxIdleMode GetMode ()

Static function returning a value specifying how wxWidgets will send idle events: to all
windows, or only to those which specify that they will process the events.

See wxIdleEvent::SetMode (p. 742).

wxIdleEvent::RequestMore

CHAPTER 7

744

void RequestMore (bool needMore = true)

Tells wxWidgets that more processing is required. This function can be called by an
OnIdle handler for a window or window event handler to indicate that wxApp::OnIdle
should forward the OnIdle event once more to the application windows. If no window
calls this function during OnIdle, then the application will remain in a passive event loop
(not calling OnIdle) until a new event is posted to the application by the windowing
system.

See also

wxIdleEvent::MoreRequested (p. 742)

wxIdleEvent::MoreRequested

bool MoreRequested () const

Returns true if the OnIdle function processing this event requested more processing
time.

See also

wxIdleEvent::RequestMore (p. 741)

wxIdleEvent::SetMode

static void SetMode (wxIdleMode mode)

Static function for specifying how wxWidgets will send idle events: to all windows, or only
to those which specify that they will process the events.

mode can be one of the following values. The default is wxIDLE_PROCESS_ALL.

enum wxIdleMode
{
 // Send idle events to all windows
 wxIDLE_PROCESS_ALL,

 // Send idle events to windows that have
 // the wxWS_EX_PROCESS_IDLE flag specified
 wxIDLE_PROCESS_SPECIFIED
};

wxImage

This class encapsulates a platform-independent image. An image can be created from
data, or using wxBitmap::ConvertToImage (p. 81). An image can be loaded from a file in
a variety of formats, and is extensible to new formats via image format handlers.
Functions are available to set and get image bits, so it can be used for basic image
manipulation.

A wxImage cannot (currently) be drawn directly to a wxDC (p. 353). Instead, a platform-

CHAPTER 7

745

specific wxBitmap (p. 76) object must be created from it using the
wxBitmap::wxBitmap(wxImage,int depth) (p. 77) constructor. This bitmap can then be
drawn in a device context, using wxDC::DrawBitmap (p. 357).

One colour value of the image may be used as a mask colour which will lead to the
automatic creation of a wxMask (p. 866) object associated to the bitmap object.

Alpha channel support

Starting from wxWidgets 2.5.0 wxImage supports alpha channel data, that is in addition
to a byte for the red, green and blue colour components for each pixel it also stores a
byte representing the pixel opacity. An alpha value of 0corresponds to a transparent
pixel (null opacity) while a value of 255means that the pixel is 100% opaque.

Unlike RGB data, not all images have an alpha channel and before using GetAlpha (p.
750) you should check if this image contains an alpha channel with HasAlpha (p. 754).
Note that currently only images loaded from PNG files with transparency information will
have an alpha channel but alpha support will be added to the other formats as well (as
well as support for saving images with alpha channel which also isn't implemented).

Available image handlers

The following image handlers are available. wxBMPHandler is always installed by
default. To use other image formats, install the appropriate handler with
wxImage::AddHandler (p. 747) or wxInitAllImageHandlers (p. 1517).

wxBMPHandler For loading and saving, always installed.

wxPNGHandler For loading (including alpha support) and saving.

wxJPEGHandler For loading and saving.

wxGIFHandler Only for loading, due to legal issues.

wxPCXHandler For loading and saving (see below).

wxPNMHandler For loading and saving (see below).

wxTIFFHandler For loading and saving.

wxIFFHandler For loading only.

wxXPMHandler For loading and saving.

wxICOHandler For loading and saving.

wxCURHandler For loading and saving.

wxANIHandler For loading only.

When saving in PCX format, wxPCXHandler will count the number of different colours in
the image; if there are 256 or less colours, it will save as 8 bit, else it will save as 24 bit.

Loading PNMs only works for ASCII or raw RGB images. When saving in PNM format,
wxPNMHandler will always save as raw RGB.

CHAPTER 7

746

Derived from

wxObject (p. 967)

Include files

<wx/image.h>

See also

wxBitmap (p. 76), wxInitAllImageHandlers (p. 1517)

wxImage::wxImage

 wxImage ()

Default constructor.

 wxImage (const wxImage& image)

Copy constructor.

 wxImage (const wxBitmap& bitmap)

(Deprecated form, use wxBitmap::ConvertToImage (p. 81)instead.) Constructs an image
from a platform-dependent bitmap. This preserves mask information so that bitmaps and
images can be converted back and forth without loss in that respect.

 wxImage (int width, int height, bool clear=true)

Creates an image with the given width and height. If clear is true, the new image will be
initialized to black. Otherwise, the image data will be uninitialized.

 wxImage (int width, int height, unsigned char* data, bool static_data = false)

Creates an image from given data with the given width and height. If static_data is true,
then wxImage will not delete the actual image data in its destructor, otherwise it will free
it by callingfree().

 wxImage (const wxString& name, long type = wxBITMAP_TYPE_ANY, int index = -1)

 wxImage (const wxString& name, const wxString& mimetype, int index = -1)

Loads an image from a file.

 wxImage (wxInputStream& stream, long type = wxBITMAP_TYPE_ANY, int index = -
1)

 wxImage (wxInputStream& stream, const wxString& mimetype, int index = -1)

Loads an image from an input stream.

 wxImage (const char** xpmData)

CHAPTER 7

747

Creates an image from XPM data.

Parameters

width

Specifies the width of the image.

height

Specifies the height of the image.

name

Name of the file from which to load the image.

stream

Opened input stream from which to load the image. Currently, the stream must
support seeking.

type

May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_JPEG Load a JPEG bitmap file.

wxBITMAP_TYPE_PNG Load a PNG bitmap file.

wxBITMAP_TYPE_PCX Load a PCX bitmap file.

wxBITMAP_TYPE_PNM Load a PNM bitmap file.

wxBITMAP_TYPE_TIF Load a TIFF bitmap file.

wxBITMAP_TYPE_XPM Load a XPM bitmap file.

wxBITMAP_TYPE_ICO Load a Windows icon file (ICO).

wxBITMAP_TYPE_CUR Load a Windows cursor file (CUR).

wxBITMAP_TYPE_ANI Load a Windows animated cursor file (ANI).

wxBITMAP_TYPE_ANY Will try to autodetect the format.

mimetype

MIME type string (for example 'image/jpeg')

index

CHAPTER 7

748

Index of the image to load in the case that the image file contains multiple images.
This is only used by GIF, ICO and TIFF handlers. The default value (-1) means
"choose the default image" and is interpreted as the first image (index=0) by the
GIF and TIFF handler and as the largest and most colourful one by the ICO
handler.

xpmData

A pointer to XPM image data.

Remarks

Depending on how wxWidgets has been configured, not all formats may be available.

Note: any handler other than BMP must be previously initialized with
wxImage::AddHandler (p. 747) or wxInitAllImageHandlers (p. 1517).

Note: you can use GetOptionInt (p. 754) to get the hotspot for loaded cursor file:
int hotspot_x = image.GetOptionInt(wxIMAGE_OPTION_C UR_HOTSPOT_X);
 int hotspot_y =
image.GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_Y);

See also

wxImage::LoadFile (p. 756)

wxPython note: Constructors supported by wxPython are:

wxImage(name, flag) Loads an image from a file

wxNullImage() Create a null image (has no size or image data)

wxEmptyImage(width, height) Creates an empty image of the given size

wxImageFromMime(name, mimetype Creates an image from the given file
of the given mimetype

wxImageFromBitmap(bitmap) Creates an image from a platform-
dependent bitmap

wxPerl note: Constructors supported by wxPerl are:

 •::Image->new(bitmap)

 •::Image->new(icon)

 •::Image->new(width, height)

 •::Image->new(width, height, data)

 •::Image->new(file, type, index)

 •::Image->new(file, mimetype, index)

CHAPTER 7

749

 •::Image->new(stream, type, index)

 •::Image->new(stream, mimetype, index)

wxImage::~wxImage

 ~wxImage ()

Destructor.

wxImage::AddHandler

static void AddHandler (wxImageHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler

A new image format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxImageHandler (p. 766)

bool CanRead (const wxString& filename)

returns true if the current image handlers can read this file

wxPython note: In wxPython this static method is named wxImage_AddHandler .

wxImage::CleanUpHandlers

static void CleanUpHandlers ()

Deletes all image handlers.

This function is called by wxWidgets on exit.

wxImage::ComputeHistogram

unsigned long ComputeHistogram (wxImageHistogram& histogram) const

Computes the histogram of the image. histogram is a reference to wxImageHistogram
object. wxImageHistogram is a specialization of wxHashMap (p. 653) "template" and is
defined as follows:

class WXDLLEXPORT wxImageHistogramEntry
{
public:
 wxImageHistogramEntry() : index(0), value(0) {}
 unsigned long index;
 unsigned long value;
};

CHAPTER 7

750

WX_DECLARE_EXPORTED_HASH_MAP(unsigned long, wxImage HistogramEntry,
 wxIntegerHash, wxInteg erEqual,
 wxImageHistogram);

Return value

Returns number of colours in the histogram.

wxImage::ConvertAlphaToMask

bool ConvertAlphaToMask (unsigned char threshold = 128)

If the image has alpha channel, this method converts it to mask. All pixels with alpha
value less than threshold are replaced with mask colour and the alpha channel is
removed. Mask colour is chosen automatically usingFindFirstUnusedColour (p. 749).

If the image image doesn't have alpha channel, ConvertAlphaToMask does nothing.

Return value

false if FindFirstUnusedColour returns false , true otherwise.

wxImage::ConvertToBitmap

wxBitmap ConvertToBitmap () const

Deprecated, use equivalent wxBitmap constructor (p. 77)(which takes wxImage and
depth as its arguments) instead.

wxImage::ConvertToMono

wxImage ConvertToMono (unsigned char r, unsigned char g, unsigned char b)
const

Returns monochromatic version of the image. The returned image has white colour
where the original has (r,g,b) colour and black colour everywhere else.

wxImage::Copy

wxImage Copy () const

Returns an identical copy of the image.

wxImage::Create

bool Create (int width, int height, bool clear=true)

Creates a fresh image. If clear is true, the new image will be initialized to black.
Otherwise, the image data will be uninitialized.

Parameters

CHAPTER 7

751

width

The width of the image in pixels.

height

The height of the image in pixels.

Return value

true if the call succeeded, false otherwise.

wxImage::Destroy

void Destroy ()

Destroys the image data.

wxImage::FindFirstUnusedColour

bool FindFirstUnusedColour (unsigned char * r, unsigned char * g, unsigned char *
b, unsigned char startR = 1, unsigned char startG = 0, unsigned char startB = 0)

Parameters

r,g,b

Pointers to variables to save the colour.

startR,startG,startB

Initial values of the colour. Returned colour will have RGB values equal to or
greater than these.

Finds the first colour that is never used in the image. The search begins at given initial
colour and continues by increasing R, G and B components (in this order) by 1 until an
unused colour is found or the colour space exhausted.

Return value

Returns false if there is no unused colour left, true on success.

Notes

Note that this method involves computing the histogram, which is computationally
intensive operation.

wxImage::FindHandler

static wxImageHandler* FindHandler (const wxString& name)

Finds the handler with the given name.

static wxImageHandler* FindHandler (const wxString& extension, long imageType)

CHAPTER 7

752

Finds the handler associated with the given extension and type.

static wxImageHandler* FindHandler (long imageType)

Finds the handler associated with the given image type.

static wxImageHandler* FindHandlerMime (const wxString& mimetype)

Finds the handler associated with the given MIME type.

name

The handler name.

extension

The file extension, such as "bmp".

imageType

The image type, such as wxBITMAP_TYPE_BMP.

mimetype

MIME type.

Return value

A pointer to the handler if found, NULL otherwise.

See also

wxImageHandler (p. 766)

wxImage::GetImageExtWildcard

static wxString GetImageExtWildcard ()

Iterates all registered wxImageHandler objects, and returns a string containing file
extension masks suitable for passing to file open/save dialog boxes.

Return value

The format of the returned string is "(*.ext1;*.ext2)|*.ext1;*.ext2".

It is usually a good idea to prepend a description before passing the result to the dialog.

Example:

 wxFileDialog FileDlg(this, "Choose Image",
::wxGetWorkingDirectory(), "", _("Image Files ") +
wxImage::GetImageExtWildcard(), wxOPEN);

See also

wxImageHandler (p. 766)

CHAPTER 7

753

wxImage::GetAlpha

unsigned char GetAlpha (int x, int y) const

Returns the alpha value for the given pixel. This function may only be called for the
images with alpha channel, use HasAlpha (p. 754) to check for this.

The returned value is the opacity of the image, i.e. the value of 0corresponds to the
transparent pixels while the value of 255 -- to the opaque ones.

unsigned char * GetAlpha () const

Returns pointer to the array storing the alpha values for this image. This pointer is NULL
for the images without the alpha channel. If the image does have it, this pointer may be
used to directly manipulate the alpha values which are stored as the RGB (p. 751) ones.

wxImage::GetBlue

unsigned char GetBlue (int x, int y) const

Returns the blue intensity at the given coordinate.

wxImage::GetData

unsigned char* GetData () const

Returns the image data as an array. This is most often used when doing direct image
manipulation. The return value points to an array of characters in RGBRGBRGB...
format in the top-to-bottom, left-to-right order, that is the first RGB triplet corresponds to
the pixel first pixel of the first row, the second one --- to the second pixel of the first row
and so on until the end of the first row, with second row following after it and so on.

You should not delete the returned pointer nor pass it towxImage::SetData (p. 763).

wxImage::GetGreen

unsigned char GetGreen (int x, int y) const

Returns the green intensity at the given coordinate.

wxImage::GetImageCount

static int GetImageCount (const wxString& filename, long type =
wxBITMAP_TYPE_ANY)

static int GetImageCount (wxInputStream& stream, long type =
wxBITMAP_TYPE_ANY)

If the image file contains more than one image and the image handler is capable of
retrieving these individually, this function will return the number of available images.

name

CHAPTER 7

754

Name of the file to query.

stream

Opened input stream with image data. Currently, the stream must support seeking.

type

May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_JPEG Load a JPEG bitmap file.

wxBITMAP_TYPE_PNG Load a PNG bitmap file.

wxBITMAP_TYPE_PCX Load a PCX bitmap file.

wxBITMAP_TYPE_PNM Load a PNM bitmap file.

wxBITMAP_TYPE_TIF Load a TIFF bitmap file.

wxBITMAP_TYPE_XPM Load a XPM bitmap file.

wxBITMAP_TYPE_ICO Load a Windows icon file (ICO).

wxBITMAP_TYPE_CUR Load a Windows cursor file (CUR).

wxBITMAP_TYPE_ANI Load a Windows animated cursor file (ANI).

wxBITMAP_TYPE_ANY Will try to autodetect the format.

Return value

Number of available images. For most image handlers, this is 1 (exceptions are TIFF
and ICO formats).

wxImage::GetHandlers

static wxList& GetHandlers ()

Returns the static list of image format handlers.

See also

wxImageHandler (p. 766)

wxImage::GetHeight

int GetHeight () const

Gets the height of the image in pixels.

CHAPTER 7

755

wxImage::GetMaskBlue

unsigned char GetMaskBlue () const

Gets the blue value of the mask colour.

wxImage::GetMaskGreen

unsigned char GetMaskGreen () const

Gets the green value of the mask colour.

wxImage::GetMaskRed

unsigned char GetMaskRed () const

Gets the red value of the mask colour.

wxImage::GetOrFindMaskColour

bool GetOrFindMaskColour (unsigned char *r, unsigned char *g, unsigned char *b)
const

Get the current mask colour or find a suitable unused colour that could be used as a
mask colour. Returns true if the image currently has a mask.

wxImage::GetPalette

const wxPalette& GetPalette () const

Returns the palette associated with the image. Currently the palette is only used when
converting to wxBitmap under Windows.

Eventually wxImage handlers will set the palette if one exists in the image file.

wxImage::GetRed

unsigned char GetRed (int x, int y) const

Returns the red intensity at the given coordinate.

wxImage::GetSubImage

wxImage GetSubImage (const wxRect& rect) const

Returns a sub image of the current one as long as the rect belongs entirely to the
image.

wxImage::GetWidth

CHAPTER 7

756

int GetWidth () const

Gets the width of the image in pixels.

See also

wxImage::GetHeight (p. 752)

HSVValue::HSVValue

 HSVValue (double h = 0.0, double s = 0.0, double v = 0.0)

Constructor for HSVValue, an object that contains values for hue, saturation and value
which represent the value of a color. It is used by wxImage::HSVtoRGB (p. 754)and
wxImage::RGBtoHSV (p. 758), which converts between HSV color space and RGB color
space.

wxPython note: use wxImage_HSVValue in wxPython

wxImage::HSVtoRGB

wxImage::RGBValue HSVtoRGB (const HSVValue & hsv)

Converts a color in HSV color space to RGB color space.

wxImage::HasAlpha

bool HasAlpha () const

Returns true if this image has alpha channel, false otherwise.

See also

GetAlpha (p. 750), SetAlpha (p. 762)

wxImage::HasMask

bool HasMask () const

Returns true if there is a mask active, false otherwise.

wxImage::GetOption

wxString GetOption (const wxString& name) const

Gets a user-defined option. The function is case-insensitive to name.

For example, when saving as a JPEG file, the option quality is used, which is a number
between 0 and 100 (0 is terrible, 100 is very good).

See also

CHAPTER 7

757

wxImage::SetOption (p. 764), wxImage::GetOptionInt (p. 754), wxImage::HasOption (p.
755)

wxImage::GetOptionInt

int GetOptionInt (const wxString& name) const

Gets a user-defined option as an integer. The function is case-insensitive to name.

If the given option is not present, the function returns 0. Use wxImage::HasOption (p.
755) is 0 is a possibly valid value for the option.

Options for wxPNGHandlerwxIMAGE_OPTION_PNG_FORMAT Format for saving a
PNG file.

wxIMAGE_OPTION_PNG_BITDEPTH Bit depth for every channel (R/G/B/A).

Supported values for wxIMAGE_OPTION_PNG_FORMAT:wxPNG_TYPE_COLOUR
 Stores RGB image.

wxPNG_TYPE_GREY Stores grey image, converts from RGB.

wxPNG_TYPE_GREY_RED Stores grey image, uses red value as grey.

See also

wxImage::SetOption (p. 764), wxImage::GetOption (p. 754)

wxImage::HasOption

bool HasOption (const wxString& name) const

Returns true if the given option is present. The function is case-insensitive to name.

See also

wxImage::SetOption (p. 764), wxImage::GetOption (p. 754), wxImage::GetOptionInt (p.
754)

wxImage::InitAlpha

void InitAlpha ()

Initializes the image alpha channel data. It is an error to call it if the image already has
alpha data. If it doesn't, alpha data will be by default initialized to all pixels being fully
opaque. But if the image has a a mask colour, all mask pixels will be completely
transparent.

wxImage::InitStandardHandlers

static void InitStandardHandlers ()

CHAPTER 7

758

Internal use only. Adds standard image format handlers. It only install BMP for the time
being, which is used by wxBitmap.

This function is called by wxWidgets on startup, and shouldn't be called by the user.

See also

wxImageHandler (p. 766), wxInitAllImageHandlers (p. 1517)

wxImage::InsertHandler

static void InsertHandler (wxImageHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler

A new image format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxImageHandler (p. 766)

wxImage::IsTransparent

bool IsTransparent (int x, int y, unsigned char threshold = 128) const

Returns true if the given pixel is transparent, i.e. either has the mask colour if this
image has a mask or if this image has alpha channel and alpha value of this pixel is
strictly less than threshold.

wxImage::LoadFile

bool LoadFile (const wxString& name, long type = wxBITMAP_TYPE_ANY, int index
= -1)

bool LoadFile (const wxString& name, const wxString& mimetype, int index = -1)

Loads an image from a file. If no handler type is provided, the library will try to autodetect
the format.

bool LoadFile (wxInputStream& stream, long type, int index = -1)

bool LoadFile (wxInputStream& stream, const wxString& mimetype, int index = -1)

Loads an image from an input stream.

Parameters

name

Name of the file from which to load the image.

CHAPTER 7

759

stream

Opened input stream from which to load the image. Currently, the stream must
support seeking.

type

One of the following values:

wxBITMAP_TYPE_BMP Load a Windows image file.

wxBITMAP_TYPE_GIF Load a GIF image file.

wxBITMAP_TYPE_JPEG Load a JPEG image file.

wxBITMAP_TYPE_PCX Load a PCX image file.

wxBITMAP_TYPE_PNG Load a PNG image file.

wxBITMAP_TYPE_PNM Load a PNM image file.

wxBITMAP_TYPE_TIF Load a TIFF image file.

wxBITMAP_TYPE_XPM Load a XPM image file.

wxBITMAP_TYPE_ICO Load a Windows icon file (ICO).

wxBITMAP_TYPE_CUR Load a Windows cursor file (CUR).

wxBITMAP_TYPE_ANI Load a Windows animated cursor file (ANI).

wxBITMAP_TYPE_ANY Will try to autodetect the format.

mimetype

MIME type string (for example 'image/jpeg')

index

Index of the image to load in the case that the image file contains multiple images.
This is only used by GIF, ICO and TIFF handlers. The default value (-1) means
"choose the default image" and is interpreted as the first image (index=0) by the
GIF and TIFF handler and as the largest and most colourful one by the ICO
handler.

Remarks

Depending on how wxWidgets has been configured, not all formats may be available.

Note: you can use GetOptionInt (p. 754) to get the hotspot for loaded cursor file:
int hotspot_x = image.GetOptionInt(wxIMAGE_OPTION_C UR_HOTSPOT_X);
 int hotspot_y =
image.GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_Y);

CHAPTER 7

760

Return value

true if the operation succeeded, false otherwise. If the optional index parameter is out of
range, false is returned and a call to wxLogError() takes place.

See also

wxImage::SaveFile (p. 760)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

LoadFile(filename, type) Loads an image of the given type from a file

LoadMimeFile(filename, mimetype) Loads an image of the given
mimetype from a file

wxPerl note: Methods supported by wxPerl are:

 •>LoadFile(name, type)

 •>LoadFile(name, mimetype)

wxImage::Ok

bool Ok() const

Returns true if image data is present.

RGBValue::RGBValue

 RGBValue (unsigned char r = 0, unsigned char g = 0, unsigned char b = 0)

Constructor for RGBValue, an object that contains values for red, green and blud which
represent the value of a color. It is used by wxImage::HSVtoRGB (p. 754)and
wxImage::RGBtoHSV (p. 758), which converts between HSV color space and RGB color
space.

wxPython note: use wxImage_RGBValue in wxPython

wxImage::RGBtoHSV

wxImage::HSVValue RGBtoHSV (const RGBValue& rgb)

Converts a color in RGB color space to HSV color space.

wxImage::RemoveHandler

static bool RemoveHandler (const wxString& name)

Finds the handler with the given name, and removes it. The handler is not deleted.

CHAPTER 7

761

name

The handler name.

Return value

true if the handler was found and removed, false otherwise.

See also

wxImageHandler (p. 766)

wxImage::Mirror

wxImage Mirror (bool horizontally = true) const

Returns a mirrored copy of the image. The parameter horizontallyindicates the
orientation.

wxImage::Replace

void Replace (unsigned char r1, unsigned char g1, unsigned char b1,unsigned char
r2, unsigned char g2, unsigned char b2)

Replaces the colour specified by r1,g1,b1 by the colour r2,g2,b2.

wxImage::Rescale

wxImage & Rescale (int width, int height)

Changes the size of the image in-place by scaling it: after a call to this function, the
image will have the given width and height.

Returns the (modified) image itself.

See also

Scale (p. 762)

wxImage::Resize

wxImage & Resize (const wxSize& size, const wxPoint& pos, int red = -1, int green =
-1, int blue = -1)

Changes the size of the image in-place without scaling it by adding either a border with
the given colour or cropping as necessary. The image is pasted into a new image with
the given size and background colour at the position pos relative to the upper left of the
new image. If red = green = blue = -1 then use either the current mask colour if set or
find, use, and set a suitable mask colour for any newly exposed areas.

Returns the (modified) image itself.

CHAPTER 7

762

See also

Size (p. 762)

wxImage::Rotate

wxImage Rotate (double angle, const wxPoint& rotationCentre, bool interpolating =
true, wxPoint* offsetAfterRotation = NULL)

Rotates the image about the given point, by angle radians. Passing true to interpolating
results in better image quality, but is slower. If the image has a mask, then the mask
colour is used for the uncovered pixels in the rotated image background. Else, black (rgb
0, 0, 0) will be used.

Returns the rotated image, leaving this image intact.

wxImage::RotateHue

void RotateHue (double angle)

Rotates the hue of each pixel in the image by angle, which is a double in the range of -
1.0 to +1.0, where -1.0 corresponds to -360 degrees and +1.0 corresponds to +360
degrees.

wxImage::Rotate90

wxImage Rotate90 (bool clockwise = true) const

Returns a copy of the image rotated 90 degrees in the direction indicated by clockwise.

wxImage::SaveFile

bool SaveFile (const wxString& name, int type) const

bool SaveFile (const wxString& name, const wxString& mimetype) const

Saves an image in the named file.

bool SaveFile (const wxString& name) const

Saves an image in the named file. File type is determined from the extension of the file
name. Note that this function may fail if the extension is not recognized! You can use
one of the forms above to save images to files with non-standard extensions.

bool SaveFile (wxOutputStream& stream, int type) const

bool SaveFile (wxOutputStream& stream, const wxString& mimetype) const

Saves an image in the given stream.

Parameters

CHAPTER 7

763

name

Name of the file to save the image to.

stream

Opened output stream to save the image to.

type

Currently these types can be used:

wxBITMAP_TYPE_BMP Save a BMP image file.

wxBITMAP_TYPE_JPEG Save a JPEG image file.

wxBITMAP_TYPE_PNG Save a PNG image file.

wxBITMAP_TYPE_PCX Save a PCX image file (tries to save as 8-bit if
possible, falls back to 24-bit otherwise).

wxBITMAP_TYPE_PNM Save a PNM image file (as raw RGB always).

wxBITMAP_TYPE_TIFF Save a TIFF image file.

wxBITMAP_TYPE_XPM Save a XPM image file.

wxBITMAP_TYPE_ICO Save a Windows icon file (ICO) (the size may be up
to 255 wide by 127 high. A single image is saved in 8
colors at the size supplied).

wxBITMAP_TYPE_CUR Save a Windows cursor file (CUR).

mimetype

MIME type.

Return value

true if the operation succeeded, false otherwise.

Remarks

Depending on how wxWidgets has been configured, not all formats may be available.

Note: you can use GetOptionInt (p. 754) to set the hotspot before saving an image into a
cursor file (default hotspot is in the centre of the image):
image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_X, hotsp otX);
 image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y, h otspotY);

See also

wxImage::LoadFile (p. 756)

CHAPTER 7

764

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SaveFile(filename, type) Saves the image using the given type to the
named file

SaveMimeFile(filename, mimetype) Saves the image using the given
mimetype to the named file

wxPerl note: Methods supported by wxPerl are:

 •>SaveFile(name, type)

 •>SaveFile(name, mimetype)

wxImage::Scale

wxImage Scale (int width, int height) const

Returns a scaled version of the image. This is also useful for scaling bitmaps in general
as the only other way to scale bitmaps is to blit a wxMemoryDC into another
wxMemoryDC.

It may be mentioned that the GTK port uses this function internally to scale bitmaps
when using mapping modes in wxDC.

Example:

 // get the bitmap from somewhere
 wxBitmap bmp = ...;

 // rescale it to have size of 32*32
 if (bmp.GetWidth() != 32 || bmp.GetHeight() != 32)
 {
 wxImage image = bmp.ConvertToImage();
 bmp = wxBitmap(image.Scale(32, 32));

 // another possibility:
 image.Rescale(32, 32);
 bmp = image;
 }

See also

Rescale (p. 759)

wxImage::Size

wxImage Size(const wxSize& size, const wxPoint& pos, int red = -1, int green = -1,
int blue = -1) const

Returns a resized version of this image without scaling it by adding either a border with
the given colour or cropping as necessary. The image is pasted into a new image with

CHAPTER 7

765

the given size and background colour at the position pos relative to the upper left of the
new image. If red = green = blue = -1 then use either the current mask colour if set or
find, use, and set a suitable mask colour for any newly exposed areas.

See also

Resize (p. 759)

wxImage::SetAlpha

void SetAlpha (unsigned char * alpha = NULL,bool static_data = false)

This function is similar to SetData (p. 763) and has similar restrictions. The pointer
passed to it may however be NULL in which case the function will allocate the alpha
array internally -- this is useful to add alpha channel data to an image which doesn't
have any. If the pointer is not NULL, it must have one byte for each image pixel and be
allocated with malloc() . wxImage takes ownership of the pointer and will free it
unlessstatic_data parameter is set.to true -- in this case the caller should do it.

void SetAlpha (int x, int y, unsigned char alpha)

Sets the alpha value for the given pixel. This function should only be called if the image
has alpha channel data, use HasAlpha (p. 754) to check for this.

wxImage::SetData

void SetData (unsigned char* data)

Sets the image data without performing checks. The data given must have the size
(width*height*3) or results will be unexpected. Don't use this method if you aren't sure
you know what you are doing.

The data must have been allocated with malloc() , NOT withoperator new .

After this call the pointer to the data is owned by the wxImage object, that will be
responsible for deleting it. Do not pass to this function a pointer obtained
throughwxImage::GetData (p. 751).

wxImage::SetMask

void SetMask (bool hasMask = true)

Specifies whether there is a mask or not. The area of the mask is determined by the
current mask colour.

wxImage::SetMaskColour

void SetMaskColour (unsigned char red, unsigned char green, unsigned char blue)

Sets the mask colour for this image (and tells the image to use the mask).

CHAPTER 7

766

wxImage::SetMaskFromImage

bool SetMaskFromImage (const wxImage& mask, unsigned char mr, unsigned char
mg, unsigned char mb)

Parameters

mask

The mask image to extract mask shape from. Must have same dimensions as the
image.

mr,mg,mb

RGB value of pixels in mask that will be used to create the mask.

Sets image's mask so that the pixels that have RGB value of mr,mg,mbin mask will be
masked in the image. This is done by first finding an unused colour in the image, setting
this colour as the mask colour and then using this colour to draw all pixels in the image
who corresponding pixel in mask has given RGB value.

Return value

Returns false if mask does not have same dimensions as the image or if there is no
unused colour left. Returns true if the mask was successfully applied.

Notes

Note that this method involves computing the histogram, which is computationally
intensive operation.

wxImage::SetOption

void SetOption (const wxString& name, const wxString& value)

void SetOption (const wxString& name, int value)

Sets a user-defined option. The function is case-insensitive to name.

For example, when saving as a JPEG file, the option quality is used, which is a number
between 0 and 100 (0 is terrible, 100 is very good).

See also

wxImage::GetOption (p. 754), wxImage::GetOptionInt (p. 754), wxImage::HasOption (p.
755)

wxImage::SetPalette

void SetPalette (const wxPalette& palette)

Associates a palette with the image. The palette may be used when converting wxImage
to wxBitmap (MSW only at present) or in file save operations (none as yet).

CHAPTER 7

767

wxImage::SetRGB

void SetRGB (int x, int y, unsigned char red, unsigned char green, unsigned char
blue)

Sets the pixel at the given coordinate. This routine performs bounds-checks for the
coordinate so it can be considered a safe way to manipulate the data, but in some cases
this might be too slow so that the data will have to be set directly. In that case you will
have to get access to the image data using the GetData (p. 751) method.

wxImage::SetRGB

void SetRGB (wxRect & rect, unsigned char red, unsigned char green, unsigned
char blue)

Sets the colour of the pixels within the given rectangle. This routine performs bounds-
checks for the coordinate so it can be considered a safe way to manipulate the data.

wxImage::operator =

wxImage& operator = (const wxImage& image)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in image and increments a reference counter. It is a fast operation.

Parameters

image

Image to assign.

Return value

Returns 'this' object.

wxImage::operator ==

bool operator == (const wxImage& image) const

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

image

Image to compare with 'this'

Return value

Returns true if the images were effectively equal, false otherwise.

CHAPTER 7

768

wxImage::operator !=

bool operator != (const wxImage& image) const

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

image

Image to compare with 'this'

Return value

Returns true if the images were unequal, false otherwise.

wxImageHandler

This is the base class for implementing image file loading/saving, and image creation
from data. It is used within wxImage and is not normally seen by the application.

If you wish to extend the capabilities of wxImage, derive a class from wxImageHandler
and add the handler using wxImage::AddHandler (p. 747) in your application
initialisation.

Note (Legal Issue)

This software is based in part on the work of the Independent JPEG Group.

(Applies when wxWidgets is linked with JPEG support. wxJPEGHandler uses libjpeg
created by IJG.)

Derived from

wxObject (p. 967)

Include files

<wx/image.h>

See also

wxImage (p. 742), wxInitAllImageHandlers (p. 1517)

wxImageHandler::wxImageHandler

 wxImageHandler ()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

CHAPTER 7

769

wxImageHandler::~wxImageHandler

 ~wxImageHandler ()

Destroys the wxImageHandler object.

wxImageHandler::GetName

wxString GetName () const

Gets the name of this handler.

wxImageHandler::GetExtension

wxString GetExtension () const

Gets the file extension associated with this handler.

wxImageHandler::GetImageCount

int GetImageCount (wxInputStream& stream)

If the image file contains more than one image and the image handler is capable of
retrieving these individually, this function will return the number of available images.

stream

Opened input stream for reading image data. Currently, the stream must support
seeking.

Return value

Number of available images. For most image handlers, this is 1 (exceptions are TIFF
and ICO formats).

wxImageHandler::GetType

long GetType () const

Gets the image type associated with this handler.

wxImageHandler::GetMimeType

wxString GetMimeType () const

Gets the MIME type associated with this handler.

wxImageHandler::LoadFile

bool LoadFile (wxImage* image, wxInputStream& stream, bool verbose=true, int
index=0)

CHAPTER 7

770

Loads a image from a stream, putting the resulting data into image. If the image file
contains more than one image and the image handler is capable of retrieving these
individually, indexindicates which image to read from the stream.

Parameters

image

The image object which is to be affected by this operation.

stream

Opened input stream for reading image data.

verbose

If set to true, errors reported by the image handler will produce wxLogMessages.

index

The index of the image in the file (starting from zero).

Return value

true if the operation succeeded, false otherwise.

See also

wxImage::LoadFile (p. 756), wxImage::SaveFile (p. 760), wxImageHandler::SaveFile (p.
768)

wxImageHandler::SaveFile

bool SaveFile (wxImage* image, wxOutputStream& stream)

Saves a image in the output stream.

Parameters

image

The image object which is to be affected by this operation.

stream

Opened output stream for writing the data.

Return value

true if the operation succeeded, false otherwise.

See also

wxImage::LoadFile (p. 756), wxImage::SaveFile (p. 760), wxImageHandler::LoadFile (p.
767)

CHAPTER 7

771

wxImageHandler::SetName

void SetName (const wxString& name)

Sets the handler name.

Parameters

name

Handler name.

wxImageHandler::SetExtension

void SetExtension (const wxString& extension)

Sets the handler extension.

Parameters

extension

Handler extension.

wxImageHandler::SetMimeType

void SetMimeType (const wxString& mimetype)

Sets the handler MIME type.

Parameters

mimename

Handler MIME type.

wxImageHandler::SetType

void SetType (long type)

Sets the handler type.

Parameters

name

Handler type.

wxImageList

A wxImageList contains a list of images, which are stored in an unspecified form. Images
can have masks for transparent drawing, and can be made from a variety of sources

CHAPTER 7

772

including bitmaps and icons.

wxImageList is used principally in conjunction with wxTreeCtrl (p. 1359) and wxListCtrl
(p. 813) classes.

Derived from

wxObject (p. 967)

Include files

<wx/imaglist.h>

See also

wxTreeCtrl (p. 1359), wxListCtrl (p. 813)

wxImageList::wxImageList

 wxImageList ()

Default constructor.

 wxImageList (int width, int height, const bool mask = true, int initialCount = 1)

Constructor specifying the image size, whether image masks should be created, and the
initial size of the list.

Parameters

width

Width of the images in the list.

height

Height of the images in the list.

mask

true if masks should be created for all images.

initialCount

The initial size of the list.

See also

wxImageList::Create (p. 771)

wxImageList::Add

int Add (const wxBitmap& bitmap, const wxBitmap& mask = wxNullBitmap)

CHAPTER 7

773

Adds a new image using a bitmap and optional mask bitmap.

int Add (const wxBitmap& bitmap, const wxColour& maskColour)

Adds a new image using a bitmap and mask colour.

int Add (const wxIcon& icon)

Adds a new image using an icon.

Parameters

bitmap

Bitmap representing the opaque areas of the image.

mask

Monochrome mask bitmap, representing the transparent areas of the image.

maskColour

Colour indicating which parts of the image are transparent.

icon

Icon to use as the image.

Return value

The new zero-based image index.

Remarks

The original bitmap or icon is not affected by the Add operation, and can be deleted
afterwards.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Add(bitmap, mask=wxNullBitmap)

AddWithColourMask(bitmap, colour)

AddIcon(icon)

wxImageList::Create

bool Create (int width, int height, const bool mask = true, int initialCount = 1)

Initializes the list. See wxImageList::wxImageList (p. 770) for details.

wxImageList::Draw

CHAPTER 7

774

bool Draw (int index, wxDC& dc, int x, int y, int flags =
wxIMAGELIST_DRAW_NORMAL, const bool solidBackground = false)

Draws a specified image onto a device context.

Parameters

index

Image index, starting from zero.

dc

Device context to draw on.

x

X position on the device context.

y

Y position on the device context.

flags

How to draw the image. A bitlist of a selection of the following:

wxIMAGELIST_DRAW_NORMAL Draw the image normally.

wxIMAGELIST_DRAW_TRANSPARENT Draw the image with transparency.

wxIMAGELIST_DRAW_SELECTED Draw the image in selected state.

wxIMAGELIST_DRAW_FOCUSED Draw the image in a focused state.

solidBackground

For optimisation - drawing can be faster if the function is told that the background
is solid.

wxImageList::GetBitmap

wxBitmap GetBitmap (int index) const

Returns the bitmap corresponding to the given index.

wxImageList::GetIcon

wxIcon GetIcon (int index) const

Returns the icon corresponding to the given index.

wxImageList::GetImageCount

CHAPTER 7

775

int GetImageCount () const

Returns the number of images in the list.

wxImageList::GetSize

bool GetSize (int index, int& width, int & height) const

Retrieves the size of the images in the list. Currently, the index parameter is ignored as
all images in the list have the same size.

Parameters

index

currently unused, should be 0

width

receives the width of the images in the list

height

receives the height of the images in the list

Return value

true if the function succeeded, false if it failed (for example, if the image list was not yet
initialized).

wxImageList::Remove

bool Remove (int index)

Removes the image at the given position.

wxImageList::RemoveAll

bool RemoveAll ()

Removes all the images in the list.

wxImageList::Replace

bool Replace (int index, const wxBitmap& bitmap, const wxBitmap& mask =
wxNullBitmap)

Replaces the existing image with the new image.

Windows only.

bool Replace (int index, const wxIcon& icon)

CHAPTER 7

776

Replaces the existing image with the new image.

Parameters

bitmap

Bitmap representing the opaque areas of the image.

mask

Monochrome mask bitmap, representing the transparent areas of the image.

icon

Icon to use as the image.

Return value

true if the replacement was successful, false otherwise.

Remarks

The original bitmap or icon is not affected by the Replace operation, and can be deleted
afterwards.

wxPython note: The second form is called ReplaceIcon in wxPython.

wxIndividualLayoutConstraint

Objects of this class are stored in the wxLayoutConstraint class as one of eight possible
constraints that a window can be involved in.

Constraints are initially set to have the relationship wxUnconstrained, which means that
their values should be calculated by looking at known constraints.

Derived from

wxObject (p. 967)

Include files

<wx/layout.h>

See also

Overview and examples (p. 1691), wxLayoutConstraints (p. 799),
wxWindow::SetConstraints (p. 1459).

Edges and relationships

The wxEdge enumerated type specifies the type of edge or dimension of a window.

CHAPTER 7

777

wxLeft The left edge.

wxTop The top edge.

wxRight The right edge.

wxBottom The bottom edge.

wxCentreX The x-coordinate of the centre of the window.

wxCentreY The y-coordinate of the centre of the window.

The wxRelationship enumerated type specifies the relationship that this edge or
dimension has with another specified edge or dimension. Normally, the user doesn't use
these directly because functions such as Below and RightOf are a convenience for using
the more general Set function.

wxUnconstrained The edge or dimension is unconstrained (the default for
edges.

wxAsIs The edge or dimension is to be taken from the current
window position or size (the default for dimensions.

wxAbove The edge should be above another edge.

wxBelow The edge should be below another edge.

wxLeftOf The edge should be to the left of another edge.

wxRightOf The edge should be to the right of another edge.

wxSameAs The edge or dimension should be the same as another
edge or dimension.

wxPercentOf The edge or dimension should be a percentage of another
edge or dimension.

wxAbsolute The edge or dimension should be a given absolute value.

wxIndividualLayoutConstraint::wxIndividualLayoutCon straint

void wxIndividualLayoutConstraint ()

Constructor. Not used by the end-user.

wxIndividualLayoutConstraint::Above

void Above (wxWindow * otherWin, int margin = 0)

Constrains this edge to be above the given window, with an optional margin. Implicitly,
this is relative to the top edge of the other window.

wxIndividualLayoutConstraint::Absolute

CHAPTER 7

778

void Absolute (int value)

Constrains this edge or dimension to be the given absolute value.

wxIndividualLayoutConstraint::AsIs

void AsIs ()

Sets this edge or constraint to be whatever the window's value is at the moment. If either
of the width and height constraints are as is, the window will not be resized, but moved
instead. This is important when considering panel items which are intended to have a
default size, such as a button, which may take its size from the size of the button label.

wxIndividualLayoutConstraint::Below

void Below (wxWindow * otherWin, int margin = 0)

Constrains this edge to be below the given window, with an optional margin. Implicitly,
this is relative to the bottom edge of the other window.

wxIndividualLayoutConstraint::Unconstrained

void Unconstrained ()

Sets this edge or dimension to be unconstrained, that is, dependent on other edges and
dimensions from which this value can be deduced.

wxIndividualLayoutConstraint::LeftOf

void LeftOf (wxWindow * otherWin, int margin = 0)

Constrains this edge to be to the left of the given window, with an optional margin.
Implicitly, this is relative to the left edge of the other window.

wxIndividualLayoutConstraint::PercentOf

void PercentOf (wxWindow * otherWin, wxEdge edge, int per)

Constrains this edge or dimension to be to a percentage of the given window, with an
optional margin.

wxIndividualLayoutConstraint::RightOf

void RightOf (wxWindow * otherWin, int margin = 0)

Constrains this edge to be to the right of the given window, with an optional margin.
Implicitly, this is relative to the right edge of the other window.

wxIndividualLayoutConstraint::SameAs

CHAPTER 7

779

void SameAs (wxWindow * otherWin, wxEdge edge, int margin = 0)

Constrains this edge or dimension to be to the same as the edge of the given window,
with an optional margin.

wxIndividualLayoutConstraint::Set

void Set(wxRelationship rel, wxWindow * otherWin, wxEdge otherEdge, int value = 0,
int margin = 0)

Sets the properties of the constraint. Normally called by one of the convenience
functions such as Above, RightOf, SameAs.

wxInitDialogEvent

A wxInitDialogEvent is sent as a dialog or panel is being initialised. Handlers for this
event can transfer data to the window. The default handler calls
wxWindow::TransferDataToWindow (p. 1473).

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxInitDialogEvent argument.

EVT_INIT_DIALOG(func) Process a wxEVT_INIT_DIALOG event.

See also

Event handling overview (p. 1674)

wxInitDialogEvent::wxInitDialogEvent

 wxInitDialogEvent (int id = 0)

Constructor.

wxInputStream

wxInputStream is an abstract base class which may not be used directly.

CHAPTER 7

780

Derived from

wxStreamBase (p. 1218)

Include files

<wx/stream.h>

wxInputStream::wxInputStream

 wxInputStream ()

Creates a dummy input stream.

wxInputStream::~wxInputStream

 ~wxInputStream ()

Destructor.

wxInputStream::CanRead

bool CanRead () const

Returns true if some data is available in the stream right now, so that calling Read() (p.
779) wouldn't block.

wxInputStream::GetC

char GetC()

Returns the first character in the input queue and removes it, blocking until it appears if
necessary.

Note

If EOF, return value is undefined and LastRead() will return 0 and not 1.

wxInputStream::Eof

bool Eof () const

Returns true if the end of stream has been reached.

Note

For some streams Eof() will not return true until an attempt has been made to read past
the end of the stream.LastRead() (p. 778)should be called after each read to check that
a non-zero number of bytes have been read.

CHAPTER 7

781

wxInputStream::LastRead

size_t LastRead () const

Returns the last number of bytes read.

wxInputStream::Peek

char Peek()

Returns the first character in the input queue without removing it.

Note

Blocks until something appears in the stream if necessary, if nothing ever does (i.e.
EOF) LastRead() will return 0 (and the return value is undefined), otherwise LastRead()
returns 1.

wxInputStream::Read

wxInputStream& Read(void * buffer, size_t size)

Reads the specified amount of bytes and stores the data in buffer.

Warning

The buffer absolutely needs to have at least the specified size.

Return value

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxInputStream& Read(wxOutputStream& stream_out)

Reads data from the input queue and stores it in the specified output stream. The data is
read until an error is raised by one of the two streams.

Return value

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxInputStream::SeekI

off_t SeekI(off_t pos, wxSeekMode mode = wxFromStart)

Changes the stream current position.

Parameters

pos

CHAPTER 7

782

Offset to seek to.

mode

One of wxFromStart , wxFromEnd , wxFromCurrent .

Return value

The new stream position or wxInvalidOffset on error.

wxInputStream::TellI

off_t TellI () const

Returns the current stream position.

wxInputStream::Ungetch

size_t Ungetch (const char* buffer, size_t size)

This function is only useful in read mode. It is the manager of the "Write-Back" buffer.
This buffer acts like a temporary buffer where data which has to be read during the next
read IO call are put. This is useful when you get a big block of data which you didn't want
to read: you can replace them at the top of the input queue by this way.

Be very careful about this call in connection with calling SeekI() on the same stream.
Any call to SeekI() will invalidate any previous call to this method (otherwise you could
SeekI() to one position, "unread" a few bytes there, SeekI() to another position and data
would be either lost or corrupted).

Return value

Returns the amount of bytes saved in the Write-Back buffer.

bool Ungetch (char c)

This function acts like the previous one except that it takes only one character: it is
sometimes shorter to use than the generic function.

wxIPaddress

wxIPaddress is an abstract base class for all internet protocol address objects.
Currently, only wxIPV4address (p. 782) is implemented. An experimental
implementation for IPV6, wxIPV6address, is being developed.

Derived from

wxSockAddress (p. 1148)

Include files

<wx/socket.h>

CHAPTER 7

783

wxIPaddress::Hostname

virtual bool Hostname (const wxString& hostname)

Set the address to hostname, which can be a host name or an IP-style address in a
format dependent on implementation.

Return value

Returns true on success, false if something goes wrong (invalid hostname or invalid IP
address).

virtual wxString Hostname ()

Returns the hostname which matches the IP address.

wxIPaddress::IPAddress

virtual wxString IPAddress ()

Returns a wxString containing the IP address.

wxIPaddress::Service

virtual bool Service (const wxString& service)

Set the port to that corresponding to the specified service.

Return value

Returns true on success, false if something goes wrong (invalid service).

virtual bool Service (unsigned short service)

Set the port to that corresponding to the specified service.

Return value

Returns true on success, false if something goes wrong (invalid service).

virtual unsigned short Service ()

Returns the current service.

wxIPaddress::AnyAddress

virtual bool AnyAddress ()

Internally, this is the same as setting the IP address to INADDR_ANY .

On IPV4 implementations, 0.0.0.0

CHAPTER 7

784

On IPV6 implementations, ::

Return value

Returns true on success, false if something went wrong.

wxIPaddress::LocalHost

virtual bool LocalHost ()

Set address to localhost.

On IPV4 implementations, 127.0.0.1

On IPV6 implementations, ::1

Return value

Returns true on success, false if something went wrong.

wxIPaddress::IsLocalHost

virtual bool IsLocalHost ()

Determines if current address is set to localhost.

Return value

Returns true if address is localhost, false if internet address.

wxIPV4address

Derived from

wxIPaddress (p. 780)

Include files

<wx/socket.h>

wxIPV4address::Hostname

bool Hostname (const wxString& hostname)

Set the address to hostname, which can be a host name or an IP-style address in dot
notation (a.b.c.d)

Return value

Returns true on success, false if something goes wrong (invalid hostname or invalid IP

CHAPTER 7

785

address).

wxString Hostname ()

Returns the hostname which matches the IP address.

wxIPV4address::IPAddress

wxString IPAddress ()

Returns a wxString containing the IP address in dot quad (127.0.0.1) format.

wxIPV4address::Service

bool Service (const wxString& service)

Set the port to that corresponding to the specified service.

Return value

Returns true on success, false if something goes wrong (invalid service).

bool Service (unsigned short service)

Set the port to that corresponding to the specified service.

Return value

Returns true on success, false if something goes wrong (invalid service).

unsigned short Service ()

Returns the current service.

wxIPV4address::AnyAddress

bool AnyAddress ()

Set address to any of the addresses of the current machine. Whenever possible, use
this function instead of wxIPV4address::LocalHost (p. 783), as this correctly handles
multi-homed hosts and avoids other small problems. Internally, this is the same as
setting the IP address to INADDR_ANY .

Return value

Returns true on success, false if something went wrong.

wxIPV4address::LocalHost

bool LocalHost ()

Set address to localhost (127.0.0.1). Whenever possible, use the
wxIPV4address::AnyAddress (p. 783), function instead of this one, as this will correctly

CHAPTER 7

786

handle multi-homed hosts and avoid other small problems.

Return value

Returns true on success, false if something went wrong.

wxJoystick

wxJoystick allows an application to control one or more joysticks.

Derived from

wxObject (p. 967)

Include files

<wx/joystick.h>

See also

wxJoystickEvent (p. 789)

wxJoystick::wxJoystick

 wxJoystick (int joystick = wxJOYSTICK1)

Constructor. joystick may be one of wxJOYSTICK1, wxJOYSTICK2, indicating the
joystick controller of interest.

wxJoystick::~wxJoystick

 ~wxJoystick ()

Destroys the wxJoystick object.

wxJoystick::GetButtonState

int GetButtonState () const

Returns the state of the joystick buttons. Every button is mapped to a single bit in the
returned integer, with the first button being mapped to the least significant bit, and so on.
A bitlist of wxJOY_BUTTONn identifiers, where n is 1, 2, 3 or 4 is available for historical
reasons.

wxJoystick::GetManufacturerId

int GetManufacturerId () const

Returns the manufacturer id.

CHAPTER 7

787

wxJoystick::GetMovementThreshold

int GetMovementThreshold () const

Returns the movement threshold, the number of steps outside which the joystick is
deemed to have moved.

wxJoystick::GetNumberAxes

int GetNumberAxes () const

Returns the number of axes for this joystick.

wxJoystick::GetNumberButtons

int GetNumberButtons () const

Returns the number of buttons for this joystick.

wxJoystick::GetNumberJoysticks

int GetNumberJoysticks () const

Returns the number of joysticks currently attached to the computer.

wxJoystick::GetPollingMax

int GetPollingMax () const

Returns the maximum polling frequency.

wxJoystick::GetPollingMin

int GetPollingMin () const

Returns the minimum polling frequency.

wxJoystick::GetProductId

int GetProductId () const

Returns the product id for the joystick.

wxJoystick::GetProductName

wxString GetProductName () const

Returns the product name for the joystick.

wxJoystick::GetPosition

CHAPTER 7

788

wxPoint GetPosition () const

Returns the x, y position of the joystick.

wxJoystick::GetPOVPosition

int GetPOVPosition () const

Returns the point-of-view position, expressed in continuous, one-hundredth of a degree
units, but limited to return 0, 9000, 18000 or 27000. Returns -1 on error.

wxJoystick::GetPOVCTSPosition

int GetPOVCTSPosition () const

Returns the point-of-view position, expressed in continuous, one-hundredth of a degree
units. Returns -1 on error.

wxJoystick::GetRudderMax

int GetRudderMax () const

Returns the maximum rudder position.

wxJoystick::GetRudderMin

int GetRudderMin () const

Returns the minimum rudder position.

wxJoystick::GetRudderPosition

int GetRudderPosition () const

Returns the rudder position.

wxJoystick::GetUMax

int GetUMax () const

Returns the maximum U position.

wxJoystick::GetUMin

int GetUMin () const

Returns the minimum U position.

wxJoystick::GetUPosition

CHAPTER 7

789

int GetUPosition () const

Gets the position of the fifth axis of the joystick, if it exists.

wxJoystick::GetVMax

int GetVMax () const

Returns the maximum V position.

wxJoystick::GetVMin

int GetVMin () const

Returns the minimum V position.

wxJoystick::GetVPosition

int GetVPosition () const

Gets the position of the sixth axis of the joystick, if it exists.

wxJoystick::GetXMax

int GetXMax () const

Returns the maximum x position.

wxJoystick::GetXMin

int GetXMin () const

Returns the minimum x position.

wxJoystick::GetYMax

int GetYMax () const

Returns the maximum y position.

wxJoystick::GetYMin

int GetYMin () const

Returns the minimum y position.

wxJoystick::GetZMax

int GetZMax () const

CHAPTER 7

790

Returns the maximum z position.

wxJoystick::GetZMin

int GetZMin () const

Returns the minimum z position.

wxJoystick::GetZPosition

int GetZPosition () const

Returns the z position of the joystick.

wxJoystick::HasPOV

bool HasPOV() const

Returns true if the joystick has a point of view control.

wxJoystick::HasPOV4Dir

bool HasPOV4Dir () const

Returns true if the joystick point-of-view supports discrete values (centered, forward,
backward, left, and right).

wxJoystick::HasPOVCTS

bool HasPOVCTS() const

Returns true if the joystick point-of-view supports continuous degree bearings.

wxJoystick::HasRudder

bool HasRudder () const

Returns true if there is a rudder attached to the computer.

wxJoystick::HasU

bool HasU() const

Returns true if the joystick has a U axis.

wxJoystick::HasV

bool HasV() const

Returns true if the joystick has a V axis.

CHAPTER 7

791

wxJoystick::HasZ

bool HasZ() const

Returns true if the joystick has a Z axis.

wxJoystick::IsOk

bool IsOk () const

Returns true if the joystick is functioning.

wxJoystick::ReleaseCapture

bool ReleaseCapture ()

Releases the capture set by SetCapture .

Return value

true if the capture release succeeded.

See also

wxJoystick::SetCapture (p. 789), wxJoystickEvent (p. 789)

wxJoystick::SetCapture

bool SetCapture (wxWindow* win, int pollingFreq = 0)

Sets the capture to direct joystick events to win.

Parameters

win

The window that will receive joystick events.

pollingFreq

If zero, movement events are sent when above the threshold. If greater than zero,
events are received every pollingFreq milliseconds.

Return value

true if the capture succeeded.

See also

wxJoystick::ReleaseCapture (p. 788), wxJoystickEvent (p. 789)

wxJoystick::SetMovementThreshold

CHAPTER 7

792

void SetMovementThreshold (int threshold)

Sets the movement threshold, the number of steps outside which the joystick is deemed
to have moved.

wxJoystickEvent

This event class contains information about mouse events, particularly events received
by windows.

Derived from

wxEvent (p. 464)

Include files

<wx/event.h>

Event table macros

To process a mouse event, use these event handler macros to direct input to member
functions that take a wxJoystickEvent argument.

EVT_JOY_BUTTON_DOWN(func) Process a wxEVT_JOY_BUTTON_DOWN
event.

EVT_JOY_BUTTON_UP(func) Process a wxEVT_JOY_BUTTON_UP event.

EVT_JOY_MOVE(func) Process a wxEVT_JOY_MOVE event.

EVT_JOY_ZMOVE(func) Process a wxEVT_JOY_ZMOVE event.

EVT_JOYSTICK_EVENTS(func) Processes all joystick events.

See also
wxJoystick (p. 783)

wxJoystickEvent::wxJoystickEvent

 wxJoystickEvent (WXTYPE eventType = 0, int state = 0, int joystick = wxJOYSTICK1,
int change = 0)

Constructor.

wxJoystickEvent::ButtonDown

bool ButtonDown (int button = wxJOY_BUTTON_ANY) const

Returns true if the event was a down event from the specified button (or any button).

Parameters

CHAPTER 7

793

button

Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::ButtonIsDown

bool ButtonIsDown (int button = wxJOY_BUTTON_ANY) const

Returns true if the specified button (or any button) was in a down state.

Parameters

button

Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::ButtonUp

bool ButtonUp (int button = wxJOY_BUTTON_ANY) const

Returns true if the event was an up event from the specified button (or any button).

Parameters

button

Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::GetButtonChange

int GetButtonChange () const

Returns the identifier of the button changing state. This is a wxJOY_BUTTONn identifier,
where n is one of 1, 2, 3, 4.

wxJoystickEvent::GetButtonState

int GetButtonState () const

Returns the down state of the buttons. This is a bitlist of wxJOY_BUTTONn identifiers,
where n is one of 1, 2, 3, 4.

wxJoystickEvent::GetJoystick

int GetJoystick () const

Returns the identifier of the joystick generating the event - one of wxJOYSTICK1 and
wxJOYSTICK2.

CHAPTER 7

794

wxJoystickEvent::GetPosition

wxPoint GetPosition () const

Returns the x, y position of the joystick event.

wxJoystickEvent::GetZPosition

int GetZPosition () const

Returns the z position of the joystick event.

wxJoystickEvent::IsButton

bool IsButton () const

Returns true if this was a button up or down event (not 'is any button down?').

wxJoystickEvent::IsMove

bool IsMove () const

Returns true if this was an x, y move event.

wxJoystickEvent::IsZMove

bool IsZMove () const

Returns true if this was a z move event.

wxKeyEvent

This event class contains information about keypress (character) events.

Notice that there are three different kinds of keyboard events in wxWidgets: key down
and up events and char events. The difference between the first two is clear - the first
corresponds to a key press and the second to a key release - otherwise they are
identical. Just note that if the key is maintained in a pressed state you will typically get a
lot of (automatically generated) down events but only one up so it is wrong to assume
that there is one up event corresponding to each down one.

Both key events provide untranslated key codes while the char event carries the
translated one. The untranslated code for alphanumeric keys is always an upper case
value. For the other keys it is one of WXK_XXX values from the keycodes table (p. 1594).
The translated key is, in general, the character the user expects to appear as the result
of the key combination when typing the text into a text entry zone, for example.

A few examples to clarify this (all assume that CAPS LOCK is unpressed and the
standard US keyboard): when the 'A' key is pressed, the key down event key code is
equal to ASCII A == 65. But the char event key code is ASCII a == 97. On the other

CHAPTER 7

795

hand, if you press both SHIFT and'A' keys simultaneously , the key code in key down
event will still be just 'A' while the char event key code parameter will now be 'A' as
well.

Although in this simple case it is clear that the correct key code could be found in the key
down event handler by checking the value returned byShiftDown() (p. 796), in general
you should useEVT_CHAR for this as for non alphanumeric keys the translation is
keyboard-layout dependent and can only be done properly by the system itself.

Another kind of translation is done when the control key is pressed: for example, for
CTRL-A key press the key down event still carries the same key code 'a' as usual but
the char event will have key code of1, the ASCII value of this key combination.

You may discover how the other keys on your system behave interactively by running
the text (p. 1639) wxWidgets sample and pressing some keys in any of the text controls
shown in it.

Note: If a key down (EVT_KEY_DOWN) event is caught and the event handler does not
call event.Skip() then the corresponding char event (EVT_CHAR) will not happen.
This is by design and enables the programs that handle both types of events to be a bit
simpler.

Note for Windows programmers: The key and char events in wxWidgets are similar to
but slightly different from Windows WM_KEYDOWN andWM_CHAR events. In particular, Alt-x
combination will generate a char event in wxWidgets (unless it is used as an
accelerator).

Tip: be sure to call event.Skip() for events that you don't process in key event
function, otherwise menu shortcuts may cease to work under Windows.

Derived from

wxEvent (p. 464)

Include files

<wx/event.h>

Event table macros

To process a key event, use these event handler macros to direct input to member
functions that take a wxKeyEvent argument.

EVT_KEY_DOWN(func) Process a wxEVT_KEY_DOWN event (any key
has been pressed).

EVT_KEY_UP(func) Process a wxEVT_KEY_UP event (any key has
been released).

EVT_CHAR(func) Process a wxEVT_CHAR event.

wxKeyEvent::m_altDown

CHAPTER 7

796

bool m_altDown

true if the Alt key is pressed down.

wxKeyEvent::m_controlDown

bool m_controlDown

true if control is pressed down.

wxKeyEvent::m_keyCode

long m_keyCode

Virtual keycode. See Keycodes (p. 1594) for a list of identifiers.

wxKeyEvent::m_metaDown

bool m_metaDown

true if the Meta key is pressed down.

wxKeyEvent::m_shiftDown

bool m_shiftDown

true if shift is pressed down.

wxKeyEvent::m_x

int m_x

X position of the event.

wxKeyEvent::m_y

int m_y

Y position of the event.

wxKeyEvent::wxKeyEvent

 wxKeyEvent (WXTYPE keyEventType)

Constructor. Currently, the only valid event types are wxEVT_CHAR and
wxEVT_CHAR_HOOK.

wxKeyEvent::AltDown

bool AltDown () const

CHAPTER 7

797

Returns true if the Alt key was down at the time of the key event.

wxKeyEvent::CmdDown

bool CmdDown () const

"Cmd" is a pseudo key which is the same as Control for PC and Unix platforms but the
special "Apple" (a.k.a as "Command") key under Macs: it makes often sense to use it
instead of, say, ControlDown() because Cmd key is used for the same thing under Mac
as Ctrl elsewhere (but Ctrl still exists, just not used for this purpose under Mac). So for
non-Mac platforms this is the same as ControlDown() (p. 795) and under Mac this is the
same as MetaDown() (p. 796).

wxKeyEvent::ControlDown

bool ControlDown () const

Returns true if the control key was down at the time of the key event.

wxKeyEvent::GetKeyCode

int GetKeyCode () const

Returns the virtual key code. ASCII events return normal ASCII values, while non-ASCII
events return values such as WXK_LEFT for the left cursor key. See Keycodes (p.
1594) for a full list of the virtual key codes.

Note that in Unicode build, the returned value is meaningful only if the user entered a
character that can be represented in current locale's default charset. You can obtain the
corresponding Unicode character usingGetUnicodeKey (p. 795).

wxKeyEvent::GetPosition

wxPoint GetPosition () const

void GetPosition (long * x, long * y) const

Obtains the position (in client coordinates) at which the key was pressed.

wxKeyEvent::GetRawKeyCode

wxUint32 GetRawKeyCode () const

Returns the raw key code for this event. This is a platform-dependent scan code which
should only be used in advanced applications.

NB: Currently the raw key codes are not supported by all ports, use#ifdef
wxHAS_RAW_KEY_CODES to determine if this feature is available.

wxKeyEvent::GetRawKeyFlags

CHAPTER 7

798

wxUint32 GetRawKeyFlags () const

Returns the low level key flags for this event. The flags are platform-dependent and
should only be used in advanced applications.

NB: Currently the raw key flags are not supported by all ports, use#ifdef
wxHAS_RAW_KEY_CODES to determine if this feature is available.

wxKeyEvent::GetUnicodeKey

wxChar GetUnicodeKey () const

Returns the Unicode character corresponding to this key event.

This function is only available in Unicode build, i.e. whenwxUSE_UNICODE is 1.

wxKeyEvent::GetX

long GetX() const

Returns the X position (in client coordinates) of the event.

wxKeyEvent::GetY

long GetY() const

Returns the Y (in client coordinates) position of the event.

wxKeyEvent::HasModifiers

bool HasModifiers () const

Returns true if either CTRL or ALT keys was down at the time of the key event. Note that
this function does not take into account neither SHIFT nor META key states (the reason
for ignoring the latter is that it is common for NUMLOCK key to be configured asMETA
under X but the key presses even while NUMLOCK is on should be still processed
normally).

wxKeyEvent::MetaDown

bool MetaDown () const

Returns true if the Meta key was down at the time of the key event.

wxKeyEvent::ShiftDown

bool ShiftDown () const

Returns true if the shift key was down at the time of the key event.

CHAPTER 7

799

wxLayoutAlgorithm

wxLayoutAlgorithm implements layout of subwindows in MDI or SDI frames. It sends a
wxCalculateLayoutEvent event to children of the frame, asking them for information
about their size. For MDI parent frames, the algorithm allocates the remaining space to
the MDI client window (which contains the MDI child frames). For SDI (normal) frames, a
'main' window is specified as taking up the remaining space.

Because the event system is used, this technique can be applied to any windows, which
are not necessarily 'aware' of the layout classes (no virtual functions in wxWindow refer
to wxLayoutAlgorithm or its events). However, you may wish to use
wxSashLayoutWindow (p. 1079) for your subwindows since this class provides handlers
for the required events, and accessors to specify the desired size of the window. The
sash behaviour in the base class can be used, optionally, to make the windows user-
resizable.

wxLayoutAlgorithm is typically used in IDE (integrated development environment)
applications, where there are several resizable windows in addition to the MDI client
window, or other primary editing window. Resizable windows might include toolbars, a
project window, and a window for displaying error and warning messages.

When a window receives an OnCalculateLayout event, it should call SetRect in the given
event object, to be the old supplied rectangle minus whatever space the window takes
up. It should also set its own size accordingly.
wxSashLayoutWindow::OnCalculateLayout generates an OnQueryLayoutInfo event
which it sends to itself to determine the orientation, alignment and size of the window,
which it gets from internal member variables set by the application.

The algorithm works by starting off with a rectangle equal to the whole frame client area.
It iterates through the frame children, generating OnCalculateLayout events which
subtract the window size and return the remaining rectangle for the next window to
process. It is assumed (by wxSashLayoutWindow::OnCalculateLayout) that a window
stretches the full dimension of the frame client, according to the orientation it specifies.
For example, a horizontal window will stretch the full width of the remaining portion of the
frame client area. In the other orientation, the window will be fixed to whatever size was
specified by OnQueryLayoutInfo. An alignment setting will make the window 'stick' to the
left, top, right or bottom of the remaining client area. This scheme implies that order of
window creation is important. Say you wish to have an extra toolbar at the top of the
frame, a project window to the left of the MDI client window, and an output window
above the status bar. You should therefore create the windows in this order: toolbar,
output window, project window. This ensures that the toolbar and output window take up
space at the top and bottom, and then the remaining height in-between is used for the
project window.

wxLayoutAlgorithm is quite independent of the way in which OnCalculateLayout chooses
to interpret a window's size and alignment. Therefore you could implement a different
window class with a new OnCalculateLayout event handler, that has a more
sophisticated way of laying out the windows. It might allow specification of whether
stretching occurs in the specified orientation, for example, rather than always assuming
stretching. (This could, and probably should, be added to the existing implementation).

Note: wxLayoutAlgorithm has nothing to do with wxLayoutConstraints. It is an alternative

CHAPTER 7

800

way of specifying layouts for which the normal constraint system is unsuitable.

Derived from

wxObject (p. 967)

Include files

<wx/laywin.h>

Event handling

The algorithm object does not respond to events, but itself generates the following
events in order to calculate window sizes.

EVT_QUERY_LAYOUT_INFO(func) Process a wxEVT_QUERY_LAYOUT_INFO
event, to get size, orientation and alignment
from a window. See wxQueryLayoutInfoEvent
(p. 1039).

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite'
out of a rectangle provided by the algorithm.
See wxCalculateLayoutEvent (p. 116).

Data types

enum wxLayoutOrientation {
 wxLAYOUT_HORIZONTAL,
 wxLAYOUT_VERTICAL
};

enum wxLayoutAlignment {
 wxLAYOUT_NONE,
 wxLAYOUT_TOP,
 wxLAYOUT_LEFT,
 wxLAYOUT_RIGHT,
 wxLAYOUT_BOTTOM,
};

See also

wxSashEvent (p. 1077), wxSashLayoutWindow (p. 1079), Event handling overview (p.
1674)

wxCalculateLayoutEvent (p. 116), wxQueryLayoutInfoEvent (p. 1039),
wxSashLayoutWindow (p. 1079), wxSashWindow (p. 1082)

wxLayoutAlgorithm::wxLayoutAlgorithm

 wxLayoutAlgorithm ()

CHAPTER 7

801

Default constructor.

wxLayoutAlgorithm::~wxLayoutAlgorithm

 ~wxLayoutAlgorithm ()

Destructor.

wxLayoutAlgorithm::LayoutFrame

bool LayoutFrame (wxFrame* frame, wxWindow* mainWindow = NULL) const

Lays out the children of a normal frame. mainWindow is set to occupy the remaining
space.

This function simply calls wxLayoutAlgorithm::LayoutWindow (p. 799).

wxLayoutAlgorithm::LayoutMDIFrame

bool LayoutMDIFrame (wxMDIParentFrame* frame, wxRect* rect = NULL) const

Lays out the children of an MDI parent frame. If rect is non-NULL, the given rectangle
will be used as a starting point instead of the frame's client area.

The MDI client window is set to occupy the remaining space.

wxLayoutAlgorithm::LayoutWindow

bool LayoutWindow (wxWindow* parent, wxWindow* mainWindow = NULL) const

Lays out the children of a normal frame or other window.

mainWindow is set to occupy the remaining space. If this is not specified, then the last
window that responds to a calculate layout event in query mode will get the remaining
space (that is, a non-query OnCalculateLayout event will not be sent to this window and
the window will be set to the remaining size).

wxLayoutConstraints

Note: constraints are now deprecated and you should use sizers (p. 1694) instead.

Objects of this class can be associated with a window to define its layout constraints,
with respect to siblings or its parent.

The class consists of the following eight constraints of class
wxIndividualLayoutConstraint, some or all of which should be accessed directly to set
the appropriate constraints.

 • left: represents the left hand edge of the window

 • right: represents the right hand edge of the window

CHAPTER 7

802

 • top: represents the top edge of the window

 • bottom: represents the bottom edge of the window

 • width: represents the width of the window

 • height: represents the height of the window

 • centreX: represents the horizontal centre point of the window

 • centreY: represents the vertical centre point of the window

Most constraints are initially set to have the relationship wxUnconstrained, which means
that their values should be calculated by looking at known constraints. The exceptions
are width and height, which are set to wxAsIs to ensure that if the user does not specify
a constraint, the existing width and height will be used, to be compatible with panel items
which often have take a default size. If the constraint is wxAsIs, the dimension will not be
changed.

wxPerl note: In wxPerl the constraints are accessed as constraint =
Wx::LayoutConstraints->new();
 constraint->centreX->AsIs();
 constraint->centreY->Unconstrained();

Derived from

wxObject (p. 967)

Include files

<wx/layout.h>

See also

Overview and examples (p. 1691), wxIndividualLayoutConstraint (p. 774),
wxWindow::SetConstraints (p. 1459)

wxLayoutConstraints::wxLayoutConstraints

 wxLayoutConstraints ()

Constructor.

wxLayoutConstraints::bottom

wxIndividualLayoutConstraint bottom

Constraint for the bottom edge.

CHAPTER 7

803

wxLayoutConstraints::centreX

wxIndividualLayoutConstraint centreX

Constraint for the horizontal centre point.

wxLayoutConstraints::centreY

wxIndividualLayoutConstraint centreY

Constraint for the vertical centre point.

wxLayoutConstraints::height

wxIndividualLayoutConstraint height

Constraint for the height.

wxLayoutConstraints::left

wxIndividualLayoutConstraint left

Constraint for the left-hand edge.

wxLayoutConstraints::right

wxIndividualLayoutConstraint right

Constraint for the right-hand edge.

wxLayoutConstraints::top

wxIndividualLayoutConstraint top

Constraint for the top edge.

wxLayoutConstraints::width

wxIndividualLayoutConstraint width

Constraint for the width.

wxList

wxList classes provide linked list functionality for wxWidgets, and for an application if it
wishes. Depending on the form of constructor used, a list can be keyed on integer or
string keys to provide a primitive look-up ability, but please note that this feature is
deprecated . See wxHashMap (p. 653) for a faster method of storage when random
access is required.

CHAPTER 7

804

While wxList class in the previous versions of wxWidgets only could contain elements of
type wxObject and had essentially untyped interface (thus allowing you to put apples in
the list and read back oranges from it), the new wxList classes family may contain
elements of any type and has much more strict type checking. Unfortunately, it also
requires an additional line to be inserted in your program for each list class you use
(which is the only solution short of using templates which is not done in wxWidgets
because of portability issues).

The general idea is to have the base class wxListBase working with void *data but make
all of its dangerous (because untyped) functions protected, so that they can only be used
from derived classes which, in turn, expose a type safe interface. With this approach a
new wxList-like class must be defined for each list type (i.e. list of ints, of wxStrings or of
MyObjects). This is done with WX_DECLARE_LIST and WX_DEFINE_LIST macros like
this (notice the similarity with WX_DECLARE_OBJARRAY and
WX_IMPLEMENT_OBJARRAY macros):

Example

 // this part might be in a header or source (.c pp) file
 class MyListElement
 {
 ... // whatever
 };

 // declare our list class: this macro declares and partly
implements MyList
 // class (which derives from wxListBase)
 WX_DECLARE_LIST(MyListElement, MyList);

 ...

 // the only requirement for the rest is to be A FTER the full
declaration of
 // MyListElement (for WX_DECLARE_LIST forward d eclaration is
enough), but
 // usually it will be found in the source file and not in the
header

 #include <wx/listimpl.cpp>
 WX_DEFINE_LIST(MyList);

 // now MyList class may be used as a usual wxLi st, but all of
its methods
 // will take/return the objects of the right (i .e.
MyListElement) type. You
 // also have MyList::Node type which is the typ e-safe version
of wxNode.
 MyList list;
 MyListElement element;
 list.Append(element); // ok
 list.Append(17); // error: incorrect type

 // let's iterate over the list
 for (MyList::Node *node = list.GetFirst(); nod e; node = node-
>GetNext())
 {
 MyListElement *current = node->GetData();

 ...process the current element...
 }

CHAPTER 7

805

For compatibility with previous versions wxList and wxStringList classes are still defined,
but their usage is deprecated and they will disappear in the future versions completely.
The use of the latter is especially discouraged as it is not only unsafe but is also much
less efficient than wxArrayString (p. 63) class.

In the documentation of the list classes below, the template notations are used even
though these classes are not really templates at all -- but it helps to think about them as
if they were. You should replace wxNode<T> with wxListName::Node and T itself with
the list element type (i.e. the first parameter of WX_DECLARE_LIST).

Derived from

wxObject (p. 967)

Include files

<wx/list.h>

Example

It is very common to iterate on a list as follows:

 ...
 wxWindow *win1 = new wxWindow(...);
 wxWindow *win2 = new wxWindow(...);

 wxList SomeList;
 SomeList.Append(win1);
 SomeList.Append(win2);

 ...

 wxNode *node = SomeList.GetFirst();
 while (node)
 {
 wxWindow *win = node->GetData();
 ...
 node = node->GetNext();
 }

To delete nodes in a list as the list is being traversed, replace

 ...
 node = node->GetNext();
 ...

with

 ...
 delete win;
 delete node;
 node = SomeList.GetFirst();
 ...

See wxNode (p. 954) for members that retrieve the data associated with a node, and
members for getting to the next or previous node.

CHAPTER 7

806

See also

wxNode (p. 954),wxArray (p. 51)

wxList::wxList

 wxList ()

 wxList (int n, T *objects[])

 wxList (T *object, ...)

Note : keyed lists are deprecated and should not be used in new code.

 wxList (unsigned int key_type)

Constructors. key_type is one of wxKEY_NONE, wxKEY_INTEGER, or
wxKEY_STRING, and indicates what sort of keying is required (if any).

objects is an array of n objects with which to initialize the list.

The variable-length argument list constructor must be supplied with a terminating NULL.

wxList::~wxList

 ~wxList ()

Destroys the list. Also destroys any remaining nodes, but does not destroy client data
held in the nodes.

wxList::Append

wxNode<T> * Append (T *object)

Note : keyed lists are deprecated and should not be used in new code.

wxNode<T> * Append (long key, T *object)

wxNode<T> * Append (const wxString& key, T *object)

Appends a new wxNode (p. 954) to the end of the list and puts a pointer to the object in
the node. The last two forms store a key with the object for later retrieval using the key.
The new node is returned in each case.

The key string is copied and stored by the list implementation.

wxList::Clear

void Clear ()

Clears the list (but does not delete the client data stored with each node unless you

CHAPTER 7

807

called DeleteContents(true), in which case it deletes data).

wxList::DeleteContents

void DeleteContents (bool destroy)

If destroy is true , instructs the list to call delete on the client contents of a node
whenever the node is destroyed. The default is false .

wxList::DeleteNode

bool DeleteNode (wxNode<T> * node)

Deletes the given node from the list, returning true if successful.

wxList::DeleteObject

bool DeleteObject (T *object)

Finds the given client object and deletes the appropriate node from the list,
returningtrue if successful. The application must delete the actual object separately.

wxList::Erase

void Erase (wxNode<T> * node)

Removes element at given position.

wxList::Find

wxNode<T> * Find (T * object)

Returns the node whose client date is object or NULL if none found.

Note : keyed lists are deprecated and should not be used in new code.

wxNode<T> * Find (long key)

wxNode<T> * Find (const wxString& key)

Returns the node whose stored key matches key. Use on a keyed list only.

wxList::GetCount

size_t GetCount () const

Returns the number of elements in the list.

wxList::GetFirst

wxNode<T> * GetFirst ()

CHAPTER 7

808

Returns the first node in the list (NULL if the list is empty).

wxList::GetLast

wxNode<T> * GetLast ()

Returns the last node in the list (NULL if the list is empty).

wxList::IndexOf

int IndexOf (T* obj)

Returns the index of obj within the list or wxNOT_FOUND if obj is not found in the list.

wxList::Insert

wxNode<T> * Insert (T *object)

Insert object at front of list.

wxNode<T> * Insert (size_t position, T *object)

Insert object before position, i.e. the index of the new item in the list will be equal to
position. position should be less than or equal to GetCount (p. 805); if it is equal to it, this
is the same as calling Append (p. 804).

wxNode<T> * Insert (wxNode<T> * node, T *object)

Inserts the object before the given node.

wxList::IsEmpty

bool IsEmpty () const

Returns true if the list is empty, false otherwise.

wxList::Item

wxNode<T> * Item (size_t index) const

Returns the node at given position in the list.

wxList::Member

wxNode<T> * Member (T *object)

NB: This function is deprecated, use Find (p. 805) instead.

Returns the node associated with object if it is in the list, NULL otherwise.

wxList::Nth

CHAPTER 7

809

wxNode<T> * Nth (int n)

NB: This function is deprecated, use Item (p. 806) instead.

Returns the nth node in the list, indexing from zero (NULL if the list is empty or the nth
node could not be found).

wxList::Number

int Number ()

NB: This function is deprecated, use GetCount (p. 805) instead.

Returns the number of elements in the list.

wxList::Sort

void Sort (wxSortCompareFunction compfunc)

 // Type of compare function for list sort operati on (as in
'qsort')
 typedef int (*wxSortCompareFunction)(const void * elem1, const
void *elem2);

Allows the sorting of arbitrary lists by giving a function to compare two list elements. We
use the system qsort function for the actual sorting process.

If you use untyped wxList the sort function receives pointers to wxObject pointers
(wxObject **), so be careful to dereference appropriately - but, of course, a better
solution is to use list of appropriate type defined withWX_DECLARE_LIST.

Example:

 int listcompare(const void *arg1, const void *arg 2)
 {
 return(compare(**(wxString **)arg1, // use t he wxString
'compare'
 **(wxString **)arg2)); // funct ion
 }

 void main()
 {
 wxList list;

 list.Append(new wxString("DEF"));
 list.Append(new wxString("GHI"));
 list.Append(new wxString("ABC"));
 list.Sort(listcompare);
 }

wxListbook

wxListbook is a class similar to wxNotebook (p. 956) but which uses a wxListCtrl (p. 813)
to show the labels instead of the tabs.

CHAPTER 7

810

There is no documentation for this class yet but its usage is identical to wxNotebook
(except for the features clearly related to tabs only), so please refer to that class
documentation for now. You can also use the notebook sample (p. 1638) to see
wxListbook in action.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/listbook.h>

Window styles

wxLB_DEFAULT Choose the default location for the labels depending on the
current platform (left everywhere except Mac where it is
top).

wxLB_TOP Place labels above the page area.

wxLB_LEFT Place labels on the left side.

wxLB_RIGHT Place labels on the right side.

wxLB_BOTTOM Place labels below the page area.

See also

wxBookCtrl (p. 1720), wxNotebook (p. 956), notebook sample (p. 1638)

wxListBox

A listbox is used to select one or more of a list of strings. The strings are displayed in a
scrolling box, with the selected string(s) marked in reverse video. A listbox can be single
selection (if an item is selected, the previous selection is removed) or multiple selection
(clicking an item toggles the item on or off independently of other selections).

List box elements are numbered from zero. Their number is limited in some platforms
(e.g. ca. 2000 on GTK).

A listbox callback gets an event wxEVT_COMMAND_LISTBOX_SELECT for single
clicks, and wxEVT_COMMAND_LISTBOX_DOUBLE_CLICKED for double clicks.

Derived from

wxControlWithItems (p. 206)
wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)

CHAPTER 7

811

wxObject (p. 967)

Include files

<wx/listbox.h>

Window styles

wxLB_SINGLE Single-selection list.

wxLB_MULTIPLE Multiple-selection list: the user can toggle multiple items on
and off.

wxLB_EXTENDED Extended-selection list: the user can select multiple items
using the SHIFT key and the mouse or special key
combinations.

wxLB_HSCROLL Create horizontal scrollbar if contents are too wide
(Windows only).

wxLB_ALWAYS_SB Always show a vertical scrollbar.

wxLB_NEEDED_SB Only create a vertical scrollbar if needed.

wxLB_SORT The listbox contents are sorted in alphabetical order.

Note that wxLB_SINGLE, wxLB_MULTIPLE and wxLB_EXTENDEDstyles are mutually
exclusive and you can specify at most one of them (single selection is the default).

See also window styles overview (p. 1686).

Event handling

EVT_LISTBOX(id, func) Process a
wxEVT_COMMAND_LISTBOX_SELECTED
event, when an item on the list is selected.

EVT_LISTBOX_DCLICK(id, func) Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED event, when the listbox is double-clicked.

See also

wxChoice (p. 134), wxComboBox (p. 164), wxListCtrl (p. 813), wxCommandEvent (p.
172)

wxListBox::wxListBox

 wxListBox ()

Default constructor.

 wxListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos =

CHAPTER 7

812

wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

 wxListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n

Number of strings with which to initialise the control.

choices

An array of strings with which to initialise the control.

style

Window style. See wxListBox (p. 808).

validator

Window validator.

name

Window name.

See also

wxListBox::Create (p. 810), wxValidator (p. 1394)

wxPython note: The wxListBox constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

CHAPTER 7

813

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

wxListBox::~wxListBox

void ~wxListBox ()

Destructor, destroying the list box.

wxListBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "listBox")

Creates the listbox for two-step construction. See wxListBox::wxListBox (p. 809) for
further details.

wxListBox::Deselect

void Deselect (int n)

Deselects an item in the list box.

Parameters

n

The zero-based item to deselect.

Remarks

This applies to multiple selection listboxes only.

wxListBox::GetSelections

int GetSelections (wxArrayInt& selections) const

Fill an array of ints with the positions of the currently selected items.

Parameters

selections

A reference to an wxArrayInt instance that is used to store the result of the query.

Return value

The number of selections.

CHAPTER 7

814

Remarks

Use this with a multiple selection listbox.

See also

wxControlWithItems::GetSelection (p. 209), wxControlWithItems::GetStringSelection (p.
210), wxControlWithItems::SetSelection (p. 212)

wxPython note: The wxPython version of this method takes no parameters and returns
a tuple of the selected items.

wxPerl note: In wxPerl this method takes no parameters and return the selected items
as a list.

wxListBox::InsertItems

void InsertItems (int nItems, const wxString *items, int pos)

void InsertItems (const wxArrayString& nItems, int pos)

Insert the given number of strings before the specified position.

Parameters

nItems

Number of items in the array items

items

Labels of items to be inserted

pos

Position before which to insert the items: for example, if pos is 0 the items will be
inserted in the beginning of the listbox

wxPython note: The first two parameters are collapsed into a single parameter for
wxPython, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nItems and items .

wxListBox::IsSelected

bool IsSelected (int n) const

Determines whether an item is selected.

Parameters

n

The zero-based item index.

CHAPTER 7

815

Return value

true if the given item is selected, false otherwise.

wxListBox::Set

void Set(int n, const wxString* choices, void **clientData = NULL)

void Set(const wxArrayString& choices, void **clientData = NULL)

Clears the list box and adds the given strings to it.

Parameters

n

The number of strings to set.

choices

An array of strings to set.

clientData

Options array of client data pointers

Remarks

You may free the array from the calling program after this function has been called.

wxListBox::SetFirstItem

void SetFirstItem (int n)

void SetFirstItem (const wxString& string)

Set the specified item to be the first visible item. Windows only.

Parameters

n

The zero-based item index.

string

The string that should be visible.

wxListCtrl

A list control presents lists in a number of formats: list view, report view, icon view and
small icon view. In any case, elements are numbered from zero. For all these modes,
the items are stored in the control and must be added to it using InsertItem (p. 824)

CHAPTER 7

816

method.

A special case of report view quite different from the other modes of the list control is a
virtual control in which the items data (including text, images and attributes) is managed
by the main program and is requested by the control itself only when needed which
allows to have controls with millions of items without consuming much memory. To use
virtual list control you must useSetItemCount (p. 829) first and overload at
leastOnGetItemText (p. 826) (and optionallyOnGetItemImage (p. 826) andOnGetItemAttr
(p. 825)) to return the information about the items when the control requests it. Virtual list
control can be used as a normal one except that no operations which can take time
proportional to the number of items in the control happen -- this is required to allow
having a practically infinite number of items. For example, in a multiple selection virtual
list control, the selections won't be sent when many items are selected at once because
this could mean iterating over all the items.

Using many of wxListCtrl features is shown in thecorresponding sample (p. 1637).

To intercept events from a list control, use the event table macros described in
wxListEvent (p. 831).

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/listctrl.h>

Window styles

wxLC_LIST Multicolumn list view, with optional small icons.
Columns are computed automatically, i.e. you
don't set columns as in wxLC_REPORT. In
other words, the list wraps, unlike a wxListBox.

wxLC_REPORT Single or multicolumn report view, with optional
header.

wxLC_VIRTUAL The application provides items text on demand.
May only be used with wxLC_REPORT.

wxLC_ICON Large icon view, with optional labels.

wxLC_SMALL_ICON Small icon view, with optional labels.

wxLC_ALIGN_TOP Icons align to the top. Win32 default, Win32
only.

wxLC_ALIGN_LEFT Icons align to the left.

wxLC_AUTOARRANGE Icons arrange themselves. Win32 only.

CHAPTER 7

817

wxLC_EDIT_LABELS Labels are editable: the application will be
notified when editing starts.

wxLC_NO_HEADER No header in report mode.

wxLC_SINGLE_SEL Single selection (default is multiple).

wxLC_SORT_ASCENDING Sort in ascending order (must still supply a
comparison callback in SortItems.

wxLC_SORT_DESCENDING Sort in descending order (must still supply a
comparison callback in SortItems.

wxLC_HRULES Draws light horizontal rules between rows in
report mode.

wxLC_VRULES Draws light vertical rules between columns in
report mode.

See also window styles overview (p. 1686).

Event handling

To process input from a list control, use these event handler macros to direct input to
member functions that take a wxListEvent (p. 831) argument.

EVT_LIST_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.

EVT_LIST_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.

EVT_LIST_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be prevented
by calling Veto() (p. 967).

EVT_LIST_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented
by calling Veto() (p. 967).

EVT_LIST_DELETE_ITEM(id, func) Delete an item.

EVT_LIST_DELETE_ALL_ITEMS(id, func) Delete all items.

EVT_LIST_ITEM_SELECTED(id, func) The item has been selected.

EVT_LIST_ITEM_DESELECTED(id, func) The item has been deselected.

EVT_LIST_ITEM_ACTIVATED(id, func) The item has been activated (ENTER or double
click).

EVT_LIST_ITEM_FOCUSED(id, func) The currently focused item has changed.

EVT_LIST_ITEM_MIDDLE_CLICK(id, func) The middle mouse button has been
clicked on an item.

EVT_LIST_ITEM_RIGHT_CLICK(id, func) The right mouse button has been clicked on
an item.

CHAPTER 7

818

EVT_LIST_KEY_DOWN(id, func) A key has been pressed.

EVT_LIST_INSERT_ITEM(id, func) An item has been inserted.

EVT_LIST_COL_CLICK(id, func) A column (m_col) has been left-clicked.

EVT_LIST_COL_RIGHT_CLICK(id, func) A column (m_col) has been right-clicked.

EVT_LIST_COL_BEGIN_DRAG(id, func) The user started resizing a column - can be
vetoed.

EVT_LIST_COL_DRAGGING(id, func) The divider between columns is being dragged.

EVT_LIST_COL_END_DRAG(id, func) A column has been resized by the user.

EVT_LIST_CACHE_HINT(id, func) Prepare cache for a virtual list control

See also
wxListCtrl overview (p. 1719), wxListBox (p. 808), wxTreeCtrl (p. 1359), wxImageList (p.
769), wxListEvent (p. 831),wxListItem (p. 835)

wxListCtrl::wxListCtrl

 wxListCtrl ()

Default constructor.

 wxListCtrl (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxLC_ICON,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
wxListCtrlNameStr)

Constructor, creating and showing a list control.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

CHAPTER 7

819

style

Window style. See wxListCtrl (p. 813).

validator

Window validator.

name

Window name.

See also

wxListCtrl::Create (p. 817), wxValidator (p. 1394)

wxListCtrl::~wxListCtrl

void ~wxListCtrl ()

Destructor, destroying the list control.

wxListCtrl::Arrange

bool Arrange (int flag = wxLIST_ALIGN_DEFAULT)

Arranges the items in icon or small icon view. This only has effect on Win32. flag is one
of:

wxLIST_ALIGN_DEFAULT Default alignment.

wxLIST_ALIGN_LEFT Align to the left side of the control.

wxLIST_ALIGN_TOP Align to the top side of the control.

wxLIST_ALIGN_SNAP_TO_GRID Snap to grid.

wxListCtrl::AssignImageList

void AssignImageList (wxImageList* imageList, int which)

Sets the image list associated with the control and takes ownership of it (i.e. the control
will, unlike when using SetImageList, delete the list when destroyed). which is one of
wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the last
is unimplemented).

See also

wxListCtrl::SetImageList (p. 827)

wxListCtrl::ClearAll

void ClearAll ()

CHAPTER 7

820

Deletes all items and all columns.

wxListCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxLC_ICON,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
wxListCtrlNameStr)

Creates the list control. See wxListCtrl::wxListCtrl (p. 816) for further details.

wxListCtrl::DeleteAllItems

bool DeleteAllItems ()

Deletes all the items in the list control.

NB: This function does not send thewxEVT_COMMAND_LIST_DELETE_ITEM event
because deleting many items from the control would be too slow then (unlike DeleteItem
(p. 818)).

wxListCtrl::DeleteColumn

bool DeleteColumn (int col)

Deletes a column.

wxListCtrl::DeleteItem

bool DeleteItem (long item)

Deletes the specified item. This function sends
thewxEVT_COMMAND_LIST_DELETE_ITEM event for the item being deleted.

See also: DeleteAllItems (p. 817)

wxListCtrl::EditLabel

void EditLabel (long item)

Starts editing the label of the given item. This function generates a
EVT_LIST_BEGIN_LABEL_EDIT event which can be vetoed so that no text control will
appear for in-place editing.

If the user changed the label (i.e. s/he does not press ESC or leave the text control
without changes, a EVT_LIST_END_LABEL_EDIT event will be sent which can be
vetoed as well.

wxListCtrl::EnsureVisible

bool EnsureVisible (long item)

CHAPTER 7

821

Ensures this item is visible.

wxListCtrl::FindItem

long FindItem (long start, const wxString& str, const bool partial = false)

Find an item whose label matches this string, starting from start or the beginning if start
is -1.

long FindItem (long start, long data)

Find an item whose data matches this data, starting from start or the beginning if 'start' is
-1.

long FindItem (long start, const wxPoint& pt, int direction)

Find an item nearest this position in the specified direction, starting fromstart or the
beginning if start is -1.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

FindItem(start, str, partial=false)

FindItemData(start, data)

FindItemAtPos(start, point, direction)

wxPerl note: In wxPerl there are three methods instead of a single overloaded method:

FindItem(start, str, partial = false)

FindItemData(start, data)

FindItemAtPos(start, point, direction)

wxListCtrl::GetColumn

bool GetColumn (int col, wxListItem& item) const

Gets information about this column. See wxListCtrl::SetItem (p. 828) for more
information.

wxPerl note: In wxPerl this method takes only the col parameter and returns a
Wx::ListItem (or undef).

wxListCtrl::GetColumnCount

int GetColumnCount () const

Returns the number of columns.

CHAPTER 7

822

wxListCtrl::GetColumnWidth

int GetColumnWidth (int col) const

Gets the column width (report view only).

wxListCtrl::GetCountPerPage

int GetCountPerPage () const

Gets the number of items that can fit vertically in the visible area of the list control (list or
report view) or the total number of items in the list control (icon or small icon view).

wxListCtrl::GetEditControl

wxTextCtrl * GetEditControl () const

Returns the edit control being currently used to edit a label. Returns NULLif no label is
being edited.

NB: It is currently only implemented for wxMSW.

wxListCtrl::GetImageList

wxImageList* GetImageList (int which) const

Returns the specified image list. which may be one of:

wxIMAGE_LIST_NORMAL The normal (large icon) image list.

wxIMAGE_LIST_SMALL The small icon image list.

wxIMAGE_LIST_STATE The user-defined state image list (unimplemented).

wxListCtrl::GetItem

bool GetItem (wxListItem& info) const

Gets information about the item. See wxListCtrl::SetItem (p. 828) for more information.

You must call info.SetId() to the ID of item you're interested in before calling this method.

wxPython note: The wxPython version of this method takes an integer parameter for
the item ID, an optional integer for the column number, and returns the wxListItem
object.

wxPerl note: In wxPerl this method takes as parameter the ID of the item and (
optionally) the column, and returns a Wx::ListItem object.

wxListCtrl::GetItemBackgroundColour

wxColour GetItemBackgroundColour (long item) const

CHAPTER 7

823

Returns the colour for this item. If the item has no specific colour, returns an invalid
colour (and not the default background control of the control itself).

See also

GetItemTextColour (p. 822)

wxListCtrl::GetItemCount

int GetItemCount () const

Returns the number of items in the list control.

wxListCtrl::GetItemData

long GetItemData (long item) const

Gets the application-defined data associated with this item.

wxListCtrl::GetItemFont

wxFont GetItemFont (long item) const

Returns the item's font.

wxListCtrl::GetItemPosition

bool GetItemPosition (long item, wxPoint& pos) const

Returns the position of the item, in icon or small icon view.

wxPython note: The wxPython version of this method accepts only the item ID and
returns the wxPoint.

wxPerl note: In wxPerl this method takes only the item parameter and returns a
Wx::Point (or undef).

wxListCtrl::GetItemRect

bool GetItemRect (long item, wxRect& rect, int code = wxLIST_RECT_BOUNDS)
const

Returns the rectangle representing the item's size and position, in physical coordinates.

code is one of wxLIST_RECT_BOUNDS, wxLIST_RECT_ICON,
wxLIST_RECT_LABEL.

wxPython note: The wxPython version of this method accepts only the item ID and
code and returns the wxRect.

wxPerl note: In wxPerl this method takes only the item parameter and returns a
Wx::Rect (or undef).

CHAPTER 7

824

wxListCtrl::GetItemSpacing

wxSize GetItemSpacing () const

Retrieves the spacing between icons in pixels: horizontal spacing is returned as x
component of the wxSize (p. 1121) object and the vertical spacing as its y component.

wxListCtrl::GetItemState

int GetItemState (long item, long stateMask) const

Gets the item state. For a list of state flags, see wxListCtrl::SetItem (p. 828).

The stateMask indicates which state flags are of interest.

wxListCtrl::GetItemText

wxString GetItemText (long item) const

Gets the item text for this item.

wxListCtrl::GetItemTextColour

wxColour GetItemTextColour (long item) const

Returns the colour for this item. If the item has no specific colour, returns an invalid
colour (and not the default foreground control of the control itself as this wouldn't allow
distinguishing between items having the same colour as the current control foreground
and items with default colour which, hence, have always the same colour as the control).

wxListCtrl::GetNextItem

long GetNextItem (long item, int geometry = wxLIST_NEXT_ALL, int state =
wxLIST_STATE_DONTCARE) const

Searches for an item with the given geometry or state, starting fromitem but excluding
the item itself. If item is -1, the first item that matches the specified flags will be returned.

Returns the first item with given state following item or -1 if no such item found.

This function may be used to find all selected items in the control like this:

 long item = -1;
 for (;;)
 {
 item = listctrl->GetNextItem(item,
 wxLIST_NEXT_AL L,
 wxLIST_STATE_S ELECTED);
 if (item == -1)
 break;

 // this item is selected - do whatever is n eeded with it
 wxLogMessage("Item %ld is selected."), item);
 }

CHAPTER 7

825

geometry can be one of:

wxLIST_NEXT_ABOVE Searches for an item above the specified item.

wxLIST_NEXT_ALL Searches for subsequent item by index.

wxLIST_NEXT_BELOW Searches for an item below the specified item.

wxLIST_NEXT_LEFT Searches for an item to the left of the specified item.

wxLIST_NEXT_RIGHT Searches for an item to the right of the specified item.

NB: this parameters is only supported by wxMSW currently and ignored on other
platforms.

state can be a bitlist of the following:

wxLIST_STATE_DONTCARE Don't care what the state is.

wxLIST_STATE_DROPHILITED The item indicates it is a drop target.

wxLIST_STATE_FOCUSED The item has the focus.

wxLIST_STATE_SELECTEDThe item is selected.

wxLIST_STATE_CUT The item is selected as part of a cut and paste operation.

wxListCtrl::GetSelectedItemCount

int GetSelectedItemCount () const

Returns the number of selected items in the list control.

wxListCtrl::GetTextColour

wxColour GetTextColour () const

Gets the text colour of the list control.

wxListCtrl::GetTopItem

long GetTopItem () const

Gets the index of the topmost visible item when in list or report view.

wxListCtrl::GetViewRect

wxRect GetViewRect () const

Returns the rectangle taken by all items in the control. In other words, if the controls
client size were equal to the size of this rectangle, no scrollbars would be needed and no
free space would be left.

CHAPTER 7

826

Note that this function only works in the icon and small icon views, not in list or report
views (this is a limitation of the native Win32 control).

wxListCtrl::HitTest

long HitTest (const wxPoint& point, int& flags)

Determines which item (if any) is at the specified point, giving details in flags. Returns
index of the item or wxNOT_FOUNDif no item is at the specified point.flags will be a
combination of the following flags:

wxLIST_HITTEST_ABOVE Above the client area.

wxLIST_HITTEST_BELOW Below the client area.

wxLIST_HITTEST_NOWHERE In the client area but below the last item.

wxLIST_HITTEST_ONITEMICON On the bitmap associated with an item.

wxLIST_HITTEST_ONITEMLABEL On the label (string) associated with an item.

wxLIST_HITTEST_ONITEMRIGHT In the area to the right of an item.

wxLIST_HITTEST_ONITEMSTATEICON On the state icon for a tree view item that is
in a user-defined state.

wxLIST_HITTEST_TOLEFT To the right of the client area.

wxLIST_HITTEST_TORIGHT To the left of the client area.

wxLIST_HITTEST_ONITEM Combination of wxLIST_HITTEST_ONITEMICON,
wxLIST_HITTEST_ONITEMLABEL,
wxLIST_HITTEST_ONITEMSTATEICON.

wxPython note: A tuple of values is returned in the wxPython version of this method.
The first value is the item id and the second is the flags value mentioned above.

wxPerl note: In wxPerl this method only takes the point parameter and returns a 2-
element list (item, flags) .

wxListCtrl::InsertColumn

long InsertColumn (long col, wxListItem& info)

long InsertColumn (long col, const wxString& heading, int format =
wxLIST_FORMAT_LEFT, int width = -1)

For report view mode (only), inserts a column. For more details, see wxListCtrl::SetItem
(p. 828).

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

InsertColumn(col, heading, format=wxLIST_FORMAT_LEF T, width=-1)

CHAPTER 7

827

 Creates a column using a header string
only.

InsertColumnItem(col, item) Creates a column using a wxListItem.

wxListCtrl::InsertItem

long InsertItem (wxListItem& info)

Inserts an item, returning the index of the new item if successful, -1 otherwise.

long InsertItem (long index, const wxString& label)

Inserts a string item.

long InsertItem (long index, int imageIndex)

Inserts an image item.

long InsertItem (long index, const wxString& label, int imageIndex)

Insert an image/string item.

Parameters

info

wxListItem object

index

Index of the new item, supplied by the application

label

String label

imageIndex

index into the image list associated with this control and view style

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

InsertItem(item) Inserts an item using a wxListItem.

InsertStringItem(index, label) Inserts a string item.

InsertImageItem(index, imageIndex) Inserts an image item.

InsertImageStringItem(index, label, imageIndex) Insert an image/string
item.

CHAPTER 7

828

wxPerl note: In wxPerl there are four methods instead of a single overloaded method:

InsertItem(item) Inserts a Wx::ListItem

InsertStringItem(index, label) Inserts a string item

InsertImageItem(index, imageIndex) Inserts an image item

InsertImageStringItem(index, label, imageIndex) Inserts an item with a
string and an image

wxListCtrl::OnGetItemAttr

virtual wxListItemAttr * OnGetItemAttr (long item)

This function may be overloaded in the derived class for a control withwxLC_VIRTUAL
style. It should return the attribute for the for the specified item or NULL to use the
default appearance parameters.

The base class version always returns NULL.

See also

OnGetItemImage (p. 826),
OnGetItemText (p. 826)

wxListCtrl::OnGetItemImage

virtual int OnGetItemImage (long item)

This function must be overloaded in the derived class for a control withwxLC_VIRTUAL
style having an image list (p. 827)(if the control doesn't have an image list, it is not
necessary to overload it). It should return the index of the items image in the controls
image list or -1 for no image.

The base class version always returns -1.

See also

OnGetItemText (p. 826),
OnGetItemAttr (p. 825)

wxListCtrl::OnGetItemText

virtual wxString OnGetItemText (long item, long column) const

This function must be overloaded in the derived class for a control withwxLC_VIRTUAL
style. It should return the string containing the text of the given column for the specified
item .

See also

CHAPTER 7

829

SetItemCount (p. 829),
OnGetItemImage (p. 826),
OnGetItemAttr (p. 825)

wxListCtrl::RefreshItem

void RefreshItem (long item)

Redraws the given item. This is only useful for the virtual list controls as without calling
this function the displayed value of the item doesn't change even when the underlying
data does change.

See also

RefreshItems (p. 826)

wxListCtrl::RefreshItems

void RefreshItems (long itemFrom, long itemTo)

Redraws the items between itemFrom and itemTo. The starting item must be less than
or equal to the ending one.

Just as RefreshItem (p. 826) this is only useful for virtual list controls.

wxListCtrl::ScrollList

bool ScrollList (int dx, int dy)

Scrolls the list control. If in icon, small icon or report view mode,dx specifies the number
of pixels to scroll. If in list view mode,dx specifies the number of columns to scroll. dy
always specifies the number of pixels to scroll vertically.

NB: This method is currently only implemented in the Windows version.

wxListCtrl::SetBackgroundColour

void SetBackgroundColour (const wxColour& col)

Sets the background colour (GetBackgroundColour already implicit in wxWindow class).

wxListCtrl::SetColumn

bool SetColumn (int col, wxListItem& item)

Sets information about this column. See wxListCtrl::SetItem (p. 828) for more
information.

wxListCtrl::SetColumnWidth

bool SetColumnWidth (int col, int width)

CHAPTER 7

830

Sets the column width.

width can be a width in pixels or wxLIST_AUTOSIZE (-1) or
wxLIST_AUTOSIZE_USEHEADER (-2). wxLIST_AUTOSIZE will resize the column to
the length of its longest item. wxLIST_AUTOSIZE_USEHEADER will resize the column
to the length of the header (Win32) or 80 pixels (other platforms).

In small or normal icon view, col must be -1, and the column width is set for all columns.

wxListCtrl::SetImageList

void SetImageList (wxImageList* imageList, int which)

Sets the image list associated with the control. which is one of
wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the last
is unimplemented).

This method does not take ownership of the image list, you have to delete it yourself.

See also

wxListCtrl::AssignImageList (p. 817)

wxListCtrl::SetItem

bool SetItem (wxListItem& info)

long SetItem (long index, int col, const wxString& label, int imageId = -1)

Sets information about the item.

wxListItem is a class with the following members:

long m_mask Indicates which fields are valid. See the list of valid mask
flags below.

long m_itemId The zero-based item position.

int m_col Zero-based column, if in report mode.

long m_state The state of the item. See the list of valid state flags below.

long m_stateMask A mask indicating which state flags are valid. See the list of
valid state flags below.

wxString m_text The label/header text.

int m_image The zero-based index into an image list.

long m_data Application-defined data.

int m_format For columns only: the format. Can be
wxLIST_FORMAT_LEFT, wxLIST_FORMAT_RIGHT or
wxLIST_FORMAT_CENTRE.

CHAPTER 7

831

int m_width For columns only: the column width.

The m_mask member contains a bitlist specifying which of the other fields are valid. The
flags are:

wxLIST_MASK_STATE The m_state field is valid.

wxLIST_MASK_TEXT The m_text field is valid.

wxLIST_MASK_IMAGE The m_image field is valid.

wxLIST_MASK_DATA The m_data field is valid.

wxLIST_MASK_WIDTH The m_width field is valid.

wxLIST_MASK_FORMAT The m_format field is valid.

The m_stateMask and m_state members take flags from the following:

wxLIST_STATE_DONTCARE Don't care what the state is. Win32 only.

wxLIST_STATE_DROPHILITED The item is highlighted to receive a drop event.
Win32 only.

wxLIST_STATE_FOCUSED The item has the focus.

wxLIST_STATE_SELECTEDThe item is selected.

wxLIST_STATE_CUT The item is in the cut state. Win32 only.

The wxListItem object can also contain item-specific colour and font information: for this
you need to call one of SetTextColour(), SetBackgroundColour() or SetFont() functions
on it passing it the colour/font to use. If the colour/font is not specified, the default list
control colour/font is used.

long SetItem (long index, int col, const wxString& label, int imageId = -1)

Sets a string field at a particular column.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetItem(item) Sets information about the given wxListItem.

SetStringItem(index, col, label, imageId) Sets a string or image at a
given location.

wxListCtrl::SetItemBackgroundColour

void SetItemBackgroundColour (long item, const wxColour& col)

Sets the background colour for this item. This function only works in report view.

The colour can be retrieved usingGetItemBackgroundColour (p. 820).

CHAPTER 7

832

wxListCtrl::SetItemCount

void SetItemCount (long count)

This method can only be used with virtual list controls. It is used to indicate to the control
the number of items it contains. After calling it, the main program should be ready to
handle calls to various item callbacks (such asOnGetItemText (p. 826)) for all items in
the range from 0 to count.

wxListCtrl::SetItemData

bool SetItemData (long item, long data)

Associates application-defined data with this item.

wxListCtrl::SetItemFont

void SetItemFont (long item, const wxFont& font)

Sets the item's font.

wxListCtrl::SetItemImage

bool SetItemImage (long item, int image)

Sets the image associated with the item. The image is an index into the image list
associated with the list control.

bool SetItemImage (long item, int image, int selImage)

Sets the unselected and selected images associated with the item. The images are
indices into the image list associated with the list control. This form is deprecated:
selImage is not used.

wxListCtrl::SetItemPosition

bool SetItemPosition (long item, const wxPoint& pos)

Sets the position of the item, in icon or small icon view. Windows only.

wxListCtrl::SetItemState

bool SetItemState (long item, long state, long stateMask)

Sets the item state. For a list of state flags, see wxListCtrl::SetItem (p. 828).

The stateMask indicates which state flags are valid.

wxListCtrl::SetItemText

void SetItemText (long item, const wxString& text)

CHAPTER 7

833

Sets the item text for this item.

wxListCtrl::SetItemTextColour

void SetItemTextColour (long item, const wxColour& col)

Sets the colour for this item. This function only works in report view.

The colour can be retrieved usingGetItemTextColour (p. 822).

wxListCtrl::SetSingleStyle

void SetSingleStyle (long style, const bool add = true)

Adds or removes a single window style.

wxListCtrl::SetTextColour

void SetTextColour (const wxColour& col)

Sets the text colour of the list control.

wxListCtrl::SetWindowStyleFlag

void SetWindowStyleFlag (long style)

Sets the whole window style, deleting all items.

wxListCtrl::SortItems

bool SortItems (wxListCtrlCompare fnSortCallBack, long data)

Call this function to sort the items in the list control. Sorting is done using the specified
fnSortCallBack function. This function must have the following prototype:

int wxCALLBACK wxListCompareFunction(long item1, lo ng item2, long
sortData)

It is called each time when the two items must be compared and should return 0 if the
items are equal, negative value if the first item is less than the second one and positive
value if the first one is greater than the second one (the same convention as used by
qsort(3)).

Parameters

item1

client data associated with the first item (NOT the index).

item2

client data associated with the second item (NOT the index).

CHAPTER 7

834

data

the value passed to SortItems() itself.

Notice that the control may only be sorted on client data associated with the items, so
you must use SetItemData (p. 829) if you want to be able to sort the items in the control.

Please see the listctrl sample (p. 1637) for an example of using this function.

wxPython note: wxPython uses the sortData parameter to pass the Python function to
call, so it is not available for programmer use. Call SortItems with a reference to a
callable object that expects two parameters.

wxPerl note: In wxPerl the comparison function must take just two parameters;
however, you may use a closure to achieve an effect similar to the SortItems third
parameter.

wxListEvent

A list event holds information about events associated with wxListCtrl objects.

Derived from

wxNotifyEvent (p. 966)
wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/listctrl.h>

Event table macros

To process input from a list control, use these event handler macros to direct input to
member functions that take a wxListEvent argument.

EVT_LIST_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.

EVT_LIST_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.

EVT_LIST_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be prevented
by calling Veto() (p. 967).

EVT_LIST_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented
by calling Veto() (p. 967).

EVT_LIST_DELETE_ITEM(id, func) Delete an item.

EVT_LIST_DELETE_ALL_ITEMS(id, func) Delete all items.

EVT_LIST_ITEM_SELECTED(id, func) The item has been selected.

EVT_LIST_ITEM_DESELECTED(id, func) The item has been deselected.

CHAPTER 7

835

EVT_LIST_ITEM_ACTIVATED(id, func) The item has been activated (ENTER or double
click).

EVT_LIST_ITEM_FOCUSED(id, func) The currently focused item has changed.

EVT_LIST_ITEM_MIDDLE_CLICK(id, func) The middle mouse button has been
clicked on an item.

EVT_LIST_ITEM_RIGHT_CLICK(id, func) The right mouse button has been clicked on
an item.

EVT_LIST_KEY_DOWN(id, func) A key has been pressed.

EVT_LIST_INSERT_ITEM(id, func) An item has been inserted.

EVT_LIST_COL_CLICK(id, func) A column (m_col) has been left-clicked.

EVT_LIST_COL_RIGHT_CLICK(id, func) A column (m_col) (which can be -1 if the
click occurred outside any column) has been
right-clicked.

EVT_LIST_COL_BEGIN_DRAG(id, func) The user started resizing a column - can be
vetoed.

EVT_LIST_COL_DRAGGING(id, func) The divider between columns is being dragged.

EVT_LIST_COL_END_DRAG(id, func) A column has been resized by the user.

EVT_LIST_CACHE_HINT(id, func) Prepare cache for a virtual list control

See also
wxListCtrl (p. 813)

wxListEvent::wxListEvent

 wxListEvent (WXTYPE commandType = 0, int id = 0)

Constructor.

wxListEvent::GetCacheFrom

long GetCacheFrom () const

For EVT_LIST_CACHE_HINT event only: return the first item which the list control
advises us to cache.

wxListEvent::GetCacheTo

long GetCacheTo () const

For EVT_LIST_CACHE_HINT event only: return the last item (inclusive) which the list

CHAPTER 7

836

control advises us to cache.

wxListEvent::GetKeyCode

int GetKeyCode () const

Key code if the event is a keypress event.

wxListEvent::GetIndex

long GetIndex () const

The item index.

wxListEvent::GetColumn

int GetColumn () const

The column position: it is only used with COL events. For the column dragging events, it
is the column to the left of the divider being dragged, for the column click events it may
be -1 if the user clicked in the list control header outside any column.

wxListEvent::GetPoint

wxPoint GetPoint () const

The position of the mouse pointer if the event is a drag event.

wxListEvent::GetLabel

const wxString& GetLabel () const

The (new) item label for EVT_LIST_END_LABEL_EDIT event.

wxListEvent::GetText

const wxString& GetText () const

The text.

wxListEvent::GetImage

int GetImage () const

The image.

wxListEvent::GetData

long GetData () const

CHAPTER 7

837

The data.

wxListEvent::GetMask

long GetMask () const

The mask.

wxListEvent::GetItem

const wxListItem& GetItem () const

An item object, used by some events. See also wxListCtrl::SetItem (p. 828).

wxListEvent::IsEditCancelled

bool IsEditCancelled () const

This method only makes sense for EVT_LIST_END_LABEL_EDIT message and returns
true if it the label editing has been cancelled by the user (GetLabel (p. 834) returns an
empty string in this case but it doesn't allow the application to distinguish between really
cancelling the edit and the admittedly rare case when the user wants to rename it to an
empty string).

wxListItem

This class stores information about a wxListCtrl item or column.

Derived from

wxObject (p. 967)

Include files

<wx/listctrl.h>

wxListItem::wxListItem

 wxListItem ()

Constructor.

wxListItem::Clear

void Clear ()

Resets the item state to the default.

CHAPTER 7

838

wxListItem::GetAlign

wxListColumnFormat GetAlign () const

Returns the alignment for this item. Can be one of wxLIST_FORMAT_LEFT,
wxLIST_FORMAT_RIGHT or wxLIST_FORMAT_CENTRE.

wxListItem::GetBackgroundColour

wxColour GetBackgroundColour () const

Returns the background colour for this item.

wxListItem::GetColumn

int GetColumn () const

Returns the zero-based column; meaningful only in report mode.

wxListItem::GetData

long GetData () const

Returns client data associated with the control. Please note that client data is associated
with the item and not with subitems.

wxListItem::GetFont

wxFont GetFont () const

Returns the font used to display the item.

wxListItem::GetId

long GetId () const

Returns the zero-based item position.

wxListItem::GetImage

int GetImage () const

Returns the zero-based index of the image associated with the item into the image list.

wxListItem::GetMask

long GetMask () const

Returns a bit mask indicating which fields of the structure are valid; can be any
combination of the following values:

CHAPTER 7

839

wxLIST_MASK_STATE GetState is valid.

wxLIST_MASK_TEXT GetText is valid.

wxLIST_MASK_IMAGE GetImage is valid.

wxLIST_MASK_DATA GetData is valid.

wxLIST_MASK_WIDTH GetWidth is valid.

wxLIST_MASK_FORMAT GetFormat is valid.

wxListItem::GetState

long GetState () const

Returns a bit field representing the state of the item. Can be any combination of:

wxLIST_STATE_DONTCARE Don't care what the state is. Win32 only.

wxLIST_STATE_DROPHILITED The item is highlighted to receive a drop event.
Win32 only.

wxLIST_STATE_FOCUSED The item has the focus.

wxLIST_STATE_SELECTEDThe item is selected.

wxLIST_STATE_CUT The item is in the cut state. Win32 only.

wxListItem::GetText

const wxString& GetText () const

Returns the label/header text.

wxListItem::GetTextColour

wxColour GetTextColour () const

Returns the text colour.

wxListItem::GetWidth

int GetWidth () const

Meaningful only for column headers in report mode. Returns the column width.

wxListItem::SetAlign

void SetAlign (wxListColumnFormat align)

Sets the alignment for the item. See alsowxListItem::GetAlign (p. 835)

CHAPTER 7

840

wxListItem::SetBackgroundColour

void SetBackgroundColour (const wxColour& colBack)

Sets the background colour for the item.

wxListItem::SetColumn

void SetColumn (int col)

Sets the zero-based column. Meaningful only in report mode.

wxListItem::SetData

void SetData (long data)

void SetData (void* data)

Sets client data for the item. Please note that client data is associated with the item and
not with subitems.

wxListItem::SetFont

void SetFont (const wxFont& font)

Sets the font for the item.

wxListItem::SetId

void SetId (long id)

Sets the zero-based item position.

wxListItem::SetImage

void SetImage (int image)

Sets the zero-based index of the image associated with the item into the image list.

wxListItem::SetMask

void SetMask (long mask)

Sets the mask of valid fields. See wxListItem::GetMask (p. 836).

wxListItem::SetState

void SetState (long state)

Sets the item state flags (note that the valid state flags are influenced by the value of the

CHAPTER 7

841

state mask, seewxListItem::SetStateMask (p. 838)). See wxListItem::GetState (p. 836)
for valid flag values.

wxListItem::SetStateMask

void SetStateMask (long stateMask)

Sets the bitmask that is used to determine which of the state flags are to be set. See
also wxListItem::SetState (p. 838).

wxListItem::SetText

void SetText (const wxString& text)

Sets the text label for the item.

wxListItem::SetTextColour

void SetTextColour (const wxColour& colText)

Sets the text colour for the item.

wxListItem::SetWidth

void SetWidth (int width)

Meaningful only for column headers in report mode. Sets the column width.

wxListItemAttr

Represents the attributes (color, font, ...) of awxListCtrl (p. 813) wxListItem (p. 813).

Include files

<wx/listctrl.h>

See also

wxListCtrl overview (p. 1719), wxListCtrl (p. 813), wxListItem (p. 835)

wxListItemAttr::wxListItemAttr

 wxListItemAttr ()

Default constructor.

 wxListItemAttr (const wxColour& colText, const wxColour& colBack, const
wxFont& font)

CHAPTER 7

842

Construct a wxListItemAttr with the specified foreground and background colors and
font.

wxListItemAttr::GetBackgroundColour

const wxColour& GetBackgroundColour () const

Returns the currently set background color.

wxListItemAttr::GetFont

const wxFont& GetFont () const

Returns the currently set font.

wxListItemAttr::GetTextColour

const wxColour& GetTextColour () const

Returns the currently set text color.

wxListItemAttr::HasBackgroundColour

bool HasBackgroundColour () const

Returns true if the currently set background color is valid.

wxListItemAttr::HasFont

bool HasFont () const

Returns true if the currently set font is valid.

wxListItemAttr::HasTextColour

bool HasTextColour () const

Returns true if the currently set text color is valid.

wxListItemAttr::SetBackgroundColour

void SetBackgroundColour (const wxColour& colour)

Sets a new background color.

wxListItemAttr::SetFont

void SetFont (const wxFont& font)

Sets a new font.

CHAPTER 7

843

wxListItemAttr::SetTextColour

void SetTextColour (const wxColour& colour)

Sets a new text color.wxListView

This class currently simply presents a simpler to use interface for the wxListCtrl (p. 813)
-- it can be thought of as a façadefor that complicated class. Using it is preferable to
using wxListCtrl (p. 813) directly whenever possible because in the future some ports
might implement wxListView but not the full set of wxListCtrl features.

Other than different interface, this class is identical to wxListCtrl. In particular, it uses the
same events, same windows styles and so on.

Derived from

wxListCtrl (p. 813)
wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/listctrl.h>

wxListView::ClearColumnImage

void ClearColumnImage (int col)

Resets the column image -- after calling this function, no image will be shown.

Parameters

col

the column to clear image for

See also

SetColumnImage (p. 842)

wxListView::Focus

void Focus (long index)

Sets focus to the item with the given index.

wxListView::GetFirstSelected

CHAPTER 7

844

long GetFirstSelected () const

Returns the first selected item in a (presumably) multiple selection control. Tigether with
GetNextSelected (p. 842) it can be used to iterate over all selected items in the control.

Return value

The fisrt selected item, if any, -1 otherwise.

wxListView::GetFocusedItem

long GetFocusedItem () const

Returns the currently focused item or -1 if none.

See also

IsSelected (p. 842),
Focus (p. 841)

wxListView::GetNextSelected

long GetNextSelected (long item) const

Used together with GetFirstSelected (p. 841) to iterate over all selected items in the
control.

Return value

Returns the next selected item or -1 if there are no more of them.

wxListView::IsSelected

bool IsSelected (long index)

Returns true if the item with the given index is selected, false otherwise.

See also

GetFirstSelected (p. 841),
GetNextSelected (p. 842)

wxListView::Select

void Select (long n, bool on = true)

Selects or unselects the given item.

Parameters

n

the item to select or unselect

CHAPTER 7

845

on

if true (default), selects the item, otherwise unselects it

See also

SetItemState (p. 830)

wxListView::SetColumnImage

void SetColumnImage (int col, int image)

Sets the column image for the specified column. To use the column images, the control
must have a valid image list with at least one image.

Parameters

col

the column to set image for

image

the index of the column image in the controls image list

See also

ClearColumnImage (p. 841),
SetImageList (p. 827)

wxLocale

wxLocale class encapsulates all language-dependent settings and is a generalization of
the C locale concept.

In wxWidgets this class manages message catalogs which contain the translations of the
strings used to the current language.

wxPerl note: In wxPerl you can't use the '_' function name, so the Wx::Locale module
can export the gettext and gettext_noop under any given name.

 # this imports gettext (equivalent to Wx::GetTra nslation
 # and gettext_noop (a noop)
 # into your module
 use Wx::Locale qw(:default);

 #

 # use the functions
 print gettext(``Panic!'');

 button = Wx::Button->new(window, -1, gettext(`` Label''));

If you need to translate a lot of strings, then adding gettext() around each one is a long
task (that is why _() was introduced), so just choose a shorter name for gettext:

CHAPTER 7

846

 #
 use Wx::Locale 'gettext' => 't',
 'gettext_noop' => 'gettext_noop';

 # ...

 # use the functions
 print t(``Panic!!'');

 # ...

Derived from

No base class

See also

Internationalization overview (p. 1660),
Internat sample (p. 1637)

Include files

<wx/intl.h>

Supported languages

See list of recognized language constants (p. 1596). These constants may be used to
specify the language in Init (p. 848) and are returned by GetSystemLanguage (p. 848):

wxLocale::wxLocale

 wxLocale ()

This is the default constructor and it does nothing to initialize the object: Init() (p. 848)
must be used to do that.

 wxLocale (int language, int flags = wxLOCALE_LOAD_DEFAULT |
wxLOCALE_CONV_ENCODING)

See Init() (p. 848) for parameters description.

 wxLocale (const char *szName, const char *szShort = NULL, const char *szLocale =
NULL, bool bLoadDefault = true, bool bConvertEncoding = false)

See Init() (p. 848) for parameters description.

The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of standard C
library functions such as printf() or strftime(). Second, this wxLocale object becomes the
new current global locale for the application and so all subsequent calls to
wxGetTranslation() will try to translate the messages using the message catalogs for this
locale.

CHAPTER 7

847

wxLocale::~wxLocale

 ~wxLocale ()

The destructor, like the constructor, also has global side effects: the previously set locale
is restored and so the changes described in Init (p. 848) documentation are rolled back.

wxLocale::AddCatalog

bool AddCatalog (const char *szDomain)

bool AddCatalog (const char *szDomain, wxLanguage msgIdLanguage, const char
*msgIdCharset)

Add a catalog for use with the current locale: it is searched for in standard places
(current directory first, then the system one), but you may also prepend additional
directories to the search path with AddCatalogLookupPathPrefix() (p. 845).

All loaded catalogs will be used for message lookup byGetString() (p. 847) for the
current locale.

Returns true if catalog was successfully loaded, false otherwise (which might mean that
the catalog is not found or that it isn't in the correct format).

The second form of this method takes two additional arguments,msgIdLanguage and
msgIdCharset.

msgIdLanguage specifies the language of "msgid" strings in source code (i.e. arguments
to GetString (p. 847),wxGetTranslation (p. 1536) and the _() (p. 1539) macro). It is used
if AddCatalog cannot find any catalog for current language: if the language is same as
source code language, then strings from source code are used instead.

msgIdCharset lets you specify the charset used for msgids in sources in case they use
8-bit characters (e.g. German or French strings). This argument has no effect in
Unicode build, because literals in sources are Unicode strings; you have to use
compiler-specific method of setting the right charset when compiling with Unicode.

By default (i.e. when you use the first form), msgid strings are assumed to be in English
and written only using 7-bit ASCII characters.

If you have to deal with non-English strings or 8-bit characters in the source code, see
the instructions in Writing non-English applications (p. 1661).

wxLocale::AddCatalogLookupPathPrefix

void AddCatalogLookupPathPrefix (const wxString& prefix)

Add a prefix to the catalog lookup path: the message catalog files will be looked up
under prefix/<lang>/LC_MESSAGES, prefix/<lang> and prefix (in this order).

This only applies to subsequent invocations of AddCatalog().

CHAPTER 7

848

wxLocale::AddLanguage

static void AddLanguage (const wxLanguageInfo& info)

Adds custom, user-defined language to the database of known languages. This
database is used in conjunction with the first form of Init (p. 848).

wxLanguageInfo is defined as follows:

struct WXDLLEXPORT wxLanguageInfo
{
 int Language; // wxLanguage i d
 wxString CanonicalName; // Canonical na me, e.g. fr_FR
#ifdef __WIN32__
 wxUint32 WinLang, WinSublang; // Win32 langua ge identifiers
 // (LANG_xxxx, SUBLANG_xxxx)
#endif
 wxString Description; // human-readab le name of the
language
};

Language should be greater than wxLANGUAGE_USER_DEFINED.

wxPerl note: In wxPerl Wx::LanguageInfo has only one method:

Wx::LanguageInfo->new(language, canonicalName, WinLang, WinSubLang,
Description)

wxLocale::FindLanguageInfo

static wxLanguageInfo * FindLanguageInfo (const wxString& locale)

This function may be used to find the language description structure for the given locale,
specified either as a two letter ISO language code (for example, "pt"), a language code
followed by the country code ("pt_BR") or a full, human readable, language description
("Portuguese-Brazil").

Returns the information for the given language or NULL if this language is unknown.
Note that even if the returned pointer is valid, the caller shouldnot delete it.

See also

GetLanguageInfo (p. 846)

wxLocale::GetCanonicalName

wxString GetCanonicalName () const

Returns the canonical form of current locale name. Canonical form is the one that is
used on UNIX systems: it is a two- or five-letter string in xx or xx_YY format, where xx is
ISO 639 code of language and YY is ISO 3166 code of the country. Examples are "en",
"en_GB", "en_US" or "fr_FR".

This form is internally used when looking up message catalogs.

CHAPTER 7

849

Compare GetSysName (p. 848).

wxLocale::GetLanguage

int GetLanguage () const

Returns wxLanguage (p. 844) constant of current language. Note that you can call this
function only if you used the form ofInit (p. 848) that takes wxLanguage argument.

wxLocale::GetLanguageInfo

static wxLanguageInfo * GetLanguageInfo (int lang) const

Returns a pointer to wxLanguageInfo structure containing information about the given
language or NULL if this language is unknown. Note that even if the returned pointer is
valid, the caller should not delete it.

See AddLanguage (p. 845) for the wxLanguageInfo description.

As with Init (p. 848), wxLANGUAGE_DEFAULT has the special meaning if passed as an
argument to this function and in this case the result of GetSystemLanguage() (p. 848) is
used.

wxLocale::GetLanguageName

static wxString GetLanguageName (int lang) const

Returns English name of the given language or empty string if this language is unknown.

See GetLanguageInfo (p. 846) for a remark about special meaning of
wxLANGUAGE_DEFAULT.

wxLocale::GetLocale

const char* GetLocale () const

Returns the locale name as passed to the constructor or Init() (p. 848). This is full,
human-readable name, e.g. "English" or "French".

wxLocale::GetName

const wxString& GetName () const

Returns the current short name for the locale (as given to the constructor or the Init()
function).

wxLocale::GetString

const char* GetString (const char *szOrigString, const char *szDomain = NULL)
const

CHAPTER 7

850

const char* GetString (const char *szOrigString, const char *szOrigString2, size_t n,
const char *szDomain = NULL) const

Retrieves the translation for a string in all loaded domains unless the szDomain
parameter is specified (and then only this catalog/domain is searched).

Returns original string if translation is not available (in this case an error message is
generated the first time a string is not found; use wxLogNull (p. 1667) to suppress it).

The second form is used when retrieving translation of string that has different singular
and plural form in English or different plural forms in some other language. It takes two
extra arguments: szOrigStringparameter must contain the singular form of the string to
be converted. It is also used as the key for the search in the catalog. The szOrigString2
parameter is the plural form (in English). The parameter n is used to determine the plural
form. If no message catalog is found szOrigString is returned if 'n == 1', otherwise
szOrigString2. See GNU gettext manual
(http://www.gnu.org/manual/gettext/html_chapter/gett ext_10.html#S
EC150) for additional information on plural forms handling.

This method is called by the wxGetTranslation (p. 1536)function and _() (p. 1539)
macro.

Remarks

Domains are searched in the last to first order, i.e. catalogs added later override those
added before.

wxLocale::GetHeaderValue

wxString GetHeaderValue (const char *szHeader, const char *szDomain = NULL)
const

Returns the header value for header szHeader. The search for szHeader is case
sensitive. If an szDomainis passed, this domain is searched. Else all domains will be
searched until a header has been found. The return value is the value of the header if
found. Else this will be empty.

wxLocale::GetSysName

wxString GetSysName () const

Returns current platform-specific locale name as passed to setlocale().

Compare GetCanonicalName (p. 846).

wxLocale::GetSystemEncoding

static wxFontEncoding GetSystemEncoding () const

Tries to detect the user's default font encoding. Returns wxFontEncoding (p. 535) value
or wxFONTENCODING_SYSTEM if it couldn't be determined.

CHAPTER 7

851

wxLocale::GetSystemEncodingName

static wxString GetSystemEncodingName () const

Tries to detect the name of the user's default font encoding. This string isn't particularly
useful for the application as its form is platform-dependent and so you should probably
use GetSystemEncoding (p. 848) instead.

Returns a user-readable string value or an empty string if it couldn't be determined.

wxLocale::GetSystemLanguage

static int GetSystemLanguage () const

Tries to detect the user's default language setting. Returns wxLanguage (p. 844) value
or wxLANGUAGE_UNKNOWN if the language-guessing algorithm failed.

wxLocale::Init

bool Init (int language = wxLANGUAGE_DEFAULT, int flags =
wxLOCALE_LOAD_DEFAULT | wxLOCALE_CONV_ENCODING)

bool Init (const char *szName, const char *szShort = NULL, const char *szLocale =
NULL, bool bLoadDefault = true, bool bConvertEncoding = false)

The second form is deprecated, use the first one unless you know what you are doing.

Parameters

language

wxLanguage (p. 844) identifier of the locale. wxLANGUAGE_DEFAULT has
special meaning -- wxLocale will use system's default language (see
GetSystemLanguage (p. 848)).

flags

Combination of the following:

wxLOCALE_LOAD_DEFAULT Load the message catalog for the given
locale containing the translations of standard
wxWidgets messages automatically.

wxLOCALE_CONV_ENCODING Automatically convert message catalogs to
platform's default encoding. Note that it will do only
basic conversion between well-known pair like
iso8859-1 and windows-1252 or iso8859-2 and
windows-1250. See Writing non-English applications
(p. 1661) for detailed description of this behaviour.
Note that this flag is meaningless in Unicode build.

szName

CHAPTER 7

852

The name of the locale. Only used in diagnostic messages.

szShort

The standard 2 letter locale abbreviation; it is used as the directory prefix when
looking for the message catalog files.

szLocale

The parameter for the call to setlocale(). Note that it is platform-specific.

bLoadDefault

May be set to false to prevent loading of the message catalog for the given locale
containing the translations of standard wxWidgets messages. This parameter
would be rarely used in normal circumstances.

bConvertEncoding

May be set to true to do automatic conversion of message catalogs to platform's
native encoding. Note that it will do only basic conversion between well-known
pair like iso8859-1 and windows-1252 or iso8859-2 and windows-1250. See
Writing non-English applications (p. 1661) for detailed description of this
behaviour.

The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of standard C
library functions such as printf() or strftime(). Second, this wxLocale object becomes the
new current global locale for the application and so all subsequent calls
towxGetTranslation() (p. 1536) will try to translate the messages using the message
catalogs for this locale.

Returns true on success or false if the given locale couldn't be set.

wxLocale::IsLoaded

bool IsLoaded (const char* domain) const

Check if the given catalog is loaded, and returns true if it is.

According to GNU gettext tradition, each catalog normally corresponds to 'domain' which
is more or less the application name.

See also: AddCatalog (p. 844)

wxLocale::IsOk

bool IsOk () const

Returns true if the locale could be set successfully.

wxLog

CHAPTER 7

853

wxLog class defines the interface for the log targets used by wxWidgets logging
functions as explained in the wxLog overview (p. 1667). The only situations when you
need to directly use this class is when you want to derive your own log target because
the existing ones don't satisfy your needs. Another case is if you wish to customize the
behaviour of the standard logging classes (all of which respect the wxLog settings): for
example, set which trace messages are logged and which are not or change (or even
remove completely) the timestamp on the messages.

Otherwise, it is completely hidden behind the wxLogXXX() functions and you may not
even know about its existence.

See log overview (p. 1667) for the descriptions of wxWidgets logging facilities.

Derived from

No base class

Include files

<wx/log.h>

Static functions

The functions in this section work with and manipulate the active log target. The OnLog()
(p. 853) is called by the wxLogXXX() functions and invokes the DoLog() (p. 854) of the
active log target if any. Get/Set methods are used to install/query the current active
target and, finally, DontCreateOnDemand() (p. 854) disables the automatic creation of a
standard log target if none actually exists. It is only useful when the application is
terminating and shouldn't be used in other situations because it may easily lead to a loss
of messages.

OnLog (p. 853)
GetActiveTarget (p. 853)
SetActiveTarget (p. 853)
DontCreateOnDemand (p. 854)
Suspend (p. 854)
Resume (p. 854)

Logging functions

There are two functions which must be implemented by any derived class to actually
process the log messages: DoLog (p. 854) andDoLogString (p. 854). The second
function receives a string which just has to be output in some way and the easiest way to
write a new log target is to override just this function in the derived class. If more control
over the output format is needed, then the first function must be overridden which allows
to construct custom messages depending on the log level or even do completely
different things depending on the message severity (for example, throw away all
messages except warnings and errors, show warnings on the screen and forward the
error messages to the user's (or programmer's) cell phone - maybe depending on
whether the timestamp tells us if it is day or night in the current time zone).

CHAPTER 7

854

There also functions to support message buffering. Why are they needed? Some of
wxLog implementations, most notably the standard wxLogGui class, buffer the
messages (for example, to avoid showing the user a zillion of modal message boxes one
after another -- which would be really annoying).Flush() (p. 855) shows them all and
clears the buffer contents. This function doesn't do anything if the buffer is already
empty.

Flush (p. 855)
FlushActive (p. 855)

Customization

The functions below allow some limited customization of wxLog behaviour without
writing a new log target class (which, aside of being a matter of several minutes, allows
you to do anything you want).

The verbose messages are the trace messages which are not disabled in the release
mode and are generated by wxLogVerbose (p. 1575). They are not normally shown to
the user because they present little interest, but may be activated, for example, in order
to help the user find some program problem.

As for the (real) trace messages, their handling depends on the settings of the
(application global) trace mask. There are two ways to specify it: either by using
SetTraceMask (p. 856) andGetTraceMask (p. 856) and usingwxLogTrace (p. 1576)
which takes an integer mask or by usingAddTraceMask (p. 853) for string trace masks.

The difference between bit-wise and string trace masks is that a message using integer
trace mask will only be logged if all bits of the mask are set in the current mask while a
message using string mask will be logged simply if the mask had been added before to
the list of allowed ones.

For example,

// wxTraceOleCalls is one of standard bit masks
wxLogTrace(wxTraceRefCount | wxTraceOleCalls, "Acti ve object ref
count: %d", nRef);

will do something only if the current trace mask contains bothwxTraceRefCount and
wxTraceOle , but

// wxTRACE_OleCalls is one of standard string masks
wxLogTrace(wxTRACE_OleCalls, "IFoo::Bar() called");

will log the message if it was preceded by

wxLog::AddTraceMask(wxTRACE_OleCalls);

Using string masks is simpler and allows to easily add custom ones, so this is the
preferred way of working with trace messages. The integer trace mask is kept for
compatibility and for additional (but very rarely needed) flexibility only.

The standard trace masks are given in wxLogTrace (p. 1576)documentation.

Finally, the wxLog::DoLog() function automatically prepends a time stamp to all the

CHAPTER 7

855

messages. The format of the time stamp may be changed: it can be any string with %
specifications fully described in the documentation of the standard strftime() function. For
example, the default format is "[%d/%b/%y %H:%M:%S] " which gives something like
"[17/Sep/98 22:10:16] " (without quotes) for the current date. Setting an empty string as
the time format disables timestamping of the messages completely.

NB: Timestamping is disabled for Visual C++ users in debug builds by default because
otherwise it would be impossible to directly go to the line from which the log message
was generated by simply clicking in the debugger window on the corresponding error
message. If you wish to enable it, please useSetTimestamp (p. 856) explicitly.

AddTraceMask (p. 853)
RemoveTraceMask (p. 856)
ClearTraceMasks (p. 853)
GetTraceMasks (p. 853)
IsAllowedTraceMask (p. 856)
SetVerbose (p. 855)
GetVerbose (p. 855)
SetTimestamp (p. 856)
GetTimestamp (p. 856)
SetTraceMask (p. 856)
GetTraceMask (p. 856)

wxLog::AddTraceMask

static void AddTraceMask (const wxString& mask)

Add the mask to the list of allowed masks forwxLogTrace (p. 1576).

See also

RemoveTraceMask (p. 856)GetTraceMasks (p. 853)

wxLog::ClearTraceMasks

static void ClearTraceMasks ()

Removes all trace masks previously set withAddTraceMask (p. 853).

See also

RemoveTraceMask (p. 856)

wxLog::GetTraceMasks

static const wxArrayString & GetTraceMasks ()

Returns the currently allowed list of string trace masks.

See also

CHAPTER 7

856

AddTraceMask (p. 853).

wxLog::OnLog

static void OnLog (wxLogLevel level, const char * message)

Forwards the message at specified level to the DoLog() function of the active log target if
there is any, does nothing otherwise.

wxLog::GetActiveTarget

static wxLog * GetActiveTarget ()

Returns the pointer to the active log target (may be NULL).

wxLog::SetActiveTarget

static wxLog * SetActiveTarget (wxLog * logtarget)

Sets the specified log target as the active one. Returns the pointer to the previous active
log target (may be NULL). To supress logging use a new instance of wxLogNull not
NULL. If the active log target is set to NULL a new default log target will be created
when logging occurs.

wxLog::Suspend

static void Suspend ()

Suspends the logging until Resume (p. 854) is called. Note that the latter must be called
the same number of times as the former to undo it, i.e. if you call Suspend() twice you
must call Resume() twice as well.

Note that suspending the logging means that the log sink won't be be flushed
periodically, it doesn't have any effect if the current log target does the logging
immediately without waiting for Flush (p. 855) to be called (the standard GUI log target
only shows the log dialog when it is flushed, so Suspend() works as expected with it).

See also

Resume (p. 854),
wxLogNull (p. 1667)

wxLog::Resume

static void Resume ()

Resumes logging previously suspended by a call toSuspend (p. 854). All messages
logged in the meanwhile will be flushed soon.

wxLog::DoLog

CHAPTER 7

857

virtual void DoLog (wxLogLevel level, const wxChar *msg, time_t timestamp)

Called to process the message of the specified severity. msg is the text of the message
as specified in the call of wxLogXXX() function which generated it and timestamp is the
moment when the message was generated.

The base class version prepends the timestamp to the message, adds a prefix
corresponding to the log level and then callsDoLogString (p. 854) with the resulting
string.

wxLog::DoLogString

virtual void DoLogString (const wxChar *msg, time_t timestamp)

Called to log the specified string. The timestamp is already included into the string but
still passed to this function.

A simple implementation may just send the string to stdout or, better,stderr .

wxLog::DontCreateOnDemand

static void DontCreateOnDemand ()

Instructs wxLog to not create new log targets on the fly if there is none currently.
(Almost) for internal use only: it is supposed to be called by the application shutdown
code.

Note that this function also callsClearTraceMasks (p. 853).

wxLog::Flush

virtual void Flush ()

Shows all the messages currently in buffer and clears it. If the buffer is already empty,
nothing happens.

wxLog::FlushActive

static void FlushActive ()

Flushes the current log target if any, does nothing if there is none.

See also

Flush (p. 855)

wxLog::SetVerbose

static void SetVerbose (bool verbose = true)

Activates or deactivates verbose mode in which the verbose messages are logged as
the normal ones instead of being silently dropped.

CHAPTER 7

858

wxLog::GetVerbose

static bool GetVerbose ()

Returns whether the verbose mode is currently active.

wxLog::SetLogLevel

static void SetLogLevel (wxLogLevel logLevel)

Specifies that log messages with level > logLevel should be ignored and not sent to the
active log target.

wxLog::GetLogLevel

static wxLogLevel GetLogLevel ()

Returns the current log level limit.

wxLog::SetTimestamp

void SetTimestamp (const char * format)

Sets the timestamp format prepended by the default log targets to all messages. The
string may contain any normal characters as well as %prefixed format specificators, see
strftime() manual for details. Passing a NULL value (not empty string) to this function
disables message timestamping.

wxLog::GetTimestamp

const char * GetTimestamp () const

Returns the current timestamp format string.

wxLog::SetTraceMask

static void SetTraceMask (wxTraceMask mask)

Sets the trace mask, see Customization (p. 851)section for details.

wxLog::GetTraceMask

Returns the current trace mask, see Customization (p. 851) section for details.

wxLog::IsAllowedTraceMask

static bool IsAllowedTraceMask (const wxChar * mask)

Returns true if the mask is one of allowed masks forwxLogTrace (p. 1576).

CHAPTER 7

859

See also: AddTraceMask (p. 853),RemoveTraceMask (p. 856)

wxLog::RemoveTraceMask

static void RemoveTraceMask (const wxString& mask)

Remove the mask from the list of allowed masks forwxLogTrace (p. 1576).

See also: AddTraceMask (p. 853)

wxLogChain

This simple class allows to chain log sinks, that is to install a new sink but keep passing
log messages to the old one instead of replacing it completely asSetActiveTarget (p.
853) does.

It is especially useful when you want to divert the logs somewhere (for example to a file
or a log window) but also keep showing the error messages using the standard dialogs
as wxLogGui (p. 1667) does by default.

Example of usage:

wxLogChain *logChain = new wxLogChain(new wxLogStde rr);

// all the log messages are sent to stderr and also processed as
usually
...

// don't delete logChain directly as this would lea ve a dangling
// pointer as active log target, use SetActiveTarge t() instead
delete wxLog::SetActiveTarget(...something else or NULL...);

Derived from

wxLog (p. 850)

Include files

<wx/log.h>

wxLogChain::wxLogChain

 wxLogChain (wxLog * logger)

Sets the specified logger (which may be NULL) as the default log target but the log
messages are also passed to the previous log target if any.

wxLogChain::~wxLogChain

 ~wxLogChain ()

CHAPTER 7

860

Destroys the previous log target.

wxLogChain::GetOldLog

wxLog * GetOldLog () const

Returns the pointer to the previously active log target (which may be NULL).

wxLogChain::IsPassingMessages

bool IsPassingMessages () const

Returns true if the messages are passed to the previously active log target (default) or
false if PassMessages (p. 857)had been called.

wxLogChain::PassMessages

void PassMessages (bool passMessages)

By default, the log messages are passed to the previously active log target. Calling this
function with false parameter disables this behaviour (presumably temporarily, as you
shouldn't use wxLogChain at all otherwise) and it can be reenabled by calling it again
with passMessages set to true .

wxLogChain::SetLog

void SetLog (wxLog * logger)

Sets another log target to use (may be NULL). The log target specified in the constructor
(p. 857) or in a previous call to this function is deleted.

This doesn't change the old log target value (the one the messages are forwarded to)
which still remains the same as was active when wxLogChain object was created.

wxLogGui

This is the default log target for the GUI wxWidgets applications. It is passed to
wxLog::SetActiveTarget (p. 853) at the program startup and is deleted by wxWidgets
during the program shut down.

Derived from

wxLog (p. 850)

Include files

<wx/log.h>

CHAPTER 7

861

wxLogGui::wxLogGui

 wxLogGui ()

Default constructor.

wxLogNull

This class allows to temporarily suspend logging. All calls to the log functions during the
life time of an object of this class are just ignored.

In particular, it can be used to suppress the log messages given by wxWidgets itself but
it should be noted that it is rarely the best way to cope with this problem as all log
messages are suppressed, even if they indicate a completely different error than the one
the programmer wanted to suppress.

For instance, the example of the overview:

 wxFile file;

 // wxFile.Open() normally complains if file can't be opened, we
don't want it
 {
 wxLogNull logNo;
 if (!file.Open("bar"))
 ... process error ourselves ...
 } // ~wxLogNull called, old log sink restored

 wxLogMessage("..."); // ok

would be better written as:

 wxFile file;

 // don't try to open file if it doesn't exist, we are prepared
to deal with
 // this ourselves - but all other errors are not expected
 if (wxFile::Exists("bar"))
 {
 // gives an error message if the file couldn' t be opened
 file.Open("bar");
 }
 else
 {
 ...
 }

Derived from

wxLog (p. 850)

Include files

<wx/log.h>

CHAPTER 7

862

wxLogNull::wxLogNull

 wxLogNull ()

Suspends logging.

wxLogNull::~wxLogNull

Resumes logging.

wxLogPassThrough

A special version of wxLogChain (p. 856) which uses itself as the new log target. Maybe
more clearly, it means that this is a log target which forwards the log messages to the
previously installed one in addition to processing them itself.

Unlike wxLogChain (p. 856) which is usually used directly as is, this class must be
derived from to implement DoLog (p. 854)and/or DoLogString (p. 854) methods.

Derived from

wxLogChain (p. 856)

Include files

<wx/log.h>

wxLogPassThrough::wxLogPassThrough

Default ctor installs this object as the current active log target.

wxLogStderr

This class can be used to redirect the log messages to a C file stream (not to be
confused with C++ streams). It is the default log target for the non-GUI wxWidgets
applications which send all the output to stderr .

Derived from

wxLog (p. 850)

Include files

<wx/log.h>

See also

wxLogStream (p. 860)

CHAPTER 7

863

wxLogStderr::wxLogStderr

 wxLogStderr (FILE *fp = NULL)

Constructs a log target which sends all the log messages to the givenFILE . If it is NULL,
the messages are sent to stderr .

wxLogStream

This class can be used to redirect the log messages to a C++ stream.

Please note that this class is only available if wxWidgets was compiled with the standard
iostream library support (wxUSE_STD_IOSTREAM must be on).

Derived from

wxLog (p. 850)

Include files

<wx/log.h>

See also

wxLogStderr (p. 860),
wxStreamToTextRedirector (p. 1225)

wxLogStream::wxLogStream

 wxLogStream (std::ostream *ostr = NULL)

Constructs a log target which sends all the log messages to the given output stream. If it
is NULL, the messages are sent to cerr .

wxLogTextCtrl

Using these target all the log messages can be redirected to a text control. The text
control must have been created with wxTE_MULTILINE style by the caller previously.

Derived from

wxLog (p. 850)

Include files

<wx/log.h>

CHAPTER 7

864

See also

wxLogTextCtrl (p. 861),
wxStreamToTextRedirector (p. 1225)

wxLogTextCtrl::wxLogTextCtrl

 wxLogTextCtrl (wxTextCtrl *textctrl)

Constructs a log target which sends all the log messages to the given text control. The
textctrl parameter cannot be NULL.

wxLogWindow

This class represents a background log window: to be precise, it collects all log
messages in the log frame which it manages but also passes them on to the log target
which was active at the moment of its creation. This allows, for example, to show all the
log messages in a frame but still continue to process them normally by showing the
standard log dialog.

Derived from

wxLogPassThrough (p. 859)

Include files

<wx/log.h>

See also

wxLogTextCtrl (p. 861)

wxLogWindow::wxLogWindow

 wxLogWindow (wxFrame *parent, const wxChar *title, bool show = true, bool
passToOld = true)

Creates the log frame window and starts collecting the messages in it.

Parameters

parent

The parent window for the log frame, may be NULL

title

The title for the log frame

CHAPTER 7

865

show

true to show the frame initially (default), otherwisewxLogWindow::Show (p. 862)
must be called later.

passToOld

true to process the log messages normally in addition to logging them in the log
frame (default), false to only log them in the log frame.

wxLogWindow::Show

void Show (bool show = true)

Shows or hides the frame.

wxLogWindow::GetFrame

wxFrame * GetFrame () const

Returns the associated log frame window. This may be used to position or resize it but
use wxLogWindow::Show (p. 862) to show or hide it.

wxLogWindow::OnFrameCreate

virtual void OnFrameCreate (wxFrame *frame)

Called immediately after the log frame creation allowing for any extra initializations.

wxLogWindow::OnFrameClose

virtual bool OnFrameClose (wxFrame *frame)

Called if the user closes the window interactively, will not be called if it is destroyed for
another reason (such as when program exits).

Return true from here to allow the frame to close, false to prevent this from
happening.

See also

wxLogWindow::OnFrameDelete (p. 863)

wxLogWindow::OnFrameDelete

virtual void OnFrameDelete (wxFrame *frame)

Called right before the log frame is going to be deleted: will always be called unlike
OnFrameClose() (p. 863).

CHAPTER 7

866

wxLongLong

This class represents a signed 64 bit long number. It is implemented using the native 64
bit type where available (machines with 64 bit longs or compilers which have (an analog
of) long long type) and uses the emulation code in the other cases which ensures that it
is the most efficient solution for working with 64 bit integers independently of the
architecture.

wxLongLong defines all usual arithmetic operations such as addition, subtraction, bitwise
shifts and logical operations as well as multiplication and division (not yet for the
machines without native long long). It also has operators for implicit construction from
and conversion to the native long long type if it exists and long.

You would usually use this type in exactly the same manner as any other (built-in)
arithmetic type. Note that wxLongLong is a signed type, if you want unsigned values use
wxULongLong which has exactly the same API as wxLongLong except when explicitly
mentioned otherwise.

If a native (i.e. supported directly by the compiler) 64 bit integer type was found to exist,
wxLongLong_t macro will be defined to correspond to it. Also, in this case only, two
additional macros will be defined: wxLongLongFmtSpec (p. 1557) for printing 64 bit
integers using the standard printf() function (but see also ToString() (p. 865) for a
more portable solution) andwxLL (p. 1557) for defining 64 bit integer compile-time
constants.

Derived from

No base class

Include files

<wx/longlong.h>

wxLongLong::wxLongLong

 wxLongLong ()

Default constructor initializes the object to 0.

wxLongLong::wxLongLong

 wxLongLong (wxLongLong_t ll)

Constructor from native long long (only for compilers supporting it).

wxLongLong::wxLongLong

 wxLongLong (long hi, unsigned long lo)

Constructor from 2 longs: the high and low part are combined into one wxLongLong.

CHAPTER 7

867

wxLongLong::operator=

wxLongLong& operator operator= (wxLongLong_t ll)

Assignment operator from native long long (only for compilers supporting it).

wxLongLong::Abs

wxLongLong Abs () const

wxLongLong& Abs ()

Returns an absolute value of wxLongLong - either making a copy (const version) or
modifying it in place (the second one). Not in wxULongLong.

wxLongLong::Assign

wxLongLong& Assign (double d)

This allows to convert a double value to wxLongLong type. Such conversion is not
always possible in which case the result will be silently truncated in a platform-
dependent way. Not in wxULongLong.

wxLongLong::GetHi

long GetHi () const

Returns the high 32 bits of 64 bit integer.

wxLongLong::GetLo

unsigned long GetLo () const

Returns the low 32 bits of 64 bit integer.

wxLongLong::GetValue

wxLongLong_t GetValue () const

Convert to native long long (only for compilers supporting it)

wxLongLong::ToLong

long ToLong () const

Truncate wxLongLong to long. If the conversion loses data (i.e. the wxLongLong value is
outside the range of built-in long type), an assert will be triggered in debug mode.

wxLongLong::ToString

CHAPTER 7

868

wxString ToString () const

Returns the string representation of a wxLongLong.

wxLongLong::operator+

wxLongLong operator+ (const wxLongLong& ll) const

Adds 2 wxLongLongs together and returns the result.

wxLongLong::operator+=

wxLongLong& operator+ (const wxLongLong& ll)

Add another wxLongLong to this one.

wxLongLong::operator++

wxLongLong& operator++ ()

wxLongLong& operator++ (int)

Pre/post increment operator.

wxLongLong::operator-

wxLongLong operator- () const

Returns the value of this wxLongLong with opposite sign. Not in wxULongLong.

wxLongLong::operator-

wxLongLong operator- (const wxLongLong& ll) const

Subtracts 2 wxLongLongs and returns the result.

wxLongLong::operator-=

wxLongLong& operator- (const wxLongLong& ll)

Subtracts another wxLongLong from this one.

wxLongLong::operator--

wxLongLong& operator-- ()

wxLongLong& operator-- (int)

Pre/post decrement operator.

CHAPTER 7

869

wxMask

This class encapsulates a monochrome mask bitmap, where the masked area is black
and the unmasked area is white. When associated with a bitmap and drawn in a device
context, the unmasked area of the bitmap will be drawn, and the masked area will not be
drawn.

Derived from

wxObject (p. 967)

Include files

<wx/bitmap.h>

Remarks

A mask may be associated with a wxBitmap (p. 76). It is used in wxDC::Blit (p. 354)
when the source device context is a wxMemoryDC (p. 895) with wxBitmap selected into
it that contains a mask.

See also

wxBitmap (p. 76), wxDC::Blit (p. 354), wxMemoryDC (p. 895)

wxMask::wxMask

 wxMask ()

Default constructor.

 wxMask (const wxBitmap (p. 76)& bitmap)

Constructs a mask from a monochrome bitmap.

wxPython note: This is the default constructor for wxMask in wxPython.

 wxMask (const wxBitmap (p. 76)& bitmap, const wxColour (p. 157)& colour)

Constructs a mask from a bitmap and a colour that indicates the background.

wxPython note: wxPython has an alternate wxMask constructor matching this form
called wxMaskColour .

 wxMask (const wxBitmap& bitmap, int index)

Constructs a mask from a bitmap and a palette index that indicates the background. Not
yet implemented for GTK.

Parameters

bitmap

CHAPTER 7

870

A valid bitmap.

colour

A colour specifying the transparency RGB values.

index

Index into a palette, specifying the transparency colour.

wxMask::~wxMask

 ~wxMask ()

Destroys the wxMask object and the underlying bitmap data.

wxMask::Create

bool Create (const wxBitmap& bitmap)

Constructs a mask from a monochrome bitmap.

bool Create (const wxBitmap& bitmap, const wxColour& colour)

Constructs a mask from a bitmap and a colour that indicates the background.

bool Create (const wxBitmap& bitmap, int index)

Constructs a mask from a bitmap and a palette index that indicates the background. Not
yet implemented for GTK.

Parameters

bitmap

A valid bitmap.

colour

A colour specifying the transparency RGB values.

index

Index into a palette, specifying the transparency colour.

wxMaximizeEvent

An event being sent when the frame is maximized or restored.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

CHAPTER 7

871

Include files

<wx/event.h>

Event table macros

To process a maximize event, use this event handler macro to direct input to a member
function that takes a wxMaximizeEvent argument.

EVT_MAXIMIZE(func) Process a wxEVT_MAXIMIZE event.

See also
Event handling overview (p. 1674), wxTopLevelWindow::Maximize (p. 1356),
wxTopLevelWindow::IsMaximized (p. 1356)

wxMaximizeEvent::wxMaximizeEvent

 wxMaximizeEvent (int id = 0)

Constructor.

wxMBConv

This class is the base class of a hierarchy of classes capable of converting text strings
between multibyte (SBCS or DBCS) encodings and Unicode. It is itself a wrapper around
the standard libc mbstowcs() and wcstombs() routines, and has one predefined instance,
wxConvLibc .

Derived from

No base class

Include files

<wx/strconv.h>

See also

wxCSConv (p. 216), wxEncodingConverter (p. 459), wxMBConv classes overview (p.
1657)

wxMBConv::wxMBConv

 wxMBConv ()

Constructor.

wxMBConv::MB2WC

CHAPTER 7

872

virtual size_t MB2WC(wchar_t * outputBuf, const char * psz, size_t outputSize) const

Converts from a string psz in multibyte encoding to Unicode putting the output into the
buffer outputBuf of the maximum size outputSize (in wide characters, not bytes). If
outputBuf is NULL, only the length of the string which would result from the conversion is
calculated and returned. Note that this is the length and not size, i.e. the returned value
does not include the trailing NUL. But when the function is called with a non-NULL
outputBuf, the outputSize parameter should be the size of the buffer and so it should
take into account the trailing NUL.

Parameters

outputBuf

the output buffer, may be NULL if the caller is only interested in the length of the
resulting string

psz

the NUL-terminated input string, cannot be NULL

outputSize

the size of the output buffer (in wide characters, including the NUL) , ignored if
outputBuf is NULL

Return value

The length of the converted string (in wide characters, excluding the NUL)

wxMBConv::WC2MB

virtual size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to multibyte encoding. The semantics of this function (including
the return value meaning) is the same as for MB2WC (p. 869).

Notice that when the function is called with a non-NULL buffer, the n parameter should
be the size of the buffer and so it should take into account the trailing NUL, which might
take two or four bytes for some encodings (UTF-16 and UTF-32).

wxMBConv::cMB2WC

const wxWCharBuffer cMB2WC (const char* psz) const

Converts from multibyte encoding to Unicode by calling MB2WC, allocating a temporary
wxWCharBuffer to hold the result.

wxMBConv::cWC2MB

const wxCharBuffer cWC2MB (const wchar_t* psz) const

Converts from Unicode to multibyte encoding by calling WC2MB, allocating a temporary

CHAPTER 7

873

wxCharBuffer to hold the result.

wxMBConv::cMB2WX

const char* cMB2WX (const char* psz) const

const wxWCharBuffer cMB2WX (const char* psz) const

Converts from multibyte encoding to the current wxChar type (which depends on
whether wxUSE_UNICODE is set to 1). If wxChar is char, it returns the parameter
unaltered. If wxChar is wchar_t, it returns the result in a wxWCharBuffer. The macro
wxMB2WXbuf is defined as the correct return type (without const).

wxMBConv::cWX2MB

const char* cWX2MB (const wxChar* psz) const

const wxCharBuffer cWX2MB (const wxChar* psz) const

Converts from the current wxChar type to multibyte encoding. If wxChar is char, it
returns the parameter unaltered. If wxChar is wchar_t, it returns the result in a
wxCharBuffer. The macro wxWX2MBbuf is defined as the correct return type (without
const).

wxMBConv::cWC2WX

const wchar_t* cWC2WX(const wchar_t* psz) const

const wxCharBuffer cWC2WX(const wchar_t* psz) const

Converts from Unicode to the current wxChar type. If wxChar is wchar_t, it returns the
parameter unaltered. If wxChar is char, it returns the result in a wxCharBuffer. The
macro wxWC2WXbuf is defined as the correct return type (without const).

wxMBConv::cWX2WC

const wchar_t* cWX2WC(const wxChar* psz) const

const wxWCharBuffer cWX2WC(const wxChar* psz) const

Converts from the current wxChar type to Unicode. If wxChar is wchar_t, it returns the
parameter unaltered. If wxChar is char, it returns the result in a wxWCharBuffer. The
macro wxWX2WCbuf is defined as the correct return type (without const).

wxMBConvFile

This class used to define the class instance wxConvFileName , but nowadays
wxConvFileName is either of type wxConvLibc (on most platforms) or wxConvUTF8 (on
MacOS X). wxConvFileName converts filenames between filesystem multibyte
encoding and Unicode. wxConvFileName can also be set to a something else at run-

CHAPTER 7

874

time which is used e.g. by wxGTK to use a class which checks the environment
variable G_FILESYSTEM_ENCODING indicating that filenames should not be
interpreted as UTF8 and also for converting invalid UTF8 characters (e.g. if there is a
filename in iso8859_1) to strings with octal values.

Since some platforms (such as Win32) use Unicode in the filenames, and others (such
as Unix) use multibyte encodings, this class should only be used directly if wxMBFILES
is defined to 1. A convenience macro, wxFNCONV, is defined to wxConvFileName-
>cWX2MB in this case. You could use it like this:

wxChar *name = wxT("rawfile.doc");
FILE *fil = fopen(wxFNCONV(name), "r");

(although it would be better to use wxFopen(name, wxT("r")) in this case.)

Derived from

wxMBConv (p. 869)

Include files

<wx/strconv.h>

See also

wxMBConv classes overview (p. 1657)

wxMBConvFile::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from multibyte filename encoding to Unicode. Returns the size of the
destination buffer.

wxMBConvFile::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to multibyte filename encoding. Returns the size of the
destination buffer.

wxMBConvUTF7

This class converts between the UTF-7 encoding and Unicode. It has one predefined
instance, wxConvUTF7 .

WARNING: this class is not implemented yet.

Derived from

CHAPTER 7

875

wxMBConv (p. 869)

Include files

<wx/strconv.h>

See also

wxMBConvUTF8 (p. 873), wxMBConv classes overview (p. 1657)

wxMBConvUTF7::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from UTF-7 encoding to Unicode. Returns the size of the destination buffer.

wxMBConvUTF7::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to UTF-7 encoding. Returns the size of the destination buffer.

wxMBConvUTF8

This class converts between the UTF-8 encoding and Unicode. It has one predefined
instance, wxConvUTF8 .

Derived from

wxMBConv (p. 869)

Include files

<wx/strconv.h>

See also

wxMBConvUTF7 (p. 872), wxMBConv classes overview (p. 1657)

Remarks

UTF-8 is a compatibility encoding used to encode Unicode text into anything that was
originally written for 8-bit strings, including (but not limited to) filenames, transfer
protocols, and database fields. Notable properties include:

 • Variable-length encoding able to encode up to 31 bits per character

 • ASCII characters (character values under 128) are encoded as plain ASCII (1
byte per character)

 • Null bytes do not occur in the encoding, except when there's an actual Unicode

CHAPTER 7

876

null character

 • Preserves sort ordering for plain 8-bit comparison routines like strcmp()

 • High bit patterns disambiguates character boundaries, and makes it easy to
detect whether a string is encoded with UTF-8 or not

All of these properties make UTF-8 a very favorable solution in any situation where full
Unicode character support is desired while remaining compatible with code written with
only 8-bit extended-ASCII characters in mind.

wxMBConvUTF8::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from UTF-8 encoding to Unicode. Returns the size of the destination buffer.

wxMBConvUTF8::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to UTF-8 encoding. Returns the size of the destination buffer.

wxMBConvUTF16

This class is used to convert between multibyte encodings and UTF-16 Unicode
encoding (also known as UCS-2). Unlike UTF-8 (p. 873) encoding, UTF-16 uses words
and not bytes and hence depends on the byte ordering: big or little endian. Hence this
class is provided in two versions: wxMBConvUTF16LE and wxMBConvUTF16BE and
wxMBConvUTF16 itself is just a typedef for one of them (native for the given platform,
e.g. LE under Windows and BE under Mac).

Derived from

wxMBConv (p. 869)

Include files

<wx/strconv.h>

See also

wxMBConvUTF8 (p. 873), wxMBConvUTF32 (p. 874), wxMBConv classes overview (p.
1657)

wxMBConvUTF16::MB2WC

CHAPTER 7

877

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from UTF-16 encoding to Unicode. Returns the size of the destination buffer.

wxMBConvUTF16::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to UTF-16 encoding. Returns the size of the destination buffer.

wxMBConvUTF32

This class is used to convert between multibyte encodings and UTF-32 Unicode
encoding (also known as UCS-4). Unlike UTF-8 (p. 873) encoding, UTF-32 uses
(double) words and not bytes and hence depends on the byte ordering: big or little
endian. Hence this class is provided in two versions: wxMBConvUTF32LE and
wxMBConvUTF32BE and wxMBConvUTF32 itself is just a typedef for one of them
(native for the given platform, e.g. LE under Windows and BE under Mac).

Derived from

wxMBConv (p. 869)

Include files

<wx/strconv.h>

See also

wxMBConvUTF8 (p. 873), wxMBConvUTF16 (p. 874), wxMBConv classes overview (p.
1657)

wxMBConvUTF32::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from UTF-32 encoding to Unicode. Returns the size of the destination buffer.

wxMBConvUTF32::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to UTF-32 encoding. Returns the size of the destination buffer.

wxMDIChildFrame

An MDI child frame is a frame that can only exist on a wxMDIClientWindow (p. 878),
which is itself a child of wxMDIParentFrame (p. 880).

CHAPTER 7

878

Derived from

wxFrame (p. 555)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/mdi.h>

Window styles

wxCAPTION Puts a caption on the frame.

wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |
wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION .

wxICONIZE Display the frame iconized (minimized) (Windows only).

wxMAXIMIZE Displays the frame maximized (Windows only).

wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif
only).

wxMINIMIZE Identical to wxICONIZE .

wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif
only).

wxRESIZE_BORDER Displays a resizeable border around the window (Motif
only; for Windows, it is implicit in wxTHICK_FRAME).

wxSTAY_ON_TOP Stay on top of other windows (Windows only).

wxSYSTEM_MENU Displays a system menu (Windows and Motif only).

wxTHICK_FRAME Displays a thick frame around the window (Windows and
Motif only).

See also window styles overview (p. 1686).

Remarks

Although internally an MDI child frame is a child of the MDI client window, in wxWidgets
you create it as a child of wxMDIParentFrame (p. 880). You can usually forget that the
client window exists.

MDI child frames are clipped to the area of the MDI client window, and may be iconized
on the client window.

You can associate a menubar with a child frame as usual, although an MDI child doesn't
display its menubar under its own title bar. The MDI parent frame's menubar will be
changed to reflect the currently active child frame. If there are currently no children, the

CHAPTER 7

879

parent frame's own menubar will be displayed.

See also

wxMDIClientWindow (p. 878), wxMDIParentFrame (p. 880), wxFrame (p. 555)

wxMDIChildFrame::wxMDIChildFrame

 wxMDIChildFrame ()

Default constructor.

 wxMDIChildFrame (wxMDIParentFrame* parent, wxWindowID id, const wxString&
title, const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize,
long style = wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent

The window parent. This should not be NULL.

id

The window identifier. It may take a value of -1 to indicate a default value.

title

The caption to be displayed on the frame's title bar.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWidgets, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWidgets, depending on platform.

style

The window style. See wxMDIChildFrame (p. 875).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

CHAPTER 7

880

None.

See also

wxMDIChildFrame::Create (p. 877)

wxMDIChildFrame::~wxMDIChildFrame

 ~wxMDIChildFrame ()

Destructor. Destroys all child windows and menu bar if present.

wxMDIChildFrame::Activate

void Activate ()

Activates this MDI child frame.

See also

wxMDIChildFrame::Maximize (p. 878), wxMDIChildFrame::Restore (p. 878)

wxMDIChildFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxMDIChildFrame::wxMDIChildFrame (p.
876) for further details.

wxMDIChildFrame::Maximize

void Maximize (bool maximize)

Maximizes this MDI child frame.

See also

wxMDIChildFrame::Activate (p. 877), wxMDIChildFrame::Restore (p. 878)

wxMDIChildFrame::Restore

void Restore ()

Restores this MDI child frame (unmaximizes).

See also

wxMDIChildFrame::Activate (p. 877), wxMDIChildFrame::Maximize (p. 878)

CHAPTER 7

881

wxMDIClientWindow

An MDI client window is a child of wxMDIParentFrame (p. 880), and manages zero or
more wxMDIChildFrame (p. 875) objects.

Derived from

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/mdi.h>

Remarks

The client window is the area where MDI child windows exist. It doesn't have to cover
the whole parent frame; other windows such as toolbars and a help window might
coexist with it. There can be scrollbars on a client window, which are controlled by the
parent window style.

The wxMDIClientWindow class is usually adequate without further derivation, and it is
created automatically when the MDI parent frame is created. If the application needs to
derive a new class, the function wxMDIParentFrame::OnCreateClient (p. 885) must be
overridden in order to give an opportunity to use a different class of client window.

Under Windows 95, the client window will automatically have a sunken border style
when the active child is not maximized, and no border style when a child is maximized.

See also

wxMDIChildFrame (p. 875), wxMDIParentFrame (p. 880), wxFrame (p. 555)

wxMDIClientWindow::wxMDIClientWindow

 wxMDIClientWindow ()

Default constructor.

 wxMDIClientWindow (wxMDIParentFrame* parent, long style = 0)

Constructor, creating the window.

Parameters

parent

The window parent.

style

CHAPTER 7

882

The window style. Currently unused.

Remarks

The second style of constructor is called within wxMDIParentFrame::OnCreateClient (p.
885).

See also

wxMDIParentFrame::wxMDIParentFrame (p. 881), wxMDIParentFrame::OnCreateClient
(p. 885)

wxMDIClientWindow::~wxMDIClientWindow

 ~wxMDIClientWindow ()

Destructor.

wxMDIClientWindow::CreateClient

bool CreateClient (wxMDIParentFrame* parent, long style = 0)

Used in two-step frame construction. See wxMDIClientWindow::wxMDIClientWindow (p.
879) for further details.

wxMDIParentFrame

An MDI (Multiple Document Interface) parent frame is a window which can contain MDI
child frames in its own 'desktop'. It is a convenient way to avoid window clutter, and is
used in many popular Windows applications, such as Microsoft Word(TM).

Derived from

wxFrame (p. 555)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/mdi.h>

Remarks

There may be multiple MDI parent frames in a single application, but this probably only
makes sense within programming development environments.

Child frames may be of class wxMDIChildFrame (p. 875) (contained within the parent
frame) or wxFrame (p. 555) (shown as a top-level frame).

An MDI parent frame always has a wxMDIClientWindow (p. 878) associated with it,
which is the parent for MDI client frames. This client window may be resized to

CHAPTER 7

883

accommodate non-MDI windows, as seen in Microsoft Visual C++ (TM) and Microsoft
Publisher (TM), where a documentation window is placed to one side of the workspace.

MDI remains popular despite dire warnings from Microsoft itself that MDI is an obsolete
user interface style.

The implementation is native in Windows, and simulated under Motif. Under Motif, the
child window frames will often have a different appearance from other frames because
the window decorations are simulated.

Window styles

wxCAPTION Puts a caption on the frame.

wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |
wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION .

wxHSCROLL Displays a horizontal scrollbar in the client window,
allowing the user to view child frames that are off the
current view.

wxICONIZE Display the frame iconized (minimized) (Windows only).

wxMAXIMIZE Displays the frame maximized (Windows only).

wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif
only).

wxMINIMIZE Identical to wxICONIZE .

wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif
only).

wxRESIZE_BORDER Displays a resizeable border around the window (Motif
only; for Windows, it is implicit in wxTHICK_FRAME).

wxSTAY_ON_TOP Stay on top of other windows (Windows only).

wxSYSTEM_MENU Displays a system menu (Windows and Motif only).

wxTHICK_FRAME Displays a thick frame around the window (Windows and
Motif only).

wxVSCROLL Displays a vertical scrollbar in the client window, allowing
the user to view child frames that are off the current view.

wxFRAME_NO_WINDOW_MENU Under Windows, removes the Window menu that is
normally added automatically.

See also window styles overview (p. 1686).

See also

wxMDIChildFrame (p. 875), wxMDIClientWindow (p. 878), wxFrame (p. 555), wxDialog

CHAPTER 7

884

(p. 391)

wxMDIParentFrame::wxMDIParentFrame

 wxMDIParentFrame ()

Default constructor.

 wxMDIParentFrame (wxWindow* parent, wxWindowID id, const wxString& title,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxDEFAULT_FRAME_STYLE | wxVSCROLL | wxHSCROLL, const wxString&
name = "frame")

Constructor, creating the window.

Parameters

parent

The window parent. This should be NULL.

id

The window identifier. It may take a value of -1 to indicate a default value.

title

The caption to be displayed on the frame's title bar.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWidgets, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWidgets, depending on platform.

style

The window style. See wxMDIParentFrame (p. 880).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

During the construction of the frame, the client window will be created. To use a different
class from wxMDIClientWindow (p. 878), override wxMDIParentFrame::OnCreateClient

CHAPTER 7

885

(p. 885).

Under Windows 95, the client window will automatically have a sunken border style
when the active child is not maximized, and no border style when a child is maximized.

See also

wxMDIParentFrame::Create (p. 883), wxMDIParentFrame::OnCreateClient (p. 885)

wxMDIParentFrame::~wxMDIParentFrame

 ~wxMDIParentFrame ()

Destructor. Destroys all child windows and menu bar if present.

wxMDIParentFrame::ActivateNext

void ActivateNext ()

Activates the MDI child following the currently active one.

See also

wxMDIParentFrame::ActivatePrevious (p. 882)

wxMDIParentFrame::ActivatePrevious

void ActivatePrevious ()

Activates the MDI child preceding the currently active one.

See also

wxMDIParentFrame::ActivateNext (p. 882)

wxMDIParentFrame::ArrangeIcons

void ArrangeIcons ()

Arranges any iconized (minimized) MDI child windows.

See also

wxMDIParentFrame::Cascade (p. 883), wxMDIParentFrame::Tile (p. 886)

wxMDIParentFrame::Cascade

void Cascade ()

Arranges the MDI child windows in a cascade.

See also

CHAPTER 7

886

wxMDIParentFrame::Tile (p. 886), wxMDIParentFrame::ArrangeIcons (p. 883)

wxMDIParentFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE | wxVSCROLL | wxHSCROLL, const wxString& name
= "frame")

Used in two-step frame construction. See wxMDIParentFrame::wxMDIParentFrame (p.
881) for further details.

wxMDIParentFrame::GetClientSize

virtual void GetClientSize (int* width, int* height) const

This gets the size of the frame 'client area' in pixels.

Parameters

width

Receives the client width in pixels.

height

Receives the client height in pixels.

Remarks

The client area is the area which may be drawn on by the programmer, excluding title
bar, border, status bar, and toolbar if present.

If you wish to manage your own toolbar (or perhaps you have more than one), provide
an OnSize event handler. Call GetClientSize to find how much space there is for your
windows and don't forget to set the size and position of the MDI client window as well as
your toolbar and other windows (but not the status bar).

If you have set a toolbar with wxMDIParentFrame::SetToolbar (p. 885), the client size
returned will have subtracted the toolbar height. However, the available positions for the
client window and other windows of the frame do not start at zero - you must add the
toolbar height.

The position and size of the status bar and toolbar (if known to the frame) are always
managed by wxMDIParentFrame , regardless of what behaviour is defined in your
OnSize event handler. However, the client window position and size are always set in
OnSize , so if you override this event handler, make sure you deal with the client window.

You do not have to manage the size and position of MDI child windows, since they are
managed automatically by the client window.

See also

CHAPTER 7

887

wxMDIParentFrame::GetToolBar (p. 884), wxMDIParentFrame::SetToolBar (p. 885),
wxMDIClientWindow (p. 878)

wxPython note: The wxPython version of this method takes no arguments and returns
a tuple containing width and height.

wxMDIParentFrame::GetActiveChild

wxMDIChildFrame* GetActiveChild () const

Returns a pointer to the active MDI child, if there is one.

wxMDIParentFrame::GetClientWindow

wxMDIClientWindow* GetClientWindow () const

Returns a pointer to the client window.

See also

wxMDIParentFrame::OnCreateClient (p. 885)

wxMDIParentFrame::GetToolBar

virtual wxWindow* GetToolBar () const

Returns the window being used as the toolbar for this frame.

See also

wxMDIParentFrame::SetToolBar (p. 885)

wxMDIParentFrame::GetWindowMenu

wxMenu* GetWindowMenu () const

Returns the current Window menu (added by wxWidgets to the menubar). This function
is available under Windows only.

wxMDIParentFrame::OnCreateClient

virtual wxMDIClientWindow* OnCreateClient ()

Override this to return a different kind of client window. If you override this function, you
must create your parent frame in two stages, or your function will never be called, due to
the way C++ treats virtual functions called from constructors. For example:

 frame = new MyParentFrame;
 frame->Create(parent, myParentFrameId, wxT("My Pa rent Frame"));

Remarks

CHAPTER 7

888

You might wish to derive from wxMDIClientWindow (p. 878) in order to implement
different erase behaviour, for example, such as painting a bitmap on the background.

Note that it is probably impossible to have a client window that scrolls as well as painting
a bitmap or pattern, since in OnScroll , the scrollbar positions always return zero.
(Solutions to: julian.smart@btopenworld.com).

See also

wxMDIParentFrame::GetClientWindow (p. 884), wxMDIClientWindow (p. 878)

wxMDIParentFrame::SetToolBar

virtual void SetToolBar (wxWindow* toolbar)

Sets the window to be used as a toolbar for this MDI parent window. It saves the
application having to manage the positioning of the toolbar MDI client window.

Parameters

toolbar

Toolbar to manage.

Remarks

When the frame is resized, the toolbar is resized to be the width of the frame client area,
and the toolbar height is kept the same.

The parent of the toolbar must be this frame.

If you wish to manage your own toolbar (or perhaps you have more than one), don't call
this function, and instead manage your subwindows and the MDI client window by
providing an OnSize event handler. Call wxMDIParentFrame::GetClientSize (p. 883) to
find how much space there is for your windows.

Note that SDI (normal) frames and MDI child windows must always have their toolbars
managed by the application.

See also

wxMDIParentFrame::GetToolBar (p. 884), wxMDIParentFrame::GetClientSize (p. 883)

wxMDIParentFrame::SetWindowMenu

void SetWindowMenu (wxMenu* menu)

Call this to change the current Window menu. Ownership of the menu object passes to
the frame when you call this function.

This call is available under Windows only.

To remove the window completely, use the wxFRAME_NO_WINDOW_MENU window
style.

CHAPTER 7

889

wxMDIParentFrame::Tile

void Tile (wxOrientation orient = wxHORIZONTAL)

Tiles the MDI child windows either horizontally or vertically depending on whether orient
is wxHORIZONTAL or wxVERTICAL.

Currently only implemented for MSW, does nothing under the other platforms.

See also

wxMDIParentFrame::Cascade (p. 883), wxMDIParentFrame::ArrangeIcons (p. 883)

wxMediaCtrl

wxMediaCtrl is a class that allows a way to convieniently display types of media, such
as videos, audio files, natively through native codecs.

wxMediaCtrl uses native backends to render media, for example on Windows there is a
ActiveMovie/DirectShow backend, and on Macintosh there is a QuickTime backend.

Derived from

wxControl (p. 205)

Include files

<wx/mediactrl.h>

Rendering media

Depending upon the backend, wxMediaCtrl can render and display pretty much any kind
of media that the native system can - such as an image, mpeg video, or mp3 (without
license restrictions - since it relies on native system calls that may not technically have
mp3 decoding available, for example, it falls outside the realm of licensing restrictions).

For general operation, all you need to do is call wxMediaCtrl::Load (p. 890) to load the
file you want to render, catch the EVT_MEDIA_LOADED event, and then call
wxMediaCtrl::Play (p. 891) to show the video/audio of the media in that event.

More complex operations are generally more heavily dependant on the capabilities of
the backend. For example, QuickTime cannot set the playback rate of certain streaming
media - while DirectShow is slightly more flexible in that regard.

Operation

When wxMediaCtrl plays a file, it plays until the stop position is reached (currently the
end of the file/stream). Right before it hits the end of the stream, it fires off a
EVT_MEDIA_STOP event to its parent window, at which point the event handler can
choose to veto the event, preventing the stream from actually stopping.

CHAPTER 7

890

Example://connect to the media event
this->Connect(wxMY_ID, wxEVT_MEDIA_STOP, (wxObjectE ventFunction)
(wxEventFunction)(wxMediaEventFunction) &MyFrame::O nMediaStop);

//...
void MyFrame::OnMediaStop(const wxMediaEvent& evt)
{
 if(bUserWantsToSeek)
 {
 m_mediactrl->SetPosition(
 m_mediactrl->GetDuration() << 1
);
 evt.Veto();
 }
}

When wxMediaCtrl stops, either by the EVT_MEDIA_STOP not being vetoed, or by
manually calling wxMediaCtrl::Stop (p. 891), where it actually stops is not at the
beginning, rather, but at the beginning of the stream. That is, when it stops and play is
called, playback is gauranteed to start at the beginning of the media. This is because
some streams are not seekable, and when stop is called on them they return to the
beginning, thus wxMediaCtrl tries to keep consistant for all types of media.

Choosing a backend

Generally, you should almost certainly leave this part up to wxMediaCtrl - but if you need
a certain backend for a particular reason, such as QuickTime for playing .mov files, all
you need to do to choose a specific backend is to pass the name of the backend class
to wxMediaCtrl::Create (p. 889).

The following are valid backend identifiers -wxMEDIABACKEND_DIRECTSHOW
Use ActiveMovie/DirectShow. Requires
wxUSE_DIRECTSHOW to be enabled,
requires linkage with the static library
strmiids.lib, and is available on Windows Only.

wxMEDIABACKEND_QUICKTIME Use QuickTime. Windows and Mac Only.
NOTE: On Mac Systems lower than OSX 10.2
this defaults to emulating window positioning
and suffers from several bugs, including not
working correctly embedded in a wxNotebook.

wxMEDIABACKEND_MCI Use Media Command Interface. Windows
Only.

wxMEDIABACKEND_GSTREAMER Use GStreamer. Unix Only.

wxMediaCtrl::wxMediaCtrl

 wxMediaCtrl ()

Default constructor - you must call Create before calling any other methods of
wxMediaCtrl.

CHAPTER 7

891

 wxMediaCtrl (wxWindow* parent, const wxString& fileName = wxT(""),
wxWindowID id, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = 0, const wxString& szBackend = wxT(""),
const wxValidator& validator = wxDefaultValidator, const wxString& name =
wxPanelNameStr)

Constructor that calls Create (p. 889). You may prefer to call Create (p. 889) directly to
check to see if wxMediaCtrl is available on the system.

parent

parent of this control. Must not be NULL.

id

id to use for events

fileName

If not empty, the path of a file to open.

pos

Position to put control at.

size

Size to put the control at and to stretch movie to.

style

Optional styles.

szBackend

Name of backend you want to use, leave blank to make wxMediaCtrl figure it out.

validator

validator to use.

name

Window name.

wxMediaCtrl::Create

bool Create (wxWindow* parent, const wxString& fileName = wxT(""),
wxWindowID id, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = 0, const wxString& szBackend = wxT(""),
const wxValidator& validator = wxDefaultValidator, const wxString& name =
wxPanelNameStr)

Creates this control. Returns false if it can't load the movie located at fileName or it
cannot load one of its native backends.

CHAPTER 7

892

If you specify a file to open via fileName and you don't specify a backend to use,
wxMediaCtrl tries each of its backends until one that can render the path referred to by
fileName can be found.

parent

parent of this control. Must not be NULL.

id

id to use for events

fileName

If not empty, the path of a file to open.

pos

Position to put control at.

size

Size to put the control at and to stretch movie to.

style

Optional styles.

szBackend

Name of backend you want to use, leave blank to make wxMediaCtrl figure it out.

validator

validator to use.

name

Window name.

wxMediaCtrl::Length

wxFileOffset GetDuration ()

Obtains the length - the total amount of time the movie has in milliseconds.

wxMediaCtrl::Tell

wxFileOffset GetPosition ()

Obtains the current position in time within the movie in milliseconds.

wxMediaCtrl::GetState

CHAPTER 7

893

wxMediaCtrlState GetState ()

Obtains the state the playback of the movie is in -

wxMEDIASTATE_STOPPED The movie has stopped.

wxMEDIASTATE_PAUSED The movie is paused.

wxMEDIASTATE_PLAYING The movie is currently playing.

wxMediaCtrl::Load

bool Load (const wxString& fileName)

Loads the file that fileName refers to. Returns false if loading fails.

wxMediaCtrl::Load

bool Load (const wxURI& location)

Loads the url that location refers to. Returns false if loading fails.

wxMediaCtrl::Pause

bool Pause ()

Pauses playback of the movie.

wxMediaCtrl::Play

bool Play()

Resumes playback of the movie.

wxMediaCtrl::Seek

wxFileOffset Seek(wxFileOffset where, wxSeekMode mode)

Seeks to a position within the movie.

wxMediaCtrl::Stop

bool Stop ()

Stops the media.

See Operation (p. 887) for an overview of how stopping works.

wxMediaCtrl::SetVolume

bool SetVolume (double dVolume)

CHAPTER 7

894

Sets the volume of the media from a 0.0 to 1.0 range.

wxMediaCtrl::GetVolume

double GetVolume ()

Gets the volume of the media from a 0.0 to 1.0 range.

wxMediaCtrl::GetPlaybackRate

double GetPlaybackrate ()

Gets the playback rate of the media; for example 2.0 is double speed. Not implemented
on MCI or GStreamer.

wxMediaCtrl::SetPlaybackRate

bool SetPlaybackrate (double dVolume)

Sets the rate that the media plays; for example 0.5 is half speed.

wxMediaCtrl::ShowPlayerControls

bool ShowPlayerControls (wxMediaCtrlPlayerControls flags)

Normally, when you use wxMediaCtrl it is just a win dow
for the video to play in. However, platforms gene rally
have their own media player interface, like quickti me
has a bar below the video with a slider etc.. If y ou want
that native interface instead of making your own u se
this function. There are several options for the f lags
parameter, however you can look at the mediactrl
header for these. The two general flags are
wxMEDIACTRLPLAYERCONTROLS_NONE which turns
off the native interface, and
wxMEDIACTRLPLAYERCONTROLS_DEFAULT which
lets wxMediaCtrl decide what native controls on the
interface.wxMediaEvent

Event wxMediaCtrl (p. 886) uses.

Derived from

wxNotifyEvent (p. 966)

CHAPTER 7

895

Include files

<wx/mediactrl.h>

Event table macros

EVT_MEDIA_LOADED(func) Sent when a media has loaded enough data
that it can start playing.

EVT_MEDIA_STOP(func) Triggerred right before the media stops. You
can Veto this event to prevent it from stopping,
causing it to continue playing - even if it has
reached that end of the media.

EVT_MEDIA_FINISHED(func) Sent when a media has finished playing in a
wxMediaCtrl (p. 886). Note that if you connect
to this event and don't skip it, it will override the
looping behaviour of the media control.

wxMemoryBuffer

A wxMemoryBuffer is a useful data structure for storing arbitrary sized blocks of
memory. wxMemoryBuffer guarantees deletion of the memory block when the object is
destroyed.

Derived from

None

Include files

<wx/buffer.h>

wxMemoryBuffer::wxMemoryBuffer

 wxMemoryBuffer (const wxMemoryBuffer& src)

Copy constructor, refcounting is used for performance , but wxMemoryBuffer is not a
copy-on-write structure so changes made to one buffer effect all copies made from it.

 wxMemoryBuffer (size_t size)

Create a new buffer.

size

size of new buffer.

wxMemoryBuffer::GetData

CHAPTER 7

896

void* GetData ()

Return a pointer to the data in the buffer.

wxMemoryBuffer::GetBufSize

size_t GetBufSize ()

Returns the size of the buffer.

wxMemoryBuffer::GetDataLen

size_t GetDataLen ()

Returns the length of the valid data in the buffer.

wxMemoryBuffer::SetBufSize

void SetBufSize (size_t size)

Ensures the buffer has at least size bytes available.

wxMemoryBuffer::SetDataLen

void SetDataLen (size_t size)

Sets the length of the data stored in the buffer. Mainly useful for truncating existing data.

size

New length of the valid data in the buffer. This is distinct from the allocated size

wxMemoryBuffer::GetWriteBuf

void * GetWriteBuf (size_t sizeNeeded)

Ensure the buffer is big enough and return a pointer to the buffer which can be used to
directly write into the buffer up to sizeNeeded bytes.

wxMemoryBuffer::UngetWriteBuf

void UngetWriteBuf (size_t sizeUsed)

Update the buffer after completing a direct write, which you must have used
GetWriteBuf() to initialise.

sizeUsed

The amount of data written in to buffer by the direct write

wxMemoryBuffer::GetAppendBuf

CHAPTER 7

897

void * GetAppendBuf (size_t sizeNeeded)

Ensure that the buffer is big enough and return a pointer to the start of the empty space
in the buffer. This pointer can be used to directly write data into the buffer, this new data
will be appended to the existing data.

sizeNeeded

Amount of extra space required in the buffer for the append operation

wxMemoryBuffer::UngetAppendBuf

void UngetAppendBuf (size_t sizeUsed)

Update the length after completing a direct append, which you must have used
GetAppendBuf() to initialise.

sizeUsed

This is the amount of new data that has been appended.

wxMemoryBuffer::AppendByte

void AppendByte (char data)

Append a single byte to the buffer.

data

New byte to append to the buffer.

wxMemoryBuffer::AppendData

void AppendData (void* data, size_t len)

Single call to append a data block to the buffer.

data

Pointer to block to append to the buffer.

len

Length of data to append.

wxMemoryDC

A memory device context provides a means to draw graphics onto a bitmap. When
drawing in to a mono-bitmap, using wxWHITE, wxWHITE_PEN andwxWHITE_BRUSHwill
draw the background colour (i.e. 0) whereas all other colours will draw the foreground
colour (i.e. 1).

CHAPTER 7

898

Derived from

wxDC (p. 353)
wxObject (p. 967)

Include files

<wx/dcmemory.h>

Remarks

A bitmap must be selected into the new memory DC before it may be used for anything.
Typical usage is as follows:

 // Create a memory DC
 wxMemoryDC temp_dc;
 temp_dc.SelectObject(test_bitmap);

 // We can now draw into the memory DC...
 // Copy from this DC to another DC.
 old_dc.Blit(250, 50, BITMAP_WIDTH, BITMAP_HEIGHT, temp_dc, 0,
0);

Note that the memory DC must be deleted (or the bitmap selected out of it) before a
bitmap can be reselected into another memory DC.

See also

wxBitmap (p. 76), wxDC (p. 353)

wxMemoryDC::wxMemoryDC

 wxMemoryDC ()

Constructs a new memory device context.

Use the Ok member to test whether the constructor was successful in creating a usable
device context. Don't forget to select a bitmap into the DC before drawing on it.

wxMemoryDC::SelectObject

void SelectObject (const wxBitmap& bitmap)

Selects the given bitmap into the device context, to use as the memory bitmap. Selecting
the bitmap into a memory DC allows you to draw into the DC (and therefore the bitmap)
and also to use Blit to copy the bitmap to a window. For this purpose, you may find
wxDC::DrawIcon (p. 358) easier to use instead.

If the argument is wxNullBitmap (or some other uninitialised wxBitmap) the current
bitmap is selected out of the device context, and the original bitmap restored, allowing
the current bitmap to be destroyed safely.

CHAPTER 7

899

wxMemoryFSHandler

This wxFileSystem (p. 517) handler can store arbitrary data in memory stream and
make them accessible via URL. It is particularly suitable for storing bitmaps from
resources or included XPM files so that they can be used with wxHTML.

Filenames are prefixed with "memory:", e.g. "memory:myfile.html".

Example:

#ifndef __WXMSW__
#include "logo.xpm"
#endif

void MyFrame::OnAbout(wxCommandEvent&)
{
 wxBusyCursor bcur;
 wxFileSystem::AddHandler(new wxMemoryFSHandler) ;
 wxMemoryFSHandler::AddFile("logo.pcx", wxBITMAP (logo),
wxBITMAP_TYPE_PCX);
 wxMemoryFSHandler::AddFile("about.htm",
 "<html><body>About: "
 "<img
src=\"memory:logo.pcx\"></body></html>");

 wxDialog dlg(this, -1, wxString(_("About")));
 wxBoxSizer *topsizer;
 wxHtmlWindow *html;
 topsizer = new wxBoxSizer(wxVERTICAL);
 html = new wxHtmlWindow(&dlg, -1, wxDefaultPosi tion,
 wxSize(380, 160),
wxHW_SCROLLBAR_NEVER);
 html->SetBorders(0);
 html->LoadPage("memory:about.htm");
 html->SetSize(html->GetInternalRepresentation() ->GetWidth(),
 html->GetInternalRepresentation() ->GetHeight());
 topsizer->Add(html, 1, wxALL, 10);
 topsizer->Add(new wxStaticLine(&dlg, -1), 0, wx EXPAND | wxLEFT
| wxRIGHT, 10);
 topsizer->Add(new wxButton(&dlg, wxID_OK, "Ok") ,
 0, wxALL | wxALIGN_RIGHT, 15);
 dlg.SetAutoLayout(true);
 dlg.SetSizer(topsizer);
 topsizer->Fit(&dlg);
 dlg.Centre();
 dlg.ShowModal();

 wxMemoryFSHandler::RemoveFile("logo.pcx");
 wxMemoryFSHandler::RemoveFile("about.htm");
}

Derived from

wxFileSystemHandler (p. 520)

Include files

<wx/fs_mem.h>

CHAPTER 7

900

wxMemoryFSHandler::wxMemoryFSHandler

 wxMemoryFSHandler ()

Constructor.

wxMemoryFSHandler::AddFile

static void AddFile (const wxString& filename, wxImage& image, long type)

static void AddFile (const wxString& filename, const wxBitmap& bitmap, long type)

static void AddFile (const wxString& filename, const wxString& textdata)

static void AddFile (const wxString& filename, const void* binarydata, size_t size)

Add file to list of files stored in memory. Stored data (bitmap, text or raw data) will be
copied into private memory stream and available under name "memory:" + filename.

The type argument is one of wxBITMAP_TYPE_XXX constants. Note that you must use a
type value (aka image format) that wxWidgets can save (e.g. JPG, PNG, see wxImage
documentation (p. 742))!

wxMemoryFSHandler::RemoveFile

static void RemoveFile (const wxString& filename)

Remove file from memory FS and free occupied memory.

wxMemoryInputStream

Derived from

wxInputStream (p. 777)

Include files

<wx/mstream.h>

See also

wxStreamBuffer (p. 1220), wxMemoryOutputStream (p. 898)

wxMemoryInputStream::wxMemoryInputStream

 wxMemoryInputStream (const char * data, size_t len)

Initializes a new read-only memory stream which will use the specified bufferdata of
length len. The stream does not take ownership of the buffer, i.e. that it will not delete in
its destructor.

CHAPTER 7

901

 wxMemoryInputStream (const wxMemoryOutputStream& stream)

Creates a new read-only memory stream, initilalizing it with the data from the given
output stream stream.

wxMemoryInputStream::~wxMemoryInputStream

 ~wxMemoryInputStream ()

Destructor.

wxMemoryInputStream::GetInputStreamBuffer

wxStreamBuffer * GetInputStreamBuffer () const

Returns the pointer to the stream object used as an internal buffer for that stream.

wxMemoryOutputStream

Derived from

wxOutputStream (p. 971)

Include files

<wx/mstream.h>

See also

wxStreamBuffer (p. 1220)

wxMemoryOutputStream::wxMemoryOutputStream

 wxMemoryOutputStream (char * data = NULL, size_t length = 0)

If data is NULL, then it will initialize a new empty buffer which will grow if required.

Warning

If the buffer is created, it will be destroyed at the destruction of the stream.

wxMemoryOutputStream::~wxMemoryOutputStream

 ~wxMemoryOutputStream ()

Destructor.

wxMemoryOutputStream::CopyTo

CHAPTER 7

902

size_t CopyTo (char * buffer, size_t len) const

CopyTo allowed you to transfer data from the internal buffer of wxMemoryOutputStream
to an external buffer. len specifies the size of the buffer.

Returned value

CopyTo returns the number of bytes copied to the buffer. Generally it is either len or the
size of the stream buffer.

wxMemoryOutputStream::GetOutputStreamBuffer

wxStreamBuffer * GetOutputStreamBuffer () const

Returns the pointer to the stream object used as an internal buffer for that stream.

wxMenu

A menu is a popup (or pull down) list of items, one of which may be selected before the
menu goes away (clicking elsewhere dismisses the menu). Menus may be used to
construct either menu bars or popup menus.

A menu item has an integer ID associated with it which can be used to identify the
selection, or to change the menu item in some way. A menu item with a special identifier
-1 is a separator item and doesn't have an associated command but just makes a
separator line appear in the menu.

NB: Please note that wxID_ABOUT and wxID_EXIT are predefined by wxWidgets and
have a special meaning since entries using these IDs will be taken out of the normal
menus under MacOS X and will be inserted into the system menu (following the
appropriate MacOS X interface guideline). On PalmOS wxID_EXIT is disabled according
to Palm OS Companion guidelines.

Menu items may be either normal items, check items or radio items. Normal items don't
have any special properties while the check items have a boolean flag associated to
them and they show a checkmark in the menu when the flag is set. wxWidgets
automatically toggles the flag value when the item is clicked and its value may be
retrieved using either IsChecked (p. 909) method of wxMenu or wxMenuBar itself or by
using wxEvent::IsChecked (p. 176) when you get the menu notification for the item in
question.

The radio items are similar to the check items except that all the other items in the same
radio group are unchecked when a radio item is checked. The radio group is formed by a
contiguous range of radio items, i.e. it starts at the first item of this kind and ends with
the first item of a different kind (or the end of the menu). Notice that because the radio
groups are defined in terms of the item positions inserting or removing the items in the
menu containing the radio items risks to not work correctly. Finally note that radio items
are not supported under Motif.

Allocation strategy

All menus except the popup ones must be created on the heap. All menus attached to a

CHAPTER 7

903

menubar or to another menu will be deleted by their parent when it is deleted. As the
frame menubar is deleted by the frame itself, it means that normally all menus used are
deleted automatically.

Derived from

wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/menu.h>

Event handling

If the menu is part of a menubar, then wxMenuBar (p. 912) event processing is used.

With a popup menu, there is a variety of ways to handle a menu selection event
(wxEVT_COMMAND_MENU_SELECTED).

 1. Derive a new class from wxMenu and define event table entries using the
EVT_MENU macro.

 2. Set a new event handler for wxMenu, using an object whose class has
EVT_MENU entries.

 3. Provide EVT_MENU handlers in the window which pops up the menu, or in an
ancestor of this window.

 4. Define a callback of type wxFunction, which you pass to the wxMenu
constructor. The callback takes a reference to the menu, and a reference to
awxCommandEvent (p. 172). This method is deprecated and should not be
used in the new code, it is provided for backwards compatibility only.

See also

wxMenuBar (p. 912), wxWindow::PopupMenu (p. 1450), Event handling overview (p.
1674)

wxMenu::wxMenu

 wxMenu (const wxString& title = "", long style = 0)

Constructs a wxMenu object.

Parameters

title

A title for the popup menu: the empty string denotes no title.

style

CHAPTER 7

904

If set to wxMENU_TEAROFF, the menu will be detachable (wxGTK only).

 wxMenu (long style)

Constructs a wxMenu object.

Parameters

style

If set to wxMENU_TEAROFF, the menu will be detachable (wxGTK only).

wxMenu::~wxMenu

 ~wxMenu ()

Destructor, destroying the menu.

Note: under Motif, a popup menu must have a valid parent (the window it was last
popped up on) when being destroyed. Therefore, make sure you delete or re-use the
popup menu before destroying the parent window. Re-use in this context means popping
up the menu on a different window from last time, which causes an implicit destruction
and recreation of internal data structures.

wxMenu::Append

wxMenuItem* Append (int id, const wxString& item, const wxString& helpString = "",
wxItemKind kind = wxITEM_NORMAL)

Adds a string item to the end of the menu.

wxMenuItem* Append (int id, const wxString& item, wxMenu * subMenu, const
wxString& helpString = "")

Adds a pull-right submenu to the end of the menu. Append the submenu to the parent
menu after you have added your menu items, or accelerators may not be registered
properly.

wxMenuItem* Append (wxMenuItem* menuItem)

Adds a menu item object. This is the most generic variant of Append() method because
it may be used for both items (including separators) and submenus and because you
can also specify various extra properties of a menu item this way, such as bitmaps and
fonts.

Parameters

id

The menu command identifier.

item

The string to appear on the menu item.

CHAPTER 7

905

menu

Pull-right submenu.

kind

May be wxITEM_SEPARATOR, wxITEM_NORMAL, wxITEM_CHECK or
wxITEM_RADIO

helpString

An optional help string associated with the item. By default, the handler for the
wxEVT_MENU_HIGHLIGHT event displays this string in the status line.

menuItem

A menuitem object. It will be owned by the wxMenu object after this function is
called, so do not delete it yourself.

Remarks

This command can be used after the menu has been shown, as well as on initial
creation of a menu or menubar.

The item string for the normal menu items (not submenus or separators) may include the
accelerator which can be used to activate the menu item from keyboard. The accelerator
string follows the item label and is separated from it by a TAB character ('\t'). Its
general syntax is any combination of "CTRL" , "ALT" and "SHIFT" strings (case
doesn't matter) separated by either '-' or '+' characters and followed by the
accelerator itself. The accelerator may be any alphanumeric character, any function key
(from F1 to F12) or one of the special characters listed in the table below (again, case
doesn't matter):

DEL or DELETE Delete key

INS or INSERT Insert key

ENTER or RETURN Enter key

PGUP PageUp key

PGDN PageDown key

LEFT Left cursor arrow key

RIGHT Right cursor arrow key

UP Up cursor arrow key

DOWN Down cursor arrow key

HOME Home key

END End key

CHAPTER 7

906

SPACE Space

TAB Tab key

ESC or ESCAPE Escape key (Windows only)

See also

wxMenu::AppendSeparator (p. 904), wxMenu::AppendCheckItem (p. 903),
wxMenu::AppendRadioItem (p. 904), wxMenu::Insert (p. 908), wxMenu::SetLabel (p.
911), wxMenu::GetHelpString (p. 907), wxMenu::SetHelpString (p. 911), wxMenuItem (p.
922)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Append(id, string, helpStr="", checkable=false)

AppendMenu(id, string, aMenu, helpStr="")

AppendItem(aMenuItem)

wxMenu::AppendCheckItem

wxMenuItem* AppendCheckItem (int id, const wxString& item, const wxString&
helpString = "")

Adds a checkable item to the end of the menu.

See also

wxMenu::Append (p. 901), wxMenu::InsertCheckItem (p. 908)

wxMenu::AppendRadioItem

wxMenuItem* AppendRadioItem (int id, const wxString& item, const wxString&
helpString = "")

Adds a radio item to the end of the menu. All consequent radio items form a group and
when an item in the group is checked, all the others are automatically unchecked.

NB: Currently only implemented under Windows and GTK, use#if
wxHAS_RADIO_MENU_ITEMS to test for availability of this feature.

See also

wxMenu::Append (p. 901), wxMenu::InsertRadioItem (p. 908)

wxMenu::AppendSeparator

wxMenuItem* AppendSeparator ()

CHAPTER 7

907

Adds a separator to the end of the menu.

See also

wxMenu::Append (p. 901), wxMenu::InsertSeparator (p. 909)

wxMenu::Break

void Break ()

Inserts a break in a menu, causing the next appended item to appear in a new column.

wxMenu::Check

void Check (int id, const bool check)

Checks or unchecks the menu item.

Parameters

id

The menu item identifier.

check

If true, the item will be checked, otherwise it will be unchecked.

See also

wxMenu::IsChecked (p. 909)

wxMenu::Delete

void Delete (int id)

void Delete (wxMenuItem * item)

Deletes the menu item from the menu. If the item is a submenu, it willnot be deleted.
Use Destroy (p. 905) if you want to delete a submenu.

Parameters

id

Id of the menu item to be deleted.

item

Menu item to be deleted.

See also

wxMenu::FindItem (p. 906), wxMenu::Destroy (p. 905), wxMenu::Remove (p. 910)

CHAPTER 7

908

wxMenu::Destroy

void Destroy (int id)

void Destroy (wxMenuItem * item)

Deletes the menu item from the menu. If the item is a submenu, it will be deleted. Use
Remove (p. 910) if you want to keep the submenu (for example, to reuse it later).

Parameters

id

Id of the menu item to be deleted.

item

Menu item to be deleted.

See also

wxMenu::FindItem (p. 906), wxMenu::Deletes (p. 905), wxMenu::Remove (p. 910)

wxMenu::Enable

void Enable (int id, const bool enable)

Enables or disables (greys out) a menu item.

Parameters

id

The menu item identifier.

enable

true to enable the menu item, false to disable it.

See also

wxMenu::IsEnabled (p. 909)

wxMenu::FindItem

int FindItem (const wxString& itemString) const

Finds the menu item id for a menu item string.

wxMenuItem * FindItem (int id, wxMenu ** menu = NULL) const

Finds the menu item object associated with the given menu item identifier and,
optionally, the (sub)menu it belongs to.

CHAPTER 7

909

wxPerl note: In wxPerl this method takes just the id parameter; in scalar context it
returns the associated Wx::MenuItem , in list context it returns a 2-element list (
item, submenu)

Parameters

itemString

Menu item string to find.

id

Menu item identifier.

menu

If the pointer is not NULL, it will be filled with the item's parent menu (if the item
was found)

Return value

First form: menu item identifier, or wxNOT_FOUND if none is found.

Second form: returns the menu item object, or NULL if it is not found.

Remarks

Any special menu codes are stripped out of source and target strings before matching.

wxPython note: The name of this method in wxPython is FindItemById and it does
not support the second parameter.

wxMenu::FindItemByPosition

wxMenuItem* FindItemByPosition (size_t position) const

Returns the wxMenuItem given a position in the menu.

wxMenu::GetHelpString

wxString GetHelpString (int id) const

Returns the help string associated with a menu item.

Parameters

id

The menu item identifier.

Return value

The help string, or the empty string if there is no help string or the item was not found.

See also

CHAPTER 7

910

wxMenu::SetHelpString (p. 911), wxMenu::Append (p. 901)

wxMenu::GetLabel

wxString GetLabel (int id) const

Returns a menu item label.

Parameters

id

The menu item identifier.

Return value

The item label, or the empty string if the item was not found.

See also

wxMenu::SetLabel (p. 911)

wxMenu::GetMenuItemCount

size_t GetMenuItemCount () const

Returns the number of items in the menu.

wxMenu::GetMenuItems

wxMenuItemList& GetMenuItems () const

Returns the list of items in the menu. wxMenuItemList is a pseudo-template list class
containing wxMenuItem pointers.

wxMenu::GetTitle

wxString GetTitle () const

Returns the title of the menu.

Remarks

This is relevant only to popup menus, use wxMenuBar::GetLabelTop (p. 917) for the
menus in the menubar.

See also

wxMenu::SetTitle (p. 912)

wxMenu::Insert

CHAPTER 7

911

wxMenuItem* Insert (size_t pos, wxMenuItem * item)

wxMenuItem* Insert (size_t pos, int id, const wxString& item, const wxString&
helpString = "", wxItemKind kind = wxITEM_NORMAL)

Inserts the given item before the position pos. Inserting the item at position
GetMenuItemCount (p. 907) is the same as appending it.

See also

wxMenu::Append (p. 901), wxMenu::Prepend (p. 909)

wxMenu::InsertCheckItem

wxMenuItem* InsertCheckItem (size_t pos, int id, const wxString& item, const
wxString& helpString = "")

Inserts a checkable item at the given position.

See also

wxMenu::Insert (p. 908), wxMenu::AppendCheckItem (p. 903)

wxMenu::InsertRadioItem

wxMenuItem* InsertRadioItem (size_t pos, int id, const wxString& item, const
wxString& helpString = "")

Inserts a radio item at the given position.

See also

wxMenu::Insert (p. 908), wxMenu::AppendRadioItem (p. 904)

wxMenu::InsertSeparator

wxMenuItem* InsertSeparator (size_t pos)

Inserts a separator at the given position.

See also

wxMenu::Insert (p. 908), wxMenu::AppendSeparator (p. 904)

wxMenu::IsChecked

bool IsChecked (int id) const

Determines whether a menu item is checked.

Parameters

id

CHAPTER 7

912

The menu item identifier.

Return value

true if the menu item is checked, false otherwise.

See also

wxMenu::Check (p. 904)

wxMenu::IsEnabled

bool IsEnabled (int id) const

Determines whether a menu item is enabled.

Parameters

id

The menu item identifier.

Return value

true if the menu item is enabled, false otherwise.

See also

wxMenu::Enable (p. 905)

wxMenu::Prepend

wxMenuItem* Prepend (wxMenuItem * item)

wxMenuItem* Prepend (int id, const wxString& item, const wxString& helpString =
"", wxItemKind kind = wxITEM_NORMAL)

Inserts the given item at position 0, i.e. before all the other existing items.

See also

wxMenu::Append (p. 901), wxMenu::Insert (p. 908)

wxMenu::PrependCheckItem

wxMenuItem* PrependCheckItem (int id, const wxString& item, const wxString&
helpString = "")

Inserts a checkable item at position 0.

See also

wxMenu::Prepend (p. 909), wxMenu::AppendCheckItem (p. 903)

CHAPTER 7

913

wxMenu::PrependRadioItem

wxMenuItem* PrependRadioItem (int id, const wxString& item, const wxString&
helpString = "")

Inserts a radio item at position 0.

See also

wxMenu::Prepend (p. 909), wxMenu::AppendRadioItem (p. 904)

wxMenu::PrependSeparator

wxMenuItem* PrependSeparator ()

Inserts a separator at position 0.

See also

wxMenu::Prepend (p. 909), wxMenu::AppendSeparator (p. 904)

wxMenu::Remove

wxMenuItem * Remove (int id)

wxMenuItem * Remove (wxMenuItem * item)

Removes the menu item from the menu but doesn't delete the associated C++ object.
This allows to reuse the same item later by adding it back to the menu (especially useful
with submenus).

Parameters

id

The identifier of the menu item to remove.

item

The menu item to remove.

Return value

The item which was detached from the menu.

wxMenu::SetHelpString

void SetHelpString (int id, const wxString& helpString)

Sets an item's help string.

Parameters

id

CHAPTER 7

914

The menu item identifier.

helpString

The help string to set.

See also

wxMenu::GetHelpString (p. 907)

wxMenu::SetLabel

void SetLabel (int id, const wxString& label)

Sets the label of a menu item.

Parameters

id

The menu item identifier.

label

The menu item label to set.

See also

wxMenu::Append (p. 901), wxMenu::GetLabel (p. 907)

wxMenu::SetTitle

void SetTitle (const wxString& title)

Sets the title of the menu.

Parameters

title

The title to set.

Remarks

This is relevant only to popup menus, use wxMenuBar::SetLabelTop (p. 920) for the
menus in the menubar.

See also

wxMenu::GetTitle (p. 908)

wxMenu::UpdateUI

void UpdateUI (wxEvtHandler* source = NULL) const

CHAPTER 7

915

Sends events to source (or owning window if NULL) to update the menu UI. This is
called just before the menu is popped up with wxWindow::PopupMenu (p. 1450), but the
application may call it at other times if required.

See also

wxUpdateUIEvent (p. 1381)

wxMenuBar

A menu bar is a series of menus accessible from the top of a frame.

Derived from

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/menu.h>

Event handling

To respond to a menu selection, provide a handler for EVT_MENU, in the frame that
contains the menu bar. If you have a toolbar which uses the same identifiers as your
EVT_MENU entries, events from the toolbar will also be processed by your EVT_MENU
event handlers.

Tip: under Windows, if you discover that menu shortcuts (for example, Alt-F to show the
file menu) are not working, check any EVT_CHAR events you are handling in child
windows. If you are not calling event.Skip() for events that you don't process in
these event handlers, menu shortcuts may cease to work.

See also

wxMenu (p. 899), Event handling overview (p. 1674)

wxMenuBar::wxMenuBar

 wxMenuBar (long style = 0)

Default constructor.

 wxMenuBar (size_t n, wxMenu* menus[], const wxString titles[], long style = 0)

Construct a menu bar from arrays of menus and titles.

Parameters

n

CHAPTER 7

916

The number of menus.

menus

An array of menus. Do not use this array again - it now belongs to the menu bar.

titles

An array of title strings. Deallocate this array after creating the menu bar.

style

If wxMB_DOCKABLE the menu bar can be detached (wxGTK only).

wxPython note: Only the default constructor is supported in wxPython. Use
wxMenuBar::Append (p. 913) instead.

wxPerl note: wxPerl only supports the first constructor: use wxMenuBar::Append (p.
913) instead.

wxMenuBar::~wxMenuBar

void ~wxMenuBar ()

Destructor, destroying the menu bar and removing it from the parent frame (if any).

wxMenuBar::Append

bool Append (wxMenu * menu, const wxString& title)

Adds the item to the end of the menu bar.

Parameters

menu

The menu to add. Do not deallocate this menu after calling Append .

title

The title of the menu.

Return value

true on success, false if an error occurred.

See also

wxMenuBar::Insert (p. 917)

wxMenuBar::Check

void Check (int id, const bool check)

CHAPTER 7

917

Checks or unchecks a menu item.

Parameters

id

The menu item identifier.

check

If true, checks the menu item, otherwise the item is unchecked.

Remarks

Only use this when the menu bar has been associated with a frame; otherwise, use the
wxMenu equivalent call.

wxMenuBar::Enable

void Enable (int id, const bool enable)

Enables or disables (greys out) a menu item.

Parameters

id

The menu item identifier.

enable

true to enable the item, false to disable it.

Remarks

Only use this when the menu bar has been associated with a frame; otherwise, use the
wxMenu equivalent call.

wxMenuBar::EnableTop

void EnableTop (int pos, const bool enable)

Enables or disables a whole menu.

Parameters

pos

The position of the menu, starting from zero.

enable

true to enable the menu, false to disable it.

Remarks

CHAPTER 7

918

Only use this when the menu bar has been associated with a frame.

wxMenuBar::FindMenu

int FindMenu (const wxString& title) const

Returns the index of the menu with the given title or wxNOT_FOUND if no such menu
exists in this menubar. The title parameter may specify either the menu title (with
accelerator characters, i.e. "&File") or just the menu label ("File") indifferently.

wxMenuBar::FindMenuItem

int FindMenuItem (const wxString& menuString, const wxString& itemString) const

Finds the menu item id for a menu name/menu item string pair.

Parameters

menuString

Menu title to find.

itemString

Item to find.

Return value

The menu item identifier, or wxNOT_FOUND if none was found.

Remarks

Any special menu codes are stripped out of source and target strings before matching.

wxMenuBar::FindItem

wxMenuItem * FindItem (int id, wxMenu **menu = NULL) const

Finds the menu item object associated with the given menu item identifier.

Parameters

id

Menu item identifier.

menu

If not NULL, menu will get set to the associated menu.

Return value

The found menu item object, or NULL if one was not found.

CHAPTER 7

919

wxMenuBar::GetHelpString

wxString GetHelpString (int id) const

Gets the help string associated with the menu item identifier.

Parameters

id

The menu item identifier.

Return value

The help string, or the empty string if there was no help string or the menu item was not
found.

See also

wxMenuBar::SetHelpString (p. 919)

wxMenuBar::GetLabel

wxString GetLabel (int id) const

Gets the label associated with a menu item.

Parameters

id

The menu item identifier.

Return value

The menu item label, or the empty string if the item was not found.

Remarks

Use only after the menubar has been associated with a frame.

wxMenuBar::GetLabelTop

wxString GetLabelTop (int pos) const

Returns the label of a top-level menu. Note that the returned string does not include the
accelerator characters which could have been specified in the menu title string during its
construction.

Parameters

pos

Position of the menu on the menu bar, starting from zero.

CHAPTER 7

920

Return value

The menu label, or the empty string if the menu was not found.

Remarks

Use only after the menubar has been associated with a frame.

See also

wxMenuBar::SetLabelTop (p. 920)

wxMenuBar::GetMenu

wxMenu* GetMenu (int menuIndex) const

Returns the menu at menuIndex (zero-based).

wxMenuBar::GetMenuCount

int GetMenuCount () const

Returns the number of menus in this menubar.

wxMenuBar::Insert

bool Insert (size_t pos, wxMenu * menu, const wxString& title)

Inserts the menu at the given position into the menu bar. Inserting menu at position 0 will
insert it in the very beginning of it, inserting at position GetMenuCount() (p. 917) is the
same as calling Append() (p. 913).

Parameters

pos

The position of the new menu in the menu bar

menu

The menu to add. wxMenuBar owns the menu and will free it.

title

The title of the menu.

Return value

true on success, false if an error occurred.

See also

wxMenuBar::Append (p. 913)

CHAPTER 7

921

wxMenuBar::IsChecked

bool IsChecked (int id) const

Determines whether an item is checked.

Parameters

id

The menu item identifier.

Return value

true if the item was found and is checked, false otherwise.

wxMenuBar::IsEnabled

bool IsEnabled (int id) const

Determines whether an item is enabled.

Parameters

id

The menu item identifier.

Return value

true if the item was found and is enabled, false otherwise.

wxMenuBar::Refresh

void Refresh ()

Redraw the menu bar

wxMenuBar::Remove

wxMenu * Remove (size_t pos)

Removes the menu from the menu bar and returns the menu object - the caller is
responsible for deleting it. This function may be used together with wxMenuBar::Insert
(p. 917) to change the menubar dynamically.

See also

wxMenuBar::Replace (p. 919)

wxMenuBar::Replace

wxMenu * Replace (size_t pos, wxMenu * menu, const wxString& title)

CHAPTER 7

922

Replaces the menu at the given position with another one.

Parameters

pos

The position of the new menu in the menu bar

menu

The menu to add.

title

The title of the menu.

Return value

The menu which was previously at position pos. The caller is responsible for deleting it.

See also

wxMenuBar::Insert (p. 917), wxMenuBar::Remove (p. 919)

wxMenuBar::SetHelpString

void SetHelpString (int id, const wxString& helpString)

Sets the help string associated with a menu item.

Parameters

id

Menu item identifier.

helpString

Help string to associate with the menu item.

See also

wxMenuBar::GetHelpString (p. 916)

wxMenuBar::SetLabel

void SetLabel (int id, const wxString& label)

Sets the label of a menu item.

Parameters

id

Menu item identifier.

CHAPTER 7

923

label

Menu item label.

Remarks

Use only after the menubar has been associated with a frame.

See also

wxMenuBar::GetLabel (p. 916)

wxMenuBar::SetLabelTop

void SetLabelTop (int pos, const wxString& label)

Sets the label of a top-level menu.

Parameters

pos

The position of a menu on the menu bar, starting from zero.

label

The menu label.

Remarks

Use only after the menubar has been associated with a frame.

See also

wxMenuBar::GetLabelTop (p. 917)

wxMenuEvent

This class is used for a variety of menu-related events. Note that these do not include
menu command events, which are handled using wxCommandEvent (p. 172) objects.

The default handler for wxEVT_MENU_HIGHLIGHT displays help text in the first field of
the status bar.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

CHAPTER 7

924

To process a menu event, use these event handler macros to direct input to member
functions that take a wxMenuEvent argument. They can only be processed by a
menubar's frame.

EVT_MENU_OPEN(func) A menu is about to be opened. On Windows,
this is only sent once for each navigation of the
menubar (up until all menus have closed).

EVT_MENU_CLOSE(func) A menu has been just closed.

EVT_MENU_HIGHLIGHT(id, func) The menu item with the specified id has been
highlighted: used to show help prompts in the
status bar by wxFrame (p. 555)

EVT_MENU_HIGHLIGHT_ALL(func) A menu item has been highlighted, i.e. the
currently selected menu item has changed.

See also

Command events (p. 172),
Event handling overview (p. 1674)

wxMenuEvent::wxMenuEvent

 wxMenuEvent (WXTYPE id = 0, int id = 0, wxMenu* menu = NULL)

Constructor.

wxMenuEvent::GetMenu

wxMenu * GetMenu () const

Returns the menu which is being opened or closed. This method should only be used
with the OPEN and CLOSE events.

wxMenuEvent::GetMenuId

int GetMenuId () const

Returns the menu identifier associated with the event. This method should be only used
with the HIGHLIGHT events.

wxMenuEvent::IsPopup

bool IsPopup () const

Returns true if the menu which is being opened or closed is a popup menu, false if it
is a normal one.

This method should only be used with the OPEN and CLOSE events.

CHAPTER 7

925

wxMenuItem

A menu item represents an item in a menu. Note that you usually don't have to deal with
it directly as wxMenu (p. 899) methods usually construct an object of this class for you.

Also please note that the methods related to fonts and bitmaps are currently only
implemented for Windows and GTK+.

Derived from

wxOwnerDrawn (Windows only)
wxObject (p. 967)

Include files

<wx/menuitem.h>

See also

wxMenuBar (p. 912), wxMenu (p. 899)

wxMenuItem::wxMenuItem

 wxMenuItem (wxMenu* parentMenu = NULL, int id = wxID_SEPARATOR, const
wxString& text = "", const wxString& helpString = "", wxItemKind kind =
wxITEM_NORMAL, wxMenu* subMenu = NULL)

Constructs a wxMenuItem object.

Parameters

parentMenu

Menu that the menu item belongs to.

id

Identifier for this menu item, or wxID_SEPARATOR to indicate a separator.

text

Text for the menu item, as shown on the menu. An accelerator key can be
specified using the ampersand '&' character. In order to embed an ampersand
character in the menu item text, the ampersand must be doubled.

helpString

Optional help string that will be shown on the status bar.

kind

May be wxITEM_SEPARATOR, wxITEM_NORMAL, wxITEM_CHECK or

CHAPTER 7

926

wxITEM_RADIO

subMenu

If non-NULL, indicates that the menu item is a submenu.

wxMenuItem::~wxMenuItem

 ~wxMenuItem ()

Destructor.

wxMenuItem::Check

void Check (bool check = true)

Checks or unchecks the menu item.

Note that this only works when the item is already appended to a menu.

wxMenuItem::Enable

void Enable (bool enable = true)

Enables or disables the menu item.

wxMenuItem::GetBackgroundColour

wxColour& GetBackgroundColour () const

Returns the background colour associated with the menu item (Windows only).

wxMenuItem::GetBitmap

wxBitmap& GetBitmap (bool checked = true) const

Returns the checked or unchecked bitmap (Windows only).

wxMenuItem::GetFont

wxFont& GetFont () const

Returns the font associated with the menu item (Windows only).

wxMenuItem::GetHelp

wxString GetHelp () const

Returns the help string associated with the menu item.

CHAPTER 7

927

wxMenuItem::GetId

int GetId () const

Returns the menu item identifier.

wxMenuItem::GetKind

wxItemKind GetKind () const

Returns the item kind, one of wxITEM_SEPARATOR, wxITEM_NORMAL, wxITEM_CHECK
or wxITEM_RADIO.

wxMenuItem::GetLabel

wxString GetLabel () const

Returns the text associated with the menu item without any accelerator characters it
might contain.

See also

GetText (p. 925), GetLabelFromText (p. 924)

wxMenuItem::GetLabelFromText

static wxString GetLabelFromText (const wxString& text)

Strips all accelerator characters and mnemonics from the given text. For example,

wxMenuItem::GetLabelFromText("&Hello\tCtrl-H");

will return just "Hello" .

See also

GetText (p. 925), GetLabel (p. 924)

wxMenuItem::GetMarginWidth

int GetMarginWidth () const

Gets the width of the menu item checkmark bitmap (Windows only).

wxMenuItem::GetMenu

wxMenu* GetMenu () const

Returns the menu this menu item is in, or NULL if this menu item is not attached.

wxMenuItem::GetName

CHAPTER 7

928

wxString GetName () const

Returns the text associated with the menu item.

NB: this function is deprecated, please use GetText (p. 925) or GetLabel (p. 924)
instead.

wxMenuItem::GetText

wxString GetText () const

Returns the text associated with the menu item, such as it was passed to the
wxMenuItem constructor, i.e. with any accelerator characters it may contain.

See also

GetLabel (p. 924), GetLabelFromText (p. 924)

wxMenuItem::GetSubMenu

wxMenu* GetSubMenu () const

Returns the submenu associated with the menu item, or NULL if there isn't one.

wxMenuItem::GetTextColour

wxColour& GetTextColour () const

Returns the text colour associated with the menu item (Windows only).

wxMenuItem::IsCheckable

bool IsCheckable () const

Returns true if the item is checkable.

wxMenuItem::IsChecked

bool IsChecked () const

Returns true if the item is checked.

wxMenuItem::IsEnabled

bool IsEnabled () const

Returns true if the item is enabled.

wxMenuItem::IsSeparator

bool IsSeparator () const

CHAPTER 7

929

Returns true if the item is a separator.

wxMenuItem::IsSubMenu

bool IsSubMenu () const

Returns true if the item is a submenu.

wxMenuItem::SetBackgroundColour

void SetBackgroundColour (const wxColour& colour) const

Sets the background colour associated with the menu item (Windows only).

wxMenuItem::SetBitmap

void SetBitmap (const wxBitmap& bmp)

Sets the bitmap for the menu item (Windows and GTK+ only). It is equivalent to
SetBitmaps (p. 926)(bmp, wxNullBitmap).

wxMenuItem::SetBitmaps

void SetBitmaps (const wxBitmap& checked, const wxBitmap& unchecked =
wxNullBitmap)

Sets the checked/unchecked bitmaps for the menu item (Windows only). The first bitmap
is also used as the single bitmap for uncheckable menu items.

wxMenuItem::SetFont

void SetFont (const wxFont& font)

Sets the font associated with the menu item (Windows only).

wxMenuItem::SetHelp

void SetHelp (const wxString& helpString)

Sets the help string.

wxMenuItem::SetMarginWidth

void SetMarginWidth (int width) const

Sets the width of the menu item checkmark bitmap (Windows only).

wxMenuItem::SetMenu

void SetMenu (const wxMenu* menu)

CHAPTER 7

930

Sets the parent menu which will contain this menu item.

wxMenuItem::SetSubMenu

void SetSubMenu (const wxMenu* menu)

Sets the submenu of this menu item.

wxMenuItem::SetText

void SetText (const wxString& text)

Sets the text associated with the menu item.

wxMenuItem::SetTextColour

void SetTextColour (const wxColour& colour)

Sets the text colour associated with the menu item (Windows only).

wxMessageDialog

This class represents a dialog that shows a single or multi-line message, with a choice of
OK, Yes, No and Cancel buttons.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/msgdlg.h>

See also

wxMessageDialog overview (p. 1724)

wxMessageDialog::wxMessageDialog

 wxMessageDialog (wxWindow* parent, const wxString& message, const wxString&
caption = "Message box", long style = wxOK | wxCANCEL, const wxPoint& pos =
wxDefaultPosition)

Constructor. Use wxMessageDialog::ShowModal (p. 929) to show the dialog.

Parameters

CHAPTER 7

931

parent

Parent window.

message

Message to show on the dialog.

caption

The dialog caption.

style

A dialog style (bitlist) containing flags chosen from the following:

wxOK Show an OK button.

wxCANCEL Show a Cancel button.

wxYES_NO Show Yes and No buttons.

wxYES_DEFAULT Used with wxYES_NO , makes Yes button the default
- which is the default behaviour.

wxNO_DEFAULT Used with wxYES_NO , makes No button the default.

wxICON_EXCLAMATION Shows an exclamation mark icon.

wxICON_HAND Shows an error icon.

wxICON_ERROR Shows an error icon - the same as wxICON_HAND.

wxICON_QUESTION Shows a question mark icon.

wxICON_INFORMATION Shows an information (i) icon.

wxSTAY_ON_TOP The message box stays on top of all other window,
even those of the other applications (Windows only).

pos

Dialog position. Not Windows.

wxMessageDialog::~wxMessageDialog

 ~wxMessageDialog ()

Destructor.

wxMessageDialog::ShowModal

int ShowModal ()

CHAPTER 7

932

Shows the dialog, returning one of wxID_OK, wxID_CANCEL, wxID_YES, wxID_NO.

wxMetafile

A wxMetafile represents the MS Windows metafile object, so metafile operations have
no effect in X. In wxWidgets, only sufficient functionality has been provided for copying a
graphic to the clipboard; this may be extended in a future version. Presently, the only
way of creating a metafile is to use a wxMetafileDC.

Derived from

wxObject (p. 967)

Include files

<wx/metafile.h>

See also

wxMetafileDC (p. 930)

wxMetafile::wxMetafile

 wxMetafile (const wxString& filename = "")

Constructor. If a filename is given, the Windows disk metafile is read in. Check whether
this was performed successfully by using the wxMetafile::Ok (p. 930) member.

wxMetafile::~wxMetafile

 ~wxMetafile ()

Destructor.

wxMetafile::Ok

bool Ok()

Returns true if the metafile is valid.

wxMetafile::Play

bool Play(wxDC *dc)

Plays the metafile into the given device context, returning true if successful.

wxMetafile::SetClipboard

bool SetClipboard (int width = 0, int height = 0)

CHAPTER 7

933

Passes the metafile data to the clipboard. The metafile can no longer be used for
anything, but the wxMetafile object must still be destroyed by the application.

Below is a example of metafile, metafile device context and clipboard use from the
hello.cpp example. Note the way the metafile dimensions are passed to the clipboard,
making use of the device context's ability to keep track of the maximum extent of
drawing commands.

 wxMetafileDC dc;
 if (dc.Ok())
 {
 Draw(dc, false);
 wxMetafile *mf = dc.Close();
 if (mf)
 {
 bool success = mf->SetClipboard((int)(dc.MaxX () + 10),
(int)(dc.MaxY() + 10));
 delete mf;
 }
 }

wxMetafileDC

This is a type of device context that allows a metafile object to be created (Windows
only), and has most of the characteristics of a normal wxDC . The wxMetafileDC::Close
(p. 931) member must be called after drawing into the device context, to return a
metafile. The only purpose for this at present is to allow the metafile to be copied to the
clipboard (see wxMetafile (p. 929)).

Adding metafile capability to an application should be easy if you already write to a
wxDC; simply pass the wxMetafileDC to your drawing function instead. You may wish to
conditionally compile this code so it is not compiled under X (although no harm will result
if you leave it in).

Note that a metafile saved to disk is in standard Windows metafile format, and cannot be
imported into most applications. To make it importable, call the function
::wxMakeMetafilePlaceable (p. 1550) after closing your disk-based metafile device
context.

Derived from

wxDC (p. 353)
wxObject (p. 967)

Include files

<wx/metafile.h>

See also

wxMetafile (p. 929), wxDC (p. 353)

CHAPTER 7

934

wxMetafileDC::wxMetafileDC

 wxMetafileDC (const wxString& filename = "")

Constructor. If no filename is passed, the metafile is created in memory.

wxMetafileDC::~wxMetafileDC

 ~wxMetafileDC ()

Destructor.

wxMetafileDC::Close

wxMetafile * Close ()

This must be called after the device context is finished with. A metafile is returned, and
ownership of it passes to the calling application (so it should be destroyed explicitly).

wxMimeTypesManager

This class allows the application to retrieve the information about all known MIME types
from a system-specific location and the filename extensions to the MIME types and vice
versa. After initialization the
functionswxMimeTypesManager::GetFileTypeFromMimeType (p. 934) and
wxMimeTypesManager::GetFileTypeFromExtension (p. 933) may be called: they will
return a wxFileType (p. 522) object which may be further queried for file description, icon
and other attributes.

Windows: MIME type information is stored in the registry and no additional initialization
is needed.

Unix: MIME type information is stored in the files mailcap and mime.types (system-wide)
and .mailcap and .mime.types in the current user's home directory: all of these files are
searched for and loaded if found by default. However, additional functions
wxMimeTypesManager::ReadMailcap (p. 934) and
wxMimeTypesManager::ReadMimeTypes (p. 934) are provided to load additional files.

If GNOME or KDE desktop environment is installed, then wxMimeTypesManager
gathers MIME information from respective files (e.g. .kdelnk files under KDE).

NB: Currently, wxMimeTypesManager is limited to reading MIME type information but it
will support modifying it as well in future versions.

Global objects

Global instance of wxMimeTypesManager is always available. It is defined as follows:

wxMimeTypesManager *wxTheMimeTypesManager;

It is recommended to use this instance instead of creating your own because gathering

CHAPTER 7

935

MIME information may take quite a long on Unix systems.

Derived from

No base class.

Include files

<wx/mimetype.h>

See also

wxFileType (p. 522)

Helper functions

All of these functions are static (i.e. don't need a wxMimeTypesManager object to call
them) and provide some useful operations for string representations of MIME types.
Their usage is recommended instead of directly working with MIME types using wxString
functions.

IsOfType (p. 934)

Constructor and destructor

NB: You won't normally need to use more than one wxMimeTypesManager object in a
program.

wxMimeTypesManager (p. 933)
~wxMimeTypesManager (p. 933)

Query database

These functions are the heart of this class: they allow to find a file type (p. 522) object
from either file extension or MIME type. If the function is successful, it returns a pointer
to the wxFileType object which must be deleted by the caller, otherwise NULL will be
returned.

GetFileTypeFromMimeType (p. 934)
GetFileTypeFromExtension (p. 933)

Initialization functions

Unix: These functions may be used to load additional files (except for the default ones
which are loaded automatically) containing MIME information in either mailcap(5) or
mime.types(5) format.

ReadMailcap (p. 934)
ReadMimeTypes (p. 934)
AddFallbacks (p. 933)

CHAPTER 7

936

wxMimeTypesManager::wxMimeTypesManager

 wxMimeTypesManager ()

Constructor puts the object in the "working" state, no additional initialization are needed -
but ReadXXX (p. 933) may be used to load additional mailcap/mime.types files.

wxMimeTypesManager::~wxMimeTypesManager

 ~wxMimeTypesManager ()

Destructor is not virtual, so this class should not be derived from.

wxMimeTypesManager::AddFallbacks

void AddFallbacks (const wxFileTypeInfo * fallbacks)

This function may be used to provide hard-wired fallbacks for the MIME types and
extensions that might not be present in the system MIME database.

Please see the typetest sample for an example of using it.

wxMimeTypesManager::GetFileTypeFromExtension

wxFileType* GetFileTypeFromExtension (const wxString& extension)

Gather information about the files with given extension and return the corresponding
wxFileType (p. 522) object or NULL if the extension is unknown.

wxMimeTypesManager::GetFileTypeFromMimeType

wxFileType* GetFileTypeFromMimeType (const wxString& mimeType)

Gather information about the files with given MIME type and return the corresponding
wxFileType (p. 522) object or NULL if the MIME type is unknown.

wxMimeTypesManager::IsOfType

bool IsOfType (const wxString& mimeType, const wxString& wildcard)

This function returns true if either the given mimeType is exactly the same as wildcard or
if it has the same category and the subtype ofwildcard is '*'. Note that the '*' wildcard is
not allowed inmimeType itself.

The comparison don by this function is case insensitive so it is not necessary to convert
the strings to the same case before calling it.

wxMimeTypesManager::ReadMailcap

CHAPTER 7

937

bool ReadMailcap (const wxString& filename, bool fallback = false)

Load additional file containing information about MIME types and associated information
in mailcap format. See metamail(1) and mailcap(5) for more information.

fallback parameter may be used to load additional mailcap files without overriding the
settings found in the standard files: normally, entries from files loaded with ReadMailcap
will override the entries from files loaded previously (and the standard ones are loaded in
the very beginning), but this will not happen if this parameter is set to true (default is
false).

The return value is true if there were no errors in the file or false otherwise.

wxMimeTypesManager::ReadMimeTypes

bool ReadMimeTypes (const wxString& filename)

Load additional file containing information about MIME types and associated information
in mime.types file format. See metamail(1) and mailcap(5) for more information.

The return value is true if there were no errors in the file or false otherwise.

wxMiniFrame

A miniframe is a frame with a small title bar. It is suitable for floating toolbars that must
not take up too much screen area.

Derived from

wxFrame (p. 555)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/minifram.h>

Window styles

wxICONIZE Display the frame iconized (minimized) (Windows only).

wxCAPTION Puts a caption on the frame.

wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |
wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION | wxCLOSE_BOX .

wxMINIMIZE Identical to wxICONIZE .

wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif
only).

CHAPTER 7

938

wxMAXIMIZE Displays the frame maximized (Windows only).

wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif
only).

wxCLOSE_BOX Displays a close box on the frame.

wxSTAY_ON_TOP Stay on top of other windows (Windows only).

wxSYSTEM_MENU Displays a system menu (Windows and Motif only).

wxTHICK_FRAME Displays a thick frame around the window (Windows and
Motif only).

wxTINY_CAPTION_HORIZ This style is obsolete and not used any longer.

wxTINY_CAPTION_VERT This style is obsolete and not used any longer.

wxRESIZE_BORDER Displays a resizeable border around the window (Motif
only; for Windows, it is implicit in wxTHICK_FRAME).

See also window styles overview (p. 1686). Note that all the window styles above are
ignored under GTK and the mini frame cannot be resized by the user.

Remarks

This class has miniframe functionality under Windows and GTK, i.e. the presence of mini
frame will not be noted in the task bar and focus behaviour is different. On other
platforms, it behaves like a normal frame.

See also

wxMDIParentFrame (p. 880), wxMDIChildFrame (p. 875), wxFrame (p. 555), wxDialog
(p. 391)

wxMiniFrame::wxMiniFrame

 wxMiniFrame ()

Default constructor.

 wxMiniFrame (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent

The window parent. This may be NULL. If it is non-NULL, the frame will always be
displayed on top of the parent window on Windows.

CHAPTER 7

939

id

The window identifier. It may take a value of -1 to indicate a default value.

title

The caption to be displayed on the frame's title bar.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWidgets, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWidgets, depending on platform.

style

The window style. See wxMiniFrame (p. 934).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

The frame behaves like a normal frame on non-Windows platforms.

See also

wxMiniFrame::Create (p. 937)

wxMiniFrame::~wxMiniFrame

void ~wxMiniFrame ()

Destructor. Destroys all child windows and menu bar if present.

wxMiniFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxMiniFrame::wxMiniFrame (p. 936) for
further details.

wxMirrorDC

CHAPTER 7

940

wxMirrorDC is a simple wrapper class which is always associated with a real wxDC (p.
353) object and either forwards all of its operations to it without changes (no mirroring
takes place) or exchanges x and y coordinates which makes it possible to reuse the
same code to draw a figure and its mirror -- i.e. reflection related to the diagonal line x
== y.

wxMirrorDC has been added in wxWidgets version 2.5.0.

Derived from

wxDC (p. 353)

Include files

<wx/dcmirror.h>

wxMirrorDC::wxMirrorDC

 wxMirrorDC (wxDC& dc, bool mirror)

Creates a (maybe) mirrored DC associated with the real dc. Everything drawn on
wxMirrorDC will appear (and maybe mirrored) on dc.

mirror specifies if we do mirror (if it is true) or not (if it is false).

wxModule

The module system is a very simple mechanism to allow applications (and parts of
wxWidgets itself) to define initialization and cleanup functions that are automatically
called on wxWidgets startup and exit.

To define a new kind of module, derive a class from wxModule, override the OnInit and
OnExit functions, and add the DECLARE_DYNAMIC_CLASS and
IMPLEMENT_DYNAMIC_CLASS to header and implementation files (which can be the
same file). On initialization, wxWidgets will find all classes derived from wxModule,
create an instance of each, and call each OnInit function. On exit, wxWidgets will call the
OnExit function for each module instance.

Note that your module class does not have to be in a header file.

For example:

 // A module to allow DDE initialization/cleanup
 // without calling these functions from app.cpp o r from
 // the user's application.

 class wxDDEModule: public wxModule
 {
 DECLARE_DYNAMIC_CLASS(wxDDEModule)
 public:
 wxDDEModule() {}
 bool OnInit() { wxDDEInitialize(); return tru e; };

CHAPTER 7

941

 void OnExit() { wxDDECleanUp(); };
 };

 IMPLEMENT_DYNAMIC_CLASS(wxDDEModule, wxModule)

Derived from

wxObject (p. 967)

Include files

<wx/module.h>

wxModule::wxModule

 wxModule ()

Constructs a wxModule object.

wxModule::~wxModule

 ~wxModule ()

Destructor.

wxModule::OnExit

virtual void OnExit ()

Provide this function with appropriate cleanup for your module.

wxModule::OnInit

virtual bool OnInit ()

Provide this function with appropriate initialization for your module. If the function returns
false, wxWidgets will exit immediately.

wxMouseCaptureChangedEvent

An mouse capture changed event is sent to a window that loses its mouse capture. This
is called even if wxWindow::ReleaseCapture was called by the application code.
Handling this event allows an application to cater for unexpected capture releases which
might otherwise confuse mouse handling code.

This event is implemented under Windows only.

Derived from

wxEvent (p. 464)

CHAPTER 7

942

wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process this event, use the following event handler macro to direct input to a member
function that takes a wxMouseCaptureChangedEvent argument.

EVT_MOUSE_CAPTURE_CHANGED(func) Process a
wxEVT_MOUSE_CAPTURE_CHANGED
event.

See also

Event handling overview (p. 1674), wxWindow::CaptureMouse (p. 1425),
wxWindow::ReleaseMouse (p. 1453), wxWindow::GetCapture (p. 1435)

wxMouseCaptureChangedEvent::wxMouseCaptureChangedEv ent

 wxMouseCaptureChangedEvent (wxWindowID windowId = 0, wxWindow*
gainedCapture = NULL)

Constructor.

wxActivateEvent::GetCapturedWindow

wxWindow* GetCapturedWindow () const

Returns the window that gained the capture, or NULL if it was a non-wxWidgets window.

wxMouseEvent

This event class contains information about the events generated by the mouse: they
include mouse buttons press and release events and mouse move events.

All mouse events involving the buttons use wxMOUSE_BTN_LEFT for the left mouse
button, wxMOUSE_BTN_MIDDLE for the middle one andwxMOUSE_BTN_RIGHT for the
right one. Note that not all mice have a middle button so a portable application should
avoid relying on the events from it.

NB: Note that under Windows CE mouse enter and leave events are not natively
supported by the system but are generated by wxWidgets itself. This has several
drawbacks: the LEAVE_WINDOW event might be received some time after the mouse
left the window and the state variables for it may have changed during this time.

NB: Note the difference between methods likeLeftDown (p. 946) andLeftIsDown (p.
947): the former returns true when the event corresponds to the left mouse button click

CHAPTER 7

943

while the latter returns true if the left mouse button is currently being pressed. For
example, when the user is dragging the mouse you can useLeftIsDown (p. 947) to test
whether the left mouse button is (still) depressed. Also, by convention, ifLeftDown (p.
946) returns true ,LeftIsDown (p. 947) will also return true in wxWidgets whatever the
underlying GUI behaviour is (which is platform-dependent). The same applies, of course,
to other mouse buttons as well.

Derived from

wxEvent (p. 464)

Include files

<wx/event.h>

Event table macros

To process a mouse event, use these event handler macros to direct input to member
functions that take a wxMouseEvent argument.

EVT_LEFT_DOWN(func) Process a wxEVT_LEFT_DOWN event. The
handler of this event should normally call
event.Skip() (p. 466) to allow the default
processing to take place as otherwise the
window under mouse wouldn't get the focus.

EVT_LEFT_UP(func) Process a wxEVT_LEFT_UP event.

EVT_LEFT_DCLICK(func) Process a wxEVT_LEFT_DCLICK event.

EVT_MIDDLE_DOWN(func) Process a wxEVT_MIDDLE_DOWN event.

EVT_MIDDLE_UP(func) Process a wxEVT_MIDDLE_UP event.

EVT_MIDDLE_DCLICK(func) Process a wxEVT_MIDDLE_DCLICK event.

EVT_RIGHT_DOWN(func) Process a wxEVT_RIGHT_DOWN event.

EVT_RIGHT_UP(func) Process a wxEVT_RIGHT_UP event.

EVT_RIGHT_DCLICK(func) Process a wxEVT_RIGHT_DCLICK event.

EVT_MOTION(func) Process a wxEVT_MOTION event.

EVT_ENTER_WINDOW(func) Process a wxEVT_ENTER_WINDOW event.

EVT_LEAVE_WINDOW(func) Process a wxEVT_LEAVE_WINDOW event.

EVT_MOUSEWHEEL(func) Process a wxEVT_MOUSEWHEEL event.

EVT_MOUSE_EVENTS(func) Process all mouse events.

wxMouseEvent::m_altDown

CHAPTER 7

944

bool m_altDown

true if the Alt key is pressed down.

wxMouseEvent::m_controlDown

bool m_controlDown

true if control key is pressed down.

wxMouseEvent::m_leftDown

bool m_leftDown

true if the left mouse button is currently pressed down.

wxMouseEvent::m_middleDown

bool m_middleDown

true if the middle mouse button is currently pressed down.

wxMouseEvent::m_rightDown

bool m_rightDown

true if the right mouse button is currently pressed down.

wxMouseEvent::m_metaDown

bool m_metaDown

true if the Meta key is pressed down.

wxMouseEvent::m_shiftDown

bool m_shiftDown

true if shift is pressed down.

wxMouseEvent::m_x

long m_x

X-coordinate of the event.

wxMouseEvent::m_y

long m_y

CHAPTER 7

945

Y-coordinate of the event.

wxMouseEvent::m_wheelRotation

int m_wheelRotation

The distance the mouse wheel is rotated.

wxMouseEvent::m_wheelDelta

int m_wheelDelta

The wheel delta, normally 120.

wxMouseEvent::m_linesPerAction

int m_linesPerAction

The configured number of lines (or whatever) to be scrolled per wheel action.

wxMouseEvent::wxMouseEvent

 wxMouseEvent (WXTYPE mouseEventType = 0)

Constructor. Valid event types are:

 • wxEVT_ENTER_WINDOW

 • wxEVT_LEAVE_WINDOW

 • wxEVT_LEFT_DOWN

 • wxEVT_LEFT_UP

 • wxEVT_LEFT_DCLICK

 • wxEVT_MIDDLE_DOWN

 • wxEVT_MIDDLE_UP

 • wxEVT_MIDDLE_DCLICK

 • wxEVT_RIGHT_DOWN

 • wxEVT_RIGHT_UP

 • wxEVT_RIGHT_DCLICK

 • wxEVT_MOTION

 • wxEVT_MOUSEWHEEL

CHAPTER 7

946

wxMouseEvent::AltDown

bool AltDown ()

Returns true if the Alt key was down at the time of the event.

wxMouseEvent::Button

bool Button (int button)

Returns true if the identified mouse button is changing state. Valid values of button are:

wxMOUSE_BTN_LEFT check if left button was pressed

wxMOUSE_BTN_MIDDLE check if middle button was pressed

wxMOUSE_BTN_RIGHT check if right button was pressed

wxMOUSE_BTN_ANY check if any button was pressed

wxMouseEvent::ButtonDClick

bool ButtonDClick (int but = wxMOUSE_BTN_ANY)

If the argument is omitted, this returns true if the event was a mouse double click event.
Otherwise the argument specifies which double click event was generated (see Button
(p. 943) for the possible values).

wxMouseEvent::ButtonDown

bool ButtonDown (int but = -1)

If the argument is omitted, this returns true if the event was a mouse button down event.
Otherwise the argument specifies which button-down event was generated (see Button
(p. 943) for the possible values).

wxMouseEvent::ButtonUp

bool ButtonUp (int but = -1)

If the argument is omitted, this returns true if the event was a mouse button up event.
Otherwise the argument specifies which button-up event was generated (see Button (p.
943) for the possible values).

wxMouseEvent::CmdDown

bool CmdDown () const

Same as MetaDown (p. 947) under Mac, same as ControlDown (p. 944) elsewhere.

See also

CHAPTER 7

947

wxKeyEvent::CmdDown (p. 794)

wxMouseEvent::ControlDown

bool ControlDown ()

Returns true if the control key was down at the time of the event.

wxMouseEvent::Dragging

bool Dragging ()

Returns true if this was a dragging event (motion while a button is depressed).

See also

Moving (p. 948)

wxMouseEvent::Entering

bool Entering ()

Returns true if the mouse was entering the window.

See also wxMouseEvent::Leaving (p. 946).

wxMouseEvent::GetButton

int GetButton () const

Returns the mouse button which generated this event or wxMOUSE_BTN_NONE if no
button is involved (for mouse move, enter or leave event, for example). Otherwise
wxMOUSE_BTN_LEFT is returned for the left button down, up and double click events,
wxMOUSE_BTN_MIDDLE and wxMOUSE_BTN_RIGHT for the same events for the middle
and the right buttons respectively.

wxMouseEvent::GetPosition

wxPoint GetPosition () const

void GetPosition (wxCoord* x, wxCoord* y) const

void GetPosition (long* x, long* y) const

Sets *x and *y to the position at which the event occurred.

Returns the physical mouse position in pixels.

Note that if the mouse event has been artificially generated from a special keyboard
combination (e.g. under Windows when the "menu'' key is pressed), the returned
position is wxDefaultPosition .

CHAPTER 7

948

wxMouseEvent::GetLogicalPosition

wxPoint GetLogicalPosition (const wxDC& dc) const

Returns the logical mouse position in pixels (i.e. translated according to the translation
set for the DC, which usually indicates that the window has been scrolled).

wxMouseEvent::GetLinesPerAction

int GetLinesPerAction () const

Returns the configured number of lines (or whatever) to be scrolled per wheel action.
Defaults to three.

wxMouseEvent::GetWheelRotation

int GetWheelRotation () const

Get wheel rotation, positive or negative indicates direction of rotation. Current devices
all send an event when rotation is equal to +/-WheelDelta, but this allows for finer
resolution devices to be created in the future. Because of this you shouldn't assume that
one event is equal to 1 line or whatever, but you should be able to either do partial line
scrolling or wait until +/-WheelDelta rotation values have been accumulated before
scrolling.

wxMouseEvent::GetWheelDelta

int GetWheelDelta () const

Get wheel delta, normally 120. This is the threshold for action to be taken, and one such
action (for example, scrolling one increment) should occur for each delta.

wxMouseEvent::GetX

long GetX() const

Returns X coordinate of the physical mouse event position.

wxMouseEvent::GetY

long GetY()

Returns Y coordinate of the physical mouse event position.

wxMouseEvent::IsButton

bool IsButton () const

Returns true if the event was a mouse button event (not necessarily a button down event
- that may be tested using ButtonDown).

CHAPTER 7

949

wxMouseEvent::IsPageScroll

bool IsPageScroll () const

Returns true if the system has been setup to do page scrolling with the mouse wheel
instead of line scrolling.

wxMouseEvent::Leaving

bool Leaving () const

Returns true if the mouse was leaving the window.

See also wxMouseEvent::Entering (p. 944).

wxMouseEvent::LeftDClick

bool LeftDClick () const

Returns true if the event was a left double click.

wxMouseEvent::LeftDown

bool LeftDown () const

Returns true if the left mouse button changed to down.

wxMouseEvent::LeftIsDown

bool LeftIsDown () const

Returns true if the left mouse button is currently down, independent of the current event
type.

Please notice that it is not the same asLeftDown (p. 946) which returns true if the left
mouse button was just pressed. Rather, it describes the state of the mouse button
before the event happened.

This event is usually used in the mouse event handlers which process "move mouse"
messages to determine whether the user is (still) dragging the mouse.

wxMouseEvent::LeftUp

bool LeftUp () const

Returns true if the left mouse button changed to up.

wxMouseEvent::MetaDown

bool MetaDown () const

CHAPTER 7

950

Returns true if the Meta key was down at the time of the event.

wxMouseEvent::MiddleDClick

bool MiddleDClick () const

Returns true if the event was a middle double click.

wxMouseEvent::MiddleDown

bool MiddleDown () const

Returns true if the middle mouse button changed to down.

wxMouseEvent::MiddleIsDown

bool MiddleIsDown () const

Returns true if the middle mouse button is currently down, independent of the current
event type.

wxMouseEvent::MiddleUp

bool MiddleUp () const

Returns true if the middle mouse button changed to up.

wxMouseEvent::Moving

bool Moving () const

Returns true if this was a motion event and no mouse buttons were pressed. If any
mouse button is held pressed, then this method returns false and Dragging (p. 944)
returns true .

wxMouseEvent::RightDClick

bool RightDClick () const

Returns true if the event was a right double click.

wxMouseEvent::RightDown

bool RightDown () const

Returns true if the right mouse button changed to down.

wxMouseEvent::RightIsDown

bool RightIsDown () const

CHAPTER 7

951

Returns true if the right mouse button is currently down, independent of the current event
type.

wxMouseEvent::RightUp

bool RightUp () const

Returns true if the right mouse button changed to up.

wxMouseEvent::ShiftDown

bool ShiftDown () const

Returns true if the shift key was down at the time of the event.

wxMoveEvent

A move event holds information about move change events.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process a move event, use this event handler macro to direct input to a member
function that takes a wxMoveEvent argument.

EVT_MOVE(func) Process a wxEVT_MOVE event, which is
generated when a window is moved.

See also

wxPoint (p. 999), Event handling overview (p. 1674)

wxMoveEvent::wxMoveEvent

 wxMoveEvent (const wxPoint& pt, int id = 0)

Constructor.

wxMoveEvent::GetPosition

wxPoint GetPosition () const

CHAPTER 7

952

Returns the position of the window generating the move change event.

wxMultiChoiceDialog

This class represents a dialog that shows a list of strings, and allows the user to select
one or more.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/choicdlg.h>

See also

wxMultiChoiceDialog overview (p. 1724),wxSingleChoiceDialog (p. 1116)

wxMultiChoiceDialog::wxMultiChoiceDialog

 wxMultiChoiceDialog (wxWindow* parent, const wxString& message, const
wxString& caption, int n, const wxString* choices, long style =
wxCHOICEDLG_STYLE, const wxPoint& pos = wxDefaultPosition)

 wxMultiChoiceDialog (wxWindow* parent, const wxString& message, const
wxString& caption, const wxArrayString& choices, long style =
wxCHOICEDLG_STYLE, const wxPoint& pos = wxDefaultPosition)

Constructor taking an array of wxString choices.

Parameters

parent

Parent window.

message

Message to show on the dialog.

caption

The dialog caption.

n

The number of choices.

CHAPTER 7

953

choices

An array of strings, or a string list, containing the choices.

style

A dialog style (bitlist) containing flags chosen from standard dialog styles and the
following:

wxOK Show an OK button.

wxCANCEL Show a Cancel button.

wxCENTRE Centre the message. Not Windows.

The default value is equivalent to wxDEFAULT_DIALOG_STYLE |
wxRESIZE_BORDER | wxOK | wxCANCEL | wxCENTRE .
pos

Dialog position. Not Windows.

Remarks

Use wxMultiChoiceDialog::ShowModal (p. 951) to show the dialog.

wxPython note: For Python the two parameters n and choices are collapsed into a
multi parameter choices which is expected to be a Python list of strings.

wxPerl note: In wxPerl there is just an array reference in place of n.

wxMultiChoiceDialog::GetSelections

wxArrayInt GetSelection () const

Returns array with indexes of selected items.

wxMultiChoiceDialog::SetSelections

void SetSelections (const wxArrayInt& selections) const

Sets selected items from the array of selected items' indexes.

wxMultiChoiceDialog::ShowModal

int ShowModal ()

Shows the dialog, returning either wxID_OK or wxID_CANCEL.

wxMutex

A mutex object is a synchronization object whose state is set to signaled when it is not
owned by any thread, and nonsignaled when it is owned. Its name comes from its

CHAPTER 7

954

usefulness in coordinating mutually-exclusive access to a shared resource as only one
thread at a time can own a mutex object.

Mutexes may be recursive in the sense that a thread can lock a mutex which it had
already locked before (instead of dead locking the entire process in this situation by
starting to wait on a mutex which will never be released while the thread is waiting) but
using them is not recommended and they are not recursive by default. The reason for
this is that recursive mutexes are not supported by all Unix flavours and, worse, they
cannot be used with wxCondition (p. 181).

For example, when several thread use the data stored in the linked list, modifications to
the list should be only allowed to one thread at a time because during a new node
addition the list integrity is temporarily broken (this is also called program invariant).

Example

 // this variable has an "s_" prefix because it is static:
seeing an "s_" in
 // a multithreaded program is in general a good sign that you
should use a
 // mutex (or a critical section)
 static wxMutex *s_mutexProtectingTheGlobalData;

 // we store some numbers in this global array w hich is
presumably used by
 // several threads simultaneously
 wxArrayInt s_data;

 void MyThread::AddNewNode(int num)
 {
 // ensure that no other thread accesses the list
 s_mutexProtectingTheGlobalList->Lock();

 s_data.Add(num);

 s_mutexProtectingTheGlobalList->Unlock();
 }

 // return true the given number is greater than all array
elements
 bool MyThread::IsGreater(int num)
 {
 // before using the list we must acquire th e mutex
 wxMutexLocker lock(s_mutexProtectingTheGlob alData);

 size_t count = s_data.Count();
 for (size_t n = 0; n < count; n++)
 {
 if (s_data[n] > num)
 return false;
 }

 return true;
 }

Notice how wxMutexLocker was used in the second function to ensure that the mutex is
unlocked in any case: whether the function returns true or false (because the destructor
of the local object lock is always called). Using this class instead of directly using

CHAPTER 7

955

wxMutex is, in general safer and is even more so if your program uses C++ exceptions.

Constants

enum wxMutexType
{
 // normal mutex: try to always use this one
 wxMUTEX_DEFAULT,

 // recursive mutex: don't use these ones with w xCondition
 wxMUTEX_RECURSIVE
};

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 1315), wxCondition (p. 181), wxMutexLocker (p. 954), wxCriticalSection (p.
213)

wxMutex::wxMutex

 wxMutex (wxMutexType type = wxMUTEX_DEFAULT)

Default constructor.

wxMutex::~wxMutex

 ~wxMutex ()

Destroys the wxMutex object.

wxMutex::Lock

wxMutexError Lock ()

Locks the mutex object.

Return value

One of:

wxMUTEX_NO_ERROR There was no error.

wxMUTEX_DEAD_LOCK A deadlock situation was detected.

wxMUTEX_BUSY The mutex is already locked by another thread.

CHAPTER 7

956

wxMutex::TryLock

wxMutexError TryLock ()

Tries to lock the mutex object. If it can't, returns immediately with an error.

Return value

One of:

wxMUTEX_NO_ERROR There was no error.

wxMUTEX_DEAD_LOCK A deadlock situation was detected.

wxMUTEX_BUSY The mutex is already locked by another thread.

wxMutex::Unlock

wxMutexError Unlock ()

Unlocks the mutex object.

Return value

One of:

wxMUTEX_NO_ERROR There was no error.

wxMUTEX_DEAD_LOCK A deadlock situation was detected.

wxMUTEX_BUSY The mutex is already locked by another thread.

wxMUTEX_UNLOCKED The calling thread tries to unlock an unlocked
mutex.

wxMutexLocker

This is a small helper class to be used with wxMutex (p. 951) objects. A wxMutexLocker
acquires a mutex lock in the constructor and releases (or unlocks) the mutex in the
destructor making it much more difficult to forget to release a mutex (which, in general,
will promptly lead to the serious problems). See wxMutex (p. 951) for an example of
wxMutexLocker usage.

Derived from

None.

Include files

<wx/thread.h>

See also

CHAPTER 7

957

wxMutex (p. 951), wxCriticalSectionLocker (p. 214)

wxMutexLocker::wxMutexLocker

 wxMutexLocker (wxMutex& mutex)

Constructs a wxMutexLocker object associated with mutex and locks it. Call IsLocked (p.
954) to check if the mutex was successfully locked.

wxMutexLocker::~wxMutexLocker

 ~wxMutexLocker ()

Destructor releases the mutex if it was successfully acquired in the ctor.

wxMutexLocker::IsOk

bool IsOk () const

Returns true if mutex was acquired in the constructor, false otherwise.

wxNode

wxNodeBase is the node structure used in linked lists (see wxList (p. 801)) and derived
classes. You should never use wxNodeBase class directly, however, because it works
with untyped (void *) data and this is unsafe. Use wxNodeBase-derived classes which
are automatically defined by WX_DECLARE_LIST and WX_DEFINE_LIST macros
instead as described inwxList (p. 801) documentation (see example there). Also note
that although there is a class called wxNode, it is defined for backwards compatibility
only and usage of this class is strongly deprecated.

In the documentation below, the type T should be thought of as a "template'' parameter:
this is the type of data stored in the linked list or, in other words, the first argument of
WX_DECLARE_LIST macro. Also, wxNode is written as wxNode<T> even though it isn't
really a template class -- but it helps to think of it as if it were.

Derived from

None.

Include files

<wx/list.h>

See also

wxList (p. 801), wxHashTable (p. 662)

CHAPTER 7

958

wxNode<T>::GetData

T * GetData () const

Retrieves the client data pointer associated with the node.

wxNode<T>::GetNext

wxNode<T> * GetNext () const

Retrieves the next node or NULL if this node is the last one.

wxNode<T>::GetPrevious

wxNode<T> * GetPrevious ()

Retrieves the previous node or NULL if this node is the first one in the list.

wxNode<T>::SetData

void SetData (T *data)

Sets the data associated with the node (usually the pointer will have been set when the
node was created).

wxNode<T>::IndexOf

int IndexOf ()

Returns the zero-based index of this node within the list. The return value will be
wxNOT_FOUND if the node has not been added to a list yet.

wxNotebook

This class represents a notebook control, which manages multiple windows with
associated tabs.

To use the class, create a wxNotebook object and call AddPage (p. 958) or InsertPage
(p. 962), passing a window to be used as the page. Do not explicitly delete the window
for a page that is currently managed by wxNotebook.

wxNotebookPage is a typedef for wxWindow.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

CHAPTER 7

959

<wx/notebook.h>

Window styles

wxNB_TOP Place tabs on the top side.

wxNB_LEFT Place tabs on the left side.

wxNB_RIGHT Place tabs on the right side.

wxNB_BOTTOM Place tabs under instead of above the notebook pages.

wxNB_FIXEDWIDTH (Windows only) All tabs will have same width.

wxNB_MULTILINE (Windows only) There can be several rows of tabs.

wxNB_NOPAGETHEME (Windows only) Display a solid colour on notebook pages,
and not a gradient, which can reduce performance.

wxNB_FLAT (Windows CE only) Show tabs in a flat style.

The styles wxNB_LEFT, RIGHT and BOTTOM are not supported under Microsoft Windows
XP when using visual themes.

See also window styles overview (p. 1686).

Event handling

To process input from a notebook control, use the following event handler macros to
direct input to member functions that take a wxNotebookEvent (p. 964) argument.

EVT_NOTEBOOK_PAGE_CHANGED(id, func) The page selection was changed.
Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGED event.

EVT_NOTEBOOK_PAGE_CHANGING(id, func) The page selection is about to be
changed. Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGING event. This event can be vetoed (p.
967).

Page backgrounds

On Windows XP, the default theme paints a gradient on the notebook's pages. If you
wish to suppress this theme, for aesthetic or performance reasons, there are three ways
of doing it. You can use wxNB_NOPAGETHEME to disable themed drawing for a
particular notebook, you can call wxSystemOptions::SetOption to disable it for the
whole application, or you can disable it for individual pages by using
SetBackgroundColour .

To disable themed pages globally:

 wxSystemOptions::SetOption(wxT("msw.notebook.th emed-
background"), 0);

CHAPTER 7

960

Set the value to 1 to enable it again.

To give a single page a solid background that more or less fits in with the overall theme,
use:

 wxColour col = notebook->GetThemeBackgroundColo ur();
 if (col.Ok())
 {
 page->SetBackgroundColour(col);
 }

On platforms other than Windows, or if the application is not using Windows themes,
GetThemeBackgroundColour will return an uninitialised colour object, and the above
code will therefore work on all platforms.

See also

wxBookCtrl (p. 1720), wxNotebookEvent (p. 964), wxImageList (p. 769), notebook
sample (p. 1638)

wxNotebook::wxNotebook

 wxNotebook ()

Default constructor.

 wxNotebook (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxNotebookNameStr)

Constructs a notebook control.

Note that sometimes you can reduce flicker by passing the wxCLIP_CHILDREN window
style.

Parameters

parent

The parent window. Must be non-NULL.

id

The window identifier.

pos

The window position.

size

The window size.

CHAPTER 7

961

style

The window style. See wxNotebook (p. 956).

name

The name of the control (used only under Motif).

wxNotebook::~wxNotebook

 ~wxNotebook ()

Destroys the wxNotebook object.

wxNotebook::AddPage

bool AddPage (wxNotebookPage* page, const wxString& text, bool select = false, int
imageId = -1)

Adds a new page.

The call to this function may generate the page changing events.

Parameters

page

Specifies the new page.

text

Specifies the text for the new page.

select

Specifies whether the page should be selected.

imageId

Specifies the optional image index for the new page.

Return value

true if successful, false otherwise.

Remarks

Do not delete the page, it will be deleted by the notebook.

See also

wxNotebook::InsertPage (p. 962)

wxNotebook::AdvanceSelection

CHAPTER 7

962

void AdvanceSelection (bool forward = true)

Cycles through the tabs.

The call to this function generates the page changing events.

wxNotebook::AssignImageList

void AssignImageList (wxImageList* imageList)

Sets the image list for the page control and takes ownership of the list.

See also

wxImageList (p. 769),SetImageList (p. 963)

wxNotebook::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size, long style = 0, const wxString& name =
wxNotebookNameStr)

Creates a notebook control. See wxNotebook::wxNotebook (p. 957) for a description of
the parameters.

wxNotebook::DeleteAllPages

bool DeleteAllPages ()

Deletes all pages.

wxNotebook::DeletePage

bool DeletePage (size_t page)

Deletes the specified page, and the associated window.

The call to this function generates the page changing events.

wxNotebook::GetCurrentPage

wxWindow * GetCurrentPage () const

Returns the currently selected notebook age or NULL.

wxNotebook::GetImageList

wxImageList* GetImageList () const

Returns the associated image list.

CHAPTER 7

963

See also

wxImageList (p. 769), wxNotebook::SetImageList (p. 963)

wxNotebook::GetPage

wxNotebookPage* GetPage (size_t page)

Returns the window at the given page position.

wxNotebook::GetPageCount

size_t GetPageCount () const

Returns the number of pages in the notebook control.

wxNotebook::GetPageImage

int GetPageImage (size_t nPage) const

Returns the image index for the given page.

wxNotebook::GetPageText

wxString GetPageText (size_t nPage) const

Returns the string for the given page.

wxNotebook::GetRowCount

int GetRowCount () const

Returns the number of rows in the notebook control.

wxNotebook::GetSelection

int GetSelection () const

Returns the currently selected page, or -1 if none was selected.

Note that this method may return either the previously or newly selected page when
called from the EVT_NOTEBOOK_PAGE_CHANGED handler depending on the platform
and so wxNotebookEvent::GetSelection (p. 965) should be used instead in this case.

wxNotebook::GetThemeBackgroundColour

wxColour GetThemeBackgroundColour () const

If running under Windows and themes are enabled for the application, this function
returns a suitable colour for painting the background of a notebook page, and can be

CHAPTER 7

964

passed to SetBackgroundColour . Otherwise, an uninitialised colour will be returned.

wxNotebook::HitTest

int HitTest (const wxPoint& pt, long *flags = NULL)

Returns the index of the tab at the specified position or wxNOT_FOUNDif none. If flags
parameter is non NULL, the position of the point inside the tab is returned as well.

NB: This method is currently only implemented under wxMSW and wxUniv.

Parameters

pt

Specifies the point for the hit test.

flags

Return value for detailed information. One of the following
values:wxNB_HITTEST_NOWHERE
 There was no tab under this point.

wxNB_HITTEST_ONICON The point was over an icon (currently
wxMSW only).

wxNB_HITTEST_ONLABEL The point was over a label (currently
wxMSW only).

wxNB_HITTEST_ONITEM The point was over an item, but not on
the label or icon.

Return value

Returns the zero-based tab index or wxNOT_FOUND if there is no tab is at the specified
position.

wxNotebook::InsertPage

bool InsertPage (size_t index, wxNotebookPage* page, const wxString& text, bool
select = false, int imageId = -1)

Inserts a new page at the specified position.

Parameters

index

Specifies the position for the new page.

page

Specifies the new page.

CHAPTER 7

965

text

Specifies the text for the new page.

select

Specifies whether the page should be selected.

imageId

Specifies the optional image index for the new page.

Return value

true if successful, false otherwise.

Remarks

Do not delete the page, it will be deleted by the notebook.

See also

wxNotebook::AddPage (p. 958)

wxNotebook::OnSelChange

void OnSelChange (wxNotebookEvent& event)

An event handler function, called when the page selection is changed.

See also

wxNotebookEvent (p. 964)

wxNotebook::RemovePage

bool RemovePage (size_t page)

Deletes the specified page, without deleting the associated window.

wxNotebook::SetImageList

void SetImageList (wxImageList* imageList)

Sets the image list for the page control. It does not take ownership of the image list, you
must delete it yourself.

See also

wxImageList (p. 769),AssignImageList (p. 959)

wxNotebook::SetPadding

CHAPTER 7

966

void SetPadding (const wxSize& padding)

Sets the amount of space around each page's icon and label, in pixels.

NB: The vertical padding cannot be changed in wxGTK.

wxNotebook::SetPageSize

void SetPageSize (const wxSize& size)

Sets the width and height of the pages.

NB: This method is currently not implemented for wxGTK.

wxNotebook::SetPageImage

bool SetPageImage (size_t page, int image)

Sets the image index for the given page. image is an index into the image list which was
set with wxNotebook::SetImageList (p. 963).

wxNotebook::SetPageText

bool SetPageText (size_t page, const wxString& text)

Sets the text for the given page.

wxNotebook::SetSelection

int SetSelection (size_t page)

Sets the selection for the given page, returning the previous selection.

The call to this function generates the page changing events.

See also

wxNotebook::GetSelection (p. 961)

wxNotebookEvent

This class represents the events generated by a notebook control: currently, there are
two of them. The PAGE_CHANGING event is sent before the current page is changed. It
allows the program to examine the current page (which can be retrieved with
GetOldSelection() (p. 965)) and to veto the page change by calling Veto() (p. 967) if, for
example, the current values in the controls of the old page are invalid.

The second event - PAGE_CHANGED - is sent after the page has been changed and
the program cannot veto it any more, it just informs it about the page change.

To summarize, if the program is interested in validating the page values before allowing

CHAPTER 7

967

the user to change it, it should process the PAGE_CHANGING event, otherwise
PAGE_CHANGED is probably enough. In any case, it is probably unnecessary to
process both events at once.

Derived from

wxNotifyEvent (p. 966)
wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/notebook.h>

Event handling

To process input from a notebook control, use the following event handler macros to
direct input to member functions that take a wxNotebookEvent (p. 964) argument.

EVT_NOTEBOOK_PAGE_CHANGED(id, func) The page selection was changed.
Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGED event.

EVT_NOTEBOOK_PAGE_CHANGING(id, func) The page selection is about to be
changed. Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGING event. This event can be vetoed (p.
967).

See also

wxNotebook (p. 956)

wxNotebookEvent::wxNotebookEvent

 wxNotebookEvent (wxEventType eventType = wxEVT_NULL, int id = 0, int sel = -1,
int oldSel = -1)

Constructor (used internally by wxWidgets only).

wxNotebookEvent::GetOldSelection

int GetOldSelection () const

Returns the page that was selected before the change, -1 if none was selected.

wxNotebookEvent::GetSelection

int GetSelection () const

CHAPTER 7

968

Returns the currently selected page, or -1 if none was selected.

NB: under Windows, GetSelection() will return the same value as GetOldSelection() (p.
965) when called fromEVT_NOTEBOOK_PAGE_CHANGING handler and not the page
which is going to be selected. Also note that the values of selection and old selection
returned for an event generated in response to a call to wxNotebook::SetSelection (p.
963) shouldn't be trusted as they are currently inconsistent under different platforms (but
in this case you presumably don't need them anyhow as you already have the
corresponding information).

wxNotebookEvent::SetOldSelection

void SetOldSelection (int page)

Sets the id of the page selected before the change.

wxNotebookEvent::SetSelection

void SetSelection (int page)

Sets the selection member variable.

See also

wxNotebookEvent::GetSelection (p. 965)

wxNotebookSizer

This class is deprecated and should not be used in new code! It is no longer
needed, wxNotebook (p. 956) control can be inserted into any sizer cl ass and its
minimal size will be determined correctly. See wxSizer overview (p. 1694) for more
information.

wxNotebookSizer is a specialized sizer to make sizers work in connection with using
notebooks. This sizer is different from any other sizer as you must not add any children
to it - instead, it queries the notebook class itself. The only thing this sizer does is to
determine the size of the biggest page of the notebook and report an adjusted minimal
size to a more toplevel sizer.

Derived from

wxSizer (p. 1124)
wxObject (p. 967)

Include files

<wx/sizer.h>

See also

wxSizer (p. 1124), wxNotebook (p. 956), Sizer overview (p. 1694)

CHAPTER 7

969

wxNotebookSizer::wxNotebookSizer

 wxNotebookSizer (wxNotebook* notebook)

Constructor. It takes an associated notebook as its only parameter.

wxNotebookSizer::GetNotebook

wxNotebook* GetNotebook ()

Returns the notebook associated with the sizer.

wxNotifyEvent

This class is not used by the event handlers by itself, but is a base class for other event
classes (such as wxNotebookEvent (p. 964)).

It (or an object of a derived class) is sent when the controls state is being changed and
allows the program to Veto() (p. 967) this change if it wants to prevent it from happening.

Derived from

wxCommandEvent (p. 172)
wxEvent (p. 464)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

None

See also

wxNotebookEvent (p. 964)

wxNotifyEvent::wxNotifyEvent

 wxNotifyEvent (wxEventType eventType = wxEVT_NULL, int id = 0)

Constructor (used internally by wxWidgets only).

wxNotifyEvent::Allow

CHAPTER 7

970

void Allow ()

This is the opposite of Veto() (p. 967): it explicitly allows the event to be processed. For
most events it is not necessary to call this method as the events are allowed anyhow but
some are forbidden by default (this will be mentioned in the corresponding event
description).

wxNotifyEvent::IsAllowed

bool IsAllowed () const

Returns true if the change is allowed (Veto() (p. 967) hasn't been called) or false
otherwise (if it was).

wxNotifyEvent::Veto

void Veto ()

Prevents the change announced by this event from happening.

It is in general a good idea to notify the user about the reasons for vetoing the change
because otherwise the applications behaviour (which just refuses to do what the user
wants) might be quite surprising.

wxObject

This is the root class of all wxWidgets classes. It declares a virtual destructor which
ensures that destructors get called for all derived class objects where necessary.

wxObject is the hub of a dynamic object creation scheme, enabling a program to create
instances of a class only knowing its string class name, and to query the class hierarchy.

The class contains optional debugging versions of new and delete , which can help trace
memory allocation and deallocation problems.

wxObject can be used to implement reference counted objects, such as wxPen,
wxBitmap and others.

See also

wxClassInfo (p. 138), Debugging overview (p. 1670), wxObjectRefData (p. 971)

wxObject::wxObject

 wxObject ()

 wxObject (const wxObject& other)

Default and copy constructors.

CHAPTER 7

971

wxObject::~wxObject

 wxObject ()

Destructor. Performs dereferencing, for those objects that use reference counting.

wxObject::m_refData

wxObjectRefData* m_refData

Pointer to an object which is the object's reference-counted data.

See also

wxObject::Ref (p. 969), wxObject::UnRef (p. 970), wxObject::SetRefData (p. 970),
wxObject::GetRefData (p. 969), wxObjectRefData (p. 971)

wxObject::Dump

void Dump (ostream& stream)

A virtual function that may be redefined by derived classes to allow dumping of memory
states.

This function is only defined in debug build and doesn't exist at all if__WXDEBUG__ is not
defined.

Parameters

stream

Stream on which to output dump information.

Remarks

Currently wxWidgets does not define Dump for derived classes, but programmers may
wish to use it for their own applications. Be sure to call the Dump member of the class's
base class to allow all information to be dumped.

The implementation of this function in wxObject just writes the class name of the object.

wxObject::GetClassInfo

wxClassInfo * GetClassInfo ()

This virtual function is redefined for every class that requires run-time type information,
when using DECLARE_CLASS macros.

wxObject::GetRefData

wxObjectRefData* GetRefData () const

CHAPTER 7

972

Returns the m_refData pointer.

See also

wxObject::Ref (p. 969), wxObject::UnRef (p. 970), wxObject::m_refData (p. 968),
wxObject::SetRefData (p. 970), wxObjectRefData (p. 971)

wxObject::IsKindOf

bool IsKindOf (wxClassInfo * info)

Determines whether this class is a subclass of (or the same class as) the given class.

Parameters

info

A pointer to a class information object, which may be obtained by using the
CLASSINFO macro.

Return value

true if the class represented by info is the same class as this one or is derived from it.

Example

 bool tmp = obj->IsKindOf(CLASSINFO(wxFrame));

wxObject::Ref

void Ref(const wxObject& clone)

Makes this object refer to the data in clone.

Parameters

clone

The object to 'clone'.

Remarks

First this function calls wxObject::UnRef (p. 970) on itself to decrement (and perhaps
free) the data it is currently referring to.

It then sets its own m_refData to point to that of clone, and increments the reference
count inside the data.

See also

wxObject::UnRef (p. 970), wxObject::m_refData (p. 968), wxObject::SetRefData (p. 970),
wxObject::GetRefData (p. 969), wxObjectRefData (p. 971)

wxObject::SetRefData

CHAPTER 7

973

void SetRefData (wxObjectRefData* data)

Sets the m_refData pointer.

See also

wxObject::Ref (p. 969), wxObject::UnRef (p. 970), wxObject::m_refData (p. 968),
wxObject::GetRefData (p. 969), wxObjectRefData (p. 971)

wxObject::UnRef

void UnRef ()

Decrements the reference count in the associated data, and if it is zero, deletes the data.
The m_refData member is set to NULL.

See also

wxObject::Ref (p. 969), wxObject::m_refData (p. 968), wxObject::SetRefData (p. 970),
wxObject::GetRefData (p. 969), wxObjectRefData (p. 971)

wxObject::operator new

void * new (size_t size, const wxString& filename = NULL, int lineNum = 0)

The new operator is defined for debugging versions of the library only, when the
identifier __WXDEBUG__ is defined. It takes over memory allocation, allowing
wxDebugContext operations.

wxObject::operator delete

void delete (void buf)

The delete operator is defined for debugging versions of the library only, when the
identifier __WXDEBUG__ is defined. It takes over memory deallocation, allowing
wxDebugContext operations.

wxObjectRefData

This class is used to store reference-counted data. Derive classes from this to store your
own data. When retrieving information from a wxObject 's reference data, you will need
to cast to your own derived class.

Friends

wxObject (p. 967)

See also

wxObject (p. 967)

CHAPTER 7

974

wxObjectRefData::m_count

int m_count

Reference count. When this goes to zero during a wxObject::UnRef (p. 970), an object
can delete the wxObjectRefData object.

wxObjectRefData::wxObjectRefData

 wxObjectRefData ()

Default constructor. Initialises the m_count member to 1.

wxObjectRefData::~wxObjectRefData

 wxObjectRefData ()

Destructor.

wxOutputStream

wxOutputStream is an abstract base class which may not be used directly.

Derived from

wxStreamBase (p. 1218)

Include files

<wx/stream.h>

wxOutputStream::wxOutputStream

 wxOutputStream ()

Creates a dummy wxOutputStream object.

wxOutputStream::~wxOutputStream

 ~wxOutputStream ()

Destructor.

wxOutputStream::Close

bool Close ()

Closes the stream, returning false if an error occurs. The stream is closed implicitly in

CHAPTER 7

975

the destructor if Close() is not called explicitly.

If this stream wraps another stream or some other resource such as a file, then the
underlying resource is closed too if it is owned by this stream, or left open otherwise.

wxOutputStream::LastWrite

size_t LastWrite () const

Returns the number of bytes written during the last Write() (p. 973). It may return 0 even
if there is no error on the stream if it is only temporarily impossible to write to it.

wxOutputStream::PutC

void PutC (char c)

Puts the specified character in the output queue and increments the stream position.

wxOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode = wxFromStart)

Changes the stream current position.

Parameters

pos

Offset to seek to.

mode

One of wxFromStart , wxFromEnd , wxFromCurrent .

Return value

The new stream position or wxInvalidOffset on error.

wxOutputStream::TellO

off_t TellO () const

Returns the current stream position.

wxOutputStream::Write

wxOutputStream& Write (const void * buffer, size_t size)

Writes up to the specified amount of bytes using the data of buffer. Note that not all data
can always be written so you must check the number of bytes really written to the stream
using LastWrite() (p. 972) when this function returns. In some cases (for example a
write end of a pipe which is currently full) it is even possible that there is no errors and

CHAPTER 7

976

zero bytes have been written.

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxOutputStream& Write (wxInputStream& stream_in)

Reads data from the specified input stream and stores them in the current stream. The
data is read until an error is raised by one of the two streams.

wxPageSetupDialog

This class represents the page setup common dialog. The page setup dialog is standard
from Windows 95 on, replacing the print setup dialog (which is retained in Windows and
wxWidgets for backward compatibility). On Windows 95 and NT 4.0 and above, the page
setup dialog is native to the windowing system, otherwise it is emulated.

The page setup dialog contains controls for paper size (A4, A5 etc.), orientation
(landscape or portrait), and controls for setting left, top, right and bottom margin sizes in
millimetres.

When the dialog has been closed, you need to query the wxPageSetupDialogData (p.
974) object associated with the dialog.

Note that the OK and Cancel buttons do not destroy the dialog; this must be done by the
application.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/printdlg.h>

See also

wxPrintDialog (p. 1011), wxPageSetupDialogData (p. 974)

wxPageSetupDialog::wxPageSetupDialog

 wxPageSetupDialog (wxWindow* parent, wxPageSetupDialogData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of page setup
data, which will be copied to the print dialog's internal data.

wxPageSetupDialog::~wxPageSetupDialog

CHAPTER 7

977

 ~wxPageSetupDialog ()

Destructor.

wxPageSetupDialog::GetPageSetupData

wxPageSetupDialogData& GetPageSetupData ()

Returns the page setup data (p. 974) associated with the dialog.

wxPageSetupDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxPageSetupDialogData

This class holds a variety of information related to wxPageSetupDialog (p. 973).

It contains a wxPrintData (p. 1004) member which is used to hold basic printer
configuration data (as opposed to the user-interface configuration settings stored by
wxPageSetupDialogData).

Derived from

wxObject (p. 967)

Include files

<wx/cmndata.h>

See also

wxPageSetupDialog (p. 973)

wxPageSetupDialogData::wxPageSetupDialogData

 wxPageSetupDialogData ()

Default constructor.

 wxPageSetupDialogData (wxPageSetupDialogData& data)

Copy constructor.

 wxPageSetupDialogData (wxPrintData& printData)

Construct an object from a print data object.

CHAPTER 7

978

wxPageSetupDialogData::~wxPageSetupDialogData

 ~wxPageSetupDialogData ()

Destructor.

wxPageSetupDialogData::EnableHelp

void EnableHelp (bool flag)

Enables or disables the 'Help' button (Windows only).

wxPageSetupDialogData::EnableMargins

void EnableMargins (bool flag)

Enables or disables the margin controls (Windows only).

wxPageSetupDialogData::EnableOrientation

void EnableOrientation (bool flag)

Enables or disables the orientation control (Windows only).

wxPageSetupDialogData::EnablePaper

void EnablePaper (bool flag)

Enables or disables the paper size control (Windows only).

wxPageSetupDialogData::EnablePrinter

void EnablePrinter (bool flag)

Enables or disables the Printer button, which invokes a printer setup dialog.

wxPageSetupDialogData::GetDefaultMinMargins

bool GetDefaultMinMargins () const

Returns true if the page setup dialog will take its minimum margin values from the
currently selected printer properties. Windows only.

wxPageSetupDialogData::GetEnableMargins

bool GetEnableMargins () const

Returns true if the margin controls are enabled (Windows only).

wxPageSetupDialogData::GetEnableOrientation

CHAPTER 7

979

bool GetEnableOrientation () const

Returns true if the orientation control is enabled (Windows only).

wxPageSetupDialogData::GetEnablePaper

bool GetEnablePaper () const

Returns true if the paper size control is enabled (Windows only).

wxPageSetupDialogData::GetEnablePrinter

bool GetEnablePrinter () const

Returns true if the printer setup button is enabled.

wxPageSetupDialogData::GetEnableHelp

bool GetEnableHelp () const

Returns true if the printer setup button is enabled.

wxPageSetupDialogData::GetDefaultInfo

bool GetDefaultInfo () const

Returns true if the dialog will simply return default printer information (such as
orientation) instead of showing a dialog. Windows only.

wxPageSetupDialogData::GetMarginTopLeft

wxPoint GetMarginTopLeft () const

Returns the left (x) and top (y) margins in millimetres.

wxPageSetupDialogData::GetMarginBottomRight

wxPoint GetMarginBottomRight () const

Returns the right (x) and bottom (y) margins in millimetres.

wxPageSetupDialogData::GetMinMarginTopLeft

wxPoint GetMinMarginTopLeft () const

Returns the left (x) and top (y) minimum margins the user can enter (Windows only).
Units are in millimetres

wxPageSetupDialogData::GetMinMarginBottomRight

CHAPTER 7

980

wxPoint GetMinMarginBottomRight () const

Returns the right (x) and bottom (y) minimum margins the user can enter (Windows
only). Units are in millimetres

wxPageSetupDialogData::GetPaperId

wxPaperSize GetPaperId () const

Returns the paper id (stored in the internal wxPrintData object).

For further information, see wxPrintData::SetPaperId (p. 1008).

wxPageSetupDialogData::GetPaperSize

wxSize GetPaperSize () const

Returns the paper size in millimetres.

wxPageSetupDialogData::GetPrintData

wxPrintData& GetPrintData ()

Returns a reference to the print data (p. 1004) associated with this object.

wxPageSetupDialogData::Ok

bool Ok() const

Returns true if the print data associated with the dialog data is valid. This can return
false on Windows if the current printer is not set, for example. On all other platforms, it
returns true.

wxPageSetupDialogData::SetDefaultInfo

void SetDefaultInfo (bool flag)

Pass true if the dialog will simply return default printer information (such as orientation)
instead of showing a dialog. Windows only.

wxPageSetupDialogData::SetDefaultMinMargins

void SetDefaultMinMargins (bool flag)

Pass true if the page setup dialog will take its minimum margin values from the currently
selected printer properties. Windows only. Units are in millimetres

wxPageSetupDialogData::SetMarginTopLeft

void SetMarginTopLeft (const wxPoint& pt)

CHAPTER 7

981

Sets the left (x) and top (y) margins in millimetres.

wxPageSetupDialogData::SetMarginBottomRight

void SetMarginBottomRight (const wxPoint& pt)

Sets the right (x) and bottom (y) margins in millimetres.

wxPageSetupDialogData::SetMinMarginTopLeft

void SetMinMarginTopLeft (const wxPoint& pt)

Sets the left (x) and top (y) minimum margins the user can enter (Windows only). Units
are in millimetres.

wxPageSetupDialogData::SetMinMarginBottomRight

void SetMinMarginBottomRight (const wxPoint& pt)

Sets the right (x) and bottom (y) minimum margins the user can enter (Windows only).
Units are in millimetres.

wxPageSetupDialogData::SetPaperId

void SetPaperId (wxPaperSize& id)

Sets the paper size id. For further information, see wxPrintData::SetPaperId (p. 1008).

Calling this function overrides the explicit paper dimensions passed in
wxPageSetupDialogData::SetPaperSize (p. 979).

wxPageSetupDialogData::SetPaperSize

void SetPaperSize (const wxSize& size)

Sets the paper size in millimetres. If a corresponding paper id is found, it will be set in
the internal wxPrintData object, otherwise the paper size overrides the paper id.

wxPageSetupDialogData::SetPrintData

void SetPrintData (const wxPrintData& printData)

Sets the print data (p. 1004) associated with this object.

wxPageSetupDialogData::operator =

void operator = (const wxPrintData& data)

Assigns print data to this object.

CHAPTER 7

982

void operator = (const wxPageSetupDialogData& data)

Assigns page setup data to this object.

wxPaintDC

A wxPaintDC must be constructed if an application wishes to paint on the client area of a
window from within an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxPaintDC object. If you have an OnPaint handler,
you must create a wxPaintDC object within it even if you don't actually use it.

Using wxPaintDC within OnPaint is important because it automatically sets the clipping
area to the damaged area of the window. Attempts to draw outside this area do not
appear.

To draw on a window from outside OnPaint , construct a wxClientDC (p. 141) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1476)
object (Windows only).

Derived from

wxWindowDC (p. 1476)
wxDC (p. 353)

Include files

<wx/dcclient.h>

See also

wxDC (p. 353), wxMemoryDC (p. 895), wxPaintDC (p. 979), wxWindowDC (p. 1476),
wxScreenDC (p. 1091)

wxPaintDC::wxPaintDC

 wxPaintDC (wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxPaintEvent

A paint event is sent when a window's contents needs to be repainted.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

CHAPTER 7

983

<wx/event.h>

Event table macros

To process a paint event, use this event handler macro to direct input to a member
function that takes a wxPaintEvent argument.

EVT_PAINT(func) Process a wxEVT_PAINT event.

See also
Event handling overview (p. 1674)

Remarks

Note that In a paint event handler, the application must always create a wxPaintDC (p.
979) object, even if you do not use it. Otherwise, under MS Windows, refreshing for this
and other windows will go wrong.

For example:

 void MyWindow::OnPaint(wxPaintEvent& event)
 {
 wxPaintDC dc(this);

 DrawMyDocument(dc);
 }

You can optimize painting by retrieving the rectangles that have been damaged and only
repainting these. The rectangles are in terms of the client area, and are unscrolled, so
you will need to do some calculations using the current view position to obtain logical,
scrolled units.

Here is an example of using the wxRegionIterator (p. 1066) class:

// Called when window needs to be repainted.
void MyWindow::OnPaint(wxPaintEvent& event)
{
 wxPaintDC dc(this);

 // Find Out where the window is scrolled to
 int vbX,vbY; // Top left corn er of client
 GetViewStart(&vbX,&vbY);

 int vX,vY,vW,vH; // Dimensions of client area in
pixels
 wxRegionIterator upd(GetUpdateRegion()); // get t he update rect
list

 while (upd)
 {
 vX = upd.GetX();
 vY = upd.GetY();
 vW = upd.GetW();
 vH = upd.GetH();

 // Alternatively we can do this:
 // wxRect rect(upd.GetRect());

 // Repaint this rectangle
 ...some code...

CHAPTER 7

984

 upd ++ ;
 }
}

wxPaintEvent::wxPaintEvent

 wxPaintEvent (int id = 0)

Constructor.

wxPalette

A palette is a table that maps pixel values to RGB colours. It allows the colours of a low-
depth bitmap, for example, to be mapped to the available colours in a display.

Derived from

wxGDIObject (p. 582)
wxObject (p. 967)

Include files

<wx/palette.h>

Predefined objects

Objects:

wxNullPalette

See also

wxDC::SetPalette (p. 371), wxBitmap (p. 76)

wxPalette::wxPalette

 wxPalette ()

Default constructor.

 wxPalette (const wxPalette& palette)

Copy constructor. This uses reference counting so is a cheap operation.

 wxPalette (int n, const unsigned char* red,
 const unsigned char* green, const unsigned char* blue)

Creates a palette from arrays of size n, one for each red, blue or green component.

CHAPTER 7

985

Parameters

palette

A pointer or reference to the palette to copy.

n

The number of indices in the palette.

red

An array of red values.

green

An array of green values.

blue

An array of blue values.

See also

wxPalette::Create (p. 983)

wxPerl note: In wxPerl the third constructor form takes as parameters 3 array
references (they must be of the same length).

wxPalette::~wxPalette

 ~wxPalette ()

Destructor.

wxPalette::Create

bool Create (int n, const unsigned char* red, const unsigned char* green, const
unsigned char* blue)

Creates a palette from arrays of size n, one for each red, blue or green component.

Parameters

n

The number of indices in the palette.

red

An array of red values.

green

An array of green values.

CHAPTER 7

986

blue

An array of blue values.

Return value

true if the creation was successful, false otherwise.

See also

wxPalette::wxPalette (p. 982)

wxPalette::GetColoursCount

int GetColoursCount () const

Returns number of entries in palette.

wxPalette::GetPixel

int GetPixel (const unsigned char red, const unsigned char green, const unsigned
char blue) const

Returns a pixel value (index into the palette) for the given RGB values.

Parameters

red

Red value.

green

Green value.

blue

Blue value.

Return value

The nearest palette index.

See also

wxPalette::GetRGB (p. 984)

wxPalette::GetRGB

bool GetRGB (int pixel, const unsigned char* red, const unsigned char* green,
const unsigned char* blue) const

Returns RGB values for a given palette index.

CHAPTER 7

987

Parameters

pixel

The palette index.

red

Receives the red value.

green

Receives the green value.

blue

Receives the blue value.

Return value

true if the operation was successful.

See also

wxPalette::GetPixel (p. 983)

wxPerl note: In wxPerl this method takes only the pixel parameter and returns a 3-
element list (or the empty list upon failure).

wxPalette::Ok

bool Ok() const

Returns true if palette data is present.

wxPalette::operator =

wxPalette& operator = (const wxPalette& palette)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxPalette::operator ==

bool operator == (const wxPalette& palette)

Equality operator. Two palettes are equal if they contain pointers to the same underlying
palette data. It does not compare each attribute, so two independently-created palettes
using the same parameters will fail the test.

wxPalette::operator !=

bool operator != (const wxPalette& palette)

CHAPTER 7

988

Inequality operator. Two palettes are not equal if they contain pointers to different
underlying palette data. It does not compare each attribute.

wxPanel

A panel is a window on which controls are placed. It is usually placed within a frame. It
contains minimal extra functionality over and above its parent class wxWindow; its main
purpose is to be similar in appearance and functionality to a dialog, but with the flexibility
of having any window as a parent.

Note: if not all characters are being intercepted by your OnKeyDown or OnChar handler,
it may be because you are using the wxTAB_TRAVERSAL style, which grabs some
keypresses for use by child controls.

Derived from

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/panel.h>

Window styles

There are no specific styles for this window.

See also window styles overview (p. 1686).

Remarks

By default, a panel has the same colouring as a dialog.

See also

wxDialog (p. 391)

wxPanel::wxPanel

 wxPanel ()

Default constructor.

 wxPanel (wxWindow* parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTAB_TRAVERSAL, const wxString& name = "panel")

Constructor.

Parameters

CHAPTER 7

989

parent

The parent window.

id

An identifier for the panel. A value of -1 is taken to mean a default.

pos

The panel position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWidgets, depending on platform.

size

The panel size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWidgets, depending on platform.

style

The window style. See wxPanel (p. 985).

name

Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxPanel::Create (p. 987)

wxPanel::~wxPanel

 ~wxPanel ()

Destructor. Deletes any child windows before deleting the physical window.

wxPanel::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTAB_TRAVERSAL, const wxString& name = "panel")

Used for two-step panel construction. See wxPanel::wxPanel (p. 986) for details.

wxPanel::GetDefaultItem

wxWindow* GetDefaultItem () const

Returns a pointer to the button which is the default for this window, or NULL. The default
button is the one activated by pressing the Enter key.

wxPanel::InitDialog

CHAPTER 7

990

void InitDialog ()

Sends a wxInitDialogEvent (p. 777), which in turn transfers data to the dialog via
validators.

See also

wxInitDialogEvent (p. 777)

wxPanel::OnSysColourChanged

void OnSysColourChanged (wxSysColourChangedEvent& event)

The default handler for wxEVT_SYS_COLOUR_CHANGED.

Parameters

event

The colour change event.

Remarks

Changes the panel's colour to conform to the current settings (Windows only). Add an
event table entry for your panel class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxEvent::Skip to propagate the notification to child windows and controls.

See also

wxSysColourChangedEvent (p. 1255)

wxPanel::SetDefaultItem

void SetDefaultItem (wxButton *btn)

Changes the default button for the panel.

See also

GetDefaultItem (p. 987)

wxPanel::SetFocus

virtual void SetFocus ()

Overrides wxWindow::SetFocus (p. 1462). This method uses the (undocumented) mix-in
class wxControlContainer which manages the focus and TAB logic for controls which
usually have child controls. In practice, if you call this method and the control has at
least one child window, the focus will be given to the child window.

See also

CHAPTER 7

991

wxFocusEvent (p. 534)wxWindow::SetFocus (p. 1462)

wxPanel::SetFocusIgnoringChildren

virtual void SetFocusIgnoringChildren ()

In contrast to wxPanel::SetFocus (p. 988) (see above) this will set the focus to the panel
even of there are child windows in the panel. This is only rarely needed.

See also

wxFocusEvent (p. 534)wxPanel::SetFocus (p. 988)

wxPasswordEntryDialog

This class represents a dialog that requests a one-line password string from the user. It
is implemented as a generic wxWidgets dialog.

Derived from

wxTextEntryDialog (p. 1300)
wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/textdlg.h>

See also

wxPassowrdEntryDialog overview (p. 1724)

wxPasswordEntryDialog::wxPasswordEntryDialog

 wxPasswordEntryDialog (wxWindow* parent, const wxString& message, const
wxString& caption = "Enter password", const wxString& defaultValue = "", long style =
wxOK | wxCANCEL | wxCENTRE, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxTextEntryDialog::ShowModal (p. 1301) to show the dialog.

Parameters

parent

Parent window.

message

CHAPTER 7

992

Message to show on the dialog.

defaultValue

The default value, which may be the empty string.

style

A dialog style, specifying the buttons (wxOK, wxCANCEL) and an optional
wxCENTRE style. You do not need to specify the wxTE_PASSWORD style, it is
always applied.

pos

Dialog position.

wxPathList

The path list is a convenient way of storing a number of directories, and when presented
with a filename without a directory, searching for an existing file in those directories.
Storing the filename only in an application's files and using a locally-defined list of
directories makes the application and its files more portable.

Use the wxFileNameFromPath global function to extract the filename from the path.

Derived from

wxList (p. 801)
wxObject (p. 967)

Include files

<wx/filefn.h>

See also

wxList (p. 801)

wxPathList::wxPathList

 wxPathList ()

Constructor.

wxPathList::AddEnvList

void AddEnvList (const wxString& env_variable)

Finds the value of the given environment variable, and adds all paths to the path list.
Useful for finding files in the PATH variable, for example.

CHAPTER 7

993

wxPathList::Add

void Add (const wxString& path)

Adds the given directory to the path list, but does not check if the path was already on
the list (use wxPathList::Member() (p. 991) for this).

wxPathList::EnsureFileAccessible

void EnsureFileAccessible (const wxString& filename)

Given a full filename (with path), ensures that files in the same path can be accessed
using the pathlist. It does this by stripping the filename and adding the path to the list if
not already there.

wxPathList::FindAbsoluteValidPath

wxString FindAbsoluteValidPath (const wxString& file)

Searches for a full path for an existing file by appending file to successive members of
the path list. If the file wasn't found, an empty string is returned.

wxPathList::FindValidPath

wxString FindValidPath (const wxString& file)

Searches for a full path for an existing file by appending file to successive members of
the path list. If the file wasn't found, an empty string is returned. This path may be
relative to the current working directory.

wxPathList::Member

bool Member (const wxString& file)

true if the path is in the path list (ignoring case).

wxPen

A pen is a drawing tool for drawing outlines. It is used for drawing lines and painting the
outline of rectangles, ellipses, etc. It has a colour, a width and a style.

Derived from

wxGDIObject (p. 582)
wxObject (p. 967)

Include files

<wx/pen.h>

Predefined objects

CHAPTER 7

994

Objects:

wxNullPen

Pointers:

wxRED_PEN
wxCYAN_PEN
wxGREEN_PEN
wxBLACK_PEN
wxWHITE_PEN
wxTRANSPARENT_PEN
wxBLACK_DASHED_PEN
wxGREY_PEN
wxMEDIUM_GREY_PEN
wxLIGHT_GREY_PEN

Remarks

On a monochrome display, wxWidgets shows all non-white pens as black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in OnInit or when required.

An application may wish to dynamically create pens with different characteristics, and
there is the consequent danger that a large number of duplicate pens will be created.
Therefore an application may wish to get a pointer to a pen by using the global list of
pens wxThePenList , and calling the member function FindOrCreatePen . See the entry
for wxPenList (p. 997).

wxPen uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxPen objects instead of pointers without efficiency
problems. Once one wxPen object changes its data it will create its own pen data
internally so that other pens, which previously shared the data using the reference
counting, are not affected.

See also

wxPenList (p. 997), wxDC (p. 353), wxDC::SetPen (p. 371)

wxPen::wxPen

 wxPen ()

Default constructor. The pen will be uninitialised, and wxPen::Ok (p. 995) will return
false.

 wxPen (const wxColour& colour, int width = 1, int style = wxSOLID)

Constructs a pen from a colour object, pen width and style.

CHAPTER 7

995

 wxPen (const wxString& colourName, int width, int style)

Constructs a pen from a colour name, pen width and style.

 wxPen (const wxBitmap& stipple, int width)

Constructs a stippled pen from a stipple bitmap and a width.

 wxPen (const wxPen& pen)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

colour

A colour object.

colourName

A colour name.

width

Pen width. Under Windows, the pen width cannot be greater than 1 if the style is
wxDOT, wxLONG_DASH, wxSHORT_DASH, wxDOT_DASH, or wxUSER_DASH.

stipple

A stipple bitmap.

pen

A pointer or reference to a pen to copy.

style

The style may be one of the following:

wxSOLID Solid style.

wxTRANSPARENT No pen is used.

wxDOT Dotted style.

wxLONG_DASH Long dashed style.

wxSHORT_DASH Short dashed style.

wxDOT_DASH Dot and dash style.

wxSTIPPLE Use the stipple bitmap.

wxUSER_DASH Use the user dashes: see
wxPen::SetDashes (p. 996).

CHAPTER 7

996

wxBDIAGONAL_HATCH Backward diagonal hatch.

wxCROSSDIAG_HATCH Cross-diagonal hatch.

wxFDIAGONAL_HATCH Forward diagonal hatch.

wxCROSS_HATCH Cross hatch.

wxHORIZONTAL_HATCH Horizontal hatch.

wxVERTICAL_HATCH Vertical hatch.

Remarks

Different versions of Windows and different versions of other platforms support very
different subsets of the styles above - there is no similarity even between Windows95
and Windows98 - so handle with care.

If the named colour form is used, an appropriate wxColour structure is found in the
colour database.

See also

wxPen::SetStyle (p. 997), wxPen::SetColour (p. 996), wxPen::SetWidth (p. 997),
wxPen::SetStipple (p. 996)

wxPerl note: Constructors supported by wxPerl are:

 •::Pen->new(colour, width, style)

 •::Pen->new(colourName, width, style)

 •::Pen->new(stipple, width)

wxPen::~wxPen

 ~wxPen ()

Destructor.

Remarks

The destructor may not delete the underlying pen object of the native windowing system,
since wxBrush uses a reference counting system for efficiency.

Although all remaining pens are deleted when the application exits, the application
should try to clean up all pens itself. This is because wxWidgets cannot know if a pointer
to the pen object is stored in an application data structure, and there is a risk of double
deletion.

wxPen::GetCap

int GetCap () const

CHAPTER 7

997

Returns the pen cap style, which may be one of wxCAP_ROUND ,
wxCAP_PROJECTING and wxCAP_BUTT . The default is wxCAP_ROUND .

See also

wxPen::SetCap (p. 995)

wxPen::GetColour

wxColour& GetColour () const

Returns a reference to the pen colour.

See also

wxPen::SetColour (p. 996)

wxPen::GetDashes

int GetDashes (wxDash** dashes) const

Gets an array of dashes (defined as char in X, DWORD under Windows).dashes is a
pointer to the internal array. Do not deallocate or store this pointer. The function returns
the number of dashes associated with this pen.

See also

wxPen::SetDashes (p. 996)

wxPen::GetJoin

int GetJoin () const

Returns the pen join style, which may be one of wxJOIN_BEVEL , wxJOIN_ROUND and
wxJOIN_MITER . The default is wxJOIN_ROUND .

See also

wxPen::SetJoin (p. 996)

wxPen::GetStipple

wxBitmap* GetStipple () const

Gets a pointer to the stipple bitmap.

See also

wxPen::SetStipple (p. 996)

wxPen::GetStyle

CHAPTER 7

998

int GetStyle () const

Returns the pen style.

See also

wxPen::wxPen (p. 992), wxPen::SetStyle (p. 997)

wxPen::GetWidth

int GetWidth () const

Returns the pen width.

See also

wxPen::SetWidth (p. 997)

wxPen::Ok

bool Ok() const

Returns true if the pen is initialised.

wxPen::SetCap

void SetCap (int capStyle)

Sets the pen cap style, which may be one of wxCAP_ROUND , wxCAP_PROJECTING
and wxCAP_BUTT . The default is wxCAP_ROUND .

See also

wxPen::GetCap (p. 994)

wxPen::SetColour

void SetColour (wxColour& colour)

void SetColour (const wxString& colourName)

void SetColour (int red, int green, int blue)

The pen's colour is changed to the given colour.

See also

wxPen::GetColour (p. 994)

wxPen::SetDashes

void SetDashes (int n, wxDash* dashes)

CHAPTER 7

999

Associates an array of pointers to dashes (defined as char in X, DWORD under
Windows) with the pen. The array is not deallocated by wxPen, but neither must it be
deallocated by the calling application until the pen is deleted or this function is called
with a NULL array.

See also

wxPen::GetDashes (p. 994)

wxPen::SetJoin

void SetJoin (int join_style)

Sets the pen join style, which may be one of wxJOIN_BEVEL , wxJOIN_ROUND and
wxJOIN_MITER . The default is wxJOIN_ROUND .

See also

wxPen::GetJoin (p. 995)

wxPen::SetStipple

void SetStipple (wxBitmap* stipple)

Sets the bitmap for stippling.

See also

wxPen::GetStipple (p. 995)

wxPen::SetStyle

void SetStyle (int style)

Set the pen style.

See also

wxPen::wxPen (p. 992)

wxPen::SetWidth

void SetWidth (int width)

Sets the pen width.

See also

wxPen::GetWidth (p. 995)

wxPen::operator =

CHAPTER 7

1000

wxPen& operator = (const wxPen& pen)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxPen::operator ==

bool operator == (const wxPen& pen)

Equality operator. Two pens are equal if they contain pointers to the same underlying
pen data. It does not compare each attribute, so two independently-created pens using
the same parameters will fail the test.

wxPen::operator !=

bool operator != (const wxPen& pen)

Inequality operator. Two pens are not equal if they contain pointers to different
underlying pen data. It does not compare each attribute.

wxPenList

There is only one instance of this class: wxThePenList . Use this object to search for a
previously created pen of the desired type and create it if not already found. In some
windowing systems, the pen may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all pens will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWidgets which make the pen list less
useful than it once was. Under Windows, scarce resources are cleaned up internally if
they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a pen, because the referencing
counting does it for you. For example, you can set a pen in a device context, and then
immediately delete the pen you passed, because the pen is 'copied'.

So you may find it easier to ignore the pen list, and instead create and copy pens as you
see fit. If your Windows resource meter suggests your application is using too many
resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the pen list is for wxWidgets to keep track of pens in order to
clean them up on exit. It is also kept for backward compatibility with earlier versions of
wxWidgets.

See also

wxPen (p. 991)

CHAPTER 7

1001

wxPenList::wxPenList

void wxPenList ()

Constructor. The application should not construct its own pen list: use the object pointer
wxThePenList .

wxPenList::AddPen

void AddPen (wxPen* pen)

Used internally by wxWidgets to add a pen to the list.

wxPenList::FindOrCreatePen

wxPen* FindOrCreatePen (const wxColour& colour, int width, int style)

Finds a pen with the specified attributes and returns it, else creates a new pen, adds it to
the pen list, and returns it.

wxPen* FindOrCreatePen (const wxString& colourName, int width, int style)

Finds a pen with the specified attributes and returns it, else creates a new pen, adds it to
the pen list, and returns it.

Parameters

colour

Colour object.

colourName

Colour name, which should be in the colour database (p. 162).

width

Width of pen.

style

Pen style. See wxPen::wxPen (p. 992) for a list of styles.

wxPenList::RemovePen

void RemovePen (wxPen* pen)

Used by wxWidgets to remove a pen from the list.

wxPoint

A wxPoint is a useful data structure for graphics operations. It simply contains integer x

CHAPTER 7

1002

and y members.

See also wxRealPoint (p. 1050) for a floating point version.

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxRealPoint (p. 1050)

wxPoint::wxPoint

 wxPoint ()

 wxPoint (int x, int y)

Create a point.

wxPoint::x

int x

x member.

wxPoint::y

int y

y member.

wxPostScriptDC

This defines the wxWidgets Encapsulated PostScript device context, which can write
PostScript files on any platform. See wxDC (p. 353) for descriptions of the member
functions.

Derived from

wxDC (p. 353)
wxObject (p. 967)

Include files

<wx/dcps.h>

CHAPTER 7

1003

wxPostScriptDC::wxPostScriptDC

 wxPostScriptDC (const wxPrintData& printData)

Constructs a PostScript printer device context from a wxPrintData (p. 1004) object.

 wxPostScriptDC (const wxString& output, bool interactive = true,
 wxWindow * parent)

Constructor. output is an optional file for printing to, and if interactive is true a dialog box
will be displayed for adjusting various parameters. parent is the parent of the printer
dialog box.

Use the Ok member to test whether the constructor was successful in creating a usable
device context.

See Printer settings (p. 1551) for functions to set and get PostScript printing settings.

This constructor and the global printer settings are now deprecated; use the wxPrintData
constructor instead.

wxPostScriptDC::SetResolution

static void SetResolution (int ppi)

Set resolution (in pixels per inch) that will be used in PostScript output. Default is 720ppi.

wxPostScriptDC::GetResolution

static int GetResolution ()

Return resolution used in PostScript output. See SetResolution (p. 1000).

wxPreviewCanvas

A preview canvas is the default canvas used by the print preview system to display the
preview.

Derived from

wxScrolledWindow (p. 1098)
wxWindow (p. 1421)
wxevthandler (p. 467)
wxObject (p. 967)

Include files

<wx/print.h>

See also

CHAPTER 7

1004

wxPreviewFrame (p. 1003), wxPreviewControlBar (p. 1001), wxPrintPreview (p. 1022)

wxPreviewCanvas::wxPreviewCanvas

 wxPreviewCanvas (wxPrintPreview* preview, wxWindow* parent, const wxPoint&
pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "canvas")

Constructor.

wxPreviewCanvas::~wxPreviewCanvas

 ~wxPreviewCanvas ()

Destructor.

wxPreviewCanvas::OnPaint

void OnPaint (wxPaintEvent& event)

Calls wxPrintPreview::PaintPage (p. 1024) to refresh the canvas.

wxPreviewControlBar

This is the default implementation of the preview control bar, a panel with buttons and a
zoom control. You can derive a new class from this and override some or all member
functions to change the behaviour and appearance; or you can leave it as it is.

Derived from

wxPanel (p. 985)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/print.h>

See also

wxPreviewFrame (p. 1003), wxPreviewCanvas (p. 1001), wxPrintPreview (p. 1022)

wxPreviewControlBar::wxPreviewControlbar

 wxPreviewControlBar (wxPrintPreview* preview, long buttons, wxWindow* parent,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long

CHAPTER 7

1005

style = 0, const wxString& name = "panel")

Constructor.

The buttons parameter may be a combination of the following, using the bitwise 'or'
operator.

wxPREVIEW_PRINT Create a print button.

wxPREVIEW_NEXT Create a next page button.

wxPREVIEW_PREVIOUS Create a previous page button.

wxPREVIEW_ZOOM Create a zoom control.

wxPREVIEW_DEFAULT Equivalent to a combination of
wxPREVIEW_PREVIOUS,
wxPREVIEW_NEXT and wxPREVIEW_ZOOM.

wxPreviewControlBar::~wxPreviewControlBar

 ~wxPreviewControlBar ()

Destructor.

wxPreviewControlBar::CreateButtons

void CreateButtons ()

Creates buttons, according to value of the button style flags.

wxPreviewControlBar::GetPrintPreview

wxPrintPreview * GetPrintPreview ()

Gets the print preview object associated with the control bar.

wxPreviewControlBar::GetZoomControl

int GetZoomControl ()

Gets the current zoom setting in percent.

wxPreviewControlBar::SetZoomControl

void SetZoomControl (int percent)

Sets the zoom control.

wxPreviewFrame

CHAPTER 7

1006

This class provides the default method of managing the print preview interface. Member
functions may be overridden to replace functionality, or the class may be used without
derivation.

Derived from

wxFrame (p. 555)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/print.h>

See also

wxPreviewCanvas (p. 1001), wxPreviewControlBar (p. 1001), wxPrintPreview (p. 1022)

wxPreviewFrame::wxPreviewFrame

 wxPreviewFrame (wxPrintPreview* preview, wxWindow* parent, const wxString&
title, const wxPoint& pos = wxDefaultPosition, const wxSize& size size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor. Pass a print preview object plus other normal frame arguments. The print
preview object will be destroyed by the frame when it closes.

wxPreviewFrame::~wxPreviewFrame

 ~wxPreviewFrame ()

Destructor.

wxPreviewFrame::CreateControlBar

void CreateControlBar ()

Creates a wxPreviewControlBar. Override this function to allow a user-defined preview
control bar object to be created.

wxPreviewFrame::CreateCanvas

void CreateCanvas ()

Creates a wxPreviewCanvas. Override this function to allow a user-defined preview
canvas object to be created.

CHAPTER 7

1007

wxPreviewFrame::Initialize

void Initialize ()

Creates the preview canvas and control bar, and calls wxWindow::MakeModal(true) to
disable other top-level windows in the application.

This function should be called by the application prior to showing the frame.

wxPreviewFrame::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Enables the other frames in the application, and deletes the print preview object,
implicitly deleting any printout objects associated with the print preview object.

wxPrintData

This class holds a variety of information related to printers and printer device contexts.
This class is used to create a wxPrinterDC and a wxPostScriptDC. It is also used as a
data member of wxPrintDialogData and wxPageSetupDialogData, as part of the
mechanism for transferring data between the print dialogs and the application.

Derived from

wxObject (p. 967)

Include files

<wx/cmndata.h>

See also

wxPrintDialog (p. 1011), wxPageSetupDialog (p. 973), wxPrintDialogData (p. 1012),
wxPageSetupDialogData (p. 974), wxPrintDialog Overview (p. 1723), wxPrinterDC (p.
1018), wxPostScriptDC (p. 1000)

Remarks

The following functions are specific to PostScript printing and have not yet been
documented:

const wxString& GetPrinterCommand() const ;
const wxString& GetPrinterOptions() const ;
const wxString& GetPreviewCommand() const ;
const wxString& GetFilename() const ;
const wxString& GetFontMetricPath() const ;
double GetPrinterScaleX() const ;
double GetPrinterScaleY() const ;
long GetPrinterTranslateX() const ;
long GetPrinterTranslateY() const ;
// wxPRINT_MODE_PREVIEW, wxPRINT_MODE_FILE, wxPRINT _MODE_PRINTER
wxPrintMode GetPrintMode() const ;

void SetPrinterCommand(const wxString& command) ;

CHAPTER 7

1008

void SetPrinterOptions(const wxString& options) ;
void SetPreviewCommand(const wxString& command) ;
void SetFilename(const wxString& filename) ;
void SetFontMetricPath(const wxString& path) ;
void SetPrinterScaleX(double x) ;
void SetPrinterScaleY(double y) ;
void SetPrinterScaling(double x, double y) ;
void SetPrinterTranslateX(long x) ;
void SetPrinterTranslateY(long y) ;
void SetPrinterTranslation(long x, long y) ;
void SetPrintMode(wxPrintMode printMode) ;

wxPrintData::wxPrintData

 wxPrintData ()

Default constructor.

 wxPrintData (const wxPrintData& data)

Copy constructor.

wxPrintData::~wxPrintData

 ~wxPrintData ()

Destructor.

wxPrintData::GetCollate

bool GetCollate () const

Returns true if collation is on.

wxPrintData::GetBin

wxPrintBin GetBin () const

Returns the current bin (papersource). By default, the system is left to select the bin
(wxPRINTBIN_DEFAULT is returned).

See SetBin() (p. 1007) for the full list of bin values.

wxPrintData::GetColour

bool GetColour () const

Returns true if colour printing is on.

wxPrintData::GetDuplex

CHAPTER 7

1009

wxDuplexMode GetDuplex () const

Returns the duplex mode. One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL,
wxDUPLEX_VERTICAL.

wxPrintData::GetNoCopies

int GetNoCopies () const

Returns the number of copies requested by the user.

wxPrintData::GetOrientation

int GetOrientation () const

Gets the orientation. This can be wxLANDSCAPE or wxPORTRAIT.

wxPrintData::GetPaperId

wxPaperSize GetPaperId () const

Returns the paper size id. For more information, see wxPrintData::SetPaperId (p. 1008).

wxPrintData::GetPrinterName

const wxString& GetPrinterName () const

Returns the printer name. If the printer name is the empty string, it indicates that the
default printer should be used.

wxPrintData::GetQuality

wxPrintQuality GetQuality () const

Returns the current print quality. This can be a positive integer, denoting the number of
dots per inch, or one of the following identifiers:

wxPRINT_QUALITY_HIGH
wxPRINT_QUALITY_MEDIUM
wxPRINT_QUALITY_LOW
wxPRINT_QUALITY_DRAFT

On input you should pass one of these identifiers, but on return you may get back a
positive integer indicating the current resolution setting.

wxPrintData::Ok

bool Ok() const

Returns true if the print data is valid for using in print dialogs. This can return false on
Windows if the current printer is not set, for example. On all other platforms, it returns

CHAPTER 7

1010

true.

wxPrintData::SetBin

void SetBin (wxPrintBin flag)

Sets the current bin. Possible values are:

enum wxPrintBin
{
 wxPRINTBIN_DEFAULT,

 wxPRINTBIN_ONLYONE,
 wxPRINTBIN_LOWER,
 wxPRINTBIN_MIDDLE,
 wxPRINTBIN_MANUAL,
 wxPRINTBIN_ENVELOPE,
 wxPRINTBIN_ENVMANUAL,
 wxPRINTBIN_AUTO,
 wxPRINTBIN_TRACTOR,
 wxPRINTBIN_SMALLFMT,
 wxPRINTBIN_LARGEFMT,
 wxPRINTBIN_LARGECAPACITY,
 wxPRINTBIN_CASSETTE,
 wxPRINTBIN_FORMSOURCE,

 wxPRINTBIN_USER,
};

wxPrintData::SetCollate

void SetCollate (bool flag)

Sets collation to on or off.

wxPrintData::SetColour

void SetColour (bool flag)

Sets colour printing on or off.

wxPrintData::SetDuplex

void SetDuplex (wxDuplexMode mode)

Returns the duplex mode. One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL,
wxDUPLEX_VERTICAL.

wxPrintData::SetNoCopies

void SetNoCopies (int n)

Sets the default number of copies to be printed out.

CHAPTER 7

1011

wxPrintData::SetOrientation

void SetOrientation (int orientation)

Sets the orientation. This can be wxLANDSCAPE or wxPORTRAIT.

wxPrintData::SetPaperId

void SetPaperId (wxPaperSize paperId)

Sets the paper id. This indicates the type of paper to be used. For a mapping between
paper id, paper size and string name, see wxPrintPaperDatabase in paper.h (not yet
documented).

paperId can be one of:

 wxPAPER_NONE, // Use specific dim ensions
 wxPAPER_LETTER, // Letter, 8 1/2 by 11 inches
 wxPAPER_LEGAL, // Legal, 8 1/2 by 14 inches
 wxPAPER_A4, // A4 Sheet, 210 by 297
millimeters
 wxPAPER_CSHEET, // C Sheet, 17 by 2 2 inches
 wxPAPER_DSHEET, // D Sheet, 22 by 3 4 inches
 wxPAPER_ESHEET, // E Sheet, 34 by 4 4 inches
 wxPAPER_LETTERSMALL, // Letter Small, 8 1/2 by 11
inches
 wxPAPER_TABLOID, // Tabloid, 11 by 1 7 inches
 wxPAPER_LEDGER, // Ledger, 17 by 11 inches
 wxPAPER_STATEMENT, // Statement, 5 1/2 by 8 1/2
inches
 wxPAPER_EXECUTIVE, // Executive, 7 1/4 by 10 1/2
inches
 wxPAPER_A3, // A3 sheet, 297 by 420
millimeters
 wxPAPER_A4SMALL, // A4 small sheet, 210 by 297
millimeters
 wxPAPER_A5, // A5 sheet, 148 by 210
millimeters
 wxPAPER_B4, // B4 sheet, 250 by 354
millimeters
 wxPAPER_B5, // B5 sheet, 182-by -257-millimeter
paper
 wxPAPER_FOLIO, // Folio, 8-1/2-by- 13-inch paper
 wxPAPER_QUARTO, // Quarto, 215-by-2 75-millimeter
paper
 wxPAPER_10X14, // 10-by-14-inch sh eet
 wxPAPER_11X17, // 11-by-17-inch sh eet
 wxPAPER_NOTE, // Note, 8 1/2 by 1 1 inches
 wxPAPER_ENV_9, // #9 Envelope, 3 7 /8 by 8 7/8
inches
 wxPAPER_ENV_10, // #10 Envelope, 4 1/8 by 9 1/2
inches
 wxPAPER_ENV_11, // #11 Envelope, 4 1/2 by 10 3/8
inches
 wxPAPER_ENV_12, // #12 Envelope, 4 3/4 by 11
inches
 wxPAPER_ENV_14, // #14 Envelope, 5 by 11 1/2
inches
 wxPAPER_ENV_DL, // DL Envelope, 110 by 220
millimeters
 wxPAPER_ENV_C5, // C5 Envelope, 162 by 229

CHAPTER 7

1012

millimeters
 wxPAPER_ENV_C3, // C3 Envelope, 324 by 458
millimeters
 wxPAPER_ENV_C4, // C4 Envelope, 229 by 324
millimeters
 wxPAPER_ENV_C6, // C6 Envelope, 114 by 162
millimeters
 wxPAPER_ENV_C65, // C65 Envelope, 11 4 by 229
millimeters
 wxPAPER_ENV_B4, // B4 Envelope, 250 by 353
millimeters
 wxPAPER_ENV_B5, // B5 Envelope, 176 by 250
millimeters
 wxPAPER_ENV_B6, // B6 Envelope, 176 by 125
millimeters
 wxPAPER_ENV_ITALY, // Italy Envelope, 110 by 230
millimeters
 wxPAPER_ENV_MONARCH, // Monarch Envelope , 3 7/8 by 7
1/2 inches
 wxPAPER_ENV_PERSONAL, // 6 3/4 Envelope, 3 5/8 by 6 1/2
inches
 wxPAPER_FANFOLD_US, // US Std Fanfold, 14 7/8 by 11
inches
 wxPAPER_FANFOLD_STD_GERMAN, // German Std Fanfo ld, 8 1/2 by 12
inches
 wxPAPER_FANFOLD_LGL_GERMAN, // German Legal Fan fold, 8 1/2 by
13 inches

Windows 95 only:
 wxPAPER_ISO_B4, // B4 (ISO) 250 x 3 53 mm
 wxPAPER_JAPANESE_POSTCARD, // Japanese Postcar d 100 x 148 mm
 wxPAPER_9X11, // 9 x 11 in
 wxPAPER_10X11, // 10 x 11 in
 wxPAPER_15X11, // 15 x 11 in
 wxPAPER_ENV_INVITE, // Envelope Invite 220 x 220 mm
 wxPAPER_LETTER_EXTRA, // Letter Extra 9 \ 275 x 12 in
 wxPAPER_LEGAL_EXTRA, // Legal Extra 9 \2 75 x 15 in
 wxPAPER_TABLOID_EXTRA, // Tabloid Extra 11 .69 x 18 in
 wxPAPER_A4_EXTRA, // A4 Extra 9.27 x 12.69 in
 wxPAPER_LETTER_TRANSVERSE, // Letter Transvers e 8 \275 x 11
in
 wxPAPER_A4_TRANSVERSE, // A4 Transverse 21 0 x 297 mm
 wxPAPER_LETTER_EXTRA_TRANSVERSE, // Letter Extr a Transverse
9\275 x 12 in
 wxPAPER_A_PLUS, // SuperA/SuperA/A4 227 x 356 mm
 wxPAPER_B_PLUS, // SuperB/SuperB/A3 305 x 487 mm
 wxPAPER_LETTER_PLUS, // Letter Plus 8.5 x 12.69 in
 wxPAPER_A4_PLUS, // A4 Plus 210 x 33 0 mm
 wxPAPER_A5_TRANSVERSE, // A5 Transverse 14 8 x 210 mm
 wxPAPER_B5_TRANSVERSE, // B5 (JIS) Transve rse 182 x 257
mm
 wxPAPER_A3_EXTRA, // A3 Extra 322 x 4 45 mm
 wxPAPER_A5_EXTRA, // A5 Extra 174 x 2 35 mm
 wxPAPER_B5_EXTRA, // B5 (ISO) Extra 2 01 x 276 mm
 wxPAPER_A2, // A2 420 x 594 mm
 wxPAPER_A3_TRANSVERSE, // A3 Transverse 29 7 x 420 mm
 wxPAPER_A3_EXTRA_TRANSVERSE // A3 Extra Transve rse 322 x 445
mm

wxPrintData::SetPrinterName

CHAPTER 7

1013

void SetPrinterName (const wxString& printerName)

Sets the printer name. This can be the empty string to indicate that the default printer
should be used.

wxPrintData::SetQuality

void SetQuality (wxPrintQuality quality)

Sets the desired print quality. This can be a positive integer, denoting the number of dots
per inch, or one of the following identifiers:

wxPRINT_QUALITY_HIGH
wxPRINT_QUALITY_MEDIUM
wxPRINT_QUALITY_LOW
wxPRINT_QUALITY_DRAFT

On input you should pass one of these identifiers, but on return you may get back a
positive integer indicating the current resolution setting.

wxPrintData::operator =

void operator = (const wxPrintData& data)

Assigns print data to this object.

void operator = (const wxPrintSetupData& data)

Assigns print setup data to this object. wxPrintSetupData is deprecated, but retained for
backward compatibility.

wxPrintDialog

This class represents the print and print setup common dialogs. You may obtain a
wxPrinterDC (p. 1018) device context from a successfully dismissed print dialog.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/printdlg.h>

See also

wxPrintDialog Overview (p. 1723)

CHAPTER 7

1014

wxPrintDialog::wxPrintDialog

 wxPrintDialog (wxWindow* parent, wxPrintDialogData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of print data,
which will be copied to the print dialog's print data.

See also

wxPrintDialogData (p. 1012)

wxPrintDialog::~wxPrintDialog

 ~wxPrintDialog ()

Destructor. If wxPrintDialog::GetPrintDC has not been called, the device context
obtained by the dialog (if any) will be deleted.

wxPrintDialog::GetPrintDialogData

wxPrintDialogData& GetPrintDialogData ()

Returns the print dialog data (p. 1012) associated with the print dialog.

wxPrintDialog::GetPrintDC

wxDC* GetPrintDC ()

Returns the device context created by the print dialog, if any. When this function has
been called, the ownership of the device context is transferred to the application, so it
must then be deleted explicitly.

wxPrintDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise. After this function is called, a device context may be retrievable using
wxPrintDialog::GetPrintDC (p. 1011).

wxPrintDialogData

This class holds information related to the visual characteristics of wxPrintDialog. It
contains a wxPrintData object with underlying printing settings.

Derived from

wxObject (p. 967)

Include files

CHAPTER 7

1015

<wx/cmndata.h>

See also

wxPrintDialog (p. 1011), wxPrintDialog Overview (p. 1723)

wxPrintDialogData::wxPrintDialogData

 wxPrintDialogData ()

Default constructor.

 wxPrintDialogData (wxPrintDialogData& dialogData)

Copy constructor.

 wxPrintDialogData (wxPrintData& printData)

Construct an object from a print dialog data object.

wxPrintDialogData::~wxPrintDialogData

 ~wxPrintDialogData ()

Destructor.

wxPrintDialogData::EnableHelp

void EnableHelp (bool flag)

Enables or disables the 'Help' button.

wxPrintDialogData::EnablePageNumbers

void EnablePageNumbers (bool flag)

Enables or disables the 'Page numbers' controls.

wxPrintDialogData::EnablePrintToFile

void EnablePrintToFile (bool flag)

Enables or disables the 'Print to file' checkbox.

wxPrintDialogData::EnableSelection

void EnableSelection (bool flag)

Enables or disables the 'Selection' radio button.

CHAPTER 7

1016

wxPrintDialogData::GetAllPages

bool GetAllPages () const

Returns true if the user requested that all pages be printed.

wxPrintDialogData::GetCollate

bool GetCollate () const

Returns true if the user requested that the document(s) be collated.

wxPrintDialogData::GetFromPage

int GetFromPage () const

Returns the from page number, as entered by the user.

wxPrintDialogData::GetMaxPage

int GetMaxPage () const

Returns the maximum page number.

wxPrintDialogData::GetMinPage

int GetMinPage () const

Returns the minimum page number.

wxPrintDialogData::GetNoCopies

int GetNoCopies () const

Returns the number of copies requested by the user.

wxPrintDialogData::GetPrintData

wxPrintData& GetPrintData ()

Returns a reference to the internal wxPrintData object.

wxPrintDialogData::GetPrintToFile

bool GetPrintToFile () const

Returns true if the user has selected printing to a file.

wxPrintDialogData::GetSelection

CHAPTER 7

1017

bool GetSelection () const

Returns true if the user requested that the selection be printed (where 'selection' is a
concept specific to the application).

wxPrintDialogData::GetToPage

int GetToPage () const

Returns the to page number, as entered by the user.

wxPrintDialogData::Ok

bool Ok() const

Returns true if the print data is valid for using in print dialogs. This can return false on
Windows if the current printer is not set, for example. On all other platforms, it returns
true.

wxPrintDialogData::SetCollate

void SetCollate (bool flag)

Sets the 'Collate' checkbox to true or false.

wxPrintDialogData::SetFromPage

void SetFromPage (int page)

Sets the from page number.

wxPrintDialogData::SetMaxPage

void SetMaxPage (int page)

Sets the maximum page number.

wxPrintDialogData::SetMinPage

void SetMinPage (int page)

Sets the minimum page number.

wxPrintDialogData::SetNoCopies

void SetNoCopies (int n)

Sets the default number of copies the user has requested to be printed out.

wxPrintDialogData::SetPrintData

CHAPTER 7

1018

void SetPrintData (const wxPrintData& printData)

Sets the internal wxPrintData.

wxPrintDialogData::SetPrintToFile

void SetPrintToFile (bool flag)

Sets the 'Print to file' checkbox to true or false.

wxPrintDialogData::SetSelection

void SetSelection (bool flag)

Selects the 'Selection' radio button. The effect of printing the selection depends on how
the application implements this command, if at all.

wxPrintDialogData::SetSetupDialog

void SetSetupDialog (bool flag)

Determines whether the dialog to be shown will be the Print dialog (pass false) or Print
Setup dialog (pass true).

This function has been deprecated since version 2.5.4.

wxPrintDialogData::SetToPage

void SetToPage (int page)

Sets the to page number.

wxPrintDialogData::operator =

void operator = (const wxPrintData& data)

Assigns print data to this object.

void operator = (const wxPrintDialogData& data)

Assigns another print dialog data object to this object.

wxPrinter

This class represents the Windows or PostScript printer, and is the vehicle through
which printing may be launched by an application. Printing can also be achieved through
using of lower functions and classes, but this and associated classes provide a more
convenient and general method of printing.

Derived from

CHAPTER 7

1019

wxObject (p. 967)

Include files

<wx/print.h>

See also

Printing framework overview (p. 1738), wxPrinterDC (p. 1018), wxPrintDialog (p. 1011),
wxPrintout (p. 1019), wxPrintPreview (p. 1022).

wxPrinter::wxPrinter

 wxPrinter (wxPrintDialogData* data = NULL)

Constructor. Pass an optional pointer to a block of print dialog data, which will be copied
to the printer object's local data.

See also

wxPrintDialogData (p. 1012),wxPrintData (p. 1004)

wxPrinter::CreateAbortWindow

void CreateAbortWindow (wxWindow* parent, wxPrintout* printout)

Creates the default printing abort window, with a cancel button.

wxPrinter::GetAbort

bool GetAbort ()

Returns true if the user has aborted the print job.

wxPrinter::GetLastError

static wxPrinterError GetLastError ()

Return last error. Valid after calling Print (p. 1017),PrintDialog (p. 1017) or
wxPrintPreview::Print (p. 1024). These functions set last error to
wxPRINTER_NO_ERROR if no error happened.

Returned value is one of the following:

wxPRINTER_NO_ERROR No error happened.

wxPRINTER_CANCELLED The user cancelled printing.

wxPRINTER_ERROR There was an error during printing.

CHAPTER 7

1020

wxPrinter::GetPrintDialogData

wxPrintDialogData& GetPrintDialogData ()

Returns the print data (p. 1004) associated with the printer object.

wxPrinter::Print

bool Print (wxWindow * parent, wxPrintout * printout, bool prompt=true)

Starts the printing process. Provide a parent window, a user-defined wxPrintout object
which controls the printing of a document, and whether the print dialog should be
invoked first.

Print could return false if there was a problem initializing the printer device context
(current printer not set, for example) or the user cancelled printing.
CallwxPrinter::GetLastError (p. 1017) to get detailed information about the kind of the
error.

wxPrinter::PrintDialog

wxDC* PrintDialog (wxWindow * parent)

Invokes the print dialog. If successful (the user did not press Cancel and no error
occurred), a suitable device context will be returned (otherwise NULL is returned --
callwxPrinter::GetLastError (p. 1017) to get detailed information about the kind of the
error).

The application must delete this device context to avoid a memory leak.

wxPrinter::ReportError

void ReportError (wxWindow * parent, wxPrintout * printout, const wxString&
message)

Default error-reporting function.

wxPrinter::Setup

bool Setup (wxWindow * parent)

Invokes the print setup dialog. Note that the setup dialog is obsolete from Windows 95,
though retained for backward compatibility.

wxPrinterDC

A printer device context is specific to Windows, and allows access to any printer with a
Windows driver. See wxDC (p. 353) for further information on device contexts, and
wxDC::GetSize (p. 365) for advice on achieving the correct scaling for the page.

CHAPTER 7

1021

Derived from

wxDC (p. 353)
wxObject (p. 353)

Include files

<wx/dcprint.h>

See also

wxDC (p. 353), Printing framework overview (p. 1738)

wxPrinterDC::wxPrinterDC

 wxPrinterDC (const wxPrintData& printData)

Pass a wxPrintData (p. 1004) object with information necessary for setting up a suitable
printer device context. This is the recommended way to construct a wxPrinterDC. Make
sure you specify a reference to a wxPrintData (p. 1004) object, not a pointer - you may
not even get a warning if you pass a pointer instead.

 wxPrinterDC (const wxString& driver, const wxString& device, const wxString&
output, const bool interactive = true, int orientation = wxPORTRAIT)

Constructor. With empty strings for the first three arguments, the default printer dialog is
displayed. device indicates the type of printer and outputis an optional file for printing to.
The driver parameter is currently unused. Use the Ok member to test whether the
constructor was successful in creating a usable device context.

This constructor is deprecated and retained only for backward compatibility.

wxPrintout

This class encapsulates the functionality of printing out an application document. A new
class must be derived and members overridden to respond to calls such as OnPrintPage
and HasPage. Instances of this class are passed to wxPrinter::Print or a wxPrintPreview
object to initiate printing or previewing.

Derived from

wxObject (p. 967)

Include files

<wx/print.h>

See also

Printing framework overview (p. 1738), wxPrinterDC (p. 1018), wxPrintDialog (p. 1011),
wxPrinter (p. 1016), wxPrintPreview (p. 1022)

CHAPTER 7

1022

wxPrintout::wxPrintout

 wxPrintout (const wxString& title = "Printout")

Constructor. Pass an optional title argument - the current filename would be a good idea.
This will appear in the printing list (at least in MSW)

wxPrintout::~wxPrintout

 ~wxPrintout ()

Destructor.

wxPrintout::GetDC

wxDC * GetDC()

Returns the device context associated with the printout (given to the printout at start of
printing or previewing). This will be a wxPrinterDC if printing under Windows, a
wxPostScriptDC if printing on other platforms, and a wxMemoryDC if previewing.

wxPrintout::GetPageInfo

void GetPageInfo (int * minPage, int * maxPage, int * pageFrom, int * pageTo)

Called by the framework to obtain information from the application about minimum and
maximum page values that the user can select, and the required page range to be
printed. By default this returns 1, 32000 for the page minimum and maximum values,
and 1, 1 for the required page range.

If minPage is zero, the page number controls in the print dialog will be disabled.

wxPython note: When this method is implemented in a derived Python class, it should
be designed to take no parameters (other than the self reference) and to return a tuple of
four integers.

wxPerl note: When this method is overridden in a derived class, it must not take any
parameters, and returns a 4-element list.

wxPrintout::GetPageSizeMM

void GetPageSizeMM (int * w, int * h)

Returns the size of the printer page in millimetres.

wxPython note: This method returns the output-only parameters as a tuple.

wxPerl note: In wxPerl this method takes no arguments and returns a 2-element list (
w, h)

CHAPTER 7

1023

wxPrintout::GetPageSizePixels

void GetPageSizePixels (int * w, int * h)

Returns the size of the printer page in pixels. These may not be the same as the values
returned from wxDC::GetSize (p. 365) if the printout is being used for previewing, since
in this case, a memory device context is used, using a bitmap size reflecting the current
preview zoom. The application must take this discrepancy into account if previewing is to
be supported.

wxPython note: This method returns the output-only parameters as a tuple.

wxPerl note: In wxPerl this method takes no arguments and returns a 2-element list (
w, h)

wxPrintout::GetPPIPrinter

void GetPPIPrinter (int * w, int * h)

Returns the number of pixels per logical inch of the printer device context. Dividing the
printer PPI by the screen PPI can give a suitable scaling factor for drawing text onto the
printer. Remember to multiply this by a scaling factor to take the preview DC size into
account.

wxPython note: This method returns the output-only parameters as a tuple.

wxPerl note: In wxPerl this method takes no arguments and returns a 2-element list (
w, h)

wxPrintout::GetPPIScreen

void GetPPIScreen (int * w, int * h)

Returns the number of pixels per logical inch of the screen device context. Dividing the
printer PPI by the screen PPI can give a suitable scaling factor for drawing text onto the
printer. Remember to multiply this by a scaling factor to take the preview DC size into
account.

wxPrintout::GetTitle

wxString GetTitle ()

Returns the title of the printout

wxPython note: This method returns the output-only parameters as a tuple.

wxPerl note: In wxPerl this method takes no arguments and returns a 2-element list (
w, h)

wxPrintout::HasPage

bool HasPage (int pageNum)

CHAPTER 7

1024

Should be overridden to return true if the document has this page, or false if not.
Returning false signifies the end of the document. By default, HasPage behaves as if the
document has only one page.

wxPrintout::IsPreview

bool IsPreview ()

Returns true if the printout is currently being used for previewing.

wxPrintout::OnBeginDocument

bool OnBeginDocument (int startPage, int endPage)

Called by the framework at the start of document printing. Return false from this function
cancels the print job. OnBeginDocument is called once for every copy printed.

The base wxPrintout::OnBeginDocument must be called (and the return value checked)
from within the overridden function, since it calls wxDC::StartDoc.

wxPython note: If this method is overridden in a Python class then the base class
version can be called by using the methodbase_OnBeginDocument(startPage,
endPage) .

wxPrintout::OnEndDocument

void OnEndDocument ()

Called by the framework at the end of document printing. OnEndDocument is called
once for every copy printed.

The base wxPrintout::OnEndDocument must be called from within the overridden
function, since it calls wxDC::EndDoc.

wxPrintout::OnBeginPrinting

void OnBeginPrinting ()

Called by the framework at the start of printing. OnBeginPrinting is called once for every
print job (regardless of how many copies are being printed).

wxPrintout::OnEndPrinting

void OnEndPrinting ()

Called by the framework at the end of printing. OnEndPrinting is called once for every
print job (regardless of how many copies are being printed).

wxPrintout::OnPreparePrinting

void OnPreparePrinting ()

CHAPTER 7

1025

Called once by the framework before any other demands are made of the wxPrintout
object. This gives the object an opportunity to calculate the number of pages in the
document, for example.

wxPrintout::OnPrintPage

bool OnPrintPage (int pageNum)

Called by the framework when a page should be printed. Returning false cancels the
print job. The application can use wxPrintout::GetDC to obtain a device context to draw
on.

wxPrintPreview

Objects of this class manage the print preview process. The object is passed a
wxPrintout object, and the wxPrintPreview object itself is passed to a wxPreviewFrame
object. Previewing is started by initializing and showing the preview frame. Unlike
wxPrinter::Print, flow of control returns to the application immediately after the frame is
shown.

Derived from

wxObject (p. 967)

Include files

<wx/print.h>

See also

Printing framework overview (p. 1738), wxPrinterDC (p. 1018), wxPrintDialog (p. 1011),
wxPrintout (p. 1019), wxPrinter (p. 1016), wxPreviewCanvas (p. 1001),
wxPreviewControlBar (p. 1001), wxPreviewFrame (p. 1003).

wxPrintPreview::wxPrintPreview

 wxPrintPreview (wxPrintout* printout, wxPrintout* printoutForPrinting,wxPrintData*
data=NULL)

Constructor. Pass a printout object, an optional printout object to be used for actual
printing, and the address of an optional block of printer data, which will be copied to the
print preview object's print data.

If printoutForPrinting is non-NULL, a Print... button will be placed on the preview frame
so that the user can print directly from the preview interface.

Do not explicitly delete the printout objects once this destructor has been called, since
they will be deleted in the wxPrintPreview constructor. The same does not apply to the
data argument.

CHAPTER 7

1026

Test the Ok member to check whether the wxPrintPreview object was created correctly.
Ok could return false if there was a problem initializing the printer device context (current
printer not set, for example).

wxPrintPreview::~wxPrintPreview

 ~wxPrinter ()

Destructor. Deletes both print preview objects, so do not destroy these objects in your
application.

wxPrintPreview::GetCanvas

wxPreviewCanvas* GetCanvas ()

Gets the preview window used for displaying the print preview image.

wxPrintPreview::GetCurrentPage

int GetCurrentPage ()

Gets the page currently being previewed.

wxPrintPreview::GetFrame

wxFrame * GetFrame ()

Gets the frame used for displaying the print preview canvas and control bar.

wxPrintPreview::GetMaxPage

int GetMaxPage ()

Returns the maximum page number.

wxPrintPreview::GetMinPage

int GetMinPage ()

Returns the minimum page number.

wxPrintPreview::GetPrintout

wxPrintout * GetPrintout ()

Gets the preview printout object associated with the wxPrintPreview object.

wxPrintPreview::GetPrintoutForPrinting

wxPrintout * GetPrintoutForPrinting ()

CHAPTER 7

1027

Gets the printout object to be used for printing from within the preview interface, or NULL
if none exists.

wxPrintPreview::Ok

bool Ok()

Returns true if the wxPrintPreview is valid, false otherwise. It could return false if there
was a problem initializing the printer device context (current printer not set, for example).

wxPrintPreview::PaintPage

bool PaintPage (wxPreviewCanvas * canvas, wxDC& dc)

This refreshes the preview window with the preview image. It must be called from the
preview window's OnPaint member.

The implementation simply blits the preview bitmap onto the canvas, creating a new
preview bitmap if none exists.

wxPrintPreview::Print

bool Print (bool prompt)

Invokes the print process using the second wxPrintout object supplied in the
wxPrintPreview constructor. Will normally be called by the Print... panel item on the
preview frame's control bar.

Returns false in case of error -- callwxPrinter::GetLastError (p. 1017) to get detailed
information about the kind of the error.

wxPrintPreview::RenderPage

bool RenderPage (int pageNum)

Renders a page into a wxMemoryDC. Used internally by wxPrintPreview.

wxPrintPreview::SetCanvas

void SetCanvas (wxPreviewCanvas* window)

Sets the window to be used for displaying the print preview image.

wxPrintPreview::SetCurrentPage

void SetCurrentPage (int pageNum)

Sets the current page to be previewed.

wxPrintPreview::SetFrame

CHAPTER 7

1028

void SetFrame (wxFrame * frame)

Sets the frame to be used for displaying the print preview canvas and control bar.

wxPrintPreview::SetPrintout

void SetPrintout (wxPrintout * printout)

Associates a printout object with the wxPrintPreview object.

wxPrintPreview::SetZoom

void SetZoom (int percent)

Sets the percentage preview zoom, and refreshes the preview canvas accordingly.

wxProcess

The objects of this class are used in conjunction with thewxExecute (p. 1519) function.
When a wxProcess object is passed to wxExecute(), its OnTerminate() (p. 1029) virtual
method is called when the process terminates. This allows the program to be
(asynchronously) notified about the process termination and also retrieve its exit status
which is unavailable from wxExecute() in the case of asynchronous execution.

Please note that if the process termination notification is processed by the parent, it is
responsible for deleting the wxProcess object which sent it. However, if it is not
processed, the object will delete itself and so the library users should only delete those
objects whose notifications have been processed (and call Detach() (p. 1027) for
others).

wxProcess also supports IO redirection of the child process. For this, you have to call its
Redirect (p. 1030) method before passing it towxExecute (p. 1519). If the child process
was launched successfully,GetInputStream (p. 1027),GetOutputStream (p. 1027)
andGetErrorStream (p. 1027) can then be used to retrieve the streams corresponding to
the child process standard output, input and error output respectively.

wxPerl note: In wxPerl this class has an additional Destroy method, for explicit
destruction.

Derived from

wxEvtHandler (p. 467)

Include files

<wx/process.h>

See also

wxExecute (p. 1519)
exec sample (p. 1636)

CHAPTER 7

1029

wxProcess::wxProcess

 wxProcess (wxEvtHandler * parent = NULL, int id = -1)

 wxProcess (int flags)

Constructs a process object. id is only used in the case you want to use wxWidgets
events. It identifies this object, or another window that will receive the event.

If the parent parameter is different from NULL, it will receive a wxEVT_END_PROCESS
notification event (you should insert EVT_END_PROCESS macro in the event table of
the parent to handle it) with the given id.

The second constructor creates an object without any associated parent (and hence no
id neither) but allows to specify the flags which can have the value of
wxPROCESS_DEFAULT or wxPROCESS_REDIRECT. Specifying the former value has no
particular effect while using the latter one is equivalent to calling Redirect (p. 1030).

Parameters

parent

The event handler parent.

id

id of an event.

flags

either wxPROCESS_DEFAULT or wxPROCESS_REDIRECT

wxProcess::~wxProcess

 ~wxProcess ()

Destroys the wxProcess object.

wxProcess::CloseOutput

void CloseOutput ()

Closes the output stream (the one connected to the stdin of the child process). This
function can be used to indicate to the child process that there is no more data to be
read - usually, a filter program will only terminate when the input stream is closed.

wxProcess::Detach

void Detach ()

CHAPTER 7

1030

Normally, a wxProcess object is deleted by its parent when it receives the notification
about the process termination. However, it might happen that the parent object is
destroyed before the external process is terminated (e.g. a window from which this
external process was launched is closed by the user) and in this case it should not
delete the wxProcess object, butshould call Detach() instead. After the wxProcess
object is detached from its parent, no notification events will be sent to the parent and
the object will delete itself upon reception of the process termination notification.

wxProcess::GetErrorStream

wxInputStream* GetErrorStream () const

Returns an input stream which corresponds to the standard error output (stderr) of the
child process.

wxProcess::GetInputStream

wxInputStream* GetInputStream () const

It returns an input stream corresponding to the standard output stream of the
subprocess. If it is NULL, you have not turned on the redirection. See
wxProcess::Redirect (p. 1030).

wxProcess::GetOutputStream

wxOutputStream* GetOutputStream () const

It returns an output stream correspoding to the input stream of the subprocess. If it is
NULL, you have not turned on the redirection. See wxProcess::Redirect (p. 1030).

wxProcess::IsErrorAvailable

bool IsErrorAvailable () const

Returns true if there is data to be read on the child process standard error stream.

See also

IsInputAvailable (p. 1028)

wxProcess::IsInputAvailable

bool IsInputAvailable () const

Returns true if there is data to be read on the child process standard output stream.
This allows to write simple (and extremely inefficient) polling-based code waiting for a
better mechanism in future wxWidgets versions.

See the exec sample (p. 1636) for an example of using this function.

See also

CHAPTER 7

1031

IsInputOpened (p. 1028)

wxProcess::IsInputOpened

bool IsInputOpened () const

Returns true if the child process standard output stream is opened.

wxProcess::Kill

static wxKillError Kill (int pid, wxSignal signal = wxSIGNONE, int flags =
wxKILL_NOCHILDREN)

Send the specified signal to the given process. Possible signal values are:

enum wxSignal
{
 wxSIGNONE = 0, // verify if the process exists under Unix
 wxSIGHUP,
 wxSIGINT,
 wxSIGQUIT,
 wxSIGILL,
 wxSIGTRAP,
 wxSIGABRT,
 wxSIGEMT,
 wxSIGFPE,
 wxSIGKILL, // forcefully kill, dangerous!
 wxSIGBUS,
 wxSIGSEGV,
 wxSIGSYS,
 wxSIGPIPE,
 wxSIGALRM,
 wxSIGTERM // terminate the process gently
};

wxSIGNONE, wxSIGKILL and wxSIGTERM have the same meaning under both Unix and
Windows but all the other signals are equivalent towxSIGTERM under Windows.

The flags parameter can be wxKILL_NOCHILDREN (the default), or
wxKILL_CHILDREN, in which case the child processes of this process will be killed too.
Note that under Unix, for wxKILL_CHILDREN to work you should have created the
process passing wxEXEC_MAKE_GROUP_LEADER.

Returns the element of wxKillError enum:

enum wxKillError
{
 wxKILL_OK, // no error
 wxKILL_BAD_SIGNAL, // no such signal
 wxKILL_ACCESS_DENIED, // permission denied
 wxKILL_NO_PROCESS, // no such process
 wxKILL_ERROR // another, unspecified error
};

See also

wxProcess::Exists (p. 1029), wxKill (p. 1521), Exec sample (p. 1636)

CHAPTER 7

1032

wxProcess::Exists

static bool Exists (int pid)

Returns true if the given process exists in the system.

See also

wxProcess::Kill (p. 1028), Exec sample (p. 1636)

wxProcess::OnTerminate

void OnTerminate (int pid, int status)

It is called when the process with the pid pid finishes. It raises a wxWidgets event when
it isn't overridden.

pid

The pid of the process which has just terminated.

status

The exit code of the process.

wxProcess::Open

static wxProcess * Open (const wxString& cmd, int flags = wxEXEC_ASYNC)

This static method replaces the standard popen() function: it launches the process
specified by the cmd parameter and returns the wxProcess object which can be used to
retrieve the streams connected to the standard input, output and error output of the child
process.

If the process couldn't be launched, NULL is returned. Note that in any case the returned
pointer should not be deleted, rather the process object will be destroyed automatically
when the child process terminates. This does mean that the child process should be told
to quit before the main program exits to avoid memory leaks.

Parameters

cmd

The command to execute, including optional arguments.

flags

The flags to pass to wxExecute (p. 1519). NOTE: wxEXEC_SYNC should not be
used.

Return value

A pointer to new wxProcess object or NULL on error.

CHAPTER 7

1033

See also

wxExecute (p. 1519)

wxProcess::Redirect

void Redirect ()

Turns on redirection. wxExecute will try to open a couple of pipes to catch the
subprocess stdio. The caught input stream is returned by GetOutputStream() as a non-
seekable stream. The caught output stream is returned by GetInputStream() as a non-
seekable stream.

wxProcessEvent

A process event is sent when a process is terminated.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/process.h>

Event table macros

To process a wxProcessEvent, use these event handler macros to direct input to a
member function that takes a wxProcessEvent argument.

EVT_END_PROCESS(id, func) Process a wxEVT_END_PROCESS event.id is
the identifier of the process object (the id
passed to the wxProcess constructor) or a
window to receive the event.

See also
wxProcess (p. 1025), Event handling overview (p. 1674)

wxProcessEvent::wxProcessEvent

 wxProcessEvent (int id = 0, int pid = 0, int exitcode = 0)

Constructor. Takes a wxProcessObject or window id, a process id and an exit status.

wxProcessEvent::GetPid

int GetPid () const

Returns the process id.

CHAPTER 7

1034

wxProcessEvent::GetExitCode

int GetExitCode ()

Returns the exist status.

wxProgressDialog

This class represents a dialog that shows a short message and a progress bar.
Optionally, it can display an ABORT button.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/progdlg.h>

wxProgressDialog::wxProgressDialog

 wxProgressDialog (const wxString& title, const wxString& message, int maximum
= 100, wxWindow * parent = NULL, int style = wxPD_AUTO_HIDE |
wxPD_APP_MODAL)

Constructor. Creates the dialog, displays it and disables user input for other windows, or,
if wxPD_APP_MODAL flag is not given, for its parent window only.

Parameters

title

Dialog title to show in titlebar.

message

Message displayed above the progress bar.

maximum

Maximum value for the progress bar.

parent

Parent window.

style

CHAPTER 7

1035

The dialog style. This is the combination of the following bitmask constants defined
in wx/defs.h:

wxPD_APP_MODAL Make the progress dialog modal. If this
flag is not given, it is only "locally" modal -
that is the input to the parent window is
disabled, but not to the other ones.

wxPD_AUTO_HIDE Causes the progress dialog to disappear
from screen as soon as the maximum
value of the progress meter has been
reached.

wxPD_SMOOTH Causes smooth progress of the gauge
control.

wxPD_CAN_ABORT This flag tells the dialog that it should
have a "Cancel" button which the user
may press. If this happens, the next call
to Update() (p. 1033) will return false.

wxPD_CAN_SKIP This flag tells the dialog that it should
have a "Skip" button which the user may
press. If this happens, the next call to
Update() (p. 1033) will return true in its
skip parameter.

wxPD_ELAPSED_TIME This flag tells the dialog that it should
show elapsed time (since creating the
dialog).

wxPD_ESTIMATED_TIME This flag tells the dialog that it should
show estimated time.

wxPD_REMAINING_TIME This flag tells the dialog that it should
show remaining time.

wxProgressDialog::~wxProgressDialog

 ~wxMessageDialog ()

Destructor. Deletes the dialog and enables all top level windows.

wxProgressDialog::Resume

void Resume ()

Can be used to continue with the dialog, after the user had chosen ABORT.

wxProgressDialog::Update

CHAPTER 7

1036

virtual bool Update (int value, const wxString& newmsg = "", bool * skip = NULL)

Updates the dialog, setting the progress bar to the new value and, if given changes the
message above it. Returns true unless the Cancel button has been pressed.

If false is returned, the application can either immediately destroy the dialog or ask the
user for the confirmation and if the abort is not confirmed the dialog may be resumed
with Resume (p. 1033) function.

Parameters

value

The new value of the progress meter. It should be less than or equal to the
maximum value given to the constructor and the dialog is closed if it is equal to the
maximum.

newmsg

The new messages for the progress dialog text, if it is empty (which is the default)
the message is not changed.

skip

If "Skip" button was pressed since last Update (p. 1033) call the skip is true.

wxPropertySheetDialog

This class represents a property sheet dialog: a tabbed dialog for showing settings. It is
optimized to show with flat tabs on PocketPC devices.

To use this class, call wxPropertySheetDialog::Create (p. 1035) from your own Create
function. Then call CreateButtons (p. 1035), and create pages, adding them to the book
control. Finally call LayoutDialog (p. 1035).

For example:

bool MyPropertySheetDialog::Create(...)
{
 if (!wxPropertySheetDialog::Create(...))
 return false;

 CreateButtons(wxOK|wxCANCEL|wxHELP);

 // Add page
 wxPanel* panel = new wxPanel(GetBookCtrl(), ...);
 GetBookCtrl()->AddPage(panel, wxT("General"));

 LayoutDialog();
 return true;
}

If necessary, override CreateBookCtrl and AddBookCtrl to create and add a different
kind of book control. You would then need to use two-step construction for the dialog.

CHAPTER 7

1037

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/propdlg.h> <wx/generic/propdlg.h>

wxPropertySheetDialog::wxPropertySheetDialog

 wxPropertySheetDialog (wxWindow* parent, wxWindowID id, const wxString& title,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Constructor.

wxPropertySheetDialog::AddBookCtrl

virtual void AddBookCtrl (wxSizer* sizer)

Override this if you wish to add the book control in a way different from the standard way
(for example, using different spacing).

wxPropertySheetDialog::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Call this from your own Create function, before adding buttons and pages.

wxPropertySheetDialog::CreateBookCtrl

virtual wxBookCtrlBase* CreateBookCtrl ()

Override this if you wish to create a different kind of book control; by default, a
wxNotebook is created.

wxPropertySheetDialog::CreateButtons

void CreateButtons (int flags=wxOK|wxCANCEL)

Call this to create the buttons for the dialog. This calls wxDialog::CreateButtonSizer (p.
395), and the flags are the same. On PocketPC, no buttons are created.

wxPropertySheetDialog::GetBookCtrl

CHAPTER 7

1038

wxBookCtrlBase* GetBookCtrl () const

Returns the book control that will contain your settings pages.

wxPropertySheetDialog::GetInnerSizer

wxSizer* GetInnerSizer () const

Returns the inner sizer that contains the book control and button sizer.

wxPropertySheetDialog::LayoutDialog

void LayoutDialog ()

Call this to lay out the dialog. On PocketPC, this does nothing, since the dialog will be
shown full-screen, and the layout will be done when the dialog receives a size event.

wxPropertySheetDialog::SetBookCtrl

void SetBookCtrl (wxBookCtrlBase* bookCtrl)

Sets the book control used for the dialog. You will normally not need to use this.

wxPropertySheetDialog::SetInnerSizer

void SetInnerSizer (wxSizer* sizer)

Sets the inner sizer that contains the book control and button sizer. You will normally not
need to use this.

wxProtocol

Derived from

wxSocketClient (p. 1164)

Include files

<wx/protocol/protocol.h>

See also

wxSocketBase (p. 1148), wxURL (p. 1392)

wxProtocol::Reconnect

bool Reconnect ()

Tries to reestablish a previous opened connection (close and renegotiate connection).

CHAPTER 7

1039

Return value

true, if the connection is established, else false.

wxProtocol::GetInputStream

wxInputStream * GetInputStream (const wxString& path)

Creates a new input stream on the specified path. You can use all but seek functionality
of wxStream. Seek isn't available on all stream. For example, http or ftp streams doesn't
deal with it. Other functions like StreamSize and Tell aren't available for the moment for
this sort of stream. You will be notified when the EOF is reached by an error.

Return value

Returns the initialized stream. You will have to delete it yourself once you don't use it
anymore. The destructor closes the network connection.

See also

wxInputStream (p. 777)

wxProtocol::Abort

bool Abort ()

Abort the current stream.

Warning

It is advised to destroy the input stream instead of aborting the stream this way.

Return value

Returns true, if successful, else false.

wxProtocol::GetError

wxProtocolError GetError ()

Returns the last occurred error.

wxPROTO_NOERR No error.

wxPROTO_NETERR A generic network error occurred.

wxPROTO_PROTERR An error occurred during negotiation.

wxPROTO_CONNERR The client failed to connect the server.

wxPROTO_INVVAL Invalid value.

wxPROTO_NOHNDLR .

CHAPTER 7

1040

wxPROTO_NOFILE The remote file doesn't exist.

wxPROTO_ABRT Last action aborted.

wxPROTO_RCNCT An error occurred during reconnection.

wxPROTO_STREAM Someone tried to send a command during a
transfer.

wxProtocol::GetContentType

wxString GetContentType ()

Returns the type of the content of the last opened stream. It is a mime-type.

wxProtocol::SetUser

void SetUser (const wxString& user)

Sets the authentication user. It is mainly useful when FTP is used.

wxProtocol::SetPassword

void SetPassword (const wxString& user)

Sets the authentication password. It is mainly useful when FTP is used.

wxQuantize

Performs quantization, or colour reduction, on a wxImage.

Functions in this class are static and so a wxQuantize object need not be created.

Derived from

wxObject (p. 967)

Include files

<wx/quantize.h>

wxQuantize::wxQuantize

 wxQuantize ()

Constructor. You do not need to construct a wxQuantize object since its functions are
static.

wxQuantize::Quantize

CHAPTER 7

1041

bool Quantize (const wxImage& src, wxImage& dest, wxPalette** pPalette, int
desiredNoColours = 236, unsigned char** eightBitData = 0, int flags =
wxQUANTIZE_INCLUDE_WINDOWS_COLOURS|wxQUANTIZE_FILL_DESTINATION_
IMAGE|wxQUANTIZE_RETURN_8BIT_DATA)

Reduce the colours in the source image and put the result into the destination image.
Both images may be the same, to overwrite the source image. Specify an optional
palette pointer to receive the resulting palette. This palette may be passed to
ConvertImageToBitmap, for example.

If you pass a palette pointer, you must free the palette yourself.

bool Quantize (const wxImage& src, wxImage& dest, int desiredNoColours = 236,
unsigned char** eightBitData = 0, int flags =
wxQUANTIZE_INCLUDE_WINDOWS_COLOURS|wxQUANTIZE_FILL_DESTINATION_
IMAGE|wxQUANTIZE_RETURN_8BIT_DATA)

This version sets a palette in the destination image so you don't have to manage it
yourself.

wxQuantize::DoQuantize

void DoQuantize (unsigned w, unsigned h, unsigned char** in_rows, unsigned
char** out_rows, unsigned char* palette, int desiredNoColours)

Converts input bitmap(s) into 8bit representation with custom palette.

in_rows and out_rows are arrays [0..h-1] of pointer to rows (in_rows contains w * 3 bytes
per row, out_rows w bytes per row).

Fills out_rows with indexes into palette (which is also stored into palette variable).

wxQueryLayoutInfoEvent

This event is sent when wxLayoutAlgorithm (p. 796) wishes to get the size, orientation
and alignment of a window. More precisely, the event is sent by the OnCalculateLayout
handler which is itself invoked by wxLayoutAlgorithm.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/laywin.h>

Event table macros

EVT_QUERY_LAYOUT_INFO(func) Process a wxEVT_QUERY_LAYOUT_INFO
event, to get size, orientation and alignment
from a window.

CHAPTER 7

1042

Data structures

enum wxLayoutOrientation {
 wxLAYOUT_HORIZONTAL,
 wxLAYOUT_VERTICAL
};

enum wxLayoutAlignment {
 wxLAYOUT_NONE,
 wxLAYOUT_TOP,
 wxLAYOUT_LEFT,
 wxLAYOUT_RIGHT,
 wxLAYOUT_BOTTOM,
};

See also

wxCalculateLayoutEvent (p. 116), wxSashLayoutWindow (p. 1079), wxLayoutAlgorithm
(p. 796).

wxQueryLayoutInfoEvent::wxQueryLayoutInfoEvent

 wxQueryLayoutInfoEvent (wxWindowID id = 0)

Constructor.

wxQueryLayoutInfoEvent::GetAlignment

void GetAlignment () const

Specifies the alignment of the window (which side of the remaining parent client area the
window sticks to). One of wxLAYOUT_TOP, wxLAYOUT_LEFT, wxLAYOUT_RIGHT,
wxLAYOUT_BOTTOM.

wxQueryLayoutInfoEvent::GetFlags

int GetFlags () const

Returns the flags associated with this event. Not currently used.

wxQueryLayoutInfoEvent::GetOrientation

wxLayoutOrientation GetOrientation () const

Returns the orientation that the event handler specified to the event object. May be one
of wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

wxQueryLayoutInfoEvent::GetRequestedLength

CHAPTER 7

1043

int GetRequestedLength () const

Returns the requested length of the window in the direction of the window orientation.
This information is not yet used.

wxQueryLayoutInfoEvent::GetSize

wxSize GetSize () const

Returns the size that the event handler specified to the event object as being the
requested size of the window.

wxQueryLayoutInfoEvent::SetAlignment

void SetAlignment (wxLayoutAlignment alignment)

Call this to specify the alignment of the window (which side of the remaining parent client
area the window sticks to). May be one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

wxQueryLayoutInfoEvent::SetFlags

void SetFlags (int flags)

Sets the flags associated with this event. Not currently used.

wxQueryLayoutInfoEvent::SetOrientation

void SetOrientation (wxLayoutOrientation orientation)

Call this to specify the orientation of the window. May be one of
wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

wxQueryLayoutInfoEvent::SetRequestedLength

void SetRequestedLength (int length)

Sets the requested length of the window in the direction of the window orientation. This
information is not yet used.

wxQueryLayoutInfoEvent::SetSize

void SetSize (const wxSize& size)

Call this to let the calling code know what the size of the window is.

wxRadioBox

A radio box item is used to select one of number of mutually exclusive choices. It is

CHAPTER 7

1044

displayed as a vertical column or horizontal row of labelled buttons.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/radiobox.h>

Window styles

wxRA_SPECIFY_ROWS The major dimension parameter refers to the maximum
number of rows.

wxRA_SPECIFY_COLS The major dimension parameter refers to the maximum
number of columns.

wxRA_USE_CHECKBOX Use of the checkbox controls instead of radio buttons
(currently supported only on PalmOS)

See also window styles overview (p. 1686).

Event handling

EVT_RADIOBOX(id, func) Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
event, when a radiobutton is clicked.

See also

Event handling overview (p. 1674), wxRadioButton (p. 1047), wxCheckBox (p. 128)

wxRadioBox::wxRadioBox

 wxRadioBox ()

Default constructor.

 wxRadioBox (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& point = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n = 0,
const wxString choices[] = NULL, int majorDimension = 0, long style =
wxRA_SPECIFY_COLS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "radioBox")

 wxRadioBox (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& point, const wxSize& size, const wxArrayString& choices, int
majorDimension = 0, long style = wxRA_SPECIFY_COLS, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "radioBox")

CHAPTER 7

1045

Constructor, creating and showing a radiobox.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

label

Label for the static box surrounding the radio buttons.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

n

Number of choices with which to initialize the radiobox.

choices

An array of choices with which to initialize the radiobox.

majorDimension

Specifies the maximum number of rows (if style contains wxRA_SPECIFY_ROWS)
or columns (if style contains wxRA_SPECIFY_COLS) for a two-dimensional
radiobox.

style

Window style. See wxRadioBox (p. 1041).

validator

Window validator.

name

Window name.

See also

wxRadioBox::Create (p. 1043), wxValidator (p. 1394)

wxPython note: The wxRadioBox constructor in wxPython reduces the nand choices

CHAPTER 7

1046

arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

wxRadioBox::~wxRadioBox

 ~wxRadioBox ()

Destructor, destroying the radiobox item.

wxRadioBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& point = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n = 0,
const wxString choices[] = NULL, int majorDimension = 0, long style =
wxRA_SPECIFY_COLS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "radioBox")

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& point, const wxSize& size, const wxArrayString& choices, int
majorDimension = 0, long style = wxRA_SPECIFY_COLS, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "radioBox")

Creates the radiobox for two-step construction. See wxRadioBox::wxRadioBox (p. 1042)
for further details.

wxRadioBox::Enable

virtual bool Enable (bool enable = true)

Enables or disables the entire radiobox.

virtual bool Enable (int n, bool enable = true)

Enables or disables an individual button in the radiobox.

Parameters

enable

true to enable, false to disable.

n

The zero-based button to enable or disable.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Enable(flag) Enables or disables the entire
radiobox.

EnableItem(n, flag) Enables or disables an individual

CHAPTER 7

1047

button in the radiobox.

See also

wxWindow::Enable (p. 1431)

wxRadioBox::FindString

int FindString (const wxString& string) const

Finds a button matching the given string, returning the position if found, or -1 if not
found.

Parameters

string

The string to find.

wxRadioBox::GetCount

int GetCount () const

Returns the number of items in the radiobox.

wxRadioBox::GetLabel

wxString GetLabel () const

Returns the radiobox label.

Parameters

n

The zero-based button index.

See also

wxRadioBox::SetLabel (p. 1046)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetLabel() Returns the radiobox label.

GetItemLabel(n) Returns the label for the given
button.

wxRadioBox::GetSelection

CHAPTER 7

1048

int GetSelection () const

Returns the zero-based position of the selected button.

wxRadioBox::GetStringSelection

wxString GetStringSelection () const

Returns the selected string.

wxRadioBox::GetString

wxString GetString (int n) const

Returns the label for the button at the given position.

Parameters

n

The zero-based button position.

wxRadioBox::Number

int Number () const

Obsolescence note: This method is obsolete and was replaced withGetCount (p.
1044), please use the new method in the new code. This method is only available if
wxWidgets was compiled withWXWIN_COMPATIBILITY_2_2 defined and will disappear
completely in future versions.

Returns the number of buttons in the radiobox.

wxRadioBox::SetLabel

void SetLabel (const wxString& label)

Sets the radiobox label.

Parameters

label

The label to set.

n

The zero-based button index.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetLabel(string) Sets the radiobox label.

CHAPTER 7

1049

SetItemLabel(n, string) Sets a label for a radio button.

wxRadioBox::SetSelection

void SetSelection (int n)

Sets a button by passing the desired string position. This does not cause a
wxEVT_COMMAND_RADIOBOX_SELECTED event to get emitted.

Parameters

n

The zero-based button position.

wxRadioBox::SetStringSelection

void SetStringSelection (const wxString& string)

Sets the selection to a button by passing the desired string. This does not cause a
wxEVT_COMMAND_RADIOBOX_SELECTED event to get emitted.

Parameters

string

The label of the button to select.

wxRadioBox::Show

virtual bool Show (const bool show = true)

Shows or hides the entire radiobox.

virtual bool Show (int item, const bool show = true)

Shows or hides individual buttons.

Parameters

show

true to show, false to hide.

item

The zero-based position of the button to show or hide.

Return value

true if the box or item has been shown or hidden or false if nothing was done
because it already was in the requested state.

CHAPTER 7

1050

See also

wxWindow::Show (p. 1472)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Show(flag) Shows or hides the entire radiobox.

ShowItem(n, flag) Shows or hides individual buttons.

wxRadioButton

A radio button item is a button which usually denotes one of several mutually exclusive
options. It has a text label next to a (usually) round button.

You can create a group of mutually-exclusive radio buttons by specifying wxRB_GROUP
for the first in the group. The group ends when another radio button group is created, or
there are no more radio buttons.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/radiobut.h>

Window styles

wxRB_GROUP Marks the beginning of a new group of radio buttons.

wxRB_SINGLE In some circumstances, radio buttons that are not
consecutive siblings trigger a hang bug in Windows (only).
If this happens, add this style to mark the button as not
belonging to a group, and implement the mutually-
exclusive group behaviour yourself.

wxRB_USE_CHECKBOX Use a checkbox button instead of radio button (currently
supported only on PalmOS).

See also window styles overview (p. 1686).

Event handling

EVT_RADIOBUTTON(id, func) Process a
wxEVT_COMMAND_RADIOBUTTON_SELEC
TED event, when the radiobutton is clicked.

CHAPTER 7

1051

See also

Event handling overview (p. 1674), wxRadioBox (p. 1041), wxCheckBox (p. 128)

wxRadioButton::wxRadioButton

 wxRadioButton ()

Default constructor.

 wxRadioButton (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& validator = wxDefaultValidator, const wxString& name =
"radioButton")

Constructor, creating and showing a radio button.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

label

Label for the radio button.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxRadioButton (p. 1047).

validator

Window validator.

name

Window name.

See also

CHAPTER 7

1052

wxRadioButton::Create (p. 1049), wxValidator (p. 1394)

wxRadioButton::~wxRadioButton

void ~wxRadioButton ()

Destructor, destroying the radio button item.

wxRadioButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& validator = wxDefaultValidator, const wxString& name =
"radioButton")

Creates the choice for two-step construction. See wxRadioButton::wxRadioButton (p.
1048) for further details.

wxRadioButton::GetValue

bool GetValue () const

Returns true if the radio button is depressed, false otherwise.

wxRadioButton::SetValue

void SetValue (const bool value)

Sets the radio button to selected or deselected status. This does not cause a
wxEVT_COMMAND_RADIOBUTTON_SELECTED event to get emitted.

Parameters

value

true to select, false to deselect.

wxRealPoint

A wxRealPoint is a useful data structure for graphics operations. It contains floating
point point x and y members. See also wxPoint (p. 999) for an integer version.

Derived from

None

Include files

<wx/gdicmn.h>

See also

CHAPTER 7

1053

wxPoint (p. 999)

wxRealPoint::wxRealPoint

 wxRealPoint ()

 wxRealPoint (double x, double y)

Create a point.

double x

double y

Members of the wxRealPoint object.

wxRect

A class for manipulating rectangles.

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxPoint (p. 999), wxSize (p. 1121)

wxRect::wxRect

 wxRect ()

Default constructor.

 wxRect (int x, int y, int width, int height)

Creates a wxRect object from x, y, width and height values.

 wxRect (const wxPoint& topLeft, const wxPoint& bottomRight)

Creates a wxRect object from top-left and bottom-right points.

 wxRect (const wxPoint& pos, const wxSize& size)

Creates a wxRect object from position and size values.

CHAPTER 7

1054

 wxRect (const wxSize& size)

Creates a wxRect object from size values at the origin.

wxRect::x

int x

x coordinate of the top-level corner of the rectangle.

wxRect::y

int y

y coordinate of the top-level corner of the rectangle.

wxRect::width

int width

Width member.

wxRect::height

int height

Height member.

wxRect::Deflate

void Deflate (wxCoord dx, wxCoord dy)

void Deflate (wxCoord diff)

wxRect Deflate (wxCoord dx, wxCoord dy) const

Decrease the rectangle size.

This method is the opposite from Inflate (p. 1053): Deflate(a, b) is equivalent to Inflate(-
a, -b). Please refer to Inflate (p. 1053) for full description.

See also

Inflate (p. 1053)

wxRect::GetBottom

int GetBottom () const

Gets the bottom point of the rectangle.

CHAPTER 7

1055

wxRect::GetHeight

int GetHeight () const

Gets the height member.

wxRect::GetLeft

int GetLeft () const

Gets the left point of the rectangle (the same as wxRect::GetX (p. 1053)).

wxRect::GetPosition

wxPoint GetPosition () const

Gets the position.

wxRect::GetTopLeft

wxPoint GetTopLeft () const

Gets the topleft position of the rectangle. (Same as GetPosition).

wxRect::GetBottomRight

wxPoint GetBottomRight () const

Gets the bottom right position. Returns the bottom right point inside the rectangle.

wxRect::GetRight

int GetRight () const

Gets the right point of the rectangle.

wxRect::GetSize

wxSize GetSize () const

Gets the size.

See also

wxRect::SetSize (p. 1055)

wxRect::GetTop

int GetTop () const

Gets the top point of the rectangle (the same as wxRect::GetY (p. 1053)).

CHAPTER 7

1056

wxRect::GetWidth

int GetWidth () const

Gets the width member.

wxRect::GetX

int GetX() const

Gets the x member.

wxRect::GetY

int GetY() const

Gets the y member.

wxRect::Inflate

void Inflate (wxCoord dx, wxCoord dy)

void Inflate (wxCoord diff)

wxRect Inflate (wxCoord dx, wxCoord dy) const

Increases the size of the rectangle.

The second form uses the same diff for both dx and dy.

The first two versions modify the rectangle in place, the last one returns a new rectangle
leaving this one unchanged.

The left border is moved farther left and the right border is moved farther right by dx. The
upper border is moved farther up and the bottom border is moved farther down by dy.
(Note the the width and height of the rectangle thus change by 2*dx and 2*dy,
respectively.) If one or both of dx and dy are negative, the opposite happens: the
rectangle size decreases in the respective direction.

Inflating and deflating behaves "naturally''. Defined more precisely, that means:

 1. "Real'' inflates (that is, dx and/or dy >= 0) are not constrained. Thus inflating
a rectangle can cause its upper left corner to move into the negative
numbers. (the versions prior to 2.5.4 forced the top left coordinate to not fall
below (0, 0), which implied a forced move of the rectangle.)

 2. Deflates are clamped to not reduce the width or height of the rectangle
below zero. In such cases, the top-left corner is nonetheless handled
properly. For example, a rectangle at (10, 10) with size (20, 40) that is
inflated by (-15, -15) will become located at (20, 25) at size (0, 10). Finally,

CHAPTER 7

1057

observe that the width and height are treated independently. In the above
example, the width is reduced by 20, whereas the height is reduced by the
full 30 (rather than also stopping at 20, when the width reached zero).

See also

Deflate (p. 1051)

wxRect::Inside

bool Inside (int x, int y) const

bool Inside (const wxPoint& pt) const

Returns true if the given point is inside the rectangle (or on its boundary) and false
otherwise.

wxRect::Intersects

bool Intersects (const wxRect& rect) const

Returns true if this rectangle has a non empty intersection with the rectangle rect and
false otherwise.

wxRect::IsEmpty

bool IsEmpty () const

Returns true if this rectangle has a width or height less than or equal to 0 and false
otherwise.

wxRect::Offset

void Offset (wxCoord dx, wxCoord dy)

void Offset (const wxPoint& pt)

Moves the rectangle by the specified offset. If dx is positive, the rectangle is moved to
the right, if dy is positive, it is moved to the bottom, otherwise it is moved to the left or top
respectively.

wxRect::SetHeight

void SetHeight (int height)

Sets the height.

wxRect::SetSize

void SetSize (const wxSize& s)

CHAPTER 7

1058

Sets the size.

See also

wxRect::GetSize (p. 1053)

wxRect::SetWidth

void SetWidth (int width)

Sets the width.

wxRect::SetX

void SetX(int x)

Sets the x position.

wxRect::SetY

void SetY(int y)

Sets the y position.

wxRect::Union

wxRect Union (const wxRect& rect) const

wxRect& Union (const wxRect& rect)

Modifies the rectangle to contain the bounding box of this rectangle and the one passed
in as parameter. The const version returns the new rectangle, the other one modifies this
rectangle in place.

wxRect::operator =

void operator = (const wxRect& rect)

Assignment operator.

wxRect::operator ==

bool operator == (const wxRect& rect)

Equality operator.

wxRect::operator !=

bool operator != (const wxRect& rect)

Inequality operator.

CHAPTER 7

1059

wxRecursionGuard

wxRecursionGuard is a very simple class which can be used to prevent reentrancy
problems in a function. It is not thread-safe and so should be used only in the single-
threaded programs or in combination with some thread synchronization mechanisms.

wxRecursionGuard is always used together with the wxRecursionGuardFlag (p. 1057)
like in this example: void Foo()
 {
 static wxRecursionGuardFlag s_flag;
 wxRecursionGuard guard(s_flag);
 if (guard.IsInside())
 {
 // don't allow reentrancy
 return;
 }

 ...
 }

As you can see, wxRecursionGuard simply tests the flag value and sets it to true if it
hadn't been already set. IsInside() (p. 1057) allows testing the old flag value. The
advantage of using this class compared to directly manipulating the flag is that the flag is
always reset in the wxRecursionGuard destructor and so you don't risk to forget to do it
even if the function returns in an unexpected way (for example because an exception
has been thrown).

Derived from

No base class

Include files

<wx/recguard.h>

wxRecursionGuard::wxRecursionGuard

 wxRecursionGuard (wxRecursionGuardFlag& flag)

A wxRecursionGuard object must always be initialized with a (static)
wxRecursionGuardFlag (p. 1057). The constructor saves the value of the flag to be able
to return the correct value from IsInside (p. 1057).

wxRecursionGuard::~wxRecursionGuard

 ~wxRecursionGuard ()

The destructor resets the flag value so that the function can be entered again the next
time.

Note that it is not virtual and so this class is not meant to be derived from (besides, there
is absolutely no reason to do it anyhow).

CHAPTER 7

1060

wxRecursionGuard::IsInside

bool IsInside () const

Returns true if we're already inside the code block "protected'' by this
wxRecursionGuard (i.e. between this line and the end of current scope). Usually the
function using wxRecursionGuard takes some specific actions in such case (may be
simply returning) to prevent reentrant calls to itself.

If this method returns false , it is safe to continue.

wxRecursionGuardFlag

This is a completely opaque class which exists only to be used with wxRecursionGuard
(p. 1056), please see the example in that class documentation.

Please notice that wxRecursionGuardFlag object must be declared static or the
recursion would never be detected.

Derived from

No base class

Include files

<wx/recguard.h>

wxRegEx

wxRegEx represents a regular expression. This class provides support for regular
expressions matching and also replacement.

It is built on top of either the system library (if it has support for POSIX regular
expressions - which is the case of the most modern Unices) or uses the built in Henry
Spencer's library. Henry Spencer would appreciate being given credit in the
documentation of software which uses his library, but that is not a requirement.

Regular expressions, as defined by POSIX, come in two flavours: extendedand basic.
The builtin library also adds a third flavour of expression advanced (p. 1789), which is
not available when using the system library.

Unicode is fully supported only when using the builtin library. When using the system
library in Unicode mode, the expressions and data are translated to the default 8-bit
encoding before being passed to the library.

On platforms where a system library is available, the default is to use the builtin library
for Unicode builds, and the system library otherwise. It is possible to use the other if
preferred by selecting it when building the wxWidgets.

Derived from

CHAPTER 7

1061

No base class

Data structures

Flags for regex compilation to be used with Compile() (p. 1060):

enum
{
 // use extended regex syntax
 wxRE_EXTENDED = 0,

 // use advanced RE syntax (built-in regex only)
#ifdef wxHAS_REGEX_ADVANCED
 wxRE_ADVANCED = 1,
#endif

 // use basic RE syntax
 wxRE_BASIC = 2,

 // ignore case in match
 wxRE_ICASE = 4,

 // only check match, don't set back references
 wxRE_NOSUB = 8,

 // if not set, treat '\n' as an ordinary charac ter, otherwise
it is
 // special: it is not matched by '.' and '^' an d '$' always
match
 // after/before it regardless of the setting of wxRE_NOT[BE]OL
 wxRE_NEWLINE = 16,

 // default flags
 wxRE_DEFAULT = wxRE_EXTENDED
}

Flags for regex matching to be used with Matches() (p. 1060).

These flags are mainly useful when doing several matches in a long string to prevent
erroneous matches for '' and '$' :

enum
{
 // '^' doesn't match at the start of line
 wxRE_NOTBOL = 32,

 // '$' doesn't match at the end of line
 wxRE_NOTEOL = 64
}

Examples

A bad example of processing some text containing email addresses (the example is bad
because the real email addresses can have more complicated form
thanuser@host.net):

wxString text;
...
wxRegEx reEmail = wxT("([^@]+)@([[:alnum:].-_].)+([[:alnum:]]+)");
if (reEmail.Matches(text))
{

CHAPTER 7

1062

 wxString text = reEmail.GetMatch(email);
 wxString username = reEmail.GetMatch(email, 1);
 if (reEmail.GetMatch(email, 3) == wxT("com")) // .com TLD?
 {
 ...
 }
}

// or we could do this to hide the email address
size_t count = reEmail.ReplaceAll(text, wxT("HIDDEN @\\2\\3"));
printf("text now contains %u hidden addresses", cou nt);

Include files

<wx/regex.h>

wxRegEx::wxRegEx

 wxRegEx ()

Default ctor: use Compile() (p. 1060) later.

 wxRegEx (const wxString& expr, int flags = wxRE_DEFAULT)

Create and compile the regular expression, use IsValid (p. 1060) to test for compilation
errors.

wxRegEx::~wxRegEx

 ~wxRegEx ()

dtor not virtual, don't derive from this class

wxRegEx::Compile

bool Compile (const wxString& pattern, int flags = wxRE_DEFAULT)

Compile the string into regular expression, return true if ok or false if string has a
syntax error.

wxRegEx::IsValid

bool IsValid () const

Return true if this is a valid compiled regular expression, false otherwise.

wxRegEx::GetMatch

bool GetMatch (size_t* start, size_t* len, size_t index = 0) const

Get the start index and the length of the match of the expression (if index is 0) or a

CHAPTER 7

1063

bracketed subexpression (index different from 0).

May only be called after successful call to Matches() (p. 1060) and only if wxRE_NOSUB
was not used in Compile() (p. 1060).

Returns false if no match or if an error occurred.

wxString GetMatch (const wxString& text, size_t index = 0) const

Returns the part of string corresponding to the match where index is interpreted as
above. Empty string is returned if match failed

May only be called after successful call to Matches() (p. 1060) and only if wxRE_NOSUB
was not used in Compile() (p. 1060).

wxRegEx::GetMatchCount

size_t GetMatchCount () const

Returns the size of the array of matches, i.e. the number of bracketed subexpressions
plus one for the expression itself, or 0 on error.

May only be called after successful call to Compile() (p. 1060). and only if wxRE_NOSUB
was not used.

wxRegEx::Matches

bool Matches (const wxChar* text, int flags = 0) const

Matches the precompiled regular expression against the string text, returns true if
matches and false otherwise.

Flags may be combination of wxRE_NOTBOL and wxRE_NOTEOL.

May only be called after successful call to Compile() (p. 1060).

wxRegEx::Replace

int Replace (wxString* text, const wxString& replacement, size_t maxMatches = 0)
const

Replaces the current regular expression in the string pointed to bytext, with the text in
replacement and return number of matches replaced (maybe 0 if none found) or -1 on
error.

The replacement text may contain back references \number which will be replaced with
the value of the corresponding subexpression in the pattern match. \0 corresponds to
the entire match and & is a synonym for it. Backslash may be used to quote itself or &
character.

maxMatches may be used to limit the number of replacements made, setting it to 1, for
example, will only replace first occurrence (if any) of the pattern in the text while default
value of 0 means replace all.

CHAPTER 7

1064

wxRegEx::ReplaceAll

int ReplaceAll (wxString* text, const wxString& replacement) const

Replace all occurrences: this is actually a synonym for Replace() (p. 1061).

See also

ReplaceFirst (p. 1061)

wxRegEx::ReplaceFirst

int ReplaceFirst (wxString* text, const wxString& replacement) const

Replace the first occurrence.

See also

Replace (p. 1061)

wxRegion

A wxRegion represents a simple or complex region on a device context or window. It
uses reference counting, so copying and assignment operations are fast.

Derived from

wxGDIObject (p. 582)
wxObject (p. 967)

Include files

<wx/region.h>

See also

wxRegionIterator (p. 1066)

wxRegion::wxRegion

 wxRegion ()

Default constructor.

 wxRegion (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Constructs a rectangular region with the given position and size.

 wxRegion (const wxPoint& topLeft, const wxPoint& bottomRight)

Constructs a rectangular region from the top left point and the bottom right point.

CHAPTER 7

1065

 wxRegion (const wxRect& rect)

Constructs a rectangular region a wxRect object.

 wxRegion (const wxRegion& region)

Constructs a region by copying another region.

 wxRegion (size_t n, const wxPoint *points, int fillStyle = wxWINDING_RULE)

Constructs a region corresponding to the polygon made of n points in the provided array.
fillStyle parameter may have valueswxWINDING_RULE or wxODDEVEN_RULE.

NB: This constructor is only implemented for Win32 and GTK+ wxWidgets ports.

 wxRegion (const wxBitmap& bmp)

 wxRegion (const wxBitmap& bmp, const wxColour& transColour, int
tolerance = 0)

Constructs a region using the non-transparent pixels of a bitmap. SeeUnion (p. 1064)
for more details.

wxRegion::~wxRegion

 ~wxRegion ()

Destructor.

wxRegion::Clear

void Clear ()

Clears the current region.

wxRegion::Contains

wxRegionContain Contains (long& x, long& y) const

Returns a value indicating whether the given point is contained within the region.

wxRegionContain Contains (const wxPoint& pt) const

Returns a value indicating whether the given point is contained within the region.

wxRegionContain Contains (long& x, long& y, long& width, long& height) const

Returns a value indicating whether the given rectangle is contained within the region.

wxRegionContain Contains (const wxRect& rect) const

Returns a value indicating whether the given rectangle is contained within the region.

Return value

CHAPTER 7

1066

The return value is one of wxOutRegion, wxPartRegion and wxInRegion.

On Windows, only wxOutRegion and wxInRegion are returned; a value wxInRegion then
indicates that all or some part of the region is contained in this region.

wxRegion::ConvertToBitmap

wxBitmap ConvertToBitmap () const

Convert the region to a black and white bitmap with the white pixels being inside the
region.

wxRegion::GetBox

void GetBox (wxCoord& x, wxCoord& y, wxCoord& width, wxCoord& height) const

Returns the outer bounds of the region.

wxRect GetBox () const

Returns the outer bounds of the region.

wxRegion::Intersect

bool Intersect (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Finds the intersection of this region and another, rectangular region, specified using
position and size.

bool Intersect (const wxRect& rect)

Finds the intersection of this region and another, rectangular region.

bool Intersect (const wxRegion& region)

Finds the intersection of this region and another region.

Return value

true if successful, false otherwise.

Remarks

Creates the intersection of the two regions, that is, the parts which are in both regions.
The result is stored in this region.

wxRegion::IsEmpty

bool IsEmpty () const

Returns true if the region is empty, false otherwise.

CHAPTER 7

1067

wxRegion::Subtract

bool Subtract (const wxRect& rect)

Subtracts a rectangular region from this region.

bool Subtract (const wxRegion& region)

Subtracts a region from this region.

Return value

true if successful, false otherwise.

Remarks

This operation combines the parts of 'this' region that are not part of the second region.
The result is stored in this region.

wxRegion::Offset

bool Offset (wxCoord x, wxCoord y)

Moves the region by the specified offsets in horizontal and vertical directions.

Return value

true if successful, false otherwise (the region is unchanged then).

wxRegion::Union

bool Union (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Finds the union of this region and another, rectangular region, specified using position
and size.

bool Union (const wxRect& rect)

Finds the union of this region and another, rectangular region.

bool Union (const wxRegion& region)

Finds the union of this region and another region.

bool Union (const wxBitmap& bmp)

Finds the union of this region and the non-transparent pixels of a bitmap. Bitmap's mask
is used to determine transparency. If the bitmap doesn't have a mask, solid rectangle of
bitmap's dimensions is used.

bool Union (const wxBitmap& bmp, const wxColour& transColour, int
tolerance = 0)

Finds the union of this region and the non-transparent pixels of a bitmap. Colour to be

CHAPTER 7

1068

treated as transparent is specified in thetransColour argument, along with an optional
colour tolerance value.

Return value

true if successful, false otherwise.

Remarks

This operation creates a region that combines all of this region and the second region.
The result is stored in this region.

wxRegion::Xor

bool Xor (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Finds the Xor of this region and another, rectangular region, specified using position and
size.

bool Xor (const wxRect& rect)

Finds the Xor of this region and another, rectangular region.

bool Xor (const wxRegion& region)

Finds the Xor of this region and another region.

Return value

true if successful, false otherwise.

Remarks

This operation creates a region that combines all of this region and the second region,
except for any overlapping areas. The result is stored in this region.

wxRegion::operator =

void operator = (const wxRegion& region)

Copies region by reference counting.

wxRegionIterator

This class is used to iterate through the rectangles in a region, typically when examining
the damaged regions of a window within an OnPaint call.

To use it, construct an iterator object on the stack and loop through the regions, testing
the object and incrementing the iterator at the end of the loop.

See wxPaintEvent (p. 980) for an example of use.

Derived from

CHAPTER 7

1069

wxObject (p. 967)

Include files

<wx/region.h>

See also

wxPaintEvent (p. 980)

wxRegionIterator::wxRegionIterator

 wxRegionIterator ()

Default constructor.

 wxRegionIterator (const wxRegion& region)

Creates an iterator object given a region.

wxRegionIterator::GetX

wxCoord GetX() const

Returns the x value for the current region.

wxRegionIterator::GetY

wxCoord GetY() const

Returns the y value for the current region.

wxRegionIterator::GetW

wxCoord GetW() const

An alias for GetWidth.

wxRegionIterator::GetHeight

wxCoord GetHeight () const

Returns the height value for the current region.

wxRegionIterator::GetH

wxCoord GetH() const

An alias for GetHeight.

CHAPTER 7

1070

wxRegionIterator::GetRect

wxRect GetRect () const

Returns the current rectangle.

wxRegionIterator::GetWidth

wxCoord GetWidth () const

Returns the width value for the current region.

wxRegionIterator::HaveRects

bool HaveRects () const

Returns true if there are still some rectangles; otherwise returns false .

wxRegionIterator::Reset

void Reset ()

Resets the iterator to the beginning of the rectangles.

void Reset (const wxRegion& region)

Resets the iterator to the given region.

wxRegionIterator::operator ++

void operator ++ ()

Increment operator. Increments the iterator to the next region.

wxPython note: A wxPython alias for this operator is called Next .

wxRegionIterator::operator bool

 operator bool () const

Returns true if there are still some rectangles; otherwise returns false .

You can use this to test the iterator object as if it were of type bool.

wxRegKey

wxRegKey is a class representing the Windows registry. One can create, query and
delete registry keys using this class.

The Windows registry is easy to understand. There are five registry keys, namely:

CHAPTER 7

1071

 1. HKEY_CLASSES_ROOT (HKCR)

 2. HKEY_CURRENT_USER (HKCU)

 3. HKEY_LOCAL_MACHINE (HKLM)

 4. HKEY_CURRENT_CONFIG (HKCC)

 5. HKEY_USERS (HKU)

After creating a key, it can hold a value. The values can be:

 1. String Value

 2. Binary Value

 3. DWORD Value

 4. Multi String Value

 5. Expandable String Value

Derived from

None

Include files

<wx/config.h>

Example

wxRegKey *pRegKey = new
wxRegKey("HKEY_LOCAL_MACHINE\\Software\\MyKey");

//will create the Key if it does not exist
if(!pRegKey->Exists())
 pRegKey->Create();

//will create a new value MYVALUE and set it to 12
pRegKey->SetValue("MYVALUE",12);

//Query for the Value and Retrieve it
long lMyVal;
wxString strTemp;
pRegKey->QueryValue("MYVALUE",&lMyVal);
strTemp.Printf("%d",lMyVal);
wxMessageBox(strTemp,"Registry Value",0,this);

//Retrive the number of SubKeys and enumerate them
size_t nSubKeys;
pRegKey->GetKeyInfo(&nSubKeys,NULL,NULL,NULL);

pRegKey->GetFirstKey(strTemp,1);
for(int i=0;i<nSubKeys;i++)
{
 wxMessageBox(strTemp,"SubKey Name",0,this);
 pRegKey->GetNextKey(strTemp,1);
}

CHAPTER 7

1072

wxRegKey::wxRegKey

 wxRegKey ()

The Constructor to set to HKCR

 wxRegKey (const wxString& strKey)

The constructor to set the full name of the key.

 wxRegKey (const wxRegKey& keyParent, const wxString& strKey)

The constructor to set the full name of the key under a previously created parent.

wxRegKey::Close

void Close ()

Closes the key.

wxRegKey::Create

bool Create (bool bOkIfExists = true)

Creates the key. Will fail if the key already exists and bOkIfExists is false.

wxRegKey::DeleteSelf

void DeleteSelf ()

Deletes this key and all of its subkeys and values recursively.

wxRegKey::DeleteKey

void DeleteKey (const wxChar * szKey)

Deletes the subkey with all of its subkeys/values recursively.

wxRegKey::DeleteValue

void DeleteValue (const wxChar * szKey)

Deletes the named value.

wxRegKey::Exists

static bool Exists () const

Returns true if the key exists.

CHAPTER 7

1073

wxRegKey::GetName

wxString GetName (bool bShortPrefix = true) const

Gets the name of the registry key.

wxRegKey::GetFirstKey

bool GetKeyValue (wxString& strKeyName, long& lIndex)

Gets the first key.

wxRegKey::GetFirstValue

bool GetFirstValue (wxString& strValueName, long& lIndex)

Gets the first value of this key.

wxRegKey::GetKeyInfo

bool Exists (size_t * pnSubKeys, size_t * pnValues, size_t * pnMaxValueLen) const

Gets information about the key.

Parameters

pnSubKeys

The number of subkeys.

pnMaxKeyLen

The maximum length of the subkey name.

pnValues

The number of values.

wxRegKey::GetNextKey

bool GetNextKey (wxString& strKeyName, long& lIndex) const

Gets the next key.

wxRegKey::GetNextValue

bool GetNextValue (wxString& strValueName, long& lIndex) const

Gets the next key value for this key.

wxRegKey::HasValue

CHAPTER 7

1074

bool HasValue (const wxChar * szValue) const

Returns true if the value exists.

wxRegKey::HasValues

bool HasValues () const

Returns true if any values exist.

wxRegKey::HasSubKey

bool HasSubKey (const wxChar * szKey) const

Returns true if given subkey exists.

wxRegKey::HasSubKeys

bool HasSubKeys () const

Returns true if any subkeys exist.

wxRegKey::IsEmpty

bool IsEmpty () const

Returns true if this key is empty, nothing under this key.

wxRegKey::IsOpened

bool IsOpened () const

Returns true if the key is opened.

wxRegKey::Open

bool Open ()

Explicitly opens the key to be opened.

wxRegKey::QueryValue

bool QueryValue (const wxChar * szValue, wxString& strValue) const

Retrieves the string value.

bool QueryValue (const wxChar * szValue, long * plValue) const

Retrieves the numeric value.

CHAPTER 7

1075

wxRegKey::Rename

bool Rename (const wxChar * szNewName)

Renames the key.

wxRegKey::RenameValue

bool RenameValue (const wxChar * szValueOld, const wxChar * szValueNew)

Renames a value.

wxRegKey::SetValue

bool SetValue (const wxChar * szValue, long lValue)

Sets the numeric value.

wxRendererNative

First, a brief introduction to wxRenderer and why it is needed.

Usually wxWidgets uses the underlying low level GUI system to draw all the controls -
this is what we mean when we say that it is a "native'' framework. However not all
controls exist under all (or even any) platforms and in this case wxWidgets provides a
default, generic, implementation of them written in wxWidgets itself.

These controls don't have the native appearance if only the standard line drawing and
other graphics primitives are used, because the native appearance is different under
different platforms while the lines are always drawn in the same way.

This is why we have renderers: wxRenderer is a class which virtualizes the drawing, i.e.
it abstracts the drawing operations and allows you to draw say, a button, without caring
about exactly how this is done. Of course, as we can draw the button differently in
different renderers, this also allows us to emulate the native look and feel.

So the renderers work by exposing a large set of high-level drawing functions which are
used by the generic controls. There is always a default global renderer but it may be
changed or extended by the user, see Render sample (p. 1638).

All drawing functions take some standard parameters:

 • win is the window being drawn. It is normally not used and when it is it should
only be used as a generic wxWindow (p. 1421) (in order to get its low level
handle, for example), but you shouldnot assume that it is of some given type as
the same renderer function may be reused for drawing different kinds of control.

 • dc is the wxDC (p. 353) to draw on. Only this device context should be used for
drawing. It is not necessary to restore pens and brushes for it on function exit
but, on the other hand, you shouldn't assume that it is in any specific state on
function entry: the rendering functions should always prepare it.

CHAPTER 7

1076

 • rect the bounding rectangle for the element to be drawn.

 • flags the optional flags (none by default) which can be a combination of the
wxCONTROL_XXX constants below.

Constants

The following rendering flags are defined:

enum
{
 wxCONTROL_DISABLED = 0x00000001, // control is disabled
 wxCONTROL_FOCUSED = 0x00000002, // currentl y has keyboard
focus
 wxCONTROL_PRESSED = 0x00000004, // (button) is pressed
 wxCONTROL_ISDEFAULT = 0x00000008, // only app lies to the
buttons
 wxCONTROL_ISSUBMENU = wxCONTROL_ISDEFAULT, // only for menu
items
 wxCONTROL_EXPANDED = wxCONTROL_ISDEFAULT, // only for the
tree items
 wxCONTROL_CURRENT = 0x00000010, // mouse is currently over
the control
 wxCONTROL_SELECTED = 0x00000020, // selected item in e.g.
listbox
 wxCONTROL_CHECKED = 0x00000040, // (check/r adio button) is
checked
 wxCONTROL_CHECKABLE = 0x00000080 // (menu) i tem can be
checked
};

Derived from

No base class

Include files

<wx/renderer.h>

wxRendererNative::~wxRendererNative

 ~wxRendererNative ()

Virtual destructor as for any base class.

wxRendererNative::DrawComboBoxDropButton

void DrawComboBoxDropButton (wxWindow * win, wxDC& dc, const wxRect& rect,
int flags)

Draw a button like the one used by wxComboBox (p. 164) to show a drop down window.
The usual appearance is a downwards pointing arrow.

flags may have the wxCONTROL_PRESSED or wxCONTROL_CURRENT bit set.

CHAPTER 7

1077

wxRendererNative::DrawDropArrow

void DrawDropArrow (wxWindow * win, wxDC& dc, const wxRect& rect, int flags)

Draw a drop down arrow that is suitable for use outside a combo box. Arrow will have
transparent background.

rect is not entirely filled by the arrow. Instead, you should use bounding rectangle of a
drop down button which arrow matches the size you need.flags may have the
wxCONTROL_PRESSED or wxCONTROL_CURRENT bit set.

wxRendererNative::DrawHeaderButton

void DrawHeaderButton (wxWindow* win, wxDC& dc, const wxRect& rect, int flags =
0)

Draw the header control button (used by wxListCtrl (p. 813)).

wxRendererNative::DrawSplitterBorder

void DrawSplitterBorder (wxWindow* win, wxDC& dc, const wxRect& rect, int flags =
0)

Draw the border for sash window: this border must be such that the sash drawn by
DrawSash (p. 1074) blends into it well.

wxRendererNative::DrawSplitterSash

void DrawSplitterSash (wxWindow* win, wxDC& dc, const wxSize& size, wxCoord
position, wxOrientation orient, int flags = 0)

Draw a sash. The orient parameter defines whether the sash should be vertical or
horizontal and how the position should be interpreted.

wxRendererNative::DrawTreeItemButton

void DrawTreeItemButton (wxWindow* win, wxDC& dc, const wxRect& rect, int flags
= 0)

Draw the expanded/collapsed icon for a tree control item. To draw an expanded button
the flags parameter must contain wxCONTROL_EXPANDED bit.

wxRendererNative::Get

wxRendererNative& Get()

Return the currently used renderer.

wxRendererNative::GetDefault

CHAPTER 7

1078

wxRendererNative& GetDefault ()

Return the default (native) implementation for this platform -- this is also the one used by
default but this may be changed by calling Set (p. 1076) in which case the return value
of this method may be different from the return value of Get (p. 1075).

wxRendererNative::GetGeneric

wxRendererNative& GetGeneric ()

Return the generic implementation of the renderer. Under some platforms, this is the
default renderer implementation, others have platform-specific default renderer which
can be retrieved by calling GetDefault (p. 1075).

wxRendererNative::GetSplitterParams

wxSplitterRenderParams GetSplitterParams (const wxWindow* win)

Get the splitter parameters, see wxSplitterRenderParams (p. 1194).

wxRendererNative::GetVersion

wxRendererVersion GetVersion () const

This function is used for version checking: Load (p. 1076) refuses to load any shared
libraries implementing an older or incompatible version.

The implementation of this method is always the same in all renderers (simply construct
wxRendererVersion (p. 1076) using the wxRendererVersion::Current_XXX
values), but it has to be in the derived, not base, class, to detect mismatches between
the renderers versions and so you have to implement it anew in all renderers.

wxRendererNative::Load

wxRendererNative* Load (const wxString& name)

Load the renderer from the specified DLL, the returned pointer must be deleted by caller
if not NULL when it is not used any more.

The name should be just the base name of the renderer and not the full name of the DLL
file which is constructed differently (using wxDynamicLibrary::CanonicalizePluginName
(p. 456)) on different systems.

wxRendererNative::Set

wxRendererNative* Set(wxRendererNative* renderer)

Set the renderer to use, passing NULL reverts to using the default renderer (the global
renderer must always exist).

Return the previous renderer used with Set() or NULL if none.

CHAPTER 7

1079

wxRendererVersion

This simple struct represents the wxRendererNative (p. 1072) interface version and is
only used as the return value of wxRendererNative::GetVersion (p. 1075).

The version has two components: the version itself and the age. If the main program and
the renderer have different versions they are never compatible with each other because
the version is only changed when an existing virtual function is modified or removed. The
age, on the other hand, is incremented each time a new virtual method is added and so,
at least for the compilers using a common C++ object model, the calling program is
compatible with any renderer which has the age greater or equal to its age. This
verification is done by IsCompatible (p. 1076) method.

Derived from

No base class

Include files

<wx/renderer.h>

wxRendererVersion::IsCompatible

static bool IsCompatible (const wxRendererVersion& ver)

Checks if the main program is compatible with the renderer having the version ver,
returns true if it is and false otherwise.

This method is used by wxRendererNative::Load (p. 1076) to determine whether a
renderer can be used.

wxRendererVersion::version

const int version

The version component.

wxRendererVersion::age

const int age

The age component.

wxSashEvent

A sash event is sent when the sash of a wxSashWindow (p. 1082) has been dragged by
the user.

Derived from

CHAPTER 7

1080

wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/sashwin.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxSashEvent argument.

EVT_SASH_DRAGGED(id, func) Process a wxEVT_SASH_DRAGGED event,
when the user has finished dragging a sash.

EVT_SASH_DRAGGED_RANGE(id1, id2, func) Process a
wxEVT_SASH_DRAGGED_RANGE event,
when the user has finished dragging a sash.
The event handler is called when windows with
ids in the given range have their sashes
dragged.

Data structures

enum wxSashDragStatus
{
 wxSASH_STATUS_OK,
 wxSASH_STATUS_OUT_OF_RANGE
};

Remarks

When a sash belonging to a sash window is dragged by the user, and then released, this
event is sent to the window, where it may be processed by an event table entry in a
derived class, a plug-in event handler or an ancestor class.

Note that the wxSashWindow doesn't change the window's size itself. It relies on the
application's event handler to do that. This is because the application may have to
handle other consequences of the resize, or it may wish to veto it altogether. The event
handler should look at the drag rectangle: see wxSashEvent::GetDragRect (p. 1078) to
see what the new size of the window would be if the resize were to be applied. It should
also call wxSashEvent::GetDragStatus (p. 1078) to see whether the drag was OK or out
of the current allowed range.

See also

wxSashWindow (p. 1082), Event handling overview (p. 1674)

wxSashEvent::wxSashEvent

CHAPTER 7

1081

 wxSashEvent (int id = 0, wxSashEdgePosition edge = wxSASH_NONE)

Constructor.

wxSashEvent::GetEdge

wxSashEdgePosition GetEdge () const

Returns the dragged edge. The return value is one of wxSASH_TOP, wxSASH_RIGHT,
wxSASH_BOTTOM, wxSASH_LEFT.

wxSashEvent::GetDragRect

wxRect GetDragRect () const

Returns the rectangle representing the new size the window would be if the resize was
applied. It is up to the application to set the window size if required.

wxSashEvent::GetDragStatus

wxSashDragStatus GetDragStatus () const

Returns the status of the sash: one of wxSASH_STATUS_OK,
wxSASH_STATUS_OUT_OF_RANGE. If the drag caused the notional bounding box of
the window to flip over, for example, the drag will be out of rage.

wxSashLayoutWindow

wxSashLayoutWindow responds to OnCalculateLayout events generated by
wxLayoutAlgorithm (p. 796). It allows the application to use simple accessors to specify
how the window should be laid out, rather than having to respond to events. The fact
that the class derives from wxSashWindow allows sashes to be used if required, to allow
the windows to be user-resizable.

The documentation for wxLayoutAlgorithm (p. 796) explains the purpose of this class in
more detail.

Derived from

wxSashWindow (p. 1082)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/laywin.h>

Window styles

See wxSashWindow (p. 1082).

CHAPTER 7

1082

Event handling

This class handles the EVT_QUERY_LAYOUT_INFO and EVT_CALCULATE_LAYOUT
events for you. However, if you use sashes, see wxSashWindow (p. 1082) for relevant
event information.

See also wxLayoutAlgorithm (p. 796) for information about the layout events.

See also

wxLayoutAlgorithm (p. 796), wxSashWindow (p. 1082), Event handling overview (p.
1674)

wxSashLayoutWindow::wxSashLayoutWindow

 wxSashLayoutWindow ()

Default constructor.

 wxSashLayoutWindow (wxSashLayoutWindow* parent, wxWindowID id, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxCLIP_CHILDREN | wxSW_3D, const wxString& name = "layoutWindow")

Constructs a sash layout window, which can be a child of a frame, dialog or any other
non-control window.

Parameters

parent

Pointer to a parent window.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that
wxSashLayoutWindows should generate a default position for the window. If using
the wxSashLayoutWindow class directly, supply an actual position.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxSashLayoutWindows
should generate a default size for the window.

style

Window style. For window styles, please see wxSashLayoutWindow (p. 1079).

name

CHAPTER 7

1083

Window name.

wxSashLayoutWindow::Create

bool Create (wxSashLayoutWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxCLIP_CHILDREN | wxSW_3D, const wxString& name = "layoutWindow")

Initializes a sash layout window, which can be a child of a frame, dialog or any other
non-control window.

Parameters

parent

Pointer to a parent window.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that
wxSashLayoutWindows should generate a default position for the window. If using
the wxSashLayoutWindow class directly, supply an actual position.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxSashLayoutWindows
should generate a default size for the window.

style

Window style. For window styles, please see wxSashLayoutWindow (p. 1079).

name

Window name.

wxSashLayoutWindow::GetAlignment

wxLayoutAlignment GetAlignment () const

Returns the alignment of the window: one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

wxSashLayoutWindow::GetOrientation

wxLayoutOrientation GetOrientation () const

Returns the orientation of the window: one of wxLAYOUT_HORIZONTAL,
wxLAYOUT_VERTICAL.

CHAPTER 7

1084

wxSashLayoutWindow::OnCalculateLayout

void OnCalculateLayout (wxCalculateLayoutEvent& event)

The default handler for the event that is generated by wxLayoutAlgorithm. The
implementation of this function calls wxCalculateLayoutEvent::SetRect to shrink the
provided size according to how much space this window takes up. For further details,
see wxLayoutAlgorithm (p. 796) and wxCalculateLayoutEvent (p. 116).

wxSashLayoutWindow::OnQueryLayoutInfo

void OnQueryLayoutInfo (wxQueryLayoutInfoEvent& event)

The default handler for the event that is generated by OnCalculateLayout to get size,
alignment and orientation information for the window. The implementation of this function
uses member variables as set by accessors called by the application. For further details,
see wxLayoutAlgorithm (p. 796) and wxQueryLayoutInfoEvent (p. 1039).

wxSashLayoutWindow::SetAlignment

void SetAlignment (wxLayoutAlignment alignment)

Sets the alignment of the window (which edge of the available parent client area the
window is attached to). alignment is one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

wxSashLayoutWindow::SetDefaultSize

void SetDefaultSize (const wxSize& size)

Sets the default dimensions of the window. The dimension other than the orientation will
be fixed to this value, and the orientation dimension will be ignored and the window
stretched to fit the available space.

wxSashLayoutWindow::SetOrientation

void SetOrientation (wxLayoutOrientation orientation)

Sets the orientation of the window (the direction the window will stretch in, to fill the
available parent client area). orientation is one of wxLAYOUT_HORIZONTAL,
wxLAYOUT_VERTICAL.

wxSashWindow

wxSashWindow allows any of its edges to have a sash which can be dragged to resize
the window. The actual content window will be created by the application as a child of
wxSashWindow. The window (or an ancestor) will be notified of a drag via a
wxSashEvent (p. 1077) notification.

Derived from

CHAPTER 7

1085

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/sashwin.h>

Window styles

The following styles apply in addition to the normal wxWindow styles.

wxSW_3D Draws a 3D effect sash and border.

wxSW_3DSASH Draws a 3D effect sash.

wxSW_3DBORDER Draws a 3D effect border.

wxSW_BORDER Draws a thin black border.

See also window styles overview (p. 1686).

Event handling

EVT_SASH_DRAGGED(id, func) Process a wxEVT_SASH_DRAGGED event,
when the user has finished dragging a sash.

EVT_SASH_DRAGGED_RANGE(id1, id2, func) Process a
wxEVT_SASH_DRAGGED_RANGE event,
when the user has finished dragging a sash.
The event handler is called when windows with
ids in the given range have their sashes
dragged.

Data types

enum wxSashEdgePosition {
 wxSASH_TOP = 0,
 wxSASH_RIGHT,
 wxSASH_BOTTOM,
 wxSASH_LEFT,
 wxSASH_NONE = 100
};

See also

wxSashEvent (p. 1077), wxSashLayoutWindow (p. 1079), Event handling overview (p.
1674)

wxSashWindow::wxSashWindow

CHAPTER 7

1086

 wxSashWindow ()

Default constructor.

 wxSashWindow (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxCLIP_CHILDREN | wxSW_3D, const wxString& name = "sashWindow")

Constructs a sash window, which can be a child of a frame, dialog or any other non-
control window.

Parameters

parent

Pointer to a parent window.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that
wxSashWindows should generate a default position for the window. If using the
wxSashWindow class directly, supply an actual position.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxSashWindows
should generate a default size for the window.

style

Window style. For window styles, please see wxSashWindow (p. 1082).

name

Window name.

wxSashWindow::~wxSashWindow

 ~wxSashWindow ()

Destructor.

wxSashWindow::GetSashVisible

bool GetSashVisible (wxSashEdgePosition edge) const

Returns true if a sash is visible on the given edge, false otherwise.

Parameters

CHAPTER 7

1087

edge

Edge. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

See also

wxSashWindow::SetSashVisible (p. 1085)

wxSashWindow::GetMaximumSizeX

int GetMaximumSizeX () const

Gets the maximum window size in the x direction.

wxSashWindow::GetMaximumSizeY

int GetMaximumSizeY () const

Gets the maximum window size in the y direction.

wxSashWindow::GetMinimumSizeX

int GetMinimumSizeX ()

Gets the minimum window size in the x direction.

wxSashWindow::GetMinimumSizeY

int GetMinimumSizeY () const

Gets the minimum window size in the y direction.

wxSashWindow::HasBorder

bool HasBorder (wxSashEdgePosition edge) const

Returns true if the sash has a border, false otherwise.

Parameters

edge

Edge. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

See also

wxSashWindow::SetSashBorder (p. 1086)

wxSashWindow::SetMaximumSizeX

CHAPTER 7

1088

void SetMaximumSizeX (int min)

Sets the maximum window size in the x direction.

wxSashWindow::SetMaximumSizeY

void SetMaximumSizeY (int min)

Sets the maximum window size in the y direction.

wxSashWindow::SetMinimumSizeX

void SetMinimumSizeX (int min)

Sets the minimum window size in the x direction.

wxSashWindow::SetMinimumSizeY

void SetMinimumSizeY (int min)

Sets the minimum window size in the y direction.

wxSashWindow::SetSashVisible

void SetSashVisible (wxSashEdgePosition edge, bool visible)

Call this function to make a sash visible or invisible on a particular edge.

Parameters

edge

Edge to change. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

visible

true to make the sash visible, false to make it invisible.

See also

wxSashWindow::GetSashVisible (p. 1084)

wxSashWindow::SetSashBorder

void SetSashBorder (wxSashEdgePosition edge, bool hasBorder)

Call this function to give the sash a border, or remove the border.

Parameters

edge

CHAPTER 7

1089

Edge to change. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

hasBorder

true to give the sash a border visible, false to remove it.

See also

wxSashWindow::HasBorder (p. 1085)

wxScopedArray

This is a simple scoped smart pointer array implementation that is similar to the Boost
(http://www.boost.org) smart pointers but rewritten to use macros instead.

Example

Below is an example of using a wxWidgets scoped smart pointer and pointer array.

 class MyClass { /* ... */ };

 // declare a smart pointer to a MyClass called wx MyClassPtr
 wxDECLARE_SCOPED_PTR(MyClass, wxMyClassPtr)
 // declare a smart pointer to an array of chars
 wxDECLARE_SCOPED_ARRAY(char, wxCharArray)

 ...

 // define the first pointer class, must be comple te
 wxDEFINE_SCOPED_PTR(MyClass, wxMyClassPtr)
 // define the second pointer class
 wxDEFINE_SCOPED_ARRAY(char, wxCharArray)

 // create an object with a new pointer to MyClass
 wxMyClassPtr theObj(new MyClass());
 // reset the pointer (deletes the previous one)
 theObj.reset(new MyClass());

 // access the pointer
 theObj->MyFunc();

 // create an object with a new array of chars
 wxCharArray theCharObj(new char[100]);

 // access the array
 theCharObj[0] = "!";

Declaring new smart pointer types

 wxDECLAR_SCOPED_ARRAY(TYPE, // type of the values
 CLASSNAME); // nam e of the class

A smart pointer holds a pointer to an object (which must be complete when
wxDEFINE_SCOPED_ARRAY() is called). The memory used by the object is deleted
when the smart pointer goes out of scope. The first argument of the macro is the pointer
type, the second is the name of the new smart pointer class being created. Below we

CHAPTER 7

1090

will use wxScopedArray to represent the scoped pointer array class, but the user may
create the class with any legal name.

Include files

<wx/ptr_scpd.h>

See also

wxScopedPtr (p. 1088)

wxScopedArray::wxScopedArray

 wxScopedArray (type * T = NULL)

Creates the smart pointer with the given pointer or none if NULL. On compilers that
support it, this uses the explicit keyword.

wxScopedArray::reset

 reset (T p * = NULL)

Deletes the currently held pointer and sets it to 'p' or to NULL if no arguments are
specified. This function does check to make sure that the pointer you are assigning is
not the same pointer that is already stored.

wxScopedArray::operator []

const T & operator [] (long int i)

This operator acts like the standard [] indexing operator for C++ arrays. The function
does not do bounds checking.

wxScopedArray::get

const T* get ()

This operator gets the pointer stored in the smart pointer or returns NULL if there is
none.

wxScopedArray::swap

 swap (wxScopedPtr & ot)

Swap the pointer inside the smart pointer with 'ot'. The pointer being swapped must be
of the same type (hence the same class name).

wxScopedPtr

CHAPTER 7

1091

This is a simple scoped smart pointer implementation that is similar to the Boost
(http://www.boost.org/) smart pointers but rewritten to use macros instead.

A smart pointer holds a pointer to an object. The memory used by the object is deleted
when the smart pointer goes out of scope. This class is different from the
std::auto_ptr<> in so far as it doesn't provide copy constructor nor assignment
operator. This limits what you can do with it but is much less surprizing than the
"destructive copy'' behaviour of the standard class.

Example

Below is an example of using a wxWidgets scoped smart pointer and pointer array.

 class MyClass { /* ... */ };

 // declare a smart pointer to a MyClass called wx MyClassPtr
 wxDECLARE_SCOPED_PTR(MyClass, wxMyClassPtr)
 // declare a smart pointer to an array of chars
 wxDECLARE_SCOPED_ARRAY(char, wxCharArray)

 ...

 // define the first pointer class, must be comple te
 wxDEFINE_SCOPED_PTR(MyClass, wxMyClassPtr)
 // define the second pointer class
 wxDEFINE_SCOPED_ARRAY(char, wxCharArray)

 // create an object with a new pointer to MyClass
 wxMyClassPtr theObj(new MyClass());
 // reset the pointer (deletes the previous one)
 theObj.reset(new MyClass());

 // access the pointer
 theObj->MyFunc();

 // create an object with a new array of chars
 wxCharArray theCharObj(new char[100]);

 // access the array
 theCharObj[0] = "!";

Declaring new smart pointer types

To declare the smart pointer class CLASSNAME containing pointes to a (possibly
incomplete) type TYPE you should use

 wxDECLARE_SCOPED_PTR(TYPE, // type of the values
 CLASSNAME); // nam e of the class

And later, when TYPE is fully defined, you must also use

 wxDEFINE_SCOPED_PTR(TYPE, CLASSNAME);

to implement the scoped pointer class.

The first argument of these macro is the pointer type, the second is the name of the new
smart pointer class being created. Below we will use wxScopedPtr to represent the
scoped pointer class, but the user may create the class with any legal name.

CHAPTER 7

1092

Alternatively, if you don't have to separate the point of declaration and definition of this
class and if you accept the standard naming convention, that is that the scoped pointer
for the class Foo is called FooPtr , you can use a single macro which replaces two
macros above:

 wxDEFINE_SCOPED_PTR_TYPE(TYPE);

Once again, in this cass CLASSNAME will be TYPEPtr .

Include files

<wx/ptr_scpd.h>

See also

wxScopedArray (p. 1086)

wxScopedPtr::wxScopedPtr

 explicit wxScopedPtr (type * T = NULL)

Creates the smart pointer with the given pointer or none if NULL. On compilers that
support it, this uses the explicit keyword.

wxScopedPtr::~wxScopedPtr

 ~wxScopedPtr ()

Destructor frees the pointer help by this object if it is not NULL.

wxScopedPtr::release

T * release ()

Returns the currently hold pointer and resets the smart pointer object to NULL. After a
call to this function the caller is responsible for deleting the pointer.

wxScopedPtr::reset

 reset (T p * = NULL)

Deletes the currently held pointer and sets it to p or to NULL if no arguments are
specified. This function does check to make sure that the pointer you are assigning is
not the same pointer that is already stored.

wxScopedPtr::operator *

const T& operator * ()

This operator works like the standard C++ pointer operator to return the object being

CHAPTER 7

1093

pointed to by the pointer. If the pointer is NULL or invalid this will crash.

wxScopedPtr::operator ->

const T* operator -> () This operator works like the standard C++ pointer operator to
return the pointer in the smart pointer or NULL if it is empty.

wxScopedPtr::get

const T* get ()

This operator gets the pointer stored in the smart pointer or returns NULL if there is
none.

wxScopedPtr::swap

 swap (wxScopedPtr & other)

Swap the pointer inside the smart pointer with other. The pointer being swapped must be
of the same type (hence the same class name).

wxScopedTiedPtr

This is a variation on the topic of wxScopedPtr (p. 1088). This class is also a smart
pointer but in addition it "ties'' the pointer value to another variable. In other words,
during the life time of this class the value of that variable is set to be the same as the
value of the pointer itself and it is reset to its old value when the object is destroyed. This
class is especially useful when converting the existing code (which may already store
the pointers value in some variable) to the smart pointers.

Example

Derives from

wxScopedPtr (p. 1088)

Include files

<wx/ptr_scpd.h>

wxScopedTiedPtr::wxScopedTiedPtr

 wxScopedTiedPtr (T **ppTie, T *ptr)

Constructor creates a smart pointer initialized with ptr and stores ptr in the location
specified by ppTie which must not be NULL.

wxScopedTiedPtr::~wxScopedTiedPtr

CHAPTER 7

1094

 ~wxScopedTiedPtr ()

Destructor frees the pointer help by this object and restores the value stored at the tied
location (as specified in the constructor (p. 1091)) to the old value.

Warning: this location may now contain an uninitialized value if it hadn't been initialized
previously, in particular don't count on it magically being NULL!

wxScreenDC

A wxScreenDC can be used to paint on the screen. This should normally be constructed
as a temporary stack object; don't store a wxScreenDC object.

Derived from

wxDC (p. 353)

Include files

<wx/dcscreen.h>

See also

wxDC (p. 353), wxMemoryDC (p. 895), wxPaintDC (p. 979), wxClientDC (p. 141),
wxWindowDC (p. 1476)

wxScreenDC::wxScreenDC

 wxScreenDC ()

Constructor.

wxScreenDC::StartDrawingOnTop

bool StartDrawingOnTop (wxWindow* window)

bool StartDrawingOnTop (wxRect* rect = NULL)

Use this in conjunction with EndDrawingOnTop (p. 1092) to ensure that drawing to the
screen occurs on top of existing windows. Without this, some window systems (such as
X) only allow drawing to take place underneath other windows.

By using the first form of this function, an application is specifying that the area that will
be drawn on coincides with the given window.

By using the second form, an application can specify an area of the screen which is to
be drawn on. If NULL is passed, the whole screen is available.

It is recommended that an area of the screen is specified because with large regions,
flickering effects are noticeable when destroying the temporary transparent window used

CHAPTER 7

1095

to implement this feature.

You might use this pair of functions when implementing a drag feature, for example as in
the wxSplitterWindow (p. 1183) implementation.

Remarks

This function is probably obsolete since the X implementations allow drawing directly on
the screen now. However, the fact that this function allows the screen to be refreshed
afterwards, may be useful to some applications.

wxScreenDC::EndDrawingOnTop

bool EndDrawingOnTop ()

Use this in conjunction with StartDrawingOnTop (p. 1092).

This function destroys the temporary window created to implement on-top drawing (X
only).

wxScrollBar

A wxScrollBar is a control that represents a horizontal or vertical scrollbar. It is distinct
from the two scrollbars that some windows provide automatically, but the two types of
scrollbar share the way events are received.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/scrolbar.h>

Remarks

A scrollbar has the following main attributes: range, thumb size, page size, and position.

The range is the total number of units associated with the view represented by the
scrollbar. For a table with 15 columns, the range would be 15.

The thumb size is the number of units that are currently visible. For the table example,
the window might be sized so that only 5 columns are currently visible, in which case the
application would set the thumb size to 5. When the thumb size becomes the same as or
greater than the range, the scrollbar will be automatically hidden on most platforms.

The page size is the number of units that the scrollbar should scroll by, when 'paging'
through the data. This value is normally the same as the thumb size length, because it is
natural to assume that the visible window size defines a page.

CHAPTER 7

1096

The scrollbar position is the current thumb position.

Most applications will find it convenient to provide a function called AdjustScrollbars
which can be called initially, from an OnSize event handler, and whenever the
application data changes in size. It will adjust the view, object and page size according
to the size of the window and the size of the data.

Window styles

wxSB_HORIZONTAL Specifies a horizontal scrollbar.

wxSB_VERTICAL Specifies a vertical scrollbar.

See also window styles overview (p. 1686).

Event table macros

To process a scroll event, use these event handler macros to direct input to member
functions that take a wxScrollEvent argument. You can useEVT_COMMAND_SCROLL...
macros with window IDs for when intercepting scroll events from controls, or
EVT_SCROLL... macros without window IDs for intercepting scroll events from the
receiving window -- except for this, the macros behave exactly the same.

EVT_SCROLL(func) Process all scroll events.

EVT_SCROLL_TOP(func) Process wxEVT_SCROLL_TOP
scroll-to-top events (minimum
position).

EVT_SCROLL_BOTTOM(func) Process
wxEVT_SCROLL_BOTTOM scroll-
to-bottom events (maximum
position).

EVT_SCROLL_LINEUP(func) Process wxEVT_SCROLL_LINEUP
line up events.

EVT_SCROLL_LINEDOWN(func) Process
wxEVT_SCROLL_LINEDOWN line
down events.

EVT_SCROLL_PAGEUP(func) Process
wxEVT_SCROLL_PAGEUP page
up events.

EVT_SCROLL_PAGEDOWN(func) Process
wxEVT_SCROLL_PAGEDOWN
page down events.

EVT_SCROLL_THUMBTRACK(func) Process
wxEVT_SCROLL_THUMBTRACK
thumbtrack events (frequent events
sent as the user drags the
thumbtrack).

CHAPTER 7

1097

EVT_SCROLL_THUMBRELEASE(func) Process
wxEVT_SCROLL_THUMBRELEAS
E thumb release events.

EVT_SCROLL_CHANGED(func) Process
wxEVT_SCROLL_CHANGED end
of scrolling events (MSW only).

EVT_COMMAND_SCROLL(id, func) Process all scroll events.

EVT_COMMAND_SCROLL_TOP(id, func) Process wxEVT_SCROLL_TOP
scroll-to-top events (minimum
position).

EVT_COMMAND_SCROLL_BOTTOM(id, func) Process
wxEVT_SCROLL_BOTTOM scroll-
to-bottom events (maximum
position).

EVT_COMMAND_SCROLL_LINEUP(id, func) Process wxEVT_SCROLL_LINEUP
line up events.

EVT_COMMAND_SCROLL_LINEDOWN(id, func) Process
wxEVT_SCROLL_LINEDOWN line
down events.

EVT_COMMAND_SCROLL_PAGEUP(id, func) Process
wxEVT_SCROLL_PAGEUP page
up events.

EVT_COMMAND_SCROLL_PAGEDOWN(id, func) Process
wxEVT_SCROLL_PAGEDOWN
page down events.

EVT_COMMAND_SCROLL_THUMBTRACK(id, func) Process
wxEVT_SCROLL_THUMBTRACK
thumbtrack events (frequent events
sent as the user drags the
thumbtrack).

EVT_COMMAND_SCROLL_THUMBRELEASE(func) Process
wxEVT_SCROLL_THUMBRELEAS
E thumb release events.

EVT_COMMAND_SCROLL_CHANGED(func) Process
wxEVT_SCROLL_CHANGED end
of scrolling events (MSW only).

The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED

The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the
thumb using the mouse and releasing it (This EVT_SCROLL_THUMBRELEASEevent is
also followed by an EVT_SCROLL_CHANGED event).

CHAPTER 7

1098

The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the
thumb position, and when clicking next to the thumb (In all these cases the
EVT_SCROLL_THUMBRELEASE event does not happen).

In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has
finished independently of the way it had started. Please see the widgets sample ("Slider"
page) to see the difference between EVT_SCROLL_THUMBRELEASE and
EVT_SCROLL_CHANGED in action.

See also

Scrolling overview (p. 1709), Event handling overview (p. 1674), wxScrolledWindow (p.
1098)

wxScrollBar::wxScrollBar

 wxScrollBar ()

Default constructor.

 wxScrollBar (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSB_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "scrollBar")

Constructor, creating and showing a scrollbar.

Parameters

parent

Parent window. Must be non-NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxScrollBar (p. 1092).

validator

Window validator.

CHAPTER 7

1099

name

Window name.

See also

wxScrollBar::Create (p. 1096), wxValidator (p. 1394)

wxScrollBar::~wxScrollBar

void ~wxScrollBar ()

Destructor, destroying the scrollbar.

wxScrollBar::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSB_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "scrollBar")

Scrollbar creation function called by the scrollbar constructor. See
wxScrollBar::wxScrollBar (p. 1095) for details.

wxScrollBar::GetRange

int GetRange () const

Returns the length of the scrollbar.

See also

wxScrollBar::SetScrollbar (p. 1097)

wxScrollBar::GetPageSize

int GetPageSize () const

Returns the page size of the scrollbar. This is the number of scroll units that will be
scrolled when the user pages up or down. Often it is the same as the thumb size.

See also

wxScrollBar::SetScrollbar (p. 1097)

wxScrollBar::GetThumbPosition

int GetThumbPosition () const

Returns the current position of the scrollbar thumb.

See also

CHAPTER 7

1100

wxScrollBar::SetThumbPosition (p. 1097)

wxScrollBar::GetThumbSize

int GetThumbSize () const

Returns the thumb or 'view' size.

See also

wxScrollBar::SetScrollbar (p. 1097)

wxScrollBar::SetThumbPosition

void SetThumbPosition (int viewStart)

Sets the position of the scrollbar.

Parameters

viewStart

The position of the scrollbar thumb.

See also

wxScrollBar::GetThumbPosition (p. 1097)

wxScrollBar::SetScrollbar

virtual void SetScrollbar (int position, int thumbSize, int range, int pageSize, const
bool refresh = true)

Sets the scrollbar properties.

Parameters

position

The position of the scrollbar in scroll units.

thumbSize

The size of the thumb, or visible portion of the scrollbar, in scroll units.

range

The maximum position of the scrollbar.

pageSize

The size of the page size in scroll units. This is the number of units the scrollbar
will scroll when it is paged up or down. Often it is the same as the thumb size.

CHAPTER 7

1101

refresh

true to redraw the scrollbar, false otherwise.

Remarks

Let's say you wish to display 50 lines of text, using the same font. The window is sized
so that you can only see 16 lines at a time.

You would use:

 scrollbar->SetScrollbar(0, 16, 50, 15);

The page size is 1 less than the thumb size so that the last line of the previous page will
be visible on the next page, to help orient the user.

Note that with the window at this size, the thumb position can never go above 50 minus
16, or 34.

You can determine how many lines are currently visible by dividing the current view size
by the character height in pixels.

When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which can be
called initially and also from a wxSizeEvent (p. 1123) event handler function.

See also

Scrolling overview (p. 1709), wxWindow::SetScrollbar (p. 1465), wxScrolledWindow (p.
1098)

wxScrolledWindow

The wxScrolledWindow class manages scrolling for its client area, transforming the
coordinates according to the scrollbar positions, and setting the scroll positions, thumb
sizes and ranges according to the area in view.

Starting from version 2.4 of wxWidgets, there are several ways to use a
wxScrolledWindow. In particular, there are now three ways to set the size of the scrolling
area:

One way is to set the scrollbars directly using a call towxScrolledWindow::SetScrollbars
(p. 1106). This is the way it used to be in any previous version of wxWidgets and it will
be kept for backwards compatibility.

An additional method of manual control, which requires a little less computation of your
own, is to set the total size of the scrolling area by calling either
wxWindow::SetVirtualSize (p. 1471), or wxWindow::FitInside (p. 1433), and setting the
scrolling increments for it by calling wxScrolledWindow::SetScrollRate (p. 1107).
Scrolling in some orientation is enabled by setting a non zero increment for it.

CHAPTER 7

1102

The most automatic and newest way is to simply let sizers determine the scrolling area.
This is now the default when you set an interior sizer into a wxScrolledWindow with
wxWindow::SetSizer (p. 1469). The scrolling area will be set to the size requested by the
sizer and the scrollbars will be assigned for each orientation according to the need for
them and the scrolling increment set by wxScrolledWindow::SetScrollRate (p. 1107). As
above, scrolling is only enabled in orientations with a non-zero increment. You can
influence the minimum size of the scrolled area controlled by a sizer by
callingwxWindow::SetVirtualSizeHints (p. 1471). (calling
wxScrolledWindow::SetScrollbars (p. 1106) has analogous effects in wxWidgets 2.4 -- in
later versions it may not continue to override the sizer)

Note: if Maximum size hints are still supported by SetVirtualSizeHints, use them at your
own dire risk. They may or may not have been removed for 2.4, but it really only makes
sense to set minimum size hints here. We should probably replace SetVirtualSizeHints
with SetMinVirtualSize or similar and remove it entirely in future.

As with all windows, an application can draw onto a wxScrolledWindow using a device
context (p. 1714).

You have the option of handling the OnPaint handler or overriding the OnDraw (p. 1105)
function, which is passed a pre-scrolled device context (prepared by DoPrepareDC (p.
1104)).

If you don't wish to calculate your own scrolling, you must call DoPrepareDC when not
drawing from within OnDraw, to set the device origin for the device context according to
the current scroll position.

A wxScrolledWindow will normally scroll itself and therefore its child windows as well. It
might however be desired to scroll a different window than itself: e.g. when designing a
spreadsheet, you will normally only have to scroll the (usually white) cell area, whereas
the (usually grey) label area will scroll very differently. For this special purpose, you can
call SetTargetWindow (p. 1107) which means that pressing the scrollbars will scroll a
different window.

Note that the underlying system knows nothing about scrolling coordinates, so that all
system functions (mouse events, expose events, refresh calls etc) as well as the position
of subwindows are relative to the "physical" origin of the scrolled window. If the user
insert a child window at position (10,10) and scrolls the window down 100 pixels (moving
the child window out of the visible area), the child window will report a position of (10,-
90).

Derived from

wxPanel (p. 985)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/scrolwin.h>

Window styles

CHAPTER 7

1103

wxRETAINED Uses a backing pixmap to speed refreshes. Motif only.

See also window styles overview (p. 1686).

Remarks

Use wxScrolledWindow for applications where the user scrolls by a fixed amount, and
where a 'page' can be interpreted to be the current visible portion of the window. For
more sophisticated applications, use the wxScrolledWindow implementation as a guide
to build your own scroll behaviour.

See also

wxScrollBar (p. 1092), wxClientDC (p. 141),
wxPaintDC (p. 979), wxVScrolledWindow (p. 1416)

wxScrolledWindow::wxScrolledWindow

 wxScrolledWindow ()

Default constructor.

 wxScrolledWindow (wxWindow* parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxHSCROLL |
wxVSCROLL, const wxString& name = "scrolledWindow")

Constructor.

Parameters

parent

Parent window.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position. If a position of (-1, -1) is specified then a default position is
chosen.

size

Window size. If a size of (-1, -1) is specified then the window is sized appropriately.

style

Window style. See wxScrolledWindow (p. 1098).

name

CHAPTER 7

1104

Window name.

Remarks

The window is initially created without visible scrollbars. Call
wxScrolledWindow::SetScrollbars (p. 1106) to specify how big the virtual window size
should be.

wxScrolledWindow::~wxScrolledWindow

 ~wxScrolledWindow ()

Destructor.

wxScrolledWindow::CalcScrolledPosition

void CalcScrolledPosition (int x, int y, int * xx int * yy) const

Translates the logical coordinates to the device ones. For example, if a window is
scrolled 10 pixels to the bottom, the device coordinates of the origin are (0, 0) (as
always), but the logical coordinates are (0, 10) and so the call to CalcScrolledPosition(0,
10, &xx, &yy) will return 0 in yy.

See also

CalcUnscrolledPosition (p. 1101)

wxPython note: The wxPython version of this methods accepts only two parameters
and returns xx and yy as a tuple of values.

wxPerl note: In wxPerl this method takes two parameters and returns a 2-element list (
xx, yy) .

wxScrolledWindow::CalcUnscrolledPosition

void CalcUnscrolledPosition (int x, int y, int * xx int * yy) const

Translates the device coordinates to the logical ones. For example, if a window is
scrolled 10 pixels to the bottom, the device coordinates of the origin are (0, 0) (as
always), but the logical coordinates are (0, 10) and so the call to
CalcUnscrolledPosition(0, 0, &xx, &yy) will return 10 in yy.

See also

CalcScrolledPosition (p. 1101)

wxPython note: The wxPython version of this methods accepts only two parameters
and returns xx and yy as a tuple of values.

wxPerl note: In wxPerl this method takes two parameters and returns a 2-element list (
xx, yy) .

CHAPTER 7

1105

wxScrolledWindow::Create

bool Create (wxWindow* parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxHSCROLL |
wxVSCROLL, const wxString& name = "scrolledWindow")

Creates the window for two-step construction. Derived classes should call or replace this
function. See wxScrolledWindow::wxScrolledWindow (p. 1100) for details.

wxScrolledWindow::EnableScrolling

void EnableScrolling (const bool xScrolling, const bool yScrolling)

Enable or disable physical scrolling in the given direction. Physical scrolling is the
physical transfer of bits up or down the screen when a scroll event occurs. If the
application scrolls by a variable amount (e.g. if there are different font sizes) then
physical scrolling will not work, and you should switch it off. Note that you will have to
reposition child windows yourself, if physical scrolling is disabled.

Parameters

xScrolling

If true, enables physical scrolling in the x direction.

yScrolling

If true, enables physical scrolling in the y direction.

Remarks

Physical scrolling may not be available on all platforms. Where it is available, it is
enabled by default.

wxScrolledWindow::GetScrollPixelsPerUnit

void GetScrollPixelsPerUnit (int* xUnit, int* yUnit) const

Get the number of pixels per scroll unit (line), in each direction, as set by
wxScrolledWindow::SetScrollbars (p. 1106). A value of zero indicates no scrolling in that
direction.

Parameters

xUnit

Receives the number of pixels per horizontal unit.

yUnit

Receives the number of pixels per vertical unit.

See also

CHAPTER 7

1106

wxScrolledWindow::SetScrollbars (p. 1106), wxScrolledWindow::GetVirtualSize (p.
1104)

wxPython note: The wxPython version of this methods accepts no parameters and
returns a tuple of values for xUnit and yUnit.

wxPerl note: In wxPerl this method takes no parameters and returns a 2-element list (
xUnit, yUnit) .

wxScrolledWindow::GetViewStart

void GetViewStart (int* x, int* y) const

Get the position at which the visible portion of the window starts.

Parameters

x

Receives the first visible x position in scroll units.

y

Receives the first visible y position in scroll units.

Remarks

If either of the scrollbars is not at the home position, x and/or y will be greater than zero.
Combined with wxWindow::GetClientSize (p. 1436), the application can use this function
to efficiently redraw only the visible portion of the window. The positions are in logical
scroll units, not pixels, so to convert to pixels you will have to multiply by the number of
pixels per scroll increment.

See also

wxScrolledWindow::SetScrollbars (p. 1106)

wxPython note: The wxPython version of this methods accepts no parameters and
returns a tuple of values for x and y.

wxPerl note: In wxPerl this method takes no parameters and returns a 2-element list (
x, y) .

wxScrolledWindow::GetVirtualSize

void GetVirtualSize (int* x, int* y) const

Gets the size in device units of the scrollable window area (as opposed to the client size,
which is the area of the window currently visible).

Parameters

x

CHAPTER 7

1107

Receives the length of the scrollable window, in pixels.

y

Receives the height of the scrollable window, in pixels.

Remarks

Use wxDC::DeviceToLogicalX (p. 356) and wxDC::DeviceToLogicalY (p. 357) to
translate these units to logical units.

See also

wxScrolledWindow::SetScrollbars (p. 1106), wxScrolledWindow::GetScrollPixelsPerUnit
(p. 1102)

wxPython note: The wxPython version of this methods accepts no parameters and
returns a tuple of values for x and y.

wxPerl note: In wxPerl this method takes no parameters and returns a 2-element list (
x, y) .

wxScrolledWindow::IsRetained

bool IsRetained () const

Motif only: true if the window has a backing bitmap.

wxScrolledWindow::DoPrepareDC

void DoPrepareDC (wxDC& dc)

Call this function to prepare the device context for drawing a scrolled image. It sets the
device origin according to the current scroll position.

DoPrepareDC is called automatically within the default wxScrolledWindow::OnPaint
event handler, so your wxScrolledWindow::OnDraw (p. 1105) override will be passed a
'pre-scrolled' device context. However, if you wish to draw from outside of OnDraw (via
OnPaint), or you wish to implement OnPaint yourself, you must call this function
yourself. For example:

void MyWindow::OnEvent(wxMouseEvent& event)
{
 wxClientDC dc(this);
 DoPrepareDC(dc);

 dc.SetPen(*wxBLACK_PEN);
 float x, y;
 event.Position(&x, &y);
 if (xpos > -1 && ypos > -1 && event.Dragging())
 {
 dc.DrawLine(xpos, ypos, x, y);
 }
 xpos = x;
 ypos = y;
}

CHAPTER 7

1108

wxScrolledWindow::OnDraw

virtual void OnDraw (wxDC& dc)

Called by the default paint event handler to allow the application to define painting
behaviour without having to worry about calling wxScrolledWindow::DoPrepareDC (p.
1104).

Instead of overriding this function you may also just process the paint event in the
derived class as usual, but then you will have to call DoPrepareDC() yourself.

wxScrolledWindow::PrepareDC

void PrepareDC (wxDC& dc)

This function is for backwards compatibility only and simply calls DoPrepareDC (p. 1104)
now. Notice that it is not called by the default paint event handle (DoPrepareDC() is), so
overriding this method in your derived class is useless.

wxScrolledWindow::Scroll

void Scroll (int x, int y)

Scrolls a window so the view start is at the given point.

Parameters

x

The x position to scroll to, in scroll units.

y

The y position to scroll to, in scroll units.

Remarks

The positions are in scroll units, not pixels, so to convert to pixels you will have to
multiply by the number of pixels per scroll increment. If either parameter is -1, that
position will be ignored (no change in that direction).

See also

wxScrolledWindow::SetScrollbars (p. 1106), wxScrolledWindow::GetScrollPixelsPerUnit
(p. 1102)

wxScrolledWindow::SetScrollbars

void SetScrollbars (int pixelsPerUnitX, int pixelsPerUnitY, int noUnitsX, int noUnitsY,
int xPos = 0, int yPos = 0, bool noRefresh = false)

Sets up vertical and/or horizontal scrollbars.

CHAPTER 7

1109

Parameters

pixelsPerUnitX

Pixels per scroll unit in the horizontal direction.

pixelsPerUnitY

Pixels per scroll unit in the vertical direction.

noUnitsX

Number of units in the horizontal direction.

noUnitsY

Number of units in the vertical direction.

xPos

Position to initialize the scrollbars in the horizontal direction, in scroll units.

yPos

Position to initialize the scrollbars in the vertical direction, in scroll units.

noRefresh

Will not refresh window if true.

Remarks

The first pair of parameters give the number of pixels per 'scroll step', i.e. amount moved
when the up or down scroll arrows are pressed. The second pair gives the length of
scrollbar in scroll steps, which sets the size of the virtual window.

xPos and yPos optionally specify a position to scroll to immediately.

For example, the following gives a window horizontal and vertical scrollbars with 20
pixels per scroll step, and a size of 50 steps (1000 pixels) in each direction.

 window->SetScrollbars(20, 20, 50, 50);

wxScrolledWindow manages the page size itself, using the current client window size as
the page size.

Note that for more sophisticated scrolling applications, for example where scroll steps
may be variable according to the position in the document, it will be necessary to derive
a new class from wxWindow, overriding OnSize and adjusting the scrollbars
appropriately.

See also

wxWindow::SetVirtualSize (p. 1471)

CHAPTER 7

1110

wxScrolledWindow::SetScrollRate

void SetScrollRate (int xstep, int ystep)

Set the horizontal and vertical scrolling increment only. See the pixelsPerUnit parameter
in SetScrollbars.

wxScrolledWindow::SetTargetWindow

void SetTargetWindow (wxWindow* window)

Call this function to tell wxScrolledWindow to perform the actual scrolling on a different
window (and not on itself).

wxScrollEvent

A scroll event holds information about events sent from stand-alonescrollbars (p. 1092)
and sliders (p. 1138). Note that starting from wxWidgets 2.1, scrolled windows send the
wxScrollWinEvent (p. 1110) which does not derive from wxCommandEvent, but from
wxEvent directly - don't confuse these two kinds of events and use the event table
macros mentioned below only for the scrollbar-like controls.

Derived from

wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process a scroll event, use these event handler macros to direct input to member
functions that take a wxScrollEvent argument. You can useEVT_COMMAND_SCROLL...
macros with window IDs for when intercepting scroll events from controls, or
EVT_SCROLL... macros without window IDs for intercepting scroll events from the
receiving window -- except for this, the macros behave exactly the same.

EVT_SCROLL(func) Process all scroll events.

EVT_SCROLL_TOP(func) Process wxEVT_SCROLL_TOP
scroll-to-top events (minimum
position).

EVT_SCROLL_BOTTOM(func) Process
wxEVT_SCROLL_BOTTOM scroll-
to-bottom events (maximum
position).

EVT_SCROLL_LINEUP(func) Process wxEVT_SCROLL_LINEUP

CHAPTER 7

1111

line up events.

EVT_SCROLL_LINEDOWN(func) Process
wxEVT_SCROLL_LINEDOWN line
down events.

EVT_SCROLL_PAGEUP(func) Process
wxEVT_SCROLL_PAGEUP page
up events.

EVT_SCROLL_PAGEDOWN(func) Process
wxEVT_SCROLL_PAGEDOWN
page down events.

EVT_SCROLL_THUMBTRACK(func) Process
wxEVT_SCROLL_THUMBTRACK
thumbtrack events (frequent events
sent as the user drags the
thumbtrack).

EVT_SCROLL_THUMBRELEASE(func) Process
wxEVT_SCROLL_THUMBRELEAS
E thumb release events.

EVT_SCROLL_CHANGED(func) Process
wxEVT_SCROLL_CHANGED end
of scrolling events (MSW only).

EVT_COMMAND_SCROLL(id, func) Process all scroll events.

EVT_COMMAND_SCROLL_TOP(id, func) Process wxEVT_SCROLL_TOP
scroll-to-top events (minimum
position).

EVT_COMMAND_SCROLL_BOTTOM(id, func) Process
wxEVT_SCROLL_BOTTOM scroll-
to-bottom events (maximum
position).

EVT_COMMAND_SCROLL_LINEUP(id, func) Process wxEVT_SCROLL_LINEUP
line up events.

EVT_COMMAND_SCROLL_LINEDOWN(id, func) Process
wxEVT_SCROLL_LINEDOWN line
down events.

EVT_COMMAND_SCROLL_PAGEUP(id, func) Process
wxEVT_SCROLL_PAGEUP page
up events.

EVT_COMMAND_SCROLL_PAGEDOWN(id, func) Process
wxEVT_SCROLL_PAGEDOWN
page down events.

CHAPTER 7

1112

EVT_COMMAND_SCROLL_THUMBTRACK(id, func) Process
wxEVT_SCROLL_THUMBTRACK
thumbtrack events (frequent events
sent as the user drags the
thumbtrack).

EVT_COMMAND_SCROLL_THUMBRELEASE(func) Process
wxEVT_SCROLL_THUMBRELEAS
E thumb release events.

EVT_COMMAND_SCROLL_CHANGED(func) Process
wxEVT_SCROLL_CHANGED end
of scrolling events (MSW only).

The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED

The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the
thumb using the mouse and releasing it (This EVT_SCROLL_THUMBRELEASEevent is
also followed by an EVT_SCROLL_CHANGED event).

The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the
thumb position, and when clicking next to the thumb (In all these cases the
EVT_SCROLL_THUMBRELEASE event does not happen).

In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has
finished independently of the way it had started. Please see the widgets sample ("Slider"
page) to see the difference between EVT_SCROLL_THUMBRELEASE and
EVT_SCROLL_CHANGED in action.

Remarks

Note that unless specifying a scroll control identifier, you will need to test for scrollbar
orientation with wxScrollEvent::GetOrientation (p. 1110), since horizontal and vertical
scroll events are processed using the same event handler.

See also

wxScrollBar (p. 1092), wxSlider (p. 1138), wxSpinButton (p. 1172),
wxScrollWinEvent (p. 1110), Event handling overview (p. 1674)

wxScrollEvent::wxScrollEvent

 wxScrollEvent (WXTYPE commandType = 0, int id = 0, int pos = 0, int orientation = 0)

Constructor.

wxScrollEvent::GetOrientation

int GetOrientation () const

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the

CHAPTER 7

1113

scrollbar.

wxScrollEvent::GetPosition

int GetPosition () const

Returns the position of the scrollbar.

wxScrollWinEvent

A scroll event holds information about events sent from scrolling windows.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process a scroll window event, use these event handler macros to direct input to
member functions that take a wxScrollWinEvent argument. You can use the
EVT_SCROLLWIN... macros for intercepting scroll window events from the receiving
window.

EVT_SCROLLWIN(func) Process all scroll events.

EVT_SCROLLWIN_TOP(func) Process wxEVT_SCROLLWIN_TOP scroll-to-
top events.

EVT_SCROLLWIN_BOTTOM(func) Process wxEVT_SCROLLWIN_TOP scroll-to-
bottom events.

EVT_SCROLLWIN_LINEUP(func) Process wxEVT_SCROLLWIN_LINEUP line up
events.

EVT_SCROLLWIN_LINEDOWN(func) Process wxEVT_SCROLLWIN_LINEDOWN
line down events.

EVT_SCROLLWIN_PAGEUP(func) Process wxEVT_SCROLLWIN_PAGEUP page
up events.

EVT_SCROLLWIN_PAGEDOWN(func) Process wxEVT_SCROLLWIN_PAGEDOWN
page down events.

EVT_SCROLLWIN_THUMBTRACK(func) Process
wxEVT_SCROLLWIN_THUMBTRACK
thumbtrack events (frequent events sent as the
user drags the thumbtrack).

CHAPTER 7

1114

EVT_SCROLLWIN_THUMBRELEASE(func) Process
wxEVT_SCROLLWIN_THUMBRELEASE
thumb release events.

See also
wxScrollEvent (p. 1107), Event handling overview (p. 1674)

wxScrollWinEvent::wxScrollWinEvent

 wxScrollWinEvent (WXTYPE commandType = 0, int pos = 0, int orientation = 0)

Constructor.

wxScrollWinEvent::GetOrientation

int GetOrientation () const

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
scrollbar.

wxScrollWinEvent::GetPosition

int GetPosition () const

Returns the position of the scrollbar for the thumb track and release events. Note that
this field can't be used for the other events, you need to query the window itself for the
current position in that case.

wxSemaphore

wxSemaphore is a counter limiting the number of threads concurrently accessing a
shared resource. This counter is always between 0 and the maximum value specified
during the semaphore creation. When the counter is strictly greater than 0, a call to Wait
(p. 1113) returns immediately and decrements the counter. As soon as it reaches 0, any
subsequent calls toWait (p. 1113) block and only return when the semaphore counter
becomes strictly positive again as the result of calling Post (p. 1112) which increments
the counter.

In general, the semaphores are useful to restrict access to a shared resource which can
only be accessed by some fixed number of clients at once. For example, when modeling
a hotel reservation system a semaphore with the counter equal to the total number of
available rooms could be created. Each time a room is reserved, the semaphore should
be acquired by calling Wait (p. 1113) and each time a room is freed it should be released
by calling Post (p. 1112).

Derived from

No base class

CHAPTER 7

1115

Include files

<wx/thread.h>

wxSemaphore::wxSemaphore

 wxSemaphore (int initialcount = 0, int maxcount = 0)

Specifying a maxcount of 0 actually makes wxSemaphore behave as if there is no upper
limit. If maxcount is 1 the semaphore behaves exactly as a mutex.

initialcount is the initial value of the semaphore which must be between0 and maxcount
(if it is not set to 0).

wxSemaphore::~wxSemaphore

 ~wxSemaphore ()

Destructor is not virtual, don't use this class polymorphically.

wxSemaphore::Post

wxSemaError Post ()

Increments the semaphore count and signals one of the waiting threads in an atomic
way. Returns wxSEMA_OVERFLOW if the count would increase the counter past the
maximum.

Return value

One of:

wxSEMA_NO_ERROR There was no error.

wxSEMA_INVALID Semaphore hasn't been initialized successfully.

wxSEMA_OVERFLOW Post() would increase counter past the max.

wxSEMA_MISC_ERROR Miscellaneous error.

wxSemaphore::TryWait

wxSemaError TryWait ()

Same as Wait() (p. 1113), but returns immediately.

Return value

One of:

wxSEMA_NO_ERROR There was no error.

CHAPTER 7

1116

wxSEMA_INVALID Semaphore hasn't been initialized successfully.

wxSEMA_BUSY Returned by TryWait() if Wait() would block, i.e.
the count is zero.

wxSEMA_MISC_ERROR Miscellaneous error.

wxSemaphore::Wait

wxSemaError Wait ()

Wait indefinitely until the semaphore count becomes strictly positive and then decrement
it and return.

Return value

One of:

wxSEMA_NO_ERROR There was no error.

wxSEMA_INVALID Semaphore hasn't been initialized successfully.

wxSEMA_MISC_ERROR Miscellaneous error.

wxSemaphore::WaitTimeout

wxSemaError WaitTimeout (unsigned long timeout_millis)

Same as Wait() (p. 1113), but with a timeout limit.

Return value

One of:

wxSEMA_NO_ERROR There was no error.

wxSEMA_INVALID Semaphore hasn't been initialized successfully.

wxSEMA_TIMEOUT Timeout occurred without receiving semaphore.

wxSEMA_MISC_ERROR Miscellaneous error.

wxSetCursorEvent

A SetCursorEvent is generated when the mouse cursor is about to be set as a result of
mouse motion. This event gives the application the chance to perform specific mouse
cursor processing based on the current position of the mouse within the window. Use
SetCursor (p. 1115) to specify the cursor you want to be displayed.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

CHAPTER 7

1117

Include files

<wx/event.h>

See also

::wxSetCursor (p. 1551)wxWindow::wxSetCursor (p. 1459)

Event table macros

To process a set cursor event, use this event handler macro to direct input to a member
function that takes a wxSetCursorEvent argument.

EVT_SET_CURSOR(func) Process a wxEVT_SET_CURSOR event.

wxSetCursorEvent::wxSetCursorEvent

 wxSetCursorEvent (wxCoord x = 0, wxCoord y = 0)

Constructor, used by the library itself internally to initialize the event object.

wxSetCursorEvent::GetCursor

wxCursor& GetCursor () const

Returns a reference to the cursor specified by this event.

wxSetCursorEvent::GetX

wxCoord GetX() const

Returns the X coordinate of the mouse in client coordinates.

wxSetCursorEvent::GetY

wxCoord GetY() const

Returns the Y coordinate of the mouse in client coordinates.

wxSetCursorEvent::HasCursor

bool HasCursor () const

Returns true if the cursor specified by this event is a valid cursor.

Remarks

You cannot specify wxNullCursor with this event, as it is not considered a valid cursor.

wxSetCursorEvent::SetCursor

CHAPTER 7

1118

void SetCursor (const wxCursor& cursor)

Sets the cursor associated with this event.

wxServer

A wxServer object represents the server part of a client-server DDE-like (Dynamic Data
Exchange) conversation. The actual DDE-based implementation using wxDDEServer is
available on Windows only, but a platform-independent, socket-based version of this API
is available using wxTCPServer, which has the same API.

To create a server which can communicate with a suitable client, you need to derive a
class from wxConnection and another from wxServer. The custom wxConnection class
will intercept communications in a 'conversation' with a client, and the custom wxServer
is required so that a user-overridden wxServer::OnAcceptConnection (p. 1116) member
can return a wxConnection of the required class, when a connection is made. Look at
the IPC sample and the Interprocess communications overview (p. 1765) for an example
of how to do this.

Derived from

wxServerBase

Include files

<wx/ipc.h>

See also

wxClient (p. 140),wxConnection (p. 374), IPC overview (p. 1765)

wxServer::wxServer

 wxServer ()

Constructs a server object.

wxServer::Create

bool Create (const wxString& service)

Registers the server using the given service name. Under Unix, the service name may
be either an integer port identifier in which case an Internet domain socket will be used
for the communications, or a valid file name (which shouldn't exist and will be deleted
afterwards) in which case a Unix domain socket is created. false is returned if the call
failed (for example, the port number is already in use).

wxServer::OnAcceptConnection

CHAPTER 7

1119

virtual wxConnectionBase * OnAcceptConnection (const wxString& topic)

When a client calls MakeConnection , the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxConnection type, or (more likely) of a
user-derived type.

If the topic is STDIO, the application may wish to refuse the connection. Under UNIX,
when a server is created the OnAcceptConnection message is always sent for standard
input and output, but in the context of DDE messages it doesn't make a lot of sense.

wxSimpleHelpProvider

wxSimpleHelpProvider is an implementation of wxHelpProvider (p. 671) which supports
only plain text help strings, and shows the string associated with the control (if any) in a
tooltip.

Derived from

wxHelpProvider (p. 671)

Include files

<wx/cshelp.h>

See also

wxHelpProvider (p. 671), wxHelpControllerHelpProvider (p. 669), wxContextHelp (p.
202), wxWindow::SetHelpText (p. 1464), wxWindow::GetHelpText (p. 1439)

wxSingleChoiceDialog

This class represents a dialog that shows a list of strings, and allows the user to select
one. Double-clicking on a list item is equivalent to single-clicking and then pressing OK.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/choicdlg.h>

See also

wxSingleChoiceDialog overview (p. 1724),wxMultiChoiceDialog (p. 949)

CHAPTER 7

1120

wxSingleChoiceDialog::wxSingleChoiceDialog

 wxSingleChoiceDialog (wxWindow* parent, const wxString& message, const
wxString& caption, int n, const wxString* choices, void** clientData = NULL, long
style = wxCHOICEDLG_STYLE, const wxPoint& pos = wxDefaultPosition)

 wxSingleChoiceDialog (wxWindow* parent, const wxString& message, const
wxString& caption, const wxArrayString& choices, void** clientData = NULL, long
style = wxCHOICEDLG_STYLE, const wxPoint& pos = wxDefaultPosition)

Constructor, taking an array of wxString choices and optional client data.

Parameters

parent

Parent window.

message

Message to show on the dialog.

caption

The dialog caption.

n

The number of choices.

choices

An array of strings, or a string list, containing the choices.

clientData

An array of client data to be associated with the items. See GetSelectionClientData
(p. 1118).

style

A dialog style (bitlist) containing flags chosen from standard dialog styles and the
following:

wxOK Show an OK button.

wxCANCEL Show a Cancel button.

wxCENTRE Centre the message. Not Windows.

The default value is equivalent to wxDEFAULT_DIALOG_STYLE |
wxRESIZE_BORDER | wxOK | wxCANCEL | wxCENTRE .
pos

Dialog position. Not Windows.

CHAPTER 7

1121

Remarks

Use wxSingleChoiceDialog::ShowModal (p. 1119) to show the dialog.

wxPython note: For Python the two parameters n and choices are collapsed into a
single parameter choices which is expected to be a Python list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices , and
the client data array, if present, must have the same length as the choices array.

wxSingleChoiceDialog::GetSelection

int GetSelection () const

Returns the index of selected item.

wxSingleChoiceDialog::GetSelectionClientData

char* GetSelectionClientData () const

Returns the client data associated with the selection.

wxSingleChoiceDialog::GetStringSelection

wxString GetStringSelection () const

Returns the selected string.

wxSingleChoiceDialog::SetSelection

void SetSelection (int selection) const

Sets the index of the initially selected item.

wxSingleChoiceDialog::ShowModal

int ShowModal ()

Shows the dialog, returning either wxID_OK or wxID_CANCEL.

wxSingleInstanceChecker

wxSingleInstanceChecker class allows to check that only a single instance of a program
is running. To do it, you should create an object of this class. As long as this object is
alive, calls to IsAnotherRunning() (p. 1120) from other processes will return true .

As the object should have the life span as big as possible, it makes sense to create it
either as a global or in wxApp::OnInit (p. 37). For example:

bool MyApp::OnInit()
{

CHAPTER 7

1122

 const wxString name = wxString::Format("MyApp-% s",
wxGetUserId().c_str());
 m_checker = new wxSingleInstanceChecker(name);
 if (m_checker->IsAnotherRunning())
 {
 wxLogError(_("Another program instance is a lready running,
aborting."));

 return false;
 }

 ... more initializations ...

 return true;
}

int MyApp::OnExit()
{
 delete m_checker;

 return 0;
}

Note using wxGetUserId() (p. 1535) to construct the name: this allows different user to
run the application concurrently which is usually the intended goal. If you don't use the
user name in the wxSingleInstanceChecker name, only one user would be able to run
the application at a time.

This class is implemented for Win32 and Unix platforms (supporting fcntl() system
call, but almost all of modern Unix systems do) only.

Derived from

No base class

Include files

<wx/snglinst.h>

wxSingleInstanceChecker::wxSingleInstanceChecker

 wxSingleInstanceChecker ()

Default ctor, use Create() (p. 1120) after it.

wxSingleInstanceChecker::wxSingleInstanceChecker

 wxSingleInstanceChecker (const wxString& name, const wxString& path =
wxEmptyString)

Like Create() (p. 1120) but without error checking.

wxSingleInstanceChecker::Create

CHAPTER 7

1123

bool Create (const wxString& name, const wxString& path = wxEmptyString)

Initialize the object if it had been created using the default constructor. Note that you
can't call Create() more than once, so calling it if the non default ctor (p. 1120) had been
used is an error.

Parameters

name

must be given and be as unique as possible. It is used as the mutex name under
Win32 and the lock file name under Unix. GetAppName() (p. 32) and
wxGetUserId() (p. 1535) are commonly used to construct this parameter.

path

is optional and is ignored under Win32 and used as the directory to create the lock
file in under Unix (default is wxGetHomeDir() (p. 1532))

Return value

Returns false if initialization failed, it doesn't mean that another instance is running -
use IsAnotherRunning() (p. 1120) to check for it.

Note

One of possible reasons while Create may fail on Unix is that the lock file used for
checking already exists but was not created by the user. Therefore applications shouldn't
treat failure of this function as fatal condition, because doing so would open them to the
possibility of a Denial of Service attack. Instead, they should alert the user about the
problem and offer to continue execution without checking if another instance is running.

wxSingleInstanceChecker::IsAnotherRunning

bool IsAnotherRunning () const

Returns true if another copy of this program is already running, false otherwise.

wxSingleInstanceChecker::~wxSingleInstanceChecker

 ~wxSingleInstanceChecker ()

Destructor frees the associated resources.

Note that it is not virtual, this class is not meant to be used polymorphically

wxSize

A wxSize is a useful data structure for graphics operations. It simply contains integer
width and height members.

wxSize is used throughout wxWidgets as well as wxPoint which, although almost

CHAPTER 7

1124

equivalent to wxSize, has a different meaning: wxPoint represents a position while
wxSize - the size.

wxPython note: wxPython defines aliases for the x and y members named width and
height since it makes much more sense for sizes.

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxPoint (p. 999), wxRealPoint (p. 1050)

wxSize::wxSize

 wxSize ()

 wxSize (int width, int height)

Creates a size object.

wxSize::DecTo

void DecTo (const wxSize& size)

Decrements this object so that both of its dimensions are not greater than the
corresponding dimensions of the size.

See also

IncTo (p. 1122)

wxSize::IsFullySpecified

bool IsFullySpecified () const

Returns true if neither of the size object components is equal to -1, which is used as
default for the size values in wxWidgets (hence the predefined wxDefaultSize has
both of its components equal to -1).

This method is typically used before calling SetDefaults (p. 1122).

wxSize::GetWidth

int GetWidth () const

CHAPTER 7

1125

Gets the width member.

wxSize::GetHeight

int GetHeight () const

Gets the height member.

wxSize::IncTo

void IncTo (const wxSize& size)

Increments this object so that both of its dimensions are not less than the corresponding
dimensions of the size.

See also

DecTo (p. 1121)

wxSize::Set

void Set(int width, int height)

Sets the width and height members.

wxSize::SetDefaults

void SetDefaults (const wxSize& sizeDefault)

Combine this size object with another one replacing the default (i.e. equal to -1)
components of this object with those of the other. It is typically used like this: if (
!size.IsFullySpecified())
 {
 size.SetDefaults(GetDefaultSize());
 }

See also

IsFullySpecified (p. 1122)

wxSize::SetHeight

void SetHeight (int height)

Sets the height.

wxSize::SetWidth

void SetWidth (int width)

Sets the width.

CHAPTER 7

1126

wxSize::operator =

void operator = (const wxSize& sz)

Assignment operator.

wxSizeEvent

A size event holds information about size change events.

The EVT_SIZE handler function will be called when the window has been resized.

You may wish to use this for frames to resize their child windows as appropriate.

Note that the size passed is of the whole window: call wxWindow::GetClientSize (p.
1436) for the area which may be used by the application.

When a window is resized, usually only a small part of the window is damaged and you
may only need to repaint that area. However, if your drawing depends on the size of the
window, you may need to clear the DC explicitly and repaint the whole window. In which
case, you may need to call wxWindow::Refresh (p. 1452) to invalidate the entire window.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process a size event, use this event handler macro to direct input to a member
function that takes a wxSizeEvent argument.

EVT_SIZE(func) Process a wxEVT_SIZE event.

See also
wxSize (p. 1121), Event handling overview (p. 1674)

wxSizeEvent::wxSizeEvent

 wxSizeEvent (const wxSize& sz, int id = 0)

Constructor.

wxSizeEvent::GetSize

wxSize GetSize () const

CHAPTER 7

1127

Returns the entire size of the window generating the size change event.

wxSizer

wxSizer is the abstract base class used for laying out subwindows in a window. You
cannot use wxSizer directly; instead, you will have to use one of the sizer classes
derived from it. Currently there are wxBoxSizer (p. 98), wxStaticBoxSizer (p.
1205),wxGridSizer (p. 652) wxFlexGridSizer (p. 531) and wxGridBagSizer (p. 627).

The layout algorithm used by sizers in wxWidgets is closely related to layout in other
GUI toolkits, such as Java's AWT, the GTK toolkit or the Qt toolkit. It is based upon the
idea of the individual subwindows reporting their minimal required size and their ability to
get stretched if the size of the parent window has changed. This will most often mean
that the programmer does not set the original size of a dialog in the beginning, rather the
dialog will be assigned a sizer and this sizer will be queried about the recommended
size. The sizer in turn will query its children, which can be normal windows, empty space
or other sizers, so that a hierarchy of sizers can be constructed. Note that wxSizer does
not derive from wxWindow and thus does not interfere with tab ordering and requires
very little resources compared to a real window on screen.

What makes sizers so well fitted for use in wxWidgets is the fact that every control
reports its own minimal size and the algorithm can handle differences in font sizes or
different window (dialog item) sizes on different platforms without problems. If e.g. the
standard font as well as the overall design of Motif widgets requires more space than on
Windows, the initial dialog size will automatically be bigger on Motif than on Windows.

Sizers may also be used to control the layout of custom drawn items on the window.
The Add, Insert, and Prepend functions return a pointer to the newly added wxSizerItem.
Just add empty space of the desired size and attributes, and then use the
wxSizerItem::GetRect method to determine where the drawing operations should take
place.

wxPython note: If you wish to create a sizer class in wxPython you should derive the
class from wxPySizer in order to get Python-aware capabilities for the various virtual
methods.

Derived from

wxObject (p. 967)
wxClientDataContainer (p. 142)

Include files

<wx/sizer.h>

See also

Sizer overview (p. 1694)

wxSizer::wxSizer

CHAPTER 7

1128

 wxSizer ()

The constructor. Note that wxSizer is an abstract base class and may not be
instantiated.

wxSizer::~wxSizer

 ~wxSizer ()

The destructor.

wxSizer::Add

wxSizerItem* Add (wxWindow* window, const wxSizerFlags& flags)

wxSizerItem* Add (wxWindow* window, int proportion = 0,int flag = 0, int border = 0,
wxObject* userData = NULL)

wxSizerItem* Add (wxSizer* sizer, const wxSizerFlags& flags)

wxSizerItem* Add (wxSizer* sizer, int proportion = 0, int flag = 0, int border = 0,
wxObject* userData = NULL)

wxSizerItem* Add (int width, int height, int proportion = 0, int flag = 0, int border = 0,
wxObject* userData = NULL)

Appends a child to the sizer. wxSizer itself is an abstract class, but the parameters are
equivalent in the derived classes that you will instantiate to use it so they are described
here:

window

The window to be added to the sizer. Its initial size (either set explicitly by the user
or calculated internally when using wxDefaultSize) is interpreted as the minimal
and in many cases also the initial size. This is particularly useful in connection with
SetSizeHints (p. 1132).

sizer

The (child-)sizer to be added to the sizer. This allows placing a child sizer in a sizer
and thus to create hierarchies of sizers (typically a vertical box as the top sizer and
several horizontal boxes on the level beneath).

width and height

The dimension of a spacer to be added to the sizer. Adding spacers to sizers gives
more flexibility in the design of dialogs; imagine for example a horizontal box with
two buttons at the bottom of a dialog: you might want to insert a space between
the two buttons and make that space stretchable using the proportion flag and the
result will be that the left button will be aligned with the left side of the dialog and
the right button with the right side - the space in between will shrink and grow with
the dialog.

CHAPTER 7

1129

proportion

Although the meaning of this parameter is undefined in wxSizer, it is used in
wxBoxSizer to indicate if a child of a sizer can change its size in the main
orientation of the wxBoxSizer - where 0 stands for not changeable and a value of
more than zero is interpreted relative to the value of other children of the same
wxBoxSizer. For example, you might have a horizontal wxBoxSizer with three
children, two of which are supposed to change their size with the sizer. Then the
two stretchable windows would get a value of 1 each to make them grow and
shrink equally with the sizer's horizontal dimension.

flag

This parameter can be used to set a number of flags which can be combined using
the binary OR operator |. Two main behaviours are defined using these flags. One
is the border around a window: the border parameter determines the border width
whereas the flags given here determine which side(s) of the item that the border
will be added. The other flags determine how the sizer item behaves when the
space allotted to the sizer changes, and is somewhat dependent on the specific
kind of sizer used.

wxTOP
wxBOTTOM
wxLEFT
wxRIGHT
wxALL These flags are used to specify which
side(s) of the sizer item the border width will apply
to.

wxEXPAND The item will be expanded to fill the space assigned
to the item.

wxSHAPED The item will be expanded as much as possible while
also maintaining its aspect ratio

wxFIXED_MINSIZE Normally wxSizers will use GetAdjustedBestSize (p.
1434) to determine what the minimal size of window
items should be, and will use that size to calculate
the layout. This allows layouts to adjust when an item
changes and its best size becomes different. If you
would rather have a window item stay the size it
started with then use wxFIXED_MINSIZE.

wxALIGN_CENTER
wxALIGN_LEFT
wxALIGN_RIGHT
wxALIGN_TOP
wxALIGN_BOTTOM
wxALIGN_CENTER_VERTICAL
wxALIGN_CENTER_HORIZONTAL The wxALIGN
flags allow you to specify the alignment of the item
within the space allotted to it by the sizer, adjusted

CHAPTER 7

1130

for the border if any.

border

Determines the border width, if the flag parameter is set to include any border flag.

userData

Allows an extra object to be attached to the sizer item, for use in derived classes
when sizing information is more complex than the proportion and flag will allow for.

flags

A wxSizerFlags (p. 1132) object that enables you to specify most of the above
parameters more conveniently.

wxSizer::AddSpacer

wxSizerItem* AddSpacer (int size)

Adds non-stretchable space to the sizer. More readable way of callingAdd (p.
1125)(size, size, 0).

wxSizer::AddStretchSpacer

wxSizerItem* AddStretchSpacer (int prop = 1)

Adds stretchable space to the sizer. More readable way of callingAdd (p. 1125)(0, 0,
prop).

wxSizer::CalcMin

wxSize CalcMin ()

This method is abstract and has to be overwritten by any derived class. Here, the sizer
will do the actual calculation of its children minimal sizes.

wxSizer::Detach

bool Detach (wxWindow* window)

bool Detach (wxSizer* sizer)

bool Detach (size_t index)

Detach a child from the sizer without destroying it. window is the window to be detached,
sizer is the equivalent sizer and index is the position of the child in the sizer, typically 0
for the first item. This method does not cause any layout or resizing to take place, call
wxSizer::Layout (p. 1130)to update the layout "on screen" after detaching a child from
the sizer.

CHAPTER 7

1131

Returns true if the child item was found and detached, false otherwise.

See also

wxSizer::Remove (p. 1131)

wxSizer::Fit

wxSize Fit (wxWindow* window)

Tell the sizer to resize the window to match the sizer's minimal size. This is commonly
done in the constructor of the window itself, see sample in the description of wxBoxSizer
(p. 98). Returns the new size.

For a top level window this is the total window size, not client size.

wxSizer::FitInside

void FitInside (wxWindow* window)

Tell the sizer to resize the virtual size of the window to match the sizer's minimal size.
This will not alter the on screen size of the window, but may cause the
addition/removal/alteration of scrollbars required to view the virtual area in windows
which manage it.

See also

wxScrolledWindow::SetScrollbars (p. 1106), wxSizer::SetVirtualSizeHints (p. 1132)

wxSizer::GetItem

wxSizerItem * GetItem (wxWindow* window, bool recursive = false)

wxSizerItem * GetItem (wxSizer* sizer, bool recursive = false)

wxSizerItem * GetItem (size_t index)

Finds item of the sizer which holds given window, sizer or is located in sizer at position
index. Use parameter recursive to search in subsizers too.

Returns pointer to item or NULL.

wxSizer::GetSize

wxSize GetSize ()

Returns the current size of the sizer.

wxSizer::GetPosition

wxPoint GetPosition ()

CHAPTER 7

1132

Returns the current position of the sizer.

wxSizer::GetMinSize

wxSize GetMinSize ()

Returns the minimal size of the sizer. This is either the combined minimal size of all the
children and their borders or the minimal size set by SetMinSize (p. 1131), depending on
which is bigger.

wxSizer::Insert

wxSizerItem* Insert (size_t index, wxWindow* window, const wxSizerFlags& flags)

wxSizerItem* Insert (size_t index, wxWindow* window, int proportion = 0,int flag = 0,
int border = 0, wxObject* userData = NULL)

wxSizerItem* Insert (size_t index, wxSizer* sizer, const wxSizerFlags& flags)

wxSizerItem* Insert (size_t index, wxSizer* sizer, int proportion = 0, int flag = 0, int
border = 0, wxObject* userData = NULL)

wxSizerItem* Insert (size_t index, int width, int height, int proportion = 0, int flag = 0,
int border = 0, wxObject* userData = NULL)

Insert a child into the sizer before any existing item at index.

index

The position this child should assume in the sizer.

See wxSizer::Add (p. 1125) for the meaning of the other parameters.

wxSizer::InsertSpacer

wxSizerItem* InsertSpacer (size_t index, int size)

Inserts non-stretchable space to the sizer. More readable way of callingInsert (p.
1129)(size, size, 0).

wxSizer::InsertStretchSpacer

wxSizerItem* InsertStretchSpacer (size_t index, int prop = 1)

Inserts stretchable space to the sizer. More readable way of callingInsert (p. 1129)(0, 0,
prop).

wxSizer::Layout

void Layout ()

Call this to force layout of the children anew, e.g. after having added a child to or

CHAPTER 7

1133

removed a child (window, other sizer or space) from the sizer while keeping the current
dimension.

wxSizer::Prepend

wxSizerItem* Prepend (wxWindow* window, const wxSizerFlags& flags)

wxSizerItem* Prepend (wxWindow* window, int proportion = 0, int flag = 0, int border
= 0, wxObject* userData = NULL)

wxSizerItem* Prepend (wxSizer* sizer, const wxSizerFlags& flags)

wxSizerItem* Prepend (wxSizer* sizer, int proportion = 0, int flag = 0, int border = 0,
wxObject* userData = NULL)

wxSizerItem* Prepend (int width, int height, int proportion = 0, int flag = 0, int border=
0, wxObject* userData = NULL)

Same as wxSizer::Add (p. 1125), but prepends the items to the beginning of the list of
items (windows, subsizers or spaces) owned by this sizer.

wxSizer::PrependSpacer

wxSizerItem* PrependSpacer (int size)

Prepends non-stretchable space to the sizer. More readable way of callingPrepend (p.
1130)(size, size, 0).

wxSizer::PrependStretchSpacer

wxSizerItem* PrependStretchSpacer (int prop = 1)

Prepends stretchable space to the sizer. More readable way of callingPrepend (p.
1130)(0, 0, prop).

wxSizer::RecalcSizes

void RecalcSizes ()

This method is abstract and has to be overwritten by any derived class. Here, the sizer
will do the actual calculation of its children's positions and sizes.

wxSizer::Remove

bool Remove (wxWindow* window)

bool Remove (wxSizer* sizer)

bool Remove (size_t index)

Removes a child from the sizer and destroys it. sizer is the wxSizer to be removed,index
is the position of the child in the sizer, typically 0 for the first item. This method does not

CHAPTER 7

1134

cause any layout or resizing to take place, callwxSizer::Layout (p. 1130) to update the
layout "on screen" after removing a child from the sizer.

NB: The method taking a wxWindow* parameter is deprecated. For historical reasons it
does not destroy the window as would usually be expected from Remove. You should
usewxSizer::Detach (p. 1128) in new code instead. There is currently no wxSizer
method that will both detach and destroy a wxWindow item.

Returns true if the child item was found and removed, false otherwise.

wxSizer::SetDimension

void SetDimension (int x, int y, int width, int height)

Call this to force the sizer to take the given dimension and thus force the items owned by
the sizer to resize themselves according to the rules defined by the parameter in the Add
(p. 1125) and Prepend (p. 1130) methods.

wxSizer::SetMinSize

void SetMinSize (int width, int height)

void SetMinSize (wxSize size)

Call this to give the sizer a minimal size. Normally, the sizer will calculate its minimal size
based purely on how much space its children need. After calling this method GetMinSize
(p. 1129) will return either the minimal size as requested by its children or the minimal
size set here, depending on which is bigger.

wxSizer::SetItemMinSize

void SetItemMinSize (wxWindow* window, int width, int height)

void SetItemMinSize (wxSizer* sizer, int width, int height)

void SetItemMinSize (size_t index, int width, int height)

Set an item's minimum size by window, sizer, or position. The item will be found
recursively in the sizer's descendants. This function enables an application to set the
size of an item after initial creation.

wxSizer::SetSizeHints

void SetSizeHints (wxWindow* window)

Tell the sizer to set (and Fit (p. 1128)) the minimal size of the window to match the
sizer's minimal size. This is commonly done in the constructor of the window itself, see
sample in the description of wxBoxSizer (p. 98) if the window is resizable (as are many
dialogs under Unix and frames on probably all platforms).

wxSizer::SetVirtualSizeHints

CHAPTER 7

1135

void SetVirtualSizeHints (wxWindow* window)

Tell the sizer to set the minimal size of the window virtual area to match the sizer's
minimal size. For windows with managed scrollbars this will set them appropriately.

See also

wxScrolledWindow::SetScrollbars (p. 1106)

wxSizer::Show

bool Show (wxWindow* window, bool show = true, bool recursive = false)

bool Show (wxSizer* sizer, bool show = true, bool recursive = false)

bool Show (size_t index, bool show = true)

Shows or hides the window, sizer, or item at index. To make a sizer item disappear or
reappear, use Show() followed by Layout(). Use parameter recursive to show or hide
elements found in subsizers.

Returns true if the child item was found, false otherwise.

Note that this only works with wxBoxSizer and wxFlexGridSizer, since they are the only
two sizer classes that can size rows/columns independently.

wxSizerFlags

PRELIMINARY.

Normally, when you add something to a sizer via wxSizer::Add (p. 1125), you have to
specify a lot of flags and parameters. This can be unwieldy.

This is where wxSizerFlags comes in. Instead of a bunch of flags and other stuff, you
can use wxSizerFlags, which is a convenient class for doing so.

Note that by specification, all methods of wxSizerFlags return the wxSizerFlags object
itself to ease the calling of multiple methods at a time.

wxSizerFlags::wxSizerFlags

 wxSizerFlags (int proportion = 0)

Creates the wxSizer with the proportion specified by proportion .

wxSizerFlags::Align

wxSizerFlags& Align (int align = 0)

Sets the alignment of this wxSizerFlags to align .

Note that if this method is not called, the wxSizerFlags has no specified alignment.

CHAPTER 7

1136

See also

Left (p. 1133),
Right (p. 1134),
Centre (p. 1133)

wxSizerFlags::Border

wxSizerFlags& Border (int direction, int borderinpixels)

Sets the wxSizerFlags to have a border of a number of pixels specified by
borderinpixels with the directions specified by direction .

wxSizerFlags& Border (int direction = wxALL)

Sets the wxSizerFlags to have a border of a default size with the directions specified by
direction .

wxSizerFlags::Center

wxSizerFlags& Center ()

Sets the object of the wxSizerFlags to center itself in the area it is given.

wxSizerFlags::Centre

wxSizerFlags& Centre ()

wxSizerFlags::Center (p. 1133) for people with the other dialect of english.

wxSizerFlags::Expand

wxSizerFlags& Expand ()

Sets the object of the wxSizerFlags to expand to fill as much area as it can.

wxSizerFlags::Left

wxSizerFlags& Left ()

Aligns the object to the left, shortcut for Align(wxALIGN_LEFT)

See also

Align (p. 1133)

wxSizerFlags::Proportion

wxSizerFlags& Proportion (int proportion = 0)

Sets the proportion of this wxSizerFlags to proportion

CHAPTER 7

1137

wxSizerFlags::Right

wxSizerFlags& Right ()

Aligns the object to the right, shortcut for Align(wxALIGN_RIGHT)

See also

Align (p. 1133)

wxSizerItem

The wxSizerItem class is used to track the position, size and other attributes of each
item managed by a wxSizer (p. 1124). In normal usage user code should never need to
deal directly with a wxSizerItem, but derived sizer classes will.

Derived from

wxObject (p. 967)

Include files

<wx/sizer.h>

wxSizerItem::wxSizerItem

 wxSizerItem (int width, int height, int proportion, int flag, int border, wxObject*
userData)

Construct a sizer item for tracking a spacer.

 wxSizerItem (wxWindow* window, const wxSizerFlags& flags)

 wxSizerItem (wxWindow* window, int proportion, int flag, int border, wxObject*
userData)

Construct a sizer item for tracking a window.

 wxSizerItem (wxSizer* window, const wxSizerFlags& flags)

 wxSizerItem (wxSizer* sizer, int proportion, int flag, int border, wxObject* userData)

Construct a sizer item for tracking a subsizer.

wxSizerItem::~wxSizerItem

 ~wxSizerItem ()

Deletes the user data and subsizer, if any.

CHAPTER 7

1138

wxSizerItem::CalcMin

wxSize CalcMin ()

Calculates the minimum desired size for the item, including any space needed by
borders.

wxSizerItem::DeleteWindows

void DeleteWindows ()

Destroy the window or the windows in a subsizer, depending on the type of item.

wxSizerItem::DetachSizer

void DetachSizer ()

Enable deleting the SizerItem without destroying the contained sizer.

wxSizerItem::GetBorder

int GetBorder () const

Return the border attribute.

wxSizerItem::GetFlag

int GetFlag () const

Return the flags attribute.

wxSizerItem::GetMinSize

wxSize GetMinSize () const

Get the minimum size needed for the item.

wxSizerItem::GetPosition

wxPoint GetPosition () const

What is the current position of the item, as set in the last Layout.

wxSizerItem::GetProportion

int GetProportion () const

Get the proportion item attribute.

wxSizerItem::GetRatio

CHAPTER 7

1139

float GetRatio () const

Get the ration item attribute.

wxSizerItem::GetRect

wxRect GetRect ()

Get the rectangle of the item on the parent window, excluding borders.

wxSizerItem::GetSize

wxSize GetSize () const

Get the current size of the item, as set in the last Layout.

wxSizerItem::GetSizer

wxSizer* GetSizer () const

If this item is tracking a sizer, return it. NULL otherwise.

wxSizerItem::GetSpacer

const wxSize& GetSpacer () const

If this item is tracking a spacer, return its size.

wxSizerItem::GetUserData

wxObject* GetUserData () const

Get the userData item attribute.

wxSizerItem::GetWindow

wxWindow* GetWindow () const

If this item is tracking a window then return it. NULL otherwise.

wxSizerItem::IsShown

bool IsShown () const

Is this item shown?

wxSizerItem::IsSizer

bool IsSizer () const

CHAPTER 7

1140

Is this item a sizer?

wxSizerItem::IsSpacer

bool IsSpacer () const

Is this item a spacer?

wxSizerItem::IsWindow

bool IsWindow () const

Is this item a window?

wxSizerItem::SetBorder

void SetBorder (int border)

Set the border item attribute.

wxSizerItem::SetDimension

void SetDimension (wxPoint pos, wxSize size)

Set the position and size of the space allocated to the sizer, and adjust the position and
size of the item to be within that space taking alignment and borders into account.

wxSizerItem::SetFlag

void SetFlag (int flag)

Set the flag item attribute.

wxSizerItem::SetInitSize

void SetInitSize (int x, int y)

wxSizerItem::SetProportion

void SetProportion (int proportion)

Set the proportion item attribute.

wxSizerItem::SetRatio

void SetRatio (int width, int height)

void SetRatio (wxSize size)

void SetRatio (float ratio)

CHAPTER 7

1141

Set the ratio item attribute.

wxSizerItem::SetSizer

void SetSizer (wxSizer* sizer)

Set the sizer tracked by this item.

wxSizerItem::SetSpacer

void SetSpacer (const wxSize& size)

Set the size of the spacer tracked by this item.

wxSizerItem::SetWindow

void SetWindow (wxWindow* window)

Set the window to be tracked by thsi item.

wxSizerItem::Show

void Show (bool show)

Set the show item attribute, which sizers use to determine if the item is to be made part
of the layout or not. If the item is tracking a window then it is shown or hidden as
needed.

wxSlider

A slider is a control with a handle which can be pulled back and forth to change the
value.

On Windows, the track bar control is used.

Slider events are handled in the same way as a scrollbar.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/slider.h>

Window styles

wxSL_HORIZONTAL Displays the slider horizontally (this is the default).

CHAPTER 7

1142

wxSL_VERTICAL Displays the slider vertically.

wxSL_AUTOTICKS Displays tick marks.

wxSL_LABELS Displays minimum, maximum and value labels.

wxSL_LEFT Displays ticks on the left and forces the slider to be vertical.

wxSL_RIGHT Displays ticks on the right and forces the slider to be
vertical.

wxSL_TOP Displays ticks on the top.

wxSL_BOTTOM Displays ticks on the bottom (this is the default).

wxSL_SELRANGE Allows the user to select a range on the slider. Windows
only.

wxSL_INVERSE Inverses the mininum and maximum endpoints on the
slider. Not compatible with wxSL_SELRANGE.

See also window styles overview (p. 1686).

Event table macros

To process a scroll event, use these event handler macros to direct input to member
functions that take a wxScrollEvent argument. You can useEVT_COMMAND_SCROLL...
macros with window IDs for when intercepting scroll events from controls, or
EVT_SCROLL... macros without window IDs for intercepting scroll events from the
receiving window -- except for this, the macros behave exactly the same.

EVT_SCROLL(func) Process all scroll events.

EVT_SCROLL_TOP(func) Process wxEVT_SCROLL_TOP
scroll-to-top events (minimum
position).

EVT_SCROLL_BOTTOM(func) Process
wxEVT_SCROLL_BOTTOM scroll-
to-bottom events (maximum
position).

EVT_SCROLL_LINEUP(func) Process wxEVT_SCROLL_LINEUP
line up events.

EVT_SCROLL_LINEDOWN(func) Process
wxEVT_SCROLL_LINEDOWN line
down events.

EVT_SCROLL_PAGEUP(func) Process
wxEVT_SCROLL_PAGEUP page
up events.

EVT_SCROLL_PAGEDOWN(func) Process

CHAPTER 7

1143

wxEVT_SCROLL_PAGEDOWN
page down events.

EVT_SCROLL_THUMBTRACK(func) Process
wxEVT_SCROLL_THUMBTRACK
thumbtrack events (frequent events
sent as the user drags the
thumbtrack).

EVT_SCROLL_THUMBRELEASE(func) Process
wxEVT_SCROLL_THUMBRELEAS
E thumb release events.

EVT_SCROLL_CHANGED(func) Process
wxEVT_SCROLL_CHANGED end
of scrolling events (MSW only).

EVT_COMMAND_SCROLL(id, func) Process all scroll events.

EVT_COMMAND_SCROLL_TOP(id, func) Process wxEVT_SCROLL_TOP
scroll-to-top events (minimum
position).

EVT_COMMAND_SCROLL_BOTTOM(id, func) Process
wxEVT_SCROLL_BOTTOM scroll-
to-bottom events (maximum
position).

EVT_COMMAND_SCROLL_LINEUP(id, func) Process wxEVT_SCROLL_LINEUP
line up events.

EVT_COMMAND_SCROLL_LINEDOWN(id, func) Process
wxEVT_SCROLL_LINEDOWN line
down events.

EVT_COMMAND_SCROLL_PAGEUP(id, func) Process
wxEVT_SCROLL_PAGEUP page
up events.

EVT_COMMAND_SCROLL_PAGEDOWN(id, func) Process
wxEVT_SCROLL_PAGEDOWN
page down events.

EVT_COMMAND_SCROLL_THUMBTRACK(id, func) Process
wxEVT_SCROLL_THUMBTRACK
thumbtrack events (frequent events
sent as the user drags the
thumbtrack).

EVT_COMMAND_SCROLL_THUMBRELEASE(func) Process
wxEVT_SCROLL_THUMBRELEAS
E thumb release events.

CHAPTER 7

1144

EVT_COMMAND_SCROLL_CHANGED(func) Process
wxEVT_SCROLL_CHANGED end
of scrolling events (MSW only).

The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED

The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the
thumb using the mouse and releasing it (This EVT_SCROLL_THUMBRELEASEevent is
also followed by an EVT_SCROLL_CHANGED event).

The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the
thumb position, and when clicking next to the thumb (In all these cases the
EVT_SCROLL_THUMBRELEASE event does not happen).

In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has
finished independently of the way it had started. Please see the widgets sample ("Slider"
page) to see the difference between EVT_SCROLL_THUMBRELEASE and
EVT_SCROLL_CHANGED in action.

See also

Event handling overview (p. 1674), wxScrollBar (p. 1092)

wxSlider::wxSlider

 wxSlider ()

Default slider.

 wxSlider (wxWindow* parent, wxWindowID id, int value , int minValue, int maxValue,
const wxPoint& point = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxSL_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "slider")

Constructor, creating and showing a slider.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

value

Initial position for the slider.

minValue

CHAPTER 7

1145

Minimum slider position.

maxValue

Maximum slider position.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxSlider (p. 1138).

validator

Window validator.

name

Window name.

See also

wxSlider::Create (p. 1143), wxValidator (p. 1394)

wxSlider::~wxSlider

void ~wxSlider ()

Destructor, destroying the slider.

wxSlider::ClearSel

void ClearSel ()

Clears the selection, for a slider with the wxSL_SELRANGE style.

Remarks

Windows 95 only.

wxSlider::ClearTicks

void ClearTicks ()

Clears the ticks.

Remarks

Windows 95 only.

wxSlider::Create

CHAPTER 7

1146

bool Create (wxWindow* parent, wxWindowID id, int value , int minValue, int
maxValue, const wxPoint& point = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxSL_HORIZONTAL, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "slider")

Used for two-step slider construction. See wxSlider::wxSlider (p. 1141) for further details.

wxSlider::GetLineSize

int GetLineSize () const

Returns the line size.

See also

wxSlider::SetLineSize (p. 1145)

wxSlider::GetMax

int GetMax () const

Gets the maximum slider value.

See also

wxSlider::GetMin (p. 1143), wxSlider::SetRange (p. 1145)

wxSlider::GetMin

int GetMin () const

Gets the minimum slider value.

See also

wxSlider::GetMin (p. 1143), wxSlider::SetRange (p. 1145)

wxSlider::GetPageSize

int GetPageSize () const

Returns the page size.

See also

wxSlider::SetPageSize (p. 1145)

wxSlider::GetSelEnd

int GetSelEnd () const

Returns the selection end point.

CHAPTER 7

1147

Remarks

Windows 95 only.

See also

wxSlider::GetSelStart (p. 1144), wxSlider::SetSelection (p. 1146)

wxSlider::GetSelStart

int GetSelStart () const

Returns the selection start point.

Remarks

Windows 95 only.

See also

wxSlider::GetSelEnd (p. 1144), wxSlider::SetSelection (p. 1146)

wxSlider::GetThumbLength

int GetThumbLength () const

Returns the thumb length.

Remarks

Windows 95 only.

See also

wxSlider::SetThumbLength (p. 1146)

wxSlider::GetTickFreq

int GetTickFreq () const

Returns the tick frequency.

Remarks

Windows 95 only.

See also

wxSlider::SetTickFreq (p. 1147)

wxSlider::GetValue

int GetValue () const

CHAPTER 7

1148

Gets the current slider value.

See also

wxSlider::GetMin (p. 1143), wxSlider::GetMax (p. 1143), wxSlider::SetValue (p. 1147)

wxSlider::SetLineSize

void SetLineSize (int lineSize)

Sets the line size for the slider.

Parameters

lineSize

The number of steps the slider moves when the user moves it up or down a line.

See also

wxSlider::GetLineSize (p. 1143)

wxSlider::SetPageSize

void SetPageSize (int pageSize)

Sets the page size for the slider.

Parameters

pageSize

The number of steps the slider moves when the user pages up or down.

See also

wxSlider::GetPageSize (p. 1143)

wxSlider::SetRange

void SetRange (int minValue, int maxValue)

Sets the minimum and maximum slider values.

See also

wxSlider::GetMin (p. 1143), wxSlider::GetMax (p. 1143)

wxSlider::SetSelection

void SetSelection (int startPos, int endPos)

Sets the selection.

CHAPTER 7

1149

Parameters

startPos

The selection start position.

endPos

The selection end position.

Remarks

Windows 95 only.

See also

wxSlider::GetSelStart (p. 1144), wxSlider::GetSelEnd (p. 1144)

wxSlider::SetThumbLength

void SetThumbLength (int len)

Sets the slider thumb length.

Parameters

len

The thumb length.

Remarks

Windows 95 only.

See also

wxSlider::GetThumbLength (p. 1144)

wxSlider::SetTick

void SetTick (int tickPos)

Sets a tick position.

Parameters

tickPos

The tick position.

Remarks

Windows 95 only.

See also

CHAPTER 7

1150

wxSlider::SetTickFreq (p. 1147)

wxSlider::SetTickFreq

void SetTickFreq (int n, int pos)

Sets the tick mark frequency and position.

Parameters

n

Frequency. For example, if the frequency is set to two, a tick mark is displayed for
every other increment in the slider's range.

pos

Position. Must be greater than zero. TODO: what is this for?

Remarks

Windows 95 only.

See also

wxSlider::GetTickFreq (p. 1144)

wxSlider::SetValue

void SetValue (int value)

Sets the slider position.

Parameters

value

The slider position.

See also

wxSlider::GetValue (p. 1145)

wxSockAddress

You are unlikely to need to use this class: only wxSocketBase uses it.

Derived from

wxObject (p. 967)

Include files

CHAPTER 7

1151

<wx/socket.h>

See also

wxSocketBase (p. 1148)wxIPaddress (p. 780)wxIPV4address (p. 782)

wxSockAddress::wxSockAddress

 wxSockAddress ()

Default constructor.

wxSockAddress::~wxSockAddress

 ~wxSockAddress ()

Default destructor.

wxSockAddress::Clear

void Clear ()

Delete all informations about the address.

wxSockAddress::SockAddrLen

int SockAddrLen ()

Returns the length of the socket address.

wxSocketBase

wxSocketBase is the base class for all socket-related objects, and it defines all basic IO
functionality.

Note: (Workaround for implementation limitation for wxWidgets up to 2.5.x) If you want to
use sockets or derived classes such as wxFTP in a secondary thread, call
wxSocketBase::Initialize() (undocumented) from the main thread before creating any
sockets - in wxApp::OnInit for example. See http://wiki.wxwidgets.org/wiki.pl?WxSocket
or http://www.litwindow.com/knowhow/knowhow.html for more details.

Derived from

wxObject (p. 967)

Include files

<wx/socket.h>

CHAPTER 7

1152

wxSocket errors

wxSOCKET_NOERROR No error happened.

wxSOCKET_INVOP Invalid operation.

wxSOCKET_IOERR Input/Output error.

wxSOCKET_INVADDR Invalid address passed to wxSocket.

wxSOCKET_INVSOCK Invalid socket (uninitialized).

wxSOCKET_NOHOST No corresponding host.

wxSOCKET_INVPORT Invalid port.

wxSOCKET_WOULDBLOCK The socket is non-blocking and the operation
would block.

wxSOCKET_TIMEDOUT The timeout for this operation expired.

wxSOCKET_MEMERR Memory exhausted.

wxSocket events

wxSOCKET_INPUT There is data available for reading.

wxSOCKET_OUTPUT The socket is ready to be written to.

wxSOCKET_CONNECTION Incoming connection request (server), or
successful connection establishment (client).

wxSOCKET_LOST The connection has been closed.

A brief note on how to use these events:

The wxSOCKET_INPUT event will be issued whenever there is data available for
reading. This will be the case if the input queue was empty and new data arrives, or if
the application has read some data yet there is still more data available. This means that
the application does not need to read all available data in response to a
wxSOCKET_INPUT event, as more events will be produced as necessary.

The wxSOCKET_OUTPUT event is issued when a socket is first connected with
Connect (p. 1164) or accepted with Accept (p. 1169). After that, new events will be
generated only after an output operation fails with wxSOCKET_WOULDBLOCK and
buffer space becomes available again. This means that the application should assume
that it can write data to the socket until an wxSOCKET_WOULDBLOCK error occurs;
after this, whenever the socket becomes writable again the application will be notified
with another wxSOCKET_OUTPUT event.

The wxSOCKET_CONNECTION event is issued when a delayed connection request
completes successfully (client) or when a new connection arrives at the incoming queue
(server).

The wxSOCKET_LOST event is issued when a close indication is received for the

CHAPTER 7

1153

socket. This means that the connection broke down or that it was closed by the peer.
Also, this event will be issued if a connection request fails.

Event handling

To process events coming from a socket object, use the following event handler macro
to direct events to member functions that take a wxSocketEvent (p. 1166) argument.

EVT_SOCKET(id, func) Process a wxEVT_SOCKET event.

See also

wxSocketEvent (p. 1166), wxSocketClient (p. 1164), wxSocketServer (p. 1168), Sockets
sample (p. 1638)

Construction and destruction

wxSocketBase (p. 1151)
~wxSocketBase (p. 1151)
Destroy (p. 1152)

Socket state

Functions to retrieve current state and miscellaneous info.

Error (p. 1152)
GetLocal (p. 1153)
GetPeer (p. 1153)IsConnected (p. 1154)
IsData (p. 1154)
IsDisconnected (p. 1154)
LastCount (p. 1154)
LastError (p. 1154)
Ok (p. 1155)
SaveState (p. 1155)
RestoreState (p. 1155)

Basic IO

Functions that perform basic IO functionality.

Close (p. 1152)
Discard (p. 1152)
Peek (p. 1158)
Read (p. 1158)
ReadMsg (p. 1159)
Unread (p. 1160)
Write (p. 1163)
WriteMsg (p. 1163)

Functions that perform a timed wait on a certain IO condition.

CHAPTER 7

1154

InterruptWait (p. 1153)
Wait (p. 1160)
WaitForLost (p. 1161)
WaitForRead (p. 1161)
WaitForWrite (p. 1162)

and also:

wxSocketServer::WaitForAccept (p. 1169)
wxSocketClient::WaitOnConnect (p. 1165)

Functions that allow applications to customize socket IO as needed.

GetFlags (p. 1153)
SetFlags (p. 1156)
SetTimeout (p. 1158)

Handling socket events

Functions that allow applications to receive socket events.

Notify (p. 1154)
SetNotify (p. 1157)
GetClientData (p. 1153)
SetClientData (p. 1155)
SetEventHandler (p. 1155)

wxSocketBase::wxSocketBase

 wxSocketBase ()

Default constructor. Don't use it directly; instead, use wxSocketClient (p. 1164) to
construct a socket client, or wxSocketServer (p. 1168) to construct a socket server.

wxSocketBase::~wxSocketBase

 ~wxSocketBase ()

Destructor. Do not destroy a socket using the delete operator directly; use Destroy (p.
1152) instead. Also, do not create socket objects in the stack.

wxSocketBase::Close

void Close ()

This function shuts down the socket, disabling further transmission and reception of
data; it also disables events for the socket and frees the associated system resources.
Upon socket destruction, Close is automatically called, so in most cases you won't need

CHAPTER 7

1155

to do it yourself, unless you explicitly want to shut down the socket, typically to notify the
peer that you are closing the connection.

Remark/Warning

Although Close immediately disables events for the socket, it is possible that event
messages may be waiting in the application's event queue. The application must
therefore be prepared to handle socket event messages even after calling Close.

wxSocketBase::Destroy

bool Destroy ()

Destroys the socket safely. Use this function instead of the delete operator, since
otherwise socket events could reach the application even after the socket has been
destroyed. To prevent this problem, this function appends the wxSocket to a list of object
to be deleted on idle time, after all events have been processed. For the same reason,
you should avoid creating socket objects in the stack.

Destroy calls Close (p. 1152) automatically.

Return value

Always true.

wxSocketBase::Discard

wxSocketBase& Discard ()

This function simply deletes all bytes in the incoming queue. This function always returns
immediately and its operation is not affected by IO flags.

Use LastCount (p. 1154) to verify the number of bytes actually discarded.

If you use Error (p. 1152), it will always return false.

wxSocketBase::Error

bool Error () const

Returns true if an error occurred in the last IO operation.

Use this function to check for an error condition after one of the following calls: Discard,
Peek, Read, ReadMsg, Unread, Write, WriteMsg.

wxSocketBase::GetClientData

void * GetClientData () const

Returns a pointer of the client data for this socket, as set with SetClientData (p. 1155)

wxSocketBase::GetLocal

CHAPTER 7

1156

bool GetLocal (wxSockAddress& addr) const

This function returns the local address field of the socket. The local address field
contains the complete local address of the socket (local address, local port, ...).

Return value

true if no error happened, false otherwise.

wxSocketBase::GetFlags

wxSocketFlags GetFlags () const

Returns current IO flags, as set with SetFlags (p. 1156)

wxSocketBase::GetPeer

bool GetPeer (wxSockAddress& addr) const

This function returns the peer address field of the socket. The peer address field
contains the complete peer host address of the socket (address, port, ...).

Return value

true if no error happened, false otherwise.

wxSocketBase::InterruptWait

void InterruptWait ()

Use this function to interrupt any wait operation currently in progress. Note that this is
not intended as a regular way to interrupt a Wait call, but only as an escape mechanism
for exceptional situations where it is absolutely necessary to use it, for example to abort
an operation due to some exception or abnormal problem. InterruptWait is automatically
called when you Close (p. 1152) a socket (and thus also upon socket destruction), so
you don't need to use it in these cases.

wxSocketBase::Wait (p. 1160), wxSocketServer::WaitForAccept (p. 1169),
wxSocketBase::WaitForLost (p. 1161), wxSocketBase::WaitForRead (p. 1161),
wxSocketBase::WaitForWrite (p. 1162), wxSocketClient::WaitOnConnect (p. 1165)

wxSocketBase::IsConnected

bool IsConnected () const

Returns true if the socket is connected.

wxSocketBase::IsData

bool IsData () const

This function waits until the socket is readable. This might mean that queued data is

CHAPTER 7

1157

available for reading or, for streamed sockets, that the connection has been closed, so
that a read operation will complete immediately without blocking (unless the
wxSOCKET_WAITALL flag is set, in which case the operation might still block).

wxSocketBase::IsDisconnected

bool IsDisconnected () const

Returns true if the socket is not connected.

wxSocketBase::LastCount

wxUint32 LastCount () const

Returns the number of bytes read or written by the last IO call.

Use this function to get the number of bytes actually transferred after using one of the
following IO calls: Discard, Peek, Read, ReadMsg, Unread, Write, WriteMsg.

wxSocketBase::LastError

wxSocketError LastError () const

Returns the last wxSocket error. See wxSocket errors (p. 1148).

Please note that this function merely returns the last error code, but it should not be
used to determine if an error has occurred (this is because successful operations do not
change the LastError value). Use Error (p. 1152) first, in order to determine if the last IO
call failed. If this returns true, use LastError to discover the cause of the error.

wxSocketBase::Notify

void Notify (bool notify)

According to the notify value, this function enables or disables socket events. If notify is
true, the events configured with SetNotify (p. 1157) will be sent to the application. If
notify is false; no events will be sent.

wxSocketBase::Ok

bool Ok() const

Returns true if the socket is initialized and ready and false in other cases.

Remark/Warning

For wxSocketClient (p. 1164), Ok won't return true unless the client is connected to a
server.

For wxSocketServer (p. 1168), Ok will return true if the server could bind to the specified
address and is already listening for new connections.

CHAPTER 7

1158

Ok does not check for IO errors; use Error (p. 1152) instead for that purpose.

wxSocketBase::RestoreState

void RestoreState ()

This function restores the previous state of the socket, as saved with SaveState (p.
1155)

Calls to SaveState and RestoreState can be nested.

See also

wxSocketBase::SaveState (p. 1155)

wxSocketBase::SaveState

void SaveState ()

This function saves the current state of the socket in a stack. Socket state includes flags,
as set with SetFlags (p. 1156), event mask, as set with SetNotify (p. 1157) and Notify (p.
1154), user data, as set with SetClientData (p. 1155).

Calls to SaveState and RestoreState can be nested.

See also

wxSocketBase::RestoreState (p. 1155)

wxSocketBase::SetClientData

void SetClientData (void * data)

Sets user-supplied client data for this socket. All socket events will contain a pointer to
this data, which can be retrieved with the wxSocketEvent::GetClientData (p. 1167)
function.

wxSocketBase::SetEventHandler

void SetEventHandler (wxEvtHandler& handler, int id = -1)

Sets an event handler to be called when a socket event occurs. The handler will be
called for those events for which notification is enabled with SetNotify (p. 1157) and
Notify (p. 1154).

Parameters

handler

Specifies the event handler you want to use.

id

CHAPTER 7

1159

The id of socket event.

See also

wxSocketBase::SetNotify (p. 1157), wxSocketBase::Notify (p. 1154), wxSocketEvent (p.
1166), wxEvtHandler (p. 467)

wxSocketBase::SetFlags

void SetFlags (wxSocketFlags flags)

Use SetFlags to customize IO operation for this socket. The flags parameter may be a
combination of flags ORed together. The following flags can be used:

wxSOCKET_NONE Normal functionality.

wxSOCKET_NOWAIT Read/write as much data as possible and
return immediately.

wxSOCKET_WAITALL Wait for all required data to be read/written
unless an error occurs.

wxSOCKET_BLOCK Block the GUI (do not yield) while
reading/writing data.

wxSOCKET_REUSEADDR Allows the use of an in-use port
(wxServerSocket only)

A brief overview on how to use these flags follows.

If no flag is specified (this is the same as wxSOCKET_NONE), IO calls will return after
some data has been read or written, even when the transfer might not be complete. This
is the same as issuing exactly one blocking low-level call to recv() or send(). Note that
blocking here refers to when the function returns, not to whether the GUI blocks during
this time.

If wxSOCKET_NOWAIT is specified, IO calls will return immediately. Read operations
will retrieve only available data. Write operations will write as much data as possible,
depending on how much space is available in the output buffer. This is the same as
issuing exactly one nonblocking low-level call to recv() or send(). Note that nonblocking
here refers to when the function returns, not to whether the GUI blocks during this time.

If wxSOCKET_WAITALL is specified, IO calls won't return until ALL the data has been
read or written (or until an error occurs), blocking if necessary, and issuing several low
level calls if necessary. This is the same as having a loop which makes as many
blocking low-level calls to recv() or send() as needed so as to transfer all the data. Note
that blocking here refers to when the function returns, not to whether the GUI blocks
during this time.

The wxSOCKET_BLOCK flag controls whether the GUI blocks during IO operations. If
this flag is specified, the socket will not yield during IO calls, so the GUI will remain
blocked until the operation completes. If it is not used, then the application must take
extra care to avoid unwanted reentrance.

CHAPTER 7

1160

The wxSOCKET_REUSEADDR flag controls the use of the SO_REUSEADDR standard
setsockopt() flag. This flag allows the socket to bind to a port that is already in use. This
is mostly used on UNIX-based systems to allow rapid starting and stopping of a server -
otherwise you may have to wait several minutes for the port to become available. This
option can have surprising platform dependent behavior, check the documentation for
your platform's implementation of setsockopt().

So:

wxSOCKET_NONE will try to read at least SOME data, no matter how much.

wxSOCKET_NOWAIT will always return immediately, even if it cannot read or write
ANY data.

wxSOCKET_WAITALL will only return when it has read or written ALL the data.

wxSOCKET_BLOCK has nothing to do with the previous flags and it controls whether
the GUI blocks.

wxSOCKET_REUSEADDR controls special platform-specific behavior for
wxServerSocket.

wxSocketBase::SetNotify

void SetNotify (wxSocketEventFlags flags)

SetNotify specifies which socket events are to be sent to the event handler. The flags
parameter may be combination of flags ORed together. The following flags can be used:

wxSOCKET_INPUT_FLAG to receive wxSOCKET_INPUT

wxSOCKET_OUTPUT_FLAG to receive wxSOCKET_OUTPUT

wxSOCKET_CONNECTION_FLAG to receive wxSOCKET_CONNECTION

wxSOCKET_LOST_FLAG to receive wxSOCKET_LOST

For example:

 sock.SetNotify(wxSOCKET_INPUT_FLAG | wxSOCKET_LOS T_FLAG);
 sock.Notify(true);

In this example, the user will be notified about incoming socket data and whenever the
connection is closed.

For more information on socket events see wxSocket events (p. 1148).

wxSocketBase::SetTimeout

void SetTimeout (int seconds)

This function sets the default socket timeout in seconds. This timeout applies to all IO
calls, and also to the Wait (p. 1160) family of functions if you don't specify a wait interval.
Initially, the default timeout is 10 minutes.

CHAPTER 7

1161

wxSocketBase::Peek

wxSocketBase& Peek(void * buffer, wxUint32 nbytes)

This function peeks a buffer of nbytes bytes from the socket. Peeking a buffer doesn't
delete it from the socket input queue.

Use LastCount (p. 1154) to verify the number of bytes actually peeked.

Use Error (p. 1152) to determine if the operation succeeded.

Parameters

buffer

Buffer where to put peeked data.

nbytes

Number of bytes.

Return value

Returns a reference to the current object.

Remark/Warning

The exact behaviour of wxSocketBase::Peek depends on the combination of flags being
used. For a detailed explanation, see wxSocketBase::SetFlags (p. 1156)

See also

wxSocketBase::Error (p. 1152), wxSocketBase::LastError (p. 1154),
wxSocketBase::LastCount (p. 1154), wxSocketBase::SetFlags (p. 1156)

wxSocketBase::Read

wxSocketBase& Read(void * buffer, wxUint32 nbytes)

This function reads a buffer of nbytes bytes from the socket.

Use LastCount (p. 1154) to verify the number of bytes actually read.

Use Error (p. 1152) to determine if the operation succeeded.

Parameters

buffer

Buffer where to put read data.

nbytes

Number of bytes.

CHAPTER 7

1162

Return value

Returns a reference to the current object.

Remark/Warning

The exact behaviour of wxSocketBase::Read depends on the combination of flags being
used. For a detailed explanation, see wxSocketBase::SetFlags (p. 1156).

See also

wxSocketBase::Error (p. 1152), wxSocketBase::LastError (p. 1154),
wxSocketBase::LastCount (p. 1154), wxSocketBase::SetFlags (p. 1156)

wxSocketBase::ReadMsg

wxSocketBase& ReadMsg (void * buffer, wxUint32 nbytes)

This function reads a buffer sent by WriteMsg (p. 1163) on a socket. If the buffer passed
to the function isn't big enough, the remaining bytes will be discarded. This function
always waits for the buffer to be entirely filled, unless an error occurs.

Use LastCount (p. 1154) to verify the number of bytes actually read.

Use Error (p. 1152) to determine if the operation succeeded.

Parameters

buffer

Buffer where to put read data.

nbytes

Size of the buffer.

Return value

Returns a reference to the current object.

Remark/Warning

wxSocketBase::ReadMsg will behave as if the wxSOCKET_WAITALL flag was always
set and it will always ignore the wxSOCKET_NOWAIT flag. The exact behaviour of
ReadMsg depends on the wxSOCKET_BLOCK flag. For a detailed explanation, see
wxSocketBase::SetFlags (p. 1156).

See also

wxSocketBase::Error (p. 1152), wxSocketBase::LastError (p. 1154),
wxSocketBase::LastCount (p. 1154), wxSocketBase::SetFlags (p. 1156),
wxSocketBase::WriteMsg (p. 1163)

wxSocketBase::Unread

CHAPTER 7

1163

wxSocketBase& Unread (const void * buffer, wxUint32 nbytes)

This function unreads a buffer. That is, the data in the buffer is put back in the incoming
queue. This function is not affected by wxSocket flags.

If you use LastCount (p. 1154), it will always return nbytes.

If you use Error (p. 1152), it will always return false.

Parameters

buffer

Buffer to be unread.

nbytes

Number of bytes.

Return value

Returns a reference to the current object.

See also

wxSocketBase::Error (p. 1152), wxSocketBase::LastCount (p. 1154),
wxSocketBase::LastError (p. 1154)

wxSocketBase::Wait

bool Wait (long seconds = -1, long millisecond = 0)

This function waits until any of the following conditions is true:

 • The socket becomes readable.

 • The socket becomes writable.

 • An ongoing connection request has completed (wxSocketClient (p. 1164) only)

 • An incoming connection request has arrived (wxSocketServer (p. 1168) only)

 • The connection has been closed.

Note that it is recommended to use the individual Wait functions to wait for the required
condition, instead of this one.

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1158).

millisecond

CHAPTER 7

1164

Number of milliseconds to wait.

Return value

Returns true when any of the above conditions is satisfied, false if the timeout was
reached.

See also

wxSocketBase::InterruptWait (p. 1153), wxSocketServer::WaitForAccept (p. 1169),
wxSocketBase::WaitForLost (p. 1161), wxSocketBase::WaitForRead (p. 1161),
wxSocketBase::WaitForWrite (p. 1162), wxSocketClient::WaitOnConnect (p. 1165)

wxSocketBase::WaitForLost

bool Wait (long seconds = -1, long millisecond = 0)

This function waits until the connection is lost. This may happen if the peer gracefully
closes the connection or if the connection breaks.

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1158).

millisecond

Number of milliseconds to wait.

Return value

Returns true if the connection was lost, false if the timeout was reached.

See also

wxSocketBase::InterruptWait (p. 1153),wxSocketBase::Wait (p. 1160)

wxSocketBase::WaitForRead

bool WaitForRead (long seconds = -1, long millisecond = 0)

This function waits until the socket is readable. This might mean that queued data is
available for reading or, for streamed sockets, that the connection has been closed, so
that a read operation will complete immediately without blocking (unless the
wxSOCKET_WAITALL flag is set, in which case the operation might still block).

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1158).

CHAPTER 7

1165

millisecond

Number of milliseconds to wait.

Return value

Returns true if the socket becomes readable, false on timeout.

See also

wxSocketBase::InterruptWait (p. 1153), wxSocketBase::Wait (p. 1160)

wxSocketBase::WaitForWrite

bool WaitForWrite (long seconds = -1, long millisecond = 0)

This function waits until the socket becomes writable. This might mean that the socket is
ready to send new data, or for streamed sockets, that the connection has been closed,
so that a write operation is guaranteed to complete immediately (unless the
wxSOCKET_WAITALL flag is set, in which case the operation might still block).

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1158).

millisecond

Number of milliseconds to wait.

Return value

Returns true if the socket becomes writable, false on timeout.

See also

wxSocketBase::InterruptWait (p. 1153), wxSocketBase::Wait (p. 1160)

wxSocketBase::Write

wxSocketBase& Write (const void * buffer, wxUint32 nbytes)

This function writes a buffer of nbytes bytes to the socket.

Use LastCount (p. 1154) to verify the number of bytes actually written.

Use Error (p. 1152) to determine if the operation succeeded.

Parameters

buffer

Buffer with the data to be sent.

CHAPTER 7

1166

nbytes

Number of bytes.

Return value

Returns a reference to the current object.

Remark/Warning

The exact behaviour of wxSocketBase::Write depends on the combination of flags being
used. For a detailed explanation, see wxSocketBase::SetFlags (p. 1156).

See also

wxSocketBase::Error (p. 1152), wxSocketBase::LastError (p. 1154),
wxSocketBase::LastCount (p. 1154), wxSocketBase::SetFlags (p. 1156)

wxSocketBase::WriteMsg

wxSocketBase& WriteMsg (const void * buffer, wxUint32 nbytes)

This function writes a buffer of nbytes bytes from the socket, but it writes a short header
before so that ReadMsg (p. 1159) knows how much data should it actually read. So, a
buffer sent with WriteMsg must be read with ReadMsg. This function always waits for
the entire buffer to be sent, unless an error occurs.

Use LastCount (p. 1154) to verify the number of bytes actually written.

Use Error (p. 1152) to determine if the operation succeeded.

Parameters

buffer

Buffer with the data to be sent.

nbytes

Number of bytes to send.

Return value

Returns a reference to the current object.

Remark/Warning

wxSocketBase::WriteMsg will behave as if the wxSOCKET_WAITALL flag was always
set and it will always ignore the wxSOCKET_NOWAIT flag. The exact behaviour of
WriteMsg depends on the wxSOCKET_BLOCK flag. For a detailed explanation, see
wxSocketBase::SetFlags (p. 1156).

See also

wxSocketBase::Error (p. 1152), wxSocketBase::LastError (p. 1154),

CHAPTER 7

1167

wxSocketBase::LastCount (p. 1154), wxSocketBase::SetFlags (p. 1156),
wxSocketBase::ReadMsg (p. 1159)

wxSocketClient

Derived from

wxSocketBase (p. 1148)

Include files

<wx/socket.h>

wxSocketClient::wxSocketClient

 wxSocketClient (wxSocketFlags flags = wxSOCKET_NONE)

Constructor.

Parameters

flags

Socket flags (See wxSocketBase::SetFlags (p. 1156))

wxSocketClient::~wxSocketClient

 ~wxSocketClient ()

Destructor. Please see wxSocketBase::Destroy (p. 1152).

wxSocketClient::Connect

bool Connect (wxSockAddress& address, bool wait = true)

Connects to a server using the specified address.

If wait is true, Connect will wait until the connection completes. Warning: This will block
the GUI.

If wait is false, Connect will try to establish the connection and return immediately,
without blocking the GUI. When used this way, even if Connect returns false, the
connection request can be completed later. To detect this, use WaitOnConnect (p.
1165), or catch wxSOCKET_CONNECTION events (for successful establishment) and
wxSOCKET_LOST events (for connection failure).

Parameters

address

CHAPTER 7

1168

Address of the server.

wait

If true, waits for the connection to complete.

Return value

Returns true if the connection is established and no error occurs.

If wait was true, and Connect returns false, an error occurred and the connection failed.

If wait was false, and Connect returns false, you should still be prepared to handle the
completion of this connection request, either with WaitOnConnect (p. 1165) or by
watching wxSOCKET_CONNECTION and wxSOCKET_LOST events.

See also

wxSocketClient::WaitOnConnect (p. 1165), wxSocketBase::SetNotify (p. 1157),
wxSocketBase::Notify (p. 1154)

wxSocketClient::WaitOnConnect

bool WaitOnConnect (long seconds = -1, long milliseconds = 0)

Wait until a connection request completes, or until the specified timeout elapses. Use
this function after issuing a call to Connect (p. 1164) with wait set to false.

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1158).

millisecond

Number of milliseconds to wait.

Return value

WaitOnConnect returns true if the connection request completes. This does not
necessarily mean that the connection was successfully established; it might also happen
that the connection was refused by the peer. Use IsConnected (p. 1154) to distinguish
between these two situations.

If the timeout elapses, WaitOnConnect returns false.

These semantics allow code like this:

// Issue the connection request
client->Connect(addr, false);

// Wait until the request completes or until we dec ide to give up
bool waitmore = true;
while (!client->WaitOnConnect(seconds, millis) && waitmore)

CHAPTER 7

1169

{
 // possibly give some feedback to the user,
 // and update waitmore as needed.
}
bool success = client->IsConnected();

See also

wxSocketClient::Connect (p. 1164), wxSocketBase::InterruptWait (p. 1153),
wxSocketBase::IsConnected (p. 1154)

wxSocketEvent

This event class contains information about socket events.

Derived from

wxEvent (p. 464)

Include files

<wx/socket.h>

Event table macros

To process a socket event, use these event handler macros to direct input to member
functions that take a wxSocketEvent argument.

EVT_SOCKET(id, func) Process a socket event, supplying the member
function.

See also

wxSocketBase (p. 1148), wxSocketClient (p. 1164), wxSocketServer (p. 1168)

wxSocketEvent::wxSocketEvent

 wxSocketEvent (int id = 0)

Constructor.

wxSocketEvent::GetClientData

void * GetClientData ()

Gets the client data of the socket which generated this event, as set with
wxSocketBase::SetClientData (p. 1155).

wxSocketEvent::GetSocket

wxSocketBase * GetSocket () const

CHAPTER 7

1170

Returns the socket object to which this event refers to. This makes it possible to use the
same event handler for different sockets.

wxSocketEvent::GetSocketEvent

wxSocketNotify GetSocketEvent () const

Returns the socket event type.

wxSocketInputStream

This class implements an input stream which reads data from a connected socket. Note
that this stream is purely sequential and it does not support seeking.

Derived from

wxInputStream (p. 777)

Include files

<wx/sckstrm.h>

See also

wxSocketBase (p. 1148)

wxSocketInputStream::wxSocketInputStream

 wxSocketInputStream (wxSocketBase& s)

Creates a new read-only socket stream using the specified initialized socket connection.

wxSocketOutputStream

This class implements an output stream which writes data from a connected socket.
Note that this stream is purely sequential and it does not support seeking.

Derived from

wxOutputStream (p. 971)

Include files

<wx/sckstrm.h>

See also

wxSocketBase (p. 1148)

CHAPTER 7

1171

wxSocketOutputStream::wxSocketOutputStream

 wxSocketOutputStream (wxSocketBase& s)

Creates a new write-only socket stream using the specified initialized socket connection.

wxSocketServer

Derived from

wxSocketBase (p. 1148)

Include files

<wx/socket.h>

wxSocketServer::wxSocketServer

 wxSocketServer (wxSockAddress& address, wxSocketFlags flags =
wxSOCKET_NONE)

Constructs a new server and tries to bind to the specified address. Before trying to
accept new connections, test whether it succeeded with wxSocketBase::Ok (p. 1155).

Parameters

address

Specifies the local address for the server (e.g. port number).

flags

Socket flags (See wxSocketBase::SetFlags (p. 1156))

wxSocketServer::~wxSocketServer

 ~wxSocketServer ()

Destructor (it doesn't close the accepted connections).

wxSocketServer::Accept

wxSocketBase * Accept (bool wait = true)

Accepts an incoming connection request, and creates a new wxSocketBase (p. 1148)
object which represents the server-side of the connection.

If wait is true and there are no pending connections to be accepted, it will wait for the
next incoming connection to arrive. Warning: This will block the GUI.

CHAPTER 7

1172

If wait is false, it will try to accept a pending connection if there is one, but it will always
return immediately without blocking the GUI. If you want to use Accept in this way, you
can either check for incoming connections with WaitForAccept (p. 1169) or catch
wxSOCKET_CONNECTION events, then call Accept once you know that there is an
incoming connection waiting to be accepted.

Return value

Returns an opened socket connection, or NULL if an error occurred or if the wait
parameter was false and there were no pending connections.

See also

wxSocketServer::WaitForAccept (p. 1169), wxSocketBase::SetNotify (p. 1157),
wxSocketBase::Notify (p. 1154), wxSocketServer::AcceptWith (p. 1169)

wxSocketServer::AcceptWith

bool AcceptWith (wxSocketBase& socket, bool wait = true)

Accept an incoming connection using the specified socket object.

Parameters

socket

Socket to be initialized

Return value

Returns true on success, or false if an error occurred or if thewait parameter was false
and there were no pending connections.

wxSocketServer::WaitForAccept (p. 1169), wxSocketBase::SetNotify (p. 1157),
wxSocketBase::Notify (p. 1154), wxSocketServer::Accept (p. 1169)

wxSocketServer::WaitForAccept

bool WaitForAccept (long seconds = -1, long millisecond = 0)

This function waits for an incoming connection. Use it if you want to call Accept (p. 1169)
or AcceptWith (p. 1169) with wait set to false, to detect when an incoming connection is
waiting to be accepted.

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1158).

millisecond

Number of milliseconds to wait.

CHAPTER 7

1173

Return value

Returns true if an incoming connection arrived, false if the timeout elapsed.

See also

wxSocketServer::Accept (p. 1169), wxSocketServer::AcceptWith (p.
1169),wxSocketBase::InterruptWait (p. 1153)

wxSound

This class represents a short sound (loaded from Windows WAV file), that can be stored
in memory and played. Currently this class is implemented on Windows and Unix (and
uses either Open Sound System (http://www.opensound.com/oss.html) or
Simple DirectMedia Layer (http://www.libsdl.org/)).

Derived from

wxObject (p. 967)

Include files

<wx/sound.h>

wxSound::wxSound

 wxSound ()

Default constructor.

 wxSound (const wxString& fileName, bool isResource = false)

Constructs a wave object from a file or, under Windows, from a Windows resource. Call
wxSound::IsOk (p. 1171) to determine whether this succeeded.

Parameters

fileName

The filename or Windows resource.

isResource

true if fileName is a resource, false if it is a filename.

wxSound::~wxSound

 ~wxSound ()

Destroys the wxSound object.

CHAPTER 7

1174

wxSound::Create

bool Create (const wxString& fileName, bool isResource = false)

Constructs a wave object from a file or resource.

Parameters

fileName

The filename or Windows resource.

isResource

true if fileName is a resource, false if it is a filename.

Return value

true if the call was successful, false otherwise.

wxSound::IsOk

bool IsOk () const

Returns true if the object contains a successfully loaded file or resource, false
otherwise.

wxSound::IsPlaying

static bool IsPlaying () const

Returns true if a sound is played at the moment.

This method is currently not implemented under Windows.

wxSound::Play

bool Play(unsigned flags = wxSOUND_ASYNC) const

static bool Play(const wxString& filename, unsigned flags = wxSOUND_ASYNC)

Plays the sound file. If another sound is playing, it will be interrupted. Returns true on
success, false otherwise. Note that in general it is possible to delete the object which
is being asynchronously played any time after calling this function and the sound would
continue playing, however this currently doesn't work under Windows for sound objects
loaded from memory data.

The possible values for flags are:

wxSOUND_SYNC Play will block and wait until the sound is
replayed.

wxSOUND_ASYNC Sound is played asynchronously, Play returns

CHAPTER 7

1175

immediately

wxSOUND_ASYNC | wxSOUND_LOOP Sound is played asynchronously and loops until
another sound is played, wxSound::Stop (p.
1172) is called or the program terminates.

The static form is shorthand for this code:

wxSound(filename).Play(flags);

wxSound::Stop

static void Stop ()

If a sound is played, this function stops it.

wxSpinButton

A wxSpinButton has two small up and down (or left and right) arrow buttons. It is often
used next to a text control for increment and decrementing a value. Portable programs
should try to use wxSpinCtrl (p. 1175) instead as wxSpinButton is not implemented for
all platforms.

NB: the range supported by this control (and wxSpinCtrl) depends on the platform but is
at least -0x8000 to 0x7fff . Under GTK and Win32 with sufficiently new version of
comctrl32.dll (at least 4.71 is required, 5.80 is recommended) the full 32 bit range is
supported.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

See also

wxSpinCtrl (p. 1175)

Include files

<wx/spinbutt.h>

Window styles

wxSP_HORIZONTAL Specifies a horizontal spin button (note that this style is not
supported in wxGTK).

wxSP_VERTICAL Specifies a vertical spin button.

wxSP_ARROW_KEYS The user can use arrow keys to change the value.

wxSP_WRAP The value wraps at the minimum and maximum.

CHAPTER 7

1176

See also window styles overview (p. 1686).

Event handling

To process input from a spin button, use one of these event handler macros to direct
input to member functions that take a wxSpinEvent (p. 1178) argument:

EVT_SPIN(id, func) Generated whenever an arrow is pressed.

EVT_SPIN_UP(id, func) Generated when left/up arrow is pressed.

EVT_SPIN_DOWN(id, func) Generated when right/down arrow is pressed.

Note that if you handle both SPIN and UP or DOWN events, you will be notified about
each of them twice: first the UP/DOWN event will be receieved and then, if it wasn't
vetoed, the SPIN event will be sent.See also
Event handling overview (p. 1674)

wxSpinButton::wxSpinButton

 wxSpinButton ()

Default constructor.

 wxSpinButton (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSP_HORIZONTAL, const wxString& name = "spinButton")

Constructor, creating and showing a spin button.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxSpinButton (p. 1172).

CHAPTER 7

1177

name

Window name.

See also

wxSpinButton::Create (p. 1174)

wxSpinButton::~wxSpinButton

void ~wxSpinButton ()

Destructor, destroys the spin button control.

wxSpinButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSP_HORIZONTAL, const wxString& name = "spinButton")

Scrollbar creation function called by the spin button constructor. See
wxSpinButton::wxSpinButton (p. 1173) for details.

wxSpinButton::GetMax

int GetMax () const

Returns the maximum permissible value.

See also

wxSpinButton::SetRange (p. 1175)

wxSpinButton::GetMin

int GetMin () const

Returns the minimum permissible value.

See also

wxSpinButton::SetRange (p. 1175)

wxSpinButton::GetValue

int GetValue () const

Returns the current spin button value.

See also

wxSpinButton::SetValue (p. 1175)

CHAPTER 7

1178

wxSpinButton::SetRange

void SetRange (int min, int max)

Sets the range of the spin button.

Parameters

min

The minimum value for the spin button.

max

The maximum value for the spin button.

See also

wxSpinButton::GetMin (p. 1174), wxSpinButton::GetMax (p. 1174)

wxSpinButton::SetValue

void SetValue (int value)

Sets the value of the spin button.

Parameters

value

The value for the spin button.

See also

wxSpinButton::GetValue (p. 1175)

wxSpinCtrl

wxSpinCtrl combines wxTextCtrl (p. 1279) and wxSpinButton (p. 1172) in one control.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/spinctrl.h>

Window styles

wxSP_ARROW_KEYS The user can use arrow keys to change the value.

CHAPTER 7

1179

wxSP_WRAP The value wraps at the minimum and maximum.

Event handling

To process input from a spin button, use one of these event handler macros to direct
input to member functions that take a wxSpinEvent (p. 1178) argument:

EVT_SPINCTRL(id, func) Generated whenever the numeric value of the
spinctrl is updated

You may also use the wxSpinButton (p. 1172) event macros, however the corresponding
events will not be generated under all platforms. Finally, if the user modifies the text in
the edit part of the spin control directly, theEVT_TEXT is generated, like for the
wxTextCtrl (p. 1279).
See also

Event handling overview (p. 1674),wxSpinButton (p. 1172),wxControl (p. 205)

wxSpinCtrl::wxSpinCtrl

 wxSpinCtrl ()

Default constructor.

 wxSpinCtrl (wxWindow* parent, wxWindowID id = -1, const wxString& value =
wxEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxSP_ARROW_KEYS, int min = 0, int max = 100, int initial
= 0, const wxString& name = _T("wxSpinCtrl"))

Constructor, creating and showing a spin control.

Parameters

parent

Parent window. Must not be NULL.

value

Default value.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

CHAPTER 7

1180

style

Window style. See wxSpinButton (p. 1172).

min

Minimal value.

max

Maximal value.

initial

Initial value.

name

Window name.

See also

wxSpinCtrl::Create (p. 1177)

wxSpinCtrl::Create

bool Create (wxWindow* parent, wxWindowID id = -1, const wxString& value =
wxEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxSP_ARROW_KEYS, int min = 0, int max = 100, int initial
= 0, const wxString& name = _T("wxSpinCtrl"))

Creation function called by the spin control constructor.

See wxSpinCtrl::wxSpinCtrl (p. 1176) for details.

wxSpinCtrl::SetValue

void SetValue (const wxString& text)

void SetValue (int value)

Sets the value of the spin control.

wxSpinCtrl::GetValue

int GetValue () const

Gets the value of the spin control.

wxSpinCtrl::SetRange

void SetRange (int minVal, int maxVal)

CHAPTER 7

1181

Sets range of allowable values.

wxSpinCtrl::SetSelection

void SetSelection (long from, long to)

Select the text in the text part of the control between positions from (inclusive) and to
(exclusive). This is similar to wxTextCtrl::SetSelection (p. 1295).

NB: this is currently only implemented for Windows and generic versions of the control.

wxSpinCtrl::GetMin

int GetMin () const

Gets minimal allowable value.

wxSpinCtrl::GetMax

int GetMax () const

Gets maximal allowable value.

wxSpinEvent

This event class is used for the events generated by wxSpinButton (p. 1172) and
wxSpinCtrl (p. 1175).

Derived from

wxNotifyEvent (p. 966)
wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/spinbutt.h> or <wx/spinctrl.h>

Event handling

To process input from a spin button, use one of these event handler macros to direct
input to member functions that take a wxSpinEvent (p. 1178) argument:

EVT_SPIN(id, func) Generated whenever an arrow is pressed.

EVT_SPIN_UP(id, func) Generated when left/up arrow is pressed.

EVT_SPIN_DOWN(id, func) Generated when right/down arrow is pressed.

Note that if you handle both SPIN and UP or DOWN events, you will be notified about
each of them twice: first the UP/DOWN event will be receieved and then, if it wasn't

CHAPTER 7

1182

vetoed, the SPIN event will be sent.See also
wxSpinButton (p. 1172) and wxSpinCtrl (p. 1175)

wxSpinEvent::wxSpinEvent

 wxSpinEvent (wxEventType commandType = wxEVT_NULL, int id = 0)

The constructor is not normally used by the user code.

wxSpinEvent::GetPosition

int GetPosition () const

Retrieve the current spin button or control value.

wxSpinEvent::SetPosition

void SetPosition (int pos)

Set the value associated with the event.

wxSplashScreen

wxSplashScreen shows a window with a thin border, displaying a bitmap describing your
application. Show it in application initialisation, and then either explicitly destroy it or let it
time-out.

Example usage:

 wxBitmap bitmap;
 if (bitmap.LoadFile("splash16.png", wxBITMAP_TYPE _PNG))
 {
 wxSplashScreen* splash = new wxSplashScreen(b itmap,
 wxSPLASH_CENTRE_ON_SCREEN|wxSPLASH_TIMEOU T,
 6000, NULL, -1, wxDefaultPosition, wxDefa ultSize,
 wxSIMPLE_BORDER|wxSTAY_ON_TOP);
 }
 wxYield();

Derived from

wxFrame (p. 555)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/splash.h>

CHAPTER 7

1183

wxSplashScreen::wxSplashScreen

 wxSplashScreen (const wxBitmap& bitmap, long splashStyle, int milliseconds,
wxWindow* parent, wxWindowID id, const wxPoint& pos = wxDefaultPosition, const
wxSize& size = wxDefaultSize, long style =
wxSIMPLE_BORDER|wxFRAME_NO_TASKBAR|wxSTAY_ON_TOP)

Construct the splash screen passing a bitmap, a style, a timeout, a window id, optional
position and size, and a window style.

splashStyle is a bitlist of some of the following:

 • wxSPLASH_CENTRE_ON_PARENT

 • wxSPLASH_CENTRE_ON_SCREEN

 • wxSPLASH_NO_CENTRE

 • wxSPLASH_TIMEOUT

 • wxSPLASH_NO_TIMEOUT

milliseconds is the timeout in milliseconds.

wxSplashScreen::~wxSplashScreen

 ~wxSplashScreen ()

Destroys the splash screen.

wxSplashScreen::OnCloseWindow

void OnCloseWindow (wxCloseEvent& event)

Reimplement this event handler if you want to set an application variable on window
destruction, for example.

wxSplashScreen::GetSplashStyle

long GetSplashStyle () const

Returns the splash style (see wxSplashScreen::wxSplashScreen (p. 1180) for details).

wxSplashScreen::GetSplashWindow

wxSplashScreenWindow* GetSplashWindow () const

Returns the window used to display the bitmap.

wxSplashScreen::GetTimeout

CHAPTER 7

1184

int GetTimeout () const

Returns the timeout in milliseconds.

wxSplitterEvent

This class represents the events generated by a splitter control. Also there is only one
event class, the data associated to the different events is not the same and so not all
accessor functions may be called for each event. The documentation mentions the kind
of event(s) for which the given accessor function makes sense: calling it for other types
of events will result in assert failure (in debug mode) and will return meaningless results.

Derived from

wxNotifyEvent (p. 966)
wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/splitter.h>

Event table macros

To process a splitter event, use these event handler macros to direct input to member
functions that take a wxSplitterEvent argument.

EVT_SPLITTER_SASH_POS_CHANGING(id, func) The sash position is in the
process of being changed.
You may prevent this change
from happening by calling
Veto (p. 967) or you may also
modify the position of the
tracking bar to properly reflect
the position that would be set
if the drag were to be
completed at this point.
Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGIN
G event.

EVT_SPLITTER_SASH_POS_CHANGED(id, func) The sash position was
changed. This event is
generated after the user
releases the mouse after
dragging the splitter.
Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGED
event.

CHAPTER 7

1185

EVT_SPLITTER_UNSPLIT(id, func) The splitter has been just
unsplit. Processes a
wxEVT_COMMAND_SPLITT
ER_UNSPLIT event. This
event can't be vetoed.

EVT_SPLITTER_DCLICK(id, func) The sash was double clicked.
The default behaviour is to
unsplit the window when this
happens (unless the
minimum pane size has been
set to a value greater than
zero). This won't happen if
you veto this event.
Processes a
wxEVT_COMMAND_SPLITT
ER_DOUBLECLICKED
event.

See also
wxSplitterWindow (p. 1183), Event handling overview (p. 1674)

wxSplitterEvent::wxSplitterEvent

 wxSplitterEvent (wxEventType eventType = wxEVT_NULL,
wxSplitterWindow * splitter = NULL)

Constructor. Used internally by wxWidgets only.

wxSplitterEvent::GetSashPosition

int GetSashPosition () const

Returns the new sash position.

May only be called while processing
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGING and
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGED events.

wxSplitterEvent::GetX

int GetX() const

Returns the x coordinate of the double-click point.

May only be called while processing
wxEVT_COMMAND_SPLITTER_DOUBLECLICKED events.

wxSplitterEvent::GetY

CHAPTER 7

1186

int GetY() const

Returns the y coordinate of the double-click point.

May only be called while processing
wxEVT_COMMAND_SPLITTER_DOUBLECLICKED events.

wxSplitterEvent::GetWindowBeingRemoved

wxWindow* GetWindowBeingRemoved () const

Returns a pointer to the window being removed when a splitter window is unsplit.

May only be called while processing wxEVT_COMMAND_SPLITTER_UNSPLIT events.

wxSplitterEvent::SetSashPosition

void SetSashPosition (int pos)

In the case of wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGED events, sets
the new sash position. In the case of
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGING events, sets the new
tracking bar position so visual feedback during dragging will represent that change that
will actually take place. Set to -1 from the event handler code to prevent repositioning.

May only be called while processing
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGING and
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGED events.

Parameters

pos

New sash position.

wxSplitterWindow

wxSplitterWindow overview (p. 1717)

This class manages up to two subwindows. The current view can be split into two
programmatically (perhaps from a menu command), and unsplit either programmatically
or via the wxSplitterWindow user interface.

Window styles

wxSP_3D Draws a 3D effect border and
sash.

wxSP_3DSASH Draws a 3D effect sash.

wxSP_3DBORDER Synonym for
wxSP_BORDER.

CHAPTER 7

1187

wxSP_BORDER Draws a standard border.

wxSP_NOBORDER No border (default).

wxSP_NO_XP_THEME Under Windows XP, switches
off the attempt to draw the
splitter using Windows XP
theming, so the borders and
sash will take on the pre-XP
look.

wxSP_PERMIT_UNSPLIT Always allow to unsplit, even
with the minimum pane size
other than zero.

wxSP_LIVE_UPDATE Don't draw XOR line but
resize the child windows
immediately.

See also window styles overview (p. 1686).

Derived from

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/splitter.h>

Event handling

To process input from a splitter control, use the following event handler macros to direct
input to member functions that take a wxSplitterEvent (p. 1181) argument.

EVT_SPLITTER_SASH_POS_CHANGING(id, func) The sash position is in the
process of being changed.
May be used to modify the
position of the tracking bar to
properly reflect the position
that would be set if the drag
were to be completed at this
point. Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGIN
G event.

EVT_SPLITTER_SASH_POS_CHANGED(id, func) The sash position was
changed. May be used to
modify the sash position
before it is set, or to prevent
the change from taking place.

CHAPTER 7

1188

Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGED
event.

EVT_SPLITTER_UNSPLIT(id, func) The splitter has been just
unsplit. Processes a
wxEVT_COMMAND_SPLITT
ER_UNSPLIT event.

EVT_SPLITTER_DCLICK(id, func) The sash was double clicked.
The default behaviour is to
unsplit the window when this
happens (unless the
minimum pane size has been
set to a value greater than
zero). Processes a
wxEVT_COMMAND_SPLITT
ER_DOUBLECLICKED
event.

See also
wxSplitterEvent (p. 1181)

wxSplitterWindow::wxSplitterWindow

 wxSplitterWindow ()

Default constructor.

 wxSplitterWindow (wxWindow* parent, wxWindowID id, const wxPoint& point =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style=wxSP_3D, const
wxString& name = "splitterWindow")

Constructor for creating the window.

Parameters

parent

The parent of the splitter window.

id

The window identifier.

pos

The window position.

size

CHAPTER 7

1189

The window size.

style

The window style. See wxSplitterWindow (p. 1183).

name

The window name.

Remarks

After using this constructor, you must create either one or two subwindows with the
splitter window as parent, and then call one of wxSplitterWindow::Initialize (p. 1188),
wxSplitterWindow::SplitVertically (p. 1192) and wxSplitterWindow::SplitHorizontally (p.
1192) in order to set the pane(s).

You can create two windows, with one hidden when not being shown; or you can create
and delete the second pane on demand.

See also

wxSplitterWindow::Initialize (p. 1188), wxSplitterWindow::SplitVertically (p. 1192),
wxSplitterWindow::SplitHorizontally (p. 1192), wxSplitterWindow::Create (p. 1186)

wxSplitterWindow::~wxSplitterWindow

 ~wxSplitterWindow ()

Destroys the wxSplitterWindow and its children.

wxSplitterWindow::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& point =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style=wxSP_3D, const
wxString& name = "splitterWindow")

Creation function, for two-step construction. See wxSplitterWindow::wxSplitterWindow
(p. 1185) for details.

wxSplitterWindow::GetMinimumPaneSize

int GetMinimumPaneSize () const

Returns the current minimum pane size (defaults to zero).

See also

wxSplitterWindow::SetMinimumPaneSize (p. 1191)

wxSplitterWindow::GetSashGravity

CHAPTER 7

1190

double GetSashGravity ()

Returns the current sash gravity.

See also

wxSplitterWindow::SetSashGravity (p. 1190)

wxSplitterWindow::GetSashPosition

int GetSashPosition ()

Returns the current sash position.

See also

wxSplitterWindow::SetSashPosition (p. 1190)

wxSplitterWindow::GetSplitMode

int GetSplitMode () const

Gets the split mode.

See also

wxSplitterWindow::SetSplitMode (p. 1191), wxSplitterWindow::SplitVertically (p. 1192),
wxSplitterWindow::SplitHorizontally (p. 1192).

wxSplitterWindow::GetWindow1

wxWindow* GetWindow1 () const

Returns the left/top or only pane.

wxSplitterWindow::GetWindow2

wxWindow* GetWindow2 () const

Returns the right/bottom pane.

wxSplitterWindow::Initialize

void Initialize (wxWindow* window)

Initializes the splitter window to have one pane. The child window is shown if it is
currently hidden.

Parameters

window

CHAPTER 7

1191

The pane for the unsplit window.

Remarks

This should be called if you wish to initially view only a single pane in the splitter window.

See also

wxSplitterWindow::SplitVertically (p. 1192), wxSplitterWindow::SplitHorizontally (p. 1192)

wxSplitterWindow::IsSplit

bool IsSplit () const

Returns true if the window is split, false otherwise.

wxSplitterWindow::OnDoubleClickSash

virtual void OnDoubleClickSash (int x, int y)

Application-overridable function called when the sash is double-clicked with the left
mouse button.

Parameters

x

The x position of the mouse cursor.

y

The y position of the mouse cursor.

Remarks

The default implementation of this function calls Unsplit (p. 1193) if the minimum pane
size is zero.

See also

wxSplitterWindow::Unsplit (p. 1193)

wxSplitterWindow::OnUnsplit

virtual void OnUnsplit (wxWindow* removed)

Application-overridable function called when the window is unsplit, either
programmatically or using the wxSplitterWindow user interface.

Parameters

removed

The window being removed.

CHAPTER 7

1192

Remarks

The default implementation of this function simply hides removed. You may wish to
delete the window.

wxSplitterWindow::OnSashPositionChange

virtual bool OnSashPositionChange (int newSashPosition)

Application-overridable function called when the sash position is changed by user. It
may return false to prevent the change or true to allow it.

Parameters

newSashPosition

The new sash position (always positive or zero)

Remarks

The default implementation of this function verifies that the sizes of both panes of the
splitter are greater than minimum pane size.

wxSplitterWindow::ReplaceWindow

bool ReplaceWindow (wxWindow * winOld, wxWindow * winNew)

This function replaces one of the windows managed by the wxSplitterWindow with
another one. It is in general better to use it instead of calling Unsplit() and then resplitting
the window back because it will provoke much less flicker (if any). It is valid to call this
function whether the splitter has two windows or only one.

Both parameters should be non-NULL and winOld must specify one of the windows
managed by the splitter. If the parameters are incorrect or the window couldn't be
replaced, false is returned. Otherwise the function will return true, but please notice that
it will not delete the replaced window and you may wish to do it yourself.

See also

wxSplitterWindow::GetMinimumPaneSize (p. 1187)

See also

wxSplitterWindow::Unsplit (p. 1193)
wxSplitterWindow::SplitVertically (p. 1192)
wxSplitterWindow::SplitHorizontally (p. 1192)

wxSplitterWindow::SetSashGravity

void SetSashGravity (double gravity)

Sets the sash gravity.

CHAPTER 7

1193

Parameters

gravity

The sash gravity. Value between 0.0 and 1.0.

Remarks Gravity is real factor which controls position of sash while resizing
wxSplitterWindow. Gravity tells wxSplitterWindow how much will left/top window grow
while resizing.

Example values:

 • 0.0 - only the bottom/right window is automaticaly resized

 • 0.5 - both windows grow by equal size

 • 1.0 - only left/top window grows

Gravity should be real value betwwen 0.0 and 1.0.

Default value of sash gravity is 0.0. That value is compatible with previous (before
gravity was introduced) behaviour of wxSplitterWindow.

See also

wxSplitterWindow::GetSashGravity (p. 1187)

wxSplitterWindow::SetSashPosition

void SetSashPosition (int position, const bool redraw = true)

Sets the sash position.

Parameters

position

The sash position in pixels.

redraw

If true, resizes the panes and redraws the sash and border.

Remarks

Does not currently check for an out-of-range value.

See also

wxSplitterWindow::GetSashPosition (p. 1187)

wxSplitterWindow::SetSashSize

void SetSashSize (int size)

CHAPTER 7

1194

Sets the sash size. Normally, the sash size is determined according to the metrics of
each platform, but the application can override this, for example to show a thin sash that
the user is not expected to drag. If size is more -1, the custom sash size will be used.

wxSplitterWindow::SetMinimumPaneSize

void SetMinimumPaneSize (int paneSize)

Sets the minimum pane size.

Parameters

paneSize

Minimum pane size in pixels.

Remarks

The default minimum pane size is zero, which means that either pane can be reduced to
zero by dragging the sash, thus removing one of the panes. To prevent this behaviour
(and veto out-of-range sash dragging), set a minimum size, for example 20 pixels. If the
wxSP_PERMIT_UNSPLIT style is used when a splitter window is created, the window
may be unsplit even if minimum size is non-zero.

See also

wxSplitterWindow::GetMinimumPaneSize (p. 1187)

wxSplitterWindow::SetSplitMode

void SetSplitMode (int mode)

Sets the split mode.

Parameters

mode

Can be wxSPLIT_VERTICAL or wxSPLIT_HORIZONTAL.

Remarks

Only sets the internal variable; does not update the display.

See also

wxSplitterWindow::GetSplitMode (p. 1187), wxSplitterWindow::SplitVertically (p. 1192),
wxSplitterWindow::SplitHorizontally (p. 1192).

wxSplitterWindow::SplitHorizontally

bool SplitHorizontally (wxWindow* window1, wxWindow* window2, int sashPosition =
0)

CHAPTER 7

1195

Initializes the top and bottom panes of the splitter window. The child windows are shown
if they are currently hidden.

Parameters

window1

The top pane.

window2

The bottom pane.

sashPosition

The initial position of the sash. If this value is positive, it specifies the size of the
upper pane. If it is negative, it is absolute value gives the size of the lower pane.
Finally, specify 0 (default) to choose the default position (half of the total window
height).

Return value

true if successful, false otherwise (the window was already split).

Remarks

This should be called if you wish to initially view two panes. It can also be called at any
subsequent time, but the application should check that the window is not currently split
using IsSplit (p. 1188).

See also

wxSplitterWindow::SplitVertically (p. 1192), wxSplitterWindow::IsSplit (p. 1188),
wxSplitterWindow::Unsplit (p. 1193)

wxSplitterWindow::SplitVertically

bool SplitVertically (wxWindow* window1, wxWindow* window2, int sashPosition = 0)

Initializes the left and right panes of the splitter window. The child windows are shown if
they are currently hidden.

Parameters

window1

The left pane.

window2

The right pane.

sashPosition

The initial position of the sash. If this value is positive, it specifies the size of the

CHAPTER 7

1196

left pane. If it is negative, it is absolute value gives the size of the right pane.
Finally, specify 0 (default) to choose the default position (half of the total window
width).

Return value

true if successful, false otherwise (the window was already split).

Remarks

This should be called if you wish to initially view two panes. It can also be called at any
subsequent time, but the application should check that the window is not currently split
using IsSplit (p. 1188).

See also

wxSplitterWindow::SplitHorizontally (p. 1192), wxSplitterWindow::IsSplit (p. 1188),
wxSplitterWindow::Unsplit (p. 1193).

wxSplitterWindow::Unsplit

bool Unsplit (wxWindow* toRemove = NULL)

Unsplits the window.

Parameters

toRemove

The pane to remove, or NULL to remove the right or bottom pane.

Return value

true if successful, false otherwise (the window was not split).

Remarks

This call will not actually delete the pane being removed; it calls OnUnsplit (p. 1189)
which can be overridden for the desired behaviour. By default, the pane being removed
is hidden.

See also

wxSplitterWindow::SplitHorizontally (p. 1192), wxSplitterWindow::SplitVertically (p.
1192), wxSplitterWindow::IsSplit (p. 1188), wxSplitterWindow::OnUnsplit (p. 1189)

wxSplitterWindow::UpdateSize

void UpdateSize ()

Causes any pending sizing of the sash and child panes to take place immediately.

Such resizing normally takes place in idle time, in order to wait for layout to be
completed. However, this can cause unacceptable flicker as the panes are resized after

CHAPTER 7

1197

the window has been shown. To work around this, you can perform window layout (for
example by sending a size event to the parent window), and then call this function,
before showing the top-level window.

wxSplitterRenderParams

This is just a simple struct used as a return value of
wxRendererNative::GetSplitterParams (p. 1075).

It doesn't have any methods and all of its fields are constant and so can be only
examined but not modified.

Include files

<wx/renderer.h>

wxEvent::widthSash

const wxCoord widthSash

The width of the splitter sash.

wxSplitterRenderParams::border

const wxCoord border

The width of the border drawn by the splitter inside it, may be 0.

wxSplitterRenderParams::isHotSensitive

const bool isHotSensitive

true if the sash changes appearance when the mouse passes over it, false otherwise.

wxStackFrame

wxStackFrame represents a single stack frame, or a single function in the call stack, and
is used exclusively together with wxStackWalker (p. 1196), see there for a more detailed
discussion.

Derived from

No base class

Include files

<wx/stackwalk.h>

CHAPTER 7

1198

Only available if wxUSE_STACKWALKER is 1, currently only implemented for Win32 and
Unix versions using recent version of GNU libc.

See also

wxStackWalker (p. 1196)

wxStackFrame::GetAddress

void* GetAddress () const

Return the address of this frame.

wxStackFrame::GetFileName

wxString GetFileName () const

Return the name of the file containing this frame, empty if unavailable (typically because
debug info is missing).

Use HasSourceLocation (p. 1196) to check whether the file name is available.

wxStackFrame::GetLevel

size_t GetLevel () const

Get the level of this frame (deepest/innermost one is 0).

wxStackFrame::GetLine

size_t GetLine () const

Return the line number of this frame, 0 if unavailable.

See also

GetFileName (p. 1195)

wxStackFrame::GetModule

wxString GetModule () const

Get the module this function belongs to (empty if not available).

wxStackFrame::GetName

wxString GetName () const

Return the unmangled (if possible) name of the function containing this frame.

CHAPTER 7

1199

wxStackFrame::GetOffset

size_t GetOffset () const

Return the return address of this frame.

wxStackFrame::GetParam

bool GetParam (size_t n, wxString * type, wxString * name, wxString * value) const

Get the name, type and value (in text form) of the given parameter. Any pointer may be
NULL if you're not interested in the corresponding value.

Return true if at least some values could be retrieved.

This function currently is only implemented under Win32 and requires a PDB file.

wxStackFrame::GetParamCount

size_t GetParamCount () const

Return the number of parameters of this function (may return 0 if we can't retrieve the
parameters info even although the function does have parameters).

wxStackFrame::HasSourceLocation

bool HasSourceLocation () const

Return true if we have the file name and line number for this frame.

wxStackWalker

wxStackWalker allows an application to enumerate, or walk, the stack frames (the
function callstack). It is mostly useful in only two situations: inside
wxApp::OnFatalException (p. 36) function to programmatically get the location of the
crash and, in debug builds, in wxApp::OnAssert (p. 34) to report the caller of the failed
assert.

wxStackWalker works by repeatedly calling the OnStackFrame (p. 1197) method for
each frame in the stack, so to use it you must derive your own class from it and override
this method.

This class will not return anything except raw stack frame addresses if the debug
information is not available. Under Win32 this means that the PDB file matching the
program being executed should be present. Note that if you use Microsoft Visual C++
compiler, you can create PDB files even for the programs built in release mode and it
doesn't affect the program size (at least if you don't forget to add /opt:ref option
which is suppressed by using/debug linker option by default but should be always
enabled for release builds). Under Unix, you need to compile your program with
debugging information (usually using -g compiler and linker options) to get the file and

CHAPTER 7

1200

line numbers information, however function names should be available even without it.
Of course, all this is only true if you build using a recent enough version of GNU libc
which provides the backtrace() function needed to walk the stack.

debugging overview (p. 1670) for how to make it available.

Derived from

No base class

Include files

<wx/stackwalk.h>

Only available if wxUSE_STACKWALKER is 1, currently only implemented for Win32 and
Unix versions using recent version of GNU libc.

See also

wxStackFrame (p. 1194)

wxStackWalker::wxStackWalker

 wxStackWalker ()

Constructor does nothing, use Walk() (p. 1198) to walk the stack.

wxStackWalker::~wxStackWalker

 ~wxStackWalker ()

Destructor does nothing neither but should be virtual as this class is used as a base one.

wxStackWalker::OnStackFrame

void OnStackFrame (const wxStackFrame& frame)

This function must be overrided to process the given frame.

wxStackWalker::Walk

void Walk (size_t skip = 1)

Enumerate stack frames from the current location, skipping the initial number of them
(this can be useful when Walk() is called from some known location and you don't want
to see the first few frames anyhow; also notice that Walk() frame itself is not included if
skip ≥ 1).

wxStackWalker::WalkFromException

CHAPTER 7

1201

void WalkFromException ()

Enumerate stack frames from the location of uncaught exception. This method can only
be called from wxApp::OnFatalException() (p. 36).

wxStandardPaths

wxStandardPaths returns the standard locations in the file system and should be used
by applications to find their data files in a portable way.

In the description of the methods below, the example return values are given for the
Unix, Windows and Mac OS X systems, however please note that these are just the
examples and the actual values may differ. For example, under Windows: the system
administrator may change the standard directories locations, i.e. the Windows directory
may be named W:\Win2003 instead of the default C:\Windows .

The strings appname and username should be replaced with the value returned by
wxApp::GetAppName (p. 32) and the name of the currently logged in user, respectively.
The string prefix is only used under Unix and is /usr/local by default but may be
changed using SetInstallPrefix (p. 1201).

The directories returned by the methods of this class may or may not exist. If they don't
exist, it's up to the caller to create them, wxStandardPaths doesn't do it.

Finally note that these functions only work with standardly packaged applications. I.e.
under Unix you should follow the standard installation conventions and under Mac you
should create your application bundle according to the Apple guidelines. Again, this
class doesn't help you to do it.

This class is MT-safe: its methods may be called concurrently from different threads
without additional locking.

Derived from

No base class

Include files

<wx/stdpaths.h>

wxStandardPaths::Get

static wxStandardPaths& Get()

Returns reference to the unique global standard paths object.

wxStandardPaths::GetConfigDir

wxString GetConfigDir ()

CHAPTER 7

1202

Return the directory containing the system config files.

Example return values:

 • Unix: /etc

 • Windows: C:\Documents and Settings\All Users\Application
Data

 • Mac: /Library/Preferences

See also

wxFileConfig (p. 489)

wxStandardPaths::GetDataDir

wxString GetDataDir ()

Return the location of the applications global, i.e. not user-specific, data files.

Example return values:

 • Unix: prefix/share/ appname

 • Windows: the directory where the executable file is located

 • Mac: appname.app/Contents/SharedSupport bundle subdirectory

See also

GetLocalDataDir (p. 1200)

wxStandardPaths::GetInstallPrefix

wxString GetInstallPrefix ()

Note: This function is only available under Unix.

Return the program installation prefix, e.g. /usr , /opt or /home/zeitlin .

If the prefix had been previously by SetInstallPrefix (p. 1201), returns that value,
otherwise tries to determine it automatically (Linux only right now) and finally returns the
default /usr/local value if it failed.

wxStandardPaths::GetLocalDataDir

wxString GetLocalDataDir ()

Return the location for application data files which are host-specific and can't, or
shouldn't, be shared with the other machines.

This is the same as GetDataDir() (p. 1199) except under Unix where it returns

CHAPTER 7

1203

/etc/ appname.

wxStandardPaths::GetPluginsDir

wxString GetPluginsDir ()

Return the directory where the loadable modules (plugins) live.

Example return values:

 • Unix: prefix/lib/ appname

 • Windows: the directory of the executable file

 • Mac: appname.app/Contents/PlugIns bundle subdirectory

See also

wxDynamicLibrary (p. 455)

wxStandardPaths::GetUserConfigDir

wxString GetUserConfigDir ()

Return the directory for the user config files:

 • Unix: ~ (the home directory)

 • Windows: C:\Documents and Settings\ username

 • Mac: ~/Library/Preferences

Only use this method if you have a single configuration file to put in this directory,
otherwise GetUserDataDir() (p. 1200) is more appropriate.

wxStandardPaths::GetUserDataDir

wxString GetUserDataDir ()

Return the directory for the user-dependent application data files:

 • Unix: ~/. appname

 • Windows: C:\Documents and Settings\ username\Application
Data\ appname

 • Mac: ~/Library/Application Support/ appname

wxStandardPaths::GetUserLocalDataDir

wxString GetUserLocalDataDir ()

Return the directory for user data files which shouldn't be shared with the other

CHAPTER 7

1204

machines.

This is the same as GetUserDataDir() (p. 1200) for all platforms except Windows where
it returns C:\Documents and Settings\ username\Local
Settings\Application Data\ appname

wxStandardPaths::SetInstallPrefix

void SetInstallPrefix (const wxString& prefix)

Note: This function is only available under Unix.

Lets wxStandardPaths know about the real program installation prefix on a Unix system.
By default, the value returned by GetInstallPrefix (p. 1199) is used.

Although under Linux systems the program prefix may usually be determined
automatically, portable programs should call this function. Usually the prefix is set during
program configuration if using GNU autotools and so it is enough to pass its value
defined in config.h to this function.

wxStaticBitmap

A static bitmap control displays a bitmap. It is meant for display of the small icons in the
dialog boxes and is not meant to be a general purpose image display control. In
particular, under Windows 9x the size of bitmap is limited to 64*64 pixels and thus you
should use your own control if you want to display larger images portably.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/statbmp.h>

Window styles

There are no special styles for this control.

See also window styles overview (p. 1686).

See also

wxStaticBitmap (p. 1201), wxStaticBox (p. 1203)

Remarks

The bitmap to be displayed should have a small number of colours, such as 16, to avoid
palette problems.

CHAPTER 7

1205

wxStaticBitmap::wxStaticBitmap

 wxStaticBitmap ()

Default constructor.

 wxStaticBitmap (wxWindow* parent, wxWindowID id, const wxBitmap& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const wxString&
name = "staticBitmap")

Constructor, creating and showing a text control.

Parameters

parent

Parent window. Should not be NULL.

id

Control identifier. A value of -1 denotes a default value.

label

Bitmap label.

pos

Window position.

size

Window size.

style

Window style. See wxStaticBitmap (p. 1201).

name

Window name.

See also

wxStaticBitmap::Create (p. 1203)

wxStaticBitmap::Create

bool Create (wxWindow* parent, wxWindowID id, const wxBitmap& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const wxString&
name = "staticBitmap")

Creation function, for two-step construction. For details see

CHAPTER 7

1206

wxStaticBitmap::wxStaticBitmap (p. 1202).

wxStaticBitmap::GetBitmap

wxBitmap& GetBitmap () const

Returns a reference to the label bitmap.

See also

wxStaticBitmap::SetBitmap (p. 1203)

wxStaticBitmap::SetBitmap

virtual void SetBitmap (const wxBitmap& label)

Sets the bitmap label.

Parameters

label

The new bitmap.

See also

wxStaticBitmap::GetBitmap (p. 1203)

wxStaticBox

A static box is a rectangle drawn around other panel items to denote a logical grouping
of items.

Please note that a static box should not be used as the parent for the controls it
contains, instead they should be siblings of each other. Although using a static box as a
parent might work in some versions of wxWidgets, it results in a crash under, for
example, wxGTK.

Also, please note that because of this, the order in which you create new controls is
important. Create your wxStaticBox control before any siblings that are to appear inside
the wxStaticBox in order to preserve the correct Z-Order of controls.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/statbox.h>

CHAPTER 7

1207

Window styles

There are no special styles for this control.

See also window styles overview (p. 1686).

See also

wxStaticText (p. 1208)

wxStaticBox::wxStaticBox

 wxStaticBox ()

Default constructor.

 wxStaticBox (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = "staticBox")

Constructor, creating and showing a static box.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

label

Text to be displayed in the static box, the empty string for no label.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Checkbox size. If the size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxStaticBox (p. 1203).

name

Window name.

CHAPTER 7

1208

See also

wxStaticBox::Create (p. 1205)

wxStaticBox::~wxStaticBox

void ~wxStaticBox ()

Destructor, destroying the group box.

wxStaticBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = "staticBox")

Creates the static box for two-step construction. See wxStaticBox::wxStaticBox (p. 1204)
for further details.

wxStaticBoxSizer

wxStaticBoxSizer is a sizer derived from wxBoxSizer but adds a static box around the
sizer. This static box has to be created independently or the sizer may create it itself as
a convenience.

Derived from

wxBoxSizer (p. 98)
wxSizer (p. 1124)
wxObject (p. 967)

Include files

<wx/sizer.h>

See also

wxSizer (p. 1124), wxStaticBox (p. 1203), wxBoxSizer (p. 98), Sizer overview (p. 1694)

wxStaticBoxSizer::wxStaticBoxSizer

 wxStaticBoxSizer (wxStaticBox* box, int orient)

 wxStaticBoxSizer (int orient, wxWindow *parent, const wxString& label =
wxEmptyString)

The first constructor uses an already existing static box. It takes the associated static
box and the orientation orient, which can be eitherwxVERTICAL or wxHORIZONTAL as
parameters.

CHAPTER 7

1209

The second one creates a new static box with the given label and parent window.

wxStaticBoxSizer::GetStaticBox

wxStaticBox* GetStaticBox ()

Returns the static box associated with the sizer.

wxStaticLine

A static line is just a line which may be used in a dialog to separate the groups of
controls. The line may be only vertical or horizontal.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/statline.h>

Window styles

wxLI_HORIZONTAL Creates a horizontal line.

wxLI_VERTICAL Creates a vertical line.

See also

wxStaticBox (p. 1203)

wxStaticLine::wxStaticLine

 wxStaticLine ()

Default constructor.

 wxStaticLine (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint& pos
= wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxLI_HORIZONTAL, const wxString& name = "staticLine")

Constructor, creating and showing a static line.

Parameters

parent

Parent window. Must not be NULL.

CHAPTER 7

1210

id

Window identifier. A value of -1 indicates a default value.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Size. Note that either the height or the width (depending on whether the line if
horizontal or vertical) is ignored.

style

Window style (either wxLI_HORIZONTAL or wxLI_VERTICAL).

name

Window name.

See also

wxStaticLine::Create (p. 1207)

wxStaticLine::Create

bool Create (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "staticLine")

Creates the static line for two-step construction. See wxStaticLine::wxStaticLine (p.
1206) for further details.

wxStaticLine::IsVertical

bool IsVertical () const

Returns true if the line is vertical, false if horizontal.

wxStaticLine::GetDefaultSize

int GetDefaultSize ()

This static function returns the size which will be given to the smaller dimension of the
static line, i.e. its height for a horizontal line or its width for a vertical one.

wxStaticText

A static text control displays one or more lines of read-only text.

CHAPTER 7

1211

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/stattext.h>

Window styles

wxALIGN_LEFT Align the text to the left

wxALIGN_RIGHT Align the text to the right

wxALIGN_CENTRE Center the text (horizontally)

wxST_NO_AUTORESIZE By default, the control will adjust its size to exactly fit to the
size of the text when SetLabel (p. 1209) is called. If this
style flag is given, the control will not change its size (this
style is especially useful with controls which also have
wxALIGN_RIGHT or CENTER style because otherwise
they won't make sense any longer after a call to SetLabel)

See also window styles overview (p. 1686).

See also

wxStaticBitmap (p. 1201), wxStaticBox (p. 1203)

wxStaticText::wxStaticText

 wxStaticText ()

Default constructor.

 wxStaticText (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = "staticText")

Constructor, creating and showing a text control.

Parameters

parent

Parent window. Should not be NULL.

id

Control identifier. A value of -1 denotes a default value.

CHAPTER 7

1212

label

Text label.

pos

Window position.

size

Window size.

style

Window style. See wxStaticText (p. 1208).

name

Window name.

See also

wxStaticText::Create (p. 1209)

wxStaticText::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = "staticText")

Creation function, for two-step construction. For details see wxStaticText::wxStaticText
(p. 1208).

wxStaticText::GetLabel

wxString GetLabel () const

Returns the contents of the control.

wxStaticText::SetLabel

virtual void SetLabel (const wxString& label)

Sets the static text label and updates the controls size to exactly fit the label unless the
control has wxST_NO_AUTORESIZE flag.

Parameters

label

The new label to set. It may contain newline characters.

CHAPTER 7

1213

wxStatusBar

A status bar is a narrow window that can be placed along the bottom of a frame to give
small amounts of status information. It can contain one or more fields, one or more of
which can be variable length according to the size of the window.

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Derived from

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/statusbr.h>

Window styles

wxST_SIZEGRIP On Windows 95, displays a gripper at right-hand side of the
status bar.

See also window styles overview (p. 1686).

Remarks

It is possible to create controls and other windows on the status bar. Position these
windows from an OnSize event handler.

See also

wxFrame (p. 555), Status bar sample (p. 1639)

wxStatusBar::wxStatusBar

 wxStatusBar ()

Default constructor.

 wxStatusBar (wxWindow* parent, wxWindowID id, long style = wxST_SIZEGRIP,
const wxString& name = "statusBar")

Constructor, creating the window.

Parameters

parent

The window parent, usually a frame.

CHAPTER 7

1214

id

The window identifier. It may take a value of -1 to indicate a default value.

style

The window style. See wxStatusBar (p. 1210).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

See also

wxStatusBar::Create (p. 1211)

wxStatusBar::~wxStatusBar

void ~wxStatusBar ()

Destructor.

wxStatusBar::Create

bool Create (wxWindow* parent, wxWindowID id, long style = wxST_SIZEGRIP,
const wxString& name = "statusBar")

Creates the window, for two-step construction.

See wxStatusBar::wxStatusBar (p. 1210) for details.

wxStatusBar::GetFieldRect

virtual bool GetFieldRect (int i, wxRect& rect) const

Returns the size and position of a field's internal bounding rectangle.

Parameters

i

The field in question.

rect

The rectangle values are placed in this variable.

Return value

true if the field index is valid, false otherwise.

See also

CHAPTER 7

1215

wxRect (p. 1050)

wxPerl note: In wxPerl this function returns a Wx::Rect if the field index is valid,
undef otherwise.

wxStatusBar::GetFieldsCount

int GetFieldsCount () const

Returns the number of fields in the status bar.

wxStatusBar::GetStatusText

virtual wxString GetStatusText (int i = 0) const

Returns the string associated with a status bar field.

Parameters

i

The number of the status field to retrieve, starting from zero.

Return value

The status field string if the field is valid, otherwise the empty string.

See also

wxStatusBar::SetStatusText (p. 1213)

wxStatusBar::PopStatusText

void PopStatusText (int field = 0)

Sets the field text to the top of the stack, and pops the stack of saved strings.

See also

wxStatusBar::PushStatusText (p. 1213)

wxStatusBar::PushStatusText

void PushStatusText (const wxString& string, int field = 0)

Saves the current field text in a per field stack, and sets the field text to the string passed
as argument.

wxStatusBar::SetFieldsCount

virtual void SetFieldsCount (int number = 1, int* widths = NULL)

CHAPTER 7

1216

Sets the number of fields, and optionally the field widths.

wxPython note: Only the first parameter is accepted. Use SetStatusWidths to set the
widths of the fields.

wxPerl note: In wxPerl this function accepts only the n parameter. Use SetStatusWidths
to set the field widths.

Parameters

number

The number of fields.

widths

An array of n integers interpreted in the same way as in SetStatusWidths (p. 1214)

wxStatusBar::SetMinHeight

void SetMinHeight (int height)

Sets the minimal possible height for the status bar. The real height may be bigger than
the height specified here depending on the size of the font used by the status bar.

wxStatusBar::SetStatusText

virtual void SetStatusText (const wxString& text, int i = 0)

Sets the text for one field.

Parameters

text

The text to be set. Use an empty string ("") to clear the field.

i

The field to set, starting from zero.

See also

wxStatusBar::GetStatusText (p. 1212), wxFrame::SetStatusText (p. 564)

wxStatusBar::SetStatusWidths

virtual void SetStatusWidths (int n, int * widths)

Sets the widths of the fields in the status line. There are two types of fields: fixed widths
one and variable width fields. For the fixed width fields you should specify their
(constant) width in pixels. For the variable width fields, specify a negative number which
indicates how the field should expand: the space left for all variable width fields is

CHAPTER 7

1217

divided between them according to the absolute value of this number. A variable width
field with width of -2gets twice as much of it as a field with width -1 and so on.

For example, to create one fixed width field of width 100 in the right part of the status bar
and two more fields which get 66% and 33% of the remaining space correspondingly,
you should use an array containing -2, -1 and 100.

Parameters

n

The number of fields in the status bar. Must be equal to the number passed to
SetFieldsCount (p. 1213) the last time it was called.

widths

Contains an array of n integers, each of which is either an absolute status field
width in pixels if positive or indicates a variable width field if negative.

Remarks

The widths of the variable fields are calculated from the total width of all fields, minus the
sum of widths of the non-variable fields, divided by the number of variable fields.

See also

wxStatusBar::SetFieldsCount (p. 1213), wxFrame::SetStatusWidths (p. 565)

wxPython note: Only a single parameter is required, a Python list of integers.

wxPerl note: In wxPerl this method takes as parameters the field widths.

wxStatusBar::SetStatusStyles

virtual void SetStatusStyles (int n, int * styles)

Sets the styles of the fields in the status line which can make fields appear flat or raised
instead of the standard sunken 3D border.

Parameters

n

The number of fields in the status bar. Must be equal to the number passed to
SetFieldsCount (p. 1213) the last time it was called.

styles

Contains an array of n integers with the styles for each field. There are three
possible styles:

wxSB_NORMAL (default) The field appears sunken with a standard
3D border.

wxSB_FLAT No border is painted around the field so that it

CHAPTER 7

1218

appears flat.

wxSB_RAISED A raised 3D border is painted around the field.

wxStdDialogButtonSizer

This class creates button layouts which conform to the standard button spacing and
ordering defined by the platform or toolkit's user interface guidelines (if such things
exist). By using this class, you can ensure that all your standard dialogs look correct on
all major platforms. Currently it conforms to the Windows, GTK+ and Mac OS X human
interface guidelines.

When there aren't interface guidelines defined for a particular platform or toolkit,
wxStdDialogButtonSizer reverts to the Windows implementation.

To use this class, first add buttons to the sizer by calling AddButton (or
SetAffirmativeButton, SetNegativeButton, or SetCancelButton) and then call Realize in
order to create the actual button layout used. Other than these special operations, this
sizer works like any other sizer.

If you add a button with wxID_SAVE, on Mac OS X the button will be renamed to "Save"
and the wxID_NO button will be renamed to "Don't Save" in accordance with the Mac
OS X Human Interface Guidelines.

Derived from

wxBoxSizer (p. 98)
wxSizer (p. 1124)
wxObject (p. 967)

Include files

<wx/sizer.h>

See also

wxSizer (p. 1124), Sizer overview (p. 1694), wxDialog::CreateButtonSizer (p. 395)

wxStdDialogButtonSizer::wxStdDialogButtonSizer

 wxStdDialogButtonSizer ()

Constructor for a wxStdDialogButtonSizer.

wxStdDialogButtonSizer::AddButton

void AddButton (wxButton* button)

Adds a button to the wxStdDialogButtonSizer. The button must have one of the following
identifiers:

CHAPTER 7

1219

 • wxID_OK

 • wxID_YES

 • wxID_SAVE

 • wxID_APPLY

 • wxID_NO

 • wxID_CANCEL

 • wxID_HELP

 • wxID_CONTEXT_HELP

wxStdDialogButtonSizer::Realize

void Realize ()

Rearranges the buttons and applies proper spacing between buttons to make them
match the platform or toolkit's interface guidelines.

wxStdDialogButtonSizer::SetAffirmativeButton

void SetAffirmativeButton (wxButton* button)

Sets the affirmative button for the sizer. This allows you to use identifiers other than the
standard identifiers outlined above.

wxStdDialogButtonSizer::SetCancelButton

void SetCancelButton (wxButton* button)

Sets the cancel button for the sizer. This allows you to use identifiers other than the
standard identifiers outlined above.

wxStdDialogButtonSizer::SetNegativeButton

void SetNegativeButton (wxButton* button)

Sets the negative button for the sizer. This allows you to use identifiers other than the
standard identifiers outlined above.

wxStopWatch

The wxStopWatch class allow you to measure time intervals. For example, you may use
it to measure the time elapsed by some function:

 wxStopWatch sw;
 CallLongRunningFunction();

CHAPTER 7

1220

 wxLogMessage("The long running function took %l dms to
execute",
 sw.Time());
 sw.Pause();
 ... stopwatch is stopped now ...
 sw.Resume();
 CallLongRunningFunction();
 wxLogMessage("And calling it twice took $ldms i n all",
sw.Time());

Include files

<wx/stopwatch.h>

See also

::wxStartTimer (p. 1581), ::wxGetElapsedTime (p. 1579), wxTimer (p. 1323)

wxStopWatch::wxStopWatch

 wxStopWatch ()

Constructor. This starts the stop watch.

wxStopWatch::Pause

void Pause ()

Pauses the stop watch. Call wxStopWatch::Resume (p. 1217) to resume time
measuring again.

If this method is called several times, Resume() must be called the same number of
times to really resume the stop watch. You may, however, call Start (p. 1218) to resume
it unconditionally.

wxStopWatch::Resume

void Resume ()

Resumes the stop watch which had been paused with wxStopWatch::Pause (p. 1217).

wxStopWatch::Start

void Start (long milliseconds = 0)

(Re)starts the stop watch with a given initial value.

wxStopWatch::Time

long Time () const

CHAPTER 7

1221

Returns the time in milliseconds since the start (or restart) or the last call of
wxStopWatch::Pause (p. 1217).

wxStreamBase

This class is the base class of most stream related classes in wxWidgets. It must not be
used directly.

Derived from

None

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1220)

wxStreamBase::wxStreamBase

 wxStreamBase ()

Creates a dummy stream object. It doesn't do anything.

wxStreamBase::~wxStreamBase

 ~wxStreamBase ()

Destructor.

wxStreamBase::GetLength

wxFileOffset GetLength () const

Returns the length of the stream in bytes. If the length cannot be determined (this is
always the case for socket streams for example), returns wxInvalidOffset .

This function is new since wxWidgets version 2.5.4

wxStreamBase::GetLastError

wxStreamError GetLastError () const

This function returns the last error.

wxSTREAM_NO_ERROR No error occurred.

CHAPTER 7

1222

wxSTREAM_EOF An End-Of-File occurred.

wxSTREAM_WRITE_ERROR A generic error occurred on the last write call.

wxSTREAM_READ_ERROR A generic error occurred on the last read call.

wxStreamBase::GetSize

size_t GetSize () const

GetLength (p. 1218)

This function returns the size of the stream. For example, for a file it is the size of the file.

Warning

There are streams which do not have size by definition, such as socket streams. In that
cases, GetSize returns 0 so you should always test its return value.

wxStreamBase::IsOk

bool IsOk () const

Returns true if no error occurred on the stream.

See also

GetLastError (p. 1219)

wxStreamBase::IsSeekable

bool IsSeekable () const

Returns true if the streams supports seeking to arbitrary offsets.

wxStreamBase::OnSysRead

size_t OnSysRead (void* buffer, size_t bufsize)

Internal function. It is called when the stream wants to read data of the specified size. It
should return the size that was actually read.

wxStreamBase::OnSysSeek

off_t OnSysSeek (off_t pos, wxSeekMode mode)

Internal function. It is called when the stream needs to change the current position.

wxStreamBase::OnSysTell

off_t OnSysTell () const

CHAPTER 7

1223

Internal function. Is is called when the stream needs to know the real position.

wxStreamBase::OnSysWrite

size_t OnSysWrite (void * buffer, size_t bufsize)

See OnSysRead (p. 1219).

wxStreamBuffer

Derived from

None

Include files

<wx/stream.h>

See also

wxStreamBase (p. 1218)

wxStreamBuffer::wxStreamBuffer

 wxStreamBuffer (wxStreamBase& stream, BufMode mode)

Constructor, creates a new stream buffer using stream as a parent stream and mode as
the IO mode. mode can be: wxStreamBuffer::read, wxStreamBuffer::write,
wxStreamBuffer::read_write.

One stream can have many stream buffers but only one is used internally to pass IO call
(e.g. wxInputStream::Read() -> wxStreamBuffer::Read()), but you can call directly
wxStreamBuffer::Read without any problems. Note that all errors and messages linked
to the stream are stored in the stream, not the stream buffers:

 streambuffer.Read(...);
 streambuffer2.Read(...); /* This call erases prev ious error
messages set by
 ``streambuffer'' */

 wxStreamBuffer (BufMode mode)

Constructor, creates a new empty stream buffer which won't flush any data to a stream.
mode specifies the type of the buffer (read, write, read_write). This stream buffer has the
advantage to be stream independent and to work only on memory buffers but it is still
compatible with the rest of the wxStream classes. You can write, read to this special
stream and it will grow (if it is allowed by the user) its internal buffer. Briefly, it has all
functionality of a "normal'' stream.

Warning

CHAPTER 7

1224

The "read_write" mode doesn't currently work for standalone stream buffers.

 wxStreamBuffer (const wxStreamBuffer& buffer)

Constructor. It initializes the stream buffer with the data of the specified stream buffer.
The new stream buffer has the same attributes, size, position and they share the same
buffer. This will cause problems if the stream to which the stream buffer belong is
destroyed and the newly cloned stream buffer continues to be used, trying to call
functions in the (destroyed) stream. It is advised to use this feature only in very local
area of the program.

See also

wxStreamBuffer:SetBufferIO (p. 1223)

wxStreamBuffer::~wxStreamBuffer

 wxStreamBuffer (~wxStreamBuffer)

Destructor. It finalizes all IO calls and frees all internal buffers if necessary.

wxStreamBuffer::Read

size_t Read(void * buffer, size_t size)

Reads a block of the specified size and stores the data in buffer. This function tries to
read from the buffer first and if more data has been requested, reads more data from the
associated stream and updates the buffer accordingly until all requested data is read.

Return value

It returns the size of the data read. If the returned size is different of the specified size,
an error has occurred and should be tested using GetLastError (p. 1219).

size_t Read(wxStreamBuffer * buffer)

Reads a buffer. The function returns when buffer is full or when there isn't data anymore
in the current buffer.

See also

wxStreamBuffer::Write (p. 1222)

wxStreamBuffer::Write

size_t Write (const void * buffer, size_t size)

Writes a block of the specified size using data of buffer. The data are cached in a buffer
before being sent in one block to the stream.

size_t Write (wxStreamBuffer * buffer)

See Read (p. 1221).

CHAPTER 7

1225

wxStreamBuffer::GetChar

char GetChar ()

Gets a single char from the stream buffer. It acts like the Read call.

Problem

You aren't directly notified if an error occurred during the IO call.

See also

wxStreamBuffer::Read (p. 1221)

wxStreamBuffer::PutChar

void PutChar (char c)

Puts a single char to the stream buffer.

Problem

You aren't directly notified if an error occurred during the IO call.

See also

wxStreamBuffer::Read (p. 1222)

wxStreamBuffer::Tell

off_t Tell () const

Gets the current position in the stream. This position is calculated from the real position
in the stream and from the internal buffer position: so it gives you the position in the real
stream counted from the start of the stream.

Return value

Returns the current position in the stream if possible, wxInvalidOffset in the other case.

wxStreamBuffer::Seek

off_t Seek(off_t pos, wxSeekMode mode)

Changes the current position.

mode may be one of the following:

wxFromStart The position is counted from the start of the stream.

wxFromCurrent The position is counted from the current position of the
stream.

wxFromEnd The position is counted from the end of the stream.

CHAPTER 7

1226

Return value

Upon successful completion, it returns the new offset as measured in bytes from the
beginning of the stream. Otherwise, it returns wxInvalidOffset.

wxStreamBuffer::ResetBuffer

void ResetBuffer ()

Resets to the initial state variables concerning the buffer.

wxStreamBuffer::SetBufferIO

void SetBufferIO (char* buffer_start, char* buffer_end)

Specifies which pointers to use for stream buffering. You need to pass a pointer on the
start of the buffer end and another on the end. The object will use this buffer to cache
stream data. It may be used also as a source/destination buffer when you create an
empty stream buffer (See wxStreamBuffer::wxStreamBuffer (p. 1220)).

Remarks

When you use this function, you will have to destroy the IO buffers yourself after the
stream buffer is destroyed or don't use it anymore. In the case you use it with an empty
buffer, the stream buffer will not resize it when it is full.

See also

wxStreamBuffer constructor (p. 1220)
wxStreamBuffer::Fixed (p. 1224)
wxStreamBuffer::Flushable (p. 1225)

void SetBufferIO (size_t bufsize)

Destroys or invalidates the previous IO buffer and allocates a new one of the specified
size.

Warning

All previous pointers aren't valid anymore.

Remark

The created IO buffer is growable by the object.

See also

wxStreamBuffer::Fixed (p. 1224)
wxStreamBuffer::Flushable (p. 1225)

wxStreamBuffer::GetBufferStart

void * GetBufferStart () const

CHAPTER 7

1227

Returns a pointer on the start of the stream buffer.

wxStreamBuffer::GetBufferEnd

void * GetBufferEnd () const

Returns a pointer on the end of the stream buffer.

wxStreamBuffer::GetBufferPos

void * GetBufferPos () const

Returns a pointer on the current position of the stream buffer.

wxStreamBuffer::GetIntPosition

off_t GetIntPosition () const

Returns the current position (counted in bytes) in the stream buffer.

wxStreamBuffer::SetIntPosition

void SetIntPosition (size_t pos)

Sets the current position (in bytes) in the stream buffer.

Warning

Since it is a very low-level function, there is no check on the position: specifying an
invalid position can induce unexpected results.

wxStreamBuffer::GetLastAccess

size_t GetLastAccess () const

Returns the amount of bytes read during the last IO call to the parent stream.

wxStreamBuffer::Fixed

void Fixed (bool fixed)

Toggles the fixed flag. Usually this flag is toggled at the same time as flushable. This flag
allows (when it has the false value) or forbids (when it has the true value) the stream
buffer to resize dynamically the IO buffer.

See also

wxStreamBuffer::SetBufferIO (p. 1223)

wxStreamBuffer::Flushable

CHAPTER 7

1228

void Flushable (bool flushable)

Toggles the flushable flag. If flushable is disabled, no data are sent to the parent stream.

wxStreamBuffer::FlushBuffer

bool FlushBuffer ()

Flushes the IO buffer.

wxStreamBuffer::FillBuffer

bool FillBuffer ()

Fill the IO buffer.

wxStreamBuffer::GetDataLeft

size_t GetDataLeft ()

Returns the amount of available data in the buffer.

wxStreamBuffer::Stream

wxStreamBase* Stream ()

Returns the parent stream of the stream buffer.

wxStreamToTextRedirector

This class can be used to (temporarily) redirect all output sent to a C++ ostream object
to a wxTextCtrl (p. 1279) instead.

NB: Some compilers and/or build configurations don't support multiply inheriting
wxTextCtrl (p. 1279) from std::streambuf in which case this class is not compiled in.
You also must have wxUSE_STD_IOSTREAM option on (i.e. set to 1) in your setup.h to
be able to use it. Under Unix, specify --enable-std_iostreams switch when running
configure for this.

Example of usage: using namespace std;

 wxTextCtrl *text = new wxTextCtrl(...);

 {
 wxStreamToTextRedirector redirect(text);

 // this goes to the text control
 cout << "Hello, text!" << endl;
 }

 // this goes somewhere else, presumably to stdout
 cout << "Hello, console!" << endl;

CHAPTER 7

1229

Derived from

No base class

Include files

<wx/textctrl.h>

See also

wxTextCtrl (p. 1279)

wxStreamToTextRedirector::wxStreamToTextRedirector

 wxStreamToTextRedirector (wxTextCtrl *text, ostream * ostr = NULL)

The constructor starts redirecting output sent to ostr or cout for the default parameter
value to the text control text.

Parameters

text

The text control to append output too, must be non NULL

ostr

The C++ stream to redirect, cout is used if it is NULL

wxStreamToTextRedirector::~wxStreamToTextRedirector

 ~wxStreamToTextRedirector ()

When a wxStreamToTextRedirector object is destroyed, the redirection is ended and
any output sent to the C++ ostream which had been specified at the time of the object
construction will go to its original destination.

wxString

wxString is a class representing a character string. Please see the wxString overview (p.
1645) for more information about it. As explained there, wxString implements about 90%
of methods of the std::string class (iterators are not supported, nor all methods which
use them). These standard functions are not documented in this manual so please see
the STL documentation. The behaviour of all these functions is identical to the behaviour
described there (except that wxString is sensitive to null character).

You may notice that wxString sometimes has many functions which do the same thing
like, for example, Length() (p. 1241), Len() (p. 1241) and length() which all return the
string length. In all cases of such duplication the std::string -compatible method
(length() in this case, always the lowercase version) should be used as it will ensure

CHAPTER 7

1230

smoother transition to std::string when wxWidgets starts using it instead of
wxString.

Derived from

None

Include files

<wx/string.h>

Predefined objects

Objects:

wxEmptyString

See also

Overview (p. 1645)

Constructors and assignment operators

A string may be constructed either from a C string, (some number of copies of) a single
character or a wide (UNICODE) string. For all constructors (except the default which
creates an empty string) there is also a corresponding assignment operator.

wxString (p. 1233)
operator = (p. 1246)
~wxString (p. 1234)

String length

These functions return the string length and check whether the string is empty or empty
it.

Len (p. 1241)
IsEmpty (p. 1239)
operator! (p. 1246)
Empty (p. 1237)
Clear (p. 1236)

Character access

Many functions in this section take a character index in the string. As with C strings
and/or arrays, the indices start from 0, so the first character of a string is string[0].
Attempt to access a character beyond the end of the string (which may be even 0 if the
string is empty) will provoke an assert failure in debug build (p. 1670), but no checks are
done in release builds.

This section also contains both implicit and explicit conversions to C style strings.

CHAPTER 7

1231

Although implicit conversion is quite convenient, it is advised to use explicit c_str() (p.
1236) method for the sake of clarity. Also see overview (p. 1647) for the cases where it
is necessary to use it.

GetChar (p. 1239)
GetWritableChar (p. 1239)
SetChar (p. 1243)
Last (p. 1240)
operator [] (p. 1247)
c_str (p. 1236)
mb_str (p. 1241)
wc_str (p. 1246)
fn_str (p. 1238)
operator const char* (p. 1248)

Concatenation

Anything may be concatenated (appended to) with a string. However, you can't append
something to a C string (including literal constants), so to do this it should be converted
to a wxString first.

operator << (p. 1247)
operator += (p. 1247)
operator + (p. 1247)
Append (p. 1235)
Prepend (p. 1242)

Comparison

The default comparison function Cmp (p. 1236) is case-sensitive and so is the default
version of IsSameAs (p. 1240). For case insensitive comparisons you should use
CmpNoCase (p. 1236) or give a second parameter to IsSameAs. This last function is
may be more convenient if only equality of the strings matters because it returns a
boolean true value if the strings are the same and not 0 (which is usually false in C) as
Cmp() does.

Matches (p. 1241) is a poor man's regular expression matcher: it only understands '*'
and '?' metacharacters in the sense of DOS command line interpreter.

StartsWith (p. 1244) is helpful when parsing a line of text which should start with some
predefined prefix and is more efficient than doing direct string comparison as you would
also have to precalculate the length of the prefix then.

Cmp (p. 1236)
CmpNoCase (p. 1236)
IsSameAs (p. 1240)
Matches (p. 1241)
StartsWith (p. 1244)

Substring extraction

CHAPTER 7

1232

These functions allow to extract substring from this string. All of them don't modify the
original string and return a new string containing the extracted substring.

Mid (p. 1242)
operator() (p. 1247)
Left (p. 1240)
Right (p. 1243)
BeforeFirst (p. 1236)
BeforeLast (p. 1236)
AfterFirst (p. 1235)
AfterLast (p. 1235)
StartsWith (p. 1244)

Case conversion

The MakeXXX() variants modify the string in place, while the other functions return a
new string which contains the original text converted to the upper or lower case and
leave the original string unchanged.

MakeUpper (p. 1241)
Upper (p. 1246)
MakeLower (p. 1241)
Lower (p. 1241)

Searching and replacing

These functions replace the standard strchr() and strstr() functions.

Find (p. 1237)
Replace (p. 1243)

Conversion to numbers

The string provides functions for conversion to signed and unsigned integer and floating
point numbers. All three functions take a pointer to the variable to put the numeric value
in and return true if the entire string could be converted to a number.

ToLong (p. 1245)
ToULong (p. 1245)
ToDouble (p. 1244)

Writing values into the string

Both formatted versions (Printf (p. 1242)) and stream-like insertion operators exist (for
basic types only). Additionally, the Format (p. 1238) function allows to use simply
append formatted value to a string:

 // the following 2 snippets are equivalent

 wxString s = "...";
 s += wxString::Format("%d", n);

CHAPTER 7

1233

 wxString s;
 s.Printf("...%d", n);

Format (p. 1238)
FormatV (p. 1238)
Printf (p. 1242)
PrintfV (p. 1242)
operator << (p. 1247)

Memory management

These are "advanced" functions and they will be needed quite rarely. Alloc (p. 1235) and
Shrink (p. 1243) are only interesting for optimization purposes. GetWriteBuf (p. 1239)
may be very useful when working with some external API which requires the caller to
provide a writable buffer, but extreme care should be taken when using it: before
performing any other operation on the string UngetWriteBuf (p. 1245) must be called!

Alloc (p. 1235)
Shrink (p. 1243)
GetWriteBuf (p. 1239)
UngetWriteBuf (p. 1245)

Miscellaneous

Other string functions.

Trim (p. 1245)
Pad (p. 1242)
Truncate (p. 1245)

wxWidgets 1.xx compatibility functions

These functions are deprecated, please consider using new wxWidgets 2.0 functions
instead of them (or, even better, std::string compatible variants).

SubString (p. 1244)
sprintf (p. 1243)
CompareTo (p. 1237)
Length (p. 1241)
Freq (p. 1238)
LowerCase (p. 1241)
UpperCase (p. 1246)
Strip (p. 1244)
Index (p. 1239)
Remove (p. 1243)
First (p. 1237)
Last (p. 1240)
Contains (p. 1237)
IsNull (p. 1240)
IsAscii (p. 1239)
IsNumber (p. 1240)

CHAPTER 7

1234

IsWord (p. 1240)

std::string compatibility functions

The supported functions are only listed here, please see any STL reference for their
documentation.

 // take nLen chars starting at nPos
 wxString(const wxString& str, size_t nPos, size_t nLen);
 // take all characters from pStart to pEnd (poo r man's
iterators)
 wxString(const void *pStart, const void *pEnd);

 // lib.string.capacity
 // return the length of the string
 size_t size() const;
 // return the length of the string
 size_t length() const;
 // return the maximum size of the string
 size_t max_size() const;
 // resize the string, filling the space with c if c != 0
 void resize(size_t nSize, char ch = '\0');
 // delete the contents of the string
 void clear();
 // returns true if the string is empty
 bool empty() const;

 // lib.string.access
 // return the character at position n
 char at(size_t n) const;
 // returns the writable character at position n
 char& at(size_t n);

 // lib.string.modifiers
 // append a string
 wxString& append(const wxString& str);
 // append elements str[pos], ..., str[pos+n]
 wxString& append(const wxString& str, size_t pos, size_t n);
 // append first n (or all if n == npos) charact ers of sz
 wxString& append(const char *sz, size_t n = npos) ;

 // append n copies of ch
 wxString& append(size_t n, char ch);

 // same as `this_string = str'
 wxString& assign(const wxString& str);
 // same as ` = str[pos..pos + n]
 wxString& assign(const wxString& str, size_t pos, size_t n);
 // same as `= first n (or all if n == npos) cha racters of sz'
 wxString& assign(const char *sz, size_t n = npos) ;
 // same as `= n copies of ch'
 wxString& assign(size_t n, char ch);

 // insert another string
 wxString& insert(size_t nPos, const wxString& str);
 // insert n chars of str starting at nStart (in str)
 wxString& insert(size_t nPos, const wxString& str , size_t
nStart, size_t n);

 // insert first n (or all if n == npos) charact ers of sz
 wxString& insert(size_t nPos, const char *sz, siz e_t n = npos);
 // insert n copies of ch

CHAPTER 7

1235

 wxString& insert(size_t nPos, size_t n, char ch);

 // delete characters from nStart to nStart + nL en
 wxString& erase(size_t nStart = 0, size_t nLen = npos);

 // replaces the substring of length nLen starti ng at nStart
 wxString& replace(size_t nStart, size_t nLen, con st char* sz);
 // replaces the substring with nCount copies of ch
 wxString& replace(size_t nStart, size_t nLen, siz e_t nCount,
char ch);
 // replaces a substring with another substring
 wxString& replace(size_t nStart, size_t nLen,
 const wxString& str, size_t nSt art2, size_t
nLen2);
 // replaces the substring with first nCount cha rs of sz
 wxString& replace(size_t nStart, size_t nLen,
 const char* sz, size_t nCount);

 // swap two strings
 void swap(wxString& str);

 // All find() functions take the nStart argumen t which
specifies the
 // position to start the search on, the default value is 0.
All functions
 // return npos if there were no match.

 // find a substring
 size_t find(const wxString& str, size_t nStart = 0) const;

 // find first n characters of sz
 size_t find(const char* sz, size_t nStart = 0, si ze_t n = npos)
const;

 // find the first occurrence of character ch af ter nStart
 size_t find(char ch, size_t nStart = 0) const;

 // rfind() family is exactly like find() but wo rks right to
left

 // as find, but from the end
 size_t rfind(const wxString& str, size_t nStart = npos) const;

 // as find, but from the end
 size_t rfind(const char* sz, size_t nStart = npos ,
 size_t n = npos) const;
 // as find, but from the end
 size_t rfind(char ch, size_t nStart = npos) const ;

 // find first/last occurrence of any character in the set

 //
 size_t find_first_of(const wxString& str, size_t nStart = 0)
const;
 //
 size_t find_first_of(const char* sz, size_t nStar t = 0) const;
 // same as find(char, size_t)
 size_t find_first_of(char c, size_t nStart = 0) c onst;
 //
 size_t find_last_of (const wxString& str, size_t nStart = npos)
const;
 //
 size_t find_last_of (const char* s, size_t nStart = npos) const;
 // same as rfind(char, size_t)

CHAPTER 7

1236

 size_t find_last_of (char c, size_t nStart = npos) const;

 // find first/last occurrence of any character not in the set

 //
 size_t find_first_not_of(const wxString& str, siz e_t nStart = 0)
const;
 //
 size_t find_first_not_of(const char* s, size_t nS tart = 0)
const;
 //
 size_t find_first_not_of(char ch, size_t nStart = 0) const;
 //
 size_t find_last_not_of(const wxString& str, size _t nStart=npos)
const;
 //
 size_t find_last_not_of(const char* s, size_t nSt art = npos)
const;
 //
 size_t find_last_not_of(char ch, size_t nStart = npos) const;

 // All compare functions return a negative, zer o or positive
value
 // if the [sub]string is less, equal or greater than the
compare() argument.

 // just like strcmp()
 int compare(const wxString& str) const;
 // comparison with a substring
 int compare(size_t nStart, size_t nLen, const wxS tring& str)
const;
 // comparison of 2 substrings
 int compare(size_t nStart, size_t nLen,
 const wxString& str, size_t nStart2, size_t nLen2)
const;
 // just like strcmp()
 int compare(const char* sz) const;
 // substring comparison with first nCount chara cters of sz
 int compare(size_t nStart, size_t nLen,
 const char* sz, size_t nCount = npos) const;

 // substring extraction
 wxString substr(size_t nStart = 0, size_t nLen = npos) const;

wxString::wxString

 wxString ()

Default constructor. Initializes the string to "" (empty string).

 wxString (const wxString& x)

Copy constructor.

 wxString (char ch, size_t n = 1)

Constructs a string of n copies of character ch.

 wxString (const char* psz, size_t nLength = wxSTRING_MAXLEN)

CHAPTER 7

1237

Takes first nLength characters from the C string psz. The default value of
wxSTRING_MAXLEN means to take all the string.

Note that this constructor may be used even if psz points to a buffer with binary data (i.e.
containing NUL characters) as long as you provide the correct value for nLength.
However, the default form of it works only with strings without intermediate NULs
because it uses strlen() to calculate the effective length and it would not give correct
results otherwise.

 wxString (const unsigned char* psz, size_t nLength = wxSTRING_MAXLEN)

For compilers using unsigned char: takes first nLength characters from the C string psz.
The default value of wxSTRING_MAXLEN means take all the string.

Note: In Unicode build, all of the above constructors takewchar_t arguments instead of
char .

Constructors with conversion

The following constructors allow you to construct wxString from wide string in ANSI build
or from C string in Unicode build.

 wxString (const wchar_t* psz, wxMBConv& conv, size_t nLength =
wxSTRING_MAXLEN)

Initializes the string from first nLength characters of wide string. The default value of
wxSTRING_MAXLEN means take all the string. In ANSI build, conv's WC2MB (p. 870)
method is called to convert psz to wide string. It is ignored in Unicode build.

 wxString (const char* psz, wxMBConv& conv, size_t nLength =
wxSTRING_MAXLEN)

Initializes the string from first nLength characters of C string. The default value of
wxSTRING_MAXLEN means take all the string. In Unicode build, conv's MB2WC (p. 869)
method is called to convert psz to wide string. It is ignored in ANSI build.

See also

wxMBConv classes (p. 1657), mb_str (p. 1241),wc_str (p. 1246)

wxString::~wxString

 ~wxString ()

String destructor. Note that this is not virtual, so wxString must not be inherited from.

wxString::Alloc

void Alloc (size_t nLen)

Preallocate enough space for wxString to store nLen characters. This function may be
used to increase speed when the string is constructed by repeated concatenation as in

CHAPTER 7

1238

// delete all vowels from the string
wxString DeleteAllVowels(const wxString& original)
{
 wxString result;

 size_t len = original.length();

 result.Alloc(len);

 for (size_t n = 0; n < len; n++)
 {
 if (strchr("aeuio", tolower(original[n])) == NULL)
 result += original[n];
 }

 return result;
}

because it will avoid the need to reallocate string memory many times (in case of long
strings). Note that it does not set the maximal length of a string - it will still expand if
more than nLen characters are stored in it. Also, it does not truncate the existing string
(use Truncate() (p. 1245) for this) even if its current length is greater than nLen

wxString::Append

wxString& Append (const char* psz)

Concatenates psz to this string, returning a reference to it.

wxString& Append (char ch, int count = 1)

Concatenates character ch to this string, count times, returning a reference to it.

wxString::AfterFirst

wxString AfterFirst (char ch) const

Gets all the characters after the first occurrence of ch. Returns the empty string if ch is
not found.

wxString::AfterLast

wxString AfterLast (char ch) const

Gets all the characters after the last occurrence of ch. Returns the whole string if ch is
not found.

wxString::BeforeFirst

wxString BeforeFirst (char ch) const

Gets all characters before the first occurrence of ch. Returns the whole string if ch is not
found.

CHAPTER 7

1239

wxString::BeforeLast

wxString BeforeLast (char ch) const

Gets all characters before the last occurrence of ch. Returns the empty string if ch is not
found.

wxString::c_str

const wxChar * c_str () const

Returns a pointer to the string data (const char* in ANSI build,const wchar_t* in
Unicode build).

See also

mb_str (p. 1241), wc_str (p. 1246),fn_str (p. 1238)

wxString::Clear

void Clear ()

Empties the string and frees memory occupied by it.

See also: Empty (p. 1237)

wxString::Cmp

int Cmp (const wxString& s) const

int Cmp (const char* psz) const

Case-sensitive comparison.

Returns a positive value if the string is greater than the argument, zero if it is equal to it
or a negative value if it is less than the argument (same semantics as the standard
strcmp() function).

See also CmpNoCase (p. 1236), IsSameAs (p. 1240).

wxString::CmpNoCase

int CmpNoCase (const wxString& s) const

int CmpNoCase (const char* psz) const

Case-insensitive comparison.

Returns a positive value if the string is greater than the argument, zero if it is equal to it
or a negative value if it is less than the argument (same semantics as the standard
strcmp() function).

CHAPTER 7

1240

See also Cmp (p. 1236), IsSameAs (p. 1240).

wxString::CompareTo

#define NO_POS ((int)(-1)) // undefined position
enum caseCompare {exact, ignoreCase};

int CompareTo (const char* psz, caseCompare cmp = exact) const

Case-sensitive comparison. Returns 0 if equal, 1 if greater or -1 if less.

wxString::Contains

bool Contains (const wxString& str) const

Returns 1 if target appears anywhere in wxString; else 0.

wxString::Empty

void Empty ()

Makes the string empty, but doesn't free memory occupied by the string.

See also: Clear() (p. 1236).

wxString::Find

int Find (char ch, bool fromEnd = false) const

Searches for the given character. Returns the starting index, or -1 if not found.

int Find (const char* sz) const

Searches for the given string. Returns the starting index, or -1 if not found.

wxString::First

int First (char c)

int First (const char* psz) const

int First (const wxString& str) const

Same as Find (p. 1237).

wxString::fn_str

const wchar_t* fn_str () const

const char* fn_str () const

const wxCharBuffer fn_str () const

CHAPTER 7

1241

Returns string representation suitable for passing to OS' functions for file handling. In
ANSI build, this is same as c_str (p. 1236). In Unicode build, returned value can be
either wide character string or C string in charset matching the wxConvFileName
object, depending on the OS.

See also

wxMBConv (p. 869),wc_str (p. 1246), mb_str (p. 1246)

wxString::Format

static wxString Format (const wxChar *format, ...)

This static function returns the string containing the result of calling Printf (p. 1242) with
the passed parameters on it.

See also

FormatV (p. 1238), Printf (p. 1242)

wxString::FormatV

static wxString FormatV (const wxChar *format, va_list argptr)

This static function returns the string containing the result of calling PrintfV (p. 1242) with
the passed parameters on it.

See also

Format (p. 1238), PrintfV (p. 1242)

wxString::Freq

int Freq (char ch) const

Returns the number of occurrences of ch in the string.

wxString::FromAscii

static wxString FromAscii (const char* s)

static wxString FromAscii (const char c)

Converts the string or character from an ASCII, 7-bit form to the native wxString
representation. Most useful when using a Unicode build of wxWidgets. Use wxString
constructors (p. 1233) if you need to convert from another charset.

wxString::GetChar

char GetChar (size_t n) const

Returns the character at position n (read-only).

CHAPTER 7

1242

wxString::GetData

const wxChar* GetData () const

wxWidgets compatibility conversion. Returns a constant pointer to the data in the string.

wxString::GetWritableChar

char& GetWritableChar (size_t n)

Returns a reference to the character at position n.

wxString::GetWriteBuf

wxChar* GetWriteBuf (size_t len)

Returns a writable buffer of at least len bytes. It returns a pointer to a new memory
block, and the existing data will not be copied.

Call wxString::UngetWriteBuf (p. 1245) as soon as possible to put the string back into a
reasonable state.

wxString::Index

size_t Index (char ch) const

size_t Index (const char* sz) const

Same as wxString::Find (p. 1237).

wxString::IsAscii

bool IsAscii () const

Returns true if the string contains only ASCII characters.

wxString::IsEmpty

bool IsEmpty () const

Returns true if the string is empty.

wxString::IsNull

bool IsNull () const

Returns true if the string is empty (same as IsEmpty (p. 1239)).

wxString::IsNumber

CHAPTER 7

1243

bool IsNumber () const

Returns true if the string is an integer (with possible sign).

wxString::IsSameAs

bool IsSameAs (const char* psz, bool caseSensitive = true) const

Test for string equality, case-sensitive (default) or not.

caseSensitive is true by default (case matters).

Returns true if strings are equal, false otherwise.

See also Cmp (p. 1236), CmpNoCase (p. 1236)

bool IsSameAs (char c, bool caseSensitive = true) const

Test whether the string is equal to the single character c. The test is case-sensitive if
caseSensitive is true (default) or not if it is false.

Returns true if the string is equal to the character, false otherwise.

See also Cmp (p. 1236), CmpNoCase (p. 1236)

wxString::IsWord

bool IsWord () const

Returns true if the string is a word. TODO: what's the definition of a word?

wxString::Last

char Last () const

Returns the last character.

char& Last ()

Returns a reference to the last character (writable).

wxString::Left

wxString Left (size_t count) const

Returns the first count characters of the string.

wxString::Len

size_t Len () const

Returns the length of the string.

CHAPTER 7

1244

wxString::Length

size_t Length () const

Returns the length of the string (same as Len).

wxString::Lower

wxString Lower () const

Returns this string converted to the lower case.

wxString::LowerCase

void LowerCase ()

Same as MakeLower.

wxString::MakeLower

wxString& MakeLower ()

Converts all characters to lower case and returns the result.

wxString::MakeUpper

wxString& MakeUpper ()

Converts all characters to upper case and returns the result.

wxString::Matches

bool Matches (const char* szMask) const

Returns true if the string contents matches a mask containing '*' and '?'.

wxString::mb_str

const char* mb_str (wxMBConv& conv) const

const wxCharBuffer mb_str (wxMBConv& conv) const

Returns multibyte (C string) representation of the string. In Unicode build, converts using
conv's cWC2MB (p. 870)method and returns wxCharBuffer. In ANSI build, this function
is same as c_str (p. 1236). The macro wxWX2MBbuf is defined as the correct return
type (without const).

See also

wxMBConv (p. 869),c_str (p. 1236), wc_str (p. 1246),fn_str (p. 1238)

CHAPTER 7

1245

wxString::Mid

wxString Mid (size_t first, size_t count = wxSTRING_MAXLEN) const

Returns a substring starting at first, with length count, or the rest of the string if count is
the default value.

wxString::Pad

wxString& Pad(size_t count, char pad = ' ', bool fromRight = true)

Adds count copies of pad to the beginning, or to the end of the string (the default).

Removes spaces from the left or from the right (default).

wxString::Prepend

wxString& Prepend (const wxString& str)

Prepends str to this string, returning a reference to this string.

wxString::Printf

int Printf (const char* pszFormat, ...)

Similar to the standard function sprintf(). Returns the number of characters written, or an
integer less than zero on error.

NB: This function will use a safe version of vsprintf() (usually called vsnprintf())
whenever available to always allocate the buffer of correct size. Unfortunately, this
function is not available on all platforms and the dangerous vsprintf() will be used then
which may lead to buffer overflows.

wxString::PrintfV

int PrintfV (const char* pszFormat, va_list argPtr)

Similar to vprintf. Returns the number of characters written, or an integer less than zero
on error.

wxString::Remove

wxString& Remove (size_t pos)

Same as Truncate. Removes the portion from pos to the end of the string.

wxString& Remove (size_t pos, size_t len)

Removes the len characters from the string, starting at pos.

wxString::RemoveLast

CHAPTER 7

1246

wxString& RemoveLast ()

Removes the last character.

wxString::Replace

size_t Replace (const char* szOld, const char* szNew, bool replaceAll = true)

Replace first (or all) occurrences of substring with another one.

replaceAll: global replace (default), or only the first occurrence.

Returns the number of replacements made.

wxString::Right

wxString Right (size_t count) const

Returns the last count characters.

wxString::SetChar

void SetChar (size_t n, char ch)

Sets the character at position n.

wxString::Shrink

void Shrink ()

Minimizes the string's memory. This can be useful after a call to Alloc() (p. 1235) if too
much memory were preallocated.

wxString::sprintf

void sprintf (const char* fmt)

The same as Printf.

wxString::StartsWith

bool StartsWith (const wxChar *prefix, wxString *rest = NULL) const

This function can be used to test if the string starts with the specified prefix. If it does, the
function will return true and put the rest of the string (i.e. after the prefix) into rest string
if it is not NULL. Otherwise, the function returns false and doesn't modify the rest.

wxString::Strip

enum stripType {leading = 0x1, trailing = 0x2, both = 0x3};

CHAPTER 7

1247

wxString Strip (stripType s = trailing) const

Strip characters at the front and/or end. The same as Trim except that it doesn't change
this string.

wxString::SubString

wxString SubString (size_t from, size_t to) const

Deprecated, use Mid (p. 1242) instead (but note that parameters have different
meaning).

Returns the part of the string between the indices from and toinclusive.

wxString::ToAscii

const char* ToAscii () const

Converts the string to an ASCII, 7-bit string (ANSI builds only).

const wxCharBuffer ToAscii () const

Converts the string to an ASCII, 7-bit string in the form of a wxCharBuffer (Unicode
builds only).

Note that this conversion only works if the string contains only ASCII characters. The
mb_str (p. 1241) method provides more powerful means of converting wxString to C
string.

wxString::ToDouble

bool ToDouble (double *val) const

Attempts to convert the string to a floating point number. Returns true on success (the
number is stored in the location pointed to by val) or false if the string does not represent
such number.

See also

wxString::ToLong (p. 1245),
wxString::ToULong (p. 1245)

wxString::ToLong

bool ToLong (long *val, int base = 10) const

Attempts to convert the string to a signed integer in base base. Returnstrue on success
in which case the number is stored in the location pointed to by val or false if the string
does not represent a valid number in the given base.

The value of base must be comprised between 2 and 36, inclusive, or be a special value
0 which means that the usual rules of C numbers are applied: if the number starts with

CHAPTER 7

1248

0x it is considered to be in base16, if it starts with 0 - in base 8 and in base 10
otherwise. Note that you may not want to specify the base 0 if you are parsing the
numbers which may have leading zeroes as they can yield unexpected (to the user not
familiar with C) results.

See also

wxString::ToDouble (p. 1244),
wxString::ToULong (p. 1245)

wxString::ToULong

bool ToULong (unsigned long *val, int base = 10) const

Attempts to convert the string to an unsigned integer in base base. Returns true on
success in which case the number is stored in the location pointed to by val or false if
the string does not represent a valid number in the given base.

See wxString::ToLong (p. 1245) for the more detailed description of the base parameter.

See also

wxString::ToDouble (p. 1244),
wxString::ToLong (p. 1245)

wxString::Trim

wxString& Trim (bool fromRight = true)

Removes spaces from the left or from the right (default).

wxString::Truncate

wxString& Truncate (size_t len)

Truncate the string to the given length.

wxString::UngetWriteBuf

void UngetWriteBuf ()

void UngetWriteBuf (size_t len)

Puts the string back into a reasonable state (in which it can be used normally), after
wxString::GetWriteBuf (p. 1239) was called.

The version of the function without the len parameter will calculate the new string length
itself assuming that the string is terminated by the firstNUL character in it while the
second one will use the specified length and thus is the only version which should be
used with the strings with embedded NULs (it is also slightly more efficient as strlen()
doesn't have to be called).

CHAPTER 7

1249

wxString::Upper

wxString Upper () const

Returns this string converted to upper case.

wxString::UpperCase

void UpperCase ()

The same as MakeUpper.

wxString::wc_str

const wchar_t* wc_str (wxMBConv& conv) const

const wxWCharBuffer wc_str (wxMBConv& conv) const

Returns wide character representation of the string. In ANSI build, converts using conv's
cMB2WC (p. 870)method and returns wxWCharBuffer. In Unicode build, this function is
same as c_str (p. 1236). The macro wxWX2WCbuf is defined as the correct return type
(without const).

See also

wxMBConv (p. 869),c_str (p. 1236), mb_str (p. 1246),fn_str (p. 1238)

wxString::operator!

bool operator! () const

Empty string is false, so !string will only return true if the string is empty. This allows the
tests for NULLness of a const char * pointer and emptiness of the string to look the same
in the code and makes it easier to port old code to wxString.

See also IsEmpty() (p. 1239).

wxString::operator =

wxString& operator = (const wxString& str)

wxString& operator = (const char* psz)

wxString& operator = (char c)

wxString& operator = (const unsigned char* psz)

wxString& operator = (const wchar_t* pwz)

Assignment: the effect of each operation is the same as for the corresponding
constructor (see wxString constructors (p. 1233)).

CHAPTER 7

1250

wxString::operator +

Concatenation: all these operators return a new string equal to the concatenation of the
operands.

wxString operator + (const wxString& x, const wxString& y)

wxString operator + (const wxString& x, const char* y)

wxString operator + (const wxString& x, char y)

wxString operator + (const char* x, const wxString& y)

wxString::operator +=

void operator += (const wxString& str)

void operator += (const char* psz)

void operator += (char c)

Concatenation in place: the argument is appended to the string.

wxString::operator []

char& operator [] (size_t i)

char operator [] (size_t i)

char operator [] (int i)

Element extraction.

wxString::operator ()

wxString operator () (size_t start, size_t len)

Same as Mid (substring extraction).

wxString::operator <<

wxString& operator << (const wxString& str)

wxString& operator << (const char* psz)

wxString& operator << (char ch)

Same as +=.

wxString& operator << (int i)

wxString& operator << (float f)

CHAPTER 7

1251

wxString& operator << (double d)

These functions work as C++ stream insertion operators: they insert the given value into
the string. Precision or format cannot be set using them, you can use Printf (p. 1242) for
this.

wxString::operator >>

friend istream& operator >> (istream& is, wxString& str)

Extraction from a stream.

wxString::operator const char*

 operator const char* () const

Implicit conversion to a C string.

Comparison operators

bool operator == (const wxString& x, const wxString& y)

bool operator == (const wxString& x, const char* t)

bool operator != (const wxString& x, const wxString& y)

bool operator != (const wxString& x, const char* t)

bool operator > (const wxString& x, const wxString& y)

bool operator > (const wxString& x, const char* t)

bool operator >= (const wxString& x, const wxString& y)

bool operator >= (const wxString& x, const char* t)

bool operator < (const wxString& x, const wxString& y)

bool operator < (const wxString& x, const char* t)

bool operator <= (const wxString& x, const wxString& y)

bool operator <= (const wxString& x, const char* t)

Remarks

These comparisons are case-sensitive.

wxStringBuffer

This tiny class allows to conveniently access the wxString (p. 1226) internal buffer as a
writable pointer without any risk of forgetting to restore the string to the usable state

CHAPTER 7

1252

later.

For example, assuming you have a low-level OS function called
GetMeaningOfLifeAsString(char *) returning the value in the provided buffer
(which must be writable, of course) you might call it like this:

 wxString theAnswer;
 GetMeaningOfLifeAsString(wxStringBuffer(theAnsw er, 1024));
 if (theAnswer != "42")
 {
 wxLogError("Something is very wrong!");
 }

Note that the exact usage of this depends on whether on not wxUSE_STL is enabled. If
wxUSE_STL is enabled, wxStringBuffer creates a separate empty character buffer, and
if wxUSE_STL is disabled, it uses GetWriteBuf() from wxString, keeping the same buffer
wxString uses intact. In other words, relying on wxStringBuffer containing the old
wxString data is probably not a good idea if you want to build your program in both with
and without wxUSE_STL.

Derived from

None

Include files

<wx/string.h>

wxStringBuffer::wxStringBuffer

 wxStringBuffer (const wxString& str, size_t len)

Constructs a writable string buffer object associated with the given string and containing
enough space for at least len characters. Basically, this is equivalent to calling
GetWriteBuf (p. 1239) and saving the result.

wxStringBuffer::~wxStringBuffer

 ~wxStringBuffer ()

Restores the string passed to the constructor to the usable state by calling
UngetWriteBuf (p. 1245) on it.

wxStringBuffer::operator wxChar *

wxChar * operator wxChar * ()

Returns the writable pointer to a buffer of the size at least equal to the length specified in
the constructor.

CHAPTER 7

1253

wxStringBufferLength

This tiny class allows to conveniently access the wxString (p. 1226) internal buffer as a
writable pointer without any risk of forgetting to restore the string to the usable state
later, and allows the user to set the internal length of the string.

For example, assuming you have a low-level OS function called int
GetMeaningOfLifeAsString(char *) copying the value in the provided buffer
(which must be writable, of course), and returning the actual length of the string, you
might call it like this:

 wxString theAnswer;
 wxStringBuffer theAnswerBuffer(theAnswer, 1024) ;
 int nLength = GetMeaningOfLifeAsString(theAnswe rBuffer);
 theAnswerBuffer.SetLength(nLength);
 if (theAnswer != "42")
 {
 wxLogError("Something is very wrong!");
 }

Note that the exact usage of this depends on whether on not wxUSE_STL is enabled. If
wxUSE_STL is enabled, wxStringBuffer creates a separate empty character buffer, and
if wxUSE_STL is disabled, it uses GetWriteBuf() from wxString, keeping the same buffer
wxString uses intact. In other words, relying on wxStringBuffer containing the old
wxString data is probably not a good idea if you want to build your program in both with
and without wxUSE_STL.

Note that SetLength must be called before wxStringBufferLength destructs.

Derived from

None

Include files

<wx/string.h>

wxStringBufferLength::wxStringBufferLength

 wxStringBufferLength (const wxString& str, size_t len)

Constructs a writable string buffer object associated with the given string and containing
enough space for at least len characters. Basically, this is equivalent to calling
GetWriteBuf (p. 1239) and saving the result.

wxStringBufferLength::~wxStringBufferLength

 ~wxStringBufferLength ()

Restores the string passed to the constructor to the usable state by calling
UngetWriteBuf (p. 1245) on it.

CHAPTER 7

1254

wxStringBufferLength::SetLength

void SetLength (size_t nLength)

Sets the internal length of the string referred to by wxStringBufferLength to nLength
characters.

Must be called before wxStringBufferLength destructs.

wxStringBufferLength::operator wxChar *

wxChar * operator wxChar * ()

Returns the writable pointer to a buffer of the size at least equal to the length specified in
the constructor.

wxStringClientData

Predefined client data class for holding a string.

Derived from

wxClientData (p. 142)

Include files

<clntdata.h>

Data structures

wxStringClientData::wxStringClientData

 wxStringClientData ()

Empty constructor.

 wxStringClientData (const wxString& data)

Create client data with string.

wxStringClientData::GetData

const wxString& GetData () const

Get string client data.

wxStringClientData::SetData

void SetData (const wxString& data)

CHAPTER 7

1255

Set string client data.

wxStringInputStream

This class implements an input stream which reads data from a string. It supports
seeking.

Derived from

wxInputStream (p. 777)

Include files

<wx/sstream.h>

wxStringInputStream::wxStringInputStream

 wxStringInputStream (const wxString& s)

Creates a new read-only stream using the specified string. Note that the string is copied
by the stream so if the original string is modified after using this constructor, changes to
it are not reflected when reading from stream.

wxStringOutputStream

This class implements an output stream which writes data either to a user-provided or
internally allocated string. Note that currently this stream does not support seeking but
can tell its current position.

Derived from

wxOutputStream (p. 971)

Include files

<wx/sstream.h>

wxStringOutputStream::wxStringOutputStream

 wxStringOutputStream (wxString *str = NULL)

If the provided pointer is non-NULL, data will be written to it. Otherwise, an internal string
is used for the data written to this stream, use GetString() (p. 1253) to get access to it.

If str is used, data written to the stream is appended to the current contents of it, i.e. the
string is not cleared here. However if it is not empty, the positions returned by TellO (p.
973) will be offset by the initial string length, i.e. initial stream position will be the initial

CHAPTER 7

1256

length of the string and not 0.

wxStringOutputStream::GetString

const wxString& GetString () const

Returns the string containing all the data written to the stream so far.

wxStringTokenizer

wxStringTokenizer helps you to break a string up into a number of tokens. It replaces the
standard C function strtok() and also extends it in a number of ways.

To use this class, you should create a wxStringTokenizer object, give it the string to
tokenize and also the delimiters which separate tokens in the string (by default, white
space characters will be used).

Then GetNextToken (p. 1254) may be called repeatedly until it HasMoreTokens (p.
1254) returns false .

For example:

wxStringTokenizer tkz(wxT("first:second:third:fourt h"), wxT(":"));
while (tkz.HasMoreTokens())
{
 wxString token = tkz.GetNextToken();

 // process token here
}

By default, wxStringTokenizer will behave in the same way as strtok() if the
delimiters string only contains white space characters but, unlike the standard function, it
will return empty tokens if this is not the case. This is helpful for parsing strictly formatted
data where the number of fields is fixed but some of them may be empty (i.e. TAB or
comma delimited text files).

The behaviour is governed by the last constructor (p. 1254)/SetString (p. 1255)
parameter mode which may be one of the following:

wxTOKEN_DEFAULT Default behaviour (as described above): same as
wxTOKEN_STRTOK if the delimiter string contains only
whitespaces, same as wxTOKEN_RET_EMPTY otherwise

wxTOKEN_RET_EMPTY In this mode, the empty tokens in the middle of the string
will be returned, i.e. "a::b:" will be tokenized in three
tokens 'a', '' and 'b'.

wxTOKEN_RET_EMPTY_ALL In this mode, empty trailing token (after the last delimiter
character) will be returned as well. The string as above will
contain four tokens: the already mentioned ones and
another empty one as the last one.

wxTOKEN_RET_DELIMS In this mode, the delimiter character after the end of the

CHAPTER 7

1257

current token (there may be none if this is the last token) is
returned appended to the token. Otherwise, it is the same
mode as wxTOKEN_RET_EMPTY.

wxTOKEN_STRTOK In this mode the class behaves exactly like the standard
strtok() function. The empty tokens are never returned.

Derived from

wxObject (p. 967)

Include files

<wx/tokenzr.h>

wxStringTokenizer::wxStringTokenizer

 wxStringTokenizer ()

Default constructor. You must call SetString (p. 1255) before calling any other methods.

 wxStringTokenizer (const wxString& str, const wxString& delims = " \t\r\n",
wxStringTokenizerMode mode = wxTOKEN_DEFAULT)

Constructor. Pass the string to tokenize, a string containing delimiters and the mode
specifying how the string should be tokenized.

wxStringTokenizer::CountTokens

int CountTokens () const

Returns the number of tokens remaining in the input string. The number of tokens
returned by this function is decremented each time GetNextToken (p. 1254) is called and
when it reaches 0 HasMoreTokens (p. 1254) returnsfalse .

wxStringTokenizer::HasMoreTokens

bool HasMoreTokens () const

Returns true if the tokenizer has further tokens, false if none are left.

wxStringTokenizer::GetNextToken

wxString GetNextToken ()

Returns the next token or empty string if the end of string was reached.

wxStringTokenizer::GetPosition

size_t GetPosition () const

CHAPTER 7

1258

Returns the current position (i.e. one index after the last returned token or 0 if
GetNextToken() has never been called) in the original string.

wxStringTokenizer::GetString

wxString GetString () const

Returns the part of the starting string without all token already extracted.

wxStringTokenizer::SetString

void SetString (const wxString& to_tokenize, const wxString& delims = " \t\r\n",
wxStringTokenizerMode mode = wxTOKEN_DEFAULT)

Initializes the tokenizer.

Pass the string to tokenize, a string containing delimiters, and the mode specifying how
the string should be tokenized.

wxSysColourChangedEvent

This class is used for system colour change events, which are generated when the user
changes the colour settings using the control panel. This is only appropriate under
Windows.

Derived from

wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process a system colour changed event, use this event handler macro to direct input
to a member function that takes a wxSysColourChanged argument.

EVT_SYS_COLOUR_CHANGED(func) Process a wxEVT_SYS_COLOUR_CHANGED
event.

Remarks
The default event handler for this event propagates the event to child windows, since
Windows only sends the events to top-level windows. If intercepting this event for a top-
level window, remember to call the base class handler, or to pass the event on to the
window's children explicitly.

See also

Event handling overview (p. 1674)

CHAPTER 7

1259

wxSysColourChangedEvent::wxSysColourChangedEvent

 wxSysColourChangedEvent ()

Constructor.

wxSystemOptions

wxSystemOptions stores option/value pairs that wxWidgets itself or applications can use
to alter behaviour at run-time. It can be used to optimize behaviour that doesn't deserve
a distinct API, but is still important to be able to configure.

These options are currently recognised by wxWidgets.

Windows

Option Value

no-maskblt 1 to never use WIN32's MaskBlt function, 0 to
allow it to be used where possible. Default: 0.
In some circumstances the MaskBlt function
can be slower than using the fallback code,
especially if using DC cacheing. By default,
MaskBlt will be used where it is implemented
by the operating system and driver.

msw.remap If 1 (the default), wxToolBar bitmap colours will
be remapped to the current theme's values. Set
this to 0 to disable this functionality, for
example if you're using more than 16 colours in
your tool bitmaps.

msw.window.no-clip-children If 1, windows will not automatically get the
WS_CLIPCHILDREN style. This restores the
way windows are refreshed back to the method
used in versions of wxWidgets earlier than
2.5.4, and for some complex window
hierarchies it can reduce apparent refresh
delays. You may still specify
wxCLIP_CHILDREN for individual windows.

msw.notebook.themed-background If set to 0, globally disables themed
backgrounds on notebook pages. Note that this
won't disable the theme on the actual notebook
background (noticeable only if there are no
pages).

msw.staticbitmap.htclient If set to 1, allows the static bitmap to respond
to mouse events. The default is 0, since a

CHAPTER 7

1260

value of 1 can interfere with refresh in static
boxes. Note that once set, this option cannot
be unset later in the application.

msw.staticbox.optimized-paint If set to 0, switches off optimized wxStaticBox
painting. Setting this to 0 causes more flicker,
but allows applications to paint graphics on the
parent of a static box (the optimized refresh
causes any such drawing to disappear).

Mac

Option Value

mac.window-plain-transition If 1, uses a plainer transition when showing a
window. You can also use the symbol
wxMAC_WINDOW_PLAIN_TRANSITION.

window-default-variant The default variant used by windows (cast to
integer from the wxWindowVariant enum). Also
known as wxWINDOW_DEFAULT_VARIANT.

MGL

Option Value

mgl.aa-threshold Set this integer option to point size below which
fonts are not antialiased. Default: 10.

mgl.screen-refresh Screen refresh rate in Hz. A reasonable default
is used if not specified.

Motif

Option Value

motif.largebuttons If 1, uses a bigger default size for wxButtons.

The compile-time option to include or exclude this functionality is
wxUSE_SYSTEM_OPTIONS.

Derived from

wxObject (p. 967)

Include files

<wx/sysopt.h>

wxSystemOptions::wxSystemOptions

 wxSystemOptions ()

CHAPTER 7

1261

Default constructor. You don't need to create an instance of wxSystemOptions since all
of its functions are static.

wxSystemOptions::GetOption

wxString GetOption (const wxString& name) const

Gets an option. The function is case-insensitive to name.

Returns empty string if the option hasn't been set.

See also

wxSystemOptions::SetOption (p. 1259), wxSystemOptions::GetOptionInt (p. 1258),
wxSystemOptions::HasOption (p. 1258)

wxSystemOptions::GetOptionInt

int GetOptionInt (const wxString& name) const

Gets an option as an integer. The function is case-insensitive to name.

If the option hasn't been set, this function returns 0.

See also

wxSystemOptions::SetOption (p. 1259), wxSystemOptions::GetOption (p. 1258),
wxSystemOptions::HasOption (p. 1258)

wxSystemOptions::HasOption

bool HasOption (const wxString& name) const

Returns true if the given option is present. The function is case-insensitive to name.

See also

wxSystemOptions::SetOption (p. 1259), wxSystemOptions::GetOption (p. 1258),
wxSystemOptions::GetOptionInt (p. 1258)

wxSystemOptions::IsFalse

bool IsFalse (const wxString& name) const

Returns true if the option with the given name had been set to 0value. This is mostly
useful for boolean options for which you can't useGetOptionInt(name) == 0 as this
would also be true if the option hadn't been set at all.

wxSystemOptions::SetOption

void SetOption (const wxString& name, const wxString& value)

CHAPTER 7

1262

void SetOption (const wxString& name, int value)

Sets an option. The function is case-insensitive to name.

See also

wxSystemOptions::GetOption (p. 1258), wxSystemOptions::GetOptionInt (p. 1258),
wxSystemOptions::HasOption (p. 1258)

wxSystemSettings

wxSystemSettings allows the application to ask for details about the system. This can
include settings such as standard colours, fonts, and user interface element sizes.

Derived from

wxObject (p. 967)

Include files

<wx/settings.h>

See also

wxFont (p. 535), wxColour (p. 157)

wxSystemSettings::wxSystemSettings

 wxSystemSettings ()

Default constructor. You don't need to create an instance of wxSystemSettings since all
of its functions are static.

wxSystemSettings::GetColour

static wxColour GetColour (wxSystemColour index)

Returns a system colour.

index can be one of:

wxSYS_COLOUR_SCROLLBAR The scrollbar grey area.

wxSYS_COLOUR_BACKGROUND The desktop colour.

wxSYS_COLOUR_ACTIVECAPTION Active window caption.

wxSYS_COLOUR_INACTIVECAPTION Inactive window caption.

wxSYS_COLOUR_MENU Menu background.

CHAPTER 7

1263

wxSYS_COLOUR_WINDOW Window background.

wxSYS_COLOUR_WINDOWFRAME Window frame.

wxSYS_COLOUR_MENUTEXT Menu text.

wxSYS_COLOUR_WINDOWTEXT Text in windows.

wxSYS_COLOUR_CAPTIONTEXT Text in caption, size box and scrollbar arrow
box.

wxSYS_COLOUR_ACTIVEBORDER Active window border.

wxSYS_COLOUR_INACTIVEBORDER Inactive window border.

wxSYS_COLOUR_APPWORKSPACE Background colour MDI applications.

wxSYS_COLOUR_HIGHLIGHT Item(s) selected in a control.

wxSYS_COLOUR_HIGHLIGHTTEXT Text of item(s) selected in a control.

wxSYS_COLOUR_BTNFACE Face shading on push buttons.

wxSYS_COLOUR_BTNSHADOW Edge shading on push buttons.

wxSYS_COLOUR_GRAYTEXT Greyed (disabled) text.

wxSYS_COLOUR_BTNTEXT Text on push buttons.

wxSYS_COLOUR_INACTIVECAPTIONTEXT Colour of text in active captions.

wxSYS_COLOUR_BTNHIGHLIGHT Highlight colour for buttons (same as
wxSYS_COLOUR_3DHILIGHT).

wxSYS_COLOUR_3DDKSHADOW Dark shadow for three-dimensional display
elements.

wxSYS_COLOUR_3DLIGHT Light colour for three-dimensional display
elements.

wxSYS_COLOUR_INFOTEXT Text colour for tooltip controls.

wxSYS_COLOUR_INFOBK Background colour for tooltip controls.

wxSYS_COLOUR_DESKTOP Same as wxSYS_COLOUR_BACKGROUND.

wxSYS_COLOUR_3DFACE Same as wxSYS_COLOUR_BTNFACE.

wxSYS_COLOUR_3DSHADOW Same as wxSYS_COLOUR_BTNSHADOW.

wxSYS_COLOUR_3DHIGHLIGHT Same as wxSYS_COLOUR_BTNHIGHLIGHT.

wxSYS_COLOUR_3DHILIGHT Same as wxSYS_COLOUR_BTNHIGHLIGHT.

wxSYS_COLOUR_BTNHILIGHT Same as wxSYS_COLOUR_BTNHIGHLIGHT.

CHAPTER 7

1264

wxPython note: This static method is implemented in Python as a standalone function
named wxSystemSettings_GetColour

wxSystemSettings::GetFont

static wxFont GetFont (wxSystemFont index)

Returns a system font.

index can be one of:

wxSYS_OEM_FIXED_FONT Original equipment manufacturer dependent
fixed-pitch font.

wxSYS_ANSI_FIXED_FONT Windows fixed-pitch font.

wxSYS_ANSI_VAR_FONT Windows variable-pitch (proportional) font.

wxSYS_SYSTEM_FONT System font.

wxSYS_DEVICE_DEFAULT_FONT Device-dependent font (Windows NT only).

wxSYS_DEFAULT_GUI_FONT Default font for user interface objects such as
menus and dialog boxes. Note that with
modern GUIs nothing guarantees that the
same font is used for all GUI elements, so
some controls might use a different font by
default.

wxPython note: This static method is implemented in Python as a standalone function
named wxSystemSettings_GetFont

wxSystemSettings::GetMetric

static int GetMetric (wxSystemMetric index, wxWindow* win = NULL)

Returns the value of a system metric, or -1 if the metric is not supported on the current
system. The value of win determines if the metric returned is a global value or a
wxWindow (p. 1421) based value, in which case it might determine the widget, the
display the window is on, or something similar. The window given should be as close to
the metric as possible (e.g a wxTopLevelWindow in case of the wxSYS_CAPTION_Y
metric).

index can be one of:

wxSYS_MOUSE_BUTTONS Number of buttons on mouse, or zero if no
mouse was installed.

wxSYS_BORDER_X Width of single border.

wxSYS_BORDER_Y Height of single border.

wxSYS_CURSOR_X Width of cursor.

CHAPTER 7

1265

wxSYS_CURSOR_Y Height of cursor.

wxSYS_DCLICK_X Width in pixels of rectangle within which two
successive mouse clicks must fall to generate a
double-click.

wxSYS_DCLICK_Y Height in pixels of rectangle within which two
successive mouse clicks must fall to generate a
double-click.

wxSYS_DRAG_X Width in pixels of a rectangle centered on a
drag point to allow for limited movement of the
mouse pointer before a drag operation begins.

wxSYS_DRAG_Y Height in pixels of a rectangle centered on a
drag point to allow for limited movement of the
mouse pointer before a drag operation begins.

wxSYS_EDGE_X Width of a 3D border, in pixels.

wxSYS_EDGE_Y Height of a 3D border, in pixels.

wxSYS_HSCROLL_ARROW_X Width of arrow bitmap on horizontal scrollbar.

wxSYS_HSCROLL_ARROW_Y Height of arrow bitmap on horizontal scrollbar.

wxSYS_HTHUMB_X Width of horizontal scrollbar thumb.

wxSYS_ICON_X The default width of an icon.

wxSYS_ICON_Y The default height of an icon.

wxSYS_ICONSPACING_X Width of a grid cell for items in large icon view,
in pixels. Each item fits into a rectangle of this
size when arranged.

wxSYS_ICONSPACING_Y Height of a grid cell for items in large icon view,
in pixels. Each item fits into a rectangle of this
size when arranged.

wxSYS_WINDOWMIN_X Minimum width of a window.

wxSYS_WINDOWMIN_Y Minimum height of a window.

wxSYS_SCREEN_X Width of the screen in pixels.

wxSYS_SCREEN_Y Height of the screen in pixels.

wxSYS_FRAMESIZE_X Width of the window frame for a
wxTHICK_FRAME window.

wxSYS_FRAMESIZE_Y Height of the window frame for a
wxTHICK_FRAME window.

wxSYS_SMALLICON_X Recommended width of a small icon (in window

CHAPTER 7

1266

captions, and small icon view).

wxSYS_SMALLICON_Y Recommended height of a small icon (in
window captions, and small icon view).

wxSYS_HSCROLL_Y Height of horizontal scrollbar in pixels.

wxSYS_VSCROLL_X Width of vertical scrollbar in pixels.

wxSYS_VSCROLL_ARROW_X Width of arrow bitmap on a vertical scrollbar.

wxSYS_VSCROLL_ARROW_Y Height of arrow bitmap on a vertical scrollbar.

wxSYS_VTHUMB_Y Height of vertical scrollbar thumb.

wxSYS_CAPTION_Y Height of normal caption area.

wxSYS_MENU_Y Height of single-line menu bar.

wxSYS_NETWORK_PRESENT 1 if there is a network present, 0 otherwise.

wxSYS_PENWINDOWS_PRESENT 1 if PenWindows is installed, 0 otherwise.

wxSYS_SHOW_SOUNDS Non-zero if the user requires an application to
present information visually in situations where
it would otherwise present the information only
in audible form; zero otherwise.

wxSYS_SWAP_BUTTONS Non-zero if the meanings of the left and right
mouse buttons are swapped; zero otherwise.

win is a pointer to the window for which the metric is requested. Specifying the win
parameter is encouraged, because some metrics on some ports are not supported
without one, or they might be capable of reporting better values if given one. If a window
does not make sense for a metric, one should still be given, as for example it might
determine which displays cursor width is requested with wxSYS_CURSOR_X.

wxPython note: This static method is implemented in Python as a standalone function
named wxSystemSettings_GetMetric

wxSystemSettings::GetScreenType

static wxSystemScreenType GetScreenType ()

Returns the screen type. The return value is one of:

wxSYS_SCREEN_NONE Undefined screen type

wxSYS_SCREEN_TINY Tiny screen, less than 320x240

wxSYS_SCREEN_PDA PDA screen, 320x240 or more but less than
640x480

wxSYS_SCREEN_SMALL Small screen, 640x480 or more but less than

CHAPTER 7

1267

800x600

wxSYS_SCREEN_DESKTOP Desktop screen, 800x600 or more

wxTaskBarIcon

This class represents a taskbar icon. A taskbar icon is an icon that appears in the
'system tray' and responds to mouse clicks, optionally with a tooltip above it to help
provide information.

X Window System Note

Under X Window System, the window manager must support either the System Tray
Protocol by freedesktop.org (http://freedesktop.org/Standards/systemtray-
spec)(WMs used by modern desktop environments such as GNOME >= 2, KDE >= 3
and XFCE >= 4 all do) or the older methods used in GNOME 1.2 and KDE 1 and 2. If it
doesn't, the icon will appear as a toplevel window on user's desktop.

Because not all window managers have system tray, there's no guarantee that
wxTaskBarIcon will work correctly under X Window System and so the applications
should use it only as an optional component of their user interface. The user should be
required to explicitly enable the taskbar icon on Unix, it shouldn't be on by default.

Derived from

wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/taskbar.h>

Event handling

To process input from a taskbar icon, use the following event handler macros to direct
input to member functions that take a wxTaskBarIconEvent argument. Note that not all
ports are required to send these events and so it's better to overrideCreatePopupMenu
(p. 1265) if all that the application does is that it shows a popup menu in reaction to
mouse click.

EVT_TASKBAR_MOVE(func) Process a wxEVT_TASKBAR_MOVE event.

EVT_TASKBAR_LEFT_DOWN(func) Process a wxEVT_TASKBAR_LEFT_DOWN
event.

EVT_TASKBAR_LEFT_UP(func) Process a wxEVT_TASKBAR_LEFT_UP event.

EVT_TASKBAR_RIGHT_DOWN(func) Process a wxEVT_TASKBAR_RIGHT_DOWN
event.

EVT_TASKBAR_RIGHT_UP(func) Process a wxEVT_TASKBAR_RIGHT_UP
event.

CHAPTER 7

1268

EVT_TASKBAR_LEFT_DCLICK(func) Process a wxEVT_TASKBAR_LEFT_DCLICK
event.

EVT_TASKBAR_RIGHT_DCLICK(func) Process a wxEVT_TASKBAR_RIGHT_DCLICK
event.

wxTaskBarIcon::wxTaskBarIcon

 wxTaskBarIcon ()

Default constructor.

wxTaskBarIcon::~wxTaskBarIcon

 ~wxTaskBarIcon ()

Destroys the wxTaskBarIcon object, removing the icon if not already removed.

wxTaskBarIcon::CreatePopupMenu

virtual wxMenu* CreatePopupMenu ()

This method is called by the library when the user requests popup menu (on Windows
and Unix platforms, this is when the user right-clicks the icon). Override this function in
order to provide popup menu associated with the icon.

If CreatePopupIcon returns NULL (this happens by default), no menu is shown,
otherwise the menu is displayed and then deleted by the library as soon as the user
dismisses it. The events can be handled by a class derived from wxTaskBarIcon.

wxTaskBarIcon::IsIconInstalled

bool IsIconInstalled ()

Returns true if SetIcon (p. 1266) was called with no subsequent RemoveIcon (p. 1266).

wxTaskBarIcon::IsOk

bool IsOk ()

Returns true if the object initialized successfully.

wxTaskBarIcon::PopupMenu

bool PopupMenu (wxMenu* menu)

Pops up a menu at the current mouse position. The events can be handled by a class
derived from wxTaskBarIcon.

Note

CHAPTER 7

1269

It is recommended to overrideCreatePopupIcon (p. 1265)callback instead of calling this
method from event handler, because some ports (e.g. wxCocoa) may not implement
PopupMenu and mouse click events at all.

wxTaskBarIcon::RemoveIcon

bool RemoveIcon ()

Removes the icon previously set with SetIcon (p. 1266).

wxTaskBarIcon::SetIcon

bool SetIcon (const wxIcon& icon, const wxString& tooltip)

Sets the icon, and optional tooltip text.

wxTCPClient

A wxTCPClient object represents the client part of a client-server conversation. It
emulates a DDE-style protocol, but uses TCP/IP which is available on most platforms.

A DDE-based implementation for Windows is available using wxDDEClient (p. 372).

To create a client which can communicate with a suitable server, you need to derive a
class from wxTCPConnection and another from wxTCPClient. The custom
wxTCPConnection class will intercept communications in a 'conversation' with a server,
and the custom wxTCPServer is required so that a user-overridden
wxTCPClient::OnMakeConnection (p. 1267) member can return a wxTCPConnection of
the required class, when a connection is made.

Derived from

wxClientBase
wxObject (p. 967)

Include files

<wx/sckipc.h>

See also

wxTCPServer (p. 1271), wxTCPConnection (p. 1267), Interprocess communications
overview (p. 1765)

wxTCPClient::wxTCPClient

 wxTCPClient ()

Constructs a client object.

CHAPTER 7

1270

wxTCPClient::MakeConnection

wxConnectionBase * MakeConnection (const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server specified by the host (a machine name under
Unix), service name (must contain an integer port number under Unix), and a topic
string. If the server allows a connection, a wxTCPConnection object will be returned. The
type of wxTCPConnection returned can be altered by overriding the
wxTCPClient::OnMakeConnection (p. 1267) member to return your own derived
connection object.

wxTCPClient::OnMakeConnection

wxConnectionBase * OnMakeConnection ()

The type of wxTCPConnection (p. 1267) returned from a wxTCPClient::MakeConnection
(p. 1267) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxTCPConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxTCPConnection::OnAdvise (p.
1269). You may also want to store application-specific data in instances of the new
class.

wxTCPClient::ValidHost

bool ValidHost (const wxString& host)

Returns true if this is a valid host name, false otherwise.

wxTCPConnection

A wxTCPClient object represents the connection between a client and a server. It
emulates a DDE-style protocol, but uses TCP/IP which is available on most platforms.

A DDE-based implementation for Windows is available using wxDDEConnection (p.
374).

A wxTCPConnection object can be created by making a connection using a
wxTCPClient (p. 1266) object, or by the acceptance of a connection by a wxTCPServer
(p. 1271) object. The bulk of a conversation is controlled by calling members in a
wxTCPConnection object or by overriding its members.

An application should normally derive a new connection class from wxTCPConnection,
in order to override the communication event handlers to do something interesting.

Derived from

wxConnectionBase
wxObject (p. 967)

CHAPTER 7

1271

Include files

<wx/sckipc.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat
{
 wxIPC_INVALID = 0,
 wxIPC_TEXT = 1, /* CF_TEXT */
 wxIPC_BITMAP = 2, /* CF_BITMAP */
 wxIPC_METAFILE = 3, /* CF_METAFILEPICT * /
 wxIPC_SYLK = 4,
 wxIPC_DIF = 5,
 wxIPC_TIFF = 6,
 wxIPC_OEMTEXT = 7, /* CF_OEMTEXT */
 wxIPC_DIB = 8, /* CF_DIB */
 wxIPC_PALETTE = 9,
 wxIPC_PENDATA = 10,
 wxIPC_RIFF = 11,
 wxIPC_WAVE = 12,
 wxIPC_UNICODETEXT = 13,
 wxIPC_ENHMETAFILE = 14,
 wxIPC_FILENAME = 15, /* CF_HDROP */
 wxIPC_LOCALE = 16,
 wxIPC_PRIVATE = 20
};

See also

wxTCPClient (p. 1266), wxTCPServer (p. 1271), Interprocess communications overview
(p. 1765)

wxTCPConnection::wxTCPConnection

 wxTCPConnection ()

 wxTCPConnection (char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxTCPConnection, then the constructor should not be called directly, since the
default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxTCPServer::OnAcceptConnection (p. 1272) and/or wxTCPClient::OnMakeConnection
(p. 1267) members should be replaced by functions which construct the new connection
object. If the arguments of the wxTCPConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

wxTCPConnection::Advise

bool Advise (const wxString& item, char* data, int size = -1, wxIPCFormat format =

CHAPTER 7

1272

wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxTCPConnection::OnAdvise (p.
1269) member to be called. Returns true if successful.

wxTCPConnection::Execute

bool Execute (char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxTCPConnection::Poke (p. 1270) in
that respect). Causes the server connection's wxTCPConnection::OnExecute (p. 1269)
member to be called. Returns true if successful.

wxTCPConnection::Disconnect

bool Disconnect ()

Called by the client or server application to disconnect from the other program; it causes
the wxTCPConnection::OnDisconnect (p. 1269) message to be sent to the
corresponding connection object in the other program. The default behaviour of
OnDisconnect is to delete the connection, but the calling application must explicitly
delete its side of the connection having called Disconnect . Returns true if successful.

wxTCPConnection::OnAdvise

virtual bool OnAdvise (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

wxTCPConnection::OnDisconnect

virtual bool OnDisconnect ()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.

wxTCPConnection::OnExecute

virtual bool OnExecute (const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.

wxTCPConnection::OnPoke

CHAPTER 7

1273

virtual bool OnPoke (const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxTCPConnection::OnRequest

virtual char* OnRequest (const wxString& topic, const wxString& item, int * size,
wxIPCFormat format)

Message sent to the server application when the client calls wxTCPConnection::Request
(p. 1270). The server should respond by returning a character string from OnRequest ,
or NULL to indicate no data.

wxTCPConnection::OnStartAdvise

virtual bool OnStartAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning false.

wxTCPConnection::OnStopAdvise

virtual bool OnStopAdvise (const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning false, although this doesn't have much meaning in practice.

wxTCPConnection::Poke

bool Poke (const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxTCPConnection::OnPoke
(p. 1270) member to be called. Returns true if successful.

wxTCPConnection::Request

char* Request (const wxString& item, int * size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxTCPConnection::OnRequest (p. 1270) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL
otherwise.

wxTCPConnection::StartAdvise

CHAPTER 7

1274

bool StartAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxTCPConnection::OnStartAdvise (p. 1270) member to
be called. Returns true if the server okays it, false otherwise.

wxTCPConnection::StopAdvise

bool StopAdvise (const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxTCPConnection::OnStopAdvise (p. 1270) member to be called.
Returns true if the server okays it, false otherwise.

wxTCPServer

A wxTCPServer object represents the server part of a client-server conversation. It
emulates a DDE-style protocol, but uses TCP/IP which is available on most platforms.

A DDE-based implementation for Windows is available using wxDDEServer (p. 377).

Derived from

wxServerBase
wxObject (p. 967)

Include files

<wx/sckipc.h>

See also

wxTCPClient (p. 1266), wxTCPConnection (p. 1267), IPC overview (p. 1765)

wxTCPServer::wxTCPServer

 wxTCPServer ()

Constructs a server object.

wxTCPServer::Create

bool Create (const wxString& service)

Registers the server using the given service name. Under Unix, the string must contain
an integer id which is used as an Internet port number. false is returned if the call failed
(for example, the port number is already in use).

wxTCPServer::OnAcceptConnection

CHAPTER 7

1275

virtual wxConnectionBase * OnAcceptConnection (const wxString& topic)

When a client calls MakeConnection , the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxTCPConnection type, or of a user-
derived type. If the topic is "STDIO'', the application may wish to refuse the connection.
Under Unix, when a server is created the OnAcceptConnection message is always sent
for standard input and output.

wxTempFile

wxTempFile provides a relatively safe way to replace the contents of the existing file.
The name is explained by the fact that it may be also used as just a temporary file if you
don't replace the old file contents.

Usually, when a program replaces the contents of some file it first opens it for writing,
thus losing all of the old data and then starts recreating it. This approach is not very safe
because during the regeneration of the file bad things may happen: the program may
find that there is an internal error preventing it from completing file generation, the user
may interrupt it (especially if file generation takes long time) and, finally, any other
external interrupts (power supply failure or a disk error) will leave you without either the
original file or the new one.

wxTempFile addresses this problem by creating a temporary file which is meant to
replace the original file - but only after it is fully written. So, if the user interrupts the
program during the file generation, the old file won't be lost. Also, if the program
discovers itself that it doesn't want to replace the old file there is no problem - in fact,
wxTempFile will not replace the old file by default, you should explicitly call Commit (p.
1274) to do it. Calling Discard (p. 1274) explicitly discards any modifications: it closes
and deletes the temporary file and leaves the original file unchanged. If you don't call
neither of Commit() and Discard(), the destructor will call Discard() automatically.

To summarize: if you want to replace another file, create an instance of wxTempFile
passing the name of the file to be replaced to the constructor (you may also use default
constructor and pass the file name to Open (p. 1273)). Then you can write (p. 1274) to
wxTempFile using wxFile (p. 482)-like functions and later call Commit() to replace the
old file (and close this one) or call Discard() to cancel the modifications.

Derived from

No base class

Include files

<wx/file.h>

See also:

wxFile (p. 482)
wxTempFileOutputStream (p. 1274)

CHAPTER 7

1276

wxTempFile::wxTempFile

 wxTempFile ()

Default constructor - Open (p. 1273) must be used to open the file.

wxTempFile::wxTempFile

 wxTempFile (const wxString& strName)

Associates wxTempFile with the file to be replaced and opens it. You should use
IsOpened (p. 1273) to verify if the constructor succeeded.

wxTempFile::Open

bool Open (const wxString& strName)

Open the temporary file, returns true on success, false if an error occurred.

strName is the name of file to be replaced. The temporary file is always created in the
directory where strName is. In particular, if strName doesn't include the path, it is created
in the current directory and the program should have write access to it for the function to
succeed.

wxTempFile::IsOpened

bool IsOpened () const

Returns true if the file was successfully opened.

wxTempFile::Length

wxFileOffset Length () const

Returns the length of the file.

wxTempFile::Seek

wxFileOffset Seek(wxFileOffset ofs, wxSeekMode mode = wxFromStart)

Seeks to the specified position.

wxTempFile::Tell

wxFileOffset Tell () const

Returns the current position or wxInvalidOffset if file is not opened or if another error
occurred.

wxTempFile::Write

CHAPTER 7

1277

bool Write (const void *p, size_t n)

Write to the file, return true on success, false on failure.

wxTempFile::Write

bool Write (const wxString& str, wxMBConv& conv = wxConvLibc)

Write to the file, return true on success, false on failure.

The second argument is only meaningful in Unicode build of wxWidgets whenconv is
used to convert str to multibyte representation.

wxTempFile::Commit

bool Commit ()

Validate changes: deletes the old file of name m_strName and renames the new file to
the old name. Returns true if both actions succeeded. If false is returned it may
unfortunately mean two quite different things: either that either the old file couldn't be
deleted or that the new file couldn't be renamed to the old name.

wxTempFile::Discard

void Discard ()

Discard changes: the old file contents is not changed, temporary file is deleted.

wxTempFile::~wxTempFile

 ~wxTempFile ()

Destructor calls Discard() (p. 1274) if temporary file is still opened.

wxTempFileOutputStream

wxTempFileOutputStream is an output stream based on wxTempFile (p. 1272). It
provides a relatively safe way to replace the contents of the existing file.

Derived from

wxOutputStream (p. 971)

Include files

<wx/wfstream.h>

See also

wxTempFile (p. 1272)

CHAPTER 7

1278

wxTempFileOutputStream::wxTempFileOutputStream

 wxTempFileOutputStream (const wxString& fileName)

Associates wxTempFileOutputStream with the file to be replaced and opens it. You
should use IsOk (p. 1219) to verify if the constructor succeeded.

Call Commit() (p. 1275) or Close() (p. 972) to replace the old file and close this one.
Calling Discard() (p. 1275) (or allowing the destructor to do it) will discard the changes.

wxTempFileOutputStream::Commit

bool Commit ()

Validate changes: deletes the old file of the given name and renames the new file to the
old name. Returns true if both actions succeeded. If false is returned it may
unfortunately mean two quite different things: either that either the old file couldn't be
deleted or that the new file couldn't be renamed to the old name.

wxTempFileOutputStream::Discard

void Discard ()

Discard changes: the old file contents are not changed, the temporary file is deleted.

wxTextAttr

wxTextAttr represents the character and paragraph attributes, or style, for a range of text
in a wxTextCtrl (p. 1279).

When setting up a wxTextAttr object, pass a bitlist mask to SetFlags to indicate which
style elements should be changed. As a convenience, when you call a setter such as
SetFont, the relevant bit will be set.

Derived from

No base class

Include files

<wx/textctrl.h>

Typedefs

wxTextPos is the type containing the index of a position in a text control.
wxTextCoord contains the index of a column or a row in the control.

Note that although both of these types should probably have been unsigned, due to
backwards compatibility reasons, are defined as long currently. Their use (instead of

CHAPTER 7

1279

plain long) is still encouraged as it makes the code more readable.

Constants

The following values can be passed to SetAlignment to determine paragraph alignment.

enum wxTextAttrAlignment
{
 wxTEXT_ALIGNMENT_DEFAULT,
 wxTEXT_ALIGNMENT_LEFT,
 wxTEXT_ALIGNMENT_CENTRE,
 wxTEXT_ALIGNMENT_CENTER = wxTEXT_ALIGNMENT_CENTRE,
 wxTEXT_ALIGNMENT_RIGHT,
 wxTEXT_ALIGNMENT_JUSTIFIED
};

These values are passed in a bitlist to SetFlags to determine what attributes will be
considered when setting the attributes for a text control.

#define wxTEXT_ATTR_TEXT_COLOUR 0x0001
#define wxTEXT_ATTR_BACKGROUND_COLOUR 0x0002
#define wxTEXT_ATTR_FONT_FACE 0x0004
#define wxTEXT_ATTR_FONT_SIZE 0x0008
#define wxTEXT_ATTR_FONT_WEIGHT 0x0010
#define wxTEXT_ATTR_FONT_ITALIC 0x0020
#define wxTEXT_ATTR_FONT_UNDERLINE 0x0040
#define wxTEXT_ATTR_FONT \
 wxTEXT_ATTR_FONT_FACE | wxTEXT_ATTR_FONT_SIZE |
wxTEXT_ATTR_FONT_WEIGHT \
| wxTEXT_ATTR_FONT_ITALIC | wxTEXT_ATTR_FONT_UNDERL INE
#define wxTEXT_ATTR_ALIGNMENT 0x0080
#define wxTEXT_ATTR_LEFT_INDENT 0x0100
#define wxTEXT_ATTR_RIGHT_INDENT 0x0200
#define wxTEXT_ATTR_TABS 0x0400

The values below are the possible return codes of theHitTest (p. 1289) method:// the
point asked is ...
enum wxTextCtrlHitTestResult
{
 wxTE_HT_UNKNOWN = -2, // this means HitTest() is simply not
implemented
 wxTE_HT_BEFORE, // either to the left o r upper
 wxTE_HT_ON_TEXT, // directly on
 wxTE_HT_BELOW, // below [the last line]
 wxTE_HT_BEYOND // after [the end of li ne]
};
// ... the character returned

wxTextAttr::wxTextAttr

 wxTextAttr ()

CHAPTER 7

1280

 wxTextAttr (const wxColour& colText, const wxColour& colBack = wxNullColour,
const wxFont& font = wxNullFont, wxTextAttrAlignment alignment =
wxTEXT_ALIGNMENT_DEFAULT)

The constructors initialize one or more of the text foreground colour, background colour,
font, and alignment. The values not initialized in the constructor can be set later,
otherwise wxTextCtrl::SetStyle (p. 1295) will use the default values for them.

wxTextAttr::GetAlignment

wxTextAttrAlignment GetAlignment () const

Returns the paragraph alignment.

wxTextAttr::GetBackgroundColour

const wxColour& GetBackgroundColour () const

Return the background colour specified by this attribute.

wxTextAttr::GetFont

const wxFont& GetFont () const

Return the text font specified by this attribute.

wxTextAttr::GetLeftIndent

int GetLeftIndent () const

Returns the left indent in tenths of a millimetre.

wxTextAttr::GetLeftSubIndent

int GetLeftSubIndent () const

Returns the left sub indent for all lines but the first line in a paragraph in tenths of a
millimetre.

wxTextAttr::GetRightIndent

int GetRightIndent () const

Returns the right indent in tenths of a millimetre.

wxTextAttr::GetTabs

const wxArrayInt& GetTabs () const

Returns the array of integers representing the tab stops. Each array element specifies

CHAPTER 7

1281

the tab stop in tenths of a millimetre.

wxTextAttr::GetTextColour

const wxColour& GetTextColour () const

Return the text colour specified by this attribute.

wxTextAttr::HasBackgroundColour

bool HasBackgroundColour () const

Returns true if this style specifies the background colour to use.

wxTextAttr::HasFont

bool HasFont () const

Returns true if this style specifies the font to use.

wxTextAttr::HasTextColour

bool HasTextColour () const

Returns true if this style specifies the foreground colour to use.

wxTextAttr::GetFlags

long GetFlags ()

Returns a bitlist indicating which attributes will be set.

wxTextAttr::IsDefault

bool IsDefault () const

Returns true if this style specifies any non-default attributes.

wxTextAttr::SetAlignment

void SetAlignment (wxTextAttrAlignment alignment)

Sets the paragraph alignment.

wxTextAttr::SetBackgroundColour

void SetBackgroundColour (const wxColour& colour)

Sets the background colour.

CHAPTER 7

1282

wxTextAttr::SetFlags

void SetFlags (long flags)

Pass a bitlist indicating which attributes will be set.

wxTextAttr::SetFont

void SetFont (const wxFont& font)

Sets the text font.

wxTextAttr::SetLeftIndent

void SetLeftIndent (int indent, int subIndent = 0)

Sets the left indent in tenths of a millimetre. subIndent sets the indent for all lines but the
first line in a paragraph relative to the first line.

wxTextAttr::SetRightIndent

void SetRightIndent (int indent)

Sets the right indent in tenths of a millimetre.

wxTextAttr::SetTabs

void SetTabs (const wxArrayInt& tabs)

Sets the array of integers representing the tab stops. Each array element specifies the
tab stop in tenths of a millimetre.

wxTextAttr::SetTextColour

void SetTextColour (const wxColour& colour)

Sets the text colour.

wxTextCtrl

A text control allows text to be displayed and edited. It may be single line or multi-line.

Derived from

streambuf
wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

CHAPTER 7

1283

Include files

<wx/textctrl.h>

Window styles

wxTE_PROCESS_ENTER The control will generate the event
wxEVT_COMMAND_TEXT_ENTER (otherwise pressing
Enter key is either processed internally by the control or
used for navigation between dialog controls).

wxTE_PROCESS_TAB The control will receive wxEVT_CHAR events for TAB
pressed - normally, TAB is used for passing to the next
control in a dialog instead. For the control created with this
style, you can still use Ctrl-Enter to pass to the next control
from the keyboard.

wxTE_MULTILINE The text control allows multiple lines.

wxTE_PASSWORD The text will be echoed as asterisks.

wxTE_READONLY The text will not be user-editable.

wxTE_RICH Use rich text control under Win32, this allows to have more
than 64KB of text in the control even under Win9x. This
style is ignored under other platforms.

wxTE_RICH2 Use rich text control version 2.0 or 3.0 under Win32, this
style is ignored under other platforms

wxTE_AUTO_URL Highlight the URLs and generate the wxTextUrlEvents
when mouse events occur over them. This style is only
supported for wxTE_RICH Win32 and multi-line wxGTK2
text controls.

wxTE_NOHIDESEL By default, the Windows text control doesn't show the
selection when it doesn't have focus - use this style to force
it to always show it. It doesn't do anything under other
platforms.

wxHSCROLL A horizontal scrollbar will be created and used, so that text
won't be wrapped. No effect under wxGTK1.

wxTE_LEFT The text in the control will be left-justified (default).

wxTE_CENTRE The text in the control will be centered (currently wxMSW
and wxGTK2 only).

wxTE_RIGHT The text in the control will be right-justified (currently
wxMSW and wxGTK2 only).

wxTE_DONTWRAP Same as wxHSCROLL style: don't wrap at all, show
horizontal scrollbar instead.

CHAPTER 7

1284

wxTE_CHARWRAP Wrap the lines too long to be shown entirely at any position
(wxUniv and wxGTK2 only).

wxTE_WORDWRAP Wrap the lines too long to be shown entirely at word
boundaries (wxUniv and wxGTK2 only).

wxTE_BESTWRAP Wrap the lines at word boundaries or at any other
character if there are words longer than the window width
(this is the default).

wxTE_CAPITALIZE On PocketPC and Smartphone, causes the first letter to be
capitalized.

See also window styles overview (p. 1686) and wxTextCtrl::wxTextCtrl (p. 1283).

wxTextCtrl text format

The multiline text controls always store the text as a sequence of lines separated by \n
characters, i.e. in the Unix text format even on non-Unix platforms. This allows the user
code to ignore the differences between the platforms but at a price: the indices in the
control such as those returned by GetInsertionPoint (p. 1287) orGetSelection (p. 1288)
can not be used as indices into the string returned by GetValue (p. 1289) as they're
going to be slightly off for platforms using\r\n as separator (as Windows does), for
example.

Instead, if you need to obtain a substring between the 2 indices obtained from the
control with the help of the functions mentioned above, you should use GetRange (p.
1288). And the indices themselves can only be passed to other methods, for
exampleSetInsertionPoint (p. 1294) orSetSelection (p. 1295).

To summarize: never use the indices returned by (multiline) wxTextCtrl as indices into
the string it contains, but only as arguments to be passed back to the other wxTextCtrl
methods.

wxTextCtrl styles

Multi-line text controls support the styles, i.e. provide a possibility to set colours and font
for individual characters in it (note that under Windows wxTE_RICH style is required for
style support). To use the styles you can either call SetDefaultStyle (p. 1293) before
inserting the text or call SetStyle (p. 1295) later to change the style of the text already in
the control (the first solution is much more efficient).

In either case, if the style doesn't specify some of the attributes (for example you only
want to set the text colour but without changing the font nor the text background), the
values of the default style will be used for them. If there is no default style, the attributes
of the text control itself are used.

So the following code correctly describes what it does: the second call to SetDefaultStyle
(p. 1293) doesn't change the text foreground colour (which stays red) while the last one
doesn't change the background colour (which stays grey):

 text->SetDefaultStyle(wxTextAttr(*wxRED));
 text->AppendText("Red text\n");
 text->SetDefaultStyle(wxTextAttr(wxNullColour,

CHAPTER 7

1285

*wxLIGHT_GREY));
 text->AppendText("Red on grey text\n");
 text->SetDefaultStyle(wxTextAttr(*wxBLUE);
 text->AppendText("Blue on grey text\n");

wxTextCtrl and C++ streams

This class multiply-inherits from streambuf where compilers allow, allowing code such
as the following:

 wxTextCtrl *control = new wxTextCtrl(...);

 ostream stream(control)

 stream << 123.456 << " some text\n";
 stream.flush();

If your compiler does not support derivation from streambuf and gives a compile error,
define the symbol NO_TEXT_WINDOW_STREAM in the wxTextCtrl header file.

Note that independently of this setting you can always use wxTextCtrl itself in a stream-
like manner:

 wxTextCtrl *control = new wxTextCtrl(...);

 *control << 123.456 << " some text\n";

always works. However the possibility to create an ostream associated with wxTextCtrl
may be useful if you need to redirect the output of a function taking an ostream as
parameter to a text control.

Another commonly requested need is to redirect std::cout to the text control. This could
be done in the following way:

 #include <iostream>

 wxTextCtrl *control = new wxTextCtrl(...);

 std::streambuf *sbOld = std::cout.rdbuf();
 std::cout.rdbuf(*control);

 // use cout as usual, the output appears in the t ext control
 ...

 std::cout.rdbuf(sbOld);

But wxWidgets provides a convenient class to make it even simpler so instead you may
just do

 #include <iostream>

 wxTextCtrl *control = new wxTextCtrl(...);

 wxStreamToTextRedirector redirect(control);

 // all output to cout goes into the text control until the exit
from current
 // scope

CHAPTER 7

1286

See wxStreamToTextRedirector (p. 1225) for more details.

Event handling

The following commands are processed by default event handlers in wxTextCtrl:
wxID_CUT, wxID_COPY, wxID_PASTE, wxID_UNDO, wxID_REDO. The associated UI
update events are also processed automatically, when the control has the focus.

To process input from a text control, use these event handler macros to direct input to
member functions that take a wxCommandEvent (p. 172) argument.

EVT_TEXT(id, func) Respond to a
wxEVT_COMMAND_TEXT_UPDATED event,
generated when the text changes. Notice that
this event will always be sent when the text
controls contents changes - whether this is due
to user input or comes from the program itself
(for example, if SetValue() is called)

EVT_TEXT_ENTER(id, func) Respond to a
wxEVT_COMMAND_TEXT_ENTER event,
generated when enter is pressed in a text
control (which must have
wxTE_PROCESS_ENTER style for this event
to be generated).

EVT_TEXT_URL(id, func) A mouse event occurred over an URL in the
text control (wxMSW and wxGTK2 only)

EVT_TEXT_MAXLEN(id, func) User tried to enter more text into the control
than the limit set bySetMaxLength (p. 1294).

wxTextCtrl::wxTextCtrl

 wxTextCtrl ()

Default constructor.

 wxTextCtrl (wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& validator = wxDefaultValidator, const wxString& name =
wxTextCtrlNameStr)

Constructor, creating and showing a text control.

Parameters

parent

Parent window. Should not be NULL.

id

CHAPTER 7

1287

Control identifier. A value of -1 denotes a default value.

value

Default text value.

pos

Text control position.

size

Text control size.

style

Window style. See wxTextCtrl (p. 1279).

validator

Window validator.

name

Window name.

Remarks

The horizontal scrollbar (wxHSCROLL style flag) will only be created for multi-line text
controls. Without a horizontal scrollbar, text lines that don't fit in the control's size will be
wrapped (but no newline character is inserted). Single line controls don't have a
horizontal scrollbar, the text is automatically scrolled so that the insertion point (p. 1287)
is always visible.

See also

wxTextCtrl::Create (p. 1286), wxValidator (p. 1394)

wxTextCtrl::~wxTextCtrl

 ~wxTextCtrl ()

Destructor, destroying the text control.

wxTextCtrl::AppendText

void AppendText (const wxString& text)

Appends the text to the end of the text control.

Parameters

text

Text to write to the text control.

CHAPTER 7

1288

Remarks

After the text is appended, the insertion point will be at the end of the text control. If this
behaviour is not desired, the programmer should use GetInsertionPoint (p. 1287) and
SetInsertionPoint (p. 1294).

See also

wxTextCtrl::WriteText (p. 1296)

wxTextCtrl::CanCopy

virtual bool CanCopy ()

Returns true if the selection can be copied to the clipboard.

wxTextCtrl::CanCut

virtual bool CanCut ()

Returns true if the selection can be cut to the clipboard.

wxTextCtrl::CanPaste

virtual bool CanPaste ()

Returns true if the contents of the clipboard can be pasted into the text control. On
some platforms (Motif, GTK) this is an approximation and returns true if the control is
editable, false otherwise.

wxTextCtrl::CanRedo

virtual bool CanRedo ()

Returns true if there is a redo facility available and the last operation can be redone.

wxTextCtrl::CanUndo

virtual bool CanUndo ()

Returns true if there is an undo facility available and the last operation can be undone.

wxTextCtrl::Clear

virtual void Clear ()

Clears the text in the control.

Note that this function will generate a wxEVT_COMMAND_TEXT_UPDATEDevent.

wxTextCtrl::Copy

CHAPTER 7

1289

virtual void Copy ()

Copies the selected text to the clipboard under Motif and MS Windows.

wxTextCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& validator = wxDefaultValidator, const wxString& name =
wxTextCtrlNameStr)

Creates the text control for two-step construction. Derived classes should call or replace
this function. See wxTextCtrl::wxTextCtrl (p. 1283) for further details.

wxTextCtrl::Cut

virtual void Cut ()

Copies the selected text to the clipboard and removes the selection.

wxTextCtrl::DiscardEdits

void DiscardEdits ()

Resets the internal 'modified' flag as if the current edits had been saved.

wxTextCtrl::EmulateKeyPress

bool EmulateKeyPress (const wxKeyEvent& event)

This functions inserts into the control the character which would have been inserted if
the given key event had occurred in the text control. Theevent object should be the
same as the one passed to EVT_KEY_DOWNhandler previously by wxWidgets.

Please note that this function doesn't currently work correctly for all keys under any
platform but MSW.

Return value

true if the event resulted in a change to the control, false otherwise.

wxTextCtrl::GetDefaultStyle

const wxTextAttr& GetDefaultStyle () const

Returns the style currently used for the new text.

See also

SetDefaultStyle (p. 1293)

CHAPTER 7

1290

wxTextCtrl::GetInsertionPoint

virtual long GetInsertionPoint () const

Returns the insertion point. This is defined as the zero based index of the character
position to the right of the insertion point. For example, if the insertion point is at the end
of the text control, it is equal to both GetValue() (p. 1289).Length() andGetLastPosition()
(p. 1287).

The following code snippet safely returns the character at the insertion point or the zero
character if the point is at the end of the control.

 char GetCurrentChar(wxTextCtrl *tc) {
 if (tc->GetInsertionPoint() == tc->GetLastPosit ion())
 return '\0';
 return tc->GetValue[tc->GetInsertionPoint()];
 }

wxTextCtrl::GetLastPosition

virtual wxTextPos GetLastPosition () const

Returns the zero based index of the last position in the text control, which is equal to the
number of characters in the control.

wxTextCtrl::GetLineLength

int GetLineLength (long lineNo) const

Gets the length of the specified line, not including any trailing newline character(s).

Parameters

lineNo

Line number (starting from zero).

Return value

The length of the line, or -1 if lineNo was invalid.

wxTextCtrl::GetLineText

wxString GetLineText (long lineNo) const

Returns the contents of a given line in the text control, not including any trailing newline
character(s).

Parameters

lineNo

The line number, starting from zero.

CHAPTER 7

1291

Return value

The contents of the line.

wxTextCtrl::GetNumberOfLines

int GetNumberOfLines () const

Returns the number of lines in the text control buffer.

Remarks

Note that even empty text controls have one line (where the insertion point is), so
GetNumberOfLines() never returns 0.

For gtk_text (multi-line) controls, the number of lines is calculated by actually counting
newline characters in the buffer. You may wish to avoid using functions that work with
line numbers if you are working with controls that contain large amounts of text.

wxTextCtrl::GetRange

virtual wxString GetRange (long from, long to) const

Returns the string containing the text starting in the positions from and up to to in the
control. The positions must have been returned by another wxTextCtrl method.

Please note that the positions in a multiline wxTextCtrl do not correspond to the indices
in the string returned byGetValue (p. 1289) because of the different new line
representations (CR or CR LF) and so this method should be used to obtain the correct
results instead of extracting parts of the entire value. It may also be more efficient,
especially if the control contains a lot of data.

wxTextCtrl::GetSelection

virtual void GetSelection (long* from, long* to) const

Gets the current selection span. If the returned values are equal, there was no selection.

Please note that the indices returned may be used with the other wxTextctrl methods but
don't necessarily represent the correct indices into the string returned by GetValue() (p.
1289) for multiline controls under Windows (at least,) you should
useGetStringSelection() (p. 1289) to get the selected text.

Parameters

from

The returned first position.

to

The returned last position.

CHAPTER 7

1292

wxPython note: The wxPython version of this method returns a tuple consisting of the
from and to values.

wxPerl note: In wxPerl this method takes no parameter and returns a 2-element list (
from, to) .

wxTextCtrl::GetStringSelection

virtual wxString GetStringSelection ()

Gets the text currently selected in the control. If there is no selection, the returned string
is empty.

wxTextCtrl::GetStyle

bool GetStyle (long position, wxTextAttr& style)

Returns the style at this position in the text control. Not all platforms support this
function.

Return value

true on success, false if an error occurred - it may also mean that the styles are not
supported under this platform.

See also

wxTextCtrl::SetStyle (p. 1295), wxTextAttr (p. 1275)

wxTextCtrl::GetValue

wxString GetValue () const

Gets the contents of the control. Notice that for a multiline text control, the lines will be
separated by (Unix-style) \n characters, even under Windows where they are separated
by a \r\n sequence in the native control.

wxTextCtrl::HitTest

wxTextCtrlHitTestResult HitTest (const wxPoint& pt, wxTextCoord *col,
wxTextCoord *row) const

This function finds the character at the specified position expressed in pixels. If the
return code is not wxTE_HT_UNKNOWN the row and column of the character closest to
this position are returned in the col androw parameters (unless the pointers are NULL
which is allowed).

Please note that this function is currently only implemented in wxUniv, wxMSW and
wxGTK2 ports.

See also

CHAPTER 7

1293

PositionToXY (p. 1291), XYToPosition (p. 1297)

wxPerl note: In wxPerl this function takes only the position argument and returns a 3-
element list (result, col, row) .

wxTextCtrl::IsEditable

bool IsEditable () const

Returns true if the controls contents may be edited by user (note that it always can be
changed by the program), i.e. if the control hasn't been put in read-only mode by a
previous call toSetEditable (p. 1294).

wxTextCtrl::IsModified

bool IsModified () const

Returns true if the text has been modified by user. Note that callingSetValue (p. 1296)
doesn't make the control modified.

See also

MarkDirty (p. 1291)

wxTextCtrl::IsMultiLine

bool IsMultiLine () const

Returns true if this is a multi line edit control and false otherwise.

See also

IsSingleLine (p. 1290)

wxTextCtrl::IsSingleLine

bool IsSingleLine () const

Returns true if this is a single line edit control and false otherwise.

See also

IsMultiLine (p. 1290)

wxTextCtrl::LoadFile

bool LoadFile (const wxString& filename)

Loads and displays the named file, if it exists.

Parameters

CHAPTER 7

1294

filename

The filename of the file to load.

Return value

true if successful, false otherwise.

wxTextCtrl::MarkDirty

void MarkDirty ()

Mark text as modified (dirty).

See also

IsModified (p. 1290)

wxTextCtrl::OnDropFiles

void OnDropFiles (wxDropFilesEvent& event)

This event handler function implements default drag and drop behaviour, which is to load
the first dropped file into the control.

Parameters

event

The drop files event.

Remarks

This is not implemented on non-Windows platforms.

See also

wxDropFilesEvent (p. 448)

wxTextCtrl::Paste

virtual void Paste ()

Pastes text from the clipboard to the text item.

wxTextCtrl::PositionToXY

bool PositionToXY (long pos, long * x, long * y) const

Converts given position to a zero-based column, line number pair.

Parameters

CHAPTER 7

1295

pos

Position.

x

Receives zero based column number.

y

Receives zero based line number.

Return value

true on success, false on failure (most likely due to a too large position parameter).

See also

wxTextCtrl::XYToPosition (p. 1297)

wxPython note: In Python, PositionToXY() returns a tuple containing the x and y
values, so (x,y) = PositionToXY() is equivalent to the call described above.

wxPerl note: In wxPerl this method only takes the pos parameter, and returns a 2-
element list (x, y) .

wxTextCtrl::Redo

virtual void Redo ()

If there is a redo facility and the last operation can be redone, redoes the last operation.
Does nothing if there is no redo facility.

wxTextCtrl::Remove

virtual void Remove (long from, long to)

Removes the text starting at the first given position up to (but not including) the character
at the last position.

Parameters

from

The first position.

to

The last position.

wxTextCtrl::Replace

virtual void Replace (long from, long to, const wxString& value)

CHAPTER 7

1296

Replaces the text starting at the first position up to (but not including) the character at
the last position with the given text.

Parameters

from

The first position.

to

The last position.

value

The value to replace the existing text with.

wxTextCtrl::SaveFile

bool SaveFile (const wxString& filename)

Saves the contents of the control in a text file.

Parameters

filename

The name of the file in which to save the text.

Return value

true if the operation was successful, false otherwise.

wxTextCtrl::SetDefaultStyle

bool SetDefaultStyle (const wxTextAttr& style)

Changes the default style to use for the new text which is going to be added to the
control using WriteText (p. 1296) or AppendText (p. 1284).

If either of the font, foreground, or background colour is not set in style, the values of the
previous default style are used for them. If the previous default style didn't set them
neither, the global font or colours of the text control itself are used as fall back.

However if the style parameter is the default wxTextAttr, then the default style is just
reset (instead of being combined with the new style which wouldn't change it at all).

Parameters

style

The style for the new text.

Return value

CHAPTER 7

1297

true on success, false if an error occurred - may also mean that the styles are not
supported under this platform.

See also

GetDefaultStyle (p. 1286)

wxTextCtrl::SetEditable

virtual void SetEditable (const bool editable)

Makes the text item editable or read-only, overriding the wxTE_READONLY flag.

Parameters

editable

If true , the control is editable. If false , the control is read-only.

See also

IsEditable (p. 1290)

wxTextCtrl::SetInsertionPoint

virtual void SetInsertionPoint (long pos)

Sets the insertion point at the given position.

Parameters

pos

Position to set.

wxTextCtrl::SetInsertionPointEnd

virtual void SetInsertionPointEnd ()

Sets the insertion point at the end of the text control. This is equivalent to
SetInsertionPoint (p. 1294)(GetLastPosition (p. 1287)()).

wxTextCtrl::SetMaxLength

virtual void SetMaxLength (unsigned long len)

This function sets the maximum number of characters the user can enter into the control.
In other words, it allows to limit the text value length to lennot counting the terminating
NUL character.

If len is 0, the previously set max length limit, if any, is discarded and the user may enter
as much text as the underlying native text control widget supports (typically at least
32Kb).

CHAPTER 7

1298

If the user tries to enter more characters into the text control when it already is filled up
to the maximal length, awxEVT_COMMAND_TEXT_MAXLEN event is sent to notify the
program about it (giving it the possibility to show an explanatory message, for example)
and the extra input is discarded.

Note that under GTK+, this function may only be used with single line text controls.

Compatibility

Only implemented in wxMSW/wxGTK starting with wxWidgets 2.3.2.

wxTextCtrl::SetSelection

virtual void SetSelection (long from, long to)

Selects the text starting at the first position up to (but not including) the character at the
last position. If both parameters are equal to -1 all text in the control is selected.

Parameters

from

The first position.

to

The last position.

wxTextCtrl::SetStyle

bool SetStyle (long start, long end, const wxTextAttr& style)

Changes the style of the given range. If any attribute within style is not set, the
corresponding attribute from GetDefaultStyle() (p. 1286) is used.

Parameters

start

The start of the range to change.

end

The end of the range to change.

style

The new style for the range.

Return value

true on success, false if an error occurred - it may also mean that the styles are not
supported under this platform.

CHAPTER 7

1299

See also

wxTextCtrl::GetStyle (p. 1289), wxTextAttr (p. 1275)

wxTextCtrl::SetValue

virtual void SetValue (const wxString& value)

Sets the text value and marks the control as not-modified (which means thatIsModified
(p. 1290) would return false immediately after the call to SetValue).

Note that this function will generate a wxEVT_COMMAND_TEXT_UPDATEDevent.

Parameters

value

The new value to set. It may contain newline characters if the text control is multi-
line.

wxTextCtrl::ShowPosition

void ShowPosition (long pos)

Makes the line containing the given position visible.

Parameters

pos

The position that should be visible.

wxTextCtrl::Undo

virtual void Undo ()

If there is an undo facility and the last operation can be undone, undoes the last
operation. Does nothing if there is no undo facility.

wxTextCtrl::WriteText

void WriteText (const wxString& text)

Writes the text into the text control at the current insertion position.

Parameters

text

Text to write to the text control.

Remarks

CHAPTER 7

1300

Newlines in the text string are the only control characters allowed, and they will cause
appropriate line breaks. See wxTextCtrl::<< (p. 1297) and wxTextCtrl::AppendText (p.
1284) for more convenient ways of writing to the window.

After the write operation, the insertion point will be at the end of the inserted text, so
subsequent write operations will be appended. To append text after the user may have
interacted with the control, call wxTextCtrl::SetInsertionPointEnd (p. 1294) before writing.

wxTextCtrl::XYToPosition

long XYToPosition (long x, long y)

Converts the given zero based column and line number to a position.

Parameters

x

The column number.

y

The line number.

Return value

The position value.

wxTextCtrl::operator <<

wxTextCtrl& operator << (const wxString& s)

wxTextCtrl& operator << (int i)

wxTextCtrl& operator << (long i)

wxTextCtrl& operator << (float f)

wxTextCtrl& operator << (double d)

wxTextCtrl& operator << (char c)

Operator definitions for appending to a text control, for example:

 wxTextCtrl *wnd = new wxTextCtrl(my_frame);

 (*wnd) << "Welcome to text control number " << 1 << ".\n";

wxTextDataObject

wxTextDataObject is a specialization of wxDataObject for text data. It can be used
without change to paste data into the wxClipboard (p. 144) or a wxDropSource (p. 449).

CHAPTER 7

1301

A user may wish to derive a new class from this class for providing text on-demand in
order to minimize memory consumption when offering data in several formats, such as
plain text and RTF because by default the text is stored in a string in this class, but it
might as well be generated when requested. For this, GetTextLength (p. 1298) and
GetText (p. 1299) will have to be overridden.

Note that if you already have the text inside a string, you will not achieve any efficiency
gain by overriding these functions because copying wxStrings is already a very efficient
operation (data is not actually copied because wxStrings are reference counted).

wxPython note: If you wish to create a derived wxTextDataObject class in wxPython
you should derive the class from wxPyTextDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but all of the data transfer functions may be overridden to
increase efficiency.

Derived from

wxDataObjectSimple (p. 233)
wxDataObject (p. 229)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1740), wxDataObject (p. 229),
wxDataObjectSimple (p. 233), wxFileDataObject (p. 490), wxBitmapDataObject (p. 94)

wxTextDataObject::wxTextDataObject

 wxTextDataObject (const wxString& text = wxEmptyString)

Constructor, may be used to initialise the text (otherwise SetText (p. 1299) should be
used later).

wxTextDataObject::GetTextLength

virtual size_t GetTextLength () const

Returns the data size. By default, returns the size of the text data set in the constructor
or using SetText (p. 1299). This can be overridden to provide text size data on-demand.
It is recommended to return the text length plus 1 for a trailing zero, but this is not strictly
required.

wxTextDataObject::GetText

CHAPTER 7

1302

virtual wxString GetText () const

Returns the text associated with the data object. You may wish to override this method
when offering data on-demand, but this is not required by wxWidgets' internals. Use this
method to get data in text form from the wxClipboard (p. 144).

wxTextDataObject::SetText

virtual void SetText (const wxString& strText)

Sets the text associated with the data object. This method is called when the data object
receives the data and, by default, copies the text into the member variable. If you want to
process the text on the fly you may wish to override this function.

wxTextDropTarget

A predefined drop target for dealing with text data.

Derived from

wxDropTarget (p. 452)

Include files

<wx/dnd.h>

See also

Drag and drop overview (p. 1740), wxDropSource (p. 449), wxDropTarget (p. 452),
wxFileDropTarget (p. 495)

wxTextDropTarget::wxTextDropTarget

 wxTextDropTarget ()

Constructor.

wxTextDropTarget::OnDrop

virtual bool OnDrop (long x, long y, const void *data, size_t size)

See wxDropTarget::OnDrop (p. 454). This function is implemented appropriately for text,
and calls wxTextDropTarget::OnDropText (p. 1299).

wxTextDropTarget::OnDropText

virtual bool OnDropText (wxCoord x, wxCoord y, const wxString& data)

Override this function to receive dropped text.

CHAPTER 7

1303

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

data

The data being dropped: a wxString.

Return value

Return true to accept the data, false to veto the operation.

wxTextEntryDialog

This class represents a dialog that requests a one-line text string from the user. It is
implemented as a generic wxWidgets dialog.

Derived from

wxDialog (p. 391)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/textdlg.h>

See also

wxTextEntryDialog overview (p. 1724)

wxTextEntryDialog::wxTextEntryDialog

 wxTextEntryDialog (wxWindow* parent, const wxString& message, const
wxString& caption = "Please enter text", const wxString& defaultValue = "", long style
= wxOK | wxCANCEL | wxCENTRE, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxTextEntryDialog::ShowModal (p. 1301) to show the dialog.

Parameters

parent

Parent window.

CHAPTER 7

1304

message

Message to show on the dialog.

defaultValue

The default value, which may be the empty string.

style

A dialog style, specifying the buttons (wxOK, wxCANCEL) and an optional
wxCENTRE style. Additionally, wxTextCtrl styles (such aswxTE_PASSWORD)
may be specified here.

pos

Dialog position.

wxTextEntryDialog::~wxTextEntryDialog

 ~wxTextEntryDialog ()

Destructor.

wxTextEntryDialog::GetValue

wxString GetValue () const

Returns the text that the user has entered if the user has pressed OK, or the original
value if the user has pressed Cancel.

wxTextEntryDialog::SetValue

void SetValue (const wxString& value)

Sets the default text value.

wxTextEntryDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxTextFile

The wxTextFile is a simple class which allows to work with text files on line by line basis.
It also understands the differences in line termination characters under different
platforms and will not do anything bad to files with "non native" line termination
sequences - in fact, it can be also used to modify the text files and change the line
termination characters from one type (say DOS) to another (say Unix).

CHAPTER 7

1305

One word of warning: the class is not at all optimized for big files and thus it will load the
file entirely into memory when opened. Of course, you should not work in this way with
large files (as an estimation, anything over 1 Megabyte is surely too big for this class).
On the other hand, it is not a serious limitation for small files like configuration files or
program sources which are well handled by wxTextFile.

The typical things you may do with wxTextFile in order are:

 • Create and open it: this is done with either Create (p. 1303) or Open (p. 1306)
function which opens the file (name may be specified either as the argument to
these functions or in the constructor), reads its contents in memory (in the case
of Open()) and closes it.

 • Work with the lines in the file: this may be done either with "direct access"
functions like GetLineCount (p. 1304) and GetLine (p. 1304) (operator[] does
exactly the same but looks more like array addressing) or with "sequential
access" functions which include GetFirstLine (p. 1305)/GetNextLine (p. 1305)
and also GetLastLine (p. 1305)/GetPrevLine (p. 1305). For the sequential
access functions the current line number is maintained: it is returned by
GetCurrentLine (p. 1304) and may be changed with GoToLine (p. 1304).

 • Add/remove lines to the file: AddLine (p. 1303) and InsertLine (p. 1306) add new
lines while RemoveLine (p. 1306) deletes the existing ones.Clear (p. 1307)
resets the file to empty.

 • Save your changes: notice that the changes you make to the file will not be
saved automatically; calling Close (p. 1303) or doing nothing discards them! To
save the changes you must explicitly call Write (p. 1307) - here, you may also
change the line termination type if you wish.

Derived from

No base class

Include files

<wx/textfile.h>

Data structures

The following constants identify the line termination type:

enum wxTextFileType
{
 wxTextFileType_None, // incomplete (the last l ine of the file
only)
 wxTextFileType_Unix, // line is terminated wit h 'LF' = 0xA =
10 = '\n'
 wxTextFileType_Dos, // 'CR' 'LF'
 wxTextFileType_Mac // 'CR' = 0xD =
13 = '\r'
};

See also

CHAPTER 7

1306

wxFile (p. 482)

wxTextFile::wxTextFile

 wxTextFile () const

Default constructor, use Create (p. 1303) or Open (p. 1306) with a file name parameter
to initialize the object.

wxTextFile::wxTextFile

 wxTextFile (const wxString& strFile) const

Constructor does not load the file into memory, use Open() to do it.

wxTextFile::~wxTextFile

 ~wxTextFile () const

Destructor does nothing.

wxTextFile::AddLine

void AddLine (const wxString& str, wxTextFileType type = typeDefault) const

Adds a line to the end of file.

wxTextFile::Close

bool Close () const

Closes the file and frees memory, losing all changes . Use Write() (p. 1307) if you want
to save them.

wxTextFile::Create

bool Create () const

bool Create (const wxString& strFile) const

Creates the file with the given name or the name which was given in theconstructor (p.
1303). The array of file lines is initially empty.

It will fail if the file already exists, Open (p. 1306) should be used in this case.

wxTextFile::Exists

bool Exists () const

CHAPTER 7

1307

Return true if file exists - the name of the file should have been specified in the
constructor before calling Exists().

wxTextFile::IsOpened

bool IsOpened () const

Returns true if the file is currently opened.

wxTextFile::GetLineCount

size_t GetLineCount () const

Get the number of lines in the file.

wxTextFile::GetLine

wxString& GetLine (size_t n) const

Retrieves the line number n from the file. The returned line may be modified but you
shouldn't add line terminator at the end - this will be done by wxTextFile.

wxTextFile::operator[]

wxString& operator[] (size_t n) const

The same as GetLine (p. 1304).

wxTextFile::GetCurrentLine

size_t GetCurrentLine () const

Returns the current line: it has meaning only when you're using
GetFirstLine()/GetNextLine() functions, it doesn't get updated when you're using "direct
access" functions like GetLine(). GetFirstLine() and GetLastLine() also change the value
of the current line, as well as GoToLine().

wxTextFile::GoToLine

void GoToLine (size_t n) const

Changes the value returned by GetCurrentLine (p. 1304) and used by GetFirstLine() (p.
1305)/GetNextLine() (p. 1305).

wxTextFile::Eof

bool Eof () const

Returns true if the current line is the last one.

CHAPTER 7

1308

wxTextFile::GetEOL

static const char* GetEOL (wxTextFileType type = typeDefault) const

Get the line termination string corresponding to given constant. typeDefault is the value
defined during the compilation and corresponds to the native format of the platform, i.e. it
will be wxTextFileType_Dos under Windows, wxTextFileType_Unix under Unix
(including Mac OS X when compiling with the Apple Developer Tools) and
wxTextFileType_Mac under Mac OS (including Mac OS X when compiling with
CodeWarrior).

wxTextFile::GetFirstLine

wxString& GetFirstLine () const

This method together with GetNextLine() (p. 1305) allows more "iterator-like" traversal
of the list of lines, i.e. you may write something like:

wxTextFile file;
...
for (str = file.GetFirstLine(); !file.Eof(); str =
file.GetNextLine())
{
 // do something with the current line in str
}
// do something with the last line in str

wxTextFile::GetNextLine

wxString& GetNextLine ()

Gets the next line (see GetFirstLine (p. 1305) for the example).

wxTextFile::GetPrevLine

wxString& GetPrevLine ()

Gets the previous line in the file.

wxTextFile::GetLastLine

wxString& GetLastLine ()

Gets the last line of the file. Together with GetPrevLine (p. 1305) it allows to enumerate
the lines in the file from the end to the beginning like this:

wxTextFile file;
...
for (str = file.GetLastLine();
 file.GetCurrentLine() > 0;
 str = file.GetPrevLine())
{
 // do something with the current line in str
}

CHAPTER 7

1309

// do something with the first line in str

wxTextFile::GetLineType

wxTextFileType GetLineType (size_t n) const

Get the type of the line (see also GetEOL (p. 1305))

wxTextFile::GuessType

wxTextFileType GuessType () const

Guess the type of file (which is supposed to be opened). If sufficiently many lines of the
file are in DOS/Unix/Mac format, the corresponding value will be returned. If the
detection mechanism fails wxTextFileType_None is returned.

wxTextFile::GetName

const char* GetName () const

Get the name of the file.

wxTextFile::InsertLine

void InsertLine (const wxString& str, size_t n, wxTextFileType type = typeDefault)
const

Insert a line before the line number n.

wxTextFile::Open

bool Open (wxMBConv& conv = wxConvUTF8) const

bool Open (const wxString& strFile, wxMBConv& conv = wxConvUTF8) const

Open() opens the file with the given name or the name which was given in
theconstructor (p. 1303) and also loads file in memory on success. It will fail if the file
does not exist, Create (p. 1303) should be used in this case.

The conv argument is only meaningful in Unicode build of wxWidgets when it is used to
convert the file to wide character representation.

wxTextFile::RemoveLine

void RemoveLine (size_t n) const

Delete line number n from the file.

wxTextFile::Clear

CHAPTER 7

1310

void Clear () const

Delete all lines from the file, set current line number to 0.

wxTextFile::Write

bool Write (wxTextFileType typeNew = wxTextFileType_None, wxMBConv& conv =
wxConvUTF8) const

Change the file on disk. The typeNew parameter allows you to change the file format
(default argument means "don't change type") and may be used to convert, for example,
DOS files to Unix.

The conv argument is only meaningful in Unicode build of wxWidgets when it is used to
convert all lines to multibyte representation before writing them them to physical file.

Returns true if operation succeeded, false if it failed.

wxTextInputStream

This class provides functions that read text datas using an input stream. So, you can
read text floats, integers.

The wxTextInputStream correctly reads text files (or streams) in DOS, Macintosh and
Unix formats and reports a single newline char as a line ending.

Operator >> is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
int on 32-bit architectures) so that you cannot use long. To avoid problems (here and
elsewhere), make use of wxInt32, wxUint32 and similar types.

If you're scanning through a file using wxTextInputStream, you should check for EOF
before reading the next item (word / number), because otherwise the last item may get
lost. You should however be prepared to receive an empty item (empty string / zero
number) at the end of file, especially on Windows systems. This is unavoidable because
most (but not all) files end with whitespace (i.e. usually a newline).

For example:

 wxFileInputStream input("mytext.txt");
 wxTextInputStream text(input);
 wxUint8 i1;
 float f2;
 wxString line;

 text >> i1; // read a 8 bit integer.
 text >> i1 >> f2; // read a 8 bit integer followe d by float.
 text >> line; // read a text line

Include files

<wx/txtstrm.h>

CHAPTER 7

1311

wxTextInputStream::wxTextInputStream

 wxTextInputStream (wxInputStream& stream, const wxString& sep=" \t",
wxMBConv& conv = wxConvUTF8)

Constructs a text stream associated to the given input stream.

Parameters

stream

The underlying input stream.

sep

The initial string separator characters.

conv

In Unicode build only: The encoding converter used to convert the bytes in the
underlying input stream to characters.

wxTextInputStream::~wxTextInputStream

 ~wxTextInputStream ()

Destroys the wxTextInputStream object.

wxTextInputStream::Read8

wxUint8 Read8(int base = 10)

Reads a single unsigned byte from the stream, given in base base.

The value of base must be comprised between 2 and 36, inclusive, or be a special value
0 which means that the usual rules of C numbers are applied: if the number starts with
0x it is considered to be in base16, if it starts with 0 - in base 8 and in base 10
otherwise. Note that you may not want to specify the base 0 if you are parsing the
numbers which may have leading zeroes as they can yield unexpected (to the user not
familiar with C) results.

wxTextInputStream::Read8S

wxInt8 Read8S(int base = 10)

Reads a single signed byte from the stream.

See wxTextInputStream::Read8 (p. 1308) for the description of the base parameter.

wxTextInputStream::Read16

CHAPTER 7

1312

wxUint16 Read16(int base = 10)

Reads a unsigned 16 bit integer from the stream.

See wxTextInputStream::Read8 (p. 1308) for the description of the base parameter.

wxTextInputStream::Read16S

wxInt16 Read16S(int base = 10)

Reads a signed 16 bit integer from the stream.

See wxTextInputStream::Read8 (p. 1308) for the description of the base parameter.

wxTextInputStream::Read32

wxUint32 Read32(int base = 10)

Reads a 32 bit unsigned integer from the stream.

See wxTextInputStream::Read8 (p. 1308) for the description of the base parameter.

wxTextInputStream::Read32S

wxInt32 Read32S(int base = 10)

Reads a 32 bit signed integer from the stream.

See wxTextInputStream::Read8 (p. 1308) for the description of the base parameter.

wxTextInputStream::GetChar

wxChar GetChar ()

Reads a character, returns 0 if there are no more characters in the stream.

wxTextInputStream::ReadDouble

double ReadDouble ()

Reads a double (IEEE encoded) from the stream.

wxTextInputStream::ReadLine

wxString ReadLine ()

Reads a line from the input stream and returns it (without the end of line character).

wxTextInputStream::ReadString

wxString ReadString ()

CHAPTER 7

1313

NB: This method is deprecated, use ReadLine (p. 1309) or ReadWord (p. 1310)
instead.

Same as ReadLine (p. 1309).

wxTextInputStream::ReadWord

wxString ReadWord ()

Reads a word (a sequence of characters until the next separator) from the input stream.

See also

SetStringSeparators (p. 1310)

wxTextInputStream::SetStringSeparators

void SetStringSeparators (const wxString& sep)

Sets the characters which are used to define the word boundaries in ReadWord (p.
1310).

The default separators are the space and TAB characters.

wxTextOutputStream

This class provides functions that write text datas using an output stream. So, you can
write text floats, integers.

You can also simulate the C++ cout class:

 wxFFileOutputStream output(stderr);
 wxTextOutputStream cout(output);

 cout << "This is a text line" << endl;
 cout << 1234;
 cout << 1.23456;

The wxTextOutputStream writes text files (or streams) on DOS, Macintosh and Unix in
their native formats (concerning the line ending).

Include files

<wx/txtstrm.h>

wxTextOutputStream::wxTextOutputStream

 wxTextOutputStream (wxOutputStream& stream, wxEOL mode = wxEOL_NATIVE,
wxMBConv& conv = wxConvUTF8)

Constructs a text stream object associated to the given output stream.

CHAPTER 7

1314

Parameters

stream

The output stream.

mode

The end-of-line mode. One of wxEOL_NATIVE , wxEOL_DOS , wxEOL_MAC and
wxEOL_UNIX .

conv

In Unicode build only: The object used to convert Unicode text into ASCII
characters written to the output stream.

wxTextOutputStream::~wxTextOutputStream

 ~wxTextOutputStream ()

Destroys the wxTextOutputStream object.

wxTextOutputStream::GetMode

wxEOL GetMode ()

Returns the end-of-line mode. One of wxEOL_DOS , wxEOL_MAC and wxEOL_UNIX .

wxTextOutputStream::PutChar

void PutChar (wxChar c)

Writes a character to the stream.

wxTextOutputStream::SetMode

void SetMode (wxEOL mode = wxEOL_NATIVE)

Set the end-of-line mode. One of wxEOL_NATIVE , wxEOL_DOS , wxEOL_MAC and
wxEOL_UNIX .

wxTextOutputStream::Write8

void Write8 (wxUint8 i8)

Writes the single byte i8 to the stream.

wxTextOutputStream::Write16

void Write16 (wxUint16 i16)

CHAPTER 7

1315

Writes the 16 bit integer i16 to the stream.

wxTextOutputStream::Write32

void Write32 (wxUint32 i32)

Writes the 32 bit integer i32 to the stream.

wxTextOutputStream::WriteDouble

virtual void WriteDouble (double f)

Writes the double f to the stream using the IEEE format.

wxTextOutputStream::WriteString

virtual void WriteString (const wxString& string)

Writes string as a line. Depending on the end-of-line mode the end of line ('\n')
characters in the string are converted to the correct line ending terminator.

wxTextValidator

wxTextValidator validates text controls, providing a variety of filtering behaviours.

For more information, please see Validator overview (p. 1689).

Derived from

wxValidator (p. 1394)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/valtext.h>

See also

Validator overview (p. 1689), wxValidator (p. 1394),wxGenericValidator (p. 586)

wxTextValidator::wxTextValidator

 wxTextValidator (const wxTextValidator& validator)

Copy constructor.

 wxTextValidator (long style = wxFILTER_NONE, wxString* valPtr = NULL)

CHAPTER 7

1316

Constructor, taking a style and optional pointer to a wxString variable.

Parameters

style

A bitlist of flags, which can be:

wxFILTER_NONE No filtering takes place.

wxFILTER_ASCII Non-ASCII characters are filtered out.

wxFILTER_ALPHA Non-alpha characters are filtered out.

wxFILTER_ALPHANUMERIC Non-alphanumeric characters are filtered out.

wxFILTER_NUMERIC Non-numeric characters are filtered out.

wxFILTER_INCLUDE_LIST Use an include list. The validator checks if the user
input is on the list, complaining if not. See
wxTextValidator::SetIncludes (p. 1314).

wxFILTER_EXCLUDE_LIST Use an exclude list. The validator checks if the user
input is on the list, complaining if it is. See
wxTextValidator::SetExcludes (p. 1314).

wxFILTER_INCLUDE_CHAR_LIST Use an include list. The validator checks if
each input character is in the list (one character per
list element), complaining if not. See
wxTextValidator::SetIncludes (p. 1314).

wxFILTER_EXCLUDE_CHAR_LIST Use an include list. The validator checks if
each input character is in the list (one character per
list element), complaining if it is. See
wxTextValidator::SetExcludes (p. 1314).

valPtr

A pointer to a wxString variable that contains the value. This variable should have
a lifetime equal to or longer than the validator lifetime (which is usually determined
by the lifetime of the window).

wxTextValidator::Clone

virtual wxValidator* Clone () const

Clones the text validator using the copy constructor.

wxTextValidator::GetExcludes

wxArrayString& GetExcludes () const

CHAPTER 7

1317

Returns a reference to the exclude list (the list of invalid values).

wxTextValidator::GetIncludes

wxArrayString& GetIncludes () const

Returns a reference to the include list (the list of valid values).

wxTextValidator::GetStyle

long GetStyle () const

Returns the validator style.

wxTextValidator::OnChar

void OnChar (wxKeyEvent& event)

Receives character input from the window and filters it according to the current validator
style.

wxTextValidator::SetExcludes

void SetExcludes (const wxArrayString& stringList)

Sets the exclude list (invalid values for the user input).

wxTextValidator::SetIncludes

void SetIncludes (const wxArrayString& stringList)

Sets the include list (valid values for the user input).

wxTextValidator::SetStyle

void SetStyle (long style)

Sets the validator style.

wxTextValidator::TransferFromWindow

virtual bool TransferFromWindow ()

Transfers the value in the text control to the string.

wxTextValidator::TransferToWindow

virtual bool TransferToWindow ()

Transfers the string value to the text control.

CHAPTER 7

1318

wxTextValidator::Validate

virtual bool Validate (wxWindow* parent)

Validates the window contents against the include or exclude lists, depending on the
validator style.

wxThread

A thread is basically a path of execution through a program. Threads are sometimes
called light-weight processes, but the fundamental difference between threads and
processes is that memory spaces of different processes are separated while all threads
share the same address space. While it makes it much easier to share common data
between several threads, it also makes it much easier to shoot oneself in the foot, so
careful use of synchronization objects such as mutexes (p. 951) and/or critical sections
(p. 213) is recommended.

There are two types of threads in wxWidgets: detached and joinableones, just as in the
POSIX thread API (but unlike Win32 threads where all threads are joinable). The
difference between the two is that only joinable threads can return a return code -- this is
returned by the Wait() function. Detached threads (the default type) cannot be waited for.

You shouldn't hurry to create all the threads joinable, however, because this has a
disadvantage as well: you must Wait() for a joinable thread or the system resources
used by it will never be freed, and you also must delete the corresponding wxThread
object yourself. In contrast, detached threads are of the "fire-and-forget" kind: you only
have to start a detached thread and it will terminate and destroy itself.

This means, of course, that all detached threads must be created on the heap because
the thread will call delete this; upon termination. Joinable threads may be created
on the stack although more usually they will be created on the heap as well. Don't create
global thread objects because they allocate memory in their constructor, which will
cause problems for the memory checking system. Finally, another consequence of the
handling of the above is that you should never delete a detached thread yourself, as this
will be done by the thread itself when it terminates.

Derived from

None.

Include files

<wx/thread.h>

See also

wxMutex (p. 951), wxCondition (p. 181), wxCriticalSection (p. 213)

wxThread::wxThread

CHAPTER 7

1319

 wxThread (wxThreadKind kind = wxTHREAD_DETACHED)

This constructor creates a new detached (default) or joinable C++ thread object. It does
not create or start execution of the real thread -- for this you should use the Create (p.
1316) and Run (p. 1320) methods.

The possible values for kind parameters are:

wxTHREAD_DETACHED Create a detached thread.

wxTHREAD_JOINABLE Create a joinable thread

wxThread::~wxThread

 ~wxThread ()

The destructor frees the resources associated with the thread. Notice that you should
never delete a detached thread -- you may only callDelete (p. 1316) on it or wait until it
terminates (and auto destructs) itself. Because the detached threads delete themselves,
they can only be allocated on the heap.

Joinable threads should be deleted explicitly. The Delete (p. 1316) and Kill (p. 1319)
functions will not delete the C++ thread object. It is also safe to allocate them on stack.

wxThread::Create

wxThreadError Create (unsigned int stackSize = 0)

Creates a new thread. The thread object is created in the suspended state, and you
should call Run (p. 1320) to start running it. You may optionally specify the stack size to
be allocated to it (Ignored on platforms that don't support setting it explicitly, eg. Unix).

Return value

One of:

wxTHREAD_NO_ERROR There was no error.

wxTHREAD_NO_RESOURCE There were insufficient resources to create a
new thread.

wxTHREAD_RUNNING The thread is already running.

wxThread::Delete

void Delete ()

Calling Delete (p. 1316) is a graceful way to terminate the thread. It asks the thread to
terminate and, if the thread code is well written, the thread will terminate after the next
call to TestDestroy (p. 1320) which should happen quite soon.

However, if the thread doesn't call TestDestroy (p. 1320)often enough (or at all), the
function will not return immediately, but wait until the thread terminates. As it may take a

CHAPTER 7

1320

long time, and the message processing is not stopped during this function execution,
message handlers may be called from inside it!

Delete() may be called for a thread in any state: running, paused or even not yet
created. Moreover, it must be called if Create (p. 1316) orRun (p. 1320) fail in order to
free the memory occupied by the thread object. However, you should not call Delete() on
a detached thread which already terminated -- doing so will probably result in a crash
because the thread object doesn't exist any more.

For detached threads Delete() will also delete the C++ thread object, but it will not do
this for joinable ones.

This function can only be called from another thread context.

wxThread::Entry

virtual ExitCode Entry ()

This is the entry point of the thread. This function is pure virtual and must be
implemented by any derived class. The thread execution will start here.

The returned value is the thread exit code which is only useful for joinable threads and is
the value returned by Wait (p. 1321).

This function is called by wxWidgets itself and should never be called directly.

wxThread::Exit

void Exit (ExitCode exitcode = 0)

This is a protected function of the wxThread class and thus can only be called from a
derived class. It also can only be called in the context of this thread, i.e. a thread can
only exit from itself, not from another thread.

This function will terminate the OS thread (i.e. stop the associated path of execution)
and also delete the associated C++ object for detached threads.wxThread::OnExit (p.
1319) will be called just before exiting.

wxThread::GetCPUCount

static int GetCPUCount ()

Returns the number of system CPUs or -1 if the value is unknown.

See also

SetConcurrency (p. 1320)

wxThread::GetCurrentId

static unsigned long GetCurrentId ()

CHAPTER 7

1321

Returns the platform specific thread ID of the current thread as a long. This can be used
to uniquely identify threads, even if they are not wxThreads.

wxThread::GetId

unsigned long GetId () const

Gets the thread identifier: this is a platform dependent number that uniquely identifies
the thread throughout the system during its existence (i.e. the thread identifiers may be
reused).

wxThread::GetPriority

int GetPriority () const

Gets the priority of the thread, between zero and 100.

The following priorities are defined:

WXTHREAD_MIN_PRIORITY 0

WXTHREAD_DEFAULT_PRIORITY 50

WXTHREAD_MAX_PRIORITY 100

wxThread::IsAlive

bool IsAlive () const

Returns true if the thread is alive (i.e. started and not terminating).

Note that this function can only safely be used with joinable threads, not detached ones
as the latter delete themselves and so when the real thread is no longer alive, it is not
possible to call this function because the wxThread object no longer exists.

wxThread::IsDetached

bool IsDetached () const

Returns true if the thread is of the detached kind, false if it is a joinable one.

wxThread::IsMain

static bool IsMain ()

Returns true if the calling thread is the main application thread.

wxThread::IsPaused

bool IsPaused () const

CHAPTER 7

1322

Returns true if the thread is paused.

wxThread::IsRunning

bool IsRunning () const

Returns true if the thread is running.

This method may only be safely used for joinable threads, see the remark in IsAlive (p.
1318).

wxThread::Kill

wxThreadError Kill ()

Immediately terminates the target thread. This function is dangerous and should be
used with extreme care (and not used at all wheneve r possible)! The resources
allocated to the thread will not be freed and the state of the C runtime library may
become inconsistent. Use Delete() (p. 1316) instead.

For detached threads Kill() will also delete the associated C++ object. However this will
not happen for joinable threads and this means that you will still have to delete the
wxThread object yourself to avoid memory leaks. In neither case OnExit (p. 1319) of the
dying thread will be called, so no thread-specific cleanup will be performed.

This function can only be called from another thread context, i.e. a thread cannot kill
itself.

It is also an error to call this function for a thread which is not running or paused (in the
latter case, the thread will be resumed first) -- if you do it, a wxTHREAD_NOT_RUNNING
error will be returned.

wxThread::OnExit

void OnExit ()

Called when the thread exits. This function is called in the context of the thread
associated with the wxThread object, not in the context of the main thread. This function
will not be called if the thread waskilled (p. 1319).

This function should never be called directly.

wxThread::Pause

wxThreadError Pause ()

Suspends the thread. Under some implementations (Win32), the thread is suspended
immediately, under others it will only be suspended when it callsTestDestroy (p. 1320)
for the next time (hence, if the thread doesn't call it at all, it won't be suspended).

This function can only be called from another thread context.

CHAPTER 7

1323

wxThread::Run

wxThreadError Run ()

Starts the thread execution. Should be called afterCreate (p. 1316).

This function can only be called from another thread context.

wxThread::SetPriority

void SetPriority (int priority)

Sets the priority of the thread, between 0 and 100. It can only be set after calling
Create() (p. 1316) but before callingRun() (p. 1320).

The following priorities are already defined:

WXTHREAD_MIN_PRIORITY 0

WXTHREAD_DEFAULT_PRIORITY 50

WXTHREAD_MAX_PRIORITY 100

wxThread::Sleep

static void Sleep (unsigned long milliseconds)

Pauses the thread execution for the given amount of time.

This function should be used instead of wxSleep (p. 1581) by all worker threads (i.e. all
except the main one).

wxThread::Resume

wxThreadError Resume ()

Resumes a thread suspended by the call to Pause (p. 1319).

This function can only be called from another thread context.

wxThread::SetConcurrency

static bool SetConcurrency (size_t level)

Sets the thread concurrency level for this process. This is, roughly, the number of
threads that the system tries to schedule to run in parallel. The value of 0 for level may
be used to set the default one.

Returns true on success or false otherwise (for example, if this function is not
implemented for this platform -- currently everything except Solaris).

wxThread::TestDestroy

CHAPTER 7

1324

virtual bool TestDestroy ()

This function should be called periodically by the thread to ensure that calls to Pause (p.
1319) and Delete (p. 1316) will work. If it returns true , the thread should exit as soon as
possible.

Notice that under some platforms (POSIX), implementation of Pause (p. 1319) also
relies on this function being called, so not calling it would prevent both stopping and
suspending thread from working.

wxThread::This

static wxThread * This ()

Return the thread object for the calling thread. NULL is returned if the calling thread is
the main (GUI) thread, but IsMain (p. 1318) should be used to test whether the thread is
really the main one because NULL may also be returned for the thread not created with
wxThread class. Generally speaking, the return value for such a thread is undefined.

wxThread::Yield

void Yield ()

Give the rest of the thread time slice to the system allowing the other threads to run. See
also Sleep() (p. 1320).

wxThread::Wait

ExitCode Wait () const

Waits until the thread terminates and returns its exit code or (ExitCode)-1 on error.

You can only Wait() for joinable (not detached) threads.

This function can only be called from another thread context.

wxThreadHelper

The wxThreadHelper class is a mix-in class that manages a single background thread.
By deriving from wxThreadHelper, a class can implement the thread code in its own
wxThreadHelper::Entry (p. 1323) method and easily share data and synchronization
objects between the main thread and the worker thread. Doing this prevents the
awkward passing of pointers that is needed when the original object in the main thread
needs to synchronize with its worker thread in its own wxThread derived object.

For example, wxFrame (p. 555) may need to make some calculations in a background
thread and then display the results of those calculations in the main window.

Ordinarily, a wxThread (p. 1315) derived object would be created with the calculation
code implemented inwxThread::Entry (p. 1317). To access the inputs to the calculation,
the frame object would often to pass a pointer to itself to the thread object. Similarly, the

CHAPTER 7

1325

frame object would hold a pointer to the thread object. Shared data and synchronization
objects could be stored in either object though the object without the data would have to
access the data through a pointer.

However, with wxThreadHelper, the frame object and the thread object are treated as
the same object. Shared data and synchronization variables are stored in the single
object, eliminating a layer of indirection and the associated pointers.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 1315)

wxThreadHelper::wxThreadHelper

 wxThreadHelper ()

This constructor simply initializes a member variable.

wxThreadHelper::m_thread

wxThread * m_thread

the actual wxThread (p. 1315) object.

wxThreadHelper::~wxThreadHelper

 ~wxThreadHelper ()

The destructor frees the resources associated with the thread.

wxThreadHelper::Create

wxThreadError Create (unsigned int stackSize = 0)

Creates a new thread. The thread object is created in the suspended state, and you
should call GetThread()->Run() (p. 1320) to start running it. You may optionally specify
the stack size to be allocated to it (Ignored on platforms that don't support setting it
explicitly, eg. Unix).

Return value

One of:

CHAPTER 7

1326

wxTHREAD_NO_ERROR There was no error.

wxTHREAD_NO_RESOURCE There were insufficient resources to create a
new thread.

wxTHREAD_RUNNING The thread is already running.

wxThreadHelper::Entry

virtual ExitCode Entry ()

This is the entry point of the thread. This function is pure virtual and must be
implemented by any derived class. The thread execution will start here.

The returned value is the thread exit code which is only useful for joinable threads and is
the value returned byGetThread()->Wait() (p. 1321).

This function is called by wxWidgets itself and should never be called directly.

wxThreadHelper::GetThread

wxThread * GetThread ()

This is a public function that returns the wxThread (p. 1315) object associated with the
thread.

wxTimer

The wxTimer class allows you to execute code at specified intervals. Its precision is
platform-dependent, but in general will not be better than 1ms nor worse than 1s.

There are two different ways to use this class:

 1. You may derive a new class from wxTimer and override the Notify (p. 1324)
member to perform the required action.

 2. Or you may redirect the notifications to any wxEvtHandler (p. 467) derived
object by using the non default constructor or SetOwner (p. 1325). Then use the
EVT_TIMER macro to connect it to the event handler which will receive
wxTimerEvent (p. 1325) notifications.

 3. Or you may use a derived class and the EVT_TIMER macro to connect it to an
event handler defined in the derived class. If the default constructor is used, the
timer object will be its own owner object, since it is derived from wxEvtHandler.

In any case, you must start the timer with Start (p. 1325) after constructing it before it
actually starts sending notifications. It can be stopped later with Stop (p. 1325).

NB: note that timer can only be used from the main thread currently.

Derived from

CHAPTER 7

1327

wxEvtHandler (p. 467)

Include files

<wx/timer.h>

See also

::wxStartTimer (p. 1581), ::wxGetElapsedTime (p. 1579), wxStopWatch (p. 1217)

wxTimer::wxTimer

 wxTimer ()

Default constructor. If you use it to construct the object and don't call SetOwner (p. 1325)
later, you must override Notify (p. 1324) method to process the notifications.

 wxTimer (wxEvtHandler * owner, int id = -1)

Creates a timer and associates it with owner. Please see SetOwner (p. 1325) for the
description of parameters.

wxTimer::~wxTimer

 ~wxTimer ()

Destructor. Stops the timer if it is running.

wxTimer::GetInterval

int GetInterval () const

Returns the current interval for the timer (in milliseconds).

wxTimer::IsOneShot

bool IsOneShot () const

Returns true if the timer is one shot, i.e. if it will stop after firing the first notification
automatically.

wxTimer::IsRunning

bool IsRunning () const

Returns true if the timer is running, false if it is stopped.

wxTimer::Notify

CHAPTER 7

1328

void Notify ()

This member should be overridden by the user if the default constructor was used and
SetOwner (p. 1325) wasn't called.

Perform whatever action which is to be taken periodically here.

wxTimer::SetOwner

void SetOwner (wxEvtHandler * owner, int id = -1)

Associates the timer with the given owner object. When the timer is running, the owner
will receive timer events (p. 1325) with id equal to id specified here.

wxTimer::Start

bool Start (int milliseconds = -1, bool oneShot = false)

(Re)starts the timer. If milliseconds parameter is -1 (value by default), the previous value
is used. Returns false if the timer could not be started,true otherwise (in MS Windows
timers are a limited resource).

If oneShot is false (the default), the Notify (p. 1324) function will be called repeatedly
until the timer is stopped. If true , it will be called only once and the timer will stop
automatically. To make your code more readable you may also use the following
symbolic constants:

wxTIMER_CONTINUOUS Start a normal, continuously running, timer

wxTIMER_ONE_SHOT Start a one shot timer

If the timer was already running, it will be stopped by this method before restarting it.

wxTimer::Stop

void Stop ()

Stops the timer.

wxTimerEvent

wxTimerEvent object is passed to the event handler of timer events.

For example:

class MyFrame : public wxFrame
{
public:
 ...
 void OnTimer(wxTimerEvent& event);

private:
 wxTimer m_timer;

CHAPTER 7

1329

};

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_TIMER(TIMER_ID, MyFrame::OnTimer)
END_EVENT_TABLE()

MyFrame::MyFrame()
 : m_timer(this, TIMER_ID)
{
 m_timer.Start(1000); // 1 second interval
}

void MyFrame::OnTimer(wxTimerEvent& event)
{
 // do whatever you want to do every second here
}

Include files

<wx/timer.h>

See also

wxTimer (p. 1323)

wxTimerEvent::GetInterval

int GetInterval () const

Returns the interval of the timer which generated this event.

wxTimeSpan

wxTimeSpan class represents a time interval.

Derived from

No base class

Include files

<wx/datetime.h>

See also

Date classes overview (p. 1650), wxDateTime (p. 246)

Static functions

Seconds (p. 1331)

CHAPTER 7

1330

Second (p. 1331)
Minutes (p. 1330)
Minute (p. 1331)
Hours (p. 1329)
Hour (p. 1330)
Days (p. 1328)
Day (p. 1328)
Weeks (p. 1332)
Week (p. 1332)

Constructors

wxTimeSpan (p. 1332)

Accessors

GetSeconds (p. 1329)
GetMinutes (p. 1329)
GetHours (p. 1329)
GetDays (p. 1329)
GetWeeks (p. 1329)
GetValue (p. 1329)

Operations

Add (p. 1328)
Subtract (p. 1331)
Multiply (p. 1331)
Negate (p. 1331)
Neg (p. 1331)
Abs (p. 1327)

Tests

IsNull (p. 1330)
IsPositive (p. 1330)
IsNegative (p. 1330)
IsEqualTo (p. 1330)
IsLongerThan (p. 1330)
IsShorterThan (p. 1330)

Formatting time spans

Format (p. 1328)

wxTimeSpan::Abs

CHAPTER 7

1331

wxTimeSpan Abs () const

Returns the absolute value of the timespan: does not modify the object.

wxTimeSpan::Add

wxTimeSpan Add (const wxTimeSpan& diff) const

wxTimeSpan& Add (const wxTimeSpan& diff)

wxTimeSpan& operator+= (const wxTimeSpan& diff)

Returns the sum of two timespans.

wxTimeSpan::Days

static wxTimespan Days (long days)

Returns the timespan for the given number of days.

wxTimeSpan::Day

static wxTimespan Day()

Returns the timespan for one day.

wxTimeSpan::Format

wxString Format (const wxChar * format = wxDefaultTimeSpanFormat)

Returns the string containing the formatted representation of the time span. The
following format specifiers are allowed after %:

H number of Hours

M number of Minutes

S number of Seconds

l number of milliseconds

D number of Days

E number of wEeks

% the percent character

Note that, for example, the number of hours in the description above is not well defined:
it can be either the total number of hours (for example, for a time span of 50 hours this
would be 50) or just the hour part of the time span, which would be 2 in this case as 50
hours is equal to 2 days and2 hours.

wxTimeSpan resolves this ambiguity in the following way: if there had been, indeed, the

CHAPTER 7

1332

%D format specified preceding the %H, then it is interpreted as 2. Otherwise, it is 50.

The same applies to all other format specifiers: if they follow a specifier of larger unit,
only the rest part is taken, otherwise the full value is used.

wxTimeSpan::GetDays

int GetDays () const

Returns the difference in number of days.

wxTimeSpan::GetHours

int GetHours () const

Returns the difference in number of hours.

wxTimeSpan::GetMilliseconds

wxLongLong GetMilliseconds () const

Returns the difference in number of milliseconds.

wxTimeSpan::GetMinutes

int GetMinutes () const

Returns the difference in number of minutes.

wxTimeSpan::GetSeconds

wxLongLong GetSeconds () const

Returns the difference in number of seconds.

wxTimeSpan::GetValue

wxLongLong GetValue () const

Returns the internal representation of timespan.

wxTimeSpan::GetWeeks

int GetWeeks () const

Returns the difference in number of weeks.

wxTimeSpan::Hours

static wxTimespan Hours (long hours)

CHAPTER 7

1333

Returns the timespan for the given number of hours.

wxTimeSpan::Hour

static wxTimespan Hour ()

Returns the timespan for one hour.

wxTimeSpan::IsEqualTo

bool IsEqualTo (const wxTimeSpan& ts) const

Returns true if two timespans are equal.

wxTimeSpan::IsLongerThan

bool IsLongerThan (const wxTimeSpan& ts) const

Compares two timespans: works with the absolute values, i.e. -2 hours is longer than 1
hour. Also, it will return false if the timespans are equal in absolute value.

wxTimeSpan::IsNegative

bool IsNegative () const

Returns true if the timespan is negative.

wxTimeSpan::IsNull

bool IsNull () const

Returns true if the timespan is empty.

wxTimeSpan::IsPositive

bool IsPositive () const

Returns true if the timespan is positive.

wxTimeSpan::IsShorterThan

bool IsShorterThan (const wxTimeSpan& ts) const

Compares two timespans: works with the absolute values, i.e. 1 hour is shorter than -2
hours. Also, it will return false if the timespans are equal in absolute value.

wxTimeSpan::Minutes

static wxTimespan Minutes (long min)

CHAPTER 7

1334

Returns the timespan for the given number of minutes.

wxTimeSpan::Minute

static wxTimespan Minute ()

Returns the timespan for one minute.

wxTimeSpan::Multiply

wxTimeSpan Multiply (int n) const

wxTimeSpan& Multiply (int n)

wxTimeSpan& operator*= (int n)

Multiplies timespan by a scalar.

wxTimeSpan::Negate

wxTimeSpan Negate () const

Returns timespan with inverted sign.

wxTimeSpan::Neg

wxTimeSpan& Neg()

wxTimeSpan& operator- ()

Negate the value of the timespan.

wxTimeSpan::Seconds

static wxTimespan Seconds (long sec)

Returns the timespan for the given number of seconds.

wxTimeSpan::Second

static wxTimespan Second ()

Returns the timespan for one second.

wxTimeSpan::Subtract

wxTimeSpan Subtract (const wxTimeSpan& diff) const

wxTimeSpan& Subtract (const wxTimeSpan& diff)

wxTimeSpan& operator-= (const wxTimeSpan& diff)

CHAPTER 7

1335

Returns the difference of two timespans.

wxTimeSpan::Weeks

static wxTimespan Weeks (long weeks)

Returns the timespan for the given number of weeks.

wxTimeSpan::Week

static wxTimespan Week()

Returns the timespan for one week.

wxTimeSpan::wxTimeSpan

 wxTimeSpan ()

Default constructor, constructs a zero timespan.

 wxTimeSpan (long hours, long min, long sec, long msec)

Constructs timespan from separate values for each component, with the date set to 0.
Hours are not restricted to 0..24 range, neither are minutes, seconds or milliseconds.

wxTipProvider

This is the class used together with wxShowTip (p. 1548) function. It must implement
GetTip (p. 1333) function and return the current tip from it (different tip each time it is
called).

You will never use this class yourself, but you need it to show startup tips with
wxShowTip. Also, if you want to get the tips text from elsewhere than a simple text file,
you will want to derive a new class from wxTipProvider and use it instead of the one
returned by wxCreateFileTipProvider (p. 1540).

Derived from

None.

Include files

<wx/tipdlg.h>

See also

Startup tips overview (p. 1737), ::wxShowTip (p. 1548)

wxTipProvider::wxTipProvider

CHAPTER 7

1336

 wxTipProvider (size_t currentTip)

Constructor.

currentTip

The starting tip index.

wxTipProvider::GetTip

wxString GetTip ()

Return the text of the current tip and pass to the next one. This function is pure virtual, it
should be implemented in the derived classes.

wxTipProvider::PreprocessTip

virtual wxString PreProcessTip (const wxString& tip)

Returns a modified tip. This function will be called immediately after read, and before
being check whether it is a comment, an empty string or a string to translate. You can
optionally override this in your custom user-derived class to optionally to modify the tip
as soon as it is read. You can return any modification to the string. If you return
wxEmptyString, then this tip is skipped, and the next one is read.

wxCurrentTipProvider::GetCurrentTip

size_t GetCurrentTip () const

Returns the index of the current tip (i.e. the one which would be returned by GetTip).

The program usually remembers the value returned by this function after calling
wxShowTip (p. 1548). Note that it is not the same as the value which was passed to
wxShowTip + 1 because the user might have pressed the "Next" button in the tip dialog.

wxTipWindow

Shows simple text in a popup tip window on creation. This is used by
wxSimpleHelpProvider (p. 1116) to show popup help. The window automatically
destroys itself when the user clicks on it or it loses the focus.

You may also use this class to emulate the tooltips when you need finer control over
them than what the standard tooltips provide.

Derived from

wxPopupTransientWindow
wxPopupWindow
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

CHAPTER 7

1337

Include files

<wx/tipwin.h>

wxTipWindow::wxTipWindow

 wxTipWindow (wxWindow* parent, const wxString& text, wxCoord maxLength =
100, wxTipWindow** windowPtr)

Constructor. The tip is shown immediately the window is constructed.

Parameters

parent

The parent window, must be non NULL

text

The text to show, may contain the new line characters

windowPtr

Simply passed to SetTipWindowPtr (p. 1334) below, please see its documentation
for the description of this parameter

rectBounds

If non NULL, passed to SetBoundingRect (p. 1334) below, please see its
documentation for the description of this parameter

wxTipWindow::SetTipWindowPtr

void SetTipWindowPtr (wxTipWindow** windowPtr)

When the tip window closes itself (which may happen at any moment and unexpectedly
to the caller) it may NULL out the pointer pointed to by windowPtr. This is helpful to avoid
dereferencing the tip window which had been already closed and deleted.

wxTipWindow::SetBoundingRect

void SetBoundingRect (const wxRect& rectBound)

By default, the tip window disappears when the user clicks the mouse or presses a
keyboard key or if it loses focus in any other way - for example because the user
switched to another application window.

Additionally, if a non empty rectBound is provided, the tip window will also automatically
close if the mouse leaves this area. This is useful to dismiss the tip mouse when the
mouse leaves the object it is associated with.

CHAPTER 7

1338

Parameters

rectBound

The bounding rectangle for the mouse in the screen coordinates

wxToggleButton

wxToggleButton is a button that stays pressed when clicked by the user. In other words,
it is similar to wxCheckBox (p. 128) in functionality but looks like a wxButton (p. 112).

You can see wxToggleButton in action in the sixth page of the controls (p. 1633) sample.

NB: This class is not available under wxUniversal ports such as wxX11.

Derived from

wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/tglbtn.h>

Window styles

There are no special styles for wxToggleButton.

See also window styles overview (p. 1686).

Event handling

EVT_TOGGLEBUTTON(id, func) Handles button click event.

See also

wxCheckBox (p. 128), wxButton (p. 112)

wxToggleButton::wxToggleButton

 wxToggleButton ()

Default constructor.

 wxToggleButton (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a toggle button.

CHAPTER 7

1339

Parameters

parent

Parent window. Must not be NULL.

id

Toggle button identifier. A value of -1 indicates a default value.

label

Text to be displayed next to the toggle button.

pos

Toggle button position. If the position (-1, -1) is specified then a default position is
chosen.

size

Toggle button size. If the default size (-1, -1) is specified then a default size is
chosen.

style

Window style. See wxToggleButton (p. 1335).

validator

Window validator.

name

Window name.

See also

wxToggleButton::Create (p. 1336), wxValidator (p. 1394)

wxToggleButton::~wxToggleButton

 ~wxToggleButton ()

Destructor, destroying the toggle button.

wxToggleButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the toggle button for two-step construction. See
wxToggleButton::wxToggleButton (p. 1335) for details.

CHAPTER 7

1340

wxToggleButton::GetValue

bool GetValue () const

Gets the state of the toggle button.

Return value

Returns true if it is pressed, false otherwise.

wxToggleButton::SetValue

void SetValue (const bool state)

Sets the toggle button to the given state. This does not cause a EVT_TOGGLEBUTTON
event to be emitted.

Parameters

state

If true , the button is pressed.

wxToolBar

The name wxToolBar is defined to be a synonym for one of the following classes:

 • wxToolBar95 The native Windows 95 toolbar. Used on Windows 95, NT 4 and
above.

 • wxToolBarMSW A Windows implementation. Used on 16-bit Windows.

 • wxToolBarGTK The GTK toolbar.

Note that the base class wxToolBarBase defines automatic scrolling management
functionality which is similar to wxScrolledWindow (p. 1098), so please refer to this class
also.

Derived from

wxToolBarBase
wxControl (p. 205)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/toolbar.h> (to allow wxWidgets to select an appropriate toolbar class)
<wx/tbarbase.h> (the base class)

Remarks

CHAPTER 7

1341

You may also create a toolbar that is managed by the frame, by calling
wxFrame::CreateToolBar (p. 560). Under Pocket PC, you should always use this
function for creating the toolbar to be managed by the frame, so that wxWidgets can use
a combined menubar and toolbar. Where you manage your own toolbars, create a
wxToolBar as usual.

The meaning of a "separator" is a vertical line under Windows and simple space under
GTK+.

wxToolBar95: Note that this toolbar paints tools to reflect system-wide colours. If you
use more than 16 colours in your tool bitmaps, you may wish to suppress this behaviour,
otherwise system colours in your bitmaps will inadvertently be mapped to system
colours. To do this, set the msw.remap system option before creating the toolbar:

 wxSystemOptions::SetOption(wxT("msw.remap"), 0);

If you wish to use 32-bit images (which include an alpha channel for transparency) use:

 wxSystemOptions::SetOption(wxT("msw.remap"), 2);

then colour remapping is switched off, and a transparent background used. But only use
this option under Windows XP with true colour:

 (wxTheApp->GetComCtl32Version() >= 600 && ::wxDis playDepth() >=
32)

Window styles

wxTB_FLAT Gives the toolbar a flat look (Windows and GTK only).

wxTB_DOCKABLE Makes the toolbar floatable and dockable (GTK only).

wxTB_HORIZONTAL Specifies horizontal layout (default).

wxTB_VERTICAL Specifies vertical layout.

wxTB_TEXT Shows the text in the toolbar buttons; by default only icons
are shown.

wxTB_NOICONS Specifies no icons in the toolbar buttons; by default they
are shown.

wxTB_NODIVIDER Specifies no divider (border) above the toolbar (Windows
only).

wxTB_NOALIGN Specifies no alignment with the parent window (Windows
only, not very useful).

wxTB_HORZ_LAYOUT Shows the text and the icons alongside, not vertically
stacked (Windows and GTK 2 only). This style must be
used with wxTB_TEXT.

wxTB_HORZ_TEXT Combination of wxTB_HORZ_LAYOUT and wxTB_TEXT.

See also window styles overview (p. 1686). Note that the Win32 native toolbar ignores

CHAPTER 7

1342

wxTB_NOICONS style. Also, toggling the wxTB_TEXT works only if the style was initially
on.

Event handling

The toolbar class emits menu commands in the same way that a frame menubar does,
so you can use one EVT_MENU macro for both a menu item and a toolbar button. The
event handler functions take a wxCommandEvent argument. For most event macros, the
identifier of the tool is passed, but for EVT_TOOL_ENTER the toolbar window identifier
is passed and the tool identifier is retrieved from the wxCommandEvent. This is because
the identifier may be -1 when the mouse moves off a tool, and -1 is not allowed as an
identifier in the event system.

EVT_TOOL(id, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_MENU(id, func) The same as EVT_TOOL.

EVT_TOOL_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event
for a range of identifiers. Pass the ids of the
tools.

EVT_MENU_RANGE(id1, id2, func) The same as EVT_TOOL_RANGE.

EVT_TOOL_RCLICKED(id, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

See also

Toolbar overview (p. 1731), wxScrolledWindow (p. 1098)

wxToolBar::wxToolBar

 wxToolBar ()

Default constructor.

CHAPTER 7

1343

 wxToolBar (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTB_HORIZONTAL | wxNO_BORDER, const wxString& name = wxPanelNameStr)

Constructs a toolbar.

Parameters

parent

Pointer to a parent window.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that wxWidgets
should generate a default position for the window. If using the wxWindow class
directly, supply an actual position.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxWidgets should
generate a default size for the window.

style

Window style. See wxToolBar (p. 1337) for details.

name

Window name.

Remarks

After a toolbar is created, you use wxToolBar::AddTool (p. 1341) and perhaps
wxToolBar::AddSeparator (p. 1341), and then you must call wxToolBar::Realize (p.
1349) to construct and display the toolbar tools.

You may also create a toolbar that is managed by the frame, by calling
wxFrame::CreateToolBar (p. 560).

wxToolBar::~wxToolBar

void ~wxToolBar ()

Toolbar destructor.

wxToolBar::AddControl

bool AddControl (wxControl* control)

CHAPTER 7

1344

Adds any control to the toolbar, typically e.g. a combobox.

control

The control to be added.

wxToolBar::AddSeparator

void AddSeparator ()

Adds a separator for spacing groups of tools.

See also

wxToolBar::AddTool (p. 1341), wxToolBar::SetToolSeparation (p. 1352)

wxToolBar::AddTool

wxToolBarToolBase* AddTool (int toolId, const wxString& label, const wxBitmap&
bitmap1, const wxString& shortHelpString = "", wxItemKind kind = wxITEM_NORMAL)

wxToolBarToolBase* AddTool (int toolId, const wxString& label, const wxBitmap&
bitmap1, const wxBitmap& bitmap2 = wxNullBitmap, wxItemKind kind =
wxITEM_NORMAL, const wxString& shortHelpString = "",const wxString&
longHelpString = "", wxObject* clientData = NULL)

wxToolBarToolBase* AddTool (wxToolBarToolBase* tool)

Adds a tool to the toolbar. The first (short and most commonly used) version has fewer
parameters than the full version at the price of not being able to specify some of the
more rarely used button features. The last version allows you to add an existing tool.

Parameters

toolId

An integer by which the tool may be identified in subsequent operations.

kind

May be wxITEM_NORMAL for a normal button (default), wxITEM_CHECK for a
checkable tool (such tool stays pressed after it had been toggled) or
wxITEM_RADIO for a checkable tool which makes part of a radio group of tools
each of which is automatically unchecked whenever another button in the group is
checked

bitmap1

The primary tool bitmap.

bitmap2

The bitmap used when the tool is disabled. If it is equal to wxNullBitmap, the
disabled bitmap is automatically generated by greing the normal one.

CHAPTER 7

1345

shortHelpString

This string is used for the tools tooltip

longHelpString

This string is shown in the statusbar (if any) of the parent frame when the mouse
pointer is inside the tool

clientData

An optional pointer to client data which can be retrieved later using
wxToolBar::GetToolClientData (p. 1345).

tool

The tool to be added.

Remarks

After you have added tools to a toolbar, you must call wxToolBar::Realize (p. 1349) in
order to have the tools appear.

See also

wxToolBar::AddSeparator (p. 1341), wxToolBar::AddCheckTool (p. 1342),
wxToolBar::AddRadioTool (p. 1342), wxToolBar::InsertTool (p. 1348),
wxToolBar::DeleteTool (p. 1343), wxToolBar::Realize (p. 1349)

wxToolBar::AddCheckTool

wxToolBarToolBase* AddCheckTool (int toolId, const wxString& label, const
wxBitmap& bitmap1, const wxBitmap& bitmap2, const wxString& shortHelpString =
"", const wxString& longHelpString = "", wxObject* clientData = NULL)

Adds a new check (or toggle) tool to the toolbar. The parameters are the same as in
wxToolBar::AddTool (p. 1341).

See also

wxToolBar::AddTool (p. 1341)

wxToolBar::AddRadioTool

wxToolBarToolBase* AddRadioTool (int toolId, const wxString& label, const
wxBitmap& bitmap1, const wxBitmap& bitmap2, const wxString& shortHelpString =
"", const wxString& longHelpString = "", wxObject* clientData = NULL)

Adds a new radio tool to the toolbar. Consecutive radio tools form a radio group such
that exactly one button in the group is pressed at any moment, in other words whenever
a button in the group is pressed the previously pressed button is automatically released.
You should avoid having the radio groups of only one element as it would be impossible
for the user to use such button.

CHAPTER 7

1346

By default, the first button in the radio group is initially pressed, the others are not.

See also

wxToolBar::AddTool (p. 1341)

wxToolBar::DeleteTool

bool DeleteTool (int toolId)

Removes the specified tool from the toolbar and deletes it. If you don't want to delete the
tool, but just to remove it from the toolbar (to possibly add it back later), you may use
RemoveTool (p. 1350) instead.

Note that it is unnecessary to call Realize (p. 1349) for the change to take place, it will
happen immediately.

Returns true if the tool was deleted, false otherwise.

See also

DeleteToolByPos (p. 1343)

wxToolBar::DeleteToolByPos

bool DeleteToolByPos (size_t pos)

This function behaves like DeleteTool (p. 1343) but it deletes the tool at the specified
position and not the one with the given id.

wxToolBar::EnableTool

void EnableTool (int toolId, const bool enable)

Enables or disables the tool.

Parameters

toolId

Tool to enable or disable.

enable

If true, enables the tool, otherwise disables it.

NB: This function should only be called after Realize (p. 1349).

Remarks

Some implementations will change the visible state of the tool to indicate that it is
disabled.

See also

CHAPTER 7

1347

wxToolBar::GetToolEnabled (p. 1345), wxToolBar::ToggleTool (p. 1353)

wxToolBar::FindById

wxToolBarToolBase* FindById (int id)

Returns a pointer to the tool identified by id or NULL if no corresponding tool is found.

wxToolBar::FindControl

wxControl* FindControl (int id)

Returns a pointer to the control identified by id or NULL if no corresponding control is
found.

wxToolBar::FindToolForPosition

wxToolBarToolBase* FindToolForPosition (const float x, const float y) const

Finds a tool for the given mouse position.

Parameters

x

X position.

y

Y position.

Return value

A pointer to a tool if a tool is found, or NULL otherwise.

Remarks

Used internally, and should not need to be used by the programmer.

wxToolBar::GetToolSize

wxSize GetToolSize ()

Returns the size of a whole button, which is usually larger than a tool bitmap because of
added 3D effects.

See also

wxToolBar::SetToolBitmapSize (p. 1351), wxToolBar::GetToolBitmapSize (p. 1344)

wxToolBar::GetToolBitmapSize

CHAPTER 7

1348

wxSize GetToolBitmapSize ()

Returns the size of bitmap that the toolbar expects to have. The default bitmap size is 16
by 15 pixels.

Remarks

Note that this is the size of the bitmap you pass to wxToolBar::AddTool (p. 1341), and
not the eventual size of the tool button.

See also

wxToolBar::SetToolBitmapSize (p. 1351), wxToolBar::GetToolSize (p. 1344)

wxToolBar::GetMargins

wxSize GetMargins () const

Returns the left/right and top/bottom margins, which are also used for inter-toolspacing.

See also

wxToolBar::SetMargins (p. 1350)

wxToolBar::GetToolClientData

wxObject* GetToolClientData (int toolId) const

Get any client data associated with the tool.

Parameters

toolId

Id of the tool, as passed to wxToolBar::AddTool (p. 1341).

Return value

Client data, or NULL if there is none.

wxToolBar::GetToolEnabled

bool GetToolEnabled (int toolId) const

Called to determine whether a tool is enabled (responds to user input).

Parameters

toolId

Id of the tool in question.

Return value

CHAPTER 7

1349

true if the tool is enabled, false otherwise.

See also

wxToolBar::EnableTool (p. 1343)

wxToolBar::GetToolLongHelp

wxString GetToolLongHelp (int toolId) const

Returns the long help for the given tool.

Parameters

toolId

The tool in question.

See also

wxToolBar::SetToolLongHelp (p. 1351), wxToolBar::SetToolShortHelp (p. 1352)

wxToolBar::GetToolPacking

int GetToolPacking () const

Returns the value used for packing tools.

See also

wxToolBar::SetToolPacking (p. 1352)

wxToolBar::GetToolPos

int GetToolPos (int toolId) const

Returns the tool position in the toolbar, or wxNOT_FOUND if the tool is not found.

wxToolBar::GetToolSeparation

int GetToolSeparation () const

Returns the default separator size.

See also

wxToolBar::SetToolSeparation (p. 1352)

wxToolBar::GetToolShortHelp

wxString GetToolShortHelp (int toolId) const

Returns the short help for the given tool.

CHAPTER 7

1350

Parameters

toolId

The tool in question.

See also

wxToolBar::GetToolLongHelp (p. 1346), wxToolBar::SetToolShortHelp (p. 1352)

wxToolBar::GetToolState

bool GetToolState (int toolId) const

Gets the on/off state of a toggle tool.

Parameters

toolId

The tool in question.

Return value

true if the tool is toggled on, false otherwise.

See also

wxToolBar::ToggleTool (p. 1353)

wxToolBar::InsertControl

wxToolBarToolBase * InsertControl (size_t pos, wxControl * control)

Inserts the control into the toolbar at the given position.

You must call Realize (p. 1349) for the change to take place.

See also

AddControl (p. 1340),
InsertTool (p. 1348)

wxToolBar::InsertSeparator

wxToolBarToolBase * InsertSeparator (size_t pos)

Inserts the separator into the toolbar at the given position.

You must call Realize (p. 1349) for the change to take place.

See also

AddSeparator (p. 1341),

CHAPTER 7

1351

InsertTool (p. 1348)

wxToolBar::InsertTool

wxToolBarToolBase * InsertTool (size_t pos, int toolId, const wxBitmap& bitmap1,
const wxBitmap& bitmap2 = wxNullBitmap, bool isToggle = false, wxObject*
clientData = NULL, const wxString& shortHelpString = "", const wxString&
longHelpString = "")

wxToolBarToolBase * InsertTool (size_t pos, wxToolBarToolBase* tool)

Inserts the tool with the specified attributes into the toolbar at the given position.

You must call Realize (p. 1349) for the change to take place.

See also

AddTool (p. 1341),
InsertControl (p. 1347),
InsertSeparator (p. 1347)

wxToolBar::OnLeftClick

bool OnLeftClick (int toolId, bool toggleDown)

Called when the user clicks on a tool with the left mouse button.

This is the old way of detecting tool clicks; although it will still work, you should use the
EVT_MENU or EVT_TOOL macro instead.

Parameters

toolId

The identifier passed to wxToolBar::AddTool (p. 1341).

toggleDown

true if the tool is a toggle and the toggle is down, otherwise is false.

Return value

If the tool is a toggle and this function returns false, the toggle toggle state (internal and
visual) will not be changed. This provides a way of specifying that toggle operations are
not permitted in some circumstances.

See also

wxToolBar::OnMouseEnter (p. 1348), wxToolBar::OnRightClick (p. 1349)

wxToolBar::OnMouseEnter

void OnMouseEnter (int toolId)

CHAPTER 7

1352

This is called when the mouse cursor moves into a tool or out of the toolbar.

This is the old way of detecting mouse enter events; although it will still work, you should
use the EVT_TOOL_ENTER macro instead.

Parameters

toolId

Greater than -1 if the mouse cursor has moved into the tool, or -1 if the mouse
cursor has moved. The programmer can override this to provide extra information
about the tool, such as a short description on the status line.

Remarks

With some derived toolbar classes, if the mouse moves quickly out of the toolbar,
wxWidgets may not be able to detect it. Therefore this function may not always be called
when expected.

wxToolBar::OnRightClick

void OnRightClick (int toolId, float x, float y)

Called when the user clicks on a tool with the right mouse button. The programmer
should override this function to detect right tool clicks.

This is the old way of detecting tool right clicks; although it will still work, you should use
the EVT_TOOL_RCLICKED macro instead.

Parameters

toolId

The identifier passed to wxToolBar::AddTool (p. 1341).

x

The x position of the mouse cursor.

y

The y position of the mouse cursor.

Remarks

A typical use of this member might be to pop up a menu.

See also

wxToolBar::OnMouseEnter (p. 1348), wxToolBar::OnLeftClick (p. 1348)

wxToolBar::Realize

bool Realize ()

CHAPTER 7

1353

This function should be called after you have added tools.

wxToolBar::RemoveTool

wxToolBarToolBase * RemoveTool (int id)

Removes the given tool from the toolbar but doesn't delete it. This allows to insert/add
this tool back to this (or another) toolbar later.

Note that it is unnecessary to call Realize (p. 1349) for the change to take place, it will
happen immediately.

See also

DeleteTool (p. 1343)

wxToolBar::SetBitmapResource

void SetBitmapResource (int resourceId)

Sets the bitmap resource identifier for specifying tool bitmaps as indices into a custom
bitmap. Windows CE only.

wxToolBar::SetMargins

void SetMargins (const wxSize& size)

void SetMargins (int x, int y)

Set the values to be used as margins for the toolbar.

Parameters

size

Margin size.

x

Left margin, right margin and inter-tool separation value.

y

Top margin, bottom margin and inter-tool separation value.

Remarks

This must be called before the tools are added if absolute positioning is to be used, and
the default (zero-size) margins are to be overridden.

See also

wxToolBar::GetMargins (p. 1345), wxSize (p. 1121)

CHAPTER 7

1354

wxToolBar::SetToolBitmapSize

void SetToolBitmapSize (const wxSize& size)

Sets the default size of each tool bitmap. The default bitmap size is 16 by 15 pixels.

Parameters

size

The size of the bitmaps in the toolbar.

Remarks

This should be called to tell the toolbar what the tool bitmap size is. Call it before you
add tools.

Note that this is the size of the bitmap you pass to wxToolBar::AddTool (p. 1341), and
not the eventual size of the tool button.

See also

wxToolBar::GetToolBitmapSize (p. 1344), wxToolBar::GetToolSize (p. 1344)

wxToolBar::SetToolClientData

void SetToolClientData (int id, wxObject* clientData)

Sets the client data associated with the tool.

wxToolBar::SetToolLongHelp

void SetToolLongHelp (int toolId, const wxString& helpString)

Sets the long help for the given tool.

Parameters

toolId

The tool in question.

helpString

A string for the long help.

Remarks

You might use the long help for displaying the tool purpose on the status line.

See also

wxToolBar::GetToolLongHelp (p. 1346), wxToolBar::SetToolShortHelp (p. 1352),

CHAPTER 7

1355

wxToolBar::SetToolPacking

void SetToolPacking (int packing)

Sets the value used for spacing tools. The default value is 1.

Parameters

packing

The value for packing.

Remarks

The packing is used for spacing in the vertical direction if the toolbar is horizontal, and
for spacing in the horizontal direction if the toolbar is vertical.

See also

wxToolBar::GetToolPacking (p. 1346)

wxToolBar::SetToolShortHelp

void SetToolShortHelp (int toolId, const wxString& helpString)

Sets the short help for the given tool.

Parameters

toolId

The tool in question.

helpString

The string for the short help.

Remarks

An application might use short help for identifying the tool purpose in a tooltip.

See also

wxToolBar::GetToolShortHelp (p. 1346), wxToolBar::SetToolLongHelp (p. 1351)

wxToolBar::SetToolSeparation

void SetToolSeparation (int separation)

Sets the default separator size. The default value is 5.

Parameters

separation

CHAPTER 7

1356

The separator size.

See also

wxToolBar::AddSeparator (p. 1341)

wxToolBar::ToggleTool

void ToggleTool (int toolId, const bool toggle)

Toggles a tool on or off. This does not cause any event to get emitted.

Parameters

toolId

Tool in question.

toggle

If true, toggles the tool on, otherwise toggles it off.

Remarks

Only applies to a tool that has been specified as a toggle tool.

See also

wxToolBar::GetToolState (p. 1347)

wxToolTip

This class holds information about a tooltip associated with a window (see
wxWindow::SetToolTip (p. 1470)).

The two static methods, wxToolTip::Enable (p. 1353) andwxToolTip::SetDelay (p. 1354)
can be used to globally alter tooltips behaviour.

Derived from

wxObject (p. 967)

Include files

<wx/tooltip.h>

wxToolTip::Enable

static void Enable (bool flag)

Enable or disable tooltips globally.

CHAPTER 7

1357

May not be supported on all platforms (eg. wxCocoa).

wxToolTip::SetDelay

static void SetDelay (long msecs)

Set the delay after which the tooltip appears.

May not be supported on all platforms (eg. wxCocoa).

wxToolTip::wxToolTip

 wxToolTip (const wxString& tip)

Constructor.

wxToolTip::SetTip

void SetTip (const wxString& tip)

Set the tooltip text.

wxToolTip::GetTip

wxString GetTip () const

Get the tooltip text.

wxToolTip::GetWindow

wxWindow* GetWindow () const

Get the associated window.

wxTopLevelWindow

wxTopLevelWindow is a common base class for wxDialog (p. 391) and wxFrame (p.
555). It is an abstract base class meaning that you never work with objects of this class
directly, but all of its methods are also applicable for the two classes above.

Derived from

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/toplevel.h>

CHAPTER 7

1358

wxTopLevelWindow::GetIcon

const wxIcon& GetIcon () const

Returns the standard icon of the window. The icon will be invalid if it hadn't been
previously set by SetIcon (p. 1357).

See also

GetIcons (p. 1355)

wxTopLevelWindow::GetIcons

const wxIconBundle& GetIcons () const

Returns all icons associated with the window, there will be none of them if neither
SetIcon (p. 1357) nor SetIcons (p. 1357) had been called before.

Use GetIcon (p. 1355) to get the main icon of the window.

See also

wxIconBundle (p. 737)

wxTopLevelWindow::GetTitle

wxString GetTitle () const

Gets a string containing the window title.

See wxTopLevelWindow::SetTitle (p. 1358).

wxTopLevelWindow::IsActive

bool IsActive () const

Returns true if this window is currently active, i.e. if the user is currently working with it.

wxTopLevelWindow::Iconize

void Iconize (bool iconize)

Iconizes or restores the window.

Parameters

iconize

If true , iconizes the window; if false , shows and restores it.

See also

wxTopLevelWindow::IsIconized (p. 1356), wxTopLevelWindow::Maximize (p. 1356).

CHAPTER 7

1359

wxTopLevelWindow::IsFullScreen

bool IsFullScreen ()

Returns true if the window is in fullscreen mode.

See also

wxTopLevelWindow::ShowFullScreen (p. 1359)

wxTopLevelWindow::IsIconized

bool IsIconized () const

Returns true if the window is iconized.

wxTopLevelWindow::IsMaximized

bool IsMaximized () const

Returns true if the window is maximized.

wxTopLevelWindow::Maximize

void Maximize (bool maximize)

Maximizes or restores the window.

Parameters

maximize

If true , maximizes the window, otherwise it restores it.

Remarks

This function only works under Windows.

See also

wxTopLevelWindow::Iconize (p. 1355)

wxTopLevelWindow::RequestUserAttention

void RequestUserAttention (int flags = wxUSER_ATTENTION_INFO)

Use a system-dependent way to attract users attention to the window when it is in
background.

flags may have the value of either wxUSER_ATTENTION_INFO(default) or
wxUSER_ATTENTION_ERROR which results in a more drastic action. When in doubt, use
the default value.

CHAPTER 7

1360

Note that this function should normally be only used when the application is not already
in foreground.

This function is currently implemented for Win32 where it flashes the window icon in the
taskbar, and for wxGTK with task bars supporting it.

wxTopLevelWindow::SetIcon

void SetIcon (const wxIcon& icon)

Sets the icon for this window.

Parameters

icon

The icon to associate with this window.

Remarks

The window takes a 'copy' of icon, but since it uses reference counting, the copy is very
quick. It is safe to delete icon after calling this function.

See also wxIcon (p. 730).

wxTopLevelWindow::SetIcons

void SetIcons (const wxIconBundle& icons)

Sets several icons of different sizes for this window: this allows to use different icons for
different situations (e.g. task switching bar, taskbar, window title bar) instead of scaling,
with possibly bad looking results, the only icon set by SetIcon (p. 1357).

Parameters

icons

The icons to associate with this window.

See also

wxIconBundle (p. 737).

wxTopLevelWindow::SetLeftMenu

void SetLeftMenu (int id = wxID_ANY, const wxString& label = wxEmptyString,
wxMenu * subMenu = NULL)

Sets action or menu activated by pressing left hardware button on the smart phones.
Unavailable on full keyboard machines.

Parameters

CHAPTER 7

1361

id

Identifier for this button.

label

Text to be displayed on the screen area dedicated to this hardware button.

subMenu

The menu to be opened after pressing this hardware button.

See also

wxTopLevelWindow::SetRightMenu (p. 1358).

wxTopLevelWindow::SetRightMenu

void SetRightMenu (int id = wxID_ANY, const wxString& label = wxEmptyString,
wxMenu * subMenu = NULL)

Sets action or menu activated by pressing right hardware button on the smart phones.
Unavailable on full keyboard machines.

Parameters

id

Identifier for this button.

label

Text to be displayed on the screen area dedicated to this hardware button.

subMenu

The menu to be opened after pressing this hardware button.

See also

wxTopLevelWindow::SetLeftMenu (p. 1357).

wxTopLevelWindow::SetShape

bool SetShape (const wxRegion& region)

If the platform supports it, sets the shape of the window to that depicted by region. The
system will not display or respond to any mouse event for the pixels that lie outside of
the region. To reset the window to the normal rectangular shape simply call SetShape
again with an empty region. Returns TRUE if the operation is successful.

wxTopLevelWindow::SetTitle

virtual void SetTitle (const wxString& title)

CHAPTER 7

1362

Sets the window title.

Parameters

title

The window title.

See also

wxTopLevelWindow::GetTitle (p. 1355)

wxTopLevelWindow::ShowFullScreen

bool ShowFullScreen (bool show, long style = wxFULLSCREEN_ALL)

Depending on the value of show parameter the window is either shown full screen or
restored to its normal state. style is a bit list containing some or all of the following
values, which indicate what elements of the window to hide in full-screen mode:

 • wxFULLSCREEN_NOMENUBAR

 • wxFULLSCREEN_NOTOOLBAR

 • wxFULLSCREEN_NOSTATUSBAR

 • wxFULLSCREEN_NOBORDER

 • wxFULLSCREEN_NOCAPTION

 • wxFULLSCREEN_ALL (all of the above)

This function has not been tested with MDI frames.

Note that showing a window full screen also actuallyShow()s (p. 1472) if it hadn't been
shown yet.

See also

wxTopLevelWindow::IsFullScreen (p. 1356)

wxTreeCtrl

A tree control presents information as a hierarchy, with items that may be expanded to
show further items. Items in a tree control are referenced by wxTreeItemId handles,
which may be tested for validity by calling wxTreeItemId::IsOk.

To intercept events from a tree control, use the event table macros described in
wxTreeEvent (p. 1377).

Derived from

wxControl (p. 205)

CHAPTER 7

1363

wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/treectrl.h>

Window styles

wxTR_EDIT_LABELS Use this style if you wish the user to be able to edit labels
in the tree control.

wxTR_NO_BUTTONS For convenience to document that no buttons are to be
drawn.

wxTR_HAS_BUTTONS Use this style to show + and - buttons to the left of parent
items.

wxTR_NO_LINES Use this style to hide vertical level connectors.

wxTR_FULL_ROW_HIGHLIGHT Use this style to have the background colour and
the selection highlight extend over the entire horizontal row
of the tree control window. (This flag is ignored under
Windows unless you specify wxTR_NO_LINES as well.)

wxTR_LINES_AT_ROOT Use this style to show lines between root nodes. Only
applicable if wxTR_HIDE_ROOT is set and
wxTR_NO_LINES is not set.

wxTR_HIDE_ROOT Use this style to suppress the display of the root node,
effectively causing the first-level nodes to appear as a
series of root nodes.

wxTR_ROW_LINES Use this style to draw a contrasting border between
displayed rows.

wxTR_HAS_VARIABLE_ROW_HEIGHT Use this style to cause row heights to be
just big enough to fit the content. If not set, all rows use the
largest row height. The default is that this flag is unset.
Generic only.

wxTR_SINGLE For convenience to document that only one item may be
selected at a time. Selecting another item causes the
current selection, if any, to be deselected. This is the
default.

wxTR_MULTIPLE Use this style to allow a range of items to be selected. If a
second range is selected, the current range, if any, is
deselected.

wxTR_EXTENDED Use this style to allow disjoint items to be selected. (Only
partially implemented; may not work in all cases.)

CHAPTER 7

1364

wxTR_DEFAULT_STYLE The set of flags that are closest to the defaults for the
native control for a particular toolkit.

See also window styles overview (p. 1686).

Event handling

To process input from a tree control, use these event handler macros to direct input to
member functions that take a wxTreeEvent (p. 1377) argument.

EVT_TREE_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.

EVT_TREE_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.

EVT_TREE_END_DRAG(id, func) End dragging with the left or right mouse
button.

EVT_TREE_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be
prevented by calling Veto() (p. 967).

EVT_TREE_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented
by calling Veto() (p. 967).

EVT_TREE_DELETE_ITEM(id, func) Delete an item.

EVT_TREE_GET_INFO(id, func) Request information from the application.

EVT_TREE_SET_INFO(id, func) Information is being supplied.

EVT_TREE_ITEM_ACTIVATED(id, func) The item has been activated, i.e. chosen by
double clicking it with mouse or from keyboard

EVT_TREE_ITEM_COLLAPSED(id, func) The item has been collapsed.

EVT_TREE_ITEM_COLLAPSING(id, func) The item is being collapsed. This can be
prevented by calling Veto() (p. 967).

EVT_TREE_ITEM_EXPANDED(id, func) The item has been expanded.

EVT_TREE_ITEM_EXPANDING(id, func) The item is being expanded. This can be
prevented by calling Veto() (p. 967).

EVT_TREE_ITEM_RIGHT_CLICK(id, func) The user has clicked the item with the right
mouse button.

EVT_TREE_ITEM_MIDDLE_CLICK(id, func) The user has clicked the item with
the middle mouse button.

EVT_TREE_SEL_CHANGED(id, func) Selection has changed.

EVT_TREE_SEL_CHANGING(id, func) Selection is changing. This can be prevented
by calling Veto() (p. 967).

EVT_TREE_KEY_DOWN(id, func) A key has been pressed.

CHAPTER 7

1365

EVT_TREE_ITEM_GETTOOLTIP(id, func) The opportunity to set the item tooltip is
being given to the application (call
wxTreeEvent::SetToolTip). Windows only.

EVT_TREE_ITEM_MENU(id, func) The context menu for the selected item has
been requested, either by a right click or by
using the menu key.

EVT_TREE_STATE_IMAGE_CLICK(id, func) The state image has been clicked.
Windows only.

See also

wxTreeItemData (p. 1380), wxTreeCtrl overview (p. 1718), wxListBox (p. 808), wxListCtrl
(p. 813), wxImageList (p. 769), wxTreeEvent (p. 1377)

Win32 notes

wxTreeCtrl class uses the standard common treeview control under Win32 implemented
in the system library comctl32.dll . Some versions of this library are known to have
bugs with handling the tree control colours: the usual symptom is that the expanded
items leave black (or otherwise incorrectly coloured) background behind them, especially
for the controls using non default background colour. The recommended solution is to
upgrade the comctl32.dll to a newer version: see
http://www.microsoft.com/msdownload/ieplatform/ie/comctrlx86.asp
(http://www.microsoft.com/msdownload/ieplatform/ie/c omctrlx86.asp)
.

wxTreeCtrl::wxTreeCtrl

 wxTreeCtrl ()

Default constructor.

 wxTreeCtrl (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTR_HAS_BUTTONS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "listCtrl")

Constructor, creating and showing a tree control.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

CHAPTER 7

1366

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

style

Window style. See wxTreeCtrl (p. 1359).

validator

Window validator.

name

Window name.

See also

wxTreeCtrl::Create (p. 1364), wxValidator (p. 1394)

wxTreeCtrl::~wxTreeCtrl

void ~wxTreeCtrl ()

Destructor, destroying the list control.

wxTreeCtrl::AddRoot

wxTreeItemId AddRoot (const wxString& text, int image = -1, int selImage = -1,
wxTreeItemData* data = NULL)

Adds the root node to the tree, returning the new item.

The image and selImage parameters are an index within the normal image list specifying
the image to use for unselected and selected items, respectively. If image > -1 and
selImage is -1, the same image is used for both selected and unselected items.

wxTreeCtrl::AppendItem

wxTreeItemId AppendItem (const wxTreeItemId& parent, const wxString& text, int
image = -1, int selImage = -1, wxTreeItemData* data = NULL)

Appends an item to the end of the branch identified by parent, return a new item id.

The image and selImage parameters are an index within the normal image list specifying
the image to use for unselected and selected items, respectively. If image > -1 and
selImage is -1, the same image is used for both selected and unselected items.

wxTreeCtrl::AssignButtonsImageList

CHAPTER 7

1367

void AssignButtonsImageList (wxImageList* imageList)

Sets the buttons image list. The button images assigned with this method will be
automatically deleted by wxTreeCtrl as appropriate (i.e. it takes ownership of the list).

Setting or assigning the button image list enables the display of image buttons. Once
enabled, the only way to disable the display of button images is to set the button image
list to NULL.

This function is only available in the generic version.

See also SetButtonsImageList (p. 1374).

wxTreeCtrl::AssignImageList

void AssignImageList (wxImageList* imageList)

Sets the normal image list. Image list assigned with this method will be automatically
deleted by wxTreeCtrl as appropriate (i.e. it takes ownership of the list).

See also SetImageList (p. 1374).

wxTreeCtrl::AssignStateImageList

void AssignStateImageList (wxImageList* imageList)

Sets the state image list. Image list assigned with this method will be automatically
deleted by wxTreeCtrl as appropriate (i.e. it takes ownership of the list).

See also SetStateImageList (p. 1376).

wxTreeCtrl::Collapse

void Collapse (const wxTreeItemId& item)

Collapses the given item.

wxTreeCtrl::CollapseAndReset

void CollapseAndReset (const wxTreeItemId& item)

Collapses the given item and removes all children.

wxTreeCtrl::Create

bool wxTreeCtrl (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTR_HAS_BUTTONS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "listCtrl")

Creates the tree control. See wxTreeCtrl::wxTreeCtrl (p. 1362) for further details.

CHAPTER 7

1368

wxTreeCtrl::Delete

void Delete (const wxTreeItemId& item)

Deletes the specified item. A EVT_TREE_DELETE_ITEM event will be generated.

This function may cause a subsequent call to GetNextChild to fail.

wxTreeCtrl::DeleteAllItems

void DeleteAllItems ()

Deletes all the items in the control. Note that this may not generate
EVT_TREE_DELETE_ITEM events under some Windows versions although normally
such event is generated for each removed item.

wxTreeCtrl::DeleteChildren

void DeleteChildren (const wxTreeItemId& item)

Deletes all children of the given item (but not the item itself). Note that this will not
generate any events unlike Delete (p. 1365) method.

If you have called wxTreeCtrl::SetItemHasChildren (p. 1375), you may need to call it
again since DeleteChildren does not automatically clear the setting.

wxTreeCtrl::EditLabel

void EditLabel (const wxTreeItemId& item)

Starts editing the label of the given item. This function generates a
EVT_TREE_BEGIN_LABEL_EDIT event which can be vetoed so that no text control will
appear for in-place editing.

If the user changed the label (i.e. s/he does not press ESC or leave the text control
without changes, a EVT_TREE_END_LABEL_EDIT event will be sent which can be
vetoed as well.

See also

wxTreeCtrl::EndEditLabel (p. 1365),wxTreeEvent (p. 1377)

wxTreeCtrl::EndEditLabel

void EndEditLabel (bool cancelEdit)

Ends label editing. If cancelEdit is true , the edit will be cancelled.

This function is currently supported under Windows only.

See also

CHAPTER 7

1369

wxTreeCtrl::EditLabel (p. 1365)

wxTreeCtrl::EnsureVisible

void EnsureVisible (const wxTreeItemId& item)

Scrolls and/or expands items to ensure that the given item is visible.

wxTreeCtrl::Expand

void Expand (const wxTreeItemId& item)

Expands the given item.

wxTreeCtrl::GetBoundingRect

bool GetBoundingRect (const wxTreeItemId& item, wxRect& rect, bool textOnly =
false) const

Retrieves the rectangle bounding the item. If textOnly is true , only the rectangle around
the item's label will be returned, otherwise the item's image is also taken into account.

The return value is true if the rectangle was successfully retrieved or false if it was not
(in this case rect is not changed) - for example, if the item is currently invisible.

wxPython note: The wxPython version of this method requires only theitem and
textOnly parameters. The return value is either awxRect object or None.

wxPerl note: In wxPerl this method only takes the parameters item and textOnly ,
and returns a Wx::Rect (or undef).

wxTreeCtrl::GetButtonsImageList

wxImageList* GetButtonsImageList () const

Returns the buttons image list (from which application-defined button images are taken).

This function is only available in the generic version.

wxTreeCtrl::GetChildrenCount

size_t GetChildrenCount (const wxTreeItemId& item, bool recursively = true) const

Returns the number of items in the branch. If recursively is true , returns the total
number of descendants, otherwise only one level of children is counted.

wxTreeCtrl::GetCount

int GetCount () const

Returns the number of items in the control.

CHAPTER 7

1370

wxTreeCtrl::GetEditControl

wxTextCtrl * GetEditControl () const

Returns the edit control being currently used to edit a label. Returns NULLif no label is
being edited.

NB: It is currently only implemented for wxMSW.

wxTreeCtrl::GetFirstChild

wxTreeItemId GetFirstChild (const wxTreeItemId& item, wxTreeItemIdValue &
cookie) const

Returns the first child; call wxTreeCtrl::GetNextChild (p. 1369) for the next child.

For this enumeration function you must pass in a 'cookie' parameter which is opaque for
the application but is necessary for the library to make these functions reentrant (i.e.
allow more than one enumeration on one and the same object simultaneously). The
cookie passed to GetFirstChild and GetNextChild should be the same variable.

Returns an invalid tree item (i.e. IsOk() returns false) if there are no further children.

See also

wxTreeCtrl::GetNextChild (p. 1369),wxTreeCtrl::GetNextSibling (p. 1369)

wxPython note: In wxPython the returned wxTreeItemId and the new cookie value are
both returned as a tuple containing the two values.

wxPerl note: In wxPerl this method only takes the item parameter, and returns a 2-
element list (item, cookie) .

wxTreeCtrl::GetFirstVisibleItem

wxTreeItemId GetFirstVisibleItem () const

Returns the first visible item.

wxTreeCtrl::GetImageList

wxImageList* GetImageList () const

Returns the normal image list.

wxTreeCtrl::GetIndent

int GetIndent () const

Returns the current tree control indentation.

wxTreeCtrl::GetItemBackgroundColour

CHAPTER 7

1371

wxColour GetItemBackgroundColour (const wxTreeItemId& item) const

Returns the background colour of the item.

wxTreeCtrl::GetItemData

wxTreeItemData* GetItemData (const wxTreeItemId& item) const

Returns the tree item data associated with the item.

See also

wxTreeItemData (p. 1380)

wxPython note: wxPython provides the following shortcut method:

GetPyData(item) Returns the Python Object
associated with the
wxTreeItemData for the given item
Id.

wxPerl note: wxPerl provides the following shortcut method:GetPlData(

item) Returns the Perl data
associated with the
Wx::TreeItemData. It is just the
same as tree->GetItemData(item)-
>GetData().

wxTreeCtrl::GetItemFont

wxFont GetItemFont (const wxTreeItemId& item) const

Returns the font of the item label.

wxTreeCtrl::GetItemImage

int GetItemImage (const wxTreeItemId& item, wxTreeItemIcon which =
wxTreeItemIcon_Normal) const

Gets the specified item image. The value of which may be:

 •_Normal to get the normal item image

 •_Selected to get the selected item image (i.e. the image which is shown when the
item is currently selected)

 •_Expanded to get the expanded image (this only makes sense for items which have
children - then this image is shown when the item is expanded and the normal
image is shown when it is collapsed)

CHAPTER 7

1372

 •_SelectedExpanded to get the selected expanded image (which is shown when an
expanded item is currently selected)

wxTreeCtrl::GetItemText

wxString GetItemText (const wxTreeItemId& item) const

Returns the item label.

wxTreeCtrl::GetItemTextColour

wxColour GetItemTextColour (const wxTreeItemId& item) const

Returns the colour of the item label.

wxTreeCtrl::GetLastChild

wxTreeItemId GetLastChild (const wxTreeItemId& item) const

Returns the last child of the item (or an invalid tree item if this item has no children).

See also

GetFirstChild (p. 1367),wxTreeCtrl::GetNextSibling (p. 1369),GetLastChild (p. 1369)

wxTreeCtrl::GetNextChild

wxTreeItemId GetNextChild (const wxTreeItemId& item, wxTreeItemIdValue &
cookie) const

Returns the next child; call wxTreeCtrl::GetFirstChild (p. 1367) for the first child.

For this enumeration function you must pass in a 'cookie' parameter which is opaque for
the application but is necessary for the library to make these functions reentrant (i.e.
allow more than one enumeration on one and the same object simultaneously). The
cookie passed to GetFirstChild and GetNextChild should be the same.

Returns an invalid tree item if there are no further children.

See also

wxTreeCtrl::GetFirstChild (p. 1367)

wxPython note: In wxPython the returned wxTreeItemId and the new cookie value are
both returned as a tuple containing the two values.

wxPerl note: In wxPerl this method returns a 2-element list (item, cookie) ,
instead of modifying its parameters.

wxTreeCtrl::GetNextSibling

wxTreeItemId GetNextSibling (const wxTreeItemId& item) const

CHAPTER 7

1373

Returns the next sibling of the specified item; call wxTreeCtrl::GetPrevSibling (p. 1370)
for the previous sibling.

Returns an invalid tree item if there are no further siblings.

See also

wxTreeCtrl::GetPrevSibling (p. 1370)

wxTreeCtrl::GetNextVisible

wxTreeItemId GetNextVisible (const wxTreeItemId& item) const

Returns the next visible item.

wxTreeCtrl::GetItemParent

wxTreeItemId GetItemParent (const wxTreeItemId& item) const

Returns the item's parent.

wxTreeCtrl::GetParent

wxTreeItemId GetParent (const wxTreeItemId& item) const

NOTE: This function is deprecated and will only work if WXWIN_COMPATIBILITY_2_2is
defined. Use wxTreeCtrl::GetItemParent (p. 1370) instead.

Returns the item's parent.

wxPython note: This method is named GetItemParent to avoid a name clash with
wxWindow::GetParent.

wxTreeCtrl::GetPrevSibling

wxTreeItemId GetPrevSibling (const wxTreeItemId& item) const

Returns the previous sibling of the specified item; call wxTreeCtrl::GetNextSibling (p.
1369) for the next sibling.

Returns an invalid tree item if there are no further children.

See also

wxTreeCtrl::GetNextSibling (p. 1369)

wxTreeCtrl::GetPrevVisible

wxTreeItemId GetPrevVisible (const wxTreeItemId& item) const

Returns the previous visible item.

CHAPTER 7

1374

wxTreeCtrl::GetRootItem

wxTreeItemId GetRootItem () const

Returns the root item for the tree control.

wxTreeCtrl::GetItemSelectedImage

int GetItemSelectedImage (const wxTreeItemId& item) const

Gets the selected item image (this function is obsolete, useGetItemImage(item,
wxTreeItemIcon_Selected) instead).

wxTreeCtrl::GetSelection

wxTreeItemId GetSelection () const

Returns the selection, or an invalid item if there is no selection. This function only works
with the controls without wxTR_MULTIPLE style, useGetSelections (p. 1371) for the
controls which do have this style.

wxTreeCtrl::GetSelections

size_t GetSelections (wxArrayTreeItemIds& selection) const

Fills the array of tree items passed in with the currently selected items. This function can
be called only if the control has the wxTR_MULTIPLE style.

Returns the number of selected items.

wxPython note: The wxPython version of this method accepts no parameters and
returns a Python list of wxTreeItemId s.

wxPerl note: In wxPerl this method takes no parameters and returns a list of
Wx::TreeItemId s.

wxTreeCtrl::GetStateImageList

wxImageList* GetStateImageList () const

Returns the state image list (from which application-defined state images are taken).

wxTreeCtrl::HitTest

wxTreeItemId HitTest (const wxPoint& point, int& flags)

Calculates which (if any) item is under the given point, returning the tree item id at this
point plus extra information flags. flags is a bitlist of the following:

wxTREE_HITTEST_ABOVE Above the client area.

CHAPTER 7

1375

wxTREE_HITTEST_BELOW Below the client area.

wxTREE_HITTEST_NOWHERE In the client area but below the last item.

wxTREE_HITTEST_ONITEMBUTTON On the button associated with an item.

wxTREE_HITTEST_ONITEMICON On the bitmap associated with an item.

wxTREE_HITTEST_ONITEMINDENT In the indentation associated with an item.

wxTREE_HITTEST_ONITEMLABEL On the label (string) associated with an item.

wxTREE_HITTEST_ONITEMRIGHT In the area to the right of an item.

wxTREE_HITTEST_ONITEMSTATEICON On the state icon for a tree view item that is
in a user-defined state.

wxTREE_HITTEST_TOLEFTTo the right of the client area.

wxTREE_HITTEST_TORIGHT To the left of the client area.

wxPython note: in wxPython both the wxTreeItemId and the flags are returned as a
tuple.

wxPerl note: In wxPerl this method only takes the point parameter and returns a 2-
element list (item, flags) .

wxTreeCtrl::InsertItem

wxTreeItemId InsertItem (const wxTreeItemId& parent, const wxTreeItemId&
previous, const wxString& text, int image = -1, int selImage = -1, wxTreeItemData*
data = NULL)

wxTreeItemId InsertItem (const wxTreeItemId& parent, size_t before, const
wxString& text, int image = -1, int selImage = -1, wxTreeItemData* data = NULL)

Inserts an item after a given one (previous) or before one identified by its position
(before).before must be less than the number of children.

The image and selImage parameters are an index within the normal image list specifying
the image to use for unselected and selected items, respectively. If image > -1 and
selImage is -1, the same image is used for both selected and unselected items.

wxPython note: The second form of this method is calledInsertItemBefore in
wxPython.

wxTreeCtrl::IsBold

bool IsBold (const wxTreeItemId& item) const

Returns true if the given item is in bold state.

See also: SetItemBold (p. 1374)

CHAPTER 7

1376

wxTreeCtrl::IsExpanded

bool IsExpanded (const wxTreeItemId& item) const

Returns true if the item is expanded (only makes sense if it has children).

wxTreeCtrl::IsSelected

bool IsSelected (const wxTreeItemId& item) const

Returns true if the item is selected.

wxTreeCtrl::IsVisible

bool IsVisible (const wxTreeItemId& item) const

Returns true if the item is visible (it might be outside the view, or not expanded).

wxTreeCtrl::ItemHasChildren

bool ItemHasChildren (const wxTreeItemId& item) const

Returns true if the item has children.

wxTreeCtrl::OnCompareItems

int OnCompareItems (const wxTreeItemId& item1, const wxTreeItemId& item2)

Override this function in the derived class to change the sort order of the items in the
tree control. The function should return a negative, zero or positive value if the first item
is less than, equal to or greater than the second one.

The base class version compares items alphabetically.

See also: SortChildren (p. 1376)

wxTreeCtrl::PrependItem

wxTreeItemId PrependItem (const wxTreeItemId& parent, const wxString& text, int
image = -1, int selImage = -1, wxTreeItemData* data = NULL)

Appends an item as the first child of parent, return a new item id.

The image and selImage parameters are an index within the normal image list specifying
the image to use for unselected and selected items, respectively. If image > -1 and
selImage is -1, the same image is used for both selected and unselected items.

wxTreeCtrl::ScrollTo

void ScrollTo (const wxTreeItemId& item)

CHAPTER 7

1377

Scrolls the specified item into view.

wxTreeCtrl::SelectItem

bool SelectItem (const wxTreeItemId& item, bool select = true)

Selects the given item. In multiple selection controls, can be also used to deselect a
currently selected item if the value of select is false.

wxTreeCtrl::SetButtonsImageList

void SetButtonsImageList (wxImageList* imageList)

Sets the buttons image list (from which application-defined button images are taken).
The button images assigned with this method willnot be deleted by wxTreeCtrl's
destructor, you must delete it yourself.

Setting or assigning the button image list enables the display of image buttons. Once
enabled, the only way to disable the display of button images is to set the button image
list to NULL.

This function is only available in the generic version.

See also AssignButtonsImageList (p. 1363).

wxTreeCtrl::SetIndent

void SetIndent (int indent)

Sets the indentation for the tree control.

wxTreeCtrl::SetImageList

void SetImageList (wxImageList* imageList)

Sets the normal image list. Image list assigned with this method willnot be deleted by
wxTreeCtrl's destructor, you must delete it yourself.

See also AssignImageList (p. 1364).

wxTreeCtrl::SetItemBackgroundColour

void SetItemBackgroundColour (const wxTreeItemId& item, const wxColour& col)

Sets the colour of the item's background.

wxTreeCtrl::SetItemBold

void SetItemBold (const wxTreeItemId& item, bool bold = true)

Makes item appear in bold font if bold parameter is true or resets it to the normal state.

CHAPTER 7

1378

See also: IsBold (p. 1372)

wxTreeCtrl::SetItemData

void SetItemData (const wxTreeItemId& item, wxTreeItemData* data)

Sets the item client data.

wxPython note: wxPython provides the following shortcut method:

SetPyData(item, obj) Associate the given Python Object with the
wxTreeItemData for the given item Id.

wxPerl note: wxPerl provides the following shortcut method:SetPlData(

item, data) Sets the Perl data associated
with the Wx::TreeItemData. It is just the same
as tree->GetItemData(item)->SetData(data).

wxTreeCtrl::SetItemDropHighlight

void SetItemDropHighlight (const wxTreeItemId& item, bool highlight = true)

Gives the item the visual feedback for Drag'n'Drop actions, which is useful if something
is dragged from the outside onto the tree control (as opposed to a DnD operation within
the tree control, which already is implemented internally).

wxTreeCtrl::SetItemFont

void SetItemFont (const wxTreeItemId& item, const wxFont& font)

Sets the item's font. All items in the tree should have the same height to avoid text
clipping, so the fonts height should be the same for all of them, although font attributes
may vary.

See also

SetItemBold (p. 1374)

wxTreeCtrl::SetItemHasChildren

void SetItemHasChildren (const wxTreeItemId& item, bool hasChildren = true)

Force appearance of the button next to the item. This is useful to allow the user to
expand the items which don't have any children now, but instead adding them only when
needed, thus minimizing memory usage and loading time.

wxTreeCtrl::SetItemImage

void SetItemImage (const wxTreeItemId& item, int image, wxTreeItemIcon which =

CHAPTER 7

1379

wxTreeItemIcon_Normal)

Sets the specified item image. See GetItemImage (p. 1368)for the description of the
which parameter.

wxTreeCtrl::SetItemSelectedImage

void SetItemSelectedImage (const wxTreeItemId& item, int selImage)

Sets the selected item image (this function is obsolete, use SetItemImage(item,
wxTreeItemIcon_Selected) instead).

wxTreeCtrl::SetItemText

void SetItemText (const wxTreeItemId& item, const wxString& text)

Sets the item label.

wxTreeCtrl::SetItemTextColour

void SetItemTextColour (const wxTreeItemId& item, const wxColour& col)

Sets the colour of the item's text.

wxTreeCtrl::SetStateImageList

void SetStateImageList (wxImageList* imageList)

Sets the state image list (from which application-defined state images are taken). Image
list assigned with this method willnot be deleted by wxTreeCtrl's destructor, you must
delete it yourself.

See also AssignStateImageList (p. 1364).

wxTreeCtrl::SetWindowStyle

void SetWindowStyle (long styles)

Sets the mode flags associated with the display of the tree control. The new mode takes
effect immediately. (Generic only; MSW ignores changes.)

wxTreeCtrl::SortChildren

void SortChildren (const wxTreeItemId& item)

Sorts the children of the given item usingOnCompareItems (p. 1373) method of
wxTreeCtrl. You should override that method to change the sort order (the default is
ascending case-sensitive alphabetical order).

See also

CHAPTER 7

1380

wxTreeItemData (p. 1380), OnCompareItems (p. 1373)

wxTreeCtrl::Toggle

void Toggle (const wxTreeItemId& item)

Toggles the given item between collapsed and expanded states.

wxTreeCtrl::ToggleItemSelection

void ToggleItemSelection (const wxTreeItemId& item)

Toggles the given item between selected and unselected states. For multiselection
controls only.

wxTreeCtrl::Unselect

void Unselect ()

Removes the selection from the currently selected item (if any).

wxTreeCtrl::UnselectAll

void UnselectAll ()

This function either behaves the same as Unselect (p. 1377)if the control doesn't have
wxTR_MULTIPLE style, or removes the selection from all items if it does have this style.

wxTreeCtrl::UnselectItem

void UnselectItem (const wxTreeItemId& item)

Unselects the given item. This works in multiselection controls only.

wxTreeEvent

A tree event holds information about events associated with wxTreeCtrl objects.

Derived from

wxNotifyEvent (p. 966)
wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/treectrl.h>

Event table macros

CHAPTER 7

1381

To process input from a tree control, use these event handler macros to direct input to
member functions that take a wxTreeEvent argument.

EVT_TREE_BEGIN_DRAG(id, func) The user has started dragging an
item with the left mouse button.
The event handler must call
wxTreeEvent::Allow() for the drag
operation to continue.

EVT_TREE_BEGIN_RDRAG(id, func) The user has started dragging an
item with the right mouse button.
The event handler must call
wxTreeEvent::Allow() for the drag
operation to continue.

EVT_TREE_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be
prevented by calling Veto() (p.
967).

EVT_TREE_END_DRAG(id, func) The user has released the mouse
after dragging an item.

EVT_TREE_END_LABEL_EDIT(id, func) The user has finished editing a
label. This can be prevented by
calling Veto() (p. 967).

EVT_TREE_DELETE_ITEM(id, func) A tree item has been deleted.

EVT_TREE_ITEM_ACTIVATED(id, func) An item has been activated (e.g.
double clicked).

EVT_TREE_ITEM_COLLAPSED(id, func) The item has been collapsed.

EVT_TREE_ITEM_COLLAPSING(id, func) The item is being collapsed. This
can be prevented by calling Veto()
(p. 967).

EVT_TREE_ITEM_EXPANDED(id, func) The item has been expanded.

EVT_TREE_ITEM_EXPANDING(id, func) The item is being expanded. This
can be prevented by calling Veto()
(p. 967).

EVT_TREE_ITEM_RIGHT_CLICK(id, func) The user has clicked the item with
the right mouse button.

EVT_TREE_ITEM_MIDDLE_CLICK(id, func) The user has clicked the item with
the middle mouse button.

EVT_TREE_KEY_DOWN(id, func) A key has been pressed.

EVT_TREE_SEL_CHANGED(id, func) Selection has changed.

EVT_TREE_SEL_CHANGING(id, func) Selection is changing. This can be

CHAPTER 7

1382

prevented by calling Veto() (p.
967).

EVT_TREE_KEY_DOWN(id, func) A key has been pressed.

EVT_TREE_ITEM_GETTOOLTIP(id, func) The opportunity to set the item
tooltip is being given to the
application (call
wxTreeEvent::SetToolTip).
Windows only.

EVT_TREE_ITEM_MENU(id, func) The context menu for the selected
item has been requested, either by
a right click or by using the menu
key.

EVT_TREE_STATE_IMAGE_CLICK(id, func) The state image has been clicked.
Windows only.

See also

wxTreeCtrl (p. 1359)

wxTreeEvent::wxTreeEvent

 wxTreeEvent (WXTYPE commandType = 0, int id = 0)

Constructor.

wxTreeEvent::GetKeyCode

int GetKeyCode () const

Returns the key code if the event was is a key event. Use GetKeyEvent (p. 1379) to get
the values of the modifier keys for this event (i.e. Shift or Ctrl).

wxTreeEvent::GetItem

wxTreeItemId GetItem () const

Returns the item (valid for all events).

wxTreeEvent::GetKeyEvent

const wxKeyEvent& GetKeyEvent () const

Returns the key event for EVT_TREE_KEY_DOWN events.

wxTreeEvent::GetLabel

CHAPTER 7

1383

const wxString& GetLabel () const

Returns the label if the event was a begin or end edit label event.

wxTreeEvent::GetOldItem

wxTreeItemId GetOldItem () const

Returns the old item index (valid for EVT_TREE_ITEM_CHANGING and CHANGED
events)

wxTreeEvent::GetPoint()

wxPoint GetPoint () const

Returns the position of the mouse pointer if the event is a drag event.

wxTreeEvent::IsEditCancelled()

bool IsEditCancelled () const

Returns true if the label edit was cancelled. This should be called from within an
EVT_TREE_END_LABEL_EDIT handler.

wxTreeEvent::SetToolTip

void SetToolTip (const wxString& tooltip)

Set the tooltip for the item (valid for EVT_TREE_ITEM_GETTOOLTIP events). Windows
only.

wxTreeItemData

wxTreeItemData is some (arbitrary) user class associated with some item. The main
advantage of having this class is that wxTreeItemData objects are destroyed
automatically by the tree and, as this class has virtual destructor, it means that the
memory and any other resources associated with a tree item will be automatically freed
when it is deleted. Note that we don't use wxObject as the base class for
wxTreeItemData because the size of this class is critical: in many applications, each tree
leaf will have wxTreeItemData associated with it and the number of leaves may be quite
big.

Also please note that because the objects of this class are deleted by the tree using the
operator delete , they must always be allocated on the heap using new.

Derived from

wxClientData (p. 142)

Include files

CHAPTER 7

1384

<wx/treectrl.h>

See also

wxTreeCtrl (p. 1359)

wxTreeItemData::wxTreeItemData

 wxTreeItemData ()

Default constructor.

wxPython note: The wxPython version of this constructor optionally accepts any Python
object as a parameter. This object is then associated with the tree item using the
wxTreeItemData as a container.

In addition, the following methods are added in wxPython for accessing the object:

GetData() Returns a reference to
the Python Object

SetData(obj) Associates a new
Python Object with the
wxTreeItemData

wxPerl note: In wxPerl the constructor accepts as parameter an optional scalar, and
stores it as client data. You may retrieve this data by calling GetData() , and set it by
calling SetData(data).

wxTreeItemData::~wxTreeItemData

void ~wxTreeItemData ()

Virtual destructor.

wxTreeItemData::GetId

const wxTreeItemId& GetId ()

Returns the item associated with this node.

wxTreeItemData::SetId

void SetId (const wxTreeItemId& id)

Sets the item associated with this node.

wxUpdateUIEvent

CHAPTER 7

1385

This class is used for pseudo-events which are called by wxWidgets to give an
application the chance to update various user interface elements.

Derived from

wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process an update event, use these event handler macros to direct input to member
functions that take a wxUpdateUIEvent argument.

EVT_UPDATE_UI(id, func) Process a wxEVT_UPDATE_UI event for the
command with the given id.

EVT_UPDATE_UI_RANGE(id1, id2, func) Process a wxEVT_UPDATE_UI event for
any command with id included in the given
range.

Remarks

Without update UI events, an application has to work hard to check/uncheck,
enable/disable, and set the text for elements such as menu items and toolbar buttons.
The code for doing this has to be mixed up with the code that is invoked when an action
is invoked for a menu item or button.

With update UI events, you define an event handler to look at the state of the application
and change UI elements accordingly. wxWidgets will call your member functions in idle
time, so you don't have to worry where to call this code. In addition to being a clearer
and more declarative method, it also means you don't have to worry whether you're
updating a toolbar or menubar identifier. The same handler can update a menu item and
toolbar button, if the identifier is the same.

Instead of directly manipulating the menu or button, you call functions in the event
object, such as wxUpdateUIEvent::Check (p. 1383). wxWidgets will determine whether
such a call has been made, and which UI element to update.

These events will work for popup menus as well as menubars. Just before a menu is
popped up, wxMenu::UpdateUI (p. 912) is called to process any UI events for the
window that owns the menu.

If you find that the overhead of UI update processing is affecting your application, you
can do one or both of the following:

 1. Call wxUpdateUIEvent::SetMode (p. 1385) with a value of
wxUPDATE_UI_PROCESS_SPECIFIED, and set the extra style
wxWS_EX_PROCESS_UPDATE_EVENTS for every window that should
receive update events. No other windows will receive update events.

CHAPTER 7

1386

 2. Call wxUpdateUIEvent::SetUpdateInterval (p. 1385) with a millisecond value to
set the delay between updates. You may need to call
wxWindow::UpdateWindowUI (p. 1474) at critical points, for example when a
dialog is about to be shown, in case the user sees a slight delay before windows
are updated.

Note that although events are sent in idle time, defining a wxIdleEvent handler for a
window does not affect this because the events are sent from wxWindow::OnInternalIdle
(p. 1449) which is always called in idle time.

wxWidgets tries to optimize update events on some platforms. On Windows and GTK+,
events for menubar items are only sent when the menu is about to be shown, and not in
idle time.

See also

Event handling overview (p. 1674)

wxUpdateUIEvent::wxUpdateUIEvent

 wxUpdateUIEvent (wxWindowID commandId = 0)

Constructor.

wxUpdateUIEvent::CanUpdate

static bool CanUpdate (wxWindow* window)

Returns true if it is appropriate to update (send UI update events to) this window.

This function looks at the mode used (see wxUpdateUIEvent::SetMode (p. 1385)), the
wxWS_EX_PROCESS_UPDATE_EVENTS flag in window, the time update events were
last sent in idle time, and the update interval, to determine whether events should be
sent to this window now. By default this will always return true because the update
mode is initially wxUPDATE_UI_PROCESS_ALL and the interval is set to 0; so update
events will be sent as often as possible. You can reduce the frequency that events are
sent by changing the mode and/or setting an update interval.

See also

wxUpdateUIEvent::ResetUpdateTime (p. 1385), wxUpdateUIEvent::SetUpdateInterval
(p. 1385), wxUpdateUIEvent::SetMode (p. 1385)

wxUpdateUIEvent::Check

void Check (bool check)

Check or uncheck the UI element.

wxUpdateUIEvent::Enable

CHAPTER 7

1387

void Enable (bool enable)

Enable or disable the UI element.

wxUpdateUIEvent::GetChecked

bool GetChecked () const

Returns true if the UI element should be checked.

wxUpdateUIEvent::GetEnabled

bool GetEnabled () const

Returns true if the UI element should be enabled.

wxUpdateUIEvent::GetSetChecked

bool GetSetChecked () const

Returns true if the application has called wxUpdateUIEvent::Check (p. 1383). For
wxWidgets internal use only.

wxUpdateUIEvent::GetSetEnabled

bool GetSetEnabled () const

Returns true if the application has called wxUpdateUIEvent::Enable (p. 1383). For
wxWidgets internal use only.

wxUpdateUIEvent::GetSetText

bool GetSetText () const

Returns true if the application has called wxUpdateUIEvent::SetText (p. 1385). For
wxWidgets internal use only.

wxUpdateUIEvent::GetText

wxString GetText () const

Returns the text that should be set for the UI element.

wxUpdateUIEvent::GetMode

static wxUpdateUIMode GetMode ()

Static function returning a value specifying how wxWidgets will send update events: to
all windows, or only to those which specify that they will process the events.

CHAPTER 7

1388

See wxUpdateUIEvent::SetMode (p. 1385).

wxUpdateUIEvent::GetUpdateInterval

static long GetUpdateInterval ()

Returns the current interval between updates in milliseconds. -1 disables updates, 0
updates as frequently as possible.

See wxUpdateUIEvent::SetUpdateInterval (p. 1385).

wxUpdateUIEvent::ResetUpdateTime

static void ResetUpdateTime ()

Used internally to reset the last-updated time to the current time. It is assumed that
update events are normally sent in idle time, so this is called at the end of idle
processing.

See also

wxUpdateUIEvent::CanUpdate (p. 1383), wxUpdateUIEvent::SetUpdateInterval (p.
1385), wxUpdateUIEvent::SetMode (p. 1385)

wxUpdateUIEvent::SetMode

static void SetMode (wxUpdateUIMode mode)

Specify how wxWidgets will send update events: to all windows, or only to those which
specify that they will process the events.

mode may be one of the following values. The default is
wxUPDATE_UI_PROCESS_ALL.

enum wxUpdateUIMode
{
 // Send UI update events to all windows
 wxUPDATE_UI_PROCESS_ALL,

 // Send UI update events to windows that ha ve
 // the wxWS_EX_PROCESS_UI_UPDATES flag spec ified
 wxUPDATE_UI_PROCESS_SPECIFIED
};

wxUpdateUIEvent::SetText

void SetText (const wxString& text)

Sets the text for this UI element.

wxUpdateUIEvent::SetUpdateInterval

static void SetUpdateInterval (long updateInterval)

CHAPTER 7

1389

Sets the interval between updates in milliseconds. Set to -1 to disable updates, or to 0 to
update as frequently as possible. The default is 0.

Use this to reduce the overhead of UI update events if your application has a lot of
windows. If you set the value to -1 or greater than 0, you may also need to call
wxWindow::UpdateWindowUI (p. 1474) at appropriate points in your application, such
as when a dialog is about to be shown.

wxURI

wxURI is used to extract information from a URI (Uniform Resource Identifier).

For information about URIs, see RFC 3986
(http://www.ietf.org/rfc/rfc3986.txt).

In short, a URL is a URI. In other words, URL is a subset of a URI - all acceptable
URLs are also acceptable URIs.

wxURI automatically escapes invalid characters in a string, so there is no chance of
wxURI "failing" on construction/creation.

wxURI supports copy construction and standard assignment operators. wxURI can also
be inherited from to provide furthur functionality.

Derived from

wxObject (p. 967)

Include files

<uri.h>

Obtaining individual components

To obtain individual components you can use one of the following methods

GetScheme (p. 1389)
GetUserInfo (p. 1390)
GetServer (p. 1389)
GetPort (p. 1389)
GetPath (p. 1388)
GetQuery (p. 1389)
GetFragment (p. 1388)

However, you should check HasXXX before calling a get method, which determines
whether or not the component referred to by the method is defined according to RFC
2396.

Consider an undefined component equivalent to a NULL C string.

CHAPTER 7

1390

 HasScheme (p. 1390)
HasUserInfo (p. 1391)
HasServer (p. 1390)
HasPort (p. 1390)
HasPath (p. 1390)
HasQuery (p. 1390)
HasFragment (p. 1390)

Example://protocol will hold the http protocol (i.e. "http")
wxString protocol;
wxURI myuri(wxT("http://mysite.com"));
if(myuri.HasScheme())
 protocol = myuri.GetScheme();

wxURI::wxURI

 wxURI ()

Creates an empty URI.

 wxURI (const wxChar* uri)

Constructor for quick creation.

uri

string to initialize with

 wxURI (const wxURI& uri)

Copies this URI from another URI.

uri

URI (Uniform Resource Identifier) to initialize with

wxURI::BuildURI

wxString BuildURI () const

Builds the URI from its individual components and adds proper separators.

If the URI is not a reference or is not resolved, the URI that is returned from Get is the
same one passed to Create.

wxURI::BuildUnescapedURI

wxString BuildUnescapedURI () const

Builds the URI from its individual components, adds proper separators, and returns
escape sequences to normal characters.

Note that it is preferred to call this over Unescape(BuildURI()) sinceBuildUnescapedURI

CHAPTER 7

1391

(p. 1387) performs some optimizations over the plain method.

wxURI::Create

const wxChar* Create (const wxString& uri)

Creates this URI from the string uri.

Returns the position at which parsing stopped (there is no such thing as an "invalid"
wxURI).

uri

string to initialize from

wxURI::GetFragment

const wxString& GetFragment () const

Obtains the fragment of this URI.

The fragment of a URI is the last value of the URI, and is the value after a '' character
after the path of the URI.

http://mysite.com/mypath#<fragment>

wxURI::GetHostType

const HostType& GetHostType () const

Obtains the host type of this URI, which is of type wxURI::HostType:

wxURI_REGNAME Server is a host name, or the Server
component itself is undefined.

wxURI_IPV4ADDRESS Server is a IP version 4 address
(XXX.XXX.XXX.XXX)

wxURI_IPV6ADDRESS Server is a IP version 6 address
((XXX:)XXX::(XXX)XXX:XXX

wxURI_IPVFUTURE Server is an IP address, but not versions 4 or 6

wxURI::GetPassword

const wxString& GetPassword () const

Returns the password part of the userinfo component of this URI. Note that this is
explicitly depreciated by RFC 1396 and should generally be avoided if possible.

http://<user>:<password>@mysite.com/mypath

CHAPTER 7

1392

wxURI::GetPath

const wxString& GetPath () const

Returns the (normalized) path of the URI.

The path component of a URI comes directly after the scheme component if followed by
zero or one slashes ('/'), or after the server/port component.

Absolute paths include the leading '/' character.

http://mysite.com<path>

wxURI::GetPort

const wxString& GetPort () const

Returns a string representation of the URI's port.

The Port of a URI is a value after the server, and must come after a colon (:).

http://mysite.com:<port>

Note that you can easily get the numeric value of the port by using wxAtoi or
wxString::Format.

wxURI::GetQuery

const wxString& GetQuery () const

Returns the Query component of the URI.

The query component is what is commonly passed to a cgi application, and must come
after the path component, and after a '?' character.

http://mysite.com/mypath?<query>

wxURI::GetScheme

const wxString& GetScheme () const

Returns the Scheme component of the URI.

The first part of the uri.

<scheme>://mysite.com

wxURI::GetServer

const wxString& GetServer () const

Returns the Server component of the URI.

CHAPTER 7

1393

The server of the uri can be a server name or a type of ip address. SeeGetHostType
(p. 1388) for the possible values for the host type of the server component.

http://<server>/mypath

wxURI::GetUser

const wxString& GetUser () const

Returns the username part of the userinfo component of this URI. Note that this is
explicitly depreciated by RFC 1396 and should generally be avoided if possible.

http://<user>:<password>@mysite.com/mypath

wxURI::GetUserInfo

const wxString& GetUserInfo () const

Returns the UserInfo component of the URI.

The component of a URI before the server component that is postfixed by a '@'
character.

http://<userinfo>@mysite.com/mypath

wxURI::HasFragment

bool HasFragment () const

Returns true if the Fragment component of the URI exists.

wxURI::HasPath

bool HasPath () const

Returns true if the Path component of the URI exists.

wxURI::HasPort

bool HasPort () const

Returns true if the Port component of the URI exists.

wxURI::HasQuery

bool HasQuery () const

Returns true if the Query component of the URI exists.

wxURI::HasScheme

CHAPTER 7

1394

bool HasScheme () const

Returns true if the Scheme component of the URI exists.

wxURI::HasServer

bool HasServer () const

Returns true if the Server component of the URI exists.

wxURI::HasUser

bool HasUser () const

Returns true if the User component of the URI exists.

wxURI::IsReference

bool IsReference () const

Returns true if a valid [absolute] URI, otherwise this URI is a URI reference and not a
full URI, and IsReference returns false .

wxURI::operator ==

void operator == (const wxURI& uricomp)

Compares this URI to another URI, and returns true if this URI equals uricomp,
otherwise it returns false .

uricomp

URI to compare to

wxURI::Resolve

void Resolve (const wxURI& base, int flags = wxURI_STRICT)

Inherits this URI from a base URI - components that do not exist in this URI are copied
from the base, and if this URI's path is not an absolute path (prefixed by a '/'), then this
URI's path is merged with the base's path.

For instance, resolving "../mydir" from "http://mysite.com/john/doe" results in the scheme
(http) and server (mysite.com) being copied into this URI, since they do not exist. In
addition, since the path of this URI is not absolute (does not begin with '/'), the path of
the base's is merged with this URI's path, resulting in the URI
"http://mysite.com/john/mydir".

base

Base URI to inherit from. Must be a full URI and not a reference

CHAPTER 7

1395

flags

Currently either wxURI_STRICT or 0, in non strict mode some compatibility layers
are enabled to allow loopholes from RFCs prior to 2396

wxURI::Unescape

wxString Unescape (const wxString& uri)

Translates all escape sequences (normal characters and returns the result.

This is the preferred over deprecated wxURL::ConvertFromURI.

If you want to unescape an entire wxURI, use BuildUnescapedURI (p. 1387) instead, as
it performs some optimizations over this method.

uri

string with escaped characters to convert

wxURL

Parses URLs.

Supports standard assignment operators, copy constructors, and comparison operators.

Derived from

wxURI (p. 1386)

Include files

<wx/url.h>

See also

wxSocketBase (p. 1148), wxProtocol (p. 1036)

wxURL::wxURL

 wxURL (const wxString& url)

Constructs a URL object from the string. The URL must be valid according to RFC
1738. In particular, file URLs must be of the format 'file://hostname/path/to/file'. It is
valid to leave out the hostname but slashes must remain in place-- i.e. a file URL without
a hostname must contain three consecutive slashes.

Parameters

url

CHAPTER 7

1396

Url string to parse.

wxURL::~wxURL

 ~wxURL ()

Destroys the URL object.

wxURL::GetProtocol

wxProtocol& GetProtocol ()

Returns a reference to the protocol which will be used to get the URL.

wxURL::GetError

wxURLError GetError () const

Returns the last error. This error refers to the URL parsing or to the protocol. It can be
one of these errors:

wxURL_NOERR No error.

wxURL_SNTXERR Syntax error in the URL string.

wxURL_NOPROTO Found no protocol which can get this URL.

wxURL_NOHOST An host name is required for this protocol.

wxURL_NOPATH A path is required for this protocol.

wxURL_CONNERR Connection error.

wxURL_PROTOERR An error occurred during negotiation.

wxURL::GetInputStream

wxInputStream * GetInputStream ()

Creates a new input stream on the specified URL. You can use all but seek functionality
of wxStream. Seek isn't available on all stream. For example, http or ftp streams doesn't
deal with it.

Note that this method is somewhat depreciated, all future wxWidgets applications should
really use wxFileSystem (p. 517) instead.

Example:

 wxURL url("http://a.host/a.dir/a.file");
 if (url.GetError() == wxURL_NOERR)
 {
 wxInputStream *in_stream;

 in_stream = url.GetInputStream();

CHAPTER 7

1397

 // Then, you can use all IO calls of in_strea m (See
wxStream)
 }

Return value

Returns the initialized stream. You will have to delete it yourself.

See also

wxInputStream (p. 777)

wxURL::SetDefaultProxy

static void SetDefaultProxy (const wxString& url_proxy)

Sets the default proxy server to use to get the URL. The string specifies the proxy like
this: <hostname>:<port number>.

Parameters

url_proxy

Specifies the proxy to use

See also

wxURL::SetProxy (p. 1394)

wxURL::SetProxy

void SetProxy (const wxString& url_proxy)

Sets the proxy to use for this URL.

See also

wxURL::SetDefaultProxy (p. 1394)

wxValidator

wxValidator is the base class for a family of validator classes that mediate between a
class of control, and application data.

A validator has three major roles:

 1. to transfer data from a C++ variable or own storage to and from a control;

 2. to validate data in a control, and show an appropriate error message;

 3. to filter events (such as keystrokes), thereby changing the behaviour of the
associated control.

CHAPTER 7

1398

Validators can be plugged into controls dynamically.

To specify a default, 'null' validator, use the symbol wxDefaultValidator .

For more information, please see Validator overview (p. 1689).

wxPython note: If you wish to create a validator class in wxPython you should derive
the class from wxPyValidator in order to get Python-aware capabilities for the various
virtual methods.

Derived from

wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/validate.h>

See also

Validator overview (p. 1689), wxTextValidator (p. 1312), wxGenericValidator (p. 586),

wxValidator::wxValidator

 wxValidator ()

Constructor.

wxValidator::~wxValidator

 ~wxValidator ()

Destructor.

wxValidator::Clone

virtual wxObject* Clone () const

All validator classes must implement the Clone function, which returns an identical copy
of itself. This is because validators are passed to control constructors as references
which must be copied. Unlike objects such as pens and brushes, it does not make sense
to have a reference counting scheme to do this cloning, because all validators should
have separate data.

This base function returns NULL.

wxValidator::GetWindow

wxWindow* GetWindow () const

CHAPTER 7

1399

Returns the window associated with the validator.

wxValidator::SetBellOnError

void SetBellOnError (bool doIt = true)

This functions switches on or turns off the error sound produced by the validators if an
invalid key is pressed.

wxValidator::SetWindow

void SetWindow (wxWindow* window)

Associates a window with the validator.

wxValidator::TransferFromWindow

virtual bool TransferToWindow ()

This overridable function is called when the value in the window must be transferred to
the validator. Return false if there is a problem.

wxValidator::TransferToWindow

virtual bool TransferToWindow ()

This overridable function is called when the value associated with the validator must be
transferred to the window. Return false if there is a problem.

wxValidator::Validate

virtual bool Validate (wxWindow* parent)

This overridable function is called when the value in the associated window must be
validated. Return false if the value in the window is not valid; you may pop up an error
dialog.

wxVariant

The wxVariant class represents a container for any type. A variant's value can be
changed at run time, possibly to a different type of value.

As standard, wxVariant can store values of type bool, char, double, long, string, string
list, time, date, void pointer, list of strings, and list of variants. However, an application
can extend wxVariant's capabilities by deriving from the class wxVariantData (p. 1404)
and using the wxVariantData form of the wxVariant constructor or assignment operator
to assign this data to a variant. Actual values for user-defined types will need to be
accessed via the wxVariantData object, unlike the case for basic data types where
convenience functions such as GetLong can be used.

CHAPTER 7

1400

This class is useful for reducing the programming for certain tasks, such as an editor for
different data types, or a remote procedure call protocol.

An optional name member is associated with a wxVariant. This might be used, for
example, in CORBA or OLE automation classes, where named parameters are required.

Derived from

wxObject (p. 967)

Include files

<wx/variant.h>

See also

wxVariantData (p. 1404)

wxVariant::wxVariant

 wxVariant ()

Default constructor.

 wxVariant (const wxVariant& variant)

Copy constructor.

 wxVariant (const char* value, const wxString& name = "")

 wxVariant (const wxString& value, const wxString& name = "")

Construction from a string value.

 wxVariant (char value, const wxString& name = "")

Construction from a character value.

 wxVariant (long value, const wxString& name = "")

Construction from an integer value. You may need to cast to (long) to avoid confusion
with other constructors (such as the bool constructor).

 wxVariant (bool value, const wxString& name = "")

Construction from a boolean value.

 wxVariant (double value, const wxString& name = "")

Construction from a double-precision floating point value.

 wxVariant (const wxList& value, const wxString& name = "")

CHAPTER 7

1401

Construction from a list of wxVariant objects. This constructor copies value, the
application is still responsible for deleting value and its contents.

 wxVariant (void* value, const wxString& name = "")

Construction from a void pointer.

 wxVariant (wxObject* value, const wxString& name = "")

Construction from a wxObject pointer.

 wxVariant (wxVariantData* data, const wxString& name = "")

Construction from user-defined data. The variant holds onto the data pointer.

 wxVariant (wxDateTime& val, const wxString& name = "")

Construction from a wxDateTime (p. 246).

 wxVariant (wxArrayString& val, const wxString& name = "")

Construction from an array of strings. This constructor copies value and its contents.

 wxVariant (DATE_STRUCT* val, const wxString& name = "")

Construction from a odbc date value. Represented internally by a wxDateTime (p. 246)
value.

 wxVariant (TIME_STRUCT* val, const wxString& name = "")

Construction from a odbc time value. Represented internally by a wxDateTime (p. 246)
value.

 wxVariant (TIMESTAMP_STRUCT* val, const wxString& name = "")

Construction from a odbc timestamp value. Represented internally by a wxDateTime (p.
246) value.

wxVariant::~wxVariant

 ~wxVariant ()

Destructor.

wxVariant::Append

void Append (const wxVariant& value)

Appends a value to the list.

wxVariant::ClearList

void ClearList ()

CHAPTER 7

1402

Deletes the contents of the list.

wxVariant::Convert

bool Convert (long* value) const

bool Convert (bool* value) const

bool Convert (double* value) const

bool Convert (wxString* value) const

bool Convert (char* value) const

bool Convert (wxDateTime* value) const

Retrieves and converts the value of this variant to the type that value is.

wxVariant::GetCount

int GetCount () const

Returns the number of elements in the list.

wxVariant::Delete

bool Delete (int item)

Deletes the zero-based item from the list.

wxVariant::GetArrayString

wxArrayString GetArrayString () const

Returns the string array value.

wxVariant::GetBool

bool GetBool () const

Returns the boolean value.

wxVariant::GetChar

char GetChar () const

Returns the character value.

wxVariant::GetData

wxVariantData* GetData () const

CHAPTER 7

1403

Returns a pointer to the internal variant data.

wxVariant::GetDateTime

wxDateTime GetDateTime () const

Returns the date value.

wxVariant::GetDouble

double GetDouble () const

Returns the floating point value.

wxVariant::GetLong

long GetLong () const

Returns the integer value.

wxVariant::GetName

const wxString& GetName () const

Returns a constant reference to the variant name.

wxVariant::GetString

wxString GetString () const

Gets the string value.

wxVariant::GetType

wxString GetType () const

Returns the value type as a string. The built-in types are: bool, char, date, double, list,
long, string, stringlist, time, void*.

If the variant is null, the value type returned is the string "null" (not the empty string).

wxVariant::GetVoidPtr

void* GetVoidPtr () const

Gets the void pointer value.

wxVariant::GetWxObjectPtr

void* GetWxObjectPtr () const

CHAPTER 7

1404

Gets the wxObject pointer value.

wxVariant::Insert

void Insert (const wxVariant& value)

Inserts a value at the front of the list.

wxVariant::IsNull

bool IsNull () const

Returns true if there is no data associated with this variant, false if there is data.

wxVariant::IsType

bool IsType (const wxString& type) const

Returns true if type matches the type of the variant, false otherwise.

wxVariant::IsValueKindOf

bool IsValueKindOf (const wxClassInfo* type type) const

Returns true if the data is derived from the class described by type, false otherwise.

wxVariant::MakeNull

void MakeNull ()

Makes the variant null by deleting the internal data.

wxVariant::MakeString

wxString MakeString () const

Makes a string representation of the variant value (for any type).

wxVariant::Member

bool Member (const wxVariant& value) const

Returns true if value matches an element in the list.

wxVariant::NullList

void NullList ()

Makes an empty list. This differs from a null variant which has no data; a null list is of
type list, but the number of elements in the list is zero.

CHAPTER 7

1405

wxVariant::SetData

void SetData (wxVariantData* data)

Sets the internal variant data, deleting the existing data if there is any.

wxVariant::operator =

void operator = (const wxVariant& value)

void operator = (wxVariantData* value)

void operator = (const wxString& value)

void operator = (const char* value)

void operator = (char value)

void operator = (const long value)

void operator = (const bool value)

void operator = (const double value)

void operator = (void* value)

void operator = (const wxList& value)

void operator = (const wxDateTime& value)

void operator = (const wxArrayString& value)

void operator = (const DATE_STRUCT* value)

void operator = (const TIME_STRUCT* value)

void operator = (const TIMESTAMP_STRUCT* value)

Assignment operators.

wxVariant::operator ==

bool operator == (const wxVariant& value) const

bool operator == (const wxString& value) const

bool operator == (const char* value) const

bool operator == (char value) const

bool operator == (const long value) const

bool operator == (const bool value) const

bool operator == (const double value) const

CHAPTER 7

1406

bool operator == (void* value) const

bool operator == (const wxList& value) const

bool operator == (const wxArrayString& value) const

bool operator == (const wxDateTime& value) const

Equality test operators.

wxVariant::operator !=

bool operator != (const wxVariant& value) const

bool operator != (const wxString& value) const

bool operator != (const char* value) const

bool operator != (char value) const

bool operator != (const long value) const

bool operator != (const bool value) const

bool operator != (const double value) const

bool operator != (void* value) const

bool operator != (const wxList& value) const

bool operator != (const wxArrayString& value) const

bool operator != (const wxDateTime& value) const

Inequality test operators.

wxVariant::operator []

wxVariant operator [] (size_t idx) const

Returns the value at idx (zero-based).

wxVariant& operator [] (size_t idx)

Returns a reference to the value at idx (zero-based). This can be used to change the
value at this index.

wxVariant::operator char

char operator char () const

Operator for implicit conversion to a char, using wxVariant::GetChar (p. 1399).

CHAPTER 7

1407

wxVariant::operator double

double operator double () const

Operator for implicit conversion to a double, using wxVariant::GetDouble (p. 1400).

long operator long () const

Operator for implicit conversion to a long, using wxVariant::GetLong (p. 1400).

wxVariant::operator wxString

wxString operator wxString () const

Operator for implicit conversion to a string, using wxVariant::MakeString (p. 1401).

wxVariant::operator void*

void* operator void* () const

Operator for implicit conversion to a pointer to a void, using wxVariant::GetVoidPtr (p.
1400).

wxVariant::operator wxDateTime

void* operator wxDateTime () const

Operator for implicit conversion to a pointer to a wxDateTime (p. 246), using
wxVariant::GetDateTime (p. 1399).

wxVariantData

The wxVariantData is used to implement a new type for wxVariant. Derive from
wxVariantData, and override the pure virtual functions.

Derived from

wxObject (p. 967)

Include files

<wx/variant.h>

See also

wxVariant (p. 1396)

wxVariantData::wxVariantData

CHAPTER 7

1408

 wxVariantData ()

Default constructor.

wxVariantData::Copy

void Copy (wxVariantData& data)

Copy the data from 'this' object to data.

wxVariantData::Eq

bool Eq(wxVariantData& data) const

Returns true if this object is equal to data.

wxVariantData::GetType

wxString GetType () const

Returns the string type of the data.

wxVariantData::GetValueClassInfo

wxClassInfo* GetValueClassInfo () const

If the data is a wxObject returns a pointer to the objects wxClassInfo structure, if the data
isn't a wxObject the method returns NULL.

wxVariantData::Read

bool Read(ostream& stream)

bool Read(wxString& string)

Reads the data from stream or string.

wxVariantData::Write

bool Write (ostream& stream) const

bool Write (wxString& string) const

Writes the data to stream or string.

wxGetVariantCast

classname * wxGetVariantCast (wxVariant&, classname)

This macro returns the data stored in variant cast to the type classname * if the data is of
this type (the check is done during the run-time) orNULL otherwise.

CHAPTER 7

1409

See also

RTTI overview (p. 1643)
wxDynamicCast (p. 1571)

wxView

The view class can be used to model the viewing and editing component of an
application's file-based data. It is part of the document/view framework supported by
wxWidgets, and cooperates with the wxDocument (p. 437), wxDocTemplate (p. 431)
and wxDocManager (p. 419) classes.

Derived from

wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/docview.h>

See also

wxView overview (p. 1727), wxDocument (p. 437), wxDocTemplate (p. 431),
wxDocManager (p. 419)

wxView::m_viewDocument

wxDocument* m_viewDocument

The document associated with this view. There may be more than one view per
document, but there can never be more than one document for one view.

wxView::m_viewFrame

wxFrame* m_viewFrame

Frame associated with the view, if any.

wxView::m_viewTypeName

wxString m_viewTypeName

The view type name given to the wxDocTemplate constructor, copied to this variable
when the view is created. Not currently used by the framework.

wxView::wxView

 wxView ()

CHAPTER 7

1410

Constructor. Define your own default constructor to initialize application-specific data.

wxView::~wxView

 ~wxView ()

Destructor. Removes itself from the document's list of views.

wxView::Activate

virtual void Activate (bool activate)

Call this from your view frame's OnActivate member to tell the framework which view is
currently active. If your windowing system doesn't call OnActivate, you may need to call
this function from OnMenuCommand or any place where you know the view must be
active, and the framework will need to get the current view.

The prepackaged view frame wxDocChildFrame calls wxView::Activate from its
OnActivate member and from its OnMenuCommand member.

This function calls wxView::OnActivateView.

wxView::Close

virtual bool Close (bool deleteWindow = true)

Closes the view by calling OnClose. If deleteWindow is true, this function should delete
the window associated with the view.

wxView::GetDocument

wxDocument* GetDocument () const

Gets a pointer to the document associated with the view.

wxView::GetDocumentManager

wxDocManager* GetDocumentManager () const

Returns a pointer to the document manager instance associated with this view.

wxView::GetFrame

wxWindow * GetFrame ()

Gets the frame associated with the view (if any). Note that this "frame'' is not a wxFrame
at all in the generic MDI implementation which uses the notebook pages instead of the
frames and this is why this method returns a wxWindow and not a wxFrame.

wxView::GetViewName

CHAPTER 7

1411

wxString GetViewName () const

Gets the name associated with the view (passed to the wxDocTemplate constructor).
Not currently used by the framework.

wxView::OnActivateView

virtual void OnActivateView (bool activate, wxView * activeView, wxView
*deactiveView)

Called when a view is activated by means of wxView::Activate. The default
implementation does nothing.

wxView::OnChangeFilename

virtual void OnChangeFilename ()

Called when the filename has changed. The default implementation constructs a suitable
title and sets the title of the view frame (if any).

wxView::OnClose

virtual bool OnClose (bool deleteWindow)

Implements closing behaviour. The default implementation calls wxDocument::Close to
close the associated document. Does not delete the view. The application may wish to
do some cleaning up operations in this function, if a call to wxDocument::Close
succeeded. For example, if your views all share the same window, you need to
disassociate the window from the view and perhaps clear the window. If deleteWindow is
true, delete the frame associated with the view.

wxView::OnClosingDocument

virtual void OnClosingDoocument ()

Override this to clean up the view when the document is being closed.

wxView::OnCreate

virtual bool OnCreate (wxDocument* doc, long flags)

wxDocManager or wxDocument creates a wxView via a wxDocTemplate. Just after the
wxDocTemplate creates the wxView, it calls wxView::OnCreate. In its OnCreate member
function, the wxView can create a wxDocChildFrame or a derived class. This
wxDocChildFrame provides user interface elements to view and/or edit the contents of
the wxDocument.

By default, simply returns true. If the function returns false, the view will be deleted.

wxView::OnCreatePrintout

CHAPTER 7

1412

virtual wxPrintout* OnCreatePrintout ()

If the printing framework is enabled in the library, this function returns a wxPrintout (p.
1019) object for the purposes of printing. It should create a new object every time it is
called; the framework will delete objects it creates.

By default, this function returns an instance of wxDocPrintout, which prints and previews
one page by calling wxView::OnDraw.

Override to return an instance of a class other than wxDocPrintout.

wxView::OnDraw

virtual void OnDraw (wxDC& dc)

Override this function to render the view on the given device context.

wxView::OnUpdate

virtual void OnUpdate (wxView* sender, wxObject* hint)

Called when the view should be updated. sender is a pointer to the view that sent the
update request, or NULL if no single view requested the update (for instance, when the
document is opened). hint is as yet unused but may in future contain application-specific
information for making updating more efficient.

wxView::SetDocument

void SetDocument (wxDocument* doc)

Associates the given document with the view. Normally called by the framework.

wxView::SetFrame

void SetFrame (wxWindow* frame)

Sets the frame associated with this view. The application should call this if possible, to
tell the view about the frame.

See GetFrame (p. 1407) for the explanation about the mismatch between the "Frame'' in
the method name and the type of its parameter.

wxView::SetViewName

void SetViewName (const wxString& name)

Sets the view type name. Should only be called by the framework.

wxVListBox

CHAPTER 7

1413

wxVListBox is a listbox-like control with the following two main differences from a regular
listbox: it can have an arbitrarily huge number of items because it doesn't store them

itself but uses OnDrawItem() (p. 1413) callback to draw them (so it is a Virtual listbox)
and its items can have variable height as determined by OnMeasureItem() (p. 1414) (so

it is also a listbox with the lines of Variable height).

Also, as a consequence of its virtual nature, it doesn't have any methods to append or
insert items in it as it isn't necessary to do it: you just have to call SetItemCount() (p.
1415) to tell the control how many items it should display. Of course, this also means
that you will never use this class directly because it has pure virtual functions, but will
need to derive your own class, such as wxHtmlListBox (p. 700), from it.

However it emits the same events as wxListBox (p. 808) and the same event macros
may be used with it. Derived from

wxVScrolledWindow (p. 1416)

Include files

<wx/vlbox.h>

wxVListBox::wxVListBox

 wxVListBox (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint& pos
= wxDefaultPosition, const wxSize& size = wxDefaultSize, size_t countItems = 0, long
style = 0, const wxString& name = wxVListBoxNameStr)

Normal constructor which calls Create() (p. 1410) internally.

 wxVListBox ()

Default constructor, you must call Create() (p. 1410) later.

wxVListBox::Clear

void Clear ()

Deletes all items from the control.

wxVListBox::Create

bool Create (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxVListBoxNameStr)

Creates the control. To finish creating it you also should call SetItemCount() (p. 1415) to
let it know about the number of items it contains.

The only special style which may be used with wxVListBox is wxLB_MULTIPLE which

CHAPTER 7

1414

indicates that the listbox should support multiple selection.

Returns true on success or false if the control couldn't be created

wxVListBox::DeselectAll

bool DeselectAll ()

Deselects all the items in the listbox.

Returns true if any items were changed, i.e. if there had been any selected items
before, or false if all the items were already deselected.

This method is only valid for multi selection listboxes.

See also

SelectAll (p. 1414), Select (p. 1414)

wxVListBox::GetFirstSelected

int GetFirstSelected (unsigned long& cookie) const

Returns the index of the first selected item in the listbox or wxNOT_FOUND if no items are
currently selected.

cookie is an opaque parameter which should be passed to the subsequent calls to
GetNextSelected (p. 1411). It is needed in order to allow parallel iterations over the
selected items.

Here is a typical example of using these functions:unsigned long cookie;
int item = hlbox->GetFirstSelected(cookie);
while (item != wxNOT_FOUND)
{
 ... process item ...
 item = hlbox->GetNextSelected(cookie);
}

This method is only valid for multi selection listboxes.

wxVListBox::GetItemCount

size_t GetItemCount () const

Get the number of items in the control.

See also

SetItemCount() (p. 1415)

wxVListBox::GetMargins

wxPoint GetMargins () const

CHAPTER 7

1415

Returns the margins used by the control. The x field of the returned point is the
horizontal margin and the y field is the vertical one.

See also

SetMargins (p. 1415)

wxVListBox::GetNextSelected

int GetNextSelected (unsigned long& cookie) const

Returns the index of the next selected item or wxNOT_FOUND if there are no more.

This method is only valid for multi selection listboxes.

See also

GetFirstSelected (p. 1411)

wxVListBox::GetSelectedCount

size_t GetSelectedCount () const

Returns the number of the items currently selected.

It is valid for both single and multi selection controls. In the former case it may only
return 0 or 1 however.

See also

IsSelected (p. 1413),
GetFirstSelected (p. 1411),
GetNextSelected (p. 1411)

wxVListBox::GetSelection

int GetSelection () const

Get the currently selected item or -1 if there is no selection.

wxVListBox::GetSelectionBackground

const wxColour& GetSelectionBackground () const

Returns the background colour used for the selected cells. By default the standard
system colour is used.

See also

wxSystemSettings::GetColour (p. 1259),
SetSelectionBackground (p. 1415)

CHAPTER 7

1416

wxVListBox::HasMultipleSelection

bool HasMultipleSelection () const

Returns true if the listbox was created with wxLB_MULTIPLE style and so supports
multiple selection or false if it is a single selection listbox.

wxVListBox::IsCurrent

bool IsCurrent (size_t item) const

Returns true if this item is the current one, false otherwise.

Current item is always the same as selected one for the single selection listbox and in
this case this method is equivalent to IsSelected (p. 1413) but they are different for multi
selection listboxes where many items may be selected but only one (at most) is current.

wxVListBox::IsSelected

bool IsSelected (size_t item) const

Returns true if this item is selected, false otherwise.

wxVListBox::OnDrawBackground

void OnDrawBackground (wxDC& dc, const wxRect& rect, size_t n) const

This method is used to draw the items background and, maybe, a border around it.

The base class version implements a reasonable default behaviour which consists in
drawing the selected item with the standard background colour and drawing a border
around the item if it is either selected or current.

wxVListBox::OnDrawItem

void OnDrawItem (wxDC& dc, const wxRect& rect, size_t n) const

The derived class must implement this function to actually draw the item with the given
index on the provided DC.

Parameters

dc

The device context to use for drawing

rect

The bounding rectangle for the item being drawn (DC clipping region is set to this
rectangle before calling this function)

n

CHAPTER 7

1417

The index of the item to be drawn

wxVListBox::OnDrawSeparator

void OnDrawSeparator (wxDC& dc, wxRect& rect, size_t n) const

This method may be used to draw separators between the lines. The rectangle passed
to it may be modified, typically to deflate it a bit before passing toOnDrawItem() (p.
1413).

The base class version of this method doesn't do anything.

Parameters

dc

The device context to use for drawing

rect

The bounding rectangle for the item

n

The index of the item

wxVListBox::OnMeasureItem

wxCoord OnMeasureItem (size_t n) const

The derived class must implement this method to return the height of the specified item
(in pixels).

wxVListBox::Select

bool Select (size_t item, bool select = true)

Selects or deselects the specified item which must be valid (i.e. not equal to
wxNOT_FOUND).

Return true if the items selection status has changed or false otherwise.

This function is only valid for the multiple selection listboxes, use SetSelection (p. 1415)
for the single selection ones.

wxVListBox::SelectAll

bool SelectAll ()

Selects all the items in the listbox.

Returns true if any items were changed, i.e. if there had been any unselected items
before, or false if all the items were already selected.

CHAPTER 7

1418

This method is only valid for multi selection listboxes.

See also

DeselectAll (p. 1410), Select (p. 1414)

wxVListBox::SelectRange

bool SelectRange (size_t from, size_t to)

Selects all items in the specified range which may be given in any order.

Return true if the items selection status has changed or false otherwise.

This method is only valid for multi selection listboxes.

See also

SelectAll (p. 1414), Select (p. 1414)

wxVListBox::SetItemCount

void SetItemCount (size_t count)

Set the number of items to be shown in the control.

This is just a synonym forwxVScrolledWindow::SetLineCount() (p. 1421).

wxVListBox::SetMargins

void SetMargins (const wxPoint& pt)

void SetMargins (wxCoord x, wxCoord y)

Set the margins: horizontal margin is the distance between the window border and the
item contents while vertical margin is half of the distance between items.

By default both margins are 0.

wxVListBox::SetSelection

void SetSelection (int selection)

Set the selection to the specified item, if it is -1 the selection is unset. The selected item
will be automatically scrolled into view if it isn't currently visible.

This method may be used both with single and multiple selection listboxes.

wxVListBox::SetSelectionBackground

void SetSelectionBackground (const wxColour& col)

CHAPTER 7

1419

Sets the colour to be used for the selected cells background. The background of the
standard cells may be changed by simply calling SetBackgroundColour (p. 1457).

See also

GetSelectionBackground (p. 1412)

wxVListBox::Toggle

void Toggle (size_t item)

Toggles the state of the specified item, i.e. selects it if it was unselected and deselects it
if it was selected.

This method is only valid for multi selection listboxes.

See also

Select (p. 1414)

wxVScrolledWindow

In the name of this class, "V" may stand for "variable" because it can be used for
scrolling lines of variable heights; "virtual" because it is not necessary to know the
heights of all lines in advance -- only those which are shown on the screen need to be
measured; or, even, "vertical" because this class only supports scrolling in one direction
currently (this could and probably will change in the future however).

In any case, this is a generalization of the wxScrolledWindow (p. 1098) class which can
be only used when all lines have the same height. It lacks some other
wxScrolledWindow features however, notably there is currently no support for horizontal
scrolling; it can't scroll another window nor only a rectangle of the window and not its
entire client area. To use this class, you need to derive from it and implement
OnGetLineHeight() (p. 1419) pure virtual method. You also must call SetLineCount (p.
1421) to let the base class know how many lines it should display but from that moment
on the scrolling is handled entirely by wxVScrolledWindow, you only need to draw the
visible part of contents in your OnPaint() method as usual. You should use
GetFirstVisibleLine() (p. 1418) and GetLastVisibleLine() (p. 1418) to select the lines to
display. Note that the device context origin is not shifted so the first visible line always
appears at the point (0, 0) in physical as well as logical coordinates.

Derived from

wxPanel (p. 985)

Include files

<wx/vscroll.h>

wxVScrolledWindow::wxVScrolledWindow

CHAPTER 7

1420

 wxVScrolledWindow (wxWindow* parent, wxWindowID id = wxID_ANY, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = wxPanelNameStr)

This is the normal constructor, no need to call Create() after using this one.

Note that wxVSCROLL is always automatically added to our style, there is no need to
specify it explicitly.

 wxVScrolledWindow ()

Default constructor, you must call Create() (p. 1417) later.

Parameters

parent

The parent window, must not be NULL

id

The identifier of this window, wxID_ANY by default

pos

The initial window position

size

The initial window size

style

The window style. There are no special style bits defined for this class.

name

The name for this window; usually not used

wxVScrolledWindow::Create

bool Create (wxWindow* parent, wxWindowID id = wxID_ANY, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxPanelNameStr)

Same as the non default ctor (p. 1416) but returns status code: true if ok, false if the
window couldn't have been created.

Just as with the ctor above, wxVSCROLL style is always used, there is no need to specify
it explicitly.

wxVScrolledWindow::EstimateTotalHeight

virtual wxCoord EstimateTotalHeight () const

CHAPTER 7

1421

This protected function is used internally by wxVScrolledWindow to estimate the total
height of the window when SetLineCount (p. 1421) is called. The default implementation
uses the brute force approach if the number of the items in the control is small enough.
Otherwise, it tries to find the average line height using some lines in the beginning,
middle and the end.

If it is undesirable to access all these lines (some of which might be never shown) just
for the total height calculation, you may override the function and provide your own
guess better and/or faster.

Note that although returning a totally wrong value would still work, it risks to result in very
strange scrollbar behaviour so this function should really try to make the best guess
possible.

wxVScrolledWindow::GetFirstVisibleLine

size_t GetFirstVisibleLine () const

Returns the index of the first currently visible line.

This is same as GetVisibleBegin (p. 1418) and exists only for symmetry with
GetLastVisibleLine (p. 1418).

wxVScrolledWindow::GetLastVisibleLine

size_t GetLastVisibleLine () const

Returns the index of the last currently visible line. Note that this method returns
(size_t)-1 (i.e. a huge positive number) if the control is empty so if this is possible
you should use GetVisibleEnd (p. 1418) instead.

See also

GetFirstVisibleLine (p. 1418)

wxVScrolledWindow::GetLineCount

size_t GetLineCount () const

Get the number of lines this window contains (previously set by SetLineCount() (p.
1421))

wxVScrolledWindow::GetVisibleBegin

size_t GetVisibleBegin () const

Returns the index of the first currently visible line.

See also

GetVisibleEnd (p. 1418)

CHAPTER 7

1422

wxVScrolledWindow::GetVisibleEnd

size_t GetVisibleEnd () const

Returns the index of the first line after the currently visible one. If the return value is 0 it
means that no lines are currently shown (which only happens if the control is empty).
Note that the index returned by this method is not always a valid index as it may be
equal to GetLineCount (p. 1421).

See also

GetVisibleBegin (p. 1418)

wxVScrolledWindow::HitTest

int HitTest (wxCoord x, wxCoord y) const

int HitTest (const wxPoint& pt) const

Return the item at the specified (in physical coordinates) position orwxNOT_FOUND if
none, i.e. if it is below the last item.

wxVScrolledWindow::IsVisible

bool IsVisible (size_t line) const

Returns true if the given line is (at least partially) visible or false otherwise.

wxVScrolledWindow::OnGetLineHeight

wxCoord OnGetLineHeight (size_t n) const

This protected virtual function must be overridden in the derived class and it should
return the height of the given line in pixels.

See also

OnGetLinesHint (p. 1419)

wxVScrolledWindow::OnGetLinesHint

void OnGetLinesHint (size_t lineMin, size_t lineMax) const

This function doesn't have to be overridden but it may be useful to do it if calculating the
lines heights is a relatively expensive operation as it gives the user code a possibility to
calculate several of them at once.

OnGetLinesHint() is normally called just before OnGetLineHeight() (p. 1419) but you
shouldn't rely on the latter being called for all lines in the interval specified here. It is also
possible that OnGetLineHeight() will be called for the lines outside of this interval, so this
is really just a hint, not a promise.

CHAPTER 7

1423

Finally note that lineMin is inclusive, while lineMax is exclusive, as usual.

wxVScrolledWindow::RefreshLine

void RefreshLine (size_t line)

Refreshes the specified line -- it will be redrawn during the next main loop iteration.

See also

RefreshLines (p. 1420)

wxVScrolledWindow::RefreshLines

void RefreshLines (size_t from, size_t to)

Refreshes all lines between from and to, inclusive. fromshould be less than or equal to
to.

See also

RefreshLine (p. 1419)

wxVScrolledWindow::RefreshAll

void RefreshAll ()

This function completely refreshes the control, recalculating the number of items shown
on screen and repainting them. It should be called when the values returned by
OnGetLineHeight (p. 1419) change for some reason and the window must be updated to
reflect this.

wxVScrolledWindow::ScrollLines

bool ScrollLines (int lines)

Scroll by the specified number of lines which may be positive (to scroll down) or negative
(to scroll up).

Returns true if the window was scrolled, false otherwise (for example if we're trying to
scroll down but we are already showing the last line).

See also

LineUp (p. 1447), LineDown (p. 1447)

wxVScrolledWindow::ScrollPages

bool ScrollPages (int pages)

Scroll by the specified number of pages which may be positive (to scroll down) or
negative (to scroll up).

CHAPTER 7

1424

See also

ScrollLines (p. 1420),
PageUp (p. 1450), PageDown (p. 1450)

wxVScrolledWindow::ScrollToLine

bool ScrollToLine (size_t line)

Scroll to the specified line: it will become the first visible line in the window.

Return true if we scrolled the window, false if nothing was done.

wxVScrolledWindow::SetLineCount

void SetLineCount (size_t count)

Set the number of lines the window contains: the derived class must provide the heights
for all lines with indices up to the one given here in its OnGetLineHeight() (p. 1419).

wxWindow

wxWindow is the base class for all windows and represents any visible object on screen.
All controls, top level windows and so on are windows. Sizers and device contexts are
not, however, as they don't appear on screen themselves.

Please note that all children of the window will be deleted automatically by the destructor
before the window itself is deleted which means that you don't have to worry about
deleting them manually. Please see the window deletion overview (p. 1686) for more
information.

Also note that in this, and many others, wxWidgets classes someGetXXX() methods
may be overloaded (as, for example,GetSize (p. 1441) orGetClientSize (p. 1436)). In this
case, the overloads are non-virtual because having multiple virtual functions with the
same name results in a virtual function name hiding at the derived class level (in English,
this means that the derived class has to override all overloaded variants if it overrides
any of them). To allow overriding them in the derived class, wxWidgets uses a unique
protected virtual DoGetXXX() method and all GetXXX() ones are forwarded to it, so
overriding the former changes the behaviour of the latter.

Derived from

wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/window.h>

Window styles

The following styles can apply to all windows, although they will not always make sense

CHAPTER 7

1425

for a particular window class or on all platforms.

wxSIMPLE_BORDER Displays a thin border around the window. wxBORDER is
the old name for this style.

wxDOUBLE_BORDER Displays a double border. Windows and Mac only.

wxSUNKEN_BORDER Displays a sunken border.

wxRAISED_BORDER Displays a raised border.

wxSTATIC_BORDER Displays a border suitable for a static control. Windows
only.

wxNO_BORDER Displays no border, overriding the default border style for
the window.

wxTRANSPARENT_WINDOW The window is transparent, that is, it will not receive
paint events. Windows only.

wxTAB_TRAVERSAL Use this to enable tab traversal for non-dialog windows.

wxWANTS_CHARS Use this to indicate that the window wants to get all
char/key events for all keys - even for keys like TAB or
ENTER which are usually used for dialog navigation and
which wouldn't be generated without this style. If you need
to use this style in order to get the arrows or etc., but would
still like to have normal keyboard navigation take place,
you should create and send a wxNavigationKeyEvent in
response to the key events for Tab and Shift-Tab.

wxNO_FULL_REPAINT_ON_RESIZE On Windows, this style used to disable
repainting the window completely when its size is changed.
Since this behaviour is now the default, the style is now
obsolete and no longer has an effect.

wxVSCROLL Use this style to enable a vertical scrollbar.

wxHSCROLL Use this style to enable a horizontal scrollbar.

wxALWAYS_SHOW_SB If a window has scrollbars, disable them instead of hiding
them when they are not needed (i.e. when the size of the
window is big enough to not require the scrollbars to
navigate it). This style is currently only implemented for
wxMSW and wxUniversal and does nothing on the other
platforms.

wxCLIP_CHILDREN Use this style to eliminate flicker caused by the background
being repainted, then children being painted over them.
Windows only.

wxFULL_REPAINT_ON_RESIZE Use this style to force a complete redraw of the
window whenever it is resized instead of redrawing just the
part of the window affected by resizing. Note that this was

CHAPTER 7

1426

the behaviour by default before 2.5.1 release and that if
you experience redraw problems with code which
previously used to work you may want to try this. Currently
this style applies on GTK+ 2 and Windows only, and full
repainting is always done on other platforms.

See also window styles overview (p. 1686).

Extra window styles

The following are extra styles, set using wxWindow::SetExtraStyle (p. 1461).

wxWS_EX_VALIDATE_RECURSIVELY By default,
Validate/TransferDataTo/FromWindow() only work on
direct children of the window (compatible behaviour). Set
this flag to make them recursively descend into all
subwindows.

wxWS_EX_BLOCK_EVENTS wxCommandEvents and the objects of the derived
classes are forwarded to the parent window and so on
recursively by default. Using this flag for the given window
allows to block this propagation at this window, i.e. prevent
the events from being propagated further upwards. Dialogs
have this flag on by default.

wxWS_EX_TRANSIENT Don't use this window as an implicit parent for the other
windows: this must be used with transient windows as
otherwise there is the risk of creating a dialog/frame with
this window as a parent which would lead to a crash if the
parent is destroyed before the child.

wxWS_EX_PROCESS_IDLE This window should always process idle events,
even if the mode set by wxIdleEvent::SetMode (p. 742) is
wxIDLE_PROCESS_SPECIFIED.

wxWS_EX_PROCESS_UI_UPDATES This window should always process UI
update events, even if the mode set by
wxUpdateUIEvent::SetMode (p. 1385) is
wxUPDATE_UI_PROCESS_SPECIFIED.

See also

Event handling overview (p. 1674)

wxWindow::wxWindow

 wxWindow ()

Default constructor.

 wxWindow (wxWindow* parent, wxWindowID id, const wxPoint& pos =

CHAPTER 7

1427

wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxPanelNameStr)

Constructs a window, which can be a child of a frame, dialog or any other non-control
window.

Parameters

parent

Pointer to a parent window.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that wxWidgets
should generate a default position for the window. If using the wxWindow class
directly, supply an actual position.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxWidgets should
generate a default size for the window. If no suitable size can be found, the
window will be sized to 20x20 pixels so that the window is visible but obviously not
correctly sized.

style

Window style. For generic window styles, please see wxWindow (p. 1421).

name

Window name.

wxWindow::~wxWindow

 ~wxWindow ()

Destructor. Deletes all subwindows, then deletes itself. Instead of using the delete
operator explicitly, you should normally use wxWindow::Destroy (p. 1429) so that
wxWidgets can delete a window only when it is safe to do so, in idle time.

See also

Window deletion overview (p. 1686), wxWindow::Destroy (p. 1429), wxCloseEvent (p.
147)

wxWindow::AddChild

virtual void AddChild (wxWindow* child)

CHAPTER 7

1428

Adds a child window. This is called automatically by window creation functions so
should not be required by the application programmer.

Notice that this function is mostly internal to wxWidgets and shouldn't be called by the
user code.

Parameters

child

Child window to add.

wxWindow::CacheBestSize

void CacheBestSize (const wxSize& size) const

Sets the cached best size value.

wxWindow::CaptureMouse

virtual void CaptureMouse ()

Directs all mouse input to this window. Call wxWindow::ReleaseMouse (p. 1453) to
release the capture.

Note that wxWidgets maintains the stack of windows having captured the mouse and
when the mouse is released the capture returns to the window which had had captured it
previously and it is only really released if there were no previous window. In particular,
this means that you must release the mouse as many times as you capture it.

See also

wxWindow::ReleaseMouse (p. 1453)

wxWindow::Center

void Center (int direction)

A synonym for Centre (p. 1425).

wxWindow::CenterOnParent

void CenterOnParent (int direction)

A synonym for CentreOnParent (p. 1426).

wxWindow::CenterOnScreen

void CenterOnScreen (int direction)

A synonym for CentreOnScreen (p. 1426).

CHAPTER 7

1429

wxWindow::Centre

void Centre (int direction = wxBOTH)

Centres the window.

Parameters

direction

Specifies the direction for the centering. May be wxHORIZONTAL, wxVERTICAL or
wxBOTH. It may also include wxCENTRE_ON_SCREEN flag if you want to center the
window on the entire screen and not on its parent window.

The flag wxCENTRE_FRAME is obsolete and should not be used any longer (it has no
effect).

Remarks

If the window is a top level one (i.e. doesn't have a parent), it will be centered relative to
the screen anyhow.

See also

wxWindow::Center (p. 1425)

wxWindow::CentreOnParent

void CentreOnParent (int direction = wxBOTH)

Centres the window on its parent. This is a more readable synonym forCentre (p. 1425).

Parameters

direction

Specifies the direction for the centering. May be wxHORIZONTAL, wxVERTICAL or
wxBOTH.

Remarks

This methods provides for a way to center top level windows over their parents instead
of the entire screen. If there is no parent or if the window is not a top level window, then
behaviour is the same aswxWindow::Centre (p. 1425).

See also

wxWindow::CentreOnScreen (p. 1425)

wxWindow::CentreOnScreen

void CentreOnScreen (int direction = wxBOTH)

Centres the window on screen. This only works for top level windows - otherwise, the

CHAPTER 7

1430

window will still be centered on its parent.

Parameters

direction

Specifies the direction for the centering. May be wxHORIZONTAL, wxVERTICAL or
wxBOTH.

See also

wxWindow::CentreOnParent (p. 1425)

wxWindow::ClearBackground

void ClearBackground ()

Clears the window by filling it with the current background colour. Does not cause an
erase background event to be generated.

wxWindow::ClientToScreen

virtual void ClientToScreen (int* x, int* y) const

wxPerl note: In wxPerl this method returns a 2-element list instead of modifying its
parameters.

virtual wxPoint ClientToScreen (const wxPoint& pt) const

Converts to screen coordinates from coordinates relative to this window.

x

A pointer to a integer value for the x coordinate. Pass the client coordinate in, and
a screen coordinate will be passed out.

y

A pointer to a integer value for the y coordinate. Pass the client coordinate in, and
a screen coordinate will be passed out.

pt

The client position for the second form of the function.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ClientToScreen(point) Accepts and returns a wxPoint

ClientToScreenXY(x, y) Returns a 2-tuple, (x, y)

wxWindow::Close

CHAPTER 7

1431

bool Close (bool force = false)

This function simply generates a wxCloseEvent (p. 147) whose handler usually tries to
close the window. It doesn't close the window itself, however.

Parameters

force

false if the window's close handler should be able to veto the destruction of this
window, true if it cannot.

Remarks

Close calls the close handler (p. 147) for the window, providing an opportunity for the
window to choose whether to destroy the window. Usually it is only used with the top
level windows (wxFrame and wxDialog classes) as the others are not supposed to have
any special OnClose() logic.

The close handler should check whether the window is being deleted forcibly, using
wxCloseEvent::GetForce (p. 148), in which case it should destroy the window using
wxWindow::Destroy (p. 1429).

Note that calling Close does not guarantee that the window will be destroyed; but it
provides a way to simulate a manual close of a window, which may or may not be
implemented by destroying the window. The default implementation of
wxDialog::OnCloseWindow does not necessarily delete the dialog, since it will simply
simulate an wxID_CANCEL event which is handled by the appropriate button event
handler and may do anything at all.

To guarantee that the window will be destroyed, callwxWindow::Destroy (p. 1429)
instead

See also

Window deletion overview (p. 1686), wxWindow::Destroy (p. 1429), wxCloseEvent (p.
147)

wxWindow::ConvertDialogToPixels

wxPoint ConvertDialogToPixels (const wxPoint& pt)

wxSize ConvertDialogToPixels (const wxSize& sz)

Converts a point or size from dialog units to pixels.

For the x dimension, the dialog units are multiplied by the average character width and
then divided by 4.

For the y dimension, the dialog units are multiplied by the average character height and
then divided by 8.

Remarks

CHAPTER 7

1432

Dialog units are used for maintaining a dialog's proportions even if the font changes.

You can also use these functions programmatically. A convenience macro is defined:

#define wxDLG_UNIT(parent, pt) parent->ConvertDialo gToPixels(pt)

See also

wxWindow::ConvertPixelsToDialog (p. 1429)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ConvertDialogPointToPixels(point) Accepts and returns a wxPoint

ConvertDialogSizeToPixels(size) Accepts and returns a wxSize

Additionally, the following helper functions are defined:

wxDLG_PNT(win, point) Converts a wxPoint from dialog units to pixels

wxDLG_SZE(win, size) Converts a wxSize from dialog units to pixels

wxWindow::ConvertPixelsToDialog

wxPoint ConvertPixelsToDialog (const wxPoint& pt)

wxSize ConvertPixelsToDialog (const wxSize& sz)

Converts a point or size from pixels to dialog units.

For the x dimension, the pixels are multiplied by 4 and then divided by the average
character width.

For the y dimension, the pixels are multiplied by 8 and then divided by the average
character height.

Remarks

Dialog units are used for maintaining a dialog's proportions even if the font changes.

See also

wxWindow::ConvertDialogToPixels (p. 1428)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ConvertDialogPointToPixels(point) Accepts and returns a wxPoint

ConvertDialogSizeToPixels(size) Accepts and returns a wxSize

CHAPTER 7

1433

wxWindow::Destroy

virtual bool Destroy ()

Destroys the window safely. Use this function instead of the delete operator, since
different window classes can be destroyed differently. Frames and dialogs are not
destroyed immediately when this function is called -- they are added to a list of windows
to be deleted on idle time, when all the window's events have been processed. This
prevents problems with events being sent to non-existent windows.

Return value

true if the window has either been successfully deleted, or it has been added to the list
of windows pending real deletion.

wxWindow::DestroyChildren

virtual void DestroyChildren ()

Destroys all children of a window. Called automatically by the destructor.

wxWindow::Disable

bool Disable ()

Disables the window, same as Enable(false) (p. 1431).

Return value

Returns true if the window has been disabled, false if it had been already disabled
before the call to this function.

wxWindow::DoGetBestSize

virtual wxSize DoGetBestSize () const

Gets the size which best suits the window: for a control, it would be the minimal size
which doesn't truncate the control, for a panel - the same size as it would have after a
call to Fit() (p. 1433).

wxWindow::DoUpdateWindowUI

virtual void DoUpdateWindowUI (wxUpdateUIEvent& event)

Does the window-specific updating after processing the update event. This function is
called by wxWindow::UpdateWindowUI (p. 1474)in order to check return values in the
wxUpdateUIEvent (p. 1381) and act appropriately. For example, to allow frame and
dialog title updating, wxWidgets implements this function as follows:

// do the window-specific processing after processi ng the update
event

CHAPTER 7

1434

void wxTopLevelWindowBase::DoUpdateWindowUI(wxUpdat eUIEvent&
event)
{
 if (event.GetSetEnabled())
 Enable(event.GetEnabled());

 if (event.GetSetText())
 {
 if (event.GetText() != GetTitle())
 SetTitle(event.GetText());
 }
}

wxWindow::DragAcceptFiles

virtual void DragAcceptFiles (bool accept)

Enables or disables eligibility for drop file events (OnDropFiles).

Parameters

accept

If true , the window is eligible for drop file events. If false , the window will not
accept drop file events.

Remarks

Windows only.

wxWindow::Enable

virtual bool Enable (bool enable = true)

Enable or disable the window for user input. Note that when a parent window is disabled,
all of its children are disabled as well and they are reenabled again when the parent is.

Parameters

enable

If true , enables the window for input. If false , disables the window.

Return value

Returns true if the window has been enabled or disabled, false if nothing was done,
i.e. if the window had already been in the specified state.

See also

wxWindow::IsEnabled (p. 1446), wxWindow::Disable (p. 1430), wxRadioBox::Enable (p.
1043)

CHAPTER 7

1435

wxWindow::FindFocus

static wxWindow* FindFocus ()

Finds the window or control which currently has the keyboard focus.

Remarks

Note that this is a static function, so it can be called without needing a wxWindow
pointer.

See also

wxWindow::SetFocus (p. 1462)

wxWindow::FindWindow

wxWindow* FindWindow (long id) const

Find a child of this window, by identifier.

wxWindow* FindWindow (const wxString& name) const

Find a child of this window, by name.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

FindWindowById(id) Accepts an integer

FindWindowByName(name) Accepts a string

wxWindow::FindWindowById

static wxWindow* FindWindowById (long id, wxWindow* parent = NULL)

Find the first window with the given id.

If parent is NULL, the search will start from all top-level frames and dialog boxes; if non-
NULL, the search will be limited to the given window hierarchy. The search is recursive
in both cases.

See also

FindWindow (p. 1432)

wxWindow::FindWindowByName

static wxWindow* FindWindowByName (const wxString& name, wxWindow* parent
= NULL)

Find a window by its name (as given in a window constructor or Create function call). If

CHAPTER 7

1436

parent is NULL, the search will start from all top-level frames and dialog boxes; if non-
NULL, the search will be limited to the given window hierarchy. The search is recursive
in both cases.

If no window with such name is found,FindWindowByLabel (p. 1432) is called.

See also

FindWindow (p. 1432)

wxWindow::FindWindowByLabel

static wxWindow* FindWindowByLabel (const wxString& label, wxWindow* parent =
NULL)

Find a window by its label. Depending on the type of window, the label may be a window
title or panel item label. If parent is NULL, the search will start from all top-level frames
and dialog boxes; if non-NULL, the search will be limited to the given window hierarchy.
The search is recursive in both cases.

See also

FindWindow (p. 1432)

wxWindow::Fit

virtual void Fit ()

Sizes the window so that it fits around its subwindows. This function won't do anything if
there are no subwindows and will only really work correctly if the sizers are used for the
subwindows layout. Also, if the window has exactly one subwindow it is better (faster
and the result is more precise as Fit adds some margin to account for fuzziness of its
calculations) to call

 window->SetClientSize(child->GetSize());

instead of calling Fit.

wxWindow::FitInside

virtual void FitInside ()

Similar to Fit (p. 1433), but sizes the interior (virtual) size of a window. Mainly useful
with scrolled windows to reset scrollbars after sizing changes that do not trigger a size
event, and/or scrolled windows without an interior sizer. This function similarly won't do
anything if there are no subwindows.

wxWindow::Freeze

virtual void Freeze()

Freezes the window or, in other words, prevents any updates from taking place on

CHAPTER 7

1437

screen, the window is not redrawn at all. Thaw (p. 1473) must be called to reenable
window redrawing. Calls to these two functions may be nested.

This method is useful for visual appearance optimization (for example, it is a good idea
to use it before doing many large text insertions in a row into a wxTextCtrl under wxGTK)
but is not implemented on all platforms nor for all controls so it is mostly just a hint to
wxWidgets and not a mandatory directive.

wxWindow::GetAcceleratorTable

wxAcceleratorTable* GetAcceleratorTable () const

Gets the accelerator table for this window. See wxAcceleratorTable (p. 19).

wxWindow::GetAccessible

wxAccessible* GetAccessible ()

Returns the accessible object for this window, if any.

See also wxAccessible (p. 22).

wxWindow::GetAdjustedBestSize

wxSize GetAdjustedBestSize () const

This method is similar to GetBestSize (p. 1435), except in one thing. GetBestSize
should return the minimum untruncated size of the window, while this method will return
the largest of BestSize and any user specified minimum size. ie. it is the minimum size
the window should currently be drawn at, not the minimal size it can possibly tolerate.

wxWindow::GetBackgroundColour

virtual wxColour GetBackgroundColour () const

Returns the background colour of the window.

See also

wxWindow::SetBackgroundColour (p. 1457), wxWindow::SetForegroundColour (p.
1463), wxWindow::GetForegroundColour (p. 1438)

wxWindow::GetBackgroundStyle

virtual wxBackgroundStyle GetBackgroundStyle () const

Returns the background style of the window. The background style indicates whether
background colour should be determined by the system (wxBG_STYLE_SYSTEM), be
set to a specific colour (wxBG_STYLE_COLOUR), or should be left to the application to
implement (wxBG_STYLE_CUSTOM).

CHAPTER 7

1438

On GTK+, use of wxBG_STYLE_CUSTOM allows the flicker-free drawing of a custom
background, such as a tiled bitmap. Currently the style has no effect on other platforms.

See also

wxWindow::SetBackgroundColour (p. 1457), wxWindow::GetForegroundColour (p.
1438), wxWindow::SetBackgroundStyle (p. 1457)

wxWindow::GetBestFittingSize

wxSize GetBestFittingSize () const

Merges the window's best size into the min size and returns the result.

See also

wxWindow::GetBestSize (p. 1435), wxWindow::SetBestFittingSize (p. 1458),
wxWindow::SetSizeHints (p. 1468)

wxWindow::GetBestSize

wxSize GetBestSize () const

This functions returns the best acceptable minimal size for the window. For example, for
a static control, it will be the minimal size such that the control label is not truncated. For
windows containing subwindows (typicallywxPanel (p. 985)), the size returned by this
function will be the same as the size the window would have had after callingFit (p.
1433).

wxWindow::GetCaret

wxCaret * GetCaret () const

Returns the caret (p. 126) associated with the window.

wxWindow::GetCapture

static wxWindow * GetCapture ()

Returns the currently captured window.

See also

wxWindow::HasCapture (p. 1444),wxWindow::CaptureMouse (p.
1425),wxWindow::ReleaseMouse (p. 1453),wxMouseCaptureChangedEvent (p. 939)

wxWindow::GetCharHeight

virtual int GetCharHeight () const

Returns the character height for this window.

CHAPTER 7

1439

wxWindow::GetCharWidth

virtual int GetCharWidth () const

Returns the average character width for this window.

wxWindow::GetChildren

wxList& GetChildren ()

Returns a reference to the list of the window's children.

wxWindow::GetClassDefaultAttributes

static wxVisualAttributes GetClassDefaultAttributes (wxWindowVariant variant =
wxWINDOW_VARIANT_NORMAL)

Returns the default font and colours which are used by the control. This is useful if you
want to use the same font or colour in your own control as in a standard control -- which
is a much better idea than hard coding specific colours or fonts which might look
completely out of place on the users system, especially if it uses themes.

The variant parameter is only relevant under Mac currently and is ignore under other
platforms. Under Mac, it will change the size of the returned font. See
wxWindow::SetWindowVariant (p. 1472)for more about this.

This static method is "overridden'' in many derived classes and so calling, for example,
wxButton (p. 112)::GetClassDefaultAttributes() will typically return the values appropriate
for a button which will be normally different from those returned by, say, wxListCtrl (p.
813)::GetClassDefaultAttributes().

The wxVisualAttributes structure has at least the fieldsfont , colFg and colBg .
All of them may be invalid if it was not possible to determine the default control
appearance or, especially for the background colour, if the field doesn't make sense as
is the case for colBg for the controls with themed background.

See also

InheritAttributes (p. 1445)

wxWindow::GetClientSize

void GetClientSize (int* width, int* height) const

wxPerl note: In wxPerl this method takes no parameter and returns a 2-element list
(width, height) .

wxSize GetClientSize () const

This gets the size of the window 'client area' in pixels. The client area is the area which
may be drawn on by the programmer, excluding title bar, border, scrollbars, etc.

CHAPTER 7

1440

Parameters

width

Receives the client width in pixels.

height

Receives the client height in pixels.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetClientSizeTuple() Returns a 2-tuple of (width, height)

GetClientSize() Returns a wxSize object

See also

GetSize (p. 1441), GetVirtualSize (p. 1444)

wxWindow::GetConstraints

wxLayoutConstraints* GetConstraints () const

Returns a pointer to the window's layout constraints, or NULL if there are none.

wxWindow::GetContainingSizer

const wxSizer * GetContainingSizer () const

Return the sizer that this window is a member of, if any, otherwiseNULL.

wxWindow::GetCursor

const wxCursor& GetCursor () const

Return the cursor associated with this window.

See also

wxWindow::SetCursor (p. 1459)

wxWindow::GetDefaultAttributes

virtual wxVisualAttributes GetDefaultAttributes () const

Currently this is the same as callingGetClassDefaultAttributes (p.
1435)(GetWindowVariant (p. 1444)()).

One advantage of using this function compared to the static version is that the call is
automatically dispatched to the correct class (as usual with virtual functions) and you

CHAPTER 7

1441

don't have to specify the class name explicitly.

The other one is that in the future this function could return different results, for example
it might return a different font for an "Ok'' button than for a generic button if the users
GUI is configured to show such buttons in bold font. Of course, the down side is that it is
impossible to call this function without actually having an object to apply it to whereas
the static version can be used without having to create an object first.

wxWindow::GetDropTarget

wxDropTarget* GetDropTarget () const

Returns the associated drop target, which may be NULL.

See also

wxWindow::SetDropTarget (p. 1461),Drag and drop overview (p. 1740)

wxWindow::GetEventHandler

wxEvtHandler* GetEventHandler () const

Returns the event handler for this window. By default, the window is its own event
handler.

See also

wxWindow::SetEventHandler (p. 1461), wxWindow::PushEventHandler (p. 1451),
wxWindow::PopEventHandler (p. 1451), wxEvtHandler::ProcessEvent (p. 471),
wxEvtHandler (p. 467)

wxWindow::GetExtraStyle

long GetExtraStyle () const

Returns the extra style bits for the window.

wxWindow::GetFont

wxFont GetFont () const

Returns the font for this window.

See also

wxWindow::SetFont (p. 1463)

wxWindow::GetForegroundColour

virtual wxColour GetForegroundColour ()

Returns the foreground colour of the window.

CHAPTER 7

1442

Remarks

The interpretation of foreground colour is open to interpretation according to the window
class; it may be the text colour or other colour, or it may not be used at all.

See also

wxWindow::SetForegroundColour (p. 1463), wxWindow::SetBackgroundColour (p.
1457), wxWindow::GetBackgroundColour (p. 1434)

wxWindow::GetGrandParent

wxWindow* GetGrandParent () const

Returns the grandparent of a window, or NULL if there isn't one.

wxWindow::GetHandle

void* GetHandle () const

Returns the platform-specific handle of the physical window. Cast it to an appropriate
handle, such as HWND for Windows, Widget for Motif, GtkWidget for GTK or
WinHandle for PalmOS.

wxPython note: This method will return an integer in wxPython.

wxPerl note: This method will return an integer in wxPerl.

wxWindow::GetHelpText

virtual wxString GetHelpText () const

Gets the help text to be used as context-sensitive help for this window.

Note that the text is actually stored by the current wxHelpProvider (p. 671)
implementation, and not in the window object itself.

See also

SetHelpText (p. 1464), wxHelpProvider (p. 671)

wxWindow::GetId

int GetId () const

Returns the identifier of the window.

Remarks

Each window has an integer identifier. If the application has not provided one (or the
default Id -1) an unique identifier with a negative value will be generated.

See also

CHAPTER 7

1443

wxWindow::SetId (p. 1464), Window identifiers (p. 1679)

wxWindow::GetLabel

virtual wxString GetLabel () const

Generic way of getting a label from any window, for identification purposes.

Remarks

The interpretation of this function differs from class to class. For frames and dialogs, the
value returned is the title. For buttons or static text controls, it is the button text. This
function can be useful for meta-programs (such as testing tools or special-needs access
programs) which need to identify windows by name.

wxWindow::GetMaxSize

wxSize GetMaxSize () const

Returns the maximum size of the window, an indication to the sizer layout mechanism
that this is the maximum possible size.

wxWindow::GetMinSize

wxSize GetMinSize () const

Returns the minimum size of the window, an indication to the sizer layout mechanism
that this is the minimum required size.

wxWindow::GetName

virtual wxString GetName () const

Returns the window's name.

Remarks

This name is not guaranteed to be unique; it is up to the programmer to supply an
appropriate name in the window constructor or via wxWindow::SetName (p. 1464).

See also

wxWindow::SetName (p. 1464)

wxWindow::GetParent

virtual wxWindow* GetParent () const

Returns the parent of the window, or NULL if there is no parent.

wxWindow::GetPosition

CHAPTER 7

1444

virtual void GetPosition (int* x, int* y) const

wxPoint GetPosition () const

This gets the position of the window in pixels, relative to the parent window for the child
windows or relative to the display origin for the top level windows.

Parameters

x

Receives the x position of the window.

y

Receives the y position of the window.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetPosition() Returns a wxPoint

GetPositionTuple() Returns a tuple (x, y)

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list (x, y)

wxWindow::GetRect

virtual wxRect GetRect () const

Returns the size and position of the window as a wxRect (p. 1050) object.

wxWindow::GetScrollPos

virtual int GetScrollPos (int orientation)

Returns the built-in scrollbar position.

See also

See wxWindow::SetScrollbar (p. 1465)

wxWindow::GetScrollRange

virtual int GetScrollRange (int orientation)

Returns the built-in scrollbar range.

CHAPTER 7

1445

See also

wxWindow::SetScrollbar (p. 1465)

wxWindow::GetScrollThumb

virtual int GetScrollThumb (int orientation)

Returns the built-in scrollbar thumb size.

See also

wxWindow::SetScrollbar (p. 1465)

wxWindow::GetSize

void GetSize (int* width, int* height) const

wxSize GetSize () const

This gets the size of the entire window in pixels, including title bar, border, scrollbars,
etc.

Parameters

width

Receives the window width.

height

Receives the window height.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize

GetSizeTuple() Returns a 2-tuple (width, height)

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size

GetSizeWH() Returns a 2-element list (width, height)

See also

GetClientSize (p. 1436), GetVirtualSize (p. 1444)

wxWindow::GetSizer

CHAPTER 7

1446

wxSizer * GetSizer () const

Return the sizer associated with the window by a previous call toSetSizer() (p. 1469) or
NULL.

wxWindow::GetTextExtent

virtual void GetTextExtent (const wxString& string, int* x, int* y, int* descent = NULL,
int* externalLeading = NULL, const wxFont* font = NULL, bool use16 = false) const

Gets the dimensions of the string as it would be drawn on the window with the currently
selected font.

Parameters

string

String whose extent is to be measured.

x

Return value for width.

y

Return value for height.

descent

Return value for descent (optional).

externalLeading

Return value for external leading (optional).

font

Font to use instead of the current window font (optional).

use16

If true , string contains 16-bit characters. The default is false .

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetTextExtent(string) Returns a 2-tuple, (width, height)

GetFullTextExtent(string, font=NULL) Returns a 4-tuple, (width, height,
descent, externalLeading)

wxPerl note: In wxPerl this method takes only the string and optionally font
parameters, and returns a 4-element list (x, y, descent, externalLeading) .

CHAPTER 7

1447

wxWindow::GetTitle

virtual wxString GetTitle ()

Gets the window's title. Applicable only to frames and dialogs.

See also

wxWindow::SetTitle (p. 1470)

wxWindow::GetToolTip

wxToolTip* GetToolTip () const

Get the associated tooltip or NULL if none.

wxWindow::GetUpdateRegion

virtual wxRegion GetUpdateRegion () const

Returns the region specifying which parts of the window have been damaged. Should
only be called within an wxPaintEvent (p. 980) handler.

See also

wxRegion (p. 1061), wxRegionIterator (p. 1066)

wxWindow::GetValidator

wxValidator* GetValidator () const

Returns a pointer to the current validator for the window, or NULL if there is none.

wxWindow::GetVirtualSize

void GetVirtualSize (int* width, int* height) const

wxSize GetVirtualSize () const

This gets the virtual size of the window in pixels. By default it returns the client size of
the window, but after a call toSetVirtualSize (p. 1471) it will return that size.

Parameters

width

Receives the window virtual width.

height

Receives the window virtual height.

GetSize (p. 1441), GetClientSize (p. 1436)

CHAPTER 7

1448

wxWindow::GetWindowStyleFlag

long GetWindowStyleFlag () const

Gets the window style that was passed to the constructor or Createmethod.
GetWindowStyle() is another name for the same function.

wxWindow::GetWindowVariant

wxWindowVariant GetWindowVariant () const

Returns the value previously passed towxWindow::SetWindowVariant (p. 1472).

wxWindow::HasCapture

virtual bool HasCapture () const

Returns true if this window has the current mouse capture.

See also

wxWindow::CaptureMouse (p. 1425),wxWindow::ReleaseMouse (p.
1453),wxMouseCaptureChangedEvent (p. 939)

wxWindow::HasScrollbar

virtual bool HasScrollbar (int orient) const

Returns true if this window has a scroll bar for this orientation.

Parameters

orient

Orientation to check, either wxHORIZONTAL or wxVERTICAL.

wxWindow::HasTransparentBackground

virtual bool HasTransparentBackground () const

Returns true if this window background is transparent (as, for example, for
wxStaticText) and should show the parent window background.

This method is mostly used internally by the library itself and you normally shouldn't
have to call it. You may, however, have to override it in your wxWindow-derived class to
ensure that background is painted correctly.

wxWindow::Hide

bool Hide ()

Equivalent to calling Show (p. 1472)(false).

CHAPTER 7

1449

wxWindow::InheritAttributes

void InheritAttributes ()

This function is (or should be, in case of custom controls) called during window creation
to intelligently set up the window visual attributes, that is the font and the foreground and
background colours.

By "intelligently'' the following is meant: by default, all windows use their own default (p.
1435) attributes. However if some of the parents attributes are explicitly (that is,
usingSetFont (p. 1463) and notSetOwnFont (p. 1460)) changed and if the corresponding
attribute hadn't been explicitly set for this window itself, then this window takes the same
value as used by the parent. In addition, if the window overrides ShouldInheritColours (p.
1472)to return false , the colours will not be changed no matter what and only the font
might.

This rather complicated logic is necessary in order to accommodate the different usage
scenarios. The most common one is when all default attributes are used and in this
case, nothing should be inherited as in modern GUIs different controls use different fonts
(and colours) than their siblings so they can't inherit the same value from the parent.
However it was also deemed desirable to allow to simply change the attributes of all
children at once by just changing the font or colour of their common parent, hence in this
case we do inherit the parents attributes.

wxWindow::InitDialog

void InitDialog ()

Sends an wxEVT_INIT_DIALOG event, whose handler usually transfers data to the
dialog via validators.

wxWindow::InvalidateBestSize

void InvalidateBestSize ()

Resets the cached best size value so it will be recalculated the next time it is needed.

wxWindow::IsEnabled

virtual bool IsEnabled () const

Returns true if the window is enabled for input, false otherwise.

See also

wxWindow::Enable (p. 1431)

wxWindow::IsExposed

bool IsExposed (int x, int y) const

CHAPTER 7

1450

bool IsExposed (wxPoint &pt) const

bool IsExposed (int x, int y, int w, int h) const

bool IsExposed (wxRect &rect) const

Returns true if the given point or rectangle area has been exposed since the last
repaint. Call this in an paint event handler to optimize redrawing by only redrawing those
areas, which have been exposed.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

IsExposed(x,y, w=0,h=0)

IsExposedPoint(pt)

IsExposedRect(rect)

wxWindow::IsRetained

virtual bool IsRetained () const

Returns true if the window is retained, false otherwise.

Remarks

Retained windows are only available on X platforms.

wxWindow::IsShown

virtual bool IsShown () const

Returns true if the window is shown, false if it has been hidden.

wxWindow::IsTopLevel

bool IsTopLevel () const

Returns true if the given window is a top-level one. Currently all frames and dialogs are
considered to be top-level windows (even if they have a parent window).

wxWindow::Layout

void Layout ()

Invokes the constraint-based layout algorithm or the sizer-based algorithm for this
window.

See wxWindow::SetAutoLayout (p. 1456): when auto layout is on, this function gets
called automatically when the window is resized.

CHAPTER 7

1451

wxWindow::LineDown

This is just a wrapper for ScrollLines (p. 1455)(1).

wxWindow::LineUp

This is just a wrapper for ScrollLines (p. 1455)(-1).

wxWindow::Lower

void Lower ()

Lowers the window to the bottom of the window hierarchy if it is a managed window
(dialog or frame).

wxWindow::MakeModal

virtual void MakeModal (bool flag)

Disables all other windows in the application so that the user can only interact with this
window.

Parameters

flag

If true , this call disables all other windows in the application so that the user can
only interact with this window. If false , the effect is reversed.

wxWindow::Move

void Move (int x, int y)

void Move (const wxPoint& pt)

Moves the window to the given position.

Parameters

x

Required x position.

y

Required y position.

pt

wxPoint (p. 999) object representing the position.

Remarks

CHAPTER 7

1452

Implementations of SetSize can also implicitly implement the wxWindow::Move function,
which is defined in the base wxWindow class as the call:

 SetSize(x, y, -1, -1, wxSIZE_USE_EXISTING);

See also

wxWindow::SetSize (p. 1466)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Move(point) Accepts a wxPoint

MoveXY(x, y) Accepts a pair of integers

wxWindow::MoveAfterInTabOrder

void MoveAfterInTabOrder (wxWindow * win)

Moves this window in the tab navigation order after the specified win. This means that
when the user presses TAB key on that other window, the focus switches to this window.

Default tab order is the same as creation order, this function
andMoveBeforeInTabOrder() (p. 1449) allow to change it after creating all the windows.

Parameters

win

A sibling of this window which should precede it in tab order, must not be NULL

wxWindow::MoveBeforeInTabOrder

void MoveBeforeInTabOrder (wxWindow * win)

Same as MoveAfterInTabOrder (p. 1449) except that it inserts this window just before
win instead of putting it right after it.

wxWindow::Navigate

bool Navigate (int flags = wxNavigationKeyEvent::IsForward)

Does keyboard navigation from this window to another, by sending a
wxNavigationKeyEvent.

Parameters

flags

A combination of wxNavigationKeyEvent::IsForward and
wxNavigationKeyEvent::WinChange.

CHAPTER 7

1453

Remarks

You may wish to call this from a text control custom keypress handler to do the default
navigation behaviour for the tab key, since the standard default behaviour for a multiline
text control with the wxTE_PROCESS_TAB style is to insert a tab and not navigate to
the next control.

wxWindow::OnInternalIdle

virtual void OnInternalIdle ()

This virtual function is normally only used internally, but sometimes an application may
need it to implement functionality that should not be disabled by an application defining
an OnIdle handler in a derived class.

This function may be used to do delayed painting, for example, and most
implementations call wxWindow::UpdateWindowUI (p. 1474)in order to send update
events to the window in idle time.

wxWindow::PageDown

This is just a wrapper for ScrollPages() (p. 1455)(1).

wxWindow::PageUp

This is just a wrapper for ScrollPages() (p. 1455)(-1).

wxWindow::PopEventHandler

wxEvtHandler* PopEventHandler (bool deleteHandler = false) const

Removes and returns the top-most event handler on the event handler stack.

Parameters

deleteHandler

If this is true , the handler will be deleted after it is removed. The default value is
false .

See also

wxWindow::SetEventHandler (p. 1461), wxWindow::GetEventHandler (p. 1438),
wxWindow::PushEventHandler (p. 1451), wxEvtHandler::ProcessEvent (p. 471),
wxEvtHandler (p. 467)

wxWindow::PopupMenu

bool PopupMenu (wxMenu* menu, const wxPoint& pos = wxDefaultPosition)

bool PopupMenu (wxMenu* menu, int x, int y)

CHAPTER 7

1454

Pops up the given menu at the specified coordinates, relative to this window, and returns
control when the user has dismissed the menu. If a menu item is selected, the
corresponding menu event is generated and will be processed as usually. If the
coordinates are not specified, current mouse cursor position is used.

Parameters

menu

Menu to pop up.

pos

The position where the menu will appear.

x

Required x position for the menu to appear.

y

Required y position for the menu to appear.

See also

wxMenu (p. 899)

Remarks

Just before the menu is popped up, wxMenu::UpdateUI (p. 912)is called to ensure that
the menu items are in the correct state. The menu does not get deleted by the window.

It is recommended to not explicitly specify coordinates when calling PopupMenu in
response to mouse click, because some of the ports (namely, wxGTK) can do a better
job of positioning the menu in that case.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

PopupMenu(menu, point) Specifies position with a wxPoint

PopupMenuXY(menu, x, y) Specifies position with two integers (x, y)

wxWindow::PushEventHandler

void PushEventHandler (wxEvtHandler* handler)

Pushes this event handler onto the event stack for the window.

Parameters

handler

Specifies the handler to be pushed.

CHAPTER 7

1455

Remarks

An event handler is an object that is capable of processing the events sent to a window.
By default, the window is its own event handler, but an application may wish to substitute
another, for example to allow central implementation of event-handling for a variety of
different window classes.

wxWindow::PushEventHandler (p. 1451) allows an application to set up a chain of event
handlers, where an event not handled by one event handler is handed to the next one in
the chain. Use wxWindow::PopEventHandler (p. 1450) to remove the event handler.

See also

wxWindow::SetEventHandler (p. 1461), wxWindow::GetEventHandler (p. 1438),
wxWindow::PopEventHandler (p. 1451), wxEvtHandler::ProcessEvent (p. 471),
wxEvtHandler (p. 467)

wxWindow::Raise

void Raise ()

Raises the window to the top of the window hierarchy if it is a managed window (dialog
or frame).

wxWindow::Refresh

virtual void Refresh (bool eraseBackground = true, const wxRect* rect = NULL)

Causes this window, and all of its children recursively (except under wxGTK1 where this
is not implemented), to be repainted. Note that repainting doesn't happen immediately
but only during the next event loop iteration, if you need to update the window
immediately you should use Update (p. 1474) instead.

Parameters

eraseBackground

If true , the background will be erased.

rect

If non-NULL, only the given rectangle will be treated as damaged.

See also

wxWindow::RefreshRect (p. 1452)

wxWindow::RefreshRect

void RefreshRect (const wxRect& rect, bool eraseBackground = true)

Redraws the contents of the given rectangle: only the area inside it will be repainted.

CHAPTER 7

1456

This is the same as Refresh (p. 1452) but has a nicer syntax as it can be called with a
temporary wxRect object as argument like thisRefreshRect(wxRect(x, y, w,
h)) .

wxWindow::RegisterHotKey

bool RegisterHotKey (int hotkeyId, int modifiers, int virtualKeyCode)

Registers a system wide hotkey. Every time the user presses the hotkey registered here,
this window will receive a hotkey event. It will receive the event even if the application is
in the background and does not have the input focus because the user is working with
some other application.

Parameters

hotkeyId

Numeric identifier of the hotkey. For applications this must be between 0 and
0xBFFF. If this function is called from a shared DLL, it must be a system wide
unique identifier between 0xC000 and 0xFFFF. This is a MSW specific detail.

modifiers

A bitwise combination of wxMOD_SHIFT, wxMOD_CONTROL, wxMOD_ALTor
wxMOD_WIN specifying the modifier keys that have to be pressed along with the
key.

virtualKeyCode

The virtual key code of the hotkey.

Return value

true if the hotkey was registered successfully. false if some other application already
registered a hotkey with this modifier/virtualKeyCode combination.

Remarks

Use EVT_HOTKEY(hotkeyId, fnc) in the event table to capture the event. This function is
currently only implemented under Windows. It is used in the Windows CE port (p. 1810)
for detecting hardware button presses.

See also

wxWindow::UnregisterHotKey (p. 1474)

wxWindow::ReleaseMouse

virtual void ReleaseMouse ()

Releases mouse input captured with wxWindow::CaptureMouse (p. 1425).

See also

CHAPTER 7

1457

wxWindow::CaptureMouse (p. 1425),wxWindow::HasCapture (p.
1444),wxWindow::ReleaseMouse (p. 1453),wxMouseCaptureChangedEvent (p. 939)

wxWindow::RemoveChild

virtual void RemoveChild (wxWindow* child)

Removes a child window. This is called automatically by window deletion functions so
should not be required by the application programmer.

Notice that this function is mostly internal to wxWidgets and shouldn't be called by the
user code.

Parameters

child

Child window to remove.

wxWindow::RemoveEventHandler

bool RemoveEventHandler (wxEvtHandler * handler)

Find the given handler in the windows event handler chain and remove (but not delete) it
from it.

Parameters

handler

The event handler to remove, must be non NULL and must be present in this
windows event handlers chain

Return value

Returns true if it was found and false otherwise (this also results in an assert failure
so this function should only be called when the handler is supposed to be there).

See also

PushEventHandler (p. 1451), PopEventHandler (p. 1450)

wxWindow::Reparent

virtual bool Reparent (wxWindow* newParent)

Reparents the window, i.e the window will be removed from its current parent window
(e.g. a non-standard toolbar in a wxFrame) and then re-inserted into another. Available
on Windows and GTK.

Parameters

newParent

CHAPTER 7

1458

New parent.

wxWindow::ScreenToClient

virtual void ScreenToClient (int* x, int* y) const

virtual wxPoint ScreenToClient (const wxPoint& pt) const

Converts from screen to client window coordinates.

Parameters

x

Stores the screen x coordinate and receives the client x coordinate.

y

Stores the screen x coordinate and receives the client x coordinate.

pt

The screen position for the second form of the function.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ScreenToClient(point) Accepts and returns a wxPoint

ScreenToClientXY(x, y) Returns a 2-tuple, (x, y)

wxWindow::ScrollLines

virtual bool ScrollLines (int lines)

Scrolls the window by the given number of lines down (if lines is positive) or up.

Return value

Returns true if the window was scrolled, false if it was already on top/bottom and
nothing was done.

Remarks

This function is currently only implemented under MSW and wxTextCtrl under wxGTK (it
also works for wxScrolledWindow derived classes under all platforms).

See also

ScrollPages (p. 1455)

wxWindow::ScrollPages

CHAPTER 7

1459

virtual bool ScrollPages (int pages)

Scrolls the window by the given number of pages down (if pages is positive) or up.

Return value

Returns true if the window was scrolled, false if it was already on top/bottom and
nothing was done.

Remarks

This function is currently only implemented under MSW and wxTextCtrl under wxGTK (it
also works for wxScrolledWindow derived classes under all platforms).

See also

ScrollLines (p. 1455)

wxWindow::ScrollWindow

virtual void ScrollWindow (int dx, int dy, const wxRect* rect = NULL)

Physically scrolls the pixels in the window and move child windows accordingly.

Parameters

dx

Amount to scroll horizontally.

dy

Amount to scroll vertically.

rect

Rectangle to invalidate. If this is NULL, the whole window is invalidated. If you
pass a rectangle corresponding to the area of the window exposed by the scroll,
your painting handler can optimize painting by checking for the invalidated region.
This parameter is ignored under GTK.

Remarks

Use this function to optimise your scrolling implementations, to minimise the area that
must be redrawn. Note that it is rarely required to call this function from a user program.

wxWindow::SetAcceleratorTable

virtual void SetAcceleratorTable (const wxAcceleratorTable& accel)

Sets the accelerator table for this window. See wxAcceleratorTable (p. 19).

wxWindow::SetAccessible

CHAPTER 7

1460

void SetAccessible (wxAccessible* accessible)

Sets the accessible for this window. Any existing accessible for this window will be
deleted first, if not identical to accessible.

See also wxAccessible (p. 22).

wxWindow::SetAutoLayout

void SetAutoLayout (bool autoLayout)

Determines whether the wxWindow::Layout (p. 1447) function will be called
automatically when the window is resized. It is called implicitly bywxWindow::SetSizer (p.
1469) but if you usewxWindow::SetConstraints (p. 1459) you should call it manually or
otherwise the window layout won't be correctly updated when its size changes.

Parameters

autoLayout

Set this to true if you wish the Layout function to be called from within
wxWindow::OnSize functions.

See also

wxWindow::SetConstraints (p. 1459)

wxWindow::SetBackgroundColour

virtual bool SetBackgroundColour (const wxColour& colour)

Sets the background colour of the window.

Please see InheritAttributes (p. 1445) for explanation of the difference between this
method andSetOwnBackgroundColour (p. 1460).

Parameters

colour

The colour to be used as the background colour, pass wxNullColour to reset to
the default colour.

Remarks

The background colour is usually painted by the default wxEraseEvent (p. 463) event
handler function under Windows and automatically under GTK.

Note that setting the background colour does not cause an immediate refresh, so you
may wish to call wxWindow::ClearBackground (p. 1427) or wxWindow::Refresh (p. 1452)
after calling this function.

Using this function will disable attempts to use themes for this window, if the system
supports them. Use with care since usually the themes represent the appearance

CHAPTER 7

1461

chosen by the user to be used for all applications on the system.

See also

wxWindow::GetBackgroundColour (p. 1434), wxWindow::SetForegroundColour (p.
1463), wxWindow::GetForegroundColour (p. 1438), wxWindow::ClearBackground (p.
1427), wxWindow::Refresh (p. 1452), wxEraseEvent (p. 463)

wxWindow::SetBackgroundStyle

virtual void SetBackgroundStyle (wxBackgroundStyle style)

Sets the background style of the window. The background style indicates whether
background colour should be determined by the system (wxBG_STYLE_SYSTEM), be
set to a specific colour (wxBG_STYLE_COLOUR), or should be left to the application to
implement (wxBG_STYLE_CUSTOM).

On GTK+, use of wxBG_STYLE_CUSTOM allows the flicker-free drawing of a custom
background, such as a tiled bitmap. Currently the style has no effect on other platforms.

See also

wxWindow::SetBackgroundColour (p. 1457), wxWindow::GetForegroundColour (p.
1438), wxWindow::GetBackgroundStyle (p. 1434)

wxWindow::SetBestFittingSize

void SetBestFittingSize (const wxSize& size = wxDefaultSize)

A smart SetSize that will fill in default size components with the window's best size
values. Also sets the window's minsize to the value passed in for use with sizers. This
means that if a full or partial size is passed to this function then the sizers will use that
size instead of the results of GetBestSize to determine the minimum needs of the
window for layout.

See also

wxWindow::SetSize (p. 1466), wxWindow::GetBestSize (p. 1435),
wxWindow::GetBestFittingSize (p. 1434), wxWindow::SetSizeHints (p. 1468)

wxWindow::SetCaret

void SetCaret (wxCaret * caret) const

Sets the caret (p. 126) associated with the window.

wxWindow::SetClientSize

virtual void SetClientSize (int width, int height)

virtual void SetClientSize (const wxSize& size)

CHAPTER 7

1462

This sets the size of the window client area in pixels. Using this function to size a window
tends to be more device-independent than wxWindow::SetSize (p. 1466), since the
application need not worry about what dimensions the border or title bar have when
trying to fit the window around panel items, for example.

Parameters

width

The required client area width.

height

The required client area height.

size

The required client size.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetClientSize(size) Accepts a wxSize

SetClientSizeWH(width, height)

wxWindow::SetContainingSizer

void SetContainingSizer (wxSizer* sizer)

This normally does not need to be called by user code. It is called when a window is
added to a sizer, and is used so the window can remove itself from the sizer when it is
destroyed.

wxWindow::SetCursor

virtual void SetCursor (const wxCursor& cursor)

Sets the window's cursor. Notice that the window cursor also sets it for the children of
the window implicitly.

The cursor may be wxNullCursor in which case the window cursor will be reset back
to default.

Parameters

cursor

Specifies the cursor that the window should normally display.

See also

::wxSetCursor (p. 1551), wxCursor (p. 216)

CHAPTER 7

1463

wxWindow::SetConstraints

void SetConstraints (wxLayoutConstraints* constraints)

Sets the window to have the given layout constraints. The window will then own the
object, and will take care of its deletion. If an existing layout constraints object is already
owned by the window, it will be deleted.

Parameters

constraints

The constraints to set. Pass NULL to disassociate and delete the window's
constraints.

Remarks

You must call wxWindow::SetAutoLayout (p. 1456) to tell a window to use the
constraints automatically in OnSize; otherwise, you must override OnSize and call
Layout() explicitly. When setting both a wxLayoutConstraints and a wxSizer (p. 1124),
only the sizer will have effect.

wxWindow::SetInitialBestSize

virtual void SetInitialBestSize (const wxSize& size)

Sets the initial window size if none is given (i.e. at least one of the components of the
size passed to ctor/Create() is wxDefaultCoord).

wxWindow::SetMaxSize

void SetMaxSize (const wxSize& size)

Sets the maximum size of the window, to indicate to the sizer layout mechanism that this
is the maximum possible size.

wxWindow::SetMinSize

void SetMinSize (const wxSize& size)

Sets the minimum size of the window, to indicate to the sizer layout mechanism that this
is the minimum required size. You may need to call this if you change the window size
after construction and before adding to its parent sizer.

wxWindow::SetOwnBackgroundColour

void SetOwnBackgroundColour (const wxColour& colour)

Sets the background colour of the window but prevents it from being inherited by the
children of this window.

See also

CHAPTER 7

1464

SetBackgroundColour (p. 1457), InheritAttributes (p. 1445)

wxWindow::SetOwnFont

void SetOwnFont (const wxFont& font)

Sets the font of the window but prevents it from being inherited by the children of this
window.

See also

SetFont (p. 1463), InheritAttributes (p. 1445)

wxWindow::SetOwnForegroundColour

void SetOwnForegroundColour (const wxColour& colour)

Sets the foreground colour of the window but prevents it from being inherited by the
children of this window.

See also

SetForegroundColour (p. 1463), InheritAttributes (p. 1445)

wxWindow::SetDropTarget

void SetDropTarget (wxDropTarget* target)

Associates a drop target with this window.

If the window already has a drop target, it is deleted.

See also

wxWindow::GetDropTarget (p. 1437),Drag and drop overview (p. 1740)

wxWindow::SetEventHandler

void SetEventHandler (wxEvtHandler* handler)

Sets the event handler for this window.

Parameters

handler

Specifies the handler to be set.

Remarks

An event handler is an object that is capable of processing the events sent to a window.
By default, the window is its own event handler, but an application may wish to substitute
another, for example to allow central implementation of event-handling for a variety of

CHAPTER 7

1465

different window classes.

It is usually better to use wxWindow::PushEventHandler (p. 1451) since this sets up a
chain of event handlers, where an event not handled by one event handler is handed to
the next one in the chain.

See also

wxWindow::GetEventHandler (p. 1438), wxWindow::PushEventHandler (p. 1451),
wxWindow::PopEventHandler (p. 1451), wxEvtHandler::ProcessEvent (p. 471),
wxEvtHandler (p. 467)

wxWindow::SetExtraStyle

void SetExtraStyle (long exStyle)

Sets the extra style bits for the window. The currently defined extra style bits are:

wxWS_EX_VALIDATE_RECURSIVELY TransferDataTo/FromWindow() and
Validate() methods will recursively descend into all children
of the window if it has this style flag set.

wxWS_EX_BLOCK_EVENTS Normally, the command events are propagated
upwards to the window parent recursively until a handler
for them is found. Using this style allows to prevent them
from being propagated beyond this window. Notice that
wxDialog has this style on by default for the reasons
explained in theevent processing overview (p. 1676).

wxWS_EX_TRANSIENT This can be used to prevent a window from being used as
an implicit parent for the dialogs which were created
without a parent. It is useful for the windows which can
disappear at any moment as creating children of such
windows results in fatal problems.

wxFRAME_EX_CONTEXTHELP Under Windows, puts a query button on the
caption. When pressed, Windows will go into a context-
sensitive help mode and wxWidgets will send a
wxEVT_HELP event if the user clicked on an application
window. This style cannot be used together with
wxMAXIMIZE_BOX or wxMINIMIZE_BOX, so you should
use the style ofwxDEFAULT_FRAME_STYLE &
(wxMINIMIZE_BOX | wxMAXIMIZE_BOX) for the frames
having this style (the dialogs don't have minimize nor
maximize box by default)

wxWS_EX_PROCESS_IDLE This window should always process idle events,
even if the mode set by wxIdleEvent::SetMode (p. 742) is
wxIDLE_PROCESS_SPECIFIED.

wxWS_EX_PROCESS_UI_UPDATES This window should always process UI
update events, even if the mode set by
wxUpdateUIEvent::SetMode (p. 1385) is

CHAPTER 7

1466

wxUPDATE_UI_PROCESS_SPECIFIED.

wxWindow::SetFocus

virtual void SetFocus ()

This sets the window to receive keyboard input.

See also

wxFocusEvent (p. 534)wxPanel::SetFocus (p. 988)wxPanel::SetFocusIgnoringChildren
(p. 988)

wxWindow::SetFocusFromKbd

virtual void SetFocusFromKbd ()

This function is called by wxWidgets keyboard navigation code when the user gives the
focus to this window from keyboard (e.g. using TAB key). By default this method simply
calls SetFocus (p. 1462) but can be overridden to do something in addition to this in the
derived classes.

wxWindow::SetFont

void SetFont (const wxFont& font)

Sets the font for this window. This function should not be called for the parent window if
you don't want its font to be inherited by its children, use SetOwnFont (p. 1460) instead
in this case and see InheritAttributes (p. 1445) for more explanations.

Parameters

font

Font to associate with this window, passwxNullFont to reset to the default font.

See also

wxWindow::GetFont (p. 1438),
InheritAttributes (p. 1445)

wxWindow::SetForegroundColour

virtual void SetForegroundColour (const wxColour& colour)

Sets the foreground colour of the window.

Please see InheritAttributes (p. 1445) for explanation of the difference between this
method andSetOwnForegroundColour (p. 1461).

Parameters

CHAPTER 7

1467

colour

The colour to be used as the foreground colour, pass wxNullColour to reset to
the default colour.

Remarks

The interpretation of foreground colour is open to interpretation according to the window
class; it may be the text colour or other colour, or it may not be used at all.

Using this function will disable attempts to use themes for this window, if the system
supports them. Use with care since usually the themes represent the appearance
chosen by the user to be used for all applications on the system.

See also

wxWindow::GetForegroundColour (p. 1438), wxWindow::SetBackgroundColour (p.
1457), wxWindow::GetBackgroundColour (p. 1434), wxWindow::ShouldInheritColours
(p. 1472)

wxWindow::SetHelpText

virtual void SetHelpText (const wxString& helpText)

Sets the help text to be used as context-sensitive help for this window.

Note that the text is actually stored by the current wxHelpProvider (p. 671)
implementation, and not in the window object itself.

See also

GetHelpText (p. 1439), wxHelpProvider (p. 671)

wxWindow::SetId

void SetId (int id)

Sets the identifier of the window.

Remarks

Each window has an integer identifier. If the application has not provided one, an
identifier will be generated. Normally, the identifier should be provided on creation and
should not be modified subsequently.

See also

wxWindow::GetId (p. 1439), Window identifiers (p. 1679)

wxWindow::SetLabel

virtual void SetLabel (const wxString& label)

CHAPTER 7

1468

Sets the window's label.

Parameters

label

The window label.

See also

wxWindow::GetLabel (p. 1439)

wxWindow::SetName

virtual void SetName (const wxString& name)

Sets the window's name.

Parameters

name

A name to set for the window.

See also

wxWindow::GetName (p. 1440)

wxWindow::SetPalette

virtual void SetPalette (wxPalette* palette)

Obsolete - use wxDC::SetPalette (p. 371) instead.

wxWindow::SetScrollbar

virtual void SetScrollbar (int orientation, int position, int thumbSize, int range, bool
refresh = true)

Sets the scrollbar properties of a built-in scrollbar.

Parameters

orientation

Determines the scrollbar whose page size is to be set. May be wxHORIZONTAL or
wxVERTICAL.

position

The position of the scrollbar in scroll units.

thumbSize

CHAPTER 7

1469

The size of the thumb, or visible portion of the scrollbar, in scroll units.

range

The maximum position of the scrollbar.

refresh

true to redraw the scrollbar, false otherwise.

Remarks

Let's say you wish to display 50 lines of text, using the same font. The window is sized
so that you can only see 16 lines at a time.

You would use:

 SetScrollbar(wxVERTICAL, 0, 16, 50);

Note that with the window at this size, the thumb position can never go above 50 minus
16, or 34.

You can determine how many lines are currently visible by dividing the current view size
by the character height in pixels.

When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which can be
called initially and also from your wxSizeEvent (p. 1123) handler function.

See also

Scrolling overview (p. 1709), wxScrollBar (p. 1092), wxScrolledWindow (p. 1098)

wxWindow::SetScrollPos

virtual void SetScrollPos (int orientation, int pos, bool refresh = true)

Sets the position of one of the built-in scrollbars.

Parameters

orientation

Determines the scrollbar whose position is to be set. May be wxHORIZONTAL or
wxVERTICAL.

pos

Position in scroll units.

refresh

CHAPTER 7

1470

true to redraw the scrollbar, false otherwise.

Remarks

This function does not directly affect the contents of the window: it is up to the
application to take note of scrollbar attributes and redraw contents accordingly.

See also

wxWindow::SetScrollbar (p. 1465), wxWindow::GetScrollPos (p. 1441),
wxWindow::GetScrollThumb (p. 1441), wxScrollBar (p. 1092), wxScrolledWindow (p.
1098)

wxWindow::SetSize

virtual void SetSize (int x, int y, int width, int height, int sizeFlags = wxSIZE_AUTO)

virtual void SetSize (const wxRect& rect)

Sets the size and position of the window in pixels.

virtual void SetSize (int width, int height)

virtual void SetSize (const wxSize& size)

Sets the size of the window in pixels.

Parameters

x

Required x position in pixels, or -1 to indicate that the existing value should be
used.

y

Required y position in pixels, or -1 to indicate that the existing value should be
used.

width

Required width in pixels, or -1 to indicate that the existing value should be used.

height

Required height position in pixels, or -1 to indicate that the existing value should be
used.

size

wxSize (p. 1121) object for setting the size.

rect

wxRect (p. 1050) object for setting the position and size.

CHAPTER 7

1471

sizeFlags

Indicates the interpretation of other parameters. It is a bit list of the following:

wxSIZE_AUTO_WIDTH : a -1 width value is taken to indicate a wxWidgets-
supplied default width.
wxSIZE_AUTO_HEIGHT : a -1 height value is taken to indicate a wxWidgets-
supplied default width.
wxSIZE_AUTO : -1 size values are taken to indicate a wxWidgets-supplied default
size.
wxSIZE_USE_EXISTING : existing dimensions should be used if -1 values are
supplied.
wxSIZE_ALLOW_MINUS_ONE : allow dimensions of -1 and less to be interpreted
as real dimensions, not default values.

Remarks

The second form is a convenience for calling the first form with default x and y
parameters, and must be used with non-default width and height values.

The first form sets the position and optionally size, of the window. Parameters may be -1
to indicate either that a default should be supplied by wxWidgets, or that the current
value of the dimension should be used.

See also

wxWindow::Move (p. 1448)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetDimensions(x, y, width, height, sizeFlags=wxSIZE _AUTO)

SetSize(size)

SetPosition(point)

wxWindow::SetSizeHints

virtual void SetSizeHints (int minW, int minH, int maxW=-1, int maxH=-1, int incW=-1,
int incH=-1)

void SetSizeHints (const wxSize& minSize,const wxSize& maxSize=wxDefaultSize,
const wxSize& incSize=wxDefaultSize)

Allows specification of minimum and maximum window sizes, and window size
increments. If a pair of values is not set (or set to -1), the default values will be used.

Parameters

minW

Specifies the minimum width allowable.

CHAPTER 7

1472

minH

Specifies the minimum height allowable.

maxW

Specifies the maximum width allowable.

maxH

Specifies the maximum height allowable.

incW

Specifies the increment for sizing the width (Motif/Xt only).

incH

Specifies the increment for sizing the height (Motif/Xt only).

minSize

Minimum size.

maxSize

Maximum size.

incSize

Increment size (Motif/Xt only).

Remarks

If this function is called, the user will not be able to size the window outside the given
bounds.

The resizing increments are only significant under Motif or Xt.

wxWindow::SetSizer

void SetSizer (wxSizer* sizer, bool deleteOld=true)

Sets the window to have the given layout sizer. The window will then own the object, and
will take care of its deletion. If an existing layout constraints object is already owned by
the window, it will be deleted if the deleteOld parameter is true.

Note that this function will also callSetAutoLayout (p. 1456) implicitly with
true parameter if the sizer is non-NULL and false otherwise.

Parameters

sizer

The sizer to set. Pass NULL to disassociate and conditionally delete the window's

CHAPTER 7

1473

sizer. See below.

deleteOld

If true (the default), this will delete any prexisting sizer. Pass false if you wish to
handle deleting the old sizer yourself.

Remarks

SetSizer now enables and disables Layout automatically, but prior to wxWidgets 2.3.3
the following applied:

You must call wxWindow::SetAutoLayout (p. 1456) to tell a window to use the sizer
automatically in OnSize; otherwise, you must override OnSize and call Layout()
explicitly. When setting both a wxSizer and a wxLayoutConstraints (p. 799), only the
sizer will have effect.

wxWindow::SetSizerAndFit

void SetSizerAndFit (wxSizer* sizer, bool deleteOld=true)

The same as SetSizer (p. 1469), except it also sets the size hints for the window based
on the sizer's minimum size.

wxWindow::SetTitle

virtual void SetTitle (const wxString& title)

Sets the window's title. Applicable only to frames and dialogs.

Parameters

title

The window's title.

See also

wxWindow::GetTitle (p. 1443)

wxWindow::SetThemeEnabled

virtual void SetThemeEnabled (bool enable)

This function tells a window if it should use the system's "theme" code to draw the
windows' background instead if its own background drawing code. This does not always
have any effect since the underlying platform obviously needs to support the notion of
themes in user defined windows. One such platform is GTK+ where windows can have
(very colourful) backgrounds defined by a user's selected theme.

Dialogs, notebook pages and the status bar have this flag set to true by default so that
the default look and feel is simulated best.

CHAPTER 7

1474

wxWindow::SetToolTip

void SetToolTip (const wxString& tip)

void SetToolTip (wxToolTip* tip)

Attach a tooltip to the window.

See also: GetToolTip (p. 1443), wxToolTip (p. 1353)

wxWindow::SetValidator

virtual void SetValidator (const wxValidator& validator)

Deletes the current validator (if any) and sets the window validator, having called
wxValidator::Clone to create a new validator of this type.

wxWindow::SetVirtualSize

void SetVirtualSize (int width, int height)

void SetVirtualSize (const wxSize& size)

Sets the virtual size of the window in pixels.

wxWindow::SetVirtualSizeHints

virtual void SetVirtualSizeHints (int minW,int minH, int maxW=-1, int maxH=-1)

void SetVirtualSizeHints (const wxSize& minSize=wxDefaultSize,const wxSize&
maxSize=wxDefaultSize)

Allows specification of minimum and maximum virtual window sizes. If a pair of values is
not set (or set to -1), the default values will be used.

Parameters

minW

Specifies the minimum width allowable.

minH

Specifies the minimum height allowable.

maxW

Specifies the maximum width allowable.

maxH

Specifies the maximum height allowable.

minSize

CHAPTER 7

1475

Minimum size.

maxSize

Maximum size.

Remarks

If this function is called, the user will not be able to size the virtual area of the window
outside the given bounds.

wxWindow::SetWindowStyle

void SetWindowStyle (long style)

Identical to SetWindowStyleFlag (p. 1472).

wxWindow::SetWindowStyleFlag

virtual void SetWindowStyleFlag (long style)

Sets the style of the window. Please note that some styles cannot be changed after the
window creation and that Refresh() (p. 1452) might be called after changing the others
for the change to take place immediately.

See Window styles (p. 1686) for more information about flags.

See also

GetWindowStyleFlag (p. 1444)

wxWindow::SetWindowVariant

void SetWindowVariant (wxWindowVariant variant)

This function can be called under all platforms but only does anything under Mac OS X
10.3+ currently. Under this system, each of the standard control can exist in several sizes
which correspond to the elements of wxWindowVariant enum:enum wxWindowVariant
{
 wxWINDOW_VARIANT_NORMAL, // Normal size
 wxWINDOW_VARIANT_SMALL, // Smaller size (about 25 %
smaller than normal)
 wxWINDOW_VARIANT_MINI, // Mini size (a bout 33 %
smaller than normal)
 wxWINDOW_VARIANT_LARGE, // Large size (about 25 %
larger than normal)
};

By default the controls use the normal size, of course, but this function can be used to
change this.

wxWindow::ShouldInheritColours

virtual bool ShouldInheritColours ()

CHAPTER 7

1476

Return true from here to allow the colours of this window to be changed
byInheritAttributes (p. 1445), returning false forbids inheriting them from the parent
window.

The base class version returns false , but this method is overridden inwxControl (p.
205) where it returns true .

wxWindow::Show

virtual bool Show (bool show = true)

Shows or hides the window. You may need to call Raise (p. 1452)for a top level window
if you want to bring it to top, although this is not needed if Show() is called immediately
after the frame creation.

Parameters

show

If true displays the window. Otherwise, hides it.

Return value

true if the window has been shown or hidden or false if nothing was done because it
already was in the requested state.

See also

wxWindow::IsShown (p. 1447), wxWindow::Hide (p. 1445), wxRadioBox::Show (p. 1046)

wxWindow::Thaw

virtual void Thaw ()

Reenables window updating after a previous call toFreeze (p. 1433). To really thaw the
control, it must be called exactly the same number of times as Freeze (p. 1433).

wxWindow::TransferDataFromWindow

virtual bool TransferDataFromWindow ()

Transfers values from child controls to data areas specified by their validators.
Returnsfalse if a transfer failed.

If the window has wxWS_EX_VALIDATE_RECURSIVELY extra style flag set, the method
will also call TransferDataFromWindow() of all child windows.

See also

wxWindow::TransferDataToWindow (p. 1473), wxValidator (p. 1394),
wxWindow::Validate (p. 1475)

CHAPTER 7

1477

wxWindow::TransferDataToWindow

virtual bool TransferDataToWindow ()

Transfers values to child controls from data areas specified by their validators.

If the window has wxWS_EX_VALIDATE_RECURSIVELY extra style flag set, the method
will also call TransferDataToWindow() of all child windows.

Return value

Returns false if a transfer failed.

See also

wxWindow::TransferDataFromWindow (p. 1473), wxValidator (p. 1394),
wxWindow::Validate (p. 1475)

wxWindow::UnregisterHotKey

bool UnregisterHotKey (int hotkeyId)

Unregisters a system wide hotkey.

Parameters

hotkeyId

Numeric identifier of the hotkey. Must be the same id that was passed to
RegisterHotKey.

Return value

true if the hotkey was unregistered successfully, false if the id was invalid.

Remarks

This function is currently only implemented under MSW.

See also

wxWindow::RegisterHotKey (p. 1452)

wxWindow::Update

virtual void Update ()

Calling this method immediately repaints the invalidated area of the window and all of its
children recursively while this would usually only happen when the flow of control returns
to the event loop. Notice that this function doesn't refresh the window and does nothing if
the window hadn't been already repainted. Use Refresh (p. 1452) first if you want to
immediately redraw the window unconditionally.

CHAPTER 7

1478

wxWindow::UpdateWindowUI

virtual void UpdateWindowUI (long flags = wxUPDATE_UI_NONE)

This function sends wxUpdateUIEvents (p. 1381) to the window. The particular
implementation depends on the window; for example a wxToolBar will send an update
UI event for each toolbar button, and a wxFrame will send an update UI event for each
menubar menu item. You can call this function from your application to ensure that your
UI is up-to-date at this point (as far as your wxUpdateUIEvent handlers are concerned).
This may be necessary if you have calledwxUpdateUIEvent::SetMode (p. 1385)
orwxUpdateUIEvent::SetUpdateInterval (p. 1385) to limit the overhead that wxWidgets
incurs by sending update UI events in idle time.

flags should be a bitlist of one or more of the following values.

enum wxUpdateUI
{
 wxUPDATE_UI_NONE = 0x0000, // No parti cular value
 wxUPDATE_UI_RECURSE = 0x0001, // Call the function for
descendants
 wxUPDATE_UI_FROMIDLE = 0x0002 // Invoked from
On(Internal)Idle
};

If you are calling this function from an OnInternalIdle or OnIdle function, make sure you
pass the wxUPDATE_UI_FROMIDLE flag, since this tells the window to only update the
UI elements that need to be updated in idle time. Some windows update their elements
only when necessary, for example when a menu is about to be shown. The following is
an example of how to call UpdateWindowUI from an idle function.

void MyWindow::OnInternalIdle()
{
 if (wxUpdateUIEvent::CanUpdate(this))
 UpdateWindowUI(wxUPDATE_UI_FROMIDLE);
}

See also

wxUpdateUIEvent (p. 1381),wxWindow::DoUpdateWindowUI (p.
1430),wxWindow::OnInternalIdle (p. 1449)

wxWindow::Validate

virtual bool Validate ()

Validates the current values of the child controls using their validators.

If the window has wxWS_EX_VALIDATE_RECURSIVELY extra style flag set, the method
will also call Validate() of all child windows.

Return value

Returns false if any of the validations failed.

See also

CHAPTER 7

1479

wxWindow::TransferDataFromWindow (p. 1473), wxWindow::TransferDataToWindow (p.
1473), wxValidator (p. 1394)

wxWindow::WarpPointer

void WarpPointer (int x, int y)

Moves the pointer to the given position on the window.

NB: This function is not supported under Mac because Apple Human Interface
Guidelines forbid moving the mouse cursor programmatically.

Parameters

x

The new x position for the cursor.

y

The new y position for the cursor.

wxWindowCreateEvent

This event is sent just after the actual window associated with a wxWindow object has
been created. Since it is derived from wxCommandEvent, the event propagates up the
window hierarchy.

Derived from

wxCommandEvent (p. 464)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/event.h>

Event table macros

To process a window creation event, use this event handler macro to direct input to a
member function that takes a wxWindowCreateEvent argument.

EVT_WINDOW_CREATE(func) Process a wxEVT_CREATE event.

See also
Event handling overview (p. 1674), wxWindowDestroyEvent (p. 1477)

wxWindowCreateEvent::wxWindowCreateEvent

CHAPTER 7

1480

 wxWindowCreateEvent (wxWindow* win = NULL)

Constructor.

wxWindowDC

A wxWindowDC must be constructed if an application wishes to paint on the whole area
of a window (client and decorations). This should normally be constructed as a
temporary stack object; don't store a wxWindowDC object.

To draw on a window from inside OnPaint , construct a wxPaintDC (p. 979) object.

To draw on the client area of a window from outside OnPaint , construct a wxClientDC
(p. 141) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1476)
object (Windows only).

Derived from

wxDC (p. 353)

Include files

<wx/dcclient.h>

See also

wxDC (p. 353), wxMemoryDC (p. 895), wxPaintDC (p. 979), wxClientDC (p. 141),
wxScreenDC (p. 1091)

wxWindowDC::wxWindowDC

 wxWindowDC (wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxWindowDestroyEvent

This event is sent just before the actual window associated with a wxWindow object is
destroyed. Since it is derived from wxCommandEvent, the event propagates up the
window hierarchy.

Derived from

wxCommandEvent (p. 464)
wxEvent (p. 464)
wxObject (p. 967)

Include files

CHAPTER 7

1481

<wx/event.h>

Event table macros

To process a window destruction event, use this event handler macro to direct input to a
member function that takes a wxWindowDestroyEvent argument.

EVT_WINDOW_DESTROY(func) Process a wxEVT_DESTROY event.

See also
Event handling overview (p. 1674), wxWindowCreateEvent (p. 1476)

wxWindowDestroyEvent::wxWindowDestroyEvent

 wxWindowDestroyEvent (wxWindow* win = NULL)

Constructor.

wxWindowDisabler

This class disables all windows of the application (may be with the exception of one of
them) in its constructor and enables them back in its destructor. This comes in handy
when you want to indicate to the user that the application is currently busy and cannot
respond to user input.

Derived from

None

Include files

<wx/utils.h>

See also

wxBusyCursor (p. 110)

wxWindowDisabler::wxWindowDisabler

 wxWindowDisabler (wxWindow * winToSkip = NULL)

Disables all top level windows of the applications with the exception of winToSkip if it is
not NULL.

wxWindowDisabler::~wxWindowDisabler

 ~wxWindowDisabler ()

CHAPTER 7

1482

Reenables back the windows disabled by the constructor.

wxWizard

wxWizard is the central class for implementing 'wizard-like' dialogs. These dialogs are
mostly familiar to Windows users and are nothing other than a sequence of 'pages', each
displayed inside a dialog which has the buttons to navigate to the next (and previous)
pages.

The wizards are typically used to decompose a complex dialog into several simple steps
and are mainly useful to the novice users, hence it is important to keep them as simple
as possible.

To show a wizard dialog, you must first create an instance of the wxWizard class using
either the non-default constructor or a default one followed by call to the Create (p.
1480) function. Then you should add all pages you want the wizard to show and call
RunWizard (p. 1482). Finally, don't forget to call wizard->Destroy() .

Derived from

wxDialog (p. 391)
wxPanel (p. 985)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/wizard.h>

Event table macros

To process input from a wizard dialog, use these event handler macros to direct input to
member functions that take a wxWizardEvent (p. 1483) argument. For some events,
Veto() (p. 967) can be called to prevent the event from happening.

EVT_WIZARD_PAGE_CHANGED(id, func) The page has just been changed
(this event cannot be vetoed).

EVT_WIZARD_PAGE_CHANGING(id, func) The page is being changed (this
event can be vetoed).

EVT_WIZARD_CANCEL(id, func) The user attempted to cancel the wizard (this
event may also be vetoed).

EVT_WIZARD_HELP(id, func) The wizard help button was pressed.

EVT_WIZARD_FINISHED(id, func) The wizard finished button was pressed.

Extended styles

Use the wxWindow::SetExtraStyle (p. 1461) function to set the following style. You will
need to use two-step construction (use the default constructor, call SetExtraStyle , then

CHAPTER 7

1483

call Create).

wxWIZARD_EX_HELPBUTTON Shows a Help button using wxID_HELP.

See also wxDialog (p. 391) for other extended styles.

See also

wxWizardEvent (p. 1483), wxWizardPage (p. 1484), wxWizard sample (p. 1641)

wxWizard::wxWizard

 wxWizard ()

Default constructor. Use this if you wish to derive from wxWizard and then call Create (p.
1480), for example if you wish to set an extra style with wxWindow::SetExtraStyle (p.
1461) between the two calls.

 wxWizard (wxWindow* parent, int id = -1, const wxString& title = wxEmptyString,
const wxBitmap& bitmap = wxNullBitmap, const wxPoint& pos = wxDefaultPosition,
long style = wxDEFAULT_DIALOG_STYLE)

Constructor which really creates the wizard -- if you use this constructor, you shouldn't
call Create (p. 1480).

Notice that unlike almost all other wxWidgets classes, there is no size parameter in the
wxWizard constructor because the wizard will have a predefined default size by default.
If you want to change this, you should use the GetPageAreaSizer (p. 1481) function.

Parameters

parent

The parent window, may be NULL.

id

The id of the dialog, will usually be just -1.

title

The title of the dialog.

bitmap

The default bitmap used in the left side of the wizard. See also GetBitmap (p.
1486).

pos

The position of the dialog, it will be centered on the screen by default.

style

CHAPTER 7

1484

Window style is passed to wxDialog.

wxWizard::Create

bool Create (wxWindow* parent, int id = -1, const wxString& title = wxEmptyString,
const wxBitmap& bitmap = wxNullBitmap, const wxPoint& pos = wxDefaultPosition,
long style = wxDEFAULT_DIALOG_STYLE)

Creates the wizard dialog. Must be called if the default constructor had been used to
create the object.

Notice that unlike almost all other wxWidgets classes, there is no size parameter in the
wxWizard constructor because the wizard will have a predefined default size by default.
If you want to change this, you should use the GetPageAreaSizer (p. 1481) function.

Parameters

parent

The parent window, may be NULL.

id

The id of the dialog, will usually be just -1.

title

The title of the dialog.

bitmap

The default bitmap used in the left side of the wizard. See also GetBitmap (p.
1486).

pos

The position of the dialog, it will be centered on the screen by default.

style

Window style is passed to wxDialog.

wxWizard::FitToPage

void FitToPage (const wxWizardPage* firstPage)

This method is obsolete, useGetPageAreaSizer (p. 1481) instead.

Sets the page size to be big enough for all the pages accessible via the given firstPage,
i.e. this page, its next page and so on.

This method may be called more than once and it will only change the page size if the
size required by the new page is bigger than the previously set one. This is useful if the
decision about which pages to show is taken during run-time, as in this case, the wizard

CHAPTER 7

1485

won't be able to get to all pages starting from a single one and you should call Fit
separately for the others.

wxWizard::GetCurrentPage

wxWizardPage* GetCurrentPage () const

Get the current page while the wizard is running. NULL is returned if RunWizard() (p.
1482) is not being executed now.

wxWizard::GetPageAreaSizer

virtual wxSizer* GetPageAreaSizer () const

Returns pointer to page area sizer. The wizard is laid out using sizers and the page area
sizer is the place-holder for the pages. All pages are resized before being shown to
match the wizard page area.

Page area sizer has a minimal size that is the maximum of several values. First, all
pages (or other objects) added to the sizer. Second, all pages reachable by repeatedly
applying wxWizardPage::GetNext (p. 1486) to any page inserted into the sizer. Third, the
minimal size specified using SetPageSize (p. 1483) and FitToPage (p. 1481). Fourth, the
total wizard height may be increased to accommodate the bitmap height. Fifth and
finally, wizards are never smaller than some built-in minimal size to avoid wizards that
are too small.

The caller can use wxSizer::SetMinSize (p. 1131) to enlarge it beyond the minimal size.
If wxRESIZE_BORDER was passed to constructor, user can resize wizard and
consequently the page area (but not make it smaller than the minimal size).

It is recommended to add the first page to the page area sizer. For simple wizards, this
will enlarge the wizard to fit the biggest page. For non-linear wizards, the first page of
every separate chain should be added. Caller-specified size can be accomplished using
wxSizer::SetMinSize (p. 1131).

Adding pages to the page area sizer affects the default border width around page area
that can be altered with SetBorder (p. 1483).

wxWizard::GetPageSize

wxSize GetPageSize () const

Returns the size available for the pages.

wxWizard::HasNextPage

virtual bool HasNextPage (wxWizardPage * page)

Return true if this page is not the last one in the wizard. The base class version
implements this by calling page->GetNext (p. 1486) but this could be undesirable if, for
example, the pages are created on demand only.

CHAPTER 7

1486

See also

HasPrevPage (p. 1482)

wxWizard::HasPrevPage

virtual bool HasPrevPage (wxWizardPage * page)

Returns true if this page is not the last one in the wizard. The base class version
implements this by calling page->GetPrev (p. 1485) but this could be undesirable if, for
example, the pages are created on demand only.

See also

HasNextPage (p. 1482)

wxWizard::RunWizard

bool RunWizard (wxWizardPage* firstPage)

Executes the wizard starting from the given page, returning true if it was successfully
finished or false if user cancelled it. The firstPage can not be NULL.

wxWizard::SetPageSize

void SetPageSize (const wxSize& sizePage)

This method is obsolete, useGetPageAreaSizer (p. 1481) instead.

Sets the minimal size to be made available for the wizard pages. The wizard will take
into account the size of the bitmap (if any) itself. Also, the wizard will never be smaller
than the default size.

The recommended way to use this function is to lay out all wizard pages using the sizers
(even though the wizard is not resizeable) and then use wxSizer::CalcMin (p. 1127) in a
loop to calculate the maximum of minimal sizes of the pages and pass it to
SetPageSize().

wxWizard::SetBorder

void SetBorder (int border)

Sets width of border around page area. Default is zero. For backward compatibility, if
there are no pages inGetPageAreaSizer (p. 1481), the default is 5 pixels.

If there is a five point border around all controls in a page and the border around page
area is left as zero, a five point white space along all dialog borders will be added to the
control border in order to space page controls ten points from the dialog border and non-
page controls.

wxWizardEvent

CHAPTER 7

1487

wxWizardEvent class represents an event generated by thewizard (p. 1478): this event
is first sent to the page itself and, if not processed there, goes up the window hierarchy
as usual.

Derived from

wxNotifyEvent (p. 966)
wxCommandEvent (p. 172)
wxEvent (p. 464)
wxObject (p. 967)

Include files

<wx/wizard.h>

Event table macros

To process input from a wizard dialog, use these event handler macros to direct input to
member functions that take a wxWizardEvent argument.

EVT_WIZARD_PAGE_CHANGED(id, func) The page has been just changed
(this event can not be vetoed).

EVT_WIZARD_PAGE_CHANGING(id, func) The page is being changed (this
event can be vetoed).

EVT_WIZARD_CANCEL(id, func) The user attempted to cancel the wizard (this
event may also be vetoed).

EVT_WIZARD_HELP(id, func) The wizard help button was pressed.

EVT_WIZARD_FINISHED(id, func) The wizard finished button was pressed.

See also

wxWizard (p. 1478), wxWizard sample (p. 1641)

wxWizardEvent::wxWizardEvent

 wxWizardEvent (wxEventType type = wxEVT_NULL, int id = -1, bool direction = true)

Constructor. It is not normally used by the user code as the objects of this type are
constructed by wxWizard.

wxWizardEvent::GetDirection

bool GetDirection () const

Return the direction in which the page is changing: for EVT_WIZARD_PAGE_CHANGING,
return true if we're going forward or false otherwise and for
EVT_WIZARD_PAGE_CHANGED return true if we came from the previous page and

CHAPTER 7

1488

false if we returned from the next one.

wxWizardEvent::GetPage

wxWizardPage* GetPage () const

Returns the wxWizardPage (p. 1484) which was active when this event was generated.

wxWizardPage

wxWizardPage is one of the screens in wxWizard (p. 1478): it must know what are the
following and preceding pages (which may be NULL for the first/last page). Except for
this extra knowledge, wxWizardPage is just a panel, so the controls may be placed
directly on it in the usual way.

This class allows the programmer to decide the order of pages in the wizard dynamically
(during run-time) and so provides maximal flexibility. Usually, however, the order of
pages is known in advance in which case wxWizardPageSimple (p. 1486) class is
enough and it is simpler to use.

Virtual functions to override

To use this class, you must override GetPrev (p. 1485) and GetNext (p. 1486) pure
virtual functions (or you may use wxWizardPageSimple (p. 1486) instead).

GetBitmap (p. 1486) can also be overridden, but this should be very rarely needed.

Derived from

wxPanel (p. 985)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/wizard.h>

See also

wxWizard (p. 1478), wxWizard sample (p. 1641)

wxWizardPage::wxWizardPage

 wxWizardPage (wxWizard* parent, const wxBitmap& bitmap = wxNullBitmap, const
wxChar *resource = NULL)

Constructor accepts an optional bitmap which will be used for this page instead of the
default one for this wizard (note that all bitmaps used should be of the same size).
Notice that no other parameters are needed because the wizard will resize and

CHAPTER 7

1489

reposition the page anyhow.

Parameters

parent

The parent wizard

bitmap

The page-specific bitmap if different from the global one

resource

Load the page from the specified resource if non NULL

wxWizardPage::GetPrev

wxWizardPage* GetPrev () const

Get the page which should be shown when the user chooses the "Back" button: if NULL
is returned, this button will be disabled. The first page of the wizard will usually return
NULL from here, but the others will not.

See also

GetNext (p. 1486)

wxWizardPage::GetNext

wxWizardPage* GetNext () const

Get the page which should be shown when the user chooses the "Next" button: if NULL
is returned, this button will be disabled. The last page of the wizard will usually return
NULL from here, but the others will not.

See also

GetPrev (p. 1485)

wxWizardPage::GetBitmap

wxBitmap GetBitmap () const

This method is called by wxWizard to get the bitmap to display alongside the page. By
default, m_bitmap member variable which was set in the constructor (p. 1485).

If the bitmap was not explicitly set (i.e. if wxNullBitmap is returned), the default bitmap
for the wizard should be used.

The only cases when you would want to override this function is if the page bitmap
depends dynamically on the user choices, i.e. almost never.

CHAPTER 7

1490

wxWizardPageSimple

wxWizardPageSimple is the simplest possible wxWizardPage (p. 1484) implementation:
it just returns the pointers given to its constructor from GetNext() and GetPrev()
functions.

This makes it very easy to use the objects of this class in the wizards where the pages
order is known statically - on the other hand, if this is not the case you must derive your
own class from wxWizardPage (p. 1484) instead.

Derived from

wxWizardPage (p. 1484)
wxPanel (p. 985)
wxWindow (p. 1421)
wxEvtHandler (p. 467)
wxObject (p. 967)

Include files

<wx/wizard.h>

See also

wxWizard (p. 1478), wxWizard sample (p. 1641)

wxWizardPageSimple::wxWizardPageSimple

 wxWizardPageSimple (wxWizard* parent = NULL, wxWizardPage* prev = NULL,
wxWizardPage* next = NULL, const wxBitmap& bitmap = wxNullBitmap)

Constructor takes the previous and next pages. They may be modified later bySetPrev()
(p. 1487) or SetNext() (p. 1487).

wxWizardPageSimple::SetPrev

void SetPrev (wxWizardPage* prev)

Sets the previous page.

wxWizardPageSimple::SetNext

void SetNext (wxWizardPage* next)

Sets the next page.

wxWizardPageSimple::Chain

static void Chain (wxWizardPageSimple* first, wxWizardPageSimple* second)

CHAPTER 7

1491

A convenience function to make the pages follow each other.

Example:

 wxRadioboxPage *page3 = new wxRadioboxPage(wiza rd);
 wxValidationPage *page4 = new wxValidationPage(wizard);

 wxWizardPageSimple::Chain(page3, page4);

wxXmlResource

This is the main class for interacting with the XML-based resource system.

The class holds XML resources from one or more .xml files, binary files or zip archive
files.

See XML-based resource system overview (p. 1700) for details.

Derived from

wxObject (p. 967)

Include files

<wx/xrc/xmlres.h>

Constants

enum wxXmlResourceFlags
{
 wxXRC_USE_LOCALE = 1,
 wxXRC_NO_SUBCLASSING = 2,
 wxXRC_NO_RELOADING = 4
};

wxXmlResource::wxXmlResource

 wxXmlResource (const wxString& filemask, int flags = wxXRC_USE_LOCALE)

Constructor.

filemask

The XRC file, archive file, or wildcard specification that will be used to load all
resource files inside a zip archive.

flags

wxXRC_USE_LOCALE: translatable strings will be translated via _().
wxXRC_NO_SUBCLASSING: subclass property of object nodes will be ignored
(useful for previews in XRC editors).

CHAPTER 7

1492

 wxXmlResource (int flags = wxXRC_USE_LOCALE)

Constructor.

flags

wxXRC_USE_LOCALE: translatable strings will be translated via _().
wxXRC_NO_SUBCLASSING: subclass property of object nodes will be ignored
(useful for previews in XRC editors). wxXRC_NO_RELOADING will prevent the
XRC files from being reloaded from disk in case they have been modified there
since being last loaded (may slightly speed up loading them).

wxXmlResource::~wxXmlResource

 ~wxXmlResource ()

Destructor.

wxXmlResource::AddHandler

void AddHandler (wxXmlResourceHandler* handler)

Initializes only a specific handler (or custom handler). Convention says that the handler
name is equal to the control's name plus 'XmlHandler', for example
wxTextCtrlXmlHandler, wxHtmlWindowXmlHandler. The XML resource compiler (wxxrc)
can create include file that contains initialization code for all controls used within the
resource.

wxXmlResource::AttachUnknownControl

bool AttachUnknownControl (const wxString& name, wxWindow* control,
wxWindow* parent = NULL)

Attaches an unknown control to the given panel/window/dialog. Unknown controls are
used in conjunction with <object class="unknown">.

wxXmlResource::ClearHandlers

void ClearHandlers ()

Removes all handlers.

wxXmlResource::CompareVersion

int CompareVersion (int major, int minor, int release, int revision) const

Compares the XRC version to the argument. Returns -1 if the XRC version is less than
the argument, +1 if greater, and 0 if they equal.

wxXmlResource::Get

CHAPTER 7

1493

wxXmlResource* Get()

Gets the global resources object or creates one if none exists.

wxXmlResource::GetFlags

int GetFlags ()

Returns flags, which may be a bitlist of wxXRC_USE_LOCALE and
wxXRC_NO_SUBCLASSING.

wxXmlResource::GetVersion

long GetVersion () const

Returns version information (a.b.c.d = d+ 256*c + 2562*b + 2563*a).

wxXmlResource::GetXRCID

int GetXRCID(const wxChar* str_id)

Returns a numeric ID that is equivalent to the string ID used in an XML resource. To be
used in event tables. The macro XRCID(name) is provided for convenience.

wxXmlResource::InitAllHandlers

void InitAllHandlers ()

Initializes handlers for all supported controls/windows. This will make the executable
quite big because it forces linking against most of the wxWidgets library.

wxXmlResource::Load

bool Load (const wxString& filemask)

Loads resources from XML files that match given filemask. This method understands
VFS (see filesys.h).

wxXmlResource::LoadBitmap

wxBitmap LoadBitmap (const wxString& name)

Loads a bitmap resource from a file.

wxXmlResource::LoadDialog

wxDialog* LoadDialog (wxWindow* parent, const wxString& name)

Loads a dialog. dlg points to a parent window (if any).

CHAPTER 7

1494

bool LoadDialog (wxDialog* dlg, wxWindow* parent, const wxString& name)

Loads a dialog. dlg points to parent window (if any).

This form is used to finish creation of an already existing instance (the main reason for
this is that you may want to use derived class with a new event table).

Example:

 MyDialog dlg;
 wxTheXmlResource->LoadDialog(&dlg, mainFrame, "my _dialog");
 dlg->ShowModal();

wxXmlResource::LoadFrame

bool LoadFrame (wxFrame* frame, wxWindow* parent, const wxString& name)

Loads a frame.

wxXmlResource::LoadIcon

wxIcon LoadIcon (const wxString& name)

Loads an icon resource from a file.

wxXmlResource::LoadMenu

wxMenu* LoadMenu (const wxString& name)

Loads menu from resource. Returns NULL on failure.

wxXmlResource::LoadMenuBar

wxMenuBar* LoadMenuBar (wxWindow* parent, const wxString& name)

Loads a menubar from resource. Returns NULL on failure.

wxMenuBar* LoadMenuBar (const wxString& name)

Loads a menubar from resource. Returns NULL on failure.

wxXmlResource::LoadPanel

wxPanel* LoadPanel (wxWindow* parent, const wxString& name)

Loads a panel. panel points to parent window (if any).

bool LoadPanel (wxPanel* panel, wxWindow* parent, const wxString& name)

Loads a panel. panel points to parent window (if any). This form is used to finish creation
of an already existing instance.

CHAPTER 7

1495

wxXmlResource::LoadToolBar

wxToolBar* LoadToolBar (wxWindow* parent, const wxString& name)

Loads a toolbar.

wxXmlResource::Set

wxXmlResource* Set(wxXmlResource* res)

Sets the global resources object and returns a pointer to the previous one (may be
NULL).

wxXmlResource::SetFlags

void SetFlags (int flags)

Sets flags (bitlist of wxXRC_USE_LOCALE and wxXRC_NO_SUBCLASSING).

wxXmlResource::Unload

bool Unload (const wxString& filename)

This function unloads a resource previously loaded by Load() (p. 1490).

Returns true if the resource was successfully unloaded and false if it hasn't been
found in the list of loaded resources.

wxXmlResourceHandler

wxXmlResourceHandler is an abstract base class for resource handlers capable of
creating a control from an XML node.

See XML-based resource system overview (p. 1700) for details.

Derived from

wxObject (p. 967)

Include files

<wx/xrc/xmlres.h>

wxXmlResourceHandler::wxXmlResourceHandler

 wxXmlResourceHandler ()

Default constructor.

CHAPTER 7

1496

wxXmlResourceHandler::~wxXmlResourceHandler

 ~wxXmlResourceHandler ()

Destructor.

wxXmlResourceHandler::AddStyle

void AddStyle (const wxString& name, int value)

Add a style flag (e.g. wxMB_DOCKABLE) to the list of flags understood by this handler.

wxXmlResourceHandler::AddWindowStyles

void AddWindowStyles ()

Add styles common to all wxWindow-derived classes.

wxXmlResourceHandler::CanHandle

bool CanHandle (wxXmlNode* node)

Returns true if it understands this node and can create a resource from it, false
otherwise.

Note

You must not call any wxXmlResourceHandler methods except IsOfClass (p. 1496) from
this method! The instance is not yet initialized with node data at the time CanHandle is
called and it is only safe to operate on node directly or to call IsOfClass.

wxXmlResourceHandler::CreateChildren

void CreateChildren (wxObject* parent, bool this_hnd_only = false)

Creates children.

wxXmlResourceHandler::CreateChildrenPrivately

void CreateChildrenPrivately (wxObject* parent, wxXmlNode* rootnode = NULL)

Helper function.

wxXmlResourceHandler::CreateResFromNode

wxObject* CreateResFromNode (wxXmlNode* node, wxObject* parent, wxObject*
instance = NULL)

Creates a resource from a node.

CHAPTER 7

1497

wxXmlResourceHandler::CreateResource

wxObject* CreateResource (wxXmlNode* node, wxObject* parent, wxObject*
instance)

Creates an object (menu, dialog, control, ...) from an XML node. Should check for
validity. parent is a higher-level object (usually window, dialog or panel) that is often
necessary to create the resource. If instance is non-NULL it should not create a new
instance via 'new' but should rather use this one, and call its Create method.

wxXmlResourceHandler::DoCreateResource

wxObject* DoCreateResource ()

Called from CreateResource after variables were filled.

wxXmlResourceHandler::GetBitmap

wxBitmap GetBitmap (const wxString& param = wxT("bitmap"), wxSize size =
wxDefaultSize)

Gets a bitmap.

wxXmlResourceHandler::GetBool

bool GetBool (const wxString& param, bool defaultv = false)

Gets a bool flag (1, t, yes, on, true are true, everything else is false).

wxXmlResourceHandler::GetColour

wxColour GetColour (const wxString& param)

Gets colour in HTML syntax (#RRGGBB).

wxXmlResourceHandler::GetCurFileSystem

wxFileSystem& GetCurFileSystem ()

Returns the current file system.

wxXmlResourceHandler::GetDimension

wxCoord GetDimension (const wxString& param, wxCoord defaultv = 0)

Gets a dimension (may be in dialog units).

wxXmlResourceHandler::GetFont

wxFont GetFont (const wxString& param = wxT("font"))

CHAPTER 7

1498

Gets a font.

wxXmlResourceHandler::GetID

int GetID()

Returns the XRCID.

wxXmlResourceHandler::GetIcon

wxIcon GetIcon (const wxString& param = wxT("icon"), wxSize size = wxDefaultSize)

Returns an icon.

wxXmlResourceHandler::GetLong

long GetLong (const wxString& param, long defaultv = 0)

Gets the integer value from the parameter.

wxXmlResourceHandler::GetName

wxString GetName ()

Returns the resource name.

wxXmlResourceHandler::GetNodeContent

wxString GetNodeContent (wxXmlNode* node)

Gets node content from wxXML_ENTITY_NODE.

wxXmlResourceHandler::GetParamNode

wxXmlNode* GetParamNode (const wxString& param)

Finds the node or returns NULL.

wxXmlResourceHandler::GetParamValue

wxString GetParamValue (const wxString& param)

Finds the parameter value or returns the empty string.

wxXmlResourceHandler::GetPosition

wxPoint GetPosition (const wxString& param = wxT("pos"))

Gets the position (may be in dialog units).

CHAPTER 7

1499

wxXmlResourceHandler::GetSize

wxSize GetSize (const wxString& param = wxT("size"))

Gets the size (may be in dialog units).

wxXmlResourceHandler::GetStyle

int GetStyle (const wxString& param = wxT("style"), int defaults = 0)

Gets style flags from text in form "flag | flag2| flag3 |..." Only understands flags added
with AddStyle.

wxXmlResourceHandler::GetText

wxString GetText (const wxString& param)

Gets text from param and does some conversions:

 • replaces \n, \r, \t by respective characters (according to C syntax)

 • replaces $ by & and $$ by $ (needed for _File to &File translation because of
XML syntax)

 • calls wxGetTranslations (unless disabled in wxXmlResource)

wxXmlResourceHandler::HasParam

bool HasParam (const wxString& param)

Check to see if a parameter exists.

wxXmlResourceHandler::IsOfClass

bool IsOfClass (wxXmlNode* node, const wxString& classname)

Convenience function. Returns true if the node has a property class equal to classname,
e.g. <object class="wxDialog">.

wxXmlResourceHandler::SetParentResource

void SetParentResource (wxXmlResource* res)

Sets the parent resource.

wxXmlResourceHandler::SetupWindow

void SetupWindow (wxWindow* wnd)

Sets common window options.

CHAPTER 7

1500

wxZipClassFactory

Class factory for the zip archive format. See the base class for details.

Derived from

wxArchiveClassFactory (p. 41)

Include files

<wx/zipstrm.h>

See also

Archive formats such as zip (p. 1802)
Generic archive programming (p. 1806)wxZipEntry (p. 1496)
wxZipInputStream (p. 1503)
wxZipOutputStream (p. 1505)

wxZipEntry

Holds the meta-data for an entry in a zip.

Derived from

wxArchiveEntry (p. 42)

Include files

<wx/zipstrm.h>

Data structures

Constants for Get/SetMethod (p. 1501):

// Compression Method, only 0 (store) and 8 (deflat e) are
supported here
//
enum wxZipMethod
{
 wxZIP_METHOD_STORE,
 wxZIP_METHOD_SHRINK,
 wxZIP_METHOD_REDUCE1,
 wxZIP_METHOD_REDUCE2,
 wxZIP_METHOD_REDUCE3,
 wxZIP_METHOD_REDUCE4,
 wxZIP_METHOD_IMPLODE,
 wxZIP_METHOD_TOKENIZE,
 wxZIP_METHOD_DEFLATE,
 wxZIP_METHOD_DEFLATE64,
 wxZIP_METHOD_BZIP2 = 12,
 wxZIP_METHOD_DEFAULT = 0xffff
};

Constants for Get/SetSystemMadeBy (p. 1502):

CHAPTER 7

1501

// Originating File-System.
//
// These are Pkware's values. Note that Info-zip di sagree on some
of them,
// most notably NTFS.
//
enum wxZipSystem
{
 wxZIP_SYSTEM_MSDOS,
 wxZIP_SYSTEM_AMIGA,
 wxZIP_SYSTEM_OPENVMS,
 wxZIP_SYSTEM_UNIX,
 wxZIP_SYSTEM_VM_CMS,
 wxZIP_SYSTEM_ATARI_ST,
 wxZIP_SYSTEM_OS2_HPFS,
 wxZIP_SYSTEM_MACINTOSH,
 wxZIP_SYSTEM_Z_SYSTEM,
 wxZIP_SYSTEM_CPM,
 wxZIP_SYSTEM_WINDOWS_NTFS,
 wxZIP_SYSTEM_MVS,
 wxZIP_SYSTEM_VSE,
 wxZIP_SYSTEM_ACORN_RISC,
 wxZIP_SYSTEM_VFAT,
 wxZIP_SYSTEM_ALTERNATE_MVS,
 wxZIP_SYSTEM_BEOS,
 wxZIP_SYSTEM_TANDEM,
 wxZIP_SYSTEM_OS_400
};

Constants for Get/SetExternalAttributes (p. 1500):

// Dos/Win file attributes
//
enum wxZipAttributes
{
 wxZIP_A_RDONLY = 0x01,
 wxZIP_A_HIDDEN = 0x02,
 wxZIP_A_SYSTEM = 0x04,
 wxZIP_A_SUBDIR = 0x10,
 wxZIP_A_ARCH = 0x20,

 wxZIP_A_MASK = 0x37
};

Constants for Get/SetFlags (p. 1500):

// Values for the flags field in the zip headers
//
enum wxZipFlags
{
 wxZIP_ENCRYPTED = 0x0001,
 wxZIP_DEFLATE_NORMAL = 0x0000, // normal c ompression
 wxZIP_DEFLATE_EXTRA = 0x0002, // extra co mpression
 wxZIP_DEFLATE_FAST = 0x0004, // fast com pression
 wxZIP_DEFLATE_SUPERFAST = 0x0006, // superfas t compression
 wxZIP_DEFLATE_MASK = 0x0006,
 wxZIP_SUMS_FOLLOW = 0x0008, // crc and sizes come
after the data
 wxZIP_ENHANCED = 0x0010,
 wxZIP_PATCH = 0x0020,
 wxZIP_STRONG_ENC = 0x0040,

CHAPTER 7

1502

 wxZIP_UNUSED = 0x0F80,
 wxZIP_RESERVED = 0xF000
};

See also

Archive formats such as zip (p. 1802)
wxZipInputStream (p. 1503)
wxZipOutputStream (p. 1505)
wxZipNotifier (p. 1504)

Field availability

When reading a zip from a stream that is seekable, GetNextEntry() (p. 1504) returns a
fully populated wxZipEntry object except for wxZipEntry::GetLocalExtra() (p. 1501).
GetLocalExtra() becomes available when the entry is opened, either by calling
wxZipInputStream::OpenEntry (p. 1504) or by making an attempt to read the entry's
data.

For zips on non-seekable (p. 1807) streams, the following fields are always available
when GetNextEntry() returns:

GetDateTime (p. 43)
GetInternalFormat (p. 43)
GetInternalName (p. 1501)
GetFlags (p. 1500)
GetLocalExtra (p. 1501)
GetMethod (p. 1501)
GetName (p. 44)
GetOffset (p. 44)
IsDir (p. 44)

The following fields are also usually available when GetNextEntry() returns, however, if
the zip was also written to a non-seekable stream the zipper is permitted to store them
after the entry's data. In that case they become available when the entry's data has been
read to Eof(), or CloseEntry() (p. 45) has been called.(GetFlags() &
wxZIP_SUMS_FOLLOW) != 0 indicates that one or more of these come after the data:

GetCompressedSize (p. 1500)
GetCrc (p. 1500)
GetSize (p. 44)

The following are stored at the end of the zip, and become available when the end of the
zip has been reached, i.e. after GetNextEntry() returns NULL and Eof() is true:

GetComment (p. 1499)
GetExternalAttributes (p. 1500)
GetExtra (p. 1500)
GetMode (p. 1501)
GetSystemMadeBy (p. 1502)
IsReadOnly (p. 44)
IsMadeByUnix (p. 1502)

CHAPTER 7

1503

IsText (p. 1502)

wxZipEntry::wxZipEntry

 wxZipEntry (const wxString& name = wxEmptyString, const wxDateTime& dt =
wxDateTime::Now(), off_t size = wxInvalidOffset)

Constructor.

 wxZipEntry (const wxZipEntry& entry)

Copy constructor.

wxZipEntry::Clone

wxZipEntry* Clone () const

Make a copy of this entry.

wxZipEntry::Get/SetComment

wxString GetComment () const

void SetComment (const wxString& comment)

A short comment for this entry.

wxZipEntry::GetCompressedSize

off_t GetCompressedSize () const

The compressed size of this entry in bytes.

wxZipEntry::GetCrc

wxUint32 GetCrc () const

CRC32 for this entry's data.

wxZipEntry::Get/SetExternalAttributes

wxUint32 GetExternalAttributes () const

void SetExternalAttributes (wxUint32 attr)

The low 8 bits are always the DOS/Windows file attributes for this entry. The values of
these attributes are given in the enumeration wxZipAttributes .

The remaining bits can store platform specific permission bits or attributes, and their

CHAPTER 7

1504

meaning depends on the value of SetSystemMadeBy() (p. 1502). If IsMadeByUnix() (p.
1502) is true then the high 16 bits are unix mode bits.

The following other accessors access these bits:

IsReadOnly/SetIsReadOnly (p. 44)
IsDir/SetIsDir (p. 44)
Get/SetMode (p. 1501)

wxZipEntry::Get/SetExtra

const char* GetExtra () const

size_t GetExtraLen () const

void SetExtra (const char* extra, size_t len)

The extra field from the entry's central directory record.

The extra field is used to store platform or application specific data. See Pkware's
document 'appnote.txt' for information on its format.

wxZipEntry::GetFlags

int GetFlags () const

Returns a combination of the bits flags in the enumeration wxZipFlags .

wxZipEntry::GetInternalName

wxString GetInternalName () const

Returns the entry's filename in the internal format used within the archive. The name can
include directory components, i.e. it can be a full path.

The names of directory entries are returned without any trailing path separator. This
gives a canonical name that can be used in comparisons.

wxString GetInternalName (const wxString& name, wxPathFormat format =
wxPATH_NATIVE, bool* pIsDir = NULL)

A static member that translates a filename into the internal format used within the
archive. If the third parameter is provided, the bool pointed to is set to indicate whether
the name looks like a directory name (i.e. has a trailing path separator).

See also

Looking up an archive entry by name (p. 1804)

wxZipEntry::Get/SetLocalExtra

const char* GetLocalExtra () const

CHAPTER 7

1505

size_t GetLocalExtraLen () const

void SetLocalExtra (const char* extra, size_t len)

The extra field from the entry's local record.

The extra field is used to store platform or application specific data. See Pkware's
document 'appnote.txt' for information on its format.

wxZipEntry::Get/SetMethod

int GetMethod () const

void SetMethod (int method)

The compression method. The enumeration wxZipMethod lists the possible values.

The default constructor sets this to wxZIP_METHOD_DEFAULT, which allows
wxZipOutputStream (p. 1505) to choose the method when writing the entry.

wxZipEntry::Get/SetMode

int GetMode () const

If IsMadeByUnix() (p. 1502) is true then returns the unix permission bits stored in
GetExternalAttributes() (p. 1500). Otherwise synthesises them from the DOS attributes.

void SetMode (int mode)

Sets the DOS attributes in GetExternalAttributes() (p. 1500)to be consistent with the
mode given.

If IsMadeByUnix() (p. 1502) is true then also stores mode in GetExternalAttributes().

Note that the default constructor sets GetSystemMadeBy() (p. 1502) to
wxZIP_SYSTEM_MSDOS by default. So to be able to store unix permissions when
creating zips, call SetSystemMadeBy(wxZIP_SYSTEM_UNIX).

wxZipEntry::SetNotifier

void SetNotifier (wxZipNotifier& notifier)

void UnsetNotifier ()

Sets the notifier (p. 1504) for this entry. Whenever the wxZipInputStream (p. 1503)
updates this entry, it will then invoke the associated notifier's OnEntryUpdated (p.
1505)method.

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an zip in a pipeline (i.e. between non-seekable streams).

See also

CHAPTER 7

1506

Archives on non-seekable streams (p. 1807)
wxZipNotifier (p. 1504)

wxZipEntry::Get/SetSystemMadeBy

int GetSystemMadeBy () const

void SetSystemMadeBy (int system)

The originating file-system. The default constructor sets this to
wxZIP_SYSTEM_MSDOS. Set it to wxZIP_SYSTEM_UNIX in order to be able to store
unix permissions using SetMode() (p. 1501).

wxZipEntry::IsMadeByUnix

bool IsMadeByUnix () const

Returns true if GetSystemMadeBy() (p. 1502)is a flavour of unix.

wxZipEntry::IsText/SetIsText

bool IsText () const

void SetIsText (bool isText = true)

Indicates that this entry's data is text in an 8-bit encoding.

wxZipEntry::operator=

wxZipEntry& operator operator= (const wxZipEntry& entry)

Assignment operator.

wxZipInputStream

Input stream for reading zip files.

GetNextEntry() (p. 1504) returns an wxZipEntry (p. 1496) object containing the meta-
data for the next entry in the zip (and gives away ownership). Reading from the
wxZipInputStream then returns the entry's data. Eof() becomes true after an attempt has
been made to read past the end of the entry's data. When there are no more entries,
GetNextEntry() returns NULL and sets Eof().

Note that in general zip entries are not seekable, and wxZipInputStream::SeekI() always
returns wxInvalidOffset.

Derived from

wxArchiveInputStream (p. 45)

Include files

CHAPTER 7

1507

<wx/zipstrm.h>

Data structures typedef wxZipEntry entry_type

See also

Archive formats such as zip (p. 1802)
wxZipEntry (p. 1496)
wxZipOutputStream (p. 1505)

wxZipInputStream::wxZipInputStream

 wxZipInputStream (wxInputStream& stream, wxMBConv& conv = wxConvLocal)

Constructor. In a Unicode build the second parameter conv is used to translate the
filename and comment fields into Unicode. It has no effect on the stream's data.

 wxZipInputStream (const wxString& archive, const wxString& file)

Compatibility constructor.

When this constructor is used, an emulation of seeking is switched on for compatibility
with previous versions. Note however, that it is deprecated.

wxZipInputStream::CloseEntry

bool CloseEntry ()

Closes the current entry. On a non-seekable stream reads to the end of the current entry
first.

wxZipInputStream::GetComment

wxString GetComment ()

Returns the zip comment.

This is stored at the end of the zip, therefore when reading a zip from a non-seekable
stream, it returns the empty string until the end of the zip has been reached, i.e. when
GetNextEntry() returns NULL.

wxZipInputStream::GetNextEntry

wxZipEntry* GetNextEntry ()

Closes the current entry if one is open, then reads the meta-data for the next entry and
returns it in a wxZipEntry (p. 1496)object, giving away ownership. The stream is then
open and can be read.

wxZipInputStream::GetTotalEntries

CHAPTER 7

1508

int GetTotalEntries ()

For a zip on a seekable stream returns the total number of entries in the zip. For zips on
non-seekable streams returns the number of entries returned so far by GetNextEntry()
(p. 1504).

wxZipInputStream::OpenEntry

bool OpenEntry (wxZipEntry& entry)

Closes the current entry if one is open, then opens the entry specified by the entry
object.

entry should be from the same zip file, and the zip should be on a seekable stream.

See also

Looking up an archive entry by name (p. 1804)

wxZipNotifier

If you need to know when a wxZipInputStream (p. 1503)updates a wxZipEntry (p. 1496),
you can create a notifier by deriving from this abstract base class, overriding
OnEntryUpdated() (p. 1505). An instance of your notifier class can then be assigned to
wxZipEntry objects, using wxZipEntry::SetNotifier() (p. 1502).

Setting a notifier is not usually necessary. It is used to handle certain cases when
modifying an zip in a pipeline (i.e. between non-seekable streams). See 'Archives on
non-seekable streams (p. 1807)'.

Derived from

No base class

Include files

<wx/zipstrm.h>

See also

Archives on non-seekable streams (p. 1807)
wxZipEntry (p. 1496)
wxZipInputStream (p. 1503)
wxZipOutputStream (p. 1505)

wxZipNotifier::OnEntryUpdated

void OnEntryUpdated (wxZipEntry& entry)

Override this to receive notifications when an wxZipEntry (p. 1496) object changes.

CHAPTER 7

1509

wxZipOutputStream

Output stream for writing zip files.

PutNextEntry() (p. 1507) is used to create a new entry in the output zip, then the entry's
data is written to the wxZipOutputStream. Another call to PutNextEntry() closes the
current entry and begins the next.

Derived from

wxArchiveOutputStream (p. 49)

Include files

<wx/zipstrm.h>

See also

Archive formats such as zip (p. 1802)
wxZipEntry (p. 1496)
wxZipInputStream (p. 1503)

wxZipOutputStream::wxZipOutputStream

 wxZipOutputStream (wxOutputStream& stream, int level = -1, wxMBConv& conv =
wxConvLocal)

Constructor. level is the compression level to use. It can be a value between 0 and 9
or -1 to use the default value which currently is equivalent to 6.

In a Unicode build the third parameter conv is used to translate the filename and
comment fields to Unicode. It has no effect on the stream's data.

wxZipOutputStream::~wxZipOutputStream

 ~wxZipOutputStream ()

The destructor calls Close() (p. 1506) to finish writing the zip if it has not been called
already.

wxZipOutputStream::Close

bool Close ()

Finishes writing the zip, returning true if successfully. Called by the destructor if not
called explicitly.

wxZipOutputStream::CloseEntry

bool CloseEntry ()

CHAPTER 7

1510

Close the current entry. It is called implicitly whenever another new entry is created with
CopyEntry() (p. 1506)or PutNextEntry() (p. 1507), or when the zip is closed.

wxZipOutputStream::CopyArchiveMetaData

bool CopyArchiveMetaData (wxZipInputStream& inputStream)

Transfers the zip comment from the wxZipInputStream (p. 1503)to this output stream.

wxZipOutputStream::CopyEntry

bool CopyEntry (wxZipEntry* entry, wxZipInputStream& inputStream)

Takes ownership of entry and uses it to create a new entry in the zip. entry is then
opened in inputStream and its contents copied to this stream.

CopyEntry() is much more efficient than transferring the data using Read() and Write()
since it will copy them without decompressing and recompressing them.

For zips on seekable streams, entry must be from the same zip file as stream . For
non-seekable streams, entry must also be the last thing read from inputStream .

wxZipOutputStream::Get/SetLevel

int GetLevel () const

void SetLevel (int level)

Set the compression level that will be used the next time an entry is created. It can be a
value between 0 and 9 or -1 to use the default value which currently is equivalent to 6.

wxZipOutputStream::PutNextDirEntry

bool PutNextDirEntry (const wxString& name, const wxDateTime& dt =
wxDateTime::Now())

Create a new directory entry (see wxArchiveEntry::IsDir() (p. 44)) with the given name
and timestamp.

PutNextEntry() (p. 1507) can also be used to create directory entries, by supplying a
name with a trailing path separator.

wxZipOutputStream::PutNextEntry

bool PutNextEntry (wxZipEntry* entry)

Takes ownership of entry and uses it to create a new entry in the zip.

bool PutNextEntry (const wxString& name, const wxDateTime& dt =
wxDateTime::Now(), off_t size = wxInvalidOffset)

Create a new entry with the given name, timestamp and size.

CHAPTER 7

1511

wxZipOutputStream::SetComment

void SetComment (const wxString& comment)

Sets a comment for the zip as a whole. It is written at the end of the zip.

wxZlibInputStream

This filter stream decompresses a stream that is in zlib or gzip format. Note that reading
the gzip format requires zlib version 1.2.1 or greater, (the builtin version does support
gzip format).

The stream is not seekable, SeekI() (p. 779) returns wxInvalidOffset. Also GetSize() (p.
1219) is not supported, it always returns 0.

Derived from

wxFilterInputStream (p. 526)

Include files

<wx/zstream.h>

See also

wxInputStream (p. 777), wxZlibOutputStream (p. 1508).

wxZlibInputStream::wxZlibInputStream

 wxZlibInputStream (wxInputStream& stream, int flags = wxZLIB_AUTO)

The flags wxZLIB_ZLIB and wxZLIB_GZIP specify whether the input data is in zlib or
gzip format. If wxZLIB_AUTO is used, then zlib will autodetect the stream type, this is
the default.

If flags is wxZLIB_NO_HEADER, then the data is assumed to be a raw deflate stream
without either zlib or gzip headers. This is a lower level mode, which is not usually used
directly. It can be used to read a raw deflate stream embedded in a higher level protocol.

This version is not by default compatible with the output produced by the version of
wxZlibOutputStream in wxWidgets 2.4.x. However, there is a compatibility mode, which
is switched on by passing wxZLIB_24COMPATIBLE for flags. Note that in when
operating in compatibility mode error checking is very much reduced. The following
symbols can be use for the flags:

// Flags
enum {
#if WXWIN_COMPATIBILITY_2_4
 wxZLIB_24COMPATIBLE = 4, // read v2.4.x data wi thout error
#endif
 wxZLIB_NO_HEADER = 0, // raw deflate stream, no header or
checksum

CHAPTER 7

1512

 wxZLIB_ZLIB = 1, // zlib header and che cksum
 wxZLIB_GZIP = 2, // gzip header and che cksum, requires
zlib 1.2.1+
 wxZLIB_AUTO = 3 // autodetect header z lib or gzip
};

wxZlibInputStream::CanHandleGZip

static bool CanHandleGZip ()

Returns true if zlib library in use can handle gzip compressed data.

wxZlibOutputStream

This stream compresses all data written to it. The compressed output can be in zlib or
gzip format. Note that writing the gzip format requires zlib version 1.2.1 or greater (the
builtin version does support gzip format).

The stream is not seekable, SeekO() (p. 972) returns wxInvalidOffset.

Derived from

wxFilterOutputStream (p. 527)

Include files

<wx/zstream.h>

See also

wxOutputStream (p. 971), wxZlibInputStream (p. 1507)

wxZlibOutputStream::wxZlibOutputStream

 wxZlibOutputStream (wxOutputStream& stream, int level = -1, int flags =
wxZLIB_ZLIB)

Creates a new write-only compressed stream. level means level of compression. It is
number between 0 and 9 (including these values) where 0 means no compression and 9
best but slowest compression. -1 is default value (currently equivalent to 6).

The flags wxZLIB_ZLIB and wxZLIB_GZIP specify whether the output data will be in zlib
or gzip format. wxZLIB_ZLIB is the default.

If flags is wxZLIB_NO_HEADER, then a raw deflate stream is output without either zlib
or gzip headers. This is a lower level mode, which is not usually used directly. It can be
used to embed a raw deflate stream in a higher level protocol.

The following symbols can be use for the compression level and flags:

// Compression level

CHAPTER 7

1513

enum {
 wxZ_DEFAULT_COMPRESSION = -1,
 wxZ_NO_COMPRESSION = 0,
 wxZ_BEST_SPEED = 1,
 wxZ_BEST_COMPRESSION = 9
};

// Flags
enum {
 wxZLIB_NO_HEADER = 0, // raw deflate stream, no header or
checksum
 wxZLIB_ZLIB = 1, // zlib header and chec ksum
 wxZLIB_GZIP = 2 // gzip header and chec ksum, requires
zlib 1.2.1+
};

wxZlibOutputStream::CanHandleGZip

static bool CanHandleGZip ()

Returns true if zlib library in use can handle gzip compressed data.

1514

Functions

The functions and macros defined in wxWidgets are described here: you can either look
up a function using the alphabetical listing of them or find it in the corresponding topic.

Alphabetical functions and macros list

CLASSINFO (p. 1567)
copystring (p. 1535)
DECLARE_ABSTRACT_CLASS (p. 1567)
DECLARE_APP (p. 1567)
DECLARE_CLASS (p. 1568)
DECLARE_DYNAMIC_CLASS (p. 1568)
IMPLEMENT_ABSTRACT_CLASS2 (p. 1569)
IMPLEMENT_ABSTRACT_CLASS (p. 1568)
IMPLEMENT_APP (p. 1569)
IMPLEMENT_CLASS2 (p. 1570)
IMPLEMENT_CLASS (p. 1569)
IMPLEMENT_DYNAMIC_CLASS2 (p. 1570)
IMPLEMENT_DYNAMIC_CLASS (p. 1570)
wxCONCAT (p. 1555)
WXDEBUG_NEW (p. 1571)
WXTRACELEVEL (p. 1578)
WXTRACE (p. 1578)
wxASSERT_MIN_BITSIZE (p. 1582)
wxASSERT_MSG (p. 1583)
wxASSERT (p. 1582)
wxBITMAP (p. 1549)
wxBeginBusyCursor (p. 1540)
wxBell (p. 1540)
wxCHANGE_UMASK (p. 1528)
wxCHECK (p. 1584)
wxCHECK2_MSG (p. 1585)
wxCHECK2 (p. 1584)
wxCHECK_GCC_VERSION (p. 1515)
wxCHECK_MSG (p. 1584)
wxCHECK_RET (p. 1584)
wxCHECK_VERSION (p. 1515)
wxCHECK_VERSION_FULL (p. 1516)
wxCHECK_W32API_VERSION (p. 1516)
wxClientDisplayRect (p. 1549)
wxClipboardOpen (p. 1554)
wxCloseClipboard (p. 1554)
wxColourDisplay (p. 1549)
wxCOMPILE_TIME_ASSERT (p. 1583)
wxCOMPILE_TIME_ASSERT2 (p. 1583)

CHAPTER 8

1515

wxConcatFiles (p. 1528)
wxConstCast (p. 1570)
wxCopyFile (p. 1529)
wxCreateDynamicObject (p. 1571)
wxCreateFileTipProvider (p. 1540)
wxCRIT_SECT_DECLARE (p. 1523)
wxCRIT_SECT_DECLARE_MEMBER (p. 1523)
wxCRIT_SECT_LOCKER (p. 1524)
wxCRITICAL_SECTION (p. 1524)
 wxDDECleanUp (p. 1558)
wxDDEInitialize (p. 1558)
wxDROP_ICON (p. 1550)
wxDebugMsg (p. 1573)
wxDirSelector (p. 1540)
wxDisplayDepth (p. 1549)
wxDisplaySize (p. 1550)
wxDisplaySizeMM (p. 1550)
wxDos2UnixFilename (p. 1526)
wxDynamicCastThis (p. 1572)
wxDynamicCast (p. 1571)
wxDYNLIB_FUNCTION (p. 1556)
wxEmptyClipboard (p. 1554)
wxEnableTopLevelWindows (p. 1559)
wxEndBusyCursor (p. 1542)
wxENTER_CRIT_SECT (p. 1524)
wxEntry (p. 1516)
wxEnumClipboardFormats (p. 1554)
wxError (p. 1574)
wxExecute (p. 1519)
wxExit (p. 1521)
wxEXPLICIT (p. 1556)
wxFAIL_MSG (p. 1584)
wxFAIL (p. 1583)
wxFatalError (p. 1574)
wxFileExists (p. 1526)
wxFileModificationTime (p. 1526)
wxFileNameFromPath (p. 1526)
wxFileSelector (p. 1541)
wxFindFirstFile (p. 1526)
wxFindMenuItemId (p. 1559)
wxFindNextFile (p. 1527)
wxFindWindowAtPointer (p. 1560)
wxFindWindowAtPoint (p. 1560)
wxFindWindowByLabel (p. 1559)
wxFindWindowByName (p. 1560)
wxFinite (p. 1548)
wxGetActiveWindow (p. 1560)
wxGetApp (p. 1517)
wxGetBatteryState (p. 1560)
wxGetClipboardData (p. 1554)
wxGetClipboardFormatName (p. 1555)

CHAPTER 8

1516

wxGetColourFromUser (p. 1542)
wxGetCwd (p. 1529)
wxGetDiskSpace (p. 1527)
wxGetDisplayName (p. 1561)
wxGetDisplaySize (p. 1550)
wxGetDisplaySizeMM (p. 1550)
wxGetElapsedTime (p. 1579)
wxGetEmailAddress (p. 1531)
wxGetEnv (p. 1585)
wxGetFileKind (p. 1527)
wxGetFontFromUser (p. 1542)
wxGetFreeMemory (p. 1532)
wxGetFullHostName (p. 1532)
wxGetHomeDir (p. 1532)
wxGetHostName (p. 1532)
wxGetKeyState (p. 1556)
wxGetLocalTimeMillis (p. 1580)
wxGetLocalTime (p. 1579)
wxGetMousePosition (p. 1561)
wxGetMultipleChoices (p. 1543)
wxGetMultipleChoice (p. 1544)
wxGetNumberFromUser (p. 1543)
wxGetOSDirectory (p. 1528)
wxGetOsDescription (p. 1533)
wxGetOsVersion (p. 1533)
wxGetPasswordFromUser (p. 1544)
wxGetPowerType (p. 1561)
wxGetPrinterCommand (p. 1551)
wxGetPrinterFile (p. 1551)
wxGetPrinterMode (p. 1551)
wxGetPrinterOptions (p. 1552)
wxGetPrinterOrientation (p. 1552)
wxGetPrinterPreviewCommand (p. 1552)
wxGetPrinterScaling (p. 1552)
wxGetPrinterTranslation (p. 1552)
wxGetProcessId (p. 1522)
wxGetResource (p. 1561)
wxGetSingleChoiceData (p. 1546)
wxGetSingleChoiceIndex (p. 1546)
wxGetSingleChoice (p. 1545)
wxGetTempFileName (p. 1529)
wxGetTextFromUser (p. 1544)
wxGetTopLevelParent (p. 1562)
wxGetTranslation (p. 1536)
wxGetUTCTime (p. 1580)
wxGetUserHome (p. 1534)
wxGetUserId (p. 1535)
wxGetUserName (p. 1535)
wxGetWorkingDirectory (p. 1529)
wxGetenv (p. 1585)
wxHandleFatalExceptions (p. 1517)

CHAPTER 8

1517

wxICON (p. 1550)
wxINTXX_SWAP_ALWAYS (p. 1566)
wxINTXX_SWAP_ON_BE (p. 1566)
wxINTXX_SWAP_ON_LE (p. 1566)
wxInitAllImageHandlers (p. 1517)
wxInitialize (p. 1518)
wxIsAbsolutePath (p. 1528)
wxIsBusy (p. 1547)
wxIsClipboardFormatAvailable (p. 1555)
wxIsDebuggerRunning (p. 1585)
wxIsEmpty (p. 1536)
wxIsMainThread (p. 1524)
wxIsNaN (p. 1549)
wxIsWild (p. 1529)
wxKill (p. 1521)
wxLaunchDefaultBrowser (p. 1563)
wxLEAVE_CRIT_SECT (p. 1524)
wxLoadUserResource (p. 1563)
wxLogDebug (p. 1576)
wxLogError (p. 1574)
wxLogFatalError (p. 1574)
wxLogMessage (p. 1575)
wxLogStatus (p. 1575)
wxLogSysError (p. 1575)
wxLogTrace (p. 1576)
wxLogVerbose (p. 1575)
wxLogWarning (p. 1574)
wxLL (p. 1557)
wxLongLongFmtSpec (p. 1557)
wxMakeMetafilePlaceable (p. 1550)
wxMatchWild (p. 1529)
wxMessageBox (p. 1547)
wxMilliSleep (p. 1580)
wxMicroSleep (p. 1580)
wxMkdir (p. 1530)
wxMutexGuiEnter (p. 1525)
wxMutexGuiLeave (p. 1525)
wxNewId (p. 1557)
wxNow (p. 1581)
wxOnAssert (p. 1582)
wxON_BLOCK_EXIT (p. 1557)
wxON_BLOCK_EXIT_OBJ (p. 1558)
wxOpenClipboard (p. 1555)
wxParseCommonDialogsFilter (p. 1530)
wxDirExists (p. 1528)
wxPathOnly (p. 1528)
wxPostDelete (p. 1563)
wxPostEvent (p. 1563)
wxRegisterClipboardFormat (p. 1555)
wxRegisterId (p. 1558)
wxRemoveFile (p. 1530)

CHAPTER 8

1518

wxRenameFile (p. 1530)
wxRmdir (p. 1530)
wxSafeShowMessage (p. 1577)
wxSafeYield (p. 1518)
wxSetClipboardData (p. 1555)
wxSetCursor (p. 1551)
wxSetDisplayName (p. 1564)
wxSetEnv (p. 1586)
wxSetPrinterCommand (p. 1552)
wxSetPrinterFile (p. 1552)
wxSetPrinterMode (p. 1553)
wxSetPrinterOptions (p. 1553)
wxSetPrinterOrientation (p. 1553)
wxSetPrinterPreviewCommand (p. 1553)
wxSetPrinterScaling (p. 1553)
wxSetPrinterTranslation (p. 1553)
wxSetWorkingDirectory (p. 1530)
wxShell (p. 1522)
wxShowTip (p. 1548)
wxShutdown (p. 1523)
wxSleep (p. 1581)
wxSnprintf (p. 1537)
wxSplitPath (p. 1530)
wxStartTimer (p. 1581)
wxStaticCast (p. 1572)
wxStrcmp (p. 1536)
wxStricmp (p. 1537)
wxStringEq (p. 1537)
wxStringMatch (p. 1537)
wxStripMenuCodes (p. 1564)
wxStrlen (p. 1537)
wxSysErrorCode (p. 1577)
wxSysErrorMsg (p. 1578)
wxT (p. 1538)
wxTraceLevel (p. 1579)
wxTrace (p. 1578)
wxTransferFileToStream (p. 1531)
wxTransferStreamToFile (p. 1531)
wxTrap (p. 1585)
wxULL (p. 1564)
wxUninitialize (p. 1518)
wxUnix2DosFilename (p. 1528)
wxUnsetEnv (p. 1586)
wxUsleep (p. 1581)
wxVaCopy (p. 1565)
wxVsnprintf (p. 1539)
wxWakeUpIdle (p. 1519)
wxWriteResource (p. 1565)
wxYield (p. 1518)
wx_const_cast (p. 1572)
wx_reinterpret_cast (p. 1572)

CHAPTER 8

1519

wx_static_cast (p. 1573)
_ (p. 1539)
wxPLURAL (p. 1539)
_T (p. 1539)

Version macros

The following constants are defined in wxWidgets:

 • wxMAJOR_VERSION is the major version of wxWidgets

 • wxMINOR_VERSION is the minor version of wxWidgets

 • wxRELEASE_NUMBER is the release number

 • wxSUBRELEASE_NUMBER is the subrelease number which is 0 for all official
releases

For example, the values or these constants for wxWidgets 2.1.15 are 2, 1 and 15.

Additionally, wxVERSION_STRING is a user-readable string containing the full
wxWidgets version and wxVERSION_NUMBER is a combination of the three version
numbers above: for 2.1.15, it is 2115 and it is 2200 for wxWidgets 2.2.

The subrelease number is only used for the sources in between official releases and so
normally is not useful.

Include files

<wx/version.h> or <wx/defs.h>

wxCHECK_GCC_VERSION

bool wxCHECK_GCC_VERSION (major, minor, release)

Returns 1 if the compiler being used to compile the code is GNU C++ compiler (g++)
version major.minor.release or greater. Otherwise, and also if the compiler is not GNU
C++ at all, returns 0.

wxCHECK_VERSION

bool wxCHECK_VERSION (major, minor, release)

This is a macro which evaluates to true if the current wxWidgets version is at least
major.minor.release.

For example, to test if the program is compiled with wxWidgets 2.2 or higher, the
following can be done:

 wxString s;
#if wxCHECK_VERSION(2, 2, 0)
 if (s.StartsWith("foo"))

CHAPTER 8

1520

#else // replacement code for old version
 if (strncmp(s, "foo", 3) == 0)
#endif
 {
 ...
 }

wxCHECK_VERSION_FULL

bool wxCHECK_VERSION_FULL (major, minor, release, subrel)

Same as wxCHECK_VERSION (p. 1515) but also checks thatwxSUBRELEASE_NUMBER
is at least subrel.

wxCHECK_W32API_VERSION

bool wxCHECK_GCC_VERSION (major, minor, release)

Returns 1 if the version of w32api headers used is major.minor.release or greater.
Otherwise, and also if we are not compiling with mingw32/cygwin under Win32 at all,
returns 0.

Application initialization and termination

The functions in this section are used on application startup/shutdown and also to
control the behaviour of the main event loop of the GUI programs.

::wxEntry

This initializes wxWidgets in a platform-dependent way. Use this if you are not using the
default wxWidgets entry code (e.g. main or WinMain). For example, you can initialize
wxWidgets from an Microsoft Foundation Classes application using this function.

void wxEntry (HANDLE hInstance, HANDLE hPrevInstance, const wxString&
commandLine, int cmdShow, bool enterLoop = true)

wxWidgets initialization under Windows (non-DLL). If enterLoop is false, the function will
return immediately after calling wxApp::OnInit. Otherwise, the wxWidgets message loop
will be entered.

void wxEntry (HANDLE hInstance, HANDLE hPrevInstance, WORD wDataSegment,
WORD wHeapSize, const wxString& commandLine)

wxWidgets initialization under Windows (for applications constructed as a DLL).

int wxEntry (int argc, const wxString& * argv)

wxWidgets initialization under Unix.

Remarks

To clean up wxWidgets, call wxApp::OnExit followed by the static function

CHAPTER 8

1521

wxApp::CleanUp. For example, if exiting from an MFC application that also uses
wxWidgets:

int CTheApp::ExitInstance()
{
 // OnExit isn't called by CleanUp so must be call ed explicitly.
 wxTheApp->OnExit();
 wxApp::CleanUp();

 return CWinApp::ExitInstance();
}

Include files

<wx/app.h>

::wxGetApp

wxAppDerivedClass& wxGetApp ()

This function doesn't exist in wxWidgets but it is created by using the IMPLEMENT_APP
(p. 1569) macro. Thus, before using it anywhere but in the same module where this
macro is used, you must make it available using DECLARE_APP (p. 1567).

The advantage of using this function compared to directly using the global wxTheApp
pointer is that the latter is of type wxApp * and so wouldn't allow you to access the
functions specific to your application class but not present in wxApp while wxGetApp()
returns the object of the right type.

::wxHandleFatalExceptions

bool wxHandleFatalExceptions (bool doIt = true)

If doIt is true, the fatal exceptions (also known as general protection faults under
Windows or segmentation violations in the Unix world) will be caught and passed to
wxApp::OnFatalException (p. 36). By default, i.e. before this function is called, they will
be handled in the normal way which usually just means that the application will be
terminated. Calling wxHandleFatalExceptions() with doIt equal to false will restore this
default behaviour.

::wxInitAllImageHandlers

void wxInitAllImageHandlers ()

Initializes all available image handlers. For a list of available handlers, see wxImage (p.
742).

See also

wxImage (p. 742), wxImageHandler (p. 766)

Include files

<wx/image.h>

CHAPTER 8

1522

::wxInitialize

bool wxInitialize ()

This function is used in wxBase only and only if you don't createwxApp (p. 30) object at
all. In this case you must call it from yourmain() function before calling any other
wxWidgets functions.

If the function returns false the initialization could not be performed, in this case the
library cannot be used andwxUninitialize (p. 1518) shouldn't be called neither.

This function may be called several times butwxUninitialize (p. 1518) must be called for
each successful call to this function.

Include files

<wx/app.h>

::wxSafeYield

bool wxSafeYield (wxWindow* win = NULL, bool onlyIfNeeded = false)

This function is similar to wxYield, except that it disables the user input to all program
windows before calling wxYield and re-enables it again afterwards. If win is not NULL,
this window will remain enabled, allowing the implementation of some limited user
interaction.

Returns the result of the call to ::wxYield (p. 1518).

Include files

<wx/utils.h>

::wxUninitialize

void wxUninitialize ()

This function is for use in console (wxBase) programs only. It must be called once for
each previous successful call to wxInitialize (p. 1518).

Include files

<wx/app.h>

::wxYield

bool wxYield ()

Calls wxApp::Yield (p. 41).

This function is kept only for backwards compatibility. Please use the wxApp::Yield (p.
41) method instead in any new code.

CHAPTER 8

1523

Include files

<wx/app.h> or <wx/utils.h>

::wxWakeUpIdle

void wxWakeUpIdle ()

This functions wakes up the (internal and platform dependent) idle system, i.e. it will
force the system to send an idle event even if the system currently is idle and thus would
not send any idle event until after some other event would get sent. This is also useful
for sending events between two threads and is used by the corresponding functions
::wxPostEvent (p. 1563) andwxEvtHandler::AddPendingEvent (p. 468).

Include files

<wx/event.h>

Process control functions

The functions in this section are used to launch or terminate the other processes.

::wxExecute

long wxExecute (const wxString& command, int sync = wxEXEC_ASYNC,
wxProcess * callback = NULL)

wxPerl note: In wxPerl this function is called Wx::ExecuteCommand

long wxExecute (char ** argv, int flags = wxEXEC_ASYNC, wxProcess * callback =
NULL)

wxPerl note: In wxPerl this function is called Wx::ExecuteArgs

long wxExecute (const wxString& command, wxArrayString& output, int flags = 0)

wxPerl note: In wxPerl this function is called Wx::ExecuteStdout and it only takes
the command argument, and returns a 2-element list (status, output) , where
output is an array reference.

long wxExecute (const wxString& command, wxArrayString& output,
wxArrayString& errors, int flags = 0)

wxPerl note: In wxPerl this function is called Wx::ExecuteStdoutStderr and it only
takes the command argument, and returns a 3-element list (status, output,
errors) , whereoutput and errors are array references.

Executes another program in Unix or Windows.

The first form takes a command string, such as "emacs file.txt" .

The second form takes an array of values: a command, any number of arguments,

CHAPTER 8

1524

terminated by NULL.

The semantics of the third and fourth versions is different from the first two and is
described in more details below.

If flags parameter contains wxEXEC_ASYNC flag (the default), flow of control immediately
returns. If it contains wxEXEC_SYNC, the current application waits until the other program
has terminated.

In the case of synchronous execution, the return value is the exit code of the process
(which terminates by the moment the function returns) and will be-1 if the process
couldn't be started and typically 0 if the process terminated successfully. Also, while
waiting for the process to terminate, wxExecute will call wxYield (p. 1518). Because of
this, by default this function disables all application windows to avoid unexpected
reentrancies which could result from the users interaction with the program while the
child process is running. If you are sure that it is safe to not disable the program
windows, you may pass wxEXEC_NODISABLE flag to prevent this automatic disabling
from happening.

For asynchronous execution, however, the return value is the process id and zero value
indicates that the command could not be executed. As an added complication, the return
value of -1 in this case indicates that we didn't launch a new process, but connected to
the running one (this can only happen in case of using DDE under Windows for
command execution). In particular, in this, and only this, case the calling code will not
get the notification about process termination.

If callback isn't NULL and if execution is asynchronous,wxProcess::OnTerminate (p.
1029) will be called when the process finishes. Specifying this parameter also allows you
to redirect the standard input and/or output of the process being launched by
callingRedirect (p. 1030). If the child process IO is redirected, under Windows the
process window is not shown by default (this avoids having to flush an unnecessary
console for the processes which don't create any windows anyhow) but a
wxEXEC_NOHIDE flag can be used to prevent this from happening, i.e. with this flag the
child process window will be shown normally.

Under Unix the flag wxEXEC_MAKE_GROUP_LEADER may be used to ensure that the
new process is a group leader (this will create a new session if needed). Calling wxKill
(p. 1521) passing wxKILL_CHILDREN will will kill this process as well as all of its
children (except those which have started their own session).

Finally, you may use the third overloaded version of this function to execute a process
(always synchronously, the contents of flags is or'd withwxEXEC_SYNC) and capture its
output in the array output. The fourth version adds the possibility to additionally capture
the messages from standard error output in the errors array.

NB: Currently wxExecute() can only be used from the main thread, calling this function
from another thread will result in an assert failure in debug build and won't work.

See also

wxShell (p. 1522), wxProcess (p. 1025), Exec sample (p. 1636).

Parameters

CHAPTER 8

1525

command

The command to execute and any parameters to pass to it as a single string.

argv

The command to execute should be the first element of this array, any additional
ones are the command parameters and the array must be terminated with a NULL
pointer.

flags

Combination of bit masks wxEXEC_ASYNC, wxEXEC_SYNC and wxEXEC_NOHIDE

callback

An optional pointer to wxProcess (p. 1025)

Include files

<wx/utils.h>

::wxExit

void wxExit ()

Exits application after calling wxApp::OnExit (p. 36). Should only be used in an
emergency: normally the top-level frame should be deleted (after deleting all other
frames) to terminate the application. See wxCloseEvent (p. 147) and wxApp (p. 30).

Include files

<wx/app.h>

::wxKill

int wxKill (long pid, int sig = wxSIGTERM, wxKillError *rc = NULL, int flags = 0)

Equivalent to the Unix kill function: send the given signal sig to the process with PID pid.
The valid signal values are

enum wxSignal
{
 wxSIGNONE = 0, // verify if the process exists under Unix
 wxSIGHUP,
 wxSIGINT,
 wxSIGQUIT,
 wxSIGILL,
 wxSIGTRAP,
 wxSIGABRT,
 wxSIGEMT,
 wxSIGFPE,
 wxSIGKILL, // forcefully kill, dangerous!
 wxSIGBUS,
 wxSIGSEGV,
 wxSIGSYS,

CHAPTER 8

1526

 wxSIGPIPE,
 wxSIGALRM,
 wxSIGTERM // terminate the process gently
};

wxSIGNONE, wxSIGKILL and wxSIGTERM have the same meaning under both Unix and
Windows but all the other signals are equivalent towxSIGTERM under Windows.

Returns 0 on success, -1 on failure. If rc parameter is not NULL, it will be filled with an
element of wxKillError enum:

enum wxKillError
{
 wxKILL_OK, // no error
 wxKILL_BAD_SIGNAL, // no such signal
 wxKILL_ACCESS_DENIED, // permission denied
 wxKILL_NO_PROCESS, // no such process
 wxKILL_ERROR // another, unspecified error
};

The flags parameter can be wxKILL_NOCHILDREN (the default), or
wxKILL_CHILDREN, in which case the child processes of this process will be killed too.
Note that under Unix, for wxKILL_CHILDREN to work you should have created the
process by passing wxEXEC_MAKE_GROUP_LEADER to wxExecute.

See also

wxProcess::Kill (p. 1028), wxProcess::Exists (p. 1029), Exec sample (p. 1636)

Include files

<wx/utils.h>

::wxGetProcessId

unsigned long wxGetProcessId ()

Returns the number uniquely identifying the current process in the system.

If an error occurs, 0 is returned.

Include files

<wx/utils.h>

::wxShell

bool wxShell (const wxString& command = NULL)

Executes a command in an interactive shell window. If no command is specified, then
just the shell is spawned.

See also wxExecute (p. 1519), Exec sample (p. 1636).

Include files

CHAPTER 8

1527

<wx/utils.h>

::wxShutdown

bool wxShutdown (wxShutdownFlags flags)

This function shuts down or reboots the computer depending on the value of theflags.
Please notice that doing this requires the corresponding access rights (superuser under
Unix, SE_SHUTDOWN privelege under Windows NT) and that this function is only
implemented under Unix and Win32.

Parameters

flags

Either wxSHUTDOWN_POWEROFF or wxSHUTDOWN_REBOOT

Returns

true on success, false if an error occurred.

Include files

<wx/utils.h>

Thread functions

The functions and macros here mainly exist to make it writing the code which may be
compiled in multi thread build (wxUSE_THREADS = 1) as well as in single thread
configuration (wxUSE_THREADS = 0).

For example, a static variable must be protected against simultaneous access by
multiple threads in the former configuration but in the latter the extra overhead of using
the critical section is not needed. To solve this problem, the wxCRITICAL_SECTION (p.
1524) macro may be used to create and use the critical section only when needed.

Include files

<wx/thread.h>

See also

wxThread (p. 1315), wxMutex (p. 951), Multithreading overview (p. 1739)

wxCRIT_SECT_DECLARE

 wxCRIT_SECT_DECLARE (cs)

This macro declares a (static) critical section object named cs ifwxUSE_THREADS is 1
and does nothing if it is 0.

wxCRIT_SECT_DECLARE_MEMBER

CHAPTER 8

1528

 wxCRIT_SECT_DECLARE (cs)

This macro declares a critical section object named cs ifwxUSE_THREADS is 1 and does
nothing if it is 0. As it doesn't include the static keyword
(unlikewxCRIT_SECT_DECLARE (p. 1523)), it can be used to declare a class or struct
member which explains its name.

wxCRIT_SECT_LOCKER

 wxCRIT_SECT_LOCKER (name, cs)

This macro creates a critical section lock (p. 214)object named name and associated
with the critical section cs ifwxUSE_THREADS is 1 and does nothing if it is 0.

wxCRITICAL_SECTION

 wxCRITICAL_SECTION (name)

This macro combines wxCRIT_SECT_DECLARE (p. 1523)
andwxCRIT_SECT_LOCKER (p. 1524): it creates a static critical section object and also
the lock object associated with it. Because of this, it can be only used inside a function,
not at global scope. For example:

int IncCount()
{
 static int s_counter = 0;

 wxCRITICAL_SECTION(counter);

 return ++s_counter;
}

(note that we suppose that the function is called the first time from the main thread so
that the critical section object is initialized correctly by the time other threads start calling
it, if this is not the case this approach cannot be used and the critical section must be
made a global instead).

wxENTER_CRIT_SECT

 wxENTER_CRIT_SECT (wxCriticalSection& cs)

This macro is equivalent to cs.Enter() (p. 214) ifwxUSE_THREADS is 1 and does nothing
if it is 0.

::wxIsMainThread

bool wxIsMainThread ()

Returns true if this thread is the main one. Always returns true ifwxUSE_THREADS is
0.

wxLEAVE_CRIT_SECT

CHAPTER 8

1529

 wxLEAVE_CRIT_SECT (wxCriticalSection& cs)

This macro is equivalent to cs.Leave() (p. 214) ifwxUSE_THREADS is 1 and does nothing
if it is 0.

::wxMutexGuiEnter

void wxMutexGuiEnter ()

This function must be called when any thread other than the main GUI thread wants to
get access to the GUI library. This function will block the execution of the calling thread
until the main thread (or any other thread holding the main GUI lock) leaves the GUI
library and no other thread will enter the GUI library until the calling thread calls
::wxMutexGuiLeave() (p. 1525).

Typically, these functions are used like this:

void MyThread::Foo(void)
{
 // before doing any GUI calls we must ensure th at this thread
is the only
 // one doing it!

 wxMutexGuiEnter();

 // Call GUI here:
 my_window->DrawSomething();

 wxMutexGuiLeave();
}

Note that under GTK, no creation of top-level windows is allowed in any thread but the
main one.

This function is only defined on platforms which support preemptive threads.

::wxMutexGuiLeave

void wxMutexGuiLeave ()

See ::wxMutexGuiEnter() (p. 1525).

This function is only defined on platforms which support preemptive threads.

File functions

Include files

<wx/filefn.h>

See also

wxPathList (p. 989)
wxDir (p. 405)

CHAPTER 8

1530

wxFile (p. 482)
wxFileName (p. 500)

::wxDos2UnixFilename

void wxDos2UnixFilename (wxChar * s)

Converts a DOS to a Unix filename by replacing backslashes with forward slashes.

::wxFileExists

bool wxFileExists (const wxString& filename)

Returns true if the file exists and is a plain file.

::wxFileModificationTime

time_t wxFileModificationTime (const wxString& filename)

Returns time of last modification of given file.

The return value is 0 if an error occured (e.g. file not found).

::wxFileNameFromPath

wxString wxFileNameFromPath (const wxString& path)

char * wxFileNameFromPath (char * path)

NB: This function is obsolete, please usewxFileName::SplitPath (p. 514) instead.

Returns the filename for a full path. The second form returns a pointer to temporary
storage that should not be deallocated.

::wxFindFirstFile

wxString wxFindFirstFile (const char * spec, int flags = 0)

This function does directory searching; returns the first file that matches the path spec,
or the empty string. Use wxFindNextFile (p. 1527) to get the next matching file. Neither
will report the current directory "." or the parent directory "..".

Warning

As of wx 2.5.2, these functions are not thread-safe! (they use static variables). You
probably want to use wxDir::GetFirst (p. 407) or wxDirTraverser (p. 410) instead.

spec may contain wildcards.

flags may be wxDIR for restricting the query to directories, wxFILE for files or zero for
either.

CHAPTER 8

1531

For example:

 wxString f = wxFindFirstFile("/home/project/*.*") ;
 while (!f.empty())
 {
 ...
 f = wxFindNextFile();
 }

::wxFindNextFile

wxString wxFindNextFile ()

Returns the next file that matches the path passed to wxFindFirstFile (p. 1526).

See wxFindFirstFile (p. 1526) for an example.

::wxGetDiskSpace

bool wxGetDiskSpace (const wxString& path, wxLongLong *total = NULL,
wxLongLong *free = NULL)

This function returns the total number of bytes and number of free bytes on the disk
containing the directory path (it should exist). Bothtotal and free parameters may be
NULL if the corresponding information is not needed.

Returns

true on success, false if an error occurred (for example, the directory doesn't exist).

Portability

This function is implemented for Win32, Mac OS and generic Unix provided the system
has statfs() function.

This function first appeared in wxWidgets 2.3.2.

::wxGetFileKind

wxFileKind wxGetFileKind (int fd)

wxFileKind wxGetFileKind (FILE *fp)

Returns the type of an open file. Possible return values are:

enum wxFileKind
{
 wxFILE_KIND_UNKNOWN,
 wxFILE_KIND_DISK, // a file supporting seekin g to arbitrary
offsets
 wxFILE_KIND_TERMINAL, // a tty
 wxFILE_KIND_PIPE // a pipe
};

CHAPTER 8

1532

Include files

<wx/filefn.h>

::wxGetOSDirectory

wxString wxGetOSDirectory ()

Returns the Windows directory under Windows; on other platforms returns the empty
string.

::wxIsAbsolutePath

bool wxIsAbsolutePath (const wxString& filename)

Returns true if the argument is an absolute filename, i.e. with a slash or drive name at
the beginning.

::wxDirExists

bool wxDirExists (const wxString& dirname)

Returns true if the path exists.

::wxPathOnly

wxString wxPathOnly (const wxString& path)

Returns the directory part of the filename.

::wxUnix2DosFilename

void wxUnix2DosFilename (const wxString& s)

Converts a Unix to a DOS filename by replacing forward slashes with backslashes.

wxCHANGE_UMASK

 wxCHANGE_UMASK (int mask)

Under Unix this macro changes the current process umask to the given value, unless it
is equal to -1 in which case nothing is done, and restores it to the original value on scope
exit. It works by declaring a variable which sets umask to mask in its constructor and
restores it in its destructor.

Under other platforms this macro expands to nothing.

::wxConcatFiles

bool wxConcatFiles (const wxString& file1, const wxString& file2,const wxString&

CHAPTER 8

1533

file3)

Concatenates file1 and file2 to file3, returning true if successful.

::wxCopyFile

bool wxCopyFile (const wxString& file1, const wxString& file2, bool overwrite = true)

Copies file1 to file2, returning true if successful. Ifoverwrite parameter is true (default),
the destination file is overwritten if it exists, but if overwrite is false, the functions fails in
this case.

::wxGetCwd

wxString wxGetCwd ()

Returns a string containing the current (or working) directory.

::wxGetWorkingDirectory

wxString wxGetWorkingDirectory (char * buf=NULL, int sz=1000)

NB: This function is obsolete: use wxGetCwd (p. 1529) instead.

Copies the current working directory into the buffer if supplied, or copies the working
directory into new storage (which you must delete yourself) if the buffer is NULL.

sz is the size of the buffer if supplied.

::wxGetTempFileName

char * wxGetTempFileName (const wxString& prefix, char * buf=NULL)

bool wxGetTempFileName (const wxString& prefix, wxString& buf)

NB: These functions are obsolete, please use wxFileName::CreateTempFileName (p.
504) instead.

::wxIsWild

bool wxIsWild (const wxString& pattern)

Returns true if the pattern contains wildcards. See wxMatchWild (p. 1529).

::wxMatchWild

bool wxMatchWild (const wxString& pattern, const wxString& text, bool dot_special)

Returns true if the pattern matches the text; if dot_special is true, filenames beginning
with a dot are not matched with wildcard characters. See wxIsWild (p. 1529).

CHAPTER 8

1534

::wxMkdir

bool wxMkdir (const wxString& dir, int perm = 0777)

Makes the directory dir, returning true if successful.

perm is the access mask for the directory for the systems on which it is supported (Unix)
and doesn't have effect for the other ones.

::wxParseCommonDialogsFilter

int wxParseCommonDialogsFilter (const wxString& wildCard, wxArrayString&
descriptions, wxArrayString& filters)

Parses the wildCard, returning the number of filters. Returns 0 if none or if there's a
problem. The arrays will contain an equal number of items found before the error. On
platforms where native dialogs handle only one filter per entry, entries in arrays are
automatically adjusted.wildCard is in the form: "All files (*)|*|Image Files
(*.jpeg *.png)|*.jpg;*.png"

::wxRemoveFile

bool wxRemoveFile (const wxString& file)

Removes file, returning true if successful.

::wxRenameFile

bool wxRenameFile (const wxString& file1, const wxString& file2)

Renames file1 to file2, returning true if successful.

::wxRmdir

bool wxRmdir (const wxString& dir, int flags=0)

Removes the directory dir, returning true if successful. Does not work under VMS.

The flags parameter is reserved for future use.

::wxSetWorkingDirectory

bool wxSetWorkingDirectory (const wxString& dir)

Sets the current working directory, returning true if the operation succeeded. Under MS
Windows, the current drive is also changed if dir contains a drive specification.

::wxSplitPath

void wxSplitPath (const char * fullname, wxString * path, wxString * name, wxString
* ext)

CHAPTER 8

1535

NB: This function is obsolete, please usewxFileName::SplitPath (p. 514) instead.

This function splits a full file name into components: the path (including possible
disk/drive specification under Windows), the base name and the extension. Any of the
output parameters (path, name or ext) may be NULL if you are not interested in the
value of a particular component.

wxSplitPath() will correctly handle filenames with both DOS and Unix path separators
under Windows, however it will not consider backslashes as path separators under Unix
(where backslash is a valid character in a filename).

On entry, fullname should be non-NULL (it may be empty though).

On return, path contains the file path (without the trailing separator), namecontains the
file name and ext contains the file extension without leading dot. All three of them may
be empty if the corresponding component is. The old contents of the strings pointed to
by these parameters will be overwritten in any case (if the pointers are not NULL).

::wxTransferFileToStream

bool wxTransferFileToStream (const wxString& filename, ostream& stream)

Copies the given file to stream. Useful when converting an old application to use
streams (within the document/view framework, for example).

Include files

<wx/docview.h>

::wxTransferStreamToFile

bool wxTransferStreamToFile (istream& stream const wxString& filename)

Copies the given stream to the file filename. Useful when converting an old application
to use streams (within the document/view framework, for example).

Include files

<wx/docview.h>

Network, user and OS functions

The functions in this section are used to retrieve information about the current computer
and/or user characteristics.

::wxGetEmailAddress

wxString wxGetEmailAddress ()

bool wxGetEmailAddress (char * buf, int sz)

CHAPTER 8

1536

Copies the user's email address into the supplied buffer, by concatenating the values
returned by wxGetFullHostName (p. 1532) and wxGetUserId (p. 1535).

Returns true if successful, false otherwise.

Include files

<wx/utils.h>

::wxGetFreeMemory

wxMemorySize wxGetFreeMemory ()

Returns the amount of free memory in bytes under environments which support it, and -1
if not supported or failed to perform measurement.

Include files

<wx/utils.h>

::wxGetFullHostName

wxString wxGetFullHostName ()

Returns the FQDN (fully qualified domain host name) or an empty string on error.

See also

wxGetHostName (p. 1532)

Include files

<wx/utils.h>

::wxGetHomeDir

wxString wxGetHomeDir ()

Return the (current) user's home directory.

See also

wxGetUserHome (p. 1534)

Include files

<wx/utils.h>

::wxGetHostName

wxString wxGetHostName ()

bool wxGetHostName (char * buf, int sz)

CHAPTER 8

1537

Copies the current host machine's name into the supplied buffer. Please note that the
returned name is not fully qualified, i.e. it does not include the domain name.

Under Windows or NT, this function first looks in the environment variable
SYSTEM_NAME; if this is not found, the entry HostName in the wxWidgets section of
the WIN.INI file is tried.

The first variant of this function returns the hostname if successful or an empty string
otherwise. The second (deprecated) function returns true if successful, false otherwise.

See also

wxGetFullHostName (p. 1532)

Include files

<wx/utils.h>

::wxGetOsDescription

wxString wxGetOsDescription ()

Returns the string containing the description of the current platform in a user-readable
form. For example, this function may return strings likeWindows NT Version 4.0 or
Linux 2.2.2 i386 .

See also

::wxGetOsVersion (p. 1533)

Include files

<wx/utils.h>

::wxGetOsVersion

int wxGetOsVersion (int * major = NULL, int * minor = NULL)

Gets operating system version information.

Platform Return types

Mac OS Return value is wxMAC when compiled with
CodeWarrior under Mac OS 8.x/9.x and Mac
OS X, wxMAC_DARWIN when compiled with
the Apple Developer Tools under Mac OS X.

Both major and minor have to be looked at as
hexadecimal numbers. So System 10.2.4
returns 0x10, resp 16 for major and 0x24, resp
36 for minor.

GTK Return value is wxGTK, For GTK 1.0, major is

CHAPTER 8

1538

1, minor is 0.

Motif Return value is wxMOTIF_X, major is X
version, minor is X revision.

OS/2 Return value is wxOS2_PM.

Windows 3.1 Return value is wxWINDOWS, major is 3,
minor is 1.

Windows NT/2000 Return value is wxWINDOWS_NT, version is
returned in major and minor.

Windows 98 Return value is wxWIN95, major is 4, minor is 1
or greater.

Windows 95 Return value is wxWIN95, major is 4, minor is
0.

Win32s (Windows 3.1) Return value is wxWIN32S, major is 3, minor is
1.

Windows PocketPC Return value is wxWINDOWS_POCKETPC,
version is returned in major and minor.

Windows Smartphone Return value is
wxWINDOWS_SMARTPHONE, version is
returned in major and minor.

Windows CE (non-specific) Return value is wxWINDOWS_CE, version is
returned in major and minor.

Watcom C++ 386 supervisor mode (Windows 3.1) Return value is wxWIN386, major is
3, minor is 1.

See also

::wxGetOsDescription (p. 1533)

Include files

<wx/utils.h>

::wxGetUserHome

const wxChar * wxGetUserHome (const wxString& user = "")

Returns the home directory for the given user. If the username is empty (default value),
this function behaves likewxGetHomeDir (p. 1532).

Include files

<wx/utils.h>

CHAPTER 8

1539

::wxGetUserId

wxString wxGetUserId ()

bool wxGetUserId (char * buf, int sz)

This function returns the "user id" also known as "login name" under Unix i.e. something
like "jsmith". It uniquely identifies the current user (on this system).

Under Windows or NT, this function first looks in the environment variables USER and
LOGNAME; if neither of these is found, the entry UserId in the wxWidgets section of
the WIN.INI file is tried.

The first variant of this function returns the login name if successful or an empty string
otherwise. The second (deprecated) function returns true if successful, false otherwise.

See also

wxGetUserName (p. 1535)

Include files

<wx/utils.h>

::wxGetUserName

wxString wxGetUserName ()

bool wxGetUserName (char * buf, int sz)

This function returns the full user name (something like "Mr. John Smith").

Under Windows or NT, this function looks for the entry UserName in the wxWidgets
section of the WIN.INI file. If PenWindows is running, the entry Current in the section
User of the PENWIN.INI file is used.

The first variant of this function returns the user name if successful or an empty string
otherwise. The second (deprecated) function returns true if successful, false
otherwise.

See also

wxGetUserId (p. 1535)

Include files

<wx/utils.h>

String functions

::copystring

CHAPTER 8

1540

char * copystring (const char * s)

Makes a copy of the string s using the C++ new operator, so it can be deleted with the
delete operator.

This function is deprecated, use wxString (p. 1226) class instead.

::wxGetTranslation

const char * wxGetTranslation (const char * str)

const char * wxGetTranslation (const char * str, const char * strPlural, size_t n)

This function returns the translation of string str in the currentlocale (p. 843). If the string
is not found in any of the loaded message catalogs (see internationalization overview (p.
1660)), the original string is returned. In debug build, an error message is logged -- this
should help to find the strings which were not yet translated. As this function is used very
often, an alternative (and also common in Unix world) syntax is provided: the _() (p.
1539) macro is defined to do the same thing as wxGetTranslation.

The second form is used when retrieving translation of string that has different singular
and plural form in English or different plural forms in some other language. It takes two
extra arguments: as above, str parameter must contain the singular form of the string to
be converted and is used as the key for the search in the catalog. The strPlural
parameter is the plural form (in English). The parameter n is used to determine the plural
form. If no message catalog is found str is returned if 'n == 1', otherwise strPlural.

See GNU gettext manual
(http://www.gnu.org/manual/gettext/html_chapter/gett ext_10.html#S
EC150) for additional information on plural forms handling. For a shorter alternative see
the wxPLURAL() (p. 1539) macro.

Both versions call wxLocale::GetString (p. 847).

Note that this function is not suitable for literal strings in Unicode builds, since the literal
strings must be enclosed into _T() (p. 1539) or wxT (p. 1538) macro which makes them
unrecognised by xgettext , and so they are not extracted to the message catalog.
Instead, use the _() (p. 1539) and wxPLURAL (p. 1539) macro for all literal strings.

::wxIsEmpty

bool wxIsEmpty (const char * p)

Returns true if the pointer is either NULL or points to an empty string, false otherwise.

::wxStrcmp

int wxStrcmp (const char * p1, const char * p2)

Returns a negative value, 0, or positive value if p1 is less than, equal to or greater than
p2. The comparison is case-sensitive.

CHAPTER 8

1541

This function complements the standard C function stricmp() which performs case-
insensitive comparison.

::wxStricmp

int wxStricmp (const char * p1, const char * p2)

Returns a negative value, 0, or positive value if p1 is less than, equal to or greater than
p2. The comparison is case-insensitive.

This function complements the standard C function strcmp() which performs case-
sensitive comparison.

::wxStringMatch

bool wxStringMatch (const wxString& s1, const wxString& s2,
 bool subString = true, bool exact = false)

NB: This function is obsolete, use wxString::Find (p. 1237) instead.

Returns true if the substring s1 is found within s2, ignoring case if exact is false. If
subString is false , no substring matching is done.

::wxStringEq

bool wxStringEq (const wxString& s1, const wxString& s2)

NB: This function is obsolete, use wxString (p. 1226) instead.

A macro defined as:

#define wxStringEq(s1, s2) (s1 && s2 && (strcmp(s1, s2) == 0))

::wxStrlen

size_t wxStrlen (const char * p)

This is a safe version of standard function strlen(): it does exactly the same thing (i.e.
returns the length of the string) except that it returns 0 ifp is the NULL pointer.

::wxSnprintf

int wxSnprintf (wxChar * buf, size_t len, const wxChar * format, ...)

This function replaces the dangerous standard function sprintf() and is like
snprintf() available on some platforms. The only difference with sprintf() is that an
additional argument - buffer size - is taken and the buffer is never overflowed.

Returns the number of characters copied to the buffer or -1 if there is not enough space.

See also

CHAPTER 8

1542

wxVsnprintf (p. 1539), wxString::Printf (p. 1242)

wxT

wxChar wxT (char ch)

const wxChar * wxT (const char * s)

wxT() is a macro which can be used with character and string literals (in other words,
'x' or "foo") to automatically convert them to Unicode in Unicode build configuration.
Please see theUnicode overview (p. 1654) for more information.

This macro is simply returns the value passed to it without changes in ASCII build. In fact,
its definition is:#ifdef UNICODE
#define wxT(x) L ## x
#else // !Unicode
#define wxT(x) x
#endif

wxTRANSLATE

const wxChar * wxTRANSLATE (const char * s)

This macro doesn't do anything in the program code -- it simply expands to the value of
its argument (except in Unicode build where it is equivalent towxT (p. 1538) which
makes it unnecessary to use both wxTRANSLATE and wxT with the same string which
would be really unreadable).

However it does have a purpose and it is to mark the literal strings for the extraction into
the message catalog created by xgettext program. Usually this is achieved using _()
(p. 1539) but that macro not only marks the string for extraction but also expands into
awxGetTranslation (p. 1536) function call which means that it cannot be used in some
situations, notably for static array initialization.

Here is an example which should make it more clear: suppose that you have a static
array of strings containing the weekday names and which have to be translated (note
that it is a bad example, really, aswxDateTime (p. 246) already can be used to get the
localized week day names already). If you write

static const wxChar * const weekdays[] = { _("Mon") , ..., _("Sun")
};
...
// use weekdays[n] as usual

the code wouldn't compile because the function calls are forbidden in the array initializer.
So instead you should do

static const wxChar * const weekdays[] = { wxTRANSL ATE("Mon"),
..., wxTRANSLATE("Sun") };
...
// use wxGetTranslation(weekdays[n])

here.

CHAPTER 8

1543

Note that although the code would compile if you simply omit wxTRANSLATE() in the
above, it wouldn't work as expected because there would be no translations for the
weekday names in the program message catalog and wxGetTranslation wouldn't find
them.

::wxVsnprintf

int wxVsnprintf (wxChar * buf, size_t len, const wxChar * format, va_list argPtr)

The same as wxSnprintf (p. 1537) but takes a va_list argument instead of arbitrary
number of parameters.

See also

wxSnprintf (p. 1537), wxString::PrintfV (p. 1242)

_

const wxChar * _(const char * s)

This macro expands into a call to wxGetTranslation (p. 1536)function, so it marks the
message for the extraction by xgettext just aswxTRANSLATE (p. 1538) does, but also
returns the translation of the string for the current locale during execution.

Don't confuse this macro with _T() (p. 1539)!

wxPLURAL

const wxChar * wxPLURAL (const char * sing, const char * plur, size_t n)

This macro is identical to _() (p. 1539) but for the plural variant of wxGetTranslation (p.
1536).

_T

wxChar _T(char ch)

const wxChar * _T(const wxChar ch)

This macro is exactly the same as wxT (p. 1538) and is defined in wxWidgets simply
because it may be more intuitive for Windows programmers as the standard Win32
headers also define it (as well as yet another name for the same macro which is
_TEXT()).

Don't confuse this macro with _() (p. 1539)!

Dialog functions

Below are a number of convenience functions for getting input from the user or
displaying messages. Note that in these functions the last three parameters are optional.

CHAPTER 8

1544

However, it is recommended to pass a parent frame parameter, or (in MS Windows or
Motif) the wrong window frame may be brought to the front when the dialog box is
popped up.

::wxBeginBusyCursor

void wxBeginBusyCursor (wxCursor * cursor = wxHOURGLASS_CURSOR)

Changes the cursor to the given cursor for all windows in the application. Use
wxEndBusyCursor (p. 1542) to revert the cursor back to its previous state. These two
calls can be nested, and a counter ensures that only the outer calls take effect.

See also wxIsBusy (p. 1547), wxBusyCursor (p. 110).

Include files

<wx/utils.h>

::wxBell

void wxBell ()

Ring the system bell.

Include files

<wx/utils.h>

::wxCreateFileTipProvider

wxTipProvider * wxCreateFileTipProvider (const wxString& filename, size_t
currentTip)

This function creates a wxTipProvider (p. 1332) which may be used with wxShowTip (p.
1548).

filename

The name of the file containing the tips, one per line

currentTip

The index of the first tip to show - normally this index is remembered between the
2 program runs.

See also

Tips overview (p. 1737)

Include files

<wx/tipdlg.h>

CHAPTER 8

1545

::wxDirSelector

wxString wxDirSelector (const wxString& message = wxDirSelectorPromptStr,
 const wxString& default_path = "",
 long style = 0, const wxPoint& pos = wxDefaultPosition,
 wxWindow * parent = NULL)

Pops up a directory selector dialog. The arguments have the same meaning as those of
wxDirDialog::wxDirDialog(). The message is displayed at the top, and the default_path, if
specified, is set as the initial selection.

The application must check for an empty return value (if the user pressed Cancel). For
example:

const wxString& dir = wxDirSelector("Choose a folde r");
if (!dir.empty())
{
 ...
}

Include files

<wx/dirdlg.h>

::wxFileSelector

wxString wxFileSelector (const wxString& message, const wxString& default_path =
"",
 const wxString& default_filename = "", const wxString& default_extension = "",
 const wxString& wildcard = "*.*", int flags = 0, wxWindow * parent = NULL,
 int x = -1, int y = -1)

Pops up a file selector box. In Windows, this is the common file selector dialog. In X, this
is a file selector box with the same functionality. The path and filename are distinct
elements of a full file pathname. If path is empty, the current directory will be used. If
filename is empty, no default filename will be supplied. The wildcard determines what
files are displayed in the file selector, and file extension supplies a type extension for the
required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxFILE_MUST_EXIST, wxMULTIPLE or 0.

Both the Unix and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed.

The wildcard may be a specification for multiple types of file with a description for each,
such as:

 "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif"

The application must check for an empty return value (the user pressed Cancel). For
example:

wxString filename = wxFileSelector("Choose a file t o open");
if (!filename.empty())

CHAPTER 8

1546

{
 // work with the file
 ...
}
//else: cancelled by user

Include files

<wx/filedlg.h>

::wxEndBusyCursor

void wxEndBusyCursor ()

Changes the cursor back to the original cursor, for all windows in the application. Use
with wxBeginBusyCursor (p. 1540).

See also wxIsBusy (p. 1547), wxBusyCursor (p. 110).

Include files

<wx/utils.h>

::wxGetColourFromUser

wxColour wxGetColourFromUser (wxWindow * parent, const wxColour& colInit)

Shows the colour selection dialog and returns the colour selected by user or invalid
colour (use wxColour::Ok (p. 159) to test whether a colour is valid) if the dialog was
cancelled.

Parameters

parent

The parent window for the colour selection dialog

colInit

If given, this will be the colour initially selected in the dialog.

Include files

<wx/colordlg.h>

::wxGetFontFromUser

wxFont wxGetFontFromUser (wxWindow * parent, const wxFont& fontInit)

Shows the font selection dialog and returns the font selected by user or invalid font (use
wxFont::Ok (p. 542) to test whether a font is valid) if the dialog was cancelled.

Parameters

CHAPTER 8

1547

parent

The parent window for the font selection dialog

fontInit

If given, this will be the font initially selected in the dialog.

Include files

<wx/fontdlg.h>

::wxGetMultipleChoices

size_t wxGetMultipleChoices (
 wxArrayInt& selections,
 const wxString& message,
 const wxString& caption,
 const wxArrayString& aChoices,
 wxWindow * parent = NULL,
 int x = -1, int y = -1,
 bool centre = true,
 int width=150, int height=200)

size_t wxGetMultipleChoices (
 wxArrayInt& selections,
 const wxString& message,
 const wxString& caption,
 int n, const wxString& choices[],
 wxWindow * parent = NULL,
 int x = -1, int y = -1,
 bool centre = true,
 int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a multiple-selection
listbox. The user may choose an arbitrary (including 0) number of items in the listbox
whose indices will be returned inselection array. The initial contents of this array will be
used to select the items when the dialog is shown.

You may pass the list of strings to choose from either using choiceswhich is an array of
n strings for the listbox or by using a singleaChoices parameter of type wxArrayString (p.
63).

If centre is true, the message text (which may include new line characters) is centred; if
false, the message is left-justified.

Include files

<wx/choicdlg.h>

wxPerl note: In wxPerl there is just an array reference in place of nand choices , and
no selections parameter; the function returns an array containing the user selections.

CHAPTER 8

1548

::wxGetNumberFromUser

long wxGetNumberFromUser (const wxString& message, const wxString& prompt,
const wxString& caption, long value, long min = 0, long max = 100, wxWindow
*parent = NULL, const wxPoint& pos = wxDefaultPosition)

Shows a dialog asking the user for numeric input. The dialogs title is set tocaption, it
contains a (possibly) multiline message above the single line prompt and the zone for
entering the number.

The number entered must be in the range min..max (both of which should be positive)
and value is the initial value of it. If the user enters an invalid value or cancels the dialog,
the function will return -1.

Dialog is centered on its parent unless an explicit position is given inpos.

Include files

<wx/numdlg.h>

::wxGetPasswordFromUser

wxString wxGetPasswordFromUser (const wxString& message, const wxString&
caption = "Input text",
 const wxString& default_value = "", wxWindow * parent = NULL,
 int x = wxDefaultCoord, int y = wxDefaultCoord, bool centre = true)

Similar to wxGetTextFromUser (p. 1544) but the text entered in the dialog is not shown
on screen but replaced with stars. This is intended to be used for entering passwords as
the function name implies.

Include files

<wx/textdlg.h>

::wxGetTextFromUser

wxString wxGetTextFromUser (const wxString& message, const wxString& caption
= "Input text",
 const wxString& default_value = "", wxWindow * parent = NULL,
 int x = wxDefaultCoord, int y = wxDefaultCoord, bool centre = true)

Pop up a dialog box with title set to caption, message, and a default_value. The user
may type in text and press OK to return this text, or press Cancel to return the empty
string.

If centre is true, the message text (which may include new line characters) is centred; if
false, the message is left-justified.

Include files

<wx/textdlg.h>

CHAPTER 8

1549

::wxGetMultipleChoice

int wxGetMultipleChoice (const wxString& message, const wxString& caption, int n,
const wxString& choices[],
 int nsel, int * selection, wxWindow * parent = NULL, int x = -1, int y = -1,
 bool centre = true, int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a multiple-selection
listbox. The user may choose one or more item(s) and press OK or Cancel.

The number of initially selected choices, and array of the selected indices, are passed in;
this array will contain the user selections on exit, with the function returning the number
of selections. selection must be as big as the number of choices, in case all are
selected.

If Cancel is pressed, -1 is returned.

choices is an array of n strings for the listbox.

If centre is true, the message text (which may include new line characters) is centred; if
false, the message is left-justified.

Include files

<wx/choicdlg.h>

::wxGetSingleChoice

wxString wxGetSingleChoice (const wxString& message,
 const wxString& caption,
 const wxArrayString& aChoices,
 wxWindow * parent = NULL,
 int x = -1, int y = -1,
 bool centre = true,
 int width=150, int height=200)

wxString wxGetSingleChoice (const wxString& message,
 const wxString& caption,
 int n, const wxString& choices[],
 wxWindow * parent = NULL,
 int x = -1, int y = -1,
 bool centre = true,
 int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a single-selection
listbox. The user may choose an item and press OK to return a string or Cancel to return
the empty string. UsewxGetSingleChoiceIndex (p. 1546) if empty string is a valid choice
and if you want to be able to detect pressing Cancel reliably.

You may pass the list of strings to choose from either using choiceswhich is an array of
n strings for the listbox or by using a singleaChoices parameter of type wxArrayString (p.
63).

CHAPTER 8

1550

If centre is true, the message text (which may include new line characters) is centred; if
false, the message is left-justified.

Include files

<wx/choicdlg.h>

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

::wxGetSingleChoiceIndex

int wxGetSingleChoiceIndex (const wxString& message,
 const wxString& caption,
 const wxArrayString& aChoices,
 wxWindow * parent = NULL, int x = -1, int y = -1,
 bool centre = true, int width=150, int height=200)

int wxGetSingleChoiceIndex (const wxString& message,
 const wxString& caption,
 int n, const wxString& choices[],
 wxWindow * parent = NULL, int x = -1, int y = -1,
 bool centre = true, int width=150, int height=200)

As wxGetSingleChoice but returns the index representing the selected string. If the
user pressed cancel, -1 is returned.

Include files

<wx/choicdlg.h>

wxPerl note: In wxPerl there is just an array reference in place of nand choices .

::wxGetSingleChoiceData

wxString wxGetSingleChoiceData (const wxString& message,
 const wxString& caption,
 const wxArrayString& aChoices,
 const wxString& client_data[],
 wxWindow * parent = NULL,
 int x = -1, int y = -1,
 bool centre = true, int width=150, int height=200)

wxString wxGetSingleChoiceData (const wxString& message,
 const wxString& caption,
 int n, const wxString& choices[],
 const wxString& client_data[],
 wxWindow * parent = NULL,
 int x = -1, int y = -1,
 bool centre = true, int width=150, int height=200)

As wxGetSingleChoice but takes an array of client data pointers corresponding to the
strings, and returns one of these pointers or NULL if Cancel was pressed. The

CHAPTER 8

1551

client_data array must have the same number of elements as choices or aChoices!

Include files

<wx/choicdlg.h>

wxPerl note: In wxPerl there is just an array reference in place of nand choices , and
the client data array must have the same length as the choices array.

::wxIsBusy

bool wxIsBusy ()

Returns true if between two wxBeginBusyCursor (p. 1540) and wxEndBusyCursor (p.
1542) calls.

See also wxBusyCursor (p. 110).

Include files

<wx/utils.h>

::wxMessageBox

int wxMessageBox (const wxString& message, const wxString& caption =
"Message", int style = wxOK,
 wxWindow * parent = NULL, int x = -1, int y = -1)

General purpose message dialog. style may be a bit list of the following identifiers:

wxYES_NO Puts Yes and No buttons on the message box.
May be combined with wxCANCEL.

wxCANCEL Puts a Cancel button on the message box. May
be combined with wxYES_NO or wxOK.

wxOK Puts an Ok button on the message box. May
be combined with wxCANCEL.

wxICON_EXCLAMATION Displays an exclamation mark symbol.

wxICON_HAND Displays an error symbol.

wxICON_ERROR Displays an error symbol - the same as
wxICON_HAND.

wxICON_QUESTION Displays a question mark symbol.

wxICON_INFORMATION Displays an information symbol.

The return value is one of: wxYES, wxNO, wxCANCEL, wxOK.

For example:

CHAPTER 8

1552

 ...
 int answer = wxMessageBox("Quit program?", "Confi rm",
 wxYES_NO | wxCANCEL, ma in_frame);
 if (answer == wxYES)
 main_frame->Close();
 ...

message may contain newline characters, in which case the message will be split into
separate lines, to cater for large messages.

Include files

<wx/msgdlg.h>

::wxShowTip

bool wxShowTip (wxWindow * parent, wxTipProvider * tipProvider, bool showAtStartup
= true)

This function shows a "startup tip" to the user. The return value is the state of the 'Show
tips at startup' checkbox.

parent

The parent window for the modal dialog

tipProvider

An object which is used to get the text of the tips. It may be created with the
wxCreateFileTipProvider (p. 1540) function.

showAtStartup

Should be true if startup tips are shown, false otherwise. This is used as the initial
value for "Show tips at startup" checkbox which is shown in the tips dialog.

See also

Tips overview (p. 1737)

Include files

<wx/tipdlg.h>

Math functions

Include files

<wx/math.h>

wxFinite

int wxFinite (double x)

CHAPTER 8

1553

Returns a non-zero value if x is neither infinite or NaN (not a number), returns 0
otherwise.

wxIsNaN

bool wxIsNaN (double x)

Returns a non-zero value if x is NaN (not a number), returns 0 otherwise.

GDI functions

The following are relevant to the GDI (Graphics Device Interface).

Include files

<wx/gdicmn.h>

wxBITMAP

 wxBITMAP (bitmapName)

This macro loads a bitmap from either application resources (on the platforms for which
they exist, i.e. Windows and OS2) or from an XPM file. It allows to avoid using #ifdef s
when creating bitmaps.

See also

Bitmaps and icons overview (p. 1711),wxICON (p. 1550)

Include files

<wx/gdicmn.h>

::wxClientDisplayRect

void wxClientDisplayRect (int * x, int * y,int * width, int * height)

wxRect wxGetClientDisplayRect ()

Returns the dimensions of the work area on the display. On Windows this means the
area not covered by the taskbar, etc. Other platforms are currently defaulting to the
whole display until a way is found to provide this info for all window managers, etc.

::wxColourDisplay

bool wxColourDisplay ()

Returns true if the display is colour, false otherwise.

::wxDisplayDepth

CHAPTER 8

1554

int wxDisplayDepth ()

Returns the depth of the display (a value of 1 denotes a monochrome display).

::wxDisplaySize

void wxDisplaySize (int * width, int * height)

wxSize wxGetDisplaySize ()

Returns the display size in pixels.

::wxDisplaySizeMM

void wxDisplaySizeMM (int * width, int * height)

wxSize wxGetDisplaySizeMM ()

Returns the display size in millimeters.

::wxDROP_ICON

wxIconOrCursor wxDROP_ICON (const char * name)

This macro creates either a cursor (MSW) or an icon (elsewhere) with the given name.
Under MSW, the cursor is loaded from the resource file and the icon is loaded from XPM
file under other platforms.

This macro should be used withwxDropSource constructor (p. 450).

Include files

<wx/dnd.h>

wxICON

 wxICON (iconName)

This macro loads an icon from either application resources (on the platforms for which
they exist, i.e. Windows and OS2) or from an XPM file. It allows to avoid using #ifdef s
when creating icons.

See also

Bitmaps and icons overview (p. 1711),wxBITMAP (p. 1549)

Include files

<wx/gdicmn.h>

::wxMakeMetafilePlaceable

CHAPTER 8

1555

bool wxMakeMetafilePlaceable (const wxString& filename, int minX, int minY, int
maxX, int maxY, float scale=1.0)

Given a filename for an existing, valid metafile (as constructed using wxMetafileDC (p.
930)) makes it into a placeable metafile by prepending a header containing the given
bounding box. The bounding box may be obtained from a device context after drawing
into it, using the functions wxDC::MinX, wxDC::MinY, wxDC::MaxX and wxDC::MaxY.

In addition to adding the placeable metafile header, this function adds the equivalent of
the following code to the start of the metafile data:

 SetMapMode(dc, MM_ANISOTROPIC);
 SetWindowOrg(dc, minX, minY);
 SetWindowExt(dc, maxX - minX, maxY - minY);

This simulates the wxMM_TEXT mapping mode, which wxWidgets assumes.

Placeable metafiles may be imported by many Windows applications, and can be used
in RTF (Rich Text Format) files.

scale allows the specification of scale for the metafile.

This function is only available under Windows.

::wxSetCursor

void wxSetCursor (wxCursor * cursor)

Globally sets the cursor; only has an effect in Windows and GTK. See also wxCursor (p.
216), wxWindow::SetCursor (p. 1459).

Printer settings

NB: These routines are obsolete and should no longer be used!

The following functions are used to control PostScript printing. Under Windows,
PostScript output can only be sent to a file.

Include files

<wx/dcps.h>

::wxGetPrinterCommand

wxString wxGetPrinterCommand ()

Gets the printer command used to print a file. The default is lpr .

::wxGetPrinterFile

wxString wxGetPrinterFile ()

CHAPTER 8

1556

Gets the PostScript output filename.

::wxGetPrinterMode

int wxGetPrinterMode ()

Gets the printing mode controlling where output is sent (PS_PREVIEW, PS_FILE or
PS_PRINTER). The default is PS_PREVIEW.

::wxGetPrinterOptions

wxString wxGetPrinterOptions ()

Gets the additional options for the print command (e.g. specific printer). The default is
nothing.

::wxGetPrinterOrientation

int wxGetPrinterOrientation ()

Gets the orientation (PS_PORTRAIT or PS_LANDSCAPE). The default is
PS_PORTRAIT.

::wxGetPrinterPreviewCommand

wxString wxGetPrinterPreviewCommand ()

Gets the command used to view a PostScript file. The default depends on the platform.

::wxGetPrinterScaling

void wxGetPrinterScaling (float * x, float * y)

Gets the scaling factor for PostScript output. The default is 1.0, 1.0.

::wxGetPrinterTranslation

void wxGetPrinterTranslation (float * x, float * y)

Gets the translation (from the top left corner) for PostScript output. The default is 0.0,
0.0.

::wxSetPrinterCommand

void wxSetPrinterCommand (const wxString& command)

Sets the printer command used to print a file. The default is lpr .

::wxSetPrinterFile

CHAPTER 8

1557

void wxSetPrinterFile (const wxString& filename)

Sets the PostScript output filename.

::wxSetPrinterMode

void wxSetPrinterMode (int mode)

Sets the printing mode controlling where output is sent (PS_PREVIEW, PS_FILE or
PS_PRINTER). The default is PS_PREVIEW.

::wxSetPrinterOptions

void wxSetPrinterOptions (const wxString& options)

Sets the additional options for the print command (e.g. specific printer). The default is
nothing.

::wxSetPrinterOrientation

void wxSetPrinterOrientation (int orientation)

Sets the orientation (PS_PORTRAIT or PS_LANDSCAPE). The default is
PS_PORTRAIT.

::wxSetPrinterPreviewCommand

void wxSetPrinterPreviewCommand (const wxString& command)

Sets the command used to view a PostScript file. The default depends on the platform.

::wxSetPrinterScaling

void wxSetPrinterScaling (float x, float y)

Sets the scaling factor for PostScript output. The default is 1.0, 1.0.

::wxSetPrinterTranslation

void wxSetPrinterTranslation (float x, float y)

Sets the translation (from the top left corner) for PostScript output. The default is 0.0,
0.0.

Clipboard functions

These clipboard functions are implemented for Windows only. The use of these
functions is deprecated and the code is no longer maintained. Use the wxClipboard (p.
144)class instead.

CHAPTER 8

1558

Include files

<wx/clipbrd.h>

::wxClipboardOpen

bool wxClipboardOpen ()

Returns true if this application has already opened the clipboard.

::wxCloseClipboard

bool wxCloseClipboard ()

Closes the clipboard to allow other applications to use it.

::wxEmptyClipboard

bool wxEmptyClipboard ()

Empties the clipboard.

::wxEnumClipboardFormats

int wxEnumClipboardFormats (int dataFormat)

Enumerates the formats found in a list of available formats that belong to the clipboard.
Each call to this function specifies a known available format; the function returns the
format that appears next in the list.

dataFormat specifies a known format. If this parameter is zero, the function returns the
first format in the list.

The return value specifies the next known clipboard data format if the function is
successful. It is zero if the dataFormat parameter specifies the last format in the list of
available formats, or if the clipboard is not open.

Before it enumerates the formats function, an application must open the clipboard by
using the wxOpenClipboard function.

::wxGetClipboardData

wxObject * wxGetClipboardData (int dataFormat)

Gets data from the clipboard.

dataFormat may be one of:

 • wxCF_TEXT or wxCF_OEMTEXT: returns a pointer to new memory containing
a null-terminated text string.

 • wxCF_BITMAP: returns a new wxBitmap.

CHAPTER 8

1559

The clipboard must have previously been opened for this call to succeed.

::wxGetClipboardFormatName

bool wxGetClipboardFormatName (int dataFormat, const wxString& formatName,
int maxCount)

Gets the name of a registered clipboard format, and puts it into the buffer formatName
which is of maximum length maxCount. dataFormat must not specify a predefined
clipboard format.

::wxIsClipboardFormatAvailable

bool wxIsClipboardFormatAvailable (int dataFormat)

Returns true if the given data format is available on the clipboard.

::wxOpenClipboard

bool wxOpenClipboard ()

Opens the clipboard for passing data to it or getting data from it.

::wxRegisterClipboardFormat

int wxRegisterClipboardFormat (const wxString& formatName)

Registers the clipboard data format name and returns an identifier.

::wxSetClipboardData

bool wxSetClipboardData (int dataFormat, wxObject * data, int width, int height)

Passes data to the clipboard.

dataFormat may be one of:

 • wxCF_TEXT or wxCF_OEMTEXT: data is a null-terminated text string.

 • wxCF_BITMAP: data is a wxBitmap.

 • wxCF_DIB: data is a wxBitmap. The bitmap is converted to a DIB (device
independent bitmap).

 • wxCF_METAFILE: data is a wxMetafile. width and height are used to give
recommended dimensions.

The clipboard must have previously been opened for this call to succeed.

Miscellaneous functions

CHAPTER 8

1560

wxCONCAT

 wxCONCAT (x, y)

This macro returns the concatenation of two tokens x and y.

wxDYNLIB_FUNCTION

 wxDYNLIB_FUNCTION (type, name, dynlib)

When loading a function from a DLL you always have to cast the returnedvoid *
pointer to the correct type and, even more annoyingly, you have to repeat this type twice
if you want to declare and define a function pointer all in one line

This macro makes this slightly less painful by allowing you to specify the type only once,
as the first parameter, and creating a variable of this type named after the function but
with pfn prefix and initialized with the function name from the wxDynamicLibrary (p.
455)dynlib.

Parameters

type

the type of the function

name

the name of the function to load, not a string (without quotes, it is quoted
automatically by the macro)

dynlib

the library to load the function from

wxEXPLICIT

wxEXPLICIT is a macro which expands to the C++ explicit keyword if the compiler
supports it or nothing otherwise. Thus, it can be used even in the code which might have
to be compiled with an old compiler without support for this language feature but still
take advantage of it when it is available.

::wxGetKeyState

bool wxGetKeyState (wxKeyCode key)

For normal keys, returns true if the specified key is currently down.

For togglable keys (Caps Lock, Num Lock and Scroll Lock), returnstrue if the key is
toggled such that its LED indicator is lit. There is currently no way to test whether
togglable keys are up or down.

Even though there are virtual key codes defined for mouse buttons, they cannot be used

CHAPTER 8

1561

with this function currently.

Include files

<wx/utils.h>

wxLL

wxLongLong_t wxLL (number)

This macro is defined for the platforms with a native 64 bit integer type and allows to
define 64 bit compile time constants:

 #ifdef wxLongLong_t
 wxLongLong_t ll = wxLL(0x1234567890abcdef);
 #endif

Include files

<wx/longlong.h>

See also

wxULL (p. 1564), wxLongLong (p. 863)

wxLongLongFmtSpec

This macro is defined to contain the printf() format specifier using which 64 bit
integer numbers (i.e. those of type wxLongLong_t) can be printed. Example of using it:

 #ifdef wxLongLong_t
 wxLongLong_t ll = wxLL(0x1234567890abcdef);
 printf("Long long = %" wxLongLongFmtSpec "x \n", ll);
 #endif

See also

wxLL (p. 1557)

Include files

<wx/longlong.h>

::wxNewId

long wxNewId ()

Generates an integer identifier unique to this run of the program.

Include files

<wx/utils.h>

wxON_BLOCK_EXIT

CHAPTER 8

1562

 wxON_BLOCK_EXIT0 (func) wxON_BLOCK_EXIT1 (func, p1)
wxON_BLOCK_EXIT2 (func, p1, p2)

This family of macros allows to ensure that the global function funcwith 0, 1, 2 or more
parameters (up to some implementaton-defined limit) is executed on scope exit, whether
due to a normal function return or because an exception has been thrown. A typical
example of its usage: void *buf = malloc(size);
 wxON_BLOCK_EXIT1(free, buf);

Please see the original article by Andrei Alexandrescu and Petru Marginean published in
December 2000 issue of C/C++ Users Journal for more details.

Include files

<wx/scopeguard.h>

See also

wxON_BLOCK_EXIT_OBJ (p. 1558)

wxON_BLOCK_EXIT_OBJ

 wxON_BLOCK_EXIT_OBJ0 (obj, method) wxON_BLOCK_EXIT_OBJ1 (obj, method,
p1) wxON_BLOCK_EXIT_OBJ2 (obj, method, p1, p2)

This family of macros is similar to wxON_BLOCK_EXIT (p. 1557) but calls a method of
the given object instead of a free function.

Include files

<wx/scopeguard.h>

::wxRegisterId

void wxRegisterId (long id)

Ensures that ids subsequently generated by NewId do not clash with the given id .

Include files

<wx/utils.h>

::wxDDECleanUp

void wxDDECleanUp ()

Called when wxWidgets exits, to clean up the DDE system. This no longer needs to be
called by the application.

See also wxDDEInitialize (p. 1558).

Include files

<wx/dde.h>

CHAPTER 8

1563

::wxDDEInitialize

void wxDDEInitialize ()

Initializes the DDE system. May be called multiple times without harm.

This no longer needs to be called by the application: it will be called by wxWidgets if
necessary.

See also wxDDEServer (p. 377), wxDDEClient (p. 372), wxDDEConnection (p. 374),
wxDDECleanUp (p. 1558).

Include files

<wx/dde.h>

::wxEnableTopLevelWindows

void wxEnableTopLevelWindow (bool enable = true)

This function enables or disables all top level windows. It is used by::wxSafeYield (p.
1518).

Include files

<wx/utils.h>

::wxFindMenuItemId

int wxFindMenuItemId (wxFrame * frame, const wxString& menuString, const
wxString& itemString)

Find a menu item identifier associated with the given frame's menu bar.

Include files

<wx/utils.h>

::wxFindWindowByLabel

wxWindow * wxFindWindowByLabel (const wxString& label, wxWindow
*parent=NULL)

NB: This function is obsolete, please usewxWindow::FindWindowByLabel (p. 1432)
instead.

Find a window by its label. Depending on the type of window, the label may be a window
title or panel item label. If parent is NULL, the search will start from all top-level frames
and dialog boxes; if non-NULL, the search will be limited to the given window hierarchy.
The search is recursive in both cases.

Include files

CHAPTER 8

1564

<wx/utils.h>

::wxFindWindowByName

wxWindow * wxFindWindowByName (const wxString& name, wxWindow
*parent=NULL)

NB: This function is obsolete, please usewxWindow::FindWindowByName (p. 1432)
instead.

Find a window by its name (as given in a window constructor or Create function call). If
parent is NULL, the search will start from all top-level frames and dialog boxes; if non-
NULL, the search will be limited to the given window hierarchy. The search is recursive
in both cases.

If no such named window is found, wxFindWindowByLabel is called.

Include files

<wx/utils.h>

::wxFindWindowAtPoint

wxWindow * wxFindWindowAtPoint (const wxPoint& pt)

Find the deepest window at the given mouse position in screen coordinates, returning
the window if found, or NULL if not.

::wxFindWindowAtPointer

wxWindow * wxFindWindowAtPointer (wxPoint& pt)

Find the deepest window at the mouse pointer position, returning the window and
current pointer position in screen coordinates.

::wxGetActiveWindow

wxWindow * wxGetActiveWindow ()

Gets the currently active window (Windows only).

Include files

<wx/windows.h>

::wxGetBatteryState

wxBatteryState wxGetBatteryState ()

Returns battery state as one of wxBATTERY_NORMAL_STATE,wxBATTERY_LOW_STATE,
wxBATTERY_CRITICAL_STATE,wxBATTERY_SHUTDOWN_STATE or
wxBATTERY_UNKNOWN_STATE.wxBATTERY_UNKNOWN_STATE is also the default on

CHAPTER 8

1565

platforms where this feature is not implemented.

Include files

<wx/utils.h>

::wxGetDisplayName

wxString wxGetDisplayName ()

Under X only, returns the current display name. See also wxSetDisplayName (p. 1564).

Include files

<wx/utils.h>

::wxGetPowerType

wxPowerType wxGetPowerType ()

Returns the type of power source as one of wxPOWER_SOCKET,wxPOWER_BATTERY or
wxPOWER_UNKNOWN.wxPOWER_UNKNOWN is also the default on platforms where this
feature is not implemented.

Include files

<wx/utils.h>

::wxGetMousePosition

wxPoint wxGetMousePosition ()

Returns the mouse position in screen coordinates.

Include files

<wx/utils.h>

::wxGetResource

bool wxGetResource (const wxString& section, const wxString& entry, const
wxString& * value, const wxString& file = NULL)

bool wxGetResource (const wxString& section, const wxString& entry, float * value,
const wxString& file = NULL)

bool wxGetResource (const wxString& section, const wxString& entry, long * value,
const wxString& file = NULL)

bool wxGetResource (const wxString& section, const wxString& entry, int * value,
const wxString& file = NULL)

Gets a resource value from the resource database (for example, WIN.INI, or .Xdefaults).

CHAPTER 8

1566

If file is NULL, WIN.INI or .Xdefaults is used, otherwise the specified file is used.

Under X, if an application class (wxApp::GetClassName) has been defined, it is
appended to the string /usr/lib/X11/app-defaults/ to try to find an applications default file
when merging all resource databases.

The reason for passing the result in an argument is that it can be convenient to define a
default value, which gets overridden if the value exists in the resource file. It saves a
separate test for that resource's existence, and it also allows the overloading of the
function for different types.

See also wxWriteResource (p. 1565), wxConfigBase (p. 184).

Include files

<wx/utils.h>

::wxGetStockLabel

wxString wxGetStockLabel (wxWindowID id, bool withCodes = true, wxString
accelerator = wxEmptyString)

Returns label that should be used for given id element.

Parameters

id

given id of the wxMenuItem (p. 922), wxButton (p. 112), wxToolBar (p. 1337) tool,
etc.

withCodes

if false then strip accelerator code from the label; usefull for getting labels without
accelerator char code like for toolbar tooltip or under platforms without traditional
keyboard like smartphones

accelerator

optional accelerator string automatically added to label; useful for building labels
for wxMenuItem (p. 922)

Include files

<wx/stockitem.h>

::wxGetTopLevelParent

wxWindow * wxGetTopLevelParent (wxWindow *win)

Returns the first top level parent of the given window, or in other words, the frame or
dialog containing it, or NULL.

Include files

CHAPTER 8

1567

<wx/window.h>

::wxLaunchDefaultBrowser

bool wxLaunchDefaultBrowser (const wxString& sUrl)

Launches the user's default browser and tells it to open the location at sUrl .

Returns true if the application was successfully launched.

Include files

<wx/utils.h>

::wxLoadUserResource

wxString wxLoadUserResource (const wxString& resourceName, const wxString&
resourceType="TEXT")

Loads a user-defined Windows resource as a string. If the resource is found, the function
creates a new character array and copies the data into it. A pointer to this data is
returned. If unsuccessful, NULL is returned.

The resource must be defined in the .rc file using the following syntax:

myResource TEXT file.ext

where file.ext is a file that the resource compiler can find.

This function is available under Windows only.

Include files

<wx/utils.h>

::wxPostDelete

void wxPostDelete (wxObject * object)

Tells the system to delete the specified object when all other events have been
processed. In some environments, it is necessary to use this instead of deleting a frame
directly with the delete operator, because some GUIs will still send events to a deleted
window.

Now obsolete: use wxWindow::Close (p. 1427) instead.

Include files

<wx/utils.h>

::wxPostEvent

void wxPostEvent (wxEvtHandler * dest, wxEvent& event)

CHAPTER 8

1568

In a GUI application, this function posts event to the specified destobject using
wxEvtHandler::AddPendingEvent (p. 468). Otherwise, it dispatches event immediately
usingwxEvtHandler::ProcessEvent (p. 471). See the respective documentation for
details (and caveats).

Include files

<wx/app.h>

::wxSetDisplayName

void wxSetDisplayName (const wxString& displayName)

Under X only, sets the current display name. This is the X host and display name such
as "colonsay:0.0", and the function indicates which display should be used for creating
windows from this point on. Setting the display within an application allows multiple
displays to be used.

See also wxGetDisplayName (p. 1561).

Include files

<wx/utils.h>

::wxStripMenuCodes

wxString wxStripMenuCodes (const wxString& in)

void wxStripMenuCodes (char * in, char * out)

NB: This function is obsolete, please usewxMenuItem::GetLabelFromText (p. 924)
instead.

Strips any menu codes from in and places the result in out (or returns the new string, in
the first form).

Menu codes include & (mark the next character with an underline as a keyboard
shortkey in Windows and Motif) and \t (tab in Windows).

Include files

<wx/utils.h>

wxULL

wxLongLong_t wxULL (number)

This macro is defined for the platforms with a native 64 bit integer type and allows to
define unsigned 64 bit compile time constants:

 #ifdef wxLongLong_t
 unsigned wxLongLong_t ll = wxULL(0x12345678 90abcdef);
 #endif

CHAPTER 8

1569

Include files

<wx/longlong.h>

See also

wxLL (p. 1557), wxLongLong (p. 863)

wxVaCopy

void wxVaCopy (va_list argptrDst, va_list argptrSrc)

This macro is the same as the standard C99 va_copy for the compilers which support it
or its replacement for those that don't. It must be used to preserve the value of a
va_list object if you need to use it after passing it to another function because it can
be modified by the latter.

As with va_start , each call to wxVaCopy must have a matchingva_end .

::wxWriteResource

bool wxWriteResource (const wxString& section, const wxString& entry, const
wxString& value, const wxString& file = NULL)

bool wxWriteResource (const wxString& section, const wxString& entry, float value,
const wxString& file = NULL)

bool wxWriteResource (const wxString& section, const wxString& entry, long value,
const wxString& file = NULL)

bool wxWriteResource (const wxString& section, const wxString& entry, int value,
const wxString& file = NULL)

Writes a resource value into the resource database (for example, WIN.INI, or
.Xdefaults). If file is NULL, WIN.INI or .Xdefaults is used, otherwise the specified file is
used.

Under X, the resource databases are cached until the internal function
wxFlushResources is called automatically on exit, when all updated resource
databases are written to their files.

Note that it is considered bad manners to write to the .Xdefaults file under Unix, although
the WIN.INI file is fair game under Windows.

See also wxGetResource (p. 1561), wxConfigBase (p. 184).

Include files

<wx/utils.h>

Byte order macros

CHAPTER 8

1570

The endian-ness issues (that is the difference between big-endian and little-endian
architectures) are important for the portable programs working with the external binary
data (for example, data files or data coming from network) which is usually in some
fixed, platform-independent format. The macros are helpful for transforming the data to
the correct format.

wxINTXX_SWAP_ALWAYS

wxInt32 wxINT32_SWAP_ALWAYS (wxInt32 value)

wxUint32 wxUINT32_SWAP_ALWAYS (wxUint32 value)

wxInt16 wxINT16_SWAP_ALWAYS (wxInt16 value)

wxUint16 wxUINT16_SWAP_ALWAYS (wxUint16 value)

These macros will swap the bytes of the value variable from little endian to big endian or
vice versa unconditionally, i.e. independently of the current platform.

wxINTXX_SWAP_ON_BE

wxInt32 wxINT32_SWAP_ON_BE (wxInt32 value)

wxUint32 wxUINT32_SWAP_ON_BE (wxUint32 value)

wxInt16 wxINT16_SWAP_ON_BE (wxInt16 value)

wxUint16 wxUINT16_SWAP_ON_BE (wxUint16 value)

This macro will swap the bytes of the value variable from little endian to big endian or
vice versa if the program is compiled on a big-endian architecture (such as Sun work
stations). If the program has been compiled on a little-endian architecture, the value will
be unchanged.

Use these macros to read data from and write data to a file that stores data in little-
endian (for example Intel i386) format.

wxINTXX_SWAP_ON_LE

wxInt32 wxINT32_SWAP_ON_LE (wxInt32 value)

wxUint32 wxUINT32_SWAP_ON_LE (wxUint32 value)

wxInt16 wxINT16_SWAP_ON_LE (wxInt16 value)

wxUint16 wxUINT16_SWAP_ON_LE (wxUint16 value)

This macro will swap the bytes of the value variable from little endian to big endian or
vice versa if the program is compiled on a little-endian architecture (such as Intel PCs). If
the program has been compiled on a big-endian architecture, the value will be
unchanged.

Use these macros to read data from and write data to a file that stores data in big-endian

CHAPTER 8

1571

format.

RTTI functions

wxWidgets uses its own RTTI ("run-time type identification") system which predates the
current standard C++ RTTI and so is kept for backwards compatibility reasons but also
because it allows some things which the standard RTTI doesn't directly support (such as
creating a class from its name).

The standard C++ RTTI can be used in the user code without any problems and in
general you shouldn't need to use the functions and the macros in this section unless
you are thinking of modifying or adding any wxWidgets classes.

See also

RTTI overview (p. 1643)

CLASSINFO

wxClassInfo * CLASSINFO (className)

Returns a pointer to the wxClassInfo object associated with this class.

Include files

<wx/object.h>

DECLARE_ABSTRACT_CLASS

 DECLARE_ABSTRACT_CLASS (className)

Used inside a class declaration to declare that the class should be made known to the
class hierarchy, but objects of this class cannot be created dynamically. The same as
DECLARE_CLASS.

Example:

class wxCommand: public wxObject
{
 DECLARE_ABSTRACT_CLASS(wxCommand)

 private:
 ...
 public:
 ...
};

Include files

<wx/object.h>

DECLARE_APP

CHAPTER 8

1572

 DECLARE_APP (className)

This is used in headers to create a forward declaration of thewxGetApp (p. 1517)
function implemented byIMPLEMENT_APP (p. 1569). It creates the
declarationclassName& wxGetApp(void) .

Example:

 DECLARE_APP(MyApp)

Include files

<wx/app.h>

DECLARE_CLASS

 DECLARE_CLASS (className)

Used inside a class declaration to declare that the class should be made known to the
class hierarchy, but objects of this class cannot be created dynamically. The same as
DECLARE_ABSTRACT_CLASS.

Include files

<wx/object.h>

DECLARE_DYNAMIC_CLASS

 DECLARE_DYNAMIC_CLASS (className)

Used inside a class declaration to make the class known to wxWidgets RTTI system and
also declare that the objects of this class should be dynamically creatable from run-time
type information. Notice that this implies that the class should have a default constructor,
if this is not the case consider using DECLARE_CLASS (p. 1568).

Example:

class wxFrame: public wxWindow
{
 DECLARE_DYNAMIC_CLASS(wxFrame)

 private:
 const wxString& frameTitle;
 public:
 ...
};

Include files

<wx/object.h>

IMPLEMENT_ABSTRACT_CLASS

 IMPLEMENT_ABSTRACT_CLASS (className, baseClassName)

CHAPTER 8

1573

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information. The same as IMPLEMENT_CLASS.

Example:

IMPLEMENT_ABSTRACT_CLASS(wxCommand, wxObject)

wxCommand::wxCommand(void)
{
...
}

Include files

<wx/object.h>

IMPLEMENT_ABSTRACT_CLASS2

 IMPLEMENT_ABSTRACT_CLASS2 (className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information and two base classes. The same as IMPLEMENT_CLASS2.

Include files

<wx/object.h>

IMPLEMENT_APP

 IMPLEMENT_APP (className)

This is used in the application class implementation file to make the application class
known to wxWidgets for dynamic construction. You use this instead of

Old form:

 MyApp myApp;

New form:

 IMPLEMENT_APP(MyApp)

See also DECLARE_APP (p. 1567).

Include files

<wx/app.h>

IMPLEMENT_CLASS

 IMPLEMENT_CLASS (className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information. The same as IMPLEMENT_ABSTRACT_CLASS.

CHAPTER 8

1574

Include files

<wx/object.h>

IMPLEMENT_CLASS2

 IMPLEMENT_CLASS2 (className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information and two base classes. The same as
IMPLEMENT_ABSTRACT_CLASS2.

Include files

<wx/object.h>

IMPLEMENT_DYNAMIC_CLASS

 IMPLEMENT_DYNAMIC_CLASS (className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information, and whose instances can be created dynamically.

Example:

IMPLEMENT_DYNAMIC_CLASS(wxFrame, wxWindow)

wxFrame::wxFrame(void)
{
...
}

Include files

<wx/object.h>

IMPLEMENT_DYNAMIC_CLASS2

 IMPLEMENT_DYNAMIC_CLASS2 (className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information, and whose instances can be created dynamically. Use this for
classes derived from two base classes.

Include files

<wx/object.h>

wxConstCast

classname * wxConstCast (ptr, classname)

This macro expands into const_cast<classname *>(ptr) if the compiler supports

CHAPTER 8

1575

const_cast or into an old, C-style cast, otherwise.

See also

wx_const_cast (p. 1572)
wxDynamicCast (p. 1571)
wxStaticCast (p. 1572)

::wxCreateDynamicObject

wxObject * wxCreateDynamicObject (const wxString& className)

Creates and returns an object of the given class, if the class has been registered with
the dynamic class system using DECLARE... and IMPLEMENT... macros.

WXDEBUG_NEW

 WXDEBUG_NEW(arg)

This is defined in debug mode to be call the redefined new operator with filename and
line number arguments. The definition is:

#define WXDEBUG_NEW new(__FILE__,__LINE__)

In non-debug mode, this is defined as the normal new operator.

Include files

<wx/object.h>

wxDynamicCast

classname * wxDynamicCast (ptr, classname)

This macro returns the pointer ptr cast to the type classname * if the pointer is of this
type (the check is done during the run-time) orNULL otherwise. Usage of this macro is
preferred over obsoleted wxObject::IsKindOf() function.

The ptr argument may be NULL, in which case NULL will be returned.

Example:

 wxWindow *win = wxWindow::FindFocus();
 wxTextCtrl *text = wxDynamicCast(win, wxTextCtr l);
 if (text)
 {
 // a text control has the focus...
 }
 else
 {
 // no window has the focus or it is not a t ext control
 }

See also

CHAPTER 8

1576

RTTI overview (p. 1643)
wxDynamicCastThis (p. 1572)
wxConstCast (p. 1570)
wxStaticCast (p. 1572)

wxDynamicCastThis

classname * wxDynamicCastThis (classname)

This macro is equivalent to wxDynamicCast(this, classname) but the latter
provokes spurious compilation warnings from some compilers (because it tests whether
this pointer is non NULL which is always true), so this macro should be used to avoid
them.

See also

wxDynamicCast (p. 1571)

wxStaticCast

classname * wxStaticCast (ptr, classname)

This macro checks that the cast is valid in debug mode (an assert failure will result if
wxDynamicCast(ptr, classname) == NULL) and then returns the result of
executing an equivalent of static_cast<classname *>(ptr) .

See also

wx_static_cast (p. 1573)
wxDynamicCast (p. 1571)
wxConstCast (p. 1570)

wx_const_cast

T wx_const_cast (T, x)

Same as const_cast<T>(x) if the compiler supports const cast or(T)x for old
compilers. Unlike wxConstCast (p. 1570), the cast it to the type T and not to T * and
also the order of arguments is the same as for the standard cast.

See also

wx_reinterpret_cast (p. 1572),
wx_static_cast (p. 1573)

wx_reinterpret_cast

T wx_reinterpret_cast (T, x)

Same as reinterpret_cast<T>(x) if the compiler supports reinterpret cast or(T)x
for old compilers.

CHAPTER 8

1577

See also

wx_const_cast (p. 1572),
wx_static_cast (p. 1573)

wx_static_cast

T wx_static_cast (T, x)

Same as static_cast<T>(x) if the compiler supports static cast or(T)x for old
compilers. Unlike wxStaticCast (p. 1572), there are no checks being done and the
meaning of the macro arguments is exactly the same as for the standard static cast, i.e.
T is the full type name and star is not appended to it.

See also

wx_const_cast (p. 1572),
wx_reinterpret_cast (p. 1572)

Log functions

These functions provide a variety of logging functions: see Log classes overview (p.
1667) for further information. The functions use (implicitly) the currently active log target,
so their descriptions here may not apply if the log target is not the standard one
(installed by wxWidgets in the beginning of the program).

Include files

<wx/log.h>

::wxDebugMsg

void wxDebugMsg (const wxString& fmt, ...)

NB: This function is now obsolete, replaced by Log functions (p. 1573) and wxLogDebug
(p. 1576) in particular.

Display a debugging message; under Windows, this will appear on the debugger
command window, and under Unix, it will be written to standard error.

The syntax is identical to printf : pass a format string and a variable list of arguments.

Tip: under Windows, if your application crashes before the message appears in the
debugging window, put a wxYield call after each wxDebugMsg call. wxDebugMsg seems
to be broken under WIN32s (at least for Watcom C++): preformat your messages and
use OutputDebugString instead.

Include files

<wx/utils.h>

CHAPTER 8

1578

::wxError

void wxError (const wxString& msg, const wxString& title = "wxWidgets Internal
Error")

NB: This function is now obsolete, please use wxLogError (p. 1574)instead.

Displays msg and continues. This writes to standard error under Unix, and pops up a
message box under Windows. Used for internal wxWidgets errors. See also
wxFatalError (p. 1574).

Include files

<wx/utils.h>

::wxFatalError

void wxFatalError (const wxString& msg, const wxString& title = "wxWidgets Fatal
Error")

NB: This function is now obsolete, please usewxLogFatalError (p. 1574) instead.

Displays msg and exits. This writes to standard error under Unix, and pops up a
message box under Windows. Used for fatal internal wxWidgets errors. See also
wxError (p. 1574).

Include files

<wx/utils.h>

::wxLogError

void wxLogError (const char * formatString, ...)

void wxVLogError (const char * formatString, va_list argPtr)

The functions to use for error messages, i.e. the messages that must be shown to the
user. The default processing is to pop up a message box to inform the user about it.

::wxLogFatalError

void wxLogFatalError (const char * formatString, ...)

void wxVLogFatalError (const char * formatString, va_list argPtr)

Like wxLogError (p. 1574), but also terminates the program with the exit code 3. Using
abort() standard function also terminates the program with this exit code.

::wxLogWarning

void wxLogWarning (const char * formatString, ...)

CHAPTER 8

1579

void wxVLogWarning (const char * formatString, va_list argPtr)

For warnings - they are also normally shown to the user, but don't interrupt the program
work.

::wxLogMessage

void wxLogMessage (const char * formatString, ...)

void wxVLogMessage (const char * formatString, va_list argPtr)

For all normal, informational messages. They also appear in a message box by default
(but it can be changed).

::wxLogVerbose

void wxLogVerbose (const char * formatString, ...)

void wxVLogVerbose (const char * formatString, va_list argPtr)

For verbose output. Normally, it is suppressed, but might be activated if the user wishes
to know more details about the program progress (another, but possibly confusing name
for the same function is wxLogInfo).

::wxLogStatus

void wxLogStatus (wxFrame * frame, const char * formatString, ...)

void wxVLogStatus (wxFrame * frame, const char * formatString, va_list argPtr)

void wxLogStatus (const char * formatString, ...)

void wxVLogStatus (const char * formatString, va_list argPtr)

Messages logged by these functions will appear in the statusbar of the frame or of the
top level application window by default (i.e. when using the second version of the
functions).

If the target frame doesn't have a statusbar, the message will be lost.

::wxLogSysError

void wxLogSysError (const char * formatString, ...)

void wxVLogSysError (const char * formatString, va_list argPtr)

Mostly used by wxWidgets itself, but might be handy for logging errors after system call
(API function) failure. It logs the specified message text as well as the last system error
code (errno or ::GetLastError() depending on the platform) and the corresponding error
message. The second form of this function takes the error code explicitly as the first
argument.

CHAPTER 8

1580

See also

wxSysErrorCode (p. 1577),wxSysErrorMsg (p. 1578)

::wxLogDebug

void wxLogDebug (const char * formatString, ...)

void wxVLogDebug (const char * formatString, va_list argPtr)

The right functions for debug output. They only do something in debug mode (when the
preprocessor symbol __WXDEBUG__ is defined) and expand to nothing in release
mode (otherwise).

::wxLogTrace

void wxLogTrace (const char * formatString, ...)

void wxVLogTrace (const char * formatString, va_list argPtr)

void wxLogTrace (const char * mask, const char * formatString, ...)

void wxVLogTrace (const char * mask, const char * formatString, va_list argPtr)

void wxLogTrace (wxTraceMask mask, const char * formatString, ...)

void wxVLogTrace (wxTraceMask mask, const char * formatString, va_list argPtr)

As wxLogDebug , trace functions only do something in debug build and expand to
nothing in the release one. The reason for making it a separate function from it is that
usually there are a lot of trace messages, so it might make sense to separate them from
other debug messages.

The trace messages also usually can be separated into different categories and the
second and third versions of this function only log the message if themask which it has is
currently enabled in wxLog (p. 850). This allows to selectively trace only some
operations and not others by changing the value of the trace mask (possible during the
run-time).

For the second function (taking a string mask), the message is logged only if the mask
has been previously enabled by the call toAddTraceMask (p. 853) or by settingWXTRACE
environment variable (p. 1777). The predefined string trace masks used by wxWidgets
are:

 • wxTRACE_MemAlloc: trace memory allocation (new/delete)

 • wxTRACE_Messages: trace window messages/X callbacks

 • wxTRACE_ResAlloc: trace GDI resource allocation

 • wxTRACE_RefCount: trace various ref counting operations

 • wxTRACE_OleCalls: trace OLE method calls (Win32 only)

CHAPTER 8

1581

Caveats: since both the mask and the format string are strings, this might lead to
function signature confusion in some cases: if you intend to call the format string only
version of wxLogTrace, then add a %s format string parameter and then supply a
second string parameter for that %s, the string mask version of wxLogTrace will
erroneously get called instead, since you are supplying two string parameters to the
function. In this case you'll unfortunately have to avoid having two leading string
parameters, e.g. by adding a bogus integer (with its %d format string).

The third version of the function only logs the message if all the bits corresponding to the
mask are set in the wxLog trace mask which can be set by SetTraceMask (p. 856). This
version is less flexible than the previous one because it doesn't allow defining the user
trace masks easily - this is why it is deprecated in favour of using string trace masks.

 • wxTraceMemAlloc: trace memory allocation (new/delete)

 • wxTraceMessages: trace window messages/X callbacks

 • wxTraceResAlloc: trace GDI resource allocation

 • wxTraceRefCount: trace various ref counting operations

 • wxTraceOleCalls: trace OLE method calls (Win32 only)

::wxSafeShowMessage

void wxSafeShowMessage (const wxString& title, const wxString& text)

This function shows a message to the user in a safe way and should be safe to call even
before the application has been initialized or if it is currently in some other strange state
(for example, about to crash). Under Windows this function shows a message box using
a native dialog instead ofwxMessageBox (p. 1547) (which might be unsafe to call),
elsewhere it simply prints the message to the standard output using the title as prefix.

Parameters

title

The title of the message box shown to the user or the prefix of the message string

text

The text to show to the user

See also

wxLogFatalError (p. 1574)

Include files

<wx/log.h>

::wxSysErrorCode

CHAPTER 8

1582

unsigned long wxSysErrorCode ()

Returns the error code from the last system call. This function useserrno on Unix
platforms and GetLastError under Win32.

See also

wxSysErrorMsg (p. 1578),wxLogSysError (p. 1575)

::wxSysErrorMsg

const wxChar * wxSysErrorMsg (unsigned long errCode = 0)

Returns the error message corresponding to the given system error code. IferrCode is 0
(default), the last error code (as returned bywxSysErrorCode (p. 1577)) is used.

See also

wxSysErrorCode (p. 1577),wxLogSysError (p. 1575)

WXTRACE

Include files

<wx/object.h>

 WXTRACE(formatString, ...)

NB: This macro is now obsolete, replaced by Log functions (p. 1573).

Calls wxTrace with printf-style variable argument syntax. Output is directed to the current
output stream (see wxDebugContext (p. 1671)).

Include files

<wx/memory.h>

WXTRACELEVEL

 WXTRACELEVEL (level, formatString, ...)

NB: This function is now obsolete, replaced by Log functions (p. 1573).

Calls wxTraceLevel with printf-style variable argument syntax. Output is directed to the
current output stream (see wxDebugContext (p. 1671)). The first argument should be the
level at which this information is appropriate. It will only be output if the level returned by
wxDebugContext::GetLevel is equal to or greater than this value.

Include files

<wx/memory.h>

::wxTrace

CHAPTER 8

1583

void wxTrace (const wxString& fmt, ...)

NB: This function is now obsolete, replaced by Log functions (p. 1573).

Takes printf-style variable argument syntax. Output is directed to the current output
stream (see wxDebugContext (p. 1671)).

Include files

<wx/memory.h>

::wxTraceLevel

void wxTraceLevel (int level, const wxString& fmt, ...)

NB: This function is now obsolete, replaced by Log functions (p. 1573).

Takes printf-style variable argument syntax. Output is directed to the current output
stream (see wxDebugContext (p. 1671)). The first argument should be the level at which
this information is appropriate. It will only be output if the level returned by
wxDebugContext::GetLevel is equal to or greater than this value.

Include files

<wx/memory.h>

Time functions

The functions in this section deal with getting the current time and starting/stopping the
global timers. Please note that the timer functions are deprecated because they work
with one global timer only andwxTimer (p. 1323) and/or wxStopWatch (p. 1217) classes
should be used instead. For retrieving the current time, you may also
usewxDateTime::Now (p. 256) orwxDateTime::UNow (p. 257) methods.

::wxGetElapsedTime

long wxGetElapsedTime (bool resetTimer = true)

Gets the time in milliseconds since the last ::wxStartTimer (p. 1581).

If resetTimer is true (the default), the timer is reset to zero by this call.

See also wxTimer (p. 1323).

Include files

<wx/timer.h>

::wxGetLocalTime

long wxGetLocalTime ()

CHAPTER 8

1584

Returns the number of seconds since local time 00:00:00 Jan 1st 1970.

See also

wxDateTime::Now (p. 256)

Include files

<wx/timer.h>

::wxGetLocalTimeMillis

wxLongLong wxGetLocalTimeMillis ()

Returns the number of milliseconds since local time 00:00:00 Jan 1st 1970.

See also

wxDateTime::Now (p. 256),
wxLongLong (p. 863)

Include files

<wx/timer.h>

::wxGetUTCTime

long wxGetUTCTime ()

Returns the number of seconds since GMT 00:00:00 Jan 1st 1970.

See also

wxDateTime::Now (p. 256)

Include files

<wx/timer.h>

::wxMicroSleep

void wxMicroSleep (unsigned long microseconds)

Sleeps for the specified number of microseconds. The microsecond resolution may not,
in fact, be available on all platforms (currently only Unix platforms with nanosleep(2) may
provide it) in which case this is the same aswxMilliSleep (p. 1580)(microseconds/1000).

Include files

<wx/utils.h>

::wxMilliSleep

CHAPTER 8

1585

void wxMilliSleep (unsigned long milliseconds)

Sleeps for the specified number of milliseconds. Notice that usage of this function is
encouraged instead of calling usleep(3) directly because the standard usleep() function
is not MT safe.

Include files

<wx/utils.h>

::wxNow

wxString wxNow ()

Returns a string representing the current date and time.

Include files

<wx/utils.h>

::wxSleep

void wxSleep (int secs)

Sleeps for the specified number of seconds.

Include files

<wx/utils.h>

::wxStartTimer

void wxStartTimer ()

Starts a stopwatch; use ::wxGetElapsedTime (p. 1579) to get the elapsed time.

See also wxTimer (p. 1323).

Include files

<wx/timer.h>

::wxUsleep

void wxUsleep (unsigned long milliseconds)

This function is deprecated because its name is misleading: notice that the argument is
in milliseconds, not microseconds. Please use eitherwxMilliSleep (p. 1580) or
wxMicroSleep (p. 1580)depending on the resolution you need.

Debugging macros and functions

CHAPTER 8

1586

Useful macros and functions for error checking and defensive programming. wxWidgets
defines three families of the assert-like macros: the wxASSERT and wxFAIL macros
only do anything if __WXDEBUG__ is defined (in other words, in the debug build) but
disappear completely in the release build. On the other hand, the wxCHECK macros
stay event in release builds but a check failure doesn't generate any user-visible effects
then. Finally, the compile time assertions don't happen during the run-time but result in
the compilation error messages if the condition they check fail.

Include files

<wx/debug.h>

::wxOnAssert

void wxOnAssert (const char * fileName, int lineNumber, const char * cond, const
char * msg = NULL)

This function is called whenever one of debugging macros fails (i.e. condition is false in
an assertion). It is only defined in the debug mode, in release builds the wxCHECK (p.
1584) failures don't result in anything.

To override the default behaviour in the debug builds which is to show the user a dialog
asking whether he wants to abort the program, continue or continue ignoring any
subsequent assert failures, you may overridewxApp::OnAssert (p. 34) which is called by
this function if the global application object exists.

wxASSERT

 wxASSERT (condition)

Assert macro. An error message will be generated if the condition is false in debug
mode, but nothing will be done in the release build.

Please note that the condition in wxASSERT() should have no side effects because it
will not be executed in release mode at all.

See also

wxASSERT_MSG (p. 1583),
wxCOMPILE_TIME_ASSERT (p. 1583)

wxASSERT_MIN_BITSIZE

 wxASSERT_MIN_BITSIZE (type, size)

This macro results in acompile time assertion failure (p. 1583) if the size of the given
type type is less than size bits.

You may use it like this, for example:

 // we rely on the int being able to hold values up to 2^32
 wxASSERT_MIN_BITSIZE(int, 32);

CHAPTER 8

1587

 // can't work with the platforms using UTF-8 fo r wchar_t
 wxASSERT_MIN_BITSIZE(wchar_t, 16);

wxASSERT_MSG

 wxASSERT_MSG (condition, msg)

Assert macro with message. An error message will be generated if the condition is false.

See also

wxASSERT (p. 1582),
wxCOMPILE_TIME_ASSERT (p. 1583)

wxCOMPILE_TIME_ASSERT

 wxCOMPILE_TIME_ASSERT (condition, msg)

Using wxCOMPILE_TIME_ASSERT results in a compilation error if the specified condition
is false. The compiler error message should include the msg identifier - please note that
it must be a valid C++ identifier and not a string unlike in the other cases.

This macro is mostly useful for testing the expressions involving thesizeof operator as
they can't be tested by the preprocessor but it is sometimes desirable to test them at the
compile time.

Note that this macro internally declares a struct whose name it tries to make unique by
using the __LINE__ in it but it may still not work if you use it on the same line in two
different source files. In this case you may either change the line in which either of them
appears on or use thewxCOMPILE_TIME_ASSERT2 (p. 1583) macro.

Also note that Microsoft Visual C++ has a bug which results in compiler errors if you use
this macro with 'Program Database For Edit And Continue' (/ZI) option, so you
shouldn't use it ('Program Database' (/Zi) is ok though) for the code making use of this
macro.

See also

wxASSERT_MSG (p. 1583),
wxASSERT_MIN_BITSIZE (p. 1582)

wxCOMPILE_TIME_ASSERT2

 wxCOMPILE_TIME_ASSERT (condition, msg, name)

This macro is identical to wxCOMPILE_TIME_ASSERT2 (p. 1583)except that it allows
you to specify a unique name for the struct internally defined by this macro to avoid
getting the compilation errors described above (p. 1583).

wxFAIL

 wxFAIL ()

CHAPTER 8

1588

Will always generate an assert error if this code is reached (in debug mode).

See also: wxFAIL_MSG (p. 1584)

wxFAIL_MSG

 wxFAIL_MSG (msg)

Will always generate an assert error with specified message if this code is reached (in
debug mode).

This macro is useful for marking unreachable" code areas, for example it may be used in
the "default:" branch of a switch statement if all possible cases are processed above.

See also

wxFAIL (p. 1583)

wxCHECK

 wxCHECK (condition, retValue)

Checks that the condition is true, returns with the given return value if not (FAILs in
debug mode). This check is done even in release mode.

wxCHECK_MSG

 wxCHECK_MSG (condition, retValue, msg)

Checks that the condition is true, returns with the given return value if not (FAILs in
debug mode). This check is done even in release mode.

This macro may be only used in non void functions, see alsowxCHECK_RET (p. 1584).

wxCHECK_RET

 wxCHECK_RET (condition, msg)

Checks that the condition is true, and returns if not (FAILs with given error message in
debug mode). This check is done even in release mode.

This macro should be used in void functions instead ofwxCHECK_MSG (p. 1584).

wxCHECK2

 wxCHECK2 (condition, operation)

Checks that the condition is true and wxFAIL (p. 1583) and executeoperation if it is not.
This is a generalisation ofwxCHECK (p. 1584) and may be used when something else
than just returning from the function must be done when the condition is false.

This check is done even in release mode.

CHAPTER 8

1589

wxCHECK2_MSG

 wxCHECK2 (condition, operation, msg)

This is the same as wxCHECK2 (p. 1584), butwxFAIL_MSG (p. 1584) with the specified
msg is called instead of wxFAIL() if the condition is false.

::wxTrap

void wxTrap ()

In debug mode (when __WXDEBUG__ is defined) this function generates a debugger
exception meaning that the control is passed to the debugger if one is attached to the
process. Otherwise the program just terminates abnormally.

In release mode this function does nothing.

Include files

<wx/debug.h>

::wxIsDebuggerRunning

bool wxIsDebuggerRunning ()

Returns true if the program is running under debugger, false otherwise.

Please note that this function is currently only implemented for Win32 and Mac builds
using CodeWarrior and always returns false elsewhere.

Environment access functions

The functions in this section allow to access (get) or change value of environment
variables in a portable way. They are currently implemented under Win32 and POSIX-
like systems (Unix).

Include files

<wx/utils.h>

wxGetenv

wxChar * wxGetEnv (const wxString& var)

This is a macro defined as getenv() or its wide char version in Unicode mode.

Note that under Win32 it may not return correct value for the variables set with
wxSetEnv (p. 1586), use wxGetEnv (p. 1585) function instead.

wxGetEnv

CHAPTER 8

1590

bool wxGetEnv (const wxString& var, wxString * value)

Returns the current value of the environment variable var in value.value may be NULL if
you just want to know if the variable exists and are not interested in its value.

Returns true if the variable exists, false otherwise.

wxSetEnv

bool wxSetEnv (const wxString& var, const wxChar * value)

Sets the value of the environment variable var (adding it if necessary) to value.

Returns true on success.

wxUnsetEnv

bool wxUnsetEnv (const wxString& var)

Removes the variable var from the environment.wxGetEnv (p. 1585) will return NULL
after the call to this function.

Returns true on success.

1591

Constants

This chapter describes the constants defined by wxWidgets.

Preprocesser symbols defined by wxWidgets

These are preprocessor symbols used in the wxWidgets source, grouped by category
(and sorted by alphabetical order inside each category). All of these macros except for
the wxUSE_XXX variety is defined if the corresponding condition is true and undefined if
it isn't, so they should be always tested using ifdef and not if .

GUI system

__WINDOWS__ any Windows, yom may also use
__WXMSW__

__WIN16__ Win16 API (not supported since wxWidgets
2.6)

__WIN32__ Win32 API

__WIN95__ Windows 95 or NT 4.0 and above system (not
NT 3.5x)

__WXBASE__ Only wxBase, no GUI features (same as
wxUSE_GUI == 0)

__WXCOCOA__ OS X using Cocoa API

__WXWINCE__ Windows CE

__WXGTK__ GTK+

__WXGTK12__ GTK+ 1.2 or higher

__WXGTK20__ GTK+ 2.0 or higher

__WXMOTIF__ Motif

__WXMOTIF20__ Motif 2.0 or higher

__WXMAC__ Mac OS all targets

__WXMAC_CLASSIC__ MacOS for Classic

__WXMAC_CARBON__ MacOS for Carbon CFM (running under Classic
or OSX) or true OS X Mach-O Builds

__WXMAC_OSX__ MacOS X Carbon Mach-O Builds

CHAPTER 9

1592

__WXMGL__ SciTech Soft MGL (__WXUNIVERSAL__ will
be also defined)

__WXMSW__ Any Windows

__WXOS2__ Identical to __WXPM__

__WXOSX__ Any Mac OS X port (either Carbon or Cocoa)

__WXPALMOS__ PalmOS

__WXPM__ OS/2 native Presentation Manager

__WXSTUBS__ Stubbed version ('template' wxWin
implementation)

__WXXT__ Xt; mutually exclusive with WX_MOTIF, not
implemented in wxWidgets 2.x

__WXX11__ wxX11 (__WXUNIVERSAL__ will be also
defined)

__WXWINE__ WINE (i.e. WIN32 on Unix)

__WXUNIVERSAL__ wxUniversal port, always defined in addition to
one of the symbols above so this should be
tested first.

__X__ any X11-based GUI toolkit except GTK+

There are two wxWidgets ports to Mac OS. One of them, wxMac, exists in two versions:
Classic and Carbon. The Classic version is the only one to work on Mac OS version 8.
The Carbon version may be built either as CFM or Mach-O (binary format, like ELF) and
the former may run under OS 9 while the latter only runs under OS X. Finally, there is a
new Cocoa port which can only be used under OS X. To summarize:

 • If you want to test for all Mac platforms, classic and OS X, you should test both
__WXMAC__ and __WXCOCOA__.

 • If you want to test for any GUI Mac port under OS X, use __WXOSX__.

 • If you want to test for any port under Mac OS X, including, for example, wxGTK
and also wxBase, use __DARWIN__ (see below).

The convention is to use the __WX prefix for these symbols, although this has not always
been followed.

Operating systems

__APPLE__ any Mac OS version

__AIX__ AIX

__BSD__ Any *BSD system

CHAPTER 9

1593

__CYGWIN__ Cygwin: Unix on Win32

__DARWIN__ Mac OS X using the BSD Unix C library (as
opposed to using the Metrowerks MSL C/C++
library)

__DATA_GENERAL__ DG-UX

__DOS_GENERAL__ DOS (used with wxMGL only)

__FREEBSD__ FreeBSD

__HPUX__ HP-UX (Unix)

__GNU__ GNU Hurd

__LINUX__ Linux

__MACH__ Mach-O Architecture (Mac OS X only builds)

__OSF__ OSF/1

__PALMOS__ PalmOS

__SGI__ IRIX

__SOLARIS__ Solaris

__SUN__ Any Sun

__SUNOS__ Sun OS

__SVR4__ SystemV R4

__SYSV__ SystemV generic

__ULTRIX__ Ultrix

__UNIX__ any Unix

__UNIX_LIKE__ Unix, BeOS or VMS

__VMS__ VMS

__WINDOWS__ any Windows

Hardware architectures (CPU)

Note that not all of these symbols are always defined, it depends on the compiler used.

__ALPHA__ DEC Alpha architecture

__INTEL__ Intel i386 or compatible

__IA64__ Intel 64 bit architecture

CHAPTER 9

1594

__POWERPC__ Motorola Power PC

Hardware type

__SMARTPHONE__ Generic mobile devices with phone buttons and
a small display

__PDA__ Personal digital assistant, usually with touch
screen

__HANDHELD__ Small but powerful computer, usually with a
keyboard

__POCKETPC__ Microsoft-powered PocketPC devices with
touch-screen

__WINCE_STANDARDSDK__ Microsoft-powered Windows CE devices, for
generic Windows CE applications

__WINCE_NET__ Microsoft-powered Windows CE .NET devices
(_WIN32_WCE is 400 or greater)

WIN32_PLATFORM_WFSP Microsoft-powered smartphone

Compilers

__BORLANDC__ Borland C++. The value of the macro
corresponds to the compiler version: 500 is 5.0.

__DJGPP__ DJGPP

__DIGITALMARS__ Digital Mars

__GNUG__ Gnu C++ on any platform, see also
wxCHECK_GCC_VERSION (p. 1515)

__GNUWIN32__ Gnu-Win32 compiler, see also
wxCHECK_W32API_VERSION (p. 1516)

__MINGW32__ MinGW

__MWERKS__ CodeWarrior MetroWerks compiler

__SUNCC__ Sun CC

__SYMANTECC__ Symantec C++

__VISAGECPP__ IBM Visual Age (OS/2)

__VISUALC__ Microsoft Visual C++. The value of this macro
corresponds to the compiler version: 1020 for
4.2 (the first supported version), 1100 for 5.0,
1200 for 6.0 and so on

CHAPTER 9

1595

__XLC__ AIX compiler

__WATCOMC__ Watcom C++. The value of this macro
corresponds to the compiler version, 1100 is
11.0 and 1200 is OpenWatcom.

_WIN32_WCE Windows CE version

Miscellaneous

__WXWINDOWS__ always defined in wxWidgets applications, see
also wxCHECK_VERSION (p. 1515)

__WXDEBUG__ defined in debug mode, undefined in release
mode

wxUSE_XXX if defined as 1, feature XXX is active (the
symbols of this form are always defined, use #if
and not #ifdef to test for them)

WX_PRECOMP is defined if precompiled headers (PCH) are in
use. In this case, wx/wxprec.h includes
wx/wx.h which, in turn, includes a number of
wxWidgets headers thus making it
unnecessary to include them explicitly.
However if this is not defined, you do need to
include them and so the usual idiom which
allows to support both cases is to first include
wx/wxprec.h and then, inside ifndef
WX_PRECOMP, individual headers you need.

_UNICODE and UNICODE both are defined if wxUSE_UNICODE is set to
1

wxUSE_GUI this particular feature test macro is defined to
1when compiling or using the library with the
GUI features activated, if it is defined as 0, only
wxBase is available.

wxUSE_BASE only used by wxWidgets internally (defined as 1
when building wxBase code, either as a
standalone library or as part of the monolithic
wxWidgets library, defined as 0 when building
GUI library only)

wxNO_RTTI is defined if the compiler RTTI support has
been switched off

wxNO_EXCEPTIONS is defined if the compiler support for C++
exceptions has been switched off

wxNO_THREADS if this macro is defined, the compilation options
don't include compiler flags needed for

CHAPTER 9

1596

multithreaded code generation. This implies
that wxUSE_THREADS is 0 and also that other
(non wx-based) threading packages cannot be
used neither.

Standard event identifiers

wxWidgets defines a special identifier value wxID_ANY which is used in the following
two situations:

 • when creating a new window you may specify wxID_ANY to let wxWidgets
assign an unused identifier to it automatically

 • when installing an event handler using either the event table macros or
wxEvtHandler::Connect (p. 468), you may use it to indicate that you want to
handle the events coming from any control, regardless of its identifier

Another standard special identifier value is wxID_NONE: this is a value which is not
matched by any other id.

wxWidgets also defines a few standard command identifiers which may be used by the
user code and also are sometimes used by wxWidgets itself. These reserved identifiers
are all in the range between wxID_LOWEST and wxID_HIGHEST and, accordingly, the
user code should avoid defining its own constants in this range.

 wxID_LOWEST = 4999,

 wxID_OPEN,
 wxID_CLOSE,
 wxID_NEW,
 wxID_SAVE,
 wxID_SAVEAS,
 wxID_REVERT,
 wxID_EXIT,
 wxID_UNDO,
 wxID_REDO,
 wxID_HELP,
 wxID_PRINT,
 wxID_PRINT_SETUP,
 wxID_PREVIEW,
 wxID_ABOUT,
 wxID_HELP_CONTENTS,
 wxID_HELP_COMMANDS,
 wxID_HELP_PROCEDURES,
 wxID_HELP_CONTEXT,
 wxID_CLOSE_ALL,

 wxID_CUT = 5030,
 wxID_COPY,
 wxID_PASTE,
 wxID_CLEAR,
 wxID_FIND,
 wxID_DUPLICATE,
 wxID_SELECTALL,
 wxID_DELETE,
 wxID_REPLACE,
 wxID_REPLACE_ALL,
 wxID_PROPERTIES,

CHAPTER 9

1597

 wxID_VIEW_DETAILS,
 wxID_VIEW_LARGEICONS,
 wxID_VIEW_SMALLICONS,
 wxID_VIEW_LIST,
 wxID_VIEW_SORTDATE,
 wxID_VIEW_SORTNAME,
 wxID_VIEW_SORTSIZE,
 wxID_VIEW_SORTTYPE,

 wxID_FILE1 = 5050,
 wxID_FILE2,
 wxID_FILE3,
 wxID_FILE4,
 wxID_FILE5,
 wxID_FILE6,
 wxID_FILE7,
 wxID_FILE8,
 wxID_FILE9,

 // Standard button IDs
 wxID_OK = 5100,
 wxID_CANCEL,
 wxID_APPLY,
 wxID_YES,
 wxID_NO,
 wxID_STATIC,
 wxID_FORWARD,
 wxID_BACKWARD,
 wxID_DEFAULT,
 wxID_MORE,
 wxID_SETUP,
 wxID_RESET,
 wxID_CONTEXT_HELP,
 wxID_YESTOALL,
 wxID_NOTOALL,
 wxID_ABORT,
 wxID_RETRY,
 wxID_IGNORE,

 wxID_UP,
 wxID_DOWN,
 wxID_HOME,
 wxID_REFRESH,
 wxID_STOP,
 wxID_INDEX,

 wxID_BOLD,
 wxID_ITALIC,
 wxID_JUSTIFY_CENTER,
 wxID_JUSTIFY_FILL,
 wxID_JUSTIFY_RIGHT,
 wxID_JUSTIFY_LEFT,
 wxID_UNDERLINE,
 wxID_INDENT,
 wxID_UNINDENT,
 wxID_ZOOM_100,
 wxID_ZOOM_FIT,
 wxID_ZOOM_IN,
 wxID_ZOOM_OUT,
 wxID_UNDELETE,
 wxID_REVERT_TO_SAVED,

 // System menu IDs (used by wxUniv):

CHAPTER 9

1598

 wxID_SYSTEM_MENU = 5200,
 wxID_CLOSE_FRAME,
 wxID_MOVE_FRAME,
 wxID_RESIZE_FRAME,
 wxID_MAXIMIZE_FRAME,
 wxID_ICONIZE_FRAME,
 wxID_RESTORE_FRAME,

 // IDs used by generic file dialog (13 consecut ive starting
from this value)
 wxID_FILEDLGG = 5900,

 wxID_HIGHEST = 5999

Keycodes

Keypresses are represented by an enumerated type, wxKeyCode. The possible values
are the ASCII character codes, plus the following:

 WXK_BACK = 8
 WXK_TAB = 9
 WXK_RETURN = 13
 WXK_ESCAPE = 27
 WXK_SPACE = 32
 WXK_DELETE = 127

 WXK_START = 300
 WXK_LBUTTON
 WXK_RBUTTON
 WXK_CANCEL
 WXK_MBUTTON
 WXK_CLEAR
 WXK_SHIFT
 WXK_CONTROL
 WXK_MENU
 WXK_PAUSE
 WXK_CAPITAL
 WXK_PRIOR
 WXK_NEXT
 WXK_END
 WXK_HOME
 WXK_LEFT
 WXK_UP
 WXK_RIGHT
 WXK_DOWN
 WXK_SELECT
 WXK_PRINT
 WXK_EXECUTE
 WXK_SNAPSHOT
 WXK_INSERT
 WXK_HELP
 WXK_NUMPAD0
 WXK_NUMPAD1
 WXK_NUMPAD2
 WXK_NUMPAD3
 WXK_NUMPAD4
 WXK_NUMPAD5
 WXK_NUMPAD6
 WXK_NUMPAD7
 WXK_NUMPAD8
 WXK_NUMPAD9

CHAPTER 9

1599

 WXK_MULTIPLY
 WXK_ADD
 WXK_SEPARATOR
 WXK_SUBTRACT
 WXK_DECIMAL
 WXK_DIVIDE
 WXK_F1
 WXK_F2
 WXK_F3
 WXK_F4
 WXK_F5
 WXK_F6
 WXK_F7
 WXK_F8
 WXK_F9
 WXK_F10
 WXK_F11
 WXK_F12
 WXK_F13
 WXK_F14
 WXK_F15
 WXK_F16
 WXK_F17
 WXK_F18
 WXK_F19
 WXK_F20
 WXK_F21
 WXK_F22
 WXK_F23
 WXK_F24
 WXK_NUMLOCK
 WXK_SCROLL
 WXK_PAGEUP,
 WXK_PAGEDOWN,

 WXK_NUMPAD_SPACE,
 WXK_NUMPAD_TAB,
 WXK_NUMPAD_ENTER,
 WXK_NUMPAD_F1,
 WXK_NUMPAD_F2,
 WXK_NUMPAD_F3,
 WXK_NUMPAD_F4,
 WXK_NUMPAD_HOME,
 WXK_NUMPAD_LEFT,
 WXK_NUMPAD_UP,
 WXK_NUMPAD_RIGHT,
 WXK_NUMPAD_DOWN,
 WXK_NUMPAD_PRIOR,
 WXK_NUMPAD_PAGEUP,
 WXK_NUMPAD_NEXT,
 WXK_NUMPAD_PAGEDOWN,
 WXK_NUMPAD_END,
 WXK_NUMPAD_BEGIN,
 WXK_NUMPAD_INSERT,
 WXK_NUMPAD_DELETE,
 WXK_NUMPAD_EQUAL,
 WXK_NUMPAD_MULTIPLY,
 WXK_NUMPAD_ADD,
 WXK_NUMPAD_SEPARATOR,
 WXK_NUMPAD_SUBTRACT,
 WXK_NUMPAD_DECIMAL,
 WXK_NUMPAD_DIVIDE,

 // the following key codes are only generated u nder Windows

CHAPTER 9

1600

currently
 WXK_WINDOWS_LEFT,
 WXK_WINDOWS_RIGHT,
 WXK_WINDOWS_MENU,
 WXK_COMMAND,

 // Hardware-specific buttons
 WXK_SPECIAL1 = 193,
 WXK_SPECIAL2,
 WXK_SPECIAL3,
 WXK_SPECIAL4,
 WXK_SPECIAL5,
 WXK_SPECIAL6,
 WXK_SPECIAL7,
 WXK_SPECIAL8,
 WXK_SPECIAL9,
 WXK_SPECIAL10,
 WXK_SPECIAL11,
 WXK_SPECIAL12,
 WXK_SPECIAL13,
 WXK_SPECIAL14,
 WXK_SPECIAL15,
 WXK_SPECIAL16,
 WXK_SPECIAL17,
 WXK_SPECIAL18,
 WXK_SPECIAL19,
 WXK_SPECIAL20

Language identifiers

The following wxLanguage constants may be used to specify the language in
wxLocale::Init (p. 848) and are returned by wxLocale::GetSystemLanguage (p. 848):

wxLANGUAGE_DEFAULT user's default language as obtained from the
operating system

wxLANGUAGE_UNKNOWN returned by GetSystemLanguage (p. 848) if it
fails to detect the default language

wxLANGUAGE_USER_DEFINED user defined languages' integer identifiers
should start from this

wxLANGUAGE_ABKHAZIAN

wxLANGUAGE_AFAR

wxLANGUAGE_AFRIKAANS

wxLANGUAGE_ALBANIAN

wxLANGUAGE_AMHARIC

wxLANGUAGE_ARABIC

wxLANGUAGE_ARABIC_ALGERIA

CHAPTER 9

1601

wxLANGUAGE_ARABIC_BAHRAIN

wxLANGUAGE_ARABIC_EGYPT

wxLANGUAGE_ARABIC_IRAQ

wxLANGUAGE_ARABIC_JORDAN

wxLANGUAGE_ARABIC_KUWAIT

wxLANGUAGE_ARABIC_LEBANON

wxLANGUAGE_ARABIC_LIBYA

wxLANGUAGE_ARABIC_MOROCCO

wxLANGUAGE_ARABIC_OMAN

wxLANGUAGE_ARABIC_QATAR

wxLANGUAGE_ARABIC_SAUDI_ARABIA

wxLANGUAGE_ARABIC_SUDAN

wxLANGUAGE_ARABIC_SYRIA

wxLANGUAGE_ARABIC_TUNISIA

wxLANGUAGE_ARABIC_UAE

wxLANGUAGE_ARABIC_YEMEN

wxLANGUAGE_ARMENIAN

wxLANGUAGE_ASSAMESE

wxLANGUAGE_AYMARA

wxLANGUAGE_AZERI

wxLANGUAGE_AZERI_CYRILLIC

wxLANGUAGE_AZERI_LATIN

wxLANGUAGE_BASHKIR

wxLANGUAGE_BASQUE

wxLANGUAGE_BELARUSIAN

wxLANGUAGE_BENGALI

wxLANGUAGE_BHUTANI

wxLANGUAGE_BIHARI

wxLANGUAGE_BISLAMA

CHAPTER 9

1602

wxLANGUAGE_BRETON

wxLANGUAGE_BULGARIAN

wxLANGUAGE_BURMESE

wxLANGUAGE_CAMBODIAN

wxLANGUAGE_CATALAN

wxLANGUAGE_CHINESE

wxLANGUAGE_CHINESE_SIMPLIFIED

wxLANGUAGE_CHINESE_TRADITIONAL

wxLANGUAGE_CHINESE_HONGKONG

wxLANGUAGE_CHINESE_MACAU

wxLANGUAGE_CHINESE_SINGAPORE

wxLANGUAGE_CHINESE_TAIWAN

wxLANGUAGE_CORSICAN

wxLANGUAGE_CROATIAN

wxLANGUAGE_CZECH

wxLANGUAGE_DANISH

wxLANGUAGE_DUTCH

wxLANGUAGE_DUTCH_BELGIAN

wxLANGUAGE_ENGLISH

wxLANGUAGE_ENGLISH_UK

wxLANGUAGE_ENGLISH_US

wxLANGUAGE_ENGLISH_AUSTRALIA

wxLANGUAGE_ENGLISH_BELIZE

wxLANGUAGE_ENGLISH_BOTSWANA

wxLANGUAGE_ENGLISH_CANADA

wxLANGUAGE_ENGLISH_CARIBBEAN

wxLANGUAGE_ENGLISH_DENMARK

wxLANGUAGE_ENGLISH_EIRE

wxLANGUAGE_ENGLISH_JAMAICA

CHAPTER 9

1603

wxLANGUAGE_ENGLISH_NEW_ZEALAND

wxLANGUAGE_ENGLISH_PHILIPPINES

wxLANGUAGE_ENGLISH_SOUTH_AFRICA

wxLANGUAGE_ENGLISH_TRINIDAD

wxLANGUAGE_ENGLISH_ZIMBABWE

wxLANGUAGE_ESPERANTO

wxLANGUAGE_ESTONIAN

wxLANGUAGE_FAEROESE

wxLANGUAGE_FARSI

wxLANGUAGE_FIJI

wxLANGUAGE_FINNISH

wxLANGUAGE_FRENCH

wxLANGUAGE_FRENCH_BELGIAN

wxLANGUAGE_FRENCH_CANADIAN

wxLANGUAGE_FRENCH_LUXEMBOURG

wxLANGUAGE_FRENCH_MONACO

wxLANGUAGE_FRENCH_SWISS

wxLANGUAGE_FRISIAN

wxLANGUAGE_GALICIAN

wxLANGUAGE_GEORGIAN

wxLANGUAGE_GERMAN

wxLANGUAGE_GERMAN_AUSTRIAN

wxLANGUAGE_GERMAN_BELGIUM

wxLANGUAGE_GERMAN_LIECHTENSTEIN

wxLANGUAGE_GERMAN_LUXEMBOURG

wxLANGUAGE_GERMAN_SWISS

wxLANGUAGE_GREEK

wxLANGUAGE_GREENLANDIC

wxLANGUAGE_GUARANI

CHAPTER 9

1604

wxLANGUAGE_GUJARATI

wxLANGUAGE_HAUSA

wxLANGUAGE_HEBREW

wxLANGUAGE_HINDI

wxLANGUAGE_HUNGARIAN

wxLANGUAGE_ICELANDIC

wxLANGUAGE_INDONESIAN

wxLANGUAGE_INTERLINGUA

wxLANGUAGE_INTERLINGUE

wxLANGUAGE_INUKTITUT

wxLANGUAGE_INUPIAK

wxLANGUAGE_IRISH

wxLANGUAGE_ITALIAN

wxLANGUAGE_ITALIAN_SWISS

wxLANGUAGE_JAPANESE

wxLANGUAGE_JAVANESE

wxLANGUAGE_KANNADA

wxLANGUAGE_KASHMIRI

wxLANGUAGE_KASHMIRI_INDIA

wxLANGUAGE_KAZAKH

wxLANGUAGE_KERNEWEK

wxLANGUAGE_KINYARWANDA

wxLANGUAGE_KIRGHIZ

wxLANGUAGE_KIRUNDI

wxLANGUAGE_KONKANI

wxLANGUAGE_KOREAN

wxLANGUAGE_KURDISH

wxLANGUAGE_LAOTHIAN

wxLANGUAGE_LATIN

CHAPTER 9

1605

wxLANGUAGE_LATVIAN

wxLANGUAGE_LINGALA

wxLANGUAGE_LITHUANIAN

wxLANGUAGE_MACEDONIAN

wxLANGUAGE_MALAGASY

wxLANGUAGE_MALAY

wxLANGUAGE_MALAYALAM

wxLANGUAGE_MALAY_BRUNEI_DARUSSALAM

wxLANGUAGE_MALAY_MALAYSIA

wxLANGUAGE_MALTESE

wxLANGUAGE_MANIPURI

wxLANGUAGE_MAORI

wxLANGUAGE_MARATHI

wxLANGUAGE_MOLDAVIAN

wxLANGUAGE_MONGOLIAN

wxLANGUAGE_NAURU

wxLANGUAGE_NEPALI

wxLANGUAGE_NEPALI_INDIA

wxLANGUAGE_NORWEGIAN_BOKMAL

wxLANGUAGE_NORWEGIAN_NYNORSK

wxLANGUAGE_OCCITAN

wxLANGUAGE_ORIYA

wxLANGUAGE_OROMO

wxLANGUAGE_PASHTO

wxLANGUAGE_POLISH

wxLANGUAGE_PORTUGUESE

wxLANGUAGE_PORTUGUESE_BRAZILIAN

wxLANGUAGE_PUNJABI

wxLANGUAGE_QUECHUA

CHAPTER 9

1606

wxLANGUAGE_RHAETO_ROMANCE

wxLANGUAGE_ROMANIAN

wxLANGUAGE_RUSSIAN

wxLANGUAGE_RUSSIAN_UKRAINE

wxLANGUAGE_SAMOAN

wxLANGUAGE_SANGHO

wxLANGUAGE_SANSKRIT

wxLANGUAGE_SCOTS_GAELIC

wxLANGUAGE_SERBIAN

wxLANGUAGE_SERBIAN_CYRILLIC

wxLANGUAGE_SERBIAN_LATIN

wxLANGUAGE_SERBO_CROATIAN

wxLANGUAGE_SESOTHO

wxLANGUAGE_SETSWANA

wxLANGUAGE_SHONA

wxLANGUAGE_SINDHI

wxLANGUAGE_SINHALESE

wxLANGUAGE_SISWATI

wxLANGUAGE_SLOVAK

wxLANGUAGE_SLOVENIAN

wxLANGUAGE_SOMALI

wxLANGUAGE_SPANISH

wxLANGUAGE_SPANISH_ARGENTINA

wxLANGUAGE_SPANISH_BOLIVIA

wxLANGUAGE_SPANISH_CHILE

wxLANGUAGE_SPANISH_COLOMBIA

wxLANGUAGE_SPANISH_COSTA_RICA

wxLANGUAGE_SPANISH_DOMINICAN_REPUBLIC

wxLANGUAGE_SPANISH_ECUADOR

CHAPTER 9

1607

wxLANGUAGE_SPANISH_EL_SALVADOR

wxLANGUAGE_SPANISH_GUATEMALA

wxLANGUAGE_SPANISH_HONDURAS

wxLANGUAGE_SPANISH_MEXICAN

wxLANGUAGE_SPANISH_MODERN

wxLANGUAGE_SPANISH_NICARAGUA

wxLANGUAGE_SPANISH_PANAMA

wxLANGUAGE_SPANISH_PARAGUAY

wxLANGUAGE_SPANISH_PERU

wxLANGUAGE_SPANISH_PUERTO_RICO

wxLANGUAGE_SPANISH_URUGUAY

wxLANGUAGE_SPANISH_US

wxLANGUAGE_SPANISH_VENEZUELA

wxLANGUAGE_SUNDANESE

wxLANGUAGE_SWAHILI

wxLANGUAGE_SWEDISH

wxLANGUAGE_SWEDISH_FINLAND

wxLANGUAGE_TAGALOG

wxLANGUAGE_TAJIK

wxLANGUAGE_TAMIL

wxLANGUAGE_TATAR

wxLANGUAGE_TELUGU

wxLANGUAGE_THAI

wxLANGUAGE_TIBETAN

wxLANGUAGE_TIGRINYA

wxLANGUAGE_TONGA

wxLANGUAGE_TSONGA

wxLANGUAGE_TURKISH

wxLANGUAGE_TURKMEN

CHAPTER 9

1608

wxLANGUAGE_TWI

wxLANGUAGE_UIGHUR

wxLANGUAGE_UKRAINIAN

wxLANGUAGE_URDU

wxLANGUAGE_URDU_INDIA

wxLANGUAGE_URDU_PAKISTAN

wxLANGUAGE_UZBEK

wxLANGUAGE_UZBEK_CYRILLIC

wxLANGUAGE_UZBEK_LATIN

wxLANGUAGE_VIETNAMESE

wxLANGUAGE_VOLAPUK

wxLANGUAGE_WELSH

wxLANGUAGE_WOLOF

wxLANGUAGE_XHOSA

wxLANGUAGE_YIDDISH

wxLANGUAGE_YORUBA

wxLANGUAGE_ZHUANG

wxLANGUAGE_ZULU

Stock items

Window IDs for which stock buttons are created (see wxButton constructor (p. 113)):

wxID_ADD "Add"

wxID_APPLY "&Apply"

wxID_BOLD "&Bold"

wxID_CANCEL "&Cancel"

wxID_CLEAR "&Clear"

wxID_CLOSE "&Close"

wxID_COPY "&Copy"

wxID_CUT "Cu&t"

CHAPTER 9

1609

wxID_DELETE "&Delete"

wxID_FIND "&Find"

wxID_REPLACE "Find and rep&lace"

wxID_BACKWARD "&Back"

wxID_DOWN "&Down"

wxID_FORWARD "&Forward"

wxID_UP "&Up"

wxID_HELP "&Help"

wxID_HOME "&Home"

wxID_INDENT "Indent"

wxID_INDEX "&Index"

wxID_ITALIC "&Italic"

wxID_JUSTIFY_CENTER "Centered"

wxID_JUSTIFY_FILL "Justified"

wxID_JUSTIFY_LEFT "Align Left"

wxID_JUSTIFY_RIGHT "Align Right"

wxID_NEW "&New"

wxID_NO "&No"

wxID_OK "&OK"

wxID_OPEN "&Open"

wxID_PASTE "&Paste"

wxID_PREFERENCES "&Preferences"

wxID_PRINT "&Print"

wxID_PREVIEW "Print previe&w"

wxID_PROPERTIES "&Properties"

wxID_EXIT "&Quit"

wxID_REDO "&Redo"

wxID_REFRESH "Refresh"

wxID_REMOVE "Remove"

CHAPTER 9

1610

wxID_REVERT_TO_SAVED "Revert to Saved"

wxID_SAVE "&Save"

wxID_SAVEAS "Save &As..."

wxID_STOP "&Stop"

wxID_UNDELETE "Undelete"

wxID_UNDERLINE "&Underline"

wxID_UNDO "&Undo"

wxID_UNINDENT "&Unindent"

wxID_YES "&Yes"

wxID_ZOOM_100 "&Actual Size"

wxID_ZOOM_FIT "Zoom to &Fit"

wxID_ZOOM_IN "Zoom &In"

wxID_ZOOM_OUT "Zoom &Out"

1611

Classes by category

A classification of wxWidgets classes by category.

Managed windows

There are several types of window that are directly controlled by the window manager
(such as MS Windows, or the Motif Window Manager). Frames and dialogs are similar in
wxWidgets, but only dialogs may be modal.

wxTopLevelWindow (p. 1354) Any top level window, dialog or frame

wxDialog (p. 391) Dialog box

wxFrame (p. 555) Normal frame

wxMDIChildFrame (p. 875) MDI child frame

wxMDIParentFrame (p. 880) MDI parent frame

wxMiniFrame (p. 934) A frame with a small title bar

wxSplashScreen (p. 1179) Splash screen class

wxPropertySheetDialog (p. 1033) Property sheet dialog

wxTipWindow (p. 1333) Shows text in a small window

wxWizard (p. 1478) A wizard dialog

See also Common dialogs .

Miscellaneous windows

The following are a variety of classes that are derived from wxWindow.

wxPanel (p. 985) A window whose colour changes according to current
user settings

wxScrolledWindow (p. 1098) Window with automatically managed scrollbars

wxGrid (p. 593) A grid (table) window

wxSplitterWindow (p. 1183) Window which can be split vertically or horizontally

wxStatusBar (p. 1210) Implements the status bar on a frame

wxToolBar (p. 1337) Toolbar class

wxNotebook (p. 956) Notebook class

wxListbook (p. 807) Similar to notebook but using list control

wxChoicebook (p. 137) Similar to notebook but using choice control

CHAPTER 10

1612

wxSashWindow (p. 1082) Window with four optional sashes that can be
dragged

wxSashLayoutWindow (p. 1079) Window that can be involved in an IDE-like layout
arrangement

wxVScrolledWindow (p. 1416) As wxScrolledWindow but supports lines of variable
height

wxWizardPage (p. 1484) A base class for the page in wizard dialog.

wxWizardPageSimple (p. 1486) A page in wizard dialog.

Common dialogs

Overview (p. 1721)

Common dialogs are ready-made dialog classes which are frequently used in an
application.

wxDialog (p. 391) Base class for common dialogs

wxColourDialog (p. 163) Colour chooser dialog

wxDirDialog (p. 408) Directory selector dialog

wxFileDialog (p. 491) File selector dialog

wxFindReplaceDialog (p. 530) Text search/replace dialog

wxMultiChoiceDialog (p. 949) Dialog to get one or more selections from a list

wxSingleChoiceDialog (p. 1116) Dialog to get a single selection from a list and return
the string

wxTextEntryDialog (p. 1300) Dialog to get a single line of text from the user

wxPasswordEntryDialog (p. 988) Dialog to get a password from the user

wxFontDialog (p. 548) Font chooser dialog

wxPageSetupDialog (p. 973) Standard page setup dialog

wxPrintDialog (p. 1011) Standard print dialog

wxProgressDialog (p. 1031) Progress indication dialog

wxMessageDialog (p. 927) Simple message box dialog

wxWizard (p. 1478) A wizard dialog.

Controls

Typically, these are small windows which provide interaction with the user. Controls that
are not static can have validators (p. 1394) associated with them.

CHAPTER 10

1613

wxControl (p. 205) The base class for controls

wxButton (p. 112) Push button control, displaying text

wxBitmapButton (p. 89) Push button control, displaying a bitmap

wxToggleButton (p. 1335) A button which stays pressed when clicked by user.

wxCalendarCtrl (p. 117) Control showing an entire calendar month

wxCheckBox (p. 128) Checkbox control

wxCheckListBox (p. 132) A listbox with a checkbox to the left of each item

wxChoice (p. 134) Choice control (a combobox without the editable
area)

wxComboBox (p. 164) A choice with an editable area

wxDatePickerCtrl (p. 237) Small date picker control

wxGauge (p. 574) A control to represent a varying quantity, such as
time remaining

wxGenericDirCtrl (p. 582) A control for displaying a directory tree

wxHtmlListBox (p. 700) A listbox showing HTML content

wxStaticBox (p. 1203) A static, or group box for visually grouping related
controls

wxListBox (p. 808) A list of strings for single or multiple selection

wxListCtrl (p. 813) A control for displaying lists of strings and/or icons,
plus a multicolumn report view

wxListView (p. 840) A simpler interface (façade for wxListCtrl in report
mode

wxTextCtrl (p. 1279) Single or multiline text editing control

wxTreeCtrl (p. 1359) Tree (hierarchy) control

wxScrollBar (p. 1092) Scrollbar control

wxSpinButton (p. 1172) A spin or 'up-down' control

wxSpinCtrl (p. 1175) A spin control - i.e. spin button and text control

wxStaticText (p. 1208) One or more lines of non-editable text

wxStaticBitmap (p. 1201) A control to display a bitmap

wxRadioBox (p. 1041) A group of radio buttons

wxRadioButton (p. 1047) A round button to be used with others in a mutually

CHAPTER 10

1614

exclusive way

wxSlider (p. 1138) A slider that can be dragged by the user

wxVListBox (p. 1409) A listbox supporting variable height rows

Menus

wxMenu (p. 899) Displays a series of menu items for selection

wxMenuBar (p. 912) Contains a series of menus for use with a frame

wxMenuItem (p. 922) Represents a single menu item

Window layout

There are two different systems for laying out windows (and dialogs in particular). One is
based upon so-called sizers and it requires less typing, thinking and calculating and will
in almost all cases produce dialogs looking equally well on all platforms, the other is
based on so-called constraints and is deprecated, though still available.

Sizer overview (p. 1694) describes sizer-based layout.

These are the classes relevant to sizer-based layout.

wxSizer (p. 1124) Abstract base class

wxGridSizer (p. 652) A sizer for laying out windows in a grid with all fields
having the same size

wxFlexGridSizer (p. 531) A sizer for laying out windows in a flexible grid

wxGridBagSizer (p. 627) Another grid sizer that lets you specify the cell an
item is in, and items can span rows and/or columns.

wxBoxSizer (p. 98) A sizer for laying out windows in a row or column

wxStaticBoxSizer (p. 1205) Same as wxBoxSizer, but with a surrounding static
box

Constraints overview (p. 1691) describes constraints-based layout.

These are the classes relevant to constraints-based window layout.

wxIndividualLayoutConstraint (p. 774) Represents a single constraint dimension

wxLayoutConstraints (p. 799) Represents the constraints for a window class

Device contexts

Overview (p. 1714)

Device contexts are surfaces that may be drawn on, and provide an abstraction that
allows parameterisation of your drawing code by passing different device contexts.

CHAPTER 10

1615

wxBufferedDC (p. 107) A helper device context for double buffered drawing.

wxBufferedPaintDC (p. 108) A helper device context for double buffered drawing
inside OnPaint .

wxClientDC (p. 141) A device context to access the client area outside
OnPaint events

wxPaintDC (p. 979) A device context to access the client area inside
OnPaint events

wxWindowDC (p. 1476) A device context to access the non-client area

wxScreenDC (p. 1091) A device context to access the entire screen

wxDC (p. 353) The device context base class

wxMemoryDC (p. 895) A device context for drawing into bitmaps

wxMetafileDC (p. 930) A device context for drawing into metafiles

wxMirrorDC (p. 937) A proxy device context allowing for simple mirroring.

wxPostScriptDC (p. 1000) A device context for drawing into PostScript files

wxPrinterDC (p. 1018) A device context for drawing to printers

Graphics device interface

Bitmaps overview (p. 1711)

These classes are related to drawing on device contexts and windows.

wxColour (p. 157) Represents the red, blue and green elements of a
colour

wxDCClipper (p. 372) Wraps the operations of setting and destroying the
clipping region

wxBitmap (p. 76) Represents a bitmap

wxBrush (p. 99) Used for filling areas on a device context

wxBrushList (p. 105) The list of previously-created brushes

wxCursor (p. 216) A small, transparent bitmap representing the cursor

wxFont (p. 535) Represents fonts

wxFontList (p. 550) The list of previously-created fonts

wxIcon (p. 730) A small, transparent bitmap for assigning to frames
and drawing on device contexts

wxImage (p. 742) A platform-independent image class

CHAPTER 10

1616

wxImageList (p. 769) A list of images, used with some controls

wxMask (p. 866) Represents a mask to be used with a bitmap for
transparent drawing

wxPen (p. 991) Used for drawing lines on a device context

wxPenList (p. 997) The list of previously-created pens

wxPalette (p. 981) Represents a table of indices into RGB values

wxRegion (p. 1061) Represents a simple or complex region on a window
or device context

wxRendererNative (p. 1072) Abstracts high-level drawing primitives

Events

Overview (p. 1674)

An event object contains information about a specific event. Event handlers (usually
member functions) have a single, event argument.

wxActivateEvent (p. 29) A window or application activation event

wxCalendarEvent (p. 125) Used with wxCalendarCtrl (p. 117)

wxCalculateLayoutEvent (p. 116) Used to calculate window layout

wxCloseEvent (p. 147) A close window or end session event

wxCommandEvent (p. 172) An event from a variety of standard controls

wxContextMenuEvent (p. 202) An event generated when the user issues a context
menu command

wxDateEvent (p. 237) Used with wxDatePickerCtrl (p. 237)

wxDialUpEvent (p. 401) Event send by wxDialUpManager (p. 401)

wxDropFilesEvent (p. 448) A drop files event

wxEraseEvent (p. 463) An erase background event

wxEvent (p. 464) The event base class

wxFindDialogEvent (p. 527) Event sent bywxFindReplaceDialog (p. 530)

wxFocusEvent (p. 534) A window focus event

wxKeyEvent (p. 792) A keypress event

wxIconizeEvent (p. 739) An iconize/restore event

wxIdleEvent (p. 740) An idle event

CHAPTER 10

1617

wxInitDialogEvent (p. 777) A dialog initialisation event

wxJoystickEvent (p. 789) A joystick event

wxListEvent (p. 831) A list control event

wxMaximizeEvent (p. 868) A maximize event

wxMenuEvent (p. 921) A menu event

wxMouseCaptureChangedEvent (p. 939) A mouse capture changed event

wxMouseEvent (p. 940) A mouse event

wxMoveEvent (p. 948) A move event

wxNotebookEvent (p. 964) A notebook control event

wxNotifyEvent (p. 966) A notification event, which can be vetoed

wxPaintEvent (p. 980) A paint event

wxProcessEvent (p. 1030) A process ending event

wxQueryLayoutInfoEvent (p. 1039) Used to query layout information

wxScrollEvent (p. 1107) A scroll event from sliders, stand-alone scrollbars
and spin buttons

wxScrollWinEvent (p. 1110) A scroll event from scrolled windows

wxSizeEvent (p. 1123) A size event

wxSocketEvent (p. 1166) A socket event

wxSpinEvent (p. 1178) An event from wxSpinButton (p. 1172)

wxSplitterEvent (p. 1181) An event from wxSplitterWindow (p. 1183)

wxSysColourChangedEvent (p. 1255) A system colour change event

wxTimerEvent (p. 1325) A timer expiration event

wxTreeEvent (p. 1377) A tree control event

wxUpdateUIEvent (p. 1381) A user interface update event

wxWindowCreateEvent (p. 1476) A window creation event

wxWindowDestroyEvent (p. 1477) A window destruction event

wxWizardEvent (p. 1483) A wizard event

Validators

Overview (p. 1689)

CHAPTER 10

1618

These are the window validators, used for filtering and validating user input.

wxValidator (p. 1394) Base validator class

wxTextValidator (p. 1312) Text control validator class

wxGenericValidator (p. 586) Generic control validator class

Data structures

These are the data structure classes supported by wxWidgets.

wxCmdLineParser (p. 149) Command line parser class

wxDateSpan (p. 241) A logical time interval.

wxDateTime (p. 246) A class for date/time manipulations

wxArray (p. 51) A dynamic array implementation

wxArrayString (p. 63) An efficient container for storing wxString (p. 1226)
objects

wxHashMap (p. 653) A simple hash map implementation

wxHashSet (p. 658) A simple hash set implementation

wxHashTable (p. 662) A simple hash table implementation (deprecated, use
wxHashMap)

wxList (p. 801) A simple linked list implementation

wxLongLong (p. 863) A portable 64 bit integer type

wxNode (p. 954) Represents a node in the wxList implementation

wxObject (p. 967) The root class for most wxWidgets classes

wxPathList (p. 989) A class to help search multiple paths

wxPoint (p. 999) Representation of a point

wxRect (p. 1050) A class representing a rectangle

wxRegEx (p. 1057) Regular expression support

wxRegion (p. 1061) A class representing a region

wxString (p. 1226) A string class

wxStringTokenizer (p. 1253) A class for interpreting a string as a list of tokens or
words

wxRealPoint (p. 1050) Representation of a point using floating point
numbers

CHAPTER 10

1619

wxSize (p. 1121) Representation of a size

wxTimeSpan (p. 1326) A time interval.

wxURI (p. 1386) Represents a Uniform Resource Identifier

wxVariant (p. 1396) A class for storing arbitrary types that may change at
run-time

Run-time class information system

Overview (p. 1643)

wxWidgets supports run-time manipulation of class information, and dynamic creation of
objects given class names.

wxClassInfo (p. 138) Holds run-time class information

wxObject (p. 967) Root class for classes with run-time information

RTTI macros (p. 1567) Macros for manipulating run-time information

Logging features

Overview (p. 1667)

wxWidgets provides several classes and functions for message logging. Please see the
wxLog overview (p. 1667) for more details.

wxLog (p. 850) The base log class

wxLogStderr (p. 860) Log messages to a C STDIO stream

wxLogStream (p. 860) Log messages to a C++ iostream

wxLogTextCtrl (p. 861) Log messages to a wxTextCtrl (p. 1279)

wxLogWindow (p. 861) Log messages to a log frame

wxLogGui (p. 858) Default log target for GUI programs

wxLogNull (p. 858) Temporarily suppress message logging

wxLogChain (p. 856) Allows to chain two log targets

wxLogPassThrough (p. 859) Allows to filter the log messages

wxStreamToTextRedirector (p. 1225) Allows to redirect output sent to cout to a
wxTextCtrl (p. 1279)

Log functions (p. 1573) Error and warning logging functions

Debugging features

Overview (p. 1670)

CHAPTER 10

1620

wxWidgets supports some aspects of debugging an application through classes,
functions and macros.

wxDebugContext (p. 378) Provides memory-checking facilities

Debugging macros (p. 1581) Debug macros for assertion and checking

WXDEBUG_NEW (p. 1571) Use this macro to give further debugging information

wxDebugReport (p. 383) Base class for creating debug reports in case of a
program crash.

wxDebugReportCompress (p. 388) Class for creating compressed debug reports.

wxDebugReportUpload (p. 390) Class for uploading compressed debug reports via
HTTP.

wxDebugReportPreview (p. 388) Abstract base class for previewing the contents of a
debug report.

wxDebugReportPreviewStd (p. 389) Standard implementation of
wxDebugReportPreview.

Networking classes

wxWidgets provides its own classes for socket based networking.

wxDialUpManager (p. 401) Provides functions to check the status of network
connection and to establish one

wxIPV4address (p. 782) Represents an Internet address

wxIPaddress (p. 780) Represents an Internet address

wxSocketBase (p. 1148) Represents a socket base object

wxSocketClient (p. 1164) Represents a socket client

wxSocketServer (p. 1168) Represents a socket server

wxSocketEvent (p. 1166) A socket event

wxFTP (p. 567) FTP protocol class

wxHTTP (p. 729) HTTP protocol class

wxURL (p. 1392) Represents a Universal Resource Locator

Interprocess communication

Overview (p. 1765)

wxWidgets provides simple interprocess communications facilities based on Windows
DDE, but available on most platforms using TCP.

CHAPTER 10

1621

wxClient (p. 140), wxDDEClient (p. 372) Represents a client

wxConnection (p. 198), wxDDEConnection (p. 374) Represents the connection between
a client and a server

wxServer (p. 1115), wxDDEServer (p. 377) Represents a server

Document/view framework

Overview (p. 1725)

wxWidgets supports a document/view framework which provides housekeeping for a
document-centric application.

wxDocument (p. 437) Represents a document

wxView (p. 1405) Represents a view

wxDocTemplate (p. 431) Manages the relationship between a document class
and a view class

wxDocManager (p. 419) Manages the documents and views in an application

wxDocChildFrame (p. 417) A child frame for showing a document view

wxDocParentFrame (p. 430) A parent frame to contain views

Printing framework

Overview (p. 1738)

A printing and previewing framework is implemented to make it relatively straightforward
to provide document printing facilities.

wxPreviewFrame (p. 1003) Frame for displaying a print preview

wxPreviewCanvas (p. 1001) Canvas for displaying a print preview

wxPreviewControlBar (p. 1001) Standard control bar for a print preview

wxPrintDialog (p. 1011) Standard print dialog

wxPageSetupDialog (p. 973) Standard page setup dialog

wxPrinter (p. 1016) Class representing the printer

wxPrinterDC (p. 1018) Printer device context

wxPrintout (p. 1019) Class representing a particular printout

wxPrintPreview (p. 1022) Class representing a print preview

wxPrintData (p. 1004) Represents information about the document being
printed

wxPrintDialogData (p. 1012) Represents information about the print dialog

CHAPTER 10

1622

wxPageSetupDialogData (p. 974) Represents information about the page setup dialog

Drag and drop and clipboard classes

Drag and drop and clipboard overview (p. 1740)

wxDataObject (p. 229) Data object class

wxDataFormat (p. 224) Represents a data format

wxTextDataObject (p. 1297) Text data object class

wxFileDataObject (p. 490) File data object class

wxBitmapDataObject (p. 94) Bitmap data object class

wxCustomDataObject (p. 222) Custom data object class

wxClipboard (p. 144) Clipboard class

wxDropTarget (p. 452) Drop target class

wxFileDropTarget (p. 495) File drop target class

wxTextDropTarget (p. 1299) Text drop target class

wxDropSource (p. 449) Drop source class

File related classes

wxWidgets has several small classes to work with disk files, see file classes overview (p.
1665) for more details.

wxFileName (p. 500) Operations with the file name and attributes

wxDir (p. 405) Class for enumerating files/subdirectories.

wxDirTraverser (p. 410) Class used together with wxDir for recursively
enumerating the files/subdirectories

wxFile (p. 482) Low-level file input/output class.

wxFFile (p. 475) Another low-level file input/output class.

wxTempFile (p. 1272) Class to safely replace an existing file

wxTextFile (p. 1301) Class for working with text files as with arrays of lines

wxStandardPaths (p. 1198) Paths for standard directories

Stream classes

wxWidgets has its own set of stream classes, as an alternative to often buggy standard
stream libraries, and to provide enhanced functionality.

wxStreamBase (p. 1218) Stream base class

CHAPTER 10

1623

wxStreamBuffer (p. 1220) Stream buffer class

wxInputStream (p. 777) Input stream class

wxOutputStream (p. 971) Output stream class

wxCountingOutputStream (p. 213) Stream class for querying what size a stream would
have.

wxFilterInputStream (p. 526) Filtered input stream class

wxFilterOutputStream (p. 527) Filtered output stream class

wxBufferedInputStream (p. 109) Buffered input stream class

wxBufferedOutputStream (p. 110) Buffered output stream class

wxMemoryInputStream (p. 898) Memory input stream class

wxMemoryOutputStream (p. 898) Memory output stream class

wxDataInputStream (p. 226) Platform-independent binary data input stream class

wxDataOutputStream (p. 234) Platform-independent binary data output stream
class

wxTextInputStream (p. 1307) Platform-independent text data input stream class

wxTextOutputStream (p. 1310) Platform-independent text data output stream class

wxFileInputStream (p. 499) File input stream class

wxFileOutputStream (p. 516) File output stream class

wxFFileInputStream (p. 480) Another file input stream class

wxFFileOutputStream (p. 481) Another file output stream class

wxTempFileOutputStream (p. 1274) Stream to safely replace an existing file

wxStringInputStream (p. 1252) String input stream class

wxStringOutputStream (p. 1252) String output stream class

wxZlibInputStream (p. 1507) Zlib (compression) input stream class

wxZlibOutputStream (p. 1508) Zlib (compression) output stream class

wxZipInputStream (p. 1503) Input stream for reading from ZIP archives

wxZipOutputStream (p. 1505) Output stream for writing from ZIP archives

wxSocketInputStream (p. 1167) Socket input stream class

wxSocketOutputStream (p. 1167) Socket output stream class

CHAPTER 10

1624

Threading classes

Multithreading overview (p. 1739)

wxWidgets provides a set of classes to make use of the native thread capabilities of the
various platforms.

wxThread (p. 1315) Thread class

wxThreadHelper (p. 1321) Manages background threads easily

wxMutex (p. 951) Mutex class

wxMutexLocker (p. 954) Mutex locker utility class

wxCriticalSection (p. 213) Critical section class

wxCriticalSectionLocker (p. 214) Critical section locker utility class

wxCondition (p. 181) Condition class

wxSemaphore (p. 1111) Semaphore class

HTML classes

wxWidgets provides a set of classes to display text in HTML format. These class include
a help system based on the HTML widget.

wxHtmlHelpController (p. 689) HTML help controller class

wxHtmlWindow (p. 715) HTML window class

wxHtmlEasyPrinting (p. 685) Simple class for printing HTML

wxHtmlPrintout (p. 706) Generic HTML wxPrintout class

wxHtmlParser (p. 702) Generic HTML parser class

wxHtmlTagHandler (p. 712) HTML tag handler, pluginable into wxHtmlParser

wxHtmlWinParser (p. 723) HTML parser class for wxHtmlWindow

wxHtmlWinTagHandler (p. 729) HTML tag handler, pluginable into wxHtmlWinParser

Virtual file system classes

wxWidgets provides a set of classes that implement an extensible virtual file system,
used internally by the HTML classes.

wxFSFile (p. 565) Represents a file in the virtual file system

wxFileSystem (p. 517) Main interface for the virtual file system

wxFileSystemHandler (p. 520) Class used to announce file system type

CHAPTER 10

1625

XML-based resource system classes

XML-based resource system (XRC) overview (p. 1700)

Resources allow your application to create controls and other user interface elements
from specifications stored in an XML format.

wxXmlResource (p. 1487) The main class for working with resources.

wxXmlResourceHandler (p. 1492) The base class for XML resource handlers.

Online help

wxHelpController (p. 664) Family of classes for controlling help windows

wxHtmlHelpController (p. 689) HTML help controller class

wxContextHelp (p. 202) Class to put application into context-sensitive help
mode

wxContextHelpButton (p. 204) Button class for putting application into context-
sensitive help mode

wxHelpProvider (p. 671) Abstract class for context-sensitive help provision

wxSimpleHelpProvider (p. 1116) Class for simple context-sensitive help provision

wxHelpControllerHelpProvider (p. 669) Class for context-sensitive help provision
via a help controller

wxToolTip (p. 1353) Class implementing tooltips

Database classes

Database classes overview (p. 1742)

wxWidgets provides a set of classes for accessing Microsoft's ODBC (Open Database
Connectivity) product, donated by Remstar. This is known as wxODBC.

wxDb (p. 271) ODBC database connection

wxDbTable (p. 312) Provides access to a database table

wxDbInf (p. 312)

wxDbTableInf (p. 348)

wxDbColDef (p. 303)

wxDbColInf (p. 305)

wxDbColDataPtr (p. 303)

wxDbColFor (p. 304)

CHAPTER 10

1626

wxDbConnectInf (p. 306)

wxDbIdxDef (p. 311)

Miscellaneous

wxApp (p. 30) Application class

wxCaret (p. 126) A caret (cursor) object

wxCmdLineParser (p. 149) Command line parser class

wxConfig (p. 184) Classes for configuration reading/writing (using either
INI files or registry)

wxDllLoader (p. 414) Class to work with shared libraries.

wxGLCanvas (p. 588) Canvas that you can render OpenGL calls to.

wxGLContext (p. 591) Class to ease sharing of OpenGL data resources.

wxLayoutAlgorithm (p. 796) An alternative window layout facility

wxProcess (p. 1025) Process class

wxTimer (p. 1323) Timer class

wxStopWatch (p. 1217) Stop watch class

wxMimeTypesManager (p. 931) MIME-types manager class

wxSystemSettings (p. 1259) System settings class for obtaining various global
parameters

wxSystemOptions (p. 1256) System options class for run-time configuration

wxAcceleratorTable (p. 19) Accelerator table

wxAutomationObject (p. 72) OLE automation class

wxFontMapper (p. 551) Font mapping, finding suitable font for given
encoding

wxEncodingConverter (p. 459) Encoding conversions

wxCalendarDateAttr (p. 122) Used with wxCalendarCtrl (p. 117)

wxQuantize (p. 1038) Class to perform quantization, or colour reduction

wxSingleInstanceChecker (p. 1119) Check that only single program instance is running

1627

Topic overviews

This chapter contains a selection of topic overviews.

Changes since 2.4.x

Listed here are the deprecated and incompatible changes made to wxWidgets.

For other changes (such as additional features, bug fixes, etc.) see the changes.txt file
located in the docs directory of your wxWidgets directory.

Incompatible changes since 2.4.x

wxEvent and its derivatives losing public variable members

wxEvent (p. 464) and its derivatives (p. 1674) do not have their public variable members
public any more. Please use Get/Set accessors.

New window repainting behaviour

Windows are no longer fully repainted when resized; use the new style
wxFULL_REPAINT_ON_RESIZE to force this (wxNO_FULL_REPAINT_ON_RESIZE
still exists but doesn't do anything any more, this behaviour is default now).

Window class member changes

wxWindow::m_font and m_backgroundColour/m_foregroundColour are no longer always
set, use GetFont() (p. 1438), GetBack (p. 1434)/ForegroundColour() (p. 1438) to access
them, and they will be dynamically determined if necessary.

Sizers Internal Overhaul

The sizers (p. 1694) have had some fundamental internal changes in the 2.5.2 and 2.5.3
releases intended to make them do more of the "Right Thing" but also be as backwards
compatible as possible. First a bit about how things used to work:

 • The size that a window had when Add() (p. 1125)ed to the sizer was assumed to
be its minimal size, and that size would always be used by default when
calculating layout size and positions, and the sizer itself would keep track of that
minimal size.

 • If the window item was Add() (p. 1125)ed with the wxADJUST_MINSIZE flag
then when layout was calculated the item's GetBestSize (p. 1435) would be
used to reset the minimal size that the sizer used.

The main thrust of the new sizer changes was to make behaviour like
wxADJUST_MINSIZE be the default, and also to push the tracking of the minimal size
to the window itself (since it knows its own needs) instead of having the sizer take care
of it. Consequently these changes were made:

CHAPTER 11

1628

 • The wxFIXED_MINSIZE flag was added to allow for the old behaviour. When
this flag is used the size a window has when Add() (p. 1125)ed to the sizer will
be treated as its minimal size and it will not be readjusted on each layout.

 • The minimum size stored in wxWindow and settable with SetSizeHints (p. 1468)
or SetMinSize (p. 1460) will by default be used by the sizer (if it was set) as the
minimal size of the sizer item. If the minsize was not set (or was only partially
set) then the window's best size is fetched and it is used instead of (or blended
with) the minsize. wxWindow::GetBestFittingSize (p. 1434) was added to
facilitate getting the size to be used by the sizers.

 • The best size of a window is cached so it doesn't need to be recalculated on
every layout. wxWindow::InvalidateBestSize (p. 1446) was added and should be
called (usually just internally in control methods) whenever something is done
that would make the best size change.

 • All wxControls (p. 205) were changed to set the minsize to what is passed to the
constructor or their Create method, and also to set the real size of the control to
the blending of the minsize and bestsize. wxWindow::SetBestFittingSize (p.
1458) was added to help with this, although most controls don't need to call it
directly because it is called indirectly via the SetInitialBestSize (p. 1460) called in
the base classes.

At this time, the only situation known not to work the same as before is the following:

win = new SomeWidget(parent);
win->SetSize(SomeNonDefaultSize);
sizer->Add(win);

In this case the old code would have used the new size as the minimum, but now the
sizer will use the default size as the minimum rather than the size set later. It is an easy
fix though, just move the specification of the size to the constructor (assuming that
SomeWidget will set its minsize there like the rest of the controls do) or call SetMinSize
(p. 1460) instead of SetSize (p. 1466).

In order to fit well with this new scheme of things, all wxControls (p. 205) or custom
controls should do the following things. (Depending on how they are used you may also
want to do the same thing for non-control custom windows.)

 • Either override or inherit a meaningful DoGetBestSize (p. 1430) method that
calculates whatever size is "best" for the control. Once that size is calculated
then there should normally be a call to CacheBestSize (p. 1425) to save it for
later use, unless for some reason you want the best size to be recalculated on
every layout.

 • Any method that changes the attributes of the control such that the best size will
change should call InvalidateBestSize (p. 1446) so it will be recalculated the
next time it is needed.

 • The control's constructor and/or Create method should ensure that the minsize
is set to the size passed in, and that the control is sized to a blending of the min
size and best size. This can be done by calling SetBestFittingSize (p. 1458).

CHAPTER 11

1629

Massive wxURL Rewrite

wxURL (p. 1392) has undergone some radical changes.

 • Many accessors of wxURL (p. 1392) - GetHostName, GetProtocolName, and
GetPath, have been replaced by its parent's (wxURI (p. 1386)) counterparts -
GetServer (p. 1389), GetScheme (p. 1389), and GetPath (p. 1388), respectively.

 • ConvertToValidURI has been replaced by wxURI (p. 1386). Do not use
ConvertToValidURI for future applications.

 • ConvertFromURI has been replaced by wxURI::Unescape (p. 1391).

Minor incompatible changes since 2.4.x

 • no initialization/cleanup can be done in wxApp's constructor or destructor
because they are now called much earlier/later than before; please move any
exiting code from there to wxApp::OnInit() (p. 37)/OnExit() (p. 36)

 • also, OnExit() (p. 36) is not called if OnInit() (p. 37) fails

 • finally the program exit code is OnRun() (p. 37) return value, not OnExit() (p. 36)
one

 • wxTheApp can't be assigned to any longer, use wxApp::SetInstance() (p. 39)
instead

 • wxFileType::GetIcon() (p. 525) returns wxIconLocation (p. 739), not wxIcon (p.
730)

 • wxColourDatabase is not a wxList (p. 801) any more, use AddColour to add new
colours

 • wxWindow::Clear() is now called ClearBackground()

 • pointer returned by wxFont::GetNativeFontInfo() must not be deleted now

 • wxMouseEvent::Moving() doesn't return true if mouse is being dragged any
more

 • (most) controls now inherit parents colours by default, override
ShouldInheritColours() to return false if you don't want this to happen

 • wxApp::SendIdleEvents() (p. 38) now takes 2 arguments

 • wxTabView::GetLayers() changed return type from wxList& (p. 801) to
wxTabLayerList& (when WXWIN_COMPATIBILITY_2_4 == 0)

 • wxID_SEPARATOR (id used for the menu separators) value changed from -1 to
-2

 • wxGetNumberFromUser() is now in separate wx/numdlg.h, not wx/textdlg.h

 • wxChoice and wxCombobox now handle their size in the same way as in all the

CHAPTER 11

1630

other ports under MSW, new code is actually correct but different from weird
stuff they were doing before so the behaviour of your programs might change

 • wxTaskBarIcon (p. 1264) objects must now be destroyed before the application
can exit. Previously, the application terminated if there were no top level
windows; now it terminates if there are no top level windows or taskbar icons
left.

 • wxZlibInputStream (p. 1507) is not by default compatible with the output of the
2.4.x version of wxZlibOutputStream (p. 1508). However, there is a compatibility
mode, switched on by passing wxZLIB_24COMPATIBLE to the constructor.

 • when WXWIN_COMPATIBILITY_2_4 == 0 wxHashTable (p. 662) uses a new
implementation not using wxList (p. 801) keyed interface (the same used when
wxUSE_STL == 1), the only incompatibility being that Next() returns a
wxHashTable::Node* instead of a wxNode*.

 • non-const wxDC methods GetBackground(), GetBrush(), GetFont() and
GetPen() as well as wxWindow methods GetFont() and GetCursor() don't exist
any more, please fix your code -- it never worked correctly anyhow if you
modified the objects returned by these methods so you should simply switch to
using const methods.

 • wxWindow::GetFont() (p. 1438) now returns wxFont (p. 535) object instead of
reference

 • EVT_XXX macros are now type-safe; code that uses wrong type for event
handler's argument will no longer compile.

 • Identical functionality of wxFileDialog::ParseWildcard,
wxGenericDirCtrl::ParseFilter, Motif and MSW parsing native dialogs is now
accessible in ::wxParseCommonDialogsFilter

 • wxNotebookSizer and wxBookCtrlSizer are now deprecated -- they are no
longer needed, you can treat wxNotebook as any other control and put it directly
into the sizer that was wxNotebookSizer's parent sizer in old code.

 • wxFile (p. 482) methods now return either wxFileOffset or wxFileSize_t which
may be a 64 bit integer type, even on 32 bit platforms, instead of off_t and so the
return value of wxFile::Length() (p. 486), for example, shouldn't be assigned to
off_t variable any more (the compiler might warn you about this)

 • wxListItem::m_data is now of type wxUIntPtr, not long, for compatibility with 64
bit systems

 • wxSizer::Add/Insert returns pointer to wxSizerItem just added so conditions
writeen with if(Add(..)==true) will not work. Use if(Add(..)) instead.

 • New wxBrush::IsHatch() (p. 103) checking for brush type replaces IS_HATCH
macro.

 • wxSystemSettings::GetSystem*() members deprecated and replaced with
wxSystemSettings::Get*().

CHAPTER 11

1631

Deprecated changes since 2.4.x

 • wxURL::GetInputStream() and similar functionality has been deprecated in favor
of other ways of connecting, such as though sockets or wxFileSystem.

 • wxDocManager::GetNoHistoryFiles() renamed to GetHistoryFilesCount() (p.
424)

 • wxSizer::Remove(wxWindow *), use Detach() instead (it is more clear)

 • wxSizer::Set/GetOption(): use Set/GetProportion() instead

 • wxKeyEvent::KeyCode(): use GetKeyCode instead

 • wxList::Number, First, Last, Nth: use GetCount, GetFirst/Last, Item instead

 • wxNode::Next, Previous, Data: use GetNext, GetPrevious, GetData instead

 • wxListBase::operator wxList&(): use typesafe lists instead

 • wxTheFontMapper: use wxFontMapper::Get() (p. 553) instead

 • wxStringHashTable: use wxHashMap instead

 • wxHashTableLong: use wxHashMap instead

 • wxArrayString::GetStringArray: use wxCArrayString or alternative wxWidgets
methods taking wxArrayString

 • wxArrayString::Remove(index, count): use RemoveAt instead

 • wxTreeItemId conversion to long is deprecated and shouldn't be used

 • wxTreeCtrl::GetFirst/NextChild() 2nd argument now has type
wxTreeItemIdValue and not long, please change declarations of "cookie"s in
your code accordingly -- otherwise your code won't work on 64 bit platforms

 • (MSW only) wxWindow::GetUseCtl3D(), GetTransparentBackground() and
SetTransparent() as well as wxNO_3D and wxUSER_COLOURS styles

 • wxList (p. 801) keyed interface: use wxHashMap (p. 653) instead

 • wxColourDatabase::FindColour(): use Find() (p. 163) instead (NOTE: it has a
different return type)

 • wxHashTable::Next: use wxHashTable::Node* or
wxHashTable::compatibility_iterator to store the return value

 • wxWave class; use wxSound instead

 • The wxHIDE_READONLY flag for wxFileDialog was not implemented and has
now been removed

 • wxTaskBarIcon::OnXXX() virtual methods: use events instead

CHAPTER 11

1632

 • obsolete and not used wxUSE_GENERIC_DIALOGS_IN_MSW has been
removed

 • wxDbTable::wxDbTable with wxChar* deprecated, same with wxString& instead.

Notes on using the reference

In the descriptions of the wxWidgets classes and their member functions, note that
descriptions of inherited member functions are not duplicated in derived classes unless
their behaviour is different. So in using a class such as wxScrolledWindow, be aware
that wxWindow functions may be relevant.

Note also that arguments with default values may be omitted from a function call, for
brevity. Size and position arguments may usually be given a value of -1 (the default), in
which case wxWidgets will choose a suitable value.

Most strings are returned as wxString objects. However, for remaining char * return
values, the strings are allocated and deallocated by wxWidgets. Therefore, return values
should always be copied for long-term use, especially since the same buffer is often
used by wxWidgets.

The member functions are given in alphabetical order except for constructors and
destructors which appear first.

Writing a wxWidgets application: a rough guide

To set a wxWidgets application going, you will need to derive a wxApp (p. 30) class and
override wxApp::OnInit (p. 37).

An application must have a top-level wxFrame (p. 555) or wxDialog (p. 391) window.
Each frame may contain one or more instances of classes such as wxPanel (p. 985),
wxSplitterWindow (p. 1183) or other windows and controls.

A frame can have a wxMenuBar (p. 912), a wxToolBar (p. 1337), a status line, and a
wxIcon (p. 730) for when the frame is iconized.

A wxPanel (p. 985) is used to place controls (classes derived from wxControl (p. 205))
which are used for user interaction. Examples of controls are wxButton (p. 112),
wxCheckBox (p. 128), wxChoice (p. 134), wxListBox (p. 808), wxRadioBox (p. 1041),
wxSlider (p. 1138).

Instances of wxDialog (p. 391) can also be used for controls and they have the
advantage of not requiring a separate frame.

Instead of creating a dialog box and populating it with items, it is possible to choose one
of the convenient common dialog classes, such as wxMessageDialog (p. 927) and
wxFileDialog (p. 491).

You never draw directly onto a window - you use a device context (DC). wxDC (p. 353)
is the base for wxClientDC (p. 141), wxPaintDC (p. 979), wxMemoryDC (p. 895),
wxPostScriptDC (p. 1000), wxMemoryDC (p. 895), wxMetafileDC (p. 930) and

CHAPTER 11

1633

wxPrinterDC (p. 1018). If your drawing functions have wxDC as a parameter, you can
pass any of these DCs to the function, and thus use the same code to draw to several
different devices. You can draw using the member functions of wxDC , such as
wxDC::DrawLine (p. 359) and wxDC::DrawText (p. 362). Control colour on a window
(wxColour (p. 157)) with brushes (wxBrush (p. 99)) and pens (wxPen (p. 991)).

To intercept events, you add a DECLARE_EVENT_TABLE macro to the window class
declaration, and put a BEGIN_EVENT_TABLE ... END_EVENT_TABLE block in the
implementation file. Between these macros, you add event macros which map the event
(such as a mouse click) to a member function. These might override predefined event
handlers such as for wxKeyEvent (p. 792) and wxMouseEvent (p. 940).

Most modern applications will have an on-line, hypertext help system; for this, you need
wxHelp and the wxHelpController (p. 664) class to control wxHelp.

GUI applications aren't all graphical wizardry. List and hash table needs are catered for
by wxList (p. 801) and wxHashMap (p. 653). You will undoubtedly need some platform-
independent file functions (p. 1525), and you may find it handy to maintain and search a
list of paths using wxPathList (p. 989). There's a miscellany (p. 1555) of operating
system and other functions.

See also Classes by Category (p. 1607) for a list of classes.

wxWidgets Hello World sample

As many people have requested a mini-sample to be published here so that some quick
judgment concerning syntax and basic principles can be made, you can now look at
wxWidgets' "Hello World":

You have to include wxWidgets' header files, of course. This can be done on a file by file
basis (such as #include "wx/window.h") or using one global include (#include "wx/wx.h").
This is also useful on platforms which support precompiled headers such as all major
compilers on the Windows platform.

//
// file name: hworld.cpp
//
// purpose: wxWidgets "Hello world"
//

// For compilers that support precompilation, inclu des "wx/wx.h".
#include "wx/wxprec.h"

#ifdef __BORLANDC__
 #pragma hdrstop
#endif

#ifndef WX_PRECOMP
 #include "wx/wx.h"
#endif

Practically every app should define a new class derived from wxApp. By overriding
wxApp's OnInit() the program can be initialized, e.g. by creating a new main window.

class MyApp: public wxApp

CHAPTER 11

1634

{
 virtual bool OnInit();
};

The main window is created by deriving a class from wxFrame and giving it a menu and
a status bar in its constructor. Also, any class that wishes to respond to any "event"
(such as mouse clicks or messages from the menu or a button) must declare an event
table using the macro below. Finally, the way to react to such events must be done in
"handlers". In our sample, we react to two menu items, one for "Quit" and one for
displaying an "About" window. These handlers should not be virtual.

class MyFrame: public wxFrame
{
public:
 MyFrame(const wxString& title, const wxPoint& p os, const
wxSize& size);

 void OnQuit(wxCommandEvent& event);
 void OnAbout(wxCommandEvent& event);

private:
 DECLARE_EVENT_TABLE()
};

In order to be able to react to a menu command, it must be given a unique identifier such
as a const or an enum.

enum
{
 ID_Quit = 1,
 ID_About,
};

We then proceed to actually implement an event table in which the events are routed to
their respective handler functions in the class MyFrame. There are predefined macros
for routing all common events, ranging from the selection of a list box entry to a resize
event when a user resizes a window on the screen. If -1 is given as the ID, the given
handler will be invoked for any event of the specified type, so that you could add just one
entry in the event table for all menu commands or all button commands etc. The origin of
the event can still be distinguished in the event handler as the (only) parameter in an
event handler is a reference to a wxEvent object, which holds various information about
the event (such as the ID of and a pointer to the class, which emitted the event).

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU(ID_Quit, MyFrame::OnQuit)
 EVT_MENU(ID_About, MyFrame::OnAbout)
END_EVENT_TABLE()

As in all programs there must be a "main" function. Under wxWidgets main is
implemented using this macro, which creates an application instance and starts the
program.

IMPLEMENT_APP(MyApp)

As mentioned above, wxApp::OnInit() is called upon startup and should be used to
initialize the program, maybe showing a "splash screen" and creating the main window
(or several). The frame should get a title bar text ("Hello World") and a position and start-

CHAPTER 11

1635

up size. One frame can also be declared to be the top window. Returning true indicates
a successful initialization.

bool MyApp::OnInit()
{
 MyFrame *frame = new MyFrame("Hello World", wx Point(50,50),
wxSize(450,340));
 frame->Show(true);
 SetTopWindow(frame);
 return true;
}

In the constructor of the main window (or later on) we create a menu with two menu
items as well as a status bar to be shown at the bottom of the main window. Both have
to be "announced" to the frame with respective calls.

MyFrame::MyFrame(const wxString& title, const wxPoi nt& pos, const
wxSize& size)
 : wxFrame((wxFrame *)NULL, -1, title, pos, s ize)
{
 wxMenu *menuFile = new wxMenu;

 menuFile->Append(ID_About, "&About...");
 menuFile->AppendSeparator();
 menuFile->Append(ID_Quit, "E&xit");

 wxMenuBar *menuBar = new wxMenuBar;
 menuBar->Append(menuFile, "&File");

 SetMenuBar(menuBar);

 CreateStatusBar();
 SetStatusText("Welcome to wxWidgets!");
}

Here are the actual event handlers. MyFrame::OnQuit() closes the main window by
calling Close(). The parameter true indicates that other windows have no veto power
such as after asking "Do you really want to close?". If there is no other main window left,
the application will quit.

void MyFrame::OnQuit(wxCommandEvent& WXUNUSED(event))
{
 Close(true);
}

MyFrame::OnAbout() will display a small window with some text in it. In this case a
typical "About" window with information about the program.

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(even t))
{
 wxMessageBox("This is a wxWidgets' Hello world sample",
 "About Hello World", wxOK | wxICO N_INFORMATION
);
}

wxWidgets samples

CHAPTER 11

1636

Probably the best way to learn wxWidgets is by reading the source of some 50+ samples
provided with it. Many aspects of wxWidgets programming can be learnt from them, but
sometimes it is not simple to just choose the right sample to look at. This overview aims
at describing what each sample does/demonstrates to make it easier to find the relevant
one if a simple grep through all sources didn't help. They also provide some notes about
using the samples and what features of wxWidgets are they supposed to test.

There are currently more than 50 different samples as part of wxWidgets and this list is
not complete. You should start your tour of wxWidgets with theminimal sample (p. 1632)
which is the wxWidgets version of "Hello, world!". It shows the basic structure of
wxWidgets program and is the most commented sample of all - looking at its source
code is recommended.

The next most useful sample is probably the controls (p. 1633)one which shows many of
wxWidgets standard controls, such as buttons, listboxes, checkboxes, comboboxes etc.

Other, more complicated controls, have their own samples. In this category you may find
the following samples showing the corresponding controls:

wxCalendarCtrl (p. 1632) Calendar a.k.a. date picker control

wxListCtrl (p. 1637) List view control

wxTreeCtrl (p. 1641) Tree view control

wxGrid (p. 1636) Grid control

Finally, it might be helpful to do a search in the entire sample directory if you can't find
the sample showing the control you are interested in by name. Most classes contained in
wxWidgets occur in at least one of the samples.

Minimal sample

The minimal sample is what most people will know under the term Hello World, i.e. a
minimal program that doesn't demonstrate anything apart from what is needed to write a
program that will display a "hello" dialog. This is usually a good starting point for learning
how to use wxWidgets.

Art provider sample

The artprov sample shows how you can customize the look of standard wxWidgets
dialogs by replacing default bitmaps/icons with your own versions. It also shows how you
can use wxArtProvider to get stock bitmaps for use in your application.

Calendar sample

This font shows the calendar control (p. 117) in action. It shows how to configure the
control (see the different options in the calendar menu) and also how to process the
notifications from it.

Checklist sample

CHAPTER 11

1637

This sample demonstrates use of the wxCheckListBox (p. 132)class intercepting check,
select and double click events. It also tests use of various methods modifying the
control, such as by deleting items from it or inserting new ones (these functions are
actually implemented in the parent class wxListBox (p. 808) so the sample tests that
class as well). The layout of the dialog is created using a wxBoxSizer (p.
98)demonstrating a simple dynamic layout.

Config sample

This sample demonstrates the wxConfig (p. 184) classes in a platform independent way,
i.e. it uses text based files to store a given configuration under Unix and uses the
Registry under Windows.

See wxConfig overview (p. 1672) for the descriptions of all features of this class.

Controls sample

The controls sample is the main test program for most simple controls used in
wxWidgets. The sample tests their basic functionality, events, placement, modification in
terms of colour and font as well as the possibility to change the controls
programmatically, such as adding an item to a list box etc. Apart from that, the sample
uses a wxNotebook (p. 956) and tests most features of this special control (using bitmap
in the tabs, usingwxSizers (p. 1124) and constraints (p. 799) within notebook pages,
advancing pages programmatically and vetoing a page change by intercepting the
wxNotebookEvent (p. 964).

The various controls tested are listed here:

wxButton (p. 112) Push button control, displaying text

wxBitmapButton (p. 89) Push button control, displaying a bitmap

wxCheckBox (p. 128) Checkbox control

wxChoice (p. 134) Choice control (a combobox without the editable
area)

wxComboBox (p. 164) A choice with an editable area

wxGauge (p. 574) A control to represent a varying quantity, such as
time remaining

wxStaticBox (p. 1203) A static, or group box for visually grouping related
controls

wxListBox (p. 808) A list of strings for single or multiple selection

wxSpinCtrl A spin ctrl with a text field and a 'up-down' control

wxSpinButton (p. 1172) A spin or 'up-down' control

wxStaticText (p. 1208) One or more lines of non-editable text

CHAPTER 11

1638

wxStaticBitmap (p. 1201) A control to display a bitmap

wxRadioBox (p. 1041) A group of radio buttons

wxRadioButton (p. 1047) A round button to be used with others in a mutually
exclusive way

wxSlider (p. 1138) A slider that can be dragged by the user

Database sample

The database sample is a small test program showing how to use the ODBC classes
written by Remstar Intl. Obviously, this sample requires a database with ODBC support
to be correctly installed on your system.

DebugRpt sample

This sample shows how to use wxDebugReport (p. 383) class to generate a debug
report in case of a program crash or otherwise. On start up, it proposes to either crash
itself (by dereferencing a NULL pointer) or generate debug report without doing it. Next it
initializes the debug report with standard information adding a custom file to it (just a
timestamp) and allows to view the information gathered using wxDebugReportPreview
(p. 388).

For the report processing part of the sample to work you should make available a Web
server accepting form uploads, otherwise wxDebugReportUpload (p. 390) will report an
error.

Dialogs sample

This sample shows how to use the common dialogs available from wxWidgets. These
dialogs are described in detail in the Common dialogs overview (p. 1721).

Dialup sample

This sample shows the wxDialUpManager (p. 401)class. In the status bar, it displays the
information gathered through its interface: in particular, the current connection status
(online or offline) and whether the connection is permanent (in which case a string 'LAN'
appears in the third status bar field - but note that you may be on a LAN not connected
to the Internet, in which case you will not see this) or not.

Using the menu entries, you may also dial or hang up the line if you have a modem
attached and (this only makes sense for Windows) list the available connections.

DnD sample

This sample shows both clipboard and drag and drop in action. It is quite non trivial and
may be safely used as a basis for implementing the clipboard and drag and drop
operations in a real-life program.

CHAPTER 11

1639

When you run the sample, its screen is split in several parts. On the top, there are two
listboxes which show the standard derivations ofwxDropTarget (p.
452):wxTextDropTarget (p. 1299) andwxFileDropTarget (p. 495).

The middle of the sample window is taken by the log window which shows what is going
on (of course, this only works in debug builds) and may be helpful to see the sequence
of steps of data transfer.

Finally, the last part is used for dragging text from it to either one of the listboxes (only
one will accept it) or another application. The last functionality available from the main
frame is to paste a bitmap from the clipboard (or, in the case of the Windows version,
also a metafile) - it will be shown in a new frame.

So far, everything we mentioned was implemented with minimal amount of code using
standard wxWidgets classes. The more advanced features are demonstrated if you
create a shape frame from the main frame menu. A shape is a geometric object which
has a position, size and color. It models some application-specific data in this sample. A
shape object supports its own private wxDataFormat (p. 224) which means that you may
cut and paste it or drag and drop (between one and the same or different shapes) from
one sample instance to another (or the same). However, chances are that no other
program supports this format and so shapes can also be rendered as bitmaps which
allows them to be pasted/dropped in many other applications (and, under Windows, also
as metafiles which are supported by most of Windows programs as well - try
Write/Wordpad, for example).

Take a look at DnDShapeDataObject class to see how you may usewxDataObject (p.
229) to achieve this.

Dynamic sample

This sample is a very small sample that demonstrates use of thewxEvtHandler::Connect
(p. 468) method. This method should be used whenever it is not known at compile time
which control will receive which event or which controls are actually going to be in a
dialog or frame. This is most typically the case for any scripting language that would
work as a wrapper for wxWidgets or programs where forms or similar datagrams can be
created by the users.

See also the event sample (p. 1635)

Event sample

The event sample demonstrates various features of the wxWidgets events. It shows
using dynamic events and connecting/disconnecting the event handlers during run time
and also usingPushEventHandler() (p. 1451) andPopEventHandler() (p. 1450).

It replaces the old dynamic sample.

Except(ions) sample

This very simple sample shows how to use C++ exceptions in wxWidgets programs, i.e.
where to catch the exception which may be thrown by the program code. It doesn't do

CHAPTER 11

1640

anything very exciting by itself, you need to study its code to understand what goes on.

You need to build the library with wxUSE_EXCEPTIONS being set to 1and compile your
code with C++ exceptions support to be able to build this sample.

Exec sample

The exec sample demonstrates the wxExecute (p. 1519) andwxShell (p. 1522) functions.
Both of them are used to execute the external programs and the sample shows how to
do this synchronously (waiting until the program terminates) or asynchronously
(notification will come later).

It also shows how to capture the output of the child process in both synchronous and
asynchronous cases and how to kill the processes withwxProcess::Kill (p. 1028) and test
for their existence withwxProcess::Exists (p. 1029).

Font sample

The font sample demonstrates wxFont (p. 535),wxFontEnumerator (p. 549)
andwxFontMapper (p. 551) classes. It allows you to see the fonts available (to
wxWidgets) on the computer and shows all characters of the chosen font as well.

Grid sample

TODO.

HTML samples

Eight HTML samples (you can find them in directory samples/html) cover all features
of the HTML sub-library.

Test demonstrates how to create wxHtmlWindow (p. 715)and also shows most
supported HTML tags.

Widget shows how you can embed ordinary controls or windows within an HTML page.
It also nicely explains how to write new tag handlers and extend the library to work with
unsupported tags.

About may give you an idea how to write good-looking About boxes.

Zip demonstrates use of virtual file systems in wxHTML. The zip archives handler (ships
with wxWidgets) allows you to access HTML pages stored in a compressed archive as if
they were ordinary files.

Virtual is yet another virtual file systems demo. This one generates pages at run-time.
You may find it useful if you need to display some reports in your application.

Printing explains use of wxHtmlEasyPrinting (p. 685)class which serves as as-simple-
as-possible interface for printing HTML documents without much work. In fact, only few
function calls are sufficient.

CHAPTER 11

1641

Help and Helpview are variations on displaying HTML help (compatible with MS HTML
Help Workshop). Help shows how to embedwxHtmlHelpController (p. 689) in your
application while Helpview is a simple tool that only pops up the help window and
displays help books given at command line.

Image sample

The image sample demonstrates use of the wxImage (p. 742) class and shows how to
download images in a variety of formats, currently PNG, GIF, TIFF, JPEG, BMP, PNM
and PCX. The top of the sample shows two rectangles, one of which is drawn directly in
the window, the other one is drawn into awxBitmap (p. 76), converted to a wxImage,
saved as a PNG image and then reloaded from the PNG file again so that conversions
between wxImage and wxBitmap as well as loading and saving PNG files are tested.

At the bottom of the main frame there is a test for using a monochrome bitmap by
drawing into a wxMemoryDC (p. 895). The bitmap is then drawn specifying the
foreground and background colours withwxDC::SetTextForeground (p. 371)
andwxDC::SetTextBackground (p. 371) (on the left). The bitmap is then converted to a
wxImage and the foreground colour (black) is replaced with red using wxImage::Replace
(p. 759).

Internat(ionalization) sample

The not very clearly named internat sample demonstrates the wxWidgets
internationalization (i18n for short from now on) features. To be more precise, it only
shows localization support, i.e. support for translating the program messages into
another language while true i18n would also involve changing the other aspects of the
programs behaviour.

More information about this sample can be found in the readme.txt file in its directory.
Please see also i18n overview (p. 1660).

Layout sample

The layout sample demonstrates the two different layout systems offered by wxWidgets.
When starting the program, you will see a frame with some controls and some graphics.
The controls will change their size whenever you resize the entire frame and the exact
behaviour of the size changes is determined using the wxLayoutConstraints (p.
799)class. See also the overview (p. 1691) and thewxIndividualLayoutConstraint (p.
774)class for further information.

The menu in this sample offers two more tests, one showing how to use a wxBoxSizer
(p. 98) in a simple dialog and the other one showing how to use sizers in connection with
a wxNotebook (p. 956)class. See also wxSizer (p. 1124).

Listctrl sample

This sample shows the wxListCtrl (p. 813) control. Different modes supported by the
control (list, icons, small icons, report) may be chosen from the menu.

CHAPTER 11

1642

The sample also provides some timings for adding/deleting/sorting a lot of (several
thousands) items into the control.

Mediaplayer sample

This sample demonstrates how to use all the features ofwxMediaCtrl (p. 886) and play
various types of sound, video, and other files.

It replaces the old dynamic sample.

Notebook sample

This samples shows wxBookCtrl (p. 1720) family of controls. Although initially it was
written to demonstrate wxNotebook (p. 956)only, it can now be also used to see
wxListbook (p. 807) andwxChoicebook (p. 137) in action. Test each of the controls, their
orientation, images and pages using commands through menu.

Render sample

This sample shows how to replace the default wxWidgetsrenderer (p. 1072) and also
how to write a shared library (DLL) implementing a renderer and load and unload it
during the run-time.

Rotate sample

This is a simple example which demonstrates how to rotate an image with the
wxImage::Rotate (p. 759) method. The rotation can be done without interpolation (left
mouse button) which will be faster, or with interpolation (right mouse button) which is
slower but gives better results.

Scroll subwindow sample

This sample demonstrates use of the wxScrolledWindow (p. 1098)class including
placing subwindows into it and drawing simple graphics. It uses theSetTargetWindow (p.
1107) method and thus the effect of scrolling does not show in the scrolled window itself,
but in one of its subwindows.

Additionally, this samples demonstrates how to optimize drawing operations in
wxWidgets, in particular using the wxWindow::IsExposed (p. 1446) method with the aim
to prevent unnecessary drawing in the window and thus reducing or removing flicker on
screen.

Sockets sample

The sockets sample demonstrates how to use the communication facilities provided by
wxSocket (p. 1148). There are two different applications in this sample: a server, which
is implemented using awxSocketServer (p. 1168) object, and a client, which is
implemented as a wxSocketClient (p. 1164).

The server binds to the local address, using TCP port number 3000, sets up an event

CHAPTER 11

1643

handler to be notified of incoming connection requests (wxSOCKET_CONNECTION
events), and sits there, waiting for clients (listening, in socket parlance). For each
accepted connection, a new wxSocketBase (p. 1148) object is created. These socket
objects are independent from the server that created them, so they set up their own
event handler, and then request to be notified of wxSOCKET_INPUT (incoming data) or
wxSOCKET_LOST (connection closed at the remote end) events. In the sample, the
event handler is the same for all connections; to find out which socket the event is
addressed to, the GetSocket (p. 1167) function is used.

Although it might take some time to get used to the event-oriented system upon which
wxSocket is built, the benefits are many. See, for example, that the server application,
while being single-threaded (and of course without using fork() or ugly select() loops)
can handle an arbitrary number of connections.

The client starts up unconnected, so you can use the Connect... option to specify the
address of the server you are going to connect to (the TCP port number is hard-coded
as 3000). Once connected, a number of tests are possible. Currently, three tests are
implemented. They show how to use the basic IO calls in wxSocketBase (p. 1148), such
as Read (p. 1158), Write (p. 1163),ReadMsg (p. 1159) and WriteMsg (p. 1163), and how
to set up the correct IO flags depending on what you are going to do. See the comments
in the code for more information. Note that because both clients and connection objects
in the server set up an event handler to catch wxSOCKET_LOST events, each one is
immediately notified if the other end closes the connection.

There is also a URL test which shows how to use the wxURL (p. 1392) class to fetch
data from a given URL.

The sockets sample is work in progress. Some things to do:

 • More tests for basic socket functionality.

 • More tests for protocol classes (wxProtocol and its descendants).

 • Tests for the recently added (and still in alpha stage) datagram sockets.

 • New samples which actually do something useful (suggestions accepted).

Sound sample

The sound sample shows how to use wxSound (p. 1170) for simple audio output (e.g.
notifications).

Statbar sample

This sample shows how to create and use wxStatusBar. Although most of the samples
have a statusbar, they usually only create a default one and only do it once.

Here you can see how to recreate the statusbar (with possibly different number of fields)
and how to use it to show icons/bitmaps and/or put arbitrary controls into it.

Text sample

CHAPTER 11

1644

This sample demonstrates four features: firstly the use and many variants of the
wxTextCtrl (p. 1279) class (single line, multi line, read only, password, ignoring TAB,
ignoring ENTER).

Secondly it shows how to intercept a wxKeyEvent (p. 792) in both the raw form using the
EVT_KEY_UP and EVT_KEY_DOWN macros and the higher level from using the
EVT_CHAR macro. All characters will be logged in a log window at the bottom of the main
window. By pressing some of the function keys, you can test some actions in the text ctrl
as well as get statistics on the text ctrls, which is useful for testing if these statistics
actually are correct.

Thirdly, on platforms which support it, the sample will offer to copy text to
thewxClipboard (p. 144) and to paste text from it. The GTK version will use the so called
PRIMARY SELECTION, which is the pseudo clipboard under X and best known from
pasting text to the XTerm program.

Last not least: some of the text controls have tooltips and the sample also shows how
tooltips can be centrally disabled and their latency controlled.

Thread sample

This sample demonstrates use of threads in connection with GUI programs. There are
two fundamentally different ways to use threads in GUI programs and either way has to
take care of the fact that the GUI library itself usually is not multi-threading safe, i.e. that
it might crash if two threads try to access the GUI class simultaneously. One way to
prevent that is have a normal GUI program in the main thread and some worker threads
which work in the background. In order to make communication between the main
thread and the worker threads possible, wxWidgets offers the wxPostEvent (p.
1563)function and this sample makes use of this function.

The other way to use a so called Mutex (such as those offered in the wxMutex (p.
951)class) that prevent threads from accessing the GUI classes as long as any other
thread accesses them. For this, wxWidgets has the wxMutexGuiEnter (p. 1525)and
wxMutexGuiLeave (p. 1525) functions, both of which are used and tested in the sample
as well.

See also Multithreading overview (p. 1739) and wxThread (p. 1315).

Toolbar sample

The toolbar sample shows the wxToolBar (p. 1337) class in action.

The following things are demonstrated:

 • Creating the toolbar using wxToolBar::AddTool (p. 1341)and
wxToolBar::AddControl (p. 1340): see MyApp::InitToolbar in the sample.

 • Using EVT_UPDATE_UI handler for automatically enabling/disabling toolbar
buttons without having to explicitly call EnableTool. This is done in
MyFrame::OnUpdateCopyAndCut.

 • Using wxToolBar::DeleteTool (p. 1343) andwxToolBar::InsertTool (p. 1348) to

CHAPTER 11

1645

dynamically update the toolbar.

Some buttons in the main toolbar are check buttons, i.e. they stay checked when
pressed. On the platforms which support it, the sample also adds a combobox to the
toolbar showing how you can use arbitrary controls and not only buttons in it.

If you toggle another toolbar in the sample (using Ctrl-A) you will also see the radio
toolbar buttons in action: the first three buttons form a radio group, i.e. checking any of
them automatically unchecks the previously checked one.

Treectrl sample

This sample demonstrates using the wxTreeCtrl (p. 1359) class. Here you may see how
to process various notification messages sent by this control and also when they occur
(by looking at the messages in the text control in the bottom part of the frame).

Adding, inserting and deleting items and branches from the tree as well as sorting (in
default alphabetical order as well as in custom one) is demonstrated here as well - try
the corresponding menu entries.

Wizard sample

This sample shows the so-called wizard dialog (implemented usingwxWizard (p. 1478)
and related classes). It shows almost all features supported:

 • Using bitmaps with the wizard and changing them depending on the page
shown (notice that wxValidationPage in the sample has a different image from
the other ones)

 • Using TransferDataFromWindow (p. 1473)to verify that the data entered is
correct before passing to the next page (done in wxValidationPage which forces
the user to check a checkbox before continuing).

 • Using more elaborated techniques to allow returning to the previous page, but
not continuing to the next one or vice versa (in wxRadioboxPage)

 • This (wxRadioboxPage) page also shows how the page may process the
Cancel button itself instead of relying on the wizard parent to do it.

 • Normally, the order of the pages in the wizard is known at compile-time, but
sometimes it depends on the user choices: wxCheckboxPage shows how to
dynamically decide which page to display next (see alsowxWizardPage (p.
1484))

wxApp overview

Classes: wxApp (p. 30)

A wxWidgets application does not have a main procedure; the equivalent is the OnInit
(p. 37) member defined for a class derived from wxApp. OnInit will usually create a top
window as a bare minimum.

CHAPTER 11

1646

Unlike in earlier versions of wxWidgets, OnInit does not return a frame. Instead it returns
a boolean value which indicates whether processing should continue (true) or not (false).
You call wxApp::SetTopWindow (p. 39) to let wxWidgets know about the top window.

Note that the program's command line arguments, represented by argc and argv, are
available from within wxApp member functions.

An application closes by destroying all windows. Because all frames must be destroyed
for the application to exit, it is advisable to use parent frames wherever possible when
creating new frames, so that deleting the top level frame will automatically delete child
frames. The alternative is to explicitly delete child frames in the top-level frame's
wxCloseEvent (p. 147) handler.

In emergencies the wxExit (p. 1521) function can be called to kill the application however
normally the application shuts down automatically, see below (p. 1642).

An example of defining an application follows:

class DerivedApp : public wxApp
{
public:
 virtual bool OnInit();
};

IMPLEMENT_APP(DerivedApp)

bool DerivedApp::OnInit()
{
 wxFrame *the_frame = new wxFrame(NULL, ID_MYFRAME , argv[0]);
 ...
 the_frame->Show(true);
 SetTopWindow(the_frame);

 return true;
}

Note the use of IMPLEMENT_APP(appClass), which allows wxWidgets to dynamically
create an instance of the application object at the appropriate point in wxWidgets
initialization. Previous versions of wxWidgets used to rely on the creation of a global
application object, but this is no longer recommended, because required global
initialization may not have been performed at application object construction time.

You can also use DECLARE_APP(appClass) in a header file to declare the wxGetApp
function which returns a reference to the application object. Otherwise you can only use
the global wxTheApp pointer which is of type wxApp * .

Application shutdown

The application normally shuts down when the last of its top level windows is closed.
This is normally the expected behaviour and means that it is enough to call Close() (p.
1427) in response to the "Exit" menu command if your program has a single top level
window. If this behaviour is not desirable wxApp::SetExitOnFrameDelete (p. 39) can be
called to change it. Note that starting from wxWidgets 2.3.3 such logic doesn't apply for
the windows shown before the program enters the main loop: in other words, you can
safely show a dialog from wxApp::OnInit (p. 37) and not be afraid that your application

CHAPTER 11

1647

terminates when this dialog -- which is the last top level window for the moment -- is
closed.

Another aspect of the application shutdown is OnExit (p. 36) which is called when the
application exits but before wxWidgets cleans up its internal structures. You should
delete all wxWidgets object that you created by the time OnExit finishes. In particular, do
not destroy them from application class' destructor!

For example, this code may crash:

class MyApp : public wxApp
{
 public:
 wxCHMHelpController m_helpCtrl;
 ...
};

The reason for that is that m_helpCtrl is a member object and is thus destroyed from
MyApp destructor. But MyApp object is deleted after wxWidgets structures that
wxCHMHelpController depends on were uninitialized! The solution is to destroy HelpCtrl
in OnExit:

class MyApp : public wxApp
{
 public:
 wxCHMHelpController *m_helpCtrl;
 ...
};

bool MyApp::OnInit()
{
 ...
 m_helpCtrl = new wxCHMHelpController;
 ...
}

int MyApp::OnExit()
{
 delete m_helpCtrl;
 return 0;
}

Runtime class information (aka RTTI) overview

Classes: wxObject (p. 967), wxClassInfo (p. 138).

One of the failings of C++ used to be that no run-time information was provided about a
class and its position in the inheritance hierarchy. Another, which still persists, is that
instances of a class cannot be created just by knowing the name of a class, which
makes facilities such as persistent storage hard to implement.

Most C++ GUI frameworks overcome these limitations by means of a set of macros and
functions and wxWidgets is no exception. As it originated before the addition of RTTI to
the C++ standard and as support for it is still missing from some (albeit old) compilers,
wxWidgets doesn't (yet) use it, but provides its own macro-based RTTI system.

CHAPTER 11

1648

In the future, the standard C++ RTTI will be used though and you're encouraged to use
whenever possible the wxDynamicCast() (p. 1571) macro which, for the implementations
that support it, is defined just as dynamic_cast<> and uses wxWidgets RTTI for all the
others. This macro is limited to wxWidgets classes only and only works with pointers
(unlike the real dynamic_cast<> which also accepts references).

Each class that you wish to be known to the type system should have a macro such as
DECLARE_DYNAMIC_CLASS just inside the class declaration. The macro
IMPLEMENT_DYNAMIC_CLASS should be in the implementation file. Note that these
are entirely optional; use them if you wish to check object types, or create instances of
classes using the class name. However, it is good to get into the habit of adding these
macros for all classes.

Variations on these macros (p. 1567) are used for multiple inheritance, and abstract
classes that cannot be instantiated dynamically or otherwise.

DECLARE_DYNAMIC_CLASS inserts a static wxClassInfo declaration into the class,
initialized by IMPLEMENT_DYNAMIC_CLASS. When initialized, the wxClassInfo object
inserts itself into a linked list (accessed through wxClassInfo::first and wxClassInfo::next
pointers). The linked list is fully created by the time all global initialisation is done.

IMPLEMENT_DYNAMIC_CLASS is a macro that not only initialises the static
wxClassInfo member, but defines a global function capable of creating a dynamic object
of the class in question. A pointer to this function is stored in wxClassInfo, and is used
when an object should be created dynamically.

wxObject::IsKindOf (p. 969) uses the linked list of wxClassInfo. It takes a wxClassInfo
argument, so use CLASSINFO(className) to return an appropriate wxClassInfo pointer
to use in this function.

The function wxCreateDynamicObject (p. 1571) can be used to construct a new object of
a given type, by supplying a string name. If you have a pointer to the wxClassInfo object
instead, then you can simply call wxClassInfo::CreateObject (p. 139).

wxClassInfo

Runtime class information (aka RTTI) overview (p. 1643)

Class: wxClassInfo (p. 138)

This class stores meta-information about classes. An application may use macros such
as DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS to record run-
time information about a class, including:

 • its position in the inheritance hierarchy;

 • the base class name(s) (up to two base classes are permitted);

 • a string representation of the class name;

 • a function that can be called to construct an instance of this class.

The DECLARE_... macros declare a static wxClassInfo variable in a class, which is

CHAPTER 11

1649

initialized by macros of the form IMPLEMENT_... in the implementation C++ file. Classes
whose instances may be constructed dynamically are given a global constructor function
which returns a new object.

You can get the wxClassInfo for a class by using the CLASSINFO macro, e.g.
CLASSINFO(wxFrame). You can get the wxClassInfo for an object using
wxObject::GetClassInfo.

See also wxObject (p. 967) and wxCreateDynamicObject (p. 1571).

Example

In a header file frame.h:

class wxFrame : public wxWindow
{
DECLARE_DYNAMIC_CLASS(wxFrame)

private:
 wxString m_title;

public:
 ...
};

In a C++ file frame.cpp:

IMPLEMENT_DYNAMIC_CLASS(wxFrame, wxWindow)

wxFrame::wxFrame()
{
...
}

wxString overview

Classes: wxString (p. 1226), wxArrayString (p. 63), wxStringTokenizer (p. 1253)

Introduction

wxString is a class which represents a character string of arbitrary length (limited by
MAX_INT which is usually 2147483647 on 32 bit machines) and containing arbitrary
characters. The ASCII NUL character is allowed, but be aware that in the current string
implementation some methods might not work correctly in this case.

wxString works with both ASCII (traditional, 7 or 8 bit, characters) as well as Unicode
(wide characters) strings.

This class has all the standard operations you can expect to find in a string class:
dynamic memory management (string extends to accommodate new characters),
construction from other strings, C strings and characters, assignment operators, access
to individual characters, string concatenation and comparison, substring extraction, case
conversion, trimming and padding (with spaces), searching and replacing and both C-

CHAPTER 11

1650

like Printf() (p. 1242) and stream-like insertion functions as well as much more - see
wxString (p. 1226) for a list of all functions.

Comparison of wxString to other string classes

The advantages of using a special string class instead of working directly with C strings
are so obvious that there is a huge number of such classes available. The most
important advantage is the need to always remember to allocate/free memory for C
strings; working with fixed size buffers almost inevitably leads to buffer overflows. At last,
C++ has a standard string class (std::string). So why the need for wxString?

There are several advantages:

 1. Efficiency This class was made to be as efficient as possible: both in terms of
size (each wxString objects takes exactly the same space as a char * pointer,
sing reference counting (p. 1648)) and speed. It also provides performance
statistics gathering code (p. 1649) which may be enabled to fine tune the
memory allocation strategy for your particular application - and the gain might be
quite big.

 2. Compatibility This class tries to combine almost full compatibility with the old
wxWidgets 1.xx wxString class, some reminiscence to MFC CString class and
90% of the functionality of std::string class.

 3. Rich set of functions Some of the functions present in wxString are very useful
but don't exist in most of other string classes: for example, AfterFirst (p. 1235),
BeforeLast (p. 1236), operator<< (p. 1247) or Printf (p. 1242). Of course, all the
standard string operations are supported as well.

 4. Unicode wxString is Unicode friendly: it allows to easily convert to and from
ANSI and Unicode strings in any build mode (see the Unicode overview (p.
1654) for more details) and maps to eitherstring or wstring transparently
depending on the current mode.

 5. Used by wxWidgets And, of course, this class is used everywhere inside
wxWidgets so there is no performance loss which would result from conversions
of objects of any other string class (including std::string) to wxString internally by
wxWidgets.

However, there are several problems as well. The most important one is probably that
there are often several functions to do exactly the same thing: for example, to get the
length of the string either one of length(), Len() (p. 1241) or Length() (p. 1241) may be
used. The first function, as almost all the other functions in lowercase, is std::string
compatible. The second one is "native" wxString version and the last one is wxWidgets
1.xx way. So the question is: which one is better to use? And the answer is that:

The usage of std::string compatible functions is st rongly advised! It will both make
your code more familiar to other C++ programmers (who are supposed to have
knowledge of std::string but not of wxString), let you reuse the same code in both
wxWidgets and other programs (by just typedefing wxString as std::string when used
outside wxWidgets) and by staying compatible with future versions of wxWidgets which
will probably start using std::string sooner or later too.

CHAPTER 11

1651

In the situations where there is no corresponding std::string function, please try to use
the new wxString methods and not the old wxWidgets 1.xx variants which are
deprecated and may disappear in future versions.

Some advice about using wxString

Probably the main trap with using this class is the implicit conversion operator to const
char *. It is advised that you use c_str() (p. 1236)instead to clearly indicate when the
conversion is done. Specifically, the danger of this implicit conversion may be seen in
the following code fragment:

// this function converts the input string to upper case, output it
to the screen
// and returns the result
const char *SayHELLO(const wxString& input)
{
 wxString output = input.Upper();

 printf("Hello, %s!\n", output);

 return output;
}

There are two nasty bugs in these three lines. First of them is in the call to the printf()
function. Although the implicit conversion to C strings is applied automatically by the
compiler in the case of

 puts(output);

because the argument of puts() is known to be of the type const char *, this is not done
for printf() which is a function with variable number of arguments (and whose arguments
are of unknown types). So this call may do anything at all (including displaying the
correct string on screen), although the most likely result is a program crash. The solution
is to use c_str() (p. 1236): just replace this line with

 printf("Hello, %s!\n", output.c_str());

The second bug is that returning output doesn't work. The implicit cast is used again, so
the code compiles, but as it returns a pointer to a buffer belonging to a local variable
which is deleted as soon as the function exits, its contents is totally arbitrary. The
solution to this problem is also easy: just make the function return wxString instead of a
C string.

This leads us to the following general advice: all functions taking string arguments
should take const wxString& (this makes assignment to the strings inside the function
faster because of reference counting (p. 1648)) and all functions returning strings should
return wxString - this makes it safe to return local variables.

Other string related functions and classes

As most programs use character strings, the standard C library provides quite a few
functions to work with them. Unfortunately, some of them have rather counter-intuitive
behaviour (like strncpy() which doesn't always terminate the resulting string with a NULL)
and are in general not very safe (passing NULL to them will probably lead to program

CHAPTER 11

1652

crash). Moreover, some very useful functions are not standard at all. This is why in
addition to all wxString functions, there are also a few global string functions which try to
correct these problems: wxIsEmpty() (p. 1536) verifies whether the string is empty
(returning true for NULL pointers), wxStrlen() (p. 1537) also handles NULLs correctly
and returns 0 for them and wxStricmp() (p. 1537) is just a platform-independent version
of case-insensitive string comparison function known either as stricmp() or strcasecmp()
on different platforms.

The <wx/string.h> header also defines wxSnprintf (p. 1537) and wxVsnprintf (p.
1539) functions which should be used instead of the inherently dangerous standard
sprintf() and which use snprintf() instead which does buffer size checks
whenever possible. Of course, you may also use wxString::Printf (p. 1242) which is also
safe.

There is another class which might be useful when working with wxString:
wxStringTokenizer (p. 1253). It is helpful when a string must be broken into tokens and
replaces the standard C library strtok() function.

And the very last string-related class is wxArrayString (p. 63): it is just a version of the
"template" dynamic array class which is specialized to work with strings. Please note
that this class is specially optimized (using its knowledge of the internal structure of
wxString) for storing strings and so it is vastly better from a performance point of view
than a wxObjectArray of wxStrings.

Reference counting and why you shouldn't care about it

wxString objects use a technique known as copy on write (COW). This means that when
a string is assigned to another, no copying really takes place: only the reference count
on the shared string data is incremented and both strings share the same data.

But as soon as one of the two (or more) strings is modified, the data has to be copied
because the changes to one of the strings shouldn't be seen in the others. As data
copying only happens when the string is written to, this is known as COW.

What is important to understand is that all this happens absolutely transparently to the
class users and that whether a string is shared or not is not seen from the outside of the
class - in any case, the result of any operation on it is the same.

Probably the unique case when you might want to think about reference counting is
when a string character is taken from a string which is not a constant (or a constant
reference). In this case, due to C++ rules, the "read-only" operator[] (which is the same
as GetChar() (p. 1239)) cannot be chosen and the "read/write" operator[] (the same as
GetWritableChar() (p. 1239)) is used instead. As the call to this operator may modify the
string, its data is unshared (COW is done) and so if the string was really shared there is
some performance loss (both in terms of speed and memory consumption). In the rare
cases when this may be important, you might prefer using GetChar() (p. 1239) instead of
the array subscript operator for this reasons. Please note that at() (p. 1231) method has
the same problem as the subscript operator in this situation and so using it is not really
better. Also note that if all string arguments to your functions are passed as const
wxString& (see the section Some advice (p. 1647)) this situation will almost never arise
because for constant references the correct operator is called automatically.

CHAPTER 11

1653

Tuning wxString for your application

Note: this section is strictly about performance issues and is absolutely not necessary to
read for using wxString class. Please skip it unless you feel familiar with profilers and
relative tools. If you do read it, please also read the preceding section about reference
counting (p. 1648).

For the performance reasons wxString doesn't allocate exactly the amount of memory
needed for each string. Instead, it adds a small amount of space to each allocated block
which allows it to not reallocate memory (a relatively expensive operation) too often as
when, for example, a string is constructed by subsequently adding one character at a
time to it, as for example in:

// delete all vowels from the string
wxString DeleteAllVowels(const wxString& original)
{
 wxString result;

 size_t len = original.length();
 for (size_t n = 0; n < len; n++)
 {
 if (strchr("aeuio", tolower(original[n])) == NULL)
 result += original[n];
 }

 return result;
}

This is quite a common situation and not allocating extra memory at all would lead to
very bad performance in this case because there would be as many memory
(re)allocations as there are consonants in the original string. Allocating too much extra
memory would help to improve the speed in this situation, but due to a great number of
wxString objects typically used in a program would also increase the memory
consumption too much.

The very best solution in precisely this case would be to use Alloc() (p. 1235) function to
preallocate, for example, len bytes from the beginning - this will lead to exactly one
memory allocation being performed (because the result is at most as long as the original
string).

However, using Alloc() is tedious and so wxString tries to do its best. The default
algorithm assumes that memory allocation is done in granularity of at least 16 bytes
(which is the case on almost all of wide-spread platforms) and so nothing is lost if the
amount of memory to allocate is rounded up to the next multiple of 16. Like this, no
memory is lost and 15 iterations from 16 in the example above won't allocate memory
but use the already allocated pool.

The default approach is quite conservative. Allocating more memory may bring important
performance benefits for programs using (relatively) few very long strings. The amount
of memory allocated is configured by the setting of EXTRA_ALLOC in the file string.cpp
during compilation (be sure to understand why its default value is what it is before
modifying it!). You may try setting it to greater amount (say twice nLen) or to 0 (to see
performance degradation which will follow) and analyse the impact of it on your program.
If you do it, you will probably find it helpful to also define WXSTRING_STATISTICS
symbol which tells the wxString class to collect performance statistics and to show them

CHAPTER 11

1654

on stderr on program termination. This will show you the average length of strings your
program manipulates, their average initial length and also the percent of times when
memory wasn't reallocated when string concatenation was done but the already
preallocated memory was used (this value should be about 98% for the default allocation
policy, if it is less than 90% you should really consider fine tuning wxString for your
application).

It goes without saying that a profiler should be used to measure the precise difference
the change to EXTRA_ALLOC makes to your program.

Buffer classes overview

wxWidgets uses two classes of classes for dealing with buffers in memory.

The first is one for dealing with character buffers, namely wxCharBuffer for char pointer
or multi-byte c strings and wxWCharBuffer for wchar_t pointer or wide character c
strings.

Secondly, wxWidgets uses, although only rarely currently, wxMemoryBuffer for dealing
with raw buffers in memory.

wxXCharBuffer Overview

General Usage

As mentioned, wxCharBuffer and its wide character variant wxWCharBuffer deal with c
strings in memory. They have two constructors, one in which you pass the c string you
want them to have a copy of, and another where you specify the size of the buffer in
memory in characters you want.

wxCharBuffer and its variant only contain the c string as a member, so they can be used
safely to c functions with variable arguments such as printf. They also contain standard
assignment, character access operators and a copy constructor.

Destruction

It should be noted that on destruction wxCharBuffer and its wide character variant delete
the c string that hold onto. If you want to get the pointer to the buffer and don't want
wxCharBuffer to delete it on destruction, use the member function release to do so.

Date and time classes overview

Classes: wxDateTime (p. 246), wxDateSpan (p. 241), wxTimeSpan (p. 1326),
wxCalendarCtrl (p. 117)

Introduction

wxWidgets provides a set of powerful classes to work with dates and times. Some of the
supported features of wxDateTime (p. 246) class are:

CHAPTER 11

1655

Wide range The range of supported dates goes from about
4714 B.C. to some 480 million years in the
future.

Precision Not using floating point calculations anywhere
ensures that the date calculations don't suffer
from rounding errors.

Many features Not only all usual calculations with dates are
supported, but also more exotic week and year
day calculations, work day testing, standard
astronomical functions, conversion to and from
strings in either strict or free format.

Efficiency Objects of wxDateTime are small (8 bytes) and
working with them is fast

All date/time classes at a glance

There are 3 main classes declared in <wx/datetime.h> : except wxDateTime (p. 246)
itself which represents an absolute moment in time, there are also two classes -
wxTimeSpan (p. 1326) and wxDateSpan (p. 241) - which represent the intervals of time.

There are also helper classes which are used together with wxDateTime:
wxDateTimeHolidayAuthority (p. 271) which is used to determine whether a given date is
a holiday or not and wxDateTimeWorkDays (p. 271) which is a derivation of this class for
which (only) Saturdays and Sundays are the holidays. See more about these classes in
the discussion of the holidays (p. 1654).

Finally, in other parts of this manual you may find mentions of wxDate and wxTime
classes. These classes (p. 1654) are obsolete and superseded by wxDateTime.

wxDateTime characteristics

wxDateTime (p. 246) stores the time as a signed number of milliseconds since the
Epoch which is fixed, by convention, to Jan 1, 1970 - however this is not visible to the
class users (in particular, dates prior to the Epoch are handled just as well (or as bad) as
the dates after it). But it does mean that the best resolution which can be achieved with
this class is 1 millisecond.

The size of wxDateTime object is 8 bytes because it is represented as a 64 bit integer.
The resulting range of supported dates is thus approximatively 580 million years, but due
to the current limitations in the Gregorian calendar support, only dates from Nov 24,
4714BC are supported (this is subject to change if there is sufficient interest in doing it).

Finally, the internal representation is time zone independent (always in GMT) and the
time zones only come into play when a date is broken into year/month/day components.
See more about timezones (p. 1653) below.

Currently, the only supported calendar is Gregorian one (which is used even for the
dates prior to the historic introduction of this calendar which was first done on Oct 15,
1582 but is, generally speaking, country, and even region, dependent). Future versions

CHAPTER 11

1656

will probably have Julian calendar support as well and support for other calendars
(Maya, Hebrew, Chinese...) is not ruled out.

Difference between wxDateSpan and wxTimeSpan

While there is only one logical way to represent an absolute moment in the time (and
hence only one wxDateTime class), there are at least two methods to describe a time
interval.

First, there is the direct and self-explaining way implemented by wxTimeSpan (p. 1326):
it is just a difference in milliseconds between two moments in time. Adding or subtracting
such an interval to wxDateTime is always well-defined and is a fast operation.

But in the daily life other, calendar-dependent time interval specifications are used. For
example, 'one month later' is commonly used. However, it is clear that this is not the
same as wxTimeSpan of 60*60*24*31 seconds because 'one month later' Feb 15 is Mar
15 and not Mar 17 or Mar 16 (depending on whether the year is leap or not).

This is why there is another class for representing such intervals called wxDateSpan (p.
241). It handles these sort of operations in the most natural way possible, but note that
manipulating with intervals of this kind is not always well-defined. Consider, for example,
Jan 31 + '1 month': this will give Feb 28 (or 29), i.e. the last day of February and not the
non-existent Feb 31. Of course, this is what is usually wanted, but you still might be
surprised to notice that now subtracting back the same interval from Feb 28 will result in
Jan 28 and not Jan 31 we started with!

So, unless you plan to implement some kind of natural language parsing in the program,
you should probably use wxTimeSpan instead of wxDateSpan (which is also more
efficient). However, wxDateSpan may be very useful in situations when you do need to
understand what 'in a month' means (of course, it is just wxDateTime::Now() +
wxDateSpan::Month()).

Date arithmetics

Many different operations may be performed with the dates, however not all of them
make sense. For example, multiplying a date by a number is an invalid operation, even
though multiplying either of the time span classes by a number is perfectly valid.

Here is what can be done:

Addition a wxTimeSpan or wxDateSpan can be added
to wxDateTime resulting in a new wxDateTime
object and also 2 objects of the same span
class can be added together giving another
object of the same class.

Subtraction the same types of operations as above are
allowed and, additionally, a difference between
two wxDateTime objects can be taken and this
will yield wxTimeSpan.

Multiplication a wxTimeSpan or wxDateSpan object can be

CHAPTER 11

1657

multiplied by an integer number resulting in an
object of the same type.

Unary minus a wxTimeSpan or wxDateSpan object may
finally be negated giving an interval of the
same magnitude but of opposite time direction.

For all these operations there are corresponding global (overloaded) operators and also
member functions which are synonyms for them: Add(), Subtract() and Multiply(). Unary
minus as well as composite assignment operations (like +=) are only implemented as
members and Neg() is the synonym for unary minus.

Time zone considerations

Although the time is always stored internally in GMT, you will usually work in the local
time zone. Because of this, all wxDateTime constructors and setters which take the
broken down date assume that these values are for the local time zone. Thus,
wxDateTime(1, wxDateTime::Jan, 1970) will not correspond to the wxDateTime
Epoch unless you happen to live in the UK.

All methods returning the date components (year, month, day, hour, minute, second...)
will also return the correct values for the local time zone by default, so, generally, doing
the natural things will lead to natural and correct results.

If you only want to do this, you may safely skip the rest of this section. However, if you
want to work with different time zones, you should read it to the end.

In this (rare) case, you are still limited to the local time zone when constructing
wxDateTime objects, i.e. there is no way to construct a wxDateTime corresponding to
the given date in, say, Pacific Standard Time. To do it, you will need to call ToTimezone
(p. 270) or MakeTimezone (p. 270) methods to adjust the date for the target time zone.
There are also special versions of these functions ToGMT (p. 271) and MakeGMT (p.
271) for the most common case - when the date should be constructed in GMT.

You also can just retrieve the value for some time zone without converting the object to it
first. For this you may pass TimeZone argument to any of the methods which are
affected by the time zone (all methods getting date components and the date formatting
ones, for example). In particular, the Format() family of methods accepts a TimeZone
parameter and this allows to simply print time in any time zone.

To see how to do it, the last issue to address is how to construct a TimeZone object
which must be passed to all these methods. First of all, you may construct it manually by
specifying the time zone offset in seconds from GMT, but usually you will just use one of
the symbolic time zone names (p. 246) and let the conversion constructor do the job. I.e.
you would just write

wxDateTime dt(...whatever...);
printf("The time is %s in local time zone",
dt.FormatTime().c_str());
printf("The time is %s in GMT",
dt.FormatTime(wxDateTime::GMT).c_str());

CHAPTER 11

1658

Daylight saving time (DST)

DST (a.k.a. 'summer time') handling is always a delicate task which is better left to the
operating system which is supposed to be configured by the administrator to behave
correctly. Unfortunately, when doing calculations with date outside of the range
supported by the standard library, we are forced to deal with these issues ourselves.

Several functions are provided to calculate the beginning and end of DST in the given
year and to determine whether it is in effect at the given moment or not, but they should
not be considered as absolutely correct because, first of all, they only work more or less
correctly for only a handful of countries (any information about other ones appreciated!)
and even for them the rules may perfectly well change in the future.

The time zone handling methods (p. 1653) use these functions too, so they are subject
to the same limitations.

wxDateTime and Holidays

TODO.

Compatibility

The old classes for date/time manipulations ported from wxWidgets version 1.xx are still
included but are reimplemented in terms of wxDateTime. However, using them is
strongly discouraged because they have a few quirks/bugs and were not 'Y2K'
compatible.

Unicode support in wxWidgets

This section briefly describes the state of the Unicode support in wxWidgets. Read it if
you want to know more about how to write programs able to work with characters from
languages other than English.

What is Unicode?

Starting with release 2.1 wxWidgets has support for compiling in Unicode mode on the
platforms which support it. Unicode is a standard for character encoding which
addresses the shortcomings of the previous, 8 bit standards, by using at least 16 (and
possibly 32) bits for encoding each character. This allows to have at least 65536
characters (what is called the BMP, or basic multilingual plane) and possible 2^32 of
them instead of the usual 256 and is sufficient to encode all of the world languages at
once. More details about Unicode may be found at www.unicode.org .

As this solution is obviously preferable to the previous ones (think of incompatible
encodings for the same language, locale chaos and so on), many modern operating
systems support it. The probably first example is Windows NT which uses only Unicode
internally since its very first version.

Writing internationalized programs is much easier with Unicode and, as the support for it
improves, it should become more and more so. Moreover, in the Windows NT/2000

CHAPTER 11

1659

case, even the program which uses only standard ASCII can profit from using Unicode
because they will work more efficiently - there will be no need for the system to convert
all strings the program uses to/from Unicode each time a system call is made.

Unicode and ANSI modes

As not all platforms supported by wxWidgets support Unicode (fully) yet, in many cases
it is unwise to write a program which can only work in Unicode environment. A better
solution is to write programs in such way that they may be compiled either in ANSI
(traditional) mode or in the Unicode one.

This can be achieved quite simply by using the means provided by wxWidgets.
Basically, there are only a few things to watch out for:

 • Character type (char or wchar_t)

 • Literal strings (i.e. "Hello, world!" or '*')

 • String functions (strlen() , strcpy() , ...)

 • Special preprocessor tokens (__FILE__ , __DATE__ and __TIME__)

Let's look at them in order. First of all, each character in an Unicode program takes 2
bytes instead of usual one, so another type should be used to store the characters
(char only holds 1 byte usually). This type is called wchar_t which stands for wide-
character type.

Also, the string and character constants should be encoded using wide characters
(wchar_t type) which typically take 2 or 4 bytes instead of char which only takes one.
This is achieved by using the standard C (and C++) way: just put the letter 'L' after any
string constant and it becomes a long constant, i.e. a wide character one. To make
things a bit more readable, you are also allowed to prefix the constant with 'L' instead of
putting it after it.

Of course, the usual standard C functions don't work with wchar_t strings, so another
set of functions exists which do the same thing but acceptwchar_t * instead of char
* . For example, a function to get the length of a wide-character string is called
wcslen() (compare with strlen() - you see that the only difference is that the "str"
prefix standing for "string" has been replaced with "wcs" standing for "wide-character
string").

And finally, the standard preprocessor tokens enumerated above expand to ANSI strings
but it is more likely that Unicode strings are wanted in the Unicode build. wxWidgets
provides the macros __TFILE__ , __TDATE__ and __TTIME__ which behave exactly
as the standard ones except that they produce ANSI strings in ANSI build and Unicode
ones in the Unicode build.

To summarize, here is a brief example of how a program which can be compiled in both
ANSI and Unicode modes could look like:

#ifdef __UNICODE__
 wchar_t wch = L'*';
 const wchar_t *ws = L"Hello, world!";

CHAPTER 11

1660

 int len = wcslen(ws);

 wprintf(L"Compiled at %s\n", __TDATE__);
#else // ANSI
 char ch = '*';
 const char *s = "Hello, world!";
 int len = strlen(s);

 printf("Compiled at %s\n", __DATE__);
#endif // Unicode/ANSI

Of course, it would be nearly impossibly to write such programs if it had to be done this
way (try to imagine the number of #ifdef UNICODE an average program would have
had!). Luckily, there is another way - see the next section.

Unicode support in wxWidgets

In wxWidgets, the code fragment from above should be written instead:

 wxChar ch = wxT('*');
 wxString s = wxT("Hello, world!");
 int len = s.Len();

What happens here? First of all, you see that there are no more #ifdef s at all. Instead,
we define some types and macros which behave differently in the Unicode and ANSI
builds and allow us to avoid using conditional compilation in the program itself.

We have a wxChar type which maps either on char or wchar_t depending on the
mode in which program is being compiled. There is no need for a separate type for
strings though, because the standard wxString (p. 1226) supports Unicode, i.e. it stores
either ANSI or Unicode strings depending on the compile mode.

Finally, there is a special wxT() (p. 1538) macro which should enclose all literal strings in
the program. As it is easy to see comparing the last fragment with the one above, this
macro expands to nothing in the (usual) ANSI mode and prefixes 'L' to its argument in
the Unicode mode.

The important conclusion is that if you use wxChar instead of char , avoid using C style
strings and use wxString instead and don't forget to enclose all string literals inside
wxT() (p. 1538) macro, your program automatically becomes (almost) Unicode
compliant!

Just let us state once again the rules:

 • Always use wxChar instead of char

 • Always enclose literal string constants in wxT() (p. 1538) macro unless they're
already converted to the right representation (another standard wxWidgets
macro _() (p. 1539) does it, for example, so there is no need for wxT() in this
case) or you intend to pass the constant directly to an external function which
doesn't accept wide-character strings.

 • Use wxString instead of C style strings.

CHAPTER 11

1661

Unicode and the outside world

We have seen that it was easy to write Unicode programs using wxWidgets types and
macros, but it has been also mentioned that it isn't quite enough. Although everything
works fine inside the program, things can get nasty when it tries to communicate with the
outside world which, sadly, often expects ANSI strings (a notable exception is the entire
Win32 API which accepts either Unicode or ANSI strings and which thus makes it
unnecessary to ever perform any conversions in the program). GTK 2.0 only accepts
UTF-8 strings.

To get a ANSI string from a wxString, you may use the mb_str() function which always
returns an ANSI string (independently of the mode - while the usual c_str() (p. 1236)
returns a pointer to the internal representation which is either ASCII or Unicode). More
rarely used, but still useful, is wc_str() function which always returns the Unicode string.

Unicode-related compilation settings

You should define wxUSE_UNICODE to 1 to compile your program in Unicode mode.
Note that it currently only works in Win32 and GTK 2.0 and that some parts of
wxWidgets are not Unicode-compliant yet. If you compile your program in ANSI mode
you can still define wxUSE_WCHAR_T to get some limited support for wchar_t type.

This will allow your program to perform conversions between Unicode strings and ANSI
ones (using wxMBConv classes (p. 1657)) and construct wxString objects from Unicode
strings (presumably read from some external file or elsewhere).

wxMBConv classes overview

Classes: wxMBConv (p. 869), wxMBConvLibc, wxMBConvUTF7 (p. 872),
wxMBConvUTF8 (p. 873), wxCSConv (p. 216), wxMBConvUTF16 (p. 874),
wxMBConvUTF32 (p. 874)

The wxMBConv classes in wxWidgets enable an Unicode-aware application to easily
convert between Unicode and the variety of 8-bit encoding systems still in use.

Background: The need for conversion

As programs are becoming more and more globalized, and users exchange documents
across country boundaries as never before, applications increasingly need to take into
account all the different character sets in use around the world. It is no longer enough to
just depend on the default byte-sized character set that computers have traditionally
used.

A few years ago, a solution was proposed: the Unicode standard. Able to contain the
complete set of characters in use in one unified global coding system, it would resolve
the character set problems once and for all.

But it hasn't happened yet, and the migration towards Unicode has created new
challenges, resulting in "compatibility encodings" such as UTF-8. A large number of
systems out there still depends on the old 8-bit encodings, hampered by the huge

CHAPTER 11

1662

amounts of legacy code still widely deployed. Even sending Unicode data from one
Unicode-aware system to another may need encoding to an 8-bit multibyte encoding
(UTF-7 or UTF-8 is typically used for this purpose), to pass unhindered through any
traditional transport channels.

Background: The wxString class

If you have compiled wxWidgets in Unicode mode, the wxChar type will become
identical to wchar_t rather than char, and a wxString stores wxChars. Hence, all
wxString manipulation in your application will then operate on Unicode strings, and
almost as easily as working with ordinary char strings (you just need to remember to use
the wxT() macro to encapsulate any string literals).

But often, your environment doesn't want Unicode strings. You could be sending data
over a network, or processing a text file for some other application. You need a way to
quickly convert your easily-handled Unicode data to and from a traditional 8-bit
encoding. And this is what the wxMBConv classes do.

wxMBConv classes

The base class for all these conversions is the wxMBConv class (which itself implements
standard libc locale conversion). Derived classes include wxMBConvLibc, several
different wxMBConvUTFxxx classes, and wxCSConv, which implement different kinds of
conversions. You can also derive your own class for your own custom encoding and use
it, should you need it. All you need to do is override the MB2WC and WC2MB methods.

wxMBConv objects

Several of the wxWidgets-provided wxMBConv classes have predefined instances
(wxConvLibc, wxConvFileName, wxConvUTF7, wxConvUTF8, wxConvLocal). You can
use these predefined objects directly, or you can instantiate your own objects.

A variable, wxConvCurrent, points to the conversion object that the user interface is
supposed to use, in the case that the user interface is not Unicode-based (like with
GTK+ 1.2). By default, it points to wxConvLibc or wxConvLocal, depending on which
works best on the current platform.

wxCSConv

The wxCSConv class is special because when it is instantiated, you can tell it which
character set it should use, which makes it meaningful to keep many instances of them
around, each with a different character set (or you can create a wxCSConv instance on
the fly).

The predefined wxCSConv instance, wxConvLocal, is preset to use the default user
character set, but you should rarely need to use it directly, it is better to go through
wxConvCurrent.

Converting strings

CHAPTER 11

1663

Once you have chosen which object you want to use to convert your text, here is how
you would use them with wxString. These examples all assume that you are using a
Unicode build of wxWidgets, although they will still compile in a non-Unicode build (they
just won't convert anything).

Example 1: Constructing a wxString from input in current encoding.

wxString str(input_data, *wxConvCurrent);

Example 2: Input in UTF-8 encoding.

wxString str(input_data, wxConvUTF8);

Example 3: Input in KOI8-R. Construction of wxCSConv instance on the fly.

wxString str(input_data, wxCSConv(wxT("koi8-r")));

Example 4: Printing a wxString to stdout in UTF-8 encoding.

puts(str.mb_str(wxConvUTF8));

Example 5: Printing a wxString to stdout in custom encoding. Using preconstructed
wxCSConv instance.

wxCSConv cust(user_encoding);
printf("Data: %s\n", (const char*) str.mb_str(cust));

Note: Since mb_str() returns a temporary wxCharBuffer to hold the result of the
conversion, you need to explicitly cast it to const char* if you use it in a vararg context
(like with printf).

Converting buffers

If you have specialized needs, or just don't want to use wxString, you can also use the
conversion methods of the conversion objects directly. This can even be useful if you
need to do conversion in a non-Unicode build of wxWidgets; converting a string from
UTF-8 to the current encoding should be possible by doing this:

wxString str(wxConvUTF8.cMB2WC(input_data), *wxConv Current);

Here, cMB2WC of the UTF8 object returns a wxWCharBuffer containing a Unicode
string. The wxString constructor then converts it back to an 8-bit character set using the
passed conversion object, *wxConvCurrent. (In a Unicode build of wxWidgets, the
constructor ignores the passed conversion object and retains the Unicode data.)

This could also be done by first making a wxString of the original data:

wxString input_str(input_data);
wxString str(input_str.wc_str(wxConvUTF8), *wxConvC urrent);

To print a wxChar buffer to a non-Unicode stdout:

printf("Data: %s\n", (const char*) wxConvCurrent-
>cWX2MB(unicode_data));

CHAPTER 11

1664

If you need to do more complex processing on the converted data, you may want to
store the temporary buffer in a local variable:

const wxWX2MBbuf tmp_buf = wxConvCurrent->cWX2MB(un icode_data);
const char *tmp_str = (const char*) tmp_buf;
printf("Data: %s\n", tmp_str);
process_data(tmp_str);

If a conversion had taken place in cWX2MB (i.e. in a Unicode build), the buffer will be
deallocated as soon as tmp_buf goes out of scope. (The macro wxWX2MBbuf reflects
the correct return value of cWX2MB (either char* or wxCharBuffer), except for the
const.)

Internationalization

Although internationalization of an application (i18n for short) involves far more than just
translating its text messages to another message - date, time and currency formats need
changing too, some languages are written left to right and others right to left, character
encoding may differ and many other things may need changing too - it is a necessary
first step. wxWidgets provides facilities for message translation with its wxLocale (p. 843)
class and is itself fully translated into several languages. Please consult wxWidgets
home page for the most up-to-date translations - and if you translate it into one of the
languages not done yet, your translations would be gratefully accepted for inclusion into
future versions of the library!

The wxWidgets approach to i18n closely follows the GNU gettext package. wxWidgets
uses the message catalogs which are binary compatible with gettext catalogs and this
allows to use all of the programs in this package to work with them. But note that no
additional libraries are needed during run-time, however, so you have only the message
catalogs to distribute and nothing else.

During program development you will need the gettext package for working with
message catalogs. Warning: gettext versions < 0.10 are known to be buggy, so you
should find a later version of it!

There are two kinds of message catalogs: source catalogs which are text files with
extension .po and binary catalogs which are created from the source ones with msgfmt
program (part of gettext package) and have the extension .mo. Only the binary files are
needed during program execution.

The program i18n involves several steps:

 1. Translating the strings in the program text using wxGetTranslation (p. 1536) or
equivalently the _() (p. 1539) macro.

 2. Extracting the strings to be translated from the program: this uses the work done
in the previous step because xgettext program used for string extraction
recognises the standard _() as well as (using its -k option) our
wxGetTranslation and extracts all strings inside the calls to these functions.
Alternatively, you may use -a option to extract all the strings, but it will usually
result in many strings being found which don't have to be translated at all. This
will create a text message catalog - a .po file.

CHAPTER 11

1665

 3. Translating the strings extracted in the previous step to other language(s). It
involves editing the .po file.

 4. Compiling the .po file into .mo file to be used by the program.

 5. Setting the appropriate locale in your program to use the strings for the given
language: see wxLocale (p. 843).

If you want your app to run under MacOS X with internationlization as described above
you'll need to make one modification to the Info.plist file which describes the contents of
the "application bundle". This file (an XML text file in UTF-8 format) should have a
CFBundleDevelopmentRegion entry describing the language of the developer - mostly
English - and normally MacOS X will query the bundle for the presence of certain
resource directories to find out which languages are supported (e.g. the directory
German.lproj for German). Since wxWidgets based applications don't use these
directories for storing resource information (they store the translation in the mo files
instead) the application needs to be told explicitly which langauges are supported. This
is done by adding a CFBundleLocalizations entry to Info.plist. This can look like this:

 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleLocalizations</key>
 <array>
 <string>en</string>
 <string>de</string>
 <string>fr</string>
 </array>

See also the GNU gettext documentation linked from docs/html/index.htm in your
wxWidgets distribution.

See also Writing non-English applications (p. 1661). It focuses on handling charsets
related problems.

Finally, take a look at the i18n sample (p. 1637) which shows you how all this looks in
practice.

Writing non-English applications

This article describes how to write applications that communicate with the user in a
language other than English. Unfortunately many languages use different charsets under
Unix and Windows (and other platforms, to make the situation even more complicated).
These charsets usually differ in so many characters that it is impossible to use the same
texts under all platforms.

The wxWidgets library provides a mechanism that helps you avoid distributing many
identical, only differently encoded, packages with your application (e.g. help files and
menu items in iso8859-13 and windows-1257). Thanks to this mechanism you can, for
example, distribute only iso8859-13 data and it will be handled transparently under all
systems.

Please read Internationalization (p. 1660) which describes the locales concept.

CHAPTER 11

1666

In the following text, wherever iso8859-2 and windows-1250 are used, any encodings
are meant and any encodings may be substituted there.

Locales

The best way to ensure correctly displayed texts in a GUI across platforms is to use
locales. Write your in-code messages in English or without diacritics and put real
messages into the message catalog (see Internationalization (p. 1660)).

A standard .po file begins with a header like this:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR Free Software Foundation, Inc.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 1999-02-19 16:03+0100\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: ENCODING\n"

Note this particular line:

"Content-Type: text/plain; charset=CHARSET\n"

It specifies the charset used by the catalog. All strings in the catalog are encoded using
this charset.

You have to fill in proper charset information. Your .po file may look like this after doing
so:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR Free Software Foundation, Inc.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 1999-02-19 16:03+0100\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=iso8859-2\n"
"Content-Transfer-Encoding: 8bit\n"

(Make sure that the header is not marked as fuzzy.)

wxWidgets is able to use this catalog under any supported platform (although iso8859-2
is a Unix encoding and is normally not understood by Windows).

How is this done? When you tell the wxLocale class to load a message catalog that
contains a correct header, it checks the charset. The catalog is then converted to the
charset used (seewxLocale::GetSystemEncoding (p. 848)

CHAPTER 11

1667

andwxLocale::GetSystemEncodingName (p. 848)) by the user's operating system. This
is the default behaviour of thewxLocale (p. 843) class; you can disable it by not
passingwxLOCALE_CONV_ENCODING to wxLocale::Init (p. 848).

Non-English strings or 8-bit characters in the sour ce code

By convention, you should only use characters without diacritics (i.e. 7-bit ASCII strings)
for msgids in the source code and write them in English.

If you port software to wxWindows, you may be confronted with legacy source code
containing non-English string literals. Instead of translating the strings in the source code
to English and putting the original strings into message catalog, you may configure
wxWidgets to use non-English msgids and translate to English using message catalogs:

 1.you use the program xgettext to extract the strings from the source code,
specify the option --from-code=<source code charset> .

 2.the source code language and charset as arguments towxLocale::AddCatalog (p. 844). For
example:locale.AddCatalog(_T("myapp"),

 wxLANGUAGE_GERMAN, _T("iso-8859-1 "));

Font mapping

You can use wxMBConv classes (p. 1657) and wxFontMapper (p. 551) to display text:

if (!wxFontMapper::Get()->IsEncodingAvailable(enc, facename))
{
 wxFontEncoding alternative;
 if (wxFontMapper::Get()->GetAltForEncoding(enc, &alternative,
 facen ame, false))
 {
 wxCSConv convFrom(wxFontMapper::Get()-
>GetEncodingName(enc));
 wxCSConv convTo(wxFontMapper::Get()-
>GetEncodingName(alternative));
 text = wxString(text.mb_str(convFrom), convT o);
 }
 else
 ...failure (or we may try iso8859-1/7bit ASC II)...
}
...display text...

Converting data

You may want to store all program data (created documents etc.) in the same encoding,
let's say utf-8 . You can usewxCSConv (p. 216) class to convert data to the encoding
used by the system your application is running on (seewxLocale::GetSystemEncoding
(p. 848)).

Help files

If you're using wxHtmlHelpController (p. 689) there is no problem at all. You only need to
make sure that all the HTML files contain the META tag, e.g.

<meta http-equiv="Content-Type" content="text/html;

CHAPTER 11

1668

charset=iso8859-2">

and that the hhp project file contains one additional line in the OPTIONSsection:

Charset=iso8859-2

This additional entry tells the HTML help controller what encoding is used in contents
and index tables.

Container classes overview

Classes: wxList (p. 801), wxArray (p. 51)

wxWidgets uses itself several container classes including doubly-linked lists and
dynamic arrays (i.e. arrays which expand automatically when they become full). For both
historical and portability reasons wxWidgets does not use STL which provides the
standard implementation of many container classes in C++. First of all, wxWidgets has
existed since well before STL was written, and secondly we don't believe that today
compilers can deal really well with all of STL classes (this is especially true for some less
common platforms). Of course, the compilers are evolving quite rapidly and hopefully
their progress will allow to base future versions of wxWidgets on STL - but this is not yet
the case.

wxWidgets container classes don't pretend to be as powerful or full as STL ones, but
they are quite useful and may be compiled with absolutely any C++ compiler. They're
used internally by wxWidgets, but may, of course, be used in your programs as well if
you wish.

The list classes in wxWidgets are doubly-linked lists which may either own the objects
they contain (meaning that the list deletes the object when it is removed from the list or
the list itself is destroyed) or just store the pointers depending on whether you called or
not wxList::DeleteContents (p. 804) method.

Dynamic arrays resemble C arrays but with two important differences: they provide run-
time range checking in debug builds and they automatically expand the allocated
memory when there is no more space for new items. They come in two sorts: the "plain"
arrays which store either built-in types such as "char", "int" or "bool" or the pointers to
arbitrary objects, or "object arrays" which own the object pointers to which they store.

For the same portability reasons, the container classes implementation in wxWidgets
does not use templates, but is rather based on C preprocessor i.e. is done with the
macros: WX_DECLARE_LIST and WX_DEFINE_LIST for the linked lists and
WX_DECLARE_ARRAY, WX_DECLARE_OBJARRAY and WX_DEFINE_OBJARRAY
for the dynamic arrays. The "DECLARE" macro declares a new container class
containing the elements of given type and is needed for all three types of container
classes: lists, arrays and objarrays. The "DEFINE" classes must be inserted in your
program in a place where the full declaration of container element class is in s cope
(i.e. not just forward declaration), otherwise destructors of the container elements will not
be called! As array classes never delete the items they contain anyhow, there is no
WX_DEFINE_ARRAY macro for them.

Examples of usage of these macros may be found in wxList (p. 801) and wxArray (p. 51)

CHAPTER 11

1669

documentation.

Finally, wxWidgets predefines several commonly used container classes. wxList is
defined for compatibility with previous versions as a list containing wxObjects and
wxStringList as a list of C-style strings (char *), both of these classes are deprecated and
should not be used in new programs. The following array classes are defined:
wxArrayInt, wxArrayLong, wxArrayPtrVoid and wxArrayString. The first three store
elements of corresponding types, but wxArrayString is somewhat special: it is an
optimized version of wxArray which uses its knowledge about wxString (p. 1226)
reference counting schema.

File classes and functions overview

Classes: wxFile (p. 482), wxDir (p. 405), wxTempFile (p. 1272), wxTextFile (p. 1301)

Functions: see file functions (p. 1525).

wxWidgets provides some functions and classes to facilitate working with files. As usual,
the accent is put on cross-platform features which explains, for example, the wxTextFile
(p. 1301) class which may be used to convert between different types of text files
(DOS/Unix/Mac).

wxFile may be used for low-level IO. It contains all the usual functions to work with files
(opening/closing, reading/writing, seeking, and so on) but compared with using standard
C functions, has error checking (in case of an error a message is logged using wxLog (p.
850) facilities) and closes the file automatically in the destructor which may be quite
convenient.

wxTempFile is a very small file designed to make replacing the files contents safer - see
its documentation (p. 1272) for more details.

wxTextFile is a general purpose class for working with small text files on line by line
basis. It is especially well suited for working with configuration files and program source
files. It can be also used to work with files with "non native" line termination characters
and write them as "native" files if needed (in fact, the files may be written in any format).

wxDir is a helper class for enumerating the files or subdirectories of a directory. It may
be used to enumerate all files, only files satisfying the given template mask or only non-
hidden files.

wxStreams overview

Classes: wxStreamBase (p. 1218), wxStreamBuffer (p. 1220), wxInputStream (p. 777),
wxOutputStream (p. 971), wxFilterInputStream (p. 526), wxFilterOutputStream (p. 527)

Purpose of wxStream

Standard C++ streams can cause problems on several platforms: they work quite well in
most cases, but in the multi-threaded case, for example, they have many problems.
Some Borland compilers refuse to work at all with them and using iostreams on Linux
makes writing programs that are binary compatible across different Linux distributions,

CHAPTER 11

1670

impossible.

Therefore, wxStreams have been added to wxWidgets so that applications can reliably
compile and run on all supported platforms without dependence on a particular release
of libg++.

wxStreams is divided in two main parts:

 1. the core: wxStreamBase, wxStreamBuffer, wxInputStream, wxOutputStream,
wxFilterIn/OutputStream

 2. the "IO" classes: wxSocketIn/OutputStream, wxDataIn/OutputStream,
wxFileIn/OutputStream, ...

wxStreamBase is the base definition of a stream. It defines, for example, the API of
OnSysRead, OnSysWrite, OnSysSeek and OnSysTell. These functions are really
implemented by the "IO" classes. wxInputStream and wxOutputStream inherit from it.

wxStreamBuffer is a cache manager for wxStreamBase: it manages a stream buffer
linked to a stream. One stream can have multiple stream buffers but one stream have
always one autoinitialized stream buffer.

wxInputStream is the base class for read-only streams. It implements Read, SeekI (I for
Input), and all read or IO generic related functions. wxOutputStream does the same
thing but it is for write-only streams.

wxFilterIn/OutputStream is the base class definition for stream filtering. Stream filtering
means a stream which does no syscall but filters data which are passed to it and then
pass them to another stream. For example, wxZLibInputStream is an inline stream
decompressor.

The "IO" classes implements the specific parts of the stream. This could be nothing in
the case of wxMemoryIn/OutputStream which bases itself on wxStreamBuffer. This
could also be a simple link to the a true syscall (for example read(...), write(...)).

Generic usage: an example

Usage is simple. We can take the example of wxFileInputStream and here is some
sample code:

 ...
 // The constructor initializes the stream buffer a nd open the
file descriptor
 // associated to the name of the file.
 wxFileInputStream in_stream("the_file_to_be_read") ;

 // Ok, read some bytes ... nb_datas is expressed i n bytes.
 in_stream.Read(data, nb_datas);
 if (in_stream.LastError() != wxSTREAM_NOERROR) {
 // Oh oh, something bad happens.
 // For a complete list, look into the documentat ion at
wxStreamBase.
 }

 // You can also inline all like this.
 if (in_stream.Read(data, nb_datas).LastError() !=
wxSTREAM_NOERROR) {

CHAPTER 11

1671

 // Do something.
 }

 // You can also get the last number of bytes REALL Y put into the
buffer.
 size_t really_read = in_stream.LastRead();

 // Ok, moves to the beginning of the stream. SeekI returns the
last position
 // in the stream counted from the beginning.
 off_t old_position = in_stream.SeekI(0, wxFromBegi nning);

 // What is my current position ?
 off_t position = in_stream.TellI();

 // wxFileInputStream will close the file descripto r on
destruction.

wxLog classes overview

Classes: wxLog (p. 850),
wxLogStderr (p. 860),
wxLogStream (p. 860),
wxLogTextCtrl (p. 861),
wxLogWindow (p. 861),
wxLogGui (p. 858),
wxLogNull (p. 858),
wxLogChain (p. 856),
wxLogPassThrough (p. 859),
wxStreamToTextRedirector (p. 1225)

This is a general overview of logging classes provided by wxWidgets. The word logging
here has a broad sense, including all of the program output, not only non interactive
messages. The logging facilities included in wxWidgets provide the base wxLog class
which defines the standard interface for a log target as well as several standard
implementations of it and a family of functions to use with them.

First of all, no knowledge of wxLog classes is needed to use them. For this, you should
only know about wxLogXXX() functions. All of them have the same syntax as printf() or
vprintf() , i.e. they take the format string as the first argument and respectively a variable
number of arguments or a variable argument list pointer. Here are all of them:

 • wxLogFatalError which is like wxLogError, but also terminates the program
with the exit code 3 (using abort() standard function). Unlike for all the other
logging functions, this function can't be overridden by a log target.

 • wxLogError is the function to use for error messages, i.e. the messages that
must be shown to the user. The default processing is to pop up a message box
to inform the user about it.

 • wxLogWarning for warnings - they are also normally shown to the user, but
don't interrupt the program work.

 • wxLogMessage is for all normal, informational messages. They also appear in

CHAPTER 11

1672

a message box by default (but it can be changed, see below).

 • wxLogVerbose is for verbose output. Normally, it is suppressed, but might be
activated if the user wishes to know more details about the program progress
(another, but possibly confusing name for the same function is wxLogInfo).

 • wxLogStatus is for status messages - they will go into the status bar of the
active or specified (as the first argument) wxFrame (p. 555) if it has one.

 • wxLogSysError is mostly used by wxWidgets itself, but might be handy for
logging errors after system call (API function) failure. It logs the specified
message text as well as the last system error code (errno or ::GetLastError()
depending on the platform) and the corresponding error message. The second
form of this function takes the error code explicitly as the first argument.

 • wxLogDebug is the right function for debug output. It only does anything at all
in the debug mode (when the preprocessor symbol__WXDEBUG__ is defined)
and expands to nothing in release mode (otherwise).Tip: under Windows, you
must either run the program under debugger or use a 3rd party program such as
DbgView (http://www.sysinternals.com) to actually see the debug
output.

 • wxLogTrace as wxLogDebug only does something in debug build. The reason
for making it a separate function from it is that usually there are a lot of trace
messages, so it might make sense to separate them from other debug
messages which would be flooded in them. Moreover, the second version of this
function takes a trace mask as the first argument which allows to further restrict
the amount of messages generated.

The usage of these functions should be fairly straightforward, however it may be asked
why not use the other logging facilities, such as C standard stdio functions or C++
streams. The short answer is that they're all very good generic mechanisms, but are not
really adapted for wxWidgets, while the log classes are. Some of advantages in using
wxWidgets log functions are:

 • Portability It is a common practice to use printf()statements or cout/cerr C++
streams for writing out some (debug or otherwise) information. Although it works
just fine under Unix, these messages go strictly nowhere under Windows where
the stdout of GUI programs is not assigned to anything. Thus, you might view
wxLogMessage() as a simple substitute for printf().

You can also redirect the wxLogXXX calls to cout by just writing: wxLog
*logger=new wxLogStream(&cout);
 wxLog::SetActiveTarget(logger);

Finally, there is also a possibility to redirect the output sent to cout to a
wxTextCtrl (p. 1279) by using the wxStreamToTextRedirector (p. 1225) class.

 • Flexibility The output of wxLog functions can be redirected or suppressed
entirely based on their importance, which is either impossible or difficult to do
with traditional methods. For example, only error messages, or only error

CHAPTER 11

1673

messages and warnings might be logged, filtering out all informational
messages.

 • Completeness Usually, an error message should be presented to the user
when some operation fails. Let's take a quite simple but common case of a file
error: suppose that you're writing your data file on disk and there is not enough
space. The actual error might have been detected inside wxWidgets code (say,
in wxFile::Write), so the calling function doesn't really know the exact reason of
the failure, it only knows that the data file couldn't be written to the disk.
However, as wxWidgets uses wxLogError() in this situation, the exact error code
(and the corresponding error message) will be given to the user together with
"high level" message about data file writing error.

After having enumerated all the functions which are normally used to log the messages,
and why would you want to use them we now describe how all this works.

wxWidgets has the notion of a log target: it is just a class deriving from wxLog (p. 850).
As such, it implements the virtual functions of the base class which are called when a
message is logged. Only one log target is active at any moment, this is the one used by
wxLogXXX()functions. The normal usage of a log object (i.e. object of a class derived
from wxLog) is to install it as the active target with a call to SetActiveTarget() and it will
be used automatically by all subsequent calls to wxLogXXX() functions.

To create a new log target class you only need to derive it from wxLog and implement
one (or both) of DoLog() and DoLogString() in it. The second one is enough if you're
happy with the standard wxLog message formatting (prepending "Error:" or "Warning:",
timestamping &c) but just want to send the messages somewhere else. The first one
may be overridden to do whatever you want but you have to distinguish between the
different message types yourself.

There are some predefined classes deriving from wxLog and which might be helpful to
see how you can create a new log target class and, of course, may also be used without
any change. There are:

 • wxLogStderr This class logs messages to a FILE *, using stderr by default as
its name suggests.

 • wxLogStream This class has the same functionality as wxLogStderr, but uses
ostream and cerr instead of FILE * and stderr.

 • wxLogGui This is the standard log target for wxWidgets applications (it is used
by default if you don't do anything) and provides the most reasonable handling
of all types of messages for given platform.

 • wxLogWindow This log target provides a "log console" which collects all
messages generated by the application and also passes them to the previous
active log target. The log window frame has a menu allowing user to clear the
log, close it completely or save all messages to file.

 • wxLogNull The last log class is quite particular: it doesn't do anything. The
objects of this class may be instantiated to (temporarily) suppress output of
wxLogXXX() functions. As an example, trying to open a non-existing file will

CHAPTER 11

1674

usually provoke an error message, but if for some reasons it is unwanted, just
use this construction:

 wxFile file;

 // wxFile.Open() normally complains if file can't be opened, we
don't want it
 {
 wxLogNull logNo;
 if (!file.Open("bar"))
 ... process error ourselves ...
 } // ~wxLogNull called, old log sink restored

 wxLogMessage("..."); // ok

The log targets can also be combined: for example you may wish to redirect the
messages somewhere else (for example, to a log file) but also process them as
normally. For this the wxLogChain (p. 856) and wxLogPassThrough (p. 859) can be
used.

Debugging overview

Classes, functions and macros: wxDebugContext (p. 378), wxObject (p. 967), wxLog (p.
850), Log functions (p. 1573), Debug macros (p. 1581)

Various classes, functions and macros are provided in wxWidgets to help you debug
your application. Most of these are only available if you compile both wxWidgets, your
application and all libraries that use wxWidgets with the __WXDEBUG__ symbol
defined. You can also test the __WXDEBUG__ symbol in your own applications to
execute code that should be active only in debug mode.

wxDebugContext

wxDebugContext (p. 378) is a class that never gets instantiated, but ties together various
static functions and variables. It allows you to dump all objects to that stream, write
statistics about object allocation, and check memory for errors.

It is good practice to define a wxObject::Dump (p. 968) member function for each class
you derive from a wxWidgets class, so that wxDebugContext::Dump (p. 379) can call it
and give valuable information about the state of the application.

If you have difficulty tracking down a memory leak, recompile in debugging mode and
call wxDebugContext::Dump (p. 379) and wxDebugContext::PrintStatistics (p. 381) at
appropriate places. They will tell you what objects have not yet been deleted, and what
kinds of object they are. In fact, in debug mode wxWidgets will automatically detect
memory leaks when your application is about to exit, and if there are any leaks, will give
you information about the problem. (How much information depends on the operating
system and compiler -- some systems don't allow all memory logging to be enabled).
See the memcheck sample for example of usage.

For wxDebugContext to do its work, the new and delete operators for wxObject have
been redefined to store extra information about dynamically allocated objects (but not

CHAPTER 11

1675

statically declared objects). This slows down a debugging version of an application, but
can find difficult-to-detect memory leaks (objects are not deallocated), overwrites (writing
past the end of your object) and underwrites (writing to memory in front of the object).

If debugging mode is on and the symbols wxUSE_GLOBAL_MEMORY_OPERATORS
and wxUSE_DEBUG_NEW_ALWAYS are set to 1 in setup.h, 'new' is defined to be:

#define new new(__FILE__,__LINE__)

All occurrences of 'new' in wxWidgets and your own application will use the overridden
form of the operator with two extra arguments. This means that the debugging output
(and error messages reporting memory problems) will tell you what file and on what line
you allocated the object. Unfortunately not all compilers allow this definition to work
properly, but most do.

Debug macros

You should also use debug macros (p. 1581) as part of a 'defensive programming'
strategy, scattering wxASSERTs liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

wxASSERT (p. 1582) is used to pop up an error message box when a condition is not
true. You can also use wxASSERT_MSG (p. 1583) to supply your own helpful error
message. For example:

 void MyClass::MyFunction(wxObject* object)
 {
 wxASSERT_MSG((object != NULL), "object shoul d not be NULL
in MyFunction!");

 ...
 };

The message box allows you to continue execution or abort the program. If you are
running the application inside a debugger, you will be able to see exactly where the
problem was.

Logging functions

You can use the wxLogDebug (p. 1576) and wxLogTrace (p. 1576) functions to output
debugging information in debug mode; it will do nothing for non-debugging code.

wxDebugContext overview

Debugging overview (p. 1670)

Class: wxDebugContext (p. 378)

wxDebugContext is a class for performing various debugging and memory tracing
operations.

This class has only static data and function members, and there should be no instances.
Probably the most useful members are SetFile (for directing output to a file, instead of

CHAPTER 11

1676

the default standard error or debugger output); Dump (for dumping the dynamically
allocated objects) and PrintStatistics (for dumping information about allocation of
objects). You can also call Check to check memory blocks for integrity.

Here's an example of use. The SetCheckpoint ensures that only the allocations done
after the checkpoint will be dumped.

 wxDebugContext::SetCheckpoint();

 wxDebugContext::SetFile("c:\\temp\\debug.log");

 wxString *thing = new wxString;

 char *ordinaryNonObject = new char[1000];

 wxDebugContext::Dump();
 wxDebugContext::PrintStatistics();

You can use wxDebugContext if __WXDEBUG__ is defined, or you can use it at any
other time (if wxUSE_DEBUG_CONTEXT is set to 1 in setup.h). It is not disabled in non-
debug mode because you may not wish to recompile wxWidgets and your entire
application just to make use of the error logging facility.

Note: wxDebugContext::SetFile has a problem at present, so use the default stream
instead. Eventually the logging will be done through the wxLog facilities instead.

wxConfig classes overview

Classes: wxConfig (p. 184)

This overview briefly describes what the config classes are and what they are for. All the
details about how to use them may be found in the description of the wxConfigBase (p.
184) class and the documentation of the file, registry and INI file based implementations
mentions all the features/limitations specific to each one of these versions.

The config classes provide a way to store some application configuration information.
They were especially designed for this usage and, although may probably be used for
many other things as well, should be limited to it. It means that this information should
be:

 1. Typed, i.e. strings or numbers for the moment. You can not store binary data, for
example.

 2. Small. For instance, it is not recommended to use the Windows registry for
amounts of data more than a couple of kilobytes.

 3. Not performance critical, neither from speed nor from a memory consumption
point of view.

On the other hand, the features provided make them very useful for storing all kinds of
small to medium volumes of hierarchically-organized, heterogeneous data. In short, this
is a place where you can conveniently stuff all your data (numbers and strings)
organizing it in a tree where you use the filesystem-like paths to specify the location of a
piece of data. In particular, these classes were designed to be as easy to use as

CHAPTER 11

1677

possible.

From another point of view, they provide an interface which hides the differences
between the Windows registry and the standard Unix text format configuration files.
Other (future) implementations of wxConfigBase might also understand GTK resource
files or their analogues on the KDE side.

In any case, each implementation of wxConfigBase does its best to make the data look
the same way everywhere. Due to limitations of the underlying physical storage, it may
not implement 100% of the base class functionality.

There are groups of entries and the entries themselves. Each entry contains either a
string or a number (or a boolean value; support for other types of data such as dates or
timestamps is planned) and is identified by the full path to it: something like
/MyApp/UserPreferences/Colors/Foreground. The previous elements in the path are the
group names, and each name may contain an arbitrary number of entries and
subgroups. The path components are always separated with a slash, even though some
implementations use the backslash internally. Further details (including how to read/write
these entries) may be found in the documentation for wxConfigBase (p. 184).

wxFileSystem

The wxHTML library uses a virtual file systems mechanism similar to the one used in
Midnight Commander, Dos Navigator, FAR or almost any modern file manager. It allows
the user to access data stored in archives as if they were ordinary files. On-the-fly
generated files that exist only in memory are also supported.

Classes

Three classes are used in order to provide virtual file systems mechanism:

 • The wxFSFile (p. 565) class provides information about opened file (name, input
stream, mime type and anchor).

 • The wxFileSystem (p. 517) class is the interface. Its main methods are
ChangePathTo() and OpenFile(). This class is most often used by the end user.

 • The wxFileSystemHandler (p. 520) is the core of virtual file systems mechanism.
You can derive your own handler and pass it to the VFS mechanism. You can
derive your own handler and pass it to wxFileSystem's AddHandler() method. In
the new handler you only need to override the OpenFile() and CanOpen()
methods.

Locations

Locations (aka filenames aka addresses) are constructed from four parts:

 • protocol - handler can recognize if it is able to open a file by checking its
protocol. Examples are "http", "file" or "ftp".

 • right location - is the name of file within the protocol. In
"http://www.wxwidgets.org/index.html" the right location is

CHAPTER 11

1678

"//www.wxwidgets.org/index.html".

 • anchor - an anchor is optional and is usually not present. In
"index.htm#chapter2" the anchor is "chapter2".

 • left location - this is usually an empty string. It is used by 'local' protocols such
as ZIP. See Combined Protocols paragraph for details.

Combined Protocols

The left location precedes the protocol in the URL string. It is not used by global
protocols like HTTP but it becomes handy when nesting protocols - for example you may
want to access files in a ZIP archive:

file:archives/cpp_doc.zip#zip:reference/fopen.htm#syntax

In this example, the protocol is "zip", right location is "reference/fopen.htm", anchor is
"syntax" and left location is "file:archives/cpp_doc.zip".

There are two protocols used in this example: "zip" and "file".

File Systems Included in wxHTML

The following virtual file system handlers are part of wxWidgets so far:

wxInternetFSHandler A handler for accessing documents via HTTP
or FTP protocols. Include file is <wx/fs_inet.h>.

wxZipFSHandler A handler for ZIP archives. Include file is
<wx/fs_zip.h>. URL is in form
"archive.zip#zip:filename".

wxMemoryFSHandler This handler allows you to access data stored
in memory (such as bitmaps) as if they were
regular files. See wxMemoryFSHandler
documentation (p. 896) for details. Include file
is <wx/fs_mem.h>. URL is prefixed with
memory:, e.g. "memory:myfile.htm"

In addition, wxFileSystem itself can access local files.

Initializing file system handlers

Use wxFileSystem::AddHandler (p. 518) to initialize a handler, for example:

#include <wx/fs_mem.h>

...

bool MyApp::OnInit()
{
 wxFileSystem::AddHandler(new wxMemoryFSHandler) ;
...
}

CHAPTER 11

1679

Event handling overview

Classes: wxEvtHandler (p. 467), wxWindow (p. 1421), wxEvent (p. 464)

Introduction

Before version 2.0 of wxWidgets, events were handled by the application either by
supplying callback functions, or by overriding virtual member functions such as OnSize .

From wxWidgets 2.0, event tables are used instead, with a few exceptions.

An event table is placed in an implementation file to tell wxWidgets how to map events to
member functions. These member functions are not virtual functions, but they are all
similar in form: they take a single wxEvent-derived argument, and have a void return
type.

Here's an example of an event table.

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU (wxID_EXIT, MyFrame::OnExit)
 EVT_MENU (DO_TEST, MyFrame::DoTest)
 EVT_SIZE (MyFrame::OnSize)
 EVT_BUTTON (BUTTON1, MyFrame::OnButton1)
END_EVENT_TABLE()

The first two entries map menu commands to two different member functions. The
EVT_SIZE macro doesn't need a window identifier, since normally you are only
interested in the current window's size events.

The EVT_BUTTON macro demonstrates that the originating event does not have to
come from the window class implementing the event table -- if the event source is a
button within a panel within a frame, this will still work, because event tables are
searched up through the hierarchy of windows for the command events. In this case, the
button's event table will be searched, then the parent panel's, then the frame's.

As mentioned before, the member functions that handle events do not have to be virtual.
Indeed, the member functions should not be virtual as the event handler ignores that the
functions are virtual, i.e. overriding a virtual member function in a derived class will not
have any effect. These member functions take an event argument, and the class of
event differs according to the type of event and the class of the originating window. For
size events, wxSizeEvent (p. 1123) is used. For menu commands and most control
commands (such as button presses), wxCommandEvent (p. 172) is used. When controls
get more complicated, then specific event classes are used, such as wxTreeEvent (p.
1377) for events from wxTreeCtrl (p. 1359) windows.

As well as the event table in the implementation file, there must also be a
DECLARE_EVENT_TABLE macro somewhere in the class declaration. For example:

class MyFrame : public wxFrame
{
public:
 ...
 void OnExit(wxCommandEvent& event);
 void OnSize(wxSizeEvent& event);

CHAPTER 11

1680

protected:
 int m_count;
 ...

 DECLARE_EVENT_TABLE()
};

Note that this macro may occur in any section of the class (public, protected or private)
but that it is probably better to insert it at the end, as shown, because this macro
implicitly changes the access to protected which may be quite unexpected if there is
anything following it.

Finally, if you don't like using macros for static initialization of the event tables you may
also use wxEvtHandler::Connect (p. 468) to connect the events to the handlers
dynamically, during run-time. See theevent sample (p. 1635) for an example of doing it.

How events are processed

When an event is received from the windowing system, wxWidgets calls
wxEvtHandler::ProcessEvent (p. 471) on the first event handler object belonging to the
window generating the event.

It may be noted that wxWidgets' event processing system implements something very
close to virtual methods in normal C++, i.e. it is possible to alter the behaviour of a class
by overriding its event handling functions. In many cases this works even for changing
the behaviour of native controls. For example it is possible to filter out a number of key
events sent by the system to a native text control by overriding wxTextCtrl and defining a
handler for key events using EVT_KEY_DOWN. This would indeed prevent any key
events from being sent to the native control - which might not be what is desired. In this
case the event handler function has to call Skip() so as to indicate that the search for the
event handler should continue.

To summarize, instead of explicitly calling the base class version as you would have
done with C++ virtual functions (i.e. wxTextCtrl::OnChar()), you should instead call Skip
(p. 466).

In practice, this would look like this if the derived text control only accepts 'a' to 'z' and 'A'
to 'Z':

void MyTextCtrl::OnChar(wxKeyEvent& event)
{
 if (isalpha(event.KeyCode()))
 {
 // key code is within legal range. we call e vent.Skip() so
the
 // event can be processed either in the base wxWidgets
class
 // or the native control.

 event.Skip();
 }
 else
 {
 // illegal key hit. we don't call event.Skip () so the
 // event is not processed anywhere else.

CHAPTER 11

1681

 wxBell();
 }
}

The normal order of event table searching by ProcessEvent is as follows:

 1. If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled (p.
474)) the function skips to step (6).

 2. If the object is a wxWindow, ProcessEvent is recursively called on the window's
wxValidator (p. 1394). If this returns true, the function exits.

 3. SearchEventTable is called for this event handler. If this fails, the base class
table is tried, and so on until no more tables exist or an appropriate function was
found, in which case the function exits.

 4. The search is applied down the entire chain of event handlers (usually the chain
has a length of one). If this succeeds, the function exits.

 5. If the object is a wxWindow and the event is set to set to propagate (in the
library only wxCommandEvent based events are set to propagate),
ProcessEvent is recursively applied to the parent window's event handler. If
this returns true, the function exits.

 6. Finally, ProcessEvent is called on the wxApp object.

Pay close attention to Step 5. People often overlook or get confused by this powerful
feature of the wxWidgets event processing system. To put it a different way, events set
to propagate (See: wxEvent::ShouldPropagate (p. 466)) (most likely derived either
directly or indirectly from wxCommandEvent) will travel up the containment hierarchy
from child to parent until the maximal propagation level is reached or an event handler
is found that doesn't call event.Skip() (p. 466).

Finally, there is another additional complication (which, in fact, simplifies life of
wxWidgets programmers significantly): when propagating the command events upwards
to the parent window, the event propagation stops when it reaches the parent dialog, if
any. This means that you don't risk to get unexpected events from the dialog controls
(which might be left unprocessed by the dialog itself because it doesn't care about them)
when a modal dialog is popped up. The events do propagate beyond the frames,
however. The rationale for this choice is that there are only a few frames in a typical
application and their parent-child relation are well understood by the programmer while it
may be very difficult, if not impossible, to track down all the dialogs which may be
popped up in a complex program (remember that some are created automatically by
wxWidgets). If you need to specify a different behaviour for some reason, you can use
SetExtraStyle(wxWS_EX_BLOCK_EVENTS) (p. 1461) explicitly to prevent the events
from being propagated beyond the given window or unset this flag for the dialogs which
have it on by default.

Typically events that deal with a window as a window (size, motion, paint, mouse,
keyboard, etc.) are sent only to the window. Events that have a higher level of meaning
and/or are generated by the window itself, (button click, menu select, tree expand, etc.)
are command events and are sent up to the parent to see if it is interested in the event.

CHAPTER 11

1682

Note that your application may wish to override ProcessEvent to redirect processing of
events. This is done in the document/view framework, for example, to allow event
handlers to be defined in the document or view. To test for command events (which will
probably be the only events you wish to redirect), you may use
wxEvent::IsCommandEvent (p. 466) for efficiency, instead of using the slower run-time
type system.

As mentioned above, only command events are recursively applied to the parents event
handler in the library itself. As this quite often causes confusion for users, here is a list of
system events which will NOT get sent to the parent's event handler:

wxEvent (p. 464) The event base class

wxActivateEvent (p. 29) A window or application activation event

wxCloseEvent (p. 147) A close window or end session event

wxEraseEvent (p. 463) An erase background event

wxFocusEvent (p. 534) A window focus event

wxKeyEvent (p. 792) A keypress event

wxIdleEvent (p. 740) An idle event

wxInitDialogEvent (p. 777) A dialog initialisation event

wxJoystickEvent (p. 789) A joystick event

wxMenuEvent (p. 921) A menu event

wxMouseEvent (p. 940) A mouse event

wxMoveEvent (p. 948) A move event

wxPaintEvent (p. 980) A paint event

wxQueryLayoutInfoEvent (p. 1039) Used to query layout information

wxSetCursorEvent (p. 1114) Used for special cursor processing based on
current mouse position

wxSizeEvent (p. 1123) A size event

wxScrollWinEvent (p. 1110) A scroll event sent by a scrolled window (not a
scroll bar)

wxSysColourChangedEvent (p. 1255) A system colour change event

In some cases, it might be desired by the programmer to get a certain number of system
events in a parent window, for example all key events sent to, but not used by, the native
controls in a dialog. In this case, a special event handler will have to be written that will
override ProcessEvent() in order to pass all events (or any selection of them) to the
parent window.

CHAPTER 11

1683

Pluggable event handlers

In fact, you don't have to derive a new class from a window class if you don't want to.
You can derive a new class from wxEvtHandler instead, defining the appropriate event
table, and then call wxWindow::SetEventHandler (p. 1461) (or, preferably,
wxWindow::PushEventHandler (p. 1451)) to make this event handler the object that
responds to events. This way, you can avoid a lot of class derivation, and use the same
event handler object to handle events from instances of different classes. If you ever
have to call a window's event handler manually, use the GetEventHandler function to
retrieve the window's event handler and use that to call the member function. By default,
GetEventHandler returns a pointer to the window itself unless an application has
redirected event handling using SetEventHandler or PushEventHandler.

One use of PushEventHandler is to temporarily or permanently change the behaviour of
the GUI. For example, you might want to invoke a dialog editor in your application that
changes aspects of dialog boxes. You can grab all the input for an existing dialog box,
and edit it 'in situ', before restoring its behaviour to normal. So even if the application has
derived new classes to customize behaviour, your utility can indulge in a spot of body-
snatching. It could be a useful technique for on-line tutorials, too, where you take a user
through a serious of steps and don't want them to diverge from the lesson. Here, you
can examine the events coming from buttons and windows, and if acceptable, pass them
through to the original event handler. Use PushEventHandler/PopEventHandler to form
a chain of event handlers, where each handler processes a different range of events
independently from the other handlers.

Window identifiers

Window identifiers are integers, and are used to uniquely determine window identity in
the event system (though you can use it for other purposes). In fact, identifiers do not
need to be unique across your entire application just so long as they are unique within a
particular context you're interested in, such as a frame and its children. You may use the
wxID_OK identifier, for example, on any number of dialogs so long as you don't have
several within the same dialog.

If you pass wxID_ANY to a window constructor, an identifier will be generated for you
automatically by wxWidgets. This is useful when you don't care about the exact identifier
either because you're not going to process the events from the control being created at
all or because you process the events from all controls in one place (in which case you
should specify wxID_ANY in the event table or wxEvtHandler::Connect (p. 468) call as
well. The automatically generated identifiers are always negative and so will never
conflict with the user-specified identifiers which must be always positive.

The following standard identifiers are supplied. You can use wxID_HIGHEST to
determine the number above which it is safe to define your own identifiers. Or, you can
use identifiers below wxID_LOWEST.

#define wxID_ANY -1

#define wxID_LOWEST 4999

#define wxID_OPEN 5000
#define wxID_CLOSE 5001
#define wxID_NEW 5002

CHAPTER 11

1684

#define wxID_SAVE 5003
#define wxID_SAVEAS 5004
#define wxID_REVERT 5005
#define wxID_EXIT 5006
#define wxID_UNDO 5007
#define wxID_REDO 5008
#define wxID_HELP 5009
#define wxID_PRINT 5010
#define wxID_PRINT_SETUP 5011
#define wxID_PREVIEW 5012
#define wxID_ABOUT 5013
#define wxID_HELP_CONTENTS 5014
#define wxID_HELP_COMMANDS 5015
#define wxID_HELP_PROCEDURES 5016
#define wxID_HELP_CONTEXT 5017

#define wxID_CUT 5030
#define wxID_COPY 5031
#define wxID_PASTE 5032
#define wxID_CLEAR 5033
#define wxID_FIND 5034
#define wxID_DUPLICATE 5035
#define wxID_SELECTALL 5036
#define wxID_DELETE 5037
#define wxID_REPLACE 5038
#define wxID_REPLACE_ALL 5039
#define wxID_PROPERTIES 5040

#define wxID_VIEW_DETAILS 5041
#define wxID_VIEW_LARGEICONS 5042
#define wxID_VIEW_SMALLICONS 5043
#define wxID_VIEW_LIST 5044
#define wxID_VIEW_SORTDATE 5045
#define wxID_VIEW_SORTNAME 5046
#define wxID_VIEW_SORTSIZE 5047
#define wxID_VIEW_SORTTYPE 5048

#define wxID_FILE1 5050
#define wxID_FILE2 5051
#define wxID_FILE3 5052
#define wxID_FILE4 5053
#define wxID_FILE5 5054
#define wxID_FILE6 5055
#define wxID_FILE7 5056
#define wxID_FILE8 5057
#define wxID_FILE9 5058

#define wxID_OK 5100
#define wxID_CANCEL 5101
#define wxID_APPLY 5102
#define wxID_YES 5103
#define wxID_NO 5104
#define wxID_STATIC 5105

#define wxID_HIGHEST 5999

Event macros summary

Macros listed by event class

The documentation for specific event macros is organised by event class. Please refer to
these sections for details.

CHAPTER 11

1685

wxActivateEvent (p. 29) The EVT_ACTIVATE and
EVT_ACTIVATE_APP macros intercept
activation and deactivation events.

wxCommandEvent (p. 172) A range of commonly-used control
events.

wxCloseEvent (p. 147) The EVT_CLOSE macro handles window
closure called via wxWindow::Close (p.
1427).

wxDropFilesEvent (p. 448) The EVT_DROP_FILES macros handles
file drop events.

wxEraseEvent (p. 463) The EVT_ERASE_BACKGROUND
macro is used to handle window erase
requests.

wxFocusEvent (p. 534) The EVT_SET_FOCUS and
EVT_KILL_FOCUS macros are used to
handle keyboard focus events.

wxKeyEvent (p. 792) EVT_CHAR, EVT_KEY_DOWN and
EVT_KEY_UP macros handle keyboard
input for any window.

wxIdleEvent (p. 740) The EVT_IDLE macro handle application
idle events (to process background tasks,
for example).

wxInitDialogEvent (p. 777) The EVT_INIT_DIALOG macro is used to
handle dialog initialisation.

wxListEvent (p. 831) These macros handle wxListCtrl (p. 813)
events.

wxMenuEvent (p. 921) These macros handle special menu
events (not menu commands).

wxMouseEvent (p. 940) Mouse event macros can handle either
individual mouse events or all mouse
events.

wxMoveEvent (p. 948) The EVT_MOVE macro is used to handle
a window move.

wxPaintEvent (p. 980) The EVT_PAINT macro is used to handle
window paint requests.

wxScrollEvent (p. 1107) These macros are used to handle scroll
events from wxScrollBar (p. 1092),
wxSlider (p. 1138),and wxSpinButton (p.
1172).

CHAPTER 11

1686

wxSetCursorEvent (p. 1114) The EVT_SET_CURSOR macro is used
for special cursor processing.

wxSizeEvent (p. 1123) The EVT_SIZE macro is used to handle a
window resize.

wxSplitterEvent (p. 1181) The
EVT_SPLITTER_SASH_POS_CHANGE
D, EVT_SPLITTER_UNSPLIT and
EVT_SPLITTER_DCLICK macros are
used to handle the various splitter
window events.

wxSysColourChangedEvent (p. 1255) The EVT_SYS_COLOUR_CHANGED
macro is used to handle events informing
the application that the user has changed
the system colours (Windows only).

wxTreeEvent (p. 1377) These macros handle wxTreeCtrl (p.
1359) events.

wxUpdateUIEvent (p. 1381) The EVT_UPDATE_UI macro is used to
handle user interface update pseudo-
events, which are generated to give the
application the chance to update the
visual state of menus, toolbars and
controls.

Custom event summary

General approach

Since version 2.2.x of wxWidgets, each event type is identified by ID which is given to
the event type at runtime which makes it possible to add new event types to the library
or application without risking ID clashes (two different event types mistakingly getting the
same event ID). This event type ID is stored in a struct of type const wxEventType .

In order to define a new event type, there are principally two choices. One is to define a
entirely new event class (typically deriving fromwxEvent (p. 464) or wxCommandEvent
(p. 172). The other is to use the existing event classes and give them an new event
type. You'll have to define and declare a new event type using either way, and this is
done using the following macros:

// in the header of the source file
DECLARE_EVENT_TYPE(name, value)

// in the implementation
DEFINE_EVENT_TYPE(name)

You can ignore the value parameter of the DECLARE_EVENT_TYPE macro since it
used only for backwards compatibility with wxWidgets 2.0.x based applications where
you have to give the event type ID an explicit value.

CHAPTER 11

1687

Using existing event classes

If you just want to use a wxCommandEvent (p. 172) with a new event type, you can then
use one of the generic event table macros listed below, without having to define a new
macro yourself. This also has the advantage that you won't have to define a new
wxEvent::Clone() (p. 465)method for posting events between threads etc. This could
look like this in your code:

DECLARE_EVENT_TYPE(wxEVT_MY_EVENT, -1)

DEFINE_EVENT_TYPE(wxEVT_MY_EVENT)

// user code intercepting the event

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU (wxID_EXIT, MyFrame::OnExit)
 //
 EVT_COMMAND (ID_MY_WINDOW, wxEVT_MY_EVENT, MyFra me::OnMyEvent)
END_EVENT_TABLE()

void MyFrame::OnMyEvent(wxCommandEvent &event)
{
 // do something
 wxString text = event.GetText();
}

// user code sending the event

void MyWindow::SendEvent()
{
 wxCommandEvent event(wxEVT_MY_EVENT, GetId()) ;
 event.SetEventObject(this);
 // Give it some contents
 event.SetText(wxT("Hallo"));
 // Send it
 GetEventHandler()->ProcessEvent(event);
}

Generic event table macros

EVT_CUSTOM(event, id, func) Allows you to add a custom event table
entry by specifying the event identifier
(such as wxEVT_SIZE), the window
identifier, and a member function to call.

EVT_CUSTOM_RANGE(event, id1, id2, func) The same as EVT_CUSTOM, but
responds to a range of window
identifiers.

EVT_COMMAND(id, event, func) The same as EVT_CUSTOM, but
expects a member function with a
wxCommandEvent argument.

EVT_COMMAND_RANGE(id1, id2, event, func) The same as
EVT_CUSTOM_RANGE, but expects a
member function with a
wxCommandEvent argument.

CHAPTER 11

1688

EVT_NOTIFY(id, event, func) The same as EVT_CUSTOM, but
expects a member function with a
wxNotifyEvent argument.

EVT_NOTIFY_RANGE(id1, id2, event, func) The same as EVT_CUSTOM_RANGE,
but expects a member function with a
wxNotifyEvent argument.

Defining your own event class

Under certain circumstances, it will be required to define your own event class e.g. for
sending more complex data from one place to another. Apart from defining your event
class, you will also need to define your own event table macro (which is quite long).
Watch out to put in enough casts to the inherited event function. Here is an example,
taken mostly from the wxPlot library, which is in the contrib section of the wxWidgets
sources.

// code defining event

class wxPlotEvent: public wxNotifyEvent
{
public:
 wxPlotEvent(wxEventType commandType = wxEVT_NU LL, int id = 0
);

 // accessors
 wxPlotCurve *GetCurve()
 { return m_curve; }

 // required for sending with wxPostEvent()
 wxEvent* Clone();

private:
 wxPlotCurve *m_curve;
};

DECLARE_EVENT_MACRO(wxEVT_PLOT_ACTION, -1)

typedef void (wxEvtHandler::*wxPlotEventFunction)(w xPlotEvent&);

#define EVT_PLOT(id, fn) \
 DECLARE_EVENT_TABLE_ENTRY(wxEVT_PLOT_ACTION, i d, -1, \
 (wxObjectEventFunction) (wxEventFunction)
(wxCommandEventFunction) (wxNotifyEventFunction) \
 wxStaticCastEvent(wxPlotEventFunction, & fn), (wxObject *)
NULL),

// code implementing the event type and the event c lass

DEFINE_EVENT_TYPE(wxEVT_PLOT_ACTION)

wxPlotEvent::wxPlotEvent(...

// user code intercepting the event

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_PLOT (ID_MY_WINDOW, MyFrame::OnPlot)
END_EVENT_TABLE()

CHAPTER 11

1689

void MyFrame::OnPlot(wxPlotEvent &event)
{
 wxPlotCurve *curve = event.GetCurve();
}

// user code sending the event

void MyWindow::SendEvent()
{
 wxPlotEvent event(wxEVT_PLOT_ACTION, GetId()) ;
 event.SetEventObject(this);
 event.SetCurve(m_curve);
 GetEventHandler()->ProcessEvent(event);
}

C++ exceptions overview

Introduction

wxWidgets had been started long before the exceptions were introduced in C++ so it is
not very surprising that it is not built around using them as some more modern C++
libraries are. For instance, the library doesn't throw exceptions to signal about the errors.
Moreover, up to (and including) the version 2.4 of wxWidgets, even using the exceptions
in the user code was dangerous because the library code wasn't exception-safe and so
an exception propagating through it could result in memory and/or resource leaks, and
also not very convenient.

Starting from the version 2.5.1 wxWidgets becomes more exception-friendly. It still
doesn't use the exceptions by itself but it should be now safe to use the exceptions in the
user code and the library tries to help you with this. Please note that making the library
exception-safe is still work in progress.

Strategies for exceptions handling

There are several choice for using the exceptions in wxWidgets programs. First of all,
you may not use them at all. As stated above, the library doesn't throw any exceptions
by itself and so you don't have to worry about exceptions at all unless your own code
throws them. This is, of course, the simplest solution but may be not the best one to deal
with all possible errors.

Another strategy is to use exceptions only to signal truly fatal errors. In this case you
probably don't expect to recover from them and the default behaviour -- to simply
terminate the program -- may be appropriate. If it is not, you may override
OnUnhandledException() (p. 37) in your wxApp-derived class to perform any clean up
tasks. Note, however, that any information about the exact exception type is lost when
this function is called, so if you need you should override OnRun() (p. 37) and add a
try/catch clause around the call of the base class version. This would allow you to catch
any exceptions generated during the execution of the main event loop. To deal with the
exceptions which may arise during the program startup and/or shutdown you should
insert try/catch clauses in OnInit() (p. 37) and/or OnExit() (p. 36) as well.

CHAPTER 11

1690

Finally, you may also want to continue running even when certain exceptions occur. If all
of your exceptions may happen only in the event handlers of a single class (or only in
the classes derived from it), you may centralize your exception handling code in
ProcessEvent (p. 471) method of this class. If this is impractical, you may also consider
overriding the wxApp::HandleEvent() (p. 40) which allows you to handle all the
exceptions thrown by any event handler.

Technicalities

To use any kind of exception support in the library you need to build it with
wxUSE_EXCEPTIONS set to 1. This should be the case by default but if it isn't, you
should edit the include/wx/msw/setup.h file under Windows or run configure
with --enable-exceptions argument under Unix.

On the other hand, if you do not plan to use exceptions, setting this flag to 0 or using --
disable-exceptions could result in a leaner and slightly faster library.

As for any other library feature, there is a sample (p. 1635) showing how to use it.
Please look at its sources for further information.

Window styles

Window styles are used to specify alternative behaviour and appearances for windows,
when they are created. The symbols are defined in such a way that they can be
combined in a 'bit-list' using the C++ bitwise-or operator. For example:

 wxCAPTION | wxMINIMIZE_BOX | wxMAXIMIZE_BOX | wxT HICK_FRAME

For the window styles specific to each window class, please see the documentation for
the window. Most windows can use the generic styles listed for wxWindow (p. 1421) in
addition to their own styles.

Window deletion overview

Classes: wxCloseEvent (p. 147), wxWindow (p. 1421)

Window deletion can be a confusing subject, so this overview is provided to help make it
clear when and how you delete windows, or respond to user requests to close windows.

What is the sequence of events in a window deletion ?

When the user clicks on the system close button or system close command, in a frame
or a dialog, wxWidgets calls wxWindow::Close (p. 1427). This in turn generates an
EVT_CLOSE event: see wxCloseEvent (p. 147).

It is the duty of the application to define a suitable event handler, and decide whether or
not to destroy the window. If the application is for some reason forcing the application to
close (wxCloseEvent::CanVeto (p. 148) returns false), the window should always be
destroyed, otherwise there is the option to ignore the request, or maybe wait until the
user has answered a question before deciding whether it is safe to close. The handler

CHAPTER 11

1691

for EVT_CLOSE should signal to the calling code if it does not destroy the window, by
calling wxCloseEvent::Veto (p. 148). Calling this provides useful information to the
calling code.

The wxCloseEvent handler should only call wxWindow::Destroy (p. 1429) to delete the
window, and not use the delete operator. This is because for some window classes,
wxWidgets delays actual deletion of the window until all events have been processed,
since otherwise there is the danger that events will be sent to a non-existent window.

As reinforced in the next section, calling Close does not guarantee that the window will
be destroyed. Call wxWindow::Destroy (p. 1429) if you want to be certain that the
window is destroyed.

How can the application close a window itself?

Your application can either use wxWindow::Close (p. 1427) event just as the framework
does, or it can call wxWindow::Destroy (p. 1429) directly. If using Close(), you can pass
a true argument to this function to tell the event handler that we definitely want to delete
the frame and it cannot be vetoed.

The advantage of using Close instead of Destroy is that it will call any clean-up code
defined by the EVT_CLOSE handler; for example it may close a document contained in
a window after first asking the user whether the work should be saved. Close can be
vetoed by this process (return false), whereas Destroy definitely destroys the window.

What is the default behaviour?

The default close event handler for wxDialog simulates a Cancel command, generating a
wxID_CANCEL event. Since the handler for this cancel event might itself call Close ,
there is a check for infinite looping. The default handler for wxID_CANCEL hides the
dialog (if modeless) or calls EndModal(wxID_CANCEL) (if modal). In other words, by
default, the dialog is not destroyed (it might have been created on the stack, so the
assumption of dynamic creation cannot be made).

The default close event handler for wxFrame destroys the frame using Destroy().

What should I do when the user calls up Exit from a menu?

You can simply call wxWindow::Close (p. 1427) on the frame. This will invoke your own
close event handler which may destroy the frame.

You can do checking to see if your application can be safely exited at this point, either
from within your close event handler, or from within your exit menu command handler.
For example, you may wish to check that all files have been saved. Give the user a
chance to save and quit, to not save but quit anyway, or to cancel the exit command
altogether.

What should I do to upgrade my 1.xx OnClose to 2.0?

In wxWidgets 1.xx, the OnClose function did not actually delete 'this', but signaled to the
calling function (either Close , or the wxWidgets framework) to delete or not delete the
window.

To update your code, you should provide an event table entry in your frame or dialog,

CHAPTER 11

1692

using the EVT_CLOSE macro. The event handler function might look like this:

 void MyFrame::OnCloseWindow(wxCloseEvent& event)
 {
 if (MyDataHasBeenModified())
 {
 wxMessageDialog* dialog = new wxMessageDialog (this,
 "Save changed data?", "My app", wxYES_NO|wx CANCEL);

 int ans = dialog->ShowModal();
 dialog->Destroy();

 switch (ans)
 {
 case wxID_YES: // Save, then destroy, quitting app
 SaveMyData();
 this->Destroy();
 break;
 case wxID_NO: // Don't save; just des troy, quitting
app
 this->Destroy();
 break;
 case wxID_CANCEL: // Do nothing - so don' t quit app.
 default:
 if (!event.CanVeto()) // Test if we can v eto this
deletion
 this->Destroy(); // If not, destroy the window
anyway.
 else
 event.Veto(); // Notify the calling code that we
didn't delete the frame.
 break;
 }
 }
 }

How do I exit the application gracefully?

A wxWidgets application automatically exits when the designated top window, or the last
frame or dialog, is destroyed. Put any application-wide cleanup code in wxApp::OnExit
(p. 36) (this is a virtual function, not an event handler).

Do child windows get deleted automatically?

Yes, child windows are deleted from within the parent destructor. This includes any
children that are themselves frames or dialogs, so you may wish to close these child
frame or dialog windows explicitly from within the parent close handler.

What about other kinds of window?

So far we've been talking about 'managed' windows, i.e. frames and dialogs. Windows
with parents, such as controls, don't have delayed destruction and don't usually have
close event handlers, though you can implement them if you wish. For consistency,
continue to use the wxWindow::Destroy (p. 1429) function instead of the delete operator
when deleting these kinds of windows explicitly.

wxDialog overview

CHAPTER 11

1693

Classes: wxDialog (p. 391)

A dialog box is similar to a panel, in that it is a window which can be used for placing
controls, with the following exceptions:

 1. A surrounding frame is implicitly created.

 2. Extra functionality is automatically given to the dialog box, such as tabbing
between items (currently Windows only).

 3. If the dialog box is modal, the calling program is blocked until the dialog box is
dismissed.

Under Windows 3, modal dialogs have to be emulated using modeless dialogs and a
message loop. This is because Windows 3 expects the contents of a modal dialog to be
loaded from a resource file or created on receipt of a dialog initialization message. This
is too restrictive for wxWidgets, where any window may be created and displayed before
its contents are created.

For a set of dialog convenience functions, including file selection, see Dialog functions
(p. 1539).

See also wxPanel (p. 985) and wxWindow (p. 1421) for inherited member functions.
Validation of data in controls is covered in Validator overview (p. 1689).

wxValidator overview

Classes: wxValidator (p. 1394), wxTextValidator (p. 1312), wxGenericValidator (p. 586)

The aim of the validator concept is to make dialogs very much easier to write. A validator
is an object that can be plugged into a control (such as a wxTextCtrl), and mediates
between C++ data and the control, transferring the data in either direction and validating
it. It also is able to intercept events generated by the control, providing filtering behaviour
without the need to derive a new control class.

You can use a stock validator, such as wxTextValidator (p. 1312) (which does text
control data transfer, validation and filtering) and wxGenericValidator (p. 586) (which
does data transfer for a range of controls); or you can write your own.

Example

Here is an example of wxTextValidator usage.

 wxTextCtrl *txt1 = new wxTextCtrl(this, -1, wxT(" "),
 wxPoint(10, 10), wxSize(100, 80), 0,
 wxTextValidator(wxFILTER_ALPHA, &g_data.m_strin g));

In this example, the text validator object provides the following functionality:

 1. It transfers the value of g_data.m_string (a wxString variable) to the wxTextCtrl
when the dialog is initialised.

 2. It transfers the wxTextCtrl data back to this variable when the dialog is

CHAPTER 11

1694

dismissed.

 3. It filters input characters so that only alphabetic characters are allowed.

The validation and filtering of input is accomplished in two ways. When a character is
input, wxTextValidator checks the character against the allowed filter flag
(wxFILTER_ALPHA in this case). If the character is inappropriate, it is vetoed (does not
appear) and a warning beep sounds. The second type of validation is performed when
the dialog is about to be dismissed, so if the default string contained invalid characters
already, a dialog box is shown giving the error, and the dialog is not dismissed.

Anatomy of a validator

A programmer creating a new validator class should provide the following functionality.

A validator constructor is responsible for allowing the programmer to specify the kind of
validation required, and perhaps a pointer to a C++ variable that is used for storing the
data for the control. If such a variable address is not supplied by the user, then the
validator should store the data internally.

The wxValidator::Validate (p. 1396) member function should return true if the data in the
control (not the C++ variable) is valid. It should also show an appropriate message if
data was not valid.

The wxValidator::TransferToWindow (p. 1396) member function should transfer the data
from the validator or associated C++ variable to the control.

The wxValidator::TransferFromWindow (p. 1396) member function should transfer the
data from the control to the validator or associated C++ variable.

There should be a copy constructor, and a wxValidator::Clone (p. 1395) function which
returns a copy of the validator object. This is important because validators are passed by
reference to window constructors, and must therefore be cloned internally.

You can optionally define event handlers for the validator, to implement filtering. These
handlers will capture events before the control itself does.

For an example implementation, see the valtext.h and valtext.cpp files in the wxWidgets
library.

How validators interact with dialogs

For validators to work correctly, validator functions must be called at the right times
during dialog initialisation and dismissal.

When a wxDialog::Show (p. 400) is called (for a modeless dialog) or
wxDialog::ShowModal (p. 400) is called (for a modal dialog), the function
wxWindow::InitDialog (p. 1446) is automatically called. This in turn sends an initialisation
event to the dialog. The default handler for the wxEVT_INIT_DIALOG event is defined in
the wxWindow class to simply call the function wxWindow::TransferDataToWindow (p.
1473). This function finds all the validators in the window's children and calls the
TransferToWindow function for each. Thus, data is transferred from C++ variables to the
dialog just as the dialog is being shown.

CHAPTER 11

1695

If you are using a window or panel instead of a dialog, you will need to call
wxWindow::InitDialog (p. 1446) explicitly before showing the window.

When the user clicks on a button, for example the OK button, the application should first
call wxWindow::Validate (p. 1475), which returns false if any of the child window
validators failed to validate the window data. The button handler should return
immediately if validation failed. Secondly, the application should call
wxWindow::TransferDataFromWindow (p. 1473) and return if this failed. It is then safe to
end the dialog by calling EndModal (if modal) or Show (if modeless).

In fact, wxDialog contains a default command event handler for the wxID_OK button. It
goes like this:

void wxDialog::OnOK(wxCommandEvent& event)
{
 if (Validate() && TransferDataFromWindow())
 {
 if (IsModal())
 EndModal(wxID_OK);
 else
 {
 SetReturnCode(wxID_OK);
 this->Show(false);
 }
 }
}

So if using validators and a normal OK button, you may not even need to write any code
for handling dialog dismissal.

If you load your dialog from a resource file, you will need to iterate through the controls
setting validators, since validators can't be specified in a dialog resource.

Constraints overview

Classes: wxLayoutConstraints (p. 799), wxIndividualLayoutConstraint (p. 774).

Note: constraints are now deprecated and you should use sizers (p. 1694) instead.

Objects of class wxLayoutConstraint can be associated with a window to define the way
it is laid out, with respect to its siblings or the parent.

The class consists of the following eight constraints of class
wxIndividualLayoutConstraint, some or all of which should be accessed directly to set
the appropriate constraints.

 • left: represents the left hand edge of the window

 • right: represents the right hand edge of the window

 • top: represents the top edge of the window

 • bottom: represents the bottom edge of the window

 • width: represents the width of the window

CHAPTER 11

1696

 • height: represents the height of the window

 • centreX: represents the horizontal centre point of the window

 • centreY: represents the vertical centre point of the window

The constraints are initially set to have the relationship wxUnconstrained, which means
that their values should be calculated by looking at known constraints. To calculate the
position and size of the control, the layout algorithm needs to know exactly 4 constraints
(as it has 4 numbers to calculate from them), so you should always set exactly 4 of the
constraints from the above table.

If you want the controls height or width to have the default value, you may use a special
value for the constraint: wxAsIs. If the constraint is wxAsIs, the dimension will not be
changed which is useful for the dialog controls which often have the default size (e.g. the
buttons whose size is determined by their label).

The constrains calculation is done in wxWindow::Layout (p. 1447) function which
evaluates constraints. To call it you can either callwxWindow::SetAutoLayout (p. 1456) if
the parent window is a frame, panel or a dialog to tell default OnSize handlers to call
Layout automatically whenever the window size changes, or override OnSize and call
Layout yourself (note that you do have to call Layout (p. 1447) yourself if the parent
window is not a frame, panel or dialog).

Constraint layout: more details

By default, windows do not have a wxLayoutConstraints object. In this case, much layout
must be done explicitly, by performing calculations in OnSize members, except for the
case of frames that have exactly one subwindow (not counting toolbar and statusbar
which are also positioned by the frame automatically), where wxFrame::OnSize takes
care of resizing the child to always fill the frame.

To avoid the need for these rather awkward calculations, the user can create a
wxLayoutConstraints object and associate it with a window with
wxWindow::SetConstraints. This object contains a constraint for each of the window
edges, two for the centre point, and two for the window size. By setting some or all of
these constraints appropriately, the user can achieve quite complex layout by defining
relationships between windows.

In wxWidgets, each window can be constrained relative to either its siblings on the same
window, or the parent. The layout algorithm therefore operates in a top-down manner,
finding the correct layout for the children of a window, then the layout for the
grandchildren, and so on. Note that this differs markedly from native Motif layout, where
constraints can ripple upwards and can eventually change the frame window or dialog
box size. We assume in wxWidgets that the user is always 'boss' and specifies the size
of the outer window, to which subwindows must conform. Obviously, this might be a
limitation in some circumstances, but it suffices for most situations, and the simplification
avoids some of the nightmarish problems associated with programming Motif.

When the user sets constraints, many of the constraints for windows edges and
dimensions remain unconstrained. For a given window, the wxWindow::Layout algorithm
first resets all constraints in all children to have unknown edge or dimension values, and

CHAPTER 11

1697

then iterates through the constraints, evaluating them. For unconstrained edges and
dimensions, it tries to find the value using known relationships that always hold. For
example, an unconstrained width may be calculated from the left and right edges, if both
are currently known. For edges and dimensions with user-supplied constraints, these
constraints are evaluated if the inputs of the constraint are known.

The algorithm stops when all child edges and dimension are known (success), or there
are unknown edges or dimensions but there has been no change in this cycle (failure).

It then sets all the window positions and sizes according to the values it has found.

Because the algorithm is iterative, the order in which constraints are considered is
irrelevant, however you may reduce the number of iterations (and thus speed up the
layout calculations) by creating the controls in such order that as many constraints as
possible can be calculated during the first iteration. For example, if you have 2 buttons
which you'd like to position in the lower right corner, it is slightly more efficient to first
create the second button and specify that its right border IsSameAs(parent, wxRight)
and then create the first one by specifying that it should be LeftOf() the second one than
to do in a more natural left-to-right order.

Window layout examples

Example 1: subwindow layout

This example specifies a panel and a window side by side, with a text subwindow below
it.

 frame->panel = new wxPanel(frame, -1, wxPoint(0, 0),
wxSize(1000, 500), 0);
 frame->scrollWindow = new MyScrolledWindow(frame, -1, wxPoint(0,
0), wxSize(400, 400), wxRETAINED);
 frame->text_window = new MyTextWindow(frame, -1, wxPoint(0,
250), wxSize(400, 250));

 // Set constraints for panel subwindow
 wxLayoutConstraints *c1 = new wxLayoutConstraints ;

 c1->left.SameAs (frame, wxLeft);
 c1->top.SameAs (frame, wxTop);
 c1->right.PercentOf (frame, wxWidth, 50);
 c1->height.PercentOf (frame, wxHeight, 50);

 frame->panel->SetConstraints(c1);

 // Set constraints for scrollWindow subwindow
 wxLayoutConstraints *c2 = new wxLayoutConstraints ;

 c2->left.SameAs (frame->panel, wxRight);
 c2->top.SameAs (frame, wxTop);
 c2->right.SameAs (frame, wxRight);
 c2->height.PercentOf (frame, wxHeight, 50);

 frame->scrollWindow->SetConstraints(c2);

 // Set constraints for text subwindow
 wxLayoutConstraints *c3 = new wxLayoutConstraints ;
 c3->left.SameAs (frame, wxLeft);

CHAPTER 11

1698

 c3->top.Below (frame->panel);
 c3->right.SameAs (frame, wxRight);
 c3->bottom.SameAs (frame, wxBottom);

 frame->text_window->SetConstraints(c3);

Example 2: panel item layout

This example sizes a button width to 80 percent of the panel width, and centres it
horizontally. A listbox and multitext item are placed below it. The listbox takes up 40
percent of the panel width, and the multitext item takes up the remainder of the width.
Margins of 5 pixels are used.

 // Create some panel items
 wxButton *btn1 = new wxButton(frame->panel, -1, " A button") ;

 wxLayoutConstraints *b1 = new wxLayoutConstraints ;
 b1->centreX.SameAs (frame->panel, wxCentreX);
 b1->top.SameAs (frame->panel, wxTop, 5);
 b1->width.PercentOf (frame->panel, wxWidth, 80) ;
 b1->height.PercentOf (frame->panel, wxHeight, 10);
 btn1->SetConstraints(b1);

 wxListBox *list = new wxListBox(frame->panel, -1, "A list",
 wxPoint(-1, -1), wxSize(200,
100));

 wxLayoutConstraints *b2 = new wxLayoutConstraints ;
 b2->top.Below (btn1, 5);
 b2->left.SameAs (frame->panel, wxLeft, 5);
 b2->width.PercentOf (frame->panel, wxWidth, 40) ;
 b2->bottom.SameAs (frame->panel, wxBottom, 5) ;
 list->SetConstraints(b2);

 wxTextCtrl *mtext = new wxTextCtrl(frame->panel, -1, "Multiline
text", "Some text",
 wxPoint(-1, -1), wxSize(150 , 100),
wxTE_MULTILINE);

 wxLayoutConstraints *b3 = new wxLayoutConstraints ;
 b3->top.Below (btn1, 5);
 b3->left.RightOf (list, 5);
 b3->right.SameAs (frame->panel, wxRight, 5);
 b3->bottom.SameAs (frame->panel, wxBottom, 5) ;
 mtext->SetConstraints(b3);

Sizer overview

Classes: wxSizer (p. 1124), wxGridSizer (p. 652), wxFlexGridSizer (p. 531), wxBoxSizer
(p. 98), wxStaticBoxSizer (p. 1205), CreateButtonSizer (p. 1700)

Sizers, as represented by the wxSizer class and its descendants in the wxWidgets class
hierarchy, have become the method of choice to define the layout of controls in dialogs
in wxWidgets because of their ability to create visually appealing dialogs independent of
the platform, taking into account the differences in size and style of the individual
controls. Unlike the original wxWidgets Dialog Editor, editors such as wxDesigner,
DialogBlocks, XRCed and wxWorkshop create dialogs based exclusively on sizers,

CHAPTER 11

1699

practically forcing the user to create platform independent layouts without compromises.

The next section describes and shows what can be done with sizers. The following
sections briefly describe how to program with individual sizer classes.

For information about the new wxWidgets resource system, which can describe sizer-
based dialogs, see the XML-based resource system overview (p. 1700).

The idea behind sizers

The layout algorithm used by sizers in wxWidgets is closely related to layout systems in
other GUI toolkits, such as Java's AWT, the GTK toolkit or the Qt toolkit. It is based upon
the idea of individual subwindows reporting their minimal required size and their ability to
get stretched if the size of the parent window has changed. This will most often mean
that the programmer does not set the start-up size of a dialog, the dialog will rather be
assigned a sizer and this sizer will be queried about the recommended size. This sizer in
turn will query its children (which can be normal windows, empty space or other sizers)
so that a hierarchy of sizers can be constructed. Note that wxSizer does not derive from
wxWindow and thus does not interfere with tab ordering and requires very few resources
compared to a real window on screen.

What makes sizers so well fitted for use in wxWidgets is the fact that every control
reports its own minimal size and the algorithm can handle differences in font sizes or
different window (dialog item) sizes on different platforms without problems. For
example, if the standard font as well as the overall design of Linux/GTK widgets requires
more space than on Windows, the initial dialog size will automatically be bigger on
Linux/GTK than on Windows.

There are currently five different kinds of sizers available in wxWidgets. Each represents
either a certain way to lay out dialog items in a dialog or it fulfills a special task such as
wrapping a static box around a dialog item (or another sizer). These sizers will be
discussed one by one in the text below. For more detailed information on how to use
sizers programmatically, please refer to the section Programming with Sizers (p. 1697).

Common features

All sizers are containers, that is, they are used to lay out one dialog item (or several
dialog items), which they contain. Such items are sometimes referred to as the children
of the sizer. Independent of how the individual sizers lay out their children, all children
have certain features in common:

A minimal size: This minimal size is usually identical to the initial size of the controls
and may either be set explicitly in the wxSize field of the control constructor or may be
calculated by wxWidgets, typically by setting the height and/or the width of the item to -1.
Note that only some controls can calculate their size (such as a checkbox) whereas
others (such as a listbox) don't have any natural width or height and thus require an
explicit size. Some controls can calculate their height, but not their width (e.g. a single
line text control):

CHAPTER 11

1700

A border: The border is just empty space and is used to separate dialog items in a
dialog. This border can either be all around, or at any combination of sides such as only
above and below the control. The thickness of this border must be set explicitly, typically
5 points. The following samples show dialogs with only one dialog item (a button) and a
border of 0, 5, and 10 pixels around the button:

An alignment: Often, a dialog item is given more space than its minimal size plus its
border. Depending on what flags are used for the respective dialog item, the dialog item
can be made to fill out the available space entirely, i.e. it will grow to a size larger than
the minimal size, or it will be moved to either the centre of the available space or to
either side of the space. The following sample shows a listbox and three buttons in a
horizontal box sizer; one button is centred, one is aligned at the top, one is aligned at the
bottom:

CHAPTER 11

1701

A stretch factor: If a sizer contains more than one child and it is offered more space
than its children and their borders need, the question arises how to distribute the surplus
space among the children. For this purpose, a stretch factor may be assigned to each
child, where the default value of 0 indicates that the child will not get more space than its
requested minimum size. A value of more than zero is interpreted in relation to the sum
of all stretch factors in the children of the respective sizer, i.e. if two children get a stretch
factor of 1, they will get half the extra space each independent of whether one control
has a minimal sizer inferior to the other or not. The following sample shows a dialog with
three buttons, the first one has a stretch factor of 1 and thus gets stretched, whereas the
other two buttons have a stretch factor of zero and keep their initial width:

Within wxDesigner, this stretch factor gets set from the Option menu.

Hiding controls using sizers

You can hide controls contained in sizers the same way you would hide any control,
using the wxWindow::Show (p. 1472) method.

However, wxSizer also offers a separate method which can tell the sizer not to consider
that control in its size calculations. To hide a window using the sizer, call wxSizer::Show
(p. 1132). You must then call Layout on the sizer to force an update.

This is useful when hiding parts of the interface, since you can avoid removing the
controls from the sizer and having to add them back later.

Note: This is supported only by wxBoxSizer and wxFlexGridSizer.

wxBoxSizer

wxBoxSizer (p. 98) can lay out its children either vertically or horizontally, depending on
what flag is being used in its constructor. When using a vertical sizer, each child can be
centered, aligned to the right or aligned to the left. Correspondingly, when using a
horizontal sizer, each child can be centered, aligned at the bottom or aligned at the top.
The stretch factor described in the last paragraph is used for the main orientation, i.e.
when using a horizontal box sizer, the stretch factor determines how much the child can
be stretched horizontally. The following sample shows the same dialog as in the last

CHAPTER 11

1702

sample, only the box sizer is a vertical box sizer now:

wxStaticBoxSizer

wxStaticBoxSixer (p. 1205) is the same as a wxBoxSizer, but surrounded by a static
box. Here is a sample:

wxGridSizer

wxGridSizer (p. 652) is a two-dimensional sizer. All children are given the same size,
which is the minimal size required by the biggest child, in this case the text control in the
left bottom border. Either the number of columns or the number or rows is fixed and the
grid sizer will grow in the respectively other orientation if new children are added:

For programming information, see wxGridSizer (p. 652).

wxFlexGridSizer

Another two-dimensional sizer derived from wxGridSizer. The width of each column and
the height of each row are calculated individually according to the minimal requirements

CHAPTER 11

1703

from the respectively biggest child. Additionally, columns and rows can be declared to be
stretchable if the sizer is assigned a size different from the one it requested. The
following sample shows the same dialog as the one above, but using a flex grid sizer:

Programming with wxBoxSizer

The basic idea behind a wxBoxSizer (p. 98) is that windows will most often be laid out in
rather simple basic geometry, typically in a row or a column or several hierarchies of
either.

As an example, we will construct a dialog that will contain a text field at the top and two
buttons at the bottom. This can be seen as a top-hierarchy column with the text at the
top and buttons at the bottom and a low-hierarchy row with an OK button to the left and
a Cancel button to the right. In many cases (particularly dialogs under Unix and normal
frames) the main window will be resizable by the user and this change of size will have
to get propagated to its children. In our case, we want the text area to grow with the
dialog, whereas the button shall have a fixed size. In addition, there will be a thin border
around all controls to make the dialog look nice and - to make matter worse - the buttons
shall be centred as the width of the dialog changes.

It is the unique feature of a box sizer, that it can grow in both directions (height and
width) but can distribute its growth in the main direction (horizontal for a row) unevenly
among its children. In our example case, the vertical sizer is supposed to propagate all
its height changes to only the text area, not to the button area. This is determined by the
proportion parameter when adding a window (or another sizer) to a sizer. It is interpreted
as a weight factor, i.e. it can be zero, indicating that the window may not be resized at
all, or above zero. If several windows have a value above zero, the value is interpreted
relative to the sum of all weight factors of the sizer, so when adding two windows with a
value of 1, they will both get resized equally much and each half as much as the sizer
owning them. Then what do we do when a column sizer changes its width? This
behaviour is controlled by flags (the second parameter of the Add() function): Zero or no
flag indicates that the window will preserve it is original size, wxGROW flag (same as
wxEXPAND) forces the window to grow with the sizer, and wxSHAPED flag tells the
window to change it is size proportionally, preserving original aspect ratio. When
wxGROW flag is not used, the item can be aligned within available space.
wxALIGN_LEFT, wxALIGN_TOP, wxALIGN_RIGHT, wxALIGN_BOTTOM,
wxALIGN_CENTER_HORIZONTAL and wxALIGN_CENTER_VERTICAL do what they
say. wxALIGN_CENTRE (same as wxALIGN_CENTER) is defined as
(wxALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_VERTICAL). Default
alignment is wxALIGN_LEFT | wxALIGN_TOP.

CHAPTER 11

1704

As mentioned above, any window belonging to a sizer may have border, and it can be
specified which of the four sides may have this border, using the wxTOP, wxLEFT,
wxRIGHT and wxBOTTOM constants or wxALL for all directions (and you may also use
wxNORTH, wxWEST etc instead). These flags can be used in combination with the
alignment flags above as the second parameter of the Add() method using the binary or
operator |. The sizer of the border also must be made known, and it is the third
parameter in the Add() method. This means, that the entire behaviour of a sizer and its
children can be controlled by the three parameters of the Add() method.

// we want to get a dialog that is stretchable beca use it
// has a text ctrl at the top and two buttons at th e bottom

MyDialog::MyDialog(wxFrame *parent, wxWindowID id, const wxString
&title)
 : wxDialog(parent, id, title, wxDefaultPosi tion,
wxDefaultSize,
 wxDEFAULT_DIALOG_STYLE | wxRESIZ E_BORDER)
{
 wxBoxSizer *topsizer = new wxBoxSizer(wxVERTICAL);

 // create text ctrl with minimal size 100x60
 topsizer->Add(
 new wxTextCtrl(this, -1, "My text.", wxDefault Position,
wxSize(100,60), wxTE_MULTILINE),
 1, // make vertically stretchable
 wxEXPAND | // make horizontally stretchable
 wxALL, // and make border all around
 10); // set border width to 10

 wxBoxSizer *button_sizer = new wxBoxSizer(wxHORI ZONTAL);
 button_sizer->Add(
 new wxButton(this, wxID_OK, "OK"),
 0, // make horizontally unstretchabl e
 wxALL, // make border all around (implic it top
alignment)
 10); // set border width to 10
 button_sizer->Add(
 new wxButton(this, wxID_CANCEL, "Cancel"),
 0, // make horizontally unstretchabl e
 wxALL, // make border all around (implic it top
alignment)
 10); // set border width to 10

 topsizer->Add(
 button_sizer,
 0, // make vertically unstretch able
 wxALIGN_CENTER); // no border and centre hori zontally

 SetSizer(topsizer); // use the sizer for l ayout

 topsizer->SetSizeHints(this); // set size hin ts to honour
minimum size
}

Note that the new way of specifying flags to wxSizer is via wxSizerFlags (p. 1132). This
class greatly eases the burden of passing flags to a wxSizer.

Here's how you'd do the previous example with wxSizerFlags:

// we want to get a dialog that is stretchable beca use it

CHAPTER 11

1705

// has a text ctrl at the top and two buttons at th e bottom

MyDialog::MyDialog(wxFrame *parent, wxWindowID id, const wxString
&title)
 : wxDialog(parent, id, title, wxDefaultPosi tion,
wxDefaultSize,
 wxDEFAULT_DIALOG_STYLE | wxRESIZ E_BORDER)
{
 wxBoxSizer *topsizer = new wxBoxSizer(wxVERTICAL);

 // create text ctrl with minimal size 100x60 that is
horizontally and
 // vertically stretchable with a border width of 10
 topsizer->Add(
 new wxTextCtrl(this, -1, "My text.", wxDefault Position,
wxSize(100,60), wxTE_MULTILINE),
 wxSizerFlags(1).Align().Expand().Border(wxALL, 10));

 wxBoxSizer *button_sizer = new wxBoxSizer(wxHORI ZONTAL);

 //create two buttons that are horizontally unstre tchable,
 // with an all-around border with a width of 10 a nd implicit top
alignment
 button_sizer->Add(
 new wxButton(this, wxID_OK, "OK"),
 wxSizerFlags(0).Align().Border(wxALL, 10));

 button_sizer->Add(
 new wxButton(this, wxID_CANCEL, "Cancel"),
 wxSizerFlags(0).Align().Border(wxALL, 10));

 //create a sizer with no border and centered hori zontally
 topsizer->Add(
 button_sizer,
 wxSizerFlags(0).Center());

 SetSizer(topsizer); // use the sizer for l ayout

 topsizer->SetSizeHints(this); // set size hin ts to honour
minimum size
}

Programming with wxGridSizer

wxGridSizer (p. 652) is a sizer which lays out its children in a two-dimensional table with
all table fields having the same size, i.e. the width of each field is the width of the widest
child, the height of each field is the height of the tallest child.

Programming with wxFlexGridSizer

wxFlexGridSizer (p. 531) is a sizer which lays out its children in a two-dimensional table
with all table fields in one row having the same height and all fields in one column having
the same width, but all rows or all columns are not necessarily the same height or width
as in the wxGridSizer (p. 652).

Programming with wxStaticBoxSizer

wxStaticBoxSizer (p. 1205) is a sizer derived from wxBoxSizer but adds a static box

CHAPTER 11

1706

around the sizer. Note that this static box has to be created separately.

CreateButtonSizer

As a convenience, CreateButtonSizer (long flags) can be used to create a standard
button sizer in which standard buttons are displayed. The following flags can be passed
to this function:

 wxYES_NO // Add Yes/No subpanel
 wxYES // return wxID_YES
 wxNO // return wxID_NO
 wxNO_DEFAULT // make the wxNO button the defaul t, otherwise
wxYES or wxOK button will be default

 wxOK // return wxID_OK
 wxCANCEL // return wxID_CANCEL
 wxHELP // return wxID_HELP

 wxFORWARD // return wxID_FORWARD
 wxBACKWARD // return wxID_BACKWARD
 wxSETUP // return wxID_SETUP
 wxMORE // return wxID_MORE

XML-based resource system overview

Classes: wxXmlResource (p. 1487), wxXmlResourceHandler (p. 1492)

The XML-based resource system, known as XRC, allows user interface elements such
as dialogs, menu bars and toolbars, to be stored in text files and loaded into the
application at run-time. XRC files can also be compiled into binary XRS files or C++
code (the former makes it possible to store all resources in a single file and the latter is
useful when you want to embed the resources into the executable).

There are several advantages to using XRC resources.

 • Recompiling and linking an application is not necessary if the resources change.

 • If you use a dialog designer that generates C++ code, it can be hard to
reintegrate this into existing C++ code. Separation of resources and code is a
more elegant solution.

 • You can choose between different alternative resource files at run time, if
necessary.

 • The XRC format uses sizers for flexibility, allowing dialogs to be resizable and
highly portable.

 • The XRC format is a wxWidgets standard, and can be generated or
postprocessed by any program that understands it. As it is based on the XML
standard, existing XML editors can be used for simple editing purposes.

XRC was written by Vaclav Slavik.

CHAPTER 11

1707

XRC concepts

These are the typical steps for using XRC files in your application.

 • Include the appropriate headers: normally "wx/xrc/xmlres.h" will suffice;

 • If you are going to use XRS files (p. 1702), install wxFileSystem ZIP handler first
with wxFileSystem::AddHandler(new wxZipFSHandler);

 • call wxXmlResource::Get()->InitAllHandlers() from your
wxApp::OnInit function, and then call wxXmlResource::Get()-
>Load("myfile.xrc") to load the resource file;

 • to create a dialog from a resource, create it using the default constructor, and
then load it using for example wxXmlResource::Get()-
>LoadDialog(&dlg, this, "dlg1");

 • set up event tables as usual but use the XRCID(str) macro to translate from
XRC string names to a suitable integer identifier, for example
EVT_MENU(XRCID("quit"), MyFrame::OnQuit) .

To create an XRC file, you can use one of the following methods.

 • Create the file by hand;

 • use wxDesigner (http://www.roebling.de), a commercial dialog
designer/RAD tool;

 • use DialogBlocks (http://www.anthemion.co.uk/dialogblocks), a
commercial dialog editor;

 • use XRCed (http://xrced.sf.net), a wxPython-based dialog editor that
you can find in the wxPython/tools subdirectory of the wxWidgets CVS
archive;

 • use wxGlade (http://wxglade.sf.net), a GUI designer written in
wxPython. At the moment it can generate Python, C++ and XRC;

 • convert WIN32 RC files to XRC with the tool in contrib/utils/convertrc .

A complete list of third-party tools that write to XRC can be found at
www.wxwidgets.org/lnk_tool.htm (http://www.wxwidgets.org/lnk_tool.htm).

It is highly recommended that you use a resource editing tool, since it's fiddly writing
XRC files by hand.

You can use wxXmlResource::Load (p. 1490) in a number of ways. You can pass an
XRC file (XML-based text resource file) or a zip-compressed file (p. 1702) (extension ZIP
or XRS) containing other XRC.

You can also use embedded C++ resources (p. 1703)

Using binary resource files

CHAPTER 11

1708

To compile binary resource files, use the command-line wxrc utility. It takes one or more
file parameters (the input XRC files) and the following switches and options:

 • -h (--help): show a help message

 • -v (--verbose): show verbose logging information

 • -c (--cpp-code): write C++ source rather than a XRS file

 • -e (--extra-cpp-code): if used together with -c, generates C++ header file
containing class definitions for the windows defined by the XRC file (see special
subsection)

 • -u (--uncompressed): do not compress XML files (C++ only)

 • -g (--gettext): output underscore-wrapped strings that poEdit or gettext can scan.
Outputs to stdout, or a file if -o is used

 • -n (--function) <name>: specify C++ function name (use with -c)

 • -o (--output) <filename>: specify the output file, such as resource.xrs or
resource.cpp

 • -l (--list-of-handlers) <filename>: output a list of necessary handlers to this file

For example: % wxrc resource.xrc
 % wxrc resource.xrc -o resource.xrs
 % wxrc resource.xrc -v -c -o resource.cpp

Note

XRS file is essentially a renamed ZIP archive which means that you can manipulate it
with standard ZIP tools. Note that if you are using XRS files, you have to initialize the
wxFileSystem (p. 517) ZIP handler first! It is a simple thing to do:

 #include <wx/filesys.h>
 #include <wx/fs_zip.h>
 ...
 wxFileSystem::AddHandler(new wxZipFSHandler);

Using embedded resources

It is sometimes useful to embed resources in the executable itself instead of loading an
external file (e.g. when your app is small and consists only of one exe file). XRC
provides means to convert resources into regular C++ file that can be compiled and
included in the executable.

Use the -c switch towxrc utility to produce C++ file with embedded resources. This file
will contain a function called InitXmlResource (unless you override this with a command
line switch). Use it to load the resource:

 extern void InitXmlResource(); // defined in gene rated file
 ...
 wxXmlResource::Get()->InitAllHandlers();
 InitXmlResource();

CHAPTER 11

1709

 ...

XRC C++ sample

This is the C++ source file (xrcdemo.cpp) for the XRC sample.

#include "wx/wx.h"
#include "wx/image.h"
#include "wx/xrc/xmlres.h"

// the application icon
#if defined(__WXGTK__) || defined(__WXMOTIF__) ||
defined(__WXMAC__)
 #include "rc/appicon.xpm"
#endif

// -- ---------------

// private classes
// -- ---------------

// Define a new application type, each program shou ld derive a
class from wxApp
class MyApp : public wxApp
{
public:
 // override base class virtuals
 // ----------------------------

 // this one is called on application startup an d is a good
place for the app
 // initialization (doing it here and not in the ctor allows to
have an error
 // return: if OnInit() returns false, the appli cation
terminates)
 virtual bool OnInit();
};

// Define a new frame type: this is going to be our main frame
class MyFrame : public wxFrame
{
public:
 // ctor(s)
 MyFrame(const wxString& title, const wxPoint& p os, const
wxSize& size);

 // event handlers (these functions should _not_ be virtual)
 void OnQuit(wxCommandEvent& event);
 void OnAbout(wxCommandEvent& event);
 void OnDlg1(wxCommandEvent& event);
 void OnDlg2(wxCommandEvent& event);

private:
 // any class wishing to process wxWidgets event s must use this
macro
 DECLARE_EVENT_TABLE()
};

// -- ---------------

// event tables and other macros for wxWidgets

CHAPTER 11

1710

// -- ---------------

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU(XRCID("menu_quit"), MyFrame::OnQuit)
 EVT_MENU(XRCID("menu_about"), MyFrame::OnAbout)
 EVT_MENU(XRCID("menu_dlg1"), MyFrame::OnDlg1)
 EVT_MENU(XRCID("menu_dlg2"), MyFrame::OnDlg2)
END_EVENT_TABLE()

IMPLEMENT_APP(MyApp)

// -- ---------------

// the application class
// -- ---------------

// 'Main program' equivalent: the program execution "starts" here
bool MyApp::OnInit()
{
 wxImage::AddHandler(new wxGIFHandler);
 wxXmlResource::Get()->InitAllHandlers();
 wxXmlResource::Get()->Load("rc/resource.xrc");

 MyFrame *frame = new MyFrame("XML resources dem o",
 wxPoint(50, 50), w xSize(450,
340));
 frame->Show(true);
 return true;
}

// -- ---------------

// main frame
// -- ---------------

// frame constructor
MyFrame::MyFrame(const wxString& title, const wxPoi nt& pos, const
wxSize& size)
 : wxFrame((wxFrame *)NULL, -1, title, pos, s ize)
{
 SetIcon(wxICON(appicon));

 SetMenuBar(wxXmlResource::Get()->LoadMenuBar("m ainmenu"));
 SetToolBar(wxXmlResource::Get()->LoadToolBar(th is,
"toolbar"));
}

// event handlers
void MyFrame::OnQuit(wxCommandEvent& WXUNUSED(event))
{
 // true is to force the frame to close
 Close(true);
}

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(even t))
{
 wxString msg;
 msg.Printf(_T("This is the about dialog of XML resources
demo.\n")
 _T("Welcome to %s"), wxVERSION_STRI NG);

CHAPTER 11

1711

 wxMessageBox(msg, "About XML resources demo", w xOK |
wxICON_INFORMATION, this);
}

void MyFrame::OnDlg1(wxCommandEvent& WXUNUSED(event))
{
 wxDialog dlg;
 wxXmlResource::Get()->LoadDialog(&dlg, this, "d lg1");
 dlg.ShowModal();
}

void MyFrame::OnDlg2(wxCommandEvent& WXUNUSED(event))
{
 wxDialog dlg;
 wxXmlResource::Get()->LoadDialog(&dlg, this, "d lg2");
 dlg.ShowModal();
}

XRC resource file sample

This is the XML file (resource.xrc) for the XRC sample.

<?xml version="1.0"?>
<resource version="2.3.0.1">
 <object class="wxMenuBar" name="mainmenu">
 <style>wxMB_DOCKABLE</style>
 <object class="wxMenu" name="menu_file">
 <label>_File</label>
 <style>wxMENU_TEAROFF</style>
 <object class="wxMenuItem" name="menu_about">
 <label>_About...</label>
 <bitmap>filesave.gif</bitmap>
 </object>
 <object class="separator"/>
 <object class="wxMenuItem" name="menu_dlg1">
 <label>Dialog 1</label>
 </object>
 <object class="wxMenuItem" name="menu_dlg2">
 <label>Dialog 2</label>
 </object>
 <object class="separator"/>
 <object class="wxMenuItem" name="menu_quit">
 <label>E_xit\tAlt-X</label>
 </object>
 </object>
 </object>
 <object class="wxToolBar" name="toolbar">
 <style>wxTB_FLAT|wxTB_DOCKABLE</style>
 <margins>2,2</margins>
 <object class="tool" name="menu_open">
 <bitmap>fileopen.gif</bitmap>
 <tooltip>Open catalog</tooltip>
 </object>
 <object class="tool" name="menu_save">
 <bitmap>filesave.gif</bitmap>
 <tooltip>Save catalog</tooltip>
 </object>
 <object class="tool" name="menu_update">
 <bitmap>update.gif</bitmap>
 <tooltip>Update catalog - synchronize it with
sources</tooltip>
 </object>

CHAPTER 11

1712

 <separator/>
 <object class="tool" name="menu_quotes">
 <bitmap>quotes.gif</bitmap>
 <toggle>1</toggle>
 <tooltip>Display quotes around the string?</t ooltip>
 </object>
 <object class="separator"/>
 <object class="tool" name="menu_fuzzy">
 <bitmap>fuzzy.gif</bitmap>
 <tooltip>Toggled if selected string is fuzzy
translation</tooltip>
 <toggle>1</toggle>
 </object>
 </object>
 <object class="wxDialog" name="dlg1">
 <object class="wxBoxSizer">
 <object class="sizeritem">
 <object class="wxBitmapButton">
 <bitmap>fuzzy.gif</bitmap>
 <focus>fileopen.gif</focus>
 </object>
 </object>
 <object class="sizeritem">
 <object class="wxPanel">
 <object class="wxStaticText">
 <label>fdgdfgdfgdfg</label>
 </object>
 <style>wxSUNKEN_BORDER</style>
 </object>
 <flag>wxALIGN_CENTER</flag>
 </object>
 <object class="sizeritem">
 <object class="wxButton">
 <label>Buttonek</label>
 </object>
 <border>10d</border>
 <flag>wxALL</flag>
 </object>
 <object class="sizeritem">
 <object class="wxHtmlWindow">
 <htmlcode><h1>Hi,</h1>man</ht mlcode>
 <size>100,45d</size>
 </object>
 </object>
 <object class="sizeritem">
 <object class="wxNotebook">
 <object class="notebookpage">
 <object class="wxPanel">
 <object class="wxBoxSizer">
 <object class="sizeritem">
 <object class="wxHtmlWindow">
 <htmlcode>Hello, we are inside a
<u>NOTEBOOK</u>...</htmlcode>
 <size>50,50d</size>
 </object>
 <option>1</option>
 </object>
 </object>
 </object>
 <label>Page</label>
 </object>
 <object class="notebookpage">
 <object class="wxPanel">
 <object class="wxBoxSizer">

CHAPTER 11

1713

 <object class="sizeritem">
 <object class="wxHtmlWindow">
 <htmlcode>Hello, we are inside a
<u>NOTEBOOK</u>...</htmlcode>
 <size>50,50d</size>
 </object>
 </object>
 </object>
 </object>
 <label>Page 2</label>
 </object>
 <usenotebooksizer>1</usenotebooksizer>
 </object>
 <flag>wxEXPAND</flag>
 </object>
 <orient>wxVERTICAL</orient>
 </object>
 </object>
 <object class="wxDialog" name="dlg2">
 <object class="wxBoxSizer">
 <orient>wxVERTICAL</orient>
 <object class="sizeritem" name="dfgdfg">
 <object class="wxTextCtrl">
 <size>200,200d</size>
 <style>wxTE_MULTILINE|wxSUNKEN_BORDER</st yle>
 <value>Hello, this is an ordinary multili ne\n
textctrl....</value>
 </object>
 <option>1</option>
 <flag>wxEXPAND|wxALL</flag>
 <border>10</border>
 </object>
 <object class="sizeritem">
 <object class="wxBoxSizer">
 <object class="sizeritem">
 <object class="wxButton" name="wxID_OK" >
 <label>Ok</label>
 <default>1</default>
 </object>
 </object>
 <object class="sizeritem">
 <object class="wxButton" name="wxID_CAN CEL">
 <label>Cancel</label>
 </object>
 <border>10</border>
 <flag>wxLEFT</flag>
 </object>
 </object>
 <flag>wxLEFT|wxRIGHT|wxBOTTOM|wxALIGN_RIGHT </flag>
 <border>10</border>
 </object>
 </object>
 <title>Second testing dialog</title>
 </object>
</resource>

XRC file format

Please see Technical Note 14 (docs/tech/tn0014.txt) in your wxWidgets distribution.

C++ header file generation

CHAPTER 11

1714

Using the -e switch together with -c , a C++ header file is written containing class
definitions for the GUI windows defined in the XRC file. This code generation can make
it easier to use XRC and automate program development. The classes can be used as
basis for development, freeing the programmer from dealing with most of the XRC
specifics (e.g. XRCCTRL).

For each top level window defined in the XRC file a C++ class definition is generated,
containing as class members the named widgets of the window. A default constructor for
each class is also generated. Inside the constructor all XRC loading is done and all
class members representing widgets are initialized.

A simple example will help understand how the scheme works. Suppose you have a
XRC file defining a top level window TestWnd_Base , which subclasses wxFrame (any
other class like wxDialog will do also), and has subwidgets wxTextCtrl A and
wxButton B. The XRC file and corresponding class definition in the header file will be
something like:

<?xml version="1.0"?>
<resource version="2.3.0.1">
 <object class="wxFrame" name="TestWnd_Base">
 <size>-1,-1</size>
 <title>Test</title>
 <object class="wxBoxSizer">
 <orient>wxHORIZONTAL</orient>
 <object class="sizeritem">
 <object class="wxTextCtrl" name="A" >
 <label>Test label</label>
 </object>
 </object>
 <object class="sizeritem">
 <object class="wxButton" name="B">
 <label>Test button</label>
 </object>
 </object>
 </object>
 </object>
</resource>

class TestWnd_Base : public wxFrame {
protected:
 wxTextCtrl* A;
 wxButton* B;

private:
 void InitWidgetsFromXRC(){
 wxXmlResource::Get()->LoadObject(this,NULL,"TestW nd","wxFrame");
 A = XRCCTRL(*this,"A",wxTextCtrl);
 B = XRCCTRL(*this,"B",wxButton);
 }
public:
TestWnd::TestWnd(){
 InitWidgetsFromXRC();
 }
};

The generated window class can be used as basis for the full window class. The class
members which represent widgets may be accessed by name instead of usingXRCCTRL
every time you wish to reference them (note that they are protected class members),

CHAPTER 11

1715

though you must still use XRCID to refer to widget IDs in the event table.

Example:

#include "resource.h"

class TestWnd : public TestWnd_Base {
 public:
 TestWnd(){
 // A, B already initialised at this point
 A->SetValue("Updated in TestWnd::TestWnd");
 B->SetValue("Nice :)");
 }
 void OnBPressed(wxEvent& event){
 Close();
 }
 DECLARE_EVENT_TABLE();
};

BEGIN_EVENT_TABLE(TestWnd,TestWnd_Base)
EVT_BUTTON(XRCID("B"),TestWnd::OnBPressed)
END_EVENT_TABLE()

Adding new resource handlers

Coming soon.

Scrolling overview

Classes: wxWindow (p. 1421), wxScrolledWindow (p. 1098), wxIcon (p. 730),
wxScrollBar (p. 1092).

Scrollbars come in various guises in wxWidgets. All windows have the potential to show
a vertical scrollbar and/or a horizontal scrollbar: it is a basic capability of a window.
However, in practice, not all windows do make use of scrollbars, such as a single-line
wxTextCtrl.

Because any class derived from wxWindow (p. 1421) may have scrollbars, there are
functions to manipulate the scrollbars and event handlers to intercept scroll events. But
just because a window generates a scroll event, doesn't mean that the window
necessarily handles it and physically scrolls the window. The base class wxWindow in
fact doesn't have any default functionality to handle scroll events. If you created a
wxWindow object with scrollbars, and then clicked on the scrollbars, nothing at all would
happen. This is deliberate, because the interpretation of scroll events varies from one
window class to another.

wxScrolledWindow (p. 1098) (formerly wxCanvas) is an example of a window that adds
functionality to make scrolling really work. It assumes that scrolling happens in
consistent units, not different-sized jumps, and that page size is represented by the
visible portion of the window. It is suited to drawing applications, but perhaps not so
suitable for a sophisticated editor in which the amount scrolled may vary according to the
size of text on a given line. For this, you would derive from wxWindow and implement
scrolling yourself. wxGrid (p. 593) is an example of a class that implements its own

CHAPTER 11

1716

scrolling, largely because columns and rows can vary in size.

The scrollbar model

The function wxWindow::SetScrollbar (p. 1465) gives a clue about the way a scrollbar is
modeled. This function takes the following arguments:

orientation Which scrollbar: wxVERTICAL or wxHORIZONTAL.

position The position of the scrollbar in scroll units.

visible The size of the visible portion of the scrollbar, in scroll
units.

range The maximum position of the scrollbar.

refresh Whether the scrollbar should be repainted.

orientation determines whether we're talking about the built-in horizontal or vertical
scrollbar.
position is simply the position of the 'thumb' (the bit you drag to scroll around). It is given
in scroll units, and so is relative to the total range of the scrollbar.

visible gives the number of scroll units that represents the portion of the window
currently visible. Normally, a scrollbar is capable of indicating this visually by showing a
different length of thumb.

range is the maximum value of the scrollbar, where zero is the start position. You
choose the units that suit you, so if you wanted to display text that has 100 lines, you
would set this to 100. Note that this doesn't have to correspond to the number of pixels
scrolled - it is up to you how you actually show the contents of the window.

refresh just indicates whether the scrollbar should be repainted immediately or not.

An example

Let's say you wish to display 50 lines of text, using the same font. The window is sized
so that you can only see 16 lines at a time.

You would use:

 SetScrollbar(wxVERTICAL, 0, 16, 50);

Note that with the window at this size, the thumb position can never go above 50 minus
16, or 34.

You can determine how many lines are currently visible by dividing the current view size
by the character height in pixels.

When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which can be
called initially and also from your wxSizeEvent (p. 1123) handler function.

CHAPTER 11

1717

Bitmaps and icons overview

Classes: wxBitmap (p. 76), wxBitmapHandler (p. 95), wxIcon (p. 730), wxCursor (p.
216).

The wxBitmap class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour. Platform-specific methods for creating a wxBitmap object from
an existing file are catered for, and this is an occasion where conditional compilation will
sometimes be required.

A bitmap created dynamically or loaded from a file can be selected into a memory device
context (instance of wxMemoryDC (p. 895)). This enables the bitmap to be copied to a
window or memory device context using wxDC::Blit (p. 354), or to be used as a drawing
surface.

See wxMemoryDC (p. 895) for an example of drawing onto a bitmap.

All wxWidgets platforms support XPMs for small bitmaps and icons. You may include the
XPM inline as below, since it's C code, or you can load it at run-time.

#include "mondrian.xpm"

Sometimes you wish to use a .ico resource on Windows, and XPMs on other platforms
(for example to take advantage of Windows' support for multiple icon resolutions). A
macro, wxICON (p. 1550), is available which creates an icon using an XPM on the
appropriate platform, or an icon resource on Windows.

wxIcon icon(wxICON(mondrian));

// Equivalent to:

#if defined(__WXGTK__) || defined(__WXMOTIF__)
wxIcon icon(mondrian_xpm);
#endif

#if defined(__WXMSW__)
wxIcon icon("mondrian");
#endif

There is also a corresponding wxBITMAP (p. 1549) macro which allows to create the
bitmaps in much the same way as wxICON (p. 1550) creates icons. It assumes that
bitmaps live in resources under Windows or OS2 and XPM files under all other platforms
(for XPMs, the corresponding file must be included before this macro is used, of course,
and the name of the bitmap should be the same as the resource name under Windows
with _xpmsuffix). For example:

// an easy and portable way to create a bitmap
wxBitmap bmp(wxBITMAP(bmpname));

// which is roughly equivalent to the following
#if defined(__WXMSW__) || defined(__WXPM__)
 wxBitmap bmp("bmpname", wxBITMAP_TYPE_RESOURCE) ;
#else // Unix
 wxBitmap bmp(bmpname_xpm, wxBITMAP_TYPE_XPM);
#endif

CHAPTER 11

1718

You should always use wxICON and wxBITMAP macros because they work for any
platform (unlike the code above which doesn't deal with wxMac, wxX11, ...) and are
more short and clear than versions with #ifdef s. Even better, use the same XPMs on
all platforms.

Supported bitmap file formats

The following lists the formats handled on different platforms. Note that missing or
partially-implemented formats are automatically supplemented by the wxImage (p. 742)
to load the data, and then converting it to wxBitmap form. Note that using wxImage is the
preferred way to load images in wxWidgets, with the exception of resources (XPM-files
or native Windows resources). Writing an image format handler for wxImage is also far
easier than writing one for wxBitmap, because wxImage has exactly one format on all
platforms whereas wxBitmap can store pixel data very differently, depending on colour
depths and platform.

wxBitmap

Under Windows, wxBitmap may load the following formats:

 • Windows bitmap resource (wxBITMAP_TYPE_BMP_RESOURCE)

 • Windows bitmap file (wxBITMAP_TYPE_BMP)

 • XPM data and file (wxBITMAP_TYPE_XPM)

 • All formats that are supported by the wxImage (p. 742) class.

Under wxGTK, wxBitmap may load the following formats:

 • XPM data and file (wxBITMAP_TYPE_XPM)

 • All formats that are supported by the wxImage (p. 742) class.

Under wxMotif and wxX11, wxBitmap may load the following formats:

 • XBM data and file (wxBITMAP_TYPE_XBM)

 • XPM data and file (wxBITMAP_TYPE_XPM)

 • All formats that are supported by the wxImage (p. 742) class.

wxIcon

Under Windows, wxIcon may load the following formats:

 • Windows icon resource (wxBITMAP_TYPE_ICO_RESOURCE)

 • Windows icon file (wxBITMAP_TYPE_ICO)

 • XPM data and file (wxBITMAP_TYPE_XPM)

Under wxGTK, wxIcon may load the following formats:

CHAPTER 11

1719

 • XPM data and file (wxBITMAP_TYPE_XPM)

 • All formats that are supported by the wxImage (p. 742) class.

Under wxMotif and wxX11, wxIcon may load the following formats:

 • XBM data and file (wxBITMAP_TYPE_XBM)

 • XPM data and file (wxBITMAP_TYPE_XPM)

 • All formats that are supported by the wxImage (p. 742) class.

wxCursor

Under Windows, wxCursor may load the following formats:

 • Windows cursor resource (wxBITMAP_TYPE_CUR_RESOURCE)

 • Windows cursor file (wxBITMAP_TYPE_CUR)

 • Windows icon file (wxBITMAP_TYPE_ICO)

 • Windows bitmap file (wxBITMAP_TYPE_BMP)

Under wxGTK, wxCursor may load the following formats (in additional to stock cursors):

 • None (stock cursors only).

Under wxMotif and wxX11, wxCursor may load the following formats:

 • XBM data and file (wxBITMAP_TYPE_XBM)

Bitmap format handlers

To provide extensibility, the functionality for loading and saving bitmap formats is not
implemented in the wxBitmap class, but in a number of handler classes, derived from
wxBitmapHandler. There is a static list of handlers which wxBitmap examines when a file
load/save operation is requested. Some handlers are provided as standard, but if you
have special requirements, you may wish to initialise the wxBitmap class with some
extra handlers which you write yourself or receive from a third party.

To add a handler object to wxBitmap, your application needs to include the header which
implements it, and then call the static function wxBitmap::AddHandler (p. 81).

Note: bitmap handlers are not implemented on all platforms, and new ones rarely need
to be implemented since wxImage can be used for loading most formats, as noted
earlier.

Device context overview

Classes: wxBufferedDC (p. 107), wxBufferedPaintDC (p. 108), wxDC (p. 353),
wxPostScriptDC (p. 1000), wxMetafileDC (p. 930), wxMemoryDC (p. 895), wxPrinterDC

CHAPTER 11

1720

(p. 1018), wxScreenDC (p. 1091), wxClientDC (p. 141), wxPaintDC (p. 979),
wxWindowDC (p. 1476).

A wxDC is a device context onto which graphics and text can be drawn. The device
context is intended to represent a number of output devices in a generic way, with the
same API being used throughout.

Some device contexts are created temporarily in order to draw on a window. This is true
of wxScreenDC (p. 1091), wxClientDC (p. 141), wxPaintDC (p. 979), and wxWindowDC
(p. 1476). The following describes the differences between these device contexts and
when you should use them.

 • wxScreenDC. Use this to paint on the screen, as opposed to an individual
window.

 • wxClientDC. Use this to paint on the client area of window (the part without
borders and other decorations), but do not use it from within an wxPaintEvent (p.
980).

 • wxPaintDC. Use this to paint on the client area of a window, but only from within
a wxPaintEvent (p. 980).

 • wxWindowDC. Use this to paint on the whole area of a window, including
decorations. This may not be available on non-Windows platforms.

To use a client, paint or window device context, create an object on the stack with the
window as argument, for example:

 void MyWindow::OnMyCmd(wxCommandEvent& event)
 {
 wxClientDC dc(window);
 DrawMyPicture(dc);
 }

Try to write code so it is parameterised by wxDC - if you do this, the same piece of code
may write to a number of different devices, by passing a different device context. This
doesn't work for everything (for example not all device contexts support bitmap drawing)
but will work most of the time.

wxFont overview

Class: wxFont (p. 535), wxFontDialog (p. 548)

A font is an object which determines the appearance of text, primarily when drawing text
to a window or device context. A font is determined by the following parameters (not all
of them have to be specified, of course):

Point size This is the standard way of referring to text size.

Family Supported families are: wxDEFAULT, wxDECORATIVE,
wxROMAN, wxSCRIPT, wxSWISS, wxMODERN .
wxMODERN is a fixed pitch font; the others are either fixed
or variable pitch.

CHAPTER 11

1721

Style The value can be wxNORMAL, wxSLANT or wxITALIC .

Weight The value can be wxNORMAL, wxLIGHT or wxBOLD .

Underlining The value can be true or false.

Face name An optional string specifying the actual typeface to be
used. If NULL, a default typeface will chosen based on the
family.

Encoding The font encoding (see
wxFONTENCODING_XXXconstants and the font overview
(p. 1716) for more details)

Specifying a family, rather than a specific typeface name, ensures a degree of portability
across platforms because a suitable font will be chosen for the given font family,
however it doesn't allow to choose a font precisely as the parameters above don't
suffice, in general, to identify all the available fonts and this is where using the native
font descriptions may be helpful - see below.

Under Windows, the face name can be one of the installed fonts on the user's system.
Since the choice of fonts differs from system to system, either choose standard Windows
fonts, or if allowing the user to specify a face name, store the family name with any file
that might be transported to a different Windows machine or other platform.

Note: There is currently a difference between the appearance of fonts on the two
platforms, if the mapping mode is anything other than wxMM_TEXT. Under X, font size
is always specified in points. Under MS Windows, the unit for text is points but the text is
scaled according to the current mapping mode. However, user scaling on a device
context will also scale fonts under both environments.

Native font information

An alternative way of choosing fonts is to use the native font description. This is the only
acceptable solution if the user is allowed to choose the font using the wxFontDialog (p.
548) because the selected font cannot be described using only the family name and so,
if only family name is stored permanently, the user would almost surely see a different
font in the program later.

Instead, you should store the value returned by wxFont::GetNativeFontInfoDesc (p. 541)
and pass it to wxFont::SetNativeFontInfo (p. 543) later to recreate exactly the same font.

Note that the contents of this string depends on the platform and shouldn't be used for
any other purpose (in particular, it is not meant to be shown to the user). Also please
note that although the native font information is currently implemented for Windows and
Unix (GTK+ and Motif) ports only, all the methods are available for all the ports and
should be used to make your program work correctly when they are implemented later.

Font encoding overview

wxWidgets has support for multiple font encodings starting from release 2.2. By

CHAPTER 11

1722

encoding we mean here the mapping between the character codes and the letters.
Probably the most well-known encoding is (7 bit) ASCII one which is used almost
universally now to represent the letters of the English alphabet and some other common
characters. However, it is not enough to represent the letters of foreign alphabets and
here other encodings come into play. Please note that we will only discuss 8-bit fonts
here and not Unicode (p. 1654).

Font encoding support is ensured by several classes: wxFont (p. 535) itself, but also
wxFontEnumerator (p. 549) and wxFontMapper (p. 551). wxFont encoding support is
reflected by a (new) constructor parameter encoding which takes one of the following
values (elements of enumeration type wxFontEncoding):

wxFONTENCODING_SYSTEM The default encoding of the underlying operating
system (notice that this might be a "foreign" encoding for
foreign versions of Windows 9x/NT).

wxFONTENCODING_DEFAULT The applications default encoding as returned by
wxFont::GetDefaultEncoding (p. 540). On program startup,
the applications default encoding is the same as
wxFONTENCODING_SYSTEM, but may be changed to
make all the fonts created later to use it (by default).

wxFONTENCODING_ISO8859_1..15 ISO8859 family encodings which are usually
used by all non-Microsoft operating systems

wxFONTENCODING_KOI8 Standard Cyrillic encoding for the Internet (but see also
wxFONTENCODING_ISO8859_5 and
wxFONTENCODING_CP1251)

wxFONTENCODING_CP1250 Microsoft analogue of ISO8859-2

wxFONTENCODING_CP1251 Microsoft analogue of ISO8859-5

wxFONTENCODING_CP1252 Microsoft analogue of ISO8859-1

As you may see, Microsoft's encoding partly mirror the standard ISO8859 ones, but
there are (minor) differences even between ISO8859-1 (Latin1, ISO encoding for
Western Europe) and CP1251 (WinLatin1, standard code page for English versions of
Windows) and there are more of them for other encodings.

The situation is particularly complicated with Cyrillic encodings for which (more than)
three incompatible encodings exist: KOI8 (the old standard, widely used on the Internet),
ISO8859-5 (ISO standard for Cyrillic) and CP1251 (WinCyrillic).

This abundance of (incompatible) encodings should make it clear that using encodings is
less easy than it might seem. The problems arise both from the fact that the standard
encodings for the given language (say Russian, which is written in Cyrillic) are different
on different platforms and because the fonts in the given encoding might just not be
installed (this is especially a problem with Unix, or, in general, non-Win32 systems).

To clarify, the wxFontEnumerator (p. 549) class may be used to enumerate both all
available encodings and to find the facename(s) in which the given encoding exists. If
you can find the font in the correct encoding with wxFontEnumerator then your troubles

CHAPTER 11

1723

are over, but, unfortunately, sometimes this is not enough. For example, there is no
standard way (that I know of, please tell me if you do!) to find a font on a Windows
system for KOI8 encoding (only for WinCyrillic one which is quite different), so
wxFontEnumerator (p. 549) will never return one, even if the user has installed a KOI8
font on his system.

To solve this problem, a wxFontMapper (p. 551) class is provided. This class stores the
mapping between the encodings and the font face names which support them in
wxConfig (p. 1672) object. Of course, it would be fairly useless if it tried to determine
these mappings by itself, so, instead, it (optionally) asks the user and remembers his
answers so that the next time the program will automatically choose the correct font.

All these topics are illustrated by the font sample (p. 1636); please refer to it and the
documentation of the classes mentioned here for further explanations.

wxSplitterWindow overview

Classes: wxSplitterWindow (p. 1183)

The following screenshot shows the appearance of a splitter window with a vertical split.

The style wxSP_3D has been used to show a 3D border and 3D sash.

Example

CHAPTER 11

1724

The following fragment shows how to create a splitter window, creating two subwindows
and hiding one of them.

 splitter = new wxSplitterWindow(this, -1, wxPoint (0, 0),
wxSize(400, 400), wxSP_3D);

 leftWindow = new MyWindow(splitter);
 leftWindow->SetScrollbars(20, 20, 50, 50);

 rightWindow = new MyWindow(splitter);
 rightWindow->SetScrollbars(20, 20, 50, 50);
 rightWindow->Show(false);

 splitter->Initialize(leftWindow);

 // Set this to prevent unsplitting
// splitter->SetMinimumPaneSize(20);

The next fragment shows how the splitter window can be manipulated after creation.

 void MyFrame::OnSplitVertical(wxCommandEvent& eve nt)
 {
 if (splitter->IsSplit())
 splitter->Unsplit();
 leftWindow->Show(true);
 rightWindow->Show(true);
 splitter->SplitVertically(leftWindow, righ tWindow);
 }

 void MyFrame::OnSplitHorizontal(wxCommandEvent& e vent)
 {
 if (splitter->IsSplit())
 splitter->Unsplit();
 leftWindow->Show(true);
 rightWindow->Show(true);
 splitter->SplitHorizontally(leftWindow, ri ghtWindow);
 }

 void MyFrame::OnUnsplit(wxCommandEvent& event)
 {
 if (splitter->IsSplit())
 splitter->Unsplit();
 }

wxTreeCtrl overview

Classes: wxTreeCtrl (p. 1359), wxImageList (p. 769)

The tree control displays its items in a tree like structure. Each item has its own
(optional) icon and a label. An item may be either collapsed (meaning that its children
are not visible) or expanded (meaning that its children are shown). Each item in the tree
is identified by its itemId which is of opaque data type wxTreeItemId. You can test
whether an item is valid by calling wxTreeItemId::IsOk.

The items text and image may be retrieved and changed with GetItemText (p.

CHAPTER 11

1725

1369)/SetItemText (p. 1376) and GetItemImage (p. 1368)/SetItemImage (p. 1375). In
fact, an item may even have two images associated with it: the normal one and another
one for selected state which is set/retrieved with SetItemSelectedImage (p.
1376)/GetItemSelectedImage (p. 1371) functions, but this functionality might be
unavailable on some platforms.

Tree items have several attributes: an item may be selected or not, visible or not, bold or
not. It may also be expanded or collapsed. All these attributes may be retrieved with the
corresponding functions: IsSelected (p. 1373), IsVisible (p. 1373), IsBold (p. 1372) and
IsExpanded (p. 1373). Only one item at a time may be selected, selecting another one
(with SelectItem (p. 1374)) automatically unselects the previously selected one.

In addition to its icon and label, a user-specific data structure may be associated with all
tree items. If you wish to do it, you should derive a class from wxTreeItemData which is
a very simple class having only one function GetId() which returns the id of the item this
data is associated with. This data will be freed by the control itself when the associated
item is deleted (all items are deleted when the control is destroyed), so you shouldn't
delete it yourself (if you do it, you should call SetItemData(NULL) (p. 1375) to prevent
the tree from deleting the pointer second time). The associated data may be retrieved
with GetItemData() (p. 1368) function.

Working with trees is relatively straightforward if all the items are added to the tree at the
moment of its creation. However, for large trees it may be very inefficient. To improve
the performance you may want to delay adding the items to the tree until the branch
containing the items is expanded: so, in the beginning, only the root item is created (with
AddRoot (p. 1363)). Other items are added when EVT_TREE_ITEM_EXPANDING event
is received: then all items lying immediately under the item being expanded should be
added, but, of course, only when this event is received for the first time for this item -
otherwise, the items would be added twice if the user expands/collapses/re-expands the
branch.

The tree control provides functions for enumerating its items. There are 3 groups of
enumeration functions: for the children of a given item, for the sibling of the given item
and for the visible items (those which are currently shown to the user: an item may be
invisible either because its branch is collapsed or because it is scrolled out of view).
Child enumeration functions require the caller to give them a cookie parameter: it is a
number which is opaque to the caller but is used by the tree control itself to allow
multiple enumerations to run simultaneously (this is explicitly allowed). The only thing to
remember is that the cookie passed to GetFirstChild (p. 1367) and to GetNextChild (p.
1369) should be the same variable (and that nothing should be done with it by the user
code).

Among other features of the tree control are: item sorting with SortChildren (p. 1376)
which uses the user-defined comparison function OnCompareItems (p. 1373) (by default
the comparison is the alphabetic comparison of tree labels), hit testing (determining to
which portion of the control the given point belongs, useful for implementing drag-and-
drop in the tree) with HitTest (p. 1371) and editing of the tree item labels in place (see
EditLabel (p. 1365)).

Finally, the tree control has a keyboard interface: the cursor navigation (arrow) keys may
be used to change the current selection. <HOME> and <END> are used to go to the
first/last sibling of the current item. '+', '-' and '*' expand, collapse and toggle the current

CHAPTER 11

1726

branch. Note, however, that and <INS> keys do nothing by default, but it is usual
to associate them with deleting item from a tree and inserting a new one into it.

wxListCtrl overview

Classes: wxListCtrl (p. 813), wxImageList (p. 769)

Sorry, this topic has yet to be written.

wxImageList overview

Classes: wxImageList (p. 769)

An image list is a list of images that may have transparent areas. The class helps an
application organise a collection of images so that they can be referenced by integer
index instead of by pointer.

Image lists are used in wxNotebook (p. 956), wxListCtrl (p. 813), wxTreeCtrl (p. 813) and
some other control classes.

wxBookCtrl overview

Classes: wxNotebook (p. 956), wxListbook (p. 807), wxChoicebook (p. 137)

Introduction

A book control is a convenient way of displaying multiple pages of information, displayed
one page at a time. wxWidgets has three variants of this control:

 • wxNotebook (p. 956): uses a row of tabs

 • wxListbook (p. 807): controlled by a wxListCtrl (p. 813)

 • wxChoicebook (p. 137): controlled by a wxChoice (p. 134)

Best book

wxBookCtrl is mapped to the class best suited for a given platform. Currently it provides
wxChoicebook (p. 137) for smartphones equipped with WinCE, and wxNotebook (p.
956) for all other platforms. The mapping consists of:

wxBookCtrl wxChoicebook or wxNotebook

wxBookCtrlEvent wxChoicebookEvent or wxNotebookEvent

wxEVT_COMMAND_BOOKCTRL_PAGE_CHANGED
 wxEVT_COMMAND_CHOICEBOOK_PAGE_CHANGED
or wxEVT_COMMAND_NOTEBOOK_PAGE_CHANGED

CHAPTER 11

1727

wxEVT_COMMAND_BOOKCTRL_PAGE_CHANGING
 wxEVT_COMMAND_CHOICEBOOK_PAGE_CHANGING
or wxEVT_COMMAND_NOTEBOOK_PAGE_CHANGING

EVT_BOOKCTRL_PAGE_CHANGED(id, fn)
 EVT_CHOICEBOOK_PAGE_CHANGED(id, fn) or
EVT_NOTEBOOK_PAGE_CHANGED(id, fn)

EVT_BOOKCTRL_PAGE_CHANGING(id, fn)
 EVT_CHOICEBOOK_PAGE_CHANGING(id, fn) or
EVT_NOTEBOOK_PAGE_CHANGING(id, fn)

wxBC_TOP wxCHB_TOP or wxNB_TOP

wxBC_BOTTOM wxCHB_BOTTOM or wxNB_BOTTOM

wxBC_LEFT wxCHB_LEFT or wxNB_LEFT

wxBC_RIGHT wxCHB_RIGHT or wxNB_RIGHT

wxBC_DEFAULT wxCHB_DEFAULT or wxNB_DEFAULT

See samples/widgets for an example of wxBookCtrl usage.

Common dialogs overview

Classes: wxColourDialog (p. 163), wxFontDialog (p. 548), wxPrintDialog (p. 1011),
wxFileDialog (p. 491), wxDirDialog (p. 408), wxTextEntryDialog (p. 1300),
wxPasswordEntryDialog (p. 988), wxMessageDialog (p. 927), wxSingleChoiceDialog (p.
1116), wxMultiChoiceDialog (p. 949)

Common dialog classes and functions encapsulate commonly-needed dialog box
requirements. They are all 'modal', grabbing the flow of control until the user dismisses
the dialog, to make them easy to use within an application.

Some dialogs have both platform-dependent and platform-independent implementations,
so that if underlying windowing systems do not provide the required functionality, the
generic classes and functions can stand in. For example, under MS Windows,
wxColourDialog uses the standard colour selector. There is also an equivalent called
wxGenericColourDialog for other platforms, and a macro defines wxColourDialog to be
the same as wxGenericColourDialog on non-MS Windows platforms. However, under
MS Windows, the generic dialog can also be used, for testing or other purposes.

wxColourDialog overview

Classes: wxColourDialog (p. 163), wxColourData (p. 160)

The wxColourDialog presents a colour selector to the user, and returns with colour
information.

The MS Windows colour selector

CHAPTER 11

1728

Under Windows, the native colour selector common dialog is used. This presents a
dialog box with three main regions: at the top left, a palette of 48 commonly-used colours
is shown. Under this, there is a palette of 16 'custom colours' which can be set by the
application if desired. Additionally, the user may open up the dialog box to show a right-
hand panel containing controls to select a precise colour, and add it to the custom colour
palette.

The generic colour selector

Under non-MS Windows platforms, the colour selector is a simulation of most of the
features of the MS Windows selector. Two palettes of 48 standard and 16 custom
colours are presented, with the right-hand area containing three sliders for the user to
select a colour from red, green and blue components. This colour may be added to the
custom colour palette, and will replace either the currently selected custom colour, or the
first one in the palette if none is selected. The RGB colour sliders are not optional in the
generic colour selector. The generic colour selector is also available under MS Windows;
use the name wxGenericColourDialog.

Example

In the samples/dialogs directory, there is an example of using the wxColourDialog class.
Here is an excerpt, which sets various parameters of a wxColourData object, including a
grey scale for the custom colours. If the user did not cancel the dialog, the application
retrieves the selected colour and uses it to set the background of a window.

 wxColourData data;
 data.SetChooseFull(true);
 for (int i = 0; i < 16; i++)
 {
 wxColour colour(i*16, i*16, i*16);
 data.SetCustomColour(i, colour);
 }

 wxColourDialog dialog(this, &data);
 if (dialog.ShowModal() == wxID_OK)
 {
 wxColourData retData = dialog.GetColourData();
 wxColour col = retData.GetColour();
 wxBrush brush(col, wxSOLID);
 myWindow->SetBackground(brush);
 myWindow->Clear();
 myWindow->Refresh();
 }

wxFontDialog overview

Classes: wxFontDialog (p. 548), wxFontData (p. 545)

The wxFontDialog presents a font selector to the user, and returns with font and colour
information.

The MS Windows font selector

Under Windows, the native font selector common dialog is used. This presents a dialog
box with controls for font name, point size, style, weight, underlining, strikeout and text
foreground colour. A sample of the font is shown on a white area of the dialog box. Note

CHAPTER 11

1729

that in the translation from full MS Windows fonts to wxWidgets font conventions,
strikeout is ignored and a font family (such as Swiss or Modern) is deduced from the
actual font name (such as Arial or Courier).

The generic font selector

Under non-MS Windows platforms, the font selector is simpler. Controls for font family,
point size, style, weight, underlining and text foreground colour are provided, and a
sample is shown upon a white background. The generic font selector is also available
under MS Windows; use the name wxGenericFontDialog.

Example

In the samples/dialogs directory, there is an example of using the wxFontDialog class.
The application uses the returned font and colour for drawing text on a canvas. Here is
an excerpt:

 wxFontData data;
 data.SetInitialFont(canvasFont);
 data.SetColour(canvasTextColour);

 wxFontDialog dialog(this, &data);
 if (dialog.ShowModal() == wxID_OK)
 {
 wxFontData retData = dialog.GetFontData();
 canvasFont = retData.GetChosenFont();
 canvasTextColour = retData.GetColour();
 myWindow->Refresh();
 }

wxPrintDialog overview

Classes: wxPrintDialog (p. 1011), wxPrintData (p. 1004)

This class represents the print and print setup common dialogs. You may obtain a
wxPrinterDC (p. 1018) device context from a successfully dismissed print dialog.

The samples/printing example shows how to use it: see Printing overview (p. 1738) for
an excerpt from this example.

wxFileDialog overview

Classes: wxFileDialog (p. 491)

Pops up a file selector box. In Windows and GTK2.4+, this is the common file selector
dialog. In X, this is a file selector box with somewhat less functionality. The path and
filename are distinct elements of a full file pathname. If path is "", the current directory
will be used. If filename is "", no default filename will be supplied. The wildcard
determines what files are displayed in the file selector, and file extension supplies a type
extension for the required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxHIDE_READONLY, wxFILE_MUST_EXIST,
wxMULTIPLE, wxCHANGE_DIR or 0.

Both the X and Windows versions implement a wildcard filter. Typing a filename

CHAPTER 11

1730

containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed. In the X version, supplying no default
name will result in the wildcard filter being inserted in the filename text item; the filter is
ignored if a default name is supplied.

The wildcard may be a specification for multiple types of file with a description for each,
such as:

 "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif"

wxDirDialog overview

Classes: wxDirDialog (p. 408)

This dialog shows a directory selector dialog, allowing the user to select a single
directory.

wxTextEntryDialog overview

Classes: wxTextEntryDialog (p. 1300)

This is a dialog with a text entry field. The value that the user entered is obtained using
wxTextEntryDialog::GetValue (p. 1301).

wxPasswordEntryDialog overview

Classes: wxPasswordEntryDialog (p. 988)

This is a dialog with a password entry field. The value that the user entered is obtained
using wxTextEntryDialog::GetValue (p. 1301).

wxMessageDialog overview

Classes: wxMessageDialog (p. 927)

This dialog shows a message, plus buttons that can be chosen from OK, Cancel, Yes,
and No. Under Windows, an optional icon can be shown, such as an exclamation mark
or question mark.

The return value of wxMessageDialog::ShowModal (p. 929) indicates which button the
user pressed.

wxSingleChoiceDialog overview

Classes: wxSingleChoiceDialog (p. 1116)

This dialog shows a list of choices, plus OK and (optionally) Cancel. The user can select
one of them. The selection can be obtained from the dialog as an index, a string or client
data.

CHAPTER 11

1731

wxMultiChoiceDialog overview

Classes: wxMultiChoiceDialog (p. 949)

This dialog shows a list of choices, plus OK and (optionally) Cancel. The user can select
one or more of them.

Document/view overview

Classes: wxDocument (p. 437), wxView (p. 1405), wxDocTemplate (p. 431),
wxDocManager (p. 419), wxDocParentFrame (p. 430), wxDocChildFrame (p. 417),
wxDocMDIParentFrame (p. 429), wxDocMDIChildFrame (p. 427), wxCommand (p. 171),
wxCommandProcessor (p. 177)

The document/view framework is found in most application frameworks, because it can
dramatically simplify the code required to build many kinds of application.

The idea is that you can model your application primarily in terms of documents to store
data and provide interface-independent operations upon it, and views to visualise and
manipulate the data. Documents know how to do input and output given stream objects,
and views are responsible for taking input from physical windows and performing the
manipulation on the document data. If a document's data changes, all views should be
updated to reflect the change.

The framework can provide many user-interface elements based on this model. Once
you have defined your own classes and the relationships between them, the framework
takes care of popping up file selectors, opening and closing files, asking the user to save
modifications, routing menu commands to appropriate (possibly default) code, even
some default print/preview functionality and support for command undo/redo. The
framework is highly modular, allowing overriding and replacement of functionality and
objects to achieve more than the default behaviour.

These are the overall steps involved in creating an application based on the
document/view framework:

 1. Define your own document and view classes, overriding a minimal set of
member functions e.g. for input/output, drawing and initialization.

 2. Define any subwindows (such as a scrolled window) that are needed for the
view(s). You may need to route some events to views or documents, for
example OnPaint needs to be routed to wxView::OnDraw.

 3. Decide what style of interface you will use: Microsoft's MDI (multiple document
child frames surrounded by an overall frame), SDI (a separate, unconstrained
frame for each document), or single-window (one document open at a time, as
in Windows Write).

 4. Use the appropriate wxDocParentFrame and wxDocChildFrame classes.
Construct an instance of wxDocParentFrame in your wxApp::OnInit, and a
wxDocChildFrame (if not single-window) when you initialize a view. Create
menus using standard menu ids (such as wxID_OPEN, wxID_PRINT).

CHAPTER 11

1732

 5. Construct a single wxDocManager instance at the beginning of your
wxApp::OnInit, and then as many wxDocTemplate instances as necessary to
define relationships between documents and views. For a simple application,
there will be just one wxDocTemplate.

If you wish to implement Undo/Redo, you need to derive your own class(es) from
wxCommand and use wxCommandProcessor::Submit instead of directly executing
code. The framework will take care of calling Undo and Do functions as appropriate, so
long as the wxID_UNDO and wxID_REDO menu items are defined in the view menu.

Here are a few examples of the tailoring you can do to go beyond the default framework
behaviour:

 • Override wxDocument::OnCreateCommandProcessor to define a different
Do/Undo strategy, or a command history editor.

 • Override wxView::OnCreatePrintout to create an instance of a derived
wxPrintout (p. 1019) class, to provide multi-page document facilities.

 • Override wxDocManager::SelectDocumentPath to provide a different file
selector.

 • Limit the maximum number of open documents and the maximum number of
undo commands.

Note that to activate framework functionality, you need to use some or all of the
wxWidgets predefined command identifiers (p. 1730) in your menus.

wxPerl note: The document/view framework is available in wxPerl. To use it, you will
need the following statements in your application code:

use Wx::DocView;
use Wx ':docview'; # import constants (optional)

wxDocument overview

Document/view framework overview (p. 1725)

Class: wxDocument (p. 437)

The wxDocument class can be used to model an application's file-based data. It is part
of the document/view framework supported by wxWidgets, and cooperates with the
wxView (p. 1405), wxDocTemplate (p. 431) and wxDocManager (p. 419) classes.

Using this framework can save a lot of routine user-interface programming, since a
range of menu commands -- such as open, save, save as -- are supported automatically.
The programmer just needs to define a minimal set of classes and member functions for
the framework to call when necessary. Data, and the means to view and edit the data,
are explicitly separated out in this model, and the concept of multiple views onto the
same data is supported.

CHAPTER 11

1733

Note that the document/view model will suit many but not all styles of application. For
example, it would be overkill for a simple file conversion utility, where there may be no
call for views on documents or the ability to open, edit and save files. But probably the
majority of applications are document-based.

See the example application in samples/docview .

To use the abstract wxDocument class, you need to derive a new class and override at
least the member functions SaveObject and LoadObject. SaveObject and LoadObject
will be called by the framework when the document needs to be saved or loaded.

Use the macros DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS in
order to allow the framework to create document objects on demand. When you create a
wxDocTemplate (p. 431) object on application initialization, you should pass
CLASSINFO(YourDocumentClass) to the wxDocTemplate constructor so that it knows
how to create an instance of this class.

If you do not wish to use the wxWidgets method of creating document objects
dynamically, you must override wxDocTemplate::CreateDocument to return an instance
of the appropriate class.

wxView overview

Document/view framework overview (p. 1725)

Class: wxView (p. 1405)

The wxView class can be used to model the viewing and editing component of an
application's file-based data. It is part of the document/view framework supported by
wxWidgets, and cooperates with the wxDocument (p. 437), wxDocTemplate (p. 431)and
wxDocManager (p. 419) classes.

See the example application in samples/docview .

To use the abstract wxView class, you need to derive a new class and override at least
the member functions OnCreate, OnDraw, OnUpdate and OnClose. You will probably
want to override OnMenuCommand to respond to menu commands from the frame
containing the view.

Use the macros DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS in
order to allow the framework to create view objects on demand. When you create a
wxDocTemplate (p. 431) object on application initialization, you should pass
CLASSINFO(YourViewClass) to the wxDocTemplate constructor so that it knows how to
create an instance of this class.

If you do not wish to use the wxWidgets method of creating view objects dynamically,
you must override wxDocTemplate::CreateView to return an instance of the appropriate
class.

wxDocTemplate overview

Document/view framework overview (p. 1725)

CHAPTER 11

1734

Class: wxDocTemplate (p. 431)

The wxDocTemplate class is used to model the relationship between a document class
and a view class. The application creates a document template object for each
document/view pair. The list of document templates managed by the wxDocManager
instance is used to create documents and views. Each document template knows what
file filters and default extension are appropriate for a document/view combination, and
how to create a document or view.

For example, you might write a small doodling application that can load and save lists of
line segments. If you had two views of the data -- graphical, and a list of the segments --
then you would create one document class DoodleDocument, and two view classes
(DoodleGraphicView and DoodleListView). You would also need two document
templates, one for the graphical view and another for the list view. You would pass the
same document class and default file extension to both document templates, but each
would be passed a different view class. When the user clicks on the Open menu item,
the file selector is displayed with a list of possible file filters -- one for each
wxDocTemplate. Selecting the filter selects the wxDocTemplate, and when a file is
selected, that template will be used for creating a document and view.

For the case where an application has one document type and one view type, a single
document template is constructed, and dialogs will be appropriately simplified.

wxDocTemplate is part of the document/view framework supported by wxWidgets, and
cooperates with the wxView (p. 1405), wxDocument (p. 437) and wxDocManager (p.
419) classes.

See the example application in samples/docview .

To use the wxDocTemplate class, you do not need to derive a new class. Just pass
relevant information to the constructor including CLASSINFO(YourDocumentClass) and
CLASSINFO(YourViewClass) to allow dynamic instance creation. If you do not wish to
use the wxWidgets method of creating document objects dynamically, you must override
wxDocTemplate::CreateDocument and wxDocTemplate::CreateView to return instances
of the appropriate class.

NOTE: the document template has nothing to do with the C++ template construct.

wxDocManager overview

Document/view framework overview (p. 1725)

Class: wxDocManager (p. 419)

The wxDocManager class is part of the document/view framework supported by
wxWidgets, and cooperates with the wxView (p. 1405), wxDocument (p. 437) and
wxDocTemplate (p. 431) classes.

A wxDocManager instance coordinates documents, views and document templates. It
keeps a list of document and template instances, and much functionality is routed
through this object, such as providing selection and file dialogs. The application can use
this class 'as is' or derive a class and override some members to extend or change the
functionality. Create an instance of this class near the beginning of your application

CHAPTER 11

1735

initialization, before any documents, views or templates are manipulated.

There may be multiple wxDocManager instances in an application.

See the example application in samples/docview .

wxCommand overview

Document/view framework overview (p. 1725)

Classes: wxCommand (p. 171), wxCommandProcessor (p. 177)

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Instead of the application functionality being scattered around switch statements and
functions in a way that may be hard to read and maintain, the functionality for a
command is explicitly represented as an object which can be manipulated by a
framework or application. When a user interface event occurs, the application submits a
command to a wxCommandProcessor (p. 1729) object to execute and store.

The wxWidgets document/view framework handles Undo and Redo by use of
wxCommand and wxCommandProcessor objects. You might find further uses for
wxCommand, such as implementing a macro facility that stores, loads and replays
commands.

An application can derive a new class for every command, or, more likely, use one class
parameterized with an integer or string command identifier.

wxCommandProcessor overview

Document/view framework overview (p. 1725)

Classes: wxCommandProcessor (p. 177), wxCommand (p. 171)

wxCommandProcessor is a class that maintains a history of wxCommand instances,
with undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

wxFileHistory overview

Document/view framework overview (p. 1725)

Classes: wxFileHistory (p. 496), wxDocManager (p. 419)

wxFileHistory encapsulates functionality to record the last few files visited, and to allow
the user to quickly load these files using the list appended to the File menu.

Although wxFileHistory is used by wxDocManager, it can be used independently. You
may wish to derive from it to allow different behaviour, such as popping up a scrolling list
of files.

CHAPTER 11

1736

By calling wxFileHistory::UseMenu() (p. 499) you can associate a file menu with the file
history. The menu will then be used for appending filenames that are added to the
history. Please notice that currently if the history already contained filenames when
UseMenu() is called (e.g. when initializing a second MDI child frame), the menu is not
automatically initialized with the existing filenames in the history and so you need to call
AddFilesToMenu() (p. 498) after UseMenu() explicitly in order to initialize the menu with
the existing list of MRU files. (otherwise an assertion failure is raised in debug builds).
The filenames are appended using menu identifiers in the range wxID_FILE1 to
wxID_FILE9 .

In order to respond to a file load command from one of these identifiers, you need to
handle them using an event handler, for example:

BEGIN_EVENT_TABLE(wxDocParentFrame, wxFrame)
 EVT_MENU(wxID_EXIT, wxDocParentFrame::OnExit)
 EVT_MENU_RANGE(wxID_FILE1, wxID_FILE9,
wxDocParentFrame::OnMRUFile)
END_EVENT_TABLE()

void wxDocParentFrame::OnExit(wxCommandEvent& WXUNU SED(event))
{
 Close();
}

void wxDocParentFrame::OnMRUFile(wxCommandEvent& ev ent)
{
 wxString f(m_docManager->GetHistoryFile(event .GetId() -
wxID_FILE1));
 if (f != "")
 (void)m_docManager->CreateDocument(f, wxDOC _SILENT);
}

wxWidgets predefined command identifiers

To allow communication between the application's menus and the document/view
framework, several command identifiers are predefined for you to use in menus. The
framework recognizes them and processes them if you forward commands from
wxFrame::OnMenuCommand (or perhaps from toolbars and other user interface
constructs).

 • wxID_OPEN (5000)

 • wxID_CLOSE (5001)

 • wxID_NEW (5002)

 • wxID_SAVE (5003)

 • wxID_SAVEAS (5004)

 • wxID_REVERT (5005)

 • wxID_EXIT (5006)

CHAPTER 11

1737

 • wxID_UNDO (5007)

 • wxID_REDO (5008)

 • wxID_HELP (5009)

 • wxID_PRINT (5010)

 • wxID_PRINT_SETUP (5011)

 • wxID_PREVIEW (5012)

Toolbar overview

Classes: wxToolBar (p. 1337)

The toolbar family of classes allows an application to use toolbars in a variety of
configurations and styles.

The toolbar is a popular user interface component and contains a set of bitmap buttons
or toggles. A toolbar gives faster access to an application's facilities than menus, which
have to be popped up and selected rather laboriously.

Instead of supplying one toolbar class with a number of different implementations
depending on platform, wxWidgets separates out the classes. This is because there are
a number of different toolbar styles that you may wish to use simultaneously, and also,
future toolbar implementations will emerge which cannot all be shoe-horned into the one
class.

For each platform, the symbol wxToolBar is defined to be one of the specific toolbar
classes.

The following is a summary of the toolbar classes and their differences.

 • wxToolBarBase. This is a base class with pure virtual functions, and should not
be used directly.

 • wxToolBarSimple. A simple toolbar class written entirely with generic
wxWidgets functionality. A simple 3D effect for buttons is possible, but it is not
consistent with the Windows look and feel. This toolbar can scroll, and you can
have arbitrary numbers of rows and columns.

 • wxToolBarMSW. This class implements an old-style Windows toolbar, only on
Windows. There are small, three-dimensional buttons, which do not (currently)
reflect the current Windows colour settings: the buttons are grey. This is the
default wxToolBar on 16-bit windows.

 • wxToolBar95. Uses the native Windows 95 toolbar class. It dynamically adjusts
its background and button colours according to user colour settings.
CreateTools must be called after the tools have been added. No absolute
positioning is supported but you can specify the number of rows, and add tool
separators with AddSeparator . Tooltips are supported. OnRightClick is not

CHAPTER 11

1738

supported. This is the default wxToolBar on Windows 95, Windows NT 4 and
above. With the style wxTB_FLAT, the flat toolbar look is used, with a border
that is highlighted when the cursor moves over the buttons.

A toolbar might appear as a single row of images under the menubar, or it might be in a
separate frame layout in several rows and columns. The class handles the layout of the
images, unless explicit positioning is requested.

A tool is a bitmap which can either be a button (there is no 'state', it just generates an
event when clicked) or it can be a toggle. If a toggle, a second bitmap can be provided to
depict the 'on' state; if the second bitmap is omitted, either the inverse of the first bitmap
will be used (for monochrome displays) or a thick border is drawn around the bitmap (for
colour displays where inverting will not have the desired result).

The Windows-specific toolbar classes expect 16-colour bitmaps that are 16 pixels wide
and 15 pixels high. If you want to use a different size, call SetToolBitmapSize as the
demo shows, before adding tools to the button bar. Don't supply more than one bitmap
for each tool, because the toolbar generates all three images (normal, depressed and
checked) from the single bitmap you give it.

Using the toolbar library

Include "wx/toolbar.h" , or if using a class directly, one of:

 • "wx/msw/tbarmsw.h for wxToolBarMSW

 • "wx/msw/tbar95.h for wxToolBar95

 • "wx/tbarsmpl.h for wxToolBarSimple

Example of toolbar use are given in the sample program "toolbar''. The source is given
below. In fact it is out of date because recommended practise is to use event handlers
(using EVT_MENU or EVT_TOOL) instead of overriding OnLeftClick.

/// ///////////////
///////////
// Name: test.cpp
// Purpose: wxToolBar sample
// Author: Julian Smart
// Modified by:
// Created: 04/01/98
// RCS-ID: $Id: ttoolbar.tex,v 1.11 2005/02/22 15:09:55 ABX
Exp $
// Copyright: (c) Julian Smart
// License: wxWindows license
/// ///////////////
///////////

// For compilers that support precompilation, inclu des "wx/wx.h".
#include "wx/wxprec.h"

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
#include "wx/wx.h"

CHAPTER 11

1739

#endif

#include "wx/toolbar.h"
#include <wx/log.h>

#include "test.h"

#if defined(__WXGTK__) || defined(__WXMOTIF__)
#include "mondrian.xpm"
#include "bitmaps/new.xpm"
#include "bitmaps/open.xpm"
#include "bitmaps/save.xpm"
#include "bitmaps/copy.xpm"
#include "bitmaps/cut.xpm"
#include "bitmaps/print.xpm"
#include "bitmaps/preview.xpm"
#include "bitmaps/help.xpm"
#endif

IMPLEMENT_APP(MyApp)

// The `main program' equivalent, creating the wind ows and
returning the
// main frame
bool MyApp::OnInit(void)
{
 // Create the main frame window
 MyFrame* frame = new MyFrame((wxFrame *) NULL, -1 , (const
wxString) "wxToolBar Sample",
 wxPoint(100, 100), wxSize(450, 300));

 // Give it a status line
 frame->CreateStatusBar();

 // Give it an icon
 frame->SetIcon(wxICON(mondrian));

 // Make a menubar
 wxMenu *fileMenu = new wxMenu;
 fileMenu->Append(wxID_EXIT, "E&xit", "Quit toolba r sample");

 wxMenu *helpMenu = new wxMenu;
 helpMenu->Append(wxID_HELP, "&About", "About tool bar sample");

 wxMenuBar* menuBar = new wxMenuBar;

 menuBar->Append(fileMenu, "&File");
 menuBar->Append(helpMenu, "&Help");

 // Associate the menu bar with the frame
 frame->SetMenuBar(menuBar);

 // Create the toolbar
 frame->CreateToolBar(wxNO_BORDER|wxHORIZONTAL|wxT B_FLAT,
ID_TOOLBAR);

 frame->GetToolBar()->SetMargins(2, 2);

 InitToolbar(frame->GetToolBar());

 // Force a resize. This should probably be replac ed by a call to
a wxFrame
 // function that lays out default decorations and the remaining
content window.

CHAPTER 11

1740

 wxSizeEvent event(wxSize(-1, -1), frame->GetId()) ;
 frame->OnSize(event);
 frame->Show(true);

 frame->SetStatusText("Hello, wxWidgets");

 SetTopWindow(frame);

 return true;
}

bool MyApp::InitToolbar(wxToolBar* toolBar)
{
 // Set up toolbar
 wxBitmap* toolBarBitmaps[8];

#ifdef __WXMSW__
 toolBarBitmaps[0] = new wxBitmap("icon1");
 toolBarBitmaps[1] = new wxBitmap("icon2");
 toolBarBitmaps[2] = new wxBitmap("icon3");
 toolBarBitmaps[3] = new wxBitmap("icon4");
 toolBarBitmaps[4] = new wxBitmap("icon5");
 toolBarBitmaps[5] = new wxBitmap("icon6");
 toolBarBitmaps[6] = new wxBitmap("icon7");
 toolBarBitmaps[7] = new wxBitmap("icon8");
#else
 toolBarBitmaps[0] = new wxBitmap(new_xpm);
 toolBarBitmaps[1] = new wxBitmap(open_xpm);
 toolBarBitmaps[2] = new wxBitmap(save_xpm);
 toolBarBitmaps[3] = new wxBitmap(copy_xpm);
 toolBarBitmaps[4] = new wxBitmap(cut_xpm);
 toolBarBitmaps[5] = new wxBitmap(preview_xpm);
 toolBarBitmaps[6] = new wxBitmap(print_xpm);
 toolBarBitmaps[7] = new wxBitmap(help_xpm);
#endif

#ifdef __WXMSW__
 int width = 24;
#else
 int width = 16;
#endif
 int currentX = 5;

 toolBar->AddTool(wxID_NEW, *(toolBarBitmaps[0]), wxNullBitmap,
false, currentX, -1, (wxObject *) NULL, "New file") ;
 currentX += width + 5;
 toolBar->AddTool(wxID_OPEN, *(toolBarBitmaps[1]), wxNullBitmap,
false, currentX, -1, (wxObject *) NULL, "Open file");
 currentX += width + 5;
 toolBar->AddTool(wxID_SAVE, *(toolBarBitmaps[2]), wxNullBitmap,
false, currentX, -1, (wxObject *) NULL, "Save file");
 currentX += width + 5;
 toolBar->AddSeparator();
 toolBar->AddTool(wxID_COPY, *(toolBarBitmaps[3]), wxNullBitmap,
false, currentX, -1, (wxObject *) NULL, "Copy");
 currentX += width + 5;
 toolBar->AddTool(wxID_CUT, *(toolBarBitmaps[4]), wxNullBitmap,
false, currentX, -1, (wxObject *) NULL, "Cut");
 currentX += width + 5;
 toolBar->AddTool(wxID_PASTE, *(toolBarBitmaps[5]) , wxNullBitmap,
false, currentX, -1, (wxObject *) NULL, "Paste");
 currentX += width + 5;
 toolBar->AddSeparator();
 toolBar->AddTool(wxID_PRINT, *(toolBarBitmaps[6]) , wxNullBitmap,

CHAPTER 11

1741

false, currentX, -1, (wxObject *) NULL, "Print");
 currentX += width + 5;
 toolBar->AddSeparator();
 toolBar->AddTool(wxID_HELP, *(toolBarBitmaps[7]), wxNullBitmap,
false, currentX, -1, (wxObject *) NULL, "Help");

 toolBar->Realize();

 // Can delete the bitmaps since they're reference counted
 int i;
 for (i = 0; i < 8; i++)
 delete toolBarBitmaps[i];

 return true;
}

// wxID_HELP will be processed for the 'About' menu and the
toolbar help button.

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU(wxID_EXIT, MyFrame::OnQuit)
 EVT_MENU(wxID_HELP, MyFrame::OnAbout)
 EVT_CLOSE(MyFrame::OnCloseWindow)
 EVT_TOOL_RANGE(wxID_OPEN, wxID_PASTE,
MyFrame::OnToolLeftClick)
 EVT_TOOL_ENTER(wxID_OPEN, MyFrame::OnToolEnter)
END_EVENT_TABLE()

// Define my frame constructor
MyFrame::MyFrame(wxFrame* parent, wxWindowID id, co nst wxString&
title, const wxPoint& pos,
 const wxSize& size, long style):
 wxFrame(parent, id, title, pos, size, style)
{
 m_textWindow = new wxTextCtrl(this, -1, "", wxPoi nt(0, 0),
wxSize(-1, -1), wxTE_MULTILINE);
}

void MyFrame::OnQuit(wxCommandEvent& WXUNUSED(event))
{
 Close(true);
}

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(even t))
{
 (void)wxMessageBox("wxWidgets toolbar sample", "About
wxToolBar");
}

// Define the behaviour for the frame closing
// - must delete all frames except for the main one .
void MyFrame::OnCloseWindow(wxCloseEvent& WXUNUSED(event))
{
 Destroy();
}

void MyFrame::OnToolLeftClick(wxCommandEvent& event)
{
 wxString str;
 str.Printf("Clicked on tool %d", event.GetId());
 SetStatusText(str);
}

void MyFrame::OnToolEnter(wxCommandEvent& event)

CHAPTER 11

1742

{
 if (event.GetSelection() > -1)
 {
 wxString str;
 str.Printf("This is tool number %d", event.GetS election());
 SetStatusText(str);
 }
 else
 SetStatusText("");
}

wxGrid classes overview

Classes: wxGrid (p. 593)

Introduction

wxGrid and its related classes are used for displaying and editing tabular data.

Getting started: a simple example

For simple applications you need only refer to the wxGrid class in your code. This
example shows how you might create a grid in a frame or dialog constructor and
illustrates some of the formatting functions.

 // Create a wxGrid object

 grid = new wxGrid(this,
 -1,
 wxPoint(0, 0),
 wxSize(400, 300));

 // Then we call CreateGrid to set the dimension s of the grid
 // (100 rows and 10 columns in this example)
 grid->CreateGrid(100, 10);

 // We can set the sizes of individual rows and columns
 // in pixels
 grid->SetRowSize(0, 60);
 grid->SetColSize(0, 120);

 // And set grid cell contents as strings
 grid->SetCellValue(0, 0, "wxGrid is good");

 // We can specify that some cells are read-only
 grid->SetCellValue(0, 3, "This is read-only") ;
 grid->SetReadOnly(0, 3);

 // Colours can be specified for grid cell conte nts
 grid->SetCellValue(3, 3, "green on grey");
 grid->SetCellTextColour(3, 3, *wxGREEN);
 grid->SetCellBackgroundColour(3, 3, *wxLIGHT_GR EY);

 // We can specify the some cells will store num eric
 // values rather than strings. Here we set grid column 5
 // to hold floating point values displayed with width of 6

CHAPTER 11

1743

 // and precision of 2
 grid->SetColFormatFloat(5, 6, 2);
 grid->SetCellValue(0, 6, "3.1415");

A more complex example

Yet to be written

How the wxGrid classes relate to each other

Yet to be written

Keyboard and mouse actions

Yet to be written

wxTipProvider overview

Many "modern" Windows programs have a feature (some would say annoyance) of
presenting the user tips at program startup. While this is probably useless to the
advanced users of the program, the experience shows that the tips may be quite helpful
for the novices and so more and more programs now do this.

For a wxWidgets programmer, implementing this feature is extremely easy. To show a
tip, it is enough to just call wxShowTip (p. 1548) function like this:

 if (...show tips at startup?...)
 {
 wxTipProvider *tipProvider =
wxCreateFileTipProvider("tips.txt", 0);
 wxShowTip(windowParent, tipProvider);
 delete tipProvider;
 }

Of course, you need to get the text of the tips from somewhere - in the example above,
the text is supposed to be in the file tips.txt from where it is read by the tip provider. The
tip provider is just an object of a class deriving from wxTipProvider (p. 1332). It has to
implement one pure virtual function of the base class: GetTip (p. 1333). In the case of
the tip provider created by wxCreateFileTipProvider (p. 1540), the tips are just the lines
of the text file.

If you want to implement your own tip provider (for example, if you wish to hardcode the
tips inside your program), you just have to derive another class from wxTipProvider and
pass a pointer to the object of this class to wxShowTip - then you don't need
wxCreateFileTipProvider at all.

You will probably want to save somewhere the index of the tip last shown - so that the
program doesn't always show the same tip on startup. As you also need to remember
whether to show tips or not (you shouldn't do it if the user unchecked "Show tips on
startup" checkbox in the dialog), you will probably want to store both the index of the last
shown tip (as returned by wxTipProvider::GetCurrentTip (p. 1333) and the flag telling

CHAPTER 11

1744

whether to show the tips at startup at all.

In a tips.txt file, lines that begin with a # character are considered comments and are
automatically skipped. Blank lines and lines only having spaces are also skipped.

You can easily add runtime-translation capacity by placing each line of the tips.txt file
inside the usual translation macro. For example, your tips.txt file would look like this:

_("This is my first tip")
_("This is my second tip")

Now add your tips.txt file into the list of files that gettext searches for translatable
strings. The tips will thus get included into your generated .po file catalog and be
translated at runtime along with the rest of your application's translatable strings.
Note1: Each line in the tips.txt file needs to strictly begin with exactly the 3 characters of
underscore-parenthesis-doublequote, and end with doublequote-parenthesis, as shown
above. Note2: Remember to escape any doublequote characters within the tip string
with a backslash-doublequote.

See the dialogs program in your samples folder for a working example inside a
program.

Printing overview

Classes: wxPrintout (p. 1019), wxPrinter (p. 1016), wxPrintPreview (p. 1022),
wxPrinterDC (p. 1018), wxPrintDialog (p. 1011), wxPrintData (p. 1004),
wxPrintDialogData (p. 1012), wxPageSetupDialog (p. 973), wxPageSetupDialogData (p.
974)

The printing framework relies on the application to provide classes whose member
functions can respond to particular requests, such as 'print this page' or 'does this page
exist in the document?'. This method allows wxWidgets to take over the housekeeping
duties of turning preview pages, calling the print dialog box, creating the printer device
context, and so on: the application can concentrate on the rendering of the information
onto a device context.

The document/view framework (p. 1725) creates a default wxPrintout object for every
view, calling wxView::OnDraw to achieve a prepackaged print/preview facility.

A document's printing ability is represented in an application by a derived wxPrintout
class. This class prints a page on request, and can be passed to the Print function of a
wxPrinter object to actually print the document, or can be passed to a wxPrintPreview
object to initiate previewing. The following code (from the printing sample) shows how
easy it is to initiate printing, previewing and the print setup dialog, once the wxPrintout
functionality has been defined. Notice the use of MyPrintout for both printing and
previewing. All the preview user interface functionality is taken care of by wxWidgets.
For details on how MyPrintout is defined, please look at the printout sample code.

 case WXPRINT_PRINT:
 {
 wxPrinter printer;
 MyPrintout printout("My printout");
 printer.Print(this, &printout, true);

CHAPTER 11

1745

 break;
 }
 case WXPRINT_PREVIEW:
 {
 // Pass two printout objects: for preview, an d possible
printing.
 wxPrintPreview *preview = new wxPrintPreview(new MyPrintout,
new MyPrintout);
 wxPreviewFrame *frame = new wxPreviewFrame(pr eview, this,
"Demo Print Preview", wxPoint(100, 100), wxSize(600 , 650));
 frame->Centre(wxBOTH);
 frame->Initialize();
 frame->Show(true);
 break;
 }

Printing under Unix (GTK+)

Printing under Unix has always been a cause of problems as Unix does not provide a
standard way to display text and graphics on screen and print it to a printer using the
same application programming interface - instead, displaying on screen is done via the
X11 library while printing has to be done with using PostScript commands. This was
particularly difficult to handle for the case of fonts with the result that only a selected
number of application could offer WYSIWYG under Unix. Equally, wxWidgets offered its
own printing implementation using PostScript which never really matched the screen
display.

Starting with version 2.8.X, the GNOME project provides printing support through the
libgnomeprint and libgnomeprintui libraries by which especially the font problem is
mostly solved. Beginning with version 2.5.4, the GTK+ port of wxWidgets can make use
of these libraries if wxWidgets is configured accordingly and if the libraries are present.
You need to configure wxWidgets with theconfigure --with-gnomeprint switch and you
application will then search for the GNOME print libraries at runtime. If they are found,
printing will be done through these, otherwise the application will fall back to the old
PostScript printing code. Note that the application will not require the GNOME print
libraries to be installed in order to run (there will be no dependency on these libraries).

It is expected that the printing code that is currently implemented in the GNOME print
libraries will be moved into GTK+ later.

Multithreading overview

Classes: wxThread (p. 1315), wxMutex (p. 951), wxCriticalSection (p. 213), wxCondition
(p. 181)

wxWidgets provides a complete set of classes encapsulating objects necessary in
multithreaded (MT) programs: the thread (p. 1315) class itself and different
synchronization objects: mutexes (p. 951) and critical sections (p. 213) with conditions
(p. 181). The thread API in wxWidgets resembles to POSIX1.c threads API (a.k.a.
pthreads), although several functions have different names and some features inspired
by Win32 thread API are there as well.

CHAPTER 11

1746

These classes will hopefully make writing MT programs easier and they also provide
some extra error checking (compared to the native (be it Win32 or Posix) thread API),
however it is still an non-trivial undertaking especially for large projects. Before starting
an MT application (or starting to add MT features to an existing one) it is worth asking
oneself if there is no easier and safer way to implement the same functionality. Of
course, in some situations threads really make sense (classical example is a server
application which launches a new thread for each new client), but in others it might be a
very poor choice (example: launching a separate thread when doing a long computation
to show a progress dialog). Other implementation choices are available: for the progress
dialog example it is far better to do the calculations in the idle handler (p. 740) or even
simply do everything at once but call wxWindow::Update() (p. 1474) periodically to
update the screen.

If you do decide to use threads in your application, it is strongly recommended that no
more than one thread calls GUI functions. The thread sample shows that it is possible
for many different threads to call GUI functions at once (all the threads created in the
sample access GUI), but it is a very poor design choice for anything except an example.
The design which uses one GUI thread and several worker threads which communicate
with the main one using events is much more robust and will undoubtedly save you
countless problems (example: under Win32 a thread can only access GDI objects such
as pens, brushes, &c created by itself and not by the other threads).

For communication between secondary threads and the main thread, you may use
wxEvtHandler::AddPendingEvent (p. 468)or its short version wxPostEvent (p. 1563).
These functions have thread safe implementation so that they can be used as they are
for sending events from one thread to another. However there is no built in method to
send messages to the worker threads and you will need to use the available
synchronization classes to implement the solution which suits your needs yourself. In
particular, please note that it is not enough to derive your class from wxThread (p. 1315)
and wxEvtHandler (p. 467) to send messages to it: in fact, this doesnot work at all.

Drag and drop overview

Classes: wxDataObject (p. 229), wxTextDataObject (p. 1297), wxDropSource (p. 449),
wxDropTarget (p. 452), wxTextDropTarget (p. 1299), wxFileDropTarget (p. 495)

Note that wxUSE_DRAG_AND_DROP must be defined in setup.h in order to use drag
and drop in wxWidgets.

See also: wxDataObject overview (p. 1741) and DnD sample (p. 1634)

It may be noted that data transfer to and from the clipboard is quite similar to data
transfer with drag and drop and the code to implement these two types is almost the
same. In particular, both data transfer mechanisms store data in some kind of
wxDataObject (p. 229)and identify its format(s) using the wxDataFormat (p. 224)class.

To be a drag source, i.e. to provide the data which may be dragged by the user
elsewhere, you should implement the following steps:

 • Preparation: First of all, a data object must be created and initialized with the
data you wish to drag. For example:

CHAPTER 11

1747

 wxTextDataObject my_data("This text will be dragge d.");

 • Drag start: To start the dragging process (typically in response to a mouse
click) you must call wxDropSource::DoDragDrop (p. 451)like this:

 wxDropSource dragSource(this);
 dragSource.SetData(my_data);
 wxDragResult result = dragSource.DoDragDrop(TRUE);

 • Dragging: The call to DoDragDrop() blocks the program until the user releases
the mouse button (unless you override the GiveFeedback (p. 451) function to do
something special). When the mouse moves in a window of a program which
understands the same drag-and-drop protocol (any program under Windows or
any program supporting the XDnD protocol under X Windows), the
corresponding wxDropTarget (p. 452) methods are called - see below.

 • Processing the result: DoDragDrop() returns an effect code which is one of the
values of wxDragResult enum (explained here (p. 452)):

 switch (result)
 {
 case wxDragCopy: /* copy the data */ break;
 case wxDragMove: /* move the data */ break;
 default: /* do nothing */ break;
 }

To be a drop target, i.e. to receive the data dropped by the user you should follow the
instructions below:

 • Initialization: For a window to be a drop target, it needs to have an associated
wxDropTarget (p. 452) object. Normally, you will call wxWindow::SetDropTarget
(p. 1461) during window creation associating your drop target with it. You must
derive a class from wxDropTarget and override its pure virtual methods.
Alternatively, you may derive from wxTextDropTarget (p. 1299)
orwxFileDropTarget (p. 495) and override their OnDropText() or OnDropFiles()
method.

 • Drop: When the user releases the mouse over a window, wxWidgets asks the
associated wxDropTarget object if it accepts the data. For this, a wxDataObject
(p. 229) must be associated with the drop target and this data object will be
responsible for the format negotiation between the drag source and the drop
target. If all goes well, then OnData (p. 453) will get called and the
wxDataObject belonging to the drop target can get filled with data.

 • The end: After processing the data, DoDragDrop() returns either wxDragCopy
or wxDragMove depending on the state of the keys <Ctrl>, <Shift> and <Alt> at
the moment of the drop. There is currently no way for the drop target to change
this return code.

CHAPTER 11

1748

wxDataObject overview

Classes: wxDataObject (p. 229), wxClipboard (p. 144), wxDataFormat (p. 224),
wxDropSource (p. 449), wxDropTarget (p. 452)

See also: Drag and drop overview (p. 1740) and DnD sample (p. 1634)

This overview discusses data transfer through clipboard or drag and drop. In wxWidgets,
these two ways to transfer data (either between different applications or inside one and
the same) are very similar which allows to implement both of them using almost the
same code - or, in other words, if you implement drag and drop support for your
application, you get clipboard support for free and vice versa.

At the heart of both clipboard and drag and drop operations lies the wxDataObject (p.
229) class. The objects of this class (or, to be precise, classes derived from it) represent
the data which is being carried by the mouse during drag and drop operation or copied
to or pasted from the clipboard. wxDataObject is a "smart" piece of data because it
knows which formats it supports (see GetFormatCount and GetAllFormats) and knows
how to render itself in any of them (see GetDataHere). It can also receive its value from
the outside in a format it supports if it implements the SetData method. Please see the
documentation of this class for more details.

Both clipboard and drag and drop operations have two sides: the source and target, the
data provider and the data receiver. These which may be in the same application and
even the same window when, for example, you drag some text from one position to
another in a word processor. Let us describe what each of them should do.

The data provider (source) duties

The data provider is responsible for creating a wxDataObject (p. 229) containing the
data to be transferred. Then it should either pass it to the clipboard using SetData (p.
146) function or to wxDropSource (p. 449) and call DoDragDrop (p. 451) function.

The only (but important) difference is that the object for the clipboard transfer must
always be created on the heap (i.e. using new) and it will be freed by the clipboard when
it is no longer needed (indeed, it is not known in advance when, if ever, the data will be
pasted from the clipboard). On the other hand, the object for drag and drop operation
must only exist while DoDragDrop (p. 451) executes and may be safely deleted
afterwards and so can be created either on heap or on stack (i.e. as a local variable).

Another small difference is that in the case of clipboard operation, the application usually
knows in advance whether it copies or cuts (i.e. copies and deletes) data - in fact, this
usually depends on which menu item the user chose. But for drag and drop it can only
know it after DoDragDrop (p. 451) returns (from its return value).

The data receiver (target) duties

To receive (paste in usual terminology) data from the clipboard, you should create a
wxDataObject (p. 229) derived class which supports the data formats you need and pass
it as argument to wxClipboard::GetData (p. 145). If it returns false , no data in (any of)
the supported format(s) is available. If it returns true , the data has been successfully

CHAPTER 11

1749

transferred to wxDataObject.

For drag and drop case, the wxDropTarget::OnData (p. 453) virtual function will be
called when a data object is dropped, from which the data itself may be requested by
calling wxDropTarget::GetData (p. 453) method which fills the data object.

Database classes overview

Following is a detailed overview of how to use the wxWidgets ODBC classes - wxDb (p.
271) and wxDbTable (p. 312) and their associated functions. These are the ODBC
classes donated by Remstar International, and are collectively referred to herein as the
wxODBC classes.

wxDb/wxDbTable wxODBC Overview

Classes: wxDb (p. 271), wxDbTable (p. 312)

The wxODBC classes were designed for database independence. Although SQL and
ODBC both have standards which define the minimum requirements they must support
to be in compliance with specifications, different database vendors may implement
things slightly differently. One example of this is that Oracle requires all user names for
the datasources to be supplied in uppercase characters. In situations like this, the
wxODBC classes have been written to make this transparent to the programmer when
using functions that require database-specific syntax.

Currently several major databases, along with other widely used databases, have been
tested and supported through the wxODBC classes. The list of supported databases is
certain to grow as more users start implementing software with these classes, but at the
time of the writing of this document, users have successfully used the classes with the
following datasources:

 • DB2

 • DBase (IV, V)**

 • Firebird

 • INFORMIX

 • Interbase

 • MS SQL Server (v7 - minimal testing)

 • MS Access (97, 2000, 2002, and 2003)

 • MySQL (2.x and 3.5 - use the 2.5x drivers though)

 • Oracle (v7, v8, v8i)

 • Pervasive SQL

 • PostgreSQL

CHAPTER 11

1750

 • Sybase (ASA and ASE)

 • XBase Sequiter

 • VIRTUOSO

An up-to-date list can be obtained by looking in the comments of the function
wxDb::Dbms (p. 283) in db.cpp, or in the enumerated type wxDBMS (p. 272) in db.h.

**dBase is not truly an ODBC datasource, but there are drivers which can emulate
much of the functionality of an ODBC connection to a dBase table. See the wxODBC
Known Issues (p. 1757) section of this overview for details.

wxODBC Where To Start

First, if you are not familiar with SQL and ODBC, go to your local bookstore and pick up
a good book on each. This documentation is not meant to teach you many details about
SQL or ODBC, though you may learn some just from immersion in the subject.

If you have worked with non-SQL/ODBC datasources before, there are some things you
will need to un-learn. First some terminology as these phrases will be used heavily in
this section of the manual.

Datasource (usually a database) that contains the data that will be
accessed by the wxODBC classes.

Data table The section of the datasource that contains the rows and
columns of data.

ODBC driver The middle-ware software that interprets the ODBC
commands sent by your application and converts them to
the SQL format expected by the target datasource.

Datasource connection An open pipe between your application and the ODBC
driver which in turn has a connection to the target
datasource. Datasource connections can have a virtually
unlimited number of wxDbTable instances using the same
connect (dependent on the ODBC driver). A separate
connection is not needed for each table (the exception is
for isolating commits/rollbacks on different tables from
affecting more than the desired table. See the class
documentation on wxDb::CommitTrans (p. 282) and
wxDb::RollbackTrans (p. 298).)

Rows Similar to records in old relational databases, a row is a
collection of one instance of each column of the data table
that are all associated with each other.

Columns Individual fields associated with each row of a data table.

Query Request from the client to the datasource asking for the
data that matches the requirements specified in the users
request. When a query is performed, the datasource

CHAPTER 11

1751

performs the lookup of the rows with satisfy the query, and
creates a result set.

Result set The data which matches the requirements specified in a
query sent to the datasource. Dependent on drivers, a
result set typically remains at the datasource (no data is
transmitted to the ODBC driver) until the client actually
instructs the ODBC driver to retrieve it.

Cursor A logical pointer into the result set that a query generates,
indicating the next record that will be returned to the client
when a request for the next record is made.

Scrolling cursors Scrolling refers to the movement of cursors through the
result set. Cursors can always scroll forward sequentially in
the result set (FORWARD ONLY scrolling cursors). With
Forward only scrolling cursors, once a row in the result set
has been returned to the ODBC driver and on to the client,
there is no way to have the cursor move backward in the
result set to look at the row that is previous to the current
row in the result set. If BACKWARD scrolling cursors are
supported by both the ODBC driver and the datasource
that are being used, then backward scrolling cursor
functions may be used (wxDbTable::GetPrev (p. 330),
wxDbTable::GetFirst (p. 327), and wxDbTable::GetLast (p.
328)). If the datasource or the ODBC driver only support
forward scrolling cursors, your program and logic must
take this in to account.

Commit/Rollback Commit will physically save insertions/deletions/updates,
while rollback basically does an undo of everything done
against the datasource connection that has not been
previously committed. Note that Commit and Rollbacks are
done on a connection, not on individual tables. All tables
which use a shared connection to the datasource are all
committed/rolled back at the same time when a call to
wxDb::CommitTrans (p. 282) or wxDb::RollbackTrans (p.
298) is made.

Index Indexes are datasource-maintained lookup structures that
allow the datasource to quickly locate data rows based on
the values of certain columns. Without indexes, the
datasource would need to do a sequential search of a
table every time a query request is made. Proper unique
key index construction can make datasource queries
nearly instantaneous.

Before you are able to read data from a data table in a datasource, you must have a
connection to the datasource. Each datasource connection may be used to open
multiple tables all on the same connection (number of tables open are dependent on the
driver, datasource configuration and the amount of memory on the client workstation).
Multiple connections can be opened to the same datasource by the same client

CHAPTER 11

1752

(number of concurrent connections is dependent on the driver and datasource
configuration).

When a query is performed, the client passes the query to the ODBC driver, and the
driver then translates it and passes it along to the datasource. The database engine (in
most cases - exceptions are text and dBase files) running on the machine hosting the
database does all the work of performing the search for the requested data. The client
simply waits for a status to come back through the ODBC driver from the datasource.

Depending on the ODBC driver, the result set either remains "queued" on the database
server side, or is transferred to the machine that the driver is queued on. The client
does not receive this data. The client must request some or all of the result set to be
returned before any data rows are returned to the client application.

Result sets do not need to include all columns of every row matching the query. In fact,
result sets can actually be joinings of columns from two or more data tables, may have
derived column values, or calculated values returned.

For each result set, a cursor is maintained (typically by the database) which keeps track
of where in the result set the user currently is. Depending on the database, ODBC
driver, and how you configured the wxWidgets ODBC settings in setup.h (see wxODBC
- Compiling (p. 1747)), cursors can be either forward or backward scrolling. At a
minimum, cursors must scroll forward. For example, if a query resulted in a result set
with 100 rows, as the data is read by the client application, it will read row 1, then 2,
then 3, etc. With forward only cursors, once the cursor has moved to the next row, the
previous row cannot be accessed again without re-querying the datasource for the
result set over again. Backward scrolling cursors allow you to request the previous row
from the result set, actually scrolling the cursor backward.

Backward scrolling cursors are not supported on all database/driver combinations. For
this reason, forward-only cursors are the default in the wxODBC classes. If your
datasource does support backward scrolling cursors and you wish to use them, make
the appropriate changes in setup.h to enable them (see wxODBC - Compiling (p.
1747)). For greatest portability between datasources, writing your program in such a
way that it only requires forward scrolling cursors is your best bet. On the other hand, if
you are focusing on using only datasources that support backward scrolling cursors,
potentially large performance benefits can be gained from using them.

There is a limit to the number of cursors that can be open on each connection to the
datasource, and usually a maximum number of cursors for the datasource itself. This is
all dependent on the database. Each connection that is opened (each instance of a
wxDb) opens a minimum of 5 cursors on creation that are required for things such as
updates/deletions/rollbacks/queries. Cursors are a limited resource, so use care in
creating large numbers of cursors.

Additional cursors can be created if necessary with the wxDbTable::GetNewCursor (p.
328) function. One example use for additional cursors is to track multiple scroll points in
result sets. By creating a new cursor, a program could request a second result set from
the datasource while still maintaining the original cursor position in the first result set.

Different than non-SQL/ODBC datasources, when a program performs an insertion,
deletion, or update (or other SQL functions like altering tables, etc) through ODBC, the

CHAPTER 11

1753

program must issue a "commit" to the datasource to tell the datasource that the
action(s) it has been told to perform are to be recorded as permanent. Until a commit is
performed, any other programs that query the datasource will not see the changes that
have been made (although there are databases that can be configured to auto-commit).
NOTE: With most datasources, until the commit is performed, any cursor that is open on
that same datasource connection will be able to see the changes that are uncommitted.
Check your database's documentation/configuration to verify this before relying on it
though.

A rollback is basically an UNDO command on the datasource connection. When a
rollback is issued, the datasource will flush all commands it has been told to do since
the last commit that was performed.

NOTE: Commits/Rollbacks are done on datasource connections (wxDb instances) not
on the wxDbTable instances. This means that if more than one table shares the same
connection, and a commit or rollback is done on that connection, all pending changes
for ALL tables using that connection are committed/rolled back.

wxODBC - Configuring your system for ODBC use

Before you are able to access a datasource, you must have installed and configured an
ODBC driver. Doing this is system specific, so it will not be covered in detail here. But
here are a few details to get you started.

Most database vendors provide at least a minimal ODBC driver with their database
product. In practice, many of these drivers have proven to be slow and/or incomplete.
Rumour has it that this is because the vendors do not want you using the ODBC
interface to their products; they want you to use their applications to access the data.

Whatever the reason, for database-intensive applications, you may want to consider
using a third-party ODBC driver for your needs. One example of a third-party set of
ODBC drivers that has been heavily tested and used is Rogue Wave's drivers. Rogue
Wave has drivers available for many different platforms and databases. Under
Microsoft Windows, install the ODBC driver you are planning to use. You will then use
the ODBC Administrator in the Control Panel to configure an instance of the driver for
your intended datasource. Note that with all flavors of NT, this configuration can be set
up as a System or User DSN (datasource name). Configuring it as a system resource
will make it available to all users (if you are logged in as 'administrator'), otherwise the
datasource will only be available to the user who configured the DSN.

Under Unix, iODBC is used for implementation of the ODBC API. To compile the
wxODBC classes, you must first obtain iODBC from http://www.iodbc.org
(www.iodbc.org) and install it. (Note: wxWidgets currently includes a version of
iODBC.) Then you must create the file "~/.odbc.ini" (or optionally create "/etc/odbc.ini"
for access for all users on the system). This file contains the settings for your
system/datasource. Below is an example section of a odbc.ini file for use with the
"samples/db" sample program using MySQL:

 [contacts]
 Trace = Off
 TraceFile= stderr
 Driver = /usr/local/lib/libmyodbc.so
 DSN = contacts

CHAPTER 11

1754

 SERVER = 192.168.1.13
 USER = qet
 PASSWORD =
 PORT = 3306

wxODBC - Compiling

The wxWidgets setup.h file has several settings in it pertaining to compiling the
wxODBC classes.

wxUSE_ODBC This must be set to 1 in order for the compiler to compile
the wxODBC classes. Without setting this to 1, there will be
no access to any of the wxODBC classes. The default is 0.

wxODBC_FWD_ONLY_CURSORS When a new database connection is requested,
this setting controls the default of whether the connection
allows only forward scrolling cursors, or forward and
backward scrolling cursors (see the section in "WHERE
TO START" on cursors for more information on cursors).
This default can be overridden by passing a second
parameter to either the wxDbGetConnection (p. 278) or
wxDb constructor (p. 280). The default is 1.

wxODBC_BACKWARD_COMPATABILITY Between v2.0 and 2.2, massive renaming
efforts were done to the ODBC classes to get naming
conventions similar to those used throughout wxWidgets,
as well as to preface all wxODBC classes names and
functions with a wxDb preface. Because this renaming
would affect applications written using the v2.0 names,
this compile-time directive was added to allow those
programs written for v2.0 to still compile using the old
naming conventions. These deprecated names are all
#define'd to their corresponding new function names at the
end of the db.cpp/dbtable.cpp source files. These
deprecated class/function names should not be used in
future development, as at some point in the future they will
be removed. The default is 0.

Under MS Windows

You are required to include the "odbc32.lib" provided by your compiler vendor in the list
of external libraries to be linked in. If using the makefiles supplied with wxWidgets, this
library should already be included for use with makefile.b32, makefile.vc, and
makefile.g95.

MORE TO COME

Under Unix--with-odbc flag for configure

MORE TO COME

wxODBC - Basic Step-By-Step Guide

CHAPTER 11

1755

To use the classes in an application, there are eight basic steps:

 • Define datasource connection information

 • Get a datasource connection

 • Create table definition

 • Open the table

 • Use the table

 • Close the table

 • Close the datasource connection

 • Release the ODBC environment handle

Following each of these steps is detailed to explain the step, and to hopefully mention
as many of the pitfalls that beginning users fall in to when first starting to use the
classes. Throughout the steps, small snippets of code are provided to show the syntax
of performing the step. A complete code snippet is provided at the end of this overview
that shows a complete working flow of all these steps (see wxODBC - Sample Code (p.
1759)).

Define datasource connection information

To be able to connect to a datasource through the ODBC driver, a program must supply
a minimum of three pieces of information: Datasource name, User ID, and Authorization
string (password). A fourth piece of information, a default directory indicating where the
data file is stored, is required for Text and dBase drivers for ODBC.

The wxWidgets data class wxDbConnectInf exists for holding all of these values, plus
some others that may be desired.

The 'Henv' member is the environment handle used to access memory for use by the
ODBC driver. Use of this member is described below in the "Getting a Connection to the
Datasource" section.

The 'Dsn' must exactly match the datasource name used to configure the ODBC
datasource (in the ODBC Administrator (MSW only) or in the .odbc.ini file).

The 'Uid' is the User ID that is to be used to log in to the datasource. This User ID must
already have been created and assigned rights within the datasource to which you are
connecting. The user that the connection is establish by will determine what rights and
privileges the datasource connection will allow the program to have when using the
connection that this connection information was used to establish. Some datasources
are case sensitive for User IDs, and though the wxODBC classes attempt to hide this
from you by manipulating whatever data you pass in to match the datasource's needs, it
is always best to pass the 'Uid' in the case that the datasource requires.

The 'AuthStr' is the password for the User ID specified in the 'Uid' member. As with the
'Uid', some datasources are case sensitive (in fact most are). The wxODBC classes do
NOT try to manage the case of the 'AuthStr' at all. It is passed verbatim to the

CHAPTER 11

1756

datasource, so you must use the case that the datasource is expecting.

The 'defaultDir' member is used with file based datasources (i.e. dBase, FoxPro, text
files). It contains a full path to the location where the data table or file is located. When
setting this value, use forward slashes '/' rather than backslashes ' avoid compatibility
differences between ODBC drivers.

The other fields are currently unused. The intent of these fields are that they will be
used to write our own ODBC Administrator type program that will work on both MSW
and Un*x systems, regardless of the datasource. Very little work has been done on this
to date.

Get a Datasource Connection

There are two methods of establishing a connection to a datasource. You may either
manually create your own wxDb instance and open the connection, or you may use the
caching functions provided with the wxODBC classes to create/maintain/delete the
connections.

Regardless of which method you use, you must first have a fully populated
wxDbConnectInf object. In the wxDbConnectInf instance, provide a valid Dns, Uid, and
AuthStr (along with a 'defaultDir' if necessary). Before using this though, you must
allocate an environment handle to the 'Henv' member.

 wxDbConnectInf DbConnectInf;
 DbConnectInf.SetDsn("MyDSN");
 DbConnectInf.SetUserID("MyUserName");
 DbConnectInf.SetPassword("MyPassword");
 DbConnectInf.SetDefaultDir("");

To allocate an environment handle for the ODBC connection to use, the
wxDbConnectInf class has a datasource independent method for creating the
necessary handle:

 if (DbConnectInf.AllocHenv())
 {
 wxMessageBox("Unable to allocate an ODBC en vironment
handle",
 "DB CONNECTION ERROR", wxOK |
wxICON_EXCLAMATION);
 return;
 }

When the wxDbConnectInf::AllocHenv() function is called successfully, a value of true
will be returned. A value of false means allocation failed, and the handle will be
undefined.

A shorter form of doing the above steps is encapsulated into the long form of the
constructor for wxDbConnectInf.

 wxDbConnectInf *DbConnectInf;

 DbConnectInf = new wxDbConnectInf(NULL, "MyDSN",
"MyUserName",
 "MyPassword", " ");

CHAPTER 11

1757

This shorthand form of initializing the constructor passes a NULL for the SQL
environment handle, telling the constructor to allocate a handle during construction. This
handle is also managed for the life of wxDbConnectInf instance, and is freed
automatically upon destruction of the instance.

Once the wxDbConnectInf instance is initialized, you are ready to connect to the
datasource.

To manually create datasource connections, you must create a wxDb instance, and
then open it.

 wxDb *db = new wxDb(DbConnectInf->GetHenv());

 opened = db->Open(DbConnectInf);

The first line does the house keeping needed to initialize all the members of the wxDb
class. The second line actually sends the request to the ODBC driver to open a
connection to its associated datasource using the parameters supplied in the call to
wxDb::Open (p. 296).

A more advanced form of opening a connection is to use the connection caching
functions that are included with the wxODBC classes. The caching mechanisms
perform the same functions as the manual approach to opening a connection, but they
also manage each connection they have created, re-using them and cleaning them up
when they are closed, without you needing to do the coding.

To use the caching function wxDbGetConnection (p. 278) to get a connection to a
datasource, simply call it with a single parameter of the type wxDbConnectInf:

 db = wxDbGetConnection(DbConnectInf);

The wxDb pointer that is returned is both initialized and opened. If something failed in
creating or opening the connection, the return value from wxDbGetConnection (p. 278)
will be NULL.

The connection that is returned is either a new connection, or it is a "free" connection
from the cache of connections that the class maintains that was no longer in use. Any
wxDb instance created with a call to wxDbGetConnection (p. 278) is recorded in a linked
list of established connections. When a program is finished with a connection, a call to
wxDbFreeConnection (p. 278) is made, and the datasource connection will then be
tagged as FREE, making it available for the next call to wxDbGetConnection (p. 278)
that needs a connection using the same connection information (Dsn, Uid, AuthStr). The
cached connections remain cached until a call to wxDbCloseConnections (p. 278) is
made, at which time all cached connections are closed and deleted.

Besides the obvious advantage of using the single command caching routine to obtain a
datasource connection, using cached connections can be quite a performance boost as
well. Each time that a new connection is created (not retrieved from the cache of free
connections), the wxODBC classes perform many queries against the datasource to
determine the datasource's datatypes and other fundamental behaviours. Depending on
the hardware, network bandwidth, and datasource speed, this can in some cases take a
few seconds to establish the new connection (with well-balanced systems, it should only
be a fraction of a second). Re-using already established datasource connections rather

CHAPTER 11

1758

than creating/deleting, creating/deleting connections can be quite a time-saver.

Another time-saver is the "copy connection" features of both wxDb::Open (p. 296) and
wxDbGetConnection (p. 278). If manually creating a wxDb instance and opening it, you
must pass an existing connection to the wxDb::Open (p. 296) function yourself to gain
the performance benefit of copying existing connection settings. The
wxDbGetConnection (p. 278) function automatically does this for you, checking the Dsn,
Uid, and AuthStr parameters when you request a connection for any existing
connections that use those same settings. If one is found, wxDbGetConnection (p. 278)
copies the datasource settings for datatypes and other datasource specific information
that was previously queried, rather than re-querying the datasource for all those same
settings.

One final note on creating a connection. When a connection is created, it will default to
only allowing cursor scrolling to be either forward only, or both backward and forward
scrolling. The default behavior is determined by the setting
wxODBC_FWD_ONLY_CURSORS in setup.h when you compile the wxWidgets library. The
library default is to only support forward scrolling cursors only, though this can be
overridden by parameters for wxDb() constructor or the wxDbGetConnection (p. 278)
function. All datasources and ODBC drivers must support forward scrolling cursors.
Many datasources support backward scrolling cursors, and many ODBC drivers support
backward scrolling cursors. Before planning on using backward scrolling cursors, you
must be certain that both your datasource and ODBC driver fully support backward
scrolling cursors. See the small blurb about "Scrolling cursors" in the definitions at the
beginning of this overview, or other details of setting the cursor behavior in the wxDb
class documentation.

Create Table Definition

Data can be accessed in a datasource's tables directly through various functions of the
wxDb class (see wxDb::GetData (p. 289)). But to make life much simpler, the
wxDbTable class encapsulates all of the SQL specific API calls that would be necessary
to do this, wrapping it in an intuitive class of APIs.

The first step in accessing data in a datasource's tables via the wxDbTable class is to
create a wxDbTable instance.

 table = new wxDbTable(db, tableName, numTableCo lumns, "",
 !wxDB_QUERY_ONLY, "");

When you create the instance, you indicate the previously established datasource
connection to be used to access the table, the name of the primary table that is to be
accessed with the datasource's tables, how many columns of each row are going to be
returned, the name of the view of the table that will actually be used to query against
(works with Oracle only at this time), whether the data returned is for query purposes
only, and finally the path to the table, if different than the path specified when
connecting to the datasource.

Each of the above parameters are described in detail in the wxDbTable class'
description, but one special note here about the fifth parameter - the queryOnly setting.
If a wxDbTable instance is created as wxDB_QUERY_ONLY, then no
inserts/deletes/updates can be performed using this instance of the wxDbTable. Any
calls to wxDb::CommitTrans (p. 282) or wxDb::RollbackTrans (p. 298) against the

CHAPTER 11

1759

datasource connection used by this wxDbTable instance are ignored by this instance. If
the wxDbTable instance is created with !wxDB_QUERY_ONLY as shown above, then all
the cursors and other overhead associated with being able to insert/update/delete data
in the table are created, and thereby those operations can then be performed against
the associated table with this wxDbTable instance.

If a table is to be accessed via a wxDbTable instance, and the table will only be read
from, not written to, there is a performance benefit (not as many cursors need to be
maintained/updated, hence speeding up access times), as well as a resource savings
due to fewer cursors being created for the wxDbTable instance. Also, with some
datasources, the number of simultaneous cursors is limited.

When defining the columns to be retrievable by the wxDbTable instance, you can
specify anywhere from one column up to all columns in the table.

 table->SetColDefs(0, "FIRST_NAME", DB_DATA_TYPE _VARCHAR,
FirstName,
 SQL_C_WXCHAR, sizeof(FirstNam e), true,
true);
 table->SetColDefs(1, "LAST_NAME", DB_DATA_TYPE_ VARCHAR,
LastName,
 SQL_C_WXCHAR, sizeof(LastName), true, true);

Notice that column definitions start at index 0 and go up to one less than the number of
columns specified when the wxDbTable instance was created (in this example, two
columns - one with index 0, one with index 1).

The above lines of code "bind" the datasource columns specified to the memory
variables in the client application. So when the application makes a call to
wxDbTable::GetNext (p. 329) (or any other function that retrieves data from the result
set), the variables that are bound to the columns will have the column value stored into
them. See the wxDbTable::SetColDefs (p. 340) class documentation for more details on
all the parameters for this function.

The bound memory variables have undefined data in them until a call to a function that
retrieves data from a result set is made (e.g. wxDbTable::GetNext (p.
329),wxDbTable::GetPrev (p. 330), etc). The variables are not initialized to any data by
the wxODBC classes, and they still contain undefined data after a call to
wxDbTable::Query (p. 334). Only after a successful call to one of the ::GetXxxx()
functions is made do the variables contain valid data.

It is not necessary to define column definitions for columns whose data is not going to
be returned to the client. For example, if you want to query the datasource for all users
with a first name of 'GEORGE', but you only want the list of last names associated with
those rows (why return the FIRST_NAME column every time when you already know it
is 'GEORGE'), you would only have needed to define one column above.

You may have as many wxDbTable instances accessing the same table using the same
wxDb instance as you desire. There is no limit imposed by the classes on this. All
datasources supported (so far) also have no limitations on this.

Open the table

Opening the table is not technically doing anything with the datasource itself. Calling

CHAPTER 11

1760

wxDbTable::Open (p. 333) simply does all the housekeeping of checking that the
specified table exists, that the current connected user has at least SELECT privileges
for accessing the table, setting up the requisite cursors, binding columns and cursors,
and constructing the default INSERT statement that is used when a new row is inserted
into the table (non-wxDB_QUERY_ONLY tables only).

 if (!table->Open())
 {
 // An error occurred opening (setting up) t he table
 }

The only reason that a call to wxDbTable::Open (p. 333) is likely to fail is if the user has
insufficient privileges to even SELECT the table. Other problems could occur, such as
being unable to bind columns, but these other reason point to some lack of resource
(like memory). Any errors generated internally in the wxDbTable::Open (p. 333) function
are logged to the error log if SQL logging is turned on for the classes.

Use the table

To use the table and the definitions that are now set up, we must first define what data
we want the datasource to collect in to a result set, tell it where to get the data from, and
in which sequence we want the data returned.

 // the WHERE clause limits/specifies which rows in the table
 // are to be returned in the result set
 table->SetWhereClause("FIRST_NAME = 'GEORGE'");

 // Result set will be sorted in ascending alpha betical
 // order on the data in the 'LAST_NAME' column of each row
 // If the same last name is in the table for tw o rows,
 // sub-sort on the 'AGE' column
 table->SetOrderByClause("LAST_NAME, AGE");

 // No other tables (joins) are used for this qu ery
 table->SetFromClause("");

The above lines will be used to tell the datasource to return in the result all the rows in
the table whose column "FIRST_NAME" contains the name 'GEORGE' (note the
required use of the single quote around the string literal) and that the result set will
return the rows sorted by ascending last names (ascending is the default, and can be
overridden with the "DESC" keyword for datasources that support it - "LAST_NAME
DESC").

Specifying a blank WHERE clause will result in the result set containing all rows in the
datasource.

Specifying a blank ORDERBY clause means that the datasource will return the result
set in whatever sequence it encounters rows which match the selection criteria. What
this sequence is can be hard to determine. Typically it depends on the index that the
datasource used to find the rows which match the WHERE criteria. BEWARE - relying
on the datasource to return data in a certain sequence when you have not provided an
ORDERBY clause will eventually cause a problem for your program. Databases can be
tuned to be COST-based, SPEED-based, or some other basis for how it gets your result
set. In short, if you need your result set returned in a specific sequence, ask for it that
way by providing an ORDERBY clause.

CHAPTER 11

1761

Using an ORDERBY clause can be a performance hit, as the database must sort the
items before making the result set available to the client. Creating efficient indexes that
cause the data to be "found" in the correct ORDERBY sequence can be a big
performance benefit. Also, in the large majority of cases, the database will be able to
sort the records faster than your application can read all the records in (unsorted) and
then sort them. Let the database do the work for you!

Notice in the example above, a column that is not included in the bound data columns
('AGE') will be used to sub-sort the result set.

The FROM clause in this example is blanked, as we are not going to be performing any
table joins with this simple query. When the FROM clause is blank, it is assumed that all
columns referenced are coming from the default table for the wxDbTable instance.

After the selection criteria have been specified, the program can now ask the
datasource to perform the search and create a result set that can be retrieved:

 // Instruct the datasource to perform a query b ased on the
 // criteria specified above in the where/orderB y/from clauses.
 if (!table->Query())
 {
 // An error occurred performing the query
 }

Typically, when an error occurs when calling wxDbTable::Query (p. 334), it is a syntax
problem in the WHERE clause that was specified. The exact SQL (datasource-specific)
reason for what caused the failure of wxDbTable::Query (p. 334) (and all other
operations against the datasource can be found by parsing the table's database
connection's "errorList[]" array member for the stored text of the error.

When the wxDbTable::Query (p. 334) returns true, the database was able to
successfully complete the requested query using the provided criteria. This does not
mean that there are any rows in the result set, it just mean that the query was
successful.

IMPORTANT: The result created by the call to wxDbTable::Query (p. 334) can take one
of two forms. It is either a snapshot of the data at the exact moment that the database
determined the record matched the search criteria, or it is a pointer to the row that
matched the selection criteria. Which form of behavior is datasource dependent. If it is a
snapshot, the data may have changed since the result set was constructed, so beware
if your datasource uses snapshots and call wxDbTable::Refresh (p. 339). Most larger
brand databases do not use snapshots, but it is important to mention so that your
application can handle it properly if your datasource does.

To retrieve the data, one of the data fetching routines must be used to request a row
from the result set, and to store the data from the result set into the bound memory
variables. After wxDbTable::Query (p. 334) has completed successfully, the
default/current cursor is placed so it is pointing just before the first record in the result
set. If the result set is empty (no rows matched the criteria), then any calls to retrieve
data from the result set will return false.

 wxString msg;

 while (table->GetNext())

CHAPTER 11

1762

 {
 msg.Printf("Row #%lu -- First Name : %s La st Name is %s",
 table->GetRowNum(), FirstName, La stName);
 wxMessageBox(msg, "Data", wxOK | wxICON_INF ORMATION,
NULL);
 }

The sample code above will read the next record in the result set repeatedly until the
end of the result set has been reached. The first time that wxDbTable::GetNext (p. 329)
is called right after the successful call to wxDbTable::Query (p. 334), it actually returns
the first record in the result set.

When wxDbTable::GetNext (p. 329) is called and there are no rows remaining in the
result set after the current cursor position, wxDbTable::GetNext (p. 329) (as well as all
the other wxDbTable::GetXxxxx() functions) will return false.

Close the table

When the program is done using a wxDbTable instance, it is as simple as deleting the
table pointer (or if declared statically, letting the variable go out of scope). Typically the
default destructor will take care of all that is required for cleaning up the wxDbTable
instance.

 if (table)
 {
 delete table;
 table = NULL;
 }

Deleting a wxDbTable instance releases all of its cursors, deletes the column definitions
and frees the SQL environment handles used by the table (but not the environment
handle used by the datasource connection that the wxDbTable instance was using).

Close the datasource connection

After all tables that have been using a datasource connection have been closed (this
can be verified by calling wxDb::GetTableCount (p. 292) and checking that it returns 0),
then you may close the datasource connection. The method of doing this is dependent
on whether the non-caching or caching method was used to obtain the datasource
connection.

If the datasource connection was created manually (non-cached), closing the
connection is done like this:

 if (db)
 {
 db->Close();
 delete db;
 db = NULL;
 }

If the program used the wxDbGetConnection (p. 278) function to get a datasource
connection, the following is the code that should be used to free the connection(s):

 if (db)
 {
 wxDbFreeConnection(db);

CHAPTER 11

1763

 db = NULL;
 }

Note that the above code just frees the connection so that it can be re-used on the next
call the wxDbGetConnection (p. 278). To actually dispose of the connection, releasing
all of its resources (other than the environment handle), do the following:

 wxDbCloseConnections();

Release the ODBC environment handle

Once all of the connections that used the ODBC environment handle (in this example it
was stored in "DbConnectInf.Henv") have been closed, then it is safe to release the
environment handle:

 DbConnectInf->FreeHenv();

Or, if the long form of the constructor was used and the constructor was allowed to
allocate its own SQL environment handle, leaving scope or destruction of the
wxDbConnectInf will free the handle automatically.

 delete DbConnectInf;

Remember to never release this environment handle if there are any connections still
using the handle.

wxODBC - Known Issues

As with creating wxWidgets, writing the wxODBC classes was not the simple task of
writing an application to run on a single type of computer system. The classes need to
be cross-platform for different operating systems, and they also needed to take in to
account different database manufacturers and different ODBC driver manufacturers.
Because of all the possible combinations of OS/database/drivers, it is impossible to say
that these classes will work perfectly with datasource ABC, ODBC driver XYZ, on
platform LMN. You may run into some incompatibilities or unsupported features when
moving your application from one environment to another. But that is what makes
cross-platform programming fun. It also pinpoints one of the great things about open
source software. It can evolve!

The most common difference between different database/ODBC driver manufacturers in
regards to these wxODBC classes is the lack of standard error codes being returned to
the calling program. Sometimes manufacturers have even changed the error codes
between versions of their databases/drivers.

In all the tested databases, every effort has been made to determine the correct error
codes and handle them in the class members that need to check for specific error codes
(such as TABLE DOES NOT EXIST when you try to open a table that has not been
created yet). Adding support for additional databases in the future requires adding an
entry for the database in the wxDb::Dbms (p. 283) function, and then handling any error
codes returned by the datasource that do not match the expected values.

Databases

CHAPTER 11

1764

Following is a list of known issues and incompatibilities that the wxODBC classes have
between different datasources. An up to date listing of known issues can be seen in the
comments of the source for wxDb::Dbms (p. 283).

ORACLE

 • Currently the only database supported by the wxODBC classes to support
VIEWS

DBASE

NOTE: dBase is not a true ODBC datasource. You only have access to as much
functionality as the driver can emulate.

 • Does not support the SQL_TIMESTAMP structure

 • Supports only one cursor and one connect (apparently? with Microsoft driver
only?)

 • Does not automatically create the primary index if the 'keyField' param of
SetColDef is true. The user must create ALL indexes from their program with
calls to wxDbTable::CreateIndex (p. 320)

 • Table names can only be 8 characters long

 • Column names can only be 10 characters long

 • Currently cannot CREATE a dBase table - bug or limitation of the drivers used??

 • Currently cannot insert rows that have integer columns - bug??

SYBASE (all)

 • To lock a record during QUERY functions, the reserved word 'HOLDLOCK' must
be added after every table name involved in the query/join if that table's
matching record(s) are to be locked

 • Ignores the keywords 'FOR UPDATE'. Use the HOLDLOCK functionality
described above

SYBASE (Enterprise)

 • If a column is part of the Primary Key, the column cannot be NULL

 • Maximum row size is somewhere in the neighborhood of 1920 bytes

mySQL

 • If a column is part of the Primary Key, the column cannot be NULL.

 • Cannot support selecting for update [wxDbTable::CanSelectForUpdate (p. 317)].
Always returns false.

 • Columns that are part of primary or secondary keys must be defined as being

CHAPTER 11

1765

NOT NULL when they are created. Some code is added in
wxDbTable::CreateIndex (p. 320) to try to adjust the column definition if it is not
defined correctly, but it is experimental (as of wxWidgets v2.2.1)

 • Does not support sub-queries in SQL statements

POSTGRES

 • Does not support the keywords 'ASC' or 'DESC' as of release v6.5.0

 • Does not support sub-queries in SQL statements

DB2

 • Columns which are part of a primary key must be declared as NOT NULL

UNICODE with wxODBC classes

As of v2.6 of wxWidgets, the wxODBC classes now fully support the compilation and
use of the classes in a Unicode build of wxWidgets, assuming the compiler and OS on
which the program will be compiled/run is Unicode capable.

The one major difference in writing code that can be compiled in either unicode or non-
unicode builds that is specific to the wxODBC classes is to use the SQL_C_WXCHAR
datatype for string columns rather than SQL_C_CHAR or SQL_C_WCHAR.

wxODBC - Sample Code

Simplest example of establishing/opening a connection to an ODBC datasource,
binding variables to the columns for read/write usage, opening an existing table in the
datasource, inserting a record, setting query parameters (where/orderBy/from), querying
the datasource, reading each row of the result set, deleting a record, releasing the
connection, then cleaning up.

NOTE: Very basic error handling is shown here, to reduce the size of the code and to
make it more easily readable. The HandleError() function uses the
wxDbLogExtendedErrorMsg() function for retrieving database error messages.

// -- ---------------

// HEADERS
// -- ---------------

#include "wx/log.h" // #included to enable output of
messages only
#include "wx/dbtable.h"

// -- ---------------

// FUNCTION USED FOR HANDLING/DISPLAYING ERRORS
// -- ---------------

// Very generic error handling function.
// If a connection to the database is passed in, th en we retrieve
all the
// database errors for the connection and add them to the

CHAPTER 11

1766

displayed message
int HandleError(wxString errmsg, wxDb *pDb=NULL)
{
 // Retrieve all the error message for the error s that occurred
 wxString allErrors;
 if (!pDb == NULL)
 // Get the database errors and append them to the error
message
 allErrors = wxDbLogExtendedErrorMsg(errmsg. c_str(), pDb,
0, 0);
 else
 allErrors = errmsg;

 // Do whatever you wish with the error message here
 // wxLogDebug() is called inside wxDbLogExtende dErrorMsg() so
this
 // console program will show the errors in the console window,
 // but these lines will show the errors in RELE ASE builds also
 wxFprintf(stderr, wxT("\n%s\n"), allErrors.c_st r());
 fflush(stderr);

 return 1;
}

// -- ---------------

// entry point
// -- ---------------

int main(int argc, char **argv)
{
wxDbConnectInf *DbConnectInf = NULL; // DB c onnection
information

wxDb *db = NULL; // Data base connection

wxDbTable *table = NULL; // Data table to
access
const wxChar tableName[] = wxT("USERS"); // Name of
database table
const UWORD numTableColumns = 2; // Numb er table
columns
wxChar FirstName[50+1]; // colu mn data:
"FIRST_NAME"
wxChar LastName[50+1]; // colu mn data:
"LAST_NAME"

wxString msg; // Used for display
messages

// -- ---------------

// DEFINE THE CONNECTION HANDLE FOR THE DATABASE
// -- ---------------

DbConnectInf = new wxDbConnectInf(NULL,
 wxT("CONTACTS-S qlServer"),
 wxT("sa"),
 wxT("abk"));

// Error checking....
if (!DbConnectInf || !DbConnectInf->GetHenv())
{

CHAPTER 11

1767

 return HandleError(wxT("DB ENV ERROR: Cannot al locate ODBC env
handle"));
}

// -- ---------------

// GET A DATABASE CONNECTION
// -- ---------------

db = wxDbGetConnection(DbConnectInf);

if (!db)
{
 return HandleError(wxT("CONNECTION ERROR - Cann ot get DB
connection"));
}

// -- ---------------

// DEFINE THE TABLE, AND THE COLUMNS THAT WILL BE A CCESSED
// -- ---------------

table = new wxDbTable(db, tableName, numTableColumn s, wxT(""),
 !wxDB_QUERY_ONLY, wxT(""));
//
// Bind the columns that you wish to retrieve. Note that there
must be
// 'numTableColumns' calls to SetColDefs(), to matc h the wxDbTable
def
//
// Not all columns need to be bound, only columns w hose values are
to be
// returned back to the client.
//
table->SetColDefs(0, wxT("FIRST_NAME"), DB_DATA_TYP E_VARCHAR,
FirstName,
 SQL_C_WXCHAR, sizeof(FirstName), tr ue, true);
table->SetColDefs(1, wxT("LAST_NAME"), DB_DATA_TYPE _VARCHAR,
LastName,
 SQL_C_WXCHAR, sizeof(LastName), tru e, true);

// -- ---------------

// CREATE (or RECREATE) THE TABLE IN THE DATABASE
// -- ---------------

if (!table->CreateTable(true)) //NOTE: No CommitTr ans is required
{
 return HandleError(wxT("TABLE CREATION ERROR: "), table-
>GetDb());
}

// -- ---------------

// OPEN THE TABLE FOR ACCESS
// -- ---------------

if (!table->Open())
{
 return HandleError(wxT("TABLE OPEN ERROR: "), t able->GetDb());

CHAPTER 11

1768

}

// -- ---------------

// INSERT A NEW ROW INTO THE TABLE
// -- ---------------

wxStrcpy(FirstName, wxT("JULIAN"));
wxStrcpy(LastName, wxT("SMART"));
if (!table->Insert())
{
 return HandleError(wxT("INSERTION ERROR: "), ta ble->GetDb());
}

// Must commit the insert to write the data to the DB
table->GetDb()->CommitTrans();

// -- ---------------

// RETRIEVE ROWS FROM THE TABLE BASED ON SUPPLIED C RITERIA
// -- ---------------

// Set the WHERE clause to limit the result set to return
// all rows that have a value of 'JULIAN' in the FI RST_NAME
// column of the table.
table->SetWhereClause(wxT("FIRST_NAME = 'JULIAN'")) ;

// Result set will be sorted in ascending alphabeti cal
// order on the data in the 'LAST_NAME' column of e ach row
table->SetOrderByClause(wxT("LAST_NAME"));

// No other tables (joins) are used for this query
table->SetFromClause(wxT(""));

// Instruct the datasource to perform a query based on the
// criteria specified above in the where/orderBy/fr om clauses.
if (!table->Query())
{
 return HandleError(wxT("QUERY ERROR: "), table- >GetDb());
}

// Loop through all rows matching the query criteri a until
// there are no more records to read
while (table->GetNext())
{
 msg.Printf(wxT("Row #%lu -- First Name : %s La st Name is
%s"),
 table->GetRowNum(), FirstName, LastName);

 // Code to display 'msg' here
 wxLogMessage(wxT("\n%s\n"), msg.c_str());
}

// -- ---------------

// DELETE A ROW FROM THE TABLE
// -- ---------------

// Select the row which has FIRST_NAME of 'JULIAN' and LAST_NAME
// of 'SMART', then delete the retrieved row
//

CHAPTER 11

1769

if (!table->DeleteWhere(wxT("FIRST_NAME = 'JULIAN' and LAST_NAME =
'SMART'")))
{
 return HandleError(wxT("DELETION ERROR: "), tab le->GetDb());
}

// Must commit the deletion to the database
table->GetDb()->CommitTrans();

// -- ---------------

// TAKE CARE OF THE ODBC CLASS INSTANCES THAT WERE BEING USED
// -- ---------------

// If the wxDbTable instance was successfully creat ed
// then delete it as we are done with it now.
wxDELETE(table);

// Free the cached connection
// (meaning release it back in to the cache of data source
// connections) for the next time a call to wxDbGet Connection()
// is made.
wxDbFreeConnection(db);
db = NULL;

// -- ---------------

// CLEANUP BEFORE EXITING APP
// -- ---------------

// The program is now ending, so we need to close
// any cached connections that are still being
// maintained.
wxDbCloseConnections();

// Release the environment handle that was created
// for use with the ODBC datasource connections
wxDELETE(DbConnectInf);

wxUnusedVar(argc); // Here just to prevent compile r warnings
wxUnusedVar(argv); // Here just to prevent compile r warnings

return 0;
}

A selection of SQL commands

The following is a very brief description of some common SQL commands, with
examples.

See also

Database classes overview (p. 1742)

Create

Creates a table.

CHAPTER 11

1770

Example:

CREATE TABLE Book
 (BookNumber INTEGER PRIMARY KEY
 , CategoryCode CHAR(2) DEFAULT 'RO' NOT NULL
 , Title VARCHAR(100) UNIQUE
 , NumberOfPages SMALLINT
 , RetailPriceAmount NUMERIC(5,2)
)

Insert

Inserts records into a table.

Example:

INSERT INTO Book
 (BookNumber, CategoryCode, Title)
 VALUES(5, 'HR', 'The Lark Ascending')

Select

The Select operation retrieves rows and columns from a table. The criteria for selection
and the columns returned may be specified.

Examples:

SELECT * FROM Book

Selects all rows and columns from table Book.

SELECT Title, RetailPriceAmount FROM Book WHERE Ret ailPriceAmount
> 20.0

Selects columns Title and RetailPriceAmount from table Book, returning only the rows
that match the WHERE clause.

SELECT * FROM Book WHERE CatCode = 'LL' OR CatCode = 'RR'

Selects all columns from table Book, returning only the rows that match the WHERE
clause.

SELECT * FROM Book WHERE CatCode IS NULL

Selects all columns from table Book, returning only rows where the CatCode column is
NULL.

SELECT * FROM Book ORDER BY Title

Selects all columns from table Book, ordering by Title, in ascending order. To specify
descending order, add DESC after the ORDER BY Title clause.

SELECT Title FROM Book WHERE RetailPriceAmount >= 2 0.0 AND
RetailPriceAmount <= 35.0

Selects records where RetailPriceAmount conforms to the WHERE expression.

CHAPTER 11

1771

Update

Updates records in a table.

Example:

UPDATE Incident SET X = 123 WHERE ASSET = 'BD34'

This example sets a field in column 'X' to the number 123, for the record where the
column ASSET has the value 'BD34'.

Interprocess communication overview

Classes: wxServer (p. 1115),wxConnection (p. 374),wxClient (p. 140)wxWidgets has a
number of different classes to help with interprocess communication and network
programming. This section only discusses one family of classes -- the DDE-like protocol
-- but here's a list of other useful classes:

 • wxSocketEvent (p. 1166),wxSocketBase (p. 1148),wxSocketClient (p.
1164),wxSocketServer (p. 1168): classes for the low-level TCP/IP API.

 • wxProtocol (p. 1036), wxURL (p. 1392), wxFTP (p. 567), wxHTTP (p. 729):
classes for programming popular Internet protocols.

wxWidgets' DDE-like protocol is a high-level protocol based on Windows DDE. There
are two implementations of this DDE-like protocol: one using real DDE running on
Windows only, and another using TCP/IP (sockets) that runs on most platforms. Since
the API and virtually all of the behaviour is the same apart from the names of the
classes, you should find it easy to switch between the two implementations.

Notice that by including <wx/ipc.h> you may define convenient synonyms for the IPC
classes: wxServer for eitherwxDDEServer or wxTCPServer depending on whether
DDE-based or socket-based implementation is used and the same thing for wxClient
and wxConnection .

By default, the DDE implementation is used under Windows. DDE works within one
computer only. If you want to use IPC between different workstations you should define
wxUSE_DDE_FOR_IPC as 0 before including this header -- this will force using TCP/IP
implementation even under Windows.

The following description refers to wx... but remember that the equivalent wxTCP... and
wxDDE... classes can be used in much the same way.

Three classes are central to the DDE-like API:

 1. wxClient. This represents the client application, and is used only within a client
program.

 2. wxServer. This represents the server application, and is used only within a
server program.

 3. wxConnection. This represents the connection from the client to the server -

CHAPTER 11

1772

both the client and the server use an instance of this class, one per connection.
Most DDE transactions operate on this object.

Messages between applications are usually identified by three variables: connection
object, topic name and item name. A data string is a fourth element of some messages.
To create a connection (a conversation in Windows parlance), the client application uses
wxClient::MakeConnection to send a message to the server object, with a string service
name to identify the server and a topic name to identify the topic for the duration of the
connection. Under Unix, the service name may be either an integer port identifier in
which case an Internet domain socket will be used for the communications or a valid file
name (which shouldn't exist and will be deleted afterwards) in which case a Unix domain
socket is created.

SECURITY NOTE: Using Internet domain sockets is extremely insecure for IPC as there
is absolutely no access control for them, use Unix domain sockets whenever possible!

The server then responds and either vetoes the connection or allows it. If allowed, both
the server and client objects create wxConnection objects which persist until the
connection is closed. The connection object is then used for sending and receiving
subsequent messages between client and server - overriding virtual functions in your
class derived from wxConnection allows you to handle the DDE messages.

To create a working server, the programmer must:

 1. Derive a class from wxConnection, providing handlers for various messages
sent to the server side of a wxConnection (e.g. OnExecute, OnRequest,
OnPoke). Only the handlers actually required by the application need to be
overridden.

 2. Derive a class from wxServer, overriding OnAcceptConnection to accept or
reject a connection on the basis of the topic argument. This member must create
and return an instance of the derived connection class if the connection is
accepted.

 3. Create an instance of your server object and call Create to activate it, giving it a
service name.

To create a working client, the programmer must:

 1. Derive a class from wxConnection, providing handlers for various messages
sent to the client side of a wxConnection (e.g. OnAdvise). Only the handlers
actually required by the application need to be overridden.

 2. Derive a class from wxClient, overriding OnMakeConnection to create and
return an instance of the derived connection class.

 3. Create an instance of your client object.

 4. When appropriate, create a new connection usingwxClient::MakeConnection (p.
140), with arguments host name (processed in Unix only, use 'localhost' for local
computer), service name, and topic name for this connection. The client object
will callOnMakeConnection (p. 373) to create a connection object of the derived
class if the connection is successful.

CHAPTER 11

1773

 5. Use the wxConnection member functions to send messages to the server.

Data transfer

These are the ways that data can be transferred from one application to another. These
are methods of wxConnection.

 • Execute: the client calls the server with a data string representing a command
to be executed. This succeeds or fails, depending on the server's willingness to
answer. If the client wants to find the result of the Execute command other than
success or failure, it has to explicitly call Request.

 • Request: the client asks the server for a particular data string associated with a
given item string. If the server is unwilling to reply, the return value is NULL.
Otherwise, the return value is a string (actually a pointer to the connection
buffer, so it should not be deallocated by the application).

 • Poke: The client sends a data string associated with an item string directly to
the server. This succeeds or fails.

 • Advise: The client asks to be advised of any change in data associated with a
particular item. If the server agrees, the server will send an OnAdvise message
to the client along with the item and data.

The default data type is wxCF_TEXT (ASCII text), and the default data size is the length
of the null-terminated string. Windows-specific data types could also be used on the PC.

Examples

See the sample programs server and client in the IPC samples directory. Run the
server, then the client. This demonstrates using the Execute, Request, and Poke
commands from the client, together with an Advise loop: selecting an item in the server
list box causes that item to be highlighted in the client list box.

More DDE details

A wxClient object initiates the client part of a client-server DDE-like (Dynamic Data
Exchange) conversation (available in both Windows and Unix).

To create a client which can communicate with a suitable server, you need to derive a
class from wxConnection and another from wxClient. The custom wxConnection class
will receive communications in a 'conversation' with a server. and the custom wxServer
is required so that a user-overriddenwxClient::OnMakeConnection (p. 373)member can
return a wxConnection of the required class, when a connection is made.

For example:

class MyConnection: public wxConnection {
 public:
 MyConnection(void)::wxConnection() {}
 ~MyConnection(void) { }
 bool OnAdvise(const wxString& topic, const wxStri ng& item, char

CHAPTER 11

1774

*data, int size, wxIPCFormat format)
 { wxMessageBox(topic, data); }
};

class MyClient: public wxClient {
 public:
 MyClient(void) {}
 wxConnectionBase *OnMakeConnection(void) { return new
MyConnection; }
};

Here, MyConnection will respond toOnAdvise (p. 375) messages sent by the server by
displaying a message box.

When the client application starts, it must create an instance of the derived wxClient. In
the following, command line arguments are used to pass the host name (the name of the
machine the server is running on) and the server name (identifying the server process).
CallingwxClient::MakeConnection (p. 373) implicitly creates an instance of
MyConnection if the request for a connection is accepted, and the client then requests
an Advise loop from the server (an Advise loop is where the server calls the client when
data has changed).

 wxString server = "4242";
 wxString hostName;
 wxGetHostName(hostName);

 // Create a new client
 MyClient *client = new MyClient;
 connection = (MyConnection *)client->MakeConnecti on(hostName,
server, "IPC TEST");

 if (!connection)
 {
 wxMessageBox("Failed to make connection to serv er", "Client
Demo Error");
 return NULL;
 }
 connection->StartAdvise("Item");

wxHTML overview

This topic was written by Vaclav Slavik, the author of the wxHTML library.

The wxHTML library provides classes for parsing and displaying HTML.

It is not intended to be a high-end HTML browser. If you are looking for something like
that try http://www.mozilla.org (http://www.mozilla.org).

wxHTML can be used as a generic rich text viewer - for example to display a nice About
Box (like those of GNOME apps) or to display the result of database searching. There is
a wxFileSystem (p. 517) class which allows you to use your own virtual file systems.

wxHtmlWindow supports tag handlers. This means that you can easily extend wxHtml
library with new, unsupported tags. Not only that, you can even use your own
application-specific tags! See src/html/m_*.cpp files for details.

CHAPTER 11

1775

There is a generic wxHtmlParser class, independent of wxHtmlWindow.

wxHTML quick start

Displaying HTML

First of all, you must include <wx/wxhtml.h>.

Class wxHtmlWindow (p. 715) (derived from wxScrolledWindow) is used to display
HTML documents. It has two important methods: LoadPage (p. 718) and SetPage (p.
722). LoadPage loads and displays HTML file while SetPage displays directly the
passed string . See the example:

 mywin -> LoadPage("test.htm");
 mywin -> SetPage("<html><body>"
 "<h1>Error</h1>"
 "Some error occurred :-H)"
 "</body></hmtl>");

I think the difference is quite clear.

Displaying Help

See wxHtmlHelpController (p. 689).

Setting up wxHtmlWindow

Because wxHtmlWindow is derived from wxScrolledWindow and not from wxFrame, it
doesn't have visible frame. But the user usually wants to see the title of HTML page
displayed somewhere and the frame's titlebar is the ideal place for it.

wxHtmlWindow provides 2 methods in order to handle this: SetRelatedFrame (p. 722)
and SetRelatedStatusBar (p. 722). See the example:

 html = new wxHtmlWindow(this);
 html -> SetRelatedFrame(this, "HTML : %%s");
 html -> SetRelatedStatusBar(0);

The first command associates the HTML object with its parent frame (this points to
wxFrame object there) and sets the format of the title. Page title "Hello, world!" will be
displayed as "HTML : Hello, world!" in this example.

The second command sets which frame's status bar should be used to display browser's
messages (such as "Loading..." or "Done" or hypertext links).

Customizing wxHtmlWindow

You can customize wxHtmlWindow by setting font size, font face and borders (space
between border of window and displayed HTML). Related functions:

 • SetFonts (p. 721)

 • SetBorders (p. 721)

 • ReadCustomization (p. 720)

CHAPTER 11

1776

 • WriteCustomization (p. 723)

The last two functions are used to store user customization info wxConfig stuff (for
example in the registry under Windows, or in a dotfile under Unix).

HTML Printing

The wxHTML library provides printing facilities with several levels of complexity.

The easiest way to print an HTML document is to use wxHtmlEasyPrinting class (p.
685). It lets you print HTML documents with only one command and you don't have to
worry about deriving from the wxPrintout class at all. It is only a simple wrapper around
the wxHtmlPrintout (p. 706), normal wxWidgets printout class.

And finally there is the low level class wxHtmlDCRenderer (p. 683) which you can use to
render HTML into a rectangular area on any DC. It supports rendering into multiple
rectangles with the same width. (The most common use of this is placing one rectangle
on each page or printing into two columns.)

Help Files Format

wxHTML library uses a reduced version of MS HTML Workshop format. Tex2RTF can
produce these files when generating HTML, if you set htmlWorkshopFiles to true in
your tex2rtf.ini file.

(See wxHtmlHelpController (p. 689) for help controller description.)

A book consists of three files: header file, contents file and index file. You can make a
regular zip archive of these files, plus the HTML and any image files, for wxHTML (or
helpview) to read; and the .zip file can optionally be renamed to .htb.

Header file (.hhp)

Header file must contain these lines (and may contain additional lines which are ignored)
:

Contents file=<filename.hhc>
Index file=<filename.hhk>
Title=<title of your book>
Default topic=<default page to be displayed.htm>

All filenames (including the Default topic) are relative to the location of .hhp file.

Localization note: In addition, .hhp file may contain line

Charset=<rfc_charset>

which specifies what charset (e.g. "iso8859_1") was used in contents and index files.
Please note that this line is incompatible with MS HTML Help Workshop and it would
either silently remove it or complain with some error. See also Writing non-English
applications (p. 1661).

Contents file (.hhc)

CHAPTER 11

1777

Contents file has HTML syntax and it can be parsed by regular HTML parser. It contains
exactly one list (.... statement):

 <object type="text/sitemap">
 <param name="Name" value="@topic name@">
 <param name="ID" value=@numeric_id@>
 <param name="Local" value="@filename.htm @">
 </object>
 <object type="text/sitemap">
 <param name="Name" value="@topic name@">
 <param name="ID" value=@numeric_id@>
 <param name="Local" value="@filename.htm @">
 </object>
 ...

You can modify value attributes of param tags. topic name is name of chapter/topic as is
displayed in contents, filename.htm is HTML page name (relative to .hhp file) and
numeric_id is optional - it is used only when you use wxHtmlHelpController::Display(int)
(p. 692)

Items in the list may be nested - one statement may contain a sub-
statement:

 <object type="text/sitemap">
 <param name="Name" value="Top node">
 <param name="Local" value="top.htm">
 </object>

 <object type="text/sitemap">
 <param name="Name" value="subnode in topnode">
 <param name="Local" value="subnode1.h tm">
 </object>
 ...

 <object type="text/sitemap">
 <param name="Name" value="Another Top">
 <param name="Local" value="top2.htm">
 </object>
 ...

Index file (.hhk)

Index files have same format as contents file except that ID params are ignored and
sublists are not allowed.

Input Filters

The wxHTML library provides a mechanism for reading and displaying files of many
different file formats.

CHAPTER 11

1778

wxHtmlWindow::LoadPage (p. 718) can load not only HTML files but any known file. To
make a file type known to wxHtmlWindow you must create a wxHtmlFilter (p. 688) filter
and register it using wxHtmlWindow::AddFilter (p. 716).

Cells and Containers

This article describes mechanism used by wxHtmlWinParser (p. 723) and
wxHtmlWindow (p. 715) to parse and display HTML documents.

Cells

You can divide any text (or HTML) into small fragments. Let's call these fragments cells .
Cell is for example one word, horizontal line, image or any other part of document. Each
cell has width and height (except special "magic" cells with zero dimensions - e.g. colour
changers or font changers).

See wxHtmlCell (p. 673).

Containers

Container is kind of cell that may contain sub-cells. Its size depends on number and
sizes of its sub-cells (and also depends on width of window).

See wxHtmlContainerCell (p. 678), wxHtmlCell::Layout (p. 676).

Using Containers in Tag Handler

wxHtmlWinParser (p. 723) provides a user-friendly way of managing containers. It is
based on the idea of opening and closing containers.

Use OpenContainer (p. 727) to open new a container within an already opened
container. This new container is a sub-container of the old one. (If you want to create a
new container with the same depth level you can call CloseContainer();
OpenContainer(); .)

Use CloseContainer (p. 724) to close the container. This doesn't create a new container
with same depth level but it returns "control" to the parent container.

It is clear there must be same number of calls to OpenContainer as to CloseContainer...

Example

This code creates a new paragraph (container at same depth level) with "Hello, world!":

m_WParser -> CloseContainer();
c = m_WParser -> OpenContainer();

m_WParser -> AddWord("Hello, ");
m_WParser -> AddWord("world!");

m_WParser -> CloseContainer();
m_WParser -> OpenContainer();

You can see that there was opened container before running the code. We closed it,
created our own container, then closed our container and opened new container. The

CHAPTER 11

1779

result was that we had same depth level after executing. This is general rule that should
be followed by tag handlers: leave depth level of containers unmodified (in other words,
number of OpenContainer and CloseContainer calls should be same within HandleTag
(p. 712)'s body).

Tag Handlers

The wxHTML library provides architecture of pluggable tag handlers. Tag handler is
class that understands particular HTML tag (or tags) and is able to interpret it.

wxHtmlWinParser (p. 723) has static table of modules . Each module contains one or
more tag handlers. Each time a new wxHtmlWinParser object is constructed all modules
are scanned and handlers are added to wxHtmlParser's list of available handlers (note:
wxHtmlParser's list is non-static).

How it works

Common tag handler's HandleTag (p. 712) method works in four steps:

 1. Save state of parent parser into local variables

 2. Change parser state according to tag's params

 3. Parse text between the tag and paired ending tag (if present)

 4. Restore original parser state

See wxHtmlWinParser (p. 723) for methods for modifying parser's state. In general you
can do things like opening/closing containers, changing colors, fonts etc.

Providing own tag handlers

You should create new .cpp file and place following lines into it:

#include <mod_templ.h>
#include <forcelink.h>
FORCE_LINK_ME(yourmodulefilenamewithoutcpp)

Then you must define handlers and one module.

Tag handlers

The handler is derived from wxHtmlWinTagHandler (p. 729)(or directly from
wxHtmlTagHandler (p. 712))

You can use set of macros to define the handler (see src/html/m_*.cpp files for details).
Handler definition must start with TAG_HANDLER_BEGIN macro and end with
TAG_HANDLER_END macro. I strongly recommend to have a look at
include/wxhtml/mod_templ.h file. Otherwise you won't understand the structure of
macros. See macros reference:

TAG_HANDLER_BEGIN (name, tags)

Starts handler definition. name is handler identifier (in fact part of class name), tags is

CHAPTER 11

1780

string containing list of tags supported by this handler (in uppercase). This macro derives
new class from wxHtmlWinTagHandler and implements it is GetSupportedTags (p. 712)
method.

Example: TAG_HANDLER_BEGIN(FONTS, "B,I,U,T")

TAG_HANDLER_VARS

This macro starts block of variables definitions. (Variables are identical to class
attributes.) Example:

TAG_HANDLER_BEGIN(VARS_ONLY, "CRAZYTAG")
 TAG_HANDLER_VARS
 int my_int_var;
 wxString something_else;
TAG_HANDLER_END(VARS_ONLY)

This macro is used only in rare cases.

TAG_HANDLER_CONSTR (name)

This macro supplies object constructor. name is same name as the one from
TAG_HANDLER_BEGIN macro. Body of constructor follow after this macro (you must
use and). Example:

TAG_HANDLER_BEGIN(VARS2, "CRAZYTAG")
 TAG_HANDLER_VARS
 int my_int_var;
 TAG_HANDLER_CONSTR(vars2)
 { // !!!!!!
 my_int_var = 666;
 } // !!!!!!
TAG_HANDLER_END(VARS2)

Never used in wxHTML :-)

TAG_HANDLER_PROC (varib)

This is very important macro. It defines HandleTag (p. 712)method. varib is name of
parameter passed to the method, usuallytag. Body of method follows after this macro.
Note than you must use and ! Example:

TAG_HANDLER_BEGIN(TITLE, "TITLE")
 TAG_HANDLER_PROC(tag)
 {
 printf("TITLE found...\n");
 }
TAG_HANDLER_END(TITLE)

TAG_HANDLER_END (name)

Ends definition of tag handler name.

Tags Modules

You can use set of 3 macros TAGS_MODULE_BEGIN, TAGS_MODULE_ADD and
TAGS_MODULE_END to inherit new module fromwxHtmlTagsModule (p. 713) and to

CHAPTER 11

1781

create instance of it. See macros reference:

TAGS_MODULE_BEGIN (modname)

Begins module definition. modname is part of class name and must be unique.

TAGS_MODULE_ADD (name)

Adds the handler to this module. name is the identifier from TAG_HANDLER_BEGIN.

TAGS_MODULE_END (modname)

Ends the definition of module.

Example:

TAGS_MODULE_BEGIN(Examples)
 TAGS_MODULE_ADD(VARS_ONLY)
 TAGS_MODULE_ADD(VARS2)
 TAGS_MODULE_ADD(TITLE)
TAGS_MODULE_END(Examples)

Tags supported by wxHTML

wxHTML is not full implementation of HTML standard. Instead, it supports most common
tags so that it is possible to display simple HTML documents with it. (For example it
works fine with pages created in Netscape Composer or generated by tex2rtf).

Following tables list all tags known to wxHTML, together with supported parameters. A
tag has general form of <tagname param_1 param_2 ... param_n> where
param_i is either paramname="paramvalue" or paramname=paramvalue - these
two are equivalent. Unless stated otherwise, wxHTML is case-insensitive.

Table of common parameter values

We will use these substitutions in tags descriptions:

[alignment] CENTER
 LEFT
 RIGHT
 JUSTIFY

[v_alignment] TOP
 BOTTOM
 CENTER

[color] HTML 4.0-compliant colour specifica tion

[fontsize] -2
 -1
 +0
 +1
 +2
 +3
 +4
 1
 2
 3

CHAPTER 11

1782

 4
 5
 6
 7

[pixels] integer value that represents dimen sion in pixels

[percent] i%
 where i is integer

[url] an URL

[string] text string

[coords] c(1),c(2),c(3),...,c(n)
 where c(i) is integer

List of supported tags

A NAME=[string]
 HREF=[url]
 TARGET=[target window spec]
ADDRESS
AREA SHAPE=POLY
 SHAPE=CIRCLE
 SHAPE=RECT
 COORDS=[coords]
 HREF=[url]
B
BIG
BLOCKQUOTE
BODY TEXT=[color]
 LINK=[color]
 BGCOLOR=[color]
BR ALIGN=[alignment]
CENTER
CITE
CODE
DD
DIV ALIGN=[alignment]
DL
DT
EM
FONT COLOR=[color]
 SIZE=[fontsize]
 FACE=[comma-separated list of facen ames]
HR ALIGN=[alignment]
 SIZE=[pixels]
 WIDTH=[percent|pixels]
 NOSHADE
H1
H2
H3
H4
H5
H6
I
IMG SRC=[url]
 WIDTH=[pixels]
 HEIGHT=[pixels]
 ALIGN=TEXTTOP
 ALIGN=CENTER
 ALIGN=ABSCENTER

CHAPTER 11

1783

 ALIGN=BOTTOM
 USEMAP=[url]
KBD
LI
MAP NAME=[string]
META HTTP-EQUIV="Content-Type"
 CONTENT=[string]
OL
P ALIGN=[alignment]
PRE
SAMP
SMALL
STRIKE
STRONG
TABLE ALIGN=[alignment]
 WIDTH=[percent|pixels]
 BORDER=[pixels]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
 CELLSPACING=[pixels]
 CELLPADDING=[pixels]
TD ALIGN=[alignment]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
 WIDTH=[percent|pixels]
 COLSPAN=[pixels]
 ROWSPAN=[pixels]
 NOWRAP
TH ALIGN=[alignment]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
 WIDTH=[percent|pixels]
 COLSPAN=[pixels]
 ROWSPAN=[pixels]
TITLE
TR ALIGN=[alignment]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
TT
U
UL

Environment variables

This section describes all environment variables that affect execution of wxWidgets
programs.

WXTRACE (Debug build only.) This variable can be set to a comma-
separated list of trace masks used inwxLogTrace (p. 1576)
calls;wxLog::AddTraceMask (p. 853) is called for every
mask in the list during wxWidgets initialization.

WXPREFIX (Unix only.) Overrides installation prefix. Normally, the
prefix is hard-coded and is the same as the value passed
to configure via the --prefix switch when compiling
the library (typically/usr/local or /usr). You can set
WXPREFIX if you are for example distributing a binary

CHAPTER 11

1784

version of an application and you don't know in advance
where it will be installed.

WXMODE (wxMGL only.) Sets MGL video mode. The value must be
in formwidthxheight-depth. The default is 640x480-16 .

WXSTDERR (wxMGL only.) Redirects stderr output to a file.

wxPython overview

This topic was written by Robin Dunn, author of the wxPython wrapper.

What is wxPython?

wxPython is a blending of the wxWidgets GUI classes and thePython
(http://www.python.org/) programming language.

Python

So what is Python? Go tohttp://www.python.org (http://www.python.org) to learn
more, but in a nutshell Python is an interpreted, interactive, object-oriented programming
language. It is often compared to Tcl, Perl, Scheme or Java.

Python combines remarkable power with very clear syntax. It has modules, classes,
exceptions, very high level dynamic data types, and dynamic typing. There are
interfaces to many system calls and libraries, and new built-in modules are easily written
in C or C++. Python is also usable as an extension language for applications that need a
programmable interface.

Python is copyrighted but freely usable and distributable, even for commercial use.

wxPython

wxPython is a Python package that can be imported at runtime that includes a collection
of Python modules and an extension module (native code). It provides a series of Python
classes that mirror (or shadow) many of the wxWidgets GUI classes. This extension
module attempts to mirror the class hierarchy of wxWidgets as closely as possible. This
means that there is a wxFrame class in wxPython that looks, smells, tastes and acts
almost the same as the wxFrame class in the C++ version.

wxPython is very versatile. It can be used to create standalone GUI applications, or in
situations where Python is embedded in a C++ application as an internal scripting or
macro language.

Currently wxPython is available for Win32 platforms and the GTK toolkit (wxGTK) on
most Unix/X-windows platforms. See the wxPython website http://wxPython.org/
(http://wxPython.org/) for details about getting wxPython working for you.

Why use wxPython?

So why would you want to use wxPython over just C++ and wxWidgets? Personally I

CHAPTER 11

1785

prefer using Python for everything. I only use C++ when I absolutely have to eke more
performance out of an algorithm, and even then I usually code it as an extension module
and leave the majority of the program in Python.

Another good thing to use wxPython for is quick prototyping of your wxWidgets apps.
With C++ you have to continuously go though the edit-compile-link-run cycle, which can
be quite time consuming. With Python it is only an edit-run cycle. You can easily build an
application in a few hours with Python that would normally take a few days or longer with
C++. Converting a wxPython app to a C++/wxWidgets app should be a straight forward
task.

Other Python GUIs

There are other GUI solutions out there for Python.

Tkinter

Tkinter is the de facto standard GUI for Python. It is available on nearly every platform
that Python and Tcl/TK are. Why Tcl/Tk? Well because Tkinter is just a wrapper around
Tcl's GUI toolkit, Tk. This has its upsides and its downsides...

The upside is that Tk is a pretty versatile toolkit. It can be made to do a lot of things in a
lot of different environments. It is fairly easy to create new widgets and use them
interchangeably in your programs.

The downside is Tcl. When using Tkinter you actually have two separate language
interpreters running, the Python interpreter and the Tcl interpreter for the GUI. Since the
guts of Tcl is mostly about string processing, it is fairly slow as well. (Not too bad on a
fast Pentium II, but you really notice the difference on slower machines.)

It wasn't until the latest version of Tcl/Tk that native Look and Feel was possible on non-
Motif platforms. This is because Tk usually implements its own widgets (controls) even
when there are native controls available.

Tkinter is a pretty low-level toolkit. You have to do a lot of work (verbose program code)
to do things that would be much simpler with a higher level of abstraction.

PythonWin

PythonWin is an add-on package for Python for the Win32 platform. It includes wrappers
for MFC as well as much of the Win32 API. Because of its foundation, it is very familiar
for programmers who have experience with MFC and the Win32 API. It is obviously not
compatible with other platforms and toolkits. PythonWin is organized as separate
packages and modules so you can use the pieces you need without having to use the
GUI portions.

Others

There are quite a few other GUI modules available for Python, some in active use, some
that haven't been updated for ages. Most are simple wrappers around some C or C++
toolkit or another, and most are not cross-platform compatible. See this link
(http://www.python.org/download/Contributed.html#Gra phics)for a listing
of a few of them.

CHAPTER 11

1786

Using wxPython

First things first...

I'm not going to try and teach the Python language here. You can do that at the Python
Tutorial (http://www.python.org/doc/tut/tut.html). I'm also going to assume
that you know a bit about wxWidgets already, enough to notice the similarities in the
classes used.

Take a look at the following wxPython program. You can find a similar program in the
wxPython/demo directory, named DialogUnits.py . If your Python and wxPython are
properly installed, you should be able to run it by issuing this command:

 python DialogUnits.py

001: ## import all of the wxPython GUI package
002: from wxPython.wx import *
003:
004: ## Create a new frame class, derived from the wxPython Frame.
005: class MyFrame(wxFrame):
006:
007: def __init__(self, parent, id, title):
008: # First, call the base class' __init__ method to
create the frame
009: wxFrame.__init__(self, parent, id, tit le,
010: wxPoint(100, 100), wx Size(160, 100))
011:
012: # Associate some events with methods o f this class
013: EVT_SIZE(self, self.OnSize)
014: EVT_MOVE(self, self.OnMove)
015:
016: # Add a panel and some controls to dis play the size
and position
017: panel = wxPanel(self, -1)
018: wxStaticText(panel, -1, "Size:",
019: wxDLG_PNT(panel, wxPoint(4, 4)),
wxDefaultSize)
020: wxStaticText(panel, -1, "Pos:",
021: wxDLG_PNT(panel, wxPoint(4, 14)),
wxDefaultSize)
022: self.sizeCtrl = wxTextCtrl(panel, -1, "",
023: wxDLG_PNT(p anel,
wxPoint(24, 4)),
024: wxDLG_SZE(p anel,
wxSize(36, -1)),
025: wxTE_READON LY)
026: self.posCtrl = wxTextCtrl(panel, -1, " ",
027: wxDLG_PNT(pa nel,
wxPoint(24, 14)),
028: wxDLG_SZE(pa nel, wxSize(36,
-1)),
029: wxTE_READONL Y)
030:
031:
032: # This method is called automatically when the CLOSE
event is
033: # sent to this window
034: def OnCloseWindow(self, event):
035: # tell the window to kill itself

CHAPTER 11

1787

036: self.Destroy()
037:
038: # This method is called by the system when the window is
resized,
039: # because of the association above.
040: def OnSize(self, event):
041: size = event.GetSize()
042: self.sizeCtrl.SetValue("%s, %s" % (siz e.width,
size.height))
043:
044: # tell the event system to continue lo oking for an
event handler,
045: # so the default handler will get call ed.
046: event.Skip()
047:
048: # This method is called by the system when the window is
moved,
049: # because of the association above.
050: def OnMove(self, event):
051: pos = event.GetPosition()
052: self.posCtrl.SetValue("%s, %s" % (pos. x, pos.y))
053:
054:
055: # Every wxWidgets application must have a clas s derived from
wxApp
056: class MyApp(wxApp):
057:
058: # wxWidgets calls this method to initializ e the
application
059: def OnInit(self):
060:
061: # Create an instance of our customized Frame class
062: frame = MyFrame(NULL, -1, "This is a t est")
063: frame.Show(true)
064:
065: # Tell wxWidgets that this is our main window
066: self.SetTopWindow(frame)
067:
068: # Return a success flag
069: return true
070:
071:
072: app = MyApp(0) # Create an instance of the application
class
073: app.MainLoop() # Tell it to start processi ng events
074:

Things to notice

 1. At line 2 the wxPython classes, constants, and etc. are imported into the current
module's namespace. If you prefer to reduce namespace pollution you can use
"from wxPython import wx " and then access all the wxPython identifiers
through the wx module, for example, "wx.wxFrame ".

 2. At line 13 the frame's sizing and moving events are connected to methods of the
class. These helper functions are intended to be like the event table macros that
wxWidgets employs. But since static event tables are impossible with wxPython,
we use helpers that are named the same to dynamically build the table. The only
real difference is that the first argument to the event helpers is always the

CHAPTER 11

1788

window that the event table entry should be added to.

 3. Notice the use of wxDLG_PNT and wxDLG_SZE in lines 19 - 29 to convert from
dialog units to pixels. These helpers are unique to wxPython since Python can't
do method overloading like C++.

 4. There is an OnCloseWindow method at line 34 but no call to EVT_CLOSE to
attach the event to the method. Does it really get called? The answer is, yes it
does. This is because many of thestandard events are attached to windows that
have the associatedstandard method names. I have tried to follow the lead of
the C++ classes in this area to determine what is standard but since that
changes from time to time I can make no guarantees, nor will it be fully
documented. When in doubt, use an EVT_*** function.

 5. At lines 17 to 21 notice that there are no saved references to the panel or the
static text items that are created. Those of you who know Python might be
wondering what happens when Python deletes these objects when they go out
of scope. Do they disappear from the GUI? They don't. Remember that in
wxPython the Python objects are just shadows of the corresponding C++
objects. Once the C++ windows and controls are attached to their parents, the
parents manage them and delete them when necessary. For this reason, most
wxPython objects do not need to have a __del__ method that explicitly causes
the C++ object to be deleted. If you ever have the need to forcibly delete a
window, use the Destroy() method as shown on line 36.

 6. Just like wxWidgets in C++, wxPython apps need to create a class derived from
wxApp (line 56) that implements a method namedOnInit , (line 59.) This
method should create the application's main window (line 62) and use
wxApp.SetTopWindow() (line 66) to inform wxWidgets about it.

 7. And finally, at line 72 an instance of the application class is created. At this point
wxPython finishes initializing itself, and calls the OnInit method to get things
started. (The zero parameter here is a flag for functionality that isn't quite
implemented yet. Just ignore it for now.) The call to MainLoop at line 73 starts
the event loop which continues until the application terminates or all the top level
windows are closed.

wxWidgets classes implemented in wxPython

The following classes are supported in wxPython. Most provide nearly full
implementations of the public interfaces specified in the C++ documentation, others are
less so. They will all be brought as close as possible to the C++ spec over time.

 • wxAcceleratorEntry (p. 18)

 • wxAcceleratorTable (p. 19)

 • wxActivateEvent (p. 29)

 • wxBitmap (p. 76)

 • wxBitmapButton (p. 89)

CHAPTER 11

1789

 • wxBitmapDataObject (p. 94)

 • wxBMPHandler

 • wxBoxSizer (p. 98)

 • wxBrush (p. 99)

 • wxBusyInfo (p. 111)

 • wxBusyCursor (p. 110)

 • wxButton (p. 112)

 • wxCalculateLayoutEvent (p. 116)

 • wxCalendarCtrl (p. 117)

 • wxCaret

 • wxCheckBox (p. 128)

 • wxCheckListBox (p. 132)

 • wxChoice (p. 134)

 • wxClientDC (p. 141)

 • wxClipboard (p. 144)

 • wxCloseEvent (p. 147)

 • wxColourData (p. 160)

 • wxColourDialog (p. 163)

 • wxColour (p. 157)

 • wxComboBox (p. 164)

 • wxCommandEvent (p. 172)

 • wxConfig (p. 184)

 • wxControl (p. 205)

 • wxCursor (p. 216)

 • wxCustomDataObject (p. 222)

 • wxDataFormat (p. 224)

 • wxDataObject (p. 229)

 • wxDataObjectComposite (p. 232)

CHAPTER 11

1790

 • wxDataObjectSimple (p. 233)

 • wxDateTime (p. 246)

 • wxDateSpan (p. 241)

 • wxDC (p. 353)

 • wxDialog (p. 391)

 • wxDirDialog (p. 408)

 • wxDragImage (p. 444)

 • wxDropFilesEvent (p. 448)

 • wxDropSource (p. 449)

 • wxDropTarget (p. 452)

 • wxEraseEvent (p. 463)

 • wxEvent (p. 464)

 • wxEvtHandler (p. 467)

 • wxFileConfig

 • wxFileDataObject (p. 490)

 • wxFileDialog (p. 491)

 • wxFileDropTarget (p. 495)

 • wxFileSystem (p. 517)

 • wxFileSystemHandler (p. 520)

 • wxFocusEvent (p. 534)

 • wxFontData (p. 545)

 • wxFontDialog (p. 548)

 • wxFont (p. 535)

 • wxFrame (p. 555)

 • wxFSFile (p. 565)

 • wxGauge (p. 574)

 • wxGIFHandler

 • wxGLCanvas

CHAPTER 11

1791

 • wxHtmlCell (p. 673)

 • wxHtmlContainerCell (p. 678)

 • wxHtmlDCRenderer (p. 683)

 • wxHtmlEasyPrinting (p. 685)

 • wxHtmlParser (p. 702)

 • wxHtmlTagHandler (p. 712)

 • wxHtmlTag (p. 709)

 • wxHtmlWinParser (p. 723)

 • wxHtmlPrintout (p. 706)

 • wxHtmlWinTagHandler (p. 729)

 • wxHtmlWindow (p. 715)

 • wxIconizeEvent

 • wxIcon (p. 730)

 • wxIdleEvent (p. 740)

 • wxImage (p. 742)

 • wxImageHandler (p. 766)

 • wxImageList (p. 769)

 • wxIndividualLayoutConstraint (p. 774)

 • wxInitDialogEvent (p. 777)

 • wxInputStream (p. 777)

 • wxInternetFSHandler (p. 1673)

 • wxJoystickEvent (p. 789)

 • wxJPEGHandler

 • wxKeyEvent (p. 792)

 • wxLayoutAlgorithm (p. 796)

 • wxLayoutConstraints (p. 799)

 • wxListBox (p. 808)

 • wxListCtrl (p. 813)

CHAPTER 11

1792

 • wxListEvent (p. 831)

 • wxListItem (p. 828)

 • wxMask (p. 866)

 • wxMaximizeEvent

 • wxMDIChildFrame (p. 875)

 • wxMDIClientWindow (p. 878)

 • wxMDIParentFrame (p. 880)

 • wxMemoryDC (p. 895)

 • wxMemoryFSHandler (p. 896)

 • wxMenuBar (p. 912)

 • wxMenuEvent (p. 921)

 • wxMenuItem (p. 922)

 • wxMenu (p. 899)

 • wxMessageDialog (p. 927)

 • wxMetaFileDC (p. 930)

 • wxMiniFrame (p. 934)

 • wxMouseEvent (p. 940)

 • wxMoveEvent (p. 948)

 • wxNotebookEvent (p. 964)

 • wxNotebook (p. 956)

 • wxPageSetupDialogData (p. 974)

 • wxPageSetupDialog (p. 973)

 • wxPaintDC (p. 979)

 • wxPaintEvent (p. 980)

 • wxPalette (p. 981)

 • wxPanel (p. 985)

 • wxPen (p. 991)

 • wxPNGHandler

CHAPTER 11

1793

 • wxPoint (p. 999)

 • wxPostScriptDC (p. 1000)

 • wxPreviewFrame (p. 1003)

 • wxPrintData (p. 1004)

 • wxPrintDialogData (p. 1012)

 • wxPrintDialog (p. 1011)

 • wxPrinter (p. 1016)

 • wxPrintPreview (p. 1022)

 • wxPrinterDC (p. 1018)

 • wxPrintout (p. 1019)

 • wxProcess (p. 1025)

 • wxQueryLayoutInfoEvent (p. 1039)

 • wxRadioBox (p. 1041)

 • wxRadioButton (p. 1047)

 • wxRealPoint (p. 1050)

 • wxRect (p. 1050)

 • wxRegionIterator (p. 1066)

 • wxRegion (p. 1061)

 • wxSashEvent (p. 1077)

 • wxSashLayoutWindow (p. 1079)

 • wxSashWindow (p. 1082)

 • wxScreenDC (p. 1091)

 • wxScrollBar (p. 1092)

 • wxScrollEvent (p. 1107)

 • wxScrolledWindow (p. 1098)

 • wxScrollWinEvent (p. 1110)

 • wxShowEvent

 • wxSingleChoiceDialog (p. 1116)

CHAPTER 11

1794

 • wxSizeEvent (p. 1123)

 • wxSize (p. 1121)

 • wxSizer (p. 1124)

 • wxSizerItem

 • wxSlider (p. 1138)

 • wxSpinButton (p. 1172)

 • wxSpinEvent

 • wxSplitterWindow (p. 1183)

 • wxStaticBitmap (p. 1201)

 • wxStaticBox (p. 1203)

 • wxStaticBoxSizer (p. 1205)

 • wxStaticLine (p. 1206)

 • wxStaticText (p. 1208)

 • wxStatusBar (p. 1210)

 • wxSysColourChangedEvent (p. 1255)

 • wxTaskBarIcon (p. 1264)

 • wxTextCtrl (p. 1279)

 • wxTextDataObject (p. 1297)

 • wxTextDropTarget (p. 1299)

 • wxTextEntryDialog (p. 1300)

 • wxTimer (p. 1323)

 • wxTimerEvent (p. 1325)

 • wxTimeSpan (p. 1326)

 • wxTipProvider (p. 1332)

 • wxToolBarTool

 • wxToolBar (p. 1337)

 • wxToolTip

 • wxTreeCtrl (p. 1359)

CHAPTER 11

1795

 • wxTreeEvent (p. 1377)

 • wxTreeItemData (p. 1380)

 • wxTreeItemId

 • wxUpdateUIEvent (p. 1381)

 • wxValidator (p. 1394)

 • wxWindowDC (p. 1476)

 • wxWindow (p. 1421)

 • wxZipFSHandler (p. 1673)

Where to go for help

Since wxPython is a blending of multiple technologies, help comes from multiple
sources. Seehttp://wxpython.org/ (http://wxpython.org/) for details on various
sources of help, but probably the best source is the wxPython-users mail list. You can
view the archive or subscribe by going to

http://lists.wxwindows.org/mailman/listinfo/wxpython-users
(http://lists.wxwindows.org/mailman/listinfo/wxpytho n-users)

Or you can send mail directly to the list using this address:

wxpython-users@lists.wxwindows.org

Syntax of the builtin regular expression library

A regular expression describes strings of characters. It's a pattern that matches certain
strings and doesn't match others.

See also

wxRegEx (p. 1057)

Different Flavors of REs

Syntax of the builtin regular expression library (p. 1789)

Regular expressions ("RE''s), as defined by POSIX, come in two flavors: extended REs
("EREs'') and basic REs ("BREs''). EREs are roughly those of the traditional egrep, while
BREs are roughly those of the traditional ed. This implementation adds a third flavor,
advanced REs ("AREs''), basically EREs with some significant extensions.

This manual page primarily describes AREs. BREs mostly exist for backward
compatibility in some old programs; they will be discussed at the end (p. 1798). POSIX
EREs are almost an exact subset of AREs. Features of AREs that are not present in
EREs will be indicated.

CHAPTER 11

1796

Regular Expression Syntax

Syntax of the builtin regular expression library (p. 1789)

These regular expressions are implemented using the package written by Henry
Spencer, based on the 1003.2 spec and some (not quite all) of the Perl5 extensions
(thanks, Henry!). Much of the description of regular expressions below is copied
verbatim from his manual entry.

An ARE is one or more branches, separated by '|', matching anything that matches any
of the branches.

A branch is zero or more constraints or quantified atoms, concatenated. It matches a
match for the first, followed by a match for the second, etc; an empty branch matches
the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a
quantifier, it matches a match for the atom. The quantifiers, and what a so-quantified
atom matches, are:

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom

{m,} a sequence of m or more matches of the atom

{m,n} a sequence of m through n (inclusive) matches of the atom; m
may not exceed n

*? +? ?? {m}? {m,}? {m,n}? non-greedy quantifiers, which match the same
possibilities, but prefer the smallest number rather than the
largest number of matches (see Matching (p. 1796))

The forms using { and } are known as bounds. The numbers m and n are unsigned
decimal integers with permissible values from 0 to 255 inclusive. An atom is one of:

(re) (where re is any regular expression) matches a match for re, with
the match noted for possible reporting

(?:re) as previous, but does no reporting (a "non-capturing'' set of
parentheses)

() matches an empty string, noted for possible reporting

(?:) matches an empty string, without reporting

[chars] a bracket expression, matching any one of the chars(see Bracket
Expressions (p. 1791) for more detail)

. matches any single character

CHAPTER 11

1797

\k (where k is a non-alphanumeric character) matches that
character taken as an ordinary character, e.g. \\ matches a
backslash character

\c where c is alphanumeric (possibly followed by other characters),
an escape (AREs only), see Escapes (p. 1792) below

{ when followed by a character other than a digit, matches the left-
brace character '{'; when followed by a digit, it is the beginning of
a bound (see above)

x where x is a single character with no other significance, matches
that character.

A constraint matches an empty string when specific conditions are met. A constraint may
not be followed by a quantifier. The simple constraints are as follows; some more
constraints are described later, under Escapes (p. 1792).

^ matches at the beginning of a line

$ matches at the end of a line

(?=re) positive lookahead(AREs only), matches at any point where a
substring matching re begins

(?!re) negative lookahead (AREs only), matches at any point where no
substring matching re begins

The lookahead constraints may not contain back references (see later), and all
parentheses within them are considered non-capturing.

An RE may not end with '\'.

Bracket Expressions

Syntax of the builtin regular expression library (p. 1789)

A bracket expression is a list of characters enclosed in '[] '. It normally matches any
single character from the list (but see below). If the list begins with '^ ', it matches any
single character (but see below) not from the rest of the list.

If two characters in the list are separated by '-', this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, e.g. [0-9] in ASCII
matches any decimal digit. Two ranges may not share an endpoint, so e.g. a-c-e is
illegal. Ranges are very collating-sequence-dependent, and portable programs should
avoid relying on them.

To include a literal] or - in the list, the simplest method is to enclose it in [. and .] to
make it a collating element (see below). Alternatively, make it the first character
(following a possible '^ '), or (AREs only) precede it with '\'. Alternatively, for '-', make it
the last character, or the second endpoint of a range. To use a literal - as the first
endpoint of a range, make it a collating element or (AREs only) precede it with '\'. With
the exception of these, some combinations using [(see next paragraphs), and escapes,

CHAPTER 11

1798

all other special characters lose their special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multi-character
sequence that collates as if it were a single character, or a collating-sequence name for
either) enclosed in [. and .] stands for the sequence of characters of that collating
element.

wxWidgets: Currently no multi-character collating elements are defined. So in [.X.] , X
can either be a single character literal or the name of a character. For example, the
following are both identical [[.0.]-[.9.]] and [[.zero.]-[.nine.]] and mean the same as [0-
9]. See Character Names (p. 1798).

Within a bracket expression, a collating element enclosed in [= and =]is an equivalence
class, standing for the sequences of characters of all collating elements equivalent to
that one, including itself. An equivalence class may not be an endpoint of a range.

wxWidgets: Currently no equivalence classes are defined, so [=X=] stands for just the
single character X. X can either be a single character literal or the name of a character,
see Character Names (p. 1798).

Within a bracket expression, the name of a character class enclosed in [: and :] stands
for the list of all characters (not all collating elements!) belonging to that class. Standard
character classes are:

alpha A letter.

upper An upper-case letter.

lower A lower-case letter.

digit A decimal digit.

xdigit A hexadecimal digit.

alnum An alphanumeric (letter or digit).

print An alphanumeric (same as alnum).

blank A space or tab character.

space A character producing white space in displayed text.

punct A punctuation character.

graph A character with a visible representation.

cntrl A control character.

A character class may not be used as an endpoint of a range.

wxWidgets: In a non-Unicode build, these character classifications depend on the
current locale, and correspond to the values return by the ANSI C 'is' functions: isalpha,
isupper, etc. In Unicode mode they are based on Unicode classifications, and are not
affected by the current locale.

CHAPTER 11

1799

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and
[[:>:]] are constraints, matching empty strings at the beginning and end of a word
respectively. A word is defined as a sequence of word characters that is neither
preceded nor followed by word characters. A word character is an alnum character or an
underscore (_). These special bracket expressions are deprecated; users of AREs
should use constraint escapes instead (see Escapes (p. 1792) below).

Escapes

Syntax of the builtin regular expression library (p. 1789)

Escapes (AREs only), which begin with a \ followed by an alphanumeric character, come
in several varieties: character entry, class shorthands, constraint escapes, and back
references. A \ followed by an alphanumeric character but not constituting a valid escape
is illegal in AREs. In EREs, there are no escapes: outside a bracket expression, a \
followed by an alphanumeric character merely stands for that character as an ordinary
character, and inside a bracket expression, \ is an ordinary character. (The latter is the
one actual incompatibility between EREs and AREs.)

Character-entry escapes (AREs only) exist to make it easier to specify non-printing and
otherwise inconvenient characters in REs:

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for \ to help reduce backslash doubling in some applications
where there are multiple levels of backslash processing

\cX (where X is any character) the character whose low-order 5 bits are
the same as those of X, and whose other bits are all zero

\e the character whose collating-sequence name is 'ESC', or failing that,
the character with octal value 033

\f formfeed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits) the Unicode character
U+wxyz in the local byte ordering

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal digits) reserved for a
somewhat-hypothetical Unicode extension to 32 bits

\v vertical tab, as in C are all available.

\xhhh (where hhh is any sequence of hexadecimal digits) the character
whose hexadecimal value is 0xhhh (a single character no matter
how many hexadecimal digits are used).

CHAPTER 11

1800

\0 the character whose value is 0

\xy (where xy is exactly two octal digits, and is not a back reference (see
below)) the character whose octal value is 0xy

\xyz (where xyz is exactly three octal digits, and is not a back reference
(see below)) the character whose octal value is 0xyz

Hexadecimal digits are '0'-'9', 'a'-'f', and 'A'-'F'. Octal digits are '0'-'7'.

The character-entry escapes are always taken as ordinary characters. For example,
\135 is] in ASCII, but \135 does not terminate a bracket expression. Beware, however,
that some applications (e.g., C compilers) interpret such sequences themselves before
the regular-expression package gets to see them, which may require doubling
(quadrupling, etc.) the '\'.

Class-shorthand escapes (AREs only) provide shorthands for certain commonly-used
character classes:

\d [[:digit:]]

\s [[:space:]]

\w [[:alnum:]_] (note underscore)

\D [^[:digit:]]

\S [^[:space:]]

\W [^[:alnum:]_] (note underscore)

Within bracket expressions, '\d ', '\s', and '\w ' lose their outer brackets, and '\D', '\S', and
'\W' are illegal. (So, for example, [a-c\d] is equivalent to [a-c[:digit:]] . Also, [a-c\D] ,
which is equivalent to [a-c^[:digit:]] , is illegal.)

A constraint escape (AREs only) is a constraint, matching the empty string if specific
conditions are met, written as an escape:

\A matches only at the beginning of the string (see Matching (p.
1796), below, for how this differs from '^ ')

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning or end of a word

\Z matches only at the end of the string (see Matching (p. 1796),
below, for how this differs from '$')

\m (where m is a nonzero digit) a back reference, see below

\mnn (where m is a nonzero digit, and nn is some more digits, and the

CHAPTER 11

1801

decimal value mnn is not greater than the number of closing
capturing parentheses seen so far) a back reference, see below

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes
are illegal within bracket expressions.

A back reference (AREs only) matches the same string matched by the parenthesized
subexpression specified by the number, so that (e.g.) ([bc])\1 matches bb or cc but not
'bc '. The subexpression must entirely precede the back reference in the RE.
Subexpressions are numbered in the order of their leading parentheses. Non-capturing
parentheses do not define subexpressions.

There is an inherent historical ambiguity between octal character-entry escapes and
back references, which is resolved by heuristics, as hinted at above. A leading zero
always indicates an octal escape. A single non-zero digit, not followed by another digit,
is always taken as a back reference. A multi-digit sequence not starting with a zero is
taken as a back reference if it comes after a suitable subexpression (i.e. the number is
in the legal range for a back reference), and otherwise is taken as octal.

Metasyntax

Syntax of the builtin regular expression library (p. 1789)

In addition to the main syntax described above, there are some special forms and
miscellaneous syntactic facilities available.

Normally the flavor of RE being used is specified by application-dependent means.
However, this can be overridden by a director. If an RE of any flavor begins with '***:',
the rest of the RE is an ARE. If an RE of any flavor begins with '***=', the rest of the RE
is taken to be a literal string, with all characters considered ordinary characters.

An ARE may begin with embedded options: a sequence (?xyz) (where xyz is one or
more alphabetic characters) specifies options affecting the rest of the RE. These
supplement, and can override, any options specified by the application. The available
option letters are:

b rest of RE is a BRE

c case-sensitive matching (usual default)

e rest of RE is an ERE

i case-insensitive matching (see Matching (p. 1796), below)

m historical synonym for n

n newline-sensitive matching (see Matching (p. 1796), below)

p partial newline-sensitive matching (see Matching (p. 1796),
below)

q rest of RE is a literal ("quoted'') string, all ordinary characters

s non-newline-sensitive matching (usual default)

CHAPTER 11

1802

t tight syntax (usual default; see below)

w inverse partial newline-sensitive ("weird'') matching (see
Matching (p. 1796), below)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They are available only
at the start of an ARE, and may not be used later within it.

In addition to the usual (tight) RE syntax, in which all characters are significant, there is
an expanded syntax, available in AREs with the embedded x option. In the expanded
syntax, white-space characters are ignored and all characters between a # and the
following newline (or the end of the RE) are ignored, permitting paragraphing and
commenting a complex RE. There are three exceptions to that basic rule:

 •white-space character or '#' preceded by '\' is retained

 •space or '#' within a bracket expression is retained

 •space and comments are illegal within multi-character symbols like the ARE '(?: ' or
the BRE '\(' Expanded-syntax white-space characters are blank, tab, newline,
and any character that belongs to the space character class.

Finally, in an ARE, outside bracket expressions, the sequence '(?#ttt) ' (where ttt is any
text not containing a ')') is a comment, completely ignored. Again, this is not allowed
between the characters of multi-character symbols like '(?: '. Such comments are more a
historical artifact than a useful facility, and their use is deprecated; use the expanded
syntax instead.

None of these metasyntax extensions is available if the application (or an initial
***=director) has specified that the user's input be treated as a literal string rather than
as an RE.

Matching

Syntax of the builtin regular expression library (p. 1789)

In the event that an RE could match more than one substring of a given string, the RE
matches the one starting earliest in the string. If the RE could match more than one
substring starting at that point, its choice is determined by its preference: either the
longest substring, or the shortest.

Most atoms, and all constraints, have no preference. A parenthesized RE has the same
preference (possibly none) as the RE. A quantified atom with quantifier {m} or {m}? has
the same preference (possibly none) as the atom itself. A quantified atom with other
normal quantifiers (including {m,n} with m equal to n) prefers longest match. A quantified
atom with other non-greedy quantifiers (including {m,n}? with m equal to n) prefers
shortest match. A branch has the same preference as the first quantified atom in it which
has a preference. An RE consisting of two or more branches connected by the | operator
prefers longest match.

Subject to the constraints imposed by the rules for matching the whole RE,

CHAPTER 11

1803

subexpressions also match the longest or shortest possible substrings, based on their
preferences, with subexpressions starting earlier in the RE taking priority over ones
starting later. Note that outer subexpressions thus take priority over their component
subexpressions.

Note that the quantifiers {1,1} and {1,1}? can be used to force longest and shortest
preference, respectively, on a subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is
considered longer than no match at all. For example, bb* matches the three middle
characters of 'abbbc ', (week|wee)(night|knights) matches all ten characters of
'weeknights ', when (.*).* is matched against abc the parenthesized subexpression
matches all three characters, and when (a*)* is matched against bc both the whole RE
and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions
had vanished from the alphabet. When an alphabetic that exists in multiple cases
appears as an ordinary character outside a bracket expression, it is effectively
transformed into a bracket expression containing both cases, so that x becomes '[xX] '.
When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, so that [x] becomes [xX] and [^x] becomes '[^xX] '.

If newline-sensitive matching is specified, . and bracket expressions using ^ will never
match the newline character (so that matches will never cross newlines unless the RE
explicitly arranges it) and ^ and $ will match the empty string after and before a newline
respectively, in addition to matching at beginning and end of string respectively. ARE \A
and \Z continue to match beginning or end of string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions
as with newline-sensitive matching, but not ^ and '$'.

If inverse partial newline-sensitive matching is specified, this affects ^ and $ as with
newline-sensitive matching, but not . and bracket expressions. This isn't very useful but
is provided for symmetry.

Limits And Compatibility

Syntax of the builtin regular expression library (p. 1789)

No particular limit is imposed on the length of REs. Programs intended to be highly
portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \does not
lose its special significance inside bracket expressions. All other ARE features use
syntax which is illegal or has undefined or unspecified effects in POSIX EREs; the ***
syntax of directors likewise is outside the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to
clean them up, and a few Perl extensions are not present. Incompatibilities of note
include '\b ', '\B ', the lack of special treatment for a trailing newline, the addition of
complemented bracket expressions to the things affected by newline-sensitive matching,

CHAPTER 11

1804

the restrictions on parentheses and back references in lookahead constraints, and the
longest/shortest-match (rather than first-match) matching semantics.

The matching rules for REs containing both normal and non-greedy quantifiers have
changed since early beta-test versions of this package. (The new rules are much simpler
and cleaner, but don't work as hard at guessing the user's real intentions.)

Henry Spencer's original 1986 regexp package, still in widespread use, implemented an
early version of today's EREs. There are four incompatibilities between regexp's near-
EREs ('RREs' for short) and AREs. In roughly increasing order of significance:

 • In AREs, \ followed by an alphanumeric character is either an escape or an
error, while in RREs, it was just another way of writing the alphanumeric. This
should not be a problem because there was no reason to write such a sequence
in RREs.

 • { followed by a digit in an ARE is the beginning of a bound, while in RREs, { was
always an ordinary character. Such sequences should be rare, and will often
result in an error because following characters will not look like a valid bound.

 • In AREs, \ remains a special character within '[] ', so a literal \ within [] must be
written '\\'. \\ also gives a literal \ within [] in RREs, but only truly paranoid
programmers routinely doubled the backslash.

 • AREs report the longest/shortest match for the RE, rather than the first found in
a specified search order. This may affect some RREs which were written in the
expectation that the first match would be reported. (The careful crafting of RREs
to optimize the search order for fast matching is obsolete (AREs examine all
possible matches in parallel, and their performance is largely insensitive to their
complexity) but cases where the search order was exploited to deliberately find
a match which was not the longest/shortest will need rewriting.)

Basic Regular Expressions

Syntax of the builtin regular expression library (p. 1789)

BREs differ from EREs in several respects. '|', '+', and ? are ordinary characters and
there is no equivalent for their functionality. The delimiters for bounds are \{ and '\}', with
{ and } by themselves ordinary characters. The parentheses for nested subexpressions
are \(and '\)', with (and) by themselves ordinary characters. ^ is an ordinary character
except at the beginning of the RE or the beginning of a parenthesized subexpression, $
is an ordinary character except at the end of the RE or the end of a parenthesized
subexpression, and * is an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leading '^ '). Finally,
single-digit back references are available, and \< and \> are synonyms for [[:<:]] and
[[:>:]] respectively; no other escapes are available.

CHAPTER 11

1805

Regular Expression Character Names

Syntax of the builtin regular expression library (p. 1789)

Note that the character names are case sensitive.

NUL '\0'

SOH '\001'

STX '\002'

ETX '\003'

EOT '\004'

ENQ '\005'

ACK '\006'

BEL '\007'

alert '\007'

BS '\010'

backspace '\b'

HT '\011'

tab '\t'

LF '\012'

newline '\n'

VT '\013'

vertical-tab '\v'

FF '\014'

form-feed '\f'

CR '\015'

carriage-return '\r'

SO '\016'

SI '\017'

DLE '\020'

DC1 '\021'

CHAPTER 11

1806

DC2 '\022'

DC3 '\023'

DC4 '\024'

NAK '\025'

SYN '\026'

ETB '\027'

CAN '\030'

EM '\031'

SUB '\032'

ESC '\033'

IS4 '\034'

FS '\034'

IS3 '\035'

GS '\035'

IS2 '\036'

RS '\036'

IS1 '\037'

US '\037'

space ' '

exclamation-mark '!'

quotation-mark '"'

number-sign '#'

dollar-sign '$'

percent-sign '%'

ampersand '&'

apostrophe '\''

left-parenthesis '('

right-parenthesis ')'

asterisk '*'

CHAPTER 11

1807

plus-sign '+'

comma ','

hyphen '-'

hyphen-minus '-'

period '.'

full-stop '.'

slash '/'

solidus '/'

zero '0'

one '1'

two '2'

three '3'

four '4'

five '5'

six '6'

seven '7'

eight '8'

nine '9'

colon ':'

semicolon ';'

less-than-sign '<'

equals-sign '='

greater-than-sign '>'

question-mark '?'

commercial-at '@'

left-square-bracket '['

backslash '\'

reverse-solidus '\'

right-square-bracket ']'

CHAPTER 11

1808

circumflex '^'

circumflex-accent '^'

underscore '_'

low-line '_'

grave-accent '''

left-brace '{'

left-curly-bracket '{'

vertical-line '|'

right-brace '}'

right-curly-bracket '}'

tilde '~'

DEL '\177'

Archive formats such as zip

The archive classes handle archive formats such as zip, tar, rar and cab. Currently only
the wxZip classes are included. wxTar classes are under development at wxCode
(http://wxcode.sf.net).

For each archive type, there are the following classes (using zip here as an example):

wxZipInputStream (p. 1503) Input stream

wxZipOutputStream (p. 1505) Output stream

wxZipEntry (p. 1496) Holds the meta-data for an entry (e.g. filename, timestamp, etc.)

There are also abstract wxArchive classes that can be used to write code that can
handle any of the archive types, see 'Generic archive programming (p. 1806)'. Also see
wxFileSystem (p. 1673) for a higher level interface that can handle archive files in a
generic way.

The classes are designed to handle archives on both seekable streams such as disk
files, or non-seekable streams such as pipes and sockets (see 'Archives on non-
seekable streams (p. 1807)').

See also

wxFileSystem (p. 1673)

Creating an archive

CHAPTER 11

1809

Archive formats such as zip (p. 1802)

Call PutNextEntry() (p. 51) to create each new entry in the archive, then write the entry's
data. Another call to PutNextEntry() closes the current entry and begins the next.

For example:

 wxFFileOutputStream out(_T("test.zip"));
 wxZipOutputStream zip(out);
 wxTextOutputStream txt(zip);
 wxString sep(wxFileName::GetPathSeparator());

 zip.PutNextEntry(_T("entry1.txt"));
 txt << _T("Some text for entry1.txt\n");

 zip.PutNextEntry(_T("subdir") + sep + _T("entry 2.txt"));
 txt << _T("Some text for subdir/entry2.txt\n");

The name of each entry can be a full path, which makes it possible to store entries in
subdirectories.

Extracting an archive

Archive formats such as zip (p. 1802)

GetNextEntry() (p. 46) returns a pointer to entry object containing the meta-data for the
next entry in the archive (and gives away ownership). Reading from the input stream
then returns the entry's data. Eof() becomes true after an attempt has been made to
read past the end of the entry's data.

When there are no more entries, GetNextEntry() returns NULL and sets Eof().

 // 'smart pointer' type created with wxDEFINE_S COPED_PTR_TYPE
 wxZipEntryPtr entry;

 wxFFileInputStream in(_T("test.zip"));
 wxZipInputStream zip(in);

 while (entry.reset(zip.GetNextEntry()), entry.g et() != NULL)
 {
 // access meta-data
 wxString name = entry->GetName();
 // read 'zip' to access the entry's data
 }

The smart pointer (p. 1088) type wxZipEntryPtrcan be created like this:

 #include <wx/ptr_scpd.h>
 wxDEFINE_SCOPED_PTR_TYPE(wxZipEntry);

Modifying an archive

Archive formats such as zip (p. 1802)

CHAPTER 11

1810

To modify an existing archive, write a new copy of the archive to a new file, making any
necessary changes along the way and transferring any unchanged entries using
CopyEntry() (p. 50). For archive types which compress entry data, CopyEntry() is likely
to be much more efficient than transferring the data using Read() and Write() since it will
copy them without decompressing and recompressing them.

In general modifications are not possible without rewriting the archive, though it may be
possible in some limited cases. Even then, rewriting the archive is usually a better
choice since a failure can be handled without losing the whole archive.
wxTempFileOutputStream (p. 1274) can be helpful to do this.

For example to delete all entries matching the pattern "*.txt":

 wxFFileInputStreamPtr in(new
wxFFileInputStream(_T("test.zip")));
 wxTempFileOutputStream out(_T("test.zip"));

 wxZipInputStream inzip(*in);
 wxZipOutputStream outzip(out);

 // 'smart pointer' type created with wxDEFINE_S COPED_PTR_TYPE
 wxZipEntryPtr entry;

 // transfer any meta-data for the archive as a whole (the zip
comment
 // in the case of zip)
 outzip.CopyArchiveMetaData(inzip);

 // call CopyEntry for each entry except those m atching the
pattern
 while (entry.reset(inzip.GetNextEntry()), entry .get() != NULL)
 if (!entry->GetName().Matches(_T("*.txt")))
 if (!outzip.CopyEntry(entry.release(), inzip))
 break;

 // close the input stream by releasing the poin ter to it, do
this
 // before closing the output stream so that the file can be
replaced
 in.reset();

 // you can check for success as follows
 bool success = inzip.Eof() && outzip.Close() && out.Commit();

The smart pointer (p. 1088) types wxZipEntryPtrand wxFFileInputStreamPtr can be
created like this:

 #include <wx/ptr_scpd.h>
 wxDEFINE_SCOPED_PTR_TYPE(wxZipEntry);
 wxDEFINE_SCOPED_PTR_TYPE(wxFFileInputStream);

Looking up an archive entry by name

Archive formats such as zip (p. 1802)

Also see wxFileSystem (p. 1673) for a higher level interface that is more convenient for
accessing archive entries by name.

CHAPTER 11

1811

To open just one entry in an archive, the most efficient way is to simply search for it
linearly by calling GetNextEntry() (p. 46) until the required entry is found. This works
both for archives on seekable and non-seekable streams.

The format of filenames in the archive is likely to be different from the local filename
format. For example zips and tars use unix style names, with forward slashes as the
path separator, and absolute paths are not allowed. So if on Windows the file
"C:\MYDIR\MYFILE.TXT" is stored, then when reading the entry back GetName() (p. 44)
will return "MYDIR\MYFILE.TXT". The conversion into the internal format and back has
lost some information.

So to avoid ambiguity when searching for an entry matching a local name, it is better to
convert the local name to the archive's internal format and search for that:

 // 'smart pointer' type created with wxDEFINE_S COPED_PTR_TYPE
 wxZipEntryPtr entry;

 // convert the local name we are looking for in to the internal
format
 wxString name = wxZipEntry::GetInternalName(loc alname);

 // open the zip
 wxFFileInputStream in(_T("test.zip"));
 wxZipInputStream zip(in);

 // call GetNextEntry() until the required inter nal name is
found
 do {
 entry.reset(zip.GetNextEntry());
 }
 while (entry.get() != NULL && entry->GetInterna lName() !=
name);

 if (entry.get() != NULL) {
 // read the entry's data...
 }

To access several entries randomly, it is most efficient to transfer the entire catalogue of
entries to a container such as a std::map or a wxHashMap (p. 653) then entries looked
up by name can be opened using the OpenEntry() (p. 46) method.

 WX_DECLARE_STRING_HASH_MAP(wxZipEntry*, ZipCata log);
 ZipCatalog::iterator it;
 wxZipEntry *entry;
 ZipCatalog cat;

 // open the zip
 wxFFileInputStream in(_T("test.zip"));
 wxZipInputStream zip(in);

 // load the zip catalog
 while ((entry = zip.GetNextEntry()) != NULL) {
 wxZipEntry*& current = cat[entry->GetIntern alName()];
 // some archive formats can have multiple e ntries with the
same name
 // (e.g. tar) though it is an error in the case of zip
 delete current;
 current = entry;
 }

CHAPTER 11

1812

 // open an entry by name
 if ((it = cat.find(wxZipEntry::GetInternalName(localname))) !=
cat.end()) {
 zip.OpenEntry(*it->second);
 // ... now read entry's data
 }

To open more than one entry simultaneously you need more than one underlying stream
on the same archive:

 // opening another entry without closing the fi rst requires
another
 // input stream for the same file
 wxFFileInputStream in2(_T("test.zip"));
 wxZipInputStream zip2(in2);
 if ((it = cat.find(wxZipEntry::GetInternalName(local2))) !=
cat.end())
 zip2.OpenEntry(*it->second);

Generic archive programming

Archive formats such as zip (p. 1802)

Also see wxFileSystem (p. 1673) for a higher level interface that can handle archive files
in a generic way.

The specific archive classes, such as the wxZip classes, inherit from the following
abstract classes which can be used to write code that can handle any of the archive
types:

wxArchiveInputStream (p. 45) Input stream

wxArchiveOutputStream (p. 49) Output stream

wxArchiveEntry (p. 42) Holds the meta-data for an entry (e.g. filename)

In order to able to write generic code it's necessary to be able to create instances of the
classes without knowing which archive type is being used. So there is a class factory for
each archive type, derived from wxArchiveClassFactory (p. 41), which can create the
other classes.

For example, given wxArchiveClassFactory* factory, streams and entries can be created
like this:

 // create streams without knowing their type
 wxArchiveInputStreamPtr inarc(factory->NewStre am(in));
 wxArchiveOutputStreamPtr outarc(factory->NewStr eam(out));

 // create an empty entry object
 wxArchiveEntryPtr entry(factory->NewEntr y());

The smart pointer (p. 1088) types wxArchiveInputStreamPtr,wxArchiveOutputStreamPtr
and wxArchiveEntryPtr would need to have already have been defined, which could be

CHAPTER 11

1813

done like this:

 #include <wx/ptr_scpd.h>
 wxDEFINE_SCOPED_PTR_TYPE(wxArchiveInputStream);
 wxDEFINE_SCOPED_PTR_TYPE(wxArchiveOutputStream) ;
 wxDEFINE_SCOPED_PTR_TYPE(wxArchiveEntry);

The class factory itself can either be created explicitly:

 wxArchiveClassFactory *factory = new wxZipClass Factory;

or using wxWidgets' RTTI (p. 1643):

wxArchiveClassFactory *MakeFactory(const wxString& type)
{
 wxString name = _T("wx") + type.Left(1).Upper() +
 type.Mid(1).Lower() + _T("Class Factory");

 wxObject *pObj = wxCreateDynamicObject(name);
 wxArchiveClassFactory *pcf = wxDynamicCast(pObj ,
wxArchiveClassFactory);

 if (!pcf) {
 wxLogError(_T("can't handle '%s' archives") ,
type.c_str());
 delete pObj;
 }

 return pcf;
}

Archives on non-seekable streams

Archive formats such as zip (p. 1802)

In general, handling archives on non-seekable streams is done in the same way as for
seekable streams, with a few caveats.

The main limitation is that accessing entries randomly using OpenEntry() (p. 46) is not
possible, the entries can only be accessed sequentially in the order they are stored
within the archive.

For each archive type, there will also be other limitations which will depend on the order
the entries' meta-data is stored within the archive. These are not too difficult to deal with,
and are outlined below.

PutNextEntry and the entry size

When writing archives, some archive formats store the entry size before the entry's data
(tar has this limitation, zip doesn't). In this case the entry's size must be passed to
PutNextEntry() (p. 51) or an error occurs.

This is only an issue on non-seekable streams, since otherwise the archive output
stream can seek back and fix up the header once the size of the entry is known.

CHAPTER 11

1814

For generic programming, one way to handle this is to supply the size whenever it is
known, and rely on the error message from the output stream when the operation is not
supported.

GetNextEntry and the weak reference mechanism

Some archive formats do not store all an entry's meta-data before the entry's data (zip is
an example). In this case, when reading from a non-seekable stream, GetNextEntry() (p.
46) can only return a partially populated wxArchiveEntry (p. 42)object - not all the fields
are set.

The input stream then keeps a weak reference to the entry object and updates it when
more meta-data becomes available. A weak reference being one that does not prevent
you from deleting the wxArchiveEntry object - the input stream only attempts to update it
if it is still around.

The documentation for each archive entry type gives the details of what meta-data
becomes available and when. For generic programming, when the worst case must be
assumed, you can rely on all the fields of wxArchiveEntry being fully populated when
GetNextEntry() returns, with the the following exceptions:

GetSize() (p. 44) Guaranteed to be available after the entry has been read to Eof() (p.
778), or CloseEntry() (p. 45) has been called

IsReadOnly() (p. 44) Guaranteed to be available after the end of the archive has
been reached, i.e. after GetNextEntry() returns NULL and Eof() is true

This mechanism allows CopyEntry() (p. 50)to always fully preserve entries' meta-data.
No matter what order order the meta-data occurs within the archive, the input stream will
always have read it before the output stream must write it.

wxArchiveNotifier

Notifier objects can be used to get a notification whenever an input stream updates a
wxArchiveEntry (p. 42) object's data via the weak reference mechanism.

Consider the following code which renames an entry in an archive. This is the usual way
to modify an entry's meta-data, simply set the required field before writing it with
CopyEntry() (p. 50):

 wxArchiveInputStreamPtr arc(factory->NewStream (in));
 wxArchiveOutputStreamPtr outarc(factory->NewStr eam(out));
 wxArchiveEntryPtr entry;

 outarc->CopyArchiveMetaData(*arc);

 while (entry.reset(arc->GetNextEntry()), entry. get() != NULL)
{
 if (entry->GetName() == from)
 entry->SetName(to);
 if (!outarc->CopyEntry(entry.release(), *ar c))
 break;
 }

 bool success = arc->Eof() && outarc->Close();

CHAPTER 11

1815

However, for non-seekable streams, this technique cannot be used for fields such as
IsReadOnly() (p. 44), which are not necessarily set when GetNextEntry() (p. 46) returns.
In this case a wxArchiveNotifier (p. 48) can be used:

class MyNotifier : public wxArchiveNotifier
{
public:
 void OnEntryUpdated(wxArchiveEntry& entry) {
entry.SetIsReadOnly(false); }
};

The meta-data changes are done in your notifier's OnEntryUpdated() (p. 49) method,
then SetNotifier() (p. 45) is called before CopyEntry():

 wxArchiveInputStreamPtr arc(factory->NewStream (in));
 wxArchiveOutputStreamPtr outarc(factory->NewStr eam(out));
 wxArchiveEntryPtr entry;
 MyNotifier notifier;

 outarc->CopyArchiveMetaData(*arc);

 while (entry.reset(arc->GetNextEntry()), entry. get() != NULL)
{
 entry->SetNotifier(notifier);
 if (!outarc->CopyEntry(entry.release(), *ar c))
 break;
 }

 bool success = arc->Eof() && outarc->Close();

SetNotifier() calls OnEntryUpdated() immediately, then the input stream calls it again
whenever it sets more fields in the entry. Since OnEntryUpdated() will be called at least
once, this technique always works even when it is not strictly necessary to use it. For
example, changing the entry name can be done this way too and it works on seekable
streams as well as non-seekable.

1816

Platform details

wxWidgets defines a common API across platforms, but uses the native graphical user
interface (GUI) on each platform, so your program will take on the native look and feel
that users are familiar with. Unfortunately native toolkits and hardware do not always
support the functionality that the wxWidgets API requires. This chapter collects notes
about differences among supported platforms and ports.

wxGTK port

wxGTK is a port of wxWidgets using the GTK+ library available from www.gtk.org. It
makes use of GTK+'s native widgets wherever possible and uses wxWidgets' generic
controls when needed. GTK+ itself has been ported to a number of systems, but so far
only the original X11 version is supported. Support for the recently released GTK+ 2.0
including Unicode support is work in progress.

You will need GTK+ 1.2.3 or higher which is available from:

http://www.gtk.org (http://www.gtk.org)

In order to configure wxWidgets to compile wxGTK you will need to type:

 configure --with-gtk

For further information, please see the files in docs/gtk in the distribution.

wxMSW port

wxMSW is a port of wxWidgets for the Windows platforms including Windows 95, 98,
ME, 2000, NT, XP in ANSI and Unicode mode (for Windows 95 through the MSLU
extension library). wxMSW ensures native look and feel for XP as well when using
wxWidgets version 2.3.3 or higher. wxMSW can be compile with a great variety of
compilers including MS VC++, Borland 5.5, MinGW32, Cygwin and Watcom as well as
cross-compilation with a Linux hosted MinGW32 tool chain.

For further information, please see the files in docs/msw in the distribution.

wxWinCE

wxWinCE is the name given to wxMSW when compiled on Windows CE devices; most
of wxMSW is common to Win32 and Windows CE but there are some simplifications,
enhancements, and differences in behaviour.

For building instructions, see docs/msw/wince in the distribution. The rest of this section
documents issues you need to be aware of when programming for Windows CE devices.

General issues for wxWinCE programming

CHAPTER 12

1817

Mobile applications generally have fewer features and simpler user interfaces. Simply
omit whole sizers, static lines and controls in your dialogs, and use comboboxes instead
of listboxes where appropriate. You also need to reduce the amount of spacing used by
sizers, for which you can use a macro such as this:

#if defined(__WXWINCE__)
 #define wxLARGESMALL(large,small) small
#else
 #define wxLARGESMALL(large,small) large
#endif

// Usage
topsizer->Add(CreateTextSizer(message), 0, wxALL ,
wxLARGESMALL(10,0));

There is only ever one instance of a Windows CE application running, and wxWidgets
will take care of showing the current instance and shutting down the second instance if
necessary.

You can test the return value of wxSystemSettings::GetScreenType() for a qualitative
assessment of what kind of display is available, or use wxGetDisplaySize() if you need
more information.

You can also use wxGetOsVersion to test for a version of Windows CE at run-time (see
the next section). However, because different builds are currently required to target
different kinds of device, these values are hard-wired according to the build, and you
cannot dynamically adapt the same executable for different major Windows CE
platforms. This would require a different approach to the way wxWidgets adapts its
behaviour (such as for menubars) to suit the style of device.

See the "Life!" example (demos/life) for an example of an application that has been
tailored for PocketPC and Smartphone use.

Note: don't forget to have this line in your .rc file, as for desktop Windows applications:

#include "wx/msw/wx.rc"

Testing for WinCE SDKs

Use these preprocessor symbols to test for the different types of device or SDK:

__SMARTPHONE__ Generic mobile devices with phone buttons and a small display

__PDA__ Generic mobile devices with no phone

__HANDHELDPC__ Generic mobile device with a keyboard

__WXWINCE__ Microsoft-powered Windows CE devices, whether PocketPC,
Smartphone or Standard SDK

WIN32_PLATFORM_WFSP Microsoft-powered smartphone

__POCKETPC__ Microsoft-powered PocketPC devices with touch-screen

__WINCE_STANDARDSDK__ Microsoft-powered Windows CE devices, for

CHAPTER 12

1818

generic Windows CE applications

__WINCE_NET__ Microsoft-powered Windows CE .NET devices (_WIN32_WCE is
400 or greater)

wxGetOsVersion will return these values:

wxWINDOWS_POCKETPC The application is running under PocketPC.

wxWINDOWS_SMARTPHONE The application is running under Smartphone.

wxWINDOWS_CE The application is running under Windows CE (built with the
Standard SDK).

Window sizing in wxWinCE

When creating frames and dialogs, create them with wxDefaultPosition and
wxDefaultSize, which will tell WinCE to create them full-screen.

Don't call Fit() and Centre(), so the content sizes to the window rather than fitting the
window to the content. (We really need a single API call that will do the right thing on
each platform.)

If the screen orientation changes, the windows will automatically be resized so no further
action needs to be taken (unless you want to change the layout according to the
orientation, which you could detect in idle time, for example). However, if the input panel
(SIP) is shown, windows do not yet resize accordingly. This will be implemented soon.

Closing top-level windows in wxWinCE

You won't get a wxCloseEvent when the user clicks on the X in the titlebar on
Smartphone and PocketPC; the window is simply hidden instead. However the system
may send the event to force the application to close down.

Hibernation in wxWinCE

Smartphone and PocketPC will send a wxEVT_HIBERNATE to the application object in
low memory conditions. Your application should release memory and close dialogs, and
wake up again when the next wxEVT_ACTIVATE or wxEVT_ACTIVATE_APP message
is received. (wxEVT_ACTIVATE_APP is generated whenever a wxEVT_ACTIVATE
event is received in Smartphone and PocketPC, since these platforms do not support
WM_ACTIVATEAPP.)

Hardware buttons in wxWinCE

Special hardware buttons are sent to a window via the wxEVT_HOTKEY event under
Smartphone and PocketPC. You should first register each required button with
wxWindow::RegisterHotKey (p. 1452), and unregister the button when you're done with
it. For example:

 win->RegisterHotKey(0, wxMOD_WIN, WXK_SPECIAL1);
 win->UnregisterHotKey(0);

CHAPTER 12

1819

You may have to register the buttons in a wxEVT_ACTIVATE event handler since other
applications will grab the buttons.

There is currently no method of finding out the names of the special buttons or how
many there are.

Dialogs in wxWinCE

PocketPC dialogs have an OK button on the caption, and so you should generally not
repeat an OK button on the dialog. You can add a Cancel button if necessary, but some
dialogs simply don't offer you the choice (the guidelines recommend you offer an Undo
facility to make up for it). When the user clicks on the OK button, your dialog will receive
a wxID_OK event by default. If you wish to change this, call wxDialog::SetAffirmativeId
with the required identifier to be used. Or, override wxDialog::DoOK (return false to have
wxWidgets simply call Close to dismiss the dialog).

Smartphone dialogs do not have an OK button on the caption, and are closed using one
of the two menu buttons. You need to assign these using
wxTopLevelWindow::SetLeftMenu and wxTopLevelWindow::SetRightMenu, for example:

#ifdef __SMARTPHONE__
 SetLeftMenu(wxID_OK);
 SetRightMenu(wxID_CANCEL, _("Cancel"));
#elif defined(__POCKETPC__)
 // No OK/Cancel buttons on PocketPC, OK on capt ion will close
#else
 topsizer->Add(CreateButtonSizer(wxOK|wxCANCEL), 0, wxEXPAND
| wxALL, 10);
#endif

For implementing property sheets (flat tabs), use a wxNotebook with
wxNB_FLAT|wxNB_BOTTOM and have the notebook left, top and right sides overlap
the dialog by about 3 pixels to eliminate spurious borders. You can do this by using a
negative spacing in your sizer Add() call. The cross-platform property sheet dialog
wxPropertySheetDialog (p. 1033) is provided, to show settings in the correct style on
PocketPC and on other platforms.

Notifications (bubble HTML text with optional buttons and links) will also be implemented
in the future for PocketPC.

Modeless dialogs probably don't make sense for PocketPC and Smartphone, since
frames and dialogs are normally full-screen, and a modeless dialog is normally intended
to co-exist with the main application frame.

Menubars and toolbars in wxWinCE

Menubars and toolbars in PocketPC

On PocketPC, a frame must always have a menubar, even if it's empty. An empty
menubar/toolbar is automatically provided for dialogs, to hide any existing menubar for
the duration of the dialog.

CHAPTER 12

1820

Menubars and toolbars are implemented using a combined control, but you can use
essentially the usual wxWidgets API; wxWidgets will combine the menubar and toolbar.
However, there are some restrictions:

 • You must create the frame's primary toolbar with wxFrame::CreateToolBar,
because this uses the special wxToolMenuBar class (derived from wxToolBar)
to implement the combined toolbar and menubar. Otherwise, you can create and
manage toolbars using the wxToolBar class as usual, for example to implement
an optional formatting toolbar above the menubar as Pocket Word does. But
don't assign a wxToolBar to a frame using SetToolBar - you should always use
CreateToolBar for the main frame toolbar.

 • Deleting and adding tools to wxToolMenuBar after Realize is called is not
supported.

 • For speed, colours are not remapped to the system colours as they are in
wxMSW. Provide the tool bitmaps either with the correct system button
background, or with transparency (for example, using XPMs).

 • Adding controls to wxToolMenuBar is not supported. However, wxToolBar
supports controls.

Unlike in all other ports, a wxDialog has a wxToolBar, automatically created for you. You
may either leave it blank, or access it with wxDialog::GetToolBar and add buttons, then
calling wxToolBar::Realize. You cannot set or recreate the toolbar.

Menubars and toolbars in Smartphone

On Smartphone, there are only two menu buttons, so a menubar is simulated using a
nested menu on the right menu button. Any toolbars are simply ignored on Smartphone.

Closing windows in wxWinCE

The guidelines state that applications should not have a Quit menu item, since the user
should not have to know whether an application is in memory or not. The close button on
a window does not call the window's close handler; it simply hides the window. However,
the guidelines say that the Ctrl+Q accelerator can be used to quit the application, so
wxWidgets defines this accelerator by default and if your application handles
wxID_EXIT, it will do the right thing.

Control differences on wxWinCE

These controls and styles are specific to wxWinCE:

 • wxTextCtrl The wxTE_CAPITALIZE style causes a CAPEDIT control to be
created, which capitalizes the first letter.

These controls are missing from wxWinCE:

CHAPTER 12

1821

 • wxCheckListBox This can be implemented using a wxListCtrl in report mode
with checked/unchecked images.

 • MDI classes MDI is not supported under Windows CE.

 • wxMiniFrame Not supported under Windows CE.

Tooltips are not currently supported for controls, since on PocketPC controls with tooltips
are distinct controls, and it will be hard to add dynamic tooltip support.

Control borders on PocketPC and Smartphone should normally be specified with
wxSIMPLE_BORDER instead of wxSUNKEN_BORDER. Controls will usually adapt
appropriately by virtue of their GetDefaultBorder() function, but if you wish to specify a
style explicitly you can use wxDEFAULT_CONTROL_BORDER which will give a simple
border on PocketPC and Smartphone, and the sunken border on other platforms.

Online help in wxWinCE

You can use the help controller wxWinceHelpController which controls simple .htm files,
usually installed in the Windows directory. See the Windows CE reference for how to
format the HTML files.

Installing your PocketPC and Smartphone application s

To install your application, you need to build a CAB file using the parameters defined in
a special .inf file. The CabWiz program in your SDK will compile the CAB file from the
.inf file and files that it specifies.

For delivery, you can simply ask the user to copy the CAB file to the device and execute
the CAB file using File Explorer. Or, you can write a program for the desktop PC that will
find the ActiveSync Application Manager and install the CAB file on the device, which is
obviously much easier for the user.

Here are some links that may help.

 • A setup builder that takes CABs and builds a setup program is at
http://www.eskimo.com/~scottlu/win/index.html
(http://www.eskimo.com/~scottlu/win/index.html).

 • Sample installation files can be found in Windows CE
Tools/wce420/POCKET PC 2003/Samples/Win32/AppInst .

 • An installer generator using wxPython can be found at
http://ppcquicksoft.iespana.es/ppcquicksoft/myinstall.html
(http://ppcquicksoft.iespana.es/ppcquicksoft/myinsta ll.html)
.

 • Miscellaneous Windows CE resources can be found at

CHAPTER 12

1822

http://www.orbworks.com/pcce/resources.html
(http://www.orbworks.com/pcce/resources.html).

 • Installer creation instructions with a setup.exe for installing to PPC can be found
at http://www.pocketpcdn.com/articles/creatingsetup.html
(http://www.pocketpcdn.com/articles/creatingsetup.ht ml).

 • Microsoft instructions are at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnce30/html/appinstall30.asp?frame=true&hidetoc=true
(http://msdn.microsoft.com/library/default.asp?url=/ library
/en-
us/dnce30/html/appinstall30.asp?frame=true&hidetoc= true).

 • Troubleshooting WinCE application installations:
http://support.microsoft.com/default.aspx?scid=KB;en-us;q181007
(http://support.microsoft.com/default.aspx?scid=KB;e n-
us;q181007)

You may also check out demos/life/setup/wince which contains scripts to create a
PocketPC installation for ARM-based devices. In particular, build.bat builds the
distribution and copies it to a directory called Deliver .

wxFileDialog in PocketPC

Allowing the user to access files on memory cards, or on arbitrary parts of the filesystem,
is a pain; the standard file dialog only shows folders under My Documents or folders on
memory cards (not the system or card root directory, for example). This is a known
problem for PocketPC developers, and a wxFileDialog replacement will need to be
written.

Remaining issues

These are some of the remaining problems to be sorted out, and features to be
supported.

 • Font dialog. The generic font dialog is currently used, which needs to be
simplified (and speeded up).

 • Sizer speed. Particularly for dialogs containing notebooks, layout seems slow.
Some analysis is required.

 • Notification boxes. The balloon-like notification messages, and their icons,
should be implemented. This will be quite straightforward.

 • SIP size. We need to be able to get the area taken up by the SIP (input panel),
and the remaining area, by calling SHSipInfo. We also may need to be able to
show and hide the SIP programmatically, with SHSipPreference. See also the
Input Dialogs topic in the Programming Windows CE guide for more on this, and
how to have dialogs show the SIP automatically using the WC_SIPREF control.

CHAPTER 12

1823

 • wxStaticBitmap. The About box in the "Life!" demo shows a bitmap that is the
correct size on the emulator, but too small on a VGA Pocket Loox device.

 • wxStaticLine. Lines don't show up, and the documentation suggests that
missing styles are implemented with WM_PAINT.

 • wxCheckListBox. This class needs to be implemented in terms of a wxListCtrl
in report mode, using icons for checkbox states. This is necessary because
owner-draw listboxes are not supported on Windows CE.

 • wxFileDialog. A more flexible dialog needs to be written (probably using
wxGenericFileDialog) that can access arbitrary locations.

 • HTML control. PocketPC has its own HTML control which can be used for
showing local pages or navigating the web. We should create a version of
wxHtmlWindow that uses this control, or have a separately-named control
(wxHtmlCtrl), with a syntax as close as possible to wxHtmlWindow.

 • Tooltip control. PocketPC uses special TTBUTTON and TTSTATIC controls for
adding tooltips, with the tooltip separated from the label with a double tilde. We
need to support this using SetToolTip. (Unfortunately it does not seem possible
to dynamically remove the tooltip, so an extra style may be required.)

 • Focus. In the wxPropertySheetDialog demo on Smartphone, it's not possible to
navigate between controls. The focus handling in wxWidgets needs
investigation. See in particular src/common/containr.cpp, and note that the
default OnActivate handler in src/msw/toplevel.cpp sets the focus to the first
child of the dialog.

 • OK button. We should allow the OK button on a dialog to be optional, perhaps
by using wxCLOSE_BOX to indicate when the OK button should be displayed.

 • Dynamic adaptation. We should probably be using run-time tests more than
preprocessor tests, so that the same WinCE application can run on different
versions of the operating system.

 • Modeless dialogs. When a modeless dialog is hidden with the OK button, it
doesn't restore the frame's menubar. See for example the find dialog in the
dialogs sample. However, the menubar is restored if pressing Cancel (the
window is closed). This reflects the fact that modeless dialogs are not very
useful on Windows CE; however, we could perhaps destroy/restore a modeless
dialog's menubar on deactivation and activation.

 • Home screen plugins. Figure out how to make home screen plugins for use
with wxWidgets applications (see
http://www.codeproject.com/ce/CTodayWindow.asp for inspiration).
Although we can't use wxWidgets to create the plugin (too large), we could
perhaps write a generic plugin that takes registry information from a given
application, with options to display information in a particular way using icons
and text from a specified location.

 • Further abstraction. We should be able to abstract away more of the

CHAPTER 12

1824

differences between desktop and mobile applications, in particular for sizer
layout.

wxMac port

wxMac is a port of wxWidgets for the Macintosh OS platform. Currently MacOS 8.6 or
higher, MacOS 9.0 or higher and MacOS X 10.0 or higher are supported, although most
development effort goes into MacOS X support. wxMac can be compiled both using
Apple's developer tools and MetroWerks CodeWarrior in different versions. Support for
MacOS 8.X and MacOS 9.X is only available through CodeWarrior. wxMac uses the
Carbon API (and optionally the Classic API under MacOS 8.X). You will need wxWidgets
version 2.3.3 or higher for a stable version of wxMac.

For further information, please see the files in docs/mac in the distribution.

wxPalmOS port

wxPalmOS is a port of wxWidgets for the Palm OS 6 (Cobalt). It ensures native look and
feel for Palm devices when using wxWidgets version 2.5.4 or higher. wxPalmOS can be
compiled with freely distributable Palm OS Developer Studio.

For further information, please see the files in docs/palmos in the distribution.

wxOS2 port

wxOS2 is a port of wxWidgets for the IBM OS/2 platform. It is currently under
construction.

wxMGL port

wxMGL is a port of wxWidgets using the MGL library available from SciTech as the
underlying graphics backend. wxMGL draws its widgets using the wxUniversal widget
set which is now part of wxWidgets. MGL itself runs on a variety of platforms including
DOS, Linux hardware (similar to the Linux framebuffer) and various graphics systems
such as Win32, X11 and OS/2. Note that currently MGL for Linux runs only on x86-
based systems.

You will need wxWidgets 2.3.3 or higher and MGL 5.0 or higher. The latter is available
from

http://www.scitechsoft.com/products/product_download.html
(http://www.scitechsoft.com/products/product_downloa d.html)

In order to configure wxWidgets to compile wxMGL you will need to type:

 configure --with-mgl --with-universal

Under DOS, wxMGL uses a dmake based make system.

CHAPTER 12

1825

For further information, please see the files in docs/mgl in the distribution.

wxX11 port

wxX11 is a port of wxWidgets using X11 (The X Window System) as the underlying
graphics backend. wxX11 draws its widgets using the wxUniversal widget set which is
now part of wxWidgets. wxX11 is well-suited for a number of special applications such
as those running on systems with few resources (PDAs) or for applications which need
to use a special themed look. You will need wxWidgets 2.3.2 or higher.

In order to configure wxWidgets to compile wxX11 you will need to type:

configure --with-x11 --with-universal

For further information, please see the files in docs/x11 in the distribution. There is also
a page on the use of wxWidgets for embedded applications on the wxWidgets web site.

1826

Backward compatibility

Many of the GUIs and platforms supported by wxWidgets are continuously evolving, and
some of the new platforms wxWidgets now supports were quite unimaginable even a
few years ago. In this environment wxWidgets must also evolve in order to support these
new features and platforms.

However the goal of wxWidgets is not only to provide a consistent programming
interface across many platforms, but also to provide an interface that is reasonably
stable over time, to help protect its users from some of the uncertainty of the future.

The version numbering scheme

wxWidgets version numbers can have up to four components, with trailing zeros
sometimes omitted:

 major.minor.release.sub-release

A stable release of wxWidgets will have an even number for minor , e.g. 2.6.0 .

Stable, in this context, means that the API is not changing. In truth, some changes are
permitted, but only those that are backward compatible. For example, you can expect
later 2.6.x.x releases, such as 2.6.1 and 2.6.2 to be backward compatible with their
predecessor.

When it becomes necessary to make changes which are not wholly backward
compatible, the stable branch is forked, creating a new developmentbranch of
wxWidgets. This development branch will have an odd number for minor , for example
2.7.x.x . Releases from this branch are known as development snapshots.

The stable branch and the development branch will then be developed in parallel for
some time. When it is no longer useful to continue developing the stable branch, the
development branch is renamed and becomes a new stable branch, for example 2.8.0 .
And the process begins again.

This is how the tension between keeping the interface stable, and allowing the library to
evolve is managed.

You can expect the versions with the same major and even minor version number to be
compatible, but between minor versions there will be incompatibilities. Compatibility is
not broken gratuitously however, so many applications will require no changes or only
small changes to work with the new version.

Source level compatibility

Later releases from a stable branch are backward compatible with earlier releases from
the same branch at the source level.

This means that, for example, if you develop your application using wxWidgets 2.6.0
then it should also compile fine with all later 2.6.x versions. The converse is also true
providing you avoid any new features not present in the earlier version. For example if

CHAPTER 13

1827

you develop using 2.6.1 your program will compile fine with wxWidgets
2.6.0 providing you don't use any 2.6.1 specific features.

For some platforms binary compatibility is also supported, see 'Library binary
compatibility' below.

Between minor versions, for example between 2.2.x , 2.4.x and 2.6.x , there will be
some incompatibilities. Wherever possible the old way of doing something is kept
alongside the new for a time wrapped inside:

 #if WXWIN_COMPATIBILITY_2_4
 /* deprecated feature */
 ...
 #endif

By default the WXWIN_COMPATIBILITY_X_X macro is set to 1 for the previous stable
branch, for example in 2.6.x WXWIN_COMPATIBILITY_2_4 = 1 . For the next earlier
stable branch the default is 0, so WXWIN_COMPATIBILITY_2_2 = 0 for 2.6.x . Earlier
than that, obsolete features are removed.

These macros can be changed in setup.h . Or on UNIX-like systems you can set them
using the --disable-compat24 and --enable-compat22 options to configure .

They can be useful in two ways:

 1. Changing WXWIN_COMPATIBILITY_2_4 to 0 can be useful to find uses of
deprecated features in your program.

 2. Changing WXWIN_COMPATIBILITY_2_2 to 1 can be useful to compile a
program developed using 2.2.x that no longer compiles with 2.6.x .

A program requiring one of these macros to be 1 will become incompatible with some
future version of wxWidgets, and you should consider updating it.

Library binary compatibility

For some platforms, releases from a stable branch are not only source level compatible
but can also be binary compatible.

Binary compatibility makes it possible to get the maximum benefit from using shared
libraries, also known as dynamic link libraries (DLLs) on Windows or dynamic shared
libraries on OS X.

For example, suppose several applications are installed on a system requiring
wxWidgets 2.6.0 , 2.6.1 and 2.6.2 . Since 2.6.2 is backward compatible with the
earlier versions, it should be enough to install just wxWidgets 2.6.2 shared libraries,
and all the applications should be able to use them. If binary compatibility is not
supported, then all the required versions 2.6.0 , 2.6.1 and 2.6.2 must be installed
side by side.

Achieving this, without the user being required to have the source code and recompile
everything, places many extra constraints on the changes that can be made within the
stable branch. So it is not supported for all platforms, and not for all versions of
wxWidgets. To date it has mainly been supported by wxGTK for UNIX-like platforms.

CHAPTER 13

1828

Another practical consideration is that for binary compatibility to work, all the applications
and libraries must have been compiled with compilers that are capable of producing
compatible code; that is, they must use the same ABI (Application Binary Interface).
Unfortunately most different C++ compilers do not produce code compatible with each
other, and often even different versions of the same compiler are not compatible.

Application binary compatibility

The most important aspect of binary compatibility is that applications compiled with one
version of wxWidgets, e.g. 2.6.1 , continue to work with shared libraries of a later binary
compatible version, for example 2.6.2 .

The converse can also be useful however. That is, it can be useful for a developer using
a later version, e.g. 2.6.2 to be able to create binary application packages that will work
with all binary compatible versions of the shared library starting with, for example 2.6.0 .

To do this the developer must, of course, avoid any features not available in the earlier
versions. However this is not necessarily enough; in some cases an application
compiled with a later version may depend on it even though the same code would
compile fine against an earlier version. To help with this, a preprocessor symbol
wxABI_VERSION can be defined during the compilation of the application (this would
usually be done in the application's makefile or project settings). It should be set to the
lowest version that is being targeted, as a number with two decimal digits for each
component, for example wxABI_VERSION=20600 for 2.6.0 .

Setting wxABI_VERSION should prevent the application from implicitly depending on a
later version of wxWidgets, and also disables any new features in the API, giving a
compile time check that the source is compatible with the versions of wxWidgets being
targeted.

Uses of wxABI_VERSION are stripped out of the wxWidgets sources when each new
development branch is created. Therefore it is only useful to help achieve compatibility
with earlier versions with the same major and even minor version numbers. It won't, for
example, help you write code compatible with 2.4.x using wxWidgets 2.6.x .

CHAPTER 13

1829

1830

Index

—:—
::copystring, 1539
::wxBeginBusyCursor, 1544
::wxBell, 1544
::wxClientDisplayRect, 1553
::wxClipboardOpen, 1558
::wxCloseClipboard, 1558
::wxColourDisplay, 1553
::wxConcatFiles, 1532
::wxCopyFile, 1533
::wxCreateDynamicObject, 1575
::wxCreateFileTipProvider, 1544
::wxDDECleanUp, 1562
::wxDDEInitialize, 1563
::wxDebugMsg, 1577
::wxDirExists, 1532
::wxDirSelector, 1545
::wxDisplayDepth, 1553
::wxDisplaySize, 1554
::wxDisplaySizeMM, 1554
::wxDos2UnixFilename, 1530
::wxDROP_ICON, 1554
::wxEmptyClipboard, 1558
::wxEnableTopLevelWindows, 1563
::wxEndBusyCursor, 1546
::wxEntry, 1520
::wxEnumClipboardFormats, 1558
::wxError, 1578
::wxExecute, 1523
::wxExit, 1525
::wxFatalError, 1578
::wxFileExists, 1530
::wxFileModificationTime, 1530
::wxFileNameFromPath, 1530
::wxFileSelector, 1545
::wxFindFirstFile, 1530
::wxFindMenuItemId, 1563
::wxFindNextFile, 1531
::wxFindWindowAtPoint, 1564
::wxFindWindowAtPointer, 1564
::wxFindWindowByLabel, 1563
::wxFindWindowByName, 1564
::wxGetActiveWindow, 1564
::wxGetApp, 1521
::wxGetBatteryState, 1564
::wxGetClipboardData, 1558
::wxGetClipboardFormatName, 1559
::wxGetColourFromUser, 1546
::wxGetCwd, 1533
::wxGetDiskSpace, 1531
::wxGetDisplayName, 1565
::wxGetElapsedTime, 1583
::wxGetEmailAddress, 1535

::wxGetFileKind, 1531
::wxGetFontFromUser, 1546
::wxGetFreeMemory, 1536
::wxGetFullHostName, 1536
::wxGetHomeDir, 1536
::wxGetHostName, 1536
::wxGetKeyState, 1560
::wxGetLocalTime, 1583
::wxGetLocalTimeMillis, 1584
::wxGetMousePosition, 1565
::wxGetMultipleChoice, 1549
::wxGetMultipleChoices, 1547
::wxGetNumberFromUser, 1548
::wxGetOsDescription, 1537
::wxGetOSDirectory, 1532
::wxGetOsVersion, 1537
::wxGetPasswordFromUser, 1548
::wxGetPowerType, 1565
::wxGetPrinterCommand, 1555
::wxGetPrinterFile, 1555
::wxGetPrinterMode, 1556
::wxGetPrinterOptions, 1556
::wxGetPrinterOrientation, 1556
::wxGetPrinterPreviewCommand, 1556
::wxGetPrinterScaling, 1556
::wxGetPrinterTranslation, 1556
::wxGetProcessId, 1526
::wxGetResource, 1565
::wxGetSingleChoice, 1549
::wxGetSingleChoiceData, 1550
::wxGetSingleChoiceIndex, 1550
::wxGetStockLabel, 1566
::wxGetTempFileName, 1533
::wxGetTextFromUser, 1548
::wxGetTopLevelParent, 1566
::wxGetTranslation, 1540
::wxGetUserHome, 1538
::wxGetUserId, 1539
::wxGetUserName, 1539
::wxGetUTCTime, 1584
::wxGetWorkingDirectory, 1533
::wxHandleFatalExceptions, 1521
::wxInitAllImageHandlers, 1521
::wxInitialize, 1522
::wxIsAbsolutePath, 1532
::wxIsBusy, 1551
::wxIsClipboardFormatAvailable, 1559
::wxIsDebuggerRunning, 1589
::wxIsEmpty, 1540
::wxIsMainThread, 1528
::wxIsWild, 1533
::wxKill, 1525
::wxLaunchDefaultBrowser, 1567
::wxLoadUserResource, 1567
::wxLogDebug, 1580

INDEX

1831

::wxLogError, 1578
::wxLogFatalError, 1578
::wxLogMessage, 1579
::wxLogStatus, 1579
::wxLogSysError, 1579
::wxLogTrace, 1580
::wxLogVerbose, 1579
::wxLogWarning, 1578
::wxMakeMetafilePlaceable, 1554
::wxMatchWild, 1533
::wxMessageBox, 1551
::wxMicroSleep, 1584
::wxMilliSleep, 1584
::wxMkdir, 1534
::wxMutexGuiEnter, 1529
::wxMutexGuiLeave, 1529
::wxNewId, 1561
::wxNow, 1585
::wxOnAssert, 1586
::wxOpenClipboard, 1559
::wxParseCommonDialogsFilter, 1534
::wxPathOnly, 1532
::wxPostDelete, 1567
::wxPostEvent, 1567
::wxRegisterClipboardFormat, 1559
::wxRegisterId, 1562
::wxRemoveFile, 1534
::wxRenameFile, 1534
::wxRmdir, 1534
::wxSafeShowMessage, 1581
::wxSafeYield, 1522
::wxSetClipboardData, 1559
::wxSetCursor, 1555
::wxSetDisplayName, 1568
::wxSetPrinterCommand, 1556
::wxSetPrinterFile, 1556
::wxSetPrinterMode, 1557
::wxSetPrinterOptions, 1557
::wxSetPrinterOrientation, 1557
::wxSetPrinterPreviewCommand, 1557
::wxSetPrinterScaling, 1557
::wxSetPrinterTranslation, 1557
::wxSetWorkingDirectory, 1534
::wxShell, 1526
::wxShowTip, 1552
::wxShutdown, 1527
::wxSleep, 1585
::wxSnprintf, 1541
::wxSplitPath, 1534
::wxStartTimer, 1585
::wxStrcmp, 1540
::wxStricmp, 1541
::wxStringEq, 1541
::wxStringMatch, 1541
::wxStripMenuCodes, 1568
::wxStrlen, 1541
::wxSysErrorCode, 1581
::wxSysErrorMsg, 1582
::wxTrace, 1582
::wxTraceLevel, 1583
::wxTransferFileToStream, 1535
::wxTransferStreamToFile, 1535

::wxTrap, 1589
::wxUninitialize, 1522
::wxUnix2DosFilename, 1532
::wxUsleep, 1585
::wxVsnprintf, 1543
::wxWakeUpIdle, 1523
::wxWriteResource, 1569
::wxYield, 1522

—_—
_, 1543
_T, 1543

—~—
~wxAcceleratorTable, 21
~wxAccessible, 26
~wxApp, 31
~wxArchiveOutputStream, 50
~wxArray, 59
~wxArrayString, 64
~wxAutomationObject, 73
~wxBitmap, 81
~wxBitmapButton, 91
~wxBitmapHandler, 96
~wxBrush, 102
~wxBufferedOutputStream, 110
~wxBusyCursor, 111
~wxBusyInfo, 112
~wxButton, 114
~wxCalendarCtrl, 119
~wxCheckBox, 130
~wxCheckListBox, 134
~wxChoice, 136
~wxClientData, 143
~wxClientDataContainer, 143
~wxClipboard, 145
~wxCmdLineParser, 154
~wxColourData, 161
~wxColourDialog, 164
~wxComboBox, 167
~wxCommand, 171
~wxCommandProcessor, 178
~wxCondition, 183
~wxConfigBase, 191
~wxContextHelp, 204
~wxCountingOutputStream, 213
~wxCriticalSection, 214
~wxCriticalSectionLocker, 216
~wxCSConv, 216
~wxCursor, 222
~wxCustomDataObject, 223
~wxDataInputStream, 227
~wxDataObject, 231
~wxDataOutputStream, 236
~wxDbConnectInf, 308
~wxDbGridColInfo, 350
~wxDbTable, 315
~wxDC, 354
~wxDCClipper, 372
~wxDebugReport, 385

INDEX

1832

~wxDebugReportPreview, 389
~wxDialog, 394
~wxDialUpManager, 403
~wxDir, 406
~wxDirDialog, 410
~wxDisplay, 413
~wxDocChildFrame, 418
~wxDocManager, 421
~wxDocMDIChildFrame, 428
~wxDocMDIParentFrame, 430
~wxDocParentFrame, 431
~wxDocTemplate, 434
~wxDocument, 438
~wxDropSource, 451
~wxDropTarget, 454
~wxEvtHandler, 468
~wxFFile, 476
~wxFFileInputStream, 481
~wxFFileOutputStream, 482
~wxFile, 485
~wxFileDialog, 493
~wxFileHistory, 498
~wxFileInputStream, 500
~wxFileOutputStream, 517
~wxFileType, 525
~wxFindReplaceDialog, 532
~wxFont, 540
~wxFontMapper, 553
~wxFrame, 559
~wxFTP, 570
~wxGauge, 576
~wxGenericDirCtrl, 585
~wxGenericValidator, 588
~wxGrid, 597
~wxGridCellEditor, 635
~wxGridTableBase, 649
~wxHashTable, 664
~wxHelpController, 667
~wxHelpProvider, 673
~wxHtmlListBox, 702
~wxIcon, 736
~wxIconBundle, 740
~wxImage, 749
~wxImageHandler, 769
~wxInputStream, 780
~wxJoystick, 786
~wxLayoutAlgorithm, 801
~wxList, 806
~wxListBox, 813
~wxListCtrl, 819
~wxLocale, 847
~wxLogChain, 859
~wxMask, 870
~wxMDIChildFrame, 880
~wxMDIClientWindow, 882
~wxMDIParentFrame, 885
~wxMemoryInputStream, 901
~wxMemoryOutputStream, 901
~wxMenu, 904
~wxMenuBar, 916
~wxMenuItem, 926
~wxMessageDialog, 931, 1035

~wxMetafile, 932
~wxMetafileDC, 934
~wxMimeTypesManager, 936
~wxMiniFrame, 939
~wxModule, 941
~wxMutex, 955
~wxMutexLocker, 957
~wxNotebook, 961
~wxObjArray, 59
~wxOutputStream, 974
~wxPageSetupDialog, 977
~wxPageSetupDialogData, 978
~wxPalette, 985
~wxPanel, 989
~wxPen, 996
~wxPreviewCanvas, 1004
~wxPreviewControlBar, 1005
~wxPreviewFrame, 1006
~wxPrintData, 1008
~wxPrintDialog, 1014
~wxPrintDialogData, 1015
~wxPrinter, 1026
~wxPrintout, 1022
~wxProcess, 1029
~wxRadioBox, 1046
~wxRadioButton, 1052
~wxRecursionGuard, 1059
~wxRegEx, 1062
~wxRegion, 1065
~wxRendererNative, 1076
~wxSashWindow, 1086
~wxScopedPtr, 1092
~wxScopedTiedPtr, 1094
~wxScrollBar, 1099
~wxScrolledWindow, 1104
~wxSemaphore, 1115
~wxSingleInstanceChecker, 1123
~wxSizer, 1128
~wxSizerItem, 1137
~wxSlider, 1145
~wxSockAddress, 1151
~wxSocketBase, 1154
~wxSocketClient, 1167
~wxSocketServer, 1171
~wxSortedArray, 59
~wxSound, 1173
~wxSpinButton, 1177
~wxSplashScreen, 1183
~wxSplitterWindow, 1189
~wxStackWalker, 1200
~wxStaticBox, 1208
~wxStatusBar, 1214
~wxStreamBase, 1221
~wxStreamToTextRedirector, 1229
~wxString, 1237
~wxStringBuffer, 1252
~wxStringBufferLength, 1253
~wxTaskBarIcon, 1268
~wxTempFile, 1277
~wxTextCtrl, 1287
~wxTextEntryDialog, 1304
~wxTextFile, 1306

INDEX

1833

~wxTextInputStream, 1311
~wxTextOutputStream, 1314
~wxThread, 1319
~wxThreadHelper, 1325
~wxTimer, 1327
~wxToggleButton, 1339
~wxToolBar, 1343
~wxTreeCtrl, 1366
~wxTreeItemData, 1384
~wxURL, 1396
~wxValidator, 1398
~wxVariant, 1401
~wxView, 1410
~wxWindow, 1427
~wxWindowDisabler, 1481
~wxXmlResource, 1492
~wxXmlResourceHandler, 1496
~wxZipOutputStream, 1509

—A—
A more complex example, 1743
A selection of SQL commands, 1769
Abort, 570, 1039
Above, 777
Abs, 867, 1331
Absolute, 778
Accept, 1171
AcceptWith, 1172
Access, 485
Accessors, 250, 1330
Activate, 880, 1410
ActivateNext, 885
ActivatePrevious, 885
ActivateView, 421
Add, 59, 65, 233, 242, 264, 629, 772, 773, 993,

1128, 1331
AddAll, 385
AddBook, 693, 696
AddBookCtrl, 1037
AddBrush, 106
AddButton, 1218
AddCatalog, 847
AddCatalogLookupPathPrefix, 847
AddCheckTool, 1345
AddChild, 1427
AddColInfo, 350
AddColour, 163
AddContext, 385
AddControl, 1343
AddCurrentContext, 385
AddCurrentDump, 385
AddData, 145
AddDocument, 421
AddDump, 385
AddEnvList, 992
AddExceptionContext, 386
AddExceptionDump, 386
AddFallbacks, 936
AddFile, 386, 491, 900
AddFilesToMenu, 498
AddFileToHistory, 421, 498

AddFilter, 709, 717
AddFont, 552
AddGrowableCol, 533
AddGrowableRow, 533
AddHandler, 81, 518, 749, 1492
AddHelp, 673
AddIcon, 740
Adding items, 55
Adding new resource handlers, 1715
AddLanguage, 848
AddLine, 1306
AddModule, 726
AddOption, 156
AddPage, 961
AddParam, 156
AddPen, 1001
AddPendingEvent, 468
AddRadioTool, 1345
AddRoot, 1366
AddSeparator, 1344
AddSpacer, 1130
AddStretchSpacer, 1130
AddStyle, 1496
AddSwitch, 156
AddTag, 704
AddTagHandler, 705
AddText, 386
AddTool, 1344
AddToolbarButtons, 700
AddTraceMask, 855
AddView, 438
AddWindowStyles, 1496
AddWord, 705
AdjustPagebreak, 674
AdvanceSelection, 962
Advise, 199, 375, 1272
AfterFirst, 1238
AfterLast, 1238
age, 1079
Align, 1135
All date/time classes at a glance, 1655
Alloc, 59, 65, 223, 1237
AllocHenv, 308
Allow, 970
AltDown, 641, 643, 645, 796, 946
AnyAddress, 783, 785
Append, 207, 806, 904, 916, 1238, 1401
AppendByte, 897
AppendCheckItem, 906
AppendCols, 598, 651
AppendData, 897
AppendDir, 504
AppendItem, 1366
AppendRadioItem, 906
AppendRows, 598, 651
AppendSeparator, 906
AppendText, 1287
AppendToPage, 718
Application shutdown, 1646
Archives on non-seekable streams, 1813
AreLongOptionsEnabled, 155
argc, 31

INDEX

1834

argv, 31
Arrange, 819
ArrangeIcons, 885
Art provider sample, 1636
AsIs, 778
Assign, 504, 867
AssignButtonsImageList, 1367
AssignCwd, 504
AssignDbTable, 353
AssignDir, 504
AssignHomeDir, 504
AssignImageList, 819, 962, 1367
AssignStateImageList, 1367
AssignTempFileName, 505
Associated non-class functions, 278
AssociateTemplate, 421
Astronomical/historical functions, 253
Attach, 476, 485
AttachUnknownControl, 1492
AutoSize, 598
AutoSizeColOrRow, 598
AutoSizeColumn, 598
AutoSizeColumns, 599
AutoSizeRow, 599
AutoSizeRows, 599

—B—
Background: The need for conversion, 1661
Background: The wxString class, 1662
Basic IO, 1153
Basic Regular Expressions, 1804
BeforeFirst, 1238
BeforeLast, 1239
begin, 657, 661
BeginBatch, 599
BeginContextHelp, 204
BeginDrag, 446
BeginDrawing, 354
BeginEdit, 634
BeginFind, 664
Below, 778
Best book, 1726
BigEndianOrdered, 228, 236
Bitmap format handlers, 1719
Blit, 354
BlockToDeviceRect, 600
Blue, 159
border, 1197
Border, 1136
bottom, 802
Bracket Expressions, 1797
Break, 907
Broadcast, 183
BuildDeleteStmt, 315
BuildSelectStmt, 315
BuildUnescapedURI, 1390
BuildUpdateStmt, 316
BuildURI, 1390
BuildWhereClause, 317
Button, 946
ButtonDClick, 946

ButtonDown, 792, 946
ButtonIsDown, 793
ButtonUp, 793, 946

—C—
c_str, 1239
C++ header file generation, 1713
CacheBestSize, 1428
CalcBoundingBox, 356
CalcMin, 99, 629, 1130, 1138
CalcScrolledPosition, 1104
CalcUnscrolledPosition, 1104
Calendar calculations, 252
Calendar sample, 1636
CallMethod, 74
CancelDialing, 403
CanConvert, 461
CanCopy, 168, 1288
CanCut, 168, 1288
CanDragColSize, 600
CanDragGridSize, 600
CanDragRowSize, 600
CanEnableCellControl, 600
CanGetValueAs, 650
CanHandle, 1496
CanHandleGZip, 1512, 1513
CanHaveAttributes, 600, 652
CanonicalizeName, 456
CanonicalizePluginName, 456
CanOpen, 521
CanPaste, 168, 1288
CanRead, 691, 749, 780
CanRedo, 168, 1288
CanSelectForUpdate, 318
CanSend, 743
CanSetValueAs, 650
CanUndo, 168, 172, 178, 1288
CanUpdate, 1386
CanUpdateByROWID, 318
CanVeto, 148
CaptureMouse, 1428
Cascade, 885
Case conversion, 1232
Catalog, 281
Cells and Containers, 1778
CellToRect, 600
Center, 1136, 1428
CenterOnParent, 1428
CenterOnScreen, 1428
Centre, 394, 559, 1136, 1429
CentreOnParent, 1429
CentreOnScreen, 1429
centreX, 803
centreY, 803
Chain, 1490
ChangeMode, 413
ChangePathTo, 519
Character access, 1230
CharsetToEncoding, 554
ChDir, 570
Check, 134, 379, 907, 916, 926, 1386

INDEX

1835

CheckCommand, 570
Checked, 176
CheckForIntersection, 629
Checklist sample, 1636
Choosing a backend, 890
CLASSINFO, 1571
CleanUpHandlers, 81, 749
clear, 657, 661
Clear, 60, 65, 145, 207, 356, 505, 651, 664, 806,

837, 1065, 1151, 1239, 1288, 1310, 1413
ClearAll, 819
ClearBackground, 1430
ClearColumnImage, 843
ClearCommands, 178
ClearGrid, 601
ClearHandlers, 1492
ClearList, 1401
ClearMemberVar, 319
ClearMemberVars, 319
ClearSel, 1145
ClearSelection, 601
ClearTicks, 1145
ClearTraceMasks, 855
Clients, 70
ClientToScreen, 1430
Clone, 43, 465, 588, 626, 635, 648, 1316, 1398,

1503
Close, 50, 145, 281, 439, 476, 485, 934, 974,

1072, 1154, 1306, 1410, 1431, 1509
CloseContainer, 726
CloseCursor, 319
CloseDocuments, 421
CloseEntry, 46, 50, 1507, 1509
CloseOutput, 1029
Closing top-level windows in wxWinCE, 1818
Closing windows in wxWinCE, 1820
cMB2WC, 872
cMB2WX, 873
CmdDown, 797, 946
Cmp, 1239
CmpNoCase, 1239
Collapse, 1367
CollapseAndReset, 1367
CollapseTree, 585
Command, 206
Commit, 1277, 1278
CommitTrans, 282
Common features, 1699
CompareTo, 1240
CompareVersion, 1492
Comparison, 1231
Comparison of wxString to other string classes,

1650
Comparison operators, 1251
Compatibility, 1658
Compile, 1062
Compilers, 1594
ComputeHistogram, 749
ComputeScaleAndOrigin, 356
Concatenation, 1231
Config sample, 1637
Connect, 469, 1167

Constraint layout: more details, 1696
Construction, 151
Construction and destruction, 1153
Constructor and destructor, 186, 935
Constructors, 1330
Constructors and assignment operators, 1230
Constructors and destructors, 54
Constructors and initialization, 597
Constructors, assignment operators and setters,

250
Contains, 1065, 1240
Control differences on wxWinCE, 1820
ControlDown, 641, 643, 645, 797, 947
Controls sample, 1637
Conversion to numbers, 1232
Convert, 461, 462, 1402
ConvertAlphaToMask, 750
ConvertDialogToPixels, 1431
Converting buffers, 1663
Converting strings, 1662
ConvertPixelsToDialog, 1432
ConvertStringToArgs, 153
ConvertToBitmap, 750, 1066
ConvertToImage, 81
ConvertToMono, 750
ConvertYearToBC, 253
Copy, 168, 750, 1289, 1408
CopyArchiveMetaData, 50, 1510
CopyEntry, 50, 1510
CopyFromBitmap, 736
CopyFromIcon, 81
copystring, 1540
CopyTo, 902
count, 657, 661
Count, 60, 65, 320
CountTokens, 1257
Create, 81, 82, 91, 96, 115, 119, 126, 130, 137,

164, 167, 191, 239, 378, 395, 402, 486, 532,
549, 560, 576, 585, 633, 698, 702, 750, 773,
813, 820, 870, 880, 886, 891, 939, 962, 985,
989, 1037, 1046, 1052, 1072, 1083, 1099,
1105, 1118, 1123, 1146, 1174, 1177, 1180,
1189, 1205, 1208, 1210, 1212, 1214, 1274,
1289, 1306, 1319, 1325, 1339, 1391, 1413,
1420, 1484, 1769

CreateAbortWindow, 1019
CreateBitmap, 71
CreateBookCtrl, 1037
CreateButtons, 1005, 1037
CreateButtonSizer, 395, 1706
CreateCanvas, 1006
CreateChildren, 1496
CreateChildrenPrivately, 1496
CreateClient, 882
CreateContents, 698
CreateControlBar, 1006
CreateCurrentFont, 726
CreateDocument, 421, 434
CreateGrid, 601
CreateHelpFrame, 693
CreateIndex, 321, 698
CreateInstance, 74

INDEX

1836

CreateLogTarget, 32
CreateObject, 139
CreatePopupMenu, 1268
CreateResFromNode, 1496
CreateResource, 1497
CreateSearch, 699
CreateStatusBar, 560
CreateStdDialogButtonSizer, 395
CreateTable, 322
CreateTempFileName, 505
CreateToolBar, 561
CreateView, 283, 422, 435
Creating an archive, 1808
CrossHair, 357
Custom event summary, 1686
Customization, 152, 854
Cut, 168, 1289
cWC2MB, 872
cWC2WX, 873
cWX2MB, 873
cWX2WC, 873

—D—
Data transfer, 1773
Database sample, 1638
Date arithmetics, 251, 1656
Date comparison, 251
Day, 242, 1331
Daylight saving time (DST), 1658
Days, 242, 1331
DB_STATUS, 323
Dbms, 284
DebugRpt sample, 1638
DECLARE_ABSTRACT_CLASS, 1571
DECLARE_APP, 1571, 1572
DECLARE_CLASS, 1572
DECLARE_DYNAMIC_CLASS, 1572
DecRef, 626
DecTo, 1124
Default constructors, 58
Deflate, 1054
delete, 973
Delete, 137, 208, 323, 664, 907, 1319, 1368,

1402
Delete entries/groups, 189
DeleteAll, 192
DeleteAllItems, 820, 1368
DeleteAllPages, 962
DeleteAllViews, 439
DeleteChildren, 1368
DeleteCols, 601, 652
DeleteColumn, 820
DeleteContents, 664, 807
DeleteCursor, 324
DeleteEntry, 192
DeleteGroup, 192
DeleteItem, 820
DeleteKey, 1072
DeleteMatching, 324
DeleteNode, 807
DeleteObject, 807

DeletePage, 962
DeleteRows, 601, 651
DeleteSelf, 1072
DeleteTool, 1346
DeleteToolByPos, 1346
DeleteValue, 1072
DeleteWhere, 325
DeleteWindows, 1138
Deprecated changes since 2.4.x, 1631
Deselect, 813
DeselectAll, 1414
Destroy, 634, 751, 908, 1155, 1433
DestroyChildren, 1433
DestroyClippingRegion, 357
Detach, 60, 457, 477, 486, 1029, 1130
DetachSizer, 1138
DeviceToLogicalX, 357
DeviceToLogicalXRel, 357
DeviceToLogicalY, 357
DeviceToLogicalYRel, 357
Dial, 403
Dialogs in wxWinCE, 1819
Dialogs sample, 1638
Dialup sample, 1638
Difference between wxDateSpan and

wxTimeSpan, 1656
Different Flavors of REs, 1795
DirExists, 506
DirName, 506
Disable, 1433
DisableAutoCheckOnlineStatus, 405
DisableCellEditControl, 602
DisableDragColSize, 602
DisableDragGridSize, 602
DisableDragRowSize, 602
DisableLongOptions, 155
DisassociateTemplate, 422
Discard, 1155, 1277, 1278
DiscardEdits, 1289
Disconnect, 200, 376, 470, 1272
DispAllErrors, 284
Dispatch, 32
Display, 694, 699
Display format, 597
DisplayBlock, 667
DisplayContents, 667, 694, 699
DisplayContextPopup, 668
DisplayIndex, 694, 699
DisplaySection, 668
DisplayTextPopup, 668
DispNextError, 285
DnD sample, 1638
Do, 172
DoAddCustomContext, 386
DoAddExceptionInfo, 386
DoAddLoadedModules, 387
DoAddSystemInfo, 387
DoCreateResource, 1497
DoDefaultAction, 26
DoDragDrop, 451
DoDrawImage, 447
DoGetBestSize, 1433

INDEX

1837

DoLog, 857
DoLogString, 857
DoneParser, 705
DontCreateOnDemand, 192, 857
DoOK, 395
DoParsing, 705
DoPrepareDC, 1107
DoQuantize, 1041
DoUpdateWindowUI, 1433
DragAcceptFiles, 1434
Dragging, 947
Draw, 648, 674, 774
DrawArc, 357
DrawBitmap, 358
DrawCheckMark, 358
DrawCircle, 358
DrawComboBoxDropButton, 1076
DrawDropArrow, 1077
DrawEllipse, 358
DrawEllipticArc, 359
DrawHeaderButton, 1077
DrawIcon, 359
DrawInvisible, 675
DrawLabel, 359
DrawLine, 359
DrawLines, 359
DrawPoint, 361
DrawPolygon, 360
DrawPolyPolygon, 360
DrawRectangle, 361
DrawRotatedText, 361
DrawRoundedRectangle, 361
DrawSpline, 362
DrawSplitterBorder, 1077
DrawSplitterSash, 1077
DrawText, 362
DrawTreeItemButton, 1077
DrawXXX, 391
DropIndex, 326
DropTable, 326
DropView, 286
Dump, 379, 971
Dynamic sample, 1639

—E—
Edges and relationships, 776
EditLabel, 820, 1368
empty, 658, 662
Empty, 60, 66, 1240
EmulateKeyPress, 1289
Enable, 908, 917, 926, 1046, 1356, 1387, 1434
EnableAutoCheckOnlineStatus, 404
EnableCellEditControl, 602
EnableDragColSize, 602
EnableDragGridSize, 602
EnableDragRowSize, 602
EnableEditing, 603
EnableEffects, 546
EnableGridLines, 603
EnableHelp, 978, 1015
EnableHolidayDisplay, 120

EnableLongOptions, 154
EnableMargins, 978
EnableMonthChange, 120
EnableOrientation, 978
EnablePageNumbers, 1015
EnablePaper, 978
EnablePrinter, 978
EnablePrintToFile, 1015
EnableScrolling, 1105
EnableSelection, 1015
EnableTool, 1346
EnableTop, 917
EnableYearChange, 120
end, 658, 662
EndBatch, 603
EndContextHelp, 204
EndDoc, 362
EndDrag, 447
EndDrawing, 362
EndDrawingOnTop, 1095
EndEdit, 634
EndEditLabel, 1368
EndModal, 395
EndPage, 363
EnsureFileAccessible, 993
EnsureVisible, 820, 1369
Enter, 214
Entering, 947
Entry, 1320, 1326
Enumerated types, 273
EnumerateEncodings, 550
EnumerateFacenames, 550
Enumeration, 187
Eof, 477, 486, 780, 1307
Eq, 1408
erase, 658, 662
Erase, 807
Error, 1155
Escapes, 1799
EstimateTotalHeight, 1420
Event macros summary, 1684
Event sample, 1639
EVT_COMMAND(id, event, func), 1687
EVT_COMMAND_RANGE(id1, id2, event, func),

1687
EVT_CUSTOM(event, id, func), 1687
EVT_CUSTOM_RANGE(event, id1, id2, func),

1687
EVT_NOTIFY(id, event, func), 1688
EVT_NOTIFY_RANGE(id1, id2, event, func),

1688
Example, 1649, 1723
Example 1: subwindow layout, 1697
Example 2: panel item layout, 1698
Examples, 1773
Except(ions) sample, 1639
Exec sample, 1640
ExecSql, 286
Execute, 200, 375, 1272
Exists, 192, 407, 486, 1032, 1072, 1073, 1306
Exit, 1320
ExitMainLoop, 32

INDEX

1838

Expand, 1136, 1369
ExpandCommand, 526
ExpandPath, 585
explicit wxScopedPtr, 1092
Extracting an archive, 1809

—F—
fd, 486
File name components, 502
File name construction, 502
File name format, 501
File tests, 502
FileExists, 506, 572
FileHistoryAddFilesToMenu, 422
FileHistoryLoad, 422
FileHistoryRemoveMenu, 422
FileHistorySave, 423
FileHistoryUseMenu, 423
FileName, 506
FileNameToURL, 519
FillBuffer, 1228
FillHandlersTable, 715
FilterEvent, 32
find, 658, 662
Find, 163, 675, 807, 1240
FindAbsoluteValidPath, 993
FindById, 1347
FindClass, 139
FindControl, 1347
FindFirst, 520, 522
FindFirstUnusedColour, 751
FindFocus, 1435
FindHandler, 82, 751, 752
FindHandlerMime, 752
FindItem, 629, 821, 908, 918
FindItemAtPoint, 630
FindItemAtPosition, 630
FindItemByPosition, 909
FindItemWithData, 630
FindLanguageInfo, 848
FindMenu, 918
FindMenuItem, 918
FindName, 163
FindNext, 520, 522
FindOrCreateBrush, 106
FindOrCreateFont, 552
FindOrCreatePen, 1001
FindPageById, 696
FindPageByName, 696
FindString, 208, 1047
FindTemplateForPath, 423
FindToolForPosition, 1347
FindValidPath, 993
FindWindow, 1435
FindWindowById, 1435
FindWindowByLabel, 1436
FindWindowByName, 1435
First, 1240
Fit, 603, 1131, 1436
FitInside, 1131, 1436
FitToPage, 1484

Fixed, 1227
FloodFill, 363
Flush, 146, 192, 477, 486, 857
Flushable, 1228
FlushActive, 857
FlushBuffer, 1228
fn_str, 1240
Focus, 843
Font sample, 1640
ForceRefresh, 603
Format, 266, 305, 1241, 1331
FormatDate, 267
FormatISODate, 267
FormatISOTime, 267
FormatTime, 267
Formatting time spans, 1330
FormatV, 1241
Found, 157
fp, 477
Free, 223
FreeHenv, 309
Freeze, 1436
Freq, 1241
From, 326
FromAscii, 1241

—G—
General issues for wxWinCE programming, 1816
Generic archive programming, 1812
get, 1090, 1093
Get, 192, 554, 664, 673, 1077, 1201, 1493
Get3StateValue, 131
GetAbort, 1019
GetAcceleratorTable, 1437
GetAccessible, 1437
GetActive, 30
GetActiveChild, 887
GetActiveTarget, 856
GetActualColor, 726
GetAddress, 459, 1198
GetAdjustedBestSize, 1437
GetAffirmativeId, 396
GetAlign, 727, 838
GetAlignHor, 680
GetAlignment, 628, 1042, 1083, 1280
GetAlignVer, 680
GetAllEquivalents, 463
GetAllFiles, 407
GetAllFormats, 231
GetAllowSymbols, 546
GetAllPages, 1016
GetAllParams, 711
GetAlpha, 753
GetAltForEncoding, 554
GetAmPmStrings, 254
GetAnchor, 521, 567
GetAppendBuf, 897
GetAppName, 32, 193
GetArrayString, 1402
GetAsDOS, 263
GetAttr, 121, 653

INDEX

1839

GetAttrProvider, 652
GetAuthStr, 309
GetBackground, 363
GetBackgroundColour, 125, 628, 680, 838, 842,

926, 1280, 1437
GetBackgroundMode, 363
GetBackgroundStyle, 1437
GetBaseClassName1, 139
GetBaseClassName2, 139
GetBatchCount, 603
GetBeginDST, 254
GetBeginPos, 711
GetBestFittingSize, 1438
GetBestSize, 648, 1438
GetBezelFace, 576
GetBin, 1008
GetBitmap, 72, 95, 774, 926, 1206, 1489, 1497
GetBitmapDisabled, 92
GetBitmapFocus, 92
GetBitmapLabel, 92
GetBitmapSelected, 92
GetBlinkTime, 127
GetBlue, 753
GetBookCtrl, 1038
GetBookRecArray, 696
GetBool, 1402, 1497
GetBorder, 125, 1138
GetBorderColour, 125
GetBottom, 1054
GetBottomRight, 1055
GetBottomRightCoords, 643
GetBottomRow, 643
GetBoundingRect, 1369
GetBox, 1066
GetBrush, 363
GetBufferEnd, 1227
GetBufferPos, 1227
GetBufferStart, 1226
GetBufSize, 896
GetButton, 947
GetButtonChange, 793
GetButtonsImageList, 1369
GetButtonState, 786, 793
GetC, 780
GetCacheFrom, 835
GetCacheTo, 835
GetCanonicalName, 848
GetCanvas, 1026
GetCap, 996
GetCapture, 1438
GetCapturedWindow, 942
GetCaret, 1438
GetCatalog, 287
GetCellAlignment, 604
GetCellBackgroundColour, 604
GetCellEditor, 604
GetCellFont, 604
GetCellRenderer, 604
GetCellSize, 630
GetCellTextColour, 604
GetCellValue, 605
GetCentury, 254

GetChar, 1225, 1241, 1312, 1402
GetCharHeight, 363, 727, 1438
GetCharWidth, 364, 727, 1439
GetChecked, 1387
GetCheckPrevious, 379
GetChild, 26
GetChildCount, 26
GetChildren, 1439
GetChildrenCount, 1369
GetChooseFull, 161
GetChosenFont, 547
GetClassDefaultAttributes, 1439
GetClassInfo, 971
GetClassName, 33, 139
GetClientAreaOrigin, 561
GetClientData, 143, 176, 208, 470, 1155, 1169
GetClientObject, 143, 176, 209, 471
GetClientSize, 886, 1439
GetClientWindow, 887
GetClippingBox, 364
GetCol, 579, 638, 641
GetColDefs, 327
GetColLabelAlignment, 605
GetColLabelSize, 605
GetColLabelValue, 605, 652
GetCollate, 1008, 1016
GetColLeft, 605
GetColMinimalAcceptableWidth, 606
GetColMinimalWidth, 606
GetColour, 102, 161, 547, 997, 1008, 1262, 1497
GetColourData, 164
GetColoursCount, 986
GetColRight, 606
GetCols, 654
GetColSize, 606
GetColspan, 582
GetColumn, 821, 836, 838
GetColumnCount, 287, 821
GetColumns, 137, 288
GetColumnWidth, 822
GetCommand, 18
GetCommandProcessor, 439
GetCommands, 179
GetComment, 1503, 1507
GetCompressedFileName, 388
GetCompressedSize, 1503
GetConfigDir, 1201
GetConstraints, 1440
GetContainer, 727
GetContainingSizer, 1440
GetContentsArray, 696
GetContentType, 1040
GetContext, 591
GetControl, 638
GetConv, 42
GetCount, 60, 66, 209, 413, 499, 665, 807, 1047,

1369, 1402
GetCountPerPage, 822
GetCountry, 254
GetCPUCount, 1320
GetCrc, 1503
GetCurFileSystem, 1497

INDEX

1840

GetCurrentDocument, 423
GetCurrentId, 1320
GetCurrentLine, 1307
GetCurrentMode, 413
GetCurrentMonth, 254
GetCurrentPage, 962, 1026, 1485
GetCurrentTip, 1336
GetCurrentView, 423
GetCurrentYear, 254
GetCursor, 327, 1117, 1440
GetCustomColour, 161
GetCwd, 506
GetDashes, 997
GetData, 146, 224, 289, 454, 532, 699, 753, 836,

838, 896, 958, 1242, 1254, 1402
GetDatabaseName, 290
GetDataDir, 1202
GetDataHere, 232, 234
GetDataLeft, 1228
GetDataLen, 896
GetDataObject, 452
GetDataSize, 232, 234
GetDatasourceName, 291
GetDate, 119, 237
GetDateTime, 43, 1403
GetDay, 261
GetDayOfYear, 262
GetDays, 242, 1332
GetDb, 328
GetDC, 464, 727, 1022
GetDebugMode, 380
GetDefault, 1078
GetDefaultAction, 27
GetDefaultAttributes, 1440
GetDefaultCellAlignment, 606
GetDefaultCellBackgroundColour, 606
GetDefaultCellFont, 606
GetDefaultCellTextColour, 606
GetDefaultColLabelSize, 607
GetDefaultColSize, 607
GetDefaultDir, 309
GetDefaultEditor, 607
GetDefaultEditorForCell, 607
GetDefaultEditorForType, 607
GetDefaultEncoding, 541
GetDefaultExtension, 435
GetDefaultInfo, 979
GetDefaultItem, 989
GetDefaultMinMargins, 978
GetDefaultPath, 585
GetDefaultRenderer, 607
GetDefaultRendererForCell, 607
GetDefaultRendererForType, 607
GetDefaultRowLabelSize, 608
GetDefaultRowSize, 608
GetDefaultSize, 115, 1210
GetDefaultStyle, 1289
GetDepth, 83, 413, 737
GetDescent, 676
GetDescription, 27, 309, 435, 526
GetDialog, 529
GetDimension, 1497

GetDirCount, 507
GetDirection, 1487
GetDirectory, 387, 435, 494
GetDirList, 573
GetDirs, 507
GetDispatchPtr, 74
GetDllExt, 416
GetDocument, 418, 428, 1410
GetDocumentManager, 435, 439, 1410
GetDocumentName, 435, 439
GetDocuments, 423
GetDocumentTemplate, 439
GetDocumentWindow, 439
GetDouble, 1403
GetDragRect, 1081
GetDragStatus, 1081
GetDropTarget, 1441
GetDsn, 309
GetDuplex, 1009
GetDuration, 892
GetEdge, 1081
GetEditControl, 822, 1370
GetEditMenu, 179
GetEditor, 628
GetEmptyCellSize, 630
GetEnabled, 1387
GetEnableEffects, 547
GetEnableHelp, 979
GetEnableMargins, 978
GetEnableOrientation, 979
GetEnablePaper, 979
GetEnablePrinter, 979
GetEncoding, 554
GetEncodingConverter, 727
GetEncodingDescription, 554
GetEncodingFromName, 555
GetEncodingName, 555
GetEncodings, 551
GetEndDST, 255
GetEndPos, 580
GetEndPos1, 711
GetEndPos2, 711
GetEntryType, 193
GetEOL, 1308
GetError, 1039, 1396
GetErrorStream, 1030
GetEvent, 701
GetEventHandler, 1441
GetEventObject, 465
GetEventType, 466
GetEvtHandlerEnabled, 471
GetExcludes, 1316
GetExitCode, 1034
GetExitOnFrameDelete, 33
GetExt, 507
GetExtension, 96, 769
GetExtensions, 525
GetExternalAttributes, 1503
GetExtra, 1504
GetExtraLen, 1504
GetExtraLong, 176
GetExtraStyle, 1441

INDEX

1841

GetFaceName, 541
GetFacenames, 551
GetFamily, 541
GetFieldRect, 1214
GetFieldsCount, 1215
GetFile, 387
GetFileFilter, 436
GetFileHistory, 423
GetFilename, 440, 494
GetFileName, 1198
GetFilenames, 491, 494
GetFilePath, 586
GetFiles, 449
GetFilesCount, 387
GetFileSize, 573
GetFilesList, 573
GetFileSystem, 703
GetFileType, 310
GetFileTypeFromExtension, 936
GetFileTypeFromMimeType, 936
GetFilter, 586
GetFilterIndex, 494, 586
GetFilterListCtrl, 586
GetFindString, 529, 530
GetFirst, 328, 407, 807
GetFirstChild, 676, 1370
GetFirstEntry, 193
GetFirstGroup, 193
GetFirstLine, 1308
GetFirstSelected, 844, 1414
GetFirstValue, 1073
GetFirstView, 440
GetFirstVisibleItem, 1370
GetFirstVisibleLine, 1421
GetFlag, 1138
GetFlags, 19, 116, 436, 529, 530, 1042, 1156,

1281, 1493, 1504
GetFlexibleDirections, 533
GetFocus, 27
GetFocusedItem, 844
GetFont, 125, 364, 628, 838, 842, 926, 1264,

1280, 1441, 1497
GetFontBold, 727
GetFontData, 549
GetFontFace, 728
GetFontFixed, 728
GetFontItalic, 728
GetFontSize, 728
GetFontUnderlined, 728
GetForbiddenChars, 507
GetForce, 148
GetForegroundColour, 1441
GetFormat, 234, 507
GetFormatCount, 232
GetFragment, 1391
GetFrame, 865, 1026, 1410
GetFrameParameters, 668
GetFromClause, 328
GetFromPage, 1016
GetFromPoint, 414
GetFromWindow, 414
GetFS, 705

GetFullName, 507
GetFullPath, 507
GetGeneric, 1078
GetGeometry, 414
GetGrandParent, 1442
GetGreen, 753
GetGridCursorCol, 608
GetGridCursorRow, 608
GetGridLineColour, 608
GetH, 1069
GetHandle, 1442
GetHandlers, 83, 754
GetHDBC, 291
GetHeader, 732
GetHeaderColourBg, 120
GetHeaderColourFg, 120
GetHeaderValue, 850
GetHeight, 83, 676, 737, 754, 1055, 1069, 1125
GetHelp, 673, 926
GetHelpController, 671
GetHelpString, 909, 919
GetHelpText, 27, 1442
GetHenv, 310
GetHENV, 291
GetHGap, 654
GetHi, 867
GetHighlightColourBg, 121
GetHighlightColourFg, 121
GetHistoryFile, 498
GetHistoryFilesCount, 424
GetHolidayColourBg, 121
GetHolidayColourFg, 121
GetHomeDir, 508
GetHostType, 1391
GetHour, 261
GetHours, 1332
GetHref, 701
GetHSTMT, 291
GetHtmlCell, 701
GetIcon, 72, 525, 740, 741, 774, 1358, 1498
GetIcons, 1358
GetId, 226, 466, 676, 838, 927, 1321, 1384, 1442
GetID, 1498
GetImage, 836, 838
GetImageCount, 753, 769, 775
GetImageExtWildcard, 752
GetImageList, 822, 962, 1370
GetImageRect, 447
GetIncludes, 1317
GetIndent, 680, 1370
GetIndentUnits, 681
GetIndex, 836
GetIndexArray, 697
GetInitialFont, 547
GetInnerSizer, 1038
GetInputEncoding, 728
GetInputStream, 574, 732, 1030, 1039, 1396
GetInputStreamBuffer, 901
GetInsertionPoint, 168, 1290
GetInstallPrefix, 1202
GetInstance, 33, 74
GetInt, 176

INDEX

1842

GetInternalFormat, 43
GetInternalName, 42, 43, 1504
GetInternalRepresentation, 718
GetInterval, 1327, 1329
GetIntPosition, 1227
GetISPNames, 403
GetItem, 822, 837, 1131, 1382
GetItemBackgroundColour, 822, 1371
GetItemCount, 823, 1414
GetItemData, 823, 1371
GetItemFont, 823, 1371
GetItemImage, 1371
GetItemParent, 1373
GetItemPosition, 630, 823
GetItemRect, 823
GetItemSelectedImage, 1374
GetItemSpacing, 824
GetItemSpan, 630, 631
GetItemState, 824
GetItemText, 824, 1372
GetItemTextColour, 824, 1372
GetJDN, 270
GetJoin, 997
GetJoystick, 793
GetJulianDayNumber, 270
GetKeyboardShortcut, 27
GetKeyCode, 19, 797, 836, 1382
GetKeyEvent, 1382
GetKeyFields, 291
GetKeyValue, 1073
GetKind, 478, 487, 927
GetLabel, 115, 206, 836, 910, 919, 927, 1047,

1212, 1383, 1443
GetLabelBackgroundColour, 608
GetLabelFont, 608
GetLabelFromText, 927
GetLabelTextColour, 609
GetLabelTop, 919
GetLanguage, 849
GetLanguageInfo, 849
GetLanguageName, 849
GetLast, 328, 808
GetLastAccess, 1227
GetLastChild, 1372
GetLastDirectory, 424
GetLastError, 1019, 1221
GetLastLine, 1308
GetLastMonthDay, 269
GetLastPosition, 169, 1290
GetLastResult, 570
GetLastVisibleLine, 1421
GetLastWeekDay, 269
GetLeft, 1055
GetLeftCol, 643
GetLeftIndent, 1280
GetLeftLocation, 521
GetLeftSubIndent, 1280
GetLength, 1221
GetLevel, 380, 1198, 1510
GetLine, 1198, 1307
GetLineCount, 1307, 1421
GetLineLength, 1290

GetLineSize, 1146
GetLinesPerAction, 948
GetLineText, 1290
GetLineType, 1309
GetLink, 677, 728
GetLinkColor, 728
GetLo, 867
GetLocal, 1156
GetLocalDataDir, 1202
GetLocale, 849
GetLocalExtra, 1504
GetLocalExtraLen, 1505
GetLocation, 27, 568
GetLoggingOff, 148
GetLogicalFunction, 364
GetLogicalPosition, 948
GetLogLevel, 858
GetLong, 1403, 1498
GetLongPath, 508
GetManufacturerId, 786
GetMapMode, 364
GetMarginBottomRight, 979
GetMargins, 1348, 1414
GetMarginTopLeft, 979
GetMarginWidth, 927
GetMask, 84, 837, 838
GetMaskBlue, 755
GetMaskGreen, 755
GetMaskRed, 755
GetMatch, 1062, 1063
GetMatchCount, 1063
GetMax, 1146, 1177, 1181
GetMaxCommands, 179
GetMaxDocsOpen, 424
GetMaxFiles, 499
GetMaximumSizeX, 1087
GetMaximumSizeY, 1087
GetMaxPage, 1016, 1026
GetMaxSize, 1443
GetMenu, 920, 924, 927
GetMenuBar, 562
GetMenuCount, 920
GetMenuId, 924
GetMenuItemCount, 910
GetMenuItems, 910
GetMessage, 410, 494
GetMethod, 1505
GetMetric, 1264
GetMillisecond, 262
GetMilliseconds, 1332
GetMimeType, 525, 568, 769
GetMimeTypeFromExt, 522
GetMin, 1146, 1177, 1181
GetMinimumPaneSize, 1189
GetMinimumSizeX, 1087
GetMinimumSizeY, 1087
GetMinMarginBottomRight, 980
GetMinMarginTopLeft, 979
GetMinPage, 1016, 1026
GetMinSize, 1132, 1138, 1443
GetMinute, 261
GetMinutes, 1332

INDEX

1843

GetMJD, 270
GetMode, 743, 1314, 1387, 1505
GetModes, 414
GetModificationTime, 508, 568
GetModifiedJulianDayNumber, 270
GetModule, 1198
GetMonth, 261
GetMonthName, 255
GetMonths, 243
GetMovementThreshold, 787
GetName, 27, 44, 96, 172, 407, 415, 459, 508,

712, 769, 849, 928, 1073, 1198, 1309, 1403,
1443, 1498

GetNativeFontInfoDesc, 541
GetNewCursor, 329
GetNext, 292, 329, 407, 677, 958, 1489
GetNextChild, 1372
GetNextEntry, 46, 194, 1507
GetNextError, 292
GetNextGroup, 193
GetNextHandler, 471
GetNextItem, 824
GetNextKey, 1073
GetNextLine, 1308
GetNextSelected, 844, 1415
GetNextSibling, 1372
GetNextToken, 1257
GetNextValue, 1073
GetNextVisible, 1373
GetNextWeekDay, 268
GetNoCopies, 1009, 1016
GetNodeContent, 1498
GetNonFlexibleGrowMode, 533
GetNotebook, 969
GetNumberAxes, 787
GetNumberButtons, 787
GetNumberCols, 609, 649
GetNumberJoysticks, 787
GetNumberOfColumns, 329
GetNumberOfDays, 255
GetNumberOfEntries, 194
GetNumberOfFiles, 449
GetNumberOfGroups, 194
GetNumberOfLines, 1291
GetNumberRows, 609, 649
GetObject, 74
GetOffset, 44, 1199
GetOldItem, 1383
GetOldLog, 860
GetOldSelection, 967
GetOpenCommand, 526
GetOpenedAnchor, 718
GetOpenedPage, 718
GetOpenedPageTitle, 718
GetOption, 756, 1261
GetOptionInt, 757, 1261
GetOrCreateCellAttr, 609
GetOrderByClause, 330
GetOrFindMaskColour, 755
GetOrientation, 99, 1009, 1042, 1083, 1112,

1114
GetOutputEncoding, 729

GetOutputStream, 573, 1030
GetOutputStreamBuffer, 902
GetPage, 963, 1488
GetPageAreaSizer, 1485
GetPageCount, 963
GetPageImage, 963
GetPageInfo, 1022
GetPageSetupData, 690, 977
GetPageSize, 1099, 1146, 1485
GetPageSizeMM, 1022
GetPageSizePixels, 1023
GetPageText, 963
GetPalette, 83, 755
GetPaperId, 980, 1009
GetPaperSize, 980
GetParam, 157, 712, 1199
GetParamAsColour, 712
GetParamAsInt, 712
GetParamCount, 157, 1199
GetParamNode, 1498
GetParamValue, 1498
GetParent, 28, 677, 1373, 1443
GetPartialTextExtents, 364
GetPassword, 292, 310, 1391
GetPath, 194, 410, 459, 494, 508, 519, 585,

1392
GetPaths, 494
GetPathSeparator, 508
GetPathSeparators, 509
GetPathTerminators, 509
GetPeer, 1156
GetPen, 365
GetPid, 1033
GetPixel, 159, 365, 986
GetPlatformEquivalents, 462
GetPlaybackrate, 894
GetPluginsDir, 1203
GetPoint, 836, 1383
GetPointSize, 541
GetPollingMax, 787
GetPollingMin, 787
GetPort, 1392
GetPos, 580
GetPosition, 127, 203, 450, 641, 645, 672, 788,

794, 797, 892, 947, 951, 1055, 1113, 1114,
1131, 1138, 1182, 1257, 1444, 1498

GetPosX, 677
GetPosY, 677
GetPOVCTSPosition, 788
GetPOVPosition, 788
GetPPI, 365
GetPPIPrinter, 1023
GetPPIScreen, 1023
GetPrecision, 646
GetPreferredFormat, 232
GetPrev, 330, 1489
GetPrevious, 958
GetPreviousHandler, 471
GetPrevLine, 1308
GetPrevSibling, 1373
GetPrevVisible, 1373
GetPrevWeekDay, 268

INDEX

1844

GetPrintableName, 440
GetPrintCommand, 526
GetPrintData, 690, 980, 1016
GetPrintDC, 1014
GetPrintDialogData, 1014, 1020
GetPrinterName, 1009
GetPrintout, 1026
GetPrintoutForPrinting, 1026
GetPrintPreview, 1005
GetPrintToFile, 1016
GetPriority, 1321
GetProduct, 705
GetProductId, 787
GetProductName, 787
GetProgramHandle, 416, 457
GetProperty, 75
GetProportion, 1138
GetProtocol, 522, 1396
GetQuality, 1009
GetQuery, 1392
GetQueryTableName, 330
GetRange, 240, 577, 1099, 1291
GetRataDie, 270
GetRatio, 1139
GetRawKeyCode, 797
GetRawKeyFlags, 798
GetRect, 117, 1070, 1139, 1444
GetRed, 755
GetRedoAccelerator, 179
GetRedoMenuLabel, 179
GetRefData, 971
GetRelatedFrame, 719
GetRenderer, 628
GetReplaceString, 529, 530
GetReportName, 387
GetRequestedLength, 1043
GetResolution, 1003
GetResponse, 732
GetReturnCode, 396
GetRGB, 986
GetRight, 1055
GetRightCol, 643
GetRightIndent, 1280
GetRightLocation, 522
GetRole, 28
GetRootId, 586
GetRootItem, 1374
GetRow, 579, 638, 641
GetRowCount, 963
GetRowLabelAlignment, 609
GetRowLabelSize, 609
GetRowLabelValue, 610, 652
GetRowMinimalAcceptableHeight, 609
GetRowMinimalHeight, 609
GetRowNum, 331
GetRowOrCol, 645
GetRows, 654
GetRowSize, 610
GetRowspan, 582
GetRudderMax, 788
GetRudderMin, 788
GetRudderPosition, 788

GetSashGravity, 1190
GetSashPosition, 1185, 1190
GetSashVisible, 1086
GetScheme, 1392
GetScreenType, 1266
GetScrollLinesX, 610
GetScrollLinesY, 610
GetScrollPixelsPerUnit, 1105
GetScrollPos, 1444
GetScrollRange, 1444
GetScrollThumb, 1445
GetSecond, 261
GetSeconds, 1332
GetSelectedCells, 610
GetSelectedCols, 610
GetSelectedCount, 1415
GetSelectedItemCount, 825
GetSelectedRows, 610
GetSelectedTextBgColour, 703
GetSelectedTextColour, 703
GetSelection, 176, 209, 953, 963, 967, 1017,

1048, 1121, 1291, 1374, 1415
GetSelectionBackground, 611, 1415
GetSelectionBlockBottomRight, 611
GetSelectionBlockTopLeft, 611
GetSelectionClientData, 1121
GetSelectionForeground, 611
GetSelectionMode, 610
GetSelections, 28, 813, 1374
GetSelEnd, 1146
GetSelStart, 1147
GetServer, 1392
GetSetChecked, 1387
GetSetEnabled, 1387
GetSetText, 1387
GetShadowWidth, 577
GetShortPath, 509
GetShowHelp, 547
GetSize, 44, 127, 139, 213, 224, 365, 775, 1043,

1055, 1126, 1131, 1139, 1222, 1445, 1499
GetSizeHint, 72
GetSizeMM, 366
GetSizer, 1139, 1446
GetSkipped, 466
GetSocket, 1169
GetSocketEvent, 1170
GetSource, 706
GetSpacer, 1139
GetSpan, 580
GetSplashStyle, 1183
GetSplashWindow, 1183
GetSplitMode, 1190
GetSplitterParams, 1078
GetState, 28, 839, 893
GetStateImageList, 1374
GetStaticBox, 1209
GetStatusBar, 562
GetStatusBarPane, 562
GetStatusText, 1215
GetStipple, 102, 997
GetStream, 380, 568
GetStreamBuf, 380

INDEX

1845

GetString, 177, 209, 636, 849, 850, 1048, 1256,
1258, 1403

GetStringSelection, 210, 1048, 1121, 1292
GetStyle, 103, 410, 495, 542, 998, 1292, 1317,

1499
GetSubBitmap, 84
GetSubImage, 755
GetSubMenu, 928
GetSupportedEncodingsCount, 555
GetSupportedTags, 714
GetSymbol, 416, 457
GetSymbolAorW, 457
GetSysName, 850
GetSystemEncoding, 850
GetSystemEncodingName, 851
GetSystemLanguage, 851
GetSystemMadeBy, 1506
GetTable, 611
GetTableCount, 293
GetTableName, 331
GetTablePath, 331
GetTabs, 1280
GetTarget, 701
GetTemplates, 424
GetText, 836, 839, 928, 1302, 1387, 1499
GetTextBackground, 366
GetTextColour, 124, 627, 825, 839, 842, 928,

1281
GetTextExtent, 366, 1446
GetTextForeground, 366
GetTextLength, 1301
GetThemeBackgroundColour, 963
GetThread, 1326
GetThumbLength, 1147
GetThumbPosition, 1099
GetThumbSize, 1100
GetTickFreq, 1147
GetTicks, 261
GetTimeNow, 255
GetTimeout, 1184
GetTimes, 509
GetTimestamp, 466, 858
Getting results, 152
Getting started: a simple example, 1742
GetTip, 1336, 1357
GetTitle, 396, 440, 910, 1023, 1358, 1447
GetTm, 260
GetTmNow, 255
GetToolBar, 396, 562, 887
GetToolBitmapSize, 1348
GetToolClientData, 1348
GetToolEnabled, 1348
GetToolLongHelp, 1349
GetToolPacking, 1349
GetToolPos, 1349
GetToolSeparation, 1349
GetToolShortHelp, 1349
GetToolSize, 1347
GetToolState, 1350
GetToolTip, 1447
GetTop, 1055
GetToPage, 1017

GetTopItem, 825
GetTopLeft, 1055
GetTopLeftCoords, 643
GetTopRow, 643
GetTopWindow, 33
GetTotalDays, 243
GetTotalEntries, 1508
GetTotalHeight, 687
GetTraceMasks, 855
GetTreeCtrl, 586
GetType, 97, 226, 769, 1403, 1408
GetTypeName, 650
GetUid, 310
GetUMax, 788
GetUMin, 788
GetUnderlined, 542
GetUndoAccelerator, 179
GetUndoMenuLabel, 179
GetUnicodeKey, 798
GetUpdateInterval, 1388
GetUpdateRegion, 1447
GetUPosition, 789
GetUseBestVisual, 33
GetUser, 1393
GetUserConfigDir, 1203
GetUserData, 1139
GetUserDataDir, 1203
GetUserID, 310
GetUserInfo, 1393
GetUserLocalDataDir, 1203
GetUsername, 293
GetUserScale, 367
GetValidator, 1447
GetValue, 28, 131, 169, 240, 577, 650, 867,

1052, 1147, 1177, 1180, 1292, 1304, 1332,
1340

GetValueAsBool, 650
GetValueAsCustom, 651
GetValueAsDouble, 650
GetValueAsLong, 650
GetValueClassInfo, 1408
GetVendorName, 34, 194
GetVerbose, 858
GetVersion, 460, 1078, 1493
GetVGap, 654
GetView, 418, 428, 651
GetViewName, 436, 1411
GetViewRect, 825
GetViews, 440
GetViewStart, 1106
GetViewWidth, 611
GetVirtualSize, 1106, 1447
GetVisibleBegin, 1421
GetVisibleEnd, 1422
GetVMax, 789
GetVMin, 789
GetVoidPtr, 1403
GetVolume, 509, 894
GetVolumeSeparator, 510
GetVPosition, 789
GetW, 1069
GetWeekDay, 125, 261, 268

INDEX

1846

GetWeekDayInSameWeek, 267
GetWeekDayName, 255
GetWeekOfMonth, 262
GetWeekOfYear, 262
GetWeeks, 243, 1332
GetWeight, 542
GetWheelDelta, 948
GetWheelRotation, 948
GetWhereClause, 331
GetWidth, 84, 647, 677, 737, 756, 839, 998,

1056, 1070, 1124
GetWildcard, 495
GetWindow, 28, 127, 593, 729, 1139, 1357, 1398
GetWindow1, 1190
GetWindow2, 1190
GetWindowBeingRemoved, 1186
GetWindowMenu, 887
GetWindowStyleFlag, 1448
GetWindowVariant, 1448
GetWritableChar, 1242
GetWriteBuf, 896, 1242
GetWxObjectPtr, 1403
GetX, 798, 948, 1056, 1069, 1117, 1185
GetXMax, 789
GetXMin, 789
GetXRCID, 1493
GetY, 798, 948, 1056, 1069, 1117, 1186
GetYear, 261
GetYearDay, 270
GetYears, 243
GetYMax, 789
GetYMin, 789
GetZMax, 789
GetZMin, 790
GetZoomControl, 1005
GetZPosition, 790, 794
GiveFeedback, 452
GoToLine, 1307
Grant, 293
Green, 159
Grid sample, 1640
GridLinesEnabled, 608
GuessType, 1309
GUI system, 1591

—H—
HandleEvent, 40
HandleReturn, 634
HandleTag, 714
Handling socket events, 1154
HangUp, 404
Hardware architectures (CPU), 1593
Hardware buttons in wxWinCE, 1818
Hardware type, 1594
HasAlignment, 627
HasAlpha, 756
HasBackgroundColour, 124, 627, 842, 1281
HasBorder, 124, 1087
HasBorderColour, 124
HasCapture, 1448
HasCursor, 1117

HasEditor, 627
HasEnding, 713
HasEntry, 194
HasExt, 510
HasFiles, 407
HasFont, 124, 627, 842, 1281
HasFragment, 1393
HasGroup, 195
HasMask, 756
HasModifiers, 798
HasMoreTokens, 1257
HasMultipleSelection, 1416
HasName, 510
HasNextPage, 1485
HasOption, 757, 1261
HasPage, 1023
HasParam, 713, 1499
HasPath, 1393
HasPort, 1393
HasPOV, 790
HasPOV4Dir, 790
HasPOVCTS, 790
HasPrevPage, 1486
HasQuery, 1393
HasRange, 636
HasRenderer, 627
HasRudder, 790
HasScheme, 1394
HasScrollbar, 1448
HasServer, 1394
HasSourceLocation, 1199
HasStream, 381
HasSubDirs, 408
HasSubKey, 1074
HasSubKeys, 1074
HasSymbol, 457
HasTextColour, 124, 627, 842, 1281
HasTransparentBackground, 1448
HasU, 790
HasUser, 1394
HasV, 790
HasValue, 1074
HasValues, 1074
HasVolume, 510
HasZ, 791
HaveRects, 1070
height, 803, 1054
Help Files Format, 1776
Helper functions, 935
Hibernation in wxWinCE, 1818
Hide, 127, 447, 1448
HideCellEditControl, 611
Hiding controls using sizers, 1701
HistoryBack, 719
HistoryCanBack, 719
HistoryCanForward, 719
HistoryClear, 719
HistoryForward, 719
HitTest, 29, 122, 826, 964, 1292, 1374, 1422
Hostname, 783, 784, 785
Hour, 1333
Hours, 1332

INDEX

1847

How events are processed, 1680
How the wxGrid classes relate to each other,

1743
HSVtoRGB, 756
HSVValue, 756
HSVValue::HSVValue, 756
HTML Printing, 1776
HTML samples, 1640

—I—
Iconize, 397, 1358
Iconized, 742
identifiers, 1683
Identifying art resources, 69
Image sample, 1641
IMPLEMENT_ABSTRACT_CLASS, 1572
IMPLEMENT_ABSTRACT_CLASS2, 1573
IMPLEMENT_APP, 1573
IMPLEMENT_CLASS, 1573
IMPLEMENT_CLASS2, 1574
IMPLEMENT_DYNAMIC_CLASS, 1574
IMPLEMENT_DYNAMIC_CLASS2, 1574
Incompatible changes since 2.4.x, 1627
IncRef, 626
IncTo, 1125
Index, 60, 66, 1242
IndexOf, 808, 958
Inflate, 1056
InheritAttributes, 1449
Init, 108, 461, 585, 851
InitAllHandlers, 1493
InitAlpha, 757
InitColWidths, 611
InitDialog, 990, 1449
InitDocument, 436
Initialization functions, 935
Initialize, 180, 424, 667, 1007, 1190
InitializeClasses, 139
InitParser, 706
InitRowHeights, 612
InitStandardHandlers, 84, 757
Input Filters, 1777
insert, 658, 662
Insert, 61, 66, 210, 331, 808, 911, 920, 1132,

1404, 1770
InsertCell, 681
InsertCheckItem, 911
InsertCols, 612, 651
InsertColumn, 826
InsertControl, 1350
InsertDir, 510
InsertHandler, 84, 758
InsertItem, 827, 1375
InsertItems, 814
InsertLine, 1309
InsertPage, 964
InsertRadioItem, 911
InsertRows, 612, 651
InsertSeparator, 911, 1350
InsertSpacer, 1132
InsertStretchSpacer, 1132

InsertTool, 1351
Inside, 1057
Installing your PocketPC and Smartphone

applications, 1821
Internat(ionalization) sample, 1641
InterruptWait, 1156
Intersect, 1066
Intersects, 581, 1057
Introduction, 1649, 1654, 1679, 1689, 1726, 1742
InvalidateBestSize, 1449
Invoke, 75
IPAddress, 783, 785
Is3rdStateAllowedForUser, 131
Is3State, 131
IsAbsolute, 510
IsActive, 34, 1358
IsAlive, 1321
IsAllowed, 970
IsAllowedTraceMask, 858
IsAlwaysOnline, 404
IsAnotherRunning, 1123
IsAscii, 1242
IsBetween, 263
IsBold, 1375
IsButton, 794, 948
IsCaseSensitive, 510
IsCellEditControlEnabled, 612
IsCheckable, 928
IsChecked, 131, 134, 177, 911, 921, 928
IsColNull, 332
IsCommandEvent, 466
IsCompatible, 1079
IsConnected, 1156
IsConnectedEvent, 401
IsCreated, 633
IsCurrent, 1416
IsCurrentCellReadOnly, 612
IsCursorClosedOnCommit, 333
IsData, 1156
IsDefault, 1281
IsDetached, 1321
IsDialing, 403
IsDir, 44, 511
IsDirty, 180
IsDisconnected, 1157
IsDST, 271
IsDSTApplicable, 256
IsEarlierThan, 263
IsEditable, 613, 1293
IsEditCancelled, 837, 1383
IsEmpty, 61, 66, 211, 808, 1057, 1066, 1074,

1242
IsEmptyCell, 650
IsEnabled, 912, 921, 928, 1449
IsEncodingAvailable, 555
IsEqualTo, 263, 1333
IsEqualUpTo, 264
IsErrorAvailable, 1030
IsExpanded, 1376
IsExpandingEnvVars, 195
IsExposed, 1449, 1450
IsFalse, 1261

INDEX

1848

IsFixedWidth, 540
IsFullScreen, 1359
IsFullySpecified, 1124
IsFwdOnlyCursors, 287, 294
IsGregorianDate, 262
IsHatch, 103
IsHoliday, 124
isHotSensitive, 1197
IsIconInstalled, 1268
IsIconized, 397, 1359
IsInputAvailable, 1030
IsInputOpened, 1031
IsInSelection, 613
IsInside, 1060
IsKindOf, 140, 972
IsLaterThan, 263
IsLeapYear, 256
IsLoaded, 458, 852
IsLocalHost, 784
IsLongerThan, 1333
IsMadeByUnix, 1506
IsMain, 1321
IsMainLoopRunning, 34
IsMaximized, 1359
IsModal, 397
IsModified, 440, 1293
IsMove, 794
IsMultiLine, 1293
IsNegative, 1333
IsNull, 1242, 1333, 1404
IsNumber, 1243
IsOfClass, 1499
IsOfType, 936
IsOk, 128, 183, 387, 402, 510, 741, 791, 852,

957, 1174, 1222, 1268
IsOneShot, 1327
IsOnline, 404
IsOpen, 294
IsOpened, 146, 408, 478, 487, 1074, 1276, 1307
IsOwnEvent, 401
IsPageScroll, 949
IsPassingMessages, 860
IsPathSeparator, 511
IsPaused, 1321
IsPlaying, 1174
IsPopup, 924
IsPositive, 1333
IsPreview, 1024
IsPrimary, 415
IsQueryOnly, 333
IsReadOnly, 45, 613, 628
IsRecordingDefaults, 195
IsReference, 1394
IsRelative, 511
IsRetained, 1107, 1450
IsRunning, 1322, 1327
IsSameAs, 1243
IsSameDate, 264
IsSameTime, 264
IsSeekable, 1222
IsSelected, 814, 844, 1376, 1416
IsSelection, 177, 613

IsSeparator, 928
IsShorterThan, 1333
IsShown, 1139, 1450
IsSingleLine, 1293
IsSizer, 1139
IsSpacer, 1140
IsSplit, 1191
IsStrictlyBetween, 263
IsSubMenu, 929
IsSupported, 146
IsText, 1506
IsTopLevel, 1450
IsTransparent, 758
IsType, 1404
IsValid, 260, 1062
IsValueKindOf, 1404
IsVertical, 577, 1210
IsVisible, 128, 436, 613, 1376, 1422
IsWestEuropeanCountry, 256
IsWindow, 1140
IsWord, 1243
IsWorkDay, 262
IsZMove, 794
Item, 61, 67, 808
ItemHasChildren, 1376

—K—
Key access, 189
Keyboard and mouse actions, 1743
KeywordSearch, 669, 694, 699
Kill, 1031, 1322

—L—
Last, 61, 67, 1243
LastCount, 1157
LastError, 1157
LastRead, 781
LastWrite, 975
Layout, 678, 1132, 1450
Layout sample, 1641
LayoutDialog, 1038
LayoutFrame, 801
LayoutMDIFrame, 801
LayoutWindow, 801
Leave, 215
Leaving, 949
left, 803
Left, 1136, 1243
LeftDClick, 949
LeftDown, 949
LeftIsDown, 949
LeftOf, 778
LeftUp, 949
Len, 1243
Length, 478, 487, 1244, 1276
Limits And Compatibility, 1803
Listctrl sample, 1641
ListLoaded, 458
Load, 458, 499, 893, 1078, 1493
LoadBitmap, 1493

INDEX

1849

LoadDialog, 1493, 1494
LoadFile, 85, 97, 669, 719, 737, 758, 769, 1293
LoadFrame, 1494
LoadIcon, 1494
LoadLibrary, 417
LoadMenu, 1494
LoadMenuBar, 1494
LoadObject, 441
LoadPage, 720
LoadPanel, 1494
LoadToolBar, 1495
LocalHost, 784, 785
Lock, 955
LogError, 295
Logging functions, 853
LogicalToDeviceX, 367
LogicalToDeviceXRel, 367
LogicalToDeviceY, 367
LogicalToDeviceYRel, 367
Looking up an archive entry by name, 1810
Lower, 1244, 1451
LowerCase, 1244

—M—
m_altDown, 796, 944
m_childDocument, 418, 428
m_childView, 418, 428
m_commandProcessor, 437
m_controlDown, 796, 944
m_count, 974
m_currentView, 419
m_defaultDocumentNameCounter, 420
m_defaultExt, 432
m_description, 432
m_directory, 432
m_docClassInfo, 432
m_docs, 420
m_docTypeName, 432
m_documentFile, 437
m_documentManager, 432
m_documentModified, 438
m_documentTemplate, 438
m_documentTitle, 438
m_documentTypeName, 438
m_documentViews, 438
m_fileFilter, 433
m_fileHistory, 420, 497
m_fileHistoryN, 498
m_fileMaxFiles, 498
m_fileMenu, 498
m_files, 449
m_flags, 420, 433
m_keyCode, 796
m_leftDown, 944
m_linesPerAction, 945
m_maxDocsOpen, 420
m_metaDown, 796, 944
m_middleDown, 944
m_noFiles, 449
m_pos, 449
m_propagationLevel, 465

m_refData, 971
m_rightDown, 944
m_shiftDown, 796, 944
m_templates, 420
m_thread, 1325
m_viewClassInfo, 433
m_viewDocument, 1409
m_viewFrame, 1409
m_viewTypeName, 433, 1409
m_wheelDelta, 945
m_wheelRotation, 945
m_x, 796, 944
m_y, 796, 944
MacFindDefaultTypeAndCreator, 511
MacRegisterDefaultTypeAndCreator, 511
Macros for template array definition, 53
MacSetDefaultTypeAndCreator, 511
MainLoop, 34
MakeAbsolute, 511
MakeCellVisible, 613
MakeConnection, 140, 373, 1270
MakeDefaultName, 424
MakeGMT, 271
MakeKey, 664
MakeLower, 1244
MakeModal, 1451
MakeNull, 1404
MakeRelativeTo, 512
MakeString, 1404
MakeTimezone, 271
MakeUpper, 1244
MarkAsSaved, 180
MarkDirty, 1294
Matches, 1063, 1244
Matching, 1802
Maximize, 880, 1359
MaxX, 367
MaxY, 367
mb_str, 1244
MB2WC, 216, 872, 874, 875, 876, 877
Mediaplayer sample, 1642
Member, 808, 993, 1404
Memory management, 55, 1233
Menubars and toolbars in wxWinCE, 1819
MessageParameters class, 524
MetaDown, 642, 644, 645, 798, 949
Metasyntax, 1801
Mid, 1245
MiddleDClick, 950
MiddleDown, 950
MiddleIsDown, 950
MiddleUp, 950
Minimal sample, 1636
Minute, 1334
Minutes, 1333
MinX, 368
MinY, 368
Mirror, 761
Miscellaneous, 1233, 1595
Miscellaneous functions, 189
Mkdir, 512
MkDir, 571

INDEX

1850

Modify, 441
ModifyColumn, 295
Modifying an archive, 1809
Month, 243
Months, 243
More DDE details, 1773
MoreRequested, 744
Move, 128, 448, 1451
MoveAfterInTabOrder, 1452
MoveBeforeInTabOrder, 1452
MoveCursorDown, 613
MoveCursorDownBlock, 614
MoveCursorLeft, 614
MoveCursorLeftBlock, 614
MoveCursorRight, 614
MoveCursorRightBlock, 615
MoveCursorUp, 614
MoveCursorUpBlock, 615
MovePageDown, 615
MovePageUp, 615
Moving, 950
Multiply, 244, 1334

—N—
Native font information, 1721
Navigate, 29, 1452
Neg, 244, 1334
Negate, 244, 1334
new, 973
New, 542
NewEntry, 42
NewStream, 42
Next, 665
Normalize, 512
Notebook sample, 1642
Notify, 1157, 1328
NotifyEvent, 29
Now, 256
Nth, 809
NullList, 1404
Number, 211, 809, 1048
Number of elements and simple item access, 55

—O—
Obtaining individual components, 1389
Offset, 1057, 1067
Ok, 21, 86, 103, 159, 222, 368, 481, 482, 500,

517, 543, 738, 760, 932, 980, 987, 998, 1009,
1017, 1027, 1157

OnAcceptConnection, 378, 1119, 1275
OnActivate, 419, 429
OnActivateView, 1411
OnAdvise, 200, 376, 1272
OnApply, 397
OnAssert, 34
OnBeginDocument, 1024
OnBeginPrinting, 1024
OnCalculateLayout, 1084
OnCancel, 397
OnCellClicked, 720

OnCellMouseHover, 720
OnChangedViewList, 441
OnChangeFilename, 1411
OnChar, 1317
OnClose, 1411
OnCloseDocument, 441
OnCloseWindow, 419, 429, 430, 431, 1007, 1183
OnClosingDoocument, 1411
OnCmdLineError, 35
OnCmdLineHelp, 35
OnCmdLineParsed, 35
OnCompareItems, 1376
OnCreate, 441, 1411
OnCreateClient, 887
OnCreateCommandProcessor, 441
OnCreateFileHistory, 425
OnCreatePrintout, 1412
OnCreateStatusBar, 562
OnCreateToolBar, 563
OnData, 454
OnDir, 412
OnDisconnect, 200, 376, 1272
OnDoubleClickSash, 1191
OnDragOver, 455
OnDraw, 1108, 1412
OnDrawBackground, 1416
OnDrawItem, 1416
OnDrawSeparator, 1417
OnDrop, 454, 496, 1302
OnDropFiles, 497, 1294
OnDropText, 1302
OnEndDocument, 1024
OnEndPrinting, 1024
OnEnter, 454
OnEntryUpdated, 49, 1508
OnExceptionInMainLoop, 36
OnExecute, 200, 376, 1272
OnExit, 36, 941, 1322
OnFacename, 551
OnFatalException, 36
OnFile, 412
OnFileClose, 425
OnFileCloseAll, 425
OnFileNew, 425
OnFileOpen, 425
OnFileRevert, 425
OnFileSave, 425
OnFileSaveAs, 425
OnFontEncoding, 551
OnFrameClose, 865
OnFrameCreate, 865
OnFrameDelete, 865
OnGetItem, 703
OnGetItemAttr, 828
OnGetItemImage, 828
OnGetItemMarkup, 703
OnGetItemText, 828
OnGetLineHeight, 1422
OnGetLinesHint, 1422
OnInit, 37, 941
OnInitCmdLine, 37
OnInternalIdle, 1453

INDEX

1851

OnLeave, 455
OnLeftClick, 1351
Online help in wxWinCE, 1821
OnLinkClicked, 721
OnLog, 856
OnMakeConnection, 141, 374, 1270
OnMeasureItem, 1417
OnMouseClick, 678
OnMouseEnter, 1351
OnNewDocument, 442
OnOK, 398
OnOpenDocument, 442
OnOpenError, 412
OnOpeningURL, 721
OnPaint, 1004
OnPoke, 200, 376, 1273
OnPreparePrinting, 1024
OnPrintPage, 1025
OnQueryLayoutInfo, 1084
OnQuit, 669
OnRequest, 201, 376, 1273
OnRightClick, 1352
OnRun, 37
OnSashPositionChange, 1192
OnSaveDocument, 442
OnSaveModified, 442
OnSelChange, 965
OnServerReply, 390
OnSetTitle, 722
OnStackFrame, 1200
OnStartAdvise, 201, 377, 1273
OnStopAdvise, 201, 377, 1273
OnSysColourChanged, 398, 990
OnSysRead, 1222
OnSysSeek, 1222
OnSysTell, 1222
OnSysWrite, 1223
OnTerminate, 1032
OnUnhandledException, 37
OnUnsplit, 1191
OnUpdate, 1412
Open, 146, 296, 333, 408, 478, 487, 1032, 1074,

1276, 1309
OpenContainer, 729
OpenEntry, 46, 1508
OpenFile, 520, 522
OpenURL, 706
Operating systems, 1592
Operation, 889
Operations, 503, 1330
operator, 260, 579, 582, 1249

=, 246, 516
operator-, 244, 868, 1334
operator--, 868
operator

=, 65, 226, 768, 1406
operator --, 348
operator !=, 22, 65, 89, 105, 160, 222, 226, 546,

739, 768, 987, 1000, 1058, 1251, 1406
operator (), 1250
operator *, 1092
operator [], 1090, 1250, 1406

operator +, 1250
operator ++, 348, 1070
operator +=, 1250
operator <, 1251
operator <<, 1250, 1251, 1300
operator <=, 1251
operator =, 21, 64, 88, 105, 160, 162, 222, 545,

548, 739, 767, 981, 982, 987, 1000, 1013,
1018, 1058, 1068, 1126, 1249, 1405

operator ==, 21, 64, 88, 105, 160, 222, 226, 545,
739, 767, 987, 1000, 1058, 1251, 1394, 1405,
1406

operator >, 1251
operator ->, 1093
operator >=, 1251
operator >>, 1251
operator bool, 1070
operator char, 1406
operator const char*, 1251
operator double, 1407
operator long, 1407
operator void*, 1407
operator wxChar *, 1252, 1254
operator wxDateTime, 1407
operator wxString, 1407
operator!, 579, 582, 1249
operator!=, 246, 516
operator*, 48
operator*=, 244, 1334
operator[], 65, 659, 1307
operator+, 868
operator++, 48, 868
operator+=, 242, 245, 264, 1331
operator=, 58, 59, 516, 741, 867, 1506
operator-=, 264, 265, 1334
operator==, 246, 516, 579, 582
Options, 190
OrderBy, 334
Other Python GUIs, 1785
Other string related functions and classes, 1651

—P—
Pad, 1245
PageSetup, 689
PaintBackground, 634
PaintPage, 1027
Parse, 156, 707
ParseDate, 266
ParseDateTime, 266
ParseFormat, 265
ParseInner, 715
ParseRfc822Date, 265
ParseTime, 266
Parsing and formatting dates, 252
Parsing command line, 152
PassMessages, 860
Paste, 169, 1294
Path management, 186
Pause, 893, 1220, 1322
Peek, 781, 1161
Pending, 38

INDEX

1852

PercentOf, 778
Play, 893, 932, 1174
Pluggable event handlers, 1683
Poke, 201, 377, 1273
PopEventHandler, 1453
PopProvider, 72
PopStatusText, 1215
PopTagHandler, 708
PopupMenu, 1268, 1453
PositionToXY, 1294
Positive thinking, 13
Post, 1115
Precompiled headers, 8
PrepareDC, 1108
Prepend, 912, 1133, 1245
PrependCheckItem, 912
PrependDir, 513
PrependItem, 1376
PrependRadioItem, 913
PrependSeparator, 913
PrependSpacer, 1133
PrependStretchSpacer, 1133
PreProcessTip, 1336
PreviewFile, 688
PreviewText, 688
Print, 1020, 1027
PrintClasses, 381
PrintDialog, 1020
Printf, 1245
PrintFile, 688
PrintfV, 1245
PrintStatistics, 381
PrintText, 689
Process, 388
ProcessCommand, 564
ProcessEvent, 472
ProcessMessage, 38
Programming with wxBoxSizer, 1703
Programming with wxFlexGridSizer, 1705
Programming with wxGridSizer, 1705
Programming with wxStaticBoxSizer, 1705
Proportion, 1136
PushEventHandler, 1454
PushProvider, 72
PushStatusText, 1215
PushTagHandler, 707
Put, 665
PutC, 975
PutChar, 1225, 1314
PutNextDirEntry, 51, 1510
PutNextEntry, 51, 1510
PutProperty, 76
Pwd, 571

—Q—
Quantize, 1041
Query, 335
Query database, 935
QueryBySqlStmt, 336
QueryMatching, 338
QueryOnKeyFields, 339

QueryValue, 1074
Quit, 670

—R—
Raise, 1455
Read, 195, 196, 478, 487, 781, 1161, 1224, 1408
Read16, 228, 1312
Read16S, 1312
Read32, 228, 1312
Read32S, 1312
Read64, 228
Read8, 228, 1311
Read8S, 1311
ReadAll, 479
ReadCustomization, 695, 700, 722
ReadDouble, 229, 1312
ReadFile, 691
ReadLine, 1312
ReadMailcap, 937
ReadMimeTypes, 937
ReadMsg, 1162
ReadString, 229, 1312
ReadWord, 1313
Realize, 1219, 1352
RecalcSizes, 99, 631, 1133
Reconnect, 1038
ReCreateTree, 586
Red, 160
Redirect, 1033
Redo, 169, 179, 1295
Ref, 972
Reference counting and why you shouldn't care

about it, 1652
Refresh, 340, 921, 1455
RefreshAll, 1423
RefreshItem, 829
RefreshItems, 829
RefreshLine, 1423
RefreshLines, 1423
RefreshLists, 700
RefreshRect, 1455
RegisterDataType, 616
RegisterHotKey, 1456
Regular Expression Character Names, 1805
Regular Expression Syntax, 1796
release, 1092
ReleaseCapture, 791
ReleaseMouse, 1456
Remaining issues, 1822
Remove, 61, 67, 169, 775, 913, 921, 1133, 1245,

1295
RemoveAll, 775
RemoveAt, 62, 67
RemoveBrush, 107
RemoveChild, 1457
RemoveDir, 513
RemoveDocument, 426
RemoveEventHandler, 1457
RemoveFile, 388, 900
RemoveFont, 552
RemoveGrowableCol, 534

INDEX

1853

RemoveGrowableRow, 534
RemoveHandler, 86, 760
RemoveHelp, 673
RemoveIcon, 1269
RemoveLast, 1246
RemoveLastDir, 513
RemoveLine, 1309
RemoveMenu, 499
RemovePage, 965
RemovePen, 1001
RemoveProvider, 72
RemoveTool, 1353
RemoveTraceMask, 859
RemoveView, 442
Removing items, 55
Rename, 571, 1075
Rename entries/groups, 189
RenameEntry, 196
RenameGroup, 197
RenameValue, 1075
Render, 686
Render sample, 1642
Rendering media, 889
RenderPage, 1027
Reparent, 1457
Replace, 169, 761, 775, 921, 1063, 1246, 1295
ReplaceAll, 1064
ReplaceFirst, 1064
ReplaceWindow, 1192
ReportError, 1020
Request, 201, 377, 1273
RequestMore, 744
RequestUserAttention, 1359
Rescale, 761
reset, 1090, 1092
Reset, 388, 634, 1070
ResetAttr, 122
ResetBoundingBox, 368
ResetBuffer, 1226
ResetTime, 259
ResetUpdateTime, 1388
Resize, 761
Resolve, 1394
Resource file, 6
Restore, 880
RestoreState, 1158
Resume, 856, 1035, 1220, 1323
ResumePropagation, 466
RGBtoHSV, 760
RGBValue, 760
RGBValue::RGBValue, 760
right, 803
Right, 1137, 1246
RightDClick, 950
RightDown, 950
RightIsDown, 950
RightOf, 778
RightUp, 951
Rmdir, 514
RmDir, 571
RmFile, 571
RollbackTrans, 298

Rotate, 762
Rotate sample, 1642
Rotate90, 762
RotateHue, 762
RTTI, 8
Run, 1323
RunWizard, 1486

—S—
SameAs, 514, 779
Save, 442, 490, 499
SaveAs, 443
SaveEditControlValue, 616
SaveFile, 86, 97, 762, 770, 1296
SaveObject, 443
SaveState, 1158
Scale, 764
ScanParam, 713
ScreenToClient, 1458
Scroll, 1108
Scroll subwindow sample, 1642
ScrollLines, 1423, 1458
ScrollList, 829
ScrollPages, 1423, 1459
ScrollTo, 1376
ScrollToLine, 1424
ScrollWindow, 1459
SearchEventTable, 473
Searching and replacing, 1232
Searching and sorting, 56
Second, 1334
Seconds, 1334
Seek, 479, 488, 893, 1225, 1276
SeekEnd, 479, 488
SeekI, 781
SeekO, 110, 975
Select, 29, 211, 844, 1417, 1770
SelectAll, 616, 722, 1417
SelectBlock, 616
SelectCol, 616
SelectDocumentPath, 426
SelectDocumentType, 426
Selecting, 642, 644
Selection functions, 597
SelectionToDeviceRect, 616
SelectionToText, 722
SelectItem, 1377
SelectLine, 723
SelectObject, 898
SelectRange, 1418
SelectRow, 616
SelectViewType, 426
SelectWord, 723
SendCommand, 570
SendIdleEvents, 38
SendSizeEvent, 564
Service, 783, 785
Set, 19, 160, 197, 258, 259, 263, 555, 673, 779,

815, 1078, 1125, 1495
Set3StateValue, 132
SetAcceleratorTable, 1459

INDEX

1854

SetAccessible, 1460
SetActiveTarget, 856
SetActualColor, 729
SetAffirmativeButton, 1219
SetAffirmativeId, 399
SetAlign, 681, 729, 839
SetAlignHor, 681
SetAlignment, 627, 1043, 1084, 1281
SetAlignVer, 681
SetAllowSymbols, 547
SetAlpha, 765
SetAppName, 38
SetAscii, 571
SetAttr, 122, 653
SetAttrProvider, 652
SetAuthStr, 310
SetAutoLayout, 1460
SetAxisOrientation, 368
SetBackground, 368
SetBackgroundColour, 123, 626, 682, 829, 840,

842, 929, 1281, 1460
SetBackgroundMode, 369
SetBackgroundStyle, 1461
SetBellOnError, 1399
SetBestFittingSize, 1461
SetBezelFace, 577
SetBin, 1010
SetBinary, 571
SetBitmap, 95, 929, 1206
SetBitmapDisabled, 93
SetBitmapFocus, 93
SetBitmapLabel, 93
SetBitmapResource, 1353
SetBitmaps, 929
SetBitmapSelected, 94
SetBlinkTime, 128
SetBookCtrl, 1038
SetBorder, 123, 682, 1140, 1486
SetBorderColour, 123
SetBorders, 723
SetBoundingRect, 1337
SetBrush, 369
SetBufferIO, 1226
SetBufSize, 896
SetButtonsImageList, 1377
SetCancelButton, 1219
SetCanvas, 1027
SetCanVeto, 148
SetCap, 998
SetCapture, 791
SetCaret, 1461
SetCellAlignment, 617
SetCellBackgroundColour, 617
SetCellEditor, 617
SetCellFont, 617
SetCellRenderer, 617
SetCellTextColour, 617
SetCellValue, 618
SetChar, 1246
SetCheckpoint, 381
SetCheckPrevious, 382
SetChooseFull, 162

SetChosenFont, 548
SetClassName, 39
SetClearExt, 505
SetClientData, 144, 177, 211, 473, 1158
SetClientObject, 144, 177, 211, 474
SetClientSize, 1461
SetClipboard, 932
SetClippingRegion, 369
SetCmdLine, 154
SetCol, 579, 638
SetColAttr, 618, 653
SetColDefs, 340
SetColFormatBool, 618
SetColFormatCustom, 619
SetColFormatFloat, 618
SetColFormatNumber, 618
SetColLabelAlignment, 619
SetColLabelSize, 619
SetColLabelValue, 619, 652
SetCollate, 1010, 1017
SetColMinimalAcceptableWidth, 619
SetColMinimalWidth, 619
SetColNull, 344
SetColour, 103, 104, 162, 548, 592, 593, 998,

1010
SetCols, 654
SetColSize, 620
SetColspan, 582
SetColumn, 829, 840
SetColumnImage, 845
SetColumns, 137
SetColumnWidth, 829
SetCommandProcessor, 443
SetComment, 1503, 1511
SetConcurrency, 1323
SetConfig, 556
SetConfigPath, 556
SetConnectCommand, 405
SetConstraints, 1463
SetContainer, 729
SetContainingSizer, 1462
SetControl, 638
SetConv, 42
SetCount, 62
SetCountry, 256
SetCurrent, 592, 593
SetCurrentPage, 1027
SetCursor, 342, 452, 1118, 1462
SetCustomColour, 162
SetCwd, 514
SetDashes, 998
SetData, 146, 224, 232, 234, 451, 765, 840, 958,

1254, 1405
SetDataLen, 896
SetDataObject, 455
SetDate, 119, 238
SetDateTime, 43
SetDay, 259
SetDays, 244
SetDC, 685, 729
SetDebugErrorMessages, 299
SetDebugMode, 382

INDEX

1855

SetDefAttr, 628
SetDefault, 115
SetDefaultCellAlignment, 620
SetDefaultCellBackgroundColour, 620
SetDefaultCellFont, 620
SetDefaultCellTextColour, 620
SetDefaultColSize, 621
SetDefaultDir, 310
SetDefaultEditor, 620
SetDefaultEncoding, 543
SetDefaultExtension, 436
SetDefaultInfo, 980
SetDefaultItem, 990
SetDefaultMinMargins, 980
SetDefaultPath, 586
SetDefaultProxy, 1397
SetDefaultRenderer, 621
SetDefaultRowSize, 621
SetDefaults, 1125
SetDefaultSize, 1084
SetDefaultStyle, 1296
SetDelay, 1357
SetDepth, 87, 738
SetDesc, 155
SetDescription, 311, 436
SetDeviceOrigin, 369
SetDialogParent, 555
SetDialogTitle, 555
SetDimension, 1134, 1140
SetDirectory, 436, 495
SetDispatchPtr, 76
SetDocument, 419, 429, 1412
SetDocumentManager, 436
SetDocumentName, 443
SetDocumentTemplate, 443
SetDropTarget, 1464
SetDsn, 311
SetDuplex, 1010
SetEditable, 1297
SetEditMenu, 180
SetEditor, 627
SetEmptyCellSize, 631
SetEmptyExt, 514
SetEventHandler, 1158, 1464
SetEventObject, 466
SetEventType, 466
SetEvtHandlerEnabled, 474
SetExcludes, 1317
SetExitOnFrameDelete, 39
SetExpandEnvVars, 197
SetExt, 514
SetExtension, 98, 771
SetExternalAttributes, 1503
SetExtra, 1504
SetExtraLong, 177
SetExtraStyle, 1465
SetFaceName, 543
SetFamily, 543
SetFieldsCount, 1215
SetFile, 382
SetFileFilter, 437
SetFilename, 443, 495

SetFileType, 311
SetFilter, 587
SetFilterIndex, 495, 587
SetFindString, 531
SetFirstItem, 815
SetFlag, 1140
SetFlags, 117, 437, 531, 1043, 1159, 1282, 1495
SetFlexibleDirections, 534
SetFocus, 990, 1466
SetFocusFromKbd, 1466
SetFocusIgnoringChildren, 991
SetFont, 123, 370, 626, 840, 842, 929, 1282,

1466
SetFontBold, 730
SetFontFace, 730
SetFontFixed, 730
SetFontItalic, 730
SetFonts, 685, 689, 709, 724, 730
SetFontSize, 730
SetFontUnderlined, 730
SetFooter, 689, 709
SetForce, 148
SetForegroundColour, 1466
SetFormat, 234
SetFrame, 1028, 1412
SetFrameParameters, 670
SetFromClause, 343
SetFromPage, 1017
SetFS, 708
SetFullName, 515
SetGridCursor, 621
SetGridLineColour, 621
SetHeader, 689, 709, 732
SetHeaderColours, 120
SetHeight, 87, 738, 1057, 1125
SetHelp, 929
SetHelpController, 671
SetHelpString, 913, 922
SetHelpText, 1467
SetHenv, 311
SetHGap, 654
SetHighlightColours, 120
SetHoliday, 122, 124
SetHolidayColours, 121
SetHour, 260
SetHtmlFile, 710
SetHtmlText, 686, 710
SetIcon, 399, 1269, 1360
SetIcons, 399, 1360
SetId, 226, 467, 678, 840, 1384, 1467
SetImage, 840
SetImageList, 830, 965, 1377
SetIncludes, 1317
SetIndent, 683, 1377
SetInitialBestSize, 1463
SetInitialFont, 548
SetInitSize, 1140
SetInnerSizer, 1038
SetInputEncoding, 730
SetInsertionPoint, 170, 1297
SetInsertionPointEnd, 170, 1297
SetInstallPrefix, 1204

INDEX

1856

SetInstance, 39
SetInt, 177
SetIntPosition, 1227
SetIsDir, 44
SetIsReadOnly, 45
SetIsText, 1506
SetItem, 830, 831
SetItemBackgroundColour, 831, 1377
SetItemBold, 1377
SetItemCount, 832, 1418
SetItemData, 832, 1378
SetItemDropHighlight, 1378
SetItemFont, 832, 1378
SetItemHasChildren, 1378
SetItemImage, 832, 1379
SetItemMinSize, 1134
SetItemPosition, 631, 832
SetItemSelectedImage, 1379
SetItemSpan, 631
SetItemState, 832
SetItemText, 832, 1379
SetItemTextColour, 833, 1379
SetJoin, 999
SetLabel, 116, 206, 914, 922, 1048, 1212, 1467
SetLabelBackgroundColour, 621
SetLabelFont, 621
SetLabelTextColour, 622
SetLabelTop, 923
SetLastDirectory, 427
SetLeftIndent, 1282
SetLeftMenu, 1360
SetLength, 1254
SetLevel, 382, 1510
SetLineCount, 1424
SetLineSize, 1148
SetLink, 678, 731
SetLinkColor, 731
SetLocalExtra, 1505
SetLog, 860
SetLoggingOff, 148
SetLogicalFunction, 370
SetLogLevel, 858
SetLogo, 155
SetMapMode, 370
SetMarginBottomRight, 981
SetMargins, 622, 710, 1353, 1418
SetMarginTopLeft, 980
SetMarginWidth, 929
SetMask, 87, 765, 840
SetMaskColour, 765
SetMaskFromImage, 766
SetMaxDocsOpen, 427
SetMaximumSizeX, 1088
SetMaximumSizeY, 1088
SetMaxLength, 1297
SetMaxPage, 1017
SetMaxSize, 1463
SetMenu, 929
SetMenuBar, 564
SetMenuStrings, 180
SetMessage, 410, 495
SetMethod, 1505

SetMillisecond, 260
SetMimeType, 771
SetMinHeight, 684, 1216
SetMinimumPaneSize, 1194
SetMinimumSizeX, 1088
SetMinimumSizeY, 1088
SetMinMarginBottomRight, 981
SetMinMarginTopLeft, 981
SetMinPage, 1017
SetMinSize, 1134, 1463
SetMinute, 260
SetModal, 399
SetMode, 744, 1314, 1388, 1505
SetMonth, 259
SetMonths, 245
SetMovementThreshold, 792
SetName, 44, 98, 515, 771, 1468
SetNativeFontInfo, 544
SetNegativeButton, 1219
SetNext, 679, 1490
SetNextHandler, 474
SetNoCopies, 1010, 1017
SetNonFlexibleGrowMode, 534
SetNotifier, 45, 1505
SetNotify, 1160
SetOldSelection, 968
SetOnlineStatus, 404
SetOption, 766, 1261, 1262
SetOrCalcColumnSizes, 622
SetOrCalcRowSizes, 622
SetOrderByClause, 344
SetOrientation, 1011, 1043, 1084
SetOwnBackgroundColour, 1463
SetOwner, 1328
SetOwnFont, 1464
SetOwnForegroundColour, 1464
SetPadding, 966
SetPage, 724
SetPageImage, 966
SetPageSize, 966, 1148, 1486
SetPageText, 966
SetPalette, 88, 371, 766, 1468
SetPaperId, 981, 1011
SetPaperSize, 981
SetParameters, 632, 635, 636, 637, 647
SetParent, 679
SetParentResource, 1499
SetParser, 715
SetPassive, 571
SetPassword, 311, 572, 1040
SetPath, 197, 410, 495, 587
SetPen, 371
SetPlaybackrate, 894
SetPointSize, 544
SetPos, 581, 679
SetPosition, 203, 672, 1182
SetPrecision, 647
SetPrev, 1490
SetPreviousHandler, 475
SetPrintData, 981, 1018
SetPrinterName, 1013
SetPrintout, 1028

INDEX

1857

SetPrintToFile, 1018
SetPriority, 1323
SetProportion, 1140
SetProxy, 1397
SetQuality, 1013
SetQueryTimeout, 345
SetRange, 240, 548, 578, 1148, 1178, 1180
SetRatio, 1140
SetReadOnly, 622, 627
SetRecordDefaults, 197
SetRect, 117
SetRedoAccelerator, 180
SetRefData, 973
SetRelatedFrame, 724
SetRelatedStatusBar, 725
SetRenderer, 627
SetReplaceString, 531
SetRequestedLength, 1043
SetResolution, 1003
SetReturnCode, 400
SetRGB, 767
SetRightIndent, 1282
SetRightMenu, 1361
SetRow, 579, 638
SetRowAttr, 622, 653
SetRowLabelAlignment, 622
SetRowLabelSize, 623
SetRowLabelValue, 623, 652
SetRowMinimalAcceptableHeight, 623
SetRowMinimalHeight, 623
SetRows, 654
SetRowSize, 623
SetRowspan, 582
SetSashBorder, 1088
SetSashGravity, 1192
SetSashPosition, 1186, 1193
SetSashSize, 1193
SetSashVisible, 1088
SetScrollbar, 1100, 1468
SetScrollbars, 1108
SetScrollLinesX, 624
SetScrollLinesY, 624
SetScrollPos, 1469
SetScrollRate, 1110
SetSecond, 260
SetSelection, 170, 212, 966, 968, 1018, 1049,

1121, 1148, 1181, 1298, 1418
SetSelectionBackground, 624, 1418
SetSelectionForeground, 624
SetSelectionMode, 624
SetSelections, 953
SetSetupDialog, 1018
SetShadowWidth, 578
SetShape, 1361
SetShowHelp, 548
SetSingleStyle, 833
SetSize, 44, 128, 633, 686, 1043, 1057, 1470
SetSizeHints, 1134, 1471
SetSizer, 1141, 1472
SetSizerAndFit, 1473
SetSpacer, 1141
SetSpan, 581

SetSplitMode, 1194
SetSqlLogging, 299
SetStandardError, 383
SetState, 840
SetStateImageList, 1379
SetStateMask, 841
SetStatusBar, 565
SetStatusBarPane, 565
SetStatusStyles, 1217
SetStatusText, 565, 1216
SetStatusWidths, 565, 1216
SetStipple, 104, 999
SetStream, 383
SetString, 178, 212, 1258
SetStringSelection, 212, 1049
SetStringSeparators, 1313
SetStyle, 104, 410, 495, 544, 999, 1298, 1317
SetSubMenu, 930
SetSwitchChars, 154
SetSystemMadeBy, 1506
SetTable, 624
SetTabs, 1282
SetTargetWindow, 1110
SetTempDir, 695, 697
SetText, 841, 930, 1302, 1388
SetTextBackground, 371
SetTextColour, 123, 626, 833, 841, 843, 930,

1282
SetTextForeground, 371
SetThemeEnabled, 1473
SetThumbLength, 1149
SetThumbPosition, 1100
SetTick, 1149
SetTickFreq, 1150
SetTimeout, 1160
SetTimes, 515
SetTimestamp, 467, 858
SetTip, 1357
SetTipWindowPtr, 1337
SetTitle, 400, 444, 914, 1361, 1473
SetTitleFormat, 695, 700
SetToCurrent, 258
SetToLastMonthDay, 269
SetToLastWeekDay, 269
SetToNextWeekDay, 268
SetToolBar, 566, 888
SetToolBitmapSize, 1354
SetToolClientData, 1354
SetToolLongHelp, 1354
SetToolPacking, 1355
SetToolSeparation, 1355
SetToolShortHelp, 1355
SetToolTip, 1383, 1474
SetToPage, 1018
SetToPrevWeekDay, 268
SetTopWindow, 39
SetToWeekDay, 268
SetToWeekDayInSameWeek, 267
SetToWeekOfYear, 269
SetToYearDay, 269
SetTraceMask, 858
SetTransferMode, 572

INDEX

1858

SetType, 98, 226, 771
SetUid, 311
SetUmask, 490
SetUnderlined, 545
SetUndoAccelerator, 180
Setup, 1020
SetUpdateInterval, 1388
SetupWindow, 1499
SetUseBestVisual, 40
SetUser, 572, 1040
SetUserID, 312
SetUserScale, 372
SetValidator, 1474
SetValue, 132, 170, 241, 578, 650, 1052, 1075,

1150, 1178, 1180, 1299, 1304, 1340
SetValueAsBool, 651
SetValueAsCustom, 651
SetValueAsDouble, 650
SetValueAsLong, 650
SetVendorName, 40
SetVerbose, 857
SetVGap, 654
SetView, 419, 429, 651
SetViewer, 670
SetViewName, 1412
SetVirtualSize, 1474
SetVirtualSizeHints, 1135, 1474
SetVolume, 515, 893
SetWeekDay, 126
SetWeeks, 245
SetWeight, 545
SetWellKnownHost, 405
SetWhereClause, 345
SetWidth, 88, 647, 738, 841, 999, 1058, 1125
SetWidthFloat, 684
SetWildcard, 496
SetWindow, 29, 1141, 1399
SetWindowMenu, 888
SetWindowStyle, 1379, 1475
SetWindowStyleFlag, 833, 1475
SetWindowVariant, 1475
SetX, 1058
SetY, 1058
SetYear, 259
SetYears, 244
SetZoom, 1028
SetZoomControl, 1005
ShiftDown, 642, 644, 645, 798, 951
ShouldInheritColours, 1475
ShouldPropagate, 467
Show, 128, 389, 390, 400, 448, 633, 865, 1049,

1135, 1141, 1476
ShowCellEditControl, 625
ShowFullScreen, 1362
ShowHelp, 674
ShowModal, 165, 401, 410, 496, 549, 931, 953,

977, 1014, 1121, 1304
ShowPlayerControls, 894
ShowPosition, 1299
Shrink, 62, 67, 1246
Signal, 183
Simplify the problem, 13

size, 659, 663
Size, 764
Skip, 467
Sleep, 1323
SockAddrLen, 1151
Socket state, 1153
Sockets sample, 1642
Some advice about using wxString, 1651
Sort, 63, 67, 68, 809
SortChildren, 1379
SortItems, 833
Sound sample, 1643
SplitHorizontally, 1194
SplitPath, 515
SplitVertically, 1195
SplitVolume, 516
sprintf, 1246
SQLColumnName, 300
SQLTableName, 300
Start, 1220, 1328
StartAdvise, 202, 377, 1274
StartDoc, 372
StartDrawingOnTop, 1094
StartingClick, 634
StartingKey, 634
StartPage, 372
StartsWith, 1246
Statbar sample, 1643
Static functions, 186, 249, 853, 1329
std::string compatibility functions, 1234
Stop, 893, 1175, 1328
StopAdvise, 202, 377, 1274
StopParsing, 708
StopPropagation, 467
Strategies for exceptions handling, 1689
Stream, 1228
String length, 1230
Strip, 1247
Submit, 181
SubString, 1247
Substring extraction, 1231
Subtract, 245, 264, 265, 1067, 1334
Supported bitmap file formats, 1718
Supported languages, 846
Suspend, 856
swap, 1090, 1093
SwapBuffers, 592, 593
Sync, 111

—T—
TableExists, 301
TablePrivileges, 301
Tag Handlers, 1779
Tags supported by wxHTML, 1781
TakeData, 224
Technicalities, 1690
Tell, 480, 488, 1225, 1276
TellI, 782
TellO, 975
Templates, 8
TestDestroy, 1324

INDEX

1859

Testing for WinCE SDKs, 1817
Tests, 1330
Tests of existence, 188
Text sample, 1643
Thaw, 1476
The data provider (source) duties, 1748
The data receiver (target) duties, 1748
The idea behind sizers, 1699
This, 1324
Thread sample, 1644
Tile, 889
Time, 1220
Time zone and DST support, 253
Time zone considerations, 1657
ToAscii, 1247
Today, 257
ToDouble, 1247
Toggle, 1380, 1419
ToggleItemSelection, 1380
ToggleTool, 1356
ToGMT, 271
ToLong, 867, 1247
Toolbar sample, 1644
top, 803
ToString, 868
ToText, 725
ToTimezone, 271
Touch, 516
ToULong, 1248
TransferDataFromWindow, 1476
TransferDataToWindow, 1477
TransferFromWindow, 588, 1317
TransferToWindow, 588, 1317, 1399
TranslateSqlState, 303
Traverse, 408
Treectrl sample, 1645
Trim, 1248
Truncate, 1248
TryLock, 956
TryWait, 1115
Tuning wxString for your application, 1653
Type of NULL, 8

—U—
Unconstrained, 778
Undo, 171, 172, 181, 1299
Unescape, 1395
UngetAppendBuf, 897
Ungetch, 782
UngetWriteBuf, 896, 1248
Unicode and ANSI modes, 1659
Unicode and the outside world, 1661
Unicode support in wxWidgets, 1660
Unicode-related compilation settings, 1661
Union, 1058, 1067
Unload, 458, 1495
UnloadLibrary, 417
Unlock, 956
UNow, 257
Unread, 1163
UnRef, 973

UnregisterHotKey, 1477
Unselect, 1380
UnselectAll, 1380
UnselectItem, 1380
UnsetNotifier, 45, 1505
Unsplit, 1196
Update, 346, 1036, 1477, 1771
UpdateAllViews, 444
UpdateAttrCols, 652
UpdateAttrRows, 652
UpdateBackingFromWindow, 448
UpdateRow, 352
UpdateSize, 1196
UpdateUI, 914
UpdateWhere, 347
UpdateWindowUI, 1478
Upper, 1249
UpperCase, 1249
URLToFileName, 520
Usage, 156
Use a debugger, 13
Use ASSERT, 12
Use logging functions, 13
Use relative positioning or constraints, 12
Use the wxWidgets debugging facilities, 13
Use wxString in preference to character arrays,

12
Use wxWidgets resource files, 12
UseConfig, 695, 700
UseMenu, 499
UsePrimarySelection, 147
Using binary resource files, 1707
Using embedded resources, 1708
Using the toolbar library, 1738
Using wxPython, 1786

—V—
Validate, 1318, 1399, 1478
ValidateRow, 352
ValidHost, 141, 374, 1270
version, 1079
Veto, 149, 970

—W—
Wait, 184, 1116, 1163, 1164, 1324
WaitForAccept, 1172
WaitForRead, 1164
WaitForWrite, 1165
WaitOnConnect, 1168
WaitTimeout, 184, 1116
Walk, 1200
WalkFromException, 1201
WarpPointer, 1479
wc_str, 1249
WC2MB, 217, 872, 874, 875, 876, 877
Week, 245, 1335
Weeks, 245, 1335
What is Unicode?, 1658
What is wxPython?, 1784
Where, 347

INDEX

1860

Where to go for help, 1795
Why use wxPython?, 1784
width, 803, 1054
widthSash, 1197
Window identifiers, 1683
Window layout examples, 1697
Window sizing in wxWinCE, 1818
Wizard sample, 1645
Write, 197, 198, 480, 489, 975, 976, 1165, 1224,

1277, 1310, 1408
Write16, 236, 1314
Write32, 236, 1315
Write64, 236, 237
Write8, 236, 1314
WriteCustomization, 695, 700, 725
WriteDouble, 237, 1315
WriteMsg, 1166
WriteSqlLog, 303
WriteString, 237, 1315
WriteText, 1299
Writing values into the string, 1232
WX_APPEND_ARRAY, 58
WX_CLEAR_ARRAY, 58
wx_const_cast, 1576
WX_DECLARE_EXPORTED_OBJARRAY, 57
WX_DECLARE_OBJARRAY, 57
WX_DECLARE_USER_EXPORTED_OBJARRA

Y, 57
WX_DEFINE_ARRAY, 56
WX_DEFINE_EXPORTED_ARRAY, 56
WX_DEFINE_EXPORTED_OBJARRAY, 57
WX_DEFINE_OBJARRAY, 57
WX_DEFINE_SORTED_ARRAY, 56
WX_DEFINE_SORTED_EXPORTED_ARRAY,

56
WX_DEFINE_SORTED_USER_EXPORTED_AR

RAY, 56
WX_DEFINE_USER_EXPORTED_ARRAY, 56
WX_DEFINE_USER_EXPORTED_OBJARRAY,

57
WX_GL_AUX_BUFFERS, 589
WX_GL_BUFFER_SIZE, 589
WX_GL_DEPTH_SIZE, 590
WX_GL_DOUBLEBUFFER, 589
WX_GL_LEVEL, 589
WX_GL_MIN_ACCUM_ALPHA, 590
WX_GL_MIN_ACCUM_BLUE, 590
WX_GL_MIN_ACCUM_GREEN, 590
WX_GL_MIN_ACCUM_RED, 590
WX_GL_MIN_ALPHA, 590
WX_GL_MIN_BLUE, 590
WX_GL_MIN_GREEN, 590
WX_GL_MIN_RED, 590
WX_GL_RGBA, 589
WX_GL_STENCIL_SIZE, 590
WX_GL_STEREO, 589
wx_reinterpret_cast, 1576
wx_static_cast, 1577
wxAcceleratorEntry, 18
wxAcceleratorEntry::GetCommand, 18
wxAcceleratorEntry::GetFlags, 19
wxAcceleratorEntry::GetKeyCode, 19

wxAcceleratorEntry::Set, 19
wxAcceleratorEntry::wxAcceleratorEntry, 18
wxAcceleratorTable, 20
wxAcceleratorTable::~wxAcceleratorTable, 21
wxAcceleratorTable::Ok, 21
wxAcceleratorTable::operator !=, 21
wxAcceleratorTable::operator =, 21
wxAcceleratorTable::operator ==, 21
wxAcceleratorTable::wxAcceleratorTable, 20
wxAccessible, 26
wxAccessible::~wxAccessible, 26
wxAccessible::DoDefaultAction, 26
wxAccessible::GetChild, 26
wxAccessible::GetChildCount, 26
wxAccessible::GetDefaultAction, 27
wxAccessible::GetDescription, 27
wxAccessible::GetFocus, 27
wxAccessible::GetHelpText, 27
wxAccessible::GetKeyboardShortcut, 27
wxAccessible::GetLocation, 27
wxAccessible::GetName, 27
wxAccessible::GetParent, 28
wxAccessible::GetRole, 28
wxAccessible::GetSelections, 28
wxAccessible::GetState, 28
wxAccessible::GetValue, 28
wxAccessible::GetWindow, 28
wxAccessible::HitTest, 28
wxAccessible::Navigate, 29
wxAccessible::NotifyEvent, 29
wxAccessible::Select, 29
wxAccessible::SetWindow, 29
wxAccessible::wxAccessible, 26
wxActivateEvent, 30
wxActivateEvent::GetActive, 30
wxActivateEvent::GetCapturedWindow, 942
wxActivateEvent::wxActivateEvent, 30
wxADJUST_MINSIZE, 1627
wxALIGN_BOTTOM, 1129
wxALIGN_CENTER, 1129
wxALIGN_CENTER_HORIZONTAL, 1129
wxALIGN_CENTER_VERTICAL, 1129
wxALIGN_CENTRE, 1211
wxALIGN_LEFT, 1129, 1211
wxALIGN_RIGHT, 129, 1129, 1211
wxALIGN_TOP, 1129
wxALL, 1129
wxALWAYS_SHOW_SB, 1425
wxANIHandler, 745
wxApp, 31
wxApp::~wxApp, 31
wxApp::argc, 31
wxApp::argv, 31
wxApp::CreateLogTarget, 31
wxApp::Dispatch, 32
wxApp::ExitMainLoop, 32
wxApp::FilterEvent, 32
wxApp::GetAppName, 32
wxApp::GetClassName, 33
wxApp::GetExitOnFrameDelete, 33
wxApp::GetInstance, 33
wxApp::GetTopWindow, 33

INDEX

1861

wxApp::GetUseBestVisual, 33
wxApp::GetVendorName, 34
wxApp::HandleEvent, 40
wxApp::IsActive, 34
wxApp::IsMainLoopRunning, 34
wxApp::MainLoop, 34
wxApp::OnAssert, 34
wxApp::OnCmdLineError, 35
wxApp::OnCmdLineHelp, 35
wxApp::OnCmdLineParsed, 35
wxApp::OnExceptionInMainLoop, 36
wxApp::OnExit, 36
wxApp::OnFatalException, 36
wxApp::OnInit, 37
wxApp::OnInitCmdLine, 37
wxApp::OnRun, 37
wxApp::OnUnhandledException, 37
wxApp::Pending, 38
wxApp::ProcessMessage, 37
wxApp::SendIdleEvents, 38
wxApp::SetAppName, 38
wxApp::SetClassName, 39
wxApp::SetExitOnFrameDelete, 39
wxApp::SetInstance, 39
wxApp::SetTopWindow, 39
wxApp::SetUseBestVisual, 40
wxApp::SetVendorName, 40
wxApp::wxApp, 31
wxApp::Yield, 41
wxArchiveClassFactory::Get/SetConv, 42
wxArchiveClassFactory::GetInternalName, 42
wxArchiveClassFactory::NewEntry, 42
wxArchiveClassFactory::NewStream, 42
wxArchiveEntry::Clone, 43
wxArchiveEntry::Get/SetDateTime, 43
wxArchiveEntry::Get/SetName, 44
wxArchiveEntry::Get/SetSize, 44
wxArchiveEntry::GetInternalFormat, 43
wxArchiveEntry::GetInternalName, 43
wxArchiveEntry::GetOffset, 44
wxArchiveEntry::IsDir/SetIsDir, 44
wxArchiveEntry::IsReadOnly/SetIsReadOnly, 44
wxArchiveEntry::Set/UnsetNotifier, 45
wxArchiveInputStream::CloseEntry, 46
wxArchiveInputStream::GetNextEntry, 46
wxArchiveInputStream::OpenEntry, 46
wxArchiveIterator, 48
wxArchiveIterator::operator*, 48
wxArchiveIterator::operator++, 48
wxArchiveIterator::wxArchiveIterator, 48
wxArchiveNotifier::OnEntryUpdated, 49
wxArchiveOutputStream::~wxArchiveOutputStrea

m, 50
wxArchiveOutputStream::Close, 50
wxArchiveOutputStream::CloseEntry, 50
wxArchiveOutputStream::CopyArchiveMetaData,

50
wxArchiveOutputStream::CopyEntry, 50
wxArchiveOutputStream::PutNextDirEntry, 51
wxArchiveOutputStream::PutNextEntry, 51
wxArray, 58
wxArray copy constructor and assignment

operator, 58
wxArray::~wxArray, 59
wxArray::Add, 59
wxArray::Alloc, 59
wxArray::Clear, 60
wxArray::Count, 60
wxArray::Empty, 60
wxArray::GetCount, 60
wxArray::Index, 60
wxArray::Insert, 61
wxArray::IsEmpty, 61
wxArray::Item, 61
wxArray::Last, 61
wxArray::Remove, 61
wxArray::RemoveAt, 62
wxArray::SetCount, 62
wxArray::Shrink, 62
wxArray::Sort, 62
wxArrayString, 64
wxArrayString::~wxArrayString, 64
wxArrayString::Add, 65
wxArrayString::Alloc, 65
wxArrayString::Clear, 65
wxArrayString::Count, 65
wxArrayString::Empty, 66
wxArrayString::GetCount, 66
wxArrayString::Index, 66
wxArrayString::Insert, 66
wxArrayString::IsEmpty, 66
wxArrayString::Item, 67
wxArrayString::Last, 67
wxArrayString::operator!=, 65
wxArrayString::operator[], 65
wxArrayString::operator=, 64
wxArrayString::operator==, 64
wxArrayString::Remove, 67
wxArrayString::RemoveAt, 67
wxArrayString::Shrink, 67
wxArrayString::Sort, 67
wxArrayString::wxArrayString, 64
wxArtProvider::CreateBitmap, 71
wxArtProvider::GetBitmap, 71
wxArtProvider::GetIcon, 72
wxArtProvider::PopProvider, 72
wxArtProvider::PushProvider, 72
wxArtProvider::RemoveProvider, 72
wxASSERT, 1586
wxASSERT_MIN_BITSIZE, 1586
wxASSERT_MSG, 1587
wxAutomationObject, 73
wxAutomationObject::~wxAutomationObject, 73
wxAutomationObject::CallMethod, 73
wxAutomationObject::CreateInstance, 74
wxAutomationObject::GetDispatchPtr, 74
wxAutomationObject::GetInstance, 74
wxAutomationObject::GetObject, 74
wxAutomationObject::GetProperty, 75
wxAutomationObject::Invoke, 75
wxAutomationObject::PutProperty, 76
wxAutomationObject::SetDispatchPtr, 76
wxAutomationObject::wxAutomationObject, 73
wxBC_BOTTOM, 1727

INDEX

1862

wxBC_DEFAULT, 1727
wxBC_LEFT, 1727
wxBC_RIGHT, 1727
wxBC_TOP, 1727
wxBeginBusyCursor, 1544
wxBell, 1544
wxBitmap, 77, 78
wxBITMAP, 1553
wxBitmap::~wxBitmap, 80
wxBitmap::AddHandler, 81
wxBitmap::CleanUpHandlers, 81
wxBitmap::ConvertToImage, 81
wxBitmap::CopyFromIcon, 81
wxBitmap::Create, 81
wxBitmap::FindHandler, 82
wxBitmap::GetDepth, 83
wxBitmap::GetHandlers, 83
wxBitmap::GetHeight, 83
wxBitmap::GetMask, 84
wxBitmap::GetPalette, 83
wxBitmap::GetSubBitmap, 84
wxBitmap::GetWidth, 84
wxBitmap::InitStandardHandlers, 84
wxBitmap::InsertHandler, 84
wxBitmap::LoadFile, 85
wxBitmap::Ok, 86
wxBitmap::operator !=, 89
wxBitmap::operator =, 88
wxBitmap::operator ==, 88
wxBitmap::RemoveHandler, 86
wxBitmap::SaveFile, 86
wxBitmap::SetDepth, 87
wxBitmap::SetHeight, 87
wxBitmap::SetMask, 87
wxBitmap::SetPalette, 88
wxBitmap::SetWidth, 88
wxBitmap::wxBitmap, 77
wxBITMAP_TYPE_ANI, 747, 754, 759
wxBITMAP_TYPE_ANY, 747, 754
wxBITMAP_TYPE_BMP, 79, 747, 754
wxBITMAP_TYPE_BMP_RESOURCE, 79
wxBITMAP_TYPE_CUR, 219, 747, 754
wxBITMAP_TYPE_CUR_RESOURCE, 219
wxBITMAP_TYPE_GIF, 79, 735, 747, 754
wxBITMAP_TYPE_ICO, 219, 735, 747, 754
wxBITMAP_TYPE_ICO_RESOURCE, 735
wxBITMAP_TYPE_JPEG, 747, 754
wxBITMAP_TYPE_PCX, 747, 754
wxBITMAP_TYPE_PICT_RESOURCE, 79
wxBITMAP_TYPE_PNG, 747, 754
wxBITMAP_TYPE_PNM, 747, 754
wxBITMAP_TYPE_TIF, 747, 754
wxBITMAP_TYPE_XBM, 79, 219, 735
wxBITMAP_TYPE_XPM, 79, 735, 747, 754
wxBitmapButton, 90
wxBitmapButton::~wxBitmapButton, 91
wxBitmapButton::Create, 91
wxBitmapButton::GetBitmapDisabled, 92
wxBitmapButton::GetBitmapFocus, 92
wxBitmapButton::GetBitmapLabel, 92
wxBitmapButton::GetBitmapSelected, 92
wxBitmapButton::SetBitmapDisabled, 93

wxBitmapButton::SetBitmapFocus, 93
wxBitmapButton::SetBitmapLabel, 93
wxBitmapButton::SetBitmapSelected, 94
wxBitmapButton::wxBitmapButton, 90
wxBitmapDataObject, 95
wxBitmapDataObject::GetBitmap, 95
wxBitmapDataObject::SetBitmap, 95
wxBitmapHandler, 95
wxBitmapHandler::~wxBitmapHandler, 95
wxBitmapHandler::Create, 96
wxBitmapHandler::GetExtension, 96
wxBitmapHandler::GetName, 96
wxBitmapHandler::GetType, 97
wxBitmapHandler::LoadFile, 97
wxBitmapHandler::SaveFile, 97
wxBitmapHandler::SetExtension, 98
wxBitmapHandler::SetName, 98
wxBitmapHandler::SetType, 98
wxBitmapHandler::wxBitmapHandler, 95
wxBMPHandler, 745
wxBOTTOM, 1129
wxBoxSizer, 99
wxBoxSizer::CalcMin, 99
wxBoxSizer::GetOrientation, 99
wxBoxSizer::RecalcSizes, 99
wxBoxSizer::wxBoxSizer, 99
wxBrush, 101
wxBrush::~wxBrush, 102
wxBrush::GetColour, 102
wxBrush::GetStipple, 102
wxBrush::GetStyle, 103
wxBrush::IsHatch, 103
wxBrush::Ok, 103
wxBrush::operator !=, 105
wxBrush::operator =, 105
wxBrush::operator ==, 105
wxBrush::SetColour, 103
wxBrush::SetStipple, 104
wxBrush::SetStyle, 104
wxBrush::wxBrush, 101
wxBrushList, 106
wxBrushList::AddBrush, 106
wxBrushList::FindOrCreateBrush, 106
wxBrushList::RemoveBrush, 107
wxBrushList::wxBrushList, 106
wxBU_AUTODRAW, 90
wxBU_BOTTOM, 90, 113
wxBU_EXACTFIT, 90, 113
wxBU_LEFT, 90, 113
wxBU_RIGHT, 90, 113
wxBU_TOP, 90, 113
wxBufferedDC, 107, 108
wxBufferedDC::~wxBufferedDC, 108
wxBufferedDC::Init, 108
wxBufferedDC::wxBufferedDC, 107
wxBufferedOutputStream, 110
wxBufferedOutputStream::~wxBufferedOutputStr

eam, 110
wxBufferedOutputStream::SeekO, 110
wxBufferedOutputStream::Sync, 110
wxBufferedOutputStream::wxBufferedOutputStre

am, 110

INDEX

1863

wxBufferedPaintDC, 109
wxBufferedPaintDC::~wxBufferedPaintDC, 109
wxBufferedPaintDC::wxBufferedPaintDC, 109
wxBusyCursor, 111
wxBusyCursor::~wxBusyCursor, 111
wxBusyCursor::wxBusyCursor, 111
wxBusyInfo, 112
wxBusyInfo::~wxBusyInfo, 112
wxBusyInfo::wxBusyInfo, 112
wxButton, 113, 114
wxButton::~wxButton, 114
wxButton::Create, 115
wxButton::GetDefaultSize, 115
wxButton::GetLabel, 115
wxButton::SetDefault, 115
wxButton::SetLabel, 115
wxButton::wxButton, 113
wxCAL_MONDAY_FIRST, 118
wxCAL_NO_MONTH_CHANGE, 118
wxCAL_NO_YEAR_CHANGE, 118
wxCAL_SEQUENTIAL_MONTH_SELECTION,

118
wxCAL_SHOW_HOLIDAYS, 118
wxCAL_SHOW_SURROUNDING_WEEKS, 118
wxCAL_SUNDAY_FIRST, 118
wxCalculateLayoutEvent, 116
wxCalculateLayoutEvent::GetFlags, 116
wxCalculateLayoutEvent::GetRect, 117
wxCalculateLayoutEvent::SetFlags, 117
wxCalculateLayoutEvent::SetRect, 117
wxCalculateLayoutEvent::wxCalculateLayoutEve

nt, 116
wxCalendarCtrl, 119
wxCalendarCtrl::~wxCalendarCtrl, 119
wxCalendarCtrl::Create, 119
wxCalendarCtrl::EnableHolidayDisplay, 120
wxCalendarCtrl::EnableMonthChange, 120
wxCalendarCtrl::EnableYearChange, 120
wxCalendarCtrl::GetAttr, 121
wxCalendarCtrl::GetDate, 119
wxCalendarCtrl::GetHeaderColourBg, 120
wxCalendarCtrl::GetHeaderColourFg, 120
wxCalendarCtrl::GetHighlightColourBg, 121
wxCalendarCtrl::GetHighlightColourFg, 121
wxCalendarCtrl::GetHolidayColourBg, 121
wxCalendarCtrl::GetHolidayColourFg, 121
wxCalendarCtrl::HitTest, 122
wxCalendarCtrl::ResetAttr, 122
wxCalendarCtrl::SetAttr, 122
wxCalendarCtrl::SetDate, 119
wxCalendarCtrl::SetHeaderColours, 120
wxCalendarCtrl::SetHighlightColours, 120
wxCalendarCtrl::SetHoliday, 122
wxCalendarCtrl::SetHolidayColours, 121
wxCalendarCtrl::wxCalendarCtrl, 119
wxCalendarDateAttr, 123
wxCalendarDateAttr::GetBackgroundColour, 125
wxCalendarDateAttr::GetBorder, 125
wxCalendarDateAttr::GetBorderColour, 125
wxCalendarDateAttr::GetFont, 125
wxCalendarDateAttr::GetTextColour, 124
wxCalendarDateAttr::HasBackgroundColour, 124

wxCalendarDateAttr::HasBorder, 124
wxCalendarDateAttr::HasBorderColour, 124
wxCalendarDateAttr::HasFont, 124
wxCalendarDateAttr::HasTextColour, 124
wxCalendarDateAttr::IsHoliday, 124
wxCalendarDateAttr::SetBackgroundColour, 123
wxCalendarDateAttr::SetBorder, 123
wxCalendarDateAttr::SetBorderColour, 123
wxCalendarDateAttr::SetFont, 123
wxCalendarDateAttr::SetHoliday, 124
wxCalendarDateAttr::SetTextColour, 123
wxCalendarDateAttr::wxCalendarDateAttr, 123
wxCalendarEvent::GetWeekDay, 125
wxCalendarEvent::SetWeekDay, 126
wxCAPTION, 393, 557, 878, 883, 937
wxCaret, 126
wxCaret::Create, 126
wxCaret::GetBlinkTime, 127
wxCaret::GetPosition, 127
wxCaret::GetSize, 127
wxCaret::GetWindow, 127
wxCaret::Hide, 127
wxCaret::IsOk, 127
wxCaret::IsVisible, 128
wxCaret::Move, 128
wxCaret::SetBlinkTime, 128
wxCaret::SetSize, 128
wxCaret::Show, 128
wxCaret::wxCaret, 126
wxCB_DROPDOWN, 165
wxCB_READONLY, 165
wxCB_SIMPLE, 165
wxCB_SORT, 165
wxCHANGE_UMASK, 1532
wxCHB_BOTTOM, 138, 1727
wxCHB_DEFAULT, 138, 1727
wxCHB_LEFT, 138, 1727
wxCHB_RIGHT, 138, 1727
wxCHB_TOP, 138, 1727
wxCHECK, 1588
wxCHECK_GCC_VERSION, 1519, 1520
wxCHECK_MSG, 1588
wxCHECK_RET, 1588
wxCHECK_VERSION, 1519
wxCHECK_VERSION_FULL, 1520
wxCHECK_W32API_VERSION, 1520
wxCHECK2, 1588, 1589
wxCHECK2_MSG, 1589
wxCheckBox, 129, 130
wxCheckBox::~wxCheckBox, 130
wxCheckBox::Create, 130
wxCheckBox::Get3StateValue, 131
wxCheckBox::GetValue, 131
wxCheckBox::Is3rdStateAllowedForUser, 131
wxCheckBox::Is3State, 131
wxCheckBox::IsChecked, 131
wxCheckBox::Set3StateValue, 132
wxCheckBox::SetValue, 132
wxCheckBox::wxCheckBox, 129
wxCheckListBox, 133
wxCheckListBox::~wxCheckListBox, 134
wxCheckListBox::Check, 134

INDEX

1864

wxCheckListBox::IsChecked, 134
wxCheckListBox::wxCheckListBox, 133
wxCHK_2STATE, 129
wxCHK_3STATE, 129
wxCHK_ALLOW_3RD_STATE_FOR_USER, 129
wxChoice, 135
wxChoice::~wxChoice, 136
wxChoice::Create, 136
wxChoice::Delete, 137
wxChoice::GetColumns, 137
wxChoice::SetColumns, 137
wxChoice::wxChoice, 135
wxClassInfo, 139, 1648
wxClassInfo::CreateObject, 139
wxClassInfo::FindClass, 139
wxClassInfo::GetBaseClassName1, 139
wxClassInfo::GetBaseClassName2, 139
wxClassInfo::GetClassName, 139
wxClassInfo::GetSize, 139
wxClassInfo::InitializeClasses, 139
wxClassInfo::IsKindOf, 140
wxClassInfo::wxClassInfo, 139
wxClient, 140
wxClient::MakeConnection, 140
wxClient::OnMakeConnection, 141
wxClient::ValidHost, 141
wxClient::wxClient, 140
wxClientData, 142
wxClientData::~wxClientData, 143
wxClientData::wxClientData, 142
wxClientDataContainer, 143
wxClientDataContainer::~wxClientDataContainer,

143
wxClientDataContainer::GetClientData, 143
wxClientDataContainer::GetClientObject, 143
wxClientDataContainer::SetClientData, 144
wxClientDataContainer::SetClientObject, 144
wxClientDataContainer::wxClientDataContainer,

143
wxClientDC, 142
wxClientDC::wxClientDC, 142
wxClientDisplayRect, 1553
wxCLIP_CHILDREN, 1425
wxClipboard, 145
wxClipboard::~wxClipboard, 145
wxClipboard::AddData, 145
wxClipboard::Clear, 145
wxClipboard::Close, 145
wxClipboard::Flush, 145
wxClipboard::GetData, 146
wxClipboard::IsOpened, 146
wxClipboard::IsSupported, 146
wxClipboard::Open, 146
wxClipboard::SetData, 146
wxClipboard::UsePrimarySelection, 147
wxClipboard::wxClipboard, 145
wxClipboardOpen, 1558
wxCLOSE_BOX, 393, 557, 938
wxCloseClipboard, 1558
wxCloseEvent, 148
wxCloseEvent::CanVeto, 148
wxCloseEvent::GetForce, 148

wxCloseEvent::GetLoggingOff, 148
wxCloseEvent::SetCanVeto, 148
wxCloseEvent::SetForce, 148
wxCloseEvent::SetLoggingOff, 148
wxCloseEvent::Veto, 149
wxCloseEvent::wxCloseEvent, 148
wxCmdLineParser, 152, 153
wxCmdLineParser::~wxCmdLineParser, 154
wxCmdLineParser::AddOption, 156
wxCmdLineParser::AddParam, 156
wxCmdLineParser::AddSwitch, 155
wxCmdLineParser::AreLongOptionsEnabled, 155
wxCmdLineParser::ConvertStringToArgs, 153
wxCmdLineParser::DisableLongOptions, 154
wxCmdLineParser::EnableLongOptions, 154
wxCmdLineParser::Found, 156, 157
wxCmdLineParser::GetParam, 157
wxCmdLineParser::GetParamCount, 157
wxCmdLineParser::Parse, 156
wxCmdLineParser::SetCmdLine, 154
wxCmdLineParser::SetDesc, 155
wxCmdLineParser::SetLogo, 155
wxCmdLineParser::SetSwitchChars, 154
wxCmdLineParser::Usage, 156
wxCmdLineParser::wxCmdLineParser, 152, 153
wxColour, 158
wxColour::Blue, 159
wxColour::GetPixel, 159
wxColour::Green, 159
wxColour::Ok, 159
wxColour::operator !=, 160
wxColour::operator =, 160
wxColour::operator ==, 160
wxColour::Red, 160
wxColour::Set, 160
wxColour::wxColour, 158
wxColourData, 161
wxColourData::~wxColourData, 161
wxColourData::GetChooseFull, 161
wxColourData::GetColour, 161
wxColourData::GetCustomColour, 161
wxColourData::operator =, 162
wxColourData::SetChooseFull, 161
wxColourData::SetColour, 162
wxColourData::SetCustomColour, 162
wxColourData::wxColourData, 161
wxColourDatabase, 163
wxColourDatabase::AddColour, 163
wxColourDatabase::Find, 163
wxColourDatabase::FindName, 163
wxColourDatabase::wxColourDatabase, 163
wxColourDialog, 164
wxColourDialog overview, 1727
wxColourDialog::~wxColourDialog, 164
wxColourDialog::Create, 164
wxColourDialog::GetColourData, 164
wxColourDialog::ShowModal, 165
wxColourDialog::wxColourDialog, 164
wxColourDisplay, 1553
wxComboBox, 166
wxComboBox::~wxComboBox, 167
wxComboBox::CanCopy, 167

INDEX

1865

wxComboBox::CanCut, 168
wxComboBox::CanPaste, 168
wxComboBox::CanRedo, 168
wxComboBox::CanUndo, 168
wxComboBox::Copy, 168
wxComboBox::Create, 167
wxComboBox::Cut, 168
wxComboBox::GetInsertionPoint, 168
wxComboBox::GetLastPosition, 169
wxComboBox::GetValue, 169
wxComboBox::Paste, 169
wxComboBox::Redo, 169
wxComboBox::Remove, 169
wxComboBox::Replace, 169
wxComboBox::SetInsertionPoint, 170
wxComboBox::SetInsertionPointEnd, 170
wxComboBox::SetSelection, 170
wxComboBox::SetValue, 170
wxComboBox::Undo, 171
wxComboBox::wxComboBox, 166
wxCommand, 171
wxCommand overview, 1735
wxCommand::~wxCommand, 171
wxCommand::CanUndo, 172
wxCommand::Do, 172
wxCommand::GetName, 172
wxCommand::Undo, 172
wxCommand::wxCommand, 171
wxCommandEvent, 176
wxCommandEvent::Checked, 176
wxCommandEvent::GetClientData, 176
wxCommandEvent::GetClientObject, 176
wxCommandEvent::GetExtraLong, 176
wxCommandEvent::GetInt, 176
wxCommandEvent::GetSelection, 176
wxCommandEvent::GetString, 177
wxCommandEvent::IsChecked, 177
wxCommandEvent::IsSelection, 177
wxCommandEvent::SetClientData, 177
wxCommandEvent::SetClientObject, 177
wxCommandEvent::SetExtraLong, 177
wxCommandEvent::SetInt, 177
wxCommandEvent::SetString, 177
wxCommandEvent::wxCommandEvent, 176
wxCommandProcessor, 178
wxCommandProcessor overview, 1735
wxCommandProcessor::~wxCommandProcessor

, 178
wxCommandProcessor::CanUndo, 178
wxCommandProcessor::ClearCommands, 178
wxCommandProcessor::GetCommands, 179
wxCommandProcessor::GetEditMenu, 179
wxCommandProcessor::GetMaxCommands, 179
wxCommandProcessor::GetRedoAccelerator,

179
wxCommandProcessor::GetRedoMenuLabel,

179
wxCommandProcessor::GetUndoAccelerator,

179
wxCommandProcessor::GetUndoMenuLabel,

179
wxCommandProcessor::Initialize, 179

wxCommandProcessor::IsDirty, 180
wxCommandProcessor::MarkAsSaved, 180
wxCommandProcessor::Redo, 179
wxCommandProcessor::SetEditMenu, 180
wxCommandProcessor::SetMenuStrings, 180
wxCommandProcessor::SetRedoAccelerator,

180
wxCommandProcessor::SetUndoAccelerator,

180
wxCommandProcessor::Submit, 180
wxCommandProcessor::Undo, 181
wxCommandProcessor::wxCommandProcessor,

178
wxCOMPILE_TIME_ASSERT, 1587
wxCOMPILE_TIME_ASSERT2, 1587
wxCONCAT, 1560
wxConcatFiles, 1533
wxCondition, 183
wxCondition::~wxCondition, 183
wxCondition::Broadcast, 183
wxCondition::IsOk, 183
wxCondition::Signal, 183
wxCondition::Wait, 184
wxCondition::WaitTimeout, 184
wxCondition::wxCondition, 183
wxConfigBase, 190
wxConfigBase::~wxConfigBase, 191
wxConfigBase::Create, 191
wxConfigBase::DeleteAll, 192
wxConfigBase::DeleteEntry, 192
wxConfigBase::DeleteGroup, 192
wxConfigBase::DontCreateOnDemand, 192
wxConfigBase::Exists, 192
wxConfigBase::Flush, 192
wxConfigBase::Get, 192
wxConfigBase::GetAppName, 193
wxConfigBase::GetEntryType, 193
wxConfigBase::GetFirstEntry, 193
wxConfigBase::GetFirstGroup, 193
wxConfigBase::GetNextEntry, 194
wxConfigBase::GetNextGroup, 193
wxConfigBase::GetNumberOfEntries, 194
wxConfigBase::GetNumberOfGroups, 194
wxConfigBase::GetPath, 194
wxConfigBase::GetVendorName, 194
wxConfigBase::HasEntry, 194
wxConfigBase::HasGroup, 194
wxConfigBase::IsExpandingEnvVars, 195
wxConfigBase::IsRecordingDefaults, 195
wxConfigBase::Read, 195
wxConfigBase::RenameEntry, 196
wxConfigBase::RenameGroup, 197
wxConfigBase::Set, 197
wxConfigBase::SetExpandEnvVars, 197
wxConfigBase::SetPath, 197
wxConfigBase::SetRecordDefaults, 197
wxConfigBase::Write, 197
wxConfigBase::wxConfigBase, 190
wxConnection, 199
wxConnection::Advise, 199
wxConnection::Disconnect, 200
wxConnection::Execute, 199

INDEX

1866

wxConnection::OnAdvise, 200
wxConnection::OnDisconnect, 200
wxConnection::OnExecute, 200
wxConnection::OnPoke, 200
wxConnection::OnRequest, 201
wxConnection::OnStartAdvise, 201
wxConnection::OnStopAdvise, 201
wxConnection::Poke, 201
wxConnection::Request, 201
wxConnection::StartAdvise, 201
wxConnection::StopAdvise, 202
wxConnection::wxConnection, 199
wxConstCast, 1574
wxContextHelp, 203
wxContextHelp::~wxContextHelp, 204
wxContextHelp::BeginContextHelp, 204
wxContextHelp::EndContextHelp, 204
wxContextHelp::wxContextHelp, 203
wxContextHelpButton, 205
wxContextHelpButton::wxContextHelpButton,

205
wxContextMenuEvent, 202
wxContextMenuEvent::GetPosition, 202
wxContextMenuEvent::SetPosition, 203
wxContextMenuEvent::wxContextMenuEvent,

202
wxControl::Command, 206
wxControl::GetLabel, 206
wxControl::SetLabel, 206
wxControlWithItems::Append, 207
wxControlWithItems::Clear, 207
wxControlWithItems::Delete, 208
wxControlWithItems::FindString, 208
wxControlWithItems::GetClientData, 208
wxControlWithItems::GetClientObject, 209
wxControlWithItems::GetCount, 209
wxControlWithItems::GetSelection, 209
wxControlWithItems::GetString, 209
wxControlWithItems::GetStringSelection, 210
wxControlWithItems::Insert, 210
wxControlWithItems::IsEmpty, 211
wxControlWithItems::Number, 211
wxControlWithItems::Select, 211
wxControlWithItems::SetClientData, 211
wxControlWithItems::SetClientObject, 211
wxControlWithItems::SetSelection, 212
wxControlWithItems::SetString, 212
wxControlWithItems::SetStringSelection, 212
wxCopyFile, 1533
wxCountingOutputStream, 213
wxCountingOutputStream::~wxCountingOutputSt

ream, 213
wxCountingOutputStream::GetSize, 213
wxCountingOutputStream::wxCountingOutputStr

eam, 213
wxCreateDynamicObject, 1575
wxCreateFileTipProvider, 1544
wxCRIT_SECT_DECLARE, 1527, 1528
wxCRIT_SECT_DECLARE_MEMBER, 1527
wxCRIT_SECT_LOCKER, 1528
wxCRITICAL_SECTION, 1528
wxCriticalSection, 214

wxCriticalSection::~wxCriticalSection, 214
wxCriticalSection::Enter, 214
wxCriticalSection::Leave, 214
wxCriticalSection::wxCriticalSection, 214
wxCriticalSectionLocker, 215
wxCriticalSectionLocker::~wxCriticalSectionLock

er, 216
wxCriticalSectionLocker::wxCriticalSectionLocker

, 215
wxCSConv, 216, 1662
wxCSConv::~wxCSConv, 216
wxCSConv::MB2WC, 216
wxCSConv::WC2MB, 217
wxCSConv::wxCSConv, 216
wxCURHandler, 745
wxCurrentTipProvider::GetCurrentTip, 1336
wxCursor, 218
wxCursor::~wxCursor, 221
wxCursor::Ok, 222
wxCursor::operator !=, 222
wxCursor::operator =, 222
wxCursor::operator ==, 222
wxCursor::wxCursor, 217
wxCustomDataObject, 223
wxCustomDataObject::~wxCustomDataObject,

223
wxCustomDataObject::Alloc, 223
wxCustomDataObject::Free, 223
wxCustomDataObject::GetData, 224
wxCustomDataObject::GetSize, 224
wxCustomDataObject::SetData, 224
wxCustomDataObject::TakeData, 224
wxCustomDataObject::wxCustomDataObject,

223
wxDataFormat, 225
wxDataFormat::GetId, 226
wxDataFormat::GetType, 226
wxDataFormat::operator !=, 226
wxDataFormat::operator ==, 226
wxDataFormat::SetId, 226
wxDataFormat::SetType, 226
wxDataFormat::wxDataFormat, 225
wxDataInputStream, 227
wxDataInputStream::~wxDataInputStream, 227
wxDataInputStream::BigEndianOrdered, 228
wxDataInputStream::Read16, 228
wxDataInputStream::Read32, 228
wxDataInputStream::Read64, 228
wxDataInputStream::Read8, 228
wxDataInputStream::ReadDouble, 228
wxDataInputStream::ReadString, 229
wxDataInputStream::wxDataInputStream, 227
wxDataObject, 231
wxDataObject::~wxDataObject, 231
wxDataObject::GetAllFormats, 231
wxDataObject::GetDataHere, 231
wxDataObject::GetDataSize, 232
wxDataObject::GetFormatCount, 232
wxDataObject::GetPreferredFormat, 232
wxDataObject::SetData, 232
wxDataObject::wxDataObject, 231
wxDataObjectComposite, 233

INDEX

1867

wxDataObjectComposite::Add, 233
wxDataObjectComposite::wxDataObjectComposi

te, 233
wxDataObjectSimple, 234
wxDataObjectSimple::GetDataHere, 234
wxDataObjectSimple::GetDataSize, 234
wxDataObjectSimple::GetFormat, 234
wxDataObjectSimple::SetData, 234
wxDataObjectSimple::SetFormat, 234
wxDataObjectSimple::wxDataObjectSimple, 234
wxDataOutputStream, 235
wxDataOutputStream::~wxDataOutputStream,

236
wxDataOutputStream::BigEndianOrdered, 236
wxDataOutputStream::Write16, 236
wxDataOutputStream::Write32, 236
wxDataOutputStream::Write64, 236
wxDataOutputStream::Write8, 236
wxDataOutputStream::WriteDouble, 237
wxDataOutputStream::WriteString, 237
wxDataOutputStream::wxDataOutputStream, 235
wxDateEvent::GetDate, 237
wxDateEvent::SetDate, 238
wxDatePickerCtrl, 239
wxDatePickerCtrl::Create, 239
wxDatePickerCtrl::GetRange, 240
wxDatePickerCtrl::GetValue, 240
wxDatePickerCtrl::SetRange, 240
wxDatePickerCtrl::SetValue, 241
wxDatePickerCtrl::wxDatePickerCtrl, 239
wxDateSpan, 242
wxDateSpan::Add, 242
wxDateSpan::Day, 242
wxDateSpan::Days, 242
wxDateSpan::GetDays, 242
wxDateSpan::GetMonths, 243
wxDateSpan::GetTotalDays, 243
wxDateSpan::GetWeeks, 243
wxDateSpan::GetYears, 243
wxDateSpan::Month, 243
wxDateSpan::Months, 243
wxDateSpan::Multiply, 244
wxDateSpan::Neg, 244
wxDateSpan::Negate, 244
wxDateSpan::operator!=, 246
wxDateSpan::operator==, 246
wxDateSpan::SetDays, 244
wxDateSpan::SetMonths, 244
wxDateSpan::SetWeeks, 245
wxDateSpan::SetYears, 244
wxDateSpan::Subtract, 245
wxDateSpan::Week, 245
wxDateSpan::Weeks, 245
wxDateSpan::wxDateSpan, 242
wxDateSpan::Year, 245
wxDateSpan::Years, 245
wxDateTime, 257, 258
wxDateTime and Holidays, 1658
wxDateTime characteristics, 1655
wxDateTime::Add, 264
wxDateTime::ConvertYearToBC, 253
wxDateTime::Format, 266

wxDateTime::FormatDate, 267
wxDateTime::FormatISODate, 267
wxDateTime::FormatISOTime, 267
wxDateTime::FormatTime, 267
wxDateTime::GetAmPmStrings, 254
wxDateTime::GetAsDOS, 263
wxDateTime::GetBeginDST, 254
wxDateTime::GetCentury, 254
wxDateTime::GetCountry, 254
wxDateTime::GetCurrentMonth, 254
wxDateTime::GetCurrentYear, 254
wxDateTime::GetDay, 261
wxDateTime::GetDayOfYear, 262
wxDateTime::GetEndDST, 254
wxDateTime::GetHour, 261
wxDateTime::GetJDN, 270
wxDateTime::GetJulianDayNumber, 270
wxDateTime::GetLastMonthDay, 269
wxDateTime::GetLastWeekDay, 269
wxDateTime::GetMillisecond, 261
wxDateTime::GetMinute, 261
wxDateTime::GetMJD, 270
wxDateTime::GetModifiedJulianDayNumber, 270
wxDateTime::GetMonth, 261
wxDateTime::GetMonthName, 255
wxDateTime::GetNextWeekDay, 268
wxDateTime::GetNumberOfDays, 255
wxDateTime::GetPrevWeekDay, 268
wxDateTime::GetRataDie, 270
wxDateTime::GetSecond, 261
wxDateTime::GetTicks, 261
wxDateTime::GetTimeNow, 255
wxDateTime::GetTm, 260
wxDateTime::GetTmNow, 255
wxDateTime::GetWeekDay, 261, 268
wxDateTime::GetWeekDayInSameWeek, 267
wxDateTime::GetWeekDayName, 255
wxDateTime::GetWeekOfMonth, 262
wxDateTime::GetWeekOfYear, 262
wxDateTime::GetYear, 261
wxDateTime::GetYearDay, 270
wxDateTime::IsBetween, 263
wxDateTime::IsDST, 271
wxDateTime::IsDSTApplicable, 256
wxDateTime::IsEarlierThan, 263
wxDateTime::IsEqualTo, 263
wxDateTime::IsEqualUpTo, 264
wxDateTime::IsGregorianDate, 262
wxDateTime::IsLaterThan, 263
wxDateTime::IsLeapYear, 256
wxDateTime::IsSameDate, 264
wxDateTime::IsSameTime, 264
wxDateTime::IsStrictlyBetween, 263
wxDateTime::IsValid, 260
wxDateTime::IsWestEuropeanCountry, 256
wxDateTime::IsWorkDay, 262
wxDateTime::MakeGMT, 271
wxDateTime::MakeTimezone, 271
wxDateTime::Now, 256
wxDateTime::operator=, 260
wxDateTime::ParseDate, 266
wxDateTime::ParseDateTime, 266

INDEX

1868

wxDateTime::ParseFormat, 265
wxDateTime::ParseRfc822Date, 265
wxDateTime::ParseTime, 266
wxDateTime::ResetTime, 259
wxDateTime::Set, 258, 259
wxDateTime::SetCountry, 256
wxDateTime::SetDay, 259
wxDateTime::SetFromDOS, 262
wxDateTime::SetHour, 260
wxDateTime::SetMillisecond, 260
wxDateTime::SetMinute, 260
wxDateTime::SetMonth, 259
wxDateTime::SetSecond, 260
wxDateTime::SetToCurrent, 258
wxDateTime::SetToLastMonthDay, 269
wxDateTime::SetToLastWeekDay, 269
wxDateTime::SetToNextWeekDay, 268
wxDateTime::SetToPrevWeekDay, 268
wxDateTime::SetToWeekDay, 268
wxDateTime::SetToWeekDayInSameWeek, 267
wxDateTime::SetToWeekOfYear, 269
wxDateTime::SetToYearDay, 269
wxDateTime::SetYear, 259
wxDateTime::Subtract, 264, 265
wxDateTime::Today, 257
wxDateTime::ToGMT, 271
wxDateTime::ToTimezone, 271
wxDateTime::UNow, 257
wxDateTime::wxDateTime, 257, 258
wxDb, 280
wxDb/wxDbTable wxODBC Overview, 1749
wxDb::Catalog, 281
wxDb::Close, 281
wxDb::CommitTrans, 282
wxDb::CreateView, 283
wxDb::Dbms, 284
wxDb::DispAllErrors, 284
wxDb::DispNextError, 285
wxDb::DropView, 286
wxDb::ExecSql, 286
wxDb::FwdOnlyCursors, 287
wxDb::GetCatalog, 287
wxDb::GetColumnCount, 287
wxDb::GetColumns, 288
wxDb::GetData, 289
wxDb::GetDatabaseName, 290
wxDb::GetDatasourceName, 290
wxDb::GetHDBC, 291
wxDb::GetHENV, 291
wxDb::GetHSTMT, 291
wxDb::GetKeyFields, 291
wxDb::GetNext, 292
wxDb::GetNextError, 292
wxDb::GetPassword, 292
wxDb::GetTableCount, 293
wxDb::GetUsername, 293
wxDb::Grant, 293
wxDb::IsFwdOnlyCursors, 294
wxDb::IsOpen, 294
wxDb::LogError, 295
wxDb::ModifyColumn, 295
wxDb::Open, 296

wxDb::RollbackTrans, 298
wxDb::SetDebugErrorMessages, 299
wxDb::SetSqlLogging, 299
wxDb::SQLColumnName, 300
wxDb::SQLTableName, 300
wxDb::TableExists, 301
wxDb::TablePrivileges, 301
wxDb::TranslateSqlState, 303
wxDb::WriteSqlLog, 303
wxDb::wxDb, 280
wxDbCloseConnections, 278
wxDbColDef::Initialize, 305
wxDbColFor::Format, 305
wxDbColFor::Initialize, 305
wxDbColInf::Initialize, 306
wxDbConnectInf, 307
wxDbConnectInf::~wxDbConnectInf, 308
wxDbConnectInf::AllocHenv, 308
wxDbConnectInf::FreeHenv, 309
wxDbConnectInf::GetAuthStr, 309
wxDbConnectInf::GetDefaultDir, 309
wxDbConnectInf::GetDescription, 309
wxDbConnectInf::GetDsn, 309
wxDbConnectInf::GetFileType, 310
wxDbConnectInf::GetHenv, 310
wxDbConnectInf::GetPassword, 310
wxDbConnectInf::GetUid, 310
wxDbConnectInf::GetUserID, 310
wxDbConnectInf::Initialize, 309
wxDbConnectInf::SetAuthStr, 310
wxDbConnectInf::SetDefaultDir, 310
wxDbConnectInf::SetDescription, 311
wxDbConnectInf::SetDsn, 311
wxDbConnectInf::SetFileType, 311
wxDbConnectInf::SetHenv, 311
wxDbConnectInf::SetPassword, 311
wxDbConnectInf::SetUid, 311
wxDbConnectInf::SetUserID, 311
wxDbConnectInf::wxDbConnectInf, 307
wxDbConnectionsInUse, 278
wxDbFreeConnection, 279
wxDbGetConnection, 279
wxDbGetDataSource, 280
wxDbGridColInfo, 349
wxDbGridColInfo::~wxDbGridColInfo, 350
wxDbGridColInfo::AddColInfo, 350
wxDbGridColInfo::wxDbGridColInfo, 349
wxDbGridTableBase, 352
wxDbGridTableBase::AssignDbTable, 353
wxDbGridTableBase::UpdateRow, 352
wxDbGridTableBase::ValidateRow, 352
wxDbGridTableBase::wxDbGridTableBase, 352
wxDbInf::Initialize, 313
wxDbLogExtendedErrorMsg, 279
wxDbSqlLog, 280
wxDbTable, 314
wxDbTable::BuildDeleteStmt, 315
wxDbTable::BuildSelectStmt, 315
wxDbTable::BuildUpdateStmt, 316
wxDbTable::BuildWhereClause, 317
wxDbTable::CanSelectForUpdate, 318
wxDbTable::CanUpdateByROWID, 318

INDEX

1869

wxDbTable::ClearMemberVar, 319
wxDbTable::ClearMemberVars, 319
wxDbTable::CloseCursor, 319
wxDbTable::Count, 320
wxDbTable::CreateIndex, 321
wxDbTable::CreateTable, 322
wxDbTable::DB_STATUS, 323
wxDbTable::Delete, 323
wxDbTable::DeleteCursor, 323
wxDbTable::DeleteMatching, 324
wxDbTable::DeleteWhere, 325
wxDbTable::DropIndex, 326
wxDbTable::DropTable, 326
wxDbTable::From, 326
wxDbTable::GetColDefs, 327
wxDbTable::GetCursor, 327
wxDbTable::GetDb, 327
wxDbTable::GetFirst, 328
wxDbTable::GetFromClause, 328
wxDbTable::GetLast, 328
wxDbTable::GetNewCursor, 329
wxDbTable::GetNext, 329
wxDbTable::GetNumberOfColumns, 329
wxDbTable::GetOrderByClause, 330
wxDbTable::GetPrev, 330
wxDbTable::GetQueryTableName, 330
wxDbTable::GetRowNum, 330
wxDbTable::GetTableName, 331
wxDbTable::GetTablePath, 331
wxDbTable::GetWhereClause, 331
wxDbTable::Insert, 331
wxDbTable::IsColNull, 332
wxDbTable::IsCursorClosedOnCommit, 332
wxDbTable::IsQueryOnly, 333
wxDbTable::Open, 333
wxDbTable::operator --, 348
wxDbTable::operator ++, 348
wxDbTable::OrderBy, 334
wxDbTable::Query, 335
wxDbTable::QueryBySqlStmt, 336
wxDbTable::QueryMatching, 338
wxDbTable::QueryOnKeyFields, 339
wxDbTable::Refresh, 340
wxDbTable::SetColDefs, 340
wxDbTable::SetColNull, 344
wxDbTable::SetCursor, 342
wxDbTable::SetFromClause, 343
wxDbTable::SetOrderByClause, 344
wxDbTable::SetQueryTimeout, 345
wxDbTable::SetWhereClause, 345
wxDbTable::Update, 346
wxDbTable::UpdateWhere, 347
wxDbTable::Where, 347
wxDbTable::wxDbTable, 314
wxDbTableInf::Initialize, 349
wxDC, 354
wxDC::~wxDC, 354
wxDC::BeginDrawing, 354
wxDC::Blit, 354
wxDC::CalcBoundingBox, 356
wxDC::Clear, 356
wxDC::ComputeScaleAndOrigin, 356

wxDC::CrossHair, 356
wxDC::DestroyClippingRegion, 357
wxDC::DeviceToLogicalX, 357
wxDC::DeviceToLogicalXRel, 357
wxDC::DeviceToLogicalY, 357
wxDC::DeviceToLogicalYRel, 357
wxDC::DrawArc, 357
wxDC::DrawBitmap, 358
wxDC::DrawCheckMark, 358
wxDC::DrawCircle, 358
wxDC::DrawEllipse, 358
wxDC::DrawEllipticArc, 358
wxDC::DrawIcon, 359
wxDC::DrawLabel, 359
wxDC::DrawLine, 359
wxDC::DrawLines, 359
wxDC::DrawPoint, 361
wxDC::DrawPolygon, 360
wxDC::DrawPolyPolygon, 360
wxDC::DrawRectangle, 361
wxDC::DrawRotatedText, 361
wxDC::DrawRoundedRectangle, 361
wxDC::DrawSpline, 362
wxDC::DrawText, 362
wxDC::EndDoc, 362
wxDC::EndDrawing, 362
wxDC::EndPage, 363
wxDC::FloodFill, 363
wxDC::GetBackground, 363
wxDC::GetBackgroundMode, 363
wxDC::GetBrush, 363
wxDC::GetCharHeight, 363
wxDC::GetCharWidth, 364
wxDC::GetClippingBox, 364
wxDC::GetFont, 364
wxDC::GetLogicalFunction, 364
wxDC::GetMapMode, 364
wxDC::GetPartialTextExtents, 364
wxDC::GetPen, 364
wxDC::GetPixel, 365
wxDC::GetPPI, 365
wxDC::GetSize, 365
wxDC::GetSizeMM, 366
wxDC::GetTextBackground, 366
wxDC::GetTextExtent, 366
wxDC::GetTextForeground, 366
wxDC::GetUserScale, 367
wxDC::LogicalToDeviceX, 367
wxDC::LogicalToDeviceXRel, 367
wxDC::LogicalToDeviceY, 367
wxDC::LogicalToDeviceYRel, 367
wxDC::MaxX, 367
wxDC::MaxY, 367
wxDC::MinX, 367
wxDC::MinY, 368
wxDC::Ok, 368
wxDC::ResetBoundingBox, 368
wxDC::SetAxisOrientation, 368
wxDC::SetBackground, 368
wxDC::SetBackgroundMode, 369
wxDC::SetBrush, 369
wxDC::SetClippingRegion, 369

INDEX

1870

wxDC::SetDeviceOrigin, 369
wxDC::SetFont, 370
wxDC::SetLogicalFunction, 370
wxDC::SetMapMode, 370
wxDC::SetPalette, 371
wxDC::SetPen, 371
wxDC::SetTextBackground, 371
wxDC::SetTextForeground, 371
wxDC::SetUserScale, 372
wxDC::StartDoc, 372
wxDC::StartPage, 372
wxDC::wxDC, 354
wxDCClipper, 372
wxDCClipper::~wxDCClipper, 372
wxDCClipper::wxDCClipper, 372
wxDD_NEW_DIR_BUTTON, 409
wxDDECleanUp, 1562
wxDDEClient, 373
wxDDEClient::MakeConnection, 373
wxDDEClient::OnMakeConnection, 374
wxDDEClient::ValidHost, 374
wxDDEClient::wxDDEClient, 373
wxDDEConnection, 375
wxDDEConnection::Advise, 375
wxDDEConnection::Disconnect, 376
wxDDEConnection::Execute, 375
wxDDEConnection::OnAdvise, 376
wxDDEConnection::OnDisconnect, 376
wxDDEConnection::OnExecute, 376
wxDDEConnection::OnPoke, 376
wxDDEConnection::OnRequest, 376
wxDDEConnection::OnStartAdvise, 377
wxDDEConnection::OnStopAdvise, 377
wxDDEConnection::Poke, 377
wxDDEConnection::Request, 377
wxDDEConnection::StartAdvise, 377
wxDDEConnection::StopAdvise, 377
wxDDEConnection::wxDDEConnection, 375
wxDDEInitialize, 1563
wxDDEServer, 378
wxDDEServer::Create, 378
wxDDEServer::OnAcceptConnection, 378
wxDDEServer::wxDDEServer, 378
WXDEBUG_NEW, 1575
wxDebugContext overview, 1675
wxDebugContext::Check, 379
wxDebugContext::Dump, 379
wxDebugContext::GetCheckPrevious, 379
wxDebugContext::GetDebugMode, 380
wxDebugContext::GetLevel, 380
wxDebugContext::GetStream, 380
wxDebugContext::GetStreamBuf, 380
wxDebugContext::HasStream, 380
wxDebugContext::PrintClasses, 381
wxDebugContext::PrintStatistics, 381
wxDebugContext::SetCheckpoint, 381
wxDebugContext::SetCheckPrevious, 382
wxDebugContext::SetDebugMode, 382
wxDebugContext::SetFile, 382
wxDebugContext::SetLevel, 382
wxDebugContext::SetStandardError, 383
wxDebugContext::SetStream, 383

wxDebugMsg, 1577
wxDebugReport, 385
wxDebugReport::~wxDebugReport, 385
wxDebugReport::AddAll, 385
wxDebugReport::AddContext, 385
wxDebugReport::AddCurrentContext, 385
wxDebugReport::AddCurrentDump, 385
wxDebugReport::AddDump, 385
wxDebugReport::AddExceptionContext, 385
wxDebugReport::AddExceptionDump, 386
wxDebugReport::AddFile, 386
wxDebugReport::AddText, 386
wxDebugReport::DoAddCustomContext, 386
wxDebugReport::DoAddExceptionInfo, 386
wxDebugReport::DoAddLoadedModules, 387
wxDebugReport::DoAddSystemInfo, 387
wxDebugReport::GetDirectory, 387
wxDebugReport::GetFile, 387
wxDebugReport::GetFilesCount, 387
wxDebugReport::GetReportName, 387
wxDebugReport::IsOk, 387
wxDebugReport::Process, 388
wxDebugReport::RemoveFile, 388
wxDebugReport::Reset, 388
wxDebugReport::wxDebugReport, 385
wxDebugReportCompress, 388
wxDebugReportCompress::GetCompressedFileN

ame, 388
wxDebugReportCompress::wxDebugReportCom

press, 388
wxDebugReportPreview, 389
wxDebugReportPreview::~wxDebugReportPrevie

w, 389
wxDebugReportPreview::Show, 389
wxDebugReportPreview::wxDebugReportPrevie

w, 389
wxDebugReportPreviewStd, 390
wxDebugReportPreviewStd::Show, 390
wxDebugReportPreviewStd::wxDebugReportPre

viewStd, 390
wxDebugReportUpload, 390
wxDebugReportUpload::OnServerReply, 390
wxDebugReportUpload::wxDebugReportUpload,

390
wxDEFAULT_DIALOG_STYLE, 393
wxDEFAULT_FRAME_STYLE, 556, 878, 883,

937
wxDelegateRendererNative, 391
wxDelegateRendererNative::DrawXXX, 391
wxDelegateRendererNative::wxDelegateRendere

rNative, 391
wxDialog, 393, 394
wxDialog::~wxDialog, 394
wxDialog::Centre, 394
wxDialog::Create, 395
wxDialog::CreateButtonSizer, 395
wxDialog::CreateStdDialogButtonSizer, 395
wxDialog::DoOK, 395
wxDialog::EndModal, 395
wxDialog::GetAffirmativeId, 396
wxDialog::GetReturnCode, 396
wxDialog::GetTitle, 396

INDEX

1871

wxDialog::GetToolBar, 396
wxDialog::Iconize, 397
wxDialog::IsIconized, 397
wxDialog::IsModal, 397
wxDialog::OnApply, 397
wxDialog::OnCancel, 397
wxDialog::OnOK, 398
wxDialog::OnSysColourChanged, 398
wxDialog::SetAffirmativeId, 398
wxDialog::SetIcon, 399
wxDialog::SetIcons, 399
wxDialog::SetModal, 399
wxDialog::SetReturnCode, 400
wxDialog::SetTitle, 400
wxDialog::Show, 400
wxDialog::ShowModal, 400
wxDialog::wxDialog, 393
wxDIALOG_EX_CONTEXTHELP, 393
wxDIALOG_EX_METAL, 393
wxDIALOG_NO_PARENT, 393
wxDialUpEvent, 401
wxDialUpEvent::IsConnectedEvent, 401
wxDialUpEvent::IsOwnEvent, 401
wxDialUpEvent::wxDialUpEvent, 401
wxDialUpManager::~wxDialUpManager, 403
wxDialUpManager::CancelDialing, 403
wxDialUpManager::Create, 402
wxDialUpManager::Dial, 403
wxDialUpManager::DisableAutoCheckOnlineStat

us, 405
wxDialUpManager::EnableAutoCheckOnlineStatu

s, 404
wxDialUpManager::GetISPNames, 403
wxDialUpManager::HangUp, 404
wxDialUpManager::IsAlwaysOnline, 404
wxDialUpManager::IsDialing, 403
wxDialUpManager::IsOk, 402
wxDialUpManager::IsOnline, 404
wxDialUpManager::SetConnectCommand, 405
wxDialUpManager::SetOnlineStatus, 404
wxDialUpManager::SetWellKnownHost, 405
wxDir, 406
wxDir::~wxDir, 406
wxDir::Exists, 407
wxDir::GetAllFiles, 407
wxDir::GetFirst, 407
wxDir::GetName, 407
wxDir::GetNext, 407
wxDir::HasFiles, 407
wxDir::HasSubDirs, 408
wxDir::IsOpened, 408
wxDir::Open, 408
wxDir::Traverse, 408
wxDir::wxDir, 406
wxDIRCTRL_3D_INTERNAL, 583
wxDIRCTRL_DIR_ONLY, 583
wxDIRCTRL_EDIT_LABELS, 583
wxDIRCTRL_SELECT_FIRST, 583
wxDIRCTRL_SHOW_FILTERS, 583
wxDirDialog, 409
wxDirDialog overview, 1730
wxDirDialog::~wxDirDialog, 410

wxDirDialog::GetMessage, 410
wxDirDialog::GetPath, 410
wxDirDialog::GetStyle, 410
wxDirDialog::SetMessage, 410
wxDirDialog::SetPath, 410
wxDirDialog::SetStyle, 410
wxDirDialog::ShowModal, 410
wxDirDialog::wxDirDialog, 409
wxDirExists, 1532
wxDirSelector, 1545
wxDirTraverser::OnDir, 412
wxDirTraverser::OnFile, 412
wxDisplay, 413
wxDisplay::~wxDisplay, 413
wxDisplay::ChangeMode, 413
wxDisplay::GetCount, 413
wxDisplay::GetCurrentMode, 413
wxDisplay::GetDepth, 413
wxDisplay::GetFromPoint, 414
wxDisplay::GetFromWindow, 414
wxDisplay::GetGeometry, 414
wxDisplay::GetModes, 414
wxDisplay::GetName, 414
wxDisplay::IsPrimary, 415
wxDisplay::wxDisplay, 413
wxDisplayDepth, 1554
wxDisplaySize, 1554
wxDisplaySizeMM, 1554
wxDllLoader::GetDllExt, 416
wxDllLoader::GetProgramHandle, 416
wxDllLoader::GetSymbol, 416
wxDllLoader::LoadLibrary, 417
wxDllLoader::UnloadLibrary, 417
wxDocChildFrame, 418
wxDocChildFrame::~wxDocChildFrame, 418
wxDocChildFrame::GetDocument, 418
wxDocChildFrame::GetView, 418
wxDocChildFrame::m_childDocument, 418
wxDocChildFrame::m_childView, 418
wxDocChildFrame::OnActivate, 418
wxDocChildFrame::OnCloseWindow, 419
wxDocChildFrame::SetDocument, 419
wxDocChildFrame::SetView, 419
wxDocChildFrame::wxDocChildFrame, 418
wxDocManager, 420
wxDocManager overview, 1734
wxDocManager::~wxDocManager, 421
wxDocManager::ActivateView, 421
wxDocManager::AddDocument, 421
wxDocManager::AddFileToHistory, 421
wxDocManager::AssociateTemplate, 421
wxDocManager::CloseDocuments, 421
wxDocManager::CreateDocument, 421
wxDocManager::CreateView, 422
wxDocManager::DisassociateTemplate, 422
wxDocManager::FileHistoryAddFilesToMenu,

422
wxDocManager::FileHistoryLoad, 422
wxDocManager::FileHistoryRemoveMenu, 422
wxDocManager::FileHistorySave, 423
wxDocManager::FileHistoryUseMenu, 423
wxDocManager::FindTemplateForPath, 423

INDEX

1872

wxDocManager::GetCurrentDocument, 423
wxDocManager::GetCurrentView, 423
wxDocManager::GetDocuments, 423
wxDocManager::GetFileHistory, 423
wxDocManager::GetHistoryFilesCount, 424
wxDocManager::GetLastDirectory, 424
wxDocManager::GetMaxDocsOpen, 424
wxDocManager::GetTemplates, 424
wxDocManager::Initialize, 424
wxDocManager::m_currentView, 419
wxDocManager::m_defaultDocumentNameCount

er, 420
wxDocManager::m_docs, 420
wxDocManager::m_fileHistory, 420
wxDocManager::m_flags, 420
wxDocManager::m_lastDirectory, 420
wxDocManager::m_maxDocsOpen, 420
wxDocManager::m_templates, 420
wxDocManager::MakeDefaultName, 424
wxDocManager::OnCreateFileHistory, 425
wxDocManager::OnFileClose, 425
wxDocManager::OnFileCloseAll, 425
wxDocManager::OnFileNew, 425
wxDocManager::OnFileOpen, 425
wxDocManager::OnFileRevert, 425
wxDocManager::OnFileSave, 425
wxDocManager::OnFileSaveAs, 425
wxDocManager::RemoveDocument, 425
wxDocManager::SelectDocumentPath, 426
wxDocManager::SelectDocumentType, 426
wxDocManager::SelectViewType, 426
wxDocManager::SetLastDirectory, 427
wxDocManager::SetMaxDocsOpen, 427
wxDocManager::wxDocManager, 420
wxDocMDIChildFrame, 428
wxDocMDIChildFrame::~wxDocMDIChildFrame,

428
wxDocMDIChildFrame::GetDocument, 428
wxDocMDIChildFrame::GetView, 428
wxDocMDIChildFrame::m_childDocument, 428
wxDocMDIChildFrame::m_childView, 428
wxDocMDIChildFrame::OnActivate, 429
wxDocMDIChildFrame::OnCloseWindow, 429
wxDocMDIChildFrame::SetDocument, 429
wxDocMDIChildFrame::SetView, 429
wxDocMDIChildFrame::wxDocMDIChildFrame,

428
wxDocMDIParentFrame, 430
wxDocMDIParentFrame::~wxDocMDIParentFram

e, 430
wxDocMDIParentFrame::OnCloseWindow, 430
wxDocMDIParentFrame::wxDocMDIParentFrame

, 430
wxDocParentFrame, 431
wxDocParentFrame::~wxDocParentFrame, 431
wxDocParentFrame::OnCloseWindow, 431
wxDocParentFrame::wxDocParentFrame, 431
wxDocTemplate, 433
wxDocTemplate overview, 1733
wxDocTemplate::~wxDocTemplate, 434
wxDocTemplate::CreateDocument, 434
wxDocTemplate::CreateView, 435

wxDocTemplate::GetDefaultExtension, 435
wxDocTemplate::GetDescription, 435
wxDocTemplate::GetDirectory, 435
wxDocTemplate::GetDocumentManager, 435
wxDocTemplate::GetDocumentName, 435
wxDocTemplate::GetFileFilter, 435
wxDocTemplate::GetFlags, 436
wxDocTemplate::GetViewName, 436
wxDocTemplate::InitDocument, 436
wxDocTemplate::IsVisible, 436
wxDocTemplate::m_defaultExt, 432
wxDocTemplate::m_description, 432
wxDocTemplate::m_directory, 432
wxDocTemplate::m_docClassInfo, 432
wxDocTemplate::m_docTypeName, 432
wxDocTemplate::m_documentManager, 432
wxDocTemplate::m_fileFilter, 433
wxDocTemplate::m_flags, 433
wxDocTemplate::m_viewClassInfo, 433
wxDocTemplate::m_viewTypeName, 433
wxDocTemplate::SetDefaultExtension, 436
wxDocTemplate::SetDescription, 436
wxDocTemplate::SetDirectory, 436
wxDocTemplate::SetDocumentManager, 436
wxDocTemplate::SetFileFilter, 437
wxDocTemplate::SetFlags, 437
wxDocTemplate::wxDocTemplate, 433
wxDocument, 438
wxDocument overview, 1732
wxDocument::~wxDocument, 438
wxDocument::AddView, 438
wxDocument::Close, 439
wxDocument::DeleteAllViews, 439
wxDocument::GetCommandProcessor, 439
wxDocument::GetDocumentManager, 439
wxDocument::GetDocumentName, 439
wxDocument::GetDocumentTemplate, 439
wxDocument::GetDocumentWindow, 439
wxDocument::GetFilename, 440
wxDocument::GetFirstView, 440
wxDocument::GetPrintableName, 440
wxDocument::GetTitle, 440
wxDocument::GetViews, 440
wxDocument::IsModified, 440
wxDocument::LoadObject, 441
wxDocument::m_commandProcessor, 437
wxDocument::m_documentFile, 437
wxDocument::m_documentModified, 438
wxDocument::m_documentTemplate, 438
wxDocument::m_documentTitle, 438
wxDocument::m_documentTypeName, 438
wxDocument::m_documentViews, 438
wxDocument::Modify, 441
wxDocument::OnChangedViewList, 441
wxDocument::OnCloseDocument, 441
wxDocument::OnCreate, 441
wxDocument::OnCreateCommandProcessor,

441
wxDocument::OnNewDocument, 442
wxDocument::OnOpenDocument, 442
wxDocument::OnSaveDocument, 442
wxDocument::OnSaveModified, 442

INDEX

1873

wxDocument::RemoveView, 442
wxDocument::Save, 442
wxDocument::SaveAs, 443
wxDocument::SaveObject, 443
wxDocument::SetCommandProcessor, 443
wxDocument::SetDocumentName, 443
wxDocument::SetDocumentTemplate, 443
wxDocument::SetFilename, 443
wxDocument::SetTitle, 444
wxDocument::UpdateAllViews, 444
wxDocument::wxDocument, 438
wxDos2UnixFilename, 1530
wxDOUBLE_BORDER, 1425
wxDP_ALLOWNONE, 238
wxDP_DEFAULT, 238
wxDP_DROPDOWN, 238
wxDP_SHOWCENTURY, 238
wxDP_SPIN, 238
wxDragImage, 445
wxDragImage::BeginDrag, 446
wxDragImage::DoDrawImage, 447
wxDragImage::EndDrag, 447
wxDragImage::GetImageRect, 447
wxDragImage::Hide, 447
wxDragImage::Move, 448
wxDragImage::Show, 448
wxDragImage::UpdateBackingFromWindow, 448
wxDragImage::wxDragImage, 445
wxDragResult, 450, 453
wxDROP_ICON, 1554
wxDropFilesEvent, 449
wxDropFilesEvent::GetFiles, 449
wxDropFilesEvent::GetNumberOfFiles, 449
wxDropFilesEvent::GetPosition, 450
wxDropFilesEvent::m_files, 449
wxDropFilesEvent::m_noFiles, 449
wxDropFilesEvent::m_pos, 449
wxDropFilesEvent::wxDropFilesEvent, 449
wxDropSource, 450, 451
wxDropSource::~wxDropSource, 451
wxDropSource::DoDragDrop, 451
wxDropSource::GetDataObject, 452
wxDropSource::GiveFeedback, 452
wxDropSource::SetCursor, 452
wxDropSource::SetData, 451
wxDropSource::wxDropSource, 450
wxDropTarget, 454
wxDropTarget::~wxDropTarget, 454
wxDropTarget::GetData, 454
wxDropTarget::OnData, 454
wxDropTarget::OnDragOver, 455
wxDropTarget::OnDrop, 454
wxDropTarget::OnEnter, 454
wxDropTarget::OnLeave, 455
wxDropTarget::SetDataObject, 455
wxDropTarget::wxDropTarget, 453
wxDynamicCast, 1575
wxDynamicCastThis, 1576
wxDynamicLibrary, 456
wxDynamicLibrary::CanonicalizeName, 456
wxDynamicLibrary::CanonicalizePluginName,

456

wxDynamicLibrary::Detach, 457
wxDynamicLibrary::GetProgramHandle, 457
wxDynamicLibrary::GetSymbol, 457
wxDynamicLibrary::GetSymbolAorW, 457
wxDynamicLibrary::HasSymbol, 457
wxDynamicLibrary::IsLoaded, 458
wxDynamicLibrary::ListLoaded, 458
wxDynamicLibrary::Load, 458
wxDynamicLibrary::Unload, 458
wxDynamicLibrary::wxDynamicLibrary, 456
wxDynamicLibraryDetails::GetAddress, 459
wxDynamicLibraryDetails::GetName, 459
wxDynamicLibraryDetails::GetPath, 459
wxDynamicLibraryDetails::GetVersion, 460
wxDYNLIB_FUNCTION, 1560
wxEdge, 776
wxEmptyClipboard, 1558
wxEnableTopLevelWindow, 1563
wxEncodingConverter, 460
wxEncodingConverter::CanConvert, 461
wxEncodingConverter::Convert, 461
wxEncodingConverter::GetAllEquivalents, 463
wxEncodingConverter::GetPlatformEquivalents,

462
wxEncodingConverter::Init, 460
wxEncodingConverter::wxEncodingConverter,

460
wxEndBusyCursor, 1546
wxENTER_CRIT_SECT, 1528
wxEntry, 1520
wxEnumClipboardFormats, 1558
wxEraseEvent, 464
wxEraseEvent::GetDC, 464
wxEraseEvent::wxEraseEvent, 464
wxError, 1578
wxEvent, 465
wxEvent::Clone, 465
wxEvent::GetEventObject, 465
wxEvent::GetEventType, 465
wxEvent::GetId, 466
wxEvent::GetSkipped, 466
wxEvent::GetTimestamp, 466
wxEvent::IsCommandEvent, 466
wxEvent::m_propagationLevel, 465
wxEvent::ResumePropagation, 466
wxEvent::SetEventObject, 466
wxEvent::SetEventType, 466
wxEvent::SetId, 466
wxEvent::SetTimestamp, 467
wxEvent::ShouldPropagate, 467
wxEvent::Skip, 467
wxEvent::StopPropagation, 467
wxEvent::widthSash, 1197
wxEvent::wxEvent, 465
wxEvtHandler, 468
wxEvtHandler::~wxEvtHandler, 468
wxEvtHandler::AddPendingEvent, 468
wxEvtHandler::Connect, 469
wxEvtHandler::Disconnect, 470
wxEvtHandler::GetClientData, 470
wxEvtHandler::GetClientObject, 471
wxEvtHandler::GetEvtHandlerEnabled, 471

INDEX

1874

wxEvtHandler::GetNextHandler, 471
wxEvtHandler::GetPreviousHandler, 471
wxEvtHandler::ProcessEvent, 472
wxEvtHandler::SearchEventTable, 473
wxEvtHandler::SetClientData, 473
wxEvtHandler::SetClientObject, 474
wxEvtHandler::SetEvtHandlerEnabled, 474
wxEvtHandler::SetNextHandler, 474
wxEvtHandler::SetPreviousHandler, 475
wxEvtHandler::wxEvtHandler, 468
wxExecute, 1523
wxExit, 1525
wxEXPAND, 1129
wxEXPLICIT, 1560
wxFAIL, 1587
wxFAIL_MSG, 1588
wxFatalError, 1578
wxFFile, 476
wxFFile::~wxFFile, 476
wxFFile::Attach, 476
wxFFile::Close, 476
wxFFile::Detach, 477
wxFFile::Eof, 477
wxFFile::Error, 477
wxFFile::Flush, 477
wxFFile::fp, 477
wxFFile::GetKind, 477
wxFFile::IsOpened, 478
wxFFile::Length, 478
wxFFile::Open, 478
wxFFile::Read, 478
wxFFile::ReadAll, 479
wxFFile::Seek, 479
wxFFile::SeekEnd, 479
wxFFile::Tell, 480
wxFFile::Write, 480
wxFFile::wxFFile, 476
wxFFileInputStream, 481
wxFFileInputStream::~wxFFileInputStream, 481
wxFFileInputStream::Ok, 481
wxFFileInputStream::wxFFileInputStream, 481
wxFFileOutputStream, 482
wxFFileOutputStream::~wxFFileOutputStream,

482
wxFFileOutputStream::Ok, 482
wxFFileOutputStream::wxFFileOutputStream,

482
wxFFileStream, 483
wxFFileStream::wxFFileStream, 483
wxFile, 484, 485
wxFile::~wxFile, 485
wxFile::Access, 485
wxFile::Attach, 485
wxFile::Close, 485
wxFile::Create, 486
wxFile::Detach, 486
wxFile::Eof, 486
wxFile::Exists, 486
wxFile::fd, 486
wxFile::Flush, 486
wxFile::GetKind, 487
wxFile::IsOpened, 487

wxFile::Length, 487
wxFile::Open, 487
wxFile::Read, 487
wxFile::Seek, 488
wxFile::SeekEnd, 488
wxFile::Tell, 488
wxFile::Write, 489
wxFile::wxFile, 484
wxFileConfig, 490
wxFileConfig::Save, 490
wxFileConfig::SetUmask, 490
wxFileConfig::wxFileConfig, 490
wxFileDataObject, 491
wxFileDataObject::AddFile, 491
wxFileDataObject::GetFilenames, 491
wxFileDialog, 492
wxFileDialog in PocketPC, 1822
wxFileDialog overview, 1729
wxFileDialog::~wxFileDialog, 493
wxFileDialog::GetDirectory, 493
wxFileDialog::GetFilename, 494
wxFileDialog::GetFilenames, 494
wxFileDialog::GetFilterIndex, 494
wxFileDialog::GetMessage, 494
wxFileDialog::GetPath, 494
wxFileDialog::GetPaths, 494
wxFileDialog::GetStyle, 495
wxFileDialog::GetWildcard, 495
wxFileDialog::SetDirectory, 495
wxFileDialog::SetFilename, 495
wxFileDialog::SetFilterIndex, 495
wxFileDialog::SetMessage, 495
wxFileDialog::SetPath, 495
wxFileDialog::SetStyle, 495
wxFileDialog::SetWildcard, 495
wxFileDialog::ShowModal, 496
wxFileDialog::wxFileDialog, 492
wxFileDropTarget, 496
wxFileDropTarget::OnDrop, 496
wxFileDropTarget::OnDropFiles, 496
wxFileDropTarget::wxFileDropTarget, 496
wxFileExists, 1530
wxFileHistory, 498
wxFileHistory overview, 1735
wxFileHistory::~wxFileHistory, 498
wxFileHistory::AddFilesToMenu, 498
wxFileHistory::AddFileToHistory, 498
wxFileHistory::GetCount, 499
wxFileHistory::GetHistoryFile, 498
wxFileHistory::GetMaxFiles, 499
wxFileHistory::Load, 499
wxFileHistory::m_fileHistory, 497
wxFileHistory::m_fileHistoryN, 497
wxFileHistory::m_fileMaxFiles, 498
wxFileHistory::m_fileMenu, 498
wxFileHistory::RemoveMenu, 499
wxFileHistory::Save, 499
wxFileHistory::UseMenu, 499
wxFileHistory::wxFileHistory, 498
wxFileInputStream, 500
wxFileInputStream::~wxFileInputStream, 500
wxFileInputStream::Ok, 500

INDEX

1875

wxFileInputStream::wxFileInputStream, 500
wxFileModificationTime, 1530
wxFileName, 503
wxFileName::AppendDir, 504
wxFileName::Assign, 504
wxFileName::AssignCwd, 504
wxFileName::AssignDir, 504
wxFileName::AssignHomeDir, 504
wxFileName::AssignTempFileName, 505
wxFileName::Clear, 505
wxFileName::ClearExt, 505
wxFileName::CreateTempFileName, 505
wxFileName::DirExists, 506
wxFileName::DirName, 506
wxFileName::FileExists, 506
wxFileName::FileName, 506
wxFileName::GetCwd, 506
wxFileName::GetDirCount, 507
wxFileName::GetDirs, 507
wxFileName::GetExt, 507
wxFileName::GetForbiddenChars, 507
wxFileName::GetFormat, 507
wxFileName::GetFullName, 507
wxFileName::GetFullPath, 507
wxFileName::GetHomeDir, 507
wxFileName::GetLongPath, 508
wxFileName::GetModificationTime, 508
wxFileName::GetName, 508
wxFileName::GetPath, 508
wxFileName::GetPathSeparator, 508
wxFileName::GetPathSeparators, 508
wxFileName::GetPathTerminators, 509
wxFileName::GetShortPath, 509
wxFileName::GetTimes, 509
wxFileName::GetVolume, 509
wxFileName::GetVolumeSeparator, 509
wxFileName::HasExt, 510
wxFileName::HasName, 510
wxFileName::HasVolume, 510
wxFileName::InsertDir, 510
wxFileName::IsAbsolute, 510
wxFileName::IsCaseSensitive, 510
wxFileName::IsDir, 511
wxFileName::IsOk, 510
wxFileName::IsPathSeparator, 510
wxFileName::IsRelative, 511
wxFileName::MacFindDefaultTypeAndCreator,

511
wxFileName::MacRegisterDefaultTypeAndCreato

r, 511
wxFileName::MacSetDefaultTypeAndCreator,

511
wxFileName::MakeAbsolute, 511
wxFileName::MakeRelativeTo, 512
wxFileName::Mkdir, 512
wxFileName::Normalize, 512
wxFileName::operator!=, 516
wxFileName::operator=, 516
wxFileName::operator==, 516
wxFileName::PrependDir, 513
wxFileName::RemoveDir, 513
wxFileName::RemoveLastDir, 513

wxFileName::Rmdir, 514
wxFileName::SameAs, 514
wxFileName::SetCwd, 514
wxFileName::SetEmptyExt, 514
wxFileName::SetExt, 514
wxFileName::SetFullName, 514
wxFileName::SetName, 515
wxFileName::SetTimes, 515
wxFileName::SetVolume, 515
wxFileName::SplitPath, 515
wxFileName::SplitVolume, 515
wxFileName::Touch, 516
wxFileName::wxFileName, 503
wxFileNameFromPath, 1530
wxFileOutputStream, 517
wxFileOutputStream::~wxFileOutputStream, 517
wxFileOutputStream::Ok, 517
wxFileOutputStream::wxFileOutputStream, 517
wxFileSelector, 1545
wxFileStream, 518
wxFileStream::wxFileStream, 518
wxFileSystem, 518
wxFileSystem::AddHandler, 518
wxFileSystem::ChangePathTo, 519
wxFileSystem::FileNameToURL, 519
wxFileSystem::FindFirst, 519
wxFileSystem::FindNext, 520
wxFileSystem::GetPath, 519
wxFileSystem::OpenFile, 520
wxFileSystem::URLToFileName, 520
wxFileSystem::wxFileSystem, 518
wxFileSystemHandler, 521
wxFileSystemHandler::CanOpen, 521
wxFileSystemHandler::FindFirst, 522
wxFileSystemHandler::FindNext, 522
wxFileSystemHandler::GetAnchor, 521
wxFileSystemHandler::GetLeftLocation, 521
wxFileSystemHandler::GetMimeTypeFromExt,

522
wxFileSystemHandler::GetProtocol, 522
wxFileSystemHandler::GetRightLocation, 522
wxFileSystemHandler::OpenFile, 522
wxFileSystemHandler::wxFileSystemHandler,

521
wxFileType, 525
wxFileType::~wxFileType, 525
wxFileType::ExpandCommand, 526
wxFileType::GetDescription, 526
wxFileType::GetExtensions, 525
wxFileType::GetIcon, 525
wxFileType::GetMimeType, 525
wxFileType::GetMimeTypes, 525
wxFileType::GetOpenCommand, 526
wxFileType::GetPrintCommand, 526
wxFileType::wxFileType, 525
wxFilterInputStream, 527
wxFilterInputStream::wxFilterInputStream, 527
wxFilterOutputStream, 528
wxFilterOutputStream::wxFilterOutputStream,

528
wxFindDialogEvent, 528
wxFindDialogEvent::GetDialog, 529

INDEX

1876

wxFindDialogEvent::GetFindString, 529
wxFindDialogEvent::GetFlags, 529
wxFindDialogEvent::GetReplaceString, 529
wxFindDialogEvent::wxFindDialogEvent, 528
wxFindFirstFile, 1530
wxFindMenuItemId, 1563
wxFindNextFile, 1531
wxFindReplaceData, 530
wxFindReplaceData::GetFindString, 530
wxFindReplaceData::GetFlags, 530
wxFindReplaceData::GetReplaceString, 530
wxFindReplaceData::SetFindString, 531
wxFindReplaceData::SetFlags, 531
wxFindReplaceData::SetReplaceString, 531
wxFindReplaceData::wxFindReplaceData, 530
wxFindReplaceDialog, 531
wxFindReplaceDialog::~wxFindReplaceDialog,

531
wxFindReplaceDialog::Create, 532
wxFindReplaceDialog::GetData, 532
wxFindReplaceDialog::wxFindReplaceDialog,

531
wxFindWindowAtPoint, 1564
wxFindWindowAtPointer, 1564
wxFindWindowByLabel, 1563
wxFindWindowByName, 1564
wxFinite, 1552
wxFIXED_MINSIZE, 1129, 1628
wxFlexGridSizer, 532, 533
wxFlexGridSizer::AddGrowableCol, 533
wxFlexGridSizer::AddGrowableRow, 533
wxFlexGridSizer::GetFlexibleDirection, 533
wxFlexGridSizer::GetNonFlexibleGrowMode, 533
wxFlexGridSizer::RemoveGrowableCol, 534
wxFlexGridSizer::RemoveGrowableRow, 534
wxFlexGridSizer::SetFlexibleDirection, 534
wxFlexGridSizer::SetNonFlexibleGrowMode, 534
wxFlexGridSizer::wxFlexGridSizer, 532
wxFocusEvent, 535
wxFocusEvent::GetWindow, 535
wxFocusEvent::wxFocusEvent, 535
wxFont, 538
wxFont::~wxFont, 540
wxFont::GetDefaultEncoding, 541
wxFont::GetFaceName, 541
wxFont::GetFamily, 541
wxFont::GetNativeFontInfoDesc, 541
wxFont::GetPointSize, 541
wxFont::GetStyle, 542
wxFont::GetUnderlined, 542
wxFont::GetWeight, 542
wxFont::IsFixedWidth, 540
wxFont::New, 542
wxFont::Ok, 543
wxFont::operator !=, 546
wxFont::operator =, 545
wxFont::operator ==, 545
wxFont::SetDefaultEncoding, 543
wxFont::SetFaceName, 543
wxFont::SetFamily, 543
wxFont::SetNativeFontInfo, 544
wxFont::SetPointSize, 544

wxFont::SetStyle, 544
wxFont::SetUnderlined, 545
wxFont::SetWeight, 545
wxFont::wxFont, 538
wxFontData, 546
wxFontData::EnableEffects, 546
wxFontData::GetAllowSymbols, 546
wxFontData::GetChosenFont, 547
wxFontData::GetColour, 547
wxFontData::GetEnableEffects, 547
wxFontData::GetInitialFont, 547
wxFontData::GetShowHelp, 547
wxFontData::operator =, 548
wxFontData::SetAllowSymbols, 547
wxFontData::SetChosenFont, 547
wxFontData::SetColour, 548
wxFontData::SetInitialFont, 548
wxFontData::SetRange, 548
wxFontData::SetShowHelp, 548
wxFontData::wxFontData, 546
wxFontDialog, 549
wxFontDialog overview, 1728
wxFontDialog::Create, 549
wxFontDialog::GetFontData, 549
wxFontDialog::ShowModal, 549
wxFontDialog::wxFontDialog, 549
wxFontEnumerator::EnumerateEncodings, 550
wxFontEnumerator::EnumerateFacenames, 550
wxFontEnumerator::GetEncodings, 551
wxFontEnumerator::GetFacenames, 551
wxFontEnumerator::OnFacename, 551
wxFontEnumerator::OnFontEncoding, 551
wxFontList, 552
wxFontList::AddFont, 552
wxFontList::FindOrCreateFont, 552
wxFontList::RemoveFont, 552
wxFontList::wxFontList, 552
wxFontMapper, 553
wxFontMapper::~wxFontMapper, 553
wxFontMapper::CharsetToEncoding, 553
wxFontMapper::Get, 554
wxFontMapper::GetAltForEncoding, 554
wxFontMapper::GetEncoding, 554
wxFontMapper::GetEncodingDescription, 554
wxFontMapper::GetEncodingFromName, 555
wxFontMapper::GetEncodingName, 555
wxFontMapper::GetSupportedEncodingsCount,

555
wxFontMapper::IsEncodingAvailable, 555
wxFontMapper::Set, 555
wxFontMapper::SetConfig, 556
wxFontMapper::SetConfigPath, 556
wxFontMapper::SetDialogParent, 555
wxFontMapper::SetDialogTitle, 555
wxFontMapper::wxFontMapper, 553
wxFrame, 558
wxFrame::~wxFrame, 559
wxFrame::Centre, 559
wxFrame::Create, 560
wxFrame::CreateStatusBar, 560
wxFrame::CreateToolBar, 561
wxFrame::GetClientAreaOrigin, 561

INDEX

1877

wxFrame::GetMenuBar, 561
wxFrame::GetStatusBar, 562
wxFrame::GetStatusBarPane, 562
wxFrame::GetToolBar, 562
wxFrame::OnCreateStatusBar, 562
wxFrame::OnCreateToolBar, 563
wxFrame::ProcessCommand, 564
wxFrame::SendSizeEvent, 564
wxFrame::SetMenuBar, 564
wxFrame::SetStatusBar, 565
wxFrame::SetStatusBarPane, 565
wxFrame::SetStatusText, 565
wxFrame::SetStatusWidths, 565
wxFrame::SetToolBar, 566
wxFrame::wxFrame, 558
wxFRAME_EX_CONTEXTHELP, 557, 1465
wxFRAME_EX_METAL, 558
wxFRAME_FLOAT_ON_PARENT, 557
wxFRAME_NO_TASKBAR, 557
wxFRAME_NO_WINDOW_MENU, 883
wxFRAME_SHAPED, 557
wxFRAME_TOOL_WINDOW, 557
wxFSFile, 566
wxFSFile::GetAnchor, 567
wxFSFile::GetLocation, 568
wxFSFile::GetMimeType, 568
wxFSFile::GetModificationTime, 568
wxFSFile::GetStream, 568
wxFSFile::wxFSFile, 566
wxFTP, 570
wxFTP::~wxFTP, 570
wxFTP::Abort, 570
wxFTP::ChDir, 570
wxFTP::CheckCommand, 570
wxFTP::FileExists, 572
wxFTP::GetDirList, 573
wxFTP::GetFileSize, 572
wxFTP::GetFilesList, 573
wxFTP::GetInputStream, 574
wxFTP::GetLastResult, 570
wxFTP::GetOutputStream, 573
wxFTP::MkDir, 571
wxFTP::Pwd, 571
wxFTP::Rename, 571
wxFTP::RmDir, 571
wxFTP::RmFile, 571
wxFTP::SendCommand, 570
wxFTP::SetAscii, 571
wxFTP::SetBinary, 571
wxFTP::SetPassive, 571
wxFTP::SetPassword, 572
wxFTP::SetTransferMode, 572
wxFTP::SetUser, 572
wxFTP::wxFTP, 570
wxFULL_REPAINT_ON_RESIZE, 1425, 1627
wxGA_HORIZONTAL, 575
wxGA_SMOOTH, 575
wxGA_VERTICAL, 575
wxGauge, 575
wxGauge::~wxGauge, 576
wxGauge::Create, 576
wxGauge::GetBezelFace, 576

wxGauge::GetRange, 577
wxGauge::GetShadowWidth, 577
wxGauge::GetValue, 577
wxGauge::IsVertical, 577
wxGauge::SetBezelFace, 577
wxGauge::SetRange, 578
wxGauge::SetShadowWidth, 578
wxGauge::SetValue, 578
wxGauge::wxGauge, 575
wxGBPosition, 579
wxGBPosition::GetCol, 579
wxGBPosition::GetRow, 579
wxGBPosition::operator!, 579
wxGBPosition::operator==, 579
wxGBPosition::SetCol, 579
wxGBPosition::SetRow, 579
wxGBPosition::wxGBPosition, 579
wxGBSizerItem, 580
wxGBSizerItem::GetEndPos, 580
wxGBSizerItem::GetPos, 580
wxGBSizerItem::GetSpan, 580
wxGBSizerItem::Intersects, 581
wxGBSizerItem::SetPos, 581
wxGBSizerItem::SetSpan, 581
wxGBSizerItem::wxGBSizerItem, 580
wxGBSpan, 581
wxGBSpan::GetColspan, 582
wxGBSpan::GetRowspan, 582
wxGBSpan::operator!, 582
wxGBSpan::operator==, 582
wxGBSpan::SetColspan, 582
wxGBSpan::SetRowspan, 582
wxGBSpan::wxGBSpan, 581
wxGDIObject, 583
wxGDIObject::wxGDIObject, 583
wxGenericDirCtrl, 584
wxGenericDirCtrl::~wxGenericDirCtrl, 585
wxGenericDirCtrl::CollapseTree, 585
wxGenericDirCtrl::Create, 585
wxGenericDirCtrl::ExpandPath, 585
wxGenericDirCtrl::GetDefaultPath, 585
wxGenericDirCtrl::GetFilePath, 586
wxGenericDirCtrl::GetFilter, 586
wxGenericDirCtrl::GetFilterIndex, 586
wxGenericDirCtrl::GetFilterListCtrl, 586
wxGenericDirCtrl::GetPath, 585
wxGenericDirCtrl::GetRootId, 586
wxGenericDirCtrl::GetTreeCtrl, 586
wxGenericDirCtrl::Init, 585
wxGenericDirCtrl::ReCreateTree, 586
wxGenericDirCtrl::SetDefaultPath, 586
wxGenericDirCtrl::SetFilter, 587
wxGenericDirCtrl::SetFilterIndex, 587
wxGenericDirCtrl::SetPath, 587
wxGenericDirCtrl::wxGenericDirCtrl, 584
wxGenericValidator, 587, 588
wxGenericValidator::~wxGenericValidator, 588
wxGenericValidator::Clone, 588
wxGenericValidator::TransferFromWindow, 588
wxGenericValidator::TransferToWindow, 588
wxGenericValidator::wxGenericValidator, 587
wxGetActiveWindow, 1564

INDEX

1878

wxGetApp, 1521
wxGetBatteryState, 1564
wxGetClientDisplayRect, 1553
wxGetClipboardData, 1558
wxGetClipboardFormatName, 1559
wxGetColourFromUser, 1546
wxGetCwd, 1533
wxGetDiskSpace, 1531
wxGetDisplayName, 1565
wxGetDisplaySize, 1554
wxGetDisplaySizeMM, 1554
wxGetElapsedTime, 1583
wxGetEmailAddress, 1535
wxGetenv, 1589
wxGetEnv, 1589, 1590
wxGetFileKind, 1531
wxGetFontFromUser, 1546
wxGetFreeMemory, 1536
wxGetFullHostName, 1536
wxGetHomeDir, 1536
wxGetHostName, 1536
wxGetKeyState, 1560
wxGetLocalTime, 1583
wxGetLocalTimeMillis, 1584
wxGetMousePosition, 1565
wxGetMultipleChoice, 1549
wxGetMultipleChoices, 1547
wxGetNumberFromUser, 1548
wxGetOsDescription, 1537
wxGetOSDirectory, 1532
wxGetOsVersion, 1537
wxGetPasswordFromUser, 1548
wxGetPowerType, 1565
wxGetPrinterCommand, 1555
wxGetPrinterFile, 1555
wxGetPrinterMode, 1556
wxGetPrinterOptions, 1556
wxGetPrinterOrientation, 1556
wxGetPrinterPreviewCommand, 1556
wxGetPrinterScaling, 1556
wxGetPrinterTranslation, 1556
wxGetProcessId, 1526
wxGetResource, 1565
wxGetSingleChoice, 1549
wxGetSingleChoiceData, 1550
wxGetSingleChoiceIndex, 1550
wxGetStockLabel, 1566
wxGetTempFileName, 1533
wxGetTextFromUser, 1548
wxGetTopLevelParent, 1566
wxGetTranslation, 1540
wxGetUserHome, 1538
wxGetUserId, 1539
wxGetUserName, 1539
wxGetUTCTime, 1584
wxGetVariantCast, 1408
wxGetWorkingDirectory, 1533
wxGIFHandler, 745
wxGLCanvas, 590
wxGLCanvas::GetContext, 591
wxGLCanvas::SetColour, 592
wxGLCanvas::SetCurrent, 591

wxGLCanvas::SwapBuffers, 592
wxGLCanvas::wxGLCanvas, 590
wxGLContext, 593
wxGLContext::GetWindow, 593
wxGLContext::SetColour, 593
wxGLContext::SetCurrent, 593
wxGLContext::SwapBuffers, 593
wxGLContext::wxGLContext, 593
wxGrid, 597
wxGrid::~wxGrid, 597
wxGrid::AppendCols, 598
wxGrid::AppendRows, 598
wxGrid::AutoSize, 598
wxGrid::AutoSizeColOrRow, 598
wxGrid::AutoSizeColumn, 598
wxGrid::AutoSizeColumns, 599
wxGrid::AutoSizeRow, 599
wxGrid::AutoSizeRows, 599
wxGrid::BeginBatch, 599
wxGrid::BlockToDeviceRect, 599
wxGrid::CanDragColSize, 600
wxGrid::CanDragGridSize, 600
wxGrid::CanDragRowSize, 600
wxGrid::CanEnableCellControl, 600
wxGrid::CanHaveAttributes, 600
wxGrid::CellToRect, 600
wxGrid::ClearGrid, 601
wxGrid::ClearSelection, 601
wxGrid::CreateGrid, 601
wxGrid::DeleteCols, 601
wxGrid::DeleteRows, 601
wxGrid::DisableCellEditControl, 602
wxGrid::DisableDragColSize, 602
wxGrid::DisableDragGridSize, 602
wxGrid::DisableDragRowSize, 602
wxGrid::EnableCellEditControl, 602
wxGrid::EnableDragColSize, 602
wxGrid::EnableDragGridSize, 602
wxGrid::EnableDragRowSize, 602
wxGrid::EnableEditing, 603
wxGrid::EnableGridLines, 603
wxGrid::EndBatch, 603
wxGrid::Fit, 603
wxGrid::ForceRefresh, 603
wxGrid::GetBatchCount, 603
wxGrid::GetCellAlignment, 604
wxGrid::GetCellBackgroundColour, 604
wxGrid::GetCellEditor, 604
wxGrid::GetCellFont, 604
wxGrid::GetCellRenderer, 604
wxGrid::GetCellTextColour, 604
wxGrid::GetCellValue, 605
wxGrid::GetColLabelAlignment, 605
wxGrid::GetColLabelSize, 605
wxGrid::GetColLabelValue, 605
wxGrid::GetColLeft, 605
wxGrid::GetColMinimalAcceptableWidth, 606
wxGrid::GetColMinimalWidth, 606
wxGrid::GetColRight, 606
wxGrid::GetColSize, 606
wxGrid::GetDefaultCellAlignment, 606
wxGrid::GetDefaultCellBackgroundColour, 606

INDEX

1879

wxGrid::GetDefaultCellFont, 606
wxGrid::GetDefaultCellTextColour, 606
wxGrid::GetDefaultColLabelSize, 607
wxGrid::GetDefaultColSize, 607
wxGrid::GetDefaultEditor, 607
wxGrid::GetDefaultEditorForCell, 607
wxGrid::GetDefaultEditorForType, 607
wxGrid::GetDefaultRenderer, 607
wxGrid::GetDefaultRendererForCell, 607
wxGrid::GetDefaultRendererForType, 607
wxGrid::GetDefaultRowLabelSize, 608
wxGrid::GetDefaultRowSize, 608
wxGrid::GetGridCursorCol, 608
wxGrid::GetGridCursorRow, 608
wxGrid::GetGridLineColour, 608
wxGrid::GetLabelBackgroundColour, 608
wxGrid::GetLabelFont, 608
wxGrid::GetLabelTextColour, 608
wxGrid::GetNumberCols, 609
wxGrid::GetNumberRows, 609
wxGrid::GetOrCreateCellAttr, 609
wxGrid::GetRowLabelAlignment, 609
wxGrid::GetRowLabelSize, 609
wxGrid::GetRowLabelValue, 610
wxGrid::GetRowMinimalAcceptableHeight, 609
wxGrid::GetRowMinimalHeight, 609
wxGrid::GetRowSize, 610
wxGrid::GetScrollLinesX, 610
wxGrid::GetScrollLinesY, 610
wxGrid::GetSelectedCells, 610
wxGrid::GetSelectedCols, 610
wxGrid::GetSelectedRows, 610
wxGrid::GetSelectionBackground, 611
wxGrid::GetSelectionBlockBottomRight, 611
wxGrid::GetSelectionBlockTopLeft, 611
wxGrid::GetSelectionForeground, 611
wxGrid::GetSelectionMode, 610
wxGrid::GetTable, 611
wxGrid::GetViewWidth, 611
wxGrid::GridLinesEnabled, 608
wxGrid::HideCellEditControl, 611
wxGrid::InitColWidths, 611
wxGrid::InitRowHeights, 611
wxGrid::InsertCols, 612
wxGrid::InsertRows, 612
wxGrid::IsCellEditControlEnabled, 612
wxGrid::IsCurrentCellReadOnly, 612
wxGrid::IsEditable, 612
wxGrid::IsInSelection, 613
wxGrid::IsReadOnly, 613
wxGrid::IsSelection, 613
wxGrid::IsVisible, 613
wxGrid::MakeCellVisible, 613
wxGrid::MoveCursorDown, 613
wxGrid::MoveCursorDownBlock, 614
wxGrid::MoveCursorLeft, 614
wxGrid::MoveCursorLeftBlock, 614
wxGrid::MoveCursorRight, 614
wxGrid::MoveCursorRightBlock, 615
wxGrid::MoveCursorUp, 614
wxGrid::MoveCursorUpBlock, 615
wxGrid::MovePageDown, 615

wxGrid::MovePageUp, 615
wxGrid::RegisterDataType, 615
wxGrid::SaveEditControlValue, 616
wxGrid::SelectAll, 616
wxGrid::SelectBlock, 616
wxGrid::SelectCol, 616
wxGrid::SelectionToDeviceRect, 616
wxGrid::SelectRow, 616
wxGrid::SetCellAlignment, 617
wxGrid::SetCellBackgroundColour, 617
wxGrid::SetCellEditor, 617
wxGrid::SetCellFont, 617
wxGrid::SetCellRenderer, 617
wxGrid::SetCellTextColour, 617
wxGrid::SetCellValue, 618
wxGrid::SetColAttr, 618
wxGrid::SetColFormatBool, 618
wxGrid::SetColFormatCustom, 619
wxGrid::SetColFormatFloat, 618
wxGrid::SetColFormatNumber, 618
wxGrid::SetColLabelAlignment, 619
wxGrid::SetColLabelSize, 619
wxGrid::SetColLabelValue, 619
wxGrid::SetColMinimalAcceptableWidth, 619
wxGrid::SetColMinimalWidth, 619
wxGrid::SetColSize, 620
wxGrid::SetDefaultCellAlignment, 620
wxGrid::SetDefaultCellBackgroundColour, 620
wxGrid::SetDefaultCellFont, 620
wxGrid::SetDefaultCellTextColour, 620
wxGrid::SetDefaultColSize, 621
wxGrid::SetDefaultEditor, 620
wxGrid::SetDefaultRenderer, 621
wxGrid::SetDefaultRowSize, 621
wxGrid::SetGridCursor, 621
wxGrid::SetGridLineColour, 621
wxGrid::SetLabelBackgroundColour, 621
wxGrid::SetLabelFont, 621
wxGrid::SetLabelTextColour, 622
wxGrid::SetMargins, 622
wxGrid::SetOrCalcColumnSizes, 622
wxGrid::SetOrCalcRowSizes, 622
wxGrid::SetReadOnly, 622
wxGrid::SetRowAttr, 622
wxGrid::SetRowLabelAlignment, 622
wxGrid::SetRowLabelSize, 623
wxGrid::SetRowLabelValue, 623
wxGrid::SetRowMinimalAcceptableHeight, 623
wxGrid::SetRowMinimalHeight, 623
wxGrid::SetRowSize, 623
wxGrid::SetScrollLinesX, 624
wxGrid::SetScrollLinesY, 624
wxGrid::SetSelectionBackground, 624
wxGrid::SetSelectionForeground, 624
wxGrid::SetSelectionMode, 624
wxGrid::SetTable, 624
wxGrid::ShowCellEditControl, 625
wxGrid::wxGrid, 597
wxGrid::XToCol, 625
wxGrid::XToEdgeOfCol, 625
wxGrid::YToEdgeOfRow, 625
wxGrid::YToRow, 625

INDEX

1880

wxGridBagSizer, 629
wxGridBagSizer::Add, 629
wxGridBagSizer::CalcMin, 629
wxGridBagSizer::CheckForIntersection, 629
wxGridBagSizer::FindItem, 629
wxGridBagSizer::FindItemAtPoint, 630
wxGridBagSizer::FindItemAtPosition, 630
wxGridBagSizer::FindItemWithData, 630
wxGridBagSizer::GetCellSize, 630
wxGridBagSizer::GetEmptyCellSize, 630
wxGridBagSizer::GetItemPosition, 630
wxGridBagSizer::GetItemSpan, 630
wxGridBagSizer::RecalcSizes, 631
wxGridBagSizer::SetEmptyCellSize, 631
wxGridBagSizer::SetItemPosition, 631
wxGridBagSizer::SetItemSpan, 631
wxGridBagSizer::wxGridBagSizer, 629
wxGridCellAttr, 626
wxGridCellAttr::Clone, 626
wxGridCellAttr::DecRef, 626
wxGridCellAttr::GetAlignment, 628
wxGridCellAttr::GetBackgroundColour, 628
wxGridCellAttr::GetEditor, 628
wxGridCellAttr::GetFont, 628
wxGridCellAttr::GetRenderer, 628
wxGridCellAttr::GetTextColour, 627
wxGridCellAttr::HasAlignment, 627
wxGridCellAttr::HasBackgroundColour, 627
wxGridCellAttr::HasEditor, 627
wxGridCellAttr::HasFont, 627
wxGridCellAttr::HasRenderer, 627
wxGridCellAttr::HasTextColour, 627
wxGridCellAttr::IncRef, 626
wxGridCellAttr::IsReadOnly, 628
wxGridCellAttr::SetAlignment, 626
wxGridCellAttr::SetBackgroundColour, 626
wxGridCellAttr::SetDefAttr, 628
wxGridCellAttr::SetEditor, 627
wxGridCellAttr::SetFont, 626
wxGridCellAttr::SetReadOnly, 627
wxGridCellAttr::SetRenderer, 627
wxGridCellAttr::SetTextColour, 626
wxGridCellAttr::wxGridCellAttr, 626
wxGridCellBoolEditor, 632
wxGridCellBoolEditor::wxGridCellBoolEditor, 632
wxGridCellBoolRenderer, 646
wxGridCellBoolRenderer::wxGridCellBoolRender

er, 646
wxGridCellChoiceEditor, 632
wxGridCellChoiceEditor::SetParameters, 632
wxGridCellChoiceEditor::wxGridCellChoiceEditor,

632
wxGridCellEditor, 633
wxGridCellEditor::~wxGridCellEditor, 635
wxGridCellEditor::BeginEdit, 634
wxGridCellEditor::Clone, 635
wxGridCellEditor::Create, 633
wxGridCellEditor::Destroy, 634
wxGridCellEditor::EndEdit, 634
wxGridCellEditor::HandleReturn, 634
wxGridCellEditor::IsCreated, 633
wxGridCellEditor::PaintBackground, 634

wxGridCellEditor::Reset, 634
wxGridCellEditor::SetSize, 633
wxGridCellEditor::Show, 633
wxGridCellEditor::StartingClick, 634
wxGridCellEditor::StartingKey, 634
wxGridCellEditor::wxGridCellEditor, 633
wxGridCellFloatEditor, 635
wxGridCellFloatEditor::SetParameters, 635
wxGridCellFloatEditor::wxGridCellFloatEditor,

635
wxGridCellFloatRenderer, 646
wxGridCellFloatRenderer::GetPrecision, 646
wxGridCellFloatRenderer::GetWidth, 647
wxGridCellFloatRenderer::SetParameters, 647
wxGridCellFloatRenderer::SetPrecision, 647
wxGridCellFloatRenderer::SetWidth, 647
wxGridCellFloatRenderer::wxGridCellFloatRende

rer, 646
wxGridCellNumberEditor, 636
wxGridCellNumberEditor::GetString, 636
wxGridCellNumberEditor::HasRange, 636
wxGridCellNumberEditor::SetParameters, 636
wxGridCellNumberEditor::wxGridCellNumberEdit

or, 636
wxGridCellNumberRenderer, 647
wxGridCellNumberRenderer::wxGridCellNumber

Renderer, 647
wxGridCellRenderer::Clone, 648
wxGridCellRenderer::Draw, 648
wxGridCellRenderer::GetBestSize, 648
wxGridCellStringRenderer, 649
wxGridCellStringRenderer::wxGridCellStringRen

derer, 649
wxGridCellTextEditor, 637
wxGridCellTextEditor::SetParameters, 637
wxGridCellTextEditor::wxGridCellTextEditor, 637
wxGridEditorCreatedEvent, 638
wxGridEditorCreatedEvent::GetCol, 638
wxGridEditorCreatedEvent::GetControl, 638
wxGridEditorCreatedEvent::GetRow, 638
wxGridEditorCreatedEvent::SetCol, 638
wxGridEditorCreatedEvent::SetControl, 638
wxGridEditorCreatedEvent::SetRow, 638
wxGridEditorCreatedEvent::wxGridEditorCreated

Event, 637
wxGridEvent, 641
wxGridEvent::AltDown, 641
wxGridEvent::ControlDown, 641
wxGridEvent::GetCol, 641
wxGridEvent::GetPosition, 641
wxGridEvent::GetRow, 641
wxGridEvent::MetaDown, 641
wxGridEvent::Selecting, 642
wxGridEvent::ShiftDown, 642
wxGridEvent::wxGridEvent, 641
wxGridRangeSelectEvent, 642
wxGridRangeSelectEvent::AltDown, 643
wxGridRangeSelectEvent::ControlDown, 643
wxGridRangeSelectEvent::GetBottomRightCoord

s, 643
wxGridRangeSelectEvent::GetBottomRow, 643
wxGridRangeSelectEvent::GetLeftCol, 643

INDEX

1881

wxGridRangeSelectEvent::GetRightCol, 643
wxGridRangeSelectEvent::GetTopLeftCoords,

643
wxGridRangeSelectEvent::GetTopRow, 643
wxGridRangeSelectEvent::MetaDown, 643
wxGridRangeSelectEvent::Selecting, 644
wxGridRangeSelectEvent::ShiftDown, 644
wxGridRangeSelectEvent::wxGridRangeSelectEv

ent, 642
wxGridSizeEvent, 645
wxGridSizeEvent::AltDown, 645
wxGridSizeEvent::ControlDown, 645
wxGridSizeEvent::GetPosition, 645
wxGridSizeEvent::GetRowOrCol, 645
wxGridSizeEvent::MetaDown, 645
wxGridSizeEvent::ShiftDown, 645
wxGridSizeEvent::wxGridSizeEvent, 644
wxGridSizer, 653
wxGridSizer::GetCols, 653
wxGridSizer::GetHGap, 654
wxGridSizer::GetRows, 654
wxGridSizer::GetVGap, 654
wxGridSizer::SetCols, 654
wxGridSizer::SetHGap, 654
wxGridSizer::SetRows, 654
wxGridSizer::SetVGap, 654
wxGridSizer::wxGridSizer, 653
wxGridTableBase, 649
wxGridTableBase::~wxGridTableBase, 649
wxGridTableBase::AppendCols, 651
wxGridTableBase::AppendRows, 651
wxGridTableBase::CanGetValueAs, 650
wxGridTableBase::CanHaveAttributes, 652
wxGridTableBase::CanSetValueAs, 650
wxGridTableBase::Clear, 651
wxGridTableBase::DeleteCols, 651
wxGridTableBase::DeleteRows, 651
wxGridTableBase::GetAttr, 652
wxGridTableBase::GetAttrProvider, 652
wxGridTableBase::GetColLabelValue, 652
wxGridTableBase::GetNumberCols, 649
wxGridTableBase::GetNumberRows, 649
wxGridTableBase::GetRowLabelValue, 652
wxGridTableBase::GetTypeName, 650
wxGridTableBase::GetValue, 650
wxGridTableBase::GetValueAsBool, 650
wxGridTableBase::GetValueAsCustom, 651
wxGridTableBase::GetValueAsDouble, 650
wxGridTableBase::GetValueAsLong, 650
wxGridTableBase::GetView, 651
wxGridTableBase::InsertCols, 651
wxGridTableBase::InsertRows, 651
wxGridTableBase::IsEmptyCell, 650
wxGridTableBase::SetAttr, 653
wxGridTableBase::SetAttrProvider, 652
wxGridTableBase::SetColAttr, 653
wxGridTableBase::SetColLabelValue, 652
wxGridTableBase::SetRowAttr, 653
wxGridTableBase::SetRowLabelValue, 652
wxGridTableBase::SetValue, 650
wxGridTableBase::SetValueAsBool, 650
wxGridTableBase::SetValueAsCustom, 651

wxGridTableBase::SetValueAsDouble, 650
wxGridTableBase::SetValueAsLong, 650
wxGridTableBase::SetView, 651
wxGridTableBase::UpdateAttrCols, 652
wxGridTableBase::UpdateAttrRows, 652
wxGridTableBase::wxGridTableBase, 649
wxHandleFatalExceptions, 1521
wxHashMap, 657
wxHashMap::begin, 657
wxHashMap::clear, 657
wxHashMap::count, 657
wxHashMap::empty, 658
wxHashMap::end, 658
wxHashMap::erase, 658
wxHashMap::find, 658
wxHashMap::insert, 658
wxHashMap::operator[], 658
wxHashMap::size, 659
wxHashMap::wxHashMap, 657
wxHashSet, 661
wxHashSet::begin, 661
wxHashSet::clear, 661
wxHashSet::count, 661
wxHashSet::empty, 662
wxHashSet::end, 662
wxHashSet::erase, 662
wxHashSet::find, 662
wxHashSet::insert, 662
wxHashSet::size, 662
wxHashSet::wxHashSet, 661
wxHashTable, 663
wxHashTable::~wxHashTable, 664
wxHashTable::BeginFind, 664
wxHashTable::Clear, 664
wxHashTable::Delete, 664
wxHashTable::DeleteContents, 664
wxHashTable::Get, 664
wxHashTable::GetCount, 665
wxHashTable::MakeKey, 664
wxHashTable::Next, 665
wxHashTable::Put, 665
wxHashTable::wxHashTable, 663
wxHelpController, 667
wxHelpController::~wxHelpController, 667
wxHelpController::DisplayBlock, 667
wxHelpController::DisplayContents, 667
wxHelpController::DisplayContextPopup, 668
wxHelpController::DisplaySection, 668
wxHelpController::DisplayTextPopup, 668
wxHelpController::GetFrameParameters, 668
wxHelpController::Initialize, 667
wxHelpController::KeywordSearch, 669
wxHelpController::LoadFile, 669
wxHelpController::OnQuit, 669
wxHelpController::Quit, 670
wxHelpController::SetFrameParameters, 669
wxHelpController::SetViewer, 670
wxHelpController::wxHelpController, 667
wxHelpControllerHelpProvider, 671
wxHelpControllerHelpProvider::GetHelpController

, 671
wxHelpControllerHelpProvider::SetHelpController

INDEX

1882

, 671
wxHelpControllerHelpProvider::wxHelpController

HelpProvider, 671
wxHelpEvent, 672
wxHelpEvent::GetPosition, 672
wxHelpEvent::SetPosition, 672
wxHelpEvent::wxHelpEvent, 672
wxHelpProvider::~wxHelpProvider, 673
wxHelpProvider::AddHelp, 673
wxHelpProvider::Get, 673
wxHelpProvider::GetHelp, 673
wxHelpProvider::RemoveHelp, 673
wxHelpProvider::Set, 673
wxHelpProvider::ShowHelp, 673
wxHF_BOOKMARKS, 692, 698
wxHF_CONTENTS, 692, 697
wxHF_DEFAULT_STYLE, 693, 698
wxHF_FLAT_TOOLBAR, 692, 697
wxHF_ICONS_BOOK, 692, 698
wxHF_ICONS_BOOK_CHAPTER, 693, 698
wxHF_ICONS_FOLDER, 692, 698
wxHF_INDEX, 692, 697
wxHF_MERGE_BOOKS, 692, 698
wxHF_OPEN_FILES, 692, 698
wxHF_PRINT, 692, 698
wxHF_SEARCH, 692, 698
wxHF_TOOLBAR, 692, 697
wxHSCROLL, 883, 1283, 1425
wxHTML quick start, 1775
wxHtmlCell, 674
wxHtmlCell::AdjustPagebreak, 674
wxHtmlCell::Draw, 674
wxHtmlCell::DrawInvisible, 675
wxHtmlCell::Find, 675
wxHtmlCell::GetDescent, 676
wxHtmlCell::GetFirstChild, 676
wxHtmlCell::GetHeight, 676
wxHtmlCell::GetId, 676
wxHtmlCell::GetLink, 677
wxHtmlCell::GetNext, 677
wxHtmlCell::GetParent, 677
wxHtmlCell::GetPosX, 677
wxHtmlCell::GetPosY, 677
wxHtmlCell::GetWidth, 677
wxHtmlCell::Layout, 677
wxHtmlCell::OnMouseClick, 678
wxHtmlCell::SetId, 678
wxHtmlCell::SetLink, 678
wxHtmlCell::SetNext, 679
wxHtmlCell::SetParent, 679
wxHtmlCell::SetPos, 679
wxHtmlCell::wxHtmlCell, 674
wxHtmlColourCell, 679
wxHtmlColourCell::wxHtmlColourCell, 679
wxHtmlContainerCell, 680
wxHtmlContainerCell::GetAlignHor, 680
wxHtmlContainerCell::GetAlignVer, 680
wxHtmlContainerCell::GetBackgroundColour,

680
wxHtmlContainerCell::GetIndent, 680
wxHtmlContainerCell::GetIndentUnits, 681
wxHtmlContainerCell::InsertCell, 681

wxHtmlContainerCell::SetAlign, 681
wxHtmlContainerCell::SetAlignHor, 681
wxHtmlContainerCell::SetAlignVer, 681
wxHtmlContainerCell::SetBackgroundColour, 682
wxHtmlContainerCell::SetBorder, 682
wxHtmlContainerCell::SetIndent, 683
wxHtmlContainerCell::SetMinHeight, 684
wxHtmlContainerCell::SetWidthFloat, 684
wxHtmlContainerCell::wxHtmlContainerCell, 680
wxHtmlDCRenderer, 685
wxHtmlDCRenderer::GetTotalHeight, 687
wxHtmlDCRenderer::Render, 686
wxHtmlDCRenderer::SetDC, 685
wxHtmlDCRenderer::SetFonts, 685
wxHtmlDCRenderer::SetHtmlText, 686
wxHtmlDCRenderer::SetSize, 686
wxHtmlDCRenderer::wxHtmlDCRenderer, 685
wxHtmlEasyPrinting, 687
wxHtmlEasyPrinting::GetPageSetupData, 690
wxHtmlEasyPrinting::GetPrintData, 690
wxHtmlEasyPrinting::PageSetup, 689
wxHtmlEasyPrinting::PreviewFile, 688
wxHtmlEasyPrinting::PreviewText, 688
wxHtmlEasyPrinting::PrintFile, 688
wxHtmlEasyPrinting::PrintText, 688
wxHtmlEasyPrinting::SetFonts, 689
wxHtmlEasyPrinting::SetFooter, 689
wxHtmlEasyPrinting::SetHeader, 689
wxHtmlEasyPrinting::wxHtmlEasyPrinting, 687
wxHtmlFilter, 690
wxHtmlFilter::CanRead, 691
wxHtmlFilter::ReadFile, 691
wxHtmlFilter::wxHtmlFilter, 690
wxHtmlHelpController, 692
wxHtmlHelpController::AddBook, 693
wxHtmlHelpController::CreateHelpFrame, 693
wxHtmlHelpController::Display, 694
wxHtmlHelpController::DisplayContents, 694
wxHtmlHelpController::DisplayIndex, 694
wxHtmlHelpController::KeywordSearch, 694
wxHtmlHelpController::ReadCustomization, 695
wxHtmlHelpController::SetTempDir, 695
wxHtmlHelpController::SetTitleFormat, 695
wxHtmlHelpController::UseConfig, 695
wxHtmlHelpController::WriteCustomization, 695
wxHtmlHelpController::wxHtmlHelpController,

692
wxHtmlHelpData, 696
wxHtmlHelpData::AddBook, 696
wxHtmlHelpData::FindPageById, 696
wxHtmlHelpData::FindPageByName, 696
wxHtmlHelpData::GetBookRecArray, 696
wxHtmlHelpData::GetContentsArray, 696
wxHtmlHelpData::GetIndexArray, 697
wxHtmlHelpData::SetTempDir, 697
wxHtmlHelpData::wxHtmlHelpData, 696
wxHtmlHelpFrame, 697
wxHtmlHelpFrame::AddToolbarButtons, 700
wxHtmlHelpFrame::Create, 698
wxHtmlHelpFrame::CreateContents, 698
wxHtmlHelpFrame::CreateIndex, 698
wxHtmlHelpFrame::CreateSearch, 699

INDEX

1883

wxHtmlHelpFrame::Display, 699
wxHtmlHelpFrame::DisplayContents, 699
wxHtmlHelpFrame::DisplayIndex, 699
wxHtmlHelpFrame::GetData, 699
wxHtmlHelpFrame::KeywordSearch, 699
wxHtmlHelpFrame::ReadCustomization, 700
wxHtmlHelpFrame::RefreshLists, 700
wxHtmlHelpFrame::SetTitleFormat, 700
wxHtmlHelpFrame::UseConfig, 700
wxHtmlHelpFrame::WriteCustomization, 700
wxHtmlHelpFrame::wxHtmlHelpFrame, 697
wxHtmlLinkInfo, 701
wxHtmlLinkInfo::GetEvent, 701
wxHtmlLinkInfo::GetHref, 701
wxHtmlLinkInfo::GetHtmlCell, 701
wxHtmlLinkInfo::GetTarget, 701
wxHtmlLinkInfo::wxHtmlLinkInfo, 701
wxHtmlListBox, 702
wxHtmlListBox::~wxHtmlListBox, 702
wxHtmlListBox::Create, 702
wxHtmlListBox::GetFileSystem, 703
wxHtmlListBox::GetSelectedTextBgColour, 703
wxHtmlListBox::GetSelectedTextColour, 703
wxHtmlListBox::OnGetItem, 703
wxHtmlListBox::OnGetItemMarkup, 703
wxHtmlListBox::wxHtmlListBox, 702
wxHtmlParser, 704
wxHtmlParser::AddTag, 704
wxHtmlParser::AddTagHandler, 704
wxHtmlParser::AddText, 705
wxHtmlParser::DoneParser, 705
wxHtmlParser::DoParsing, 705
wxHtmlParser::GetFS, 705
wxHtmlParser::GetProduct, 705
wxHtmlParser::GetSource, 706
wxHtmlParser::InitParser, 706
wxHtmlParser::OpenURL, 706
wxHtmlParser::Parse, 707
wxHtmlParser::PopTagHandler, 708
wxHtmlParser::PushTagHandler, 707
wxHtmlParser::SetFS, 708
wxHtmlParser::StopParsing, 708
wxHtmlParser::wxHtmlParser, 704
wxHtmlPrintout, 708
wxHtmlPrintout::AddFilter, 709
wxHtmlPrintout::SetFonts, 709
wxHtmlPrintout::SetFooter, 709
wxHtmlPrintout::SetHeader, 709
wxHtmlPrintout::SetHtmlFile, 710
wxHtmlPrintout::SetHtmlText, 710
wxHtmlPrintout::SetMargins, 710
wxHtmlPrintout::wxHtmlPrintout, 708
wxHtmlTag, 711
wxHtmlTag::GetAllParams, 711
wxHtmlTag::GetBeginPos, 711
wxHtmlTag::GetEndPos1, 711
wxHtmlTag::GetEndPos2, 711
wxHtmlTag::GetName, 711
wxHtmlTag::GetParam, 712
wxHtmlTag::GetParamAsColour, 712
wxHtmlTag::GetParamAsInt, 712
wxHtmlTag::HasEnding, 713

wxHtmlTag::HasParam, 713
wxHtmlTag::ScanParam, 713
wxHtmlTag::wxHtmlTag, 711
wxHtmlTagHandler, 714
wxHtmlTagHandler::GetSupportedTags, 714
wxHtmlTagHandler::HandleTag, 714
wxHtmlTagHandler::m_Parser, 714
wxHtmlTagHandler::ParseInner, 715
wxHtmlTagHandler::SetParser, 715
wxHtmlTagHandler::wxHtmlTagHandler, 714
wxHtmlTagsModule::FillHandlersTable, 715
wxHtmlWidgetCell, 716
wxHtmlWidgetCell::wxHtmlWidgetCell, 716
wxHtmlWindow, 717
wxHtmlWindow::AddFilter, 717
wxHtmlWindow::AppendToPage, 718
wxHtmlWindow::GetInternalRepresentation, 718
wxHtmlWindow::GetOpenedAnchor, 718
wxHtmlWindow::GetOpenedPage, 718
wxHtmlWindow::GetOpenedPageTitle, 718
wxHtmlWindow::GetRelatedFrame, 719
wxHtmlWindow::HistoryBack, 719
wxHtmlWindow::HistoryCanBack, 719
wxHtmlWindow::HistoryCanForward, 719
wxHtmlWindow::HistoryClear, 719
wxHtmlWindow::HistoryForward, 719
wxHtmlWindow::LoadFile, 719
wxHtmlWindow::LoadPage, 720
wxHtmlWindow::OnCellClicked, 720
wxHtmlWindow::OnCellMouseHover, 720
wxHtmlWindow::OnLinkClicked, 721
wxHtmlWindow::OnOpeningURL, 721
wxHtmlWindow::OnSetTitle, 722
wxHtmlWindow::ReadCustomization, 722
wxHtmlWindow::SelectAll, 722
wxHtmlWindow::SelectionToText, 722
wxHtmlWindow::SelectLine, 722
wxHtmlWindow::SelectWord, 723
wxHtmlWindow::SetBorders, 723
wxHtmlWindow::SetFonts, 724
wxHtmlWindow::SetPage, 724
wxHtmlWindow::SetRelatedFrame, 724
wxHtmlWindow::SetRelatedStatusBar, 725
wxHtmlWindow::ToText, 725
wxHtmlWindow::WriteCustomization, 725
wxHtmlWindow::wxHtmlWindow, 717
wxHtmlWinParser, 726
wxHtmlWinParser::AddModule, 726
wxHtmlWinParser::CloseContainer, 726
wxHtmlWinParser::CreateCurrentFont, 726
wxHtmlWinParser::GetActualColor, 726
wxHtmlWinParser::GetAlign, 727
wxHtmlWinParser::GetCharHeight, 727
wxHtmlWinParser::GetCharWidth, 727
wxHtmlWinParser::GetContainer, 727
wxHtmlWinParser::GetDC, 727
wxHtmlWinParser::GetEncodingConverter, 727
wxHtmlWinParser::GetFontBold, 727
wxHtmlWinParser::GetFontFace, 728
wxHtmlWinParser::GetFontFixed, 728
wxHtmlWinParser::GetFontItalic, 728
wxHtmlWinParser::GetFontSize, 728

INDEX

1884

wxHtmlWinParser::GetFontUnderlined, 728
wxHtmlWinParser::GetInputEncoding, 728
wxHtmlWinParser::GetLink, 728
wxHtmlWinParser::GetLinkColor, 728
wxHtmlWinParser::GetOutputEncoding, 728
wxHtmlWinParser::GetWindow, 729
wxHtmlWinParser::OpenContainer, 729
wxHtmlWinParser::SetActualColor, 729
wxHtmlWinParser::SetAlign, 729
wxHtmlWinParser::SetContainer, 729
wxHtmlWinParser::SetDC, 729
wxHtmlWinParser::SetFontBold, 729
wxHtmlWinParser::SetFontFace, 730
wxHtmlWinParser::SetFontFixed, 730
wxHtmlWinParser::SetFontItalic, 730
wxHtmlWinParser::SetFonts, 730
wxHtmlWinParser::SetFontSize, 730
wxHtmlWinParser::SetFontUnderlined, 730
wxHtmlWinParser::SetInputEncoding, 730
wxHtmlWinParser::SetLink, 730
wxHtmlWinParser::SetLinkColor, 731
wxHtmlWinParser::wxHtmlWinParser, 726
wxHtmlWinTagHandler::m_WParser, 731
wxHTTP::GetHeader, 732
wxHTTP::GetInputStream, 732
wxHTTP::GetResponse, 731
wxHTTP::SetHeader, 732
wxHW_NO_SELECTION, 717
wxHW_SCROLLBAR_AUTO, 717
wxHW_SCROLLBAR_NEVER, 717
wxICOHandler, 745
wxIcon, 733, 734
wxICON, 1554
wxIcon::~wxIcon, 736
wxIcon::CopyFromBitmap, 736
wxIcon::GetDepth, 737
wxIcon::GetHeight, 737
wxIcon::GetWidth, 737
wxIcon::LoadFile, 737
wxIcon::Ok, 738
wxIcon::operator !=, 739
wxIcon::operator =, 739
wxIcon::operator ==, 739
wxIcon::SetDepth, 738
wxIcon::SetHeight, 738
wxIcon::SetWidth, 738
wxIcon::wxIcon, 733
wxIconBundle, 740
wxIconBundle::~wxIconBundle, 740
wxIconBundle::AddIcon, 740
wxIconBundle::GetIcon, 740
wxIconBundle::operator=, 741
wxIconBundle::wxIconBundle, 740
wxICONIZE, 556, 878, 883, 937
wxIconizeEvent, 742
wxIconizeEvent::Iconized, 742
wxIconizeEvent::wxIconizeEvent, 742
wxIconLocation::IsOk, 741
wxID, 1683
wxIdleEvent, 743
wxIdleEvent::CanSend, 743
wxIdleEvent::GetMode, 743

wxIdleEvent::MoreRequested, 744
wxIdleEvent::RequestMore, 743
wxIdleEvent::SetMode, 744
wxIdleEvent::wxIdleEvent, 743
wxIFFHandler, 745
wxImage, 746
wxImage::~wxImage, 749
wxImage::AddHandler, 749
wxImage::CleanUpHandlers, 749
wxImage::ComputeHistogram, 749
wxImage::ConvertAlphaToMask, 750
wxImage::ConvertToBitmap, 750
wxImage::ConvertToMono, 750
wxImage::Copy, 750
wxImage::Create, 750
wxImage::Destroy, 751
wxImage::FindFirstUnusedColour, 751
wxImage::FindHandler, 751
wxImage::GetAlpha, 753
wxImage::GetBlue, 753
wxImage::GetData, 753
wxImage::GetGreen, 753
wxImage::GetHandlers, 754
wxImage::GetHeight, 754
wxImage::GetImageCount, 753
wxImage::GetImageExtWildcard, 752
wxImage::GetMaskBlue, 755
wxImage::GetMaskGreen, 755
wxImage::GetMaskRed, 755
wxImage::GetOption, 756
wxImage::GetOptionInt, 757
wxImage::GetOrFindMaskColour, 755
wxImage::GetPalette, 755
wxImage::GetRed, 755
wxImage::GetSubImage, 755
wxImage::GetWidth, 755
wxImage::HasAlpha, 756
wxImage::HasMask, 756
wxImage::HasOption, 757
wxImage::HSVtoRGB, 756
wxImage::InitAlpha, 757
wxImage::InitStandardHandlers, 757
wxImage::InsertHandler, 758
wxImage::IsTransparent, 758
wxImage::LoadFile, 758
wxImage::Mirror, 761
wxImage::Ok, 760
wxImage::operator !=, 768
wxImage::operator =, 767
wxImage::operator ==, 767
wxImage::RemoveHandler, 760
wxImage::Replace, 761
wxImage::Rescale, 761
wxImage::Resize, 761
wxImage::RGBtoHSV, 760
wxImage::Rotate, 762
wxImage::Rotate90, 762
wxImage::RotateHue, 762
wxImage::SaveFile, 762
wxImage::Scale, 764
wxImage::SetAlpha, 765
wxImage::SetData, 765

INDEX

1885

wxImage::SetMask, 765
wxImage::SetMaskColour, 765
wxImage::SetMaskFromImage, 766
wxImage::SetOption, 766
wxImage::SetPalette, 766
wxImage::SetRGB, 767
wxImage::Size, 764
wxImage::wxImage, 746
wxIMAGE_LIST_NORMAL, 822
wxIMAGE_LIST_SMALL, 822
wxIMAGE_LIST_STATE, 822
wxImageHandler, 768
wxImageHandler::~wxImageHandler, 769
wxImageHandler::GetExtension, 769
wxImageHandler::GetImageCount, 769
wxImageHandler::GetMimeType, 769
wxImageHandler::GetName, 769
wxImageHandler::GetType, 769
wxImageHandler::LoadFile, 769
wxImageHandler::SaveFile, 770
wxImageHandler::SetExtension, 771
wxImageHandler::SetMimeType, 771
wxImageHandler::SetName, 771
wxImageHandler::SetType, 771
wxImageHandler::wxImageHandler, 768
wxImageList, 772
wxImageList::Add, 772
wxImageList::Create, 773
wxImageList::Draw, 773
wxImageList::GetBitmap, 774
wxImageList::GetIcon, 774
wxImageList::GetImageCount, 774
wxImageList::GetSize, 775
wxImageList::Remove, 775
wxImageList::RemoveAll, 775
wxImageList::Replace, 775
wxImageList::wxImageList, 772
wxIndividualLayoutConstraint, 777
wxIndividualLayoutConstraint::Above, 777
wxIndividualLayoutConstraint::Absolute, 777
wxIndividualLayoutConstraint::AsIs, 778
wxIndividualLayoutConstraint::Below, 778
wxIndividualLayoutConstraint::LeftOf, 778
wxIndividualLayoutConstraint::PercentOf, 778
wxIndividualLayoutConstraint::RightOf, 778
wxIndividualLayoutConstraint::SameAs, 778
wxIndividualLayoutConstraint::Set, 779
wxIndividualLayoutConstraint::Unconstrained,

778
wxIndividualLayoutConstraint::wxIndividualLayou

tConstraint, 777
wxInitAllImageHandlers, 1521
wxInitDialogEvent, 779
wxInitDialogEvent::wxInitDialogEvent, 779
wxInitialize, 1522
wxInputStream, 780
wxInputStream::~wxInputStream, 780
wxInputStream::CanRead, 780
wxInputStream::Eof, 780
wxInputStream::GetC, 780
wxInputStream::LastRead, 781
wxInputStream::Peek, 781

wxInputStream::Read, 781
wxInputStream::SeekI, 781
wxInputStream::TellI, 782
wxInputStream::Ungetch, 782
wxInputStream::wxInputStream, 780
wxINT16_SWAP_ALWAYS, 1570
wxINT16_SWAP_ON_BE, 1570
wxINT16_SWAP_ON_LE, 1570
wxINT32_SWAP_ALWAYS, 1570
wxINT32_SWAP_ON_BE, 1570
wxINT32_SWAP_ON_LE, 1570
wxINTXX_SWAP_ALWAYS, 1570
wxINTXX_SWAP_ON_BE, 1570
wxINTXX_SWAP_ON_LE, 1570
wxIPaddress::AnyAddress, 783
wxIPaddress::Hostname, 783
wxIPaddress::IPAddress, 783
wxIPaddress::IsLocalHost, 784
wxIPaddress::LocalHost, 784
wxIPaddress::Service, 783
wxIPCFormat, 198, 374, 1271
wxIPV4address::AnyAddress, 785
wxIPV4address::Hostname, 784
wxIPV4address::IPAddress, 785
wxIPV4address::LocalHost, 785
wxIPV4address::Service, 785
wxIsAbsolutePath, 1532
wxIsBusy, 1551
wxIsClipboardFormatAvailable, 1559
wxIsDebuggerRunning, 1589
wxIsEmpty, 1540
wxIsMainThread, 1528
wxIsNaN, 1553
wxIsWild, 1533
wxJoystick, 786
wxJoystick::~wxJoystick, 786
wxJoystick::GetButtonState, 786
wxJoystick::GetManufacturerId, 786
wxJoystick::GetMovementThreshold, 787
wxJoystick::GetNumberAxes, 787
wxJoystick::GetNumberButtons, 787
wxJoystick::GetNumberJoysticks, 787
wxJoystick::GetPollingMax, 787
wxJoystick::GetPollingMin, 787
wxJoystick::GetPosition, 787
wxJoystick::GetPOVCTSPosition, 788
wxJoystick::GetPOVPosition, 788
wxJoystick::GetProductId, 787
wxJoystick::GetProductName, 787
wxJoystick::GetRudderMax, 788
wxJoystick::GetRudderMin, 788
wxJoystick::GetRudderPosition, 788
wxJoystick::GetUMax, 788
wxJoystick::GetUMin, 788
wxJoystick::GetUPosition, 788
wxJoystick::GetVMax, 789
wxJoystick::GetVMin, 789
wxJoystick::GetVPosition, 789
wxJoystick::GetXMax, 789
wxJoystick::GetXMin, 789
wxJoystick::GetYMax, 789
wxJoystick::GetYMin, 789

INDEX

1886

wxJoystick::GetZMax, 789
wxJoystick::GetZMin, 790
wxJoystick::GetZPosition, 790
wxJoystick::HasPOV, 790
wxJoystick::HasPOV4Dir, 790
wxJoystick::HasPOVCTS, 790
wxJoystick::HasRudder, 790
wxJoystick::HasU, 790
wxJoystick::HasV, 790
wxJoystick::HasZ, 791
wxJoystick::IsOk, 791
wxJoystick::ReleaseCapture, 791
wxJoystick::SetCapture, 791
wxJoystick::SetMovementThreshold, 791
wxJoystick::wxJoystick, 786
wxJoystickEvent, 792
wxJoystickEvent::ButtonDown, 792
wxJoystickEvent::ButtonIsDown, 793
wxJoystickEvent::ButtonUp, 793
wxJoystickEvent::GetButtonChange, 793
wxJoystickEvent::GetButtonState, 793
wxJoystickEvent::GetJoystick, 793
wxJoystickEvent::GetPosition, 794
wxJoystickEvent::GetZPosition, 794
wxJoystickEvent::IsButton, 794
wxJoystickEvent::IsMove, 794
wxJoystickEvent::IsZMove, 794
wxJoystickEvent::wxJoystickEvent, 792
wxJPEGHandler, 745
wxKeyEvent, 796
wxKeyEvent::AltDown, 796
wxKeyEvent::CmdDown, 797
wxKeyEvent::ControlDown, 797
wxKeyEvent::GetKeyCode, 797
wxKeyEvent::GetPosition, 797
wxKeyEvent::GetRawKeyCode, 797
wxKeyEvent::GetRawKeyFlags, 797
wxKeyEvent::GetUnicodeKey, 798
wxKeyEvent::GetX, 798
wxKeyEvent::GetY, 798
wxKeyEvent::HasModifiers, 798
wxKeyEvent::m_altDown, 795
wxKeyEvent::m_controlDown, 796
wxKeyEvent::m_keyCode, 796
wxKeyEvent::m_metaDown, 796
wxKeyEvent::m_shiftDown, 796
wxKeyEvent::m_x, 796
wxKeyEvent::m_y, 796
wxKeyEvent::MetaDown, 798
wxKeyEvent::ShiftDown, 798
wxKeyEvent::wxKeyEvent, 796
wxKill, 1525
wxLaunchDefaultBrowser, 1567
wxLayoutAlgorithm, 800
wxLayoutAlgorithm::~wxLayoutAlgorithm, 801
wxLayoutAlgorithm::LayoutFrame, 801
wxLayoutAlgorithm::LayoutMDIFrame, 801
wxLayoutAlgorithm::LayoutWindow, 801
wxLayoutAlgorithm::wxLayoutAlgorithm, 800
wxLayoutConstraints, 802
wxLayoutConstraints::bottom, 802
wxLayoutConstraints::centreX, 803

wxLayoutConstraints::centreY, 803
wxLayoutConstraints::height, 803
wxLayoutConstraints::left, 803
wxLayoutConstraints::right, 803
wxLayoutConstraints::top, 803
wxLayoutConstraints::width, 803
wxLayoutConstraints::wxLayoutConstraints, 802
wxLB_ALWAYS_SB, 811
wxLB_BOTTOM, 810
wxLB_DEFAULT, 810
wxLB_EXTENDED, 811
wxLB_HSCROLL, 811
wxLB_LEFT, 810
wxLB_MULTIPLE, 811
wxLB_NEEDED_SB, 811
wxLB_RIGHT, 810
wxLB_SINGLE, 811
wxLB_SORT, 811
wxLB_TOP, 810
wxLC_ALIGN_LEFT, 816
wxLC_ALIGN_TOP, 816
wxLC_AUTOARRANGE, 816
wxLC_EDIT_LABELS, 817
wxLC_HRULES, 817
wxLC_ICON, 816
wxLC_LIST, 816
wxLC_NO_HEADER, 817
wxLC_REPORT, 816
wxLC_SINGLE_SEL, 817
wxLC_SMALL_ICON, 816
wxLC_SORT_ASCENDING, 817
wxLC_SORT_DESCENDING, 817
wxLC_VIRTUAL, 816
wxLC_VRULES, 817
wxLEAVE_CRIT_SECT, 1528, 1529
wxLEFT, 1129
wxLI_HORIZONTAL, 1209
wxLI_VERTICAL, 1209
wxList, 806
wxList::~wxList, 806
wxList::Append, 806
wxList::Clear, 806
wxList::DeleteContents, 807
wxList::DeleteNode, 807
wxList::DeleteObject, 807
wxList::Erase, 807
wxList::Find, 807
wxList::GetCount, 807
wxList::GetFirst, 807
wxList::GetLast, 808
wxList::IndexOf, 808
wxList::Insert, 808
wxList::IsEmpty, 808
wxList::Item, 808
wxList::Member, 808
wxList::Nth, 808
wxList::Number, 809
wxList::Sort, 809
wxList::wxList, 806
wxListBox, 811, 812
wxListBox::~wxListBox, 813
wxListBox::Create, 813

INDEX

1887

wxListBox::Deselect, 813
wxListBox::GetSelections, 813
wxListBox::InsertItems, 814
wxListBox::IsSelected, 814
wxListBox::Set, 815
wxListBox::SetFirstItem, 815
wxListBox::wxListBox, 811
wxListCtrl, 818
wxListCtrl::~wxListCtrl, 819
wxListCtrl::Arrange, 819
wxListCtrl::AssignImageList, 819
wxListCtrl::ClearAll, 819
wxListCtrl::Create, 820
wxListCtrl::DeleteAllItems, 820
wxListCtrl::DeleteColumn, 820
wxListCtrl::DeleteItem, 820
wxListCtrl::EditLabel, 820
wxListCtrl::EnsureVisible, 820
wxListCtrl::FindItem, 821
wxListCtrl::GetColumn, 821
wxListCtrl::GetColumnCount, 821
wxListCtrl::GetColumnWidth, 822
wxListCtrl::GetCountPerPage, 822
wxListCtrl::GetEditControl, 822
wxListCtrl::GetImageList, 822
wxListCtrl::GetItem, 822
wxListCtrl::GetItemBackgroundColour, 822
wxListCtrl::GetItemCount, 823
wxListCtrl::GetItemData, 823
wxListCtrl::GetItemFont, 823
wxListCtrl::GetItemPosition, 823
wxListCtrl::GetItemRect, 823
wxListCtrl::GetItemSpacing, 824
wxListCtrl::GetItemState, 824
wxListCtrl::GetItemText, 824
wxListCtrl::GetItemTextColour, 824
wxListCtrl::GetNextItem, 824
wxListCtrl::GetSelectedItemCount, 825
wxListCtrl::GetTextColour, 825
wxListCtrl::GetTopItem, 825
wxListCtrl::GetViewRect, 825
wxListCtrl::HitTest, 826
wxListCtrl::InsertColumn, 826
wxListCtrl::InsertItem, 827
wxListCtrl::OnGetItemAttr, 828
wxListCtrl::OnGetItemImage, 828
wxListCtrl::OnGetItemText, 828
wxListCtrl::RefreshItem, 829
wxListCtrl::RefreshItems, 829
wxListCtrl::ScrollList, 829
wxListCtrl::SetBackgroundColour, 829
wxListCtrl::SetColumn, 829
wxListCtrl::SetColumnWidth, 829
wxListCtrl::SetImageList, 830
wxListCtrl::SetItem, 830
wxListCtrl::SetItemBackgroundColour, 831
wxListCtrl::SetItemCount, 832
wxListCtrl::SetItemData, 832
wxListCtrl::SetItemFont, 832
wxListCtrl::SetItemImage, 832
wxListCtrl::SetItemPosition, 832
wxListCtrl::SetItemState, 832

wxListCtrl::SetItemText, 832
wxListCtrl::SetItemTextColour, 833
wxListCtrl::SetSingleStyle, 833
wxListCtrl::SetTextColour, 833
wxListCtrl::SetWindowStyleFlag, 833
wxListCtrl::SortItems, 833
wxListCtrl::wxListCtrl, 818
wxListEvent, 835
wxListEvent::GetCacheFrom, 835
wxListEvent::GetCacheTo, 835
wxListEvent::GetColumn, 836
wxListEvent::GetData, 836
wxListEvent::GetImage, 836
wxListEvent::GetIndex, 836
wxListEvent::GetItem, 837
wxListEvent::GetKeyCode, 836
wxListEvent::GetLabel, 836
wxListEvent::GetMask, 837
wxListEvent::GetPoint, 836
wxListEvent::GetText, 836
wxListEvent::IsEditCancelled, 837
wxListEvent::wxListEvent, 835
wxListItem, 837
wxListItem::Clear, 837
wxListItem::GetAlign, 838
wxListItem::GetBackgroundColour, 838
wxListItem::GetColumn, 838
wxListItem::GetData, 838
wxListItem::GetFont, 838
wxListItem::GetId, 838
wxListItem::GetImage, 838
wxListItem::GetMask, 838
wxListItem::GetState, 839
wxListItem::GetText, 839
wxListItem::GetTextColour, 839
wxListItem::GetWidth, 839
wxListItem::SetAlign, 839
wxListItem::SetBackgroundColour, 840
wxListItem::SetColumn, 840
wxListItem::SetData, 840
wxListItem::SetFont, 840
wxListItem::SetId, 840
wxListItem::SetImage, 840
wxListItem::SetMask, 840
wxListItem::SetState, 840
wxListItem::SetStateMask, 841
wxListItem::SetText, 841
wxListItem::SetTextColour, 841
wxListItem::SetWidth, 841
wxListItem::wxListItem, 837
wxListItemAttr, 841
wxListItemAttr::GetBackgroundColour, 842
wxListItemAttr::GetFont, 842
wxListItemAttr::GetTextColour, 842
wxListItemAttr::HasBackgroundColour, 842
wxListItemAttr::HasFont, 842
wxListItemAttr::HasTextColour, 842
wxListItemAttr::SetBackgroundColour, 842
wxListItemAttr::SetFont, 842
wxListItemAttr::SetTextColour, 843
wxListItemAttr::wxListItemAttr, 841
wxListView::ClearColumnImage, 843

INDEX

1888

wxListView::Focus, 843
wxListView::GetFirstSelected, 843
wxListView::GetFocusedItem, 844
wxListView::GetNextSelected, 844
wxListView::IsSelected, 844
wxListView::Select, 844
wxListView::SetColumnImage, 845
wxLL, 1561
wxLoadUserResource, 1567
wxLocale, 846
wxLocale::~wxLocale, 847
wxLocale::AddCatalog, 847
wxLocale::AddCatalogLookupPathPrefix, 847
wxLocale::AddLanguage, 848
wxLocale::FindLanguageInfo, 848
wxLocale::GetCanonicalName, 848
wxLocale::GetHeaderValue, 850
wxLocale::GetLanguage, 849
wxLocale::GetLanguageInfo, 849
wxLocale::GetLanguageName, 849
wxLocale::GetLocale, 849
wxLocale::GetName, 849
wxLocale::GetString, 849
wxLocale::GetSysName, 850
wxLocale::GetSystemEncoding, 850
wxLocale::GetSystemEncodingName, 851
wxLocale::GetSystemLanguage, 851
wxLocale::Init, 851
wxLocale::IsLoaded, 852
wxLocale::IsOk, 852
wxLocale::wxLocale, 846
wxLOCALE_CONV_ENCODING, 851
wxLOCALE_LOAD_DEFAULT, 851
wxLog::AddTraceMask, 855
wxLog::ClearTraceMasks, 855
wxLog::DoLog, 856
wxLog::DoLogString, 857
wxLog::DontCreateOnDemand, 857
wxLog::Flush, 857
wxLog::FlushActive, 857
wxLog::GetActiveTarget, 856
wxLog::GetLogLevel, 858
wxLog::GetTimestamp, 858
wxLog::GetTraceMask, 858
wxLog::GetTraceMasks, 855
wxLog::GetVerbose, 858
wxLog::IsAllowedTraceMask, 858
wxLog::OnLog, 856
wxLog::RemoveTraceMask, 859
wxLog::Resume, 856
wxLog::SetActiveTarget, 856
wxLog::SetLogLevel, 858
wxLog::SetTimestamp, 858
wxLog::SetTraceMask, 858
wxLog::SetVerbose, 857
wxLog::Suspend, 856
wxLogChain, 859
wxLogChain::~wxLogChain, 859
wxLogChain::GetOldLog, 860
wxLogChain::IsPassingMessages, 860
wxLogChain::PassMessages, 860
wxLogChain::SetLog, 860

wxLogChain::wxLogChain, 859
wxLogDebug, 1580
wxLogError, 1578
wxLogFatalError, 1578
wxLogGui, 861
wxLogGui::wxLogGui, 861
wxLogMessage, 1579
wxLogNull, 862
wxLogNull::~wxLogNull, 862
wxLogNull::wxLogNull, 862
wxLogPassThrough::wxLogPassThrough, 862
wxLogStatus, 1579
wxLogStderr, 863
wxLogStderr::wxLogStderr, 863
wxLogStream, 863
wxLogStream::wxLogStream, 863
wxLogSysError, 1579
wxLogTextCtrl, 864
wxLogTextCtrl::wxLogTextCtrl, 864
wxLogTrace, 1580
wxLogVerbose, 1579
wxLogWarning, 1578
wxLogWindow, 864
wxLogWindow::GetFrame, 865
wxLogWindow::OnFrameClose, 865
wxLogWindow::OnFrameCreate, 865
wxLogWindow::OnFrameDelete, 865
wxLogWindow::Show, 865
wxLogWindow::wxLogWindow, 864
wxLongLong, 866
wxLongLong::Abs, 867
wxLongLong::Assign, 867
wxLongLong::GetHi, 867
wxLongLong::GetLo, 867
wxLongLong::GetValue, 867
wxLongLong::operator-, 868
wxLongLong::operator--, 868
wxLongLong::operator+, 868
wxLongLong::operator++, 868
wxLongLong::operator+=, 868
wxLongLong::operator=, 867
wxLongLong::operator-=, 868
wxLongLong::ToLong, 867
wxLongLong::ToString, 867
wxLongLong::wxLongLong, 866
wxLongLongFmtSpec, 1561
wxMakeMetafilePlaceable, 1555
wxMask, 869
wxMask::~wxMask, 870
wxMask::Create, 870
wxMask::wxMask, 869
wxMatchWild, 1533
wxMAXIMIZE, 557, 878, 883, 938
wxMAXIMIZE_BOX, 393, 557, 878, 883, 938
wxMaximizeEvent, 871
wxMaximizeEvent::wxMaximizeEvent, 871
wxMBConv, 871
wxMBConv classes, 1662
wxMBConv objects, 1662
wxMBConv::cMB2WC, 872
wxMBConv::cMB2WX, 873
wxMBConv::cWC2MB, 872

INDEX

1889

wxMBConv::cWC2WX, 873
wxMBConv::cWX2MB, 873
wxMBConv::cWX2WC, 873
wxMBConv::MB2WC, 871
wxMBConv::WC2MB, 872
wxMBConv::wxMBConv, 871
wxMBConvFile::MB2WC, 874
wxMBConvFile::WC2MB, 874
wxMBConvUTF16::MB2WC, 876
wxMBConvUTF16::WC2MB, 877
wxMBConvUTF32::MB2WC, 877
wxMBConvUTF32::WC2MB, 877
wxMBConvUTF7::MB2WC, 875
wxMBConvUTF7::WC2MB, 875
wxMBConvUTF8::MB2WC, 876
wxMBConvUTF8::WC2MB, 876
wxMDIChildFrame, 879
wxMDIChildFrame::~wxMDIChildFrame, 880
wxMDIChildFrame::Activate, 880
wxMDIChildFrame::Create, 880
wxMDIChildFrame::Maximize, 880
wxMDIChildFrame::Restore, 880
wxMDIChildFrame::wxMDIChildFrame, 879
wxMDIClientWindow, 881
wxMDIClientWindow::~wxMDIClientWindow, 882
wxMDIClientWindow::CreateClient, 882
wxMDIClientWindow::wxMDIClientWindow, 881
wxMDIParentFrame, 884
wxMDIParentFrame::~wxMDIParentFrame, 885
wxMDIParentFrame::ActivateNext, 885
wxMDIParentFrame::ActivatePrevious, 885
wxMDIParentFrame::ArrangeIcons, 885
wxMDIParentFrame::Cascade, 885
wxMDIParentFrame::Create, 886
wxMDIParentFrame::GetActiveChild, 887
wxMDIParentFrame::GetClientSize, 886
wxMDIParentFrame::GetClientWindow, 887
wxMDIParentFrame::GetToolBar, 887
wxMDIParentFrame::GetWindowMenu, 887
wxMDIParentFrame::OnCreateClient, 887
wxMDIParentFrame::SetToolBar, 888
wxMDIParentFrame::SetWindowMenu, 888
wxMDIParentFrame::Tile, 889
wxMDIParentFrame::wxMDIParentFrame, 884
wxMediaCtrl, 890, 891
wxMediaCtrl::Create, 891
wxMediaCtrl::GetPlaybackRate, 894
wxMediaCtrl::GetState, 892
wxMediaCtrl::GetVolume, 894
wxMediaCtrl::Length, 892
wxMediaCtrl::Load, 893
wxMediaCtrl::Pause, 893
wxMediaCtrl::Play, 893
wxMediaCtrl::Seek, 893
wxMediaCtrl::SetPlaybackRate, 894
wxMediaCtrl::SetVolume, 893
wxMediaCtrl::ShowPlayerControls, 894
wxMediaCtrl::Stop, 893
wxMediaCtrl::Tell, 892
wxMediaCtrl::wxMediaCtrl, 890
wxMemoryBuffer, 895
wxMemoryBuffer::AppendByte, 897

wxMemoryBuffer::AppendData, 897
wxMemoryBuffer::GetAppendBuf, 896
wxMemoryBuffer::GetBufSize, 896
wxMemoryBuffer::GetData, 895
wxMemoryBuffer::GetDataLen, 896
wxMemoryBuffer::GetWriteBuf, 896
wxMemoryBuffer::SetBufSize, 896
wxMemoryBuffer::SetDataLen, 896
wxMemoryBuffer::UngetAppendBuf, 897
wxMemoryBuffer::UngetWriteBuf, 896
wxMemoryBuffer::wxMemoryBuffer, 895
wxMemoryDC, 898
wxMemoryDC::SelectObject, 898
wxMemoryDC::wxMemoryDC, 898
wxMemoryFSHandler, 900
wxMemoryFSHandler::AddFile, 900
wxMemoryFSHandler::RemoveFile, 900
wxMemoryFSHandler::wxMemoryFSHandler,

900
wxMemoryInputStream, 900, 901
wxMemoryInputStream::~wxMemoryInputStream,

901
wxMemoryInputStream::GetInputStreamBuffer,

901
wxMemoryInputStream::wxMemoryInputStream,

900
wxMemoryOutputStream, 901
wxMemoryOutputStream::~wxMemoryOutputStre

am, 901
wxMemoryOutputStream::CopyTo, 901
wxMemoryOutputStream::GetOutputStreamBuffe

r, 902
wxMemoryOutputStream::wxMemoryOutputStrea

m, 901
wxMenu, 903, 904
wxMenu::~wxMenu, 904
wxMenu::Append, 904
wxMenu::AppendCheckItem, 906
wxMenu::AppendRadioItem, 906
wxMenu::AppendSeparator, 906
wxMenu::Break, 907
wxMenu::Check, 907
wxMenu::Delete, 907
wxMenu::Destroy, 908
wxMenu::Enable, 908
wxMenu::FindItem, 908
wxMenu::FindItemByPosition, 909
wxMenu::GetHelpString, 909
wxMenu::GetLabel, 910
wxMenu::GetMenuItemCount, 910
wxMenu::GetMenuItems, 910
wxMenu::GetTitle, 910
wxMenu::Insert, 910
wxMenu::InsertCheckItem, 911
wxMenu::InsertRadioItem, 911
wxMenu::InsertSeparator, 911
wxMenu::IsChecked, 911
wxMenu::IsEnabled, 912
wxMenu::Prepend, 912
wxMenu::PrependCheckItem, 912
wxMenu::PrependRadioItem, 913
wxMenu::PrependSeparator, 913

INDEX

1890

wxMenu::Remove, 913
wxMenu::SetHelpString, 913
wxMenu::SetLabel, 914
wxMenu::SetTitle, 914
wxMenu::UpdateUI, 914
wxMenu::wxMenu, 903
wxMenuBar, 915
wxMenuBar::~wxMenuBar, 916
wxMenuBar::Append, 916
wxMenuBar::Check, 916
wxMenuBar::Enable, 917
wxMenuBar::EnableTop, 917
wxMenuBar::FindItem, 918
wxMenuBar::FindMenu, 918
wxMenuBar::FindMenuItem, 918
wxMenuBar::GetHelpString, 919
wxMenuBar::GetLabel, 919
wxMenuBar::GetLabelTop, 919
wxMenuBar::GetMenu, 920
wxMenuBar::GetMenuCount, 920
wxMenuBar::Insert, 920
wxMenuBar::IsChecked, 921
wxMenuBar::IsEnabled, 921
wxMenuBar::Refresh, 921
wxMenuBar::Remove, 921
wxMenuBar::Replace, 921
wxMenuBar::SetHelpString, 922
wxMenuBar::SetLabel, 922
wxMenuBar::SetLabelTop, 923
wxMenuBar::wxMenuBar, 915
wxMenuEvent, 924
wxMenuEvent::GetMenu, 924
wxMenuEvent::GetMenuId, 924
wxMenuEvent::IsPopup, 924
wxMenuEvent::wxMenuEvent, 924
wxMenuItem, 925
wxMenuItem::~wxMenuItem, 926
wxMenuItem::Check, 926
wxMenuItem::Enable, 926
wxMenuItem::GetBackgroundColour, 926
wxMenuItem::GetBitmap, 926
wxMenuItem::GetFont, 926
wxMenuItem::GetHelp, 926
wxMenuItem::GetId, 927
wxMenuItem::GetKind, 927
wxMenuItem::GetLabel, 927
wxMenuItem::GetLabelFromText, 927
wxMenuItem::GetMarginWidth, 927
wxMenuItem::GetMenu, 927
wxMenuItem::GetName, 927
wxMenuItem::GetSubMenu, 928
wxMenuItem::GetText, 928
wxMenuItem::GetTextColour, 928
wxMenuItem::IsCheckable, 928
wxMenuItem::IsChecked, 928
wxMenuItem::IsEnabled, 928
wxMenuItem::IsSeparator, 928
wxMenuItem::IsSubMenu, 929
wxMenuItem::SetBackgroundColour, 929
wxMenuItem::SetBitmap, 929
wxMenuItem::SetBitmaps, 929
wxMenuItem::SetFont, 929

wxMenuItem::SetHelp, 929
wxMenuItem::SetMarginWidth, 929
wxMenuItem::SetMenu, 929
wxMenuItem::SetSubMenu, 930
wxMenuItem::SetText, 930
wxMenuItem::SetTextColour, 930
wxMenuItem::wxMenuItem, 925
wxMessageBox, 1551
wxMessageDialog, 930
wxMessageDialog overview, 1730
wxMessageDialog::~wxMessageDialog, 931
wxMessageDialog::ShowModal, 931
wxMessageDialog::wxMessageDialog, 930
wxMetafile, 932
wxMetafile::~wxMetafile, 932
wxMetafile::Ok, 932
wxMetafile::Play, 932
wxMetafile::SetClipboard, 932
wxMetafile::wxMetafile, 932
wxMetafileDC, 934
wxMetafileDC::~wxMetafileDC, 934
wxMetafileDC::Close, 934
wxMetafileDC::wxMetafileDC, 934
wxMicroSleep, 1584
wxMilliSleep, 1585
wxMimeTypesManager, 936
wxMimeTypesManager::~wxMimeTypesManager

, 936
wxMimeTypesManager::AddFallbacks, 936
wxMimeTypesManager::GetFileTypeFromExtensi

on, 936
wxMimeTypesManager::GetFileTypeFromMimeT

ype, 936
wxMimeTypesManager::IsOfType, 936
wxMimeTypesManager::ReadMailcap, 936
wxMimeTypesManager::ReadMimeTypes, 937
wxMimeTypesManager::wxMimeTypesManager,

936
wxMiniFrame, 938
wxMiniFrame::~wxMiniFrame, 939
wxMiniFrame::Create, 939
wxMiniFrame::wxMiniFrame, 938
wxMINIMIZE, 557, 878, 883, 937
wxMINIMIZE_BOX, 393, 557, 878, 883, 937
wxMirrorDC, 940
wxMirrorDC::wxMirrorDC, 940
wxMkdir, 1534
wxModule, 941
wxModule::~wxModule, 941
wxModule::OnExit, 941
wxModule::OnInit, 941
wxModule::wxModule, 941
wxMouseCaptureChangedEvent, 942
wxMouseCaptureChangedEvent::wxMouseCaptu

reChangedEvent, 942
wxMouseEvent, 945
wxMouseEvent::AltDown, 946
wxMouseEvent::Button, 946
wxMouseEvent::ButtonDClick, 946
wxMouseEvent::ButtonDown, 946
wxMouseEvent::ButtonUp, 946
wxMouseEvent::CmdDown, 946

INDEX

1891

wxMouseEvent::ControlDown, 947
wxMouseEvent::Dragging, 947
wxMouseEvent::Entering, 947
wxMouseEvent::GetButton, 947
wxMouseEvent::GetLinesPerAction, 948
wxMouseEvent::GetLogicalPosition, 948
wxMouseEvent::GetPosition, 947
wxMouseEvent::GetWheelDelta, 948
wxMouseEvent::GetWheelRotation, 948
wxMouseEvent::GetX, 948
wxMouseEvent::GetY, 948
wxMouseEvent::IsButton, 948
wxMouseEvent::IsPageScroll, 949
wxMouseEvent::Leaving, 949
wxMouseEvent::LeftDClick, 949
wxMouseEvent::LeftDown, 949
wxMouseEvent::LeftIsDown, 949
wxMouseEvent::LeftUp, 949
wxMouseEvent::m_altDown, 943
wxMouseEvent::m_controlDown, 944
wxMouseEvent::m_leftDown, 944
wxMouseEvent::m_linesPerAction, 945
wxMouseEvent::m_metaDown, 944
wxMouseEvent::m_middleDown, 944
wxMouseEvent::m_rightDown, 944
wxMouseEvent::m_shiftDown, 944
wxMouseEvent::m_wheelDelta, 945
wxMouseEvent::m_wheelRotation, 945
wxMouseEvent::m_x, 944
wxMouseEvent::m_y, 944
wxMouseEvent::MetaDown, 949
wxMouseEvent::MiddleDClick, 950
wxMouseEvent::MiddleDown, 950
wxMouseEvent::MiddleIsDown, 950
wxMouseEvent::MiddleUp, 950
wxMouseEvent::Moving, 950
wxMouseEvent::RightDClick, 950
wxMouseEvent::RightDown, 950
wxMouseEvent::RightIsDown, 950
wxMouseEvent::RightUp, 951
wxMouseEvent::ShiftDown, 951
wxMouseEvent::wxMouseEvent, 945
wxMoveEvent, 951
wxMoveEvent::GetPosition, 951
wxMoveEvent::wxMoveEvent, 951
wxMultiChoiceDialog, 952
wxMultiChoiceDialog overview, 1731
wxMultiChoiceDialog::GetSelections, 953
wxMultiChoiceDialog::SetSelections, 953
wxMultiChoiceDialog::ShowModal, 953
wxMultiChoiceDialog::wxMultiChoiceDialog, 952
wxMutex, 955
wxMutex::~wxMutex, 955
wxMutex::Lock, 955
wxMutex::TryLock, 956
wxMutex::Unlock, 956
wxMutex::wxMutex, 955
wxMutexGuiEnter, 1529
wxMutexGuiLeave, 1529
wxMutexLocker, 957
wxMutexLocker::~wxMutexLocker, 957
wxMutexLocker::IsOk, 957

wxMutexLocker::wxMutexLocker, 957
wxNB_BOTTOM, 959, 1727
wxNB_DEFAULT, 1727
wxNB_FIXEDWIDTH, 959
wxNB_FLAT, 959
wxNB_LEFT, 959, 1727
wxNB_MULTILINE, 959
wxNB_NOPAGETHEME, 959
wxNB_RIGHT, 959, 1727
wxNB_TOP, 959, 1727
wxNewId, 1561
wxNO_3D, 393
wxNO_BORDER, 113, 1425
wxNO_FULL_REPAINT_ON_RESIZE, 1425,

1627
wxNode<T>::GetData, 958
wxNode<T>::GetNext, 958
wxNode<T>::GetPrevious, 958
wxNode<T>::IndexOf, 958
wxNode<T>::SetData, 958
wxNotebook, 960
wxNotebook::~wxNotebook, 961
wxNotebook::AddPage, 961
wxNotebook::AdvanceSelection, 961
wxNotebook::AssignImageList, 962
wxNotebook::Create, 962
wxNotebook::DeleteAllPages, 962
wxNotebook::DeletePage, 962
wxNotebook::GetCurrentPage, 962
wxNotebook::GetImageList, 962
wxNotebook::GetPage, 963
wxNotebook::GetPageCount, 963
wxNotebook::GetPageImage, 963
wxNotebook::GetPageText, 963
wxNotebook::GetRowCount, 963
wxNotebook::GetSelection, 963
wxNotebook::GetThemeBackgroundColour, 963
wxNotebook::HitTest, 964
wxNotebook::InsertPage, 964
wxNotebook::OnSelChange, 965
wxNotebook::RemovePage, 965
wxNotebook::SetImageList, 965
wxNotebook::SetPadding, 965
wxNotebook::SetPageImage, 966
wxNotebook::SetPageSize, 966
wxNotebook::SetPageText, 966
wxNotebook::SetSelection, 966
wxNotebook::wxNotebook, 960
wxNotebookEvent, 967
wxNotebookEvent::GetOldSelection, 967
wxNotebookEvent::GetSelection, 967
wxNotebookEvent::SetOldSelection, 968
wxNotebookEvent::SetSelection, 968
wxNotebookEvent::wxNotebookEvent, 967
wxNotebookSizer, 969
wxNotebookSizer::GetNotebook, 969
wxNotebookSizer::wxNotebookSizer, 969
wxNotifyEvent, 969
wxNotifyEvent::Allow, 969
wxNotifyEvent::IsAllowed, 970
wxNotifyEvent::Veto, 970
wxNotifyEvent::wxNotifyEvent, 969

INDEX

1892

wxNow, 1585
wxObjArray, 58
wxObjArray::Detach, 60
wxObject, 970, 971
wxObject::~wxObject, 971
wxObject::Dump, 971
wxObject::GetClassInfo, 971
wxObject::GetRefData, 971
wxObject::IsKindOf, 972
wxObject::m_refData, 971
wxObject::operator delete, 973
wxObject::operator new, 973
wxObject::Ref, 972
wxObject::SetRefData, 972
wxObject::UnRef, 973
wxObject::wxObject, 970
wxObjectRefData, 974
wxObjectRefData::~wxObjectRefData, 974
wxObjectRefData::m_count, 974
wxObjectRefData::wxObjectRefData, 974
wxODBC - Basic Step-By-Step Guide, 1754
wxODBC - Compiling, 1754
wxODBC - Configuring your system for ODBC

use, 1753
wxODBC - Known Issues, 1763
wxODBC - Sample Code, 1765
wxODBC Where To Start, 1750
wxON_BLOCK_EXIT, 1561
wxON_BLOCK_EXIT_OBJ, 1562
wxON_BLOCK_EXIT_OBJ0, 1562
wxON_BLOCK_EXIT_OBJ1, 1562
wxON_BLOCK_EXIT_OBJ2, 1562
wxON_BLOCK_EXIT0, 1562
wxON_BLOCK_EXIT1, 1562
wxON_BLOCK_EXIT2, 1562
wxOnAssert, 1586
wxOpenClipboard, 1559
wxOpenErrorTraverser::OnOpenError, 412
wxOutputStream, 974
wxOutputStream::~wxOutputStream, 974
wxOutputStream::Close, 974
wxOutputStream::LastWrite, 975
wxOutputStream::PutC, 975
wxOutputStream::SeekO, 975
wxOutputStream::TellO, 975
wxOutputStream::Write, 975
wxOutputStream::wxOutputStream, 974
wxPageSetupDialog, 976
wxPageSetupDialog::~wxPageSetupDialog, 976
wxPageSetupDialog::GetPageSetupData, 977
wxPageSetupDialog::ShowModal, 977
wxPageSetupDialog::wxPageSetupDialog, 976
wxPageSetupDialogData, 977
wxPageSetupDialogData::~wxPageSetupDialogD

ata, 978
wxPageSetupDialogData::EnableHelp, 978
wxPageSetupDialogData::EnableMargins, 978
wxPageSetupDialogData::EnableOrientation, 978
wxPageSetupDialogData::EnablePaper, 978
wxPageSetupDialogData::EnablePrinter, 978
wxPageSetupDialogData::GetDefaultInfo, 979
wxPageSetupDialogData::GetDefaultMinMargins,

978
wxPageSetupDialogData::GetEnableHelp, 979
wxPageSetupDialogData::GetEnableMargins,

978
wxPageSetupDialogData::GetEnableOrientation,

978
wxPageSetupDialogData::GetEnablePaper, 979
wxPageSetupDialogData::GetEnablePrinter, 979
wxPageSetupDialogData::GetMarginBottomRight

, 979
wxPageSetupDialogData::GetMarginTopLeft, 979
wxPageSetupDialogData::GetMinMarginBottomR

ight, 979
wxPageSetupDialogData::GetMinMarginTopLeft,

979
wxPageSetupDialogData::GetPaperId, 980
wxPageSetupDialogData::GetPaperSize, 980
wxPageSetupDialogData::GetPrintData, 980
wxPageSetupDialogData::Ok, 980
wxPageSetupDialogData::operator =, 981
wxPageSetupDialogData::SetDefaultInfo, 980
wxPageSetupDialogData::SetDefaultMinMargins,

980
wxPageSetupDialogData::SetMarginBottomRight

, 981
wxPageSetupDialogData::SetMarginTopLeft, 980
wxPageSetupDialogData::SetMinMarginBottomRi

ght, 981
wxPageSetupDialogData::SetMinMarginTopLeft,

981
wxPageSetupDialogData::SetPaperId, 981
wxPageSetupDialogData::SetPaperSize, 981
wxPageSetupDialogData::SetPrintData, 981
wxPageSetupDialogData::wxPageSetupDialogDa

ta, 977
wxPaintDC, 982
wxPaintDC::wxPaintDC, 982
wxPaintEvent, 984
wxPaintEvent::wxPaintEvent, 984
wxPalette, 984
wxPalette::~wxPalette, 985
wxPalette::Create, 985
wxPalette::GetColoursCount, 986
wxPalette::GetPixel, 986
wxPalette::GetRGB, 986
wxPalette::Ok, 987
wxPalette::operator !=, 987
wxPalette::operator =, 987
wxPalette::operator ==, 987
wxPalette::wxPalette, 984
wxPanel, 988
wxPanel::~wxPanel, 989
wxPanel::Create, 989
wxPanel::GetDefaultItem, 989
wxPanel::InitDialog, 989
wxPanel::OnSysColourChanged, 990
wxPanel::SetDefaultItem, 990
wxPanel::SetFocus, 990
wxPanel::SetFocusIgnoringChildren, 991
wxPanel::wxPanel, 988
wxPaperSize, 1011
wxParseCommonDialogsFilter, 1534

INDEX

1893

wxPasswordEntryDialog, 991
wxPasswordEntryDialog overview, 1730
wxPasswordEntryDialog::wxPasswordEntryDialo

g, 991
wxPathList, 992
wxPathList::Add, 993
wxPathList::AddEnvList, 992
wxPathList::EnsureFileAccessible, 993
wxPathList::FindAbsoluteValidPath, 993
wxPathList::FindValidPath, 993
wxPathList::Member, 993
wxPathList::wxPathList, 992
wxPathOnly, 1532
wxPCXHandler, 745
wxPen, 994, 995
wxPen::~wxPen, 996
wxPen::GetCap, 996
wxPen::GetColour, 997
wxPen::GetDashes, 997
wxPen::GetJoin, 997
wxPen::GetStipple, 997
wxPen::GetStyle, 997
wxPen::GetWidth, 998
wxPen::Ok, 998
wxPen::operator !=, 1000
wxPen::operator =, 999
wxPen::operator ==, 1000
wxPen::SetCap, 998
wxPen::SetColour, 998
wxPen::SetDashes, 998
wxPen::SetJoin, 999
wxPen::SetStipple, 999
wxPen::SetStyle, 999
wxPen::SetWidth, 999
wxPen::wxPen, 994
wxPenList, 1001
wxPenList::AddPen, 1001
wxPenList::FindOrCreatePen, 1001
wxPenList::RemovePen, 1001
wxPenList::wxPenList, 1001
wxPLURAL, 1543
wxPNGHandler, 745
wxPNMHandler, 745
wxPoint, 1002
wxPoint::wxPoint, 1002
wxPoint::x, 1002
wxPoint::y, 1002
wxPostDelete, 1567
wxPostEvent, 1567
wxPostScriptDC, 1003
wxPostScriptDC::GetResolution, 1003
wxPostScriptDC::SetResolution, 1003
wxPostScriptDC::wxPostScriptDC, 1003
wxPreviewCanvas, 1004
wxPreviewCanvas::~wxPreviewCanvas, 1004
wxPreviewCanvas::OnPaint, 1004
wxPreviewCanvas::wxPreviewCanvas, 1004
wxPreviewControlBar, 1005
wxPreviewControlBar::~wxPreviewControlBar,

1005
wxPreviewControlBar::CreateButtons, 1005
wxPreviewControlBar::GetPrintPreview, 1005

wxPreviewControlBar::GetZoomControl, 1005
wxPreviewControlBar::SetZoomControl, 1005
wxPreviewControlBar::wxPreviewControlbar,

1004
wxPreviewFrame, 1006
wxPreviewFrame::~wxPreviewFrame, 1006
wxPreviewFrame::CreateCanvas, 1006
wxPreviewFrame::CreateControlBar, 1006
wxPreviewFrame::Initialize, 1007
wxPreviewFrame::OnCloseWindow, 1007
wxPreviewFrame::wxPreviewFrame, 1006
wxPrintData, 1008
wxPrintData::~wxPrintData, 1008
wxPrintData::GetBin, 1008
wxPrintData::GetCollate, 1008
wxPrintData::GetColour, 1008
wxPrintData::GetDuplex, 1008
wxPrintData::GetNoCopies, 1009
wxPrintData::GetOrientation, 1009
wxPrintData::GetPaperId, 1009
wxPrintData::GetPrinterName, 1009
wxPrintData::GetQuality, 1009
wxPrintData::Ok, 1009
wxPrintData::operator =, 1013
wxPrintData::SetBin, 1010
wxPrintData::SetCollate, 1010
wxPrintData::SetColour, 1010
wxPrintData::SetDuplex, 1010
wxPrintData::SetNoCopies, 1010
wxPrintData::SetOrientation, 1011
wxPrintData::SetPaperId, 1011
wxPrintData::SetPrinterName, 1012
wxPrintData::SetQuality, 1013
wxPrintData::wxPrintData, 1008
wxPrintDialog, 1014
wxPrintDialog overview, 1729
wxPrintDialog::~wxPrintDialog, 1014
wxPrintDialog::GetPrintDC, 1014
wxPrintDialog::GetPrintDialogData, 1014
wxPrintDialog::ShowModal, 1014
wxPrintDialog::wxPrintDialog, 1014
wxPrintDialogData, 1015
wxPrintDialogData::~wxPrintDialogData, 1015
wxPrintDialogData::EnableHelp, 1015
wxPrintDialogData::EnablePageNumbers, 1015
wxPrintDialogData::EnablePrintToFile, 1015
wxPrintDialogData::EnableSelection, 1015
wxPrintDialogData::GetAllPages, 1016
wxPrintDialogData::GetCollate, 1016
wxPrintDialogData::GetFromPage, 1016
wxPrintDialogData::GetMaxPage, 1016
wxPrintDialogData::GetMinPage, 1016
wxPrintDialogData::GetNoCopies, 1016
wxPrintDialogData::GetPrintData, 1016
wxPrintDialogData::GetPrintToFile, 1016
wxPrintDialogData::GetSelection, 1016
wxPrintDialogData::GetToPage, 1017
wxPrintDialogData::Ok, 1017
wxPrintDialogData::operator =, 1018
wxPrintDialogData::SetCollate, 1017
wxPrintDialogData::SetFromPage, 1017
wxPrintDialogData::SetMaxPage, 1017

INDEX

1894

wxPrintDialogData::SetMinPage, 1017
wxPrintDialogData::SetNoCopies, 1017
wxPrintDialogData::SetPrintData, 1017
wxPrintDialogData::SetPrintToFile, 1018
wxPrintDialogData::SetSelection, 1018
wxPrintDialogData::SetSetupDialog, 1018
wxPrintDialogData::SetToPage, 1018
wxPrintDialogData::wxPrintDialogData, 1015
wxPrinter, 1019
wxPrinter::CreateAbortWindow, 1019
wxPrinter::GetAbort, 1019
wxPrinter::GetLastError, 1019
wxPrinter::GetPrintDialogData, 1020
wxPrinter::Print, 1020
wxPrinter::PrintDialog, 1020
wxPrinter::ReportError, 1020
wxPrinter::Setup, 1020
wxPrinter::wxPrinter, 1019
wxPrinterDC, 1021
wxPrinterDC::wxPrinterDC, 1021
wxPrintout, 1022
wxPrintout::~wxPrintout, 1022
wxPrintout::GetDC, 1022
wxPrintout::GetPageInfo, 1022
wxPrintout::GetPageSizeMM, 1022
wxPrintout::GetPageSizePixels, 1023
wxPrintout::GetPPIPrinter, 1023
wxPrintout::GetPPIScreen, 1023
wxPrintout::GetTitle, 1023
wxPrintout::HasPage, 1023
wxPrintout::IsPreview, 1024
wxPrintout::OnBeginDocument, 1024
wxPrintout::OnBeginPrinting, 1024
wxPrintout::OnEndDocument, 1024
wxPrintout::OnEndPrinting, 1024
wxPrintout::OnPreparePrinting, 1024
wxPrintout::OnPrintPage, 1025
wxPrintout::wxPrintout, 1022
wxPrintPreview, 1025
wxPrintPreview::~wxPrintPreview, 1026
wxPrintPreview::GetCanvas, 1026
wxPrintPreview::GetCurrentPage, 1026
wxPrintPreview::GetFrame, 1026
wxPrintPreview::GetMaxPage, 1026
wxPrintPreview::GetMinPage, 1026
wxPrintPreview::GetPrintout, 1026
wxPrintPreview::GetPrintoutForPrinting, 1026
wxPrintPreview::Ok, 1027
wxPrintPreview::PaintPage, 1027
wxPrintPreview::Print, 1027
wxPrintPreview::RenderPage, 1027
wxPrintPreview::SetCanvas, 1027
wxPrintPreview::SetCurrentPage, 1027
wxPrintPreview::SetFrame, 1027
wxPrintPreview::SetPrintout, 1028
wxPrintPreview::SetZoom, 1028
wxPrintPreview::wxPrintPreview, 1025
wxProcess, 1029
wxProcess::~wxProcess, 1029
wxProcess::CloseOutput, 1029
wxProcess::Detach, 1029
wxProcess::Exists, 1032

wxProcess::GetErrorStream, 1030
wxProcess::GetInputStream, 1030
wxProcess::GetOutputStream, 1030
wxProcess::IsErrorAvailable, 1030
wxProcess::IsInputAvailable, 1030
wxProcess::IsInputOpened, 1031
wxProcess::Kill, 1031
wxProcess::OnTerminate, 1032
wxProcess::Open, 1032
wxProcess::Redirect, 1033
wxProcess::wxProcess, 1029
wxProcessEvent, 1033
wxProcessEvent::GetExitCode, 1034
wxProcessEvent::GetPid, 1033
wxProcessEvent::wxProcessEvent, 1033
wxProgressDialog, 1034
wxProgressDialog::~wxProgressDialog, 1035
wxProgressDialog::Resume, 1035
wxProgressDialog::Update, 1035
wxProgressDialog::wxProgressDialog, 1034
wxPropertySheetDialog, 1037
wxPropertySheetDialog::AddBookCtrl, 1037
wxPropertySheetDialog::Create, 1037
wxPropertySheetDialog::CreateBookCtrl, 1037
wxPropertySheetDialog::CreateButtons, 1037
wxPropertySheetDialog::GetBookCtrl, 1037
wxPropertySheetDialog::GetInnerSizer, 1038
wxPropertySheetDialog::LayoutDialog, 1038
wxPropertySheetDialog::SetBookCtrl, 1038
wxPropertySheetDialog::SetInnerSizer, 1038
wxPropertySheetDialog::wxPropertySheetDialog,

1037
wxProtocol::Abort, 1039
wxProtocol::GetContentType, 1040
wxProtocol::GetError, 1039
wxProtocol::GetInputStream, 1039
wxProtocol::Reconnect, 1038
wxProtocol::SetPassword, 1040
wxProtocol::SetUser, 1040
wxQuantize, 1040
wxQuantize::DoQuantize, 1041
wxQuantize::Quantize, 1040
wxQuantize::wxQuantize, 1040
wxQueryLayoutInfoEvent, 1042
wxQueryLayoutInfoEvent::GetAlignment, 1042
wxQueryLayoutInfoEvent::GetFlags, 1042
wxQueryLayoutInfoEvent::GetOrientation, 1042
wxQueryLayoutInfoEvent::GetRequestedLength,

1042
wxQueryLayoutInfoEvent::GetSize, 1043
wxQueryLayoutInfoEvent::SetAlignment, 1043
wxQueryLayoutInfoEvent::SetFlags, 1043
wxQueryLayoutInfoEvent::SetOrientation, 1043
wxQueryLayoutInfoEvent::SetRequestedLength,

1043
wxQueryLayoutInfoEvent::SetSize, 1043
wxQueryLayoutInfoEvent::wxQueryLayoutInfoEv

ent, 1042
wxRA_SPECIFY_COLS, 1044
wxRA_SPECIFY_ROWS, 1044
wxRA_USE_CHECKBOX, 1044
wxRadioBox, 1044

INDEX

1895

wxRadioBox::~wxRadioBox, 1046
wxRadioBox::Create, 1046
wxRadioBox::Enable, 1046
wxRadioBox::FindString, 1047
wxRadioBox::GetCount, 1047
wxRadioBox::GetLabel, 1047
wxRadioBox::GetSelection, 1047
wxRadioBox::GetString, 1048
wxRadioBox::GetStringSelection, 1048
wxRadioBox::Number, 1048
wxRadioBox::SetLabel, 1048
wxRadioBox::SetSelection, 1049
wxRadioBox::SetStringSelection, 1049
wxRadioBox::Show, 1049
wxRadioBox::wxRadioBox, 1044
wxRadioButton, 1051
wxRadioButton::~wxRadioButton, 1052
wxRadioButton::Create, 1052
wxRadioButton::GetValue, 1052
wxRadioButton::SetValue, 1052
wxRadioButton::wxRadioButton, 1051
wxRAISED_BORDER, 1425
wxRB_GROUP, 1050
wxRB_SINGLE, 1050
wxRB_USE_CHECKBOX, 1050
wxRealPoint, 1053
wxRealPoint::wxRealPoint, 1053
wxRect, 1053, 1054
wxRect::Deflate, 1054
wxRect::GetBottom, 1054
wxRect::GetBottomRight, 1055
wxRect::GetHeight, 1055
wxRect::GetLeft, 1055
wxRect::GetPosition, 1055
wxRect::GetRight, 1055
wxRect::GetSize, 1055
wxRect::GetTop, 1055
wxRect::GetTopLeft, 1055
wxRect::GetWidth, 1056
wxRect::GetX, 1056
wxRect::GetY, 1056
wxRect::height, 1054
wxRect::Inflate, 1056
wxRect::Inside, 1057
wxRect::Intersects, 1057
wxRect::IsEmpty, 1057
wxRect::Offset, 1057
wxRect::operator !=, 1058
wxRect::operator =, 1058
wxRect::operator ==, 1058
wxRect::SetHeight, 1057
wxRect::SetSize, 1057
wxRect::SetWidth, 1058
wxRect::SetX, 1058
wxRect::SetY, 1058
wxRect::Union, 1058
wxRect::width, 1054
wxRect::wxRect, 1053
wxRect::x, 1054
wxRect::y, 1054
wxRecursionGuard, 1059
wxRecursionGuard::~wxRecursionGuard, 1059

wxRecursionGuard::IsInside, 1060
wxRecursionGuard::wxRecursionGuard, 1059
wxRegEx, 1062
wxRegEx::~wxRegEx, 1062
wxRegEx::Compile, 1062
wxRegEx::GetMatch, 1062
wxRegEx::GetMatchCount, 1063
wxRegEx::IsValid, 1062
wxRegEx::Matches, 1063
wxRegEx::Replace, 1063
wxRegEx::ReplaceAll, 1064
wxRegEx::ReplaceFirst, 1064
wxRegEx::wxRegEx, 1062
wxRegion, 1064, 1065
wxRegion::~wxRegion, 1065
wxRegion::Clear, 1065
wxRegion::Contains, 1065
wxRegion::ConvertToBitmap, 1066
wxRegion::GetBox, 1066
wxRegion::Intersect, 1066
wxRegion::IsEmpty, 1066
wxRegion::Offset, 1067
wxRegion::operator =, 1068
wxRegion::Subtract, 1067
wxRegion::Union, 1067
wxRegion::wxRegion, 1064
wxRegion::Xor, 1068
wxRegionIterator, 1069
wxRegionIterator::GetH, 1069
wxRegionIterator::GetHeight, 1069
wxRegionIterator::GetRect, 1070
wxRegionIterator::GetW, 1069
wxRegionIterator::GetWidth, 1070
wxRegionIterator::GetX, 1069
wxRegionIterator::GetY, 1069
wxRegionIterator::HaveRects, 1070
wxRegionIterator::operator ++, 1070
wxRegionIterator::operator bool, 1070
wxRegionIterator::Reset, 1070
wxRegionIterator::wxRegionIterator, 1069
wxRegisterClipboardFormat, 1559
wxRegisterId, 1562
wxRegKey, 1072
wxRegKey::Close, 1072
wxRegKey::Create, 1072
wxRegKey::DeleteKey, 1072
wxRegKey::DeleteSelf, 1072
wxRegKey::DeleteValue, 1072
wxRegKey::Exists, 1072
wxRegKey::GetFirstKey, 1073
wxRegKey::GetFirstValue, 1073
wxRegKey::GetKeyInfo, 1073
wxRegKey::GetName, 1073
wxRegKey::GetNextKey, 1073
wxRegKey::GetNextValue, 1073
wxRegKey::HasSubKey, 1074
wxRegKey::HasSubKeys, 1074
wxRegKey::HasValue, 1073
wxRegKey::HasValues, 1074
wxRegKey::IsEmpty, 1074
wxRegKey::IsOpened, 1074
wxRegKey::Open, 1074

INDEX

1896

wxRegKey::QueryValue, 1074
wxRegKey::Rename, 1075
wxRegKey::RenameValue, 1075
wxRegKey::SetValue, 1075
wxRegKey::wxRegKey, 1072
wxRelationship, 777
wxRemoveFile, 1534
wxRenameFile, 1534
wxRendererNative::~wxRendererNative, 1076
wxRendererNative::DrawComboBoxDropButton,

1076
wxRendererNative::DrawDropArrow, 1077
wxRendererNative::DrawHeaderButton, 1077
wxRendererNative::DrawSplitterBorder, 1077
wxRendererNative::DrawSplitterSash, 1077
wxRendererNative::DrawTreeItemButton, 1077
wxRendererNative::Get, 1077
wxRendererNative::GetDefault, 1077
wxRendererNative::GetGeneric, 1078
wxRendererNative::GetSplitterParams, 1078
wxRendererNative::GetVersion, 1078
wxRendererNative::Load, 1078
wxRendererNative::Set, 1078
wxRendererVersion::age, 1079
wxRendererVersion::IsCompatible, 1079
wxRendererVersion::version, 1079
wxRESIZE_BORDER, 393, 557, 878, 883, 938
wxRETAINED, 1103
wxRIGHT, 1129
wxRmdir, 1534
wxSafeShowMessage, 1581
wxSafeYield, 1522
wxSashEvent, 1081
wxSashEvent::GetDragRect, 1081
wxSashEvent::GetDragStatus, 1081
wxSashEvent::GetEdge, 1081
wxSashEvent::wxSashEvent, 1080
wxSashLayoutWindow, 1082
wxSashLayoutWindow::Create, 1083
wxSashLayoutWindow::GetAlignment, 1083
wxSashLayoutWindow::GetOrientation, 1083
wxSashLayoutWindow::OnCalculateLayout, 1084
wxSashLayoutWindow::OnQueryLayoutInfo,

1084
wxSashLayoutWindow::SetAlignment, 1084
wxSashLayoutWindow::SetDefaultSize, 1084
wxSashLayoutWindow::SetOrientation, 1084
wxSashLayoutWindow::wxSashLayoutWindow,

1082
wxSashWindow, 1086
wxSashWindow::~wxSashWindow, 1086
wxSashWindow::GetMaximumSizeX, 1087
wxSashWindow::GetMaximumSizeY, 1087
wxSashWindow::GetMinimumSizeX, 1087
wxSashWindow::GetMinimumSizeY, 1087
wxSashWindow::GetSashVisible, 1086
wxSashWindow::HasBorder, 1087
wxSashWindow::SetMaximumSizeX, 1087
wxSashWindow::SetMaximumSizeY, 1088
wxSashWindow::SetMinimumSizeX, 1088
wxSashWindow::SetMinimumSizeY, 1088
wxSashWindow::SetSashBorder, 1088

wxSashWindow::SetSashVisible, 1088
wxSashWindow::wxSashWindow, 1085
wxSB_FLAT, 1217
wxSB_HORIZONTAL, 1096
wxSB_NORMAL, 1217
wxSB_RAISED, 1218
wxSB_VERTICAL, 1096
wxScopedArray, 1090
wxScopedArray::get, 1090
wxScopedArray::operator [], 1090
wxScopedArray::reset, 1090
wxScopedArray::swap, 1090
wxScopedArray::wxScopedArray, 1090
wxScopedPtr::~wxScopedPtr, 1092
wxScopedPtr::get, 1093
wxScopedPtr::operator *, 1092
wxScopedPtr::operator ->, 1093
wxScopedPtr::release, 1092
wxScopedPtr::reset, 1092
wxScopedPtr::swap, 1093
wxScopedPtr::wxScopedPtr, 1092
wxScopedTiedPtr, 1093
wxScopedTiedPtr::~wxScopedTiedPtr, 1093
wxScopedTiedPtr::wxScopedTiedPtr, 1093
wxScreenDC, 1094
wxScreenDC::EndDrawingOnTop, 1095
wxScreenDC::StartDrawingOnTop, 1094
wxScreenDC::wxScreenDC, 1094
wxScrollBar, 1098
wxScrollBar::~wxScrollBar, 1099
wxScrollBar::Create, 1099
wxScrollBar::GetPageSize, 1099
wxScrollBar::GetRange, 1099
wxScrollBar::GetThumbPosition, 1099
wxScrollBar::GetThumbSize, 1100
wxScrollBar::SetScrollbar, 1100
wxScrollBar::SetThumbPosition, 1100
wxScrollBar::wxScrollBar, 1098
wxScrolledWindow, 1103
wxScrolledWindow::~wxScrolledWindow, 1104
wxScrolledWindow::CalcScrolledPosition, 1104
wxScrolledWindow::CalcUnscrolledPosition,

1104
wxScrolledWindow::Create, 1105
wxScrolledWindow::DoPrepareDC, 1107
wxScrolledWindow::EnableScrolling, 1105
wxScrolledWindow::GetScrollPixelsPerUnit, 1105
wxScrolledWindow::GetViewStart, 1106
wxScrolledWindow::GetVirtualSize, 1106
wxScrolledWindow::IsRetained, 1107
wxScrolledWindow::OnDraw, 1108
wxScrolledWindow::PrepareDC, 1108
wxScrolledWindow::Scroll, 1108
wxScrolledWindow::SetScrollbars, 1108
wxScrolledWindow::SetScrollRate, 1110
wxScrolledWindow::SetTargetWindow, 1110
wxScrolledWindow::wxScrolledWindow, 1103
wxScrollEvent, 1112
wxScrollEvent::GetOrientation, 1112
wxScrollEvent::GetPosition, 1113
wxScrollEvent::wxScrollEvent, 1112
wxScrollWinEvent, 1114

INDEX

1897

wxScrollWinEvent::GetOrientation, 1114
wxScrollWinEvent::GetPosition, 1114
wxScrollWinEvent::wxScrollWinEvent, 1114
wxSemaphore, 1115
wxSemaphore::~wxSemaphore, 1115
wxSemaphore::Post, 1115
wxSemaphore::TryWait, 1115
wxSemaphore::Wait, 1116
wxSemaphore::WaitTimeout, 1116
wxSemaphore::wxSemaphore, 1115
wxServer, 1118
wxServer::Create, 1118
wxServer::OnAcceptConnection, 1118
wxServer::wxServer, 1118
wxSetClipboardData, 1559
wxSetCursor, 1555
wxSetCursorEvent, 1117
wxSetCursorEvent::GetCursor, 1117
wxSetCursorEvent::GetX, 1117
wxSetCursorEvent::GetY, 1117
wxSetCursorEvent::HasCursor, 1117
wxSetCursorEvent::SetCursor, 1117
wxSetCursorEvent::wxSetCursorEvent, 1117
wxSetDisplayName, 1568
wxSetEnv, 1590
wxSetPrinterCommand, 1556
wxSetPrinterFile, 1557
wxSetPrinterMode, 1557
wxSetPrinterOptions, 1557
wxSetPrinterOrientation, 1557
wxSetPrinterPreviewCommand, 1557
wxSetPrinterScaling, 1557
wxSetPrinterTranslation, 1557
wxSetWorkingDirectory, 1534
wxSHAPED, 1129
wxShell, 1526
wxShowTip, 1552
wxShutdown, 1527
wxSIMPLE_BORDER, 1425
wxSingleChoiceDialog, 1120
wxSingleChoiceDialog overview, 1730
wxSingleChoiceDialog::GetSelection, 1121
wxSingleChoiceDialog::GetSelectionClientData,

1121
wxSingleChoiceDialog::GetStringSelection, 1121
wxSingleChoiceDialog::SetSelection, 1121
wxSingleChoiceDialog::ShowModal, 1121
wxSingleChoiceDialog::wxSingleChoiceDialog,

1120
wxSingleInstanceChecker, 1122
wxSingleInstanceChecker::~wxSingleInstanceCh

ecker, 1123
wxSingleInstanceChecker::Create, 1122
wxSingleInstanceChecker::IsAnotherRunning,

1123
wxSingleInstanceChecker::wxSingleInstanceChe

cker, 1122
wxSize, 1124
wxSize::DecTo, 1124
wxSize::GetHeight, 1125
wxSize::GetWidth, 1124
wxSize::IncTo, 1125

wxSize::IsFullySpecified, 1124
wxSize::operator =, 1126
wxSize::Set, 1125
wxSize::SetDefaults, 1125
wxSize::SetHeight, 1125
wxSize::SetWidth, 1125
wxSize::wxSize, 1124
wxSizeEvent, 1126
wxSizeEvent::GetSize, 1126
wxSizeEvent::wxSizeEvent, 1126
wxSizer, 1128
wxSizer::~wxSizer, 1128
wxSizer::Add, 1128
wxSizer::AddSpacer, 1130
wxSizer::AddStretchSpacer, 1130
wxSizer::CalcMin, 1130
wxSizer::Detach, 1130
wxSizer::Fit, 1131
wxSizer::FitInside, 1131
wxSizer::GetItem, 1131
wxSizer::GetMinSize, 1132
wxSizer::GetPosition, 1131
wxSizer::GetSize, 1131
wxSizer::Insert, 1132
wxSizer::InsertSpacer, 1132
wxSizer::InsertStretchSpacer, 1132
wxSizer::Layout, 1132
wxSizer::Prepend, 1133
wxSizer::PrependSpacer, 1133
wxSizer::PrependStretchSpacer, 1133
wxSizer::RecalcSizes, 1133
wxSizer::Remove, 1133
wxSizer::SetDimension, 1134
wxSizer::SetItemMinSize, 1134
wxSizer::SetMinSize, 1134
wxSizer::SetSizeHints, 1134
wxSizer::SetVirtualSizeHints, 1134
wxSizer::Show, 1135
wxSizer::wxSizer, 1127
wxSizerFlags, 1135
wxSizerFlags::Align, 1135
wxSizerFlags::Border, 1136
wxSizerFlags::Center, 1136
wxSizerFlags::Centre, 1136
wxSizerFlags::Expand, 1136
wxSizerFlags::Left, 1136
wxSizerFlags::Proportion, 1136
wxSizerFlags::Right, 1137
wxSizerFlags::wxSizerFlags, 1135
wxSizerItem, 1137
wxSizerItem::~wxSizerItem, 1137
wxSizerItem::CalcMin, 1138
wxSizerItem::DeleteWindows, 1138
wxSizerItem::DetachSizer, 1138
wxSizerItem::GetBorder, 1138
wxSizerItem::GetFlag, 1138
wxSizerItem::GetMinSize, 1138
wxSizerItem::GetPosition, 1138
wxSizerItem::GetProportion, 1138
wxSizerItem::GetRatio, 1138
wxSizerItem::GetRect, 1139
wxSizerItem::GetSize, 1139

INDEX

1898

wxSizerItem::GetSizer, 1139
wxSizerItem::GetSpacer, 1139
wxSizerItem::GetUserData, 1139
wxSizerItem::GetWindow, 1139
wxSizerItem::IsShown, 1139
wxSizerItem::IsSizer, 1139
wxSizerItem::IsSpacer, 1140
wxSizerItem::IsWindow, 1140
wxSizerItem::SetBorder, 1140
wxSizerItem::SetDimension, 1140
wxSizerItem::SetFlag, 1140
wxSizerItem::SetInitSize, 1140
wxSizerItem::SetProportion, 1140
wxSizerItem::SetRatio, 1140
wxSizerItem::SetSizer, 1141
wxSizerItem::SetSpacer, 1141
wxSizerItem::SetWindow, 1141
wxSizerItem::Show, 1141
wxSizerItem::wxSizerItem, 1137
wxSL_AUTOTICKS, 1142
wxSL_BOTTOM, 1142
wxSL_HORIZONTAL, 1141
wxSL_INVERSE, 1142
wxSL_LABELS, 1142
wxSL_LEFT, 1142
wxSL_RIGHT, 1142
wxSL_SELRANGE, 1142
wxSL_TOP, 1142
wxSL_VERTICAL, 1142
wxSleep, 1585
wxSlider, 1144
wxSlider::~wxSlider, 1145
wxSlider::ClearSel, 1145
wxSlider::ClearTicks, 1145
wxSlider::Create, 1145
wxSlider::GetLineSize, 1146
wxSlider::GetMax, 1146
wxSlider::GetMin, 1146
wxSlider::GetPageSize, 1146
wxSlider::GetSelEnd, 1146
wxSlider::GetSelStart, 1147
wxSlider::GetThumbLength, 1147
wxSlider::GetTickFreq, 1147
wxSlider::GetValue, 1147
wxSlider::SetLineSize, 1148
wxSlider::SetPageSize, 1148
wxSlider::SetRange, 1148
wxSlider::SetSelection, 1148
wxSlider::SetThumbLength, 1149
wxSlider::SetTick, 1149
wxSlider::SetTickFreq, 1150
wxSlider::SetValue, 1150
wxSlider::wxSlider, 1144
wxSnprintf, 1541
wxSockAddress, 1151
wxSockAddress::~wxSockAddress, 1151
wxSockAddress::Clear, 1151
wxSockAddress::SockAddrLen, 1151
wxSockAddress::wxSockAddress, 1151
wxSocketBase, 1154
wxSocketBase::~wxSocketBase, 1154
wxSocketBase::Close, 1154

wxSocketBase::Destroy, 1155
wxSocketBase::Discard, 1155
wxSocketBase::Error, 1155
wxSocketBase::GetClientData, 1155
wxSocketBase::GetFlags, 1156
wxSocketBase::GetLocal, 1155
wxSocketBase::GetPeer, 1156
wxSocketBase::InterruptWait, 1156
wxSocketBase::IsConnected, 1156
wxSocketBase::IsData, 1156
wxSocketBase::IsDisconnected, 1157
wxSocketBase::LastCount, 1157
wxSocketBase::LastError, 1157
wxSocketBase::Notify, 1157
wxSocketBase::Ok, 1157
wxSocketBase::Peek, 1161
wxSocketBase::Read, 1161
wxSocketBase::ReadMsg, 1162
wxSocketBase::RestoreState, 1158
wxSocketBase::SaveState, 1158
wxSocketBase::SetClientData, 1158
wxSocketBase::SetEventHandler, 1158
wxSocketBase::SetFlags, 1159
wxSocketBase::SetNotify, 1160
wxSocketBase::SetTimeout, 1160
wxSocketBase::Unread, 1162
wxSocketBase::Wait, 1163
wxSocketBase::WaitForLost, 1164
wxSocketBase::WaitForRead, 1164
wxSocketBase::WaitForWrite, 1165
wxSocketBase::Write, 1165
wxSocketBase::WriteMsg, 1166
wxSocketBase::wxSocketBase, 1154
wxSocketClient, 1167
wxSocketClient::~wxSocketClient, 1167
wxSocketClient::Connect, 1167
wxSocketClient::WaitOnConnect, 1168
wxSocketClient::wxSocketClient, 1167
wxSocketEvent, 1169
wxSocketEvent::GetClientData, 1169
wxSocketEvent::GetSocket, 1169
wxSocketEvent::GetSocketEvent, 1170
wxSocketEvent::wxSocketEvent, 1169
wxSocketInputStream, 1170
wxSocketInputStream::wxSocketInputStream,

1170
wxSocketOutputStream, 1171
wxSocketOutputStream::wxSocketOutputStream,

1171
wxSocketServer, 1171
wxSocketServer::~wxSocketServer, 1171
wxSocketServer::Accept, 1171
wxSocketServer::AcceptWith, 1172
wxSocketServer::WaitForAccept, 1172
wxSocketServer::wxSocketServer, 1171
wxSortedArray, 58
wxSound, 1173
wxSound::~wxSound, 1173
wxSound::Create, 1174
wxSound::IsOk, 1174
wxSound::IsPlaying, 1174
wxSound::Play, 1174

INDEX

1899

wxSound::Stop, 1175
wxSound::wxSound, 1173
wxSP_3D, 1186
wxSP_3DBORDER, 1186
wxSP_3DSASH, 1186
wxSP_ARROW_KEYS, 1175, 1178
wxSP_BORDER, 1187
wxSP_HORIZONTAL, 1175
wxSP_LIVE_UPDATE, 1187
wxSP_NO_XP_THEME, 1187
wxSP_NOBORDER, 1187
wxSP_PERMIT_UNSPLIT, 1187
wxSP_VERTICAL, 1175
wxSP_WRAP, 1175, 1179
wxSpinButton, 1176
wxSpinButton::~wxSpinButton, 1177
wxSpinButton::Create, 1177
wxSpinButton::GetMax, 1177
wxSpinButton::GetMin, 1177
wxSpinButton::GetValue, 1177
wxSpinButton::SetRange, 1178
wxSpinButton::SetValue, 1178
wxSpinButton::wxSpinButton, 1176
wxSpinCtrl, 1179
wxSpinCtrl::Create, 1180
wxSpinCtrl::GetMax, 1181
wxSpinCtrl::GetMin, 1181
wxSpinCtrl::GetValue, 1180
wxSpinCtrl::SetRange, 1180
wxSpinCtrl::SetSelection, 1181
wxSpinCtrl::SetValue, 1180
wxSpinCtrl::wxSpinCtrl, 1179
wxSpinEvent, 1182
wxSpinEvent::GetPosition, 1182
wxSpinEvent::SetPosition, 1182
wxSpinEvent::wxSpinEvent, 1182
wxSplashScreen, 1183
wxSplashScreen::~wxSplashScreen, 1183
wxSplashScreen::GetSplashStyle, 1183
wxSplashScreen::GetSplashWindow, 1183
wxSplashScreen::GetTimeout, 1183
wxSplashScreen::OnCloseWindow, 1183
wxSplashScreen::wxSplashScreen, 1183
wxSplitPath, 1534
wxSplitterEvent, 1185
wxSplitterEvent::GetSashPosition, 1185
wxSplitterEvent::GetWindowBeingRemoved,

1186
wxSplitterEvent::GetX, 1185
wxSplitterEvent::GetY, 1185
wxSplitterEvent::SetSashPosition, 1186
wxSplitterEvent::wxSplitterEvent, 1185
wxSplitterRenderParams::border, 1197
wxSplitterRenderParams::isHotSensitive, 1197
wxSplitterWindow, 1188
wxSplitterWindow::~wxSplitterWindow, 1189
wxSplitterWindow::Create, 1189
wxSplitterWindow::GetMinimumPaneSize, 1189
wxSplitterWindow::GetSashGravity, 1189
wxSplitterWindow::GetSashPosition, 1190
wxSplitterWindow::GetSplitMode, 1190
wxSplitterWindow::GetWindow1, 1190

wxSplitterWindow::GetWindow2, 1190
wxSplitterWindow::Initialize, 1190
wxSplitterWindow::IsSplit, 1191
wxSplitterWindow::OnDoubleClickSash, 1191
wxSplitterWindow::OnSashPositionChange, 1192
wxSplitterWindow::OnUnsplit, 1191
wxSplitterWindow::ReplaceWindow, 1192
wxSplitterWindow::SetMinimumPaneSize, 1194
wxSplitterWindow::SetSashGravity, 1192
wxSplitterWindow::SetSashPosition, 1193
wxSplitterWindow::SetSashSize, 1193
wxSplitterWindow::SetSplitMode, 1194
wxSplitterWindow::SplitHorizontally, 1194
wxSplitterWindow::SplitVertically, 1195
wxSplitterWindow::Unsplit, 1196
wxSplitterWindow::UpdateSize, 1196
wxSplitterWindow::wxSplitterWindow, 1188
wxST_NO_AUTORESIZE, 1211
wxST_SIZEGRIP, 1213
wxStackFrame::GetAddress, 1198
wxStackFrame::GetFileName, 1198
wxStackFrame::GetLevel, 1198
wxStackFrame::GetLine, 1198
wxStackFrame::GetModule, 1198
wxStackFrame::GetName, 1198
wxStackFrame::GetOffset, 1199
wxStackFrame::GetParam, 1199
wxStackFrame::GetParamCount, 1199
wxStackFrame::HasSourceLocation, 1199
wxStackWalker, 1200
wxStackWalker::~wxStackWalker, 1200
wxStackWalker::OnStackFrame, 1200
wxStackWalker::Walk, 1200
wxStackWalker::WalkFromException, 1200
wxStackWalker::wxStackWalker, 1200
wxStandardPaths::Get, 1201
wxStandardPaths::GetConfigDir, 1201
wxStandardPaths::GetDataDir, 1202
wxStandardPaths::GetInstallPrefix, 1202
wxStandardPaths::GetLocalDataDir, 1202
wxStandardPaths::GetPluginsDir, 1203
wxStandardPaths::GetUserConfigDir, 1203
wxStandardPaths::GetUserDataDir, 1203
wxStandardPaths::GetUserLocalDataDir, 1203
wxStandardPaths::SetInstallPrefix, 1204
wxStartTimer, 1585
wxSTATIC_BORDER, 1425
wxStaticBitmap, 1205
wxStaticBitmap::Create, 1205
wxStaticBitmap::GetBitmap, 1206
wxStaticBitmap::SetBitmap, 1206
wxStaticBitmap::wxStaticBitmap, 1205
wxStaticBox, 1207
wxStaticBox::~wxStaticBox, 1208
wxStaticBox::Create, 1208
wxStaticBox::wxStaticBox, 1207
wxStaticBoxSizer, 1208
wxStaticBoxSizer::GetStaticBox, 1209
wxStaticBoxSizer::wxStaticBoxSizer, 1208
wxStaticCast, 1576
wxStaticLine, 1209
wxStaticLine::Create, 1210

INDEX

1900

wxStaticLine::GetDefaultSize, 1210
wxStaticLine::IsVertical, 1210
wxStaticLine::wxStaticLine, 1209
wxStaticText, 1211
wxStaticText::Create, 1212
wxStaticText::GetLabel, 1212
wxStaticText::SetLabel, 1212
wxStaticText::wxStaticText, 1211
wxStatusBar, 1213
wxStatusBar::~wxStatusBar, 1214
wxStatusBar::Create, 1214
wxStatusBar::GetFieldRect, 1214
wxStatusBar::GetFieldsCount, 1215
wxStatusBar::GetStatusText, 1215
wxStatusBar::PopStatusText, 1215
wxStatusBar::PushStatusText, 1215
wxStatusBar::SetFieldsCount, 1215
wxStatusBar::SetMinHeight, 1216
wxStatusBar::SetStatusStyles, 1217
wxStatusBar::SetStatusText, 1216
wxStatusBar::SetStatusWidths, 1216
wxStatusBar::wxStatusBar, 1213
wxSTAY_ON_TOP, 393, 557, 878, 883, 938
wxStdDialogButtonSizer, 1218
wxStdDialogButtonSizer::AddButton, 1218
wxStdDialogButtonSizer::Realize, 1219
wxStdDialogButtonSizer::SetAffirmativeButton,

1219
wxStdDialogButtonSizer::SetCancelButton, 1219
wxStdDialogButtonSizer::SetNegativeButton,

1219
wxStdDialogButtonSizer::wxStdDialogButtonSize

r, 1218
wxStopWatch, 1220
wxStopWatch::Pause, 1220
wxStopWatch::Resume, 1220
wxStopWatch::Start, 1220
wxStopWatch::Time, 1220
wxStopWatch::wxStopWatch, 1220
wxStrcmp, 1540
wxStreamBase, 1221
wxStreamBase::~wxStreamBase, 1221
wxStreamBase::GetLastError, 1221
wxStreamBase::GetLength, 1221
wxStreamBase::GetSize, 1222
wxStreamBase::IsOk, 1222
wxStreamBase::IsSeekable, 1222
wxStreamBase::OnSysRead, 1222
wxStreamBase::OnSysSeek, 1222
wxStreamBase::OnSysTell, 1222
wxStreamBase::OnSysWrite, 1223
wxStreamBase::wxStreamBase, 1221
wxStreamBuffer, 1223, 1224
wxStreamBuffer::~wxStreamBuffer, 1224
wxStreamBuffer::FillBuffer, 1228
wxStreamBuffer::Fixed, 1227
wxStreamBuffer::Flushable, 1227
wxStreamBuffer::FlushBuffer, 1228
wxStreamBuffer::GetBufferEnd, 1227
wxStreamBuffer::GetBufferPos, 1227
wxStreamBuffer::GetBufferStart, 1226
wxStreamBuffer::GetChar, 1225

wxStreamBuffer::GetDataLeft, 1228
wxStreamBuffer::GetIntPosition, 1227
wxStreamBuffer::GetLastAccess, 1227
wxStreamBuffer::PutChar, 1225
wxStreamBuffer::Read, 1224
wxStreamBuffer::ResetBuffer, 1226
wxStreamBuffer::Seek, 1225
wxStreamBuffer::SetBufferIO, 1226
wxStreamBuffer::SetIntPosition, 1227
wxStreamBuffer::Stream, 1228
wxStreamBuffer::Tell, 1225
wxStreamBuffer::Write, 1224
wxStreamBuffer::wxStreamBuffer, 1223
wxStreamToTextRedirector, 1229
wxStreamToTextRedirector::~wxStreamToTextR

edirector, 1229
wxStreamToTextRedirector::wxStreamToTextRe

director, 1229
wxStricmp, 1541
wxString, 1236, 1237
wxString::~wxString, 1237
wxString::AfterFirst, 1238
wxString::AfterLast, 1238
wxString::Alloc, 1237
wxString::Append, 1238
wxString::BeforeFirst, 1238
wxString::BeforeLast, 1239
wxString::c_str, 1239
wxString::Clear, 1239
wxString::Cmp, 1239
wxString::CmpNoCase, 1239
wxString::CompareTo, 1240
wxString::Contains, 1240
wxString::Empty, 1240
wxString::Find, 1240
wxString::First, 1240
wxString::fn_str, 1240
wxString::Format, 1241
wxString::FormatV, 1241
wxString::Freq, 1241
wxString::FromAscii, 1241
wxString::GetChar, 1241
wxString::GetData, 1242
wxString::GetWritableChar, 1242
wxString::GetWriteBuf, 1242
wxString::Index, 1242
wxString::IsAscii, 1242
wxString::IsEmpty, 1242
wxString::IsNull, 1242
wxString::IsNumber, 1242
wxString::IsSameAs, 1243
wxString::IsWord, 1243
wxString::Last, 1243
wxString::Left, 1243
wxString::Len, 1243
wxString::Length, 1244
wxString::Lower, 1244
wxString::LowerCase, 1244
wxString::MakeLower, 1244
wxString::MakeUpper, 1244
wxString::Matches, 1244
wxString::mb_str, 1244

INDEX

1901

wxString::Mid, 1245
wxString::operator (), 1250
wxString::operator [], 1250
wxString::operator +, 1250
wxString::operator +=, 1250
wxString::operator <<, 1250
wxString::operator =, 1249
wxString::operator >>, 1251
wxString::operator const char*, 1251
wxString::operator!, 1249
wxString::Pad, 1245
wxString::Prepend, 1245
wxString::Printf, 1245
wxString::PrintfV, 1245
wxString::Remove, 1245
wxString::RemoveLast, 1245
wxString::Replace, 1246
wxString::Right, 1246
wxString::SetChar, 1246
wxString::Shrink, 1246
wxString::sprintf, 1246
wxString::StartsWith, 1246
wxString::Strip, 1246
wxString::SubString, 1247
wxString::ToAscii, 1247
wxString::ToDouble, 1247
wxString::ToLong, 1247
wxString::ToULong, 1248
wxString::Trim, 1248
wxString::Truncate, 1248
wxString::UngetWriteBuf, 1248
wxString::Upper, 1249
wxString::UpperCase, 1249
wxString::wc_str, 1249
wxString::wxString, 1236
wxStringBuffer, 1252
wxStringBuffer::~wxStringBuffer, 1252
wxStringBuffer::operator wxChar *, 1252
wxStringBuffer::wxStringBuffer, 1252
wxStringBufferLength, 1253
wxStringBufferLength::~wxStringBufferLength,

1253
wxStringBufferLength::operator wxChar *, 1254
wxStringBufferLength::SetLength, 1254
wxStringBufferLength::wxStringBufferLength,

1253
wxStringClientData, 1254
wxStringClientData::GetData, 1254
wxStringClientData::SetData, 1254
wxStringClientData::wxStringClientData, 1254
wxStringEq, 1541
wxStringInputStream, 1255
wxStringInputStream::wxStringInputStream, 1255
wxStringMatch, 1541
wxStringOutputStream, 1255
wxStringOutputStream::GetString, 1256
wxStringOutputStream::wxStringOutputStream,

1255
wxStringTokenizer, 1257
wxStringTokenizer::CountTokens, 1257
wxStringTokenizer::GetNextToken, 1257
wxStringTokenizer::GetPosition, 1257

wxStringTokenizer::GetString, 1258
wxStringTokenizer::HasMoreTokens, 1257
wxStringTokenizer::SetString, 1258
wxStringTokenizer::wxStringTokenizer, 1257
wxStripMenuCodes, 1568
wxStrlen, 1541
wxSUNKEN_BORDER, 1425
wxSW_3D, 1085
wxSW_3DBORDER, 1085
wxSW_3DSASH, 1085
wxSW_BORDER, 1085
wxSysColourChangedEvent, 1259
wxSysColourChangedEvent::wxSysColourChang

edEvent, 1259
wxSysErrorCode, 1582
wxSysErrorMsg, 1582
wxSYSTEM_MENU, 393, 557, 878, 883, 938
wxSystemOptions, 1260
wxSystemOptions::GetOption, 1261
wxSystemOptions::GetOptionInt, 1261
wxSystemOptions::HasOption, 1261
wxSystemOptions::IsFalse, 1261
wxSystemOptions::SetOption, 1261
wxSystemOptions::wxSystemOptions, 1260
wxSystemSettings, 1262
wxSystemSettings::GetColour, 1262
wxSystemSettings::GetFont, 1264
wxSystemSettings::GetMetric, 1264
wxSystemSettings::GetScreenType, 1266
wxSystemSettings::wxSystemSettings, 1262
wxT, 1542
wxTAB_TRAVERSAL, 1425
wxTaskBarIcon, 1268
wxTaskBarIcon::~wxTaskBarIcon, 1268
wxTaskBarIcon::CreatePopupMenu, 1268
wxTaskBarIcon::IsIconInstalled, 1268
wxTaskBarIcon::IsOk, 1268
wxTaskBarIcon::PopupMenu, 1268
wxTaskBarIcon::RemoveIcon, 1269
wxTaskBarIcon::SetIcon, 1269
wxTaskBarIcon::wxTaskBarIcon, 1268
wxTB_DOCKABLE, 1341
wxTB_FLAT, 1341
wxTB_HORIZONTAL, 1341
wxTB_HORZ_LAYOUT, 1341
wxTB_HORZ_TEXT, 1341
wxTB_NOALIGN, 1341
wxTB_NODIVIDER, 1341
wxTB_NOICONS, 1341
wxTB_TEXT, 1341
wxTB_VERTICAL, 1341
wxTCPClient, 1269
wxTCPClient::MakeConnection, 1270
wxTCPClient::OnMakeConnection, 1270
wxTCPClient::ValidHost, 1270
wxTCPClient::wxTCPClient, 1269
wxTCPConnection, 1271
wxTCPConnection::Advise, 1271
wxTCPConnection::Disconnect, 1272
wxTCPConnection::Execute, 1272
wxTCPConnection::OnAdvise, 1272
wxTCPConnection::OnDisconnect, 1272

INDEX

1902

wxTCPConnection::OnExecute, 1272
wxTCPConnection::OnPoke, 1272
wxTCPConnection::OnRequest, 1273
wxTCPConnection::OnStartAdvise, 1273
wxTCPConnection::OnStopAdvise, 1273
wxTCPConnection::Poke, 1273
wxTCPConnection::Request, 1273
wxTCPConnection::StartAdvise, 1273
wxTCPConnection::StopAdvise, 1274
wxTCPConnection::wxTCPConnection, 1271
wxTCPServer, 1274
wxTCPServer::Create, 1274
wxTCPServer::OnAcceptConnection, 1274
wxTCPServer::wxTCPServer, 1274
wxTE_AUTO_URL, 1283
wxTE_BESTWRAP, 1284
wxTE_CAPITALIZE, 1284
wxTE_CENTRE, 1283
wxTE_CHARWRAP, 1284
wxTE_DONTWRAP, 1283
wxTE_LEFT, 1283
wxTE_MULTILINE, 1283
wxTE_NOHIDESEL, 1283
wxTE_PASSWORD, 992, 1283, 1304
wxTE_PROCESS_ENTER, 1283
wxTE_PROCESS_TAB, 1283
wxTE_READONLY, 1283
wxTE_RICH, 1283
wxTE_RICH2, 1283
wxTE_RIGHT, 1283
wxTE_WORDWRAP, 1284
wxTempFile, 1276
wxTempFile::~wxTempFile, 1277
wxTempFile::Commit, 1277
wxTempFile::Discard, 1277
wxTempFile::IsOpened, 1276
wxTempFile::Length, 1276
wxTempFile::Open, 1276
wxTempFile::Seek, 1276
wxTempFile::Tell, 1276
wxTempFile::Write, 1276, 1277
wxTempFile::wxTempFile, 1276
wxTempFileOutputStream, 1278
wxTempFileOutputStream::Commit, 1278
wxTempFileOutputStream::Discard, 1278
wxTempFileOutputStream::wxTempFileOutputStr

eam, 1278
wxTextAttr, 1279, 1280
wxTextAttr::GetAlignment, 1280
wxTextAttr::GetBackgroundColour, 1280
wxTextAttr::GetFlags, 1281
wxTextAttr::GetFont, 1280
wxTextAttr::GetLeftIndent, 1280
wxTextAttr::GetLeftSubIndent, 1280
wxTextAttr::GetRightIndent, 1280
wxTextAttr::GetTabs, 1280
wxTextAttr::GetTextColour, 1281
wxTextAttr::HasBackgroundColour, 1281
wxTextAttr::HasFont, 1281
wxTextAttr::HasTextColour, 1281
wxTextAttr::IsDefault, 1281
wxTextAttr::SetAlignment, 1281

wxTextAttr::SetBackgroundColour, 1281
wxTextAttr::SetFlags, 1282
wxTextAttr::SetFont, 1282
wxTextAttr::SetLeftIndent, 1282
wxTextAttr::SetRightIndent, 1282
wxTextAttr::SetTabs, 1282
wxTextAttr::SetTextColour, 1282
wxTextAttr::wxTextAttr, 1279
wxTextCtrl, 1286
wxTextCtrl::~wxTextCtrl, 1287
wxTextCtrl::AppendText, 1287
wxTextCtrl::CanCopy, 1288
wxTextCtrl::CanCut, 1288
wxTextCtrl::CanPaste, 1288
wxTextCtrl::CanRedo, 1288
wxTextCtrl::CanUndo, 1288
wxTextCtrl::Clear, 1288
wxTextCtrl::Copy, 1288
wxTextCtrl::Create, 1289
wxTextCtrl::Cut, 1289
wxTextCtrl::DiscardEdits, 1289
wxTextCtrl::EmulateKeyPress, 1289
wxTextCtrl::GetDefaultStyle, 1289
wxTextCtrl::GetInsertionPoint, 1290
wxTextCtrl::GetLastPosition, 1290
wxTextCtrl::GetLineLength, 1290
wxTextCtrl::GetLineText, 1290
wxTextCtrl::GetNumberOfLines, 1291
wxTextCtrl::GetRange, 1291
wxTextCtrl::GetSelection, 1291
wxTextCtrl::GetStringSelection, 1292
wxTextCtrl::GetStyle, 1292
wxTextCtrl::GetValue, 1292
wxTextCtrl::HitTest, 1292
wxTextCtrl::IsEditable, 1293
wxTextCtrl::IsModified, 1293
wxTextCtrl::IsMultiLine, 1293
wxTextCtrl::IsSingleLine, 1293
wxTextCtrl::LoadFile, 1293
wxTextCtrl::MarkDirty, 1294
wxTextCtrl::OnDropFiles, 1294
wxTextCtrl::operator <<, 1300
wxTextCtrl::Paste, 1294
wxTextCtrl::PositionToXY, 1294
wxTextCtrl::Redo, 1295
wxTextCtrl::Remove, 1295
wxTextCtrl::Replace, 1295
wxTextCtrl::SaveFile, 1296
wxTextCtrl::SetDefaultStyle, 1296
wxTextCtrl::SetEditable, 1297
wxTextCtrl::SetInsertionPoint, 1297
wxTextCtrl::SetInsertionPointEnd, 1297
wxTextCtrl::SetMaxLength, 1297
wxTextCtrl::SetSelection, 1298
wxTextCtrl::SetStyle, 1298
wxTextCtrl::SetValue, 1299
wxTextCtrl::ShowPosition, 1299
wxTextCtrl::Undo, 1299
wxTextCtrl::WriteText, 1299
wxTextCtrl::wxTextCtrl, 1286
wxTextCtrl::XYToPosition, 1300
wxTextDataObject, 1301

INDEX

1903

wxTextDataObject::GetText, 1301
wxTextDataObject::GetTextLength, 1301
wxTextDataObject::SetText, 1302
wxTextDataObject::wxTextDataObject, 1301
wxTextDropTarget, 1302
wxTextDropTarget::OnDrop, 1302
wxTextDropTarget::OnDropText, 1302
wxTextDropTarget::wxTextDropTarget, 1302
wxTextEntryDialog, 1303
wxTextEntryDialog overview, 1730
wxTextEntryDialog::~wxTextEntryDialog, 1304
wxTextEntryDialog::GetValue, 1304
wxTextEntryDialog::SetValue, 1304
wxTextEntryDialog::ShowModal, 1304
wxTextEntryDialog::wxTextEntryDialog, 1303
wxTextFile, 1306
wxTextFile::~wxTextFile, 1306
wxTextFile::AddLine, 1306
wxTextFile::Clear, 1309
wxTextFile::Close, 1306
wxTextFile::Create, 1306
wxTextFile::Eof, 1307
wxTextFile::Exists, 1306
wxTextFile::GetCurrentLine, 1307
wxTextFile::GetEOL, 1308
wxTextFile::GetFirstLine, 1308
wxTextFile::GetLastLine, 1308
wxTextFile::GetLine, 1307
wxTextFile::GetLineCount, 1307
wxTextFile::GetLineType, 1309
wxTextFile::GetName, 1309
wxTextFile::GetNextLine, 1308
wxTextFile::GetPrevLine, 1308
wxTextFile::GoToLine, 1307
wxTextFile::GuessType, 1309
wxTextFile::InsertLine, 1309
wxTextFile::IsOpened, 1307
wxTextFile::Open, 1309
wxTextFile::operator[], 1307
wxTextFile::RemoveLine, 1309
wxTextFile::Write, 1310
wxTextFile::wxTextFile, 1306
wxTextInputStream, 1311
wxTextInputStream::~wxTextInputStream, 1311
wxTextInputStream::GetChar, 1312
wxTextInputStream::Read16, 1311
wxTextInputStream::Read16S, 1312
wxTextInputStream::Read32, 1312
wxTextInputStream::Read32S, 1312
wxTextInputStream::Read8, 1311
wxTextInputStream::Read8S, 1311
wxTextInputStream::ReadDouble, 1312
wxTextInputStream::ReadLine, 1312
wxTextInputStream::ReadString, 1312
wxTextInputStream::ReadWord, 1313
wxTextInputStream::SetStringSeparators, 1313
wxTextInputStream::wxTextInputStream, 1311
wxTextOutputStream, 1313
wxTextOutputStream::~wxTextOutputStream,

1314
wxTextOutputStream::GetMode, 1314
wxTextOutputStream::PutChar, 1314

wxTextOutputStream::SetMode, 1314
wxTextOutputStream::Write16, 1314
wxTextOutputStream::Write32, 1315
wxTextOutputStream::Write8, 1314
wxTextOutputStream::WriteDouble, 1315
wxTextOutputStream::WriteString, 1315
wxTextOutputStream::wxTextOutputStream,

1313
wxTextValidator, 1315
wxTextValidator::Clone, 1316
wxTextValidator::GetExcludes, 1316
wxTextValidator::GetIncludes, 1317
wxTextValidator::GetStyle, 1317
wxTextValidator::OnChar, 1317
wxTextValidator::SetExcludes, 1317
wxTextValidator::SetIncludes, 1317
wxTextValidator::SetStyle, 1317
wxTextValidator::TransferFromWindow, 1317
wxTextValidator::TransferToWindow, 1317
wxTextValidator::Validate, 1318
wxTextValidator::wxTextValidator, 1315
wxTHICK_FRAME, 393, 878, 883, 938
wxThread, 1319
wxThread::~wxThread, 1319
wxThread::Create, 1319
wxThread::Delete, 1319
wxThread::Entry, 1320
wxThread::Exit, 1320
wxThread::GetCPUCount, 1320
wxThread::GetCurrentId, 1320
wxThread::GetId, 1321
wxThread::GetPriority, 1321
wxThread::IsAlive, 1321
wxThread::IsDetached, 1321
wxThread::IsMain, 1321
wxThread::IsPaused, 1321
wxThread::IsRunning, 1322
wxThread::Kill, 1322
wxThread::OnExit, 1322
wxThread::Pause, 1322
wxThread::Resume, 1323
wxThread::Run, 1323
wxThread::SetConcurrency, 1323
wxThread::SetPriority, 1323
wxThread::Sleep, 1323
wxThread::TestDestroy, 1323
wxThread::This, 1324
wxThread::Wait, 1324
wxThread::wxThread, 1318
wxThread::Yield, 1324
wxThreadHelper, 1325
wxThreadHelper::~wxThreadHelper, 1325
wxThreadHelper::Create, 1325
wxThreadHelper::Entry, 1326
wxThreadHelper::GetThread, 1326
wxThreadHelper::m_thread, 1325
wxThreadHelper::wxThreadHelper, 1325
wxTIFFHandler, 745
wxTimer, 1327
wxTimer::~wxTimer, 1327
wxTimer::GetInterval, 1327
wxTimer::IsOneShot, 1327

INDEX

1904

wxTimer::IsRunning, 1327
wxTimer::Notify, 1327
wxTimer::SetOwner, 1328
wxTimer::Start, 1328
wxTimer::Stop, 1328
wxTimer::wxTimer, 1327
wxTimerEvent::GetInterval, 1329
wxTimeSpan, 1335
wxTimeSpan::Abs, 1330
wxTimeSpan::Add, 1331
wxTimeSpan::Day, 1331
wxTimeSpan::Days, 1331
wxTimeSpan::Format, 1331
wxTimeSpan::GetDays, 1332
wxTimeSpan::GetHours, 1332
wxTimeSpan::GetMilliseconds, 1332
wxTimeSpan::GetMinutes, 1332
wxTimeSpan::GetSeconds, 1332
wxTimeSpan::GetValue, 1332
wxTimeSpan::GetWeeks, 1332
wxTimeSpan::Hour, 1333
wxTimeSpan::Hours, 1332
wxTimeSpan::IsEqualTo, 1333
wxTimeSpan::IsLongerThan, 1333
wxTimeSpan::IsNegative, 1333
wxTimeSpan::IsNull, 1333
wxTimeSpan::IsPositive, 1333
wxTimeSpan::IsShorterThan, 1333
wxTimeSpan::Minute, 1334
wxTimeSpan::Minutes, 1333
wxTimeSpan::Multiply, 1334
wxTimeSpan::Neg, 1334
wxTimeSpan::Negate, 1334
wxTimeSpan::Second, 1334
wxTimeSpan::Seconds, 1334
wxTimeSpan::Subtract, 1334
wxTimeSpan::Week, 1335
wxTimeSpan::Weeks, 1335
wxTimeSpan::wxTimeSpan, 1335
wxTINY_CAPTION_HORIZ, 938
wxTINY_CAPTION_VERT, 938
wxTipProvider, 1336
wxTipProvider::GetTip, 1336
wxTipProvider::PreprocessTip, 1336
wxTipProvider::wxTipProvider, 1335
wxTipWindow, 1337
wxTipWindow::SetBoundingRect, 1337
wxTipWindow::SetTipWindowPtr, 1337
wxTipWindow::wxTipWindow, 1337
wxToggleButton, 1338
wxToggleButton::~wxToggleButton, 1339
wxToggleButton::Create, 1339
wxToggleButton::GetValue, 1340
wxToggleButton::SetValue, 1340
wxToggleButton::wxToggleButton, 1338
wxToolBar, 1342, 1343
wxToolBar::~wxToolBar, 1343
wxToolBar::AddCheckTool, 1345
wxToolBar::AddControl, 1343
wxToolBar::AddRadioTool, 1345
wxToolBar::AddSeparator, 1344
wxToolBar::AddTool, 1344

wxToolBar::DeleteTool, 1346
wxToolBar::DeleteToolByPos, 1346
wxToolBar::EnableTool, 1346
wxToolBar::FindById, 1347
wxToolBar::FindControl, 1347
wxToolBar::FindToolForPosition, 1347
wxToolBar::GetMargins, 1348
wxToolBar::GetToolBitmapSize, 1347
wxToolBar::GetToolClientData, 1348
wxToolBar::GetToolEnabled, 1348
wxToolBar::GetToolLongHelp, 1349
wxToolBar::GetToolPacking, 1349
wxToolBar::GetToolPos, 1349
wxToolBar::GetToolSeparation, 1349
wxToolBar::GetToolShortHelp, 1349
wxToolBar::GetToolSize, 1347
wxToolBar::GetToolState, 1350
wxToolBar::InsertControl, 1350
wxToolBar::InsertSeparator, 1350
wxToolBar::InsertTool, 1351
wxToolBar::OnLeftClick, 1351
wxToolBar::OnMouseEnter, 1351
wxToolBar::OnRightClick, 1352
wxToolBar::Realize, 1352
wxToolBar::RemoveTool, 1353
wxToolBar::SetBitmapResource, 1353
wxToolBar::SetMargins, 1353
wxToolBar::SetToolBitmapSize, 1354
wxToolBar::SetToolClientData, 1354
wxToolBar::SetToolLongHelp, 1354
wxToolBar::SetToolPacking, 1355
wxToolBar::SetToolSeparation, 1355
wxToolBar::SetToolShortHelp, 1355
wxToolBar::ToggleTool, 1356
wxToolBar::wxToolBar, 1342
wxToolTip, 1357
wxToolTip::Enable, 1356
wxToolTip::GetTip, 1357
wxToolTip::GetWindow, 1357
wxToolTip::SetDelay, 1357
wxToolTip::SetTip, 1357
wxToolTip::wxToolTip, 1357
wxTOP, 1129
wxTopLevelWindow::GetIcon, 1358
wxTopLevelWindow::GetIcons, 1358
wxTopLevelWindow::GetTitle, 1358
wxTopLevelWindow::Iconize, 1358
wxTopLevelWindow::IsActive, 1358
wxTopLevelWindow::IsFullScreen, 1359
wxTopLevelWindow::IsIconized, 1359
wxTopLevelWindow::IsMaximized, 1359
wxTopLevelWindow::Maximize, 1359
wxTopLevelWindow::RequestUserAttention,

1359
wxTopLevelWindow::SetIcon, 1360
wxTopLevelWindow::SetIcons, 1360
wxTopLevelWindow::SetLeftMenu, 1360
wxTopLevelWindow::SetRightMenu, 1361
wxTopLevelWindow::SetShape, 1361
wxTopLevelWindow::SetTitle, 1361
wxTopLevelWindow::ShowFullScreen, 1362
wxTR_DEFAULT_STYLE, 1364

INDEX

1905

wxTR_EDIT_LABELS, 1363
wxTR_EXTENDED, 1363
wxTR_FULL_ROW_HIGHLIGHT, 1363
wxTR_HAS_BUTTONS, 1363
wxTR_HAS_VARIABLE_ROW_HEIGHT, 1363
wxTR_HIDE_ROOT, 1363
wxTR_LINES_AT_ROOT, 1363
wxTR_MULTIPLE, 1363
wxTR_NO_BUTTONS, 1363
wxTR_NO_LINES, 1363
wxTR_ROW_LINES, 1363
wxTR_SINGLE, 1363
wxTrace, 1583
WXTRACE, 1582
wxTraceLevel, 1583
WXTRACELEVEL, 1582
wxTransferFileToStream, 1535
wxTransferStreamToFile, 1535
wxTRANSLATE, 1542
wxTRANSPARENT_WINDOW, 1425
wxTrap, 1589
wxTreeCtrl, 1365, 1367
wxTreeCtrl::~wxTreeCtrl, 1366
wxTreeCtrl::AddRoot, 1366
wxTreeCtrl::AppendItem, 1366
wxTreeCtrl::AssignButtonsImageList, 1366
wxTreeCtrl::AssignImageList, 1367
wxTreeCtrl::AssignStateImageList, 1367
wxTreeCtrl::Collapse, 1367
wxTreeCtrl::CollapseAndReset, 1367
wxTreeCtrl::Create, 1367
wxTreeCtrl::Delete, 1368
wxTreeCtrl::DeleteAllItems, 1368
wxTreeCtrl::DeleteChildren, 1368
wxTreeCtrl::EditLabel, 1368
wxTreeCtrl::EndEditLabel, 1368
wxTreeCtrl::EnsureVisible, 1369
wxTreeCtrl::Expand, 1369
wxTreeCtrl::GetBoundingRect, 1369
wxTreeCtrl::GetButtonsImageList, 1369
wxTreeCtrl::GetChildrenCount, 1369
wxTreeCtrl::GetCount, 1369
wxTreeCtrl::GetEditControl, 1370
wxTreeCtrl::GetFirstChild, 1370
wxTreeCtrl::GetFirstVisibleItem, 1370
wxTreeCtrl::GetImageList, 1370
wxTreeCtrl::GetIndent, 1370
wxTreeCtrl::GetItemBackgroundColour, 1370
wxTreeCtrl::GetItemData, 1371
wxTreeCtrl::GetItemFont, 1371
wxTreeCtrl::GetItemImage, 1371
wxTreeCtrl::GetItemParent, 1373
wxTreeCtrl::GetItemSelectedImage, 1374
wxTreeCtrl::GetItemText, 1372
wxTreeCtrl::GetItemTextColour, 1372
wxTreeCtrl::GetLastChild, 1372
wxTreeCtrl::GetNextChild, 1372
wxTreeCtrl::GetNextSibling, 1372
wxTreeCtrl::GetNextVisible, 1373
wxTreeCtrl::GetParent, 1373
wxTreeCtrl::GetPrevSibling, 1373
wxTreeCtrl::GetPrevVisible, 1373

wxTreeCtrl::GetRootItem, 1374
wxTreeCtrl::GetSelection, 1374
wxTreeCtrl::GetSelections, 1374
wxTreeCtrl::GetStateImageList, 1374
wxTreeCtrl::HitTest, 1374
wxTreeCtrl::InsertItem, 1375
wxTreeCtrl::IsBold, 1375
wxTreeCtrl::IsExpanded, 1376
wxTreeCtrl::IsSelected, 1376
wxTreeCtrl::IsVisible, 1376
wxTreeCtrl::ItemHasChildren, 1376
wxTreeCtrl::OnCompareItems, 1376
wxTreeCtrl::PrependItem, 1376
wxTreeCtrl::ScrollTo, 1376
wxTreeCtrl::SelectItem, 1377
wxTreeCtrl::SetButtonsImageList, 1377
wxTreeCtrl::SetImageList, 1377
wxTreeCtrl::SetIndent, 1377
wxTreeCtrl::SetItemBackgroundColour, 1377
wxTreeCtrl::SetItemBold, 1377
wxTreeCtrl::SetItemData, 1378
wxTreeCtrl::SetItemDropHighlight, 1378
wxTreeCtrl::SetItemFont, 1378
wxTreeCtrl::SetItemHasChildren, 1378
wxTreeCtrl::SetItemImage, 1378
wxTreeCtrl::SetItemSelectedImage, 1379
wxTreeCtrl::SetItemText, 1379
wxTreeCtrl::SetItemTextColour, 1379
wxTreeCtrl::SetStateImageList, 1379
wxTreeCtrl::SetWindowStyle, 1379
wxTreeCtrl::SortChildren, 1379
wxTreeCtrl::Toggle, 1380
wxTreeCtrl::ToggleItemSelection, 1380
wxTreeCtrl::Unselect, 1380
wxTreeCtrl::UnselectAll, 1380
wxTreeCtrl::UnselectItem, 1380
wxTreeCtrl::wxTreeCtrl, 1365
wxTreeEvent, 1382
wxTreeEvent::GetItem, 1382
wxTreeEvent::GetKeyCode, 1382
wxTreeEvent::GetKeyEvent, 1382
wxTreeEvent::GetLabel, 1382
wxTreeEvent::GetOldItem, 1383
wxTreeEvent::GetPoint(), 1383
wxTreeEvent::IsEditCancelled(), 1383
wxTreeEvent::SetToolTip, 1383
wxTreeEvent::wxTreeEvent, 1382
wxTreeItemData, 1384
wxTreeItemData::~wxTreeItemData, 1384
wxTreeItemData::GetId, 1384
wxTreeItemData::SetId, 1384
wxTreeItemData::wxTreeItemData, 1384
wxUINT16_SWAP_ALWAYS, 1570
wxUINT16_SWAP_ON_BE, 1570
wxUINT16_SWAP_ON_LE, 1570
wxUINT32_SWAP_ALWAYS, 1570
wxUINT32_SWAP_ON_BE, 1570
wxUINT32_SWAP_ON_LE, 1570
wxULL, 1568
wxUninitialize, 1522
wxUnix2DosFilename, 1532
wxUnsetEnv, 1590

INDEX

1906

wxUpdateUIEvent, 1386
wxUpdateUIEvent::CanUpdate, 1386
wxUpdateUIEvent::Check, 1386
wxUpdateUIEvent::Enable, 1386
wxUpdateUIEvent::GetChecked, 1387
wxUpdateUIEvent::GetEnabled, 1387
wxUpdateUIEvent::GetMode, 1387
wxUpdateUIEvent::GetSetChecked, 1387
wxUpdateUIEvent::GetSetEnabled, 1387
wxUpdateUIEvent::GetSetText, 1387
wxUpdateUIEvent::GetText, 1387
wxUpdateUIEvent::GetUpdateInterval, 1388
wxUpdateUIEvent::ResetUpdateTime, 1388
wxUpdateUIEvent::SetMode, 1388
wxUpdateUIEvent::SetText, 1388
wxUpdateUIEvent::SetUpdateInterval, 1388
wxUpdateUIEvent::wxUpdateUIEvent, 1386
wxURI, 1390
wxURI::BuildUnescapedURI, 1390
wxURI::BuildURI, 1390
wxURI::Create, 1391
wxURI::GetFragment, 1391
wxURI::GetHostType, 1391
wxURI::GetPassword, 1391
wxURI::GetPath, 1392
wxURI::GetPort, 1392
wxURI::GetQuery, 1392
wxURI::GetScheme, 1392
wxURI::GetServer, 1392
wxURI::GetUser, 1393
wxURI::GetUserInfo, 1393
wxURI::HasFragment, 1393
wxURI::HasPath, 1393
wxURI::HasPort, 1393
wxURI::HasQuery, 1393
wxURI::HasScheme, 1393
wxURI::HasServer, 1394
wxURI::HasUser, 1394
wxURI::IsReference, 1394
wxURI::operator ==, 1394
wxURI::Resolve, 1394
wxURI::Unescape, 1395
wxURI::wxURI, 1390
wxURL, 1395
wxURL::~wxURL, 1396
wxURL::GetError, 1396
wxURL::GetInputStream, 1396
wxURL::GetProtocol, 1396
wxURL::SetDefaultProxy, 1397
wxURL::SetProxy, 1397
wxURL::wxURL, 1395
wxUsleep, 1585
wxVaCopy, 1569
wxValidator, 1398
wxValidator::~wxValidator, 1398
wxValidator::Clone, 1398
wxValidator::GetWindow, 1398
wxValidator::SetBellOnError, 1399
wxValidator::SetWindow, 1399
wxValidator::TransferFromWindow, 1399
wxValidator::TransferToWindow, 1399
wxValidator::Validate, 1399

wxValidator::wxValidator, 1398
wxVariant, 1400, 1401
wxVariant::~wxVariant, 1401
wxVariant::Append, 1401
wxVariant::ClearList, 1401
wxVariant::Convert, 1402
wxVariant::Delete, 1402
wxVariant::GetArrayString, 1402
wxVariant::GetBool, 1402
wxVariant::GetChar, 1402
wxVariant::GetCount, 1402
wxVariant::GetData, 1402
wxVariant::GetDateTime, 1403
wxVariant::GetDouble, 1403
wxVariant::GetLong, 1403
wxVariant::GetName, 1403
wxVariant::GetString, 1403
wxVariant::GetType, 1403
wxVariant::GetVoidPtr, 1403
wxVariant::GetWxObjectPtr, 1403
wxVariant::Insert, 1404
wxVariant::IsNull, 1404
wxVariant::IsType, 1404
wxVariant::IsValueKindOf, 1404
wxVariant::MakeNull, 1404
wxVariant::MakeString, 1404
wxVariant::Member, 1404
wxVariant::NullList, 1404
wxVariant::operator !=, 1406
wxVariant::operator [], 1406
wxVariant::operator =, 1405
wxVariant::operator ==, 1405
wxVariant::operator char, 1406
wxVariant::operator double, 1407
wxVariant::operator void*, 1407
wxVariant::operator wxDateTime, 1407
wxVariant::operator wxString, 1407
wxVariant::SetData, 1405
wxVariant::wxVariant, 1400
wxVariantData, 1408
wxVariantData::Copy, 1408
wxVariantData::Eq, 1408
wxVariantData::GetType, 1408
wxVariantData::GetValueClassInfo, 1408
wxVariantData::Read, 1408
wxVariantData::Write, 1408
wxVariantData::wxVariantData, 1407
wxView, 1409
wxView overview, 1733
wxView::~wxView, 1410
wxView::Activate, 1410
wxView::Close, 1410
wxView::GetDocument, 1410
wxView::GetDocumentManager, 1410
wxView::GetFrame, 1410
wxView::GetViewName, 1410
wxView::m_viewDocument, 1409
wxView::m_viewFrame, 1409
wxView::m_viewTypeName, 1409
wxView::OnActivateView, 1411
wxView::OnChangeFilename, 1411
wxView::OnClose, 1411

INDEX

1907

wxView::OnClosingDocument, 1411
wxView::OnCreate, 1411
wxView::OnCreatePrintout, 1411
wxView::OnDraw, 1412
wxView::OnUpdate, 1412
wxView::SetDocument, 1412
wxView::SetFrame, 1412
wxView::SetViewName, 1412
wxView::wxView, 1409
wxVListBox, 1413
wxVListBox::Clear, 1413
wxVListBox::Create, 1413
wxVListBox::DeselectAll, 1414
wxVListBox::GetFirstSelected, 1414
wxVListBox::GetItemCount, 1414
wxVListBox::GetMargins, 1414
wxVListBox::GetNextSelected, 1415
wxVListBox::GetSelectedCount, 1415
wxVListBox::GetSelection, 1415
wxVListBox::GetSelectionBackground, 1415
wxVListBox::HasMultipleSelection, 1416
wxVListBox::IsCurrent, 1416
wxVListBox::IsSelected, 1416
wxVListBox::OnDrawBackground, 1416
wxVListBox::OnDrawItem, 1416
wxVListBox::OnDrawSeparator, 1417
wxVListBox::OnMeasureItem, 1417
wxVListBox::Select, 1417
wxVListBox::SelectAll, 1417
wxVListBox::SelectRange, 1418
wxVListBox::SetItemCount, 1418
wxVListBox::SetMargins, 1418
wxVListBox::SetSelection, 1418
wxVListBox::SetSelectionBackground, 1418
wxVListBox::Toggle, 1419
wxVListBox::wxVListBox, 1413
wxVLogDebug, 1580
wxVLogError, 1578
wxVLogFatalError, 1578
wxVLogMessage, 1579
wxVLogStatus, 1579
wxVLogSysError, 1579
wxVLogTrace, 1580
wxVLogVerbose, 1579
wxVLogWarning, 1579
wxVSCROLL, 883, 1425
wxVScrolledWindow, 1420
wxVScrolledWindow::Create, 1420
wxVScrolledWindow::EstimateTotalHeight, 1420
wxVScrolledWindow::GetFirstVisibleLine, 1421
wxVScrolledWindow::GetLastVisibleLine, 1421
wxVScrolledWindow::GetLineCount, 1421
wxVScrolledWindow::GetVisibleBegin, 1421
wxVScrolledWindow::GetVisibleEnd, 1422
wxVScrolledWindow::HitTest, 1422
wxVScrolledWindow::IsVisible, 1422
wxVScrolledWindow::OnGetLineHeight, 1422
wxVScrolledWindow::OnGetLinesHint, 1422
wxVScrolledWindow::RefreshAll, 1423
wxVScrolledWindow::RefreshLine, 1423
wxVScrolledWindow::RefreshLines, 1423
wxVScrolledWindow::ScrollLines, 1423

wxVScrolledWindow::ScrollPages, 1423
wxVScrolledWindow::ScrollToLine, 1424
wxVScrolledWindow::SetLineCount, 1424
wxVScrolledWindow::wxVScrolledWindow, 1419
wxVsnprintf, 1543
wxWakeUpIdle, 1523
wxWANTS_CHARS, 1425
wxWidgets 1.xx compatibility functions, 1233
wxWidgets classes implemented in wxPython,

1788
wxWidgets predefined command identifiers, 1736
wxWinCE, 1816
wxWindow, 1426, 1427
wxWindow::~wxWindow, 1427
wxWindow::AddChild, 1427
wxWindow::CacheBestSize, 1428
wxWindow::CaptureMouse, 1428
wxWindow::Center, 1428
wxWindow::CenterOnParent, 1428
wxWindow::CenterOnScreen, 1428
wxWindow::Centre, 1429
wxWindow::CentreOnParent, 1429
wxWindow::CentreOnScreen, 1429
wxWindow::ClearBackground, 1430
wxWindow::ClientToScreen, 1430
wxWindow::Close, 1430
wxWindow::ConvertDialogToPixels, 1431
wxWindow::ConvertPixelsToDialog, 1432
wxWindow::Destroy, 1433
wxWindow::DestroyChildren, 1433
wxWindow::Disable, 1433
wxWindow::DoGetBestSize, 1433
wxWindow::DoUpdateWindowUI, 1433
wxWindow::DragAcceptFiles, 1434
wxWindow::Enable, 1434
wxWindow::FindFocus, 1435
wxWindow::FindWindow, 1435
wxWindow::FindWindowById, 1435
wxWindow::FindWindowByLabel, 1436
wxWindow::FindWindowByName, 1435
wxWindow::Fit, 1436
wxWindow::FitInside, 1436
wxWindow::Freeze, 1436
wxWindow::GetAcceleratorTable, 1437
wxWindow::GetAccessible, 1437
wxWindow::GetAdjustedBestSize, 1437
wxWindow::GetBackgroundColour, 1437
wxWindow::GetBackgroundStyle, 1437
wxWindow::GetBestFittingSize, 1438
wxWindow::GetBestSize, 1438
wxWindow::GetCapture, 1438
wxWindow::GetCaret, 1438
wxWindow::GetCharHeight, 1438
wxWindow::GetCharWidth, 1439
wxWindow::GetChildren, 1439
wxWindow::GetClassDefaultAttributes, 1439
wxWindow::GetClientSize, 1439
wxWindow::GetConstraints, 1440
wxWindow::GetContainingSizer, 1440
wxWindow::GetCursor, 1440
wxWindow::GetDefaultAttributes, 1440
wxWindow::GetDropTarget, 1441

INDEX

1908

wxWindow::GetEventHandler, 1441
wxWindow::GetExtraStyle, 1441
wxWindow::GetFont, 1441
wxWindow::GetForegroundColour, 1441
wxWindow::GetGrandParent, 1442
wxWindow::GetHandle, 1442
wxWindow::GetHelpText, 1442
wxWindow::GetId, 1442
wxWindow::GetLabel, 1443
wxWindow::GetMaxSize, 1443
wxWindow::GetMinSize, 1443
wxWindow::GetName, 1443
wxWindow::GetParent, 1443
wxWindow::GetPosition, 1443
wxWindow::GetRect, 1444
wxWindow::GetScrollPos, 1444
wxWindow::GetScrollRange, 1444
wxWindow::GetScrollThumb, 1445
wxWindow::GetSize, 1445
wxWindow::GetSizer, 1445
wxWindow::GetTextExtent, 1446
wxWindow::GetTitle, 1447
wxWindow::GetToolTip, 1447
wxWindow::GetUpdateRegion, 1447
wxWindow::GetValidator, 1447
wxWindow::GetVirtualSize, 1447
wxWindow::GetWindowStyleFlag, 1448
wxWindow::GetWindowVariant, 1448
wxWindow::HasCapture, 1448
wxWindow::HasScrollbar, 1448
wxWindow::HasTransparentBackground, 1448
wxWindow::Hide, 1448
wxWindow::InheritAttributes, 1449
wxWindow::InitDialog, 1449
wxWindow::InvalidateBestSize, 1449
wxWindow::IsEnabled, 1449
wxWindow::IsExposed, 1449
wxWindow::IsRetained, 1450
wxWindow::IsShown, 1450
wxWindow::IsTopLevel, 1450
wxWindow::Layout, 1450
wxWindow::LineDown, 1451
wxWindow::LineUp, 1451
wxWindow::Lower, 1451
wxWindow::MakeModal, 1451
wxWindow::Move, 1451
wxWindow::MoveAfterInTabOrder, 1452
wxWindow::MoveBeforeInTabOrder, 1452
wxWindow::Navigate, 1452
wxWindow::OnInternalIdle, 1453
wxWindow::PageDown, 1453
wxWindow::PageUp, 1453
wxWindow::PopEventHandler, 1453
wxWindow::PopupMenu, 1453
wxWindow::PushEventHandler, 1454
wxWindow::Raise, 1455
wxWindow::Refresh, 1455
wxWindow::RefreshRect, 1455
wxWindow::RegisterHotKey, 1456
wxWindow::ReleaseMouse, 1456
wxWindow::RemoveChild, 1457
wxWindow::RemoveEventHandler, 1457

wxWindow::Reparent, 1457
wxWindow::ScreenToClient, 1458
wxWindow::ScrollLines, 1458
wxWindow::ScrollPages, 1458
wxWindow::ScrollWindow, 1459
wxWindow::SetAcceleratorTable, 1459
wxWindow::SetAccessible, 1459
wxWindow::SetAutoLayout, 1460
wxWindow::SetBackgroundColour, 1460
wxWindow::SetBackgroundStyle, 1461
wxWindow::SetBestFittingSize, 1461
wxWindow::SetCaret, 1461
wxWindow::SetClientSize, 1461
wxWindow::SetConstraints, 1463
wxWindow::SetContainingSizer, 1462
wxWindow::SetCursor, 1462
wxWindow::SetDropTarget, 1464
wxWindow::SetEventHandler, 1464
wxWindow::SetExtraStyle, 1465
wxWindow::SetFocus, 1466
wxWindow::SetFocusFromKbd, 1466
wxWindow::SetFont, 1466
wxWindow::SetForegroundColour, 1466
wxWindow::SetHelpText, 1467
wxWindow::SetId, 1467
wxWindow::SetInitialBestSize, 1463
wxWindow::SetLabel, 1467
wxWindow::SetMaxSize, 1463
wxWindow::SetMinSize, 1463
wxWindow::SetName, 1468
wxWindow::SetOwnBackgroundColour, 1463
wxWindow::SetOwnFont, 1464
wxWindow::SetOwnForegroundColour, 1464
wxWindow::SetPalette, 1468
wxWindow::SetScrollbar, 1468
wxWindow::SetScrollPos, 1469
wxWindow::SetSize, 1470
wxWindow::SetSizeHints, 1471
wxWindow::SetSizer, 1472
wxWindow::SetSizerAndFit, 1473
wxWindow::SetThemeEnabled, 1473
wxWindow::SetTitle, 1473
wxWindow::SetToolTip, 1474
wxWindow::SetValidator, 1474
wxWindow::SetVirtualSize, 1474
wxWindow::SetVirtualSizeHints, 1474
wxWindow::SetWindowStyle, 1475
wxWindow::SetWindowStyleFlag, 1475
wxWindow::SetWindowVariant, 1475
wxWindow::ShouldInheritColours, 1475
wxWindow::Show, 1476
wxWindow::Thaw, 1476
wxWindow::TransferDataFromWindow, 1476
wxWindow::TransferDataToWindow, 1477
wxWindow::UnregisterHotKey, 1477
wxWindow::Update, 1477
wxWindow::UpdateWindowUI, 1478
wxWindow::Validate, 1478
wxWindow::WarpPointer, 1479
wxWindow::wxWindow, 1426
wxWindowCreateEvent, 1480
wxWindowCreateEvent::wxWindowCreateEvent,

INDEX

1909

1479
wxWindowDC, 1480
wxWindowDC::wxWindowDC, 1480
wxWindowDestroyEvent, 1481
wxWindowDestroyEvent::wxWindowDestroyEven

t, 1481
wxWindowDisabler, 1481
wxWindowDisabler::~wxWindowDisabler, 1481
wxWindowDisabler::wxWindowDisabler, 1481
wxWizard, 1483
wxWizard::Create, 1484
wxWizard::FitToPage, 1484
wxWizard::GetCurrentPage, 1485
wxWizard::GetPageAreaSizer, 1485
wxWizard::GetPageSize, 1485
wxWizard::HasNextPage, 1485
wxWizard::HasPrevPage, 1486
wxWizard::RunWizard, 1486
wxWizard::SetBorder, 1486
wxWizard::SetPageSize, 1486
wxWizard::wxWizard, 1483
wxWIZARD_EX_HELPBUTTON, 1483
wxWizardEvent, 1487
wxWizardEvent::GetDirection, 1487
wxWizardEvent::GetPage, 1488
wxWizardEvent::wxWizardEvent, 1487
wxWizardPage, 1488
wxWizardPage::GetBitmap, 1489
wxWizardPage::GetNext, 1489
wxWizardPage::GetPrev, 1489
wxWizardPage::wxWizardPage, 1488
wxWizardPageSimple, 1490
wxWizardPageSimple::Chain, 1490
wxWizardPageSimple::SetNext, 1490
wxWizardPageSimple::SetPrev, 1490
wxWizardPageSimple::wxWizardPageSimple,

1490
wxWriteResource, 1569
wxWS_EX_BLOCK_EVENTS, 1426, 1465
wxWS_EX_PROCESS_IDLE, 1426, 1465
wxWS_EX_PROCESS_UI_UPDATES, 1426,

1465
wxWS_EX_TRANSIENT, 1426, 1465
wxWS_EX_VALIDATE_RECURSIVELY, 1426,

1465
wxXCharBuffer Overview, 1654
wxXmlResource, 1491, 1492
wxXmlResource::~wxXmlResource, 1492
wxXmlResource::AddHandler, 1492
wxXmlResource::AttachUnknownControl, 1492
wxXmlResource::ClearHandlers, 1492
wxXmlResource::CompareVersion, 1492
wxXmlResource::Get, 1492
wxXmlResource::GetFlags, 1493
wxXmlResource::GetVersion, 1493
wxXmlResource::GetXRCID, 1493
wxXmlResource::InitAllHandlers, 1493
wxXmlResource::Load, 1493
wxXmlResource::LoadBitmap, 1493
wxXmlResource::LoadDialog, 1493
wxXmlResource::LoadFrame, 1494
wxXmlResource::LoadIcon, 1494

wxXmlResource::LoadMenu, 1494
wxXmlResource::LoadMenuBar, 1494
wxXmlResource::LoadPanel, 1494
wxXmlResource::LoadToolBar, 1495
wxXmlResource::Set, 1495
wxXmlResource::SetFlags, 1495
wxXmlResource::Unload, 1495
wxXmlResource::wxXmlResource, 1491
wxXmlResourceHandler, 1495
wxXmlResourceHandler::~wxXmlResourceHandl

er, 1496
wxXmlResourceHandler::AddStyle, 1496
wxXmlResourceHandler::AddWindowStyles,

1496
wxXmlResourceHandler::CanHandle, 1496
wxXmlResourceHandler::CreateChildren, 1496
wxXmlResourceHandler::CreateChildrenPrivately

, 1496
wxXmlResourceHandler::CreateResFromNode,

1496
wxXmlResourceHandler::CreateResource, 1497
wxXmlResourceHandler::DoCreateResource,

1497
wxXmlResourceHandler::GetBitmap, 1497
wxXmlResourceHandler::GetBool, 1497
wxXmlResourceHandler::GetColour, 1497
wxXmlResourceHandler::GetCurFileSystem,

1497
wxXmlResourceHandler::GetDimension, 1497
wxXmlResourceHandler::GetFont, 1497
wxXmlResourceHandler::GetIcon, 1498
wxXmlResourceHandler::GetID, 1498
wxXmlResourceHandler::GetLong, 1498
wxXmlResourceHandler::GetName, 1498
wxXmlResourceHandler::GetNodeContent, 1498
wxXmlResourceHandler::GetParamNode, 1498
wxXmlResourceHandler::GetParamValue, 1498
wxXmlResourceHandler::GetPosition, 1498
wxXmlResourceHandler::GetSize, 1499
wxXmlResourceHandler::GetStyle, 1499
wxXmlResourceHandler::GetText, 1499
wxXmlResourceHandler::HasParam, 1499
wxXmlResourceHandler::IsOfClass, 1499
wxXmlResourceHandler::SetParentResource,

1499
wxXmlResourceHandler::SetupWindow, 1499
wxXmlResourceHandler::wxXmlResourceHandle

r, 1495
wxXPMHandler, 745
wxYield, 1522
wxZipEntry, 1503
wxZipEntry::Clone, 1503
wxZipEntry::Get/SetComment, 1503
wxZipEntry::Get/SetExternalAttributes, 1503
wxZipEntry::Get/SetExtra, 1504
wxZipEntry::Get/SetLocalExtra, 1504
wxZipEntry::Get/SetMethod, 1505
wxZipEntry::Get/SetMode, 1505
wxZipEntry::Get/SetSystemMadeBy, 1506
wxZipEntry::GetCompressedSize, 1503
wxZipEntry::GetCrc, 1503
wxZipEntry::GetFlags, 1504

INDEX

1910

wxZipEntry::GetInternalName, 1504
wxZipEntry::IsMadeByUnix, 1506
wxZipEntry::IsText/SetIsText, 1506
wxZipEntry::operator=, 1506
wxZipEntry::SetNotifier, 1505
wxZipEntry::wxZipEntry, 1503
wxZipInputStream, 1507
wxZipInputStream::CloseEntry, 1507
wxZipInputStream::GetComment, 1507
wxZipInputStream::GetNextEntry, 1507
wxZipInputStream::GetTotalEntries, 1507
wxZipInputStream::OpenEntry, 1508
wxZipInputStream::wxZipInputStream, 1507
wxZipNotifier::OnEntryUpdated, 1508
wxZipOutputStream, 1509
wxZipOutputStream::~wxZipOutputStream, 1509
wxZipOutputStream::Close, 1509
wxZipOutputStream::CloseEntry, 1509
wxZipOutputStream::CopyArchiveMetaData,

1510
wxZipOutputStream::CopyEntry, 1510
wxZipOutputStream::Get/SetLevel, 1510
wxZipOutputStream::PutNextDirEntry, 1510
wxZipOutputStream::PutNextEntry, 1510
wxZipOutputStream::SetComment, 1511
wxZipOutputStream::wxZipOutputStream, 1509
wxZlibInputStream, 1511
wxZlibInputStream::CanHandleGZip, 1512

wxZlibInputStream::wxZlibInputStream, 1511
wxZlibOutputStream, 1512
wxZlibOutputStream::CanHandleGZip, 1513
wxZlibOutputStream::wxZlibOutputStream, 1512

—X—
x, 1053
x, 1002, 1054
Xor, 1068
XRC C++ sample, 1709
XRC concepts, 1707
XRC file format, 1713
XRC resource file sample, 1711
XToCol, 625
XToEdgeOfCol, 625
XYToPosition, 1300

—Y—
y, 1002, 1053
y, 1054
Year, 245
Years, 246
Yield, 41, 1324
YToEdgeOfRow, 625
YToRow, 625

