wxWindows 2.5.0: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

August 2003

Contents

Copyright NOLICE ... s XV
L (oo [T £ o 1
What iS WXWINAOWS? ...ttt e s s e ene e nnne e 1
Why another cross-platform development t0017.........ooiiiiiiiii e 1
WXWINAOWS FEQUIFEMENTS .coieiiiii ittt ettt ettt e e e s st e e e s ame e e e e s anre e e e snrneeesaneneeeaans 3
Availability and location of WXWINAOWSoiiiiiiiii e 3
FAte] (Tl T=To [o =10 =T o £ PR RR 3
Multi-platform development with wxWindowscccooommiiiiiniiccccmnnnnccnnes 5
T Lo 10T L= 1= PO PPRRR 5
] o] = L4 =T PSPPSR 5
(@70] 1110 U L= 1o] [USRS 6
Y= LT 111 PRSP 6
WiINAOWS-SPECITIC fIlES ...eveeei e e 7
Allocating and deleting WxWindows ODJECES........ociiii i 7
ArChiteCtUre dEPENAENCYcci i e e s e e snre e e e saneeeeeeans 8
Conditional COMPIIATION ...coeiiiiiie e 8
(O [T =T TSRO P R URROPRPRIN 8
(=3 o =T Lo | 1T PSPPSR OPPPPPO 10
Utilities and libraries supplied with WXWindOWwscccccmimmmmmmmmmnmnsssnssnnnnnnn 11
Programming Strategies.......ccccurrmmmmmmmmmmmmmmmmmmmmmssmssnnn 13
Strategies for reducing programming ©ITOFSeeicveeerieerrie e 13
Strategies for POrtability..........coo e 13
Strategies for AEDUQGGING ...eeoiuree ittt e e ene e ebe e saeeas 14
I o = 1 == 16
Alphabetical class reference ... s 19
WXACCEIETATOTENTIY ..ot e e e e e e s e e e e s neeee s 19
WXACCEIEIAIOITADIE ..ot 20
WXACCESSIDIE .ottt e et e e e e e e e e e e e e e e e e e eanes 23
WXACHVAIEEVENT ... e e s 31
L0 o] o F TSP PP UTRPPPTP 33
WXATTAY ettt ettt ettt a ettt e e sttt e e ab e et e e st et e £ as e e e a2 a b e et e 2R b e et e e abE et e e e bR et e e R R et e e e nre e e e nneee s 44
WXAITAYSTIIING ¢ttt e e r e s e s r e e e am e e e sne e e s nn e e sane e e aneeenreeeanes 56
1A 4 o £)Y/ o =T USRS 62

CONTENTS

TR T] (o] s 4 F=\ {0 010 o] [=o] AP USRS 66
L4 =110 0= o T SRR 70
WXBITMAPBULION ... e e e e e annee s 83
WXBItMapDataObjeCT.........eiiiiieie e 88
g ST p =T o] o =T To | T SRR 90
LTS0S T4) SRR 93
L4 =T (0 =] PR RTR 94
WXBIUSNLIST ... e e e st e s et e e e e ae e e e ennee e e e nnes 100
WXBUFfEredINDUESTIEAIMot 102
WXBUFferedOUIPUISTIIEAM ...coooiei e e 103
(g S TU Y O 0 < To T PR 104
WXBUSYINTO .. e s e e e e e e e e e e e 105
WXBUHON ... e e e e st e e e et e e e e ee e e e nnnee e e e anes 106
WXCalCulateLayOUTEVENTcooee e e 109
L@ 7= 11T T b= T 3 { SRR 111
(O 1T ale P T BT (= A« 4 PR 117
WXCAIENAAIEVENT ... e e e e e e 120
L2 LY SRR 121
L] aT=Ted 4= T) PRSP 124
WXCNECKLISTBOX ..ttt ettt e e et e e s et e e e e e e e e nnnee e e e sanes 127
L2 o o SRR 129
WXCIASSINTO 1. e s e e e e e e e anes 132
12 =T o PRSP 134
WXCHENIDC ... ettt e et e e et e e e et e e e e st ee e e e nseee e e sseeeeannseeeeannneeeeennnees 136
WXCHENIDATAeeeeeeieiee e e e st e e s et e e e e e e e b e e e e nanes 136
WXClIENIDAtaCONTAINET.......iiiieiiee e e e e e e e e e e e 137
1703 1] o oY= 1o HU ST RPTUURRTRI 139
WXCIOSEEVENT ... e e st e e et e e e e abee e e e ennee e e e nnneas 142
(@] o | I oY - T 1= PRSP 144
112] [T SRR 154
(@70] 01U - - PR 157
WXCOIOUIDAIADASEceeiiiiiiiiee e e 159
10 (O o] (o1 0T B IF-1 oo H ST RTPTOURRRI 161
L@ 70T 10T oTo] = o) PRSP 162
17RO 2 102 =g Lo 1 PR 167
WXCOMMANAEVENTeiiiiiiiie ettt e e e st e e e e e e e e s eeeeeenseeeeennneeaeeennees 169
WXCOMMANAPTOCESSONeiiiiitiiee ettt ettt ettt e st e e st e e e s sb e e e snbe e e s e nbeee e e nbeeeeeanneeeeennnes 174
LT @ 7o o {1 o o PSP 178
1O o] gl 1o] == T PSRRI 182
L2 @ 7o] =T o 1o o PR 197

il

CONTENTS

10O o] 01123 1= o TSP UTOURRR 201
WXCONEXTHEIPBULION ... e e 202
L1211 (o RS RR 204
WXCONTFOIWINITEIMS .. 205
WXCOUNTINGOUIPULSTIIEAM ..o e e e 212
L@ g for= 1 £ T=Tox 1o o ISR 213
WXCHHICAISECHONLOCKET ...t 214
10 (035100 T TP TRROPRRTRIN 215
L2 =T RSP RR 216
WXCUSTOMDAtAOD]ECT. ... 221
WXDAtAFOIMAL ... e e 223
WXDAtaINPUESTIEAIM ...t ettt sae e sabe e e ebee e saneaan 225
WXDAtAODJECT ... e e e e 228
WXDataObjeCtCOMPOSIIEeiiiiiiiie e 232
WXDataODECISIMPIE ...ttt rae et ne e saneaaa 233
WXDataOUIPULSTIIEAMeeiieiiee e e 235
(g D= 1 (=15 o - U I PR 237
WX D AT TIMIE. ettt e e e e e e e st e et e e e e e e e s nnbeeeeeaeeeeaannnreneaaaaean 244
wxDate TimeHOlIdayAUTNOKILYooo e e 272
WXDAtETIMEWOIKDAYSeiiiiiieeeee e e e e e 272
1T o USRS 272
WXDDCOIDALAPT ... e e 301
WXDDCOIDE ... e 302
L2401 o] o SRR 303
WXDBCOIINT ... e 304
WXDBCONNECINT ... e e 304
WXDIBIAXDET ...ttt e et e e e e e e e e e e e e e e e e e e nnnaeeeaaaeean 310
L2450 o]) PR 310
WXDDTADIE.....cee e e 311
LT T 1=]] o | SRR 347
WXDDBGHACOINTO i 347
WXDDGHATADIEBASEoeeieeeeee e 349
LT =Y oW o @0 o1 1=« SR U RSP 352
WXDEbUGSIreamMBUT ... e e 357
wxDelegateRendererNatiVe ..o 358
11724 LRSS 359
LT 1O @] 1o o 1T PR 379
LTT2d 1= o T T PR 379
WXDIAIUDPEVENT ... e e e e e e e eaneis 388
LB =110 o)1, =T F= Vo = PRSP 389

il

CONTENTS

1T L SRR 393
(T2 T = o T PRSP 397
L B T I =\ V7= £=T= SRR 399
LD | Io =T [TR TRR PSRRI 401
WXDOCCNIIAFTAME ... e ssn e nne e nnne e 404
WXDOCIMEBNAGET ...ttt e ek e e e e e e e s e e s e e e s e nbe e e e e annre e e e ennes 406
WXDOCMDICRIIAFIAME ..ot 415
WXDOCMDIPAreNtFIrameoooieiiie e 417
WXDOCPArENTFIaAME. ...t e e e e e e e e e e eeeeeaeeeas 419
(T d B Lo e =T 4 o] o] - L= T PR 420
WXDOCUMENT ...t e s e e ne e s e e s anne e nnneenas 426
LB =T][1 F= T T PSP PP OPP PP 434
WXDIOPFIIESEVENT ... e e e e 439
WXDIOPSOUICE ...ttt n e s e e e nne e e s e e s nnn e e snneena 441
Do o X =T e =] PRSP PPPPRP 443
WXDYNAMICLIDIANY ... e e e e e eanes 446
WXENCOAINGCONVEITEeiiiiiiiee ettt et e st e e e e e e snnee e e e snneas 449
WXEFQSEEVENT ...ttt e et e e e e e e e e e e e e e e e e e e annreeeeaaaeas 452
WXEVENT ... e e e 453
WXEVIHANAIEE ... e s 457
L= o PSP PP OPPPP 465
WXEXPIDAIADASE ... e e e 472
L2 1= PRSP 476
WXFFIlEINPUESTIEAIM ..ottt e rnee e saneaaa 480
WXFFIlEOUIPULSTIEAM ... e e 481
WXFFIIESIIEaM ... 483
1T 1L SRR 483
WXFIEDAtaODJECTeeiiieiie e e 489
LR L=Y I = 1 o PP 491
WXFIEDIOPTANGE! ... e e e e e e 495
(R L=Y o 113 (o] YRR 497
WXFIINPUESTIIEAM ... e e e e e s ee e e e ennes 500
1T L AN =g = SRR 501
WXFIIEOUIPULSTIIEAM ... e 516
WXFTIESIIEAM ...t r e s e e ne e s e e s anne e nnneena 518
WXFTIESYSTEM ..ttt sttt e e rae e e s be e e sbe e e sabe e sabeeesaneaans 518
WXFIlESYSIEMHANAIET ..o e 521
L1 L= o = PRSP 524
WXFIEEIINPUESTIEAIM ...ttt sttt e rbe e saneaan 528
WXFIRErOUIPULSTIEAM ... e 529

v

CONTENTS

WXFINADIAIOGEVENT ..o e 529
WXFINAREPIACEDALA ..o e 531
WXFINAREPIACEDIAIOT. ¢ ettt 533
WXFIEXGIIASIZET .t e s et e e e ee e e e ennee e e e ennes 534
WXFOCUSEVENT ..o e e e e e bee e e e nnnee e e e eanes 537
11750 | SRR 538
WXFONTDALA ... e e st e e e et e e e e e e e nnre e e e nanes 547
Lo 011 -1 oo PP 550
WXFONTENUMEIATON ...ttt e e e e e e eeaaeeeas 552
WX ONTLIST Lot e e st e e e st e e e e bt e e e e nbee e e ennneeeeennnes 553
Lo 111V, F= T o =Y PSRRI 555
1T = 12 1= TSP 559
L2 1= PP 572
12 I PRSP 574
10 - LU T [T ST RUPOURRRRI 581
LG 1 (] o)=Y o PSPPSR 585
(TG T=T =T o I 1 o PR 586
LG =T e gloaY A= o F- Lo SRR 590
LG I 0= 17 V7= T T PR 592
12 C 1 o PRSP 595
LT To [O7=1 N | USRS 633
(G110 [O7=111 2o To] | <o 1 (o] Cu PSPPSR 637
(€110 [O7=11 [0 o] (o= =L [} (o] PP 637
LT To [O7=T1 | = 1 (o SRR 638
LG Te [O7=1] | To T= 14 =T 1) o PRSP 641
R C T To [OF=11 N (U aa] oT=T 4 =T 11 (o PR 641
LG To [OF=T =3 q =T 1) o RS RR 642
WXGHAEAIOrCreat@dEVENT..... ... e e 643
LRG0 Y=Y o | PP 645
WXGHARANGESEIECIEVENT ... e 647
WXGHASIZEEVENT ... e e st e e e ee e e s eabee e e e nneas 649
(G T Te [O7=1]1 2T o] | RT=Y oo [=] £ PRSP 651
G T To [OF=11 i To =Y R =T g o =T (- SRR 652
WXGrdCElNUMDEIRENAEIETeeiieiee e e e e e 653
LG To [O7=11 | Y=g Lo (=T Y PP 653
WXGHACEISIINGRENAEIET ... ettt e e raee e saneeaa 654
WXGHATADIEBASE ... e 655
LT C 110 15 2= PR RR 660
LT E= TS 1Y = o PSP PP PPRP 661
WXHASNTADIE ... et e e s et e e e ee e e e ennee e e e nanes 666

CONTENTS

WXHEIDCONTIOIET ...ttt sttt e e e e s be e e sae e e sabe e e naeesaneaans 669
WXHeIPCoNtrollerHEIPPIOVIAETco e 674
WXHEIDEVENT. ... e e e e e e e 675
(T2 (=11 0] o (oY o =T PR 677
WXHEMICEIL. ... e e e s e n e e s e e s ene e e nnneeaa 678
WXHEMICOIOUICEIL......eeeieeiie et e e e e e e e ee e e e e nrae e e eenneeaeeennees 684
WXHIMICONTAINEICEIL......eiieeeeee e e 685
WXHIMIDCRENUEIEN ...t ane e nnne e 691
WXHEMIEQSYPIINTING ..eeeeeeee e 693
WXHEMIFTET . e e snr e s ene e nnne e 697
WXHEMIHEIDCONTIIOIET ... e e e e 698
WXHEIMIHEIPDALA. ... e e e e e 702
WXHEMIHEIDFTAME ... e e e snee e e e eanes 704
WXHEMILINKINTO .o 708
WXHEMILISTBOX ..ttt e e e e e e e e e nnneeeeeaeeeas 709
WXHEMIPAISET ...t e s e e s e s ann e e nnnee 711
WXHEMIPEHINTOUL ...t nene e 716
(T2 110 0] I =T TR PSP PUPPPPPPP 718
WXHEMITAGHANAIET ... e e e e eanes 722
WXHEMITAGSMOAUIE ... e e e e e e e eanes 724
WXHIMIWIAGEICEIL ... ettt sttt rnee e saneaen 725
WXHEMIWINGOW ...t s e e e snre e s nne e e nnneenas 725
WXHIMIWINPAISEI ... e nane e 734
WXHIMIWINTAGHANAIET ... 740
WX H T TP et e e st e e e s a e e e s sbe e e e e nbee e e e nbee e e eanneeeeennnes 741
170 4[] o TPV OURRTRIN 742
WXICONBUNGIE ...ttt e et e e e e e e e e e e e e e e e e e e nnnneeeaaaaeas 750
WXICONLOCALION. ...ttt n e s e e ne e e snre e s nne e e nnneena 752
WXICONMIZEEVENT ... e s e e e snr e s nne e e nnnee 752
WXIAIEEVENT ...t e e e e e e e e e e eeeeeaae s 753
12 d A= Ve = PR 756
(T2 g = Ve =1 F= U o =T PRSP 778
L E=Te =]) S PSP PP PPRP 781
wxINdividualLayoutCoNSIraiNtc..eiiiiiiei e e e 786
WXINIEDIAIOGEVENT ... e e 789
WXINPUESTIEAM ...ttt ettt e bt e bt e e sbe e e sae e e sabeeeneeesaneaaa 790
WXIPVAQAAIESS ..ottt e en e s e n e e snre e s nne e e nnneenas 792
WXUOYSHICK it e e e e e et e e s e bt e e e e b e e e e nnee e e e nanes 794
WXJOYSHCKEVENT ... e e e 801
WXKEYEVENT ...t e et e e st e e e et e e e e abee e e e nnneeeeennnes 804

Vi

CONTENTS

WXLAYOULAIGOITTNM ... e e s 809
WXLAYOULCONSIFAINTS ..o e e e e e e e e e e e eaneas 812
1T = ST 814
WXLISTDOOK ... e 820
WXLISTBOX 1ttt 821
L2 (3 (RS 826
WXLISTEVENT ... e 844
WXLISTEM .. 847
WXLISTVIBW .ottt ettt e ettt e e e e e e e e s e e e e e e e e e e e anneeeeeaeeeeaannsneneaaaaeas 852
WXLOCAIE ...t 855
1724 e T I PP 867
170 IoTe 07 g - 1 o TSR 873
12 e Yo [T PP 875
L2 e Yo | | PRSP 876
WXLOGPASSTNIOUGN.....coiiiiiiie e e s 877
L0 oo 1] (o =T o OSSPSR OPRRTRIN 878
WXLOGSIIEAM .. e 878
WXLOGTEXICR ...ttt sttt e e ab e e s e e e s ae e e sate e e nae e saneaaas 879
WXLOGWINAOW .ttt e e st e e e st e e e et e e e e nbee e e eenneeeeeenneas 879
L2 o] g To | o] o T T PP 881
WXIVIASK . . ettt ettt oottt et e e e e e ettt e e e e e e e e e aanbeeeeeeeeeaaaannnneeeeaeeeeaannnrenaaaaaean 885
WXMAAXIMIZEEVENT.......ooiiiiie e e nne e s e 887
WXIMBONV ...ttt e e st e s e e ne e e s ne e e nne e e snn e e e ann e e nnneena 888
WXMBCONVFIIE ..ttt e e et e e e e s e e s e sseeeeennseeeeeanneeeeennnees 890
WXMBOONVUTET ..ttt e et e s et e e e nbee e e e ennee e e e enneas 891
WXMBOONVUTES ...t e e st e e et e e e e b e e e e ennee e e e nnneas 892
LG 1D (@ a1 o = T 1= SRR 893
WXMDICHENIWINGAOW ...t e s ane e s e 896
WXMDIPArentFrameoo o 898
WXMEMIOIYDIC ...ttt e bttt e et e e e ebte e sbe e e ebeeesabeeeabeeesnneaan 905
WXMEMOIrYFSHANAIET ... i 906
WXMEMOIYINPUESIIEAM ..ot 908
WXMEMOrYOULPULSIIEAM ...ttt rae e s e e e sae e e sabe e e rnae e saneaans 909
WXIMIBIIU ettt e e r et e s e e e e e e n e e e s ne e e nn e e nnr e e e nneennneena 910
WXIMENUBAY ...ttt e e n e s e e nn e e anre e s na e e naneena 923
WXIMIENUEVENT ...ttt et e e e e e st e e e e e e e e s aanae et e e e e e e eaaannnreeeaaaaeas 932
WXIMENUITEIM ...t e e n e s e e e ne e e nnre e s ann e e snneeaa 934
WXMESSAGEDIAIOG -...eeieeieiiiie e e e e e anes 940
WXIMIETATIIE. ... ettt r e e e e e e et e e e e e e e e nnnreeeeaaa s 941
WXMELAFIEDIC ... e nne e 943

Vil

CONTENTS

WXMIMETYPESMANAGETeeiieitieie et e e e e e e e e e e e e 944
WXMINIFTAMIE <.t e e e e e st e e e s s et e s e st e e e e nbee e e eanneeeeennnes 947
WXMIITOIDC.... ..ttt et e e et e e st e e e es b e e e e sbae e e e sseee e e sseeeeaanseeeeeanneeeeennnnes 950
WXMOGUIE .t e e e e st e e e s abe e e e e nb e e e e e nbee e e eenneeeeesnnes 951
wxMouseCaptureChangedEVeENtoo i e e 953
WXIMOUSEEVENT ...ttt e e e e e e et e e e e e e e e nnneeeeaaaeeas 954
WXMOVEEVENT ... e e e e s ee e e e ennes 963
R 0] o] 1=T @] aToTleT=1 B F=1 o o PR 964
WXIVIUEEX -ttt ettt ettt et oottt e e e e e e e ettt e e e e e e e e s aanaeeeeeeeeeeaaannseeeeeaaeeeaaannnsnneaaeaeas 965
WXMUEEXLOCKET .ttt e e st e e s et e e e b e e e e nnnee e e e enneas 968
117241 [0 o = PRSP 969
1T 0] =1 oo T | PSR PRR 970
WXNOTEDOOKEVENT ... e e e e 978
WXNOTEDOOKSIZET ... e e e e 980
WXNOTTYEVENT ... e e 980
12 @ o] 1= o] PSP 982
WXODJECIREDALA s 985
WXOULPULSTIOAM ...ttt be e st e et e e e rate e s be e e bt e e sabeeenaeesnneaaa 986
WXPAGESEIUPDIAIOQ -ttt 988
WXPageSetupDialogDatac.coiviiiiie e 989
WXPAINIDC ...ttt s e e s e e e sttt e e e es e e e e e abae e e e nnee e e e nbeee e e nbaeeeeannreeeeennnes 995
WXPAINTEVENT ..o e et e s et e e e e ee e e e ennee e e e nanes 996
WXPAIEHE ...t e et e st e e e e e e e b e e e anee e e e nanes 997
11T = U = PR 1001
WXPATNLIST ..o e s e 1004
WXPBIN ..ttt e e e b e e e e h e e e e e b e e e e e e bee e e e e bae e e e e nreeeeannees 1006
1T =T o 1 U PRRT 1013
WXPIOTCUIVE ...ttt e e s et e e e s bt e e e s bee e e e sbte e e e sneeeeeennes 1015
WXPIOTWINGOW ...ttt s e e s s bt e e e sbee e e e snnre e e e ennes 1017
WXPOINE <.ttt ettt e e e e e et e e e e e e e e s nr e e e e e e e e e e e nnnnneeaaaaean 1021
WXPOSESCHPIDC ... 1022
WXPTEVIEWCANVEASeeiiiieiiie ittt ettt e e st e e s s b e e e s b e e e sbee e e e snneeeeennnes 1023
WXPTEVIEWCONTIOIBATiiiieiiiee ettt e et e e e et e e e e tae e e e enre e e e ennees 1024
WXPTEVIBWETAME ...t e e s s e e e sbee e e e s bre e e e ennes 1025
WXPHINEDATA .. 1027
WXPIINEDIAIOQG. -ttt 1033
WXPFINIDIAIOGDALAceiiieiee e e 1034
L2 101 (= PR 1039
12 10111 SRR 1042
WXPTINTOUL. .. e e e st e e s s b e e e s bee e e e s bee e e e e nree e e ennes 1042

viii

CONTENTS

WXPINTPIEVIEW ...ttt e e e e e e e e e e e e e s nnneeeeaaaeeas 1047
WXPFIVAIEDIOPTAIGEL. .. e s e e b e e e 1050
(LT o ToT=] PR 1051
WXPTOCESSEVENT ...t e e e e s e e e s b e e e nnes 1056
LR oo =SS D= (o o [PP 1058
11T (0] (o Yoo 1 PR 1060
WXQUANTIZE ...ttt e e st e e s s bt e e e e e b e e e e e s bee e e e sbee e e e aneee e e nnnes 1062
WXQUEryLayOULINFOEVENT ... e 1063
(T =T o] = o)t R PPRRT 1066
LR = Lo 1o] =T £] o PP 1072
WXREAIPOINT. ... et e e e s e e e s b e e e ennes 1075
11T =T o] RS 1075
WXRECUISIONGUANTcoiiiiiiie ittt ettt e et e e s s b e e e e s bee e e e sbae e e e enbeeeeeennes 1080
WXRECUISIONGUANTFIAQeeeei it 1082
WXREGEX ettt e e e e e r e e anes 1082
124 (= To Lo o PR 1086
LR (=T o (o] 011 =T = o PP 1091
WXRENAEIEINGLIVE ... e e e e e e eeaaeeeas 1094
AR (T e =T =T V=T 4= (o o SRR 1097
WXSASNEVENT. ...t e e e 1098
WXSASNLAYOUIWINTOW ...ttt ettt ettt e s e st e b e san e e sbe e e saneas 1100
WXSASNWINAOW ..t e e st e e s s b e e e s bee e e e e bree e e ennes 1103
LS TeT1=T=T] I L PR 1108
RS ToTo] o =To LN - | PRSP 1109
LR Te o] o1=To | { SRR 1111
WXSCIOIBA ... teee ettt ettt e e e s b e e e e bt e e e e s be e e e e s bee e e e sbee e e e eneeeeennnees 1113
WXSCIOIEAWINAOWeiiiiiiiie ettt ettt e e e et e e e e bae e e e e see e e e snae e e e enseeeeeennees 1120
WXSCIOIEVENT ...t e e e e e e s e e e s bee e e e e bree e e ennes 1129
WXSCIOIWINEVENT. ... e et e nre e e e nnes 1132
WXSEMAPNOIE ...ttt ettt e bt e e e a bt e e bt e e sate e sabe e ebeeesabeeanbeeeaareesbeeeanneas 1133
LGS L= Y= PP 1136
WXSIMPIEHEIPPTOVIAET ...t e 1137
ST aTe] (=107 s o] (o7=T DI E=1 oo FU PRSI 1137
WXSINGIEINSTANCECNECKET ... e 1140
LGS T4 YRR 1142
WXSIZEEVENT ... et e e e e e e e e e e e e e e e e e n e e e e anees 1144
1S T4 SO PP 1145
125 11T 1= PR 1152
LS Lo Tt 2V o =TT SRR 1161
WXSOCKEIBASE ...ttt e e e e e e st e e e e b e e e e bre e e e ennes 1162

X

CONTENTS

LR Lo Tt = (] =Y o SRS 1180
WXSOCKEIEVENT ...t e e es 1182
WXSOCKELINPUESTIEAM ...ttt eaee s 1183
WXSOCKETOUIPULSTIEAM ... e 1184
WXSOCKEESEIVET ..t e e n e s e e e enr e e sne e e nnne s 1184
WXSPINBUIION ettt et e e be e s abe e e be e e rare e sbeeesaeeas 1187
12 ES] o1 L 1 U 1190
WXSPINEVENT. ... e s s e e e s bee e e e e beee e e ennes 1193
RS] o] = 1] 1S T =TT o T USRS 1195
WXSPHEEIEVENT...c e e e 1196
WXSPHEEIWINAOW ... e st sb e e e s b e e e nnes 1199
WXSPIErRENAEIPAramMS.ot 1209
LS F= L1 Te] =110 = o T PP 1210
WXSTAHCBOX ...ttt s 1212
WX STATICBOXSIZET ... tiiii ettt e et e e e et e e e et te e e e e ne e e e e e rae e e e enree e e annees 1214
WXSTALCLINE ..ot e e n e e e ne e s 1214
WXSTAHCTEXE ..ttt 1216
LS =1 (U] = 7= | SRS 1219
LS (0] o1 A= | (o] o R 1223
WXSTIEAMBASE ...t 1225
L =T=Taa] = T 1= RSP ER 1227
WXStreamToTeXtREAINECION.oi e s 1233
125111 PP 1234
WXSTINGBUTTET ...ttt st e e sat e sbe e e saneas 1257
WXSTINGOHENTDALAcci i e e e e eanes 1258
WXSTINGLIST .ttt e e s b e e e st e e e e bee e e e e bee e e e nnnes 1259
WXSTINGTOKENIZE ...ttt ettt e st e e e bt e e st e e e be e e sateesbeeeeneeas 1261
WXSYSCOloUrChangedEVENL........coouiiii e e 1263
WXSYSIEMOPTIONS ...t e e s b e e s st e e e s bee e e e e nree e e ennes 1264
WXSYSTEMSEIHINGSeee ettt e b s be e e be e e rate e sbeeesnneas 1266
(T2 QL= o1 TP TRP PRSP 1270
WXTADEVENT. ... s e e e 1275
(T QIE= 1= 7= U [eTo] o RS 1276
WXTEIMPFIIE .t e e s b e e s e e e sb e e e e e beee e e ennes 1278
WX T EXEATL et e e et e s e e n e e nne e s 1280
L2122 (3 [PSP 1284
WX TEXIDATAODIECTeeiiieeee e e 1303
LI o o = 1= S SRR 1304
WXTEXIENTIYDIAIOQF ..eeeeeiieeeee e e 1306
WXTEXEFIIE et e e r e s e e en e nne e es 1307

CONTENTS

WXTEXHINPUESIIEAM ..ottt st e bt st e e be e e sab e e sbeeesaneas 1313
WX TEXTOULPULSIIEAM ... 1317
WXTEXEVAIAATON ...t e e e e e e e e eeaaeeeas 1319
12 41 Y= Lo PP 1322
LRI A Y= Lo 1= o= PR 1329
WXThreadHelPEerTRIEAd.ccoi i 1331
12 L1 RPN 1333
WX TIMEBIEVENT ... e s e e s b e e s s bee e e e sbee e e e e neee e e nnnes 1335
WX TIMIESPAN 1.ttt ettt ettt ettt ettt e e ae e e e bt e e bt e e eab e e e bt e e eabeesabe e e beeesabeeanbeeeaaseesaneeennneas 1336
LI o] 4 €014 e =Y U 1343
WX TIPWINAOW ...t et e e s e e e s b e e e sbee e e e anaee e e ennes 1344
WXTOGGIEBUIION ... e e 1346
L2 I Lo 11 = -V PP 1348
12 1o Lo I o USRI 1365
LIS 1 RSP 1366
WXTTEEEVENT. ... e s e s b e e e nnes 1385
WX TTEEIEMDALA ... s e e 1388
WXUPAAIEUIEVENT ...t e e e 1389
WXURL ettt et e e e st e e e e e bt e e e e e b ee e e e s bee e e e e bae e e e enreeeennnees 1395
124 V= L1 To F=1 o PP 1398
1TV &= U4 = o | PR 1400
WXVAANTDALA ...ceei i e s enes 1408
WXVIEW .ttt ettt ettt e e h e e e s bt e e e e b et e e e e b bt e e e e b te e e e eaneeee e e bee e e e eabee e e e ebaeeeeanreeeennnees 1410
WXV LISTBOX ..ttt e ettt e e e e e et e e e e e e e e e s anneeeeeaaeeeaannnnneeaaaeean 1414
WXV SCIOIEAWINAOW ...ttt et e e e e s sbee e e e e bre e e e ennes 1421
WXWAVE ...ttt ettt e e e s b e e e e e bt e e e e bee e e e s bee e e e sbee e e e eneeeeennnees 1426
WXWWINAOW ...ttt e e e e ettt e e e e e et e ee e e e e e e e s aannteeeeeaeeeaaannnnneeaaaaean 1428
WXWINAOWDC ...ttt e e e sttt e e e s b e e e e s bee e e e enae e e e eneeeeeennes 1477
WXWINAOWDISADIEcooieiiie e e e e 1478
1T 2= T PR 1479
WXWIZAIAEVENT....c. e e e e e e 1484
LA A<= o | o= T T PP 1486
WXWiZardPageSimPleeoo ittt e naee s 1488
WXXIMIRESOUICE ...ttt ettt ettt e et e e e e bt e e e s bt e e e e s bee e e e eabee e e e aaneeeeeannes 1489
WXXMIRESOUICEHANAIET ... e 1494
AT o] L] o 10165 1T Ty o R TP 1500
(A o] o] o101 833 [== Ty o H SRR 1500
WXZIIDOUIPULSTIFIEAM ... e 1501
3T €0 T 1502

X1

CONTENTS

Alphabetical functions and Macros liSt.........ooiieiiiiiiii e 1502
RV 10T T 0 0 =T oL PP TRP PRSP 1506
Application initialization and termination ... 1508
Process CoONtrol fUNCHIONScooiiiiiie e 1511
THRread fUNCHIONS ... e 1515
1 L= {1 o (o o < PR 1518
Network, user and OS fuNCLIONScooeveiiiiii 1524
SEHNG FUNCHIONS ..t e e es 1528
DiIalog FUNCHIONS ...t e e s n e e sne e e e snreeeeaan 1532
Math FUNCHIONS .. e e e 1542
GIDI FUNCHONS ..ttt sare e ene e nne e nnnees 1542
€) (=T R T= 11 1] o T S PSP U OPPPPRPPPPP 1545
Clipboard fUNCHONS ..o e e e e e e e 1548
MisCellan@ous fFUNCHIONSoiiiiiiiie e 1550
BYLE OFAEr MACIOS ...ttt e e e e s snr e e e e sanreeeeean 1558
RTTTFUNCHONS e ane e 1559
(oo R {0 0o 11 o L= PRSPPI 1565
TIME FUNCHIONS ...ttt e e e e e e e e e e e e e e e e nnnneeeaaaeean 1572
Debugg@ing macros and fUNCHONSoii it e e s e e 1574
Environment access fUNCHIONS........c.oi i 1578
{0707 0 £=3 - 111 (- 1580
Preprocesser symbols defined by WXWINAOWScueiiiiiiieiiiiiie e 1580
Standard event IdeNtifiers.........coi i 1582
(Yo7 o L= PR PRRPPRRR 1584
Classes by Category ... 1587
TOPIC OVEIVIEWS ...ceeeemnes s irssisissnmmnn s s s s ssmm s s s s s smmmn s s s e e e e n s nnmnnns 1599
Notes 0N USING the referenCecoooiiii e 1599
Writing a wxWindows application: a rough quide.........ccceeiiiiiiiiiiee e 1599
WXWindows Hello World SAmPIEcooi it 1600
WXWINAOWS SAMPIES ...t e e e e e e 1603
LA o] o T 1= V= RSP 1612
Run time class information OVEIVIEW............coociiiiieie e 1614
WXSTING OVEIVIEW ...ttt ettt ettt et et sat e e s ate e e be e e sabe e enbe e e saseesbeeesaneas 1616
Date and time ClasSeS OVEIVIEW........cocuuiiiiiiiiiiecee e 1621
Unicode support in WXWINAOWSocueeiiiiiiiiee ettt e e s nneeeeeean 1625
WXMBCONV ClASSES OVEIVIEWceiiiiiiiieeiiiiee e ettt e e eitee e et e e e ette e e e ssee e e e snee e e e enaeeeeeneeeeeennees 1628
INterN@tioN@liZAtIONovee s 1631
Writing non-English appliCationsooueiiiiiiiii e 1632

Xii

CONTENTS

COoNtAINET ClaSSES OVEIVIEW.eiiiiiiiieeiiiiieeciteeestte e e sitee e e s sae e e e ssbaeeeassseeeesansaeeeennseeeeeansees 1635
File classes and fuNCLIONS OVEIVIEWccuiiiiiiiiiiieciee e 1636
WXSTIIEAMS OVEIVIEW ..oieiiiieiiiiee e eciieee e ettt e e e ettt e e e ettt e e e este e e e sseeeeesseeeeesseeeeeeseeeeeaseeeeeannees 1636
WXLOQ ClASSES OVEIVIEWceiiiiiiii ittt ettt e e s s bt e e e sbee e e e ebre e e e ennes 1638
DEDUGQING OVEIVIEWceiiiiiie ettt e e sttt e e s rnte e e e sate e e e srneeeeesaneeeeenan 1641
WXCONTIQ ClASSES OVEIVIEWueiiiiiiiiie ettt ettt ettt e s st e et e ae e e sne e e saeeas 1643
WXEXDI OVEIVIEW ...ttt ettt ettt et e e s bt e e e e s bt e e e e e bee e e e sbee e e e enneeeeeennes 1644
WXFTIESYSTEM .. e e 1648
Event handling OVEIVIEWccoouiiiiiiiiii ettt e e nee e e e e 1649
WINAOW SEYIES .t e e s e e e st e e e e ee e e e nnbaee e e ennes 1657
WiNdOW deletion OVEIVIEWcoiiiiiiiiiiiii e 1657
WXDIAl0G OVEIVIEBW.eiiiiiiiiei ittt s e e e s e e e abe e e e e e nre e e e annes 1660
WXV AlIAOr OVEIVIEW......eeiiieiiiee ettt enne e e 1660
CONSIFAINIS OVEIVIEWeiiiiieiiie e e e s e e sneeennne s 1662
1 72= T Y= = SRS 1666
XML-based resource SYStEM OVEIVIEWcccueiiiiiiiiiieiiiee e siieee e e e sbee e e 1674
SCIOIlING OVEIVIEW ...ttt e s e e s e ene e e sneeennne s 1682
Bitmaps and iCONS OVEIVIEWciiiiiiiii ittt e e e aneeeeeaans 1683
DeViCe CONTEXT OVEIVIEWeii it 1686
WXFONT OVEIVIBW ...ttt n e s e s e e e e nneeennne s 1687
FONE €NCOAING OVEIVIEBW ...ttt e e sne e snne e e e sanreeeeaans 1688
WXSPHEErWINAOW OVEIVIEWeiiiiiiiie et 1690
WXTTEEGIT OVEIVIEW ...ttt enne e nnne s 1691
WXLISTCIIT OVEIVIEWeiiiieieie ettt ettt e e et e e e et ee e e e e nae e e e enae e e e enreeeeennees 1693
WXIMAQGELIST OVEIVIEW ...ttt et s e e e sbee e e e s e e e e ennes 1693
CommON AIAlOYS OVEIVIEWeiiiiiiiiii ettt e e e e e s e e s eabae e e e snbeee e e ennes 1693
DOCUMENT/VIEW OVEIVIEW....ccciiiieiieieeee ettt e e et e e e e e e et e e e e e e e e e eaneneeeas 1697
TOOIDAN OVEIVIEW ...ttt e e r e s e e e e e e sne e e nnne s 1703
WXGIHA ClASSES OVEIVIBWeeiiiiiiiei ettt e e s e nnn e sne e nnne s 1708
WX TIPPIOVIAEI OVEIVIEWcoiiiiiieiieeieee e e e e 1709
PrNTING OVEIVIEW ..ottt ettt e sttt e e s at e e e s ate e e e srneeeeesanreeeenan 1710
MUIItNrEeading OVEIVIEW........eiiiiiiiie ettt e et e s s e e e s sneeeeeeans 1711
Drag and drOp OVEIVIEWcoiiiuiiiieiiieie e eititee ettt ettt sttt e et e e e s anb e e e e sanre e e e sanneeeesanneeeeaan 1712
WXDataODJECE OVEIVIEWcoiiiiiiie e e e e e 1714
Database ClasSeSs OVEIVIEWuiiiii it 1715
Interprocess COMMUNICATION OVEIVIEWcccoiiuiiiiiiiiiee ettt 1735
WXHTIML OVEIVIEW ...ttt e e e esne e nnne s 1738
WXPYENON OVEIVIEW ..ottt ettt et s e e e s e e e s bee e e e ennes 1748
o o A o) (= 1758

Xiii

CONTENTS

L2 CC I I o To] ¢ SRR 1758
WXMSW PO ...ttt s e e e e ee e e e s beee e e nnes 1758
1241, E=Ted oo o TPV UPPOTPPPR 1758
L@ S 720 oo PP 1759
1241, L | o T PP 1759
120 G I I o To 1 PP UPPOTPPPR 1759
3T (= 1762

X1V

Chapter 1 Copyright notice

Copyright (c) 1992-2002 Julian Smart, Robert Roebling, Vadim Zeitlin and other
members of the wxWindows team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, Igpl.txt, gpl.txt, license.txt,
licendoc.txt) for conditions of software and documentation use.

wxWindows Library License, Version 3
Copyright (c) 1992-2002 Julian Smart, Robert Roebling, Vadim Zeitlin et al.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You should have received a copy of the GNU Library General Public License along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licensed under the
wxWindows Library License, applying either version 3 of the License, or (at your option)
any later version of the License as published by the copyright holders of version 3 of the
License document.

2. The exception is that you may create binary object code versions of any works using
this library or based on this library, and use, copy, modify, link and distribute such binary
object code files unrestricted under terms of your choice.

3. If you copy code from files distributed under the terms of the GNU General Public

License or the GNU Library General Public License into a copy of this library, as this
license permits, the exception does not apply to the code that you add in this way. To

XV

COPYRIGHT

avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

4. If you write modifications of your own for this library, it is your choice whether to
permit this exception to apply to your modifications. If you do not wish that, you must
delete the exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

XVvi

COPYRIGHT

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

XVvil

COPYRIGHT

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an

XViil

COPYRIGHT

argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

X1X

COPYRIGHT

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the

Library". Such a work, in isolation, is not a derivative work of the Library, and therefore

falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no

XX

COPYRIGHT

more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,

XX1

COPYRIGHT

link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to

XXil

COPYRIGHT

the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

XX1il

COPYRIGHT

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library "Frob' (a library for tweaking knobs) written by James Random
Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

XX1v

Chapter 2 Introduction

What is wxWindows?

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports all desktop versions of
MS Windows, Unix with GTK+, Unix with Motif, and MacOS. An OS/2 port is in progress.

wxWindows was originally developed at the Atrtificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1992.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin, Vaclav Slavik and many others.

This manual contains a class reference and topic overviews. For a selection of
wxWindows tutorials, please see the documentation page on the wxWindows web site
(http://www.wxwindows.org).

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

low price;

source availability;

simplicity of programming;

support for a wide range of compilers.

el

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As open source software, wxWindows has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWindows a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon

CHAPTER 2

the longevity of the underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming interface
than the native APls. Programmers may find it worthwhile to use wxWindows even if
they are developing on only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

e Low cost (free, in fact!)

e You get the source.

e Available on a variety of popular platforms.

e Works with almost all popular C++ compilers and Python.

e Over 50 example programs.

e Over 1000 pages of printable and on-line documentation.

e Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

e Simple-to-use, object-oriented API.

e Flexible event system.

e Graphics calls include lines, rounded rectangles, splines, polylines, etc.

e Constraint-based and sizer-based layouts.

e Print/preview and document/view architectures.

e Toolbar, notebook, tree control, advanced list control classes.

e PostScript generation under Unix, normal MS Windows printing on the PC.

e MDI (Multiple Document Interface) support.

e Can be used to create DLLs under Windows, dynamic libraries on Unix.

e Common dialogs for file browsing, printing, colour selection, etc.

e Under MS Windows, support for creating metafiles and copying them to the
clipboard.

e An API for invoking help from applications.

e Ready-to-use HTML window (supporting a subset of HTML).

e Dialog Editor for building dialogs.

e Network support via a family of socket and protocol classes.

e Support for platform independent image processing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

CHAPTER 2

wxWindows requirements

To make use of wxWindows, you currently need one of the following setups.
(a) MS-Windows:

1. A 486 or higher PC running MS Windows.

2. A Windows compiler: most are supported, but please see install.txt for
details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, MinGW, Metrowerks CodeWarrior.

3. Atleast 60 MB of disk space.

(b) Unix:

1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

2. Almost any Unix workstation, and one of: GTK+ 1.2, GTK+ 2.0, Motif 1.2 or
higher, Lesstif. If using the wxX11 port, no such widget set is required.

3. Atleast 60 MB of disk space.

(c) Mac OS/Mac OS X:

A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.
CodeWarrior 5.3, 6 or 7 for Classic Mac OS.

The Apple Developer Tools (eg. GNU C++) or CodeWarrior 7 for Mac OS X.
At least 60 MB of disk space.

el

Availability and location of wxWindows

wxWindows is available by anonymous FTP and World Wide Web from
ftp://biolpc22.york.ac.uk/pub (ftp://biolpc22.york.ac.uk/pub) and/or
http://www.wxwindows.org (http://www.wxwindows.org).

You can also buy a CD-ROM using the form on the Web site.

Acknowledgements

Thanks are due to AlAI for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,

CHAPTER 2

Alejandro Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Guillermo Rodriguez Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale,
Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer,
Markus Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Thomas Runge, Tatu Mannisto,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Hernan Otero, lan Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett Potts,
Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton,
Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith, Kari Systa, Arthur
Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, David Webster, Janos Vegh, Andrea
Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

'Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Chapter 3 Multi-platform development with
wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is "wx/wx . h"; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

// For compilers that support precompilation, includes "wx.h".
#include <wx/wxprec.h>

#ifdef _ BORLANDC_ _
#pragma hdrstop
#endif

#ifndef WX_PRECOMP

// Include your minimal set of headers here, or wx.h
#include <wx/wx.h>

#endif

. now your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h". Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of
"wx/wxprec.h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

Libraries

CHAPTER 3

Most ports of wxWindows can create either a static library or a shared library.
wxWindows can also be built in multilib and monolithic variants. See the libraries list (p.
16) for more information on these.

Configuration

When using project files and makefiles directly to build wxWindows, options are
configurable in the file "wx/xxX/setup.h" where XXX is the required platform (such
as msw, motif, gtk, mac). Some settings are a matter of taste, some help with platform-
specific problems, and others can be set to minimize the size of the library. Please see
the setup.h file and install.txt files for details on configuration.

When using the 'configure' script to configure wxWindows (on Unix and other platforms
where configure is available), the corresponding setup.h files are generated
automatically along with suitable makefiles. When using the RPM packages for installing
wxWindows on Linux, a correct setup.h is shipped in the package and this must not be
changed.

Makefiles

On Microsoft Windows, wxWindows has a different set of makefiles for each compiler,
because each compiler's 'make’ tool is slightly different. Popular Windows compilers that
we cater for, and the corresponding makefile extensions, include: Microsoft Visual C++
(.vc), Borland C++ (.bcc), OpenWatcom C++ (.wat) and MinGW/Cygwin (.gcc). Makefiles
are provided for the wxWindows library itself, samples, demos, and utilities.

On Linux, Mac and OS/2, you use the 'configure' command to generate the necessary
makefiles. You should also use this method when building with MinGW/Cygwin on
Windows.

We also provide project files for some compilers, such as Microsoft VC++. However, we
recommend using makefiles to build the wxWindows library itself, because makefiles can
be more powerful and less manual intervention is required.

On Windows using a compiler other than MinGW/Cygwin, you would build the
wxWindows library from the build/msw directory which contains the relevant makefiles.

On Windows using MinGW/Cygwin, and on Unix, MacOS X and OS/2, you invoke
‘configure' (found in the top-level of the wxWindows source hierarchy), from within a
suitable empty directory for containing makefiles, object files and libraries.

For details on using makefiles, configure, and project files, please see docs/xxx/install.txt
in your distribution, where xxx is the platform of interest, such as msw, gtk, x11, mac.

CHAPTER 3

Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

finclude "wx/msw/wx.rc"

which includes essential internal wxWindows definitions. The resource script may also
contain references to icons, cursors, etc., for example:

wxicon icon wx.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Allocating and deleting wxWindows objects

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.
If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWindows, make sure you delete the array explicitly before wxWindows has a

chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be

CHAPTER 3

shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Byte order macros (p. 1558) section.

Conditional compilation

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

CHAPTER 3

Templates

wxWindows does not use templates (except for some advanced features that are
switched off by default) since it is a notoriously unportable feature.

RTTI

wxWindows does not use C++ run-time type information since wxWindows provides its
own run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK+ port use
an explicit conversion such as

wxWindow *my_window = (wxWindow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile "wx.h", using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLs) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes "wx.h"!)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx . h. This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

CHAPTER 3

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames ifthe user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

10

Chapter 4 Utilities and libraries supplied with
wxWindows

In addition to the core wxWindows library, a number of further libraries and utilities are
supplied with each distribution.

Some are under the 'contrib’ hierarchy which mirrors the structure of the main
wxWindows hierarchy. See also the 'utils' hierarchy. The first place to look for
documentation about these tools and libraries is under the wxWindows 'docs' hierarchy,
for example docs/htmlhelp/f1l.chm.

For other user-contributed packages, please see the Contributions page on the
wxWindows Web site (http://www.wxwindows.org).

Helpview Helpview is a program for displaying wxWindows HTML Help files. In
many cases, you may wish to use the wxWindows HTML Help classes from
within your application, but this provides a handy stand-alone viewer. See
wxHTML Notes (p. 1738) for more details. You can find it in
samples/html/helpview.

Tex2RTF Supplied with wxWindows is a utility called Tex2RTF for converting LaTeX
manuals HTML, MS HTML Help, wxHTML Help, RTF, and Windows Help RTF
formats. Tex2RTF is used for the wxWindows manuals and can be used
independently by authors wishing to create on-line and printed manuals from the
same LaTeX source. Please see the separate documentation for Tex2RTF. You
can find it under utils/tex2rtf.

Helpgen Helpgen takes C++ header files and generates a Tex2RTF-compatible
documentation file for each class it finds, using comments as appropriate. This
is a good way to start a reference for a set of classes.

XRC resource system This is the sizer-aware resource system, and uses XML-
based resource specifications that can be generated by tools such as
wxDesigner (http://www.roebling.de) and XRC's own wxrcedit. You can
find this in contrib/src/xrc, contrib/include/wx/xrc,
contrib/samples/xrc, and contrib/utils/wxrcedit. For more
information, see the XML-based resource system overview (p. 1674).

Object Graphics Library OGL defines an API for applications that need to display
objects connected by lines. The objects can be moved around and interacted
with. You can find this in contrib/src/ogl, contrib/include/wx/ogl,
and contrib/samples/ogl.

11

CHAPTER 4

Frame Layout library FL provides sophisticated pane dragging and docking
facilities. You can find this in contrib/src/f1l, contrib/include/wx/fl
and contrib/samples/fl.

Gizmos library Gizmos is a collection of useful widgets and other classes. Classes
include wxLEDNumberCtrl, wxEditableListBox, wxMultiCellCanvas. You can find
this in contrib/src/fl, contrib/include/wx/f1l, and
contrib/samples/fl.

Net library Net is a collection of very simple mail and web related classes. Currently
there is only wxEmail, which makes it easy to send email messages via MAPI on
Windows or sendmail on Unix. You can find this in contrib/src/net and
contrib/include/wx/net.

Animate library Animate allows you to load animated GlIFs and play them on a
window. The library can be extended to use other animation formats. You can
find this in contrib/src/animate, contrib/include/wx/animate, and
contrib/samples/animate.

MMedia library Mmedia supports a variety of multimedia functionality. The status of
this library is currently unclear. You can find this in contrib/src/mmedia,
contrib/include/wx/mmedia, and contrib/samples/mmedia

Styled Text Control library STC is a wrapper around Scintilla, a syntax-highlighting
text editor. You can find this in contrib/src/stc,
contrib/include/wx/stc, and contrib/samples/stc

Plot Plot is a simple curve plotting library. You can find this in contrib/src/plot,
contrib/include/wx/plot, and contrib/samples/plot.

12

Chapter 5 Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
'defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different
platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

13

CHAPTER 5

Use wxWindows resource files

Use .xrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code.

Strategies for debugging

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

There is a variety of logging functions that you can use in your program: see Logging

14

CHAPTER 5

functions (p. 1565).
Using tracing statements may be more convenient than using the debugger in some

circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system
and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1574) as part of a 'defensive programming’
strategy, scattering wxASSERTSs liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1641) for further information.

15

Chapter 6 Libraries list

Starting from version 2.5.0 wxWindows can be built either as a single large library (this is
called the monolithic build) or as several smaller libraries (multilib build). Multilib build is
the default.

wxWindows library is divided into libraries briefly described below. This diagram show
dependencies between them:

WixBase

ANAA

WxCore = == == -

A NA

|
| = o WxNet
|
|

------HXDDBE

A

WxHTML p= =—

= = wxhdvanced

WXGL | = =
A

I
Il = = = = wxDbGrid = =

wxBase

Every wxWindows application must link against this library. It contains mandatory
classes that any wxWindows code depends on (e.g. wxString (p. 1234)) and portability
classes that abstract differences between platforms. wxBase can be used to develop
console mode applications, it does not require any GUI libraries or running X Window
System on Unix.

wxNet

Classes for network access:

e wxSocket classes (wxSocketClient (p. 1180), wxSocketServer (p. 1184) and
related classes)

e wxSocketOutputStream (p. 1184) and wxSocketInputStream (p. 1183)

16

CHAPTER 6

e sockets-based IPC classes (wxTCPServer (p. 1136), wxTCPClient (p. 134) and
wxTCPConnection (p. 197))

e wxURL (p. 1395)
e wxInternetFSHandler (a wxFileSystem handler (p. 1648)) Requires wxBase.
wxXML

This library contains simple classes for parsing XML documents. Note that their AP1 will
change in the future and backward compatibility will not be preserved. Use of this library
in your applications is not recommended, it is only meant for use by XML resources
system. Future versions of wxWindows will contain new XML handling classes with
DOM:-like API. Requires wxBase.

wxCore

Basic GUI classes such as GDI classes or controls are in this library. All wxWindows
GUI applications must link against this library, only console mode applications don't.

wxAdvanced
More advanced or rarely used GUI classes:

wxBufferedDC
wxCalendarCtrl (p. 111)
wxDraglmage (p. 434)
wxGrid classes (p. 1708)
wxdJoystick (p. 794)
wxLayoutAlgorithm (p. 809)
wxSplashScreen (p. 1195)
wxTaskBarlcon (p. 1276)
wxTipDialog

wxWave (p. 1426)
wxWizard (p. 1479)
wxSashLayoutWindow (p. 1100)
wxSashWindow (p. 1103)

Requires wxCore and wxBase.
wxGL

This library contains wxGLCanvas (p. 592) class for integrating OpenGL library with
wxWindows. Unlike all others, this library is not part of the monolithic library, it is always
built as separate library. Requires wxCore and wxBase.

wxHTML

17

CHAPTER 6

Simple HTML renderer and other HTML rendering classes (p. 1738) are contained in this
library, as well as wxHtmIHelpController (p. 698), wxBestHelpController (p. 669) and
wxHtmIListBox (p. 709). Requires wxCore and wxBase.

wxODBC
Database classes (p. 1715). Requires wxBase.
wxDbGrid

wxDbGridTableBase (p. 349) class which combines wxGrid (p. 595) and wxDbTable (p.
311). Requires wxODBC and wxAdvanced.

18

Chapter 7 Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 20).

Derived from
None
Include files
<wx/accel.h>
See also

wxAcceleratorTable (p. 20), wxWindow::SetAcceleratorTable (p. 1460)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry()

Default constructor.

wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1584) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorEntry::GetCommand

CHAPTER 7

int GetCommand() const

Returns the command identifier for the accelerator table entry.

wxAcceleratorEntry::GetFlags

int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cma)

Sets the accelerator entry parameters.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1584) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

20

CHAPTER 7

Derived from
wxObject (p. 982)
Include files
<wx/accel.h>

Example

wxAcceleratorEntry entries([4];

entries[0].Set (wxACCEL_CTRL, (int) 'N', ID_NEW_WINDOW) ;
entries[1l].Set (wxACCEL_CTRL, (int) 'X', wxID_EXIT) ;
entries[2].Set (wxACCEL_SHIFT, (int) 'A', ID_ABOUT) ;
entries[3].Set (wxACCEL_NORMAL, WXK_DELETE, wxID_CUT) ;

wxAcceleratorTable accel (4, entries);
frame—->SetAcceleratorTable (accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK+ at present).

See also

wxAcceleratorEntry (p. 19), wxWindow::SetAcceleratorTable (p. 1460)

wxAcceleratorTable::wxAcceleratorTable

wxAcceleratorTable()

Default constructor.

wxAcceleratorTable(const wxAcceleratorTable& bitmap)

Copy constructor.

wxAcceleratorTable(int n, wxAcceleratorEntry entries/))

Creates from an array of wxAcceleratorEntry (p. 19) objects.
wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

Parameters

21

CHAPTER 7

Number of accelerator entries.

entries
The array of entries.

resource
Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry

objects or references to 3-element arrays (flags, keyCode, cmd), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns true if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel
Accelerator table to assign.

Return value

Returns reference to this object.

22

CHAPTER 7

wxAcceleratorTable::operator ==

bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel
Accelerator table to compare with

Return value

Returns true if the accelerator tables were effectively equal, false otherwise.

wxAcceleratorTable::operator !=

bool operator !=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel
Accelerator table to compare with

Return value

Returns true if the accelerator tables were unequal, false otherwise.

wxAccessible

The wxAccessible class allows wxWindows applications, and wxWindows itself, to return
extended information about user interface elements to client applications such as screen
readers. This is the main way in which wxWindows implements accessibility features.

At present, only Microsoft Active Accessibility is supported by this class.

To use this class, derive from wxAccessible, implement appropriate functions, and
associate an object of the class with a window using wxWindow::SetAccessible (p.
1460).

All functions return an indication of success, failure, or not implemented using values of
the wxAccStatus enum type.

23

CHAPTER 7

If you return wxACC_NOT_IMPLEMENTED from any functioon, the system will try to
implement the appropriate functionality. However this will not work with all functions.

Most functions work with an object id, which can be zero to refer to 'this' Ul element, or
greater than zero to refer to the nth child element. This allows you to specify elements
that don't have a corresponding wxWindow or wxAccessible; for example, the sash of a
splitter window.

For details on the semantics of functions and types, please refer to the Microsoft Active
Accessibility 1.2 documentation.

This class is compiled into wxWindows only if the wxUSE_ACCESSIBILITY setup
symbol is set to 1.

Derived from
wxObject (p. 982)
Include files
<wx/access.h>
Data structures

Functions return a wxAccStatus error code, which may be one of the following:

typedef enum

wxACC_FATIL, // The function failed

wxACC_FALSE, // The function returned false

wxACC_OK, // The function completed successfully

wxACC_NOT_IMPLEMENTED, // The function is not implemented

wxACC_NOT_SUPPORTED // The function is not supported
wxAccStatus

Directions of navigation are represented by the following:

typedef enum

wxNAVDIR_DOWN,
wxNAVDIR_FIRSTCHILD,
wxNAVDIR_LASTCHILD,
wxNAVDIR_LEFT,
wxNAVDIR_NEXT,
wxNAVDIR_PREVIOUS,
wxNAVDIR_RIGHT,
wxNAVDIR_UP
wxNavDir

24

CHAPTER 7

The role of a user interface element is represented by the following type:

typedef enum
wxROLE_NONE,
wxROLE_SYSTEM_ALERT,
wxROLE_SYSTEM_ANIMATION,
wxROLE_SYSTEM_APPLICATION,
wxROLE_SYSTEM_BORDER,
wxROLE_SYSTEM_BUTTONDROPDOWN,
wxROLE_SYSTEM_BUTTONDROPDOWNGRID,
wxROLE_SYSTEM_BUTTONMENU,
wxROLE_SYSTEM_CARET,
wxROLE_SYSTEM_CELL,
wxROLE_SYSTEM_CHARACTER,
wxROLE_SYSTEM_CHART,
wxROLE_SYSTEM_ CHECKBUTTON,
wxROLE_SYSTEM_CLIENT,
wxROLE_SYSTEM_CLOCK,
wxROLE_SYSTEM_COLUMN,
wxROLE_SYSTEM_COLUMNHEADER,
wxROLE_SYSTEM_COMBOBOX,
wxROLE_SYSTEM_CURSOR,
wxROLE_SYSTEM_DIAGRAM,
wxROLE_SYSTEM_DIAL,
wxROLE_SYSTEM_DIALOG,
wxROLE_SYSTEM_DOCUMENT,
wxROLE_SYSTEM_DROPLIST,
wxROLE_SYSTEM_EQUATION,
wxROLE_SYSTEM_GRAPHIC,
wxROLE_SYSTEM_GRIP,
wxROLE_SYSTEM_GROUPING,
wxROLE_SYSTEM_HELPBALLOON,
wxROLE_SYSTEM_HOTKEYFIELD,
wxROLE_SYSTEM_INDICATOR,
wxROLE_SYSTEM_LINK,
wxROLE_SYSTEM_LIST,
wxROLE_SYSTEM_LISTITEM,
wxROLE_SYSTEM_MENUBAR,
wxROLE_SYSTEM_MENUITEM,
wxROLE_SYSTEM_MENUPOPUP,
wxROLE_SYSTEM_OUTLINE,
wxROLE_SYSTEM_OUTLINEITEM,
wxROLE_SYSTEM_PAGETAB,
wxROLE_SYSTEM_PAGETABLIST,
wxROLE_SYSTEM_PANE,
wxROLE_SYSTEM_ PROGRESSBAR,
wxROLE_SYSTEM_PROPERTYPAGE,
wxROLE_SYSTEM_PUSHBUTTON,
wxROLE_SYSTEM_RADIOBUTTON,
wxROLE_SYSTEM_ROW,
wxROLE_SYSTEM_ROWHEADER,
wxROLE_SYSTEM_SCROLLBAR,
wxROLE_SYSTEM_SEPARATOR,
wxROLE_SYSTEM_SLIDER,
wxROLE_SYSTEM_SOUND,
wxROLE_SYSTEM_SPINBUTTON,
wxROLE_SYSTEM_STATICTEXT,
wxROLE_SYSTEM_STATUSBAR,
wxROLE_SYSTEM_TABLE,
wxROLE_SYSTEM_TEXT,

25

CHAPTER 7

wxROLE_SYSTEM_TITLEBAR,
wxROLE_SYSTEM_TOOLBAR,
wxROLE_SYSTEM_TOOLTIP,
wxROLE_SYSTEM_WHITESPACE,

wWXROLE_SYSTEM_WINDOW
wxAccRole

Objects are represented by the following type:

typedef enum
wxOBJID_WINDOW =
wxOBJID_SYSMENU =
wxOBJID_TITLEBAR =
wxOBJID_MENU =
wxOBJID_CLIENT =
wxOBJID_VSCROLL =
wxOBJID_HSCROLL =
wxOBJID_SIZEGRIP =
wxOBJID_CARET =
wxOBJID_CURSOR =
wxOBJID_ALERT
wxOBJID__SOUND

wxAccObject

Selection actions are identified by this type:

typedef enum

wxACC_SEL_NONE
wxACC_SEL_TAKEFOCUS
wxACC_SEL_TAKESELECT

wxACC_SEL_EXTENDSELECTION
wxACC_SEL_ADDSELECTION =
wxACC_SEL_REMOVESELECTION =

wxAccSelectionFlags

0x00000000,
OxFFFFFFFF,
OXFFFFFFFE,
OxXFFFFFFFED,
OxFFFFFFFC,
OXFFFFFFFB,
OxXFFFFFFFA,
OxFFFFFFF9,
OxXFFFFFFFS,
OxXFFFFFFFET,
OxFFFFFFF6,
OXFFFFFFFS

Il
=N O

ION

oY N N N~

States are represented by the following:

define wxACC_STATE_SYSTEM ALERT_HIGH
define wxACC_STATE_SYSTEM ALERT_MEDIUM

define wxACC_STATE_SYSTEM ALERT_LOW
define wxACC_STATE_SYSTEM ANIMATED
define wxACC_STATE_SYSTEM_ BUSY
define wxACC_STATE_SYSTEM_ CHECKED
define wxACC_STATE_SYSTEM_ COLLAPSED
define wxACC_STATE_SYSTEM DEFAULT
define wxACC_STATE_SYSTEM_ EXPANDED

define wxACC_STATE_SYSTEM EXTSELECTABLE

define wxACC_STATE_SYSTEM_ FLOATING
define wxACC_STATE_SYSTEM_ FOCUSABLE
define wxACC_STATE_SYSTEM_ FOCUSED

define wxACC_STATE_SYSTEM HOTTRACKED

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000

26

CHAPTER 7

define
define
define
define
define
define
define
define
define
define
define
define

wxXACC_STATE_SYSTEM_INVISIBLE
wxACC_STATE_SYSTEM MARQUEED
wxACC_STATE_SYSTEM MIXED
wxXACC_STATE_SYSTEM_MULTISELECTABLE
wxACC_STATE_SYSTEM_ OFFSCREEN
wxACC_STATE_SYSTEM_PRESSED
wxXACC_STATE_SYSTEM_PROTECTED
wxACC_STATE_SYSTEM_READONLY
wxACC_STATE_SYSTEM_ SELECTABLE
wxXACC_STATE_SYSTEM_SELECTED
wxACC_STATE_SYSTEM_SELFVOICING
wxACC_STATE_SYSTEM_ UNAVAILABLE

0x00004000
0x00008000
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x00800000
0x01000000
0x02000000

Event identifiers that can be sent via wxAccessible::NotifyEvent (p. 31) are as follows:

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

wxACC_EVENT_SYSTEM_SOUND
wxACC_EVENT_SYSTEM_ ALERT
wxXACC_EVENT_SYSTEM_FOREGROUND
wxACC_EVENT_SYSTEM MENUSTART
wxACC_EVENT_SYSTEM MENUEND
wxACC_EVENT_SYSTEM_MENUPOPUPSTART
wxACC_EVENT_SYSTEM MENUPOPUPEND
wxACC_EVENT_SYSTEM_ CAPTURESTART
wxACC_EVENT_SYSTEM_CAPTUREEND
wxACC_EVENT_SYSTEM MOVESIZESTART
wxACC_EVENT_SYSTEM MOVESIZEEND
wxXACC_EVENT_SYSTEM_CONTEXTHELPSTART
wxACC_EVENT_SYSTEM_ CONTEXTHELPEND
wxACC_EVENT_SYSTEM_ DRAGDROPSTART
wxXACC_EVENT_SYSTEM_DRAGDROPEND
wxACC_EVENT_SYSTEM DIALOGSTART
wxACC_EVENT_SYSTEM DIALOGEND
wxXACC_EVENT_SYSTEM_SCROLLINGSTART
wxACC_EVENT_SYSTEM_SCROLLINGEND
wxACC_EVENT_SYSTEM SWITCHSTART
wxXACC_EVENT_SYSTEM_SWITCHEND
wxACC_EVENT_SYSTEM MINIMIZESTART
wxACC_EVENT_SYSTEM MINIMIZEEND
wxACC_EVENT_OBJECT_CREATE
wxACC_EVENT_OBJECT_DESTROY
wxACC_EVENT_OBJECT_SHOW
wxACC_EVENT_OBJECT_HIDE
wxACC_EVENT_OBJECT_REORDER
wxACC_EVENT_OBJECT_FOCUS
wxXACC_EVENT_OBJECT_SELECTION
wxACC_EVENT_OBJECT_SELECTIONADD
wxACC_EVENT_OBJECT_SELECTIONREMOVE
wxXACC_EVENT_OBJECT_SELECTIONWITHIN
wxACC_EVENT_OBJECT_STATECHANGE
wxACC_EVENT_OBJECT_LOCATIONCHANGE
wxACC_EVENT_OBJECT_NAMECHANGE
wxACC_EVENT_OBJECT_DESCRIPTIONCHANGE
wxACC_EVENT_OBJECT_VALUECHANGE
wxACC_EVENT_OBJECT_PARENTCHANGE
wxACC_EVENT_OBJECT_HELPCHANGE
wxACC_EVENT_OBJECT_DEFACTIONCHANGE
wxACC_EVENT_OBJECT_ACCELERATORCHANGE

0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008
0x0009
0x000A
0x000B
0x000C
0x000D
0x000E
0x000F
0x0010
0x0011
0x0012
0x0013
0x0014
0x0015
0x0016
0x0017
0x8000
0x8001
0x8002
0x8003
0x8004
0x8005
0x8006
0x8007
0x8008
0x8009
0x800A
0x800B
0x800C
0x800D
0x800E
0x800F
0x8010
0x8011
0x8012

27

CHAPTER 7

wxAccessible::wxAccessible

wxAccessible(wxWindow* win = NULL)

Constructor, taking an optional window. The object can be associated with a window
later.

wxAccessible::~wxAccessible

~wxAccessible()

Destructor.

wxAccessible::DoDefaultAction

virtual wxAccStatus DoDefaultAction(int childld)
Performs the default action for the object. childid is 0 (the action for this object) or

greater than 0 (the action for a child). Return wxACC_NOT_SUPPORTED if there is no
default action for this window (e.g. an edit control).

wxAccessible::GetChild

virtual wxAccStatus GetChild(int childld, wxAccessible** child)

Gets the specified child (starting from 1). If child is NULL and the return value is
wxACC_OK, this means that the child is a simple element and not an accessible object.

wxAccessible::GetChildCount

virtual wxAccStatus GetChildCount(int* childCount)

Returns the number of children in childCount.

wxAccessible::GetDefaultAction

virtual wxAccStatus GetDefaultAction(int childld, wxString* actionName)

Gets the default action for this object (0) or a child (greater than 0). Return wxACC_OK
even if there is no action. actionName is the action, or the empty string if there is no
action. The retrieved string describes the action that is performed on an object, not what

28

CHAPTER 7

the object does as a result. For example, a toolbar button that prints a document has a
default action of "Press" rather than "Prints the current document.”

wxAccessible::GetDescription

virtual wxAccStatus GetDescription(int childld, wxString* description)

Returns the description for this object or a child.

wxAccessible::GetFocus

virtual wxAccStatus GetFocus(int* childld, wxAccessible** child)

Gets the window with the keyboard focus. If childld is 0 and child is NULL, no object in
this subhierarchy has the focus. If this object has the focus, child should be 'this'.

wxAccessible::GetHelpText

virtual wxAccStatus GetHelpText(int childld, wxString* helpText)

Returns help text for this object or a child, similar to tooltip text.

wxAccessible::GetKeyboardShortcut

virtual wxAccStatus GetKeyboardShortcut(int childld, wxString* shortcut)

Returns the keyboard shortcut for this object or child. Return e.g. ALT+K.

wxAccessible::GetLocation

virtual wxAccStatus GetLocation(wxRect& rect, int elementld)

Returns the rectangle for this object (id is 0) or a child element (id is greater than 0).rect
is in screen coordinates.

wxAccessible::GetName

virtual wxAccStatus GetName(int childld, wxString* name)

Gets the name of the specified object.

wxAccessible::GetParent

29

CHAPTER 7

virtual wxAccStatus GetParent(wxAccessible** parent)

Returns the parent of this object, or NULL.

wxAccessible::GetRole

virtual wxAccStatus GetRole(int childld, wxAccRole* role)

Returns a role constant describing this object. See wxAccessible (p. 23) for a list of
these roles.

wxAccessible::GetSelections

virtual wxAccStatus GetSelections(wxVariant* selections)
Gets a variant representing the selected children of this object.
Acceptable values are:

. a null variant (IsNull() returns TRUE)

e alistvariant (GetType() == wxT("list"))

e aninteger representing the selected child element, or 0 if this object is selected
(GetType() == wxT("long"))

e a"void*" pointer to a wxAccessible child object

wxAccessible::GetState

virtual wxAccStatus GetState(int childld, long* state)

Returns a state constant. See wxAccessible (p. 23) for a list of these states.

wxAccessible::GetValue

virtual wxAccStatus GetValue(int childld, wxString* strValue)

Returns a localized string representing the value for the object or child.

wxAccessible::GetWindow

wxWindow* GetWindow()

30

CHAPTER 7

Returns the window associated with this object.

wxAccessible::HitTest

virtual wxAccStatus HitTest(const wxPoint& pt, int* childld, wxAccessible**
childObject)

Returns a status value and object id to indicate whether the given point was on this or a
child object. Can return either a child object, or an integer representing the child
element, starting from 1.

ptis in screen coordinates.

wxAccessible::Navigate

virtual wxAccStatus Navigate(wxNavDir navDir, int fromld, int* told, wxAccessible**
toObject)

Navigates from fromld to told/toObject.

wxAccessible::NotifyEvent

virtual static void NotifyEvent(int eventType, wxWindow* window, wxAccObjectt
objectType, int objectType)

Allows the application to send an event when something changes in an accessible
object.

wxAccessible::Select

virtual wxAccStatus Select(int childld, wxAccSelectionFlags selectFlags)

Selects the object or child. See wxAccessible (p. 23) for a list of the selection actions.

wxAccessible::SetWindow

void SetWindow(wxWindow* window)

Sets the window associated with this object.

wxActivateEvent

31

CHAPTER 7

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 453)
wxObject (p. 982)

Include files
<wx/event.h>
Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.
Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows
only)

See also

Event handling overview (p. 1649)

wxActivateEvent::wxActivateEvent

wxActivateEvent(WXTYPE eventType = 0, bool active = true, int id = 0)

Constructor.

wxActivateEvent::m_active

bool m_active

true if the window or application was activated.

32

CHAPTER 7

wxActivateEvent::GetActive

bool GetActive() const

Returns true if the application or window is being activated, false otherwise.

wWXApp

The wxApp class represents the application itself. It is used to:

set and get application-wide properties;

implement the windowing system message or event loop;

initiate application processing via wxApp::Onlnit (p. 39);

allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 457)
wxObject (p. 982)

Include files
<wx/app.h>
See also

wxApp overview (p. 1612)

WXApp::wxApp

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

33

CHAPTER 7

wxApp::~WxApp

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

wxApp::argc

int argc

Number of command line arguments (after environment-specific processing).

wxApp::argv

char ** argv

Command line arguments (after environment-specific processing).

wxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 867)

wxApp::Dispatch

void Dispatch()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

while (app.Pending())
Dispatch();

See also

wxApp::Pending (p. 41)

34

CHAPTER 7

wxApp::FilterEvent

int FilterEvent(wxEvent& event)

This function is called before processing any event and allows the application to preempt
the processing of some events. If this method returns -1 the event is processed
normally, otherwise either t rue or false should be returned and the event processing
stops immediately considering that the event had been already processed (for the former
return value) or that it is not going to be processed at all (for the latter one).

wxApp::GetAppName

wxString GetAppName() const

Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::Oninit (p. 39), but the

application can reset it at will.

wxApp::GetAuto3D

bool GetAuto3D() const
Returns true if 3D control mode is on, false otherwise.
See also

wxApp::SetAuto3D (p. 41)

wxApp::GetClassName

wxString GetClassName() const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 42)

wxApp::GetExitOnFrameDelete

bool GetExitOnFrameDelete() const

35

CHAPTER 7

Returns true if the application will exit when the top-level window is deleted, false
otherwise.

See also
wxApp::SetExitOnFrameDelete (p. 42),

wxApp shutdown overview (p. 1614)

wxApp::GetTopWindow

virtual wxWindow * GetTopWindow() const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 42), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 42)

wxApp::GetUseBestVisual

bool GetUseBestVisual() const

Returns true if the application will use the best visual on systems that support different
visuals, false otherwise.

See also

SetUseBestVisual (p. 43)

wxApp::GetVendorName

wxString GetVendorName() const

Returns the application's vendor name.

wxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the

36

CHAPTER 7

main loop (and the application) by deleting the top window.

wxApp::Initialized

bool Initialized()

Returns true if the application has been initialized (i.e. if wxApp::Onlinit (p. 39) has
returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).

wxApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

wxApp::OnAssert

void OnAssert(const wxChar “file, int line, const wxChar “cond, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
WXASSERT (p. 1575) macro evaluated to false. Itis only called in debug mode (when
__WXDEBUG___is defined) as asserts are not left in the release code at all.

The base class version show the default assert failure dialog box proposing to the user
to stop the program, continue or ignore all subsequent asserts.

Parameters

file
the name of the source file where the assert occured

line
the line number in this file where the assert occured

cond
the condition of the failed assert in string form

msg
the message specified as argument to wxASSERT_MSG (p. 1576) or
WxFAIL_MSG (p. 1577), will be NULL if just wxASSERT (p. 1575) or wxFAIL (p.

37

CHAPTER 7

1576) was used

wxApp::OnExit

int OnEXxit()
Provide this member function for any processing which needs to be done as the

application is about to exit. OnExit is called after destroying all application windows and
controls, but before wxWindows cleanup.

wxApp::OnCmdLineError

bool OnCmdLineError(wxCmdLineParser& parser)

Called when command line parsing fails (i.e. an incorrect command line option was
specified by the user). The default behaviour is to show the program usage text and
abort the program.

Return t rue to continue normal execution or false to return false from Onlnit (p. 39)
thus terminating the program.

See also

OnlinitCmdLine (p. 39)

wxApp::OnCmdLineHelp

bool OnCmdLineHelp(wxCmdLineParser& parser)

Called when the help option (--help) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return t rue to continue normal execution or false to return false from Onlnit (p. 39)
thus terminating the program.

See also

OnlinitCmdLine (p. 39)

wxApp::OnCmdLineParsed

bool OnCmdLineParsed(wxCmdLineParser& parser)

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

38

CHAPTER 7

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return t rue to continue normal execution or false to return false from Onlnit (p. 39)
thus terminating the program.

See also

OnlinitCmdLine (p. 39)

wxApp::OnFatalException

void OnFatalException()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1509) to enable this.
Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExcetions (p. 1509)

wxApp::Onlnit

bool Onlinit()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 42).

Notice that if you want to to use the command line processing provided by wxWindows
you have to call the base class version in the derived class Onlnit().

Return true to continue processing, false to exit the application.

wxApp::OnlnitCmdLine

void OniInitCmdLine(wxCmdLineParser& parser)

Called from OnlInit (p. 39) and may be used to initialize the parser with the command line
options for this application. The base class versions adds support for a few standard
options only.

39

CHAPTER 7

wxApp::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& eveni)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 143) returns true, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 144). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the
save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 144). If this is true, destroy the window using
wxWindow::Destroy (p. 1436). If not, it is up to you whether you respond by destroying
the window.

The default handler calls wxWindow::Close (p. 1434) on the top-level window, and
vetoes the shutdown if Close returns false. This will be sufficient for many applications.

Remarks
Under X, OnQueryEndSession is called in response to the 'save session' event.

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

See also

wxWindow::Close (p. 1434), wxCloseEvent (p. 142)
wxApp::ProcessMessage

bool ProcessMessage(WXMSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
true if the message was processed, false otherwise. If you use wxWindows with another
class library with its own message loop, you should make sure that this function is called
to allow wxWindows to receive messages. For example, to allow co-existence with the
Microsoft Foundation Classes, override the PreTranslateMessage function:

// Provide wxWindows message loop compatibility
BOOL CTheApp: :PreTranslateMessage (MSG *msqg)
{
if (wxTheApp && wxTheApp->ProcessMessage ((WXMSW *)msqg))
return true;
else

40

CHAPTER 7

return CWinApp::PreTranslateMessage (msqg) ;

wxApp::Pending

bool Pending()
Returns true if unprocessed events are in the window system event queue.
See also

wxApp::Dispatch (p. 34)

wxApp::SendldleEvents

bool SendidleEvents()

Sends idle events to all top-level windows.
bool SendldleEvents(wxWindow* win)
Sends idle events to a window and its children.
Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If true is returned, more Onldle processing is requested by one or more window.

See also

wxldleEvent (p. 753)

wxApp::SetAppName

void SetAppName(const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWindows.

See also

wxApp::GetAppName (p. 35)

wxApp::SetAuto3D

void SetAuto3D(const bool auto3D)

41

CHAPTER 7

Switches automatic 3D controls on or off.

Parameters

auto3D
If true, all controls will be created with 3D appearances unless overridden for a
control or dialog. The default is true

Remarks

This has an effect on Windows only.

See also

wxApp::GetAuto3D (p. 35)

wxApp::SetClassName

void SetClassName(const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

wxApp::GetClassName (p. 35)

wxApp::SetExitOnFrameDelete

void SetExitOnFrameDelete(bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag
If true (the default), the application will exit when the top-level frame is deleted. If
false, the application will continue to run.

See also

wxApp::GetExitOnFrameDelete (p. 35),

wxApp shutdown overview (p. 1614)

wxApp::SetTopWindow

42

CHAPTER 7

void SetTopWindow(wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::Onlinit (p. 39) to let
wxWindows know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

window
The new top window.

See also

wxApp::GetTopWindow (p. 36), wxApp::Onlnit (p. 39)

wxApp::SetVendorName

void SetVendorName(const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWindows.

See also

wxApp::GetVendorName (p. 36)

wxApp::SetUseBestVisual

void SetUseBestVisual(bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain applications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters

flag
If true, the app will use the best visual.

43

CHAPTER 7

wxApp::Yield

bool Yield(bool onlylfNeeded = false)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and on systems with
cooperative multitasking, such as Windows 3.1 other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.
1510) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 872).

Calling Yield() recursively is normally an error and an assert failure is raised in debug
build if such situation is detected. However if the the onlylfNeeded parameter is true,
the method will just silently return false instead.

wxArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1641) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 814)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 47) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

44

CHAPTER 7

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros

WX _DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, itis Index() (p. 53) function execution time is
O(log(N)) instead ofO(N) for the usual arrays but the Add() (p. 52) method is slower: it is
O(log(N)) instead of constant time (neglecting time spent in memory allocation routine).
However, in a usual situation elements are added to an array much less often than
searched inside it, so wxSortedArray may lead to huge performance improvements
compared to wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can
be only used for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxODbjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY () macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
'forward') declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#include <wx/dynarray.h>

// we must forward declare the array because it is used inside the class
// declaration

class MyDirectory;

class MyFile;

45

CHAPTER 7

// this defines two new types: ArrayOfDirectories and ArrayOfFiles which
can be

// now used as shown below

WX_DECLARE_OBJARRAY (MyDirectory, ArrayOfDirectories);
WX_DECLARE_OBJARRAY (MyFile, ArrayOfFiles);

class MyDirectory

{

ArrayOfDirectories m_subdirectories; // all subdirectories
ArrayOfFiles m_files; // all files in this directory

}i

// now that we have MyDirectory declaration in scope we may finish the
// definition of ArrayOfDirectories —-- note that this expands into some
C++

// code and so should only be compiled once (i.e., don't put this in the
// header, but into a source file or you will get linking errors)
#include <wx/arrimpl.cpp> // this is a magic incantation which must be
done!

WX_DEFINE_OBJARRAY (ArrayOfDirectories);

// that's all!

It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayOfDirectories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WX_DEFINE_ARRAY (MyDirectory *, ArrayOfDirectories);
WX_DEFINE_SORTED_ARRAY (MyFile *, ArrayOfFiles);

See also:
Container classes overview (p. 1635), wxList (p. 814)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxODbjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX _DEFINE_SORTED_ ARRAY and

46

CHAPTER 7

WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX _DEFINE _ARRAY (p. 48)

WX _DEFINE_EXPORTED ARRAY (p. 48)

WX _DEFINE _USER_EXPORTED_ARRAY (p. 48)

WX _DEFINE_SORTED_ARRAY (p. 49)

WX _DEFINE _SORTED_EXPORTED ARRAY (p. 49)
WX _DEFINE_SORTED_USER_EXPORTED_ARRAY (p. 49)
WX _DECLARE _EXPORTED OBJARRAY (p. 49)

WX _DECLARE USER EXPORTED_OBJARRAY (p. 49)
WX_DEFINE_OBJARRAY (p. 50)

WX _DEFINE_EXPORTED OBJARRAY (p. 50)

WX _DEFINE USER_EXPORTED OBJARRAY (p. 50)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObijArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray

anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 51)

wxArray copy constructors and assignment operators (p. 51)
~wxArray (p. 52)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 56) function is provided to deallocate the
extra memory. The Alloc() (p. 52) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 52)
Shrink (p. 56)

Number of elements and simple item access

47

CHAPTER 7

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 54) method.

Count (p. 53)
GetCount (p. 53)
IsEmpty (p. 54)
Item (p. 54)
Last (p. 54)

Adding items

Add (p. 52)

Insert (p. 54)

SetCount (p. 55)
WX_APPEND_ARRAY (p. 50)

Removing items

WX _CLEAR _ARRAY (p. 51)
Empty (p. 53)

Clear (p. 53)

RemoveAt (p. 55)

Remove (p. 55)

Searching and sorting

Index (p. 53)
Sort (p. 56)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY(T, name)

WX_DEFINE_EXPORTED_ARRAY(T, name)

WX _DEFINE_USER_EXPORTED_ARRAY(T, name, exportspec)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling wxWindows as a DLL under Windows and

array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

48

CHAPTER 7

Example:

WX_DEFINE_ARRAY (int, wxArrayInt);

class MyClass;
WX_DEFINE_ARRAY (MyClass *, wxArrayOfMyClass);

Note that wxWindows predefines the following standard array classes: wxArrayInt,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

WX_DEFINE_SORTED_ARRAY(T, name)
WX_DEFINE_SORTED_EXPORTED_ARRAY(T, name)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY(T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for
exporting an array from a user DLL.

Example:

WX_DEFINE_SORTED_ARRAY (int, wxSortedArrayInt);

class MyClass;
WX_DEFINE_SORTED_ARRAY (MyClass *, wxArrayOfMyClass);

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int ComparelInts(int nl, int n2)

{

return nl - n2;

}
wxSortedArrayInt sorted(ComparelInts);
int CompareMyClassObjects (MyClass *iteml, MyClass *item2)

{
// sort the items by their address...

return Stricmp (iteml->GetAddress (), item2->GetAddress());
}

wxArrayOfMyClass another (CompareMyClassObjects) ;

WX_DECLARE_OBJARRAY

WX_DECLARE_OBJARRAY(T, name)

WX_DECLARE_EXPORTED_OBJARRAY(T, name)

49

CHAPTER 7

WX_DECLARE_USER_EXPORTED_OBJARRAY(T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for
exporting an array from a user DLL.

Example:

class MyClass;
WX_DECLARE_OBJARRAY (MyClass, wxArrayOfMyClass); // note: not "MyClass

* 1|

You must use WX_DEFINE_OBJARRAY/() (p. 50) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

WX_DEFINE_OBJARRAY (name)
WX_DEFINE_EXPORTED_OBJARRAY (name)
WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p. 49) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called. The latter two forms are merely aliases of the first to satisfy some
people's sense of symmetry when using the exported declarations.

Example of usage:

// first declare the class!
class MyClass

{
public:
MyClass (const MyClassé&);

virtual ~MyClass();
bi

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY (wxArrayOfMyClass) ;

WX_APPEND_ARRAY

50

CHAPTER 7

void WX_APPEND_ARRAY(wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY(wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call

Empty().

Default constructors

wxArray()

wxObjArray()

Default constructor initializes an empty array object.

wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or

positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

wxArray(const wxArray& array)

wxSortedArray(const wxSortedArray& array)

wxObjArray(const wxObjArray& array)

wxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxObjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer

type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

51

CHAPTER 7

wxArray::~wxArray

~WxArray()

~wxSortedArray()

~wxObjArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by

wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 51) macro
for this.

wxArray::Add

void Add(T item, size_t copies = 1)
void Add(T *item)
void Add(T &item, size_t copies = 1)

Appends the given number of copies of the item to the array consisting of the elements
of type T.

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements. Also note that you cannot append more than one pointer as reusing it would
lead to deleting it twice (or more) and hence to a crash.

You may also use WX_APPEND_ARRAY (p. 50) macro to append all elements of one

array to another one but it is more efficient to use copies parameter and modify the
elements in place later if you plan to append a lot of items.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

52

CHAPTER 7

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 53) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count() const

Same as GetCount() (p. 53). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach

T * Detach(size_t index)

Removes the element from the array, but, unlike, Remove() (p. 55) doesn't delete it. The
function returns the pointer to the removed element.

wxArray::Empty

void Empty()
Empties the array. For wxObjArray classes, this destroys all of the array elements. For

wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 53) for this.

wxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index

int Index(T& item, bool searchFromEnd = false)
int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending

53

CHAPTER 7

on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

void Insert(T item, size_t n, size_t copies = 1)

void Insert(T *item, size_t n)

void Insert(T &ifem, size_t n, size_t copies = 1)

Insert the given number of copies of the item into the array before the existing item n -
thus, Insert(something, Ou) will insert an item in such way that it will become the first
array element.

Please see Add() (p. 52) for explanation of the differences between the overloaded

versions of this function.

wxArray::IsEmpty

bool IsEmpty() const

Returns true if the array is empty, false otherwise.

wxArray::ltem

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Last

T& Last() const

54

CHAPTER 7

Returns the last element in the array, i.e. is the same as ltem(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

Remove(T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()
(p. 53) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item = arrayl[n];

delete item;
array.Remove (n)

See also WX_CLEAR_ARRAY (p. 51) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::RemoveAt

RemoveAt(size_t index, size_t count = 1)

Removes count elements starting at index from the array. When an element is removed
from wxObijArray it is deleted by the array - use Detach() (p. 53) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete it manually if required:

T *item = arrayl[n];

delete item;
array.RemoveAt (n)

See also WX_CLEAR_ARRAY (p. 51) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::SetCount

void SetCount(size_t count, T defval = T(0))

This function ensures that the number of array elements is at least count. If the array has
already count or mroe items, nothing is done. Otherwise, count - GetCount ()

55

CHAPTER 7

elements are added and initialized to the value defval.

See also

GetCount (p. 53)

wxArray::Shrink

void Shrink()

Frees all memory unused by the array. If the program knows that no new items will be
added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

wxArray::Sort

void Sort(CMPFUNC<T> comparefFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wxArrayString

wxArrayString is an efficient container for storing wxString (p. 1234) objects. It has the
same features as all wxArray (p. 44) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 44), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after

56

CHAPTER 7

this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by ltem (p. 60), Last (p. 60) or operator|] (p. 58) are not
constant, so the array elements may be modified in place like this

array.Last () .MakeUpper () ;

There is also a variant of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 59) function
(instead of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basically, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 44) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/arrstr.h>

See also

wxArray (p. 44), wxString (p. 1234), wxString overview (p. 1616)

wxArrayString::wxArrayString

wxArrayString()

wxArrayString(const wxArrayString& array)

Default and copy constructors.

Note that when an array is assigned to a sorted array, its contents is automatically

sorted during construction.

wxArrayString::~wxArrayString

57

CHAPTER 7

~wxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=

wxArrayString & operator =(const wxArrayString& array)

Assignment operator.

wxArrayString::operator==

bool operator ==(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true only if the arrays have the same
number of elements and the same strings in the same order.

wxArrayString::operator!=

bool operator !=(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true if the arrays have different number
of elements or if the elements don't match pairwise.

wxArrayString::operator|]

wxString& operator[](size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of /tem (p. 60) method.

wxArrayString::Add

size_t Add(const wxString& str, size_t copies = 1)

Appends the given number of copies of the new item str to the array and returns the
index of the first new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 59) - 1 because the item is inserted at the correct position to keep the
array sorted and not appended.

58

CHAPTER 7

See also: Insert (p. 60)

wxArrayString::Alloc

void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 47)

wxArrayString::Clear

void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 59)

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 59) instead.

wxArrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 59) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p- 59) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

wxArrayString::Index

59

CHAPTER 7

int Index(const char * sz, bool bCase = true, bool bFromEnd = false)

Search the element in the array, starting from the beginning ifbFromEnd is false or from
end otherwise. If bCase, comparison is case sensitive (default), otherwise the case is
ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert

void Insert(const wxString& str, size_t nindex, size_t copies = 1)

Insert the given number of copies of the new element in the array before the position
nindex. Thus, for example, to insert the string in the beginning of the array you would
write

Insert ("foo", 0);
If nindex is equal to GetCount() this function behaves as Add (p. 58).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to /Index() (p. 59) would then not work!

wxArrayString::IsEmpty

IsEmpty()

Returns true if the array is empty, false otherwise. This function returns the same result
as GetCount() == 0 but is probably easier to read.

wxArrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator{] (p. 58) for the operator version.

wxArrayString::Last

60

CHAPTER 7

Last()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove(const char * s2)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 59)

wxArrayString::RemoveAt

void RemoveAt(size_t nindex, size_t count = 1)

Removes count items starting at position nindex from the array.

wxArrayString::Shrink

void Shrink()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 59), Dynamic array memory management (p. 47)

wxArrayString::Sort

void Sort(bool reverseOrder = false)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
true. The sort is case-sensitive.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 59) would then not work!

void Sort(CompareFunction compareFunction)
Sorts the array using the specified compareFunction for item

comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than 0 if the first

61

CHAPTER 7

string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int CompareStringLen (const wxStringé& first, const wxStringé&
second)

{
}

return first.length() - second.length();

wxArrayString array;

array.Add ("one") ;
array.Add("two");
array.Add ("three");
array.Add ("four");

array.Sort (CompareStringLen) ;

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 59) would then not work!

wxArtProvider

wxArtProvider class is used to customize the look of wxWindows application. When
wxWindows need to display an icon or a bitmap (e.g. in the standard file dialog), it does
not use hard-coded resource but asks wxArtProvider for it instead. This way the users
can plug in own wxArtProvider class and easily replace standard art with his/her own
version. It is easy thing to do: all that is needed is to derive a class from wxArtProvider,
override it'sCreateBitmap (p. 64) method and register the provider
withwxArtProvider::PushProvider (p. 65):

class MyProvider : public wxArtProvider
{
protected:

wxBitmap CreateBitmap (const wxArtID& id,
const wxArtClienté& client,
const wxSize size)

{ ...}
}i

wxArtProvider: :PushProvider (new MyProvider) ;

There's another way of taking advantage of this class: you can use it in your code and
use platform native icons as provided bywxArtProvider::GetBitmap (p. 65) or
wxArtProvider::Getlcon (p. 65) (NB: this is not yet really possible as of wxWindows 2.3.3,
the set of wxArtProvider bitmaps is too small).

62

CHAPTER 7

Identifying art resources

Every bitmap is known to wxArtProvider under an unique ID that is used by when

requesting a resource from it. The ID is represented by wxArtID type and can have one
of these predefined values (you can see bitmaps represented by these constants in the
artprov (p. 1604) sample):

Clients

wxART_ADD_BOOKMARK
wxART_DEL_BOOKMARK
wxART_HELP_SIDE_PANEL
WxART_HELP_SETTINGS
wxART_HELP_BOOK
wxART_HELP_FOLDER
wxART_HELP_PAGE
wxART_GO_BACK
wxART_GO_FORWARD
wxART_GO_UP
wxART_GO_DOWN
wxART_GO _TO PARENT
wxART_GO_HOME
wxART_FILE_OPEN
wxART_PRINT
wxART_HELP

wxART_TIP
wxART_REPORT_VIEW
wxART _LIST _VIEW
wxART_NEW_DIR
wxART_FOLDER
wxART_GO_DIR_UP
wxART_EXECUTABLE_FILE
wxART_NORMAL_FILE
wxART_TICK_MARK
wxART_CROSS_ MARK
wxART_ERROR
wxART_QUESTION
wxART_WARNING
wxART_INFORMATION
wxART_MISSING_IMAGE

Client is the entity that calls wxArtProvider's GetBitmap or Getlcon function. It is

represented by wxClientID type and can have one of these values:

wxART_TOOLBAR
wxART_MENU
wxART_FRAME_ICON
wxART_CMN_DIALOG
wxART_HELP_BROWSER

63

CHAPTER 7

wxART_MESSAGE_BOX

e wxART_OTHER (used for all requests that don't fit into any of the categories
above)Client ID servers as a hint to wxArtProvider that is supposed to help it to
choose the best looking bitmap. For example it is often desirable to use slightly
different icons in menus and toolbars even though they represent the same
action (e.g. wx_ART_FILE_OPEN). Remember that this is really only a hint for
wxArtProvider -- it is common thatwxArtProvider::GetBitmap (p. 65) returns
identical bitmap for different client values!

See also

See the artprov (p. 1604) sample for an example of wxArtProvider usage.
Derived from

wxObject (p. 982)

Include files

<wx/artprov.h>

wxArtProvider::CreateBitmap

wxBitmap CreateBitmap(const wxArtID& id, const wxArtClient& client, const
wxSize& size)

Derived art provider classes must override this method to create requested art resource.
Note that returned bitmaps are cached by wxArtProvider and it is therefore not

neccessary to optimize CreateBitmap for speed (e.g. you may create wxBitmap objects
from XPMs here).

Parameters
id
wxArtID unique identifier of the bitmap.

client

wxArtClient identifier of the client (i.e. who is asking for the bitmap). This only
servers as a hint.

size
Prefered size of the bitmap. The function may return a bitmap of different
dimensions, it will be automatically rescaled to meet client's request.

Note

This is not part of wxArtProvider's public API, usewxArtProvider::GetBitmap (p. 65) or

64

CHAPTER 7

wxArtProvider::Getlcon (p. 65)to query wxArtProvider for a resource.

wxArtProvider::GetBitmap

static wxBitmap GetBitmap(const wxArtID& id, const wxArtClient& client =
wxART_OTHER, const wxSize& size = wxDefaultSize)

Query registered providers for bitmap with given ID.
Parameters

id
wxArtID unique identifier of the bitmap.

client
wxArtClient identifier of the client (i.e. who is asking for the bitmap).

size
Size of the returned bitmap or wxDefaultSize if size doesn't matter.

Return value

The bitmap if one of registered providers recognizes the ID or wxNullBitmap otherwise.

wxArtProvider::Getlcon

static wxlcon Getlcon(const wxArtID& id, const wxArtClient& client =
wxART_OTHER, const wxSize& size = wxDefaultSize)

Same as wxArtProvider::GetBitmap (p. 65), but return a wxlcon object (or wxNulllcon on
failure).

wxArtProvider::PopProvider

static bool PopProvider()

Remove latest added provider and delete it.

wxArtProvider::PushProvider

static void PushProvider(wxArtProvider* provider)

Register new art provider (add it to the top of providers stack).

wxArtProvider::RemoveProvider

65

CHAPTER 7

static bool RemoveProvider(wxArtProvider* provider)

Remove a provider from the stack. The provider must have been added previously and
is not deleted.

wxAutomationObject

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1400) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
APl is high-level, and the application can specify multiple properties in a single string.

The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAutomationObject excelObject;
if (excelObject.GetInstance ("Excel.Application"))
excelObject.PutProperty ("ActiveCell.Font.Bold", true);

Note that this class obviously works under Windows only.
Derived from

wxObject (p. 982)

Include files

<wx/msw/ole/automtn.h>

See also

wxVariant (p. 1400)

wxAutomationObject::wxAutomationObject

wxAutomationObject(WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

66

CHAPTER 7

wxAutomationObject::~wxAutomationObject

~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

wxVariant CallMethod(const wxString& method, int noArgs, wxVariant args[]) const
wxVariant CallMethod(const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res
wxVariant res

obj.CallMethod ("Sum", wxVariant (l1.2), wxVariant(3.4));
obj.CallMethod("Sum", 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

object.CallMethod ("ActiveCell.Font.ShowDialog", "My caption");

wxAutomationObject::Createlnstance

bool Createlnstance(const wxString& classl/d) const

Creates a new object based on the class id, returning true if the object was successfully
created, or false if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

67

CHAPTER 7

wxAutomationObject::Getlnstance

bool Getinstance(const wxString& class/d) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns true if a pointer was successfully retrieved, false
otherwise.

Note that this cannot cope with two instances of a given OLE object being active

simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 68) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 68)

wxAutomationObject::GetProperty

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant args/))
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res
wxVariant res

obj.GetProperty ("Range", wxVariant ("Al"));
obj.GetProperty ("Range", "Al");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

68

CHAPTER 7

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs|] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member
The member function or property name.

action
Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.
retValue
Return value (ignored if there is no return value)
noArgs

Number of arguments in args or ptrArgs.

args
If non-null, contains an array of variants.

ptrArgs
If non-null, contains an array of constant pointers to variants.

Return value

true if the operation was successful, false otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for

efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args/]) const
bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of

69

CHAPTER 7

arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj.PutProperty ("Value", wxVariant (23));
obj.PutProperty ("Value", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr(WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

wxGDIObject (p. 585)
wxObject (p. 982)

Include file
<wx/bitmap.h>
Predefined objects
Objects:
wxNullBitmap

See also

wxBitmap overview (p. 1683),supported bitmap file formats (p. 1684),wxDC::Blit (p.
360),wxlcon (p. 742), wxCursor (p. 216), wxBitmap (p. 70),wxMemoryDC (p. 905)

70

CHAPTER 7

wxBitmap::wxBitmap

wxBitmap()

Default constructor.

wxBitmap(const wxBitmap& bitmap)

Copy constructor.

wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap(const char bits[], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap () API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxImage (p. 756) should be used for creating colour bitmaps from static data.
wxBitmap(int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

wxBitmap(const char** bits)

Creates a bitmap from XPM data.

wxBitmap(const wxString& name, long type)

Loads a bitmap from a file or resource.

wxBitmap(const wxlmage& img, int depth = -1)

Creates bitmap object from the image. This has to be done to actually display an image
as you cannot draw an image directly on a window. The resulting bitmap will use the

provided colour depth (or that of the current system if depth is -1) which entails that a
colour reduction has to take place.

71

CHAPTER 7

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created
on program start-up to look up colors. This ensures a very fast conversion, but the image
quality won't be perfect (and could be better for photo images using more sophisticated
dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when
creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

Parameters
bits
Specifies an array of pixel values.
width
Specifies the width of the bitmap.
height
Specifies the height of the bitmap.
depth
Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.
name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCELoad a Windows bitmap from the resource
database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wWxBITMAP_TYPE_XPM Load an XPM bitmap file.
wxBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are

BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

72

CHAPTER 7

In addition, wxBitmap can read all formats that wx/mage (p. 756) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.

img
Platform-independent wxImage object.

Remarks

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap . xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

wxBitmap *bitmap = new wxBitmap (mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 79)

wxPython note: Constructors supported by wxPython are:
wxBitmap(name, flag) Loads a bitmap from a file

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap

73

CHAPTER 7

with the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM
data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

wxBitmapFromimage(image, depth=-1) Convert a wxImage to a
wxBitmap.

wxPerl note: Constructors supported by wxPerl are:

e::Bitmap->new(width, height, depth =-1)

::Bitmap->new(name, type)

::Bitmap->new(icon)

::Bitmap->newFromBits(bits, width, height, depth = 1)

::Bitmap->newFromXPM(data)

wxBitmap::~wxBitmap

~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)
Adds a handler to the end of the static list of format handlers.
handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

74

CHAPTER 7

See also

wxBitmapHandler (p. 90)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers|()
Deletes all bitmap handlers.

This function is called by wxWindows on exit.

wxBitmap::ConvertTolmage

wximage ConvertTolmage()

Creates an image from a platform-dependent bitmap. This preserves mask information
so that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::CopyFromicon

bool CopyFromicon(const wxlcon& icon)

Creates the bitmap from an icon.

wxBitmap::Create

virtual bool Create(int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create(void* data, int type, int width, int height, int depth = -1)
Creates a bitmap from the given data, which can be of arbitrary type.
Parameters

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

75

CHAPTER 7

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmap::wxBitmap (p. 71) for a list of possible
values.

Return value

true if the call succeeded, false otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 71)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)
Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

Finds the handler associated with the given bitmap type.

name
The handler name.

extension
The file extension, such as "omp".

bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value
A pointer to the handler if found, NULL otherwise.

See also

76

CHAPTER 7

wxBitmapHandler (p. 90)

wxBitmap::GetDepth

int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()
Returns the static list of bitmap format handlers.

See also

wxBitmapHandler (p. 90)

wxBitmap::GetHeight

int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette() const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 997)

wxBitmap::GetMask

wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 81), wxMask (p. 885)

77

CHAPTER 7

wxBitmap::GetWidth

int GetWidth() const
Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 77)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap(const wxRect&rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

wxBitmapHandler (p. 90)

wxBitmap::InsertHandler

static void InsertHandler(wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 90)

78

CHAPTER 7

wxBitmap::LoadFile

bool LoadFile(const wxString& name, long type)
Loads a bitmap from a file or resource.
Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.
wxBITMAP_TYPE_XBM Load an X bitmap file.
wxBITMAP_TYPE_XPM Load an XPM bitmap file.
The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can read all formats that wx/mage (p. 756) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
wxBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxlmage handlers loaded.)
Return value
true if the operation succeeded, false otherwise.
Remarks
A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 77) member.

See also

wxBitmap::SaveFile (p. 80)

wxBitmap::Ok

79

CHAPTER 7

bool Ok() const

Returns true if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler(const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

Return value
true if the handler was found and removed, false otherwise.
See also

wxBitmapHandler (p. 90)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)
Saves a bitmap in the named file.
Parameters

name
A filename. The meaning of name is determined by the type parameter.

type
One of the following values:

wxBITMAP_TYPE_BMP Save a Windows bitmap file.
wxBITMAP_TYPE_GIF Save a GIF bitmap file.

wxBITMAP_TYPE_XBM Save an X bitmap file.

wxBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.

In addition, wxBitmap can save all formats that wx/mage (p. 756) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have

80

CHAPTER 7

wxImage handlers loaded.)
palette
An optional palette used for saving the bitmap.
Return value
true if the operation succeeded, false otherwise.
Remarks
Depending on how wxWindows has been configured, not all formats may be available.

See also

wxBitmap::LoadFile (p. 79)

wxBitmap::SetDepth

void SetDepth(int depth)
Sets the depth member (does not affect the bitmap data).
Parameters
depth
Bitmap depth.

wxBitmap::SetHeight

void SetHeight(int heighi)
Sets the height member (does not affect the bitmap data).
Parameters
height
Bitmap height in pixels.

wxBitmap::SetMask

void SetMask(wxMask* mask)
Sets the mask for this bitmap.
Remarks

The bitmap object owns the mask once this has been called.

81

CHAPTER 7

See also

wxBitmap::GetMask (p. 77), wxMask (p. 885)

wxBitmap::SetPalette

void SetPalette(const wxPalette& palette)
Sets the associated palette.
Parameters

palette
The palette to set.

See also

wxPalette (p. 997)

wxBitmap::SetWidth

void SetWidth(int width)
Sets the width member (does not affect the bitmap data).
Parameters
width
Bitmap width in pixels.

wxBitmap::operator =

wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap
Bitmap to assign.

Return value

Returns 'this' object.

82

CHAPTER 7

wxBitmap::operator ==

bool operator ==(const wxBitmap& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap
Bitmap to compare with 'this’

Return value

Returns true if the bitmaps were effectively equal, false otherwise.

wxBitmap::operator !=

bool operator !=(const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap
Bitmap to compare with 'this’

Return value

Returns true if the bitmaps were unequal, false otherwise.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
379) or panel (p. 1001), or indeed almost any other window.

Derived from

wxButton (p. 106)
wxControl (p. 204)
wxWindow (p. 1428)
wxEvtHandler (p. 457)
wxObject (p. 982)

83

CHAPTER 7

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw all

button states using this bitmap. If the application needs more control, additional bitmaps

for the selected state, unpressed focused state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If

this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32
only.

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. WIN32
only.

See also window styles overview (p. 1657).

Event handling

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 106)

wxBitmapButton::wxBitmapButton

wxBitmapButton()
Default constructor.

wxBitmapButton(wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button”)

84

CHAPTER 7

Constructor, creating and showing a button.
Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

bitmap
Bitmap to be displayed.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 83).

validator
Window validator.

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 88),
wxBitmapButton::SetBitmapFocus (p. 87), wxBitmapButton::SetBitmapDisabled (p. 87).
Note that the bitmap passed is smaller than the actual button created.

See also

wxBitmapButton::Create (p. 86), wxValidator (p. 1398)

wxBitmapButton::~wxBitmapButton

~wxBitmapButton()

Destructor, destroying the button.

85

CHAPTER 7

wxBitmapButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 84).

wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapDisabled() const
Returns the bitmap for the disabled state.
Return value

A reference to the disabled state bitmap.
See also

wxBitmapButton::SetBitmapDisabled (p. 87)

wxBitmapButton::GetBitmapFocus

wxBitmap& GetBitmapFocus() const
Returns the bitmap for the focused state.
Return value

A reference to the focused state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 87)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const
Returns the label bitmap (the one passed to the constructor).
Return value

A reference to the button's label bitmap.

86

CHAPTER 7

See also

wxBitmapButton::SetBitmapLabel (p. 88)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected() const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.
See also

wxBitmapButton::SetBitmapSelected (p. 88)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmap& bitmap)
Sets the bitmap for the disabled button appearance.
Parameters

bitmap
The bitmap to set.

See also
wxBitmapButton::GetBitmapDisabled (p. 86), wxBitmapButton::SetBitmapLabel (p. 88),
wxBitmapButton::SetBitmapSelected (p. 88), wxBitmapButton::SetBitmapFocus (p. 87)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmap& bitmap)
Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters

bitmap
The bitmap to set.

See also

87

CHAPTER 7

wxBitmapButton::GetBitmapFocus (p. 86), wxBitmapButton::SetBitmapLabel (p. 88),
wxBitmapButton::SetBitmapSelected (p. 88), wxBitmapButton::SetBitmapDisabled (p.
87)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmap& bitmap)
Sets the bitmap label for the button.
Parameters

bitmap
The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 86)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmap& bitmap)
Sets the bitmap for the selected (depressed) button appearance.
Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 87), wxBitmapButton::SetBitmapLabel (p. 88),
wxBitmapButton::SetBitmapFocus (p. 87), wxBitmapButton::SetBitmapDisabled (p. 87)

wxBitmapDataObiject

wxBitmapDataObject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 139) or a wxDropSource (p. 441).
A user may wish to derive a new class from this class for providing a bitmap on-demand

88

CHAPTER 7

in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 89) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 233)
wxDataObject (p. 228)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1712), wxDataObject (p. 228),
wxDataObjectSimple (p. 233), wxFileDataObject (p. 489), wxTextDataObject (p. 1303),
wxDataObject (p. 228)

wxBitmapDataObject(const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 89) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap() const
Returns the bitmap associated with the data object. You may wish to override this

method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 139).

wxBitmapDataObiject::SetBitmap

virtual void SetBitmap(const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

89

CHAPTER 7

wxBitmapHandler

Overview (p. 1683)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 74) in your application initialisation.

Derived from
wxObject (p. 982)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 70), wxlcon (p. 742), wxCursor (p. 216)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandler()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create(wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

90

CHAPTER 7

Parameters

bitmap
The wxBitmap object.

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 71) for a list
of possible values.

Return value

true if the call succeeded, false otherwise (the default).

wxBitmapHandler::GetName

wxString GetName() const

Gets the name of this handler.

wxBitmapHandler::GetExtension

wxString GetExtension() const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)

91

CHAPTER 7

Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 71) for values this can take.

Return value

true if the operation succeeded, false otherwise.
See also

wxBitmap::LoadFile (p. 79)

wxBitmap::SaveFile (p. 80)
wxBitmapHandler::SaveFile (p. 92)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name
A filename. The meaning of name is determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 71) for values this can take.

palette
An optional palette used for saving the bitmap.

Return value

true if the operation succeeded, false otherwise.

92

CHAPTER 7

See also
wxBitmap::LoadFile (p. 79)

wxBitmap::SaveFile (p. 80)
wxBitmapHandler::LoadFile (p. 91)

wxBitmapHandler::SetName

void SetName(const wxString& name)
Sets the handler name.
Parameters

name
Handler name.

wxBitmapHandler::SetExtension

void SetExtension(const wxString& extension)
Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType

void SetType(long type)
Sets the handler type.
Parameters

name
Handler type.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

93

CHAPTER 7

For more information, please see Programming with wxBoxSizer (p. 1671).
Derived from

wxSizer (p. 1145)
wxObject (p. 982)

See also

wxSizer (p. 1145), Sizer overview (p. 1666)

wxBoxSizer::wxBoxSizer

wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wx\VERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes|()
Implements the calculation of a box sizer's dimensions and then sets the size of its its

children (calling wxWindow::SetSize (p. 1469) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of

94

CHAPTER 7

rectangles, ellipses, etc. It has a colour and a style.
Derived from

wxGDIObject (p. 585)
wxObject (p. 982)

Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

wxBLUE_BRUSH
wxGREEN_BRUSH
wxWHITE_BRUSH
wxBLACK_BRUSH
wxGREY_BRUSH
wxMEDIUM_GREY_BRUSH
wxLIGHT_GREY_BRUSH
WXTRANSPARENT_BRUSH
wxCYAN_BRUSH
wxRED_BRUSH

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::Onlnit (p. 39) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

95

CHAPTER 7

wxBrushList (p. 100), wxDC (p. 359), wxDC::SetBrush (p. 376)

wxBrush::wxBrush

wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 98) will return
false.

wxBrush(const wxColour& colour, int style = wxSOLID)

Constructs a brush from a colour object and style.

wxBrush(const wxString& colourName, int style)

Constructs a brush from a colour name and style.

wxBrush(const wxBitmap& stippleBitmap)

Constructs a stippled brush using a bitmap.

wxBrush(const wxBrush& brush)

Copy constructor. This uses reference counting so is a cheap operation.
Parameters

colour
Colour object.

colourName
Colour name. The name will be looked up in the colour database.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

brush

96

CHAPTER 7

Pointer or reference to a brush to copy.

stippleBitmap
A bitmap to use for stippling.

Remarks

If a stipple brush is created, the brush style will be set to wxSTIPPLE.

See also

wxBrushList (p. 100), wxColour (p. 154), wxColourDatabase (p. 159)

wxBrush::~wxBrush

void ~wxBrush()
Destructor.
Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour() const
Returns a reference to the brush colour.
See also

wxBrush::SetColour (p. 98)

wxBrush::GetStipple

wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 79) returns false).

See also

97

CHAPTER 7

wxBrush::SetStipple (p. 99)

wxBrush::GetStyle

int GetStyle() const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.
wxSTIPPLE Stippled using a bitmap.
wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 99), wxBrush::SetColour (p. 98), wxBrush::SetStipple (p. 99)

wxBrush::0k

bool Ok() const

Returns true if the brush is initialised. It will return false if the default constructor has
been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.

98

CHAPTER 7

See also

wxBrush::GetColour (p. 97)

wxBrush::SetStipple

void SetStipple(const wxBitmap& bitmap)
Sets the stipple bitmap.
Parameters

bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 70)

wxBrush::SetStyle

void SetStyle(int style)

Sets the brush style.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS HATCH Cross hatch.

99

CHAPTER 7

wxHORIZONTAL_HATCH

wxVERTICAL_HATCH

wxSTIPPLE

wxSTIPPLE_MASK_ OPAQUE
See also

wxBrush::GetStyle (p. 98)

wxBrush::operator =

Horizontal hatch.

Vertical hatch.

Stippled using a bitmap.
Stippled using a bitmap's mask.

wxBrush& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrush& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes

using the same parameters will fail the test.

wxBrush::operator !=

bool operator !=(const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.

Derived from

wxList (p. 814)
wxObject (p. 982)

Include files

<wx/gdicmn.h>

100

CHAPTER 7

Remarks

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of ‘'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
‘copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

wxBrush (p. 94)

wxBrushList::wxBrushList

void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush

101

CHAPTER 7

wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.
Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database.

style
Brush style. See wxBrush::SetStyle (p. 99) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

wxBufferedinputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterinputStream (p. 528)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterInputStream (p. 528)

Include files

<wx/stream.h>

See also

102

CHAPTER 7

wxStreamBuffer (p. 1227), wxInputStream (p. 790),wxBufferedOutputStream (p. 103)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 529)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from
wxFilterOutputStream (p. 529)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1227), wxQutputStream (p. 986)

wxBufferedOutputStream::wxBufferedOutputStream

wxBufferedOutputStream(const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

~wxBufferedOutputStream()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

103

CHAPTER 7

wxBufferedOutputStream::Sync

void Sync()

Flushes the buffer and calls Sync() on the parent stream.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:

wxBusyCursor wait;

for (int 1 = 0; 1 < 100000; i++)
DoACalculation () ;

It works by calling wxBeginBusyCursor (p. 1532) in the constructor, and
wxEndBusyCursor (p. 1535) in the destructor.

Derived from
None
Include files
<wx/utils.h>
See also

wxBeginBusyCursor (p. 1532), wxEndBusyCursor (p. 1535), wxWindowDisabler (p.
1478)

wxBusyCursor::wxBusyCursor

wxBusyCursor(wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1532).

wxBusyCursor::~wxBusyCursor

104

CHAPTER 7

~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1535).

wxBusylnfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusylnfo object on the stack, and within the current scope, a message
window will be shown.

For example:

wxBusyInfo wait ("Please wait, working...");

for (int 1 = 0; 1 < 100000; i++)
{

}

DoACalculation () ;

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case
it had been obscured by other windows, for example) like this:

wxWindowDisabler disableAll;
wxBusyInfo wait ("Please wait, working...");
for (int i = 0; i < 100000; i++)
{ DoACalculation () ;
if (!'(i % 1000))

wxTheApp->Yield() ;
}

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield()
(p. 44) for more details). The simplest way to do it is to use wxWindowDisabler (p. 1478)
class as illustrated in the above example.

Derived from

None

Include files

<wx/busyinfo.h>

105

CHAPTER 7

wxBusylinfo::wxBusylnfo

wxBusylnfo(const wxString& msg, wxParent “parent = NULL)
Constructs a busy info window as child of parent and displays msgin it.
NB: If parentis not NULL you must ensure that it is not closed while the busy info is

shown.

wxBusyinfo::~wxBusylnfo

~wxBusyinfo()

Hides and closes the window containing the information text.

wxButton

A button is a control that contains a text string, and is one of the commonest elements of
a GUL. It may be placed on a dialog box (p. 379) or panel (p. 1001), or indeed almost
any other window.

Derived from

wxControl (p. 204)

wxWindow (p. 1428)

wxEvtHandler (p. 457)

wxObject (p. 982)

Include files

<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. WIN32 only.

wxBU_TOP Aligns the label to the top of the button. WIN32 only.
wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.
wxBU_BOTTOM Aligns the label to the bottom of the button. WIN32 only.
wxBU_EXACTFIT Creates the button as small as possible instead of making

it of the standard size (which is the default behaviour).

See also window styles overview (p. 1657).

Event handling

106

CHAPTER 7

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 83)

wxButton::wxButton

wxButton()

Default constructor.

wxButton(wxWindow* parent, wxWindowID id, const wxString& /abel, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

label
Text to be displayed on the button.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style
Window style. See wxButton (p. 106).

validator
Window validator.

name
Window name.

107

CHAPTER 7

See also

wxButton::Create (p. 108), wxValidator (p. 1398)

wxButton::~wxButton

~wxButton()

Destructor, destroying the button.

wxButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p. 107).

wxButton::GetLabel

wxString GetLabel() const

Returns the string label for the button.
Return value

The button's label.

See also

wxButton::SetLabel (p. 109)

wxButton::GetDefaultSize

wxSize GetDefaultSize()
Returns the default size for the buttons. It is advised to make all the dialog buttons of the

same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()

108

CHAPTER 7

This sets the button to be the default item for the panel or dialog box.
Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1465) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultltem (p. 1004).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& /abel)
Sets the string label for the button.
Parameters

label
The label to set.

See also

wxButton::GetLabel (p. 108)

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 809) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 453)
wxObject (p. 982)

Include files
<wx/laywin.h>

Event table macros

109

CHAPTER 7

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite’
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 1063), wxSashLayoutWindow (p. 1100),
wxLayoutAlgorithm (p. 809).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

wxCalculateLayoutEvent(wxWindowlID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect(const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the

110

CHAPTER 7

window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date interactively. For this, it displays a
window containing several parts: the control to pick the month and the year at the top
(either or both of them may be disabled) and a month area below them which shows all
the days in the month. The user can move the current selection using the keyboard and
select the date (generating EVT_CALENDAR event) by pressing <Return> or double
clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 117)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 116) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not recognized as
one by wxDateTime (p. 1625) using SetHoliday (p. 118) method.

As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_MONTH event
handler.

Derived from

wxControl (p. 204)

wxWindow (p. 1428)

wxEvtHandler (p. 457)

wxObject (p. 982)

Include files

<wx/calctrl.h>

Window styles

wxCAL_SUNDAY_FIRST Show Sunday as the first day in the week
wxCAL_MONDAY_FIRST Show Monday as the first day in the week
wxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar

wxCAL_NO_ YEAR_CHANGE Disable the year changing

111

CHAPTER 7

wxCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

wxCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

wxCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wxCAI_SHOW_HOLIDAYS.

Event table macros

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 120) argument.

EVT_CALENDAR(id, func) A day was double clicked in the calendar.
EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.
EVT_CALENDAR_DAY(id, func) The selected day changed.
EVT_CALENDAR_MONTH(id, func) The selected month changed.
EVT_CALENDAR_YEAR(id, func) The selected year changed.
EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day
header
Note that changing the selected date will result in either of EVT_CALENDAR_DAY, MONTH
or YEAR events and EVT_CALENDAR_SEL_CHANGED oOne.

Constants

The following are the possible return values for HitTest (p. 117) method:

enum wxCalendarHitTestResult

{

wxCAL_HITTEST_ NOWHERE, // outside of anything
wxCAL_HITTEST_HEADER, // on the header (weekdays)
wxCAL_HITTEST_DAY // on a day in the calendar
}
See also

Calendar sample (p. 1604)

112

CHAPTER 7

wxCalendarDateAttr (p. 117)
wxCalendarEvent (p. 120)

wxCalendarCtrl::wxCalendarCirl

wxCalendarCtrl()

Default constructor, use Create (p. 113) after it.

wxCalendarCtrl::wxCalendarCirl

wxCalendarCtrl(wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDate Time, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW _HOLIDAYS, const wxString& name =

wxCalendarNameStr)

Does the same as Create (p. 113) method.

wxCalendarCitrl::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxDateTime& date =
wxDefaultDate Time, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW _HOLIDAYS, const wxString& name =

wxCalendarNameStr)

Creates the control. See wxWindow (p. 1429) for the meaning of the parameters and the
control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl

~wxCalendarCtrl()

Destroys the control.

wxCalendarCtrl::SetDate

void SetDate(const wxDateTime& date)

Sets the current date.

wxCalendarCtrl::GetDate

113

CHAPTER 7

const wxDateTime& GetDate() const

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange(bool enable = true)

This function should be used instead of changing wxCAL_NO_YEAR_ CHANGEstyle bit
directly. It allows or disallows the user to change the year interactively.

wxCalendarCtrl::EnableMonthChange

void EnableMonthChange(bool enable = true)
This function should be used instead of changing wxCAL_NO_MONTH_CHANGE style bit.

It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay(bool display = true)

This function should be used instead of changing wxCAL_SHOW_HOLIDAYSstyle bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

void SetHeaderColours(const wxColour& colFg, const wxColour& colBg)

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg() const
Gets the foreground colour of the header part of the calendar window.
See also

SetHeaderColours (p. 114)

114

CHAPTER 7

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg() const
Gets the background colour of the header part of the calendar window.
See also

SetHeaderColours (p. 114)

wxCalendarCtrl::SetHighlightColours

void SetHighlightColours(const wxColour& colfFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg() const
Gets the foreground highlight colour.
See also

SetHighlightColours (p. 115)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg() const
Gets the background highlight colour.
See also

SetHighlightColours (p. 115)

wxCalendarCtrl::SetHolidayColours

void SetHolidayColours(const wxColour& colfg, const wxColour& col/Bg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wxCAL_SHOW_HOLIDAYS flag).

wxCalendarCtrl::GetHolidayColourFg

115

CHAPTER 7

const wxColour& GetHolidayColourFg() const
Return the foreground colour currently used for holiday highlighting.
See also

SetHolidayColours (p. 115)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg() const
Return the background colour currently used for holiday highlighting.
See also

SetHolidayColours (p. 115)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr(size_t day) const
Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL.

wxCalendarCtrl::SetAttr

void SetAttr(size_t day, wxCalendarDateAttr* attr)
Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCitrl::SetHoliday

void SetHoliday(size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCirl::ResetAttr

void ResetAttr(size_t day)

116

CHAPTER 7

Clears any attributes associated with the given day (in the range1...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest(const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAIL_HITTEST_XXX constants (p. 111) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 111).

Derived from
No base class
Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCalendarDateBorder

{

wxCAL_BORDER_NONE, // no border (default)
wxCAL_BORDER_SQUARE, // a rectangular border
wxCAL_BORDER_ROUND // a round border

}

See also

wxCalendarCtrl (p. 111)

wxCalendarDateAttr::wxCalendarDateAttr

wxCalendarDateAttr()

wxCalendarDateAttr(const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER NONE)

wxCalendarDateAttr(wxCalendarDateBorder border, const wxColour& colBorder =
wxNullColour)

117

CHAPTER 7

The constructors.

wxCalendarDateAttr::SetTextColour

void SetTextColour(const wxColour& colText)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

void SetBackgroundColour(const wxColour& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour(const wxColour& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont(const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder(wxCalendarDateBorder border)

Sets the border kind (p. 117)

wxCalendarDateAttr::SetHoliday

void SetHoliday(bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

bool HasTextColour() const

118

CHAPTER 7

Returns t rue if this item has a non default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour() const

Returns t rue if this attribute specifies a non default text background colour.

wxCalendarDateAttr::HasBorderColour

bool HasBorderColour() const

Returns true if this attribute specifies a non default border colour.

wxCalendarDateAttr::HasFont

bool HasFont() const

Returns true if this attribute specifies a non default font.

wxCalendarDateAttr::HasBorder

bool HasBorder() const

Returns true if this attribute specifies a non default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday() const

Returns t rue if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour() const

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr::GetBackgroundColour

const wxColour& GetBackgroundColour() const

119

CHAPTER 7

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour() const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

const wxFont& GetFont() const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder() const

Returns the border (p. 117) to use for the item with this attribute.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 111).
See also

wxCalendarCtrl (p. 111)

wxCalendarEvent::GetDate

wxcalendareventgetdate
const wxDateTime& GetDate() const
Returns the date. This function may be called for all event types except

EVT_CALENDAR_WEEKDAY CLICKED one for which it doesn't make sense.

wxCalendarEvent::GetWeekDay

120

CHAPTER 7

wxcalendareventgetweekday
wxDateTime::WeekDay GetWeekDay() const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler. It doesn't make sense to call this function in other handlers.

wxCaret

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1441). The same caret can't be reused in two different
windows.

Derived from

No base class

Include files

<wx/caret.h>

Data structures

wxCaret::wxCaret

wxCaret()

Default constructor: you must use one of Create() functions later.
wxCaret(wxWindow* window, int width, int height)
wxCaret(wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window.

121

CHAPTER 7

wxCaret::Create

bool Create(wxWindowBase* window, int width, int height)
bool Create(wxWindowBase* window, const wxSize& size)
Create the caret of given (in pixels) width and height and associates it with the given

window (same as constructor).

wxCaret::GetBlinkTime

static int GetBlinkTime()
Returns the blink time which is measured in milliseconds and is the time elapsed

between 2 inversions of the caret (blink time of the caret is the same for all carets, so
this functions is static).

wxCaret::GetPosition

void GetPosition(int* x, int* y) const

wxPoint GetPosition() const

Get the caret position (in pixels).

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:
GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list (x, vy)

wxCaret::GetSize

void GetSize(int* width, int* height) const
wxSize GetSize() const
Get the caret size.

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size
GetSizeWH() Returns a 2-element list (width,
height)

122

CHAPTER 7

wxCaret::GetWindow

wxWindow* GetWindow() const

Get the window the caret is associated with.

wxCaret::Hide

void Hide()

Same as wxCaret::Show(false) (p. 124).

wxCaret::IsOk

bool IsOk() const

Returns true if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible() const

Returns true if the caret is visible and false if it is permanently hidden (if it is is blinking
and not shown currently but will be after the next blink, this method still returns true).

wxCaret::Move

void Move(int x, int y)
void Move(const wxPoint& pi)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime(int milliseconds)
Sets the blink time for all the carets.

Remarks

123

CHAPTER 7

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 122)

wxCaret::SetSize

void SetSize(int width, int height)
void SetSize(const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show(bool show = true)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown
N times as well to reappear on the screen.

wxCheckBox

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from

wxControl (p. 204)

wxWindow (p. 1428)

wxEvtHandler (p. 457)

wxObject (p. 982)

Include files

<wx/checkbox.h>

Window styles

There are no special styles for wxCheckBox.

See also window styles overview (p. 1657).

Event handling

124

CHAPTER 7

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 1072), wxCommandEvent (p. 169)

wxCheckBox::wxCheckBox

wxCheckBox()

Default constructor.

wxCheckBox(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent
Parent window. Must not be NULL.

id
Checkbox identifier. A value of -1 indicates a default value.
label
Text to be displayed next to the checkbox.
pos
Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.
size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.
style
Window style. See wxCheckBox (p. 124).
validator
Window validator.
name

Window name.

125

CHAPTER 7

See also

wxCheckBox::Create (p. 126), wxValidator (p. 1398)

wxCheckBox::~wxCheckBox

~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::.wxCheckBox (p.
125) for details.

wxCheckBox::GetValue

bool GetValue() const
Gets the state of the checkbox.

Return value

Returns true if it is checked, false otherwise.

wxCheckBox::IsChecked

bool IsChecked() const

This is just a maybe more readable synonym for GetValue (p. 126): just as the latter, it
returns true if the checkbox is checked and false otherwise.

wxCheckBox::SetValue

void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
wxEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

126

CHAPTER 7

state
If t rue, the check is on, otherwise it is off.

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 821).

Derived from

wxListBox (p. 821)

wxControl (p. 204)

wxWindow (p. 1428)

wxEvtHandler (p. 457)

wxObject (p. 982)

Include files

<wx/checklst.h>

Window styles

See wxListBox (p. 821).

Event handling

EVT_CHECKLISTBOX(id, func) Process a
wxEVT_COMMAND_CHECKLISTBOX_TOGG
LED event, when an item in the check list box
is checked or unchecked.

See also

wxListBox (p. 821), wxChoice (p. 129), wxComboBox (p. 162), wxListCtrl (p. 826),
wxCommandEvent (p. 169)

wxCheckListBox::wxCheckListBox

127

CHAPTER 7

wxCheckListBox()

Default constructor.

wxCheckListBox(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxCheckListBox (p. 127).
validator
Window validator.
name

Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox()

128

CHAPTER 7

Destructor, destroying the list box.

wxCheckListBox::Check

void Check(int item, bool check = true)

Checks the given item. Note that calling this method doesn't result in
wxEVT_COMMAND_CHECKLISTBOX_TOGGLE being emitted.

Parameters

item
Index of item to check.

check
true if the item is to be checked, false otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const
Returns true if the given item is checked, false otherwise.
Parameters

item
Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from
wxControlWithltems (p. 205)
wxControl (p. 204)
wxWindow (p. 1428)
wxEvtHandler (p. 457)
wxObject (p. 982)

Include files

<wx/choice.h>

129

CHAPTER 7

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1657).

Event handling

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 821), wxComboBox (p. 162), wxCommandEvent (p. 169)

wxChoice::wxChoice

wxChoice()

Default constructor.

wxChoice(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices/], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.
n
Number of strings with which to initialise the choice control.
choices

130

CHAPTER 7

An array of strings with which to initialise the choice control.

style
Window style. See wxChoice (p. 129).

validator
Window validator.

name
Window name.

See also
wxChoice::Create (p. 131), wxValidator (p. 1398)

wxPython note: The wxChoice constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxChoice::~wxChoice

~wxChoice()

Destructor, destroying the choice item.

wxChoice::Create

bool Create(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices[], long style = 0, const wxString& name
= "choice")

Creates the choice for two-step construction. See wxChoice::.wxChoice (p. 130).

wxChoice::Delete

void Delete(int n)

Deletes the item with the given index from the control.
Parameters

n

The item to delete.

wxChoice::GetColumns

131

CHAPTER 7

int GetColumns() const
Gets the number of columns in this choice item.

Remarks

This is implemented for Motif only and always returns 1 for the other platforms.

wxChoice::SetColumns

void SetColumns(int n = 1)
Sets the number of columns in this choice item.
Parameters

n
Number of columns.

Remarks

This is implemented for Motif only and doesn't do anything under other platforms.

wxClassinfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC CLASS and IMPLEMENT _DYNAMIC_ CLASS.

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1615), wxObject (p. 982)

wxClassinfo::wxClassiInfo

132

CHAPTER 7

wxClasslinfo(char* className, char* baseClass1, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassiInfo::CreateObject

wxObject* CreateObject()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

wxClassiInfo::FindClass

static wxClassinfo * FindClass(char* name)

Finds the wxClassInfo object for a class of the given string name.

wxClassinfo::GetBaseClassName1i

char* GetBaseClassName1() const

Returns the name of the first base class (NULL if none).

wxClassinfo::GetBaseClassName2

char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassinfo::GetClassName

char * GetClassName() const

Returns the string form of the class name.

wxClassinfo::GetSize

int GetSize() const

Returns the size of the class.

133

CHAPTER 7

wxClassinfo::InitializeClasses

static void InitializeClasses|()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWindows library initialization.

wxClassinfo::IsKindOf

bool IsKindOf(wxClassInfo* info)

Returns true if this class is a kind of (inherits from) the given class.

wxClient

A wxClient object represents the client part of a client-server DDE-like (Dynamic Data
Exchange) conversation. The actual DDE-based implementation using wxDDEClient is
available on Windows only, but a platform-independent, socket-based version of this API
is available using wxTCPClient, which has the same API.

To create a client which can communicate with a suitable server, you need to derive a
class from wxConnection and another from wxClient. The custom wxConnection class
will intercept communications in a 'conversation' with a server, and the custom wxClient
is required so that a user-overriddenwxClient::OnMakeConnection (p. 135) member can
return a wxConnection of the required class, when a connection is made. Look at the
IPC sample and the Interprocess communications overview (p. 1735) for an example of
how to do this.

Derived from

wxClientBase
wxObject (p. 982)

Include files
<wx/ipc.h>
See also

wxServer (p. 1136), wxConnection (p. 197), Interprocess communications overview (p.
1735)

134

CHAPTER 7

wxClient::wxClient

wxClient()

Constructs a client object.

wxClient::MakeConnection

wxConnectionBase * MakeConnection(const wxString& host, const wxString&
service, const wxString& fopic)

Tries to make a connection with a server by host (machine name under UNIX - use
'localhost' for same machine; ignored when using native DDE in Windows), service
name and topic string. If the server allows a connection, a wxConnection object will be
returned. The type of wxConnection returned can be altered by overriding the
wxClient::OnMakeConnection (p. 135) member to return your own derived connection
object.

Under Unix, the service name may be either an integer port identifier in which case an
Internet domain socket will be used for the communications, or a valid file name (which
shouldn't exist and will be deleted afterwards) in which case a Unix domain socket is
created.

SECURITY NOTE: Using Internet domain sockets if extremely insecure for IPC as there
is absolutely no access control for them, use Unix domain sockets whenever possible!

wxClient::OnMakeConnection

wxConnectionBase * OnMakeConnection()

Called by wxClient::MakeConnection (p. 135), by default this simply returns a new
wxConnection object. Override this method to return a wxConnection descendant
customised for the application.

The advantage of deriving your own connection class is that it will enable you to

intercept messages initiated by the server, such as wxConnection::OnAdvise (p. 199).
You may also want to store application-specific data in instances of the new class.

wxClient::ValidHost

bool ValidHost(const wxString& host)

Returns true if this is a valid host name, false otherwise. This always returns true under
MS Windows.

135

CHAPTER 7

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 995) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1477)
object (Windows only).

Derived from

wxWindowDC (p. 1477)
wxDC (p. 359)

Include files
<wx/dcclient.h>
See also

wxDC (p. 359), wxMemoryDC (p. 905), wxPaintDC (p. 995), wxWindowDC (p. 1477),
wxScreenDC (p. 1108)

wxClientDC::wxClientDC

wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClientData

All classes deriving from wxEvtHandler (p. 457)(such as all controls and wxApp (p. 33))
can hold arbitrary data which is here referred to as "client data". This is useful e.g. for
scripting languages which need to handle shadow objects for most of wxWindows'
classes and which store a handle to such a shadow class as client data in that class.
This data can either be of type void - in which case the datacontainer does not take care
of freeing the data again or it is of type wxClientData or its derivates. In that case the
container (e.g. a control) will free the memory itself later. Note that you must not assign
both void data and data derived from the wxClientData class to a container.

136

CHAPTER 7

Some controls can hold various items and these controls can additionally hold client data
for each item. This is the case forwxChoice (p. 129), wxComboBox (p. 162)and
wxListBox (p. 821). wxTreeCtrl (p. 1366)has a specialized class wxTreeltemData (p.
1388)for each item in the tree.

If you want to add client data to your own classes, you may use the mix-in class
wxClientDataContainer (p. 137).

Include files
<wx/cIntdata.h>
See also

wxEvtHandler (p. 457), wxTreeltemData (p. 1388),wxStringClientData (p. 1258),
wxClientDataContainer (p. 137)

wxClientData::wxClientData

wxClientData()

Constructor.

wxClientData::~wxClientData

~wxClientData()

Virtual destructor.

wxClientDataContainer

This class is a mixin that provides storage and management of "client data." This data
can either be of type void - in which case the datacontainer does not take care of freeing
the data again or it is of type wxClientData or its derivates. In that case the container will
free the memory itself later. Note that you must not assign both void data and data
derived from the wxClientData class to a container.

NOTE: This functionality is currently duplicated in wxEvtHandler in order to avoid having
more than one vtable in that class heirachy.

See also

wxEvtHandler (p. 457), wxClientData (p. 136)

137

CHAPTER 7

Derived from
No base class
Include files
<clntdata.h>

Data structures

wxClientDataContainer::wxClientDataContainer

wxClientDataContainer()

wxClientDataContainer::~wxClientDataContainer

~wxClientDataContainer()

wxClientDataContainer::GetClientData

void* GetClientData() const

Get the untyped client data.

wxClientDataContainer::GetClientObject

wxClientData* GetClientObject() const

Get a pointer to the client data object.

wxClientDataContainer::SetClientData

void SetClientData(void* data)

Set the untyped client data.

wxClientDataContainer::SetClientObject

void SetClientObject(wxClientData* data)

138

CHAPTER 7

Set the client data object. Any previous object will be deleted.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWindows 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.
See also the wxDataObject overview (p. 1714) for further information.

Call wxClipboard::Open (p. 141) to get ownership of the clipboard. If this operation
returns true, you now own the clipboard. Call wxClipboard::SetData (p. 141) to put data
on the clipboard, or wxClipboard::GetData (p. 141) to retrieve data from the clipboard.
Call wxClipboard::Close (p. 140) to close the clipboard and relinquish ownership. You
should keep the clipboard open only momentarily.

For example:

// Write some text to the clipboard
if (wxTheClipboard->Open())
{
// This data objects are held by the clipboard,
// so do not delete them in the app.
wxTheClipboard—->SetData (new wxTextDataObject ("Some text"));
wxTheClipboard->Close () ;
}

// Read some text
if (wxTheClipboard->Open())

{
if (wxTheClipboard->IsSupported(wxDF_TEXT))

{
wxTextDataObject data;
wxTheClipboard->GetData (data);
wxMessageBox (data.GetText ());

}
wxTheClipboard->Close () ;

}

Derived from
wxObject (p. 982)
Include files
<wx/clipbrd.h>
See also

Drag and drop overview (p. 1712), wxDataObject (p. 228)

139

CHAPTER 7

wxClipboard::wxClipboard

wxClipboard()

Constructor.

wxClipboard::~wxClipboard

~wxClipboard()

Destructor.

wxClipboard::AddData

bool AddData(wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 140).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 141)

wxClipboard::Clear

void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

void Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
141).

wxClipboard::Flush

140

CHAPTER 7

bool Flush()

Flushes the clipboard: this means that the data which is currently on clipboard will stay
available even after the application exits (possibly eating memory), otherwise the
clipboard will be emptied on exit. Returns false if the operation is unsuccesful for any
reason.

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns true on success.

wxClipboard::IsOpened

bool IsOpened() const

Returns true if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported(const wxDataFormat& format)

Returns true if the format of the given data object is available on the clipboard.

wxClipboard::Open

bool Open()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 141) and
wxClipboard::GetData (p. 141).

Call wxClipboard::Close (p. 140) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns true on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

141

CHAPTER 7

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 140)

wxClipboard::UsePrimarySelection

void UsePrimarySelection(bool primary = true)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is true.

wxCloseEvent

This event class contains information about window and session close events.

The handler function for EVT_CLOSE is called when the user has tried to close a a
frame or dialog box using the window manager (X) or system menu (Windows). It can
also be invoked by the application itself programmatically, for example by calling the
wxWindow::Close (p. 1434) function.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::CanVeto (p. 143). If this is false, you must destroy the window using
wxWindow::Destroy (p. 1436). If the return value is true, it is up to you whether you
respond by destroying the window.

If you don't destroy the window, you should call wxCloseEvent::Veto (p. 144) to let the
calling code know that you did not destroy the window. This allows the wxWindow::Close
(p. 1434) function to return true or false depending on whether the close instruction
was honoured or not.

Derived from

wxEvent (p. 453)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

142

CHAPTER 7

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
wxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also

wxWindow::Close (p. 1434), wxApp::OnQueryEndSession (p. 40), Window deletion
overview (p. 1657)

wxCloseEvent::wxCloseEvent

wxCloseEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto()
Returns true if you can veto a system shutdown or a window close event. Vetoing a

window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff() const

Returns true if the user is logging off.

wxCloseEvent::GetSessionEnding

bool GetSessionEnding() const

Returns true if the session is ending.

143

CHAPTER 7

wxCloseEvent::GetForce

bool GetForce() const

Returns true if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto(bool canVeto)

Sets the 'can veto' flag.

wxCloseEvent::SetForce

void SetForce(bool force) const

Sets the 'force' flag.

wxCloseEvent::SetLoggingOff

void SetLoggingOff(bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto(bool veto = true)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 143) returns true.

wxCmdLineParser

wxCmdLineParser is a class for parsing command line.
It has the following features:

1. distinguishes options, switches and parameters; allows option grouping
2. allows both short and long options

144

CHAPTER 7

3. automatically generates the usage message from the command line description
4. does type checks on the options values (number, date, ...).

To use it you should follow these steps:

1. construct (p. 147) an object of this class giving it the command line to parse and
optionally its description or use Addxxx () functions later

2. callparse()

3. use Found () to retrieve the results

In the documentation below the following terminology is used:

switch This is a boolean option which can be given or
not, but which doesn't have any value. We use
the word switch to distinguish such boolean
options from more generic options like those
described below. For example, —v might be a
switch meaning "enable verbose mode".

option Option for us here is something which comes
with a value 0 unlike a switch. For example, -
o:filename might be an option which allows
to specify the name of the output file.

parameter This is a required program argument.

Derived from
No base class
Include files
<wx/cmdline.h>
Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 151).
Also, the meanings of parameters of the AddxxX () functions are the same as of the
corresponding fields in this structure:

struct wxCmdLineEntryDesc

{
wxCmdLineEntryType kind;
const wxChar *shortName;
const wxChar *longName;
const wxChar *description;
wxCmdLineParamType type;
int flags;

}i

The type of a command line entity is in the kind field and may be one of the following
constants:

145

CHAPTER 7

enum wxCmdLineEntryType

{
wxCMD_LINE_SWITCH,
wxCMD_LINE_OPTION,
wxCMD_LINE_PARAM,
wxCMD_LINE_NONE // use this to terminate the list

The field shortName is the usual, short, name of the switch or the option.1ongName is
the corresponding long name or NULL if the option has no long name. Both of these
fields are unused for the parameters. Both the short and long option names can contain
only letters, digits and the underscores.

description is used by the Usage() (p. 152) method to construct a help message
explaining the syntax of the program.

The possible values of t ype which specifies the type of the value accepted by an option
or parameter are:

enum wxCmdLineParamType

{
wxCMD_LINE_VAL_STRING, // default
wxCMD_LINE_VAL_NUMBER,
wxCMD_LINE_VAL_DATE,
wxCMD_LINE_VAL_NONE

Finally, the f1ags field is a combination of the following bit masks:

enum

wxCMD_LINE_OPTION_MANDATORY

wxCMD_LINE_PARAM OPTIONAL

wxCMD_LINE_PARAM MULTIPLE

wxCMD_LINE_OPTION_HELP

wxCMD_LINE_NEEDS_SEPARATOR
value

}

0x01, // this option must be given
0x02, // the parameter may be omitted
0x04, // the parameter may be repeated
0x08, // this option is a help request
0x10, // must have sep before the

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to
AddParam() (p. 152) allows one more parameter - this may be changed by giving non-
default flags to it, i.e. use wxCMD_LINE_OPTION_MANDATORY to require that the option
is given and wxCMD_LINE_PARAM_OPTIONAL to make a parameter optional. Also,
wxCMD_LINE_PARAM_MULTIPLE may be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command
line description. If you use this flag, you will probably need to use GetParamCount (p.
153) to retrieve the number of parameters effectively specified after calling Parse (p.
152).

146

CHAPTER 7

The last flag wxCMD_LINE_NEEDS_SEPARATOR can be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

wxApp::argc (p. 34) and wxApp::argv (p. 34)
console sample

Construction

Before Parse (p. 152) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and
parameters are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 152).

To specify the command line to parse you may use either one of constructors accepting
it (wxCmdLineParser(argc, argv) (p. 148) or wxCmadLineParser (p. 149) usually) or, if
you use the default constructor (p. 148), you can do it later by calling SetCmdLine (p.
149).

The same holds for command line description: it can be specified either in the
constructor (without command line (p. 149) or together with it (p. 149)) or constructed
later using either SetDesc (p. 151) or combination of AddSwitch (p. 151), AddOption (p.
152) and AddParam (p. 152) methods.

Using constructors or SetDesc (p. 151) uses a (usually const static) table containing
the command line description. If you want to decide which options to accept during the
run-time, using one of the Addxxx () functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 152).

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes ("—--") and look like this: ——verbose,
i.e. they generally are complete words and not some abbreviations of them. As long
options are used by more and more applications, they are enabled by default, but may
be disabled with DisableLongOptions (p. 150).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,

147

CHAPTER 7

'—' is always used, but Windows has at least two common choices for this: '-' and
'/ '. Some programs also use '+'. The default is to use what suits most the current
platform, but may be changed with SetSwitchChars (p. 150) method.

Finally, SetLogo (p. 151) can be used to show some application-specific text before the
explanation given by Usage (p. 152) function.

Parsing command line

After the command line description was constructed and the desired options were set,
you can finally call Parse (p. 152) method. It returns 0 if the command line was correct
and was parsed, -1 if the help option was specified (this is a separate case as, normally,
the program will terminate after this) or a positive number if there was an error during the

command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWindows logging functions.

Getting results

After calling Parse (p. 152) (and if it returned 0), you may access the results of parsing
using one of overloaded Found () methods.

For a simple switch, you will simply call Found (p. 153) to determine if the switch was
given or not, for an option or a parameter, you will call a version of Found () which also
returns the associated value in the provided variable. All Found () functions return true if
the switch or option were found in the command line or false if they were not specified.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser()

Default constructor. You must use SetCmdLine (p. 149) later.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(int argc, char** argv)

Constructor specifies the command line to parse. This is the traditional (Unix) command
line format. The parameters argc and argv have the same meaning as for main ()
function.

wxCmdLineParser::wxCmdLineParser

148

CHAPTER 7

wxCmdLineParser(const wxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of WinMain ().

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 148), but also specifies the command line description (p.
151).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 148), but also specifies the command line description (p.
151).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc, const wxString& cmadline)

Same as wxCmdLineParser (p. 148), but also specifies the command line description (p.
151).

wxCmdLineParser::ConvertStringToArgs

static wxArrayString ConvertStringToArgs(const wxChar *cmdline)
Breaks down the string containing the full command line in words. The words are

separated by whitespace. The quotes can be used in the input string to quote the white
space and the back slashes can be used to quote the quotes.

wxCmdLineParser::SetCmdLine

void SetCmdLine(int argc, char** argv)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmdLineParser (p. 148)

149

CHAPTER 7

wxCmdLineParser::SetCmdLine

void SetCmdLine(const wxString& cmadline)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmadLineParser (p. 148)

wxCmdLineParser::~wxCmdLineParser

~wxCmdLineParser()
Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars(const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is

"—v for Unix, "—/" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions(bool enable = true)

Enable or disable support for the long options.

As long options are not (yet) POSIX-compliant, this option allows to disable them.

See also

Customization (p. 147) and AreLongOptionsEnabled (p. 151)

wxCmdLineParser::DisableLongOptions

void DisableLongOptions()

Identical to EnableLongOptions(false) (p. 150).

150

CHAPTER 7

wxCmdLineParser::AreLongOptionsEnabled

bool AreLongOptionsEnabled()
Returns true if long options are enabled, otherwise false.
See also

EnableLongOptions (p. 150)

wxCmdLineParser::SetLogo

void SetLogo(const wxString& /ogo)

logo is some extra text which will be shown by Usage (p. 152) method.

wxCmdLineParser::SetDesc

void SetDesc(const wxCmdLineEntryDesc* desc)
Construct the command line description
Take the command line description from the wxCMD_LINE_NONE terminated table.

Example of usage:

static const wxCmdLineEntryDesc cmdLineDesc[] =

{

{ wxCMD_LINE_SWITCH, "v", "verbose", "be verbose" },

{ wxCMD_LINE_SWITCH, "g", "quiet", "be quiet" 1},

{ wxCMD_LINE_OPTION, "o", "output", "output file" },

{ wxCMD_LINE_OPTION, "i", "input", "input dir" 1},

{ wxCMD_LINE_OPTION, "s", "size", "output block size",

wxCMD_LINE_VAL_NUMBER 1},
{ wxCMD_LINE_OPTION, "d", "date", "output file date",
wxCMD_LINE_VAL_DATE },

{ wxCMD_LINE_PARAM, NULL, NULL, "input file",
wxCMD_LINE_VAL_STRING, wxCMD_LINE_PARAM MULTIPLE },

{ wxCMD_LINE_NONE }
}i

wxCmdLineParser parser;

parser.SetDesc (cmdLineDesc) ;

wxCmdLineParser::AddSwitch

void AddSwitch(const wxString& name, const wxString& /Ing = wxEmptyString,

151

CHAPTER 7

const wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long name Ing (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption

void AddOption(const wxString& name, const wxString& /Ing = wxEmptyString,
const wxString& desc = wxEmptyString, wxCmdLineParamType type =
wxCMD_LINE_VAL_STRING, int flags = 0)

Add an option name with an optional long name Ing (no long name if it is empty, which is

default) taking a value of the given type (string by default) to the command line
description.

wxCmdLineParser::AddParam

void AddParam(const wxString& desc = wxEmptyString, wxCmdLineParamType
type = wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

wxCmdLineParser::Parse

int Parse(bool giveUsage = t rue)

Parse the command line, return 0 if ok, -1 if "-h" or "--help" option was encountered
and the help message was given or a positive value if a syntax error occured.

Parameters

giveUsage
If t rue (default), the usage message is given if a syntax error was encountered
while parsing the command line or if help was requested. If false, only error
messages about possible syntax errors are given, use Usage (p. 152) to show the
usage message from the caller if needed.

wxCmdLineParser::Usage

void Usage()

Give the standard usage message describing all program options. It will use the options
and parameters descriptions specified earlier, so the resulting message will not be
helpful to the user unless the descriptions were indeed specified.

See also

152

CHAPTER 7

SetLogo (p. 151)

wxCmdLineParser::Found

bool Found(const wxString& name) const

Returns true if the given switch was found, false otherwise.

wxCmdLineParser::Found

bool Found(const wxString& name, wxString* value) const

Returns true if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, long* value) const

Returns true if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, wxDateTime* value) const

Returns true if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount() const

Returns the number of parameters found. This function makes sense mostly if you had
used wxCMD_LINE_PARAM MULTIPLE flag.

wxCmdLineParser::GetParam

wxString GetParam(size_t n = Ou) const

Returns the value of Nth parameter (as string only for now).

153

CHAPTER 7

See also

GetParamCount (p. 153)

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 159) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

You can retrieve the current system colour settings with wxSystemSettings (p. 1266).
Derived from

wxObject (p. 982)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

wxBLACK

wxWHITE

wxRED

wxBLUE

wxGREEN

wxCYAN

wxLIGHT_GREY

See also

wxColourDatabase (p. 159), wxPen (p. 1006), wxBrush (p. 94), wxColourDialog (p. 161),
wxSystemSettings (p. 1266)

154

CHAPTER 7

wxColour::wxColour

wxColour()
Default constructor.

wxColour(const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

wxColour(const wxString& colourNname)

Constructs a colour object using a colour name listed in wxTheColourDatabase.
wxColour(const wxColour& colour)

Copy constructor.

Parameters

red
The red value.

green
The green value.

blue
The blue value.

colourName
The colour name.

colour
The colour to copy.

See also
wxColourDatabase (p. 159)
wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)
wxNamedColour(name)

wxColour::Blue

unsigned char Blue() const

155

CHAPTER 7

Returns the blue intensity.

wxColour::GetPixel

long GetPixel() const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

wxColour::Green

unsigned char Green() const

Returns the green intensity.

wxColour::0Ok

bool Ok() const

Returns true if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(const unsigned char red, const unsigned char green, const unsigned char
blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator =(const wxColour& colour)

Assignment operator, taking another colour object.

156

CHAPTER 7

wxColour& operator =(const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.

See also

wxColourDatabase (p. 159)

wxColour::operator ==

bool operator ==(const wxColour& colour)

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator !=

bool operator !=(const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wxColourData

This class holds a variety of information related to colour dialogs.
Derived from

wxObject (p. 982)

Include files

<wx/cmndata.h>

See also

wxColour (p. 154), wxColourDialog (p. 161), wxColourDialog overview (p. 1693)

wxColourData::wxColourData

wxColourData()

Constructor. Initializes the custom colours to white, the data colour setting to black, and

157

CHAPTER 7

the choose full setting to true.

wxColourData::~wxColourData

~wxColourData()

Destructor.

wxColourData::GetChooseFull

bool GetChooseFull() const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Has no meaning under other platforms.

The default value is true.

wxColourData::GetColour

wxColour& GetColour() const
Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour(int /) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are all white.

wxColourData::SetChooseFull

void SetChooseFull(const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is true.

158

CHAPTER 7

wxColourData::SetColour

void SetColour(const wxColour& colour)
Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetCustomColour(int /, const wxColour& colour)
Sets the th custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are all white.

wxColourData::operator =

void operator =(const wxColourData& data)

Assignment operator for the colour data.

wxColourDatabase

wxWindows maintains a database of standard RGB colours for a predefined set of
named colours (such as "BLACK", "LIGHT GREY"). The application may add to this set
if desired by using Append. There is only one instance of this class:
wxTheColourDatabase.

Derived from

None

Include files

<wx/gdicmn.h>

Remarks

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,

DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN

159

CHAPTER 7

YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

wxColour (p. 154)

wxColourDatabase::wxColourDatabase

wxColourDatabase()

Constructs the colour database.

wxColourDatabase::AddColour

void AddColour(const wxString& colourName, wxColour* colour)

Adds a colour to the database. If a colour with the same name already exists, it is
replaced.

wxColourDatabase::FindColour

wxColour* FindColour(const wxString& colourName)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName

wxString FindName(const wxColour& colour) const

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize

void Initialize()

Initializes the database with a number of stock colours. Called by wxWindows on start-

160

CHAPTER 7

up-.

wxColourDialog

This class represents the colour chooser dialog.

Derived from

wxDialog (p. 379)

wxWindow (p. 1428)

wxEvtHandler (p. 457)

wxObject (p. 982)

Include files

<wx/colordlg.h>

See also

wxColourDialog Overview (p. 1693),
wxColour (p. 154),

wxColourData (p. 157),
wxGetColourFromUser (p. 1535)

wxColourDialog::wxColourDialog

wxColourDialog(wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,

which will be copied to the colour dialog's colour data.

See also

wxColourData (p. 157)

wxColourDialog::~wxColourDialog

~wxColourDialog()

Destructor.

wxColourDialog::Create

161

CHAPTER 7

bool Create(wxWindow* parent, wxColourData* data = NULL)

Same as constructor (p. 161).

wxColourDialog::GetColourData

wxColourData& GetColourData()

Returns the colour data (p. 157) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.
Derived from

wxControlWithltems (p. 205)

wxControl (p. 204)

wxWindow (p. 1428)

wxEvtHandler (p. 457)

wxObject (p. 982)

Include files

<wx/combobox.h>

Window styles

wxCB_SIMPLE Creates a combobox with a permanently
displayed list. Windows only.

wxCB_DROPDOWN Creates a combobox with a drop-down list.

wxCB_READONLY Same as wxCB_DROPDOWN but only the

strings specified as the combobox choices can

162

CHAPTER 7

be selected, it is impossible to select (even
from a program) a string which is not in the
choices list.

wxCB_SORT Sorts the entries in the list alphabetically.

See also window styles overview (p. 1657).
Event handling

EVT_COMBOBOX(id, func) Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.

EVT_TEXT(id, func) Process a
wxEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

See also

wxListBox (p. 821), wxTextCtrl (p. 1284), wxChoice (p. 129), wxCommandEvent (p. 169)

wxComboBox::wxComboBox

wxComboBox()

Default constructor.

wxComboBox(wxWindow* parent, wxWindowlID id, const wxString& value = ",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n,
const wxString choices[], long style = 0, const wxValidator& validator =

wxDefaultValidator, const wxString& name = "comboBox")
Constructor, creating and showing a combobox.
Parameters

parent
Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.
value

Initial selection string. An empty string indicates no selection.
pos

Window position.

163

CHAPTER 7

size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

Number of strings with which to initialise the control.

choices
An array of strings with which to initialise the control.

style
Window style. See wxComboBox (p. 162).

validator
Window validator.

name
Window name.

See also
wxComboBox::Create (p. 164), wxValidator (p. 1398)

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxComboBox::~wxComboBox

~wxComboBox()

Destructor, destroying the combobox.

wxComboBox::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxString& value = ", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices[], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 163) for further details.

wxComboBox::Copy

164

CHAPTER 7

void Copy()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::GetlnsertionPoint

long GetlnsertionPoint() const

Returns the insertion point for the combobox's text field.

wxComboBox::GetLastPosition

long GetlLastPosition() const

Returns the last position in the combobox text field.

wxComboBox::GetValue

wxString GetValue() const

Returns the current value in the combobox text field.

wxComboBox::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboBox::Replace

void Replace(long from, long to, const wxString& texi)

Replaces the text between two positions with the given text, in the combobox text field.

Parameters

from

165

CHAPTER 7

The first position.

to
The second position.

text
The text to insert.

wxComboBox::Remove

void Remove(long from, long to)
Removes the text between the two positions in the combobox text field.
Parameters

from
The first position.

to
The last position.

wxComboBox::SetinsertionPoint

void SetlnsertionPoint(long pos)

Sets the insertion point in the combobox text field.
Parameters

pos

The new insertion point.

wxComboBox::SetinsertionPointEnd

void SetlnsertionPointEnd()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection(long from, long to)
Selects the text between the two positions, in the combobox text field.

Parameters

166

CHAPTER 7

from
The first position.

to
The second position.

wxPython note: This method is called setMark in wxPython, SetSelectionname is
kept for wxControlWithltems::SetSelection (p. 211).

wxComboBox::SetValue

void SetValue(const wxString& fexi)
Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONLY style the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

Parameters

text
The text to set.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObject (p. 982)

Include files

<wx/cmdproc.h>

See also

Overview (p. 1701)

wxCommand::wxCommand

167

CHAPTER 7

wxCommand(bool canUndo = false, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependent).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

~wxCommand()

Destructor.

wxCommand::CanUndo

bool CanUndo()

Returns true if the command can be undone, false otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return
true to indicate that the action has taken place, false otherwise. Returning false will
indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName()

Returns the command name.

wxCommand::Undo

bool Undo()

Override this member function to un-execute a previous Do. Return true to indicate that

168

CHAPTER 7

the action has taken place, false otherwise. Returning false will indicate to the command
processor that the action is not redoable and no change should be made to the
command history.

How you implement this command is totally application dependent, but typical strategies
include:

e Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.

e Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. 1366), have
separate command event classes.

Derived from
wxEvent (p. 453)
Include files
<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton

169

CHAPTER 7

EVT_CHECKBOX(id, func)

EVT_CHOICE(id, func)

EVT_LISTBOX(id, func)

EVT_LISTBOX_DCLICK(id, func)

EVT_TEXT(id, func)

EVT_TEXT_ENTER(id, func)

EVT_TEXT_MAXLEN(id, func)

EVT_MENU(id, func)

EVT_MENU_RANGE(id1, id2, func)

EVT_CONTEXT_MENU(func)

EVT_SLIDER(id, func)

EVT_RADIOBOX(id, func)

control.

Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

Process a
wxEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

Process a
wxEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

Process a
wxEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control. Note that you must use
wxTE_PROCESS_ENTER flag when creating
the control if you want it to generate such
events.

Process a
wxEVT_COMMAND_TEXT_MAXLEN
command, which is generated by a wxTextCtrl
control when the user tries to enter more
characters into it than the limit previously set
with SetMaxLength (p. 1300).

Process a
wxEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.
Process a
wxEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

Process the event generated when the user
has requested a popup menu to appear by
pressing a special keyboard key (under
Windows) or by right clicking the mouse.
Process a
wxEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a

170

CHAPTER 7

EVT_RADIOBUTTON(id, func)

EVT_SCROLLBAR(id, func)

EVT_COMBOBOX(id, func)

EVT_TOOL(id, func)

EVT_TOOL_RANGE(id1, id2, func)

EVT_TOOL_RCLICKED(id, func)

wxRadioBox control.

Process a
wxEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

Process a
wxEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be
used instead (see wxScrollEvent (p. 1129)).
Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

Process a
wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

Process a
wxEVT_COMMAND_TOOL_CLICKED event
for a range id identifiers. Pass the ids of the
tools.

Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_ RANGE(id1, id2, func) Process a

EVT_TOOL_ENTER(id, func)

wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.
Process a wxEVT _COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a

wxEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a

wxEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a

wxEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_SET_FOCUS(id, func) Process a

wxEVT_COMMAND_SET FOCUS command,
which is generated by a control (Windows 95
and NT only).

171

CHAPTER 7

EVT_COMMAND_KILL_FOCUS(id, func) Process a
wxEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

wxCommandEvent::m_clientData

void* m_clientData

Contains a pointer to client data for listboxes and choices, if the event was a selection.
Beware, this is not implemented anyway...

wxCommandEvent::m_commandint

int m_commandint
Contains an integer identifier corresponding to a listbox, choice or radiobox selection

(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::m_commandString

wxString m_commandString

Contains a string corresponding to a listbox or choice selection.

wxCommandEvent::m_extraLong

long m_extralLong

Extra information. If the event comes from a listbox selection, it is a boolean determining
whether the event was a selection (true) or a deselection (false). A listbox deselection
only occurs for multiple-selection boxes, and in this case the index and string values are
indeterminate and the listbox must be examined by the application.

wxCommandEvent::wxCommandEvent

wxCommandEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

172

CHAPTER 7

wxCommandEvent::Checked

bool Checked() const

Deprecated, use IsChecked (p. 173) instead.

wxCommandEvent::GetClientData

void* GetClientData()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtralLong()

Returns the m_extraLong member.

wxCommandEvent::Getint

int Getint()

Returns the m_commandint member.

wxCommandEvent::GetSelection

int GetSelection()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

wxString GetString()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked() const

173

CHAPTER 7

This method can be used with checkbox and menu events: for the checkboxes, the
method returns t rue for a selection event and false for a deselection one. For the
menu events, this method indicates if the menu item just has become checked or
unchecked (and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection

bool IsSelection()

For a listbox or choice event, returns true if it is a selection, false if it is a deselection.

wxCommandEvent::SetClientData

void SetClientData(void* clientData)

Sets the client data for this event.

wxCommandEvent::SetExtraLong

void SetExtraLong(int extralLong)

Sets the m_extraLong member.

wxCommandEvent::Setint

void SetInt(int intCommand)

Sets the m_commandInt member.

wxCommandEvent::SetString

void SetString(const wxString& string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

174

CHAPTER 7

Derived from
wxObject (p. 982)
Include files
<wx/cmdproc.h>
See also

wxCommandProcessor overview (p. 1702), wxCommand (p. 167)

wxCommandProcessor::wxCommandProcessor

wxCommandProcessor(int maxCommands = -1)
Constructor.
maxCommands may be set to a positive integer to limit the number of commands stored

to it, otherwise (and by default) the list of commands can grow arbitrarily.

wxCommandProcessor::~wxCommandProcessor

~wxCommandProcessor()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo()

Returns true if the currently-active command can be undone, false otherwise.

wxCommandProcessor::ClearCommands

virtual void ClearCommands()

Deletes all the commands in the list and sets the current command pointer to NULL.

wxCommandProcessor::Redo

virtual bool Redo()

175

CHAPTER 7

Executes (redoes) the current command (the command that has just been undone if
any).

wxCommandProcessor::GetCommands

wxList& GetCommands() const

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands() const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu() const

Returns the edit menu associated with the command processor.

wxCommandProcessor::GetRedoAccelerator

const wxString& GetRedoAccelerator() const

Returns the string that will be appended to the Redo menu item.

wxCommandProcessor::GetRedoMenuLabel

wxString GetRedoMenulLabel() const

Returns the string that will be shown for the redo menu item.

wxCommandProcessor::GetUndoAccelerator

const wxString& GetUndoAccelerator() const

Returns the string that will be appended to the Undo menu item.

wxCommandProcessor::GetUndoMenuLabel

wxString GetUndoMenuLabel() const

176

CHAPTER 7

Returns the string that will be shown for the undo menu item.

wxCommandProcessor::Initialize

virtual void Initialize()

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::SetEditMenu

void SetEditMenu(wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::SetMenuStrings

void SetMenuStrings()

Sets the menu labels according to the currently set menu and the current command
state.

wxCommandProcessor::SetRedoAccelerator

void SetRedoAccelerator(const wxString&accel)

Sets the string that will be appended to the Redo menu item.

wxCommandProcessor::SetUndoAccelerator

void SetUndoAccelerator(const wxString&accel)

Sets the string that will be appended to the Undo menu item.

wxCommandProcessor::Submit

virtual bool Submit(wxCommand *command, bool storelt = true)

Submits a new command to the command processor. The command processor calls

177

CHAPTER 7

wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storelt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

virtual bool Undo()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true
which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. 1329) for the worker thread, but if there are several
worker threads it already makes much more sense).

Note that a call to Signal() (p. 181) may happen before the other thread calls Wait() (p.
181) and, just as with the pthread conditions, the signal is then lost and so if you want to
be sure that you don't miss it you must keep the mutex associated with the condition
initially locked and lock it again before calling Signal() (p. 181). Of course, this means
that this call is going to block until Wait() (p. 181) is called by another thread.

Example

This example shows how a main thread may launch a worker thread which starts
running and then waits until the main thread signals it to continue:

class MySignallingThread : public wxThread

{
public:
MySignallingThread (wxMutex *mutex, wxCondition *condition)

{
m_mutex = mutex;
m_condition = condition;

Create();

}

virtual ExitCode Entry ()
{

178

CHAPTER 7

do our Jjob

// tell the other(s) thread(s) that we're about to terminate: we

must

// lock the mutex first or we might signal the condition before
the

// waiting threads start waiting on it!

wxMutexLocker lock (m_mutex);

m_condition.Broadcast (); // same as Signal () here -- one waiter
only

return 0;

}

private:

wxCondition *m_condition;
wxMutex *m_mutex;

}i

int main ()

{
wxMutex mutex;
wxCondition condition (mutex) ;

// the mutex should be initially locked
mutex.Lock () ;

// create and run the thread but notice that it won't be able to

// exit (and signal its exit) before we unlock the mutex below

MySignallingThread *thread = new MySignallingThread (&mutex,
&condition) ;

thread->Run{() ;

// wait for the thread termination: Wait () atomically unlocks the
mutex

// which allows the thread to continue and starts waiting

condition.Wait () ;

// now we can exit

return 0;

}

Of course, here it would be much better to simply use a joinable thread and call
wx Thread::Wait (p. 1329) on it, but this example does illustrate the importance of
properly locking the mutex when using wxCondition.

Constants

The following return codes are returned by wxCondition member functions:

enum wxCondError

{

wxCOND_NO_ERROR = 0, // successful completion

wxCOND_INVALID, // object hasn't been initialized
successfully

wxCOND_TIMEQOUT, // WaitTimeout () has timed out

wxCOND_MISC_ERROR // some other error

}i

Derived from

179

CHAPTER 7

None.

Include files
<wx/thread.h>
See also

wxThread (p. 1322), wxMutex (p. 965)

wxCondition::wxCondition

wxCondition(wxMutex& mutex)

Default and only constructor. The mutex must be locked by the caller before calling Wait
(p. 181) function.

Use IsOk (p. 180) to check if the object was successfully intiialized.

wxCondition::~wxCondition

~wxCondition()

Destroys the wxCondition object. The destructor is not virtual so this class should not be
used polymorphically.

wxCondition::Broadcast

void Broadcast()

Broadcasts to all waiting threads, waking all of them up. Note that this method may be
called whether the mutex associated with this condition is locked or not.

See also

wxCondition::Signal (p. 181)

wxCondition::IsOk

bool IsOk() const

Returns t rue if the object had been initialized successfully, false if an error occured.

180

CHAPTER 7

wxCondition::Signal

void Signal()

Signals the object waking up at most one thread. If several threads are waiting on the
same condition, the exact thread which is woken up is undefined. If no threads are
waiting, the signal is lost and the condition would have to be signalled again to wake up
any thread which may start waiting on it later.

Note that this method may be called whether the mutex associated with this condition is
locked or not.

See also

wxCondition::Broadcast (p. 180)

wxCondition::Wait

wxCondError Wait()

Waits until the condition is signalled.

This method atomically releases the lock on the mutex associated with this condition
(this is why it must be locked prior to calling Wait) and puts the thread to sleep until
Signal (p. 181) or Broadcast (p. 180) is called.

Note that even if Signal (p. 181) had been called before Wait without waking up any
thread, the thread would still wait for another one and so it is important to ensure that the
condition will be signalled after Wait or the thread may sleep forever.

Return value

Returns wxCOND_NO_ERROR 0N success, another value if an error occured.

See also

WaitTimeout (p. 181)

wxCondition::WaitTimeout

wxCondError Wait(unsigned long milliseconds)
Waits until the condition is signalled or the timeout has elapsed.

This method is identical to Wait (p. 181) except that it returns, with the return code of
wxCOND_TIMEOUT as soon as the given timeout expires.

181

CHAPTER 7

Parameters

milliseconds
Timeout in milliseconds

Return value

Returns wxCOND_NO_ERROR if the condition was signalled, wxCOND_TIMEOUT if the
timeout elapsed ebfore this happened or another error code from wxCondError enum.

wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it is an abstract base class) and you will always use one of its derivations:
wxIniConfig, wxFileConfig, wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INlI files if you're really
unlucky). To make writing the portable code even easier, wxWindows provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32, wxIniConfig under Win16 and wxFileConfig
otherwise.

See config overview (p. 1643) for the descriptions of all features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a
look at them. (p. 183)

Derived from

No base class

Include files

<wx/config.h> (to let wxWindows choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)

<wx/fileconf.h> (wxFileConfig class)

<wx/msw/regconf.h> (wxRegConfig class)

<wx/msw/iniconf.h> (wxIniConfig class)

Example

Here is how you would typically use this class:

// using wxConfig instead of writing wxFileConfig or wxRegConfig
enhances

182

CHAPTER 7

// portability of the code
wxConfig *config = new wxConfig ("MyAppName") ;

wxString str;

if (config->Read("LastPrompt", &str)) {
// last prompt was found in the config file/registry and its value
is now
// in str
}
else {

// no last prompt...
}

// another example: using default values and the full path instead of
just

// key name: if the key is not found , the value 17 is returned

long value = config->Read("/LastRun/CalculatedValues/MaxValue", 17);

// at the end of the program we would save everything back
config->Write ("LastPrompt", str);
config->Write ("/LastRun/CalculatedvValues/MaxValue", value);

// the changes will be written back automatically
delete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"

for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Note that
you must delete this object (usually in wxApp::OnExit (p. 38)) in order to avoid memory
leaks, wxWindows won't do it automatically.

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

183

CHAPTER 7

Note: You should use either Set() or Get() because wxWindows library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
555) or Unix version of wxFileDialog (p. 491) have ability to use wxConfig class.

Set (p. 195)

Get (p. 190)

Create (p. 189)
DontCreateOnDemand (p. 189)

Constructor and destructor

wxConfigBase (p. 188)
~wxConfigBase (p. 189)

Path management

As explained in config overview (p. 1643), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion
of the current group, which makes it possible to use the relative paths. To clarify all this,
here is an example (it is only for the sake of demonstration, it doesn't do anything
sensible!):

wxConfig *config = new wxConfig ("FooBarApp");

// right now the current path is '/'
conf->Write ("RootEntry", 1);

// go to some other place: if the group(s) don't exist, they will be
created
conf->SetPath ("/Group/Subgroup") ;

// create an entry in subgroup
conf->Write ("SubgroupEntry", 3);

// '..' is understood

conf->Write ("../GroupEntry", 2);

conf->SetPath("..");

wWxXASSERT (conf->Read ("Subgroup/SubgroupEntry", 01) ==) ;

// use absolute path: it is allowed, too
wxASSERT (conf->Read ("/RootEntry", 01) ==) ;

Warning: it is probably a good idea to always restore the path to its old value on function
exit:
void foo (wxConfigBase *config)
{
wxString strOldPath = config->GetPath();

config->SetPath ("/Foo/Data");

184

CHAPTER 7

config->SetPath (strOldPath);
}

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

void bar (wxConfigBase *configqg)

{
config->Write ("Test", 17);

foo (confiqg);
// we're reading "/Foo/Data/Test" here! -1 will probably be

returned. ..
wxXASSERT (config->Read ("Test", -1) == 17);

}

Finally, the path separator in wxConfigBase and derived classes is always '/, regardless
of the platform (i.e. it is not "\\' under Windows).

SetPath (p. 195)
GetPath (p. 192)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return false when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it is not the index of the current item (you will have some great surprises with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

wxArrayString aNames;

// enumeration variables
wxString str;
long dummy;

// first enum all entries
bool bCont = config->GetFirstEntry (str, dummy);
while (bCont) {

aNames.Add (str) ;

bCont = GetConfig()->GetNextEntry(str, dummy);
}

. we have all entry names in aNames...

// now all groups...
bCont = GetConfig()->GetFirstGroup (str, dummy);

185

CHAPTER 7

while (bCont) {
aNames.Add (str);

bCont = GetConfig()->GetNextGroup (str, dummy);
}

. we have all group (and entry) names in aNames...

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 191)
GetNextGroup (p. 191)
GetFirstEntry (p. 191)
GetNextEntry (p. 192)
GetNumberOfEntries (p. 192)
GetNumberOfGroups (p. 192)

Tests of existence

HasGroup (p. 193)
HasEntry (p. 192)
Exists (p. 190)
GetEntryType (p. 191)

Miscellaneous functions

GetAppName (p. 190)
GetVendorName (p. 192)
SetUmask (p. 196)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that sizeof (bool) ==
sizeof (int) == sizeof (long) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

186

CHAPTER 7

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 193)

Write (p. 196)
Flush (p. 190)

Rename entries/groups

The functions in this section allow to rename entries or subgroups of the current group.
They will return false on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 195)
RenameGroup (p. 195)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:
for example, when you uninstall it.

DeleteEntry (p. 190)

DeleteGroup (p. 190)
DeleteAll (p. 189)

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

config file for my program
UserData = $HOME/data

the following syntax is valud only under Windows
UserData = $windir%\\data.dat

the call to config->Read ("UserData") will return something
like" /home/zeitlin/data™ if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(false) just before reading this value and
SetExpandEnvVars(true) just after. Another solution would be to prefix the offending

187

CHAPTER 7

symbols with a backslash.

The following functions control this option:
IsExpandingEnvVars (p. 193)
SetExpandEnvVars (p. 195)

SetRecordDefaults (p. 196)
IsRecordingDefaults (p. 193)

wxConfigBase::wxConfigBase

wxConfigBase(const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0, wxMBConv& conv
= wxConvUTF8)

This is the default and only constructor of the wxConfigBase class, and derived classes.
Parameters

appName
The application name. If this is empty, the class will normally use
wxApp::GetAppName (p. 35) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName
The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

localFilename
Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename
Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style
Can be one of wxCONFIG_USE_LOCAL FILE and
wxCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logically or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths. For

188

CHAPTER 7

wxFileConfig, you can also add wxCONFIG_USE_NO_ESCAPE_CHARACTERS
which will turn off character escaping for the values of entries stored in the config
file: for example a foo key with some backslash characters will be stored as
foo=C:\mydir instead of the usual storage of foo=C:\\mydir.

The wxCONFIG_USE_NO_ESCAPE_CHARACTERS style can be helpful if your
config file must be read or written to by a non-wxWindows program (which might
not understand the escape characters). Note, however, that if
wxCONFIG_USE_NO_ESCAPE_CHARACTERS style is used, it is is now your
application's responsibility to ensure that there is no newline or other illegal
characters in a value, before writing that value to the file.

conv
This parameter is only used by wxFileConfig when compiled in Unicode mode. It
specifies the encoding in what the configuration file is written.

Remarks

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase

~wxConfigBase()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create()

Create a new config object: this function will create the "best" implementation of
wxConfig available for the current platform, see comments near the definition of
wxCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

void DontCreateOnDemand()
Calling this function will prevent Get() from automatically creating a new config object if

the current one is NULL. It might be useful to call it near the program end to prevent new
config object "accidental" creation.

wxConfigBase::DeleteAll

bool DeleteAll()

189

CHAPTER 7

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
desinstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry(const wxString& key, bool bDeleteGrouplfEmpty = true)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

bool DeleteGroup(const wxString& key)

Delete the group (with all subgroups)

wxConfigBase::Exists

bool Exists(wxString& strName) const

returns true if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush(bool bCurrentOnly = false)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

static wxConfigBase * Get(bool CreateOnDemand = true)

Get the current config object. If there is no current object andCreateOnDemand is true,
creates one (using Create) unless DontCreateOnDemand was called previously.

wxConfigBase::GetAppName

wxString GetAppName() const

Returns the application name.

190

CHAPTER 7

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType(const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:

enum EntryType

{
Unknown,
String,
Boolean,
Integer,
Float

}i

wxConfigBase::GetFirstGroup

bool GetFirstGroup(wxString& str, long& index) const
Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index).

wxConfigBase::GetFirstEntry

bool GetFirstEntry(wxString& str, long& index) const
Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index).

wxConfigBase::GetNextGroup

bool GetNextGroup(wxString& str, long& index) const

Gets the next group.

191

CHAPTER 7

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index).

wxConfigBase::GetNextEntry

bool GetNextEntry(wxString& str, long& index) const
Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index).

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries(bool bRecursive = false) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups(bool bRecursive = false) const

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath

const wxString& GetPath() const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName() const

Returns the vendor name.

wxConfigBase::HasEntry

192

CHAPTER 7

bool HasEntry(wxString& strName) const

returns true if the entry by this name exists

wxConfigBase::HasGroup

bool HasGroup(const wxString& strName) const

returns true if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars() const

Returns true if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults() const

Returns true if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString* str) const

Read a string from the key, returning true if the value was read. If the key was not found,
stris not changed.

bool Read(const wxString& key, wxString* str, const wxString& defaultVal) const
Read a string from the key. The default value is returned if the key was not found.
Returns true if value was really read, false if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* /) const

Reads a long value, returning true if the value was found. If the value was not found, /is
not changed.

bool Read(const wxString& key, long* /long defaultVal) const

193

CHAPTER 7

Reads a long value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, long defaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

conf->Read ("key", 0);

won't work because the call is ambiguous: compiler can not choose between twoRead
functions. Instead, write:

conf->Read ("key", 01);

bool Read(const wxString& key, double* d) const

Reads a double value, returning true if the value was found. If the value was not found, d
is not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

Reads a bool value, returning true if the value was found. If the value was not found, b is
not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning true if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default="") Returns a string.
Readint(key, default=0) Returns an int.
ReadFloat(key, default=0.0) Returns a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

194

CHAPTER 7

Read(key, default="") Returns a string

ReadlInt(key, default=0) Returns an integer
ReadFloat(key, default=0.0) Returns a floating point number
ReadBool(key, default=0) Returns a boolean

wxConfigBase::RenameEntry

bool RenameEntry(const wxString& oldName, const wxString& newName)
Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

Returns false if the oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup(const wxString& oldName, const wxString& newName)
Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns false if the oldName doesn't exist or if newName already exists.

wxConfigBase::Set

static wxConfigBase * Set(wxConfigBase *pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandEnvVars

void SetExpandEnvVars (bool bDolt = true)

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath(const wxString& strPath)

Set current path: if the first character is /', it is the absolute path, otherwise it is a relative

195

CHAPTER 7

path. '.."is supported. If the strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults(bool bDolt = true)

Sets whether defaults are recorded to the config file whenever an attempt to read read
the value which is not present in it is done.

If on (default is off) all default values for the settings used by the program are written

back to the config file. This allows the user to see what config options may be changed
and is probably useful only for wxFileConfig.

wxConfigBase::SetUmask

void SetUmask(int mode)

NB: this function is not in the base wxConfigBase class but is only implemented in
wxFileConfig. Moreover, this function is Unix-specific and doesn't do anything on other
platforms.

SetUmask() allows to set the mode to be used for the config file creation. For example,

to create a config file which is not readable by other users (useful if it stores some
sensitive information, such as passwords), you should do SetUmask (0077).

wxConfigBase::Write

bool Write(const wxString& key, const wxString& value)

bool Write(const wxString& key, long value)

bool Write(const wxString& key, double value)

bool Write(const wxString& key, bool value)

These functions write the specified value to the config file and return true on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.
Writelnt(key, value) Writes an int.
WriteFloat(key, value) Writes a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

196

CHAPTER 7

Write(key, value) Writes a string

Writelnt(key, value) Writes an integer
WriteFloat(key, value) Writes a floating point number
WriteBool(key, value) Writes a boolean

wxConnection

A wxConnection object represents the connection between a client and a server. It is
created by making a connection using a wxClient (p. 134) object, or by the acceptance
of a connection by a wxServer (p. 1136) object. The bulk of a DDE-like (Dynamic Data
Exchange) conversation is controlled by calling members in a wxConnection object or
by overriding its members. The actual DDE-based implementation using
wxDDEConnection is available on Windows only, but a platform-independent, socket-
based version of this APl is available using wxTCPConnection, which has the same API.

An application should normally derive a new connection class from wxConnection, in
order to override the communication event handlers to do something interesting.

Derived from

wxConnectionBase
wxObject (p. 982)

Include files

<wx/ipc.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat

{
wxIPC_INVALID =
wxIPC_TEXT =
wxIPC_BITMAP =
wxIPC_METAFILE =
wxIPC_SYLK =
wxIPC_DIF =
wxIPC_TIFF =
wxIPC_OEMTEXT =
wxIPC_DIB =
wxIPC_PALETTE
wxIPC_PENDATA
wxIPC_RIFF =
wxIPC_WAVE =
wxIPC_UNICODETEXT
wxIPC_ENHMETAFILE
wxIPC_FILENAME =
wxIPC_LOCALE =
wxIPC_PRIVATE =

}i

/* CF_TEXT */
/* CF_BITMAP */
/* CF_METAFILEPICT */

/* CF_OEMTEXT */
/* CF_DIB */

N N N N S S SN N~ N~

OWoo-Jourd wWNhE O

~

, /* CF_HDROP */

el e el
U WN - O
<

N
o

197

CHAPTER 7

See also

wxClient (p. 134), wxServer (p. 1136),Interprocess communications overview (p. 1735)

wxConnection::wxConnection

wxConnection()
wxConnection(char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxConnection, then the constructor should not be called directly, since the default
connection object will be provided on requesting (or accepting) a connection. However, if
the user defines his or her own derived connection object,
thewxServer::OnAcceptConnection (p. 1137) and/or wxClient::OnMakeConnection (p.
135) members should be replaced by functions which construct the new connection
object.

If the arguments of the wxConnection constructor are void then the wxConnection object
manages its own connection buffer, allocating memory as needed. A programmer-
supplied buffer cannot be increased if necessary, and the program will assert if it is not
large enough. The programmer-supplied buffer is included mainly for backwards
compatibility.

wxConnection::Advise

bool Advise(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated

with the given item. Causes the client connection's wxConnection::OnAadvise (p. 199)
member to be called. Returns true if successful.

wxConnection::Execute

bool Execute(char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxConnection::Poke (p. 200) in that
respect). Causes the server connection's wxConnection::OnExecute (p. 199) member to
be called. Returns true if successful.

wxConnection::Disconnect

198

CHAPTER 7

bool Disconnect()

Called by the client or server application to disconnect from the other program; it causes
the wxConnection::OnDisconnect (p. 199) message to be sent to the corresponding
connection object in the other program. Returns true if successful or already
disconnected. The application that calls Disconnect must explicitly delete its side of the
connection.

wxConnection::OnAdvise

virtual bool OnAdvise(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item, usingAadvise (p. 198).

wxConnection::OnDisconnect

virtual bool OnDisconnect()

Message sent to the client or server application when the other application notifies it to
end the connection. The default behaviour is to delete the connection object and return
true, so applications should generally override OnDisconnect(finally calling the inherited
method as well) so that they know the connection object is no longer available.

wxConnection::OnExecute

virtual bool OnExecute(const wxString& fopic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data, using Execute (p. 198). Note that there is no item associated with this message.

wxConnection::OnPoke

virtual bool OnPoke(const wxString& fopic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxConnection::OnRequest

virtual char* OnRequest(const wxString& topic, const wxString& item, int *size,

199

CHAPTER 7

wxIPCFormat format)

Message sent to the server application when the client calls wxConnection::Request (p.
200). The server's OnRequest (p. 199) method should respond by returning a character
string, or NULL to indicate no data, and setting *size. The character string must of
course persist after the call returns.

wxConnection::OnStartAdvise

virtual bool OnStartAdvise(const wxString& topic, const wxString& item)
Message sent to the server application by the client, when the client wishes to start an

'advise loop' for the given topic and item. The server can refuse to participate by
returning false.

wxConnection::OnStopAdvise

virtual bool OnStopAdvise(const wxString& topic, const wxString& item)
Message sent to the server application by the client, when the client wishes to stop an

'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning false, although this doesn't have much meaning in practice.

wxConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxConnection::OnPoke (p.
199) member to be called. If size is -1 the size is computed from the string length of
data.

Returns true if successful.

wxConnection::Request

char* Request(const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxConnection::OnRequest (p. 199) member to be called. Size may be
NULL or a pointer to a variable to receive the size of the requested item.

Returns a character string (actually a pointer to the connection's buffer) if successful,
NULL otherwise. This buffer does not need to be deleted.

200

CHAPTER 7

wxConnection::StartAdvise

bool StartAdvise(const wxString& item)
Called by the client application to ask if an advise loop can be started with the server.

Causes the server connection's wxConnection::OnStartAdvise (p. 200) member to be
called. Returns true if the server okays it, false otherwise.

wxConnection::StopAdvise

bool StopAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxConnection::OnStopAdvise (p. 200) member to be called.
Returns true if the server okays it, false otherwise.

wxContextHelp

This class changes the cursor to a query and puts the application into a 'context-
sensitive help mode'. When the user left-clicks on a window within the specified window,
a wxEVT_HELP event is sent to that control, and the application may respond to it by
popping up some help.

For example:
wxContextHelp contextHelp (myWindow) ;

There are a couple of ways to invoke this behaviour implicitly:

e Use the wxDIALOG_EX_CONTEXTHELP style for a dialog (Windows only).
This will put a question mark in the titlebar, and Windows will put the application
into context-sensitive help mode automatically, with further programming.

e Create a wxContextHelpButton (p. 202), whose predefined behaviour is to
create a context help object. Normally you will write your application so that this
button is only added to a dialog for non-Windows platforms (use
wxDIALOG_EX_ CONTEXTHELP on Windows).

Derived from
wxObject (p. 982)
Include files

<wx/cshelp.h>

201

CHAPTER 7

See also

wxHelpEvent (p. 675), wxHelpController (p. 669), wxContextHelpButton (p. 202)

wxContextHelp::wxContextHelp

wxContextHelp(wxWindow* window = NULL, bool doNow = true)

Constructs a context help object, calling BeginContextHelp (p. 202) if doNow is true (the
default).

If window is NULL, the top window is used.

wxContextHelp::~wxContextHelp

~wxContextHelp()

Destroys the context help object.

wxContextHelp::BeginContextHelp

bool BeginContextHelp(wxWindow* window = NULL)

Puts the application into context-sensitive help mode. window is the window which will
be used to catch events; if NULL, the top window will be used.

Returns true if the application was successfully put into context-sensitive help mode.
This function only returns when the event loop has finished.

wxContextHelp::EndContextHelp

bool EndContextHelp()

Ends context-sensitive help mode. Not normally called by the application.

wxContextHelpButton

Instances of this class may be used to add a question mark button that when pressed,
puts the application into context-help mode. It does this by creating a wxContextHelp (p.
201) object which itself generates a wxEVT_HELP event when the user clicks on a

202

CHAPTER 7

window.

On Windows, you may add a question-mark icon to a dialog by use of the
wxDIALOG_EX_CONTEXTHELP extra style, but on other platforms you will have to add
a button explicitly, usually next to OK, Cancel or similar buttons.

Derived from

wxBitmapButton (p. 83)

wxButton (p. 106)

wxControl (p. 204)

wxWindow (p. 1428)

wxEvtHandler (p. 457)

wxObject (p. 982)

Include files

<wx/cshelp.h>

See also

wxBitmapButton (p. 83), wxContextHelp (p. 201)

wxContextHelpButton::wxContextHelpButton

wxContextHelpButton()

Default constructor.

wxContextHelpButton(wxWindow* parent, wxWindowlD id =
wxID_CONTEXT_HELP, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxBU_AUTODRAW)

Constructor, creating and showing a context help button.

Parameters

parent
Parent window. Must not be NULL.
id
Button identifier. Defaults to wxID_CONTEXT_HELP.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized

203

CHAPTER 7

appropriately for the question mark bitmap.

style
Window style.

Remarks

Normally you need pass only the parent window to the constructor, and use the defaults
for the remaining parameters.

wxControl

This is the base class for a control or 'widget'.

A control is generally a small window which processes user input and/or displays one or
more item of data.

Derived from
wxWindow (p. 1428)
wxEvtHandler (p. 457)
wxObject (p. 982)
Include files
<wx/control.h>

See also

wxValidator (p. 1398)

wxControl::Command

void Command(wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 169).

wxControl::GetLabel

wxString& GetLabel()

Returns the control's text.

204

CHAPTER 7

wxControl::SetLabel

void SetLabel(const wxString& /abel)

Sets the item's text.

wxControlWithltems

This class is an abstract base class for some wxWindows controls which contain several
items, such as wxListBox (p. 821) and wxCheckListBox (p. 127) derived from it,
wxChoice (p. 129) and wxComboBox (p. 162).

It defines the methods for accessing the controls items and although each of the derived
classes implements them differently, they still all conform to the same interface.

The items in a wxControlWithltems have (non empty) string labels and, optionally, client
data associated with them. Client data may be of two different kinds: either simple
untyped (void *) pointers which are simply stored by the control but not used in any
way by it, or typed pointers (wxClientData *) which are owned by the control
meaning that the typed client data (and only it) will be deleted when an item is deleted
(p- 206) or the entire control is cleared (p. 206) (which also happens when it is
destroyed). Finally note that in the same control all items must have client data of the
same type (typed or untyped), if any. This type is determined by the first call to Append
(p. 205) (the version with client data pointer) or SetClientData (p. 210).

Derived from
wxControl (p. 204)
wxWindow (p. 1428)
wxEvtHandler (p. 457)
wxObject (p. 982)
Include files

<wx/ctrlsub.h> but usually never included directly

wxControlWithltems::Append

int Append(const wxString& item)

Adds the item to the end of the list box.

205

CHAPTER 7

int Append(const wxString& item, void *clientData)
int Append(const wxString& item, wxClientData *clientData)

Adds the item to the end of the list box, associating the given, typed or untyped, client
data pointer with the item.

void Append(const wxArrayString& strings)

Appends several items at once to the control. Notice that calling this method may be
much faster than appending the items one by one if you need to add a lot of items.

Parameters

item
String to add.

clientData
Client data to associate with the item.

Return value
When appending a single item, the return value is the index of the newly added item

which may be different from the last one if the control is sorted (e.g. has wxLB_SORT or
wxCB_SORT style).

wxControlWithltems::Clear

void Clear()
Removes all items from the control.

Clear() also deletes the client data of the existing items if it is owned by the control.

wxControlWithltems::Delete

void Delete(int n)

Deletes an item from the control. The client data associated with the item will be also
deleted if it is owned by the control.

Note that it is an error (signalled by an assert failure in debug builds) to remove an item
with the index negative or greater or equal than the number of items in the control.

Parameters

n
The zero-based item index.

206

CHAPTER 7

See also

Clear (p. 206)

wxControlWithltems::FindString

int FindString(const wxString& string)
Finds an item whose label matches the given string.
Parameters

string
String to find.

Return value

The zero-based position of the item, or wxNOT_FOUND if the string was not found.

wxControlWithltems::GetClientData

void * GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any). It is an error to
call this function for a control which doesn't have untyped client data at all although it is
ok to call it even if the given item doesn't have any client data associated with it (but
other items do).

Parameters

n
The zero-based position of the item.

Return value

A pointer to the client data, or NULL if not present.

wxControlWithltems::GetClientObject

wxClientData * GetClientObject(int n) const

Returns a pointer to the client data associated with the given item (if any). It is an error to
call this function for a control which doesn't have typed client data at all although it is ok
to call it even if the given item doesn't have any client data associated with it (but other
items do).

207

CHAPTER 7

Parameters

n
The zero-based position of the item.

Return value

A pointer to the client data, or NULL if not present.

wxControlWithltems::GetCount

int GetCount() const
Returns the number of items in the control.
See also

IsEmpty (p. 210)

wxControlWithltems::GetSelection

int GetSelection() const

Returns the index of the selected item or wxNOT_FOUND if no item is selected.
Return value

The position of the current selection.

Remarks

This method can be used with single selection list boxes only, you should use
wxListBox::GetSelections (p. 824) for the list boxes with wxL.B_MULTIPLE style.

See also

SetSelection (p. 211), GetStringSelection (p. 209)

wxControlWithltems::GetString

wxString GetString(int n) const
Returns the label of the item with the given index.
Parameters

n

208

CHAPTER 7

The zero-based index.
Return value

The label of the item or an empty string if the position was invalid.

wxControlWithltems::GetStringSelection

wxString GetStringSelection() const
Returns the label of the selected item or an empty string if no item is selected.
See also

GetSelection (p. 208)

wxControlWithltems::Insert

int Insert(const wxString& item, int pos)

Inserts the item into the list before pos. Not valid for wxL.B_SORT or wxCB_SORT styles,
use Append instead.

int Insert(const wxString& item, int pos, void *clientData)

int Insert(const wxString& item, int pos, wxClientData *clientData)

Inserts the item into the list before pos, associating the given, typed or untyped, client
data pointer with the item. Not valid for wxLB_SORT or wxCB_SORT styles, use Append
instead.

Parameters

item
String to add.

pos
Position to insert item before, zero based.

clientData
Client data to associate with the item.

Return value

The return value is the index of the newly inserted item. If the insertion failed for some
reason, -1 is returned.

209

CHAPTER 7

wxControlWithltems::IsEmpty

bool IsEmpty() const
Returns true if the control is empty or false if it has some items.
See also

GetCount (p. 208)

wxControlWithltems::Number

int Number() const

Obsolescence note: This method is obsolete and was replaced withGetCount (p. 208),
please use the new method in the new code. This method is only available if wxWindows
was compiled with WXWIN_COMPATIBILITY_2_2 defined and will disappear completely
in future versions.

wxControlWithltems::SetClientData

void SetClientData(int n, void *data)

Associates the given untyped client data pointer with the given item. Note that it is an
error to call this function if any typed client data pointers had been associated with the
control items before.

Parameters

n
The zero-based item index.

data
The client data to associate with the item.

wxControlWithltems::SetClientObject

void SetClientObject(int n, wxClientData *data)

Associates the given typed client data pointer with the given item: the data object will be
deleted when the item is deleted (either explicitly by using Deletes (p. 206) or implicitly
when the control itself is destroyed).

Note that it is an error to call this function if any untyped client data pointers had been
associated with the control items before.

Parameters

210

CHAPTER 7

The zero-based item index.

data
The client data to associate with the item.

wxControlWithltems::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position. This does not cause any
command events to get emitted.

Parameters

n
The string position to select, starting from zero.

See also

SetString (p. 211), SetStringSelection (p. 211)

wxControlWithltems::SetString

void SetString(int n, const wxString& string)
Sets the label for the given item.
Parameters

n
The zero-based item index.

string
The label to set.

wxControlWithltems::SetStringSelection

void SetStringSelection(const wxString& string)

Selects the item with the specified string in the control. This doesn't cause any command
events being emitted.

Parameters

string

211

CHAPTER 7

The string to select.

See also

SetSelection (p. 211)

wxCountingOutputStream

wxCountingOutputStream is a specialized output stream which does not write any data
anyway, instead it counts how many bytes would get written if this were a normal
stream. This can sometimes be useful or required if some data gets serialized to a
stream or compressed by using stream compression and thus the final size of the
stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of
memory and the memory has to be allocated before writing to it (which is probably
always the case when writing to a memory stream).

Derived from

wxQutputStream (p. 986) wxStreamBase (p. 1225)
Include files

<wx/stream.h>

wxCountingOutputStream::wxCountingOutputStream

wxCountingOutputStream()

Creates a wxCountingOutputStream object.

wxCountingOutputStream::~wxCountingOutputStream

~wxCountingOutputStream()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize() const

Returns the current size of the stream.

212

CHAPTER 7

wxCriticalSection

A critical section object is used for exactly the same purpose as mutexes (p. 965). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

Finally, you should try to use wxCriticalSectionLocker (p. 214) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p. 968)
is preferrable to wxMutex (p. 965) - please see wxMutex for an example.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 1322), wxCondition (p. 178), wxCriticalSectionLocker (p. 214)

wxCriticalSection::wxCriticalSection

wxCriticalSection()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

~wxCriticalSection()

Destructor frees the resources.

wxCriticalSection::Enter

void Enter()

213

CHAPTER 7

Enter the critical section (same as locking a mutex). There is no error return for this
function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

void Leave()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

wxCriticalSectionLocker

This is a small helper class to be used with wxCriticalSection (p. 213) objects. A
wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Example of using it:

void Set Foo()
{

// gs_critSect is some (global) critical section guarding access to
the

// object "foo"

wxCriticalSectionLocker locker(gs_critSect);

if (...0)

// do something

return;

}

// do something else

return;

}

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each return.

Derived from
None.

Include files

214

CHAPTER 7

<wx/thread.h>
See also

wxCriticalSection (p. 213), wxMutexLocker (p. 968)

wxCriticalSectionLocker::wxCriticalSectionLocker

wxCriticalSectionLocker(wxCriticalSection& criticalsection)

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and
enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker

~wxCriticalSectionLocker()

Destructor leaves the critical section.

wxCSConv

This class converts between any character sets and Unicode. It has one predefined
instance, wxConvLocal, for the default user character set.

Derived from
wxMBConv (p. 888)
Include files
<wx/strconv.h>
See also

wxMBConv (p. 888), wxEncodingConverter (p. 449), wxMBConv classes overview (p.
1628)

wxCSConv::wxCSConv

wxCSConv(const wxChar* charset)

215

CHAPTER 7

Constructor. Specify the name of the character set you want to convert from/to.

wxCSConv::~wxCSConv

~wxCSConv()

Destructor.

wxCSConv::LoadNow

void LoadNow()

If the conversion tables needs to be loaded from disk, this method will do so. Otherwise,
they will be loaded when any of the conversion methods are called.

wxCSConv::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from the selected character set to Unicode. Returns the size of the destination
buffer.

wxCSConv::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to the selected character set. Returns the size of the destination
buffer.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxlcon (p. 742) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWindows convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 1545) is also available

216

CHAPTER 7

for MS Windows use.
Derived from

wxBitmap (p. 70)
wxGDIObject (p. 585)
wxObject (p. 982)

Include files
<wx/cursor.h>

Predefined objects
Objects:

wxNullCursor

Pointers:

wxSTANDARD_ CURSOR
wxHOURGLASS CURSOR
wxCROSS CURSOR

See also

wxBitmap (p. 70), wxlcon (p. 742), wxWindow::SetCursor (p. 1463), ::wxSetCursor (p.
1545)

wxCursor::wxCursor

wxCursor()
Default constructor.

wxCursor(const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL)

Constructs a cursor by passing an array of bits (Motif and Xt only). maskBits is used only
under Motif.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

wxCursor(const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)

Constructs a cursor by passing a string resource name or filename.

217

CHAPTER 7

On MacOS when specifying a string resource name, first the color cursors 'crsr' and then
the black/white cursors 'CURS' in the resource chain are scanned through.

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

wxCursor(int cursorld)
Constructs a cursor using a cursor identifier.
wxCursor(const wxlmage& image)

Constructs a cursor from a wxlmage. The cursor is monochrome, colors with the RGB
elements all greater than 127 will be foreground, colors less than this background. The
mask (if any) will be used as transparent.

In MSW the foreground will be white and the background black. The cursor is resized to
32x32 In GTK, the two most frequent colors will be used for foreground and background.
The cursor will be displayed at the size of the image. On MacOS the cursor is resized to
16x16 and currently only shown as black/white (mask respected).

wxCursor(const wxCursor& cursor)
Copy constructor. This uses reference counting so is a cheap operation.
Parameters

bits
An array of bits.

maskBits
Bits for a mask bitmap.

width
Cursor width.

height
Cursor height.

hotSpotX
Hotspot x coordinate.

hotSpotY
Hotspot y coordinate.

type
Icon type to load. Under Motif, type defaults to wxBITMAP_TYPE_XBM. Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE. Under MacOS, it
defaults to wxBITMAP_TYPE_MACCURSOR_RESOURCE.

Under X, the permitted cursor types are:

218

CHAPTER 7

wxBITMAP_TYPE_XBM Load an X bitmap file.
Under Windows, the permitted types are:
wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if

USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).

wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).
wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if

USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.

cursorld
A stock cursor identifier. May be one of:

wxCURSOR_ARROW A standard arrow cursor.

wxCURSOR_RIGHT_ARROW A standard arrow cursor pointing to the right.

wxCURSOR_BLANK Transparent cursor.

wxCURSOR_BULLSEYE Bullseye cursor.

wxCURSOR_CHAR Rectangular character cursor.

wxCURSOR_CROSS A cross cursor.

wxCURSOR_HAND A hand cursor.

wxCURSOR_IBEAM An I-beam cursor (vertical line).

wxCURSOR_LEFT_BUTTON Represents a mouse with the left button
depressed.

wxCURSOR_MAGNIFIER A magnifier icon.

wxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button
depressed.

wxCURSOR_NO_ENTRY A no-entry sign cursor.

wxCURSOR_PAINT_BRUSH A paintbrush cursor.

wxCURSOR_PENCIL A pencil cursor.

wxCURSOR_POINT_LEFT A cursor that points left.

wxCURSOR_POINT_RIGHT A cursor that points right.
wxCURSOR_QUESTION_ARROW An arrow and question mark.
wxCURSOR_RIGHT_BUTTON Represents a mouse with the right button

depressed.
wxCURSOR_SIZENESW A sizing cursor pointing NE-SW.
wxCURSOR_SIZENS A sizing cursor pointing N-S.
wxCURSOR_SIZENWSE A sizing cursor pointing NW-SE.
wxCURSOR_SIZEWE A sizing cursor pointing W-E.
wxCURSOR_SIZING A general sizing cursor.
wxCURSOR_SPRAYCAN A spraycan cursor.
wxCURSOR_WAIT A wait cursor.
wxCURSOR_WATCH A watch cursor.
wxCURSOR_ARROWWAIT A cursor with both an arrow and an hourglass,

(windows.)

219

CHAPTER 7

Note that not all cursors are available on all platforms.

cursor
Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:
wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor
from a filename
wxStockCursor(id) Constructs a stock cursor
wxPerl note: Constructors supported by wxPerl are:
o::Cursor->new(name, type, hotSpotX = 0, hotSpotY =0)
e::Cursor->new(id)

e::Cursor->new(image)
e::Cursor->newData(bits, width, height, hotSpotX = -1, hotSpotY = -1, maskBits = 0)

wxCursor::~wxCursor

~wxCursor()
Destroys the cursor. A cursor can be reused for more than one window, and does not

get destroyed when the window is destroyed. wxWindows destroys all cursors on
application exit, although it is best to clean them up explicitly.

wxCursor::0k

bool Ok() const

Returns true if cursor data is present.

wxCursor::operator =

wxCursor& operator =(const wxCursor& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator ==(const wxCursor& cursor)

Equality operator. Two cursors are equal if they contain pointers to the same underlying
cursor data. It does not compare each attribute, so two independently-created cursors

220

CHAPTER 7

using the same parameters will fail the test.

wxCursor::operator !=

bool operator !=(const wxCursor& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxCustomDataObject

wxCustomDataObiject is a specialization of wxDataObjectSimple (p. 233) for some
application-specific data in arbitrary (either custom or one of the standard ones). The
only restriction is that it is supposed that this data can be copied bitwise (i.e. with
memcpy ()), SO it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 223) or TakeData (p. 223) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should override GetSize (p. 222), GetData (p. 222)
and SetData (p. 223) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 233)
wxDataObject (p. 228)

Include files
<wx/dataobj.h>
See also

wxDataObject (p. 228)

221

CHAPTER 7

wxCustomDataObject::wxCustomDataObject

wxCustomDataObject(const wxDataFormat& format = wxFormatinvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here, SetFormat (p. 234) should be used.

wxCustomDataObject::~wxCustomDataObject

~wxCustomDataObiject|()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 222) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Free (), you
should override the destructor in your class as well (which would probably just call the
derived class' version of Free ()).

wxCustomDataObiject::Alloc

virtual void * Alloc(size_t size)

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

virtual void Free()
This function is called when the data is freed, you may override it to anything you want

(or may be nothing at all). The default version calls operator delete[] on the data.

wxCustomDataObject::GetSize

virtual size_t GetSize() const

Returns the data size in bytes.

wxCustomDataObject::GetData

222

CHAPTER 7

virtual void * GetData() const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData(size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxCustomDataObject::TakeData

virtual void TakeData(size_t size, const void *data)

Like SetData (p. 223), but doesn't copy the data - instead the object takes ownership of
the pointer.

wxDataFormat

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

On the system level, a data format is usually just a number (CLIPFORMATUNder
Windows or At om under X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)

wxDF_BITMAP A bitmap (wxBitmap)

wxDF_METAFILE A metafile (wxMetafile, Windows only)
wxDF_FILENAME A list of filenames

wxDF_HTML An HTML string. This is only valid when passed to

wxSetClipboardData when compiled with Visual C++ in
non-Unicode mode

223

CHAPTER 7

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDataFormat : : Nat iveFormat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!
Virtual functions to override

None

Derived from

None

See also

Clipboard and drag and drop overview (p. 1712), DnD sample (p. 1605), wxDataObject
(p. 228)

wxDataFormat::wxDataFormat

wxDataFormat(NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 225) or Setld (p. 225) later in this case)

wxPerl note: In wxPerl this function is named newNative.

wxDataFormat::wxDataFormat

wxDataFormat(const wxChar *format)
Constructs a data format object for a custom format identified by its name format.

wxPerl note: In wxPerl this function is named newUser.

wxDataFormat::operator ==

224

CHAPTER 7

bool operator ==(const wxDataFormat& format) const

Returns true if the formats are equal.

wxDataFormat::operator !=

bool operator !=(const wxDataFormat& format) const

Returns true if the formats are different.

wxDataFormat::Getld

wxString Getld() const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType

NativeFormat GetType() const

Returns the platform-specific number identifying the format.

wxDataFormat::Setld

void Setld(const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType(NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

wxDatalnputStream

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or little-endian format, little-endian being the default on all
architectures.

225

CHAPTER 7

If you want to read data from text files (or streams) use wxTextInputStream (p. 1313)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:

wxFileInputStream input ("mytext.dat");
wxDataInputStream store(input);
wxUint8 il;

float £f2;

wxString line;

store >> 1i1l; // read a 8 bit integer.
store >> i1 >> f2; // read a 8 bit integer followed by float.
store >> line; // read a text line

See also wxDataOutputStream (p. 235).
Derived from

None

Include files

<wx/datstrm.h>

wxDatalnputStream::wxDatalnputStream

wxDatalnputStream(wxInputStream& stream)
wxDatalnputStream(wxInputStream& stream, wxMBConv& conv = wxMBConvUTF8)

Constructs a datastream object from an input stream. Only read methods will be
available. The second form is only available in Unicode build of wxWindows.

Parameters

Stream
The input stream.

conv
Charset conversion object object used to decode strings in Unicode mode (see
wxDatalnputStream::ReadString (p. 228)documentation for detailed description).
Note that you must not destroyconv before you destroy this wxDatalnputStream

226

CHAPTER 7

instance!

wxDatalnputStream::~wxDatalnputStream

~wxDatalnputStream()

Destroys the wxDatalnputStream object.

wxDatalnputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_order is true, all data will be read in big-endian order, such as written by programs
on a big endian architecture (e.g. Sparc) or written by Java-Streams (which always use
big-endian order).

wxDatalnputStream::Read8

wxUint8 Read8|()

Reads a single byte from the stream.

void Read8(wxUint8 *buffer, size_t size)

Reads bytes from the stream in a specified buffer. The amount of bytes to read is

specified by the size variable.

wxDatalnputStream::Read16

wxUint16 Read16()

Reads a 16 bit unsigned integer from the stream.

void Read16(wxUint16 *buffer, size_t size)

Reads 16 bit unsigned integers from the stream in a specified buffer. the amount of 16

bit unsigned integer to read is specified by the size variable.

wxDatalnputStream::Read32

wxUint32 Read32()
Reads a 32 bit unsigned integer from the stream.
void Read32(wxUint32 *buffer, size_t size)

Reads 32 bit unsigned integers from the stream in a specified buffer. the amount of 32

227

CHAPTER 7

bit unsigned integer to read is specified by the size variable.

wxDatalnputStream::Read64

wxUint64 Read64()

Reads a 64 bit unsigned integer from the stream.

void Read64(wxUint64 *buffer, size_t size)

Reads 64 bit unsigned integers from the stream in a specified buffer. the amount of 64

bit unsigned integer to read is specified by the size variable.

wxDatalnputStream::ReadDouble

double ReadDouble()

Reads a double (IEEE encoded) from the stream.

void ReadDouble(double *buffer, size_t size)

Reads double data (IEEE encoded) from the stream in a specified buffer. the amount of

double to read is specified by the size variable.

wxDatalnputStream::ReadString

wxString ReadString()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

In Unicode build of wxWindows, the fuction first reads multibyte (char*) string from the
stream and then converts it to Unicode using the convobject passed to constructor and
returns the result as wxString. You are responsible for using the same convertor as
when writing the stream.

See also wxDataOutputStream::WriteString (p. 237).

wxDataObject

A wxDataObject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a 'smart' piece of
data unlike usual 'dumb' data containers such as memory buffers or files. Being 'smart'
here means that the data object itself should know what data formats it supports and

228

CHAPTER 7

how to render itself in each of supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on 'input’ and 'output’, i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Direction
{
Get
Set

0x01, // format is supported by GetDataHere ()
0x02 // format is supported by SetData ()

}i

which allows to distinguish between them. See wxDataFormat (p. 223) documentation
for more about formats.

Not surprisingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWindows has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 233) and wxDataObjectComposite
(p. 232). wxDataObjectSimple (p. 233) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
232) is the simplest way to implement wxDataObject which does support multiple
formats because it achievs this by simply holding several wxDataObjectSimple objects.

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or
custom if you combine it with the previous solution).

4. Use wxDataObiject directly This is the solution for maximal flexibility and
efficiency, but it is also is the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each

229

CHAPTER 7

wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK data transfer mechanisms for the clipboard and drag and
drop, nor the OLE data transfer copy any data until another application actually requests
the data. This is in contrast to the 'feel' offered to the user of a program who would
normally think that the data resides in the clipboard after having pressed '‘Copy' - in
reality it is only declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 489), wxTextDataObject (p. 1303) and wxBitmapDataObject (p.
88) which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 221)
for user-defined types. The format of user-defined data is given as mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows
is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 233) instead.

wxPerl note: This class is not currently usable from wxPerl; you may use
Wx::PIDataObjectSimple (p. 233) instead.

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 231).

Derived from

None

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1712), DnD sample (p. 1605),

wxFileDataObject (p. 489), wxTextDataObject (p. 1303), wxBitmapDataObject (p. 88),
wxCustomDataObject (p. 221), wxDropTarget (p. 443), wxDropSource (p. 441),

230

CHAPTER 7

wxTextDropTarget (p. 1304), wxFileDropTarget (p. 495)

wxDataObject::wxDataObject

wxDataObiject()

Constructor.

wxDataObject::~wxDataObject

~wxDataObject()

Destructor.

wxDataObject::GetAllIFormats

virtual void GetAllFormats(wxDataFormat *formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.

wxPerl note: In wxPerl this method only takes the dir parameter. In scalar context it
returns the first format, in list context it returns a list containing all the supported formats.

wxDataObject::GetDataHere

virtual bool GetDataHere(const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return true on
success, false on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize(const wxDataFormat& format) const

Returns the data size of the given format format.

wxDataObject::GetFormatCount

virtual size_t GetFormatCount(Direction dir = Gef) const

231

CHAPTER 7

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

virtual wxDataFormat GetPreferredFormat(Direction dir = Getf) const

Returns the preferred format for either rendering the data (if dir is Get, its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData(const wxDataFormat& format, size_t len, const void *buf)
Set the data in the format format of the length len provided in the buffer buf.

Returns true on success, false on failure.

wxDataObjectComposite

wxDataObjectComposite is the simplest wxDataObject (p. 228) derivation which may be
sued to support multiple formats. It contains several wxDataObjectSimple (p. 233)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 233)) and its format determines the preferred format of the
composite data object as well.

See wxDataObject (p. 228) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.
Derived from

wxDataObject (p. 228)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1712), wxDataObject (p. 228),
wxDataObjectSimple (p. 233), wxFileDataObject (p. 489), wxTextDataObject (p. 1303),

232

CHAPTER 7

wxBitmapDataObject (p. 88)

wxDataObjectComposite::wxDataObjectComposite

wxDataObjectComposite()

The default constructor.

wxDataObjectComposite::Add

void Add(wxDataObjectSimple “dataObject, bool preferred = false)

Adds the dataObject to the list of supported objects and it becomes the preferred object
if preferred is true.

wxDataObjectSimple

This is the simplest possible implementation of the wxDataObject (p. 228) class. The
data object of (a class derived from) this class only supports one format, so the number
of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

wxPerl note: In wxPerl, you need to derive your data object class from
Wx::PIDataObjectSimple.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 234) and
GetDataHere (p. 234) while the objects which may be set must override SetData (p.
235). Of course, the objects supporting both operations must override all three methods.
Derived from

wxDataObject (p. 228)

Include files

233

CHAPTER 7

<wx/dataobj.h>
See also

Clipboard and drag and drop overview (p. 1712), DnD sample (p. 1605),
wxFileDataObject (p. 489), wxTextDataObject (p. 1303), wxBitmapDataObject (p. 88)

wxDataObjectSimple::wxDataObjectSimple

wxDataObjectSimple(const wxDataFormat& format = wxFormatinvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 234).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat() const

Returns the (one and only one) format supported by this object. It is supposed that the
format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat(const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize() const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere(void *buf) const

Copy the data to the buffer, return true on success. Must be implemented in the derived
class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

234

CHAPTER 7

wxDataObjectSimple::SetData

virtual bool SetData(size_t /en, const void “buf)

Copy the data from the buffer, return true on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDataOutputStream

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or little-endian format, little-endian being the default on all
architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. 1317)
instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDatalnputStream (p. 225) for its usage and caveats.

See also wxDatalnputStream (p. 225).
Derived from

None

wxDataOutputStream::wxDataOutputStream

wxDataOutputStream(wxOutputStream& stream)

wxDataOutputStream(wxOutputStream& stream, wxMBConv& conv =
wxMBConvUTF8)

Constructs a datastream object from an output stream. Only write methods will be
available. The second form is only available in Unicode build of wxWindows.

Parameters

Stream
The output stream.

235

CHAPTER 7

conv
Charset conversion object object used to encoding Unicode strings before writing
them to the stream in Unicode mode (see wxDataOutputStream::WriteString (p.
237)documentation for detailed description). Note that you must not destroyconv
before you destroy this wxDataOutputStream instance! It is recommended to use
default value (UTF-8).

wxDataOutputStream::~wxDataOutputStream

~wxDataOutputStream()

Destroys the wxDataOutputStream object.

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered(bool be order)

If be_order is true, all data will be written in big-endian order, e.g. for reading on a Sparc
or from Java-Streams (which always use big-endian order), otherwise data will be written
in little-endian order.

wxDataOutputStream::Write8

void Write8(wxUint8 i8)

Writes the single byte i8 to the stream.

void Write8(const wxUint8 *buffer, size_t size)

Writes an array of bytes to the stream. The amount of bytes to write is specified with the

size variable.

wxDataOutputStream::Write16

void Write16(wxUint16 /16)

Writes the 16 bit unsigned integer /16 to the stream.

void Write16(const wxUint16 *buffer, size_t size)

Writes an array of 16 bit unsigned integer to the stream. The amount of 16 bit unsigned

integer to write is specified with the size variable.

wxDataOutputStream::Write32

void Write32(wxUint32 i32)

236

CHAPTER 7

Writes the 32 bit unsigned integer i32 to the stream.
void Write32(const wxUint32 *buffer, size_t size)
Writes an array of 32 bit unsigned integer to the stream. The amount of 32 bit unsigned

integer to write is specified with the size variable.

wxDataOutputStream::Write64

void Write64(wxUint64 i64)

Writes the 64 bit unsigned integer i64 to the stream.

void Write64(const wxUint64 *buffer, size_t size)

Writes an array of 64 bit unsigned integer to the stream. The amount of 64 bit unsigned

integer to write is specified with the size variable.

wxDataOutputStream::WriteDouble

void WriteDouble(double f)

Writes the double fto the stream using the IEEE format.

void WriteDouble(const double *buffer, size_t size)

Writes an array of double to the stream. The amount of double to write is specified with

the size variable.

wxDataOutputStream::WriteString

void WriteString(const wxString&string)

Writes string to the stream. Actually, this method writes the size of the string before
writing string itself.

In ANSI build of wxWindows, the string is written to the stream in exactly same way it is
represented in memory. In Unicode build, however, the string is first converted to
multibyte representation with conv object passed to stream's constructor (consequently,
ANSI application can read data written by Unicode application, as long as they agree on
encoding) and this representation is written to the stream. UTF-8 is used by default.

wxDateSpan

237

CHAPTER 7

This class is a "logical time span" and is useful for implementing program logic for such
things as "add one month to the date" which, in general, doesn't mean to add
60*60*24*31 seconds to it, but to take the same date the next month (to understand that
this is indeed different consider adding one month to Feb, 15 -- we want to get Mar, 15,
of course).

When adding a month to the date, all lesser components (days, hours, ...) won't be
changed unless the resulting date would be invalid: for example, Jan 31 + 1 month will
be Feb 28, not (non existing) Feb 31.

Because of this feature, adding and subtracting back again the same wxDateSpan will
not, in general give back the original date: Feb 28 - 1 month will be Jan 28, not Jan 31!

wxDateSpan objects can be either positive or negative. They may be multiplied by
scalars which multiply all deltas by the scalar: i.e.2*(1 month and 1 day) is 2 months
and 2 days. They can be added together and with wxDateTime (p. 244) or wxTimeSpan
(p. 1336), but the type of result is different for each case.

Beware about weeks: if you specify both weeks and days, the total number of days
added will be 7*weeks + days! See also GetTotalDays() function.

Equality operators are defined for wxDateSpans. Two datespans are equal if and only if
they both give the same target date when added to everysource date. Thus
wxDateSpan::Months(1) is not equal to wxDateSpan::Days(30), because they don't give
the same date when added to 1 Feb. But wxDateSpan::Days(14) is equal to
wxDateSpan::Weeks(2)

Finally, notice that for adding hours, minutes and so on you don't need this class at all:
wxTimeSpan (p. 1336) will do the job because there are no subtleties associated with
those (we don't support leap seconds).

Derived from

No base class

Include files

<wx/datetime.h>

See also

Date classes overview (p. 1621), wxDateTime (p. 244)

wxDateSpan::wxDateSpan

wxDateSpan(int years = 0, int months = 0, int weeks = 0, int days = 0)

238

CHAPTER 7

Constructs the date span object for the given number of years, months, weeks and days.
Note that the weeks and days add together if both are given.

wxDateSpan::Add

wxDateSpan Add(const wxDateSpan& other) const

wxDateSpan& Add(const wxDateSpan& other)

wxDateSpan& operator+=(const wxDateSpan& other)

Returns the sum of two date spans. The first version returns a new object, the second

and third ones modify this object in place.

wxDateSpan::Day

static wxDateSpan Day()

Returns a date span object corresponding to one day.

See also

Days (p. 239)

wxDateSpan::Days

static wxDateSpan Days(int days)

Returns a date span object corresponding to the given number of days.

See also

Day (p. 239)

wxDateSpan::GetDays

int GetDays() const

Returns the number of days (only, that it not counting the weeks component!) in this date
span.

See also

GetTotalDays (p. 240)

239

CHAPTER 7

wxDateSpan::GetMonths

int GetMonths() const

Returns the number of the months (not counting the years) in this date span.

wxDateSpan::GetTotalDays

int GetTotalDays() const

Returns the combined number of days in this date span, counting both weeks and days.
It still doesn't take neither months nor years into the account.

See also

GetWeeks (p. 240), GetDays (p. 239)

wxDateSpan::GetWeeks

int GetWeeks() const

Returns the number of weeks in this date span.

See also

GetTotalDays (p. 240)

wxDateSpan::GetYears

int GetYears() const

Returns the number of years in this date span.

wxDateSpan::Month

static wxDateSpan Month()

Returns a date span object corresponding to one month.

See also

Months (p. 240)

wxDateSpan::Months

240

CHAPTER 7

static wxDateSpan Months(int mon)

Returns a date span object corresponding to the given number of months.

See also

Month (p. 240)

wxDateSpan::Multiply

wxDateSpan Multiply(int factor) const
wxDateSpan& Multiply(int factor)
wxDateSpan& operator*=(int factor)

Returns the product of the date span by the specified factor. The product is computed by
multiplying each of the components by the factor.

The first version returns a new object, the second and third ones modify this object in
place.

wxDateSpan::Negate

wxDateSpan Negate() const
Returns the date span with the opposite sign.
See also

Neg (p. 241)

wxDateSpan::Neg

wxDateSpan& Neg()
wxDateSpan& operator-()
Changes the sign of this date span.
See also

Negate (p. 241)

wxDateSpan::SetDays

241

CHAPTER 7

wxDateSpan& SetDays(int n)

Sets the number of days (without modifying any other components) in this date span.

wxDateSpan::SetYears

wxDateSpan& SetYears(int n)

Sets the number of years (without modifying any other components) in this date span.

wxDateSpan::SetMonths

wxDateSpan& SetMonths(int n)

Sets the number of months (without modifying any other components) in this date span.

wxDateSpan::SetWeeks

wxDateSpan& SetWeeks(int n)

Sets the number of weeks (without modifying any other components) in this date span.

wxDateSpan::Subtract

wxDateSpan Subtract(const wxDateSpan& other) const
wxDateSpan& Subtract(const wxDateSpan& other)
wxDateSpan& operator+=(const wxDateSpan& other)

Returns the difference of two date spans. The first version returns a new object, the
second and third ones modify this object in place.

wxDateSpan::Week

static wxDateSpan Week()

Returns a date span object corresponding to one week.
See also

Weeks (p. 243)

242

CHAPTER 7

wxDateSpan::Weeks

static wxDateSpan Weeks(int weeks)
Returns a date span object corresponding to the given number of weeks.
See also

Week (p. 242)

wxDateSpan::Year

static wxDateSpan Year()
Returns a date span object corresponding to one year.
See also

Years (p. 243)

wxDateSpan::Years

static wxDateSpan Years(int years)
Returns a date span object corresponding to the given number of years.
See also

Year (p. 243)

wxDateSpan::operator==

bool operator==(wxDateSpan& other) const
Returns t rue if this date span is equal to the other one. Two date spans are considered

equal if and only if they have the same number of years and months and the same total
number of days (counting both days and weeks).

wxDateSpan::operator!=

bool operator!=(wxDateSpan& other) const
Returns true if this date span is different from the other one.

See also

243

CHAPTER 7

operator== (p. 243)

wxDateTime

wxDateTime class represents an absolute moment in the time.
Types

The type wxDateTime_t is typedefed as unsigned short and is used to contain the
number of years, hours, minutes, seconds and milliseconds.

Constants

Global constant wxDefaultDateTime and synonym for it wxInvalidDateTime are
defined. This constant will be different from any valid wxDateTime object.

All the following constants are defined inside wxDateTime class (i.e., to refer to them you
should prepend their names with wxDateTime: :).

Time zone symbolic names:

enum TZ

{
// the time in the current time zone
Local,

// zones from GMT (= Greenwhich Mean Time): they're guaranteed
to be

// consequent numbers, so writing something like “GMTO0 + offset'
is

// safe 1f abs(offset) <= 12

// underscore stands for minus

GMT_12, GMT_11, GMT_10, GMT_9, GMT_8, GMT_7,

GMT_6, GMT_5, GMT_4, GMT_3, GMT_2, GMT_1,

GMTO,

GMT1, GMT2, GMT3, GMT4, GMT5, GMT6,

GMT7, GMTS8, GMT9, GMT10, GMT11l, GMT12,

// Note that GMT12 and GMT_12 are not the same: there is a
difference

// of exactly one day between them

// some symbolic names for TZ

// Europe

WET = GMTO, // Western Europe Time

WEST = GMT1, // Western Europe Summer
Time

CET = GMT1, // Central Europe Time

CEST = GMT2, // Central Europe Summer
Time

EET = GMT2, // Eastern Europe Time

EEST = GMT3, // Eastern Europe Summer
Time

244

CHAPTER 7

MSK = GMT3, // Moscow Time

MSD = GMT4, // Moscow Summer Time

// US and Canada

AST = GMT_4, // Atlantic Standard Time

ADT = GMT_3, // Atlantic Daylight Time

EST = GMT_5, // Eastern Standard Time

EDT = GMT_A4, // Eastern Daylight Saving
Time

CST = GMT_6, // Central Standard Time

CDT = GMT_5, // Central Daylight Saving
Time

MST = GMT_7, // Mountain Standard Time

MDT = GMT_6, // Mountain Daylight Saving
Time

PST = GMT_S, // Pacific Standard Time

PDT = GMT_7, // Pacific Daylight Saving
Time

HST = GMT_10, // Hawaiian Standard Time

AKST = GMT_9, // Alaska Standard Time

AKDT = GMT_S8, // Alaska Daylight Saving
Time

// Australia

A_WST = GMTS, // Western Standard Time

A_CST = GMT12 + 1, // Central Standard Time
(+9.5)

A_EST = GMT10, // Eastern Standard Time

A_ESST = GMT11, // Eastern Summer Time

// Universal Coordinated Time = the new and politically correct
name

// for GMT
UTC = GMTO
}i

Month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec and
Inv_Month for an invalid.month value are the values of wxDateTime: :Monthenum.

Likewise, Sun, Mon, Tue, Wed, Thu, Fri, Sat, and Inv_WeekDay are the values
inwxDateTime: :WeekDay enum.

Finally, Inv_Year is defined to be an invalid value for year parameter.

GetMonthName() (p. 253) andGetWeekDayName (p. 253) functions use the followign
flags:

enum NameFlags
{
Name_Full
Name_Abbr

0x01, // return full name
0x02 // return abbreviated name

}i

Several functions accept an extra parameter specifying the calendar to use (although
most of them only support now the Gregorian calendar). This parameters is one of the
following values:

enum Calendar

{

245

CHAPTER 7

Gregorian, // calendar currently in use in Western countries
Julian // calendar in use since -45 until the 1582 (or
later)
}i

Date calculations often depend on the country and wxDateTime allows to set the country
whose conventions should be used using SetCountry (p. 254). It takes one of the
following values as parameter:

enum Country

{
Country_Unknown, // no special information for this country
Country_Default, // set the default country with SetCountry ()
method
// or use the default country with any other

Country_WesternEurope_Start,

Country_EEC = Country_WesternEurope_Start,
France,

Germany,

UK,

Country_WesternEurope_End = UK,

Russia,

USA
}i

Different parts of the world use different conventions for the week start. In some
countries, the week starts on Sunday, while in others -- on Monday. The ISO standard
doesn't address this issue, so we support both conventions in the functions whose result
depends on it (GetWeekOfYear (p. 261) and GetWeekOfMonth (p. 261)).

The desired behvaiour may be specified by giving one of the following constants as
argument to these functions:

enum WeekFlags

{

Default_First, // Sunday_First for US, Monday_First for the
rest

Monday_First, // week starts with a Monday

Sunday_First // week starts with a Sunday

i
Derived from
No base class
Include files
<wx/datetime.h>
See also

Date classes overview (p. 1621), wxTimeSpan (p. 1336), wxDateSpan (p. 237),
wxCalendarCtrl (p. 111)

246

CHAPTER 7

Static functions

For convenience, all static functions are collected here. These functions either set or
return the static variables of wxDateSpan (the country), return the current moment, year,
month or number of days in it, or do some general calendar-related actions.

Please note that although several function accept an extra Calendamparameter, it is
currently ignored as only the Gregorian calendar is supported. Future versions will
support other calendars.

wxPython note: These methods are standalone functions named
wxDateTime_<StaticMethodName> in wxPython.

SetCountry (p. 254)

GetCountry (p. 252)
IsWestEuropeanCountry (p. 254)
GetCurrentYear (p. 252)
ConvertYearToBC (p. 251)
GetCurrentMonth (p. 252)
IsLeapYear (p. 253)
GetCentury (p. 252)
GetNumberOfDays (p. 253)
GetNumberOfDays (p. 253)
GetMonthName (p. 253)
GetWeekDayName (p. 253)
GetAmPmStrings (p. 251)
IsDSTApplicable (p. 254)
GetBeginDST (p. 251)
GetEndDST (p. 252)

Now (p. 254)

UNow (p. 255)

Today (p. 255)

Constructors, assignment operators and setters

Constructors and various set () methods are collected here. If you construct a date
object from separate values for day, month and year, you should use IsValid (p. 259)
method to check that the values were correct as constructors can not return an error
code.

wxDateTime() (p. 255)

wxDateTime(time_t) (p. 255)

wxDateTime(struct tm) (p. 255)
wxDateTime(double jdn) (p. 256)

wxDateTime(h, m, s, ms) (p. 256)
wxDateTime(day, mon, year, h, m, s, ms) (p. 256)

247

CHAPTER 7

SetToCurrent (p. 256)

Set(time_t) (p. 256)

Set(struct tm) (p. 257)

Set(double jdn) (p. 257)

Set(h, m, s, ms) (p. 257)

Set(day, mon, year, h, m, s, ms) (p. 257)

SetFromDOS(unsigned long ddt) (p. 261)

ResetTime (p. 257)

SetYear (p. 258)

SetMonth (p. 258)

SetDay (p. 257)

SetHour (p. 258)

SetMinute (p. 258)

SetSecond (p. 258)

SetMillisecond (p. 258)

operator=(time_t) (p. 259)

operator=(struct tm) (p. 259)
Accessors

Here are the trivial accessors. Other functions, which might have to perform some more
complicated calculations to find the answer are under the Calendar calculations (p. 250)
section.

IsValid (p. 259)

GetTicks (p. 259)
GetYear (p. 259)
GetMonth (p. 259)
GetDay (p. 260)
GetWeekDay (p. 260)
GetHour (p. 260)
GetMinute (p. 260)
GetSecond (p. 260)
GetMillisecond (p. 260)
GetDayOfYear (p. 260)
GetWeekOfYear (p. 261)
GetWeekOfMonth (p. 261)
GetYearDay (p. 270)
IsWorkDay (p. 261)
IsGregorianDate (p. 261)
GetAsDOS (p. 262)

Date comparison

There are several function to allow date comparison. To supplement them, a few global
operators >, < etc taking wxDateTime are defined.

IsEqualTo (p. 262)
IsEarlierThan (p. 262)
IsLaterThan (p. 262)

248

CHAPTER 7

IsStrictlyBetween (p. 262)
IsBetween (p. 262)
IsSameDate (p. 263)
IsSameTime (p. 263)
IsEqualUpTo (p. 263)

Date arithmetics

These functions carry out arithmetics (p. 1623) on the wxDateTime objects. As explained
in the overview, either wxTimeSpan or wxDateSpan may be added to wxDateTime,
hence all functions are overloaded to accept both arguments.

Also, both 2dd () and subtract () have both const and non-const version. The first
one returns a new obejct which represents the sum/difference of the original one with the
argument while the second form modifies the object to which it is applied. The operators
-= and += are defined to be equivalent to the second forms of these functions.

Add(wxTimeSpan) (p. 263)
Add(wxDateSpan) (p. 263)
Subtract(wxTimeSpan) (p. 264)
Subtract(wxDateSpan) (p. 264)
Subtract(wxDateTime) (p. 264)
oparator+=(wxTimeSpan) (p. 263)
oparator+=(wxDateSpan) (p. 263)
oparator-=(wxTimeSpan) (p. 264)
oparator-=(wxDateSpan) (p. 264)

Parsing and formatting dates

These functions convert wxDateTime obejcts to and from text. The conversions to text
are mostly trivial: you can either do it using the default date and time representations for
the current locale (FormatDate (p. 266) and FormatTime (p. 266)), using the
international standard representation defined by ISO 8601 (FormatiSODate (p. 266) and
FormatISOTime (p. 267)) or by specifying any format at all and using Format (p. 266)
directly.

The conversions from text are more interesting, as there are much more possibilities to
care about. The simplest cases can be taken care of with ParseFormat (p. 265) which
can parse any date in the given (rigid) format. ParseRfc822Date (p. 264) is another
function for parsing dates in predefined format -- the one of RFC 822 which (still...)
defines the format of email messages on the Internet. This format can not be described
with strptime (3) -like format strings used by Format (p. 266), hence the need for a
separate function.

But the most interesting functions are ParseTime (p. 266), ParseDate (p. 265) and
ParseDateTime (p. 265). They try to parse the date ans time (or only one of them) in
'free’ format, i.e. allow them to be specified in any of possible ways. These functions will
usually be used to parse the (interactive) user input which is not bound to be in any

249

CHAPTER 7

predefined format. As an example, ParseDateTime (p. 265) can parse the strings such
as "tomorrow", "March first" and even "next Sunday".

ParseRfc822Date (p. 264)
ParseFormat (p. 265)
ParseDateTime (p. 265)
ParseDate (p. 265)
ParseTime (p. 266)
Format (p. 266)
FormatDate (p. 266)
FormatTime (p. 266)
FormatISODate (p. 266)
FormatISOTime (p. 267)

Calendar calculations

The functions in this section perform the basic calendar calculations, mostly related to
the week days. They allow to find the given week day in the week with given number
(either in the month or in the year) and so on.

All (non-const) functions in this section don't modify the time part of the wxDateTime --
they only work with the date part of it.

SetToWeekDayInSameWeek (p. 267)
GetWeekDayInSameWeek (p. 267)
SetToNextWeekDay (p. 267)
GetNextWeekDay (p. 267)
SetToPrevWeekDay (p. 267)
GetPrevWeekDay (p. 268)
SetToWeekDay (p. 268)
GetWeekDay (p. 268)
SetToLastWeekDay (p. 268)
GetLastWeekDay (p. 269)
SetToTheWeek (p. 269)

GetWeek (p. 269)
SetToLastMonthDay (p. 269)
GetLastMonthDay (p. 269)
SetToYearDay (p. 269)
GetYearDay (p. 270)

Astronomical/historical functions

Some degree of support for the date units used in astronomy and/or history is provided.
You can construct a wxDateTime object from aJDN (p. 257) and you may also get its
JDN,MJD (p. 270) orRata Die number (p. 271) from it.

wxDateTime(double jdn) (p. 256)
Set(double jdn) (p. 257)

250

CHAPTER 7

GetJdulianDayNumber (p. 270)
GetJDN (p. 270)
GetModifiedJulianDayNumber (p. 270)
GetMJD (p. 270)

GetRataDie (p. 271)

Time zone and DST support

Please see the time zone overview (p. 1624) for more information about time zones.
ormally, these functions should be rarely used.

ToTimezone (p. 271)
MakeTimezone (p. 271)
ToGMT (p. 271)
MakeGMT (p. 271)
GetBeginDST (p. 251)
GetEndDST (p. 252)
IsDST (p. 271)

wxDateTime::ConvertYearToBC

static int ConvertYearToBC(int year)

Converts the year in absolute notation (i.e. a number which can be negative, positive or
zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year
0 is year 1 BC and so for other years there is a difference of 1.

This function should be used like this:

wxDateTime dt(...);

int y = dt.GetYear();

printf ("The year is %d%s", wxDateTime::ConvertYearToBC(y), y > 0 ?
"AD" : "BC") ;

wxDateTime::GetAmPmStrings

static void GetAmPmStrings(wxString *am, wxString *pm)

Returns the translations of the strings 2M and PM used for time formatting for the current
locale. Either of the pointers may be NULL if the corresponding value is not needed.

wxDateTime::GetBeginDST

static wxDateTime GetBeginDST(int year = Inv_Year, Country country =
Country_Defaul)

251

CHAPTER 7

Get the beginning of DST for the given country in the given year (current one by default).
This function suffers from limitations described inDST overview (p. 1625).

See also

GetEndDST (p. 252)

wxDateTime::GetCountry

static Country GetCountry()

Returns the current default country. The default country is used for DST calculations, for
example.

See also

SetCountry (p. 254)

wxDateTime::GetCurrentYear

static int GetCurrentYear(Calendar cal = Gregorian)

Get the current year in given calendar (only Gregorian is currently supported).

wxDateTime::GetCurrentMonth

static Month GetCurrentMonth(Calendar cal = Gregorian)

Get the current month in given calendar (only Gregorian is currently supported).

wxDateTime::GetCentury

static int GetCentury(int year = Inv_Year)

Get the current century, i.e. first two digits of the year, in given calendar (only Gregorian
is currently supported).

wxDateTime::GetEndDST

static wxDateTime GetEndDST(int year = Inv_Year, Country country =
Country _Default)

Returns the end of DST for the given country in the given year (current one by default).

252

CHAPTER 7

See also

GetBeginDST (p. 251)

wxDateTime::GetMonthName

static wxString GetMonthName(Month month, NameFlags flags = Name_Full)
Gets the full (default) or abbreviated (specify Name_2Abbr name of the given month.
See also

GetWeekDayName (p. 253)

wxDateTime::GetNumberOfDays

static wxDateTime_t GetNumberOfDays(int year, Calendar cal = Gregorian)

static wxDateTime_t GetNumberOfDays(Month month, int year = Inv_Year, Calendar
cal = Gregorian)

Returns the number of days in the given year or in the given month of the year.
The only supported value for cal parameter is currently Gregorian.
wxPython note: These two methods are named GetNumberOfDaysInYearand

GetNumberOfDaysInMonth in wxPython.

wxDateTime::GetWeekDayName

static wxString GetWeekDayName(WeekDay weekday, NameFlags flags =
Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given week day.
See also

GetMonthName (p. 253)

wxDateTime::IsLeapYear

static bool IsLeapYear(int year = Inv_Year, Calendar cal = Gregorian)
Returns t rue if the yearis a leap one in the specified calendar.

This functions supports Gregorian and Julian calendars.

253

CHAPTER 7

wxDateTime::IsWestEuropeanCountry

static bool IsWestEuropeanCountry(Country country = Country Default)
This function returns t rue if the specified (or default) country is one of Western

European ones. It is used internally by wxDateTime to determine the DST convention
and date and time formatting rules.

wxDateTime::IsDSTApplicable

static bool IsDSTApplicable(int year = Inv_Year, Country country = Country _Default)

Returns true if DST was used n the given year (the current one by default) in the given
country.

wxDateTime::Now

static wxDateTime Now()

Returns the object corresponding to the current time.

Example:
wxDateTime now = wxDateTime: :Now () ;
printf ("Current time in Paris:\t%s\n", now.Format ("%c",

wxDateTime: :CET) .c_str());

Note that this function is accurate up to second: wxDateTime::UNow (p. 255) should be
used for better precision (but it is less efficient and might not be available on all
platforms).

See also

Today (p. 255)

wxDateTime::SetCountry

static void SetCountry(Country country)

Sets the country to use by default. This setting influences the DST calculations, date
formatting and other things.

The possible values for country parameter are enumerated inwxDate Time constants
section (p. 244).

See also

254

CHAPTER 7

GetCountry (p. 252)

wxDateTime::Today

static wxDateTime Today()

Returns the object corresponding to the midnight of the current day (i.e. the same as
Now() (p. 254), but the time part is set to 0).

See also

Now (p. 254)

wxDateTime::UNow

static wxDateTime UNow()

Returns the object corresponding to the current time including the milliseconds if a
function to get time with such precision is available on the current platform (supported
under most Unices and Win32).

See also

Now (p. 254)

wxDateTime::wxDateTime

wxDateTime()

Default constructor. Use one of set () functions to initialize the object later.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(time_t timet)
Same as Set (p. 255).

wxPython note: This constructor is named wxDateTimeFromTimeT in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(const struct tm& im)

Same as Set (p. 255)

255

CHAPTER 7

wxPython note: Unsupported.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(double jdn)
Same as Set (p. 256)

wxPython note: This constructor is named wxDateTimeFromJDN in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(wxDateTime_t hour, wxDateTime_t minute = 0,
wxDateTime_t second = 0, wxDateTime_t millisec = 0)

Same as Set (p. 256)

wxPython note: This constructor is named wxDateTimeFromHMS in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(wxDateTime_t day, Month month = Inv_Month, int
Inv_Year, wxDateTime _t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second =
0, wxDateTime_t millisec = 0)

Same as Set (p. 257)

wxPython note: This constructor is named wxDateTimeFromDMY in wxPython.

wxDateTime::SetToCurrent

wxDateTime& SetToCurrent()

Sets the date and time of to the current values. Same as assigning the result of Now()
(p. 254) to this object.

wxDateTime::Set

wxDateTime& Set(time_t timet)
Constructs the object from timet value holding the number of seconds since Jan 1, 1970.

wxPython note: This method is named SetTimeT in wxPython.

256

CHAPTER 7

wxDateTime::Set

wxDateTime& Set(const struct tm& tm)
Sets the date and time from the broken down representation in the standardtm structure.

wxPython note: Unsupported.

wxDateTime::Set

wxDateTime& Set(double jan)

Sets the date from the so-called Julian Day Number.

By definition, the Julian Day Number, usually abbreviated as JDN, of a particular instant
is the fractional number of days since 12 hours Universal Coordinated Time (Greenwich

mean noon) on January 1 of the year -4712 in the Julian proleptic calendar.

wxPython note: This method is named Set JbN in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t
second = 0, wxDateTime_t millisec = 0)

Sets the date to be equal to Today (p. 255) and the time from supplied parameters.

wxPython note: This method is named SetHMS in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t day, Month month = Inv_Month, int year = Inv_Year,
wxDateTime _t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0,
wxDateTime_t millisec = 0)

Sets the date and time from the parameters.

wxDateTime::ResetTime

wxDateTime& ResetTime()

Reset time to midnight (00:00:00) without changing the date.

257

CHAPTER 7

wxDateTime::SetYear

wxDateTime& SetYear(int year)

Sets the year without changing other date components.

wxDateTime::SetMonth

wxDateTime& SetMonth(Month month)

Sets the month without changing other date components.

wxDateTime::SetDay

wxDateTime& SetDay(wxDateTime_t day)

Sets the day without changing other date components.

wxDateTime::SetHour

wxDateTime& SetHour(wxDateTime_t hour)

Sets the hour without changing other date components.

wxDateTime::SetMinute

wxDateTime& SetMinute(wxDateTime_t minute)

Sets the minute without changing other date components.

wxDateTime::SetSecond

wxDateTime& SetSecond(wxDateTime_t second)

Sets the second without changing other date components.

wxDateTime::SetMillisecond

wxDateTime& SetMillisecond(wxDateTime_t millisecond)

Sets the millisecond without changing other date components.

258

CHAPTER 7

wxDateTime::operator=

wxDateTime& operator(time_t timel)

Same as Set (p. 256).

wxDateTime::operator=

wxDateTime& operator(const struct tm& im)

Same as Set (p. 257).

wxDateTime::IsValid

bool IsValid() const

Returns t rue if the object represents a valid time moment.

wxDateTime::GetTm

Tm GetTm(const TimeZone& tz = Local) const

Returns broken down representation of the date and time.

wxDateTime::GetTicks

time_t GetTicks() const

Returns the number of seconds since Jan 1, 1970. An assert failure will occur if the date
is not in the range covered by time_t type.

wxDateTime::GetYear

int GetYear(const TimeZone& {z = Local) const

Returns the year in the given timezone (local one by default).

wxDateTime::GetMonth

Month GetMonth(const TimeZone& {z = Local) const

Returns the month in the given timezone (local one by default).

259

CHAPTER 7

wxDateTime::GetDay

wxDateTime_t GetDay(const TimeZone& tz = Local) const

Returns the day in the given timezone (local one by default).

wxDateTime::GetWeekDay

WeekDay GetWeekDay(const TimeZone& t{z = Local) const

Returns the week day in the given timezone (local one by default).

wxDateTime::GetHour

wxDateTime_t GetHour(const TimeZone& iz = Local) const

Returns the hour in the given timezone (local one by default).

wxDateTime::GetMinute

wxDateTime_t GetMinute(const TimeZone& {z = Local) const

Returns the minute in the given timezone (local one by default).

wxDateTime::GetSecond

wxDateTime_t GetSecond(const TimeZone& tz = Local) const

Returns the seconds in the given timezone (local one by default).

wxDateTime::GetMillisecond

wxDateTime_t GetMillisecond(const TimeZone& tz = Local) const

Returns the milliseconds in the given timezone (local one by default).

wxDateTime::GetDayOfYear

wxDateTime_t GetDayOfYear(const TimeZone& {z = Local) const

Returns the day of the year (in 1...366 range) in the given timezone (local one by
default).

260

CHAPTER 7

wxDateTime::GetWeekOfYear

wxDateTime_t GetWeekOfYear(WeekFlags flags = Monday _First, const TimeZone&
tz = Local) const

Returns the number of the week of the year this date is in. The first week of the year is,
according to international standards, the one containing Jan 4. The week number is in
1...53 range (52 for non leap years).

The function depends on the week start (p. 244) convention specified by the flags
argument.

wxDateTime::GetWeekOfMonth

wxDateTime_t GetWeekOfMonth(WeekFlags flags = Monday_First, const
TimeZone& iz = Local) const

Returns the ordinal number of the week in the month (in 1...5 range).
As GetWeekOfYear (p. 261), this function supports both conventions for the week start.

See the description of theseweek start (p. 244) conventions.

wxDateTime::IsWorkDay

bool IsWorkDay(Country country = Country Default) const

Returns t rue is this day is not a holiday in the given country.

wxDateTime::IsGregorianDate

bool IsGregorianDate(GregorianAdoption country = Gr_Standard) const
Returns t rue if the given date os later than the date of adoption of the Gregorian

calendar in the given country (and hence the Gregorian calendar calculations make
sense for it).

wxDateTime::SetFromDOS

wxDateTime& Set(unsigned long ddf)

Sets the date from the date and time in DOS
(http://developer.novell.com/ndk/doc/smscomp/index.html?page=/ndk
/doc/smscomp/sms_docs/data/hc2vlu5i.html) format.

261

CHAPTER 7

wxDateTime::GetAsDOS

unsigned long GetAsDOS() const
Returns the date and time in DOS

(http://developer.novell.com/ndk/doc/smscomp/index.html?page=/ndk
/doc/smscomp/sms_docs/data/hc2vlu5i.html) format.

wxDateTime::IsEqualTo

bool IsEqualTo(const wxDateTime& datetime) const

Returns t rue if the two dates are strictly identical.

wxDateTime::IsEarlierThan

bool IsEarlierThan(const wxDateTime& datetime) const

Returns t rue if this date precedes the given one.

wxDateTime::IsLaterThan

bool IsLaterThan(const wxDateTime& datetime) const

Returns t rue if this date is later than the given one.

wxDateTime::IsStrictlyBetween

bool IsStrictlyBetween(const wxDateTime& ¢7, const wxDateTime& {2) const
Returns t rue if this date lies strictly between the two others,
See also

IsBetween (p. 262)

wxDateTime::IsBetween

bool IsBetween(const wxDateTime& t7, const wxDateTime& t2) const

Returns true if IsStrictlyBetween (p. 262)is t rue or if the date is equal to one of the
limit values.

262

CHAPTER 7

See also

IsStrictlyBetween (p. 262)

wxDateTime::IsSameDate

bool IsSameDate(const wxDateTime& df) const

Returns true if the date is the same without comparing the time parts.

wxDateTime::IsSameTime

bool IsSameTime(const wxDateTime& df) const

Returns true if the time is the same (although dates may differ).

wxDateTime::IsEqualUpTo

bool IsEqualUpTo(const wxDateTime& dt, const wxTimeSpan& ts) const

Returns t rue if the date is equal to another one up to the given time interval, i.e. if the
absolute difference between the two dates is less than this interval.

wxDateTime::Add

wxDateTime Add(const wxTimeSpan& diff) const
wxDateTime& Add(const wxTimeSpan& diff)
wxDateTime& operator+=(const wxTimeSpan& diff)
Adds the given time span to this object.

wxPython note: This method is named AddTs in wxPython.

wxDateTime::Add

wxDateTime Add(const wxDateSpan& diff) const
wxDateTime& Add(const wxDateSpan& diff)
wxDateTime& operator+=(const wxDateSpan& diff)

Adds the given date span to this object.

263

CHAPTER 7

wxPython note: This method is named AddDs in wxPython.

wxDateTime::Subtract

wxDateTime Subtract(const wxTimeSpan& diff) const
wxDateTime& Subtract(const wxTimeSpan& diff)
wxDateTime& operator-=(const wxTimeSpan& diff)
Subtracts the given time span from this object.

wxPython note: This method is named SubtractTs in wxPython.

wxDateTime::Subtract

wxDateTime Subtract(const wxDateSpan& diff) const
wxDateTime& Subtract(const wxDateSpan& diff)
wxDateTime& operator-=(const wxDateSpan& diff)
Subtracts the given date span from this object.

wxPython note: This method is named SubtractDs in wxPython.

wxDateTime::Subtract

wxTimeSpan Subtract(const wxDateTime& df) const

Subtracts another date from this one and returns the difference between them as
wxTimeSpan.

wxDateTime::ParseRfc822Date

const wxChar * ParseRfc822Date(const wxChar* date)

Parses the string date looking for a date formatted according to the RFC 822 in it. The
exact description of this format may, of course, be found in the RFC (section 5), but,
briefly, this is the format used in the headers of Internet email messages and one of the
most common strings expressing date in this format may be something like "sat, 18
Dec 1999 00:48:30 +0100™".

Returns NULL if the conversion failed, otherwise return the pointer to the character
immediately following the part of the string which could be parsed. If the entire string
contains only the date in RFC 822 format, the returned pointer will be pointing to a NUL

264

CHAPTER 7

character.
This function is intentionally strict, it will return an error for any string which is not RFC

822 compliant. If you need to parse date formatted in more free ways, you should use
ParseDateTime (p. 265) orParseDate (p. 265) instead.

wxDateTime::ParseFormat

const wxChar * ParseFormat(const wxChar *date, const wxChar *format = "%c",
const wxDateTime& dateDef = wxDefaultDate Time)

This function parses the string date according to the givenformat. The system
strptime (3) function is used whenever available, but even if it is not, this function is
still implemented (although support for locale-dependent format specificators such as
"sc', "$x" or"sxX" may be not perfect). This function does handle the month and
weekday names in the current locale on all platforms, however.

Please the description of ANSI C function strftime (3) for the syntax of the format
string.

The dateDef parameter is used to fill in the fields which could not be determined from the
format string. For example, if the format is "%d" (the day of the month), the month and
the year are taken from dateDef. If it is not specified, Today (p. 255) is used as the
default date.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDateTime

const wxChar * ParseDateTime(const wxChar *datetime)

Parses the string datetime containing the date and time in free format. This function tries
as hard as it can to interpret the given string as date and time. Unlike ParseRfc822Date
(p. 264), it will accept anything that may be accepted and will only reject strings which
can not be parsed in any way at all.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDate

const wxChar * ParseDate(const wxChar *date)

This function is like ParseDateTime (p. 265), but it only allows the date to be specified. It
is thus less flexible then ParseDateTime (p. 265), but also has less chances to
misinterpret the user input.

265

CHAPTER 7

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseTime

const wxChar * ParseTime(const wxChar *time)

This functions is like ParseDateTime (p. 265), but only allows the time to be specified in
the input string.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::Format

wxString Format(const wxChar *format = "%c", const TimeZone& {z = Local) const

This function does the same as the standard ANSI C strftime (3) function. Please
see its description for the meaning of format parameter.

It also accepts a few wxWindows-specific extensions: you can optionally specify the
width of the field to follow using print £ (3) -like syntax and the format specification %1
can be used to get the number of milliseconds.

See also

ParseFormat (p. 265)

wxDateTime::FormatDate

wxString FormatDate() const

Identical to calling Format() (p. 266) with "%x"argument (which means 'preferred date
representation for the current locale').

wxDateTime::FormatTime

wxString FormatTime() const

Identical to calling Format() (p. 266) with "%x"argument (which means 'preferred time
representation for the current locale').

wxDateTime::FormatlSODate

266

CHAPTER 7

wxString FormatiSODate() const

This function returns the date representation in the ISO 8601 format (YYYY-MM-DD).

wxDateTime::FormatlSOTime

wxString FormatiISOTime() const

This function returns the time representation in the ISO 8601 format (HH:MM:SS).

wxDateTime::SetToWeekDaylnSameWeek

wxDateTime& SetToWeekDaylnSameWeek(WeekDay weekday, WeekFlagsflags =
Monday_First)

Adjusts the date so that it will still lie in the same week as before, but its week day will be
the given one.

Returns the reference to the modified object itself.

wxDateTime::GetWeekDaylnSameWeek

wxDateTime GetWeekDaylnSameWeek(WeekDay weekday, WeekFlagsflags =
Monday_First) const

Returns the copy of this object to which SetToWeekDaylnSameWeek (p. 267) was
applied.

wxDateTime::SetToNextWeekDay

wxDateTime& SetToNextWeekDay(WeekDay weekday)
Sets the date so that it will be the first weekday following the current date.

Returns the reference to the modified object itself.

wxDateTime::GetNextWeekDay

wxDateTime GetNextWeekDay(WeekDay weekday) const

Returns the copy of this object to whichSetToNextWeekDay (p. 267) was applied.

wxDateTime::SetToPrevWeekDay

267

CHAPTER 7

wxDateTime& SetToPrevWeekDay(WeekDay weekday)
Sets the date so that it will be the last weekday before the current date.

Returns the reference to the modified object itself.

wxDateTime::GetPrevWeekDay

wxDateTime GetPrevWeekDay(WeekDay weekday) const

Returns the copy of this object to whichSetToPreviWeekDay (p. 267) was applied.

wxDateTime::SetToWeekDay

bool SetToWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month, int
year = Inv_Year)

Sets the date to the n-th weekday in the given month of the given year (the current
month and year are used by default). The parameter nmay be either positive (counting
from the beginning of the month) or negative (counting from the end of it).

For example, SetToWeekDay (2, wxDateTime::Wed) will set the date to the second
Wednesday in the current month andset ToweekDay (-1, wxDateTime: :Sun) --t0
the last Sunday in it.

Returns t rue if the date was modified successfully, falseotherwise meaning that the
specified date doesn't exist.

wxDateTime::GetWeekDay

wxDateTime GetWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month,
int year = Inv_Year) const

Returns the copy of this object to whichSetToWeekDay (p. 268) was applied.

wxDateTime::SetToLastWeekDay

bool SetToLastWeekDay(WeekDay weekday, Month month = Inv_Month, int year =
Inv_Year)

The effect of calling this function is the same as of callingset ToWeekDay (-1,
weekday, month, year). The date will be set to the lastweekday in the given month
and year (the current ones by default).

Always returns true.

268

CHAPTER 7

wxDateTime::GetLastWeekDay

wxDateTime GetLastWeekDay(WeekDay weekday, Month month = Inv_Month, int
year = Inv_Year)

Returns the copy of this object to whichSetToLastWeekDay (p. 268) was applied.

wxDateTime::SetToTheWeek

bool SetToTheWeek(wxDateTime_t numWeek, WeekDay weekday = Mon,
WeekFlagsflags = Monday_First)

Set the date to the given weekday in the week with given numbernumWeek. The number

should be in range 1...53 and false will be returned if the specified date doesn't exist.
true is returned if the date was changed successfully.

wxDateTime::GetWeek

wxDateTime GetWeek(wxDateTime_t numWeek, WeekDay weekday = Mon,
WeekFlagsflags = Monday First) const

Returns the copy of this object to whichSetToTheWeek (p. 269) was applied.

wxDateTime::SetToLastMonthDay

wxDateTime& SetToLastMonthDay(Month month = Inv_Month, int year = Inv_Year)
Sets the date to the last day in the specified month (the current one by default).

Returns the reference to the modified object itself.

wxDateTime::GetLastMonthDay

wxDateTime GetLastMonthDay(Month month = Inv_Month, int year = Inv_Year)
const

Returns the copy of this object to whichSetToLastMonthDay (p. 269) was applied.

wxDateTime::SetToYearDay

wxDateTime& SetToYearDay(wxDateTime_t yday)

269

CHAPTER 7

Sets the date to the day number yday in the same year (i.e., unlike the other functions,
this one does not use the current year). The day number should be in the range 1...366
for the leap years and 1...365 for the other ones.

Returns the reference to the modified object itself.

wxDateTime::GetYearDay

wxDateTime GetYearDay(wxDateTime_t yday) const

Returns the copy of this object to whichSetToYearDay (p. 269) was applied.

wxDateTime::GetJulianDayNumber

double GetJulianDayNumber() const

Returns the JDN (p. 257) corresponding to this date. Beware of rounding errors!
See also

GetModifiedJulianDayNumber (p. 270)

wxDateTime::GetJDN

double GetJDN() const

Synonym for GetJulianDayNumber (p. 270).

wxDateTime::GetModifiedJulianDayNumber

double GetModifiedJulianDayNumber() const

Returns the Modified Julian Day Number (MJD) which is, by definition, equal to JDN -
2400000.5. The MJDs are simpler to work with as the integral MJDs correspond to
midnights of the dates in the Gregorian calendar and not th noons like JDN. The MJD 0
is Nov 17, 1858.

wxDateTime::GetMJD

double GetMJD() const

Synonym for GetModifiedJulianDayNumber (p. 270).

270

CHAPTER 7

wxDateTime::GetRataDie

double GetRataDie() const
Return the Rata Die number of this date.
By definition, the Rata Die number is a date specified as the number of days relative to a

base date of December 31 of the year 0. Thus January 1 of the year 1 is Rata Die day 1.

wxDateTime::ToTimezone

wxDateTime ToTimezone(const TimeZone& tz, bool noDST = false) const

Transform the date to the given time zone. If noDST is t rue, no DST adjustments will
be made.

Returns the date in the new time zone.

wxDateTime::MakeTimezone

wxDateTime& MakeTimezone(const TimeZone& iz, bool noDST = false)

Modifies the object in place to represent the date in another time zone. [fnoDST is t rue,
no DST adjustments will be made.

wxDateTime::ToGMT

wxDateTime ToGMT(bool noDST = false) const

This is the same as calling ToTimezone (p. 271) with the argument GMTO.

wxDateTime::MakeGMT

wxDateTime& MakeGMT(bool noDST = false)

This is the same as calling MakeTimezone (p. 271) with the argument GMTO.

wxDateTime::IsDST

int IsDST(Country country = Country Default) const
Returns true if the DST is applied for this date in the given country.

See also

271

CHAPTER 7

GetBeginDST (p. 251) andGetEndDST (p. 252)

wxDateTimeHolidayAuthority

TODO

wxDateTimeWorkDays

TODO

wxDb

A wxDb instance is a connection to an ODBC datasource which may be opened, closed,
and re-opened an unlimited number of times. A database connection allows function to
be performed directly on the datasource, as well as allowing access to any tables/views
defined in the datasource to which the user has sufficient privileges.

See the database classes overview (p. 1715) for an introduction to using the ODBC
classes.

Include files
<wx/db.h>
Helper classes and data structures

The following classes and structs are defined in db.cpp/.h for use with the wxDb class.

e wxDbColFor (p. 303)

e wxDbColinf (p. 304)

e wxDbTablelnf (p. 347)

e wxDbinf(p. 310)
Constants

NOTE: In a future release, all ODBC class constants will be prefaced with 'wx'.

wxDB_PATH_MAX Maximum path length allowed to be passed to
the ODBC driver to indicate where the data
file(s) are located.

272

CHAPTER 7

DB_MAX_ COLUMN_NAME_LEN

DB_MAX_ ERROR_HISTORY

DB_MAX_ ERROR_MSG_LEN
DB_MAX_ STATEMENT_LEN
DB_MAX TABLE_NAME_LEN
DB_MAX WHERE_CLAUSE_LEN

DB_TYPE_NAME_LEN

Enumerated types

Maximum supported length for the name of a
column

Maximum number of error messages retained in
the queue before being overwritten by new
errors.

Maximum supported length of an error message
returned by the ODBC classes

Maximum supported length for a complete SQL
statement to be passed to the ODBC driver

Maximum supported length for the name of a
table

Maximum supported WHERE clause length that
can be passed to the ODBC driver

Maximum length of the name of a column's
data type

Enumerated types

enum wxDbSqlLogState
sqlLogOFF, sglLogON

enum wxDBMS

These are the databases currently tested and working with the ODBC classes. A call to
wxDb::Dbms (p. 282) will return one of these enumerated values listed below.

dbmsUNIDENTIFIED
dbmsORACLE

dbmsSYBASE_ASA // Adaptive Server Anywhere
dbmsSYBASE_ASE // Adaptive Server Enterprise

dbmsMS_SQL_SERVER
dbmsMY__SQL
dbmsPOSTGRES
dbmsACCESS
dbmsDBASE

dbms INFORMIX
dbmsVIRTUOSO
dbmsDB2
dbmdINTERBASE

See the remarks in wxDb::Dbms (p. 282) for exceptions/issues with each of these

database engines.
Public member variables

SWORD wxDb::cbErrorMsg

This member variable is populated as a result of calling wxDb::GetNextError (p.
290). Contains the count of bytes in the wxDb::errorMsg string.

273

CHAPTER 7

int wxDb::DB_STATUS

The last ODBC error/status that occurred on this data connection

are:

DB_ERR_GENERAL_WARNING
DB_ERR_DISCONNECT_ERROR
DB_ERR_DATA_TRUNCATED
DB_ERR_PRIV_NOT_REVOKED
DB_ERR_INVALID_CONN_STR_ATTR
DB_ERR_ERROR_IN_ROW
DB_ERR_OPTION_VALUE_CHANGED
DB_ERR_NO_ROWS_UPD_OR_DEL
DB_ERR_MULTI_ROWS_UPD_OR_DEL
DB_ERR_WRONG_NO_OF_PARAMS
DB_ERR_DATA_TYPE_ATTR_VIOL
DB_ERR_UNABLE_TO_CONNECT
DB_ERR_CONNECTION_IN_USE
DB_ERR_CONNECTION_NOT_OPEN
DB_ERR_REJECTED_CONNECTION
DB_ERR_CONN_FAIL_IN_TRANS
DB_ERR_COMM_LINK_FAILURE
DB_ERR_INSERT_VALUE_LIST_MISMATCH
DB_ERR_DERIVED_TABLE_MISMATCH
DB_ERR_STRING_RIGHT_TRUNC
DB_ERR_NUMERIC_VALUE_OUT_OF_RNG
DB_ERR_ERROR_IN_ASSIGNMENT
DB_ERR_DATETIME_FLD_OVERFLOW
DB_ERR_DIVIDE_BY_ ZERO
DB_ERR_STR_DATA_LENGTH_MISMATCH
DB_ERR_INTEGRITY_CONSTRAINT_VIOL
DB_ERR_INVALID_CURSOR_STATE
DB_ERR_INVALID_TRANS_STATE
DB_ERR_INVALID_AUTH_SPEC
DB_ERR_INVALID_CURSOR_NAME
DB_ERR_SYNTAX ERROR_OR_ACCESS_VIOL
DB_ERR_DUPLICATE_CURSOR_NAME
DB_ERR_SERIALIZATION_FAILURE
DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL2
DB_ERR_OPERATION_ABORTED
DB_ERR_UNSUPPORTED_FUNCTION
DB_ERR_NO_DATA_SOURCE
DB_ERR_DRIVER_LOAD_ERROR
DB_ERR_SQLALLOCENV_FAILED
DB_ERR_SQLALLOCCONNECT_FAILED
DB_ERR_SQLSETCONNECTOPTION_FAILED
DB_ERR_NO_DATA_SOURCE_DLG_PROHIB
DB_ERR_DIALOG_FAILED
DB_ERR_UNABLE_TO_LOAD_TRANSLATION_DLL
DB_ERR_DATA_SOURCE_NAME_TOO_LONG
DB_ERR_DRIVER_NAME_TOO_LONG
DB_ERR_DRIVER_KEYWORD_SYNTAX_ ERROR
DB_ERR_TRACE_FILE_ERROR
DB_ERR_TABLE_OR_VIEW_ALREADY EXISTS
DB_ERR_TABLE_NOT_FOUND
DB_ERR_INDEX_ALREADY_EXISTS
DB_ERR_INDEX_ NOT_FOUND
DB_ERR_COLUMN_ALREADY_EXISTS
DB_ERR_COLUMN_NOT_FOUND
DB_ERR_NO_DEFAULT_FOR_COLUMN
DB_ERR_GENERAL_ERROR
DB_ERR_MEMORY_ALLOCATION_FAILURE
DB_ERR_INVALID_COLUMN_NUMBER

SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState
SglState

. Possible codes

'01000"
'01002"
'01004"
'01006"
'01s00'
'01s01’
'01s02"
'01s03"
'01s04’
'07001"
'07006"
'08001"
'08002"
'08003"
'08004"
'08007"
'08s01"
'21s01"
'21s02"
'22001"
'22003"
'22005"
'22008"
'22012"
'22026"
'23000'"
'24000'
'25000'"
'28000"
'34000'
'37000"
'3C000'
'40001"
'42000"
'70100'"
'IMO01'
'IM002"
'IMO03"
'IM004"'
'IMOO5!
'IMO06'
'IMO07!
'IM008"'
'IMO09'
'IMO010'
'IMO11'
'IM012"
'IMO13!
's0001"
'soo02"
's0011’
'so012"
'so021"
's0022"
'50023"
's1000"
's1001"
's1002"

274

CHAPTER 7

DB_ERR_PROGRAM_TYPE_OUT_OF_RANGE // SglState = 'S1003"'
DB_ERR_SQL_DATA_ TYPE_OUT_OF_RANGE // SglState = 'S1004'
DB_ERR_OPERATION_CANCELLED // SglState = 'S1008"'
DB_ERR_INVALID_ARGUMENT_VALUE // SglState = 'S1009"'
DB_ERR_FUNCTION_SEQUENCE_ERROR // SglState = 'S1010'
DB_ERR_OPERATION_INVALID_AT THIS_TIME // SglState = 'S1011"'
DB_ERR_INVALID_TRANS_OPERATION_CODE // SglState = 'S1012"'
DB_ERR_NO_CURSOR_NAME_AVATL // SglState = 'S1015"'
DB_ERR_INVALID_STR_OR_BUF_LEN // SglState = 'S1090"'
DB_ERR_DESCRIPTOR_TYPE_OUT_OF_RANGE // SglState = 'S1091"'
DB_ERR_OPTION_TYPE_OUT_OF_RANGE // SglState = 'S1092"'
DB_ERR_INVALID_PARAM NO // SglState = 'S1093"'
DB_ERR_INVALID_SCALE_VALUE // SglState = 'S1094"'
DB_ERR_FUNCTION_TYPE_OUT_OF_RANGE // SglState = 'S1095"'
DB_ERR_INF_TYPE_OUT_OF_RANGE // SglState = 'S1096"'
DB_ERR_COLUMN_TYPE_OUT_OF_RANGE // SglState = 'S1097'
DB_ERR_SCOPE_TYPE_OUT_OF_RANGE // SglState = 'S1098"'
DB_ERR_NULLABLE_TYPE_OUT_OF_RANGE // SglState = 'S1099"'
DB_ERR_UNIQUENESS_OPTION_TYPE_OUT_OF_RANGE // SglState = 'S1100'
DB_ERR_ACCURACY_OPTION_TYPE_OUT_OF_RANGE // SglState = 'S1101"'
DB_ERR_DIRECTION_OPTION_OUT_OF_RANGE // SglState = 'S1103"'
DB_ERR_INVALID_PRECISION_VALUE // SglState = 'S1104"'
DB_ERR_INVALID_PARAM TYPE // SglState = 'S1105"'
DB_ERR_FETCH_TYPE_OUT_OF_RANGE // SglState = 'S1106"'
DB_ERR_ROW_VALUE_OUT_OF_RANGE // SglState = 'S1107'
DB_ERR_CONCURRENCY_OPTION_OUT_OF_ RANGE // SglState = 'S1108"
DB_ERR_INVALID_CURSOR_POSITION // SglState = 'S1109"'
DB_ERR_INVALID_DRIVER_COMPLETION // SglState = 'S1110"'
DB_ERR_INVALID_BOOKMARK_VALUE // SglState = 'S1111"'
DB_ERR_DRIVER_NOT_CAPABLE // SglState = 'S1C00"'
DB_ERR_TIMEOUT_EXPIRED // SglState = 'S1TO00'

struct wxDb::dbinf
This structure is internal to the wxDb class and contains details of the ODBC
datasource that the current instance of the wxDb is connected to in its members.
When the datasource is opened, all of the information contained in the dblinf
structure is queried from the datasource. This information is used almost
exclusively within the ODBC class library. Where there may be a need for
particular portions of this information outside of the class library, member functions
(e.g.wxDbTable::IsCursorClosedOnCommit (p. 331)) have been added for ease of

use.

wxChar dbmsName[40] — Name of the dbms product

wxChar dbmsVer[64] - Version # of the dbms product

wxChar driverName[40] - Driver name

wxChar odbcVer[60] — ODBC version of the driver

wxChar drvMgrOdbcVer [60] - ODBC version of the driver manager

wxChar driverVer[60] - Driver version

wxChar serverName[80] - Server Name, typically a connect string

wxChar databaseName[128] — Database filename

wxChar outerJoins([2] — Does datasource support outer joins

wxChar procedureSupport[2] - Does datasource support stored
procedures

UWORD maxConnections — Maximum # of connections datasource
supports

UWORD maxStmts — Maximum # of HSTMTs per HDBC

UWORD apiConflLvl — ODBC API conformance level

UWORD cliConflLvl - Is datasource SAG compliant

UWORD sqglConfLvl - SQL conformance level

UWORD cursorCommitBehavior - How cursors are affected on db commit

UWORD cursorRollbackBehavior - How cursors are affected on db

275

CHAPTER 7

rollback
UWORD supportNotNullClause — Does datasource support NOT NULL
clause

wxChar supportIEF[2] - Integrity Enhancement Facility (Ref.
Integrity)

UDWORD txnIsolation - Transaction isolation level supported by
driver

UDWORD txnIsolationOptions - Transaction isolation level options
available

UDWORD fetchDirections — Fetch directions supported

UDWORD lockTypes - Lock types supported in SQLSetPos

UDWORD posOperations — Position operations supported in
SQLSetPos

UDWORD posStmts - Position statements supported

UDWORD scrollConcurrency - Scrollable cursor concurrency options
supported

UDWORD scrollOptions — Scrollable cursor options supported

UDWORD staticSensitivity - Can additions/deletions/updates be
detected

UWORD txnCapable — Indicates if datasource supports
transactions

UDWORD loginTimeout — Number seconds to wait for a login
request

wxChar wxDb::errorListiDB_MAX _ERROR_HISTORY][DB_MAX _ERROR_MSG LEN]
The last n ODBC errors that have occurred on this database connection.

wxChar wxDb::errorMsg[SQL_MAX_MESSAGE_LENGTH)]
This member variable is populated as a result of calling wxDb::GetNextError (p.
290). It contains the ODBC error message text.

SDWORD wxDb::nativeError
Set by wxDb::DispAllErrors, wxDb::GetNextError, and wxDb::DispNextError. It
contains the datasource-specific error code returned by the datasource to the
ODBC driver. Used for reporting ODBC errors.

wxChar wxDb::sqlState[20]
Set by wxDb::TranslateSqlState(). Indicates the error state after a failed ODBC
operation. Used for reporting ODBC errors.

Remarks

Default cursor scrolling is defined by wxODBC_FWD_ONLY_CURSORS in setup.h
when the wxWindows library is built. This behavior can be overridden when an instance
of a wxDb is created (see wxDb constructor (p. 279)). Default setting of this value true,
as not all databases/drivers support both types of cursors.

See also
wxDbColFor (p. 303), wxDbColinf (p. 304),wxDbTable (p. 311), wxDbTablelnf (p.
347),wxDbinf (p. 310)

Associated non-class functions

276

CHAPTER 7

The following functions are used in conjunction with the wxDb class.
void wxDbCloseConnections()
Remarks

Closes all cached connections that have been made through use of
thewxDbGetConnection (p. 276) function.

NOTE: These connections are closed regardless of whether they are in use or not. This
function should only be called after the program has finished using the connections and
all wxDbTable instances that use any of the connections have been closed.

This function performs a wxDb::CommitTrans (p. 281)on the connection before closing it
to commit any changes that are still pending, as well as to avoid any function sequence
errors upon closing each connection.

int wxDbConnectionsinUse()
Remarks

Returns a count of how many database connections are currently free (not being used)
that have been cached through use of the wxDbGetConnection (p. 276)function.

bool wxDbFreeConnection(wxDb *pDb)
Remarks

Searches the list of cached database connections connection for one matching the
passed in wxDb instance. If found, that cached connection is freed.

Freeing a connection means that it is marked as available (free) in the cache of
connections, so that a call to wxDbGetConnection (p. 276)is able to return a pointer to
the wxDb instance for use. Freeing a connection does NOT close the connection, it only
makes the connection available again.

wxDb * wxDbGetConnection(wxDbConnectinf *pDbConfig,bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Remarks

This function is used to request a "new" wxDb instance for use by the program. The
wxDb instance returned is also opened (see wxDb::Open (p. 295)).

This function (along with wxDbFreeConnection() and wxDbCloseConnection()) maintain
a cached of wxDb instances for user/re-use by a program. When a program needs a
wxDb instance, it may call this function to obtain a wxDb instance. If there is a wxDb
instance in the cache that is currently unused that matches the connection requirements
specified in ‘'pDbConfig'then that cached connection is marked as no longer being free,
and a pointer to the wxDb instance is returned.

277

CHAPTER 7

If there are no connections available in the cache that meet the requirements given in
PDbConfig’, then a new wxDb instance is created to connect to the datasource specified
in 'pDbConfig' using the userID and password given in ‘pDbConfig".

NOTE: The caching routine also uses the wxDb::Open (p. 295)connection datatype
copying code. If the call to wxDbGetConnection() requests a connection to a
datasource, and there is not one available in the cache, a new connection is created.
But when the connection is opened, instead of polling the datasource over again for its
datatypes, if a connection to the same datasource (using the same userlD/password)
has already been done previously, the new connection skips querying the datasource for
its datatypes, and uses the same datatypes determined previously by the other
connection(s) for that same datasource. This cuts down greatly on network traffic,
database load, and connection creation time.

When the program is done using a connection created through a call to
wxDbGetConnection(), the program should call wxDbFreeConnection() to release the
wxDb instance back to the cache. DO NOT DELETE THE wxDb INSTANCE! Deleting
the wxDb instance returned can cause a crash/memory corruption later in the program
when the cache is cleaned up.

When exiting the program, call wxDbCloseConnections() to close all the cached
connections created by calls to wxDbGetConnection().

const wxChar * wxDbLogExtendedErrorMsg(const wxChar *userText, wxDb *pDb,
wxChar *ErrFile, int ErrLine)

Writes a message to the wxLog window (stdout usually) when an internal error situation
occurs. This function only works in DEBUG builds

bool wxDbSqlLog(wxDbSqlLogState state, const wxString &filename =
SQL_LOG_FILENAME)

Remarks
This function sets the sql log state for all open wxDb objects

bool wxDbGetDataSource(HENV henv, wxChar *Dsn, SWORD DsnMax, wxChar
*DsDesc, SWORD DsDescMax, UWORD direction = SQL_FETCH_NEXT)

Remarks

This routine queries the ODBC driver manager for a list of available datasources.
Repeatedly call this function to obtain all the datasources available through the ODBC
driver manager on the current workstation.

wxStringList strList;

while (wxDbGetDataSource (DbConnectInf.GetHenv (), Dsn,
SQL_MAX_DSN_LENGTH+1, DsDesc, 255))
strList.Add (Dsn);

278

CHAPTER 7

wxDb::wxDb

wxDb()
Default constructor.

wxDb(const HENV &aHenv, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Constructor, used to create an ODBC connection to a datasource.
Parameters

aHenv
Environment handle used for this connection. SeewxDConnectinf::AllocHenv (p.
306)

FwdOnlyCursors
Will cursors created for use with this datasource connection only allow forward
scrolling cursors.

Remarks

This is the constructor for the wxDb class. The wxDb object must be created and
opened before any database activity can occur.

Example

wxDbConnectInf ConnectInf;
....Set values for member variables of ConnectInf here

wxDb sampleDB (ConnectInf.GetHenv());
if (!sampleDB.Open (ConnectInf.GetDsn (), ConnectInf.GetUserID(),
ConnectInf.GetPassword()))

{

// Error opening datasource

}

See also

wxDbGetConnection (p. 276)

wxDb::Catalog

bool Catalog(wxChar * user/D, const wxString &fileName =
SQL_CATALOG _FILENAME)

Allows a data "dictionary" of the datasource to be created, dumping pertinent information
about all data tables to which the user specified in userID has access.

279

CHAPTER 7

Parameters

userlD
Database user name to use in accessing the database. All tables to which this
user has rights will be evaluated in the catalog.

fileName
OPTIONAL. Name of the text file to create and write the DB catalog to. Default is
SQL_CATALOG_FILENAME.

Return value

Returns true if the catalog request was successful, or false if there was some reason
that the catalog could not be generated.

Example

TABLE NAME COLUMN NAME DATA TYPE PRECISION LENGTH
EMPLOYEE RECID (0008) NUMBER 15 8
EMPLOYEE USER_ID (0012) VARCHAR2 13 13
EMPLOYEE FULL_NAME (0012) VARCHAR?2 26 26
EMPLOYEE PASSWORD (0012) VARCHAR2 26 26
EMPLOYEE START_DATE (0011)DATE 19 16

wxDb::Close

void Close()
Closes the database connection.
Remarks

At the end of your program, when you have finished all of your database work, you must
close the ODBC connection to the datasource. There are actually four steps involved in
doing this as illustrated in the example.

Any wxDbTable instances which use this connection must be deleted before closing the
database connection.

Example

// Commit any open transactions on the datasource
sampleDB.CommitTrans () ;

// Delete any remaining wxDbTable objects allocated with new
delete parts;

// Close the wxDb connection when finished with it
sampleDB.Close () ;

280

CHAPTER 7

wxDb::CommitTrans

bool CommitTrans()

Permanently "commits" changes (insertions/deletions/updates) to the database.
Return value

Returns true if the commit was successful, or false if the commit failed.

Remarks

Transactions begin implicitly as soon as you make a change to the database with an
insert/update/delete, or any other direct SQL command that performs one of these
operations against the datasource. At any time thereafter, to save the changes to disk
permanently, "commit" them by calling this function.

Calling this member function commits ALL open transactions on this ODBC connection.
For example, if three different wxDbTable instances used the same connection to the
datasource, committing changes made on one of those wxDbTable instances commits
any pending transactions on all three wxDbTable instances.

Until a call to wxDb::CommitTrans() is made, no other user or cursor is able to see any
changes made to the row(s) that have been inserted/modified/deleted.

Special Note : Cursors

It is important to understand that different database/ODBC driver combinations handle
transactions differently. One thing in particular that you must pay attention to is cursors,
in regard to transactions. Cursors are what allow you to scroll through records forward
and backward and to manipulate records as you scroll through them. When you issue a
query, a cursor is created behind the scenes. The cursor keeps track of the query and
keeps track of the current record pointer. After you commit or rollback a transaction, the
cursor may be closed automatically. This is database dependent, and with some
databases this behavior can be controlled through management functions. This means
you would need to requery the datasource before you can perform any additional work
using this cursor. This is only necessary however if the datasource closes the cursor
after a commit or rollback. Use thewxDbTable::IsCursorClosedOnCommit (p.
331)member function to determine the datasource's transaction behavior. Note, in many
situations it is very inefficient to assume the cursor is closed and always requery. This
could put a significant, unnecessary load on datasources that leave the cursors open
after a transaction.

wxDb::CreateView

bool CreateView(const wxString & viewName,const wxString & colList, const
wxString &pSq/Stmi)

281

CHAPTER 7

Creates a SQL VIEW of one or more tables in a single datasource. Note that this
function will only work against databases which support views (currently only Oracle as
of November 21 2000).

Parameters

viewName
The name of the view. e.g. PARTS_V

colList
OPTIONAL Pass in a comma delimited list of column names if you wish to
explicitly name each column in the result set. If not desired, pass in an empty
string and the column names from the associated table(s) will be used.

pSqlStmt
Pointer to the select statement portion of the CREATE VIEW statement. Must be a
complete, valid SQL SELECT statement.

Remarks

A 'view' is a logical table that derives columns from one or more other tables or views.
Once the view is created, it can be queried exactly like any other table in the database.

NOTE: Views are not available with all datasources. Oracle is one example of a
datasource which does support views.

Example

// Incomplete code sample
db.CreateView ("PARTS_SD1", "PN, PD, QTY",
"SELECT PART_NO, PART_DESC, QTY_ON_HAND * 1.1 FROM
PARTS \
WHERE STORAGE_DEVICE = 1");

// PARTS_SD1 can now be queried just as if it were a data table.
// e.g. SELECT PN, PD, QTY FROM PARTS_SD1

wxDb::Dbms

wxDBMS Dbms()
Remarks

The return value will be of the enumerated type wxDBMS. This enumerated type
contains a list of all the currently tested and supported databases.

Additional databases may work with these classes, but the databases returned by this
function have been tested and confirmed to work with these ODBC classes.

Possible values returned by this function can be viewed in the Enumerated types (p. 273)
section of wxDb.

282

CHAPTER 7

There are known issues with conformance to the ODBC standards with several
datasources supported by the wxWindows ODBC classes. Please see the overview for
specific details on which datasource have which issues.

Return value
The return value will indicate which of the supported datasources is currently connected

to by this connection. In the event that the datasource is not recognized, a value of
'dbmsUNIDENTIFIED' is returned.

wxDb::DispAllErrors

bool DispAllErrors(HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
=SQL_NULL _HSTMT)

Used to log all database errors that occurred as a result of an executed database
command. This logging is automatic and also includes debug logging when compiled in
debug mode via wxLogDebug (p. 1568). If logging is turned on via
wxDb::SetSqlLogging (p. 297), then an entry is also logged to the defined log file.

Parameters

aHenv
Handle to the ODBC environment.

aHdbc
Handle to the ODBC connection. Pass this in if the ODBC function call that erred
required a hdbc or hstmt argument.

aHstmt
Handle to the ODBC statement being executed against. Pass this in if the ODBC
function call that failed required a hstmt argument.
Remarks
This member function will log all of the ODBC error messages for the last ODBC function
call that was made. This function is normally used internally within the ODBC class
library, but can be used programmatically after calling ODBC functions directly (i.e.
SQLFreeEnv()).
Return value
The function always returns false, so a call to this function can be made in the return
statement of a code block in the event of a failure to perform an action (see the example
below).
See also

wxDb::SetSqlLogging (p. 297), wxDbSqlLog

283

CHAPTER 7

Example

if (SQLExecDirect (hstmt, (UCHAR FAR *) pSqglStmt, SQL_NTS) !=
SQL_SUCCESS)
// Display all ODBC errors for this stmt
return (db.DispAllErrors (db.henv, db.hdbc, hstmt));

wxDb::DispNextError

void DispNextError()
Remarks

This function is normally used internally within the ODBC class library. It could be used
programmatically after calling ODBC functions directly. This function works in
conjunction with wxDb::GetNextError (p. 290) when errors (or sometimes informational
messages) returned from ODBC need to be analyzed rather than simply displaying
them as an error. GetNextError() retrieves the next ODBC error from the ODBC error

queue. The wxDb member variables "sqlState", "nativeError" and "errorMsg" could then
be evaluated. To display the error retrieved, DispNextError() could then be called. The
combination of GetNextError() and DispNextError() can be used to iteratively step
through the errors returned from ODBC evaluating each one in context and displaying
the ones you choose.

Example

// Drop the table before attempting to create it
sprintf (sgqlStmt, "DROP TABLE %s", tableName);
// Execute the drop table statement
if (SQLExecDirect (hstmt, (UCHAR FAR *)sglStmt, SQL_NTS) != SQL_SUCCESS)
{
// Check for sglState = S0002, "Table or view not found".
// Ignore this error, bomb out on any other error.
pDb—>GetNextError (henv, hdbc, hstmt);
if (wxStrcmp (pDb->sglState, "S0002"))
{
pDb->DispNextError () ; // Displayed error retrieved
pDb—>DispAllErrors (henv, hdbc, hstmt); // Display all other
errors, 1f any

pDb->RollbackTrans () ; // Rollback the transaction
CloseCursor () ; // Close the cursor
return (false) ; // Return Failure

wxDb::DropView

bool DropView(const wxString &viewName)
Drops the data table view named in 'viewName'.

Parameters

284

CHAPTER 7

viewName
Name of the view to be dropped.

Remarks
If the view does not exist, this function will return true. Note that views are not supported

with all datasources.

wxDb::ExecSql

bool ExecSql(const wxString &pSq/Stmt)

Allows a native SQL command to be executed directly against the datasource. In
addition to being able to run any standard SQL command, use of this function allows a
user to (potentially) utilize features specific to the datasource they are connected to that
may not be available through ODBC. The ODBC driver will pass the specified command
directly to the datasource.

Parameters

pSqlStmt
Pointer to the SQL statement to be executed.

Remarks

This member extends the wxDb class and allows you to build and execute ANY VALID
SQL statement against the datasource. This allows you to extend the class library by
being able to issue any SQL statement that the datasource is capable of processing.

See also

wxDb::GetData (p. 288), wxDb::GetNext (p. 290)

wxDb::FwdOnlyCursors

bool IsFwdOnlyCursors()

Older form (pre-2.3/2.4 of wxWindows) of thewxDb::IsFwdOnlyCursors (p. 292). This
method is provided for backward compatibility only. The
methodwxDb::IsFwdOnlyCursors (p. 292) should be used in place of this method.

wxDblinf * GetCatalog(const wxChar *user/D)

wxDb::GetCatalog

wxDblnf * GetCatalog(const wxChar *user/D)

285

CHAPTER 7

Returns a wxDblinf (p. 310) pointer that points to the catalog (datasource) name,
schema, number of tables accessible to the current user, and a wxDbTablelnf pointer to
all data pertaining to all tables in the users catalog.

Parameters

userlD
Owner/Schema of the table. Specify a userlD when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. userlD is evaluated as follows:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

Remarks

The returned catalog will only contain catalog entries for tables to which the user
specified in 'userID' has sufficient privileges. If no user is specified (NULL passed in), a
catalog pertaining to all tables in the datasource accessible to the connected user
(permissions apply) via this connection will be returned.

wxDb::GetColumnCount

int GetColumnCount(const wxString &tableName, const wxChar *user/D)
Parameters

tableName
The table name you wish to obtain column information about.

userlD
Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userlD is evaluated in the
following manner:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

Return value

Returns a count of how many columns are in the specified table. If an error occurs
retrieving the number of columns, this function will return a -1.

wxDb::GetColumns

wxDbColinf * GetColumns(const wxString &tableName, UWORD *numCols, const

286

CHAPTER 7

wxChar *userID=NULL)
wxDbColinf * GetColumns(wxChar *tableName[], const wxChar *user/D)
Parameters

tableName
The table name you wish to obtain column information about.

numCols
Pointer to a UWORD which will hold a count of the number of columns returned by
this function

tableNamel]
An array of pointers to table names you wish to obtain column information about.
The last element of this array must be a NULL string.

userlD
Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. user/D is evaluated in the
following manner:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

Return value

This function returns a pointer to an array of wxDbColInf (p. 304)structures, allowing you
to obtain information regarding the columns of the named table(s). If no columns were
found, or an error occurred, this pointer will be NULL.

THE CALLING FUNCTION IS RESPONSIBLE FOR DELETING THE wxDbColInf
MEMORY WHEN IT IS FINISHED WITH IT.

ALL column bindings associated with this wxDb instance are unbound by this function,
including those used by any wxDbTable instances that use this wxDb instance. This
function should use its own wxDb instance to avoid undesired unbinding of columns.

See also
wxDbCollInf (p. 304)

Example

wxChar *tablelList[] = {"PARTS", 0};
wxDbColInf *colInf = pDb->GetColumns (tablelist);
if (colInf)
{
// Use the column inf
// Destroy the memory
delete [] collInf;

287

CHAPTER 7

wxDb::GetData

bool GetData(UWORD co/No, SWORD cType,PTR pData, SDWORD maxLen,
SDWORD FAR * cbReturned)

Used to retrieve result set data without binding column values to memory variables (i.e.
not using a wxDbTable instance to access table data).

Parameters

colNo
Ordinal number of the desired column in the result set to be returned.
cType
The C data type that is to be returned. See a partial list in wxDbTable::SetColDefs
(p- 339)
pData
Memory buffer which will hold the data returned by the call to this function.
maxLen
Maximum size of the buffer pData’in characters. NOTE: Not UNICODE safe. If
this is a numeric field, a value of 0 may be passed for this parameter, as the API
knows the size of the expected return value.
cbReturned
Pointer to the buffer containing the length of the actual data returned. If this value
comes back as SQL_NULL_DATA, then thewxDb::GetData (p. 288) call has failed.

See also
wxDb::GetNext (p. 290), wxDb::ExecSql (p. 285)

Example

SDWORD cb;
ULONG reqgQty;
wxString sglStmt;
sglStmt = "SELECT SUM(REQUIRED_QTY - PICKED_QTY) FROM ORDER_TABLE
WHERE \
PART_RECID = 1450 AND REQUIRED_QTY > PICKED_QTY";

// Perform the query
if (!'pDb->ExecSqgl (sglStmt.c_str()))
{

// ERROR

return(0);

// Request the first row of the result set
if (!pDb—>GetNext ())

// ERROR
return (0) ;

}

// Read column #1 of the row returned by the call to ::GetNext ()
// and return the value in 'reqQty'
if (!'pDb->GetData(l, SQL_C_ULONG, &reqgQty, 0, &cb))

288

CHAPTER 7

// ERROR
return (0) ;

}
// Check for a NULL result

if (cb == SQL_NULL_DATA)
return (0) ;

Remarks

When requesting multiple columns to be returned from the result set (for example, the
SQL query requested 3 columns be returned), the calls to this function must request the

columns in ordinal sequence (1,2,3 or 1,3 or 2,3).

wxDb::GetDatabaseName

const wxChar * GetDatabaseName()

Returns the name of the database engine.

wxDb::GetDatasourceName

const wxString & GetDatasourceName()

Returns the ODBC datasource name.

wxDb::GetHDBC

HDBC GetHDBC()

Returns the ODBC handle to the database connection.

wxDb::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDb::GetHSTMT

HSTMT GetHSTMT()

Returns the ODBC statement handle associated with this database connection.

289

CHAPTER 7

wxDb::GetKeyFields

int GetKeyFields(const wxString &tableName, wxDbCollnf *collnf, UWORD nocols)

Used to determine which columns are members of primary or non-primary indexes on
the specified table. If a column is a member of a foreign key for some other table, that
information is detected also.

This function is primarily for use by the wxDb::GetColumns (p. 286) function, but may be
called if desired from the client application.

Parameters

tableName
Name of the table for which the columns will be evaluated as to their inclusion in
any indexes.

colinf
Data structure containing the column definitions (obtained with wxDb::GetColumns
(p- 286)). This function populates the PkCol, PkTableName, and FkTableName
members of the collnf structure.

nocols
Number of columns defined in the instance of colinf.

Return value
Currently always returns true.
See also

wxDbCollnf (p. 304), wxDb::GetColumns (p. 286)

wxDb::GetNext

bool GetNext()

Called after executing a query, this function requests the next row in the result set after
the current position of the cursor.

See also

wxDb::ExecSql (p. 285), wxDb.::GetData (p. 288)

wxDb::GetNextError

bool GetNextError(HENV aHenv,HDBC aHdbc = SQL_NULL _HDBC, HSTMT aHstmt =
SQL _NULL _HSTMT)

Parameters

290

CHAPTER 7

aHenv
A handle to the ODBC environment.

aHdbc
OPTIONAL. A handle to the ODBC connection. Pass this in if the ODBC function
call that failed required a hdbc or hstmt argument.

AHstmt
OPTIONAL.A handle to the ODBC statement being executed against. Pass this in
if the ODBC function call that failed requires a hstmt argument.

Example

if (SQLExecDirect (hstmt, (UCHAR FAR *) pSqglStmt, SQL_NTS) !=
SQL_SUCCESS)
{

}

return (db.GetNextError (db.henv, db.hdbc, hstmt));

See also

wxDb::DispNextError (p. 284),wxDb::DispAllErrors (p. 283)

wxDb::GetPassword

const wxString & GetPassword()

Returns the password used to establish this connection to the datasource.

wxDb::GetTableCount

int GetTableCount()

Returns the number of wxDbTable() instances currently using this datasource
connection.

wxDb::GetUsername

const wxString & GetUsername()

Returns the user name (uid) used to establish this connection to the datasource.

wxDb::Grant

bool Grant(int privileges, const wxString &tableName,const wxString &userList =
"PUBLIC")

Use this member function to GRANT privileges to users for accessing tables in the

291

CHAPTER 7

datasource.
Parameters

privileges
Use this argument to select which privileges you want to grant. Pass
DB_GRANT_ALL to grant all privileges. To grant individual privileges pass one or
more of the following OR'd together:

DB_GRANT_SELECT
DB_GRANT_INSERT
DB_GRANT_UPDATE
DB_GRANT_DELETE
DB_GRANT_ALL

[T I
0 N

DB_GRANT_SELECT | DB_GRANT_INSERT |
DB_GRANT_UPDATE | DB_GRANT_DELETE

tableName
The name of the table you wish to grant privileges on.

userList
OPTIONAL. A comma delimited list of users to grant the privileges to. If this
argument is not passed in, the privileges will be given to the general PUBLIC.

Remarks

Some databases require user names to be specified in all capital letters (i.e. Oracle).
This function does not automatically capitalize the user names passed in the comma-
separated list. This is the responsibility of the calling routine.

The currently logged in user must have sufficient grantor privileges for this function to be
able to successfully grant the indicated privileges.

Example

db.Grant (DB_GRANT_SELECT | DB_GRANT_INSERT, "PARTS", "mary, sue");

wxDb::IsFwdOnlyCursors

bool IsFwdOnlyCursors()

This setting indicates whether this database connection was created as being capable of
using only forward scrolling cursors.

This function does NOT indicate if the ODBC driver or datasource supports backward
scrolling cursors. There is no standard way of detecting if the driver or datasource can
support backward scrolling cursors.

If a wxDb instance was created as being capable of only forward scrolling cursors, then
even if the datasource and ODBC driver support backward scrolling cursors, tables
using this database connection would only be able to use forward scrolling cursors.

The default setting of whether a wxDb connection to a database allows forward-only or

292

CHAPTER 7

also backward scrolling cursors is defined in setup.h by the value of
wxODBC_FWD_ONLY_CURSORS. This default setting can be overridden when the
wxDb connection is initially created (seewxDb constructor (p. 279) and
wxDbGetConnection (p. 276)).

Return value

Returns true if this datasource connection is defined as using only forward scrolling
cursors, or false if the connection is defined as being allowed to use backward scrolling
cursors and their associated functions (see note above).

Remarks

Added as of wxWindows v2.4 release, this function is a renamed version of
wxDb::FwdOnlyCursors() to match the normal wxWindows naming conventions for class
member functions.

This function is not available in versions prior to v2.4. You should use
wxDb::FwdOnlyCursors (p. 285) for wxWindows versions prior to 2.4.

See also

wxDb constructor (p. 279), wxDbGetConnection (p. 276)

wxDb::IsOpen

bool IsOpen()
Indicates whether the database connection to the datasource is currently opened.
Remarks

This function may indicate that the database connection is open, even if the call to
wxDb::Open (p. 295) may have failed to fully initialize the connection correctly. The
connection to the databaseis open and can be used via the direct SQL commands, if this
function returns true. Other functions which depend on thewxDb::Open (p. 295) to have
completed correctly may not function as expected. The return result from wxDb::Open
(p- 295) is the only way to know if complete initialization of this wxDb connection was
successful or not. See wxDb::Open (p. 295) for more details on partial failures to open a
connection instance.

wxDb::LogError

void LogError(const wxString &errMsg const wxString &SQL State="")

errMsg
Free-form text to display describing the error/text to be logged.
SQLState

293

CHAPTER 7

OPTIONAL. Native SQL state error. Default is 0.
Remarks
Calling this function will enter a log message in the error list maintained for the database
connection. This log message is free form and can be anything the programmer wants

to enter in the error list.

If SQL logging is turned on, the call to this function will also log the text into the SQL log
file.

See also

wxDb::WriteSqlLog (p. 301)

wxDb::ModifyColumn

void ModifyColumn(const wxString &tableName const wxString & ColumnNameint
dataType ULONG columnLength=0 const wxString &optionalParam="")

Used to change certain properties of a column such as the length, or whether a column
allows NULLs or not.

tableName
Name of the table that the column to be modified is in.

columnName
Name of the column to be modified. NOTE: Name of column cannot be changed
with this function.

dataType
Any one of DB_DATA_TYPE_VARCHAR, DB_DATA_TYPE_INTEGER,
DB_DATA_TYPE_FLOAT, DB_DATA_TYPE_DATE.

columnLength
New size of the column. Valid only for DB_DATA_TYPE_VARCHAR dataType
fields. Defaultis 0.

optionalParam

Default is "".
Remarks

Cannot be used to modify the precision of a numeric column, therefore ‘columnLength' is
ignored unless the dataType is DB_DATA_TYPE_VARCHAR.

Some datasources do not allow certain properties of a column to be changed if any rows
currently have data stored in that column. Those datasources that do allow columns to
be changed with data in the rows many handle truncation and/or expansion in different
ways. Please refer to the reference material for the datasource being used for
behavioral descriptions.

Example

294

CHAPTER 7

ok = pDb->ModifyColumn ("CONTACTS", "ADDRESS2",
DB_, colDefs[]j].SzDataObj,
wxT ("NOT NULL"));

wxDb::Open

bool Open(const wxString &Dsn, const wxString &Uid,const wxString &AuthStr)
bool Open(wxDb *copyDb)

Opens a connection to the datasource, sets certain behaviors of the datasource to
confirm to the accepted behaviors (e.g. cursor position maintained on commits), and
queries the datasource for its representations of the basic datatypes to determine the
form in which the data going to/from columns in the data tables are to be handled.

The second form of this function, which accepts a "wxDb *" as a parameter, can be used
to avoid the overhead (execution time, database load, network traffic) which are needed
to determine the data types and representations of data that are necessary for cross-
datasource support by these classes.

Normally the first form of the wxDb::Open() function will open the connection and then
send a series of queries to the datasource asking it for its representation of data types,
and all the features it supports. If one connection to the datasource has already been
made previously, the information gathered when that connection was created can just be
copied to any new connections to the same datasource by passing a pointer to the first
connection in as a parameter to the wxDb::Open() function. Note that this new
connection created from the first connections information will use the same
Dsn/Uid/AuthStr as the first connection used.

Parameters
Dsn

datasource name. The name of the ODBC datasource as assigned when the
datasource is initially set up through the ODBC data source manager.

Uid
User ID. The name (ID) of the user you wish to connect as to the datasource. The
user name (ID) determines what objects you have access to in the datasource and
what datasource privileges you have. Privileges include being able to create new
objects, update objects, delete objects and so on. Users and privileges are
normally administered by the database administrator.

AuthStr
The password associated with the Uid.

copyDb
Already completely configured and opened datasource connection from which all
Dsn, Uid, AuthStr, and data typing information is to be copied from for use by this
datasource connection.

Remarks

After a wxDb instance is created, it must then be opened. When opening a datasource,

295

CHAPTER 7

there must be three pieces of information passed. The data source name, user name
(ID) and the password for the user. No database activity on the datasource can be
performed until the connection is opened. This is normally done at program startup and
the datasource remains open for the duration of the program/module run.

It is possible to have connections to multiple datasources open at the same time to
support distributed database connections by having separate instances of wxDb objects
that use either the same or different Dsn/Uid/AuthStr settings.

If this function returns a value of false, it does not necessarily mean that the connection
to the datasource was not opened. It may mean that some portion of the initialization of
the connection failed (such as a datatype not being able to be determined how the
datasource represents it). To determine if the connection to the database failed, use the
wxDb::IsOpen (p. 293)function after receiving a false result back from this function to
determine if the connection was opened or not. If this function returns false, but
wxDb::IsOpen (p. 293)returns true, then direct SQL commands may be passed to the
database connection and can be successfully executed, but use of the datatypes (such
as by a wxDbTable instance) that are normally determined during open will not be
possible.

The Dsn, Uid, and AuthStr string pointers that are passed in are copied. NOT the strings
themselves, only the pointers. The calling routine must maintain the memory for these
three strings for the life of the wxDb instance.

Example

wxDb sampleDB (DbConnectInf.GetHenv());
if (!sampleDB.Open ("Oracle 7.1 HP/UX", "gtasker", "myPassword"))
{
if (sampleDb.IsOpen())
{
// Connection is open, but the initialization of
// datatypes and parameter settings failed
}
else
{
// Error opening datasource

}

wxDb::RollbackTrans

bool RollbackTrans()

Function to "undo" changes made to the database. After an insert/update/delete, the
operation may be "undone" by issuing this command any time before a
wxDb::CommitTrans (p. 281) is called on the database connection.

Remarks

Transactions begin implicitly as soon as you make a change to the database. The
transaction continues until either a commit or rollback is executed. Calling

296

CHAPTER 7

wxDb::RollbackTrans() will result in ALL changes done using this database connection
that have not already been committed to be "undone" back to the last commit/rollback
that was successfully executed.

Calling this member function rolls back ALL open (uncommitted) transactions on this
ODBC connection, including all wxDbTable instances that use this connection.

See also

wxDb::CommitTrans (p. 281) for a special note on cursors

wxDb::SetDebugErrorMessages

void SetDebugErrorMessages(bool state)
State
Either true (debug messages are logged) or false (debug messages are not
logged).
Remarks
Turns on/off debug error messages from the ODBC class library. When this function is
passed true, errors are reported to the user/logged automatically in a text or pop-up
dialog when an ODBC error occurs. When passed false, errors are silently handled.
When compiled in release mode (FINAL=1), this setting has no affect.

See also

wxDb constructor (p. 279)

wxDb::SetSqlLogging

bool SetSqlLogging(wxDbSqlLogState state, const wxString &filename =
SQL _LOG_FILENAME, bool append = false)

Parameters

state
Either sqlLogOFF or sqlLogON (see enum wxDbSqlLogState (p. 303)). Turns
logging of SQL commands sent to the datasource OFF or ON.

filename
OPTIONAL. Name of the file to which the log text is to be written. Default is
SQL_LOG_FILENAME.

append
OPTIONAL. Whether the file is appended to or overwritten. Default is false.

Remarks

297

CHAPTER 7

When called with sq/LogON, all commands sent to the datasource engine are logged to
the file specified by filename. Logging is done by embedded wxDb::WriteSqlLog (p.
301) calls in the database member functions, or may be manually logged by adding calls
to wxDb::WriteSqlLog (p. 301) in your own source code.

When called with sq/LogOFF, the logging file is closed, and any calls to
wxDb::WriteSqlLog (p. 301) are ignored.

wxDb::SQLColumnName

const wxString SQLColumnName(const char * co/lName)

Returns the column name in a form ready for use in SQL statements. In most cases, the
column name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in column names, which must be specially quoted. For
example, if the datasource allows spaces in the column name, the returned string will
have the correct enclosing marks around the name to allow it to be properly included in a
SQL statement for the DBMS that is currently connected to with this connection.

Parameters

colName
Native name of the column in the table that is to be evaluated to determine if any
special quoting marks needed to be added to it before including the column name
in a SQL statement

See also

wxDb::SQLTableName (p. 298)

wxDb::SQLTableName

const wxString SQLTableName(const char * tableName)

Returns the table name in a form ready for use in SQL statements. In most cases, the
table name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in table names, which must be specially quoted. For example,
if the datasource allows spaces in the table name, the returned string will have the
correct enclosing marks around the name to allow it to be properly included in a SQL
statement for the data source that is currently connected to with this connection.

Parameters

tableName
Native name of the table that is to be evaluated to determine if any special quoting
marks needed to be added to it before including the table name in a SQL
statement

298

CHAPTER 7

See also

wxDb::SQLColumnName (p. 298)

wxDb::TableExists

bool TableExists(const wxString &tableName, const wxChar *userl[D=NULL, const
wxString &path="")

Checks the ODBC datasource for the existence of a table. If a user/Dis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName
Name of the table to check for the existence of.

userlD
Owner of the table (also referred to as schema). Specify a userlD when the
datasource you are connected to allows multiple unique tables with the same
name to be owned by different users. userlDis evaluated as follows:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

Remarks

tableName may refer to a table, view, alias or synonym.

This function does not indicate whether or not the user has privileges to query or perform
other functions on the table. Use the wxDb::TablePrivileges (p. 299) to determine if the
user has sufficient privileges or not.

See also

wxDb::TablePrivileges (p. 299)

wxDb::TablePrivileges

bool TablePrivileges(const wxString &iableName, const wxString &priv,const
wxChar *userID=NULL, const wxChar *schema=NULL,const wxString &path="")

Checks the ODBC datasource for the existence of a table. If a userlDis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

299

CHAPTER 7

tableName
Name of the table on which to check privileges.tableName may refer to a table,
view, alias or synonym.

priv
The table privilege being evaluated. May be one of the following (or a datasource
specific privilege):

SELECT : The connected user is permitted to retrieve data for
one or more columns of the table.

INSERT : The connected user is permitted to insert new rows
containing data for one or more columns into the
table.

UPDATE : The connected user is permitted to update the data in

one or more columns of the table.

DELETE : The connected user is permitted to delete rows of
data from the table.

REFERENCES : Is the connected user permitted to refer to one or
more columns of the table within a constraint (for
example, a unique, referential, or table check
constraint) .

userlD
OPTIONAL. User for which to determine if the privilege specified to be checked is
granted or not. Default is "".userID is evaluated as follows:

userID == NULL ... NOT ALLOWED!
userID == "" ... UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

schema
OPTIONAL. Owner of the table. Specify a userlD when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. Specifying the table owner makes determination of the users
privileges MUCH faster. Default is NULL. userlD is evaluated as follows:

schema == NULL ... Any ownher (DEFAULT)
schema == ""