#$+K!

Object Graphics Library 3.0
Julian Smart

September 1998

Contents

Introduction

OGLEdit: a sample OGL application
Class reference

Topic overviews

Bugs

Change log

Contents

Contents
®rowse00001

K Contents
PisableButton("Up")

$*Kntroduction

Object Graphics Library (OGL) is a C++ library supporting the creation and manipulation
of simple and complex graphic images on a canvas.

It can be found in the directory uti | s/ ogl / sr ¢ in the wxWindows distribution. The file
ogl . h must be included to make use of the library.

Please see OGL overview for a general description how the object library works. For
details, please see the class reference.

File structure

'ntroduction

'opicO

®rowse00002

K Introduction
PisableButton("Up")

¥KOGLEdit: a sample OGL application

OGLEdit is a sample OGL application that allows the user to draw, edit, save and load a
few shapes. It should clarify aspects of OGL usage, and can act as a template for similar
applications. OGLEdit can be found in sanpl es/ ogl edi t in the OGL distribution.

{bmc ogledit.omp}

The wxWindows document/view model has been used in OGL, to reduce the amount of
housekeeping logic required to get it up and running. OGLEdit also provides a
demonstration of the Undo/Redo capability supported by the document/view classes,
and how a typical application might implement this feature.

OGLEdit files
How OGLEdit works
Possible enhancements

OGLEdit: a sample OGL application
°gledit

®rowse00004

K OGLEdit a sample OGL application
PisableButton("Up")

$#*KiClass reference

These are the main OGL classes.

wxOG| Constraint

wxBitmapShape
wxDiagram
wxDrawnShape
wxCircleShape
wxCompositeShape
wxDividedShape
wxDivisionShape
wxEllipseShape
wxLineShape
wxPolygonShape
wxRectangleShape
wxPseudoMetaFile
wxShape
wxShapeCanvas
wxShapeEvtHandler

wxTextShape
Functions

Class reference
“lassref
®rowse00008

K Class reference
PisableButton("Up")

¥KTopic overviews

The following sections describe particular topics.

OGL overview

wxDividedShape overview
wxCompositeShape overview

Topic overviews
'opic295
®rowse00393

K Topic overviews
PisableButton("Up")

$#+K!Bugs

These are the known bugs.

{bmc bullet.omp} In the OGLEdit sample, .dia files are output double-spaced due to
an unidentified bug in the way a stream is converted to a file.

Bugs

®ugs

®rowse00397
KBugs
PisableButton("Up")

¥KChange log

Version 3.0, September 8th 1998
{bmc bullet.omp} Version for wxWindows 2.0.

{bmc bullet.omp} Various enhancements especially to wxDrawnShape (multiple
metafiles, for different orientations).

{bmc bullet.omp} More ability to override functions e.g. OnSizeDragLeft, so events
can be intercepted for Do/Undo.

Version 2.0, June 1st 1996

{bmc bullet.omp} First publicly released version.

hange log
'opic296
®rowse00398

K Change log
PisableButton("Up")

$*KEjle structure

These are the files that comprise the OGL library.
basic.h Header for basic objects such as wxShape and wxRectangleShape.
basic.cpp Basic objects implementation (1).
basic2.cpp Basic objects implementation (2).
bmpshape.h wxBitmapShape class header.
bmpshape.cpp wxBitmapShape implementation.
canvas.h wxShapeCanvas class header.
canvas.cpp wxShapeCanvas class implementation.
composit.h Composite object class header.
composit.cpp Composite object class implementation.
constrnt.h Constraint classes header.
constrnt.cpp Constraint classes implementation.
divided.h Divided object class header.
divided.cpp Divided object class implementation.
drawn.h Drawn (metafile) object class header.
drawn.cpp Drawn (metafile) object class implementation.
graphics.h Main include file.
lines.h wxLineShape class header.
lines.cpp wxLineShape class implementation.
misc.h Miscellaneous graphics functions header.
misc.cpp Miscellaneous graphics functions implementation.
ogldiag.h wxDiagram class header.
ogldiag.cpp wxDiagram implementation.

mfutils.h Metafile utilities header.

File structure

‘opicl

®rowse00003

K File structure

EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplogl.hlp’, “topic0")")

mfutils.cpp Metafile utilities implementation.

¥XOGLEdit files

OGLEdit comprises the following source files.

{bmc bullet.omp} doc.h, doc.cpp: MyDiagram, DiagramDocument,
DiagramCommand, MyEvtHandler classes related to diagram functionality and
documents.

{bmc bullet.omp} view.h, view.cpp: MyCanvas, DiagramView classes related to
visualisation of the diagram.

{bmc bullet.omp} ogledit.h, ogledit.cpp: MyFrame, MyApp classes related to the
overall application.

{bmc bullet.omp} palette.h, palette.cpp: EditorToolPalette implementing the shape
palette.

OGLEdit files

‘opic2

®rowse00005

 OGLEdit files

EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplogl.hlp’, “ogledit’)")

$*KHow OGLEdit works

OGLEdit defines a DiagramDocument class, each of instance of which holds a
MyDiagram member which itself contains the shapes.

In order to implement specific mouse behaviour for shapes, a class MyEvtHandler is
defined which is 'plugged into' each shape when it is created, instead of overriding each
shape class individually. This event handler class also holds a label string.

The DiagramCommand class is the key to implementing Undo/Redo. Each instance of
DiagramCommand stores enough information about an operation (create, delete,
change colour etc.) to allow it to carry out (or undo) its command. In
DiagramView::OnMenuCommand, when the user initiates the command, a new
DiagramCommand instance is created which is then sent to the document's command
processor (see wxWindows manual for more information about doc/view and command
processing).

Apart from menu commands, another way commands are initiated is by the user left-
clicking on the canvas or right-dragging on a node. MyCanvas::OnLeftClick in view.cpp
shows how the appropriate wxClassInfo is passed to a DiagramCommand, to allow
DiagramCommand::Do to create a new shape given the wxClassinfo.

The MyEvtHandler right-drag methods in doc.cpp implement drawing a line between two
shapes, detecting where the right mouse button was released and looking for a second
shape. Again, a new DiagramCommand instance is created and passed to the command
processor to carry out the command.

DiagramCommand::Do and DiagramCommand::Undo embody much of the interesting
interaction with the OGL library. A complication of note when implementing undo is the
problem of deleting a node shape which has one or more arcs attached to it. If you
delete the node, the arc(s) should be deleted too. But multiple arc deletion represents
more information that can be incorporated in the existing DiagramCommand scheme.
OGLEdit copes with this by treating each arc deletion as a separate command, and
sending Cut commands recursively, providing an undo path. Undoing such a Cut will
only undo one command at a time - not a one to one correspondence with the original
command - but it's a reasonable compromise and preserves Do/Undo while keeping our
DiagramCommand class simple.

How OGLEdit works

'opic3

®rowse00006

K How OGLEdit works

EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplogl.hlp', “ogledit’)")

$*K'Ppossible enhancements

OGLEdit is very simplistic and does not employ the more advanced features of OGL,
such as:

{bmc bullet.omp} attachment points (arcs are drawn to particular points on a shape)

{bmc bullet.omp} metafile and bitmaps shapes

{bmc bullet.omp} divided rectangles

{bmc bullet.omp} composite shapes, and constraints

{bmc bullet.bmp} creating labels in shape regions

{bmc bullet.omp} arc labels (OGL has support for three movable labels per arc)

{bmc bullet.omp} spline and multiple-segment line arcs

{bmc bullet.omp} adding annotations to node and arc shapes

{bmc bullet.omp} line-straightening (supported by OGL) and alignment (not
supported directly by OGL)

These could be added to OGLEdit, at the risk of making it a less useful example for
beginners.

Possible enhancements

'opic4

®rowse00007

K Possible enhancements
EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplogl.hlp’, “ogledit’)")

$#+K\wxOGLConstraint

{bmc books.bmp}wxCompositeShape overview

An wxOGLConstraint object helps specify how child shapes are laid out with respect to
siblings and parents.

Derived from
wxObject

See also
wxCompositeShape
Members

wxOGL Constraint::wxOGL Constraint
wxOGL Constraint::~wxOGL Constraint

wxOGL Constraint::Equals
wxOGlL Constraint::Evaluate

wxOGL Constraint::SetSpacing

“xOGLConstraint

“xoglconstraint

®rowse00009

K WxOGLConstraint

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

¥ KwxBitmapShape

Draws a bitmap (non-resizable).

Derived from

wxRectangleShape

Members

wxBitmapShape::wxBitmapShape
wxBitmapShape::~wxBitmapShape
wxBitmapShape::GetBitmap
wxBitmapShape::GetFilename
wxBitmapShape::SetBitmap
wxBitmapShape::SetFilename

"“xBitmapShape

“xbitmapshape

®rowse00015

K wxBitmapShape

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

¥+KywxDiagram

Encapsulates an entire diagram, with methods for reading/writing and drawing. A
diagram has an associated wxShapeCanvas.

Derived from
wxObject

See also

wxShapeCanvas

Members

wxDiagram::wxDiagram
wxDiagram::~wxDiagram
wxDiagram::AddShape
wxDiagram::Clear
wxDiagram::DeleteAllShapes
wxDiagram::DrawOultline
wxDiagram::FindShape
wxDiagram::GetCanvas
wxDiagram::GetCount
wxDiagram::GetGridSpacing
wxDiagram::GetMouseTolerance
wxDiagram::GetShapelList
wxDiagram::GetQuickEditMode
wxDiagram::GetSnapToGrid
wxDiagram::InsertShape
wxDiagram::LoadFile
wxDiagram::OnDatabaselLoad
wxDiagram::OnDatabaseSave
wxDiagram::OnHeaderlL oad
wxDiagram::OnHeaderSave
wxDiagram::OnShapeload
wxDiagram::OnShapeSave
wxDiagram::ReadContainerGeometry
wxDiagram::ReadLines
wxDiagram::ReadNodes
wxDiagram::RecentreAll
wxDiagram::Redraw
wxDiagram::RemoveAllShapes
wxDiagram::RemoveShape

“xDiagram

“xdiagram

®rowse00022

K wxDiagram

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

wxDiagram::SaveFile
wxDiagram::SetCanvas
wxDiagram::SetGridSpacing
wxDiagram::SetMouseTolerance
wxDiagram::SetQuickEditMode
wxDiagram::SetSnapToGrid
wxDiagram::ShowAll
wxDiagram::Snap

¥ KywxDrawnShape

Draws a pseduo-metafile shape, which can be loaded from a simple Windows metafile.

wxDrawnShape allows you to specify a different shape for each of four orientations
(North, West, South and East). It also provides a set of drawing functions for
programmatic drawing of a shape, so that during construction of the shape you can draw
into it as if it were a device context.

Derived from

wxRectangleShape
See also wxRectangleShape.

Members

wxDrawnShape::wxDrawnShape
wxDrawnShape::~wxDrawnShape
wxDrawnShape::CalculateSize
wxDrawnShape::DestroyClippingRect
wxDrawnShape::DrawArc
wxDrawnShape::DrawAtAngle
wxDrawnShape::DrawEllipticArc
wxDrawnShape::DrawLine
wxDrawnShape::DrawlLines
wxDrawnShape::DrawPaint
wxDrawnShape::DrawPolygon
wxDrawnShape::DrawRectangle
wxDrawnShape::DrawRoundedRectangle
wxDrawnShape::DrawSpline
wxDrawnShape::DrawText
wxDrawnShape::GetAngle
wxDrawnShape::GetMetaFile
wxDrawnShape::GetRotation
wxDrawnShape::LoadFromMetaFile
wxDrawnShape::Rotate
wxDrawnShape::SetClippingRect
wxDrawnShape::SetDrawnBackgroundColour
wxDrawnShape::SetDrawnBackgroundMode
wxDrawnShape::SetDrawnBrush
wxDrawnShape::SetDrawnFont
wxDrawnShape::SetDrawnPen
wxDrawnShape::SetDrawnTextColour

“xDrawnShape

“xdrawnshape

®rowse00060

K wxDrawnShape

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

wxDrawnShape::Scale
wxDrawnShape::SetSaveToFile
wxDrawnShape::Translate

$#*KwxCircleShape
An wxEllipseShape whose width and height are the same.
Derived from

wxEllipseShape.

Members

wxCircleShape::wxCircleShape
wxCircleShape::~wxCircleShape

“xCircleShape

xcircleshape

rowse00091

wxCircleShape

nableButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp’, “classref’)")

=

m X_T

¥#*KywxCompositeShape

This is an object with a list of child objects, and a list of size and positioning constraints
between the children.

Derived from

wxRectangleShape

See also

wxCompositeShape overview

Members

wxCompositeShape::wxCompaositeShape
wxCompositeShape::~wxCompositeShape
wxCompositeShape::AddChild
wxCompositeShape::AddConstraint
wxCompositeShape::CalculateSize
wxCompositeShape::ContainsDivision
wxCompositeShape::DeleteConstraint
wxCompositeShape::DeleteConstraintsinvolvingChild
wxCompositeShape::FindConstraint
wxCompositeShape::FindContainerlmage
wxCompositeShape::GetConstraints
wxCompositeShape::GetDivisions
wxCompositeShape::MakeContainer
wxCompositeShape::OnCreateDivision
wxCompositeShape::Recompute
wxCompositeShape::RemoveChild

“xCompositeShape
“xcompositeshape
rowse00094
wxCompositeShape

b
K
EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

¥ KwxDividedShape

A wxDividedShape is a rectangle with a number of vertical divisions. Each division may
have its text formatted with independent characteristics, and the size of each division
relative to the whole image may be specified.

Derived from

wxRectangleShape

See also

wxDividedShape overview

Members

wxDividedShape::wxDividedShape
wxDividedShape::~wxDividedShape
wxDividedShape::EditRegions
wxDividedShape::SetRegionSizes

“xDividedShape

“xdividedshape

®rowse00111

K wxDividedShape

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

¥+ KwxDivisionShape

A division shape is like a composite in that it can contain further objects, but is used
exclusively to divide another shape into regions, or divisions. A wxDivisionShape is
never free-standing.

Derived from

wxCompositeShape

See also

wxCompositeShape overview

Members

wxDivisionShape::wxDivisionShape
wxDivisionShape::~wxDivisionShape
wxDivisionShape::AdjustBottom
wxDivisionShape::AdjustL eft
wxDivisionShape::AdjustRight
wxDivisionShape::AdjustTop
wxDivisionShape::Divide
wxDivisionShape::EditEdge
wxDivisionShape::GetBottomSide
wxDivisionShape::GetHandleSide
wxDivisionShape::GetlL eftSide
wxDivisionShape::GetlLeftSideColour
wxDivisionShape::GetlLeftSidePen
wxDivisionShape::GetRightSide
wxDivisionShape::GetTopSide
wxDivisionShape::GetTopSideColour
wxDivisionShape::GetTopSidePen
wxDivisionShape::ResizeAdjoining
wxDivisionShape::PopupMenu
wxDivisionShape::SetBottomSide
wxDivisionShape::SetHandleSide
wxDivisionShape::SetlLeftSide
wxDivisionShape::SetLeftSideColour
wxDivisionShape::SetLeftSidePen
wxDivisionShape::SetRightSide
wxDivisionShape::SetTopSide
wxDivisionShape::SetTopSideColour
wxDivisionShape::SetTopSidePen

“xDivisionShape

“xdivisionshape

®rowse00116

K wxDivisionShape

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

¥ KwxEllipseShape
The wxEllipseShape behaves similarly to the wxRectangleShape but is elliptical.
Derived from

wxShape

Members

wxEllipseShape::wxEllipseShape
wxEllipseShape::~wxEllipseShape

“XxEllipseShape

“xellipseshape

®rowse00145

wxEllipseShape

nableButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp', “classref’)")

m X

¥ KwxLineShape

A wxLineShape may be attached to two nodes; it may be segmented, in which case a
control point is drawn for each joint.

A wxLineShape may have arrows at the beginning, end and centre.

Derived from

wxShape

Members

wxLineShape::wxLineShape
wxLineShape::~wxLineShape
wxLineShape::AddArrow
wxLineShape::AddArrowOrdered
wxLineShape::ClearArrow
wxLineShape::ClearArrowsAtPosition
wxLineShape::DrawArrow
wxLineShape::DeleteArrowHead
wxLineShape::DeleteLineControlPoint
wxLineShape::DrawArrows
wxLineShape::DrawRegion
wxLineShape::EraseRegion
wxLineShape::FindArrowHead
wxLineShape::FindLineEndPoints
wxLineShape::FindLinePosition
wxLineShape::FindMinimumWidth
wxLineShape::FindNth
wxLineShape::GetAttachmentFrom
wxLineShape::GetAttachmentTo
wxLineShape::GetEnds
wxLineShape::GetFrom
wxLineShape::GetLabelPgsition
wxLineShape::GetNextControlPoint
wxLineShape::GetTo
wxLineShape::Initialise
wxLineShape::InsertLineCaontrolPoint
wxLineShape::IsEnd
wxLineShape::IsSpline
wxLineShape::MakeLineControlPoints
wxLineShape::OnMovelLink
wxLineShape::SetAttachmentFrom

“xLineShape

“xlineshape

®rowse00148

K wxLineShape

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

wxLineShape::SetAttachments
wxLineShape::SetAttachmentTo
wxLineShape::SetEnds
wxLineShape::SetFrom
wxLineShape::SetlgnoreOffsets
wxLineShape::SetSpline
wxLineShape::SetTo
wxLineShape::Straighten
wxLineShape::Unlink

¥ KwxPolygonShape

A wxPolygonShape's shape is defined by a number of points passed to the object's
constructor. It can be used to create new shapes such as diamonds and triangles.

Derived from

wxShape

Members

wxPolygonShape::wxPolygonShape
wxPolygonShape::~wxPolygonShape
wxPolygonShape::Create
wxPolygonShape::AddPolygonPoint
wxPolygonShape::CalculatePolygonCentre
wxPolygonShape::DeletePolygonPoint
wxPolygonShape::GetPoints
wxPolygonShape::UpdateQOriginalPoints

“xPolygonShape

xpolygonshape

rowse00189

wxPolygonShape

nableButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp', “classref’)")

=

m X_T

¥*KwxRectangleShape
The wxRectangleShape has rounded or square corners.
Derived from

wxShape

Members

wxRectangleShape::wxRectangleShape
wxRectangleShape::~wxRectangleShape
wxRectangleShape::SetCornerRadius

“xRectangleShape

xrectangleshape

rowse00198

wxRectangleShape

nableButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp', “classref’)")

=

m X_T

$+K\ywxPseudoMetaFile

A simple metafile-like class which can load data from a Windows metafile on all
platforms.

Derived from

wxObject

“xPseudoMetaFile

“xpseudometafile
rowse00202
wxPseudoMetaFile

b
K
EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

¥ KwxShape

The wxShape is the top-level, abstract object that all other objects are derived from. All
common functionality is represented by wxShape's members, and overriden members
that appear in derived classes and have behaviour as documented for wxShape, are not
documented separately.

Derived from

wxShapeEvtHandler

Members

wxShape::wxShape
wxShape::~wxShape
wxShape::AddLine
wxShape::AddRegion
wxShape::AddText
wxShape::AddToCanvas
wxShape::AncestorSelected
wxShape::ApplyAttachmentOrdering
wxShape::AssignNewlds
wxShape::Attach
wxShape::AttachmentlsValid
wxShape::AttachmentSortTest
wxShape::CalcSimpleAttachment
wxShape::CalculateSize
wxShape::ClearAttachments
wxShape::ClearRegions
wxShape::ClearText
wxShape::Constrain
wxShape::Copy
wxShape::CreateNewCopy
wxShape::DeleteControlPgints
wxShape::Detach
wxShape::Draggable
wxShape::Draw
wxShape::DrawContents
wxShape::DrawLinks
wxShape::Erase
wxShape::EraseContents
wxShape::FindRegion
wxShape::FindRegionNames

"“xShape

“xshape

®rowse00203

wxShape

nableButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp’, “classref’)")

m X

wxShape::Flash
wxShape::FormatText
wxShape::GetAttachmentMode
wxShape::GetAttachmentPosition
wxShape::GetBoundingBoxMax
wxShape::GetBoundingBoxMin
wxShape::GetBrush
wxShape::GetCanvas
wxShape::GetCentreResize
wxShape::GetChildren
wxShape::GetClientData
wxShape::GetDisablelLabel
wxShape::GetEventHandler
wxShape::GetFixedHeight
wxShape::GetFixedSize
wxShape::GetFixedWidth
wxShape::GetFont
wxShape::GetFunctor
wxShape::Getld
wxShape::GetLinePaosition
wxShape::Getlines
wxShape::GetMaintainAspectRatio
wxShape::GetNumberOfAttachments
wxShape::GetNumberOfTextRegions
wxShape::GetParent
wxShape::GetPen
wxShape::GetPerimeterPoint
wxShape::GetRegionName
wxShape::GetRegions
wxShape::GetRotation
wxShape::GetSensitivityFilter
wxShape::GetShadowMaode
wxShape::GetSpaceAttachments
wxShape::GetTextColour
wxShape::GetTopAncestor
wxShape::GetX

wxShape::GetY

wxShape::HitTest

wxShape::Insert
wxShape::IsHighlighted
wxShape::IsShown
wxShape::MakeControlPoints
wxShape::MakeMandatoryControlPaints
wxShape::Move
wxShape::MoveLineToNewAttachment
wxShape::MoveLinks
wxShape::NameRegions
wxShape::Rotate
wxShape::ReadConstraints
wxShape::ReadAttributes

wxShape::ReadRegions
wxShape::Recentre
wxShape::RemoveFromCanvas
wxShape::ResetControlPoints
wxShape::ResetMandatoryControlPoints
wxShape::Recompute
wxShape::Removeline
wxShape::Select
wxShape::Selected
wxShape::SetAttachmentMode
wxShape::SetBrush
wxShape::SetCanvas
wxShape::SetCentreResize
wxShape::SetClientData
wxShape::SetDefaultRegionSize
wxShape::SetDisableLabel
wxShape::SetDraggable
wxShape::SetDrawHandles
wxShape::SetEventHandler
wxShape::SetFixedSize
wxShape::SetFont
wxShape::SetFormatMode
wxShape::SetHighlight
wxShape::Setid
wxShape::SetMaintainAspectRatio
wxShape::SetPen
wxShape::SetRegionName
wxShape::SetSensitivityFilter
wxShape::SetShadowMode
wxShape::SetSize
wxShape::SetSpaceAttachments
wxShape::SetTextColour
wxShape::SetX

wxShape::SetX
wxShape::SpaceAttachments
wxShape::Show
wxShape::Unlink
wxShape::WriteAttributes
wxShape::WriteRegions

¥#*KyxShapeCanvas

A canvas for drawing diagrams on.
Derived from
wxScrolledWindow

See also

wxDiagram

Members

wxShapeCanvas::wxShapeCanvas
wxShapeCanvas::~wxShapeCanvas
wxShapeCanvas::AddShape
wxShapeCanvas::FindShape
wxShapeCanvas::FindFirstSensitiveShape
wxShapeCanvas::GetDiagram
wxShapeCanvas::GetGridSpacing
wxShapeCanvas::GetMouseTolerance
wxShapeCanvas::GetShapeList
wxShapeCanvas::GetQuickEditMode
wxShapeCanvas::InsertShape
wxShapeCanvas::OnBeginDragL eft
wxShapeCanvas::0OnBeginDragRight
wxShapeCanvas::OnEndDragl eft
wxShapeCanvas::OnEndDragRight
wxShapeCanvas::OnDragLeft
wxShapeCanvas::OnDragRight
wxShapeCanvas::OnLeftClick
wxShapeCanvas::OnRightClick
wxShapeCanvas::Redraw
wxShapeCanvas::RemoveShape
wxShapeCanvas::SetDiagram
wxShapeCanvas::Snap

“xShapeCanvas

“xshapecanvas

®rowse00325

K wxShapeCanvas

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

¥ KwxShapeEvtHandler

wxShapeEvtHandler is a class from which wxShape (and therefore all shape classes)
are derived. A wxShape also contains a pointer to its current wxShapeEvtHandler. Event
handlers can be swapped in and out, altering the behaviour of a shape. This allows, for
example, a range of behaviours to be redefined in one class, rather than requiring each
shape class to be subclassed.

Derived from
wxObject

Members

wxShapeEvtHandler::m handlerShape
wxShapeEvtHandler::m previousHandler
wxShapeEvtHandler::wxShapeEvtHandler
wxShapeEvtHandler::~wxShapeEvtHandler
wxShapeEvtHandler::CopyData
wxShapeEvtHandler::CreateNewCopy
wxShapeEvtHandler::GetPreviousHandler
wxShapeEvtHandler::GetShape
wxShapeEvtHandler::OnBeginDragl eft
wxShapeEvtHandler::OnBeginDragRight
wxShapeEvtHandler::OnBeginSize
wxShapeEvtHandler::OnChangeAttachment
wxShapeEvtHandler::OnDragLeft
wxShapeEvtHandler::OnDragRight
wxShapeEvtHandler::OnDraw
wxShapeEvtHandler::OnDrawContents
wxShapeEvtHandler::OnDrawControlPoints
wxShapeEvtHandler::OnDrawOutline
wxShapeEvtHandler::OnEndDragleft
wxShapeEvtHandler::OnEndDragRight
wxShapeEvtHandler::OnEndSize
wxShapeEvtHandler::OnErase
wxShapeEvtHandler::OnEraseContents
wxShapeEvtHandler::OnEraseControlPoints
wxShapeEvtHandler::OnHighlight
wxShapeEvtHandler::OnLeftClick
wxShapeEvtHandler::OnMoveLink
wxShapeEvtHandler::OnMoveLinks
wxShapeEvtHandler::OnMovePost
wxShapeEvtHandler::OnMovePre

“xShapeEvtHandler

“xshapeevthandler

®rowse00349

K wxShapeEvtHandler

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

wxShapeEvtHandler::OnRightClick
wxShapeEvtHandler::OnSize
wxShapeEvtHandler::OnSizingBeginDragL eft
wxShapeEvtHandler::OnSizingDragLeft
wxShapeEvtHandler::OnSizingEndDragl eft
wxShapeEvtHandler::SetPreviousHandler
wxShapeEvtHandler::SetShape

Ky xTextShape
As wxRectangleShape, but only the text is displayed.
Derived from

wxRectangleShape

Members

wxTextShape::wxTextShape
wxTextShape::~wxTextShape

"“xTextShape

“xtextshape

®rowse00387

K wxTextShape

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

$*KEunctions

These are the OGL functions.

“wWxOGLlInitialize
=wWxOGLCleanUp

Functions

functions

®rowse00390

K Functions

EnableButton("Up");ChangeButtonBinding("Up", "Jumpldgl.hlp’, “classref)")

$*K'OGL overview

wxShapeCanvas, derived from wxCanvas, is the drawing area for a number of wxShape
instances. Everything drawn on a wxShapeCanvas is derived from wxShape, which
provides virtual member functions for redrawing, creating and destroying resize/selection
‘handles’, movement and erasing behaviour, mouse click behaviour, calculating the
bounding box of the shape, linking nodes with arcs, and so on.

The way a client application copes with 'damage' to the canvas is to erase (white out)
anything should no longer be displayed, redraw the shape, and then redraw everything
on the canvas to repair any damage. If quick edit mode is on for the canvas, the
complete should be omitted by OGL and the application.

Selection handles (called control points in the code) are implemented as
wxRectangleShapes.

Events are passed to shapes by the canvas in a high-level form, for example
OnLeftClick,OnBeginDragLeft, OnDragLeft, OnEndDragLeft. The canvas decides
what is a click and what is a drag, whether it is on a shape or the canvas itself, and (by
interrogating the shape) which attachment point the click is associated with.

In order to provide event-handling flexibility, each shapes has an ‘event handler'
associated with it, which by default is the shape itself (all shapes derive from
wxShapeEvtHandler). An application can modify the event-handling behaviour simply by
plugging a new event handler into the shape. This can avoid the need for multiple
inheritance when new properties and behaviour are required for a number of different
shape classes: instead of overriding each class, one new event handler class can be
defined and used for all existing shape classes.

A range of shapes have been predefined in the library, including rectangles, ellipses,
polygons. A client application can derive from these shapes and/or derive entirely new
shapes from wxShape.

Instances of a class called wxDiagram organise collections of shapes, providing default
file input and output behaviour.

°GL overview

°gloverview

Prowse00394

K OGL overview

EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplogl.hlp’, “topic295")")

¥+KwxDividedShape overview

Classes: wxDividedShape

A wxDividedShape is a rectangle with a number of vertical divisions. Each division may
have its text formatted with independent characteristics, and the size of each division
relative to the whole image may be specified.

Once a wxDividedShape has been created, the user may move the divisions with the
mouse. By pressing Ctrl while right-clicking, the region attributes can be edited.

Here are examples of creating wxDividedShape objects:

/*
* Divided rectangle with 3 regions

*

*/
wxDi vi dedShape *di vi dedRect = new wxDi vi dedShape(50, 60);

wxShapeRegi on *regi on = new wxShapeRegi on;
regi on- >Set Proporti ons(0.0, 0.25);
di vi dedRect - >AddRegi on(regi on);

regi on = new wxShapeRegi on;
regi on- >Set Proportions(0.0, 0.5);
di vi dedRect - >AddRegi on(regi on);

regi on = new wxShapeRegi on;
regi on- >Set Proportions(0.0, 0.25);
di vi dedRect - >AddRegi on(r egi on) ;

_di vi dedRect - >Set Si ze(50, 60); // Allow it to calculate region
si zes
di vi dedRect - >Set Pen(wxBLACK_PEN) ;
di vi dedRect - >Set Br ush(wxWHI TE_BRUSH) ;
di vi dedRect - >Show(TRUE) ;
di vi dedRect - >NaneRegi ons() ;

/*
* Divided rectangle with 3 regions, rounded

*

*/

wxDi vi dedShape *di vi dedRect3 = new wxDi vi dedShape(50, 60);
di vi dedRect 3- >Set Cor ner Radi us(-0. 4) ;

regi on = new wxShapeRegi on;
regi on- >Set Proporti ons(0.0, 0.25);
di vi dedRect 3- >AddRegi on(r egi on) ;

regi on = new wxShapeRegi on;

“xDividedShape overview

ividedshapeoverview

rowse00395

wxDividedShape overview

nableButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp’, “topic295")")

o

m X_T

regi on- >Set Proportions(0.0, 0.5);
di vi dedRect 3- >AddRegi on(r egi on) ;

regi on = new wxShapeRegi on;
regi on- >Set Proporti ons(0.0, 0.25);
di vi dedRect 3- >AddRegi on(r egi on) ;

~dividedRect 3- >Set Si ze(50, 60); // Allowit to calculate region
si zes
di vi dedRect 3- >Set Pen(wxBLACK_PEN) ;
di vi dedRect 3- >Set Br ush(wxWH TE_BRUSH) ;
di vi dedRect 3- >Show(TRUE) ;
di vi dedRect 3- >NaneRegi ons() ;

¥y xCompositeShape overview

Classes: wxCompositeShape, wxOGLConstraint

The wxCompositeShape allows fairly complex shapes to be created, and maintains a set
of constraints which specify the layout and proportions of child shapes.

Add child shapes to a wxCompositeShape using AddChild, and add constraints using
AddConstraint.

After children and shapes have been added, call Recompute which will return TRUE is
the constraints could be satisfied, FALSE otherwise. If constraints have been correctly
and consistently specified, this call will succeed.

If there is more than one child, constraints must be specified: OGL cannot calculate the
size and position of children otherwise. Don't assume that children will simply move
relative to the parent without the use of constraints.

To specify a constraint, you need three things:
1. aconstraint type, such as gyCONSTRAINT_CENTRED_VERTICALLY;

2. areference shape, with respect to which other shapes are going to be
positioned - the constraining shape;

3. alist of one or more shapes to be constrained: the constrained shapes.

The constraining shape can be either the parent of the constrained shapes, or a sibling.
The constrained shapes must all be siblings of each other.

For an exhaustive list and description of the available constraint types, see the
wxOGL Constraint constructor. Note that most constraints operate in one dimension only
(vertically or horizontally), so you will usually need to specify constraints in pairs.

You can set the spacing between constraining and constrained shapes by calling
wxOGLConstraint::SetSpacing.

Finally, a wxCompositeShape can have divisions, which are special child shapes of
class wxDivisionShape (not to be confused with wxDividedShape). The purpose of this is
to allow the composite to be divided into user-adjustable regions (divisions) into which
other shapes can be dropped dynamically, given suitable application code. Divisons
allow the child shapes to have an identity of their own - they can be manipulated
independently of their container - but to behave as if they are contained with the division,
moving with the parent shape. Divisions boundaries can themselves be moved using the
mouse.

“xCompositeShape overview
‘ompositeshapeoverview
rowse00396
wxCompositeShape overview

b
K
EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplogl.hlp’, “topic295")")

To create an initial division, call wxCompositeShape::MakeContainer. Make further
divisions by calling wxDivisionShape::Divide.

$#+K\wxOGLConstraint::wxOGLConstraint

wxOGLConstraint()¢

Default constructor.

wxOGL Constraint(int type, wxShape *constraining, wxList& constrained)"
Constructor.

Parameters

constraining

The shape which is used as the reference for positioning the constrained objects.

constrained

Contains a list of wxShapes which are to be constrained (with respect to
constraining) using type.

type
Can be one of:

{bmc bullet.bmp} gyCONSTRAINT _CENTRED_VERTICALLY: the Y co-
ordinates of the centres of the bounding boxes of the constrained objects
and the constraining object will be the same

{bmc bullet.bmp} gyCONSTRAINT _CENTRED_HORIZONTALLY: the X co-
ordinates of the centres of the bounding boxes of the constrained objects
and the constraining object will be the same

{bmc bullet.bmp} gyCONSTRAINT_CENTRED_BOTH: the co-ordinates of
the centres of the bounding boxes of the constrained objects and the
constraining object will be the same

{bmc bullet.bmp} gyCONSTRAINT _LEFT_OF: the X co-ordinates of the
right hand vertical edges of the bounding boxes of the constrained objects
will be less than the X co-ordinate of the left hand vertical edge of the
bounding box of the constraining object

{bmc bullet.omp} gyCONSTRAINT_RIGHT_OF: the X co-ordinates of the
left hand vertical edges of the bounding boxes of the constrained objects
will be greater than the X co-ordinate of the right hand vertical edge of the

"xOGLConstraint::wxOGLConstraint

“xoglconstraintconstr

Prowse00010

 wxOGLConstraint wxOGLConstraint
EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp', "wxoglconstraint’)")
K wxOGLConstraint

K wxOGLConstraint

bounding box of the constraining object

{bmc bullet.bmp} gyCONSTRAINT_ABOVE: the Y co-ordinates of the
bottom horizontal edges of the bounding boxes of the constrained objects
will be less than the Y co-ordinate of the top horizontal edge of the
bounding box of the constraining object

{bmc bullet.omp} gyCONSTRAINT_BELOW: the Y co-ordinates of the top
horizontal edges of the bounding boxes of the constrained objects will be
greater than the X co-ordinate of the bottom horizontal edge of the
bounding box of the constraining object

{bmc bullet.bmp} gyCONSTRAINT_ALIGNED_TOP: the Y co-ordinates of
the top horizontal edges of the bounding boxes of the constrained objects
will be the same as the Y co-ordinate of the top horizontal edge of the
bounding box of the constraining object

{bmc bullet.bmp} gyCONSTRAINT_ALIGNED BOTTOM: the Y co-
ordinates of the bottom horizontal edges of the bounding boxes of the
constrained objects will be the same as the Y co-ordinate of the bottom
horizontal edge of the bounding box of the constraining object

{bmc bullet.bmp} gyCONSTRAINT_ALIGNED_LEFT: the X co-ordinates of
the left hand vertical edges of the bounding boxes of the constrained
objects will be the same as the X co-ordinate of the left hand vertical edge
of the bounding box of the constraining object

{bmc bullet.bmp} gyCONSTRAINT_ALIGNED_RIGHT: the X co-ordinates
of the right hand vertical edges of the bounding boxes of the constrained
objects will be the same as the X co-ordinate of the right hand vertical
edge of the bounding box of the constraining object

{bmc bullet.omp} gyCONSTRAINT_MIDALIGNED_TOP: the Y co-ordinates
of the centres of the bounding boxes of the constrained objects will be the
same as the Y co-ordinate of the top horizontal edge of the bounding box
of the constraining object

{bmc bullet.bmp} gyCONSTRAINT_MIDALIGNED_BOTTOM: the Y co-
ordinates of the centres of the bounding boxes of the constrained objects
will be the same as the Y co-ordinate of the bottom horizontal edge of the
bounding box of the constraining object

{bmc bullet.omp} gyCONSTRAINT_MIDALIGNED_LEFT: the X co-
ordinates of the centres of the bounding boxes of the constrained objects
will be the same as the X co-ordinate of the left hand vertical edge of the
bounding box of the constraining object

{bmc bullet.omp} gyCONSTRAINT_MIDALIGNED_RIGHT: the X co-
ordinates of the centres of the bounding boxes of the constrained objects
will be the same as the X co-ordinate of the right hand vertical edge of the
bounding box of the constraining object

$#+K\wxOGLConstraint::~wxOGLConstraint

~wxOGL Constraint()*

Destructor.

“xOGLConstraint::~wxOGLConstraint

'opic5

Prowse00011

K wxOGLConstraint ~wxOGLConstraint
EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp', "wxoglconstraint’)")

~wxOGLConstraint

¥KwxOGL Constraint::Equals
bool Equals(double x, double y)*

Returns TRUE if x and y are approximately equal (for the purposes of evaluating the
constraint).

“XxOGLConstraint::Equals
'opic6

Prowse00012

K wxOGLConstraint Equals

EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp', "wxoglconstraint’)")
K
Equals

$#+K\yxOGLConstraint::Evaluate

bool Evaluate()©

Evaluates this constraint, returning TRUE if anything changed.

"XxOGLConstraint::Evaluate

'opic7

Prowse00013

K wxOGLConstraint Evaluate

EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp', "wxoglconstraint’)")
¥ Evaluate

¥ KwxOGL Constraint::SetSpacing

void SetSpacing(double x, double y)*

Sets the horizontal and vertical spacing for the constraint.

"“xOGLConstraint::SetSpacing

“xoglconstraintsetspacing

®rowse00014

K wxOGLConstraint SetSpacing

EnabIeButton("Up");ChangeButtonBinding("Up", "Jumplagl.hlp', "wxoglconstraint’)")
K SetSpacing

¥ KwxBitmapShape::wxBitmapShape
wxBitmapShape()*

Constructor.

“xBitmapShape::wxBitmapShape

'opic8

®rowse00016

wxBitmapShape wxBitmapShape
nableButton("Up");ChangeButtonBinding("Up",