
#$+K!

Object Graphics Library 3.0

Julian Smart

September 1998

RUN TEX2RTF AGAIN FOR CONTENTS PAGE

Contents
Contents
browse00001
K Contents
DisableButton("Up")

$#+K!Introduction

Object Graphics Library (OGL) is a C++ library supporting the creation and manipulation
of simple and complex graphic images on a canvas.

It can be found in the directory utils/ogl/src in the wxWindows distribution. The file
ogl.h must be included to make use of the library.

Please see OGL overview for a general description how the object library works. For
details, please see the class reference.

File structure

Introduction
topic0
browse00002
K Introduction
DisableButton("Up")

$#+K!OGLEdit: a sample OGL application

OGLEdit is a sample OGL application that allows the user to draw, edit, save and load a
few shapes. It should clarify aspects of OGL usage, and can act as a template for similar
applications. OGLEdit can be found in samples/ogledit in the OGL distribution.

{bmc ogledit.bmp}

The wxWindows document/view model has been used in OGL, to reduce the amount of
housekeeping logic required to get it up and running. OGLEdit also provides a
demonstration of the Undo/Redo capability supported by the document/view classes,
and how a typical application might implement this feature.

OGLEdit files
How OGLEdit works
Possible enhancements

OGLEdit: a sample OGL application
ogledit
browse00004
K OGLEdit a sample OGL application
DisableButton("Up")

$#+K!Class reference

These are the main OGL classes.

wxOGLConstraint
wxBitmapShape

Class reference
classref
browse00008
K Class reference
DisableButton("Up")

$#+K!File structure

These are the files that comprise the OGL library.

 basic.h Header for basic objects such as wxShape and wxRectangleShape.

 basic.cpp Basic objects implementation (1).

 basic2.cpp Basic objects implementation (2).

 bmpshape.h wxBitmapShape class header.

 bmpshape.cpp wxBitmapShape implementation.

 canvas.h wxShapeCanvas class header.

 canvas.cpp wxShapeCanvas class implementation.

 composit.h Composite object class header.

 composit.cpp Composite object class implementation.

 constrnt.h Constraint classes header.

 constrnt.cpp Constraint classes implementation.

 divided.h Divided object class header.

 divided.cpp Divided object class implementation.

 drawn.h Drawn (metafile) object class header.

 drawn.cpp Drawn (metafile) object class implementation.

 graphics.h Main include file.

 lines.h wxLineShape class header.

 lines.cpp wxLineShape class implementation.

 misc.h Miscellaneous graphics functions header.

 misc.cpp Miscellaneous graphics functions implementation.

 ogldiag.h wxDiagram class header.

 ogldiag.cpp wxDiagram implementation.

File structure
topic1
browse00003
K File structure
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `topic0')")

 mfutils.h Metafile utilities header.

 mfutils.cpp Metafile utilities implementation.

$#+K!OGLEdit files

OGLEdit comprises the following source files.

 {bmc bullet.bmp} doc.h, doc.cpp: MyDiagram, DiagramDocument,
DiagramCommand, MyEvtHandler classes related to diagram functionality and
documents.

 {bmc bullet.bmp} view.h, view.cpp: MyCanvas, DiagramView classes related to
visualisation of the diagram.

 {bmc bullet.bmp} ogledit.h, ogledit.cpp: MyFrame, MyApp classes related to the
overall application.

 {bmc bullet.bmp} palette.h, palette.cpp: EditorToolPalette implementing the shape
palette.

OGLEdit files
topic2
browse00005
K OGLEdit files
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `ogledit')")

$#+K!How OGLEdit works

OGLEdit defines a DiagramDocument class, each of instance of which holds a
MyDiagram member which itself contains the shapes.

In order to implement specific mouse behaviour for shapes, a class MyEvtHandler is
defined which is 'plugged into' each shape when it is created, instead of overriding each
shape class individually. This event handler class also holds a label string.

The DiagramCommand class is the key to implementing Undo/Redo. Each instance of
DiagramCommand stores enough information about an operation (create, delete,
change colour etc.) to allow it to carry out (or undo) its command.

Apart from menu commands, another way commands are initiated is by the user left-
clicking on the canvas or right-dragging on a node. MyCanvas::OnLeftClick in view.cpp
shows how the appropriate wxClassInfo is passed to a DiagramCommand, to allow
DiagramCommand::Do to create a new shape given the wxClassInfo.

The MyEvtHandler right-drag methods in doc.cpp implement drawing a line between two
shapes, detecting where the right mouse button was released and looking for a second
shape. Again, a new DiagramCommand instance is created and passed to the command
processor to carry out the command.

DiagramCommand::Do and DiagramCommand::Undo embody much of the interesting
interaction with the OGL library. A complication of note when implementing undo is the
problem of deleting a node shape which has one or more arcs attached to it. If you
delete the node, the arc(s) should be deleted too. But multiple arc deletion represents
more information that can be incorporated in the existing DiagramCommand scheme.
OGLEdit copes with this by treating each arc deletion as a separate command, and
sending Cut commands recursively, providing an undo path. Undoing such a Cut will
only undo one command at a time - not a one to one correspondence with the original
command - but it's a reasonable compromise and preserves Do/Undo while keeping our
DiagramCommand class simple.

How OGLEdit works
topic3
browse00006
K How OGLEdit works
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `ogledit')")

$#+K!Possible enhancements

OGLEdit is very simplistic and does not employ the more advanced features of OGL,
such as:

 {bmc bullet.bmp} attachment points (arcs are drawn to particular points on a shape)

 {bmc bullet.bmp} metafile and bitmaps shapes

 {bmc bullet.bmp} divided rectangles

 {bmc bullet.bmp} composite shapes, and constraints

 {bmc bullet.bmp} creating labels in shape regions

 {bmc bullet.bmp} arc labels (OGL has support for three movable labels per arc)

 {bmc bullet.bmp} spline and multiple-segment line arcs

 {bmc bullet.bmp} adding annotations to node and arc shapes

 {bmc bullet.bmp} line-straightening (supported by OGL) and alignment (not
supported directly by OGL)

These could be added to OGLEdit, at the risk of making it a less useful example for
beginners.

Possible enhancements
topic4
browse00007
K Possible enhancements
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `ogledit')")

$#+K!wxOGLConstraint

wxCompositeShape overview

An wxOGLConstraint object helps specify how child shapes are laid out with respect to
siblings and parents.

wxheadingDerived from

wxObject

wxheadingSee also

wxCompositeShape

wxheadingMembers

wxOGLConstraint::wxOGLConstraint
wxOGLConstraint::~wxOGLConstraint
wxOGLConstraint::Equals
wxOGLConstraint::Evaluate
wxOGLConstraint::SetSpacing

wxOGLConstraint
wxoglconstraint
browse00009
K wxOGLConstraint
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `classref')")

$#+K!wxBitmapShape

Draws a bitmap (non-resizable).

wxheadingDerived from

wxRectangleShape

wxheadingMembers

wxBitmapShape::wxBitmapShape
wxBitmapShape::~wxBitmapShape
wxBitmapShape::GetBitmap
wxBitmapShape::GetFilename

wxBitmapShape
wxbitmapshape
browse00015
K wxBitmapShape
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `classref')")

$#+K!wxOGLConstraint::wxOGLConstraint

 wxOGLConstraint()K

Default constructor.

 wxOGLConstraint(int type, wxShape *constraining, wxList& constrained)K

Constructor.

wxheadingParameters

docparamconstrainingThe shape which is used as the reference for positioning the
constrained objects.

docparamconstrainedContains a list of wxShapes which are to be constrained (with
respect to constraining) using type.

docparamtypeCan be one of:

 {bmc bullet.bmp} gyCONSTRAINT_CENTRED_VERTICALLY: the Y co-ordinates
of the centres of the bounding boxes of the constrained objects and the
constraining object will be the same

 {bmc bullet.bmp} gyCONSTRAINT_CENTRED_HORIZONTALLY: the X co-
ordinates of the centres of the bounding boxes of the constrained objects and
the constraining object will be the same

 {bmc bullet.bmp} gyCONSTRAINT_CENTRED_BOTH: the co-ordinates of the
centres of the bounding boxes of the constrained objects and the constraining
object will be the same

 {bmc bullet.bmp} gyCONSTRAINT_LEFT_OF: the X co-ordinates of the right hand
vertical edges of the bounding boxes of the constrained objects will be less than
the X co-ordinate of the left hand vertical edge of the bounding box of the
constraining object

 {bmc bullet.bmp} gyCONSTRAINT_RIGHT_OF: the X co-ordinates of the left hand
vertical edges of the bounding boxes of the constrained objects will be greater
than the X co-ordinate of the right hand vertical edge of the bounding box of the
constraining object

 {bmc bullet.bmp} gyCONSTRAINT_ABOVE: the Y co-ordinates of the bottom
horizontal edges of the bounding boxes of the constrained objects will be less

wxOGLConstraint::wxOGLConstraint
wxoglconstraintconstr
browse00010
K wxOGLConstraint wxOGLConstraint
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `wxoglconstraint')")
K wxOGLConstraint
K wxOGLConstraint

than the Y co-ordinate of the top horizontal edge of the bounding box of the
constraining object

 {bmc bullet.bmp} gyCONSTRAINT_BELOW: the Y co-ordinates of the top
horizontal edges of the bounding boxes of the constrained objects will be greater
than the X co-ordinate of the bottom horizontal edge of the bounding box of the
constraining object

 {bmc bullet.bmp} gyCONSTRAINT_ALIGNED_TOP: the Y co-ordinates of the top
horizontal edges of the bounding boxes of the constrained objects will be the
same as the Y co-ordinate of the top horizontal edge of the bounding box of the
constraining object

 {bmc bullet.bmp} gyCONSTRAINT_ALIGNED_BOTTOM: the Y co-ordinates of the
bottom horizontal edges of the bounding boxes of the constrained objects will be
the same as the Y co-ordinate of the bottom horizontal edge of the bounding box
of the constraining object

 {bmc bullet.bmp} gyCONSTRAINT_ALIGNED_LEFT: the X co-ordinates of the left
hand vertical edges of the bounding boxes of the constrained objects will be the
same as the X co-ordinate of the left hand vertical edge of the bounding box of
the constraining object

 {bmc bullet.bmp} gyCONSTRAINT_ALIGNED_RIGHT: the X co-ordinates of the
right hand vertical edges of the bounding boxes of the constrained objects will
be the same as the X co-ordinate of the right hand vertical edge of the bounding
box of the constraining object

 {bmc bullet.bmp} gyCONSTRAINT_MIDALIGNED_TOP: the Y co-ordinates of the
centres of the bounding boxes of the constrained objects will be the same as the
Y co-ordinate of the top horizontal edge of the bounding box of the constraining
object

 {bmc bullet.bmp} gyCONSTRAINT_MIDALIGNED_BOTTOM: the Y co-ordinates of
the centres of the bounding boxes of the constrained objects will be the same as
the Y co-ordinate of the bottom horizontal edge of the bounding box of the
constraining object

 {bmc bullet.bmp} gyCONSTRAINT_MIDALIGNED_LEFT: the X co-ordinates of the
centres of the bounding boxes of the constrained objects will be the same as the
X co-ordinate of the left hand vertical edge of the bounding box of the
constraining object

 {bmc bullet.bmp} gyCONSTRAINT_MIDALIGNED_RIGHT: the X co-ordinates of
the centres of the bounding boxes of the constrained objects will be the same as
the X co-ordinate of the right hand vertical edge of the bounding box of the
constraining object

$#+K!wxOGLConstraint::~wxOGLConstraint

 ~wxOGLConstraint()K

Destructor.

wxOGLConstraint::~wxOGLConstraint
topic5
browse00011
K wxOGLConstraint ~wxOGLConstraint
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `wxoglconstraint')")
K ~wxOGLConstraint

$#+K!wxOGLConstraint::Equals

bool Equals(double x, double y)K

Returns TRUE if x and y are approximately equal (for the purposes of evaluating the
constraint).

wxOGLConstraint::Equals
topic6
browse00012
K wxOGLConstraint Equals
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `wxoglconstraint')")
K Equals

$#+K!wxOGLConstraint::Evaluate

bool Evaluate()K

Evaluates this constraint, returning TRUE if anything changed.

wxOGLConstraint::Evaluate
topic7
browse00013
K wxOGLConstraint Evaluate
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `wxoglconstraint')")
K Evaluate

$#+K!wxOGLConstraint::SetSpacing

void SetSpacing(double x, double y)K

Sets the horizontal and vertical spacing for the constraint.

wxOGLConstraint::SetSpacing
wxoglconstraintsetspacing
browse00014
K wxOGLConstraint SetSpacing
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `wxoglconstraint')")
K SetSpacing

$#+K!wxBitmapShape::wxBitmapShape

 wxBitmapShape()K

Constructor.

wxBitmapShape::wxBitmapShape
topic8
browse00016
K wxBitmapShape wxBitmapShape
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `wxbitmapshape')")
K wxBitmapShape

$#+K!wxBitmapShape::~wxBitmapShape

 ~wxBitmapShape()K

Destructor.

wxBitmapShape::~wxBitmapShape
topic9
browse00017
K wxBitmapShape ~wxBitmapShape
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `wxbitmapshape')")
K ~wxBitmapShape

$#+K!wxBitmapShape::GetBitmap

constfuncwxBitmap&GetBitmap

Returns a reference to the bitmap associated with this shape.

wxBitmapShape::GetBitmap
topic10
browse00018
K wxBitmapShape GetBitmap
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `wxbitmapshape')")

$#+K!wxBitmapShape::GetFilename

constfuncwxStringGetFilename

wxBitmapShape::GetFilename
topic11
browse00019
K wxBitmapShape GetFilename
EnableButton("Up");ChangeButtonBinding("Up", "JumpId(`ogl.hlp', `wxbitmapshape')")

