

i

wxWindows 2.3: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

December 7th 2001

i

Contents

Chapter 1 Copyright notice ...xv

Chapter 2 Introduction.. 1
What is wxWindows? ...1
Why another cross-platform development tool?..1
Changes from version 1.xx ...3
Changes from version 2.0...4
wxWindows requirements...4
Availability and location of wxWindows ..5
Acknowledgments..5

Chapter 3 Multi-platform development with wxWindows 7
Include files ...7
Libraries ..7
Configuration ...8
Makefiles ...8
Windows -specific files ..9
Allocating and deleting wxWindows objects ...9
Architecture dependency .. 10
Conditional compilation .. 11
C++ issues .. 11
File handling.. 12

Chapter 4 Programming strategies ...13
Strategies for reducing programming errors ... 13
Strategies for portability.. 13
Strategies for debugging... 14

Chapter 5 Alphabetical class reference...16
wxAcceleratorEntry .. 16
wxAcceleratorTable.. 17
wxActivateEvent .. 20
wxApp ... 21
wxArray ... 33
wxArrayString .. 45
wxAutomationObject .. 50
wxBitmap .. 55
wxBitmapHandler... 68

CONTENTS

ii

wxBitmapButton ... 72
wxBitmapDataObject.. 77
wxBoolFormValidator ... 78
wxBoolListValidator .. 78
wxBoxSizer ... 79
wxBrush .. 81
wxBrushList... 87
wxBusyCursor ... 89
wxBusyInfo .. 90
wxButton ... 91
wxBufferedInputStream .. 95
wxBufferedOutputStream ... 95
wxCalculateLayoutEvent .. 96
wxCalendarCtrl .. 98
wxCalendarDateAttr ... 104
wxCalendarEvent ... 107
wxCaret ... 108
wxCheckBox.. 111
wxCheckListBox .. 114
wxChoice .. 116
wxClassInfo... 122
wxClientDC ... 123
wxClipboard... 124
wxCloseEvent .. 127
wxCmdLineParser.. 129
wxColour... 138
wxColourData.. 142
wxColourDatabase... 144
wxColourDialog.. 145
wxComboBox .. 147
wxCommand ... 154
wxCommandEvent ... 156
wxCommandProcessor .. 161
wxCondition... 164
wxConfigBase.. 166
wxContextHelp .. 180
wxContextHelpButton ... 182
wxControl .. 183
wxCountingOutputStream... 184
wxCriticalSection ... 185

CONTENTS

iii

wxCriticalSectionLocker ... 186
wxCSConv .. 188
wxCustomDataObject... 189
wxCursor ... 191
wxDatabase... 195
wxDataFormat ... 201
wxDataObject .. 204
wxDb... 207
wxDbColDataPtr .. 238
wxDbColDef .. 238
wxDbColInf.. 239
wxDbColFor... 240
wxDbConnectInf .. 241
wxDbIdxDef... 246
wxDbInf... 246
wxDbTable .. 247
wxDbTableInf .. 283
wxDataObjectComposite .. 284
wxDataObjectSimple .. 285
wxDataInputStream.. 287
wxDataOutputStream... 289
wxDate.. 291
wxDateSpan.. 299
wxDateTime .. 299
wxDateTimeHolidayAuthority .. 327
wxDateTimeWorkDays ... 327
wxDC.. 327
wxDCClipper ... 346
wxDDEClient ... 347
wxDDEConnection ... 348
wxDDEServer.. 352
wxDebugContext ... 353
wxDebugStreamBuf ... 358
wxDialog ... 359
wxDialUpEvent .. 367
wxDialUpManager.. 368
wxDir... 372
wxDirTraverser .. 376
wxDirDialog ... 377
wxDllLoader... 379

CONTENTS

iv

wxDynamicLibrary .. 382
wxDocChildFrame.. 383
wxDocManager.. 385
wxDocMDIChildFrame.. 394
wxDocMDIParentFrame ... 396
wxDocParentFrame ... 398
wxDocTemplate... 399
wxDocument .. 404
wxDragImage .. 413
wxDropFilesEvent .. 417
wxDropSource ... 419
wxDropTarget .. 421
wxEncodingConverter .. 425
wxEraseEvent.. 427
wxEvent .. 428
wxEvtHandler .. 432
wxExpr .. 439
wxExprDatabase.. 446
wxFile ... 449
wxFFile ... 456
wxFileDataObject... 460
wxFileDialog .. 461
wxFileDropTarget... 466
wxFileHistory ... 467
wxFileInputStream ... 470
wxFileOutputStream... 471
wxFileStream... 473
wxFFileInputStream ... 473
wxFFileOutputStream... 474
wxFFileStream... 476
wxFileName... 476
wxFilenameListValidator... 489
wxFileSystem .. 489
wxFileSystemHandler... 491
wxFileType .. 494
wxFlexGridSizer... 498
wxFilterInputStream ... 500
wxFilterOutputStream... 500
wxFindDialogEvent .. 501
wxFindReplaceData ... 502

CONTENTS

v

wxFindReplaceDialog... 504
wxFocusEvent ... 506
wxFont .. 506
wxFontData ... 515
wxFontDialog... 518
wxFontEnumerator... 519
wxFontList ... 521
wxFontMapper ... 522
wxFrame ... 525
wxFSFile ... 537
wxFTP... 540
wxGauge ... 546
wxGDIObject ... 550
wxGenericDirCtrl.. 551
wxGenericValidator.. 555
wxGLCanvas ... 557
wxGrid .. 559
wxGridCellAttr.. 594
wxGridCellEditor .. 598
wxGridCellRenderer ... 600
wxGridTableBase... 601
wxGridSizer ... 606
wxHashTable... 608
wxHelpController ... 610
wxHelpControllerHelpProvider .. 616
wxHelpEvent ... 617
wxHelpProvider.. 618
wxHtmlCell .. 620
wxHtmlColourCell .. 626
wxHtmlContainerCell.. 626
wxHtmlDCRenderer ... 632
wxHtmlEasyPrinting ... 634
wxHtmlFilter... 638
wxHtmlHelpController... 639
wxHtmlHelpData .. 643
wxHtmlHelpFrame ... 645
wxHtmlLinkInfo .. 649
wxHtmlParser .. 650
wxHtmlPrintout .. 654
wxHtmlTag .. 656

CONTENTS

vi

wxHtmlTagHandler... 660
wxHtmlTagsModule.. 662
wxHtmlWidgetCell .. 662
wxHtmlWindow .. 663
wxHtmlWinParser .. 671
wxHtmlWinTagHandler ... 677
wxHTTP .. 677
wxIdleEvent ... 679
wxIcon .. 680
wxIconizeEvent .. 688
wxImage.. 689
wxImageHandler .. 706
wxImageList .. 710
wxIndividualLayoutConstraint ... 715
wxInitDialogEvent .. 718
wxInputStream... 718
wxIntegerFormValidator ... 721
wxIntegerListValidator .. 721
wxIPV4address.. 722
wxJoystick... 724
wxJoystickEvent .. 731
wxKeyEvent... 733
wxLayoutAlgorithm... 737
wxLayoutConstraints .. 740
wxList.. 743
wxListBox .. 749
wxListCtrl .. 758
wxListEvent ... 775
wxListOfStringsListValidator ... 778
wxLocale... 779
wxLog ... 790
wxLogChain... 797
wxLogGui .. 798
wxLogNull ... 799
wxLogStderr .. 800
wxLogStream .. 801
wxLogTextCtrl.. 802
wxLogWindow ... 802
wxLogPassThrough ... 804
wxLongLong.. 805

CONTENTS

vii

wxMask... 808
wxMaximizeEvent .. 810
wxMBConv.. 811
wxMBConvFile... 813
wxMBConvUTF7.. 814
wxMBConvUTF8.. 815
wxMDIChildFrame ... 816
wxMDIClientWindow .. 819
wxMDIParentFrame ... 821
wxMemoryDC.. 828
wxMemoryFSHandler ... 829
wxMemoryInputStream... 831
wxMemoryOutputStream.. 832
wxMenu .. 833
wxMenuBar ... 843
wxMenuItem .. 852
wxMenuEvent .. 857
wxMessageDialog .. 859
wxMetafile ... 860
wxMetafileDC .. 862
wxMimeTypesManager .. 863
wxMiniFrame ... 866
wxModule .. 869
wxMouseEvent .. 871
wxMoveEvent .. 880
wxMultipleChoiceDialog ... 881
wxMutex .. 881
wxMutexLocker.. 884
wxNotebookSizer ... 885
wxNodeBase ... 886
wxNotebook... 887
wxNotebookEvent .. 894
wxNotifyEvent .. 896
wxObject ... 897
wxObjectRefData... 901
wxOutputStream .. 902
wxPageSetupDialogData.. 904
wxPageSetupDialog ... 909
wxPaintDC .. 910
wxPaintEvent ... 911

CONTENTS

viii

wxPalette .. 912
wxPanel .. 916
wxPanelTabView ... 919
wxPathList... 921
wxPen ... 922
wxPenList.. 929
wxPlotCurve .. 931
wxPlotWindow ... 933
wxPoint ... 937
wxPostScriptDC ... 938
wxPreviewCanvas .. 939
wxPreviewControlBar... 940
wxPreviewFrame ... 942
wxPrintData... 943
wxPrintDialog .. 949
wxPrintDialogData ... 951
wxPrinter... 955
wxPrinterDC .. 958
wxPrintout ... 958
wxPrintPreview .. 962
wxPrivateDropTarget.. 966
wxProcess... 967
wxProgressDialog.. 971
wxProcessEvent .. 973
wxProperty .. 974
wxPropertyFormDialog... 977
wxPropertyFormFrame ... 977
wxPropertyFormPanel .. 978
wxPropertyFormValidator ... 979
wxPropertyFormView ... 980
wxPropertyListDialog.. 983
wxPropertyListFrame ... 983
wxPropertyListPanel .. 984
wxPropertyListValidator .. 985
wxPropertyListView .. 987
wxPropertySheet ... 990
wxPropertyValidator ... 992
wxPropertyValidatorRegistry ... 993
wxPropertyValue.. 994
wxPropertyView... 999

CONTENTS

ix

wxProtocol... 1002
wxQuantize ... 1004
wxQueryCol... 1005
wxQueryField .. 1008
wxQueryLayoutInfoEvent .. 1010
wxRadioBox .. 1013
wxRadioButton .. 1019
wxRealFormValidator... 1021
wxRealListValidator.. 1022
wxRealPoint .. 1022
wxRect .. 1023
wxRecordSet ... 1027
wxRegEx... 1040
wxRegion .. 1044
wxRegionIterator.. 1048
wxSashEvent ... 1050
wxSashLayoutWindow ... 1052
wxSashWindow ... 1055
wxScreenDC ... 1060
wxScrollBar ... 1062
wxScrollWinEvent .. 1067
wxScrollEvent .. 1068
wxScrolledWindow... 1070
wxSimpleHelpProvider ... 1078
wxSingleChoiceDialog.. 1079
wxSingleInstanceChecker... 1081
wxSize .. 1083
wxSizeEvent .. 1085
wxSizer ... 1086
wxSlider .. 1091
wxSockAddress ... 1099
wxSocketBase... 1100
wxSocketClient .. 1118
wxSocketEvent .. 1120
wxSocketServer ... 1121
wxSocketInputStream .. 1124
wxSocketOutputStream .. 1124
wxSpinButton .. 1125
wxSpinCtrl ... 1128
wxSpinEvent .. 1131

CONTENTS

x

wxSplashScreen .. 1132
wxSplitterEvent .. 1134
wxSplitterWindow... 1137
wxStaticBitmap .. 1146
wxStaticBox... 1148
wxStaticBoxSizer ... 1150
wxStaticLine .. 1151
wxStaticText .. 1153
wxStatusBar .. 1155
wxStopWatch .. 1160
wxStreamBase .. 1161
wxStreamBuffer ... 1163
wxStreamToTextRedirector .. 1169
wxString .. 1171
wxStringBuffer ... 1194
wxStringFormValidator ... 1195
wxStringList... 1195
wxStringListValidator.. 1197
wxStringTokenizer ... 1197
wxSysColourChangedEvent ... 1200
wxSystemOptions .. 1201
wxSystemSettings.. 1203
wxTabbedDialog .. 1206
wxTabbedPanel ... 1207
wxTabControl .. 1208
wxTabView .. 1212
wxTabCtrl .. 1220
wxTabEvent... 1226
wxTaskBarIcon .. 1227
wxTCPClient .. 1229
wxTCPConnection ... 1231
wxTCPServer .. 1235
wxTempFile ... 1236
wxTextAttr ... 1238
wxTextCtrl ... 1240
wxTextDataObject.. 1256
wxTextInputStream .. 1258
wxTextOutputStream.. 1260
wxTextEntryDialog ... 1262
wxTextDropTarget ... 1264

CONTENTS

xi

wxTimeSpan.. 1265
wxTextValidator ... 1267
wxTextFile ... 1270
wxThread .. 1276
wxTime ... 1283
wxTimer .. 1288
wxTimerEvent .. 1290
wxTipProvider.. 1291
wxTipWindow .. 1292
wxToggleButton... 1293
wxToolBar ... 1296
wxToolTip.. 1311
wxTreeCtrl... 1313
wxTreeItemData .. 1330
wxTreeEvent ... 1332
wxTreeLayout .. 1334
wxTreeLayoutStored .. 1340
wxUpdateUIEvent .. 1342
wxURL .. 1345
wxValidator.. 1348
wxVariant .. 1350
wxVariantData ... 1359
wxView.. 1360
wxWave .. 1364
wxWindow... 1366
wxWindowDC .. 1418
wxWindowDisabler... 1419
wxWizard .. 1420
wxWizardEvent .. 1423
wxWizardPage... 1425
wxWizardPageSimple .. 1427
wxZipInputStream.. 1428
wxZlibInputStream ... 1429
wxZlibOutputStream... 1429

Chapter 6 Functions..1431
Version macros .. 1431
Thread functions .. 1432
File functions ... 1433
Network functions .. 1438

CONTENTS

xii

User identification .. 1439
String functions .. 1441
Dialog functions ... 1443
GDI functions ... 1451
Printer settings ... 1452
Clipboard functions .. 1455
Miscellaneous functions ... 1458
Macros .. 1477
wxWindows resource functions ... 1485
Log functions ... 1489
Time functions ... 1492
Debugging macros and functions .. 1494
Environment access functions... 1496
Keycodes .. 1497

Chapter 7 Classes by category ..1499

Chapter 8 Topic overviews..1511
Notes on using the reference .. 1511
Writing a wxWindows application: a rough guide .. 1511
wxWindows "Hello World" ... 1512
wxWindows samples .. 1515
wxApp overview ... 1524
Run time class information overview ... 1525
wxString overview .. 1527
Date and time classes overview.. 1532
Unicode support in wxWindows... 1536
wxMBConv classes overview.. 1539
Internationalization ... 1542
Writing non-English applications ... 1543
Container classes overview .. 1545
File classes and functions overview... 1546
wxStreams overview .. 1547
wxLog classes overview ... 1549
Debugging overview... 1552
wxConfig classes overview ... 1554
wxExpr overview.. 1555
wxFileSystem .. 1558
Event handling overview... 1560
Window styles.. 1567
Window deletion overview .. 1568

CONTENTS

xiii

wxDialog overview ... 1570
wxValidator overview.. 1571
Constraints overview.. 1573
The wxWindows resource system ... 1576
Scrolling overview.. 1584
Bitmaps and icons overview.. 1585
Device context overview... 1589
wxFont overview .. 1589
Font encoding overview.. 1590
wxSplitterWindow overview .. 1592
wxTreeCtrl overview... 1593
wxListCtrl overview .. 1595
wxImageList overview .. 1595
Common dialogs overview .. 1595
Document/view overview.. 1599
wxTab classes overview... 1605
wxTabView overview.. 1609
Toolbar overview ... 1610
wxGrid classes overview .. 1615
wxTipProvider overview.. 1616
Printing overview ... 1617
Multithreading overview.. 1618
Drag and drop overview ... 1619
wxDataObject overview .. 1620
Database classes overview .. 1622
Interprocess communication overview ... 1646

Chapter 9 wxHTML Notes ..1650
wxHTML quick start.. 1650
HTML Printing.. 1651
Help Files Format... 1651
Input Filters ... 1653
Cells and Containers .. 1653
Tag Handlers ... 1655
Tags supported by wxHTML ... 1657

Chapter 10 Property sheet classes ...1661
Introduction ... 1661
Headers .. 1663
Topic overviews ... 1663
Classes by category ... 1671

CONTENTS

xiv

Chapter 11 wxPython Notes..1673
What is wxPython?... 1673
Why use wxPython?... 1673
Other Python GUIs ... 1674
Using wxPython... 1675
wxWindows classes implemented in wxPython .. 1678
Where to go for help... 1682

Chapter 12 Porting from wxWindows 1.xx..1683
Preparing for version 2.0 .. 1683
The new event system.. 1685
Class hierarchy .. 1686
GDI objects ... 1686
Dialogs and controls... 1686
Device contexts and painting .. 1688
Miscellaneous .. 1688
Backward compatibility ... 1689
Quick reference ... 1689

Chapter 13 References ...1694

Chapter 14 Index ..1696

xv

Chapter 1 Copyright notice

(c) 1999 Julian Smart, Robert Roebling, Vadim Zeitlin and other members of the

wxWindows team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, lgpl.txt, gpl.txt, license.txt,
licendoc.txt) for conditions of software and documentation use.

wxWindows Library License, Version 3

Copyright (C) 1998 Julian Smart, Robert Roebling, Vadim Zeitlin et al.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You should have received a copy of the GNU Library General Public License along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licensed under the
wxWindows Library License, applying either version 3 of the License, or (at your option)
any later version of the License as published by the copyright holders of version 3 of the
License document.

2. The exception is that you may create binary object code versions of any works using
this library or based on this library, and use, copy, modify, link and distribute such binary
object code files unrestricted under terms of your choice.

3. If you copy code from files distributed under the terms of the GNU General Public
License or the GNU Library General Public License into a copy of this library, as this
license permits, the exception does not apply to the code that you add in this way. To

COPYRIGHT

xvi

avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

4. If you write modifications of your own for this library, it is your choice whether to
permit this exception to apply to your modifications. If you do not wish that, you must
delete the exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

COPYRIGHT

xvii

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

 GNU LIBRARY GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

COPYRIGHT

xviii

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an

COPYRIGHT

xix

argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

COPYRIGHT

xx

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no

COPYRIGHT

xxi

more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,

COPYRIGHT

xxii

link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to

COPYRIGHT

xxiii

the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

COPYRIGHT

xxiv

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random
Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

1

Chapter 2 Introduction

WWhhaatt iiss wwxxWWiinnddoowwss??

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports MS Windows (16-bit,
Windows 95 and Windows NT), Unix with GTK+, Unix with Motif, and Mac. An OS/2 port
is in progress.

wxWindows was originally developed at the Artificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1993.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin and many others.

This manual discusses wxWindows in the context of multi-platform development.

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

WWhhyy aannootthheerr ccrroossss--ppllaattffoorrmm ddeevveellooppmmeenntt ttooooll??

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

 1. low price;
 2. source availability;
 3. simplicity of programming;
 4. support for a wide range of compilers.

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As open source software, wxWindows has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWindows a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

CHAPTER 2

2

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming
interface than the native APIs. Programmers may find it worthwhile to use wxWindows
even if they are developing on only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

 • Low cost (free, in fact!)
 • You get the source.
 • Available on a variety of popular platforms.
 • Works with almost all popular C++ compilers and Python.
 • Over 50 example programs.
 • Over 1000 pages of printable and on-line documentation.
 • Includes Tex2RTF, to allow you to produce your own documentation in Windows

Help, HTML and Word RTF formats.
 • Simple-to-use, object-oriented API.
 • Flexible event system.
 • Graphics calls include lines, rounded rectangles, splines, polylines, etc.
 • Constraint-based and sizer-based layouts.
 • Print/preview and document/view architectures.
 • Toolbar, notebook, tree control, advanced list control classes.
 • PostScript generation under Unix, normal MS Windows printing on the PC.
 • MDI (Multiple Document Interface) support.
 • Can be used to create DLLs under Windows, dynamic libraries on Unix.
 • Common dialogs for file browsing, printing, colour selection, etc.
 • Under MS Windows, support for creating metafiles and copying them to the

clipboard.
 • An API for invoking help from applications.
 • Ready-to-use HTML window (supporting a subset of HTML).
 • Dialog Editor for building dialogs.
 • Network support via a family of socket and protocol classes.
 • Support for platform independent image processing.
 • Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

CHAPTER 2

3

CChhaannggeess ffrroomm vveerrssiioonn 11..xxxx

These are a few of the major differences between versions 1.xx and 2.0.

Removals:

 • XView is no longer supported;
 • all controls (panel items) no longer have labels attached to them;
 • wxForm has been removed;
 • wxCanvasDC, wxPanelDC removed (replaced by wxClientDC, wxWindowDC,

wxPaintDC which can be used for any window);
 • wxMultiText, wxTextWindow, wxText removed and replaced by wxTextCtrl;
 • classes no longer divided into generic and platform-specific parts, for efficiency.

Additions and changes:

 • class hierarchy changed, and restrictions about subwindow nesting lifted;
 • header files reorganized to conform to normal C++ standards;
 • classes less dependent on each another, to reduce executable size;
 • wxString used instead of char* wherever possible;
 • the number of separate but mandatory utilities reduced;
 • the event system has been overhauled, with virtual functions and callbacks

being replaced with MFC-like event tables;
 • new controls, such as wxTreeCtrl, wxListCtrl, wxSpinButton;
 • less inconsistency about what events can be handled, so for example mouse

clicks or key presses on controls can now be intercepted;
 • the status bar is now a separate class, wxStatusBar, and is implemented in

generic wxWindows code;
 • some renaming of controls for greater consistency;
 • wxBitmap has the notion of bitmap handlers to allow for extension to new

formats without ifdefing;
 • new dialogs: wxPageSetupDialog, wxFileDialog, wxDirDialog,

wxMessageDialog, wxSingleChoiceDialog, wxTextEntryDialog;
 • GDI objects are reference-counted and are now passed to most functions by

reference, making memory management far easier;
 • wxSystemSettings class allows querying for various system-wide properties

such as dialog font, colours, user interface element sizes, and so on;
 • better platform look and feel conformance;
 • toolbar functionality now separated out into a family of classes with the same

API;
 • device contexts are no longer accessed using wxWindow::GetDC - they are

created temporarily with the window as an argument;
 • events from sliders and scrollbars can be handled more flexibly;
 • the handling of window close events has been changed in line with the new

event system;
 • the concept of validator has been added to allow much easier coding of the

relationship between controls and application data;

CHAPTER 2

4

 • the documentation has been revised, with more cross-referencing.

Platform-specific changes:

 • The Windows header file (windows.h) is no longer included by wxWindows

headers;
 • wx.dll supported under Visual C++;
 • the full range of Windows 95 window decorations are supported, such as modal

frame borders;
 • MDI classes brought out of wxFrame into separate classes, and made more

flexible.

CChhaannggeess ffrroomm vveerrssiioonn 22..00

These are a few of the differences between versions 2.0 and 2.2.

Removals:

 • GTK 1.0 no longer supported.

Additions and changes:

 • Corrected many classes to conform better to documented behaviour.
 • Added handlers for more image formats (Now GIF, JPEG, PCX, BMP, XPM,

PNG, PNM).
 • Improved support for socket and network functions.
 • Support for different national font encodings.
 • Sizer based layout system.
 • HTML widget and help system.
 • Added some controls (e.g. wxSpinCtrl) and supplemented many.
 • Many optical improvements to GTK port.
 • Support for menu accelerators in GTK port.
 • Enhanced and improved support for scrolling, including child windows.
 • Complete rewrite of clipboard and drag and drop classes.
 • Improved support for ODBC databases.
 • Improved tab traversal in dialogs.

wwxxWWiinnddoowwss rreeqquuiirreemmeennttss

To make use of wxWindows, you currently need one of the following setups.

(a) MS-Windows:

CHAPTER 2

5

 1. A 486 or higher PC running MS Windows.
 2. A Windows compiler: most are supported, but please see install.txt for

details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, Metrowerks CodeWarrior.

 3. At least 60 MB of disk space.

(b) Unix:

 1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).
 2. Almost any Unix workstation, and one of: GTK+ 1.2, Motif 1.2 or higher, Lesstif.
 3. At least 60 MB of disk space.

(c) Mac OS/Mac OS X:

 1. A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.
 2. CodeWarrior 5.3, 6 or 7 for Classic Mac OS.
 3. The Apple Developer Tools (eg. GNU C++) or CodeWarrior 7 for Mac OS X.
 4. At least 60 MB of disk space.

AAvvaaiillaabbiilliittyy aanndd llooccaattiioonn ooff wwxxWWiinnddoowwss

wxWindows is available by anonymous FTP and World Wide Web from
ftp://www.remstar.com/pub/wxwin (ftp://www.remstar.com/pub/wxwin) and/or
http://www.wxwindows.org (http://www.wxwindows.org).

You can also buy a CD-ROM using the form on the Web site, or by contacting:

Julian Smart
12 North Street West
Uppingham
Rutland
LE15 9SG
julian.smart@btopenworld.com

AAcckknnoowwlleeddggmmeennttss

Thanks are due to AIAI for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,
Alejandro Aguilar-Sierra, AIAI, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, Ian Brown, C.

CHAPTER 2

6

Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Guillermo Rodriguez Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale,
Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer,
Markus Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Thomas Runge, Tatu Männistö,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Hernan Otero, Ian Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett Potts,
Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton,
Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith, Kari Systä, Arthur
Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, David Webster, Janos Vegh, Andrea
Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

'Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is'' without
express or implied warranty.

7

Chapter 3 Multi-platform development with
wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

IInncclluuddee ffiilleess

The main include file is "wx/wx.h"; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

// For compilers that support precompilation, includes "wx.h".
#include <wx/wxprec.h>

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
// Include your minimal set of headers here, or wx.h
#include <wx/wx.h>
#endif

... now your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h". Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of
"wx/wxprec.h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

LLiibbrraarriieess

CHAPTER 3

8

The GTK and Motif ports of wxWindow can create either a static library or a shared
library on most Unix or Unix-like systems. The static library is called libwx_gtk.a and
libwx_motif.a whereas the name of the shared library is dependent on the system it is
created on and the version you are using. The library name for the GTK version of
wxWindows 2.2 on Linux and Solaris will be libwx_gtk-2.2.so.0.0.0, on HP-UX, it will be
libwx_gtk-2.2.sl, on AIX just libwx_gtk.a etc.

Under Windows, use the library wx.lib (release) or wxd.lib (debug) for stand-alone
Windows applications, or wxdll.lib (wxdlld.lib) for creating DLLs.

CCoonnffiigguurraattiioonn

Options are configurable in the file "wx/XXX/setup.h" where XXX is the required
platform (such as msw, motif, gtk, mac). Some settings are a matter of taste, some help
with platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and install.txt files for details on configuration.

Under Unix (GTK and Motif) the corresponding setup.h files are generated automatically
when configuring the wxWindows using the "configure" script. When using the RPM
packages for installing wxWindows on Linux, a correct setup.h is shipped in the package
and this must not be changed.

MMaakkeeffiilleess

At the moment there is no attempt to make Unix makefiles and PC makefiles compatible,
i.e. one makefile is required for each environment. The Unix ports use a sophisticated
system based on the GNU autoconf tool and this system will create the makefiles as
required on the respective platform. Although the makefiles are not identical in Windows,
Mac and Unix, care has been taken to make them relatively similar so that moving from
one platform to another will be painless.

Sample makefiles for Unix (suffix .unx), MS C++ (suffix .DOS and .NT), Borland C++
(.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos and
utilities.

The controlling makefile for wxWindows is in the MS-Windows directory src/msw for the
different Windows compiler and in the build directory when using the Unix ports. The
build directory can be chosen by the user. It is the directory in which the "configure"
script is run. This can be the normal base directory (by running ./configure there) or
any other directory (e.g. ../configure after creating a build-directory in the directory
level above the base directory).

CHAPTER 3

9

Please see the platform-specific install.txt file for further details.

WWiinnddoowwss--ssppeecciiffiicc ffiilleess

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

rcinclude "wx/msw/wx.rc"

which includes essential internal wxWindows definitions. The resource script may also
contain references to icons, cursors, etc., for example:

wxicon icon wx.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Module definition file

A module definition file (extension DEF) is required for 16-bit applications, and looks like
the following:

NAME Hello
DESCRIPTION 'Hello'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

AAllllooccaattiinngg aanndd ddeelleettiinngg wwxxWWiinnddoowwss oobbjjeeccttss

CHAPTER 3

10

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWindows, make sure you delete the array explicitly before wxWindows has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

AArrcchhiitteeccttuurree ddeeppeennddeennccyy

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Macros (p. 1477) section.

CHAPTER 3

11

CCoonnddiittiioonnaall ccoommppiillaattiioonn

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

CC++++ iissssuueess

The following documents some miscellaneous C++ issues.

Templates

wxWindows does not use templates since it is a notoriously unportable feature.

RTTI

wxWindows does not use run-time type information since wxWindows provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be 0L so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK port use
an explicit conversion such as

 wxWindow *my_window = (wxWindow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile "wx.h", using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are

CHAPTER 3

12

provided (one for normal applications and one for creating DLLs) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes "wx.h"!)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx.h. This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

FFiillee hhaannddlliinngg

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

13

Chapter 4 Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

SSttrraatteeggiieess ffoorr rreedduucciinngg pprrooggrraammmmiinngg eerrrroorrss

Use ASSERT

Although I haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
'defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, I
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

SSttrraatteeggiieess ffoorr ppoorrttaabbiilliittyy

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different
platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

CHAPTER 4

14

Use wxWindows resource files

Use .wrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code. Bitmap resources can be set up to load different
kinds of bitmap depending on platform (see the section on resource files).

SSttrraatteeggiieess ffoorr ddeebbuuggggiinngg

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

CHAPTER 4

15

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1489).

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system
and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1494) as part of a 'defensive programming'
strategy, scattering wxASSERTs liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1552) for further information.

Check Windows debug messages

Under Windows, it is worth running your program with DbgView
(http://www.sysinternals.com) running or some other program that shows
Windows-generated debug messages. It is possible it will show invalid handles being
used. You may have fun seeing what commercial programs cause these normally
hidden errors! Microsoft recommend using the debugging version of Windows, which
shows up even more problems. However, I doubt it is worth the hassle for most
applications. wxWindows is designed to minimize the possibility of such errors, but they
can still happen occasionally, slipping through unnoticed because they are not severe
enough to cause a crash.

Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we
could use them. Until then, a common -- if rather irrational -- technique is to just make
arbitrary changes to the code until something different happens. You may have an
intuition why a change will make a difference; otherwise, just try altering the order of
code, comment lines out, anything to get over an impasse. Obviously, this is usually a
last resort.

16

Chapter 5 Alphabetical class reference

wwxxAAcccceelleerraattoorrEEnnttrryy

An object used by an application wishing to create an accelerator table (p. 17).

Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 17), wxWindow::SetAcceleratorTable (p. 1405)

wxAcceleratorEntry::wxAcceleratorEntry

 wxAcceleratorEntry()

Default constructor.

 wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode

The keycode to be detected. See Keycodes (p. 1497) for a full list of keycodes.

cmd

The menu or control command identifier.

wxAcceleratorEntry::GetCommand

CHAPTER 5

17

int GetCommand() const

Returns the command identifier for the accelerator table entry.

wxAcceleratorEntry::GetFlags

int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)

Sets the accelerator entry parameters.

Parameters

flags

One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode

The keycode to be detected. See Keycodes (p. 1497) for a full list of keycodes.

cmd

The menu or control command identifier.

wwxxAAcccceelleerraattoorrTTaabbllee

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

CHAPTER 5

18

Derived from

wxObject (p. 897)

Include files

<wx/accel.h>

Example

 wxAcceleratorEntry entries[4];
 entries[0].Set(wxACCEL_CTRL, (int) 'N', ID_NEW_WINDOW);
 entries[1].Set(wxACCEL_CTRL, (int) 'X', wxID_EXIT);
 entries[2].Set(wxACCEL_SHIFT, (int) 'A', ID_ABOUT);
 entries[3].Set(wxACCEL_NORMAL, WXK_DELETE, wxID_CUT);
 wxAcceleratorTable accel(4, entries);
 frame->SetAcceleratorTable(accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK at present).

See also

wxAcceleratorEntry (p. 16), wxWindow::SetAcceleratorTable (p. 1405)

wxAcceleratorTable::wxAcceleratorTable

 wxAcceleratorTable()

Default constructor.

 wxAcceleratorTable(const wxAcceleratorTable& bitmap)

Copy constructor.

 wxAcceleratorTable(int n, wxAcceleratorEntry entries[])

Creates from an array of wxAcceleratorEntry (p. 16) objects.

 wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

CHAPTER 5

19

Parameters

n

Number of accelerator entries.

entries

The array of entries.

resource

Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry
objects or references to 3-element arrays (flags, keyCode, cmd), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

 ~wxAcceleratorTable ()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns TRUE if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel

Accelerator table to assign.

Return value

Returns reference to this object.

CHAPTER 5

20

wxAcceleratorTable::operator ==

bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel

Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were effectively equal, FALSE otherwise.

wxAcceleratorTable::operator !=

bool operator !=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel

Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were unequal, FALSE otherwise.

wwxxAAccttiivvaatteeEEvveenntt

An activate event is sent when a window or application is being activated or deactivated.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

CHAPTER 5

21

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.

Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows
only)

See also

wxWindow::OnActivate (p. 1388), Event handling overview (p. 1560)

wxActivateEvent::wxActivateEvent

 wxActivateEvent(WXTYPE eventType = 0, bool active = TRUE, int id = 0)

Constructor.

wxActivateEvent::m_active

bool m_active

TRUE if the window or application was activated.

wxActivateEvent::GetActive

bool GetActive() const

Returns TRUE if the application or window is being activated, FALSE otherwise.

wwxxAApppp

CHAPTER 5

22

The wxApp class represents the application itself. It is used to:

 • set and get application-wide properties;
 • implement the windowing system message or event loop;
 • initiate application processing via wxApp::OnInit (p. 28);
 • allow default processing of events not handled by other objects in the

application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/app.h>

See also

wxApp overview (p. 1524)

wxApp::wxApp

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

wxApp::~wxApp

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

wxApp::argc

int argc

CHAPTER 5

23

Number of command line arguments (after environment-specific processing).

wxApp::argv

char ** argv

Command line arguments (after environment-specific processing).

wxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 790)

wxApp::Dispatch

void Dispatch()

Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

 while (app.Pending())
 Dispatch();

See also

wxApp::Pending (p. 29)

wxApp::GetAppName

wxString GetAppName() const

Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::OnInit (p. 28), but the
application can reset it at will.

CHAPTER 5

24

wxApp::GetAuto3D

bool GetAuto3D() const

Returns TRUE if 3D control mode is on, FALSE otherwise.

See also

wxApp::SetAuto3D (p. 30)

wxApp::GetClassName

wxString GetClassName () const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 30)

wxApp::GetExitOnFrameDelete

bool GetExitFrameOnDelete () const

Returns TRUE if the application will exit when the top-level window is deleted, FALSE
otherwise.

See also

wxApp::SetExitOnFrameDelete (p. 31)

wxApp::GetTopWindow

virtual wxWindow * GetTopWindow() const

Returns a pointer to the top window.

Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 31), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 31)

CHAPTER 5

25

wxApp::GetUseBestVisual

bool GetUseBestVisual() const

Returns TRUE if the application will use the best visual on systems that support different
visuals, FALSE otherwise.

See also

SetUseBestVisual (p. 32)

wxApp::GetVendorName

wxString GetVendorName () const

Returns the application's vendor name.

wxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::Initialized

bool Initialized()

Returns TRUE if the application has been initialized (i.e. if wxApp::OnInit (p. 28) has
returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).

wxApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

CHAPTER 5

26

wxApp::OnAssert

void OnAssert(const wxChar *file, int line, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
wxASSERT (p. 1494) macro evaluated to FALSE. It is only called in debug mode (when
__WXDEBUG__ is defined) as asserts are not left in the release code at all.

The base class version show the default assert failure dialog box proposing to the user
to stop the program, continue or ignore all subsequent asserts.

Parameters

file

the name of the source file where the assert occured

line

the line number in this file where the assert occured

msg

the message specified as argument to wxASSERT_MSG (p. 1494) or
wxFAIL_MSG (p. 1495), will be NULL if just wxASSERT (p. 1494) or wxFAIL (p.
1494) was used

wxApp::OnExit

int OnExit()

Provide this member function for any processing which needs to be done as the
application is about to exit.

wxApp::OnCmdLineError

bool OnCmdLineError(wxCmdLineParser& parser)

Called when command line parsing fails (i.e. an incorrect command line option was
specified by the user). The default behaviour is to show the program usage text and
abort the program.

Return TRUE to continue normal execution or FALSE to return FALSE from OnInit (p. 28)
thus terminating the program.

See also

OnInitCmdLine (p. 28)

CHAPTER 5

27

wxApp::OnCmdLineHelp

bool OnCmdLineHelp(wxCmdLineParser& parser)

Called when the help option (--help) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return TRUE to continue normal execution or FALSE to return FALSE from OnInit (p. 28)
thus terminating the program.

See also

OnInitCmdLine (p. 28)

wxApp::OnCmdLineParsed

bool OnCmdLineParsed(wxCmdLineParser& parser)

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return TRUE to continue normal execution or FALSE to return FALSE from OnInit (p. 28)
thus terminating the program.

See also

OnInitCmdLine (p. 28)

wxApp::OnFatalException

void OnFatalException()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1468) to enable this.

Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExcetions (p. 1468)

CHAPTER 5

28

wxApp::OnInit

bool OnInit()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 31).

Notice that if you want to to use the command line processing provided by wxWindows
you have to call the base class version in the derived class OnInit().

Return TRUE to continue processing, FALSE to exit the application.

wxApp::OnInitCmdLine

void OnInitCmdLine(wxCmdLineParser& parser)

Called from OnInit (p. 28) and may be used to initialize the parser with the command line
options for this application. The base class versions adds support for a few standard
options only.

wxApp::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 128) returns TRUE, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 129). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the
save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 129). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 1373). If not, it is up to you whether you respond by destroying
the window.

The default handler calls wxWindow::Close (p. 1371) on the top-level window, and
vetoes the shutdown if Close returns FALSE. This will be sufficient for many
applications.

Remarks

CHAPTER 5

29

Under X, OnQueryEndSession is called in response to the 'save session' event.

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

See also

wxWindow::Close (p. 1371), wxWindow::OnCloseWindow (p. 1391), wxCloseEvent (p.
127)

wxApp::ProcessMessage

bool ProcessMessage (MSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
TRUE if the message was processed, FALSE otherwise. If you use wxWindows with
another class library with its own message loop, you should make sure that this function
is called to allow wxWindows to receive messages. For example, to allow co-existance
with the Microsoft Foundation Classes, override the PreTranslateMessage function:

// Provide wxWindows message loop compatibility
BOOL CTheApp::PreTranslateMessage(MSG *msg)
{
 if (wxTheApp && wxTheApp->ProcessMessage(msg))
 return TRUE;
 else
 return CWinApp::PreTranslateMessage(msg);
}

wxApp::Pending

bool Pending()

Returns TRUE if unprocessed events are in the window system event queue.

See also

wxApp::Dispatch (p. 23)

wxApp::SendIdleEvents

bool SendIdleEvents()

Sends idle events to all top-level windows.

bool SendIdleEvents(wxWindow* win)

Sends idle events to a window and its children.

CHAPTER 5

30

Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If TRUE is returned, more OnIdle processing is requested by one or more window.

See also

wxWindow::OnIdle (p. 1394), wxIdleEvent (p. 679)

wxApp::SetAppName

void SetAppName(const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWindows.

See also

wxApp::GetAppName (p. 23)

wxApp::SetAuto3D

void SetAuto3D(const bool auto3D)

Switches automatic 3D controls on or off.

Parameters

auto3D

If TRUE, all controls will be created with 3D appearances unless overridden for a
control or dialog. The default is TRUE

Remarks

This has an effect on Windows only.

See also

wxApp::GetAuto3D (p. 24)

wxApp::SetClassName

void SetClassName (const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

CHAPTER 5

31

See also

wxApp::GetClassName (p. 24)

wxApp::SetExitOnFrameDelete

void SetExitOnFrameDelete (bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag

If TRUE (the default), the application will exit when the top-level frame is deleted. If
FALSE, the application will continue to run.

wxApp::SetTopWindow

void SetTopWindow(wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::OnInit (p. 28) to let
wxWindows know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

window

The new top window.

See also

wxApp::GetTopWindow (p. 24), wxApp::OnInit (p. 28)

wxApp::SetVendorName

void SetVendorName (const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWindows.

See also

wxApp::GetVendorName (p. 25)

CHAPTER 5

32

wxApp::GetStdIcon

virtual wxIcon GetStdIcon(int which) const

Returns the icons used by wxWindows internally, e.g. the ones used for message
boxes. This function is used internally and can be overridden by the user to change the
default icons.

Parameters

which

One of the wxICON_XXX specifies which icon to return.

See wxMessageBox (p. 1449) for a list of icon identifiers.

wxApp::SetUseBestVisual

void SetUseBestVisual(bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain appications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.

Parameters

flag

If TRUE, the app will use the best visual.

wxApp::Yield

bool Yield(bool onlyIfNeeded = FALSE)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and on systems with
cooperative multitasking, such as Windows 3.1 other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.

CHAPTER 5

33

1472) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 795).

Calling Yield() recursively is normally an error and an assert failure is raised in debug
build if such situation is detected. However if the the onlyIfNeeded parameter is TRUE,
the method will just silently return FALSE instead.

wwxxAArrrraayy

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1552) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 743)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 36) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in

CHAPTER 5

34

terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it is Index() (p. 42) function execution time is
O(log(N)) instead ofO(N) for the usual arrays but the Add() (p. 41) method is slower: it is
O(log(N)) instead of constant time (neglecting time spent in memory allocation routine).
However, in a usual situation elements are added to an array much less often than
searched inside it, so wxSortedArray may lead to huge performance improvements
compared to wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can
be only used for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
'forward') declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#include <wx/dynarray.h>

// we must forward declare the array because it is used inside the
class
// declaration
class MyDirectory;
class MyFile;

// this defines two new types: ArrayOfDirectories and ArrayOfFiles
which can be
// now used as shown below
WX_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);
WX_DECLARE_OBJARRAY(MyFile, ArrayOfFiles);

class MyDirectory
{
...
 ArrayOfDirectories m_subdirectories; // all subdirectories
 ArrayOfFiles m_files; // all files in this directory
};

...

CHAPTER 5

35

// now that we have MyDirectory declaration in scope we may finish the
// definition of ArrayOfDirectories -- note that this expands into some
C++
// code and so should only be compiled once (i.e., don't put this in
the
// header, but into a source file or you will get linkin errors)
#include <wx/arrimpl.cpp> // this is a magic incantation which must be
done!
WX_DEFINE_OBJARRAY(ArrayOfDirectories);

// that's all!

It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayOfDirectories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WX_DEFINE_ARRAY(MyDirectory *, ArrayOfDirectories);
WX_DEFINE_SORTED_ARRAY(MyFile *, ArrayOfFiles);

See also:

Container classes overview (p. 1545), wxList (p. 743)

Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 37)
WX_DEFINE_EXPORTED_ARRAY (p. 37)
WX_DEFINE_USER_EXPORTED_ARRAY (p. 37)
WX_DEFINE_SORTED_ARRAY (p. 38)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 38)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (p. 38)

CHAPTER 5

36

WX_DECLARE_EXPORTED_OBJARRAY (p. 38)
WX_DECLARE_USER_EXPORTED_OBJARRAY (p. 38)
WX_DEFINE_OBJARRAY (p. 39)
WX_DEFINE_EXPORTED_OBJARRAY (p. 39)
WX_DEFINE_USER_EXPORTED_OBJARRAY (p. 39)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 40)
wxArray copy constructors and assignment operators (p. 40)
~wxArray (p. 40)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 44) function is provided to unallocate the
extra memory. The Alloc() (p. 41) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 41)
Shrink (p. 44)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 43) method.

Count (p. 42)
GetCount (p. 42)
IsEmpty (p. 43)
Item (p. 43)

CHAPTER 5

37

Last (p. 43)

Adding items

Add (p. 41)
Insert (p. 43)
WX_APPEND_ARRAY (p. 39)

Removing items

WX_CLEAR_ARRAY (p. 40)
Empty (p. 42)
Clear (p. 41)
RemoveAt (p. 44)
Remove (p. 43)

Searching and sorting

Index (p. 42)
Sort (p. 44)

WX_DEFINE_ARRAY

 WX_DEFINE_ARRAY (T, name)

 WX_DEFINE_EXPORTED_ARRAY (T, name)

 WX_DEFINE_USER_EXPORTED_ARRAY (T, name, exportspec)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling wxWindows as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

WX_DEFINE_ARRAY(int, wxArrayInt);

class MyClass;
WX_DEFINE_ARRAY(MyClass *, wxArrayOfMyClass);

Note that wxWindows predefines the following standard array classes: wxArrayInt,
wxArrayLong and wxArrayPtrVoid.

CHAPTER 5

38

WX_DEFINE_SORTED_ARRAY

 WX_DEFINE_SORTED_ARRAY (T, name)

 WX_DEFINE_SORTED_EXPORTED_ARRAY (T, name)

 WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for
exporting an array from a user DLL.

Example:

WX_DEFINE_SORTED_ARRAY(int, wxSortedArrayInt);

class MyClass;
WX_DEFINE_SORTED_ARRAY(MyClass *, wxArrayOfMyClass);

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int CompareInts(int n1, int n2)
{
 return n1 - n2;
}

wxSortedArrayInt sorted(CompareInts);

int CompareMyClassObjects(MyClass *item1, MyClass *item2)
{
 // sort the items by their address...
 return Stricmp(item1->GetAddress(), item2->GetAddress());
}

wxArrayOfMyClass another(CompareMyClassObjects);

WX_DECLARE_OBJARRAY

 WX_DECLARE_OBJARRAY (T, name)

 WX_DECLARE_EXPORTED_OBJARRAY (T, name)

 WX_DECLARE_USER_EXPORTED_OBJARRAY (T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for
exporting an array from a user DLL.

CHAPTER 5

39

Example:

class MyClass;
WX_DEFINE_OBJARRAY(MyClass, wxArrayOfMyClass); // note: not "MyClass
*"!

You must use WX_DEFINE_OBJARRAY() (p. 39) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

 WX_DEFINE_OBJARRAY (name)

 WX_DEFINE_EXPORTED_OBJARRAY (name)

 WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p. 38) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called. The latter two forms are merely aliases of the first to satisfy some
people's sense of symmetry when using the exported declarations.

Example of usage:

// first declare the class!
class MyClass
{
public:
 MyClass(const MyClass&);

 ...

 virtual ~MyClass();
};

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY(wxArrayOfMyClass);

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

CHAPTER 5

40

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call
Empty().

Default constructors

 wxArray()

 wxObjArray()

Default constructor initializes an empty array object.

 wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or
positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

 wxArray(const wxArray& array)

 wxSortedArray(const wxSortedArray& array)

 wxObjArray(const wxObjArray& array)

wxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxObjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer
type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

wxArray::~wxArray

 ~wxArray()

CHAPTER 5

41

 ~wxSortedArray()

 ~wxObjArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 40) macro
for this.

wxArray::Add

void Add(T item)

void Add(T *item)

void Add(T &item)

Appends a new element to the array (where T is the type of the array elements.)

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements.

You may also use WX_APPEND_ARRAY (p. 39) macro to append all elements of one
array to another one.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 42) and additionally frees the memory
allocated to the array.

CHAPTER 5

42

wxArray::Count

size_t Count() const

Same as GetCount() (p. 42). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach

T * Detach(size_t index)

Removes the element from the array, but, unlike, Remove() (p. 43) doesn't delete it. The
function returns the pointer to the removed element.

wxArray::Empty

void Empty()

Empties the array. For wxObjArray classes, this destroys all of the array elements. For
wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 41) for this.

wxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index

int Index(T& item, bool searchFromEnd = FALSE)

int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only

CHAPTER 5

43

succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

void Insert(T item, size_t n)

void Insert(T *item, size_t n)

void Insert(T &item, size_t n)

Insert a new item into the array before the item n - thus, Insert(something, 0u) will insert
an item in such way that it will become the first array element.

Please see Add() (p. 41) for explanation of the differences between the overloaded
versions of this function.

wxArray::IsEmpty

bool IsEmpty() const

Returns TRUE if the array is empty, FALSE otherwise.

wxArray::Item

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Last

T& Last() const

Returns the last element in the array, i.e. is the same as Item(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

CHAPTER 5

44

 Remove(T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()
(p. 42) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item = array[n];
delete item;
array.Remove(n)

See also WX_CLEAR_ARRAY (p. 40) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::RemoveAt

 RemoveAt(size_t index)

Removes an element from the array by index. When an element is removed from
wxObjArray it is deleted by the array - use Detach() (p. 42) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete it manually if required:

T *item = array[n];
delete item;
array.RemoveAt(n)

See also WX_CLEAR_ARRAY (p. 40) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::Shrink

void Shrink()

Frees all memory unused by the array. If the program knows that no new items will be
added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

wxArray::Sort

void Sort(CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

CHAPTER 5

45

where T is the type of the array elements. I.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wwxxAArrrraayySSttrriinngg

wxArrayString is an efficient container for storing wxString (p. 1171) objects. It has the
same features as all wxArray (p. 33) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 33), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 49), Last (p. 49) or operator[] (p. 47) are not
constant, so the array elements may be modified in place like this

 array.Last().MakeUpper();

There is also a varian of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 48) function
(insteadf of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basicly, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a

CHAPTER 5

46

specialization of wxArray (p. 33) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/string.h>

See also

wxArray (p. 33), wxString (p. 1171), wxString overview (p. 1527)

wxArrayString::wxArrayString

 wxArrayString()

 wxArrayString(const wxArrayString& array)

Default and copy constructors.

Note that when an array is assigned to a sorted array, its contents is automatically
sorted during construction.

wxArrayString::~wxArrayString

 ~wxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=

wxArrayString & operator =(const wxArrayString& array)

Assignment operator.

wxArrayString::operator==

bool operator ==(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE only if the arrays have the same
number of elements and the same strings in the same order.

wxArrayString::operator!=

CHAPTER 5

47

bool operator !=(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE if the arrays have different
number of elements or if the elements don't match pairwise.

wxArrayString::operator[]

wxString& operator[](size_t nIndex)

Return the array element at position nIndex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of Item (p. 49) method.

wxArrayString::Add

size_t Add(const wxString& str)

Appends a new item to the array and return the index of th new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 48) - 1 because the item is inserted at the correct position to keep the
array sorted and not appended.

See also: Insert (p. 48)

wxArrayString::Alloc

void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 36)

wxArrayString::Clear

void Clear()

Clears the array contents and frees memory.

See also: Empty (p. 48)

CHAPTER 5

48

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 48) instead.

wxArrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 48) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 47) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

wxArrayString::Index

int Index(const char * sz, bool bCase = TRUE, bool bFromEnd = FALSE)

Search the element in the array, starting from the beginning ifbFromEnd is FALSE or
from end otherwise. If bCase, comparison is case sensitive (default), otherwise the case
is ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert

void Insert(const wxString& str, size_t nIndex)

Insert a new element in the array before the position nIndex. Thus, for example, to insert
the string in the beginning of the array you would write

Insert("foo", 0);

If nIndex is equal to GetCount() + 1 this function behaves as Add (p. 47).

CHAPTER 5

49

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 48) would then not work!

wxArrayString::IsEmpty

 IsEmpty()

Returns TRUE if the array is empty, FALSE otherwise. This function returns the same
result as GetCount() == 0 but is probably easier to read.

wxArrayString::Item

wxString& Item(size_t nIndex) const

Return the array element at position nIndex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator[] (p. 47) for the operator version.

wxArrayString::Last

 Last()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove(const char * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 48)

void Remove(size_t nIndex)

Removes the item at given position.

wxArrayString::Shrink

void Shrink()

CHAPTER 5

50

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 47), Dynamic array memory management (p. 36)

wxArrayString::Sort

void Sort(bool reverseOrder = FALSE)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
TRUE.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 48) would then not work!

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than 0 if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int CompareStringLen(const wxString& first, const wxString&
second)
{
 return first.length() - second.length();
}

...

wxArrayString array;

array.Add("one");
array.Add("two");
array.Add("three");
array.Add("four");

array.Sort(CompareStringLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 48) would then not work!

wwxxAAuuttoommaattiioonnOObbjjeecctt

CHAPTER 5

51

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1350) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
API is high-level, and the application can specify multiple properties in a single string.
The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

 wxAutomationObject excelObject;
 if (excelObject.GetInstance("Excel.Application"))
 excelObject.PutProperty("ActiveCell.Font.Bold", TRUE);

Note that this class works under Windows only, and currently only for Visual C++.

Derived from

wxObject (p. 897)

Include files

<wx/msw/ole/automtn.h>

See also

wxVariant (p. 1350)

wxAutomationObject::wxAutomationObject

 wxAutomationObject(WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

 ~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

CHAPTER 5

52

wxVariant CallMethod(const wxString& method, int noArgs, wxVariant args[]) const

wxVariant CallMethod(const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 wxVariant res = obj.CallMethod("Sum", wxVariant(1.2),
wxVariant(3.4));
 wxVariant res = obj.CallMethod("Sum", 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

 object.CallMethod("ActiveCell.Font.ShowDialog", "My caption");

wxAutomationObject::CreateInstance

bool CreateInstance (const wxString& classId) const

Creates a new object based on the class id, returning TRUE if the object was
successfully created, or FALSE if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

wxAutomationObject::GetInstance

bool GetInstance (const wxString& classId) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns TRUE if a pointer was succesfully retrieved, FALSE
otherwise.

Note that this cannot cope with two instances of a given OLE object being active

CHAPTER 5

53

simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 53) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 53)

wxAutomationObject::GetProperty

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant args[])
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 wxVariant res = obj.GetProperty("Range", wxVariant("A1"));
 wxVariant res = obj.GetProperty("Range", "A1");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other

CHAPTER 5

54

convenience functions.

Parameters

member

The member function or property name.

action

Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.

retValue

Return value (ignored if there is no return value)
.

noArgs

Number of arguments in args or ptrArgs.

args

If non-null, contains an array of variants.

ptrArgs

If non-null, contains an array of constant pointers to variants.

Return value

TRUE if the operation was successful, FALSE otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for
efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args[]) const

bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 obj.PutProperty("Value", wxVariant(23));
 obj.PutProperty("Value", 23);

CHAPTER 5

55

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr(WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wwxxBBiittmmaapp

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

wxGDIObject (p. 550)
wxObject (p. 897)

Include file

<wx/bitmap.h>

Predefined objects

Objects:

wxNullBitmap

See also

wxBitmap overview (p. 1585),supported bitmap file formats (p. 1587),wxDC::Blit (p.
328),wxIcon (p. 680), wxCursor (p. 191), wxBitmap (p. 55),wxMemoryDC (p. 828)

wxBitmap::wxBitmap

 wxBitmap()

Default constructor.

CHAPTER 5

56

 wxBitmap(const wxBitmap& bitmap)

Copy constructor.

 wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

 wxBitmap(const char bits[], int width, int height
 int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxImage (p. 689) should be used for creating colour bitmaps from static data.

 wxBitmap(int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

 wxBitmap(const char** bits)

Creates a bitmap from XPM data.

 wxBitmap(const wxString& name, long type)

Loads a bitmap from a file or resource.

 wxBitmap(const wxImage& img, int depth = -1)

Creates bitmap object from the image. This has to be done to actually display an image
as you cannot draw an image directly on a window. The resulting bitmap will use the
provided colour depth (or that of the current system if depth is -1) which entails that a
colour reduction has to take place.

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created
on program start-up to look up colors. This ensures a very fast conversion, but the image
quality won't be perfect (and could be better for photo images using more sophisticated
dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when
creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

CHAPTER 5

57

Parameters

bits

Specifies an array of pixel values.

width

Specifies the width of the bitmap.

height

Specifies the height of the bitmap.

depth

Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.

name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type

May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the resource
database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

wxBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wxImage (p. 689) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wxImage handlers loaded.

img

Platform-independent wxImage object.

Remarks

CHAPTER 5

58

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

...

wxBitmap *bitmap = new wxBitmap(mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 63)

wxPython note: Constructors supported by wxPython are:

wxBitmap(name, flag) Loads a bitmap from a file

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM
data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

CHAPTER 5

59

wxBitmapFromImage(image, depth=-1) Convert a wxImage to a

wxBitmap.

wxPerl note: Constructors supported by wxPerl are:

 •::Bitmap->new(width, height, depth = -1)

 •::Bitmap->new(name, type)

 •::Bitmap->new(icon)

wxBitmap::~wxBitmap

 ~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 68)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers()

Deletes all bitmap handlers.

This function is called by wxWindows on exit.

CHAPTER 5

60

wxBitmap::ConvertToImage

wxImage ConvertToImage()

Creates an image from a platform-dependent bitmap. This preserves mask information
so that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::Create

virtual bool Create (int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create (void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type.

Parameters

width

The width of the bitmap in pixels.

height

The height of the bitmap in pixels.

depth

The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data

Data whose type depends on the value of type.

type

A bitmap type identifier - see wxBitmap::wxBitmap (p. 55) for a list of possible
values.

Return value

TRUE if the call succeeded, FALSE otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

CHAPTER 5

61

wxBitmap::wxBitmap (p. 55)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)

Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

Finds the handler associated with the given bitmap type.

name

The handler name.

extension

The file extension, such as "bmp".

bitmapType

The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value

A pointer to the handler if found, NULL otherwise.

See also

wxBitmapHandler (p. 68)

wxBitmap::GetDepth

int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()

Returns the static list of bitmap format handlers.

See also

CHAPTER 5

62

wxBitmapHandler (p. 68)

wxBitmap::GetHeight

int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette () const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 912)

wxBitmap::GetMask

wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 66), wxMask (p. 808)

wxBitmap::GetWidth

int GetWidth() const

Gets the width of the bitmap in pixels.

See also

wxBitmap::GetHeight (p. 62)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap(const wxRect&rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the

CHAPTER 5

63

bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

wxBitmapHandler (p. 68)

wxBitmap::InsertHandler

static void InsertHandler(wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 68)

wxBitmap::LoadFile

bool LoadFile(const wxString& name, long type)

Loads a bitmap from a file or resource.

Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type

One of the following values:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

CHAPTER 5

64

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.

In addition, wxBitmap can read all formats that wxImage (p. 689) can
(wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
wxBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxImage handlers loaded.)

Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 62) member.

See also

wxBitmap::SaveFile (p. 65)

wxBitmap::Ok

bool Ok() const

Returns TRUE if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler(const wxString& name)

Finds the handler with the given name, and removes it. The handler is not deleted.

name

The handler name.

Return value

TRUE if the handler was found and removed, FALSE otherwise.

CHAPTER 5

65

See also

wxBitmapHandler (p. 68)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)

Saves a bitmap in the named file.

Parameters

name

A filename. The meaning of name is determined by the type parameter.

type

One of the following values:

wxBITMAP_TYPE_BMP Save a Windows bitmap file.

wxBITMAP_TYPE_GIF Save a GIF bitmap file.

wxBITMAP_TYPE_XBM Save an X bitmap file.

wxBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.

In addition, wxBitmap can save all formats that wxImage (p. 689) can
(wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxImage handlers loaded.)

palette

An optional palette used for saving the bitmap.
Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.

See also

wxBitmap::LoadFile (p. 63)

wxBitmap::SetDepth

CHAPTER 5

66

void SetDepth(int depth)

Sets the depth member (does not affect the bitmap data).

Parameters

depth

Bitmap depth.

wxBitmap::SetHeight

void SetHeight(int height)

Sets the height member (does not affect the bitmap data).

Parameters

height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask(wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.

See also

wxBitmap::GetMask (p. 62), wxMask (p. 808)

wxBitmap::SetPalette

void SetPalette (const wxPalette& palette)

Sets the associated palette.

Parameters

palette

The palette to set.

See also

CHAPTER 5

67

wxPalette (p. 912)

wxBitmap::SetWidth

void SetWidth(int width)

Sets the width member (does not affect the bitmap data).

Parameters

width

Bitmap width in pixels.

wxBitmap::operator =

wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap

Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator ==(const wxBitmap& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap

Bitmap to compare with 'this'

Return value

Returns TRUE if the bitmaps were effectively equal, FALSE otherwise.

CHAPTER 5

68

wxBitmap::operator !=

bool operator !=(const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap

Bitmap to compare with 'this'

Return value

Returns TRUE if the bitmaps were unequal, FALSE otherwise.

wwxxBBiittmmaappHHaannddlleerr

Overview (p. 1585)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 59) in your application initialisation.

Derived from

wxObject (p. 897)

Include files

<wx/bitmap.h>

See also

wxBitmap (p. 55), wxIcon (p. 680), wxCursor (p. 191)

wxBitmapHandler::wxBitmapHandler

 wxBitmapHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

CHAPTER 5

69

wxBitmapHandler::~wxBitmapHandler

 ~wxBitmapHandler()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create (wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap

The wxBitmap object.

width

The width of the bitmap in pixels.

height

The height of the bitmap in pixels.

depth

The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data

Data whose type depends on the value of type.

type

A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 55) for a list
of possible values.

Return value

TRUE if the call succeeded, FALSE otherwise (the default).

wxBitmapHandler::GetName

wxString GetName () const

Gets the name of this handler.

CHAPTER 5

70

wxBitmapHandler::GetExtension

wxString GetExtension() const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)

Loads a bitmap from a file or resource, putting the resulting data into bitmap.

Parameters

bitmap

The bitmap object which is to be affected by this operation.

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type

See wxBitmap::wxBitmap (p. 55) for values this can take.

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxBitmap::LoadFile (p. 63)
wxBitmap::SaveFile (p. 65)
wxBitmapHandler::SaveFile (p. 70)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.

CHAPTER 5

71

Parameters

bitmap

The bitmap object which is to be affected by this operation.

name

A filename. The meaning of name is determined by the type parameter.

type

See wxBitmap::wxBitmap (p. 55) for values this can take.

palette

An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxBitmap::LoadFile (p. 63)
wxBitmap::SaveFile (p. 65)
wxBitmapHandler::LoadFile (p. 70)

wxBitmapHandler::SetName

void SetName (const wxString& name)

Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension(const wxString& extension)

Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType

CHAPTER 5

72

void SetType(long type)

Sets the handler type.

Parameters

name

Handler type.

wwxxBBiittmmaappBBuuttttoonn

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
359) or panel (p. 916), or indeed almost any other window.

Derived from

wxButton (p. 91)
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw all
button states using this bitmap. If the application needs more control, additional bitmaps
for the selected state, unpressed focused state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically

using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.
wxBU_TOP Aligns the bitmap label to the top of the button. WIN32

only.
wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.
wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. WIN32

only.

CHAPTER 5

73

See also window styles overview (p. 1567).

Event handling

EVT_BUTTON(id, func) Process a

wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 91)

wxBitmapButton::wxBitmapButton

 wxBitmapButton()

Default constructor.

 wxBitmapButton(wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW , const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent

Parent window. Must not be NULL.

id

Button identifier. A value of -1 indicates a default value.

bitmap

Bitmap to be displayed.

pos

Button position.

size

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style

Window style. See wxBitmapButton (p. 72).

validator

CHAPTER 5

74

Window validator.

name

Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 77),
wxBitmapButton::SetBitmapFocus (p. 76), wxBitmapButton::SetBitmapDisabled (p. 75).

Note that the bitmap passed is smaller than the actual button created.

See also

wxBitmapButton::Create (p. 74), wxValidator (p. 1348)

wxBitmapButton::~wxBitmapButton

 ~wxBitmapButton()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 73).

wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapDisabled() const

Returns the bitmap for the disabled state.

Return value

A reference to the disabled state bitmap.

See also

wxBitmapButton::SetBitmapDisabled (p. 75)

CHAPTER 5

75

wxBitmapButton::GetBitmapFocus

wxBitmap& GetBitmapFocus() const

Returns the bitmap for the focused state.

Return value

A reference to the focused state bitmap.

See also

wxBitmapButton::SetBitmapFocus (p. 76)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const

Returns the label bitmap (the one passed to the constructor).

Return value

A reference to the button's label bitmap.

See also

wxBitmapButton::SetBitmapLabel (p. 76)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected() const

Returns the bitmap for the selected state.

Return value

A reference to the selected state bitmap.

See also

wxBitmapButton::SetBitmapSelected (p. 77)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmap& bitmap)

CHAPTER 5

76

Sets the bitmap for the disabled button appearance.

Parameters

bitmap

The bitmap to set.

See also

wxBitmapButton::GetBitmapDisabled (p. 74), wxBitmapButton::SetBitmapLabel (p. 76),
wxBitmapButton::SetBitmapSelected (p. 77), wxBitmapButton::SetBitmapFocus (p. 76)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmap& bitmap)

Sets the bitmap for the button appearance when it has the keyboard focus.

Parameters

bitmap

The bitmap to set.

See also

wxBitmapButton::GetBitmapFocus (p. 75), wxBitmapButton::SetBitmapLabel (p. 76),
wxBitmapButton::SetBitmapSelected (p. 77), wxBitmapButton::SetBitmapDisabled (p.
75)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmap& bitmap)

Sets the bitmap label for the button.

Parameters

bitmap

The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 75)

CHAPTER 5

77

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmap& bitmap)

Sets the bitmap for the selected (depressed) button appearance.

Parameters

bitmap

The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 75), wxBitmapButton::SetBitmapLabel (p. 76),
wxBitmapButton::SetBitmapFocus (p. 76), wxBitmapButton::SetBitmapDisabled (p. 75)

wwxxBBiittmmaappDDaattaaOObbjjeecctt

wxBitmapDataObject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 124) or a wxDropSource (p. 419).
A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 78) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 285)
wxDataObject (p. 204)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1619), wxDataObject (p. 204),

CHAPTER 5

78

wxDataObjectSimple (p. 285), wxFileDataObject (p. 460), wxTextDataObject (p. 1256),
wxDataObject (p. 204)

 wxBitmapDataObject(const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 78) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap() const

Returns the bitmap associated with the data object. You may wish to override this
method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 124).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap(const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wwxxBBoooollFFoorrmmVVaalliiddaattoorr

This class validates a boolean value for a form view (p. 980). The associated control
must be a wxCheckBox.

See also

Property validator classes (p. 1671)

wxBoolFormValidator::wxBoolFormValidator

void wxBoolFormValidator(long flags=0)

Constructor.

wwxxBBoooollLLiissttVVaalliiddaattoorr

CHAPTER 5

79

This class validates a boolean value for a property list view (p. 987).

See also

Validator classes (p. 1671)

wxBoolListValidator::wxBoolListValidator

void wxBoolListValidator(long flags=0)

Constructor.

wwxxBBooxxSSiizzeerr

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

As an example, we will construct a dialog that will contain a text field at the top and two
buttons at the bottom. This can be seen as a top-hierarchy column with the text at the
top and buttons at the bottom and a low-hierarchy row with an OK button to the left and
a Cancel button to the right. In many cases (particularly dialogs under Unix and normal
frames) the main window will be resizable by the user and this change of size will have
to get propagated to its children. In our case, we want the text area to grow with the
dialog, whereas the button shall have a fixed size. In addition, there will be a thin border
around all controls to make the dialog look nice and - to make matter worse - the buttons
shall be centred as the width of the dialog changes.

It is the unique feature of a box sizer, that it can grow in both directions (height and
width) but can distribute its growth in the main direction (horizontal for a row) unevenly
among its children. In our example case, the vertical sizer is supposed to propagate all
its height changes to only the text area, not to the button area. This is determined by the
option parameter when adding a window (or another sizer) to a sizer. It is interpreted as
a weight factor, i.e. it can be zero, indicating that the window may not be resized at all, or
above zero. If several windows have a value above zero, the value is interpreted relative
to the sum of all weight factors of the sizer, so when adding two windows with a value of
1, they will both get resized equally much and each half as much as the sizer owning
them. Then what do we do when a column sizer changes its width? This behaviour is
controlled by flags (the second parameter of the Add() function): Zero or no flag
indicates that the window will preserve it is original size, wxGROW flag (same as
wxEXPAND) forces the window to grow with the sizer, and wxSHAPED flag tells the
window to change it is size proportionally, preserving original aspect ratio. When
wxGROW flag is not used, the item can be aligned within available space.
wxALIGN_LEFT, wxALIGN_TOP, wxALIGN_RIGHT, wxALIGN_BOTTOM,

CHAPTER 5

80

wxALIGN_CENTER_HORIZONTAL and wxALIGN_CENTER_VERTICAL do what they
say. wxALIGN_CENTRE (same as wxALIGN_CENTER) is defined as
(wxALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_VERTICAL). Default
alignment is wxALIGN_LEFT | wxALIGN_TOP.

As mentioned above, any window belonging to a sizer may have border, and it can be
specified which of the four sides may have this border, using the wxTOP, wxLEFT,
wxRIGHT and wxBOTTOM constants or wxALL for all directions (and you may also use
wxNORTH, wxWEST etc instead). These flags can be used in combination with the
alignment flags above as the second parameter of the Add() method using the binary or
operator |. The sizer of the border also must be made known, and it is the third
parameter in the Add() method. This means, that the entire behaviour of a sizer and its
children can be controlled by the three parameters of the Add() method.

// we want to get a dialog that is stretchable because it
// has a text ctrl at the top and two buttons at the bottom

MyDialog::MyDialog(wxFrame *parent, wxWindowID id, const wxString
&title)
 : wxDialog(parent, id, title, wxDefaultPosition, wxDefaultSize,
 wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER)
{
 wxBoxSizer *topsizer = new wxBoxSizer(wxVERTICAL);

 // create text ctrl with minimal size 100x60
 topsizer->Add(
 new wxTextCtrl(this, -1, "My text.", wxDefaultPosition,
wxSize(100,60), wxTE_MULTILINE),
 1, // make vertically stretchable
 wxEXPAND | // make horizontally stretchable
 wxALL, // and make border all around
 10); // set border width to 10

 wxBoxSizer *button_sizer = new wxBoxSizer(wxHORIZONTAL);
 button_sizer->Add(
 new wxButton(this, wxID_OK, "OK"),
 0, // make horizontally unstretchable
 wxALL, // make border all around (implicit top alignment)
 10); // set border width to 10
 button_sizer->Add(
 new wxButton(this, wxID_CANCEL, "Cancel"),
 0, // make horizontally unstretchable
 wxALL, // make border all around (implicit top alignment)
 10); // set border width to 10

 topsizer->Add(
 button_sizer,
 0, // make vertically unstretchable
 wxALIGN_CENTER); // no border and centre horizontally

 SetAutoLayout(TRUE); // tell dialog to use sizer
 SetSizer(topsizer); // actually set the sizer

 topsizer->Fit(this); // set size to minimum size as

CHAPTER 5

81

calculated by the sizer
 topsizer->SetSizeHints(this); // set size hints to honour mininum
size
}

Derived from

wxSizer (p. 1086)
wxObject (p. 897)

wxBoxSizer::wxBoxSizer

 wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wxVERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes()

Implements the calculation of a box sizer's dimensions and then sets the size of its its
children (calling wxWindow::SetSize (p. 1413) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wwxxBBrruusshh

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

CHAPTER 5

82

Derived from

wxGDIObject (p. 550)
wxObject (p. 897)

Include files

<wx/brush.h>

Predefined objects

Objects:

wxNullBrush

Pointers:

wxBLUE_BRUSH
wxGREEN_BRUSH
wxWHITE_BRUSH
wxBLACK_BRUSH
wxGREY_BRUSH
wxMEDIUM_GREY_BRUSH
wxLIGHT_GREY_BRUSH
wxTRANSPARENT_BRUSH
wxCYAN_BRUSH
wxRED_BRUSH

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::OnInit (p. 28) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 87), wxDC (p. 327), wxDC::SetBrush (p. 343)

CHAPTER 5

83

wxBrush::wxBrush

 wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 85) will return
FALSE.

 wxBrush(const wxColour& colour, int style)

Constructs a brush from a colour object and style.

 wxBrush(const wxString& colourName, int style)

Constructs a brush from a colour name and style.

 wxBrush(const wxBitmap& stippleBitmap)

Constructs a stippled brush using a bitmap.

 wxBrush(const wxBrush& brush)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

colour

Colour object.

colourName

Colour name. The name will be looked up in the colour database.

style

One of:

wxTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

CHAPTER 5

84

stippleBitmap
A bitmap to use for stippling.

Remarks

If a stipple brush is created, the brush style will be set to wxSTIPPLE.

See also

wxBrushList (p. 87), wxColour (p. 138), wxColourDatabase (p. 144)

wxBrush::~wxBrush

void ~wxBrush()

Destructor.

Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour() const

Returns a reference to the brush colour.

See also

wxBrush::SetColour (p. 85)

wxBrush::GetStipple

wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 64) returns FALSE).

See also

wxBrush::SetStipple (p. 86)

CHAPTER 5

85

wxBrush::GetStyle

int GetStyle() const

Returns the brush style, one of:

wxTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.
wxSTIPPLE Stippled using a bitmap.
wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::SetStyle (p. 86), wxBrush::SetColour (p. 85), wxBrush::SetStipple (p. 86)

wxBrush::Ok

bool Ok() const

Returns TRUE if the brush is initialised. It will return FALSE if the default constructor has
been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.

See also

CHAPTER 5

86

wxBrush::GetColour (p. 84)

wxBrush::SetStipple

void SetStipple (const wxBitmap& bitmap)

Sets the stipple bitmap.

Parameters

bitmap

The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 55)

wxBrush::SetStyle

void SetStyle(int style)

Sets the brush style.

style

One of:

wxTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

CHAPTER 5

87

wxSTIPPLE Stippled using a bitmap.
wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::GetStyle (p. 85)

wxBrush::operator =

wxBrush& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrush& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

bool operator !=(const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wwxxBBrruusshhLLiisstt

A brush list is a list containing all brushes which have been created.

Derived from

wxList (p. 743)
wxObject (p. 897)

Include files

<wx/gdicmn.h>

Remarks

CHAPTER 5

88

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
'copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

wxBrush (p. 81)

wxBrushList::wxBrushList

void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

CHAPTER 5

89

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.

Parameters

colour

Colour object.

colourName

Colour name, which should be in the colour database.

style

Brush style. See wxBrush::SetStyle (p. 86) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

wwxxBBuussyyCCuurrssoorr

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:

 wxBusyCursor wait;

 for (int i = 0; i < 100000; i++)
 DoACalculation();

It works by calling wxBeginBusyCursor (p. 1458) in the constructor, and
wxEndBusyCursor (p. 1461) in the destructor.

Derived from

None

CHAPTER 5

90

Include files

<wx/utils.h>

See also

wxBeginBusyCursor (p. 1458), wxEndBusyCursor (p. 1461), wxWindowDisabler (p.
1419)

wxBusyCursor::wxBusyCursor

 wxBusyCursor(wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1458).

wxBusyCursor::~wxBusyCursor

 ~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1461).

wwxxBBuussyyIInnffoo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyInfo object on the stack, and within the current scope, a message
window will be shown.

For example:

 wxBusyInfo wait("Please wait, working...");

 for (int i = 0; i < 100000; i++)
 {
 DoACalculation();
 }

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case
it had been obscured by other windows, for example) like this:

 wxWindowDisabler disableAll;

CHAPTER 5

91

 wxBusyInfo wait("Please wait, working...");

 for (int i = 0; i < 100000; i++)
 {
 DoACalculation();

 if (!(i % 1000))
 wxTheApp->Yield();
 }

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield()
(p. 32) for more details). The simplest way to do it is to use wxWindowDisabler (p. 1419)
class as illustrated in the above example.

Derived from

None

Include files

<wx/busyinfo.h>

wxBusyInfo::wxBusyInfo

 wxBusyInfo(const wxString& msg, wxParent *parent = NULL)

Constructs a busy info window as child of parent and displays msgin it.

NB: If parent is not NULL you must ensure that it is not closed while the busy info is
shown.

wxBusyInfo::~wxBusyInfo

 ~wxBusyInfo()

Hides and closes the window containing the information text.

wwxxBBuuttttoonn

A button is a control that contains a text string, and is one of the commonest elements of
a GUI. It may be placed on a dialog box (p. 359) or panel (p. 916), or indeed almost any
other window.

Derived from

CHAPTER 5

92

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. WIN32 only.
wxBU_TOP Aligns the label to the top of the button. WIN32 only.
wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.
wxBU_BOTTOM Aligns the label to the bottom of the button. WIN32 only.
wxBU_EXACTFIT Creates the button as small as possible instead of making

it of the standard size (which is the default behaviour).

See also window styles overview (p. 1567).

Event handling

EVT_BUTTON(id, func) Process a

wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 72)

wxButton::wxButton

 wxButton()

Default constructor.

 wxButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent

CHAPTER 5

93

Parent window. Must not be NULL.

id

Button identifier. A value of -1 indicates a default value.

label

Text to be displayed on the button.

pos

Button position.

size

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style

Window style. See wxButton (p. 91).

validator

Window validator.

name

Window name.

See also

wxButton::Create (p. 93), wxValidator (p. 1348)

wxButton::~wxButton

 ~wxButton()

Destructor, destroying the button.

wxButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p. 92).

wxButton::GetLabel

wxString GetLabel() const

CHAPTER 5

94

Returns the string label for the button.

Return value

The button's label.

See also

wxButton::SetLabel (p. 94)

wxButton::GetDefaultSize

wxSize GetDefaultSize()

Returns the default size for the buttons. It is advised to make all the dialog buttons of the
same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()

This sets the button to be the default item for the panel or dialog box.

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1409) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultItem (p. 919).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& label)

Sets the string label for the button.

Parameters

label

The label to set.

CHAPTER 5

95

See also

wxButton::GetLabel (p. 93)

wwxxBBuuffffeerreeddIInnppuuttSSttrreeaamm

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterInputStream (p. 500)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterInputStream (p. 500)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1163), wxInputStream (p. 718),wxBufferedOutputStream (p. 95)

wwxxBBuuffffeerreeddOOuuttppuuttSSttrreeaamm

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 500)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from

wxFilterOutputStream (p. 500)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1163), wxOutputStream (p. 902)

CHAPTER 5

96

wxBufferedOutputStream::wxBufferedOutputStream

 wxBufferedOutputStream(const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

 ~wxBufferedOutputStream()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

void Sync()

Flushes the buffer and calls Sync() on the parent stream.

wwxxCCaallccuullaatteeLLaayyoouuttEEvveenntt

This event is sent by wxLayoutAlgorithm (p. 737) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/laywin.h>

CHAPTER 5

97

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT

event, which asks the window to take a 'bite'
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutInfoEvent (p. 1010), wxSashLayoutWindow (p. 1052),
wxLayoutAlgorithm (p. 737).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

 wxCalculateLayoutEvent(wxWindowID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect(const wxRect& rect)

CHAPTER 5

98

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wwxxCCaalleennddaarrCCttrrll

The calendar control allows the user to pick a date interactively. For this, it displays a
window containing several parts: the control to pick the month and the year at the top
(either or both of them may be disabled) and a month area below them which shows all
the days in the month. The user can move the current selection using the keyboard and
select the date (generating EVT_CALENDAR event) by pressing <Return> or double
clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 104)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 103) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not reckognized as
oen by wxDateTime (p. 1535) using SetHoliday (p. 105) method.

As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_MONTH event
handler.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/calctrl.h>

Window styles

wxCAL_SUNDAY_FIRST Show Sunday as the first day in the week

wxCAL_MONDAY_FIRST Show Monday as the first day in the week

wxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar

CHAPTER 5

99

wxCAL_NO_YEAR_CHANGE Disable the year changing

wxCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

wxCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

wxCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wxCAL_SHOW_HOLIDAYS.

Event table macros

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 107) argument.

EVT_CALENDAR(id, func) A day was double clickedi n the calendar.

EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.

EVT_CALENDAR_DAY(id, func) The selected day changed.

EVT_CALENDAR_MONTH(id, func) The selected month changed.

EVT_CALENDAR_YEAR(id, func) The selected year changed.

EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day

header

Note that changing the selected date will result in either of EVT_CALENDAR_DAY, MONTH
or YEAR events and EVT_CALENDAR_SEL_CHANGED one.

Constants

The following are the possible return values for HitTest (p. 104) method:

enum wxCalendarHitTestResult
{
 wxCAL_HITTEST_NOWHERE, // outside of anything
 wxCAL_HITTEST_HEADER, // on the header (weekdays)
 wxCAL_HITTEST_DAY // on a day in the calendar
}

See also

CHAPTER 5

100

Calendar sample (p. 1516)
wxCalendarDateAttr (p. 104)
wxCalendarEvent (p. 107)

wxCalendarCtrl::wxCalendarCtrl

 wxCalendarCtrl()

Default constructor, use Create (p. 100) after it.

wxCalendarCtrl::wxCalendarCtrl

 wxCalendarCtrl(wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 100) method.

wxCalendarCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Creates the control. See wxWindow (p. 1367) for the meaning of the parameters and the
control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl

 ~wxCalendarCtrl()

Destroys the control.

wxCalendarCtrl::SetDate

void SetDate (const wxDateTime& date)

Sets the current date.

CHAPTER 5

101

wxCalendarCtrl::GetDate

const wxDateTime& GetDate () const

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange (bool enable = TRUE)

This function should be used instead of changing wxCAL_NO_YEAR_CHANGEstyle bit
directly. It allows or disallows the user to chaneg the year interactively.

wxCalendarCtrl::EnableMonthChange

void EnableMonthChange (bool enable = TRUE)

This function should be used instead of changing wxCAL_NO_MONTH_CHANGE style bit.
It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay(bool display = TRUE)

This function should be used instead of changing wxCAL_SHOW_HOLIDAYSstyle bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

void SetHeaderColours(const wxColour& colFg, const wxColour& colBg)

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg() const

Gets the foreground colour of the header part of the calendar window.

See also

SetHeaderColours (p. 101)

CHAPTER 5

102

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg() const

Gets the background colour of the header part of the calendar window.

See also

SetHeaderColours (p. 101)

wxCalendarCtrl::SetHighlightColours

void SetHighlightColours(const wxColour& colFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg() const

Gets the foreground highlight colour.

See also

SetHighlightColours (p. 102)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg() const

Gets the background highlight colour.

See also

SetHighlightColours (p. 102)

wxCalendarCtrl::SetHolidayColours

void SetHolidayColours(const wxColour& colFg, const wxColour& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wxCAL_SHOW_HOLIDAYS flag).

wxCalendarCtrl::GetHolidayColourFg

CHAPTER 5

103

const wxColour& GetHolidayColourFg() const

Return the foregound colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 102)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg() const

Return the background colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 102)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr(size_t day) const

Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL.

wxCalendarCtrl::SetAttr

void SetAttr(size_t day, wxCalendarDateAttr* attr)

Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCtrl::SetHoliday

void SetHoliday(size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr(size_t day)

CHAPTER 5

104

Clears any attributes associated with the given day (in the range1...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest(const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAL_HITTEST_XXX constants (p. 98) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wwxxCCaalleennddaarrDDaatteeAAttttrr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 98).

Derived from

No base class

Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCalendarDateBorder
{
 wxCAL_BORDER_NONE, // no border (default)
 wxCAL_BORDER_SQUARE, // a rectangular border
 wxCAL_BORDER_ROUND // a round border
}

See also

wxCalendarCtrl (p. 98)

wxCalendarDateAttr::wxCalendarDateAttr

 wxCalendarDateAttr()

 wxCalendarDateAttr(const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER_NONE)

 wxCalendarDateAttr(wxCalendarDateBorder border, const wxColour& colBorder =

CHAPTER 5

105

wxNullColour)

The constructors.

wxCalendarDateAttr::SetTextColour

void SetTextColour(const wxColour& colText)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

void SetBackgroundColour(const wxColour& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour(const wxColour& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont(const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder(wxCalendarDateBorder border)

Sets the border kind (p. 104)

wxCalendarDateAttr::SetHoliday

void SetHoliday(bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

CHAPTER 5

106

bool HasTextColour() const

Returns TRUE if this item has a non default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour() const

Returns TRUE if this attribute specifies a non default text background colour.

wxCalendarDateAttr::HasBorderColour

bool HasBorderColour() const

Returns TRUE if this attribute specifies a non default border colour.

wxCalendarDateAttr::HasFont

bool HasFont() const

Returns TRUE if this attribute specifies a non default font.

wxCalendarDateAttr::HasBorder

bool HasBorder() const

Returns TRUE if this attribute specifies a non default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday() const

Returns TRUE if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour() const

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr::GetBackgroundColour

CHAPTER 5

107

const wxColour& GetBackgroundColour() const

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour() const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

const wxFont& GetFont() const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder() const

Returns the border (p. 104) to use for the item with this attribute.

wwxxCCaalleennddaarrEEvveenntt

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 98).

See also

wxCalendarCtrl (p. 98)

wxCalendarEvent::GetDate

wxcalendareventgetdate

const wxDateTime& GetDate () const

Returns the date. This function may be called for all event types except
EVT_CALENDAR_WEEKDAY_CLICKED one for which it doesn't make sense.

CHAPTER 5

108

wxCalendarEvent::GetWeekDay

wxcalendareventgetweekday

wxDateTime::WeekDay GetWeekDay() const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler. It doesn't make sense to call this function in other handlers.

wwxxCCaarreett

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1376). The same caret can't be reused in two different
windows.

Derived from

No base class

Include files

<wx/caret.h>

Data structures

wxCaret::wxCaret

 wxCaret()

Default constructor: you must use one of Create() functions later.

 wxCaret(wxWindow* window, int width, int height)

 wxCaret(wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window.

CHAPTER 5

109

wxCaret::Create

bool Create (wxWindowBase* window, int width, int height)

bool Create (wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window (same as constructor).

wxCaret::GetBlinkTime

static int GetBlinkTime ()

Returns the blink time which is measured in milliseconds and is the time elapsed
between 2 inversions of the caret (blink time of the caret is the same for all carets, so
this functions is static).

wxCaret::GetPosition

void GetPosition(int* x, int* y) const

wxPoint GetPosition() const

Get the caret position (in pixels).

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list (x, y)

wxCaret::GetSize

void GetSize(int* width, int* height) const

wxSize GetSize() const

Get the caret size.

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size

GetSizeWH() Returns a 2-element list (width,

CHAPTER 5

110

height)

wxCaret::GetWindow

wxWindow* GetWindow() const

Get the window the caret is associated with.

wxCaret::Hide

void Hide()

Same as wxCaret::Show(FALSE) (p. 111).

wxCaret::IsOk

bool IsOk() const

Returns TRUE if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible() const

Returns TRUE if the caret is visible and FALSE if it is permanently hidden (if it is is
blinking and not shown currently but will be after the next blink, this method still returns
TRUE).

wxCaret::Move

void Move(int x, int y)

void Move(const wxPoint& pt)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime (int milliseconds)

Sets the blink time for all the carets.

CHAPTER 5

111

Remarks

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 109)

wxCaret::SetSize

void SetSize(int width, int height)

void SetSize(const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show(bool show = TRUE)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown
N times as well to reappear on the screen.

wwxxCChheecckkBBooxx

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/checkbox.h>

Window styles

There are no special styles for wxCheckBox.

See also window styles overview (p. 1567).

CHAPTER 5

112

Event handling

EVT_CHECKBOX(id, func) Process a

wxEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 1019), wxCommandEvent (p. 156)

wxCheckBox::wxCheckBox

 wxCheckBox()

Default constructor.

 wxCheckBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent

Parent window. Must not be NULL.

id

Checkbox identifier. A value of -1 indicates a default value.

label

Text to be displayed next to the checkbox.

pos

Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.

size

Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxCheckBox (p. 111).

validator

Window validator.

CHAPTER 5

113

name
Window name.

See also

wxCheckBox::Create (p. 113), wxValidator (p. 1348)

wxCheckBox::~wxCheckBox

 ~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p.
112) for details.

wxCheckBox::GetValue

bool GetValue() const

Gets the state of the checkbox.

Return value

Returns TRUE if it is checked, FALSE otherwise.

wxCheckBox::SetValue

void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
wxEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state

If TRUE, the check is on, otherwise it is off.

CHAPTER 5

114

wwxxCChheecckkLLiissttBBooxx

A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 749).

Derived from

wxListBox (p. 749)
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/checklst.h>

Window styles

See wxListBox (p. 749).

Event handling

EVT_CHECKLISTBOX(id, func) Process a

wxEVT_COMMAND_CHECKLISTBOX_TOGG
LE event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 749), wxChoice (p. 116), wxComboBox (p. 147), wxListCtrl (p. 758),
wxCommandEvent (p. 156)

wxCheckListBox::wxCheckListBox

 wxCheckListBox()

Default constructor.

 wxCheckListBox(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString

CHAPTER 5

115

choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n

Number of strings with which to initialise the control.

choices

An array of strings with which to initialise the control.

style

Window style. See wxCheckListBox (p. 114).

validator

Window validator.

name

Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox()

Destructor, destroying the list box.

wxCheckListBox::Check

CHAPTER 5

116

void Check(int item, bool check = TRUE)

Checks the given item.

Parameters

item

Index of item to check.

check

TRUE if the item is to be checked, FALSE otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const

Returns TRUE if the given item is checked, FALSE otherwise.

Parameters

item

Index of item whose check status is to be returned.

wwxxCChhooiiccee

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1567).

Event handling

CHAPTER 5

117

EVT_CHOICE(id, func) Process a

wxEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 749), wxComboBox (p. 147), wxCommandEvent (p. 156)

wxChoice::wxChoice

 wxChoice()

Default constructor.

 wxChoice(wxWindow *parent, wxWindowID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.

n

Number of strings with which to initialise the choice control.

choices

An array of strings with which to initialise the choice control.

style

Window style. See wxChoice (p. 116).

validator

Window validator.

CHAPTER 5

118

name

Window name.

See also

wxChoice::Create (p. 118), wxValidator (p. 1348)

wxPython note: The wxChoice constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxChoice::~wxChoice

 ~wxChoice()

Destructor, destroying the choice item.

wxChoice::Append

void Append(const wxString& item)

Adds the item to the end of the choice control.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.

Parameters

item

String to add.

clientData

Client data to associate with the item.

wxChoice::Clear

void Clear()

Clears the strings from the choice item.

wxChoice::Create

bool Create (wxWindow *parent, wxWindowID id, const wxPoint& pos, const

CHAPTER 5

119

wxSize& size, int n, const wxString choices[], long style = 0, const wxString& name
= "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 117).

wxChoice::FindString

int FindString(const wxString& string) const

Finds a choice matching the given string.

Parameters

string

String to find.

Return value

Returns the position if found, or -1 if not found.

wxChoice::GetColumns

int GetColumns() const

Gets the number of columns in this choice item.

Remarks

This is implemented for Motif only.

wxChoice::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

n

An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxChoice::GetSelection

CHAPTER 5

120

int GetSelection() const

Gets the id (position) of the selected string, or -1 if there is no selection.

wxChoice::GetString

wxString GetString(int n) const

Returns the string at the given position.

Parameters

n

The zero-based position.

Return value

The string at the given position, or the empty string if n is invalid.

wxChoice::GetStringSelection

wxString GetStringSelection() const

Gets the selected string, or the empty string if no string is selected.

wxChoice::Number

int Number() const

Returns the number of strings in the choice control.

wxChoice::SetClientData

void SetClientData(int n, void* data)

Associates the given client data pointer with the given item.

Parameters

n

The zero-based item.

data

The client data.

CHAPTER 5

121

wxChoice::SetColumns

void SetColumns(int n = 1)

Sets the number of columns in this choice item.

Parameters

n

Number of columns.

Remarks

This is implemented for Motif only.

wxChoice::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position. This does not cause a
wxEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

n

The string position to select, starting from zero.

See also

wxChoice::SetStringSelection (p. 121)

wxChoice::SetStringSelection

void SetStringSelection(const wxString& string)

Sets the choice by passing the desired string. This does not cause a
wxEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

string

The string to select.

See also

wxChoice::SetSelection (p. 121)

CHAPTER 5

122

wwxxCCllaassssIInnffoo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS.

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1526), wxObject (p. 897)

wxClassInfo::wxClassInfo

 wxClassInfo(char* className, char* baseClass1, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassInfo::CreateObject

wxObject* CreateObject()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

wxClassInfo::FindClass

static wxClassInfo * FindClass(char* name)

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassName1

char* GetBaseClassName1() const

CHAPTER 5

123

Returns the name of the first base class (NULL if none).

wxClassInfo::GetBaseClassName2

char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName

char * GetClassName () const

Returns the string form of the class name.

wxClassInfo::GetSize

int GetSize() const

Returns the size of the class.

wxClassInfo::InitializeClasses

static void InitializeClasses()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWindows library initialization.

wxClassInfo::IsKindOf

bool IsKindOf(wxClassInfo* info)

Returns TRUE if this class is a kind of (inherits from) the given class.

wwxxCClliieennttDDCC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 910) object.

CHAPTER 5

124

To draw on the whole window including decorations, construct a wxWindowDC (p. 1418)
object (Windows only).

Derived from

wxWindowDC (p. 1418)
wxDC (p. 327)

Include files

<wx/dcclient.h>

See also

wxDC (p. 327), wxMemoryDC (p. 828), wxPaintDC (p. 910), wxWindowDC (p. 1418),
wxScreenDC (p. 1060)

wxClientDC::wxClientDC

 wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wwxxCClliippbbooaarrdd

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWindows 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.

See also the wxDataObject overview (p. 1620) for further information.

Call wxClipboard::Open (p. 126) to get ownership of the clipboard. If this operation
returns TRUE, you now own the clipboard. Call wxClipboard::SetData (p. 127) to put
data on the clipboard, or wxClipboard::GetData (p. 126) to retrieve data from the
clipboard. Call wxClipboard::Close (p. 126) to close the clipboard and relinquish
ownership. You should keep the clipboard open only momentarily.

For example:

 // Write some text to the clipboard
 if (wxTheClipboard->Open())
 {
 // This data objects are held by the clipboard,

CHAPTER 5

125

 // so do not delete them in the app.
 wxTheClipboard->SetData(new wxTextDataObject("Some text"));
 wxTheClipboard->Close();
 }

 // Read some text
 if (wxTheClipboard->Open())
 {
 if (wxTheClipboard->IsSupported(wxDF_TEXT))
 {
 wxTextDataObject data;
 wxTheClipboard->GetData(data);
 wxMessageBox(data.GetText());
 }
 wxTheClipboard->Close();
 }

Derived from

wxObject (p. 897)

Include files

<wx/clipbrd.h>

See also

Drag and drop overview (p. 1619), wxDataObject (p. 204)

wxClipboard::wxClipboard

 wxClipboard()

Constructor.

wxClipboard::~wxClipboard

 ~wxClipboard()

Destructor.

wxClipboard::AddData

bool AddData(wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 126).

CHAPTER 5

126

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 127)

wxClipboard::Clear

void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

bool Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
126).

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns TRUE on success.

wxClipboard::IsOpened

bool IsOpened() const

Returns TRUE if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported(const wxDataFormat& format)

Returns TRUE if the format of the given data object is available on the clipboard.

wxClipboard::Open

bool Open()

CHAPTER 5

127

Call this function to open the clipboard before calling wxClipboard::SetData (p. 127) and
wxClipboard::GetData (p. 126).

Call wxClipboard::Close (p. 126) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns TRUE on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 125)

wxClipboard::UsePrimarySelection

void UsePrimarySelection(bool primary = TRUE)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is TRUE.

wwxxCClloosseeEEvveenntt

This event class contains information about window and session close events.

Derived from

wxEvent (p. 428)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member

CHAPTER 5

128

functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member

function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
wxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also

wxWindow::OnCloseWindow (p. 1391), wxWindow::Close (p. 1371),
wxApp::OnQueryEndSession (p. 28), Window deletion overview (p. 1568)

wxCloseEvent::wxCloseEvent

 wxCloseEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto()

Returns TRUE if you can veto a system shutdown or a window close event. Vetoing a
window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff() const

Returns TRUE if the user is logging off.

wxCloseEvent::GetSessionEnding

bool GetSessionEnding() const

Returns TRUE if the session is ending.

CHAPTER 5

129

wxCloseEvent::GetForce

bool GetForce () const

Returns TRUE if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto(bool canVeto)

Sets the 'can veto' flag.

wxCloseEvent::SetForce

void SetForce(bool force) const

Sets the 'force' flag.

wxCloseEvent::SetLoggingOff

void SetLoggingOff(bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto(bool veto = TRUE)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 128) returns TRUE.

wwxxCCmmddLLiinneePPaarrsseerr

wxCmdLineParser is a class for parsing command line.

It has the following features:

 1. distinguishes options, switches and parameters; allows option grouping

CHAPTER 5

130

 2. allows both short and long options
 3. automatically generates the usage message from the command line description
 4. does type checks on the options values (number, date, ...).

To use it you should follow these steps:

 1. construct (p. 132) an object of this class giving it the command line to parse and

optionally its description or use AddXXX() functions later
 2. call Parse()
 3. use Found() to retrieve the results

In the documentation below the following terminology is used:

switch This is a boolean option which can be given or

not, but which doesn't have any value. We use
the word switch to distinguish such boolean
options from more generic options like those
described below. For example, -v might be a
switch meaning "enable verbose mode".

option Option for us here is something which comes
with a value 0 unlike a switch. For example, -
o:filename might be an option which allows
to specify the name of the output file.

parameter This is a required program argument.

Derived from

No base class

Include files

<wx/cmdline.h>

Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 136).
Also, the meanings of parameters of the AddXXX() functions are the same as of the
corresponding fields in this structure:

struct wxCmdLineEntryDesc
{
 wxCmdLineEntryType kind;
 const wxChar *shortName;
 const wxChar *longName;
 const wxChar *description;
 wxCmdLineParamType type;
 int flags;
};

CHAPTER 5

131

The type of a command line entity is in the kind field and may be one of the following
constants:

enum wxCmdLineEntryType
{
 wxCMD_LINE_SWITCH,
 wxCMD_LINE_OPTION,
 wxCMD_LINE_PARAM,
 wxCMD_LINE_NONE // use this to terminate the list
}

The field shortName is the usual, short, name of the switch or the option.longName is
the corresponding long name or NULL if the option has no long name. Both of these
fields are unused for the parameters. Both the short and long option names can contain
only letters, digits and the underscores.

description is used by the Usage() (p. 137) method to construct a help message
explaining the syntax of the program.

The possible values of type which specifies the type of the value accepted by an option
or parameter are:

enum wxCmdLineParamType
{
 wxCMD_LINE_VAL_STRING, // default
 wxCMD_LINE_VAL_NUMBER,
 wxCMD_LINE_VAL_DATE,
 wxCMD_LINE_VAL_NONE
}

Finally, the flags field is a combination of the following bit masks:

enum
{
 wxCMD_LINE_OPTION_MANDATORY = 0x01, // this option must be given
 wxCMD_LINE_PARAM_OPTIONAL = 0x02, // the parameter may be omitted
 wxCMD_LINE_PARAM_MULTIPLE = 0x04, // the parameter may be
repeated
 wxCMD_LINE_OPTION_HELP = 0x08, // this option is a help
request
 wxCMD_LINE_NEEDS_SEPARATOR = 0x10, // must have sep before the
value
}

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to

CHAPTER 5

132

AddParam() (p. 137) allows one more parameter - this may be changed by giving non-
default flags to it, i.e. use wxCMD_LINE_OPTION_MANDATORY to require that the option
is given and wxCMD_LINE_PARAM_OPTIONAL to make a parameter optional. Also,
wxCMD_LINE_PARAM_MULTIPLE may be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command
line description. If you use this flag, you will probably need to use GetParamCount (p.
138) to retrieve the number of parameters effectively specified after calling Parse (p.
137).

The last flag wxCMD_LINE_NEEDS_SEPARATOR can be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

wxApp::argc (p. 22) and wxApp::argv (p. 23)
console sample

Construction

Before Parse (p. 137) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and
parameters are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 137).

To specify the command line to parse you may use either one of constructors accepting
it (wxCmdLineParser(argc, argv) (p. 133) or wxCmdLineParser (p. 134) usually) or, if
you use the default constructor (p. 133), you can do it later by calling SetCmdLine (p.
135).

The same holds for command line description: it can be specified either in the
constructor (without command line (p. 134) or together with it (p. 134)) or constructed
later using either SetDesc (p. 136) or combination of AddSwitch (p. 136), AddOption (p.
137) and AddParam (p. 137) methods.

Using constructors or SetDesc (p. 136) uses a (usually const static) table containing
the command line description. If you want to decide which options to acccept during the
run-time, using one of the AddXXX() functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 137).

CHAPTER 5

133

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes ("--") and look like this: --verbose,
i.e. they generally are complete words and not some abbreviations of them. As long
options are used by more and more applications, they are enabled by default, but may
be disabled with DisableLongOptions (p. 136).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,
'-' is always used, but Windows has at least two common choices for this: '-' and
'/'. Some programs also use '+'. The default is to use what suits most the current
platform, but may be changed with SetSwitchChars (p. 135) method.

Finally, SetLogo (p. 136) can be used to show some application-specific text before the
explanation given by Usage (p. 137) function.

Parsing command line

After the command line description was constructed and the desired options were set,
you can finally call Parse (p. 137) method. It returns 0 if the command line was correct
and was parsed, -1 if the help option was specified (this is a separate case as, normally,
the program will terminate after this) or a positive number if there was an error during the
command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWindows logging functions.

Getting results

After calling Parse (p. 137) (and if it returned 0), you may access the results of parsing
using one of overloaded Found()methods.

For a simple switch, you will simply call Found (p. 137) to determine if the switch was
given or not, for an option or a parameter, you will call a version of Found() which also
returns the associated value in the provided variable. All Found() functions return
TRUE if the switch or option were found in the command line or FALSE if they were not
specified.

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser()

Default constructor. You must use SetCmdLine (p. 135) later.

wxCmdLineParser::wxCmdLineParser

CHAPTER 5

134

 wxCmdLineParser(int argc, char** argv)

Constructor specifies the command line to parse. This is the traditional (Unix) command
line format. The parameters argc and argv have the same meaning as for main()
function.

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser(const wxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of WinMain().

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser(const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 133), but also specifies the command line description (p.
136).

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser(const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 133), but also specifies the command line description (p.
136).

wxCmdLineParser::wxCmdLineParser

 wxCmdLineParser(const wxCmdLineEntryDesc* desc, const wxString& cmdline)

Same as wxCmdLineParser (p. 134), but also specifies the command line description (p.
136).

wxCmdLineParser::ConvertStringToArgs

static wxArrayString ConvertStringToArgs(const wxChar *cmdline)

Breaks down the string containing the full command line in words. The words are
separated by whitespace. The quotes can be used in the input string to quote the white
space and the back slashes can be used to quote the quotes.

CHAPTER 5

135

wxCmdLineParser::SetCmdLine

void SetCmdLine(int argc, char** argv)

Set command line to parse after using one of the constructors which don't do it.

See also

wxCmdLineParser (p. 133)

wxCmdLineParser::SetCmdLine

void SetCmdLine(const wxString& cmdline)

Set command line to parse after using one of the constructors which don't do it.

See also

wxCmdLineParser (p. 134)

wxCmdLineParser::~wxCmdLineParser

 ~wxCmdLineParser()

Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars(const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is
"-" for Unix, "-/" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions(bool enable = TRUE)

Enable or disable support for the long options.

As long options are not (yet) POSIX-compliant, this option allows to disable them.

See also

Customization (p. 132)

CHAPTER 5

136

wxCmdLineParser::DisableLongOptions

void DisableLongOptions()

Ientical to EnableLongOptions(FALSE) (p. 135).

wxCmdLineParser::SetLogo

void SetLogo(const wxString& logo)

logo is some extra text which will be shown by Usage (p. 137) method.

wxCmdLineParser::SetDesc

void SetDesc(const wxCmdLineEntryDesc* desc)

Construct the command line description

Take the command line description from the wxCMD_LINE_NONE terminated table.

Example of usage:

static const wxCmdLineEntryDesc cmdLineDesc[] =
{
 { wxCMD_LINE_SWITCH, "v", "verbose", "be verbose" },
 { wxCMD_LINE_SWITCH, "q", "quiet", "be quiet" },

 { wxCMD_LINE_OPTION, "o", "output", "output file" },
 { wxCMD_LINE_OPTION, "i", "input", "input dir" },
 { wxCMD_LINE_OPTION, "s", "size", "output block size",
wxCMD_LINE_VAL_NUMBER },
 { wxCMD_LINE_OPTION, "d", "date", "output file date",
wxCMD_LINE_VAL_DATE },

 { wxCMD_LINE_PARAM, NULL, NULL, "input file",
wxCMD_LINE_VAL_STRING, wxCMD_LINE_PARAM_MULTIPLE },

 { wxCMD_LINE_NONE }
};

wxCmdLineParser parser;

parser.SetDesc(cmdLineDesc);

wxCmdLineParser::AddSwitch

void AddSwitch(const wxString& name, const wxString& lng = wxEmptyString,

CHAPTER 5

137

const wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long name lng (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption

void AddOption(const wxString& name, const wxString& lng = wxEmptyString,
const wxString& desc = wxEmptyString, wxCmdLineParamType type =
wxCMD_LINE_VAL_STRING, int flags = 0)

Add an option name with an optional long name lng (no long name if it is empty, which is
default) taking a value of the given type (string by default) to the command line
description.

wxCmdLineParser::AddParam

void AddParam(const wxString& desc = wxEmptyString, wxCmdLineParamType
type = wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

wxCmdLineParser::Parse

int Parse()

Parse the command line, return 0 if ok, -1 if "-h" or "--help" option was encountered
and the help message was given or a positive value if a syntax error occured.

wxCmdLineParser::Usage

void Usage()

Give the standard usage message describing all program options. It will use the options
and parameters descriptions specified earlier, so the resulting message will not be
helpful to the user unless the descriptions were indeed specified.

See also

SetLogo (p. 136)

wxCmdLineParser::Found

bool Found(const wxString& name) const

CHAPTER 5

138

Returns TRUE if the given switch was found, FALSE otherwise.

wxCmdLineParser::Found

bool Found(const wxString& name, wxString* value) const

Returns TRUE if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, long* value) const

Returns TRUE if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, wxDateTime* value) const

Returns TRUE if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount() const

Returns the number of parameters found. This function makes sense mostly if you had
used wxCMD_LINE_PARAM_MULTIPLE flag.

wxCmdLineParser::GetParam

wxString GetParam(size_t n = 0u) const

Returns the value of Nth parameter (as string only for now).

See also

GetParamCount (p. 138)

wwxxCCoolloouurr

CHAPTER 5

139

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 144) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

Derived from

wxObject (p. 897)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

wxBLACK
wxWHITE
wxRED
wxBLUE
wxGREEN
wxCYAN
wxLIGHT_GREY

See also

wxColourDatabase (p. 144), wxPen (p. 922), wxBrush (p. 81), wxColourDialog (p. 145)

wxColour::wxColour

 wxColour()

Default constructor.

 wxColour(const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

 wxColour(const wxString& colourNname)

CHAPTER 5

140

Constructs a colour object using a colour name listed in wxTheColourDatabase.

 wxColour(const wxColour& colour)

Copy constructor.

Parameters

red

The red value.

green

The green value.

blue

The blue value.

colourName

The colour name.

colour

The colour to copy.

See also

wxColourDatabase (p. 144)

wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)
wxNamedColour(name)

wxColour::Blue

unsigned char Blue() const

Returns the blue intensity.

wxColour::GetPixel

long GetPixel() const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

CHAPTER 5

141

wxColour::Green

unsigned char Green() const

Returns the green intensity.

wxColour::Ok

bool Ok() const

Returns TRUE if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(const unsigned char red, const unsigned char green, const unsigned char
blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator =(const wxColour& colour)

Assignment operator, taking another colour object.

wxColour& operator =(const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.

See also

wxColourDatabase (p. 144)

wxColour::operator ==

CHAPTER 5

142

bool operator ==(const wxColour& colour)

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator !=

bool operator !=(const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wwxxCCoolloouurrDDaattaa

This class holds a variety of information related to colour dialogs.

Derived from

wxObject (p. 897)

Include files

<wx/cmndata.h>

See also

wxColour (p. 138), wxColourDialog (p. 145), wxColourDialog overview (p. 1596)

wxColourData::wxColourData

 wxColourData()

Constructor. Initializes the custom colours to white, the data colour setting to black, and
the choose full setting to TRUE.

wxColourData::~wxColourData

 ~wxColourData()

Destructor.

wxColourData::GetChooseFull

CHAPTER 5

143

bool GetChooseFull() const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Has no meaning under other platforms.

The default value is TRUE.

wxColourData::GetColour

wxColour& GetColour() const

Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour(int i) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are all white.

wxColourData::SetChooseFull

void SetChooseFull(const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is TRUE.

wxColourData::SetColour

void SetColour(const wxColour& colour)

Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetCustomColour(int i, const wxColour& colour)

CHAPTER 5

144

Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are all white.

wxColourData::operator =

void operator =(const wxColourData& data)

Assingment operator for the colour data.

wwxxCCoolloouurrDDaattaabbaassee

wxWindows maintains a database of standard RGB colours for a predefined set of
named colours (such as "BLACK'', "LIGHT GREY''). The application may add to this set
if desired by using Append. There is only one instance of this class:
wxTheColourDatabase .

Derived from

wxList (p. 743)
wxObject (p. 897)

Include files

<wx/gdicmn.h>

Remarks

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,
DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

CHAPTER 5

145

wxColour (p. 138)

wxColourDatabase::wxColourDatabase

 wxColourDatabase()

Constructs the colour database.

wxColourDatabase::FindColour

wxColour* FindColour(const wxString& colourName)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName

wxString FindName (const wxColour& colour) const

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize

void Initialize()

Initializes the database with a number of stock colours. Called by wxWindows on start-
up.

wwxxCCoolloouurrDDiiaalloogg

This class represents the colour chooser dialog.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

CHAPTER 5

146

<wx/colordlg.h>

See also

wxColourDialog Overview (p. 1596), wxColour (p. 138), wxColourData (p. 142)

wxColourDialog::wxColourDialog

 wxColourDialog(wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data.

See also

wxColourData (p. 142)

wxColourDialog::~wxColourDialog

 ~wxColourDialog()

Destructor.

wxColourDialog::Create

bool Create (wxWindow* parent, wxColourData* data = NULL)

Same as constructor (p. 146).

wxColourDialog::GetColourData

wxColourData& GetColourData()

Returns the colour data (p. 142) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

CHAPTER 5

147

wwxxCCoommbbooBBooxx

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.

Derived from

wxChoice (p. 116)
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/combobox.h>

Window styles

wxCB_SIMPLE Creates a combobox with a permanently

displayed list. Windows only.
wxCB_DROPDOWN Creates a combobox with a drop-down list.
wxCB_READONLY Same as wxCB_DROPDOWN but only the

strings specified as the combobox choices can
be selected, it is impossible to select (even
from a program) a string which is not in the
choices list.

wxCB_SORT Sorts the entries in the list alphabetically.

See also window styles overview (p. 1567).

Event handling

EVT_COMBOBOX(id, func) Process a

wxEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.

EVT_TEXT(id, func) Process a
wxEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

See also

wxListBox (p. 749), wxTextCtrl (p. 1240), wxChoice (p. 116), wxCommandEvent (p. 156)

CHAPTER 5

148

wxComboBox::wxComboBox

 wxComboBox()

Default constructor.

 wxComboBox(wxWindow* parent, wxWindowID id, const wxString& value = "",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n,
const wxString choices[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "comboBox")

Constructor, creating and showing a combobox.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n

Number of strings with which to initialise the control.

choices

An array of strings with which to initialise the control.

style

Window style. See wxComboBox (p. 147).

validator

Window validator.

name

Window name.

See also

wxComboBox::Create (p. 149), wxValidator (p. 1348)

CHAPTER 5

149

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxComboBox::~wxComboBox

 ~wxComboBox()

Destructor, destroying the combobox.

wxComboBox::Append

void Append(const wxString& item)

Adds the item to the end of the combobox.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.

Parameters

item

The string to add.

clientData

Client data to associate with the item.

wxComboBox::Clear

void Clear()

Clears all strings from the combobox.

wxComboBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices[], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 148) for further details.

CHAPTER 5

150

wxComboBox::Copy

void Copy()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::Delete

void Delete(int n)

Deletes an item from the combobox.

Parameters

n

The item to delete, starting from zero.

wxComboBox::FindString

int FindString(const wxString& string)

Finds a choice matching the given string.

Parameters

string

The item to find.

Return value

The position if found, or -1 if not found.

wxComboBox::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

CHAPTER 5

151

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxComboBox::GetInsertionPoint

long GetInsertionPoint() const

Returns the insertion point for the combobox's text field.

wxComboBox::GetLastPosition

long GetLastPosition() const

Returns the last position in the combobox text field.

wxComboBox::GetSelection

int GetSelection() const

Gets the position of the selected string, or -1 if there is no selection.

wxComboBox::GetString

wxString GetString(int n) const

Returns the string at position n.

Parameters

n

The item position, starting from zero.

Return value

The string if the item is found, otherwise the empty string.

wxComboBox::GetStringSelection

wxString GetStringSelection() const

Gets the selected string.

CHAPTER 5

152

wxComboBox::GetValue

wxString GetValue() const

Returns the current value in the combobox text field.

wxComboBox::Number

int Number() const

Returns the number of items in the combobox list.

wxComboBox::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboBox::Replace

void Replace(long from, long to, const wxString& text)

Replaces the text between two positions with the given text, in the combobox text field.

Parameters

from

The first position.

to

The second position.

text

The text to insert.

wxComboBox::Remove

void Remove(long from, long to)

Removes the text between the two positions in the combobox text field.

Parameters

from

The first position.

CHAPTER 5

153

to
The last position.

wxComboBox::SetClientData

void SetClientData(int n, void* data)

Associates the given client data pointer with the given item.

Parameters

n

The zero-based item.

data

The client data.

wxComboBox::SetInsertionPoint

void SetInsertionPoint(long pos)

Sets the insertion point in the combobox text field.

Parameters

pos

The new insertion point.

wxComboBox::SetInsertionPointEnd

void SetInsertionPointEnd()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection(int n)

Selects the given item in the combobox list. This does not cause a
wxEVT_COMMAND_COMBOBOX_SELECTED event to get emitted.

void SetSelection(long from, long to)

Selects the text between the two positions, in the combobox text field.

Parameters

CHAPTER 5

154

n

The zero-based item to select.

from

The first position.

to

The second position.

wxPython note: The second form of this method is called SetMark in wxPython.

wxComboBox::SetValue

void SetValue(const wxString& text)

Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONLY style the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

Parameters

text

The text to set.

wwxxCCoommmmaanndd

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObject (p. 897)

Include files

<wx/docview.h>

See also

Overview (p. 1603)

CHAPTER 5

155

wxCommand::wxCommand

 wxCommand(bool canUndo = FALSE, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependant).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

 ~wxCommand()

Destructor.

wxCommand::CanUndo

bool CanUndo()

Returns TRUE if the command can be undone, FALSE otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return
TRUE to indicate that the action has taken place, FALSE otherwise. Returning FALSE
will indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName ()

Returns the command name.

wxCommand::Undo

CHAPTER 5

156

bool Undo()

Override this member function to un-execute a previous Do. Return TRUE to indicate
that the action has taken place, FALSE otherwise. Returning FALSE will indicate to the
command processor that the action is not redoable and no change should be made to
the command history.

How you implement this command is totally application dependent, but typical strategies
include:

 • Perform an inverse operation on the last modified piece of data in the document.

When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.

 • Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wwxxCCoommmmaannddEEvveenntt

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. 1313), have
separate command event classes.

Derived from

wxEvent (p. 428)

Include files

<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window

identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

CHAPTER 5

157

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

EVT_LISTBOX(id, func) Process a
wxEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

EVT_LISTBOX_DCLICK(id, func) Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

EVT_TEXT(id, func) Process a
wxEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control. Note that you must use
wxTE_PROCESS_ENTER flag when creating
the control if you want it to generate such
events.

EVT_TEXT_MAXLEN(id, func) Process a
wxEVT_COMMAND_TEXT_MAXLEN
command, which is generated by a wxTextCtrl
control when the user tries to enter more
characters into it than the limit previosuly set
with SetMaxLength (p. 1253).

EVT_MENU(id, func) Process a
wxEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.

EVT_MENU_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

EVT_SLIDER(id, func) Process a
wxEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

EVT_RADIOBOX(id, func) Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a
wxRadioBox control.

CHAPTER 5

158

EVT_RADIOBUTTON(id, func) Process a
wxEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

EVT_SCROLLBAR(id, func) Process a
wxEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be
used instead (see wxScrollEvent (p. 1068)).

EVT_COMBOBOX(id, func) Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

EVT_TOOL(id, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_TOOL_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event
for a range id identifiers. Pass the ids of the
tools.

EVT_TOOL_RCLICKED(id, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a
wxEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a
wxEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a
wxEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_SET_FOCUS(id, func) Process a
wxEVT_COMMAND_SET_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_KILL_FOCUS(id, func) Process a

CHAPTER 5

159

wxEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

wxCommandEvent::m_clientData

void* m_clientData

Contains a pointer to client data for listboxes and choices, if the event was a selection.
Beware, this is not implemented anyway...

wxCommandEvent::m_commandInt

int m_commandInt

Contains an integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::m_commandString

char* m_commandString

Contains a string corresponding to a listbox or choice selection.

wxCommandEvent::m_extraLong

long m_extraLong

Extra information. If the event comes from a listbox selection, it is a boolean determining
whether the event was a selection (TRUE) or a deselection (FALSE). A listbox
deselection only occurs for multiple-selection boxes, and in this case the index and
string values are indeterminate and the listbox must be examined by the application.

wxCommandEvent::wxCommandEvent

 wxCommandEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

CHAPTER 5

160

wxCommandEvent::Checked

bool Checked() const

Deprecated, use IsChecked (p. 160) instead.

wxCommandEvent::GetClientData

void* GetClientData()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtraLong()

Returns the m_extraLong member.

wxCommandEvent::GetInt

int GetInt()

Returns the m_commandInt member.

wxCommandEvent::GetSelection

int GetSelection()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

char* GetString()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked() const

This method can be used with checkbox and menu events: for the checkboxes, the

CHAPTER 5

161

method returns TRUE for a selection event and FALSE for a deselection one. For the
menu events, this method indicates if the menu item just has become checked or
unchecked (and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection

bool IsSelection()

For a listbox or choice event, returns TRUE if it is a selection, FALSE if it is a
deselection.

wxCommandEvent::SetClientData

void SetClientData(void* clientData)

Sets the client data for this event.

wxCommandEvent::SetExtraLong

void SetExtraLong(int extraLong)

Sets the m_extraLong member.

wxCommandEvent::SetInt

void SetInt(int intCommand)

Sets the m_commandInt member.

wxCommandEvent::SetString

void SetString(char* string)

Sets the m_commandString member.

wwxxCCoommmmaannddPPrroocceessssoorr

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

CHAPTER 5

162

Derived from

wxObject (p. 897)

Include files

<wx/docview.h>

See also

wxCommandProcessor overview (p. 1604), wxCommand (p. 154)

wxCommandProcessor::wxCommandProcessor

 wxCommandProcessor(int maxCommands = 100)

Constructor.

maxCommands defaults to a rather arbitrary 100, but can be set from 1 to any integer. If
your wxCommand classes store a lot of data, you may wish the limit the number of
commands stored to a smaller number.

wxCommandProcessor::~wxCommandProcessor

 ~wxCommandProcessor()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo()

Returns TRUE if the currently-active command can be undone, FALSE otherwise.

wxCommandProcessor::ClearCommands

virtual void ClearCommands()

Deletes all the commands in the list and sets the current command pointer to NULL.

wxCommandProcessor::Do

virtual bool Do()

CHAPTER 5

163

Executes (redoes) the current command (the command that has just been undone if
any).

wxCommandProcessor::GetCommands

wxList& GetCommands() const

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands() const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu() const

Returns the edit menu associated with the command processor.

wxCommandProcessor::GetRedoAccelerator

const wxString& GetRedoAccelerator() const

Returns the string that will be appended to the Redo menu item.

wxCommandProcessor::GetUndoAccelerator

const wxString& GetUndoAccelerator() const

Returns the string that will be appended to the Undo menu item.

wxCommandProcessor::Initialize

virtual void Initialize()

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::SetEditMenu

CHAPTER 5

164

void SetEditMenu(wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::SetRedoAccelerator

void SetRedoAccelerator(const wxString&accel)

Sets the string that will be appended to the Redo menu item.

wxCommandProcessor::SetUndoAccelerator

void SetUndoAccelerator(const wxString&accel)

Sets the string that will be appended to the Undo menu item.

wxCommandProcessor::Submit

virtual bool Submit(wxCommand *command, bool storeIt = TRUE)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storeIt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

virtual bool Undo()

Undoes the command just executed.

wwxxCCoonnddiittiioonn

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true

CHAPTER 5

165

which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. 1282) for the worker thread, but if there are several
worker threads it already makes much more sense).

Once the thread(s) are signaled, the condition then resets to the not signaled state,
ready to fire again.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 1276), wxMutex (p. 881)

wxCondition::wxCondition

 wxCondition()

Default constructor.

wxCondition::~wxCondition

 ~wxCondition()

Destroys the wxCondition object.

wxCondition::Broadcast

void Broadcast()

Broadcasts to all waiting objects.

wxCondition::Signal

void Signal()

CHAPTER 5

166

Signals the object.

wxCondition::Wait

void Wait()

Waits indefinitely.

bool Wait(unsigned long sec, unsigned long nsec)

Waits until a signal is raised or the timeout has elapsed.

Parameters

sec

Timeout in seconds

nsec

Timeout nanoseconds component (added to sec).

Return value

The second form returns if the signal was raised, or FALSE if there was a timeout.

wwxxCCoonnffiiggBBaassee

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it is an abstract base class) and you will always use one of its derivations:
wxIniConfig, wxFileConfig, wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWindows provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32, wxIniConfig under Win16 and wxFileConfig
otherwise.

See config overview (p. 1554) for the descriptions of all features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a
look at them. (p. 168)

Derived from

CHAPTER 5

167

No base class

Include files

<wx/config.h> (to let wxWindows choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)
<wx/fileconf.h> (wxFileconfig class)
<wx/msw/regconf.h> (wxRegConfig class)
<wx/msw/iniconf.h> (wxIniConfig class)

Example

Here is how you would typically use this class:

 // using wxConfig instead of writing wxFileConfig or wxRegConfig
enhances
 // portability of the code
 wxConfig *config = new wxConfig("MyAppName");

 wxString str;
 if (config->Read("LastPrompt", &str)) {
 // last prompt was found in the config file/registry and its value
is now
 // in str
 ...
 }
 else {
 // no last prompt...
 }

 // another example: using default values and the full path instead of
just
 // key name: if the key is not found , the value 17 is returned
 long value = config->Read("/LastRun/CalculatedValues/MaxValue", 17);
 ...
 ...
 ...
 // at the end of the program we would save everything back
 config->Write("LastPrompt", str);
 config->Write("/LastRun/CalculatedValues/MaxValue", value);

 // the changes will be written back automatically
 delete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"
for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

CHAPTER 5

168

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Note that
wxWindows will delete this config object for you during the program shutdown (from
wxApp::OnExit (p. 26) to be precise) but you can also do it yourself earlier if needed.

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWindows library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
522) or Unix version of wxFileDialog (p. 461) have ability to use wxConfig class.

Set (p. 179)
Get (p. 174)
Create (p. 173)
DontCreateOnDemand (p. 173)

Constructor and destructor

wxConfigBase (p. 172)
~wxConfigBase (p. 173)

Path management

As explained in config overview (p. 1554), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion
of the current group, which makes it possible to use the relative paths. To clarify all this,
here is an example (it is only for the sake of demonstration, it doesn't do anything
sensible!):

 wxConfig *config = new wxConfig("FooBarApp");

 // right now the current path is '/'
 conf->Write("RootEntry", 1);

 // go to some other place: if the group(s) don't exist, they will be

CHAPTER 5

169

created
 conf->SetPath("/Group/Subgroup");

 // create an entry in subgroup
 conf->Write("SubgroupEntry", 3);

 // '..' is understood
 conf->Write("../GroupEntry", 2);
 conf->SetPath("..");

 wxASSERT(conf->Read("Subgroup/SubgroupEntry", 0l) == 3);

 // use absolute path: it is allowed, too
 wxASSERT(conf->Read("/RootEntry", 0l) == 1);

Warning: it is probably a good idea to always restore the path to its old value on function
exit:

 void foo(wxConfigBase *config)
 {
 wxString strOldPath = config->GetPath();

 config->SetPath("/Foo/Data");
 ...

 config->SetPath(strOldPath);
 }

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

 void bar(wxConfigBase *config)
 {
 config->Write("Test", 17);

 foo(config);

 // we're reading "/Foo/Data/Test" here! -1 will probably be
returned...
 wxASSERT(config->Read("Test", -1) == 17);
 }

Finally, the path separator in wxConfigBase and derived classes is always '/', regardless
of the platform (i.e. it is not '\\' under Windows).

SetPath (p. 179)
GetPath (p. 176)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return FALSE when there are no more items.

CHAPTER 5

170

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it is not the index of the current item (you will have some great surprizes with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

 wxArrayString aNames;

 // enumeration variables
 wxString str;
 long dummy;

 // first enum all entries
 bool bCont = config->GetFirstEntry(str, dummy);
 while (bCont) {
 aNames.Add(str);

 bCont = GetConfig()->GetNextEntry(str, dummy);
 }

 ... we have all entry names in aNames...

 // now all groups...
 bCont = GetConfig()->GetFirstGroup(str, dummy);
 while (bCont) {
 aNames.Add(str);

 bCont = GetConfig()->GetNextGroup(str, dummy);
 }

 ... we have all group (and entry) names in aNames...

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 175)
GetNextGroup (p. 176)
GetFirstEntry (p. 175)
GetNextEntry (p. 176)
GetNumberOfEntries (p. 176)
GetNumberOfGroups (p. 176)

Tests of existence

HasGroup (p. 177)
HasEntry (p. 176)
Exists (p. 174)
GetEntryType (p. 175)

CHAPTER 5

171

Miscellaneous functions

GetAppName (p. 175)
GetVendorName (p. 176)
SetUmask (p. 180)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that sizeof(bool) ==
sizeof(int) == sizeof(long) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 177)
Write (p. 180)
Flush (p. 174)

Rename entries/groups

The functions in this section allow to rename entries or subgroups of the current group.
They will return FALSE on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 179)
RenameGroup (p. 179)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:

CHAPTER 5

172

for example, when you uninstall it.

DeleteEntry (p. 174)
DeleteGroup (p. 174)
DeleteAll (p. 174)

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

 # config file for my program
 UserData = $HOME/data

 # the following syntax is valud only under Windows
 UserData = %windir%\\data.dat

the call to config->Read("UserData") will return something
like"/home/zeitlin/data" if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(FALSE) just before reading this value and
SetExpandEnvVars(TRUE) just after. Another solution would be to prefix the offending
symbols with a backslash.

The following functions control this option:

IsExpandingEnvVars (p. 177)
SetExpandEnvVars (p. 179)
SetRecordDefaults (p. 179)
IsRecordingDefaults (p. 177)

wxConfigBase::wxConfigBase

 wxConfigBase(const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0)

This is the default and only constructor of the wxConfigBase class, and derived classes.

Parameters

appName

The application name. If this is empty, the class will normally use

CHAPTER 5

173

wxApp::GetAppName (p. 23) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName

The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

localFilename

Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename

Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style

Can be one of wxCONFIG_USE_LOCAL_FILE and
wxCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logicaly or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths.

Remarks

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase

 ~wxConfigBase()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create ()

Create a new config object: this function will create the "best" implementation of
wxConfig available for the current platform, see comments near the definition of
wxCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

CHAPTER 5

174

void DontCreateOnDemand()

Calling this function will prevent Get() from automatically creating a new config object if
the current one is NULL. It might be useful to call it near the program end to prevent new
config object "accidental" creation.

wxConfigBase::DeleteAll

bool DeleteAll()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
desinstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry(const wxString& key, bool bDeleteGroupIfEmpty = TRUE)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

bool DeleteGroup(const wxString& key)

Delete the group (with all subgroups)

wxConfigBase::Exists

bool Exists(wxString& strName) const

returns TRUE if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush(bool bCurrentOnly = FALSE)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

wxConfigBase * Get(bool CreateOnDemand = TRUE)

CHAPTER 5

175

Get the current config object. If there is no current object andCreateOnDemand is
TRUE, creates one (using Create) unless DontCreateOnDemand was called previously.

wxConfigBase::GetAppName

wxString GetAppName () const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType(const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:

 enum EntryType
 {
 Unknown,
 String,
 Boolean,
 Integer,
 Float
 };

wxConfigBase::GetFirstGroup

bool GetFirstGroup(wxString& str, long& index) const

Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetFirstEntry

bool GetFirstEntry(wxString& str, long& index) const

Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

CHAPTER 5

176

wxConfigBase::GetNextGroup

bool GetNextGroup(wxString& str, long& index) const

Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNextEntry

bool GetNextEntry(wxString& str, long& index) const

Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries(bool bRecursive = FALSE) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups(bool bRecursive = FALSE) const

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath

const wxString& GetPath() const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName () const

Returns the vendor name.

wxConfigBase::HasEntry

CHAPTER 5

177

bool HasEntry(wxString& strName) const

returns TRUE if the entry by this name exists

wxConfigBase::HasGroup

bool HasGroup(const wxString& strName) const

returns TRUE if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars() const

Returns TRUE if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults() const

Returns TRUE if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString* str) const

Read a string from the key, returning TRUE if the value was read. If the key was not
found, str is not changed.

bool Read(const wxString& key, wxString* str, const wxString& defaultVal) const

Read a string from the key. The default value is returned if the key was not found.

Returns TRUE if value was really read, FALSE if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* l) const

Reads a long value, returning TRUE if the value was found. If the value was not found, l
is not changed.

bool Read(const wxString& key, long* l,long defaultVal) const

CHAPTER 5

178

Reads a long value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, long defaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

 conf->Read("key", 0);

won't work because the call is ambiguous: compiler can not choose between twoRead
functions. Instead, write:

 conf->Read("key", 0l);

bool Read(const wxString& key, double* d) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, d is not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

Reads a bool value, returning TRUE if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default="") Returns a string.
ReadInt(key, default=0) Returns an int.
ReadFloat(key, default=0.0) Returns a floating point number.

CHAPTER 5

179

wxConfigBase::RenameEntry

bool RenameEntry(const wxString& oldName, const wxString& newName)

Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup(const wxString& oldName, const wxString& newName)

Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::Set

wxConfigBase * Set(wxConfigBase *pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandEnvVars

void SetExpandEnvVars (bool bDoIt = TRUE)

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath(const wxString& strPath)

Set current path: if the first character is '/', it is the absolute path, otherwise it is a relative
path. '..' is supported. If the strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults(bool bDoIt = TRUE)

CHAPTER 5

180

Sets whether defaults are written back to the config file.

If on (default is off) all default values are written back to the config file. This allows the
user to see what config options may be changed and is probably useful only for
wxFileConfig.

wxConfigBase::SetUmask

void SetUmask(int mode)

NB: this function is not in the base wxConfigBase class but is only implemented in
wxFileConfig. Moreover, this function is Unix-specific and doesn't do anything on other
platforms.

SetUmask() allows to set the mode to be used for the config file creation. For example,
to create a config file which is not readable by other users (useful if it stores some
sensitive information, such as passwords), you should do SetUmask(0077).

wxConfigBase::Write

bool Write(const wxString& key, const wxString& value)

bool Write(const wxString& key, long value)

bool Write(const wxString& key, double value)

bool Write(const wxString& key, bool value)

These functions write the specified value to the config file and return TRUE on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.
WriteInt(key, value) Writes an int.
WriteFloat(key, value) Writes a floating point number.

wwxxCCoonntteexxttHHeellpp

This class changes the cursor to a query and puts the application into a 'context-
sensitive help mode'. When the user left-clicks on a window within the specified window,
a wxEVT_HELP event is sent to that control, and the application may respond to it by
popping up some help.

CHAPTER 5

181

For example:

 wxContextHelp contextHelp(myWindow);

There are a couple of ways to invoke this behaviour implicitly:

 • Use the wxDIALOG_EX_CONTEXTHELP style for a dialog (Windows only).

This will put a question mark in the titlebar, and Windows will put the application
into context-sensitive help mode automatically, with further programming.

 • Create a wxContextHelpButton (p. 182), whose predefined behaviour is to
create a context help object. Normally you will write your application so that this
button is only added to a dialog for non-Windows platforms (use
wxDIALOG_EX_CONTEXTHELP on Windows).

Derived from

wxObject (p. 897)

Include files

<wx/cshelp.h>

See also

wxHelpEvent (p. 617), wxHelpController (p. 610), wxContextHelpButton (p. 182)

wxContextHelp::wxContextHelp

 wxContextHelp(wxWindow* window = NULL, bool doNow = TRUE)

Constructs a context help object, calling BeginContextHelp (p. 181) if doNow is TRUE
(the default).

If window is NULL, the top window is used.

wxContextHelp::~wxContextHelp

 ~wxContextHelp()

Destroys the context help object.

wxContextHelp::BeginContextHelp

bool BeginContextHelp(wxWindow* window = NULL)

CHAPTER 5

182

Puts the application into context-sensitive help mode. window is the window which will
be used to catch events; if NULL, the top window will be used.

Returns TRUE if the application was successfully put into context-sensitive help mode.
This function only returns when the event loop has finished.

wxContextHelp::EndContextHelp

bool EndContextHelp()

Ends context-sensitive help mode. Not normally called by the application.

wwxxCCoonntteexxttHHeellppBBuuttttoonn

Instances of this class may be used to add a question mark button that when pressed,
puts the application into context-help mode. It does this by creating a wxContextHelp (p.
180) object which itself generates a wxEVT_HELP event when the user clicks on a
window.

On Windows, you may add a question-mark icon to a dialog by use of the
wxDIALOG_EX_CONTEXTHELP extra style, but on other platforms you will have to add
a button explicitly, usually next to OK, Cancel or similar buttons.

Derived from

wxBitmapButton (p. 72)
wxButton (p. 91)
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/cshelp.h>

See also

wxBitmapButton (p. 72), wxContextHelp (p. 180)

wxContextHelpButton::wxContextHelpButton

 wxContextHelpButton()

CHAPTER 5

183

Default constructor.

 wxContextHelpButton(wxWindow* parent, wxWindowID id =
wxID_CONTEXT_HELP, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxBU_AUTODRAW)

Constructor, creating and showing a context help button.

Parameters

parent

Parent window. Must not be NULL.

id

Button identifier. Defaults to wxID_CONTEXT_HELP.

pos

Button position.

size

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the question mark bitmap.

style

Window style.

Remarks

Normally you need pass only the parent window to the constructor, and use the defaults
for the remaining parameters.

wwxxCCoonnttrrooll

This is the base class for a control or 'widget'.

A control is generally a small window which processes user input and/or displays one or
more item of data.

Derived from

wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

CHAPTER 5

184

<wx/control.h>

See also

wxValidator (p. 1348)

wxControl::Command

void Command(wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 156).

wxControl::GetLabel

wxString& GetLabel()

Returns the control's text.

wxControl::SetLabel

void SetLabel(const wxString& label)

Sets the item's text.

wwxxCCoouunnttiinnggOOuuttppuuttSSttrreeaamm

wxCountingOutputStream is a specialized output stream which does not write any data
anyway, instead it counts how many bytes would get written if this were a normal
stream. This can sometimes be useful or required if some data gets serialized to a
stream or compressed by using stream compression and thus the final size of the
stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of
memory and the memory has to be allocated before writing to it (which is probably
always the case when writing to a memory stream).

Derived from

wxOutputStream (p. 902)wxStreamBase (p. 1161)

Include files

CHAPTER 5

185

<wx/stream.h>

wxCountingOutputStream::wxCountingOutputStream

 wxCountingOutputStream()

Creates a wxCountingOutputStream object.

wxCountingOutputStream::~wxCountingOutputStream

 ~wxCountingOutputStream()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize() const

Returns the current size of the stream.

wwxxCCrriittiiccaallSSeeccttiioonn

A critical section object is used for the same exactly purpose as mutexes (p. 881). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

Finally, you should try to use wxCriticalSectionLocker (p. 186) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p. 884)
is preferrable to wxMutex (p. 881) - please see wxMutex for an example.

Derived from

None.

Include files

<wx/thread.h>

See also

CHAPTER 5

186

wxThread (p. 1276), wxCondition (p. 164), wxMutexLocker (p. 884), wxCriticalSection (p.
185)

wxCriticalSection::wxCriticalSection

 wxCriticalSection()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

 ~wxCriticalSection()

Destructor frees the ressources.

wxCriticalSection::Enter

void Enter()

Enter the critical section (same as locking a mutex). There is no error return for this
function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

void Leave()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

wwxxCCrriittiiccaallSSeeccttiioonnLLoocckkeerr

This is a small helper class to be used with wxCriticalSection (p. 185) objects. A
wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Example of using it:

void SetFoo()

CHAPTER 5

187

{
 // gs_critSect is some (global) critical section guarding access to
the
 // object "foo"
 wxCriticalSectionLocker locker(gs_critSect);

 if (...)
 {
 // do something
 ...

 return;
 }

 // do something else
 ...

 return;
}

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each return.

Derived from

None.

Include files

<wx/thread.h>

See also

wxCriticalSection (p. 185), wxMutexLocker (p. 884)

wxCriticalSectionLocker::wxCriticalSectionLocker

 wxCriticalSectionLocker(wxCriticalSection& criticalsection)

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and
enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker

 ~wxCriticalSectionLocker()

Destuctor leaves the critical section.

CHAPTER 5

188

wwxxCCSSCCoonnvv

This class converts between any character sets and Unicode. It has one predefined
instance, wxConvLocal, for the default user character set.

Derived from

wxMBConv (p. 811)

Include files

<wx/strconv.h>

See also

wxMBConv (p. 811), wxEncodingConverter (p. 425), wxMBConv classes overview (p.
1539)

wxCSConv::wxCSConv

 wxCSConv(const wxChar* charset)

Constructor. Specify the name of the character set you want to convert from/to.

wxCSConv::~wxCSConv

 ~wxCSConv ()

Destructor.

wxCSConv::LoadNow

void LoadNow()

If the conversion tables needs to be loaded from disk, this method will do so. Otherwise,
they will be loaded when any of the conversion methods are called.

wxCSConv::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from the selected character set to Unicode. Returns the size of the destination

CHAPTER 5

189

buffer.

wxCSConv::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to the selected character set. Returns the size of the destination
buffer.

wwxxCCuussttoommDDaattaaOObbjjeecctt

wxCustomDataObject is a specialization of wxDataObjectSimple (p. 285) for some
application-specific data in arbitrary (either custom or one of the standard ones). The
only restriction is that it is supposed that this data can be copied bitwise (i.e. with
memcpy()), so it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 191) or TakeData (p. 191) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should override GetSize (p. 190), GetData (p. 190)
and SetData (p. 191) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 285)
wxDataObject (p. 204)

Include files

<wx/dataobj.h>

See also

wxDataObject (p. 204)

CHAPTER 5

190

wxCustomDataObject::wxCustomDataObject

 wxCustomDataObject(const wxDataFormat& format = wxFormatInvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here, SetFormat (p. 286) should be used.

wxCustomDataObject::~wxCustomDataObject

 ~wxCustomDataObject()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 190) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Free(), you
should override the destructor in your class as well (which would probably just call the
derived class' version of Free()).

wxCustomDataObject::Alloc

virtual void * Alloc(size_t size)

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

virtual void Free()

This function is called when the data is freed, you may override it to anything you want
(or may be nothing at all). The default version calls operator delete[] on the data.

wxCustomDataObject::GetSize

virtual size_t GetSize() const

Returns the data size in bytes.

wxCustomDataObject::GetData

CHAPTER 5

191

virtual void * GetData() const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData(size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxCustomDataObject::TakeData

virtual void TakeData(size_t size, const void *data)

Like SetData (p. 191), but doesn't copy the data - instead the object takes ownership of
the pointer.

wwxxCCuurrssoorr

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxIcon (p. 680) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWindows convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 1452) is also available
for MS Windows use.

Derived from

wxBitmap (p. 55)
wxGDIObject (p. 550)
wxObject (p. 897)

Include files

<wx/cursor.h>

Predefined objects

Objects:

CHAPTER 5

192

wxNullCursor

Pointers:

wxSTANDARD_CURSOR
wxHOURGLASS_CURSOR
wxCROSS_CURSOR

See also

wxBitmap (p. 55), wxIcon (p. 680), wxWindow::SetCursor (p. 1407), ::wxSetCursor (p.
1452)

wxCursor::wxCursor

 wxCursor()

Default constructor.

 wxCursor(const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL)

Constructs a cursor by passing an array of bits (Motif and Xt only). maskBits is used only
under Motif.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

 wxCursor(const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)

Constructs a cursor by passing a string resource name or filename.

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

 wxCursor(int cursorId)

Constructs a cursor using a cursor identifier.

 wxCursor(const wxCursor& cursor)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

bits

An array of bits.

CHAPTER 5

193

maskBits
Bits for a mask bitmap.

width

Cursor width.

height

Cursor height.

hotSpotX

Hotspot x coordinate.

hotSpotY

Hotspot y coordinate.

type

Icon type to load. Under Motif, type defaults to wxBITMAP_TYPE_XBM. Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE.

Under X, the permitted cursor types are:

wxBITMAP_TYPE_XBM Load an X bitmap file.

Under Windows, the permitted types are:

wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if

USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).

wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).

wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.

cursorId

A stock cursor identifier. May be one of:

wxCURSOR_ARROW A standard arrow cursor.
wxCURSOR_BULLSEYE Bullseye cursor.
wxCURSOR_CHAR Rectangular character cursor.
wxCURSOR_CROSS A cross cursor.
wxCURSOR_HAND A hand cursor.
wxCURSOR_IBEAM An I-beam cursor (vertical line).
wxCURSOR_LEFT_BUTTON Represents a mouse with the left button

depressed.
wxCURSOR_MAGNIFIER A magnifier icon.
wxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button

depressed.
wxCURSOR_NO_ENTRY A no-entry sign cursor.

CHAPTER 5

194

wxCURSOR_PAINT_BRUSH A paintbrush cursor.
wxCURSOR_PENCIL A pencil cursor.
wxCURSOR_POINT_LEFT A cursor that points left.
wxCURSOR_POINT_RIGHT A cursor that points right.
wxCURSOR_QUESTION_ARROW An arrow and question mark.
wxCURSOR_RIGHT_BUTTON Represents a mouse with the right button

depressed.
wxCURSOR_SIZENESW A sizing cursor pointing NE-SW.
wxCURSOR_SIZENS A sizing cursor pointing N-S.
wxCURSOR_SIZENWSE A sizing cursor pointing NW-SE.
wxCURSOR_SIZEWE A sizing cursor pointing W-E.
wxCURSOR_SIZING A general sizing cursor.
wxCURSOR_SPRAYCAN A spraycan cursor.
wxCURSOR_WAIT A wait cursor.
wxCURSOR_WATCH A watch cursor.
wxCURSOR_ARROWWAIT A cursor with both an arrow and an hourglass,

(windows.)

Note that not all cursors are available on all platforms.

cursor

Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:

wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor
from a filename

wxStockCursor(id) Constructs a stock cursor

wxPerl note: Contructors supported by wxPerl are:

 •::Cursor->new(name, type, hotSpotX = 0, hotSpotY = 0)
 •::Cursor->new(id)

wxCursor::~wxCursor

 ~wxCursor()

Destroys the cursor. A cursor can be reused for more than one window, and does not
get destroyed when the window is destroyed. wxWindows destroys all cursors on
application exit, although it is best to clean them up explicitly.

wxCursor::Ok

bool Ok() const

CHAPTER 5

195

Returns TRUE if cursor data is present.

wxCursor::operator =

wxCursor& operator =(const wxCursor& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator ==(const wxCursor& cursor)

Equality operator. Two cursors are equal if they contain pointers to the same underlying
cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor::operator !=

bool operator !=(const wxCursor& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wwxxDDaattaabbaassee

Every database object represents an ODBC connection. The connection may be closed
and reopened.

Derived from

wxObject (p. 897)

Include files

<wx/odbc.h>

See also

wxDatabase overview (p. 1642), wxRecordSet (p. 1027)

A much more robust and feature-rich set of ODBC classes is now available and
recommended for use in place of the wxDatabase class.

See details of these classes in:wxDb (p. 207), wxDbTable (p. 247)

CHAPTER 5

196

wxDatabase::wxDatabase

 wxDatabase()

Constructor. The constructor of the first wxDatabase instance of an application initializes
the ODBC manager.

wxDatabase::~wxDatabase

 ~wxDatabase()

Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase::BeginTrans

bool BeginTrans()

Not implemented.

wxDatabase::Cancel

void Cancel()

Not implemented.

wxDatabase::CanTransact

bool CanTransact()

Not implemented.

wxDatabase::CanUpdate

bool CanUpdate ()

Not implemented.

CHAPTER 5

197

wxDatabase::Close

bool Close()

Resets the statement handles of any associated wxRecordSet objects, and disconnects
from the current data source.

wxDatabase::CommitTrans

bool CommitTrans()

Commits previous transactions. Not implemented.

wxDatabase::ErrorOccured

bool ErrorOccured()

Returns TRUE if the last action caused an error.

wxDatabase::ErrorSnapshot

void ErrorSnapshot(HSTMT statement = SQL_NULL_HSTMT)

This function will be called whenever an ODBC error occured. It stores the error related
information returned by ODBC. If a statement handle of the concerning ODBC action is
available it should be passed to the function.

wxDatabase::GetDatabaseName

wxString GetDatabaseName ()

Returns the name of the database associated with the current connection.

wxDatabase::GetDataSource

wxString GetDataSource ()

Returns the name of the connected data source.

wxDatabase::GetErrorClass

wxString GetErrorClass()

CHAPTER 5

198

Returns the error class of the last error. The error class consists of five characters where
the first two characters contain the class and the other three characters contain the
subclass of the ODBC error. See ODBC documentation for further details.

wxDatabase::GetErrorCode

wxRETCODE GetErrorCode ()

Returns the error code of the last ODBC function call. This will be one of:

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESS The call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can

be obtained from the ODBC manager.

wxDatabase::GetErrorMessage

wxString GetErrorMessage ()

Returns the last error message returned by the ODBC manager.

wxDatabase::GetErrorNumber

long GetErrorNumber()

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase::GetHDBC

HDBC GetHDBC()

Returns the current ODBC database handle.

wxDatabase::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDatabase::GetInfo

CHAPTER 5

199

bool GetInfo(long infoType, long *buf)

bool GetInfo(long infoType, const wxString& buf, int bufSize=-1)

Returns requested information. The return value is TRUE if successful, FALSE
otherwise.

infoType is an ODBC identifier specifying the type of information to be returned.

buf is a character or long integer pointer to storage which must be allocated by the
application, and which will contain the information if the function is successful.

bufSize is the size of the character buffer. A value of -1 indicates that the size should be
computed by the GetInfo function.

wxDatabase::GetPassword

wxString GetPassword()

Returns the password of the current user.

wxDatabase::GetUsername

wxString GetUsername ()

Returns the current username.

wxDatabase::GetODBCVersionFloat

float GetODBCVersionFloat(bool implementation=TRUE)

Returns the version of ODBC in floating point format, e.g. 2.50.

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql.h header file.

This function can return the value 0.0 if the header version number is not defined (for
early versions of ODBC).

wxDatabase::GetODBCVersionString

wxString GetODBCVersionString(bool implementation=TRUE)

Returns the version of ODBC in string format, e.g. "02.50".

CHAPTER 5

200

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql.h header file.

This function can return the value "00.00" if the header version number is not defined
(for early versions of ODBC).

wxDatabase::InWaitForDataSource

bool InWaitForDataSource()

Not implemented.

wxDatabase::IsOpen

bool IsOpen()

Returns TRUE if a connection is open.

wxDatabase::Open

bool Open(const wxString& datasource, bool exclusive = FALSE, bool readOnly =
TRUE, const wxString& username = "ODBC", const wxString& password = "")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readOnly are not used.

wxDatabase::OnSetOptions

void OnSetOptions(wxRecordSet *recordSet)

Not implemented.

wxDatabase::OnWaitForDataSource

void OnWaitForDataSource(bool stillExecuting)

Not implemented.

wxDatabase::RollbackTrans

bool RollbackTrans()

Sends a rollback to the ODBC driver. Not implemented.

CHAPTER 5

201

wxDatabase::SetDataSource

void SetDataSource(const wxString& s)

Sets the name of the data source. Not implemented.

wxDatabase::SetLoginTimeout

void SetLoginTimeout(long seconds)

Sets the time to wait for an user login. Not implemented.

wxDatabase::SetPassword

void SetPassword(const wxString& s)

Sets the password of the current user. Not implemented.

wxDatabase::SetSynchronousMode

void SetSynchronousMode (bool synchronous)

Toggles between synchronous and asynchronous mode. Currently only synchronous
mode is supported, so this function has no effect.

wxDatabase::SetQueryTimeout

void SetQueryTimeout(long seconds)

Sets the time to wait for a response to a query. Not implemented.

wxDatabase::SetUsername

void SetUsername (const wxString& s)

Sets the name of the current user. Not implemented.

wwxxDDaattaaFFoorrmmaatt

CHAPTER 5

202

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

On the system level, a data format is usually just a number (CLIPFORMATunder
Windows or Atom under X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions

taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)

wxDF_BITMAP A bitmap (wxBitmap)

wxDF_METAFILE A metafile (wxMetafile, Windows only)

wxDF_FILENAME A list of filenames

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDataFormat::NativeFormat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!

Virtual functions to override

None

Derived from

None

See also

Clipboard and drag and drop overview (p. 1619), DnD sample (p. 1517), wxDataObject
(p. 204)

CHAPTER 5

203

wxDataFormat::wxDataFormat

 wxDataFormat(NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 204) or SetId (p. 204) later in this case)

wxPerl note: In wxPerl this function is named newNative.

wxDataFormat::wxDataFormat

 wxDataFormat(const wxChar *format)

Constructs a data format object for a custom format identified by its name format.

wxPerl note: In wxPerl this function is named newUser.

wxDataFormat::operator ==

bool operator ==(const wxDataFormat& format) const

Returns TRUE if the formats are equal.

wxDataFormat::operator !=

bool operator !=(const wxDataFormat& format) const

Returns TRUE if the formats are different.

wxDataFormat::GetId

wxString GetId() const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType

NativeFormat GetType() const

Returns the platform-specific number identifying the format.

CHAPTER 5

204

wxDataFormat::SetId

void SetId(const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType(NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

wwxxDDaattaaOObbjjeecctt

A wxDataObject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a 'smart' piece of
data unlike usual 'dumb' data containers such as memory buffers or files. Being 'smart'
here means that the data object itself should know what data formats it supports and
how to render itself in each of supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on 'input' and 'output', i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Direction
{
 Get = 0x01, // format is supported by GetDataHere()
 Set = 0x02 // format is supported by SetData()
};

which allows to distinguish between them. See wxDataFormat (p. 201) documentation
for more about formats.

Not surprizingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWindows has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 285) and wxDataObjectComposite
(p. 284). wxDataObjectSimple (p. 285) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
284) is the simplest way to implement wxDataObject which does support multiple
formats because it achievs this by simply holding several wxDataObjectSimple objects.

CHAPTER 5

205

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,

wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or
custom if you combine it with the previous solution).

4. Use wxDataObject directly This is the solution for maximal flexibility and
efficiency, but it is also is the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK data transfer mechanisms for the clipboard and drag and
drop, nor the OLE data transfer copy any data until another application actually requests
the data. This is in contrast to the 'feel' offered to the user of a program who would
normally think that the data resides in the clipboard after having pressed 'Copy' - in
reality it is only declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 460), wxTextDataObject (p. 1256) and wxBitmapDataObject (p.
77) which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 189)
for user-defined types. The format of user-defined data is given as mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows
is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 285) instead.

CHAPTER 5

206

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 207).

Derived from

None

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1619), DnD sample (p. 1517),
wxFileDataObject (p. 460), wxTextDataObject (p. 1256), wxBitmapDataObject (p. 77),
wxCustomDataObject (p. 189), wxDropTarget (p. 421), wxDropSource (p. 419),
wxTextDropTarget (p. 1264), wxFileDropTarget (p. 466)

wxDataObject::wxDataObject

 wxDataObject()

Constructor.

wxDataObject::~wxDataObject

 ~wxDataObject()

Destructor.

wxDataObject::GetAllFormats

virtual void GetAllFormats(wxDataFormat *formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.

wxPerl note: In wxPerl this method only takes the dir parameter. In scalar context it
returns the first format, in list context it returns a list containing all the supported formats.

CHAPTER 5

207

wxDataObject::GetDataHere

virtual bool GetDataHere(const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return TRUE on
success, FALSE on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize(const wxDataFormat& format) const

Returns the data size of the given format format.

wxDataObject::GetFormatCount

virtual size_t GetFormatCount(Direction dir = Get) const

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

virtual wxDataFormat GetPreferredFormat(Direction dir = Get) const

Returns the preferred format for either rendering the data (if dir is Get, its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData(const wxDataFormat& format, size_t len, const void *buf)

Set the data in the format format of the length len provided in the buffer buf.

Returns TRUE on success, FALSE on failure.

wwxxDDbb

A wxDb instance is a connection to an ODBC datasource which may be opened, closed,
and re-opened an unlimited number of times. A database connection allows function to
be performed directly on the datasource, as well as allowing access to any tables/views
defined in the datasource to which the user has sufficient privileges.

CHAPTER 5

208

Include files

<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in db.cpp/.h for use with the wxDb class.

 • wxDbColFor (p. 240)
 • wxDbColInf (p. 239)
 • wxDbTableInf (p. 283)
 • wxDbInf (p. 246)

Constants

NOTE: In a future release, all ODBC class constants will be prefaced with 'wx'.

 wxDB_PATH_MAX Maximum path length allowed to be passed to
 the ODBC driver to indicate where the data
 file(s) are located.

 DB_MAX_COLUMN_NAME_LEN Maximum supported length for the name of a
 column

 DB_MAX_ERROR_HISTORY Maximum number of error messages retained
in
 the queue before being overwritten by new
 errors.

 DB_MAX_ERROR_MSG_LEN Maximum supported length of an error
message
 returned by the ODBC classes

 DB_MAX_STATEMENT_LEN Maximum supported length for a complete SQL
 statement to be passed to the ODBC driver

 DB_MAX_TABLE_NAME_LEN Maximum supported length for the name of a
 table

 DB_MAX_WHERE_CLAUSE_LEN Maximum supported WHERE clause length that
 can be passed to the ODBC driver

 DB_TYPE_NAME_LEN Maximum length of the name of a column's
 data type

Enumerated types

Enumerated types

enum wxDbSqlLogState

sqlLogOFF, sqlLogON

CHAPTER 5

209

enum wxDBMS

These are the databases currently tested and working with the ODBC classes. A call to
wxDb::Dbms (p. 218) will return one of these enumerated values listed below.

 dbmsUNIDENTIFIED
 dbmsORACLE
 dbmsSYBASE_ASA // Adaptive Server Anywhere
 dbmsSYBASE_ASE // Adaptive Server Enterprise
 dbmsMS_SQL_SERVER
 dbmsMY_SQL
 dbmsPOSTGRES
 dbmsACCESS
 dbmsDBASE
 dbmsINFORMIX
 dbmsVIRTUOSO
 dbmsDB2
 dbmdINTERBASE

See the remarks in wxDb::Dbms (p. 218) for exceptions/issues with each of these
database engines.

Public member variables

SWORD wxDb::cbErrorMsg

This member variable is populated as a result of calling wxDb::GetNextError (p.
226). Contains the count of bytes in the wxDb::errorMsg string.

int wxDb::DB_STATUS

The last ODBC error/status that occurred on this data connection. Possible codes
are:

 DB_ERR_GENERAL_WARNING // SqlState = '01000'
 DB_ERR_DISCONNECT_ERROR // SqlState = '01002'
 DB_ERR_DATA_TRUNCATED // SqlState = '01004'
 DB_ERR_PRIV_NOT_REVOKED // SqlState = '01006'
 DB_ERR_INVALID_CONN_STR_ATTR // SqlState = '01S00'
 DB_ERR_ERROR_IN_ROW // SqlState = '01S01'
 DB_ERR_OPTION_VALUE_CHANGED // SqlState = '01S02'
 DB_ERR_NO_ROWS_UPD_OR_DEL // SqlState = '01S03'
 DB_ERR_MULTI_ROWS_UPD_OR_DEL // SqlState = '01S04'
 DB_ERR_WRONG_NO_OF_PARAMS // SqlState = '07001'
 DB_ERR_DATA_TYPE_ATTR_VIOL // SqlState = '07006'
 DB_ERR_UNABLE_TO_CONNECT // SqlState = '08001'
 DB_ERR_CONNECTION_IN_USE // SqlState = '08002'
 DB_ERR_CONNECTION_NOT_OPEN // SqlState = '08003'
 DB_ERR_REJECTED_CONNECTION // SqlState = '08004'
 DB_ERR_CONN_FAIL_IN_TRANS // SqlState = '08007'
 DB_ERR_COMM_LINK_FAILURE // SqlState = '08S01'
 DB_ERR_INSERT_VALUE_LIST_MISMATCH // SqlState = '21S01'
 DB_ERR_DERIVED_TABLE_MISMATCH // SqlState = '21S02'
 DB_ERR_STRING_RIGHT_TRUNC // SqlState = '22001'
 DB_ERR_NUMERIC_VALUE_OUT_OF_RNG // SqlState = '22003'
 DB_ERR_ERROR_IN_ASSIGNMENT // SqlState = '22005'

CHAPTER 5

210

 DB_ERR_DATETIME_FLD_OVERFLOW // SqlState = '22008'
 DB_ERR_DIVIDE_BY_ZERO // SqlState = '22012'
 DB_ERR_STR_DATA_LENGTH_MISMATCH // SqlState = '22026'
 DB_ERR_INTEGRITY_CONSTRAINT_VIOL // SqlState = '23000'
 DB_ERR_INVALID_CURSOR_STATE // SqlState = '24000'
 DB_ERR_INVALID_TRANS_STATE // SqlState = '25000'
 DB_ERR_INVALID_AUTH_SPEC // SqlState = '28000'
 DB_ERR_INVALID_CURSOR_NAME // SqlState = '34000'
 DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL // SqlState = '37000'
 DB_ERR_DUPLICATE_CURSOR_NAME // SqlState = '3C000'
 DB_ERR_SERIALIZATION_FAILURE // SqlState = '40001'
 DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL2 // SqlState = '42000'
 DB_ERR_OPERATION_ABORTED // SqlState = '70100'
 DB_ERR_UNSUPPORTED_FUNCTION // SqlState = 'IM001'
 DB_ERR_NO_DATA_SOURCE // SqlState = 'IM002'
 DB_ERR_DRIVER_LOAD_ERROR // SqlState = 'IM003'
 DB_ERR_SQLALLOCENV_FAILED // SqlState = 'IM004'
 DB_ERR_SQLALLOCCONNECT_FAILED // SqlState = 'IM005'
 DB_ERR_SQLSETCONNECTOPTION_FAILED // SqlState = 'IM006'
 DB_ERR_NO_DATA_SOURCE_DLG_PROHIB // SqlState = 'IM007'
 DB_ERR_DIALOG_FAILED // SqlState = 'IM008'
 DB_ERR_UNABLE_TO_LOAD_TRANSLATION_DLL // SqlState = 'IM009'
 DB_ERR_DATA_SOURCE_NAME_TOO_LONG // SqlState = 'IM010'
 DB_ERR_DRIVER_NAME_TOO_LONG // SqlState = 'IM011'
 DB_ERR_DRIVER_KEYWORD_SYNTAX_ERROR // SqlState = 'IM012'
 DB_ERR_TRACE_FILE_ERROR // SqlState = 'IM013'
 DB_ERR_TABLE_OR_VIEW_ALREADY_EXISTS // SqlState = 'S0001'
 DB_ERR_TABLE_NOT_FOUND // SqlState = 'S0002'
 DB_ERR_INDEX_ALREADY_EXISTS // SqlState = 'S0011'
 DB_ERR_INDEX_NOT_FOUND // SqlState = 'S0012'
 DB_ERR_COLUMN_ALREADY_EXISTS // SqlState = 'S0021'
 DB_ERR_COLUMN_NOT_FOUND // SqlState = 'S0022'
 DB_ERR_NO_DEFAULT_FOR_COLUMN // SqlState = 'S0023'
 DB_ERR_GENERAL_ERROR // SqlState = 'S1000'
 DB_ERR_MEMORY_ALLOCATION_FAILURE // SqlState = 'S1001'
 DB_ERR_INVALID_COLUMN_NUMBER // SqlState = 'S1002'
 DB_ERR_PROGRAM_TYPE_OUT_OF_RANGE // SqlState = 'S1003'
 DB_ERR_SQL_DATA_TYPE_OUT_OF_RANGE // SqlState = 'S1004'
 DB_ERR_OPERATION_CANCELLED // SqlState = 'S1008'
 DB_ERR_INVALID_ARGUMENT_VALUE // SqlState = 'S1009'
 DB_ERR_FUNCTION_SEQUENCE_ERROR // SqlState = 'S1010'
 DB_ERR_OPERATION_INVALID_AT_THIS_TIME // SqlState = 'S1011'
 DB_ERR_INVALID_TRANS_OPERATION_CODE // SqlState = 'S1012'
 DB_ERR_NO_CURSOR_NAME_AVAIL // SqlState = 'S1015'
 DB_ERR_INVALID_STR_OR_BUF_LEN // SqlState = 'S1090'
 DB_ERR_DESCRIPTOR_TYPE_OUT_OF_RANGE // SqlState = 'S1091'
 DB_ERR_OPTION_TYPE_OUT_OF_RANGE // SqlState = 'S1092'
 DB_ERR_INVALID_PARAM_NO // SqlState = 'S1093'
 DB_ERR_INVALID_SCALE_VALUE // SqlState = 'S1094'
 DB_ERR_FUNCTION_TYPE_OUT_OF_RANGE // SqlState = 'S1095'
 DB_ERR_INF_TYPE_OUT_OF_RANGE // SqlState = 'S1096'
 DB_ERR_COLUMN_TYPE_OUT_OF_RANGE // SqlState = 'S1097'
 DB_ERR_SCOPE_TYPE_OUT_OF_RANGE // SqlState = 'S1098'
 DB_ERR_NULLABLE_TYPE_OUT_OF_RANGE // SqlState = 'S1099'
 DB_ERR_UNIQUENESS_OPTION_TYPE_OUT_OF_RANGE // SqlState = 'S1100'
 DB_ERR_ACCURACY_OPTION_TYPE_OUT_OF_RANGE // SqlState = 'S1101'
 DB_ERR_DIRECTION_OPTION_OUT_OF_RANGE // SqlState = 'S1103'

CHAPTER 5

211

 DB_ERR_INVALID_PRECISION_VALUE // SqlState = 'S1104'
 DB_ERR_INVALID_PARAM_TYPE // SqlState = 'S1105'
 DB_ERR_FETCH_TYPE_OUT_OF_RANGE // SqlState = 'S1106'
 DB_ERR_ROW_VALUE_OUT_OF_RANGE // SqlState = 'S1107'
 DB_ERR_CONCURRENCY_OPTION_OUT_OF_RANGE // SqlState = 'S1108'
 DB_ERR_INVALID_CURSOR_POSITION // SqlState = 'S1109'
 DB_ERR_INVALID_DRIVER_COMPLETION // SqlState = 'S1110'
 DB_ERR_INVALID_BOOKMARK_VALUE // SqlState = 'S1111'
 DB_ERR_DRIVER_NOT_CAPABLE // SqlState = 'S1C00'
 DB_ERR_TIMEOUT_EXPIRED // SqlState = 'S1T00'

struct wxDb::dbInf

This structure is internal to the wxDb class and contains details of the ODBC
datasource that the current instance of the wxDb is connected to in its members.
When the datasource is opened, all of the information contained in the dbInf
structure is queried from the datasource. This information is used almost
exclusively within the ODBC class library. Where there may be a need for
particular portions of this information outside of the class library, member
functions (e.g. wxDbTable::IsCursorClosedOnCommit (p. 268)) have been added
for ease of use.

 wxChar dbmsName[40] - Name of the dbms product
 wxChar dbmsVer[64] - Version # of the dbms product
 wxChar driverName[40] - Driver name
 wxChar odbcVer[60] - ODBC version of the driver
 wxChar drvMgrOdbcVer[60] - ODBC version of the driver manager
 wxChar driverVer[60] - Driver version
 wxChar serverName[80] - Server Name, typically a connect string
 wxChar databaseName[128] - Database filename
 wxChar outerJoins[2] - Does datasource support outer joins
 wxChar procedureSupport[2] - Does datasource support stored
 procedures
 UWORD maxConnections - Maximum # of connections datasource
 supports
 UWORD maxStmts - Maximum # of HSTMTs per HDBC
 UWORD apiConfLvl - ODBC API conformance level
 UWORD cliConfLvl - Is datasource SAG compliant
 UWORD sqlConfLvl - SQL conformance level
 UWORD cursorCommitBehavior - How cursors are affected on db
commit
 UWORD cursorRollbackBehavior - How cursors are affected on db
 rollback
 UWORD supportNotNullClause - Does datasource support NOT NULL
 clause
 wxChar supportIEF[2] - Integrity Enhancement Facility (Ref.
 Integrity)
 UDWORD txnIsolation - Transaction isolation level supported
by
 driver
 UDWORD txnIsolationOptions - Transaction isolation level options
 available
 UDWORD fetchDirections - Fetch directions supported
 UDWORD lockTypes - Lock types supported in SQLSetPos
 UDWORD posOperations - Position operations supported in
 SQLSetPos

CHAPTER 5

212

 UDWORD posStmts - Position statements supported
 UDWORD scrollConcurrency - Scrollable cursor concurrency options
 supported
 UDWORD scrollOptions - Scrollable cursor options supported
 UDWORD staticSensitivity - Can additions/deletions/updates be
 detected
 UWORD txnCapable - Indicates if datasource supports
 transactions
 UDWORD loginTimeout - Number seconds to wait for a login
 request

wxChar wxDb::errorList[DB_MAX_ERROR_HISTORY][DB_MAX_ERROR_MSG_LEN]

The last n ODBC errors that have occurred on this database connection.

wxChar wxDb::errorMsg[SQL_MAX_MESSAGE_LENGTH]

This member variable is populated as a result of calling wxDb::GetNextError (p.
226). It contains the ODBC error message text.

SDWORD wxDb::nativeError

Set by wxDb::DispAllErrors, wxDb::GetNextError, and wxDb::DispNextError. It
contains the datasource-specific error code returned by the datasource to the
ODBC driver. Used for reporting ODBC errors.

wxChar wxDb::sqlState[20]

Set by wxDb::TranslateSqlState(). Indicates the error state after a failed ODBC
operation. Used for reporting ODBC errors.

Remarks

Default cursor scrolling is defined by wxODBC_FWD_ONLY_CURSORS in setup.h
when the wxWindows library is built. This behavior can be overridden when an instance
of a wxDb is created (see wxDb constructor (p. 214)). Default setting of this value
TRUE, as not all databases/drivers support both types of cursors.

See also

wxDbColFor (p. 240), wxDbColInf (p. 239), wxDbTable (p. 247), wxDbTableInf (p. 283),
wxDbInf (p. 246)

Associated non-class functions

The following functions are used in conjunction with the wxDb class.

void wxDbCloseConnections()

Remarks

Closes all cached connections that have been made through use of the
wxDbGetConnection (p. 212) function.

NOTE: These connections are closed regardless of whether they are in use or not. This

CHAPTER 5

213

function should only be called after the program has finished using the connections and
all wxDbTable instances that use any of the connections have been closed.

This function performs a wxDb::CommitTrans (p. 216) on the connection before closing
it to commit any changes that are still pending, as well as to avoid any function
sequence errors upon closing each connection.

int wxDbConnectionsInUse ()

Remarks

Returns a count of how many database connections are currently free (not being used)
that have been cached through use of the wxDbGetConnection (p. 212) function.

bool wxDbFreeConnection(wxDb *pDb)

Remarks

Searches the list of cached database connections connection for one matching the
passed in wxDb instance. If found, that cached connection is freed.

Freeing a connection means that it is marked as available (free) in the cache of
connections, so that a call to wxDbGetConnection (p. 212) is able to return a pointer to
the wxDb instance for use. Freeing a connection does NOT close the connection, it
only makes the connection available again.

wxDb * wxDbGetConnection(wxDbConnectInf *pDbConfig, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Remarks

This function is used to request a "new" wxDb instance for use by the program. The
wxDb instance returned is also opened (see wxDb::Open (p. 231)).

This function (along with wxDbFreeConnection() and wxDbCloseConnection()) maintain
a cached of wxDb instances for user/re-use by a program. When a program needs a
wxDb instance, it may call this function to obtain a wxDb instance. If there is a wxDb
instance in the cache that is currently unused that matches the connection requirements
specified in 'pDbConfig' then that cached connection is marked as no longer being free,
and a pointer to the wxDb instance is returned.

If there are no connections available in the cache that meet the requirements given in
'pDbConfig', then a new wxDb instance is created to connect to the datasource
specified in 'pDbConfig' using the userID and password given in 'pDbConfig'.

NOTE: The caching routine also uses the wxDb::Open (p. 231) connection datatype
copying code. If the call to wxDbGetConnection() requests a connection to a
datasource, and there is not one available in the cache, a new connection is created.
But when the connection is opened, instead of polling the datasource over again for its
datatypes, if a connection to the same datasource (using the same userID/password)
has already been done previously, the new connection skips querying the datasource

CHAPTER 5

214

for its datatypes, and uses the same datatypes determined previously by the other
connection(s) for that same datasource. This cuts down greatly on network traffic,
database load, and connection creation time.

When the program is done using a connection created through a call to
wxDbGetConnection(), the program should call wxDbFreeConnection() to release the
wxDb instance back to the cache. DO NOT DELETE THE wxDb INSTANCE! Deleting
the wxDb instance returned can cause a crash/memory corruption later in the program
when the cache is cleaned up.

When exiting the program, call wxDbCloseConnections() to close all the cached
connections created by calls to wxDbGetConnection().

const wxChar * wxDbLogExtendedErrorMsg(const wxChar *userText, wxDb *pDb,
wxChar *ErrFile, int ErrLine)

Writes a message to the wxLog window (stdout usually) when an internal error situation
occurs. This function only works in DEBUG builds

bool wxDbSqlLog(wxDbSqlLogState state, const wxString&filename =
SQL_LOG_FILENAME)

Remarks

This function sets the sql log state for all open wxDb objects

bool wxDbGetDataSource (HENV henv, wxChar *Dsn, SWORD DsnMax , wxChar
*DsDesc, SWORD DsDescMax, UWORD direction = SQL_FETCH_NEXT)

Remarks

This routine queries the ODBC driver manager for a list of available datasources.
Repeatedly call this function to obtain all the datasources available through the ODBC
driver manager on the current workstation.

 wxStringList strList;

 while (wxDbGetDataSource(DbConnectInf.GetHenv(), Dsn,
SQL_MAX_DSN_LENGTH+1, DsDesc, 255)) strList.Add(Dsn);

wxDb::wxDb

 wxDb()

Default constructor.

 wxDb(const HENV&aHenv, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

CHAPTER 5

215

Constructor, used to create an ODBC connection to a datasource.

Parameters

aHenv

Environment handle used for this connection. See wxDConnectInf::AllocHenv (p.
242)

FwdOnlyCursors

Will cursors created for use with this datasource connection only allow forward
scrolling cursors.

Remarks

This is the constructor for the wxDb class. The wxDb object must be created and
opened before any database activity can occur.

Example

 wxDbConnectInf ConnectInf;
 Set values for member variables of ConnectInf here

 wxDb sampleDB(ConnectInf.GetHenv());
 if (!sampleDB.Open(ConnectInf.GetDsn(), ConnectInf.GetUserID(),
 ConnectInf.GetPassword()))
 {
 // Error opening datasource
 }

See also

wxDbGetConnection (p. 212),

wxDb::Catalog

bool Catalog(wxChar * userID, const wxString&fileName =
SQL_CATALOG_FILENAME)

Allows a data "dictionary" of the datasource to be created, dumping pertinent
information about all data tables to which the user specified in userID has access.

Parameters

userID

Database user name to use in accessing the database. All tables to which this
user has rights will be evaluated in the catalog.

fileName

OPTIONAL. Name of the text file to create and write the DB catalog to. Default is

CHAPTER 5

216

SQL_CATALOG_FILENAME.

Return value

Returns TRUE if the catalog request was successful, or FALSE if there was some
reason that the catalog could not be generated.

Example

============== ============== ================ ========= =======
TABLE NAME COLUMN NAME DATA TYPE PRECISION LENGTH
============== ============== ================ ========= =======
EMPLOYEE RECID (0008)NUMBER 15 8
EMPLOYEE USER_ID (0012)VARCHAR2 13 13
EMPLOYEE FULL_NAME (0012)VARCHAR2 26 26
EMPLOYEE PASSWORD (0012)VARCHAR2 26 26
EMPLOYEE START_DATE (0011)DATE 19 16

wxDb::Close

void Close()

Closes the database connection.

Remarks

At the end of your program, when you have finished all of your database work, you must
close the ODBC connection to the datasource. There are actually four steps involved in
doing this as illustrated in the example.

Any wxDbTable instances which use this connection must be deleted before closing the
database connection.

Example

 // Commit any open transactions on the datasource
 sampleDB.CommitTrans();

 // Delete any remaining wxDbTable objects allocated with new
 delete parts;

 // Close the wxDb connection when finished with it
 sampleDB.Close();

wxDb::CommitTrans

bool CommitTrans()

Permanently "commits" changes (insertions/deletions/updates) to the database.

CHAPTER 5

217

Return value

Returns TRUE if the commit was successful, or FALSE if the commit failed.

Remarks

Transactions begin implicitly as soon as you make a change to the database with an
insert/update/delete, or any other direct SQL command that performs one of these
operations against the datasource. At any time thereafter, to save the changes to disk
permanently, "commit" them by calling this function.

Calling this member function commits ALL open transactions on this ODBC connection.
For example, if three different wxDbTable instances used the same connection to the
datasource, committing changes made on one of those wxDbTable instances commits
any pending transactions on all three wxDbTable instances.

Until a call to wxDb::CommitTrans() is made, no other user or cursor is able to see any
changes made to the row(s) that have been inserted/modified/deleted.

Special Note : Cursors

It is important to understand that different database/ODBC driver combinations handle
transactions differently. One thing in particular that you must pay attention to is cursors,
in regard to transactions. Cursors are what allow you to scroll through records forward
and backward and to manipulate records as you scroll through them. When you issue a
query, a cursor is created behind the scenes. The cursor keeps track of the query and
keeps track of the current record pointer. After you commit or rollback a transaction, the
cursor may be closed automatically. This is database dependent, and with some
databases this behavior can be controlled through management functions. This means
you would need to requery the datasource before you can perform any additional work
using this cursor. This is only necessary however if the datasource closes the cursor
after a commit or rollback. Use the wxDbTable::IsCursorClosedOnCommit (p. 268)
member function to determine the datasource's transaction behavior. Note, in many
situations it is very inefficient to assume the cursor is closed and always requery. This
could put a significant, unnecessary load on datasources that leave the cursors open
after a transaction.

wxDb::CreateView

bool CreateView(const wxString& viewName, const wxString& colList, const
wxString&pSqlStmt)

Creates a SQL VIEW of one or more tables in a single datasource. Note that this
function will only work against databases which support views (currently only Oracle as
of November 21 2000).

Parameters

viewName

CHAPTER 5

218

The name of the view. e.g. PARTS_V

colList

OPTIONAL Pass in a comma delimited list of column names if you wish to
explicitly name each column in the result set. If not desired, pass in an empty
string and the column names from the associated table(s) will be used.

pSqlStmt

Pointer to the select statement portion of the CREATE VIEW statement. Must be
a complete, valid SQL SELECT statement.

Remarks

A 'view' is a logical table that derives columns from one or more other tables or views.
Once the view is created, it can be queried exactly like any other table in the database.

NOTE: Views are not available with all datasources. Oracle is one example of a
datasource which does support views.

Example

 // Incomplete code sample
 db.CreateView("PARTS_SD1", "PN, PD, QTY",
 "SELECT PART_NO, PART_DESC, QTY_ON_HAND * 1.1 FROM
PARTS \
 WHERE STORAGE_DEVICE = 1");

 // PARTS_SD1 can now be queried just as if it were a data table.
 // e.g. SELECT PN, PD, QTY FROM PARTS_SD1

wxDb::Dbms

wxDBMS Dbms()

Remarks

The return value will be of the enumerated type wxDBMS. This enumerated type
contains a list of all the currently tested and supported databases.

Additional databases may work with these classes, but the databases returned by this
function have been tested and confirmed to work with these ODBC classes.

Possible values returned by this function can be viewed in the Enumerated types (p.
208) section of wxDb.

There are known issues with conformance to the ODBC standards with several
datasources supported by the wxWindows ODBC classes. Please see the overview for
specific details on which datasource have which issues.

Return value

CHAPTER 5

219

The return value will indicate which of the supported datasources is currently connected
to by this connection. In the event that the datasource is not recognized, a value of
'dbmsUNIDENTIFIED' is returned.

wxDb::DispAllErrors

bool DispAllErrors(HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
= SQL_NULL_HSTMT)

Used to log all database errors that occurred as a result of an executed database
command. This logging is automatic and also includes debug logging when compiled in
debug mode via wxLogDebug (p. 1490). If logging is turned on via
wxDb::SetSqlLogging (p. 233), then an entry is also logged to the defined log file.

Parameters

aHenv

Handle to the ODBC environment.

aHdbc

Handle to the ODBC connection. Pass this in if the ODBC function call that erred
required a hdbc or hstmt argument.

aHstmt

Handle to the ODBC statement being executed against. Pass this in if the ODBC
function call that erred out required a hstmt argument.

Remarks

This member function will log all of the ODBC error messages for the last ODBC
function call that was made. This function is normally used internally within the ODBC
class library, but can be used programmatically after calling ODBC functions directly
(i.e. SQLFreeEnv()).

Return value

The function always returns FALSE, so a call to this function can be made in the return
statement of a code block in the event of a failure to perform an action (see the example
below).

See also

wxDb::SetSqlLogging (p. 233), wxDbSqlLog

Example

 if (SQLExecDirect(hstmt, (UCHAR FAR *) pSqlStmt, SQL_NTS) !=
SQL_SUCCESS)
 // Display all ODBC errors for this stmt

CHAPTER 5

220

 return(db.DispAllErrors(db.henv, db.hdbc, hstmt));

wxDb::DispNextError

void DispNextError()

Remarks

This function is normally used internally within the ODBC class library. It could be used
programmatically after calling ODBC functions directly. This function works in
conjunction with wxDb::GetNextError (p. 226) when errors (or sometimes informational
messages) returned from ODBC need to be analyzed rather than simply displaying
them as an error. GetNextError() retrieves the next ODBC error from the ODBC error
queue. The wxDb member variables "sqlState", "nativeError" and "errorMsg" could then
be evaluated. To display the error retrieved, DispNextError() could then be called. The
combination of GetNextError() and DispNextError() can be used to iteratively step
through the errors returned from ODBC evaluating each one in context and displaying
the ones you choose.

Example

 // Drop the table before attempting to create it
 sprintf(sqlStmt, "DROP TABLE %s", tableName);
 // Execute the drop table statement
 if (SQLExecDirect(hstmt,(UCHAR FAR *)sqlStmt,SQL_NTS) !=
SQL_SUCCESS)
 {
 // Check for sqlState = S0002, "Table or view not found".
 // Ignore this error, bomb out on any other error.
 pDb->GetNextError(henv, hdbc, hstmt);
 if (wxStrcmp(pDb->sqlState, "S0002"))
 {
 pDb->DispNextError(); // Displayed error retrieved
 pDb->DispAllErrors(henv, hdbc, hstmt); // Display all other
errors, if any
 pDb->RollbackTrans(); // Rollback the transaction
 CloseCursor(); // Close the cursor
 return(FALSE); // Return Failure
 }
 }

wxDb::DropView

bool DropView(const wxString&viewName)

Drops the data table view named in 'viewName'.

Parameters

viewName

CHAPTER 5

221

Name of the view to be dropped.

Remarks

If the view does not exist, this function will return TRUE. Note that views are not
supported with all datasources.

wxDb::ExecSql

bool ExecSql(const wxString&pSqlStmt)

Allows a native SQL command to be executed directly against the datasource. In
addition to being able to run any standard SQL command, use of this function allows a
user to (potentially) utilize features specific to the datasource they are connected to that
may not be available through ODBC. The ODBC driver will pass the specified command
directly to the datasource.

Parameters

pSqlStmt

Pointer to the SQL statement to be executed.

Remarks

This member extends the wxDb class and allows you to build and execute ANY VALID
SQL statement against the datasource. This allows you to extend the class library by
being able to issue any SQL statement that the datasource is capable of processing.

See also

wxDb::GetData (p. 224), wxDb::GetNext (p. 226)

wxDb::FwdOnlyCursors

bool IsFwdOnlyCursors()

Older form (pre-2.3/2.4 of wxWindows) of the wxDb::IsFwdOnlyCursors (p. 228). This
method is provided for backward compatability only. The method
wxDb::IsFwdOnlyCursors (p. 228) should be used in place of this method.

wxDbInf * GetCatalog(const wxChar *userID)

wxDb::GetCatalog

wxDbInf * GetCatalog(const wxChar *userID)

Returns a wxDbInf (p. 246) pointer that points to the catalog (datasource) name,

CHAPTER 5

222

schema, number of tables accessible to the current user, and a wxDbTableInf pointer to
all data pertaining to all tables in the users catalog.

Parameters

userID

Owner/Schema of the table. Specify a userID when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. userID is evaluated as follows:

 userID == NULL ... UserID is ignored (DEFAULT)
 userID == "" ... UserID set equal to 'this->uid'
 userID != "" ... UserID set equal to 'userID'

Remarks

The returned catalog will only contain catalog entries for tables to which the user
specified in 'userID' has sufficient privileges. If no user is specified (NULL passed in), a
catalog pertaining to all tables in the datasource accessible to the connected user
(permissions apply) via this connection will be returned.

wxDb::GetColumnCount

int GetColumnCount(const wxString&tableName, const wxChar *userID)

Parameters

tableName

The table name you wish to obtain column information about.

userID

Name of the user that owns the table(s) (also referred to as schema). Required
for some datasources for situations where there may be multiple tables with the
same name in the datasource, but owned by different users. userID is evaluated
in the following manner:

 userID == NULL ... UserID is ignored (DEFAULT)
 userID == "" ... UserID set equal to 'this->uid'
 userID != "" ... UserID set equal to 'userID'

Return value

Returns a count of how many columns are in the specified table. If an error occurs
retrieving the number of columns, this function will return a -1.

wxDb::GetColumns

wxDbColInf * GetColumns(const wxString&tableName, UWORD *numCols , const
wxChar *userID=NULL)

CHAPTER 5

223

wxDbColInf * GetColumns(wxChar *tableName[], const wxChar *userID)

Parameters

tableName

The table name you wish to obtain column information about.
numCols

Pointer to a UWORD which will hold a count of the number of columns returned by
this function

tableName[]
An array of pointers to table names you wish to obtain column information about.
The last element of this array must be a NULL string.

userID
Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userID is evaluated in the
following manner:

 userID == NULL ... UserID is ignored (DEFAULT)
 userID == "" ... UserID set equal to 'this->uid'
 userID != "" ... UserID set equal to 'userID'

Return value

This function returns a pointer to an array of wxDbColInf (p. 239) structures, allowing
you to obtain information regarding the columns of the named table(s). If no columns
were found, or an error occurred, this pointer will be NULL.

THE CALLING FUNCTION IS RESPONSIBLE FOR DELETING THE wxDbColInf
MEMORY WHEN IT IS FINISHED WITH IT.

ALL column bindings associated with this wxDb instance are unbound by this function,
including those used by any wxDbTable instances that use this wxDb instance. This
function should use its own wxDb instance to avoid undesired unbinding of columns.

See also

wxDbColInf (p. 239)

Example

 wxChar *tableList[] = {"PARTS", 0};
 wxDbColInf *colInf = pDb->GetColumns(tableList);
 if (colInf)
 {
 // Use the column inf

 // Destroy the memory
 delete [] colInf;
 }

CHAPTER 5

224

wxDb::GetData

bool GetData(UWORD colNo, SWORD cType, PTR pData, SDWORD maxLen,
SDWORD FAR * cbReturned)

Used to retrieve result set data without binding column values to memory variables (i.e.
not using a wxDbTable instance to access table data).

Parameters

colNo

Ordinal number of the desired column in the result set to be returned.
cType

The C data type that is to be returned. See a partial list in
wxDbTable::SetColDefs (p. 275)

pData
Memory buffer which will hold the data returned by the call to this function.

maxLen
Maximum size of the buffer 'pData' in characters. NOTE: Not UNICODE safe. If
this is a numeric field, a value of 0 may be passed for this parameter, as the API
knows the size of the expected return value.

cbReturned
Pointer to the buffer containing the length of the actual data returned. If this value
comes back as SQL_NULL_DATA, then the wxDb::GetData (p. 224) call has
failed.

See also

wxDb::GetNext (p. 226), wxDb::ExecSql (p. 221)

Example

 SDWORD cb;
 ULONG reqQty;
 wxString sqlStmt;
 sqlStmt = "SELECT SUM(REQUIRED_QTY - PICKED_QTY) FROM ORDER_TABLE
WHERE \
 PART_RECID = 1450 AND REQUIRED_QTY > PICKED_QTY";

 // Perform the query
 if (!pDb->ExecSql(sqlStmt.c_str()))
 {
 // ERROR
 return(0);
 }

 // Request the first row of the result set
 if (!pDb->GetNext())
 {
 // ERROR
 return(0);
 }

CHAPTER 5

225

 // Read column #1 of the row returned by the call to ::GetNext()
 // and return the value in 'reqQty'
 if (!pDb->GetData(1, SQL_C_ULONG, &reqQty, 0, &cb))
 {
 // ERROR
 return(0);
 }

 // Check for a NULL result
 if (cb == SQL_NULL_DATA)
 return(0);

Remarks

When requesting multiple columns to be returned from the result set (for example, the
SQL query requested 3 columns be returned), the calls to this function must request the
columns in ordinal sequence (1,2,3 or 1,3 or 2,3).

wxDb::GetDatabaseName

const wxChar * GetDatabaseName ()

Returns the name of the database engine.

wxDb::GetDatasourceName

const wxString& GetDatasourceName ()

Returns the ODBC datasource name.

wxDb::GetHDBC

HDBC GetHDBC()

Returns the ODBC handle to the database connection.

wxDb::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDb::GetHSTMT

HSTMT GetHSTMT()

CHAPTER 5

226

Returns the ODBC statement handle associated with this database connection.

wxDb::GetKeyFields

int GetKeyFields(const wxString&tableName, wxDbColInf *colInf, UWORD nocols)

Used to determine which columns are members of primary or non-primary indexes on
the specified table. If a column is a member of a foreign key for some other table, that
information is detected also.

This function is primarily for use by the wxDb::GetColumns (p. 222) function, but may be
called if desired from the client application.

Parameters

tableName

Name of the table for which the columns will be evaluated as to their inclusion in
any indexes.

colInf
Data structure containing the column definitions (obtained with wxDb::GetColumns
(p. 222)). This function populates the PkCol, PkTableName, and FkTableName
members of the colInf structure.

nocols
Number of columns defined in the instance of colInf.

Return value

Currently always returns TRUE.

See also

wxDbColInf (p. 239), wxDb::GetColumns (p. 222)

wxDb::GetNext

bool GetNext()

Called after executing a query, this function requests the next row in the result set after
the current position of the cursor.

See also

wxDb::ExecSql (p. 221), wxDb::GetData (p. 224)

wxDb::GetNextError

CHAPTER 5

227

bool GetNextError(HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
= SQL_NULL_HSTMT)

Parameters

aHenv

A handle to the ODBC environment.
aHdbc

OPTIONAL. A handle to the ODBC connection. Pass this in if the ODBC function
call that erred out required a hdbc or hstmt argument.

AHstmt
OPTIONAL.A handle to the ODBC statement being executed against. Pass this in
if the ODBC function call that erred out requires a hstmt argument.

Example

 if (SQLExecDirect(hstmt, (UCHAR FAR *) pSqlStmt, SQL_NTS) !=
SQL_SUCCESS)
 {
 // Display all ODBC errors for this stmt
 return(db.DispAllErrors(db.henv, db.hdbc, hstmt));
 }

See also

wxDb::DispNextError (p. 220), wxDb::DispAllErrors (p. 219)

wxDb::GetPassword

const wxString& GetPassword()

Returns the password used to establish this connection to the datasource.

wxDb::GetTableCount

int GetTableCount()

Returns the number of wxDbTable() instances currently using this datasource
connection.

wxDb::GetUsername

const wxString& GetUsername ()

Returns the user name (uid) used to establish this connection to the datasource.

wxDb::Grant

CHAPTER 5

228

bool Grant(int privileges, const wxString&tableName, const wxString&userList =
"PUBLIC")

Use this member function to GRANT privileges to users for accessing tables in the
datasource.

Parameters

privileges

Use this argument to select which privileges you want to grant. Pass
DB_GRANT_ALL to grant all privileges. To grant individual privileges pass one or
more of the following OR'd together:

 DB_GRANT_SELECT = 1
 DB_GRANT_INSERT = 2
 DB_GRANT_UPDATE = 4
 DB_GRANT_DELETE = 8
 DB_GRANT_ALL = DB_GRANT_SELECT | DB_GRANT_INSERT |
 DB_GRANT_UPDATE | DB_GRANT_DELETE

tableName

The name of the table you wish to grant privileges on.
userList

OPTIONAL. A comma delimited list of users to grant the privileges to. If this
argument is not passed in, the privileges will be given to the general PUBLIC.

Remarks

Some databases require user names to be specified in all capital letters (i.e. Oracle).
This function does not automatically capitalize the user names passed in the comma-
separated list. This is the responsibility of the calling routine.

The currently logged in user must have sufficient grantor privileges for this function to
be able to successfully grant the indicated privileges.

Example

 db.Grant(DB_GRANT_SELECT | DB_GRANT_INSERT, "PARTS", "mary, sue");

wxDb::IsFwdOnlyCursors

bool IsFwdOnlyCursors()

This setting indicates whether this database connection was created as being capable of
using only forward scrolling cursors.

This function does NOT indicate if the ODBC driver or datasource supports backward
scrolling cursors. There is no standard way of detecting if the driver or datasource can
support backward scrolling cursors.

CHAPTER 5

229

If a wxDb instance was created as being capable of only forward scrolling cursors, then
even if the datasource and ODBC driver support backward scrolling cursors, tables
using this database connection would only be able to use forward scrolling cursors.

The default setting of whether a wxDb connection to a database allows forward-only or
also backward scrolling cursors is defined in setup.h by the value of
wxODBC_FWD_ONLY_CURSORS. This default setting can be overridden when the
wxDb connection is initially created (see wxDb constructor (p. 214) and
wxDbGetConnection (p. 212)).

Return value

Returns TRUE if this datasource connection is defined as using only forward scrolling
cursors, or FALSE if the connection is defined as being allowed to use backward
scrolling cursors and their associated functions (see note above).

Remarks

Added as of wxWindows v2.4 release, this function is a renamed version of
wxDb::FwdOnlyCursors() to match the normal wxWindows naming conventions for
class member functions.

This function is not available in versions prior to v2.4. You should use
wxDb::FwdOnlyCursors (p. 221) for wxWindows versions prior to 2.4.

See also

wxDb constructor (p. 214), wxDbGetConnection (p. 212)

wxDb::IsOpen

bool IsOpen()

Indicates whether the database connection to the datasource is currently opened.

Remarks

This function may indicate that the database connection is open, even if the call to
wxDb::Open (p. 231) may have failed to fully initialize the connection correctly. The
connection to the database is open and can be used via the direct SQL commands, if
this function returns TRUE. Other functions which depend on the wxDb::Open (p. 231)
to have completed correctly may not function as expected. The return result from
wxDb::Open (p. 231) is the only way to know if complete initialization of this wxDb
connection was successful or not. See wxDb::Open (p. 231) for more details on partial
failures to open a connection instance.

wxDb::LogError

CHAPTER 5

230

void LogError(const wxString&errMsg const wxString&SQLState="")

errMsg

Free-form text to display describing the error/text to be logged.
SQLState

OPTIONAL. Native SQL state error. Default is 0.

Remarks

Calling this function will enter a log message in the error list maintained for the database
connection. This log message is free form and can be anything the programmer wants
to enter in the error list.

If SQL logging is turned on, the call to this function will also log the text into the SQL log
file.

See also

wxDb::WriteSqlLog (p. 237)

wxDb::ModifyColumn

void ModifyColumn(const wxString&tableName const wxString&ColumnName int
dataType ULONG columnLength=0 const wxString&optionalParam="")

Used to change certain properties of a column such as the length, or whether a column
allows NULLs or not.

tableName

Name of the table that the column to be modified is in.
columnName

Name of the column to be modified. NOTE: Name of column cannot be changed
with this function.

dataType
Any one of DB_DATA_TYPE_VARCHAR, DB_DATA_TYPE_INTEGER,
DB_DATA_TYPE_FLOAT, DB_DATA_TYPE_DATE.

columnLength
New size of the column. Valid only for DB_DATA_TYPE_VARCHAR dataType
fields. Default is 0.

optionalParam
Default is "".

Remarks

Cannot be used to modify the precision of a numeric column, therefore 'columnLength'
is ignored unless the dataType is DB_DATA_TYPE_VARCHAR.

Some datasources do not allow certain properties of a column to be changed if any rows
currently have data stored in that column. Those datasources that do allow columns to

CHAPTER 5

231

be changed with data in the rows many handle truncation and/or expansion in different
ways. Please refer to the reference material for the datasource being used for
behavioral descriptions.

Example

 ok = pDb->ModifyColumn("CONTACTS", "ADDRESS2",
 DB_, colDefs[j].SzDataObj,
 wxT("NOT NULL"));

wxDb::Open

bool Open(const wxString&Dsn, const wxString&Uid, const wxString&AuthStr)

bool Open(wxDb *copyDb)

Opens a connection to the datasource, sets certain behaviors of the datasource to
confirm to the accepted behaviors (e.g. cursor position maintained on commits), and
queries the datasource for its representations of the basic datatypes to determine the
form in which the data going to/from columns in the data tables are to be handled.

The second form of this function, which accepts a "wxDb *" as a parameter, can be
used to avoid the overhead (execution time, database load, network traffic) which are
needed to determine the data types and representations of data that are necessary for
cross-datasource support by these classes.

Normally the first form of the wxDb::Open() function will open the connection and then
send a series of queries to the datasource asking it for its representation of data types,
and all the features it supports. If one connection to the datasource has already been
made previously, the information gathered when that connection was created can just
be copied to any new connections to the same datasource by passing a pointer to the
first connection in as a parameter to the wxDb::Open() function. Note that this new
connection created from the first connections information will use the same
Dsn/Uid/AuthStr as the first connection used.

Parameters

Dsn

datasource name. The name of the ODBC datasource as assigned when the
datasource is initially set up through the ODBC data source manager.

Uid
User ID. The name (ID) of the user you wish to connect as to the datasource. The
user name (ID) determines what objects you have access to in the datasource and
what datasource privileges you have. Privileges include being able to create new
objects, update objects, delete objects and so on. Users and privileges are
normally administered by the database administrator.

AuthStr
The password associated with the Uid.

copyDb
Already completely configured and opened datasource connection from which all

CHAPTER 5

232

Dsn, Uid, AuthStr, and data typing information is to be copied from for use by this
datasource connection.

Remarks

After a wxDb instance is created, it must then be opened. When opening a datasource,
there must be three pieces of information passed. The data source name, user name
(ID) and the password for the user. No database activity on the datasource can be
performed until the connection is opened. This is normally done at program startup and
the datasource remains open for the duration of the program/module run.

It is possible to have connections to multiple datasources open at the same time to
support distributed database connections by having separate instances of wxDb objects
that use either the same or different Dsn/Uid/AuthStr settings.

If this function returns a value of FALSE, it does not necessarily mean that the
connection to the datasource was not opened. It may mean that some portion of the
initialization of the connection failed (such as a datatype not being able to be
determined how the datasource represents it). To determine if the connection to the
database failed, use the wxDb::IsOpen (p. 229) function after receiving a FALSE result
back from this function to determine if the connection was opened or not. If this function
returns FALSE, but wxDb::IsOpen (p. 229) returns TRUE, then direct SQL commands
may be passed to the database connection and can be successfully executed, but use
of the datatypes (such as by a wxDbTable instance) that are normally determined
during open will not be possible.

The Dsn, Uid, and AuthStr string pointers that are passed in are copied. NOT the
strings themselves, only the pointers. The calling routine must maintain the memory for
these three strings for the life of the wxDb instance.

Example

 wxDb sampleDB(DbConnectInf.GetHenv());
 if (!sampleDB.Open("Oracle 7.1 HP/UX", "gtasker", "myPassword"))
 {
 if (sampleDb.IsOpen())
 {
 // Connection is open, but the initialization of
 // datatypes and parameter settings failed
 }
 else
 {
 // Error opening datasource
 }
 }

wxDb::RollbackTrans

bool RollbackTrans()

Function to "undo" changes made to the database. After an insert/update/delete, the

CHAPTER 5

233

operation may be "undone" by issuing this command any time before a
wxDb::CommitTrans (p. 216) is called on the database connection.

Remarks

Transactions begin implicitly as soon as you make a change to the database. The
transaction continues until either a commit or rollback is executed. Calling
wxDb::RollbackTrans() will result in ALL changes done using this database connection
that have not already been committed to be "undone" back to the last commit/rollback
that was successfully executed.

Calling this member function rolls back ALL open (uncommitted) transactions on this
ODBC connection, including all wxDbTable instances that use this connection.

See also

wxDb::CommitTrans (p. 216) for a special note on cursors

wxDb::SetDebugErrorMessages

void SetDebugErrorMessages(bool state)

state

Either TRUE (debug messages are logged) or FALSE (debug messages are not
logged).

Remarks

Turns on/off debug error messages from the ODBC class library. When this function is
passed TRUE, errors are reported to the user/logged automatically in a text or pop-up
dialog when an ODBC error occurs. When passed FALSE, errors are silently handled.

When compiled in release mode (FINAL=1), this setting has no affect.

See also

wxDb constructor (p. 214)

wxDb::SetSqlLogging

bool SetSqlLogging(wxDbSqlLogState state, const wxString&filename =
SQL_LOG_FILENAME, bool append = FALSE)

Parameters

state

Either sqlLogOFF or sqlLogON (see enum wxDbSqlLogState (p. 240)). Turns
logging of SQL commands sent to the datasource OFF or ON.

CHAPTER 5

234

filename
OPTIONAL. Name of the file to which the log text is to be written. Default is
SQL_LOG_FILENAME.

append
OPTIONAL. Whether the file is appended to or overwritten. Default is FALSE.

Remarks

When called with sqlLogON, all commands sent to the datasource engine are logged to
the file specified by filename. Logging is done by embedded wxDb::WriteSqlLog (p.
237) calls in the database member functions, or may be manually logged by adding calls
to wxDb::WriteSqlLog (p. 237) in your own source code.

When called with sqlLogOFF, the logging file is closed, and any calls to
wxDb::WriteSqlLog (p. 237) are ignored.

wxDb::SQLColumnName

const wxString SQLColumnName (const char * colName)

Returns the column name in a form ready for use in SQL statements. In most cases,
the column name is returned verbatim. But some databases (e.g. MS Access, SQL
Server, MSDE) allow for spaces in column names, which must be specially quoted. For
example, if the datasource allows spaces in the column name, the returned string will
have the correct enclosing marks around the name to allow it to be properly included in
a SQL statement for the DBMS that is currently connected to with this connection.

Parameters

colName

Native name of the column in the table that is to be evaluated to determine if any
special quoting marks needed to be added to it before including the column name
in a SQL statement

See also

wxDb::SQLTableName (p. 234)

wxDb::SQLTableName

const wxString SQLTableName (const char * tableName)

Returns the table name in a form ready for use in SQL statements. In most cases, the
table name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in table names, which must be specially quoted. For example,
if the datasource allows spaces in the table name, the returned string will have the
correct enclosing marks around the name to allow it to be properly included in a SQL
statement for the data source that is currently connected to with this connection.

CHAPTER 5

235

Parameters

tableName

Native name of the table that is to be evaluated to determine if any special quoting
marks needed to be added to it before including the table name in a SQL
statement

See also

wxDb::SQLColumnName (p. 234)

wxDb::TableExists

bool TableExists(const wxString&tableName, const wxChar *userID=NULL, const
wxString&path="")

Checks the ODBC datasource for the existence of a table. If a userID is specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName

Name of the table to check for the existence of.
userID

Owner of the table (also referred to as schema). Specify a userID when the
datasource you are connected to allows multiple unique tables with the same
name to be owned by different users. userIDis evaluated as follows:

 userID == NULL ... UserID is ignored (DEFAULT)
 userID == "" ... UserID set equal to 'this->uid'
 userID != "" ... UserID set equal to 'userID'

Remarks

tableName may refer to a table, view, alias or synonym.

This function does not indicate whether or not the user has privileges to query or perform
other functions on the table. Use the wxDb::TablePrivileges (p. 235) to determine if the
user has sufficient privileges or not.

See also

wxDb::TablePrivileges (p. 235)

wxDb::TablePrivileges

bool TablePrivileges(const wxString&tableName, const wxString&priv, const

CHAPTER 5

236

wxChar *userID=NULL, const wxChar *schema=NULL, const wxString&path="")

Checks the ODBC datasource for the existence of a table. If a userID is specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName

Name of the table on which to check privileges. tableName may refer to a table,
view, alias or synonym.

priv
The table privilege being evaluated. May be one of the following (or a datasource
specific privilege):

 SELECT : The connected user is permitted to retrieve data for
 one or more columns of the table.

 INSERT : The connected user is permitted to insert new rows
 containing data for one or more columns into the
 table.

 UPDATE : The connected user is permitted to update the data in
 one or more columns of the table.

 DELETE : The connected user is permitted to delete rows of
 data from the table.

 REFERENCES : Is the connected user permitted to refer to one or
 more columns of the table within a constraint (for
 example, a unique, referential, or table check
 constraint).

userID

OPTIONAL. User for which to determine if the privilege specified to be checked is
granted or not. Default is "". userID is evaluated as follows:

 userID == NULL ... NOT ALLOWED!
 userID == "" ... UserID set equal to 'this->uid'
 userID != "" ... UserID set equal to 'userID'

schema
OPTIONAL. Owner of the table. Specify a userID when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. Specifying the table owner makes determination of the users
privileges MUCH faster. Default is NULL. userID is evaluated as follows:

 schema == NULL ... Any owner (DEFAULT)
 schema == "" ... Owned by 'this->uid'
 schema != "" ... Owned by userID specified in 'schema'

CHAPTER 5

237

path
OPTIONAL. Path to the table. Default is "". Currently unused.

Remarks

The scope of privilege allowed to the connected user by a given table privilege is
datasource dependent.

For example, the privilege UPDATE might allow the connected user to update all
columns in a table on one datasource, but only those columns for which the grantor (the
user that granted the connected user) has the UPDATE privilege on another
datasource.

Looking up a user's privileges to a table can be time consuming depending on the
datasource and ODBC driver. This time can be minimized by passing a schema as a
parameter. With some datasources/drivers, the difference can be several seconds of
time difference.

wxDb::TranslateSqlState

int TranslateSqlState (const wxString&SQLState)

Converts an ODBC sqlstate to an internal error code.

Parameters

SQLState

State to be converted.

Return value

Returns the internal class DB_ERR code. See wxDb::DB_STATUS (p. 207) definition.

wxDb::WriteSqlLog

bool WriteSqlLog(const wxString&logMsg)

Parameters

logMsg

Free form string to be written to the log file.

Remarks

Very useful debugging tool that may be turned on/off during run time (see (see
wxDb::SetSqlLogging (p. 233) for details on turning logging on/off). The passed in
string logMsg will be written to a log file if SQL logging is turned on.

CHAPTER 5

238

Return value

If SQL logging is off when a call to WriteSqlLog() is made, or there is a failure to write
the log message to the log file, the function returns FALSE without performing the
requested log, otherwise TRUE is returned.

See also

wxDb::SetSqlLogging (p. 233)

wwxxDDbbCCoollDDaattaaPPttrr

Pointer to dynamic column definitions for use with a wxDbTable instance. Currently
there are no member functions for this class.

 void *PtrDataObj;
 int SzDataObj;
 SWORD SqlCtype;

wwxxDDbbCCoollDDeeff

This class is used to hold information about the columns bound to an instance of a
wxDbTable object.

Each instance of this class describes one column in the wxDbTable object. When
calling the wxDb constructor (p. 214), a parameter passed in indicates the number of
columns that will be defined for the wxDbTable object. The constructor uses this
information to allocate adequate memory for all of the column descriptions in your
wxDbTable object. Private member wxDbTable::colDefs is a pointer to this chunk of
memory maintained by the wxDbTable class (and can be retrieved using the
wxDbTable::GetColDefs (p. 261) function). To access the nth column definition of your
wxDbTable object, just reference wxDbColDefs element [n - 1].

Typically, wxDbTable::SetColDefs (p. 275) is used to populate an array of these data
structures for the wxDbTable instance.

Currently there are no accessor functions for this class, so all members are public.

 wxChar ColName[DB_MAX_COLUMN_NAME_LEN+1]; // Column Name
 int DbDataType; - Logical Data Type;
 e.g. DB_DATA_TYPE_INTEGER
 SWORD SqlCtype; - C data type; e.g. SQL_C_LONG
 void *PtrDataObj; - Address of the data object
 int SzDataObj; - Size, in bytes, of the data object
 bool KeyField; - Is column part of the PRIMARY KEY for the

CHAPTER 5

239

 table? -- Date fields should NOT be
 KeyFields
 bool Updateable; - Column is updateable?
 bool InsertAllowed; - Column included in INSERT statements?
 bool DerivedCol; - Column is a derived value?
 SDWORD CbValue; - !!!Internal use only!!!
 bool Null; - NOT FULLY IMPLEMENTED
 Allows NULL values in Inserts and Updates

See also

wxDbTable::GetColDefs (p. 261), wxDb constructor (p. 214)

wxDbColDef::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wwxxDDbbCCoollIInnff

Used with the wxDb::GetColumns (p. 222) functions for obtaining all retrievable
information about a column's definition.

 wxChar catalog[128+1];
 wxChar schema[128+1];
 wxChar tableName[DB_MAX_TABLE_NAME_LEN+1];
 wxChar colName[DB_MAX_COLUMN_NAME_LEN+1];
 SWORD sqlDataType;
 wxChar typeName[128+1];
 SWORD columnSize;
 SWORD bufferLength;
 short decimalDigits;
 short numPrecRadix;
 short nullable;
 wxChar remarks[254+1];
 int dbDataType; // conversion of the 'sqlDataType'
 // to the generic data type used by
 // these classes
 int PkCol; // Primary key column
 0 = No
 1 = First Key
 2 = Second Key, etc...
 wxChar PkTableName[DB_MAX_TABLE_NAME_LEN+1];
 // Tables that use this PKey as a FKey
 int FkCol; // Foreign key column
 0 = No
 1 = First Key
 2 = Second Key, etc...
 wxChar FkTableName[DB_MAX_TABLE_NAME_LEN+1];
 // Foreign key table name

CHAPTER 5

240

 wxDbColFor *pColFor; // How should this column be formatted

The constructor for this class initializes all the values to zero, "", or NULL.

The destructor for this class takes care of deleting the pColFor member if it is non-
NULL.

wxDbColInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wwxxDDbbCCoollFFoorr

Beginning support for handling international formatting specifically on dates and floats.

 wxString s_Field; // Formated String for Output
 wxString s_Format[7]; // Formated Objects - TIMESTAMP has
 the biggest (7)
 wxString s_Amount[7]; // Formated Objects - amount of
 things that can be formatted
 int i_Amount[7]; // Formated Objects -
 TT MM YYYY HH MM SS m
 int i_Nation; // 0 = timestamp
 1 = EU
 2 = UK
 3 = International
 4 = US
 int i_dbDataType; // conversion of the 'sqlDataType'
 to the generic data type used by
 these classes
 SWORD i_sqlDataType;

The constructor for this class initializes all the values to zero or NULL.

The destructor does nothing at this time.

Only one function is provided with this class currently:

wxDbColFor::Format

int Format(int Nation, int dbDataType, SWORD sqlDataType, short columnSize, short
decimalDigits)

Work in progress, and should be inter-related with wxLocale eventually.

CHAPTER 5

241

wxDbColFor::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wwxxDDbbCCoonnnneeccttIInnff

This class is used for holding the data necessary for connecting to the ODBC
datasource. That information includes: SQL environment handle, datasource name,
user ID, password and default directory path (used with dBase). Other optional fields
held in this class are and file type, both for future functions planned to be added for
creating/manipulating datasource definitions.

 wxDbConnectInf()

Default constructor.

 wxDb(HENV henv, const wxString&dsn, const wxString&userID="", const
wxString&password, const wxString&defaultDir="", const wxString&description="",
const wxString&fileType="")

Constructor which allows initial settings of all the classes member variables.

See the special not below on the henv parameter for forcing this constructor to create a
SQL environment handle automatically, rather than needing to pass one in to the
function.

Parameters

henv

Environment handle used for this connection. See wxDConnectInf::AllocHenv (p.
242) for how to create an SQL environment handle. NOTE: Passing in a NULL for
this parameter will inform the constructor that it should create its own SQL
environment handle. If NULL is passed for this parameter, the constructor will call
wxDConnectInf::AllocHenv (p. 242) internally. A flag is set internally also to
indicate that the HENV was created by the constructor so that when the default
class destructor is called, the destructor will call wxDConnectInf::FreeHenv (p.
243) to free the environment handle automatically.

dsn
Name of the datasource to be used in creating wxDb instances for creating
connection(s) to a datasource.

userID
OPTIONAL Many datasources allow (or even require) use of a username to
determine privileges that connecting user is allowed to have when accessing the
datasource or the data tables. Default is "".

password
OPTIONAL Password to be associated with the user ID specified in 'userID'.

CHAPTER 5

242

Default is "".
defaultDir

OPTIONAL Used for datasources which require the path to where the data file is
stored to be specified. dBase is one example of the type of datasource which
requires this information. Default is "".

description
OPTIONAL FUTURE USE Default is "".

fileType
OPTIONAL FUTURE USE Default is "".

Remarks

It is strongly recommended that programs use the longer form of the constructor and
allow the constructor to create the SQL environment handle automatically, and manage
the destruction of the handle.

Example

 wxDbConnectInf *DbConnectInf;

 DbConnectInf = new wxDbConnectInf(0,"MY_DSN", "MY_USER",
"MY_PASSWORD");

the rest of the program

 delete DbConnectInf;

See also

wxDConnectInf::AllocHenv (p. 242), wxDConnectInf::FreeHenv (p. 243)

wxDbConnectInf::~wxDbConnectInf

 ~wxDbConnectInf()

Handles the default destruction of the instance of the class. If the long form of the
wxDConnectInf (p. 241) was used, then this destructor also takes care of calling
wxDConnectInf::FreeHenv (p. 243) to free the SQL environment handle.

wxDbConnectInf::AllocHenv

bool AllocHenv()

Allocates a SQL environment handle that will be used to interface with an ODBC
datasource.

Remarks

This function can be automatically called by the long from of the wxDbConnectInf (p.

CHAPTER 5

243

241) constructor.

wxDbConnectInf::FreeHenv

void FreeHenv ()

Frees the SQL environment handle being managed by the instance of this class.

Remarks

If the SQL environment handle was created using the long form of the wxDbConnectInf
(p. 241) constructor, then the flag indicating that the HENV should be destroyed when
the classes destructor is called is reset to be FALSE, so that any future handles created
using the wxDbConnectInf::AllocHenv (p. 242) function must be manually released with
a call to this function.

wxDbConnectInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectInf::GetAuthStr

const wxChar * GetAuthStr()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectInf::GetPassword (p. 244)

wxDbConnectInf::GetDefaultDir

const wxChar * GetDefaultDir()

Accessor function to return the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectInf::GetDescription

const wxChar * GetDescription()

Accessor function to return the description assigned for this class instance.

CHAPTER 5

244

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetDsn

const wxChar * GetDsn()

Accessor function to return the datasource name assigned for this class instance.

wxDbConnectInf::GetFileType

const wxChar * GetFileType()

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetHenv

const HENV GetHenv ()

Accessor function to return the SQL environment handle being managed by this class
instance.

wxDbConnectInf::GetPassword

const wxChar * GetPassword()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectInf::GetAuthStr (p. 243)

wxDbConnectInf::GetUid

const wxChar * GetUid()

Accessor function to return the user ID assigned for this class instance.

wxDbConnectInf::GetUserID

const wxChar * GetUserID()

CHAPTER 5

245

Accessor function to return the user ID assigned for this class instance.

wxDbConnectInf::SetAuthStr

 SetAuthStr(const wxString&authstr)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectInf::SetPassword (p. 246)

wxDbConnectInf::SetDefaultDir

 SetDefaultDir(const wxString&defDir)

Accessor function to assign the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectInf::SetDescription

 SetDescription(const wxString&desc)

Accessor function to assign the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectInf::SetDsn

 SetDsn(const wxString&dsn)

Accessor function to assign the datasource name for this class instance.

wxDbConnectInf::SetFileType

 SetFileType(const wxString&)

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::SetHenv

CHAPTER 5

246

void SetHenv (const HENV henv)

Accessor function to set the SQL environment handle for this class instance.

wxDbConnectInf::SetPassword

 SetPassword(const wxString&password)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectInf::SetAuthStr (p. 245)

wxDbConnectInf::SetUid

 SetUid(const wxString&uid)

Accessor function to set the user ID for this class instance.

wxDbConnectInf::SetUserID

 SetUserID(const wxString&userID)

Accessor function to assign the user ID for this class instance.

wwxxDDbbIIddxxDDeeff

Used in creation of non-primary indexes. Currently there are no member functions for
this class.

 wxChar ColName[DB_MAX_COLUMN_NAME_LEN+1]
 // Name of column
 bool Ascending // Is index maintained in
 ASCENDING sequence?

There are no constructors/destructors as of this time, and no member functions.

wwxxDDbbIInnff

Contains information regarding the database connection (datasource name, number of

CHAPTER 5

247

tables, etc). A pointer to a wxDbTableInf is included in this class so a program can
create a wxDbTableInf array instance to maintain all information about all tables in the
datasource to have all the datasource's information in one memory structure.

Primarily, this class is used internally by the wxWindows ODBC classes.

 wxChar catalog[128+1];
 wxChar schema[128+1]; // typically means owner of table(s)
 int numTables; // How many tables does this
 datasource have
 wxDbTableInf *pTableInf; // Equals a new
 wxDbTableInf[numTables];

The constructor for this class initializes all the values to zero, "", or NULL.

The destructor for this class takes care of deleting the pTableInf member if it is non-
NULL.

wxDbInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wwxxDDbbTTaabbllee

A wxDbTable instance provides re-usable access to rows of data in a table contained
within the associated ODBC datasource

Include files

<wx/dbtable.h>
<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in dbtable.cpp/.h for use with the
wxDbTable class.

 • wxDbColDef (p. 238)
 • wxDbColDataPtr (p. 238)
 • wxDbIdxDef (p. 246)

Constants

 wxDB_DEFAULT_CURSOR Primary cursor normally used for cursor based
 operations.

CHAPTER 5

248

 wxDB_QUERY_ONLY Used to indicate whether a table that is
opened
 is for query only, or if insert/update/deletes
 will be performed on the table. Less overhead
 (cursors and memory) are allocated for query
 only tables, plus read access times are faster
 with some datasources.

 wxDB_ROWID_LEN [Oracle only] - Used when CanUpdateByRowID()
 is true. Optimizes updates so they are faster
 by updating on the Oracle-specific ROWID
column
 rather than some other index.

 wxDB_DISABLE_VIEW Use to indicate when a database view should
not
 be if a table is normally set up to use a
view.
 [Currently unsupported.]

wxDbTable::wxDbTable

 wxDbTable(wxDb *pwxDb, const wxString&tblName, const UWORD numColumns,
const wxString&qryTblName = "", bool qryOnly = !wxDB_QUERY_ONLY, const
wxString&tblPath = "")

Default constructor.

Parameters

pwxDb

Pointer to the wxDb instance to be used by this wxDbTable instance.
tblName

The name of the table in the RDBMS.
numColumns

The number of columns in the table. (Do NOT include the ROWID column in the
count if using Oracle).

qryTblName
OPTIONAL. The name of the table or view to base your queries on. This
argument allows you to specify a table/view other than the base table for this
object to base your queries on. This allows you to query on a view for example,
but all of the INSERT, UPDATE and DELETES will still be performed on the base
table for this wxDbTable object. Basing your queries on a view can provide a
substantial performance increase in cases where your queries involve many tables
with multiple joins. Default is "".

qryOnly
OPTIONAL. Indicates whether the table will be accessible for query purposes
only, or should the table create the necessary cursors to be able to insert, update,

CHAPTER 5

249

and delete data from the table. Default is !wxDB_QUERY_ONLY.
tblPath

OPTIONAL. Some datasources (such as dBase) require a path to where the table
is stored on the system. Default is "".

wxDbTable::wxDbTable

virtual ~wxDbTable ()

Virtual default destructor.

wxDbTable::BuildDeleteStmt

void BuildDeleteStmt(wxString&pSqlStmt, int typeOfDel, const
wxString&pWhereClause="")

Constructs the full SQL statement that can be used to delete all rows matching the
criteria in the pWhereClause.

Parameters

pSqlStmt

Pointer to buffer for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfDel
The type of delete statement being performed. Can be one of three values:
DB_DEL_KEYFIELDS, DB_DEL_WHERE or DB_DEL_MATCHING

pWhereClause
OPTIONAL. If the typeOfDel is DB_DEL_WHERE, then you must also pass in a
SQL WHERE clause in this argument. Default is "".

Remarks

This member function constructs a SQL DELETE statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

wxDbTable::BuildSelectStmt

void BuildSelectStmt(wxString&pSqlStmt, int typeOfSelect, bool distinct)

Constructs the full SQL statement that can be used to select all rows matching the
criteria in the pWhereClause. This function is called internally in the wxDbTable class
whenever the function wxDbTable::Query (p. 270) is called.

CHAPTER 5

250

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 275) statements are
included in the list of columns returned by the SQL statement created by a call to this
function.

Parameters

pSqlStmt

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfSelect
The type of select statement being performed. Can be one of four values:
DB_SELECT_KEYFIELDS, DB_SELECT_WHERE, DB_SELECT_MATCHING or
DB_SELECT_STATEMENT.

distinct
Whether to select distinct records only.

Remarks

This member function constructs a SQL SELECT statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

wxDbTable::BuildUpdateStmt

void BuildUpdateStmt(wxString&pSqlStmt, int typeOfUpd, const
wxString&pWhereClause="")

Constructs the full SQL statement that can be used to update all rows matching the
criteria in the pWhereClause.

If typeOfUpd is DB_UPD_KEYFIELDS, then the current values in the bound columns are
used to determine which row(s) in the table are to be updated. The exception to this is
when a datasource supports ROW IDs (Oracle). The ROW ID column is used for
efficiency purposes when available.

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 275) statements are
included in the list of columns updated by the SQL statement created by a call to this
function. Any column definitions that were defined as being non-updateable will be
excluded from the SQL UPDATE statement created by this function.

Parameters

pSqlStmt

Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

CHAPTER 5

251

typeOfUpd
The type of update statement being performed. Can be one of two values:
DB_UPD_KEYFIELDS or DB_UPD_WHERE.

pWhereClause
OPTIONAL. If the typeOfUpd is DB_UPD_WHERE, then you must also pass in a
SQL WHERE clause in this argument. Default is "".

Remarks

This member function allows you to see what the SQL UPDATE statement looks like that
the ODBC class library builds. This can be used for debugging purposes if you are
having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

wxDbTable::BuildWhereStmt

void BuildSelectStmt(wxString&pWhereClause, int typeOfWhere, const
wxString&qualTableName="", bool useLikeComparison=FALSE)

Constructs the portion of a SQL statement which would follow the word 'WHERE' in a
SQL statement to be passed to the datasource. The returned string does NOT include
the word 'WHERE'.

Parameters

pWhereClause

Pointer to storage for the SQL statement retrieved. To be sure you have
adequate space allocated for the SQL statement, allocate
DB_MAX_STATEMENT_LEN bytes.

typeOfWhere
The type of where clause to generate. Can be one of two values:
DB_WHERE_KEYFIELDS or DB_WHERE_MATCHING.

qualTableName
OPTIONAL. Prepended to all base table column names. For use when a FROM
clause has been specified with the wxDbTable::SetFromClause (p. 278), to clarify
which table a column name reference belongs to. Default is "".

useLikeComparison
OPTIONAL. Should the constructed WHERE clause utilize the LIKE comparison
operator. If FALSE, then the '=' operator is used. Default is FALSE.

Remarks

This member function allows you to see what the SQL WHERE clause looks like that
the ODBC class library builds. This can be used for debugging purposes if you are
having problems executing your own SQL statements.

If using 'typeOfWhere' set to DB_WHERE_MATCHING, any bound columns currently
containing a NULL value are not included in the WHERE clause's list of columns to use

CHAPTER 5

252

in the comparison.

wxDbTable::CanSelectForUpdate

bool CanSelectForUpdate ()

Use this function to determine if the datasource supports SELECT ... FOR UPDATE.
When the keywords "FOR UPDATE" are included as part of your SQL SELECT
statement, all records retrieved (not just queried, but actually retrieved using
wxDbTable::GetNext (p. 264), etc) from the result set are locked.

Remarks

Not all datasources support the "FOR UPDATE" clause, so you must use this member
function to determine if the datasource currently connected to supports this behavior or
not before trying to select using "FOR UPDATE".

If the wxDbTable instance was created with the parameter wxDB_QUERY_ONLY, then
this function will return FALSE. For all known databases which do not support the FOR
UPDATE clause, this function will return FALSE also.

wxDbTable::CanUpdateByROWID

bool CanUpdateByROWID()

CURRENTLY ONLY POSSIBLE IF USING ORACLE.

--- CURRENTLY DISABLED FOR *ALL* DATASOURCES --- NOV 1 2000 - gt

Every Oracle table has a hidden column named ROWID. This is a pointer to the
physical location of the record in the datasource and allows for very fast updates and
deletes. The key is to retrieve this ROWID during your query so it is available during an
update or delete operation.

Use of the ROWID feature is always handled by the class library except in the case of
wxDbTable::QueryBySqlStmt (p. 271). Since you are passing in the SQL SELECT
statement, it is up to you to include the ROWID column in your query. If you do not, the
application will still work, but may not be as optimized. The ROWID is always the last
column in the column list in your SQL SELECT statement. The ROWID is not a column
in the normal sense and should not be considered part of the column definitions for the
wxDbTable object.

Remarks

The decision to include the ROWID in your SQL SELECT statement must be deferred
until runtime since it depends on whether you are connected to an Oracle datasource or
not.

CHAPTER 5

253

Example

 // Incomplete code sample
 wxDbTable parts;

 if (parts.CanUpdByROWID())
 {
 // Note that the ROWID column must always be the last column
selected
 sqlStmt = "SELECT PART_NO, PART_DESC, ROWID" FROM PARTS";
 }
 else
 sqlStmt = "SELECT PART_NO, PART_DESC FROM PARTS";

wxDbTable::ClearMemberVar

void ClearMemberVar(UWORD colNo, bool setToNull=FALSE)

Same as wxDbTable::ClearMemberVars (p. 253) except that this function clears only the
specified column of its values, and optionally sets the column to be a NULL column.

colNo

Column number that is to be cleared. This number (between 0 and (noCols-1)) is
the index of the column definition created using the wxDbTable::SetColDefs (p.
275) function.

setToNull
OPTIONAL. Indicates whether the column should be flagged as being a NULL
value stored in the bound memory variable. If TRUE, then any value stored in the
bound member variable is cleared. Default is FALSE.

wxDbTable::ClearMemberVars

void ClearMemberVars(bool setToNull=FALSE)

Initializes all bound columns of the wxDbTable instance to zero. In the case of a string,
zero is copied to the first byte of the string.

setToNull

OPTIONAL. Indicates whether all columns should be flagged as having a NULL
value stored in the bound memory variable. If TRUE, then any value stored in the
bound member variable is cleared. Default is FALSE.

Remarks

This is useful before calling functions such as wxDbTable::QueryMatching (p. 273) or
wxDbTable::DeleteMatching (p. 258) since these functions build their WHERE clauses
from non-zero columns. To call either wxDbTable::QueryMatching (p. 273) or
wxDbTable::DeleteMatching (p. 258) use this sequence:

1) ClearMemberVars()

CHAPTER 5

254

2) Assign columns values you wish to match on
3) Call wxDbTable::QueryMatching() or wxDbTable::DeleteMatching()

wxDbTable::CloseCursor

bool CloseCursor(HSTMTcursor)

Closes the specified cursor associated with the wxDbTable object.

Parameters

cursor

The cursor to be closed.

Remarks

Typically handled internally by the ODBC class library, but may be used by the
programmer if desired.

DO NOT CLOSE THE wxDB_DEFAULT_CURSOR!

wxDbTable::Count

ULONG Count(const wxString&args="*")

Returns the number of records which would be in the result set using the current query
parameters specified in the WHERE and FROM clauses.

Parameters

args

OPTIONAL. This argument allows the use of the DISTINCT keyword against a
column name to cause the returned count to only indicate the number of rows in
the result set that have a unique value in the specified column. An example is
shown below. Default is "*", meaning a count of the total number of rows
matching is returned, regardless of uniqueness.

Remarks

This function can be called before or after an actual query to obtain the count of records
in the result set. Count() uses its own cursor, so result set cursor positioning is not
affected by calls to Count().

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) ARE used by this function.

Example

 USERS TABLE

CHAPTER 5

255

 FIRST_NAME LAST_NAME
 ----------- ----------
 John Doe
 Richard Smith
 Michael Jones
 John Carpenter

 // Incomplete code sample
 wxDbTable users;

 users.SetWhereClause("");

 // This Count() will return 4, as there are four users listed above
 // that match the query parameters
 totalNumberOfUsers = users.Count();

 // This Count() will return 3, as there are only 3 unique first
names
 // in the table above - John, Richard, Michael.
 totalNumberOfUniqueFirstNames = users.Count("DISTINCT FIRST_NAME");

wxDbTable::CreateIndex

bool CreateIndex(const wxString&idxName, bool unique, UWORD noIdxCols,
wxDbIdxDef *pIdxDefs, bool attemptDrop=TRUE)

This member function allows you to create secondary (non primary) indexes on your
tables. You first create your table, normally specifying a primary index, and then create
any secondary indexes on the table. Indexes in relational model are not required. You
do not need indexes to look up records in a table or to join two tables together. In the
relational model, indexes, if available, provide a quicker means to look up data in a
table. To enjoy the performance benefits of indexes, the indexes must be defined on
the appropriate columns and your SQL code must be written in such a way as to take
advantage of those indexes.

Parameters

idxName

Name of the Index. Name must be unique within the table space of the
datasource.

unique
Indicates if this index is unique.

noIdxCols
Number of columns in the index.

pIdxDefs
A pointer to an array wxDbIdxDef structures.

attemptDrop
OPTIONAL. Indicates if the function should try to execute a
wxDbTable::DropIndex (p. 260) on the index name provided before trying to
create the index name. Default is TRUE.

CHAPTER 5

256

Remarks

The first parameter, index name, must be unique and should be given a meaningful
name. Common practice is to include the table name as a prefix in the index name (e.g.
For table PARTS, you might want to call your index PARTS_IDX1). This will allow you
to easily view all of the indexes defined for a given table grouped together
alphabetically.

The second parameter indicates if the index is unique or not. Uniqueness is enforced at
the RDBMS level preventing rows which would have duplicate indexes from being
inserted into the table when violating a unique index's uniqueness.

In the third parameter, specify how many columns are in your index. This number must
match the number of columns defined in the 'pIdxDefs' parameter.

The fourth parameter specifies which columns make up the index using the wxDbIdxDef
structure. For each column in the index, you must specify two things, the column name
and the sort order (ascending / descending). See the example below to see how to
build and pass in the wxDbIdxDef structure.

The fifth parameter is provided to handle the differences in datasources as to whether
they will automatically overwrite existing indexes with the same name or not. Some
datasources require that the existing index must be dropped first, so this is the default
behavior.

Some datasources (MySQL, and possibly others) require columns which are to be part
of an index to be defined as NOT NULL. When this function is called, if a column is not
defined to be NOT NULL, a call to this function will modify the column definition to
change any columns included in the index to be NOT NULL. In this situation, if a NULL
value already exists in one of the columns that is being modified, creation of the index
will fail.

PostGres is unable to handle index definitions which specify whether the index is
ascending or descending, and defaults to the system default when the index is created.

It is not necessary to call wxDb::CommitTrans (p. 216) after executing this function.

Example

 // Create a secondary index on the PARTS table
 wxDbIdxDef idxDef[2]; // 2 columns make up the index

 wxStrcpy(idxDef[0].ColName, "PART_DESC"); // Column 1
 idxDef[0].Ascending = TRUE;

 wxStrcpy(idxDef[1].ColName, "SERIAL_NO"); // Column 2
 idxDef[1].Ascending = FALSE;

 // Create a name for the index based on the table's name
 wxString indexName;
 indexName.Printf("%s_IDX1",parts->GetTableName());
 parts->CreateIndex(indexName, TRUE, 2, idxDef);

CHAPTER 5

257

wxDbTable::CreateTable

bool CreateTable (bool attemptDrop=TRUE)

Creates a table based on the definitions previously defined for this wxDbTable instance.

Parameters

attemptDrop

OPTIONAL. Indicates whether the driver should attempt to drop the table before
trying to create it. Some datasources will not allow creation of a table if the table
already exists in the table space being used. Default is TRUE.

Remarks

This function creates the table and primary index (if any) in the table space associated
with the connected datasource. The owner of these objects will be the user id that was
given when wxDb::Open (p. 231) was called. The objects will be created in the default
schema/table space for that user.

In your derived wxDbTable object constructor, the columns and primary index of the
table are described through the wxDbColDef (p. 238) structure.
wxDbTable::CreateTable (p. 257) uses this information to create the table and to add
the primary index. See wxDbTable (p. 247) ctor and wxDbColDef description for
additional information on describing the columns of the table.

It is not necessary to call wxDb::CommitTrans (p. 216) after executing this function.

wxDbTable::DB_STATUS

bool DB_STATUS()

Accessor function that returns the wxDb private member variable DB_STATUS for the
database connection used by this instance of wxDbTable.

wxDbTable::Delete

bool Delete ()

Deletes the row from the table indicated by the current cursor.

Remarks

Use wxDbTable::GetFirst (p. 262), wxDbTable::GetLast (p. 263), wxDbTable::GetNext
(p. 264) orwxDbTable::GetPrev (p. 265) to position the cursor to a valid record. Once
positioned on a record, call this function to delete the row from the table.

CHAPTER 5

258

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the deletion.

NOTE: Most datasources have a limited size "rollback" segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

wxDbTable::DeleteCursor

bool DeleteCursor(HSTMT *hstmtDel)

Allows a program to delete a cursor.

Parameters

hstmtDel

Handle of the cursor to delete.

Remarks

For default cursors associated with the instance of wxDbTable, it is not necessary to
specifically delete the cursors. This is automatically done in the wxDbTable destructor.

NOTE: If the cursor could not be deleted for some reason, an error is logged indicating
the reason. Even if the cursor could not be deleted, the HSTMT that is passed in is
deleted, and the pointer is set to NULL.

DO NOT DELETE THE wxDB_DEFAULT_CURSOR!

wxDbTable::DeleteMatching

bool DeleteMatching()

This member function allows you to delete records from your wxDbTable object by
specifying the data in the columns to match on.

Remarks

To delete all users with a first name of "JOHN", do the following:

 1) Clear all "columns" using wxDbTable::ClearMemberVars().
 2) Set the FIRST_NAME column equal to "JOHN".
 3) Call wxDbTable::DeleteMatching().

CHAPTER 5

259

The WHERE clause is built by the ODBC class library based on all non-NULL columns.
This allows deletion of records by matching on any column(s) in your wxDbTable
instance, without having to write the SQL WHERE clause.

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the deletion.

NOTE: Row(s) should be locked before deleting them to make sure they are not already
in use. This can be achieved by calling wxDbTable::QueryMatching (p. 273), and then
retrieving the records, locking each as you go (assuming FOR UPDATE is allowed on
the datasource). After the row(s) have been successfully locked, call this function.

NOTE: Most datasources have a limited "rollback" segment. This means that it is only
possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

Example

 // Incomplete code sample to delete all users with a first name
 // of "JOHN"
 users.ClearMemberVars();
 wxStrcpy(users.FirstName,"JOHN");
 users.DeleteMatching();

wxDbTable::DeleteWhere

bool DeleteWhere(const wxString&pWhereClause)

Deletes all rows from the table which match the criteria specified in the WHERE clause
that is passed in.

Parameters

pWhereClause

SQL WHERE clause. This WHERE clause determines which records will be
deleted from the table interfaced through the wxDbTable instance. The WHERE
clause passed in must be compliant with the SQL 92 grammar. Do not include the
keyword 'WHERE'

Remarks

This is the most powerful form of the wxDbTable delete functions. This function gives
access to the full power of SQL. This function can be used to delete records by passing
a valid SQL WHERE clause. Sophisticated deletions can be performed based on
multiple criteria using the full functionality of the SQL language.

CHAPTER 5

260

A wxDb::CommitTrans (p. 216) must be called after use of this function to commit the
deletions.

Note: This function is limited to deleting records from the table associated with this
wxDbTable object only. Deletions on joined tables is not possible.

NOTE: Most datasources have a limited size "rollback" segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

Example

 // Delete parts 1 thru 10 from containers 'X', 'Y' and 'Z' that
 // are magenta in color
 parts.DeleteWhere("(PART_NUMBER BETWEEN 1 AND 10) AND \
 CONTAINER IN ('X', 'Y', 'Z') AND \
 UPPER(COLOR) = 'MAGENTA'");

wxDbTable::DropIndex

bool DropIndex(const wxString&idxName)

Allows an index on the associated table to be dropped (deleted) if the user login has
sufficient privileges to do so.

Parameters

idxName

Name of the index to be dropped.

Remarks

If the index specified in the 'idxName' parameter does not exist, an error will be logged,
and the function will return a result of FALSE.

It is not necessary to call wxDb::CommitTrans (p. 216) after executing this function.

wxDbTable::DropTable

bool DropTable()

Deletes the associated table if the user has sufficient privileges to do so.

CHAPTER 5

261

Remarks

This function returns TRUE if the table does not exist, but only for supported databases
(see wxDb::Dbms (p. 218)). If a datasource is not specifically supported, and this
function is called, the function will return FALSE.

Most datasources/ODBC drivers will delete any indexes associated with the table
automatically, and others may not. Check the documentation for your database to
determine the behavior.

It is not necessary to call wxDb::CommitTrans (p. 216) after executing this function.

wxDbTable::From

const wxString& From()

void From(const wxString&From)

Accessor function for the private class member wxDbTable::from. Can be used as a
synonym for wxDbTable::GetFromClause (p. 263) (the first form of this function) or
wxDbTable::SetFromClause (p. 278) (the second form of this function).

Parameters

From

A comma separated list of table names that are to be outer joined with the base
table's columns so that the joined table's columns may be returned in the result
set or used as a portion of a comparison with the base table's columns. NOTE
that the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::from.

The second form of the function has no return value, as it will always set the from
clause successfully.

See also

wxDbTable::GetFromClause (p. 263), wxDbTable::SetFromClause (p. 278)

wxDbTable::GetColDefs

wxDbColDef * GetColDefs()

CHAPTER 5

262

Accessor function that returns a pointer to the array of column definitions that are bound
to the columns that this wxDbTable instance is associated with.

To determine the number of elements pointed to by the returned wxDbColDef (p. 238)
pointer, use the wxDbTable::GetNumberOfColumns (p. 264) function.

Remarks

These column definitions must not be manually redefined after they have been set.

wxDbTable::GetCursor

HSTMT GetCursor()

Returns the HSTMT value of the current cursor for this wxDbTable object.

Remarks

This function is typically used just before changing to use a different cursor so that after
the program is finished using the other cursor, the current cursor can be set back to
being the cursor in use.

See also

wxDbTable::SetCursor (p. 277), wxDbTable::GetNewCursor (p. 263)

wxDbTable::GetDb

wxDb * GetDb()

Accessor function for the private member variable pDb which is a pointer to the
datasource connection that this wxDbTable instance uses.

wxDbTable::GetFirst

bool GetFirst()

Retrieves the FIRST row in the record set as defined by the current query. Before
retrieving records, a query must be performed using wxDbTable::Query (p. 270),
wxDbTable::QueryOnKeyFields (p. 274), wxDbTable::QueryMatching (p. 273) or
wxDbTable::QueryBySqlStmt (p. 271).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained

CHAPTER 5

263

in the bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 228)

wxDbTable::GetFromClause

const wxString& GetFromClause()

Accessor function that returns the current FROM setting assigned with the
wxDbTable::SetFromClause (p. 278).

See also

wxDbTable::From (p. 261)

wxDbTable::GetLast

bool GetLast()

Retrieves the LAST row in the record set as defined by the current query. Before
retrieving records, a query must be performed using wxDbTable::Query (p. 270),
wxDbTable::QueryOnKeyFields (p. 274), wxDbTable::QueryMatching (p. 273) or
wxDbTable::QueryBySqlStmt (p. 271).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 228)

wxDbTable::GetNewCursor

HSTMT * GetNewCursor(bool setCursor=FALSE, bool bindColumns=TRUE)

This function will create a new cursor that can be used to access the table being
referenced by this wxDbTable instance, or to execute direct SQL commands on without
affecting the cursors that are already defined and possibly positioned.

Parameters

CHAPTER 5

264

setCursor
OPTIONAL. Should this new cursor be set to be the current cursor after
successfully creating the new cursor. Default is FALSE.

bindColumns
OPTIONAL. Should this new cursor be bound to all the memory variables that the
default cursor is bound to. Default is TRUE.

Remarks

This new cursor must be closed using wxDbTable::DeleteCursor (p. 258) by the calling
program before the wxDbTable instance is deleted, or both memory and resource leaks
will occur.

wxDbTable::GetNext

bool GetNext()

Retrieves the NEXT row in the record set after the current cursor position as defined by
the current query. Before retrieving records, a query must be performed using
wxDbTable::Query (p. 270), wxDbTable::QueryOnKeyFields (p. 274),
wxDbTable::QueryMatching (p. 273) or wxDbTable::QueryBySqlStmt (p. 271).

Return value

This function returns FALSE when the current cursor has reached the end of the result
set. When FALSE is returned, data in the bound columns is undefined.

Remarks

This function works with both forward and backward scrolling cursors.

See alsowxDbTable::++ (p. 283)

wxDbTable::GetNumberOfColumns

UWORD GetNumberOfColumns()

Accessor function that returns the number of columns that are statically bound for
access by the wxDbTable instance.

wxDbTable::GetOrderByClause

const wxString& GetOrderByClause()

Accessor function that returns the current ORDER BY setting assigned with the
wxDbTable::SetOrderByClause (p. 279).

CHAPTER 5

265

See also

wxDbTable::OrderBy (p. 269)

wxDbTable::GetPrev

bool GetPrev()

Retrieves the PREVIOUS row in the record set before the current cursor position as
defined by the current query. Before retrieving records, a query must be performed
using wxDbTable::Query (p. 270), wxDbTable::QueryOnKeyFields (p. 274),
wxDbTable::QueryMatching (p. 273) or wxDbTable::QueryBySqlStmt (p. 271).

Return value

This function returns FALSE when the current cursor has reached the beginning of the
result set and there are now other rows prior to the cursors current position. When
FALSE is returned, data in the bound columns is undefined.

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 228), wxDbTable::-- (p. 283)

wxDbTable::GetQueryTableName

const wxString& GetQueryTableName ()

Accessor function that returns the name of the table/view that was indicated as being
the table/view to query against when this wxDbTable instance was created.

See also

wxDbTable constructor (p. 248)

wxDbTable::GetRowNum

UWORD GetRowNum()

Returns the ODBC row number for performing positioned updates and deletes.

CHAPTER 5

266

Remarks

This function is not being used within the ODBC class library and may be a candidate
for removal if no use is found for it.

Row number with some datasources/ODBC drivers is the position in the result set, while
in others it may be a physical position in the database. Check your database
documentation to find out which behavior is supported.

wxDbTable::GetTableName

const wxString& GetTableName ()

Accessor function that returns the name of the table that was indicated as being the
table that this wxDbTable instance was associated with.

wxDbTable::GetTablePath

const wxString& GetTablePath()

Accessor function that returns the path to the data table that was indicated during
creation of this wxDbTable instance.

Remarks

Currently only applicable to dBase and MS-Access datasources.

wxDbTable::GetWhereClause

const wxString& GetWhereClause ()

Accessor function that returns the current WHERE setting assigned with the
wxDbTable::SetWhereClause (p. 280)

See also

wxDbTable::Where (p. 282)

wxDbTable::Insert

int Insert()

Inserts a new record into the table being referenced by this wxDbTable instance. The
values in the member variables of the wxDbTable instance are inserted into the
columns of the new row in the database. Return value

CHAPTER 5

267

 DB_SUCCESS Record inserted successfully (value = 1)

 DB_FAILURE Insert failed (value = 0)

 DB_ERR_INTEGRITY_CONSTRAINT_VIOL
 The insert failed due to an integrity
 constraint violation (duplicate non-unique
 index entry) is attempted.

Remarks

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the insertion.

Example

 // Incomplete code snippet
 wxStrcpy(parts->PartName, "10");
 wxStrcpy(parts->PartDesc, "Part #10");
 parts->Qty = 1000;
 RETCODE retcode = parts.Insert();
 switch(retcode)
 {
 case DB_SUCCESS:
 parts->GetDb()->CommitTrans();
 return(TRUE);
 case DB_ERR_INTEGRITY_CONSTRAINT_VIOL:
 // Current data would result in a duplicate key
 // on one or more indexes that do not allow duplicates
 parts->GetDb()->RollbackTrans();
 return(FALSE);
 default:
 // Insert failed for some unexpected reason
 parts->GetDb()->RollbackTrans();
 return(FALSE);
 }

wxDbTable::IsColNull

bool IsColNull(UWORD colNo) const

Used primarily in the ODBC class library to determine if a column value is set to
"NULL". Works for all data types supported by the ODBC class library.

Parameters

colNo

The column number of the bound column as defined by the
wxDbTable::SetColDefs (p. 275) calls which defined the columns accessible to
this wxDbTable instance.

Remarks

CHAPTER 5

268

NULL column support is currently not fully implemented as of wxWindows 2.4

wxDbTable::IsCursorClosedOnCommit

bool IsCursorClosedOnCommit()

Accessor function to return information collected during the opening of the datasource
connection that is used by this wxDbTable instance. The result returned by this function
indicates whether an implicit closing of the cursor is done after a commit on the
database connection.

Return value

Returns TRUE if the cursor associated with this wxDbTable object is closed after a
commit or rollback operation. Returns FALSE otherwise.

Remarks

If more than one wxDbTable instance used the same database connection, all cursors
which use the database connection are closed on the commit if this function indicates
TRUE.

wxDbTable::IsQueryOnly

bool IsQueryOnly()

Accessor function that returns a value indicating if this wxDbTable instance was created
to allow only queries to be performed on the bound columns. If this function returns
TRUE, then no actions may be performed using this wxDbTable instance that would
modify (insert/delete/update) the table's data.

wxDbTable::Open

bool Open(bool checkPrivileges=FALSE, bool checkTableExists=TRUE)

Every wxDbTable instance must be opened before it can be used. This function checks
for the existence of the requested table, binds columns, creates required cursors,
(insert/select and update if connection is not wxDB_QUERY_ONLY) and constructs the
insert statement that is to be used for inserting data as a new row in the datasource.

Parameters

checkPrivileges

Indicates whether the Open() function should check whether the current
connected user has at least SELECT privileges to access the table to which they
are trying to open. Default is FALSE.

CHAPTER 5

269

checkTableExists

Indicates whether the Open() function should check whether the table exists in the
database or not before opening it. Default is TRUE.

Remarks

If the function returns a FALSE value due to the table not existing, a log entry is
recorded for the datasource connection indicating the problem that was detected when
checking for table existence. Note that it is usually best for the calling routine to check
for the existence of the table and for sufficent user privileges to access the table in the
mode (wxDB_QUERY_ONLY or !wxDB_QUERY_ONLY) before trying to open the table
for the best possible explanation as to why a table cannot be opened.

Checking the user's privileges on a table can be quite time consuming during the open
phase. With most applications, the programmer already knows that the user has
sufficient privileges to access the table, so this check is normally not required.

For best performance, open the table, and then use the wxDb::TablePrivileges (p. 235)
function to check the users privileges. Passing a schema to the TablePrivileges()
function can significantly speed up the privileges checks.

See also

wxDb::TableExists (p. 235), wxDb::TablePrivileges (p. 235)

wxDbTable::OrderBy

const wxString& OrderBy()

void OrderBy(const wxString&OrderBy)

Accessor function for the private class member wxDbTable::orderBy. Can be used as a
synonym for wxDbTable::GetOrderByClause (p. 264) (the first form of this function) or
wxDbTable::SetOrderByClause (p. 279) (the second form of this function).

Parameters

OrderBy

A comma separated list of column names that indicate the alphabetized/numeric
sorting sequence that the result set is to be returned in. If a FROM clause has
also been specified, each column name specified in the ORDER BY clause should
be prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::orderBy.

CHAPTER 5

270

The second form of the function has no return value.

See also

wxDbTable::GetOrderByClause (p. 264), wxDbTable::SetFromClause (p. 278)

wxDbTable::Query

virtual bool Query(bool forUpdate=FALSE, bool distinct=FALSE)

Parameters

forUpdate

OPTIONAL. Gives you the option of locking records as they are retrieved. If the
RDBMS is not capable of the FOR UPDATE clause, this argument is ignored.
See wxDbTable::CanSelectForUpdate (p. 252) for additional information regarding
this argument. Default is FALSE.

distinct
OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is FALSE.

Remarks

This function queries records from the datasource based on the three wxDbTable
members: "where", "orderBy", and "from". Use wxDbTable::SetWhereClause (p. 280) to
filter on records to be retrieved (e.g. All users with a first name of "JOHN"). Use
wxDbTable::SetOrderByClause (p. 279) to change the sequence in which records are
returned in the result set from the datasource (e.g. Ordered by LAST_NAME). Use
wxDbTable::SetFromClause (p. 278) to allow outer joining of the base table (the one
being associated with this instance of wxDbTable) with other tables which share a
related field.

After each of these clauses are set/cleared, call wxDbTable::Query() to fetch the result
set from the datasource.

This scheme has an advantage if you have to requery your record set frequently in that
you only have to set your WHERE, ORDER BY, and FROM clauses once. Then to
refresh the record set, simply call wxDbTable::Query() as frequently as needed.

Note that repeated calls to wxDbTable::Query() may tax the database server and make
your application sluggish if done too frequently or unnecessarily.

The base table name is automatically prepended to the base column names in the
event that the FROM clause has been set (is non-null) using
wxDbTable::SetFromClause (p. 278).

The cursor for the result set is positioned before the first record in the result set after the
query. To retrieve the first record, call either wxDbTable::GetFirst (p. 262) (only if
backward scrolling cursors are available) or wxDbTable::GetNext (p. 264). Typically, no

CHAPTER 5

271

data from the result set is returned to the client driver until a request such as
wxDbTable::GetNext (p. 264) is performed, so network traffic and database load are not
overwhelmed transmitting data until the data is actually requested by the client. This
behavior is solely dependent on the ODBC driver though, so refer to the ODBC driver's
reference material for information on its behaviors.

Values in the bound columns' memory variables are undefined after executing a call to
this function and remain that way until a row in the result set is requested to be
returned.

The wxDbTable::Query() function is defined as "virtual" so that it may be overridden for
application specific purposes.

Be sure to set the wxDbTable's "where", "orderBy", and "from" member variables to "" if
they are not to be used in the query. Otherwise, the results returned may have
unexpected results (or no results) due to improper or incorrect query parameters
constructed from the uninitialized clauses.

Example

 // Incomplete code sample
 parts->SetWhereClause("DESCRIPTION = 'FOOD'");
 parts->SetOrderByClause("EXPIRATION_DATE");
 parts->SetFromClause("");
 // Query the records based on the where, orderBy and from clauses
 // specified above
 parts->Query();
 // Display all records queried
 while(parts->GetNext())
 dispPart(parts); // user defined function

wxDbTable::QueryBySqlStmt

bool QueryBySqlStmt(const wxString&pSqlStmt)

Performs a query against the datasource by accepting and passing verbatim the SQL
SELECT statement passed to the function.

Parameters

pSqlStmt

Pointer to the SQL SELECT statement to be executed.

Remarks

This is the most powerful form of the query functions available. This member function
allows a programmer to write their own custom SQL SELECT statement for requesting
data from the datasource. This gives the programmer access to the full power of SQL
for performing operations such as scalar functions, aggregate functions, table joins, and
sub-queries, as well as datasource specific function calls.

CHAPTER 5

272

The requirements of the SELECT statement are the following:

 1. Must return the correct number of columns. In the derived
 wxDbTable constructor, it is specified how many columns are in
 the wxDbTable object. The SELECT statement must return exactly
 that many columns.

 2. The columns must be returned in the same sequence as specified
 when defining the bounds columns using wxDbTable::SetColDefs(),
 and the columns returned must be of the proper data type. For
 example, if column 3 is defined in the wxDbTable bound column
 definitions to be a float, the SELECT statement must return a
 float for column 3 (e.g. PRICE * 1.10 to increase the price by
 10%).

 3. The ROWID can be included in your SELECT statement as the {\bf
last}
 column selected, if the datasource supports it. Use
 wxDbTable::CanUpdByROWID() to determine if the ROWID can be
 selected from the datasource. If it can, much better
 performance can be achieved on updates and deletes by including
 the ROWID in the SELECT statement.

Even though data can be selected from multiple tables (joins) in your select statement,
only the base table associated with this wxDbTable object is automatically updated
through the ODBC class library. Data from multiple tables can be selected for display
purposes however. Include columns in the wxDbTable object and mark them as non-
updateable (See wxDbColDef (p. 238) for details). This way columns can be selected
and displayed from other tables, but only the base table will be updated automatically
when performed through the wxDbTable::Update (p. 281) function after using this type of
query. To update tables other than the base table, use the wxDbTable::Update (p. 281)
function passing a SQL statement.

After this function has been called, the cursor is positioned before the first record in the
record set. To retrieve the first record, call either wxDbTable::GetFirst (p. 262) or
wxDbTable::GetNext (p. 264).

Example

 // Incomplete code samples
 wxString sqlStmt;
 sqlStmt = "SELECT * FROM PARTS WHERE STORAGE_DEVICE = 'SD98' \
 AND CONTAINER = 12";
 // Query the records using the SQL SELECT statement above
 parts->QueryBySqlStmt(sqlStmt);
 // Display all records queried
 while(parts->GetNext())
 dispPart(&parts);

 Example SQL statements

 // Table Join returning 3 columns

CHAPTER 5

273

 SELECT part_no, part_desc, sd_name
 from parts, storage_devices
 where parts.storage_device_id =
 storage_devices.storage_device_id

 // Aggregate function returning total number of
 // parts in container 99
 SELECT count(*) from PARTS where container = 99

 // Order by clause; ROWID, scalar function
 SELECT part_no, substring(part_desc, 1, 10), qty_on_hand + 1, ROWID
 from parts
 where warehouse = 10
 order by part_no desc // descending order

 // Subquery
 SELECT * from parts
 where container in (select container
 from storage_devices
 where device_id = 12)

wxDbTable::QueryMatching

virtual bool QueryMatching(bool forUpdate=FALSE, bool distinct=FALSE)

QueryMatching allows querying of records from the table associated with the
wxDbTable object by matching "columns" to values.

For example: To query the datasource for the row with a PART_NUMBER column value
of "32", clear all column variables of the wxDbTable object, set the PartNumber variable
that is bound to the PART_NUMBER column in the wxDbTable object to "32", and then
call wxDbTable::QueryMatching().

Parameters

forUpdate

OPTIONAL. Gives you the option of locking records as they are queried
(SELECT ... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE
clause, this argument is ignored. See wxDbTable::CanSelectForUpdate (p. 252)
for additional information regarding this argument. Default is FALSE.

distinct
OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is FALSE.

Remarks

The SQL WHERE clause is built by the ODBC class library based on all non-zero/non-
NULL columns in your wxDbTable object. Matches can be on one, many or all of the
wxDbTable's columns. The base table name is prepended to the column names in the
event that the wxDbTable's FROM clause is non-null.

CHAPTER 5

274

This function cannot be used to perform queries which will check for columns that are 0
or NULL, as the automatically constructed WHERE clause only will contain comparisons
on column member variables that are non-zero/non-NULL.

The primary difference between this function and wxDbTable::QueryOnKeyFields (p.
274) is that this function can query on any column(s) in the wxDbTable object. Note
however that this may not always be very efficient. Searching on non-indexed columns
will always require a full table scan.

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either
wxDbTable::GetFirst (p. 262) or wxDbTable::GetNext (p. 264).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

Example

 // Incomplete code sample
 parts->ClearMemberVars(); // Set all columns to zero
 wxStrcpy(parts->PartNumber,"32"); // Set columns to query on
 parts->OnHold = TRUE;
 parts->QueryMatching(); // Query
 // Display all records queried
 while(parts->GetNext())
 dispPart(parts); // Some application defined function

wxDbTable::QueryOnKeyFields

bool QueryOnKeyFields(bool forUpdate=FALSE, bool distinct=FALSE)

QueryOnKeyFields provides an easy mechanism to query records in the table
associated with the wxDbTable object by the primary index column(s). Simply assign
the primary index column(s) values and then call this member function to retrieve the
record.

Note that since primary indexes are always unique, this function implicitly always
returns a single record from the database. The base table name is prepended to the
column names in the event that the wxDbTable's FROM clause is non-null.

Parameters

forUpdate

OPTIONAL. Gives you the option of locking records as they are queried
(SELECT ... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE
clause, this argument is ignored. See wxDbTable::CanSelectForUpdate (p. 252)
for additional information regarding this argument. Default is FALSE.

distinct
OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned

CHAPTER 5

275

in the result set, not individual columns. Default is FALSE.

Remarks

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either
wxDbTable::GetFirst (p. 262) or wxDbTable::GetNext (p. 264).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

Example

 // Incomplete code sample
 wxStrcpy(parts->PartNumber, "32");
 parts->QueryOnKeyFields();
 // Display all records queried
 while(parts->GetNext())
 dispPart(parts); // Some application defined function

wxDbTable::Refresh

bool Refresh()

This function re-reads the bound columns into the memory variables, setting them to the
current values stored on the disk.

The cursor position and result set are unaffected by calls to this function. (The one
exception is in the case where the record to be refreshed has been deleted by some
other user or transaction since it was originally retrieved as part of the result set. For
most datasources, the default behavior in this situation is to return the value that was
originally queried for the result set, even though it has been deleted from the database.
But this is datasource dependent, and should be tested before relying on this behavior.)

Remarks

This routine is only guaranteed to work if the table has a unique primary index defined
for it. Otherwise, more than one record may be fetched and there is no guarantee that
the correct record will be refreshed. The table's columns are refreshed to reflect the
current data in the database.

wxDbTable::SetColDefs

void SetColDefs(UWORD index, const wxString&fieldName, int dataType, void
*pData, SWORD cType, int size, bool keyField = FALSE, bool upd = TRUE, bool
insAllow = TRUE, bool derivedCol = FALSE)

wxDbColDataPtr * SetColDefs(wxDbColInf *colInfs, UWORD numCols)

CHAPTER 5

276

Parameters

index

Column number (0 to n-1, where n is the number of columns specified as being
defined for this wxDbTable instance when the wxDbTable constructor was called.

fieldName
Column name from the associated data table.

dataType
Logical data type. Valid logical types include:

 DB_DATA_TYPE_VARCHAR : strings
 DB_DATA_TYPE_INTEGER : non-floating point numbers
 DB_DATA_TYPE_FLOAT : floating point numbers
 DB_DATA_TYPE_DATE : dates

pData

Pointer to the data object that will hold the column's value when a row of data is
returned from the datasource.

cType
SQL C Type. This defines the data type that the SQL representation of the data is
converted to to be stored in pData. Other valid types are available also, but these
are the most common ones:

 SQL_C_CHAR // strings
 SQL_C_LONG
 SQL_C_ULONG
 SQL_C_SHORT
 SQL_C_USHORT
 SQL_C_FLOAT
 SQL_C_DOUBLE
 SQL_C_NUMERIC
 SQL_C_TIMESTAMP

 SQL_C_BOOLEAN // defined in db.h
 SQL_C_ENUM // defined in db.h

size

Maximum size in bytes of the pData object.
keyField

OPTIONAL. Indicates if this column is part of the primary index. Default is
FALSE.

upd
OPTIONAL. Are updates allowed on this column? Default is TRUE.

insAllow
OPTIONAL. Inserts allowed on this column? Default is TRUE.

derivedCol
OPTIONAL. Is this a derived column (non-base table column for query only)?
Default is FALSE.

colInfs

Pointer to an array of wxDbColInf instances which contains all the information
necessary to create numCols column definitions.

CHAPTER 5

277

numCols
Number of elements of wxDbColInf type that are pointed to by colInfs, which are
to have column definitions created from them.

Remarks

If pData is to hold a string of characters, be sure to include enough space for the NULL
terminator in pData and in the byte count of size.

Both forms of this function provide a shortcut for defining the columns in your
wxDbTable object. Use this function in any derived wxDbTable constructor when
describing the column/columns in the wxDbTable object.

The second form of this function is primarily used when the wxDb::GetColumns (p. 222)
function was used to query the datasource for the column definitions, so that the column
definitions are already stored in wxDbColInf form. One example use of using
wxDb::GetColumns (p. 222) then using this function is if a data table existed in one
datasource, and the table's column definitions were to be copied over to another
datasource or table.

Example

 // Long way not using this function
 wxStrcpy(colDefs[0].ColName, "PART_NO");
 colDefs[0].DbDataType = DB_DATA_TYPE_VARCHAR;
 colDefs[0].PtrDataObj = PartNumber;
 colDefs[0].SqlCtype = SQL_C_CHAR;
 colDefs[0].SzDataObj = PART_NUMBER_LEN;
 colDefs[0].KeyField = TRUE;
 colDefs[0].Updateable = FALSE;
 colDefs[0].InsertAllowed= TRUE;
 colDefs[0].DerivedCol = FALSE;

 // Shortcut using this function
 SetColDefs(0, "PART_NUMBER", DB_DATA_TYPE_VARCHAR, PartNumber,
 SQL_C_CHAR, PART_NUMBER_LEN, TRUE, FALSE,TRUE,FALSE);

wxDbTable::SetCursor

bool SetCursor(HSTMT *hstmtActivate = (void **) wxDB_DEFAULT_CURSOR)

Parameters

hstmtActivate

OPTIONAL. Pointer to the cursor that is to become the current cursor. Passing
no cursor handle will reset the cursor back to the wxDbTable's default (original)
cursor that was created when the wxDbTable instance was first created. Default
is wxDB_DEFAULT_CURSOR.

Remarks

CHAPTER 5

278

When swapping between cursors, the member variables of the wxDbTable object are
automatically refreshed with the column values of the row that the current cursor is
positioned at (if any). If the cursor is not positioned, then the data in member variables
is undefined.

The only way to return back to the cursor that was in use before this function was called
is to programmatically determine the current cursor's HSTMT BEFORE calling this
function using wxDbTable::GetCursor (p. 262) and saving a pointer to that cursor.

See also

wxDbTable::GetNewCursor (p. 263), wxDbTable::GetCursor (p. 262),
wxDbTable::SetCursor (p. 277)

wxDbTable::SetFromClause

void SetFromClause(const wxString&From)

Accessor function for setting the private class member wxDbTable::from that indicates
what other tables should be outer joined with the wxDbTable's base table for access to
the columns in those other tables.

Synonym to this function is one form of wxDbTable::From (p. 261)

Parameters

From

A comma separated list of table names that are to be outer joined with the base
table's columns so that the joined table's columns may be returned in the result
set or used as a portion of a comparison with the base table's columns. NOTE
that the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Remarks

Used by the wxDbTable::Query (p. 270) and wxDbTable::Count (p. 254) member
functions to allow outer joining of records from multiple tables.

Do not include the keyword "FROM" when setting the FROM clause.

If using the FROM clause when performing a query, be certain to include in the
corresponding WHERE clause a comparison of a column from either the base table or
one of the other joined tables to each other joined table to ensure the datasource knows
on which column values the tables should be joined on.

Example

 ...
 // Base table is the "LOCATION" table, and it is being
 // outer joined to the "PART" table via the the field "PART_NUMBER"

CHAPTER 5

279

 // that can be related between the two tables.
 location->SetWhereClause("LOCATION.PART_NUMBER = PART.PART_NUMBER")
 location->SetFromClause("PART");
 ...

See also

wxDbTable::From (p. 261), wxDbTable::GetFromClause (p. 263)

wxDbTable::SetColNull

bool SetColNull(UWORD colNo, bool set=TRUE)

bool SetColNull(const wxString&colName, bool set=TRUE)

Both forms of this function allow a member variable representing a column in the table
associated with this wxDbTable object to be set to NULL.

The first form allows the column to be set by the index into the column definitions used
to create the wxDbTable instance, while the second allows the actual column name to
be specified.

Parameters

colNo

Index into the column definitions used when first defining this wxDbTable object.
colName

Actual data table column name that is to be set to NULL.
set

Whether the column is set to NULL or not. Passing TRUE sets the column to
NULL, passing FALSE sets the column to be non-NULL. Default is TRUE.

Remarks

No database updates are done by this function. It only operates on the member
variables in memory. Use and insert or update function to store this value to disk.

wxDbTable::SetOrderByClause

void SetOrderByClause(const wxString&OrderBy)

Accessor function for setting the private class member wxDbTable::orderBy which
determines sequence/ordering of the rows returned in the result set of a query.

A synonym to this function is one form of the function wxDbTable::OrderBy (p. 269)

Parameters

OrderBy

CHAPTER 5

280

A comma separated list of column names that indicate the alphabetized sorting
sequence that the result set is to be returned in. If a FROM clause has also been
specified, each column name specified in the ORDER BY clause should be
prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks

Do not include the keywords "ORDER BY" when setting the ORDER BY clause.

Example

 ...
 parts->SetOrderByClause("PART_DESCRIP, QUANTITY");
 ...

 ...
 location->SetOrderByClause("LOCATION.POSITION, PART.PART_NUMBER);
 ...

See also

wxDbTable::OrderBy (p. 269), wxDbTable::GetOrderByClause (p. 264)

wxDbTable::SetQueryTimeout

bool SetQueryTimeout(UDWORD nSeconds)

Allows a time period to be set as the timeout period for queries.

Parameters

nSeconds

The number of seconds to wait for the query to complete before timing out.

Remarks

Neither Oracle or Access support this function as of yet. Other databases should be
evaluated for support before depending on this function working correctly.

wxDbTable::SetWhereClause

void SetWhereClause (const wxString&Where)

Accessor function for setting the private class member wxDbTable::where that
determines which rows are returned in the result set by the datasource.

A synonym to this function is one form of the function wxDbTable::Where (p. 282)

CHAPTER 5

281

Parameters

Where

SQL "where" clause. This clause can contain any SQL language that is legal in
standard where clauses. If a FROM clause has also been specified, each column
name specified in the ORDER BY clause should be prefaced with the table name
to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks

Do not include the keywords "WHERE" when setting the WHERE clause.

Example

 ...
 // Simple where clause
 parts->SetWhereClause("PART_NUMBER = '32'");
 ...
 // Any comparison operators
 parts->SetWhereClause("PART_DESCRIP LIKE 'HAMMER%'");
 ...
 // Multiple comparisons, including a function call
 parts->Where("QTY > 0 AND {fn UCASE(PART_DESCRIP)} LIKE
'%DRILL%'");
 ...
 // Using parameters and multiple logical combinations
 parts->Where("((QTY > 10) OR (ON_ORDER > 0)) AND ON_HOLD = 0");
 ...
 // This query uses an outer join (requiring a FROM clause also)
 // that joins the PART and LOCATION table on he common field
 // PART_NUMBER.
 parts->Where("PART.ON_HOLD = 0 AND \
 PART.PART_NUMBER = LOCATION.PART_NUMBER AND \
 LOCATION.PART_NUMBER > 0");

See also

wxDbTable::Where (p. 282), wxDbTable::GetWhereClause (p. 266)

wxDbTable::Update

bool Update()

bool Update(const wxString&pSqlStmt)

The first form of this function will update the row that the current cursor is currently
positioned at with the values in the memory variables that are bound to the columns.
The actual SQL statement to perform the update is automatically created by the ODBC
class, and then executed.

The second form of the function allows full access through SQL statements for updating

CHAPTER 5

282

records in the database. Write any valid SQL UPDATE statement and submit it to this
function for execution. Sophisticated updates can be performed using the full power of
the SQL dialect. The full SQL statement must have the exact syntax required by the
driver/datasource for performing the update. This usually is in the form of:

 UPDATE tablename SET col1=X, col2=Y, ... where ...

Parameters

pSqlStmt

Pointer to SQL UPDATE statement to be executed.

Remarks

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the update.

Example

 wxString sqlStmt;
 sqlStmt = "update PART set QTY = 0 where PART_NUMBER = '32'";

wxDbTable::UpdateWhere

bool UpdateWhere(const wxString&pWhereClause)

Performs updates to the base table of the wxDbTable object, updating only the rows
which match the criteria specified in the pWhereClause.

All columns that are bound to member variables for this wxDbTable instance that were
defined with the "updateable" parameter set to TRUE will be updated with the
information currently held in the memory variable.

Parameters

pWhereClause

Pointer to a valid SQL WHERE clause. Do not include the keyword 'WHERE'.

Remarks

Care should be used when updating columns that are part of indexes with this function
so as not to violate an unique key constraints.

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the update(s).

wxDbTable::Where

const wxString& Where()

CHAPTER 5

283

void Where(const wxString&Where)

Accessor function for the private class member wxDbTable::where. Can be used as a
synonym for wxDbTable::GetWhereClause (p. 266) (the first form of this function) to
return the current where clause or wxDbTable::SetWhereClause (p. 280) (the second
form of this function) to set the where clause for this table instance.

Parameters

Where

A valid SQL WHERE clause. Do not include the keyword 'WHERE'.

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::where.

The second form of the function has no return value, as it will always set the where
clause successfully.

See also

wxDbTable::GetWhereClause (p. 266), wxDbTable::SetWhereClause (p. 280)

wxDbTable::operator ++

bool operator ++()

Synonym for wxDbTable::GetNext (p. 264)

See also

wxDbTable::GetNext (p. 264)

wxDbTable::operator --

bool operator --()

Synonym for wxDbTable::GetPrev (p. 265)

See also

wxDbTable::GetPrev (p. 265)

wwxxDDbbTTaabblleeIInnff

CHAPTER 5

284

 tableName[0] = 0;
 tableType[0] = 0;
 tableRemarks[0] = 0;
 numCols = 0;
 pColInf = NULL;

Currently only used by wxDb::GetCatalog (p. 221) internally and wxDbInf (p. 246) class,
but may be used in future releases for user functions. Contains information describing
the table (Name, type, etc). A pointer to a wxDbColInf array instance is included so a
program can create a wxDbColInf (p. 239) array instance (using wxDb::GetColumns (p.
222)) to maintain all information about the columns of a table in one memory structure.

Eventually, accessor functions will be added for this class

wxDbTableInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wwxxDDaattaaOObbjjeeccttCCoommppoossiittee

wxDataObjectComposite is the simplest wxDataObject (p. 204) derivation which may be
sued to support multiple formats. It contains several wxDataObjectSimple (p. 285)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 285)) and its format determines the preferred format of the
composite data object as well.

See wxDataObject (p. 204) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.

Derived from

wxDataObject (p. 204)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1619), wxDataObject (p. 204),

CHAPTER 5

285

wxDataObjectSimple (p. 285), wxFileDataObject (p. 460), wxTextDataObject (p. 1256),
wxBitmapDataObject (p. 77)

wxDataObjectComposite::wxDataObjectComposite

 wxDataObjectComposite()

The default constructor.

wxDataObjectComposite::Add

void Add(wxDataObjectSimple *dataObject, bool preferred = FALSE)

Adds the dataObject to the list of supported objects and it becomes the preferred object
if preferred is TRUE.

wwxxDDaattaaOObbjjeeccttSSiimmppllee

This is the simplest possible implementation of the wxDataObject (p. 204) class. The
data object of (a class derived from) this class only supports one format, so the number
of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 286) and
GetDataHere (p. 286) while the objects which may be set must override SetData (p.
287). Of course, the objects supporting both operations must override all threee
methods.

Derived from

wxDataObject (p. 204)

Include files

<wx/dataobj.h>

CHAPTER 5

286

See also

Clipboard and drag and drop overview (p. 1619), DnD sample (p. 1517),
wxFileDataObject (p. 460), wxTextDataObject (p. 1256), wxBitmapDataObject (p. 77)

wxDataObjectSimple::wxDataObjectSimple

 wxDataObjectSimple(const wxDataFormat& format = wxFormatInvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 286).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat() const

Returns the (one and only one) format supported by this object. It is supposed that the
format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat(const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize() const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere(void *buf) const

Copy the data to the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

CHAPTER 5

287

wxDataObjectSimple::SetData

virtual bool SetData(size_t len, const void *buf)

Copy the data from the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wwxxDDaattaaIInnppuuttSSttrreeaamm

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or litte-endian format, little-endian being the default on all
architectures.

If you want to read data from text files (or streams) use wxTextInputStream (p. 1258)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:

 wxFileInputStream input("mytext.dat");
 wxDataInputStream store(input);
 wxUint8 i1;
 float f2;
 wxString line;

 store >> i1; // read a 8 bit integer.
 store >> i1 >> f2; // read a 8 bit integer followed by float.
 store >> line; // read a text line

See also wxDataOutputStream (p. 289).

Derived from

None

Include files

<wx/datstrm.h>

CHAPTER 5

288

wxDataInputStream::wxDataInputStream

 wxDataInputStream(wxInputStream& stream)

Constructs a datastream object from an input stream. Only read methods will be
available.

Parameters

stream

The input stream.

wxDataInputStream::~wxDataInputStream

 ~wxDataInputStream()

Destroys the wxDataInputStream object.

wxDataInputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_order is TRUE, all data will be read in big-endian order, such as written by
programs on a big endian architecture (e.g. Sparc) or written by Java-Streams (which
always use big-endian order).

wxDataInputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

wxDataInputStream::Read16

wxUint16 Read16()

Reads a 16 bit integer from the stream.

wxDataInputStream::Read32

wxUint32 Read32()

Reads a 32 bit integer from the stream.

CHAPTER 5

289

wxDataInputStream::ReadDouble

double ReadDouble ()

Reads a double (IEEE encoded) from the stream.

wxDataInputStream::ReadString

wxString ReadString()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

wwxxDDaattaaOOuuttppuuttSSttrreeaamm

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or litte-endian format, little-endian being the default on all
architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. 1260)
instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDataInputStream (p. 287) for its usage and caveats.

See also wxDataInputStream (p. 287).

Derived from

None

wxDataOutputStream::wxDataOutputStream

 wxDataOutputStream(wxOutputStream& stream)

Constructs a datastream object from an output stream. Only write methods will be
available.

Parameters

stream

CHAPTER 5

290

The output stream.

wxDataOutputStream::~wxDataOutputStream

 ~wxDataOutputStream()

Destroys the wxDataOutputStream object.

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_order is TRUE, all data will be written in big-endian order, e.g. for reading on a
Sparc or from Java-Streams (which always use big-endian order), otherwise data will be
written in little-endian order.

wxDataOutputStream::Write8

void Write8(wxUint8 i8)

Writes the single byte i8 to the stream.

wxDataOutputStream::Write16

void Write16(wxUint16 i16)

Writes the 16 bit integer i16 to the stream.

wxDataOutputStream::Write32

void Write32(wxUint32 i32)

Writes the 32 bit integer i32 to the stream.

wxDataOutputStream::WriteDouble

void WriteDouble(double f)

Writes the double f to the stream using the IEEE format.

wxDataOutputStream::WriteString

void WriteString(const wxString& string)

CHAPTER 5

291

Writes string to the stream. Actually, this method writes the size of the string before
writing string itself.

wwxxDDaattee

A class for manipulating dates.

NOTE: this class is retained only for compatibility, and has been replaced by
wxDateTime (p. 299). wxDate may be withdrawn in future versions of wxWindows.

Derived from

wxObject (p. 897)

Include files

<wx/date.h>

See also

wxTime (p. 1283)

wxDate::wxDate

 wxDate()

Default constructor.

 wxDate(const wxDate& date)

Copy constructor.

 wxDate(int month, int day, int year)

Constructor taking month, day and year.

 wxDate(long julian)

Constructor taking an integer representing the Julian date. This is the number of days
since 1st January 4713 B.C., so to convert from the number of days since 1st January
1901, construct a date for 1/1/1901, and add the number of days.

 wxDate(const wxString& dateString)

CHAPTER 5

292

Constructor taking a string representing a date. This must be either the string TODAY, or
of the form MM/DD/YYYY or MM-DD-YYYY. For example:

 wxDate date("11/26/1966");

Parameters

date

Date to copy.

month

Month: a number between 1 and 12.

day

Day: a number between 1 and 31.

year

Year, such as 1995, 2005.

wxDate::~wxDate

void ~wxDate()

Destructor.

wxDate::AddMonths

wxDate& AddMonths(int months=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::AddWeeks

wxDate& AddWeeks(int weeks=1)

Adds the given number of weeks to the date, returning a reference to 'this'.

wxDate::AddYears

wxDate& AddYears(int years=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::FormatDate

CHAPTER 5

293

wxString FormatDate(int type=-1) const

Formats the date according to type if not -1, or according to the current display type if -1.

Parameters

type

-1 or one of:

wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:

DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY,

MONTH, YEAR.

wxDate::GetDay

int GetDay() const

Returns the numeric day (in the range 1 to 31).

wxDate::GetDayOfWeek

int GetDayOfWeek() const

Returns the integer day of the week (in the range 1 to 7).

wxDate::GetDayOfWeekName

wxString GetDayOfWeekName () const

Returns the name of the day of week.

wxDate::GetDayOfYear

long GetDayOfYear() const

Returns the day of the year (from 1 to 365).

wxDate::GetDaysInMonth

int GetDaysInMonth() const

CHAPTER 5

294

Returns the number of days in the month (in the range 1 to 31).

wxDate::GetFirstDayOfMonth

int GetFirstDayOfMonth() const

Returns the day of week that is first in the month (in the range 1 to 7).

wxDate::GetJulianDate

long GetJulianDate () const

Returns the Julian date.

wxDate::GetMonth

int GetMonth() const

Returns the month number (in the range 1 to 12).

wxDate::GetMonthEnd

wxDate GetMonthEnd()

Returns the date representing the last day of the month.

wxDate::GetMonthName

wxString GetMonthName () const

Returns the name of the month. Do not delete the returned storage.

wxDate::GetMonthStart

wxDate GetMonthStart() const

Returns the date representing the first day of the month.

wxDate::GetWeekOfMonth

int GetWeekOfMonth() const

CHAPTER 5

295

Returns the week of month (in the range 1 to 6).

wxDate::GetWeekOfYear

int GetWeekOfYear() const

Returns the week of year (in the range 1 to 52).

wxDate::GetYear

int GetYear() const

Returns the year as an integer (such as '1995').

wxDate::GetYearEnd

wxDate GetYearEnd() const

Returns the date representing the last day of the year.

wxDate::GetYearStart

wxDate GetYearStart() const

Returns the date representing the first day of the year.

wxDate::IsLeapYear

bool IsLeapYear() const

Returns TRUE if the year of this date is a leap year.

wxDate::Set

wxDate& Set()

Sets the date to current system date, returning a reference to 'this'.

wxDate& Set(long julian)

Sets the date to the given Julian date, returning a reference to 'this'.

CHAPTER 5

296

wxDate& Set(int month, int day, int year)

Sets the date to the given date, returning a reference to 'this'.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

wxDate::SetFormat

void SetFormat(int format)

Sets the current format type.

Parameters

format

-1 or one of:

wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:

DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY,

MONTH, YEAR.

wxDate::SetOption

int SetOption(int option, const bool enable=TRUE)

Enables or disables an option for formatting.

Parameters

option

May be one of:

wxNO_CENTURY The century is not formatted.
wxDATE_ABBR Month and day names are abbreviated to 3

characters when formatting.

wxDate::operator wxString

CHAPTER 5

297

 operator wxString()

Conversion operator, to convert wxDate to wxString by calling FormatDate.

wxDate::operator +

wxDate operator +(long i)

wxDate operator +(int i)

Adds an integer number of days to the date, returning a date.

wxDate::operator -

wxDate operator -(long i)

wxDate operator -(int i)

Subtracts an integer number of days from the date, returning a date.

long operator -(const wxDate& date)

Subtracts one date from another, return the number of intervening days.

wxDate::operator +=

wxDate& operator +=(long i)

Postfix operator: adds an integer number of days to the date, returning a reference to
'this' date.

wxDate::operator -=

wxDate& operator -=(long i)

Postfix operator: subtracts an integer number of days from the date, returning a
reference to 'this' date.

wxDate::operator ++

wxDate& operator ++()

Increments the date (postfix or prefix).

CHAPTER 5

298

wxDate::operator --

wxDate& operator --()

Decrements the date (postfix or prefix).

wxDate::operator <

friend bool operator <(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is earlier than date2.

wxDate::operator <=

friend bool operator <=(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is earlier than or equal to date2.

wxDate::operator >

friend bool operator >(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is later than date2.

wxDate::operator >=

friend bool operator >=(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is later than or equal to date2.

wxDate::operator ==

friend bool operator ==(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is equal to date2.

wxDate::operator !=

friend bool operator !=(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is not equal to date2.

CHAPTER 5

299

wxDate::operator <<

friend ostream& operator <<(ostream& os, const wxDate& date)

Function to output a wxDate to an ostream.

wwxxDDaatteeSSppaann

The documentation for this section has not yet been written.

wwxxDDaatteeTTiimmee

wxDateTime class represents an absolute moment in the time.

Types

The type wxDateTime_t is typedefed as unsigned short and is used to contain the
number of years, hours, minutes, seconds and milliseconds.

Constants

Global constant wxDefaultDateTime and synonym for it wxInvalidDateTime are
defined. This constant will be different from any valid wxDateTime object.

All the following constants are defined inside wxDateTime class (i.e., to refer to them you
should prepend their names with wxDateTime::).

Time zone symbolic names:

 enum TZ
 {
 // the time in the current time zone
 Local,

 // zones from GMT (= Greenwhich Mean Time): they're guaranteed
to be
 // consequent numbers, so writing something like `GMT0 +
offset' is
 // safe if abs(offset) <= 12

 // underscore stands for minus
 GMT_12, GMT_11, GMT_10, GMT_9, GMT_8, GMT_7,
 GMT_6, GMT_5, GMT_4, GMT_3, GMT_2, GMT_1,
 GMT0,

CHAPTER 5

300

 GMT1, GMT2, GMT3, GMT4, GMT5, GMT6,
 GMT7, GMT8, GMT9, GMT10, GMT11, GMT12,
 // Note that GMT12 and GMT_12 are not the same: there is a
difference
 // of exactly one day between them

 // some symbolic names for TZ

 // Europe
 WET = GMT0, // Western Europe Time
 WEST = GMT1, // Western Europe Summer
Time
 CET = GMT1, // Central Europe Time
 CEST = GMT2, // Central Europe Summer
Time
 EET = GMT2, // Eastern Europe Time
 EEST = GMT3, // Eastern Europe Summer
Time
 MSK = GMT3, // Moscow Time
 MSD = GMT4, // Moscow Summer Time

 // US and Canada
 AST = GMT_4, // Atlantic Standard Time
 ADT = GMT_3, // Atlantic Daylight Time
 EST = GMT_5, // Eastern Standard Time
 EDT = GMT_4, // Eastern Daylight Saving
Time
 CST = GMT_6, // Central Standard Time
 CDT = GMT_5, // Central Daylight Saving
Time
 MST = GMT_7, // Mountain Standard Time
 MDT = GMT_6, // Mountain Daylight Saving
Time
 PST = GMT_8, // Pacific Standard Time
 PDT = GMT_7, // Pacific Daylight Saving
Time
 HST = GMT_10, // Hawaiian Standard Time
 AKST = GMT_9, // Alaska Standard Time
 AKDT = GMT_8, // Alaska Daylight Saving
Time

 // Australia

 A_WST = GMT8, // Western Standard Time
 A_CST = GMT12 + 1, // Central Standard Time
(+9.5)
 A_EST = GMT10, // Eastern Standard Time
 A_ESST = GMT11, // Eastern Summer Time

 // Universal Coordinated Time = the new and politically correct
name
 // for GMT
 UTC = GMT0
 };

Month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec and

CHAPTER 5

301

Inv_Month for an invalid.month value are the values of wxDateTime::Monthenum.

Likewise, Sun, Mon, Tue, Wed, Thu, Fri, Sat, and Inv_WeekDay are the values
inwxDateTime::WeekDay enum.

Finally, Inv_Year is defined to be an invalid value for year parameter.

GetMonthName() (p. 308) andGetWeekDayName (p. 309) functions use the followign
flags:

 enum NameFlags
 {
 Name_Full = 0x01, // return full name
 Name_Abbr = 0x02 // return abbreviated name
 };

Several functions accept an extra parameter specifying the calendar to use (although
most of them only support now the Gregorian calendar). This parameters is one of the
following values:

 enum Calendar
 {
 Gregorian, // calendar currently in use in Western countries
 Julian // calendar in use since -45 until the 1582 (or
later)
 };

Date calculations often depend on the country and wxDateTime allows to set the country
whose conventions should be used using SetCountry (p. 310). It takes one of the
following values as parameter:

 enum Country
 {
 Country_Unknown, // no special information for this country
 Country_Default, // set the default country with SetCountry()
method
 // or use the default country with any other

 Country_WesternEurope_Start,
 Country_EEC = Country_WesternEurope_Start,
 France,
 Germany,
 UK,
 Country_WesternEurope_End = UK,

 Russia,

 USA
 };

Different parst of the world use different conventions for the week start. In some
countries, the week starts on Sunday, while in others - on Monday. The ISO standard
doesn't address this issue, so we support both conventions in the functions whose result
depends on it (GetWeekOfYear (p. 316) and GetWeekOfMonth (p. 316)).

CHAPTER 5

302

The desired behvaiour may be specified by giving one of the following constants as
argument to these functions:

 enum WeekFlags
 {
 Default_First, // Sunday_First for US, Monday_First for the
rest
 Monday_First, // week starts with a Monday
 Sunday_First // week starts with a Sunday
 };

Derived from

No base class

Include files

<wx/datetime.h>

See also

Date classes overview (p. 1532), wxTimeSpan (p. 1265), wxDateSpan (p. 299),
wxCalendarCtrl (p. 98)

Static functions

For convenience, all static functions are collected here. These functions either set or
return the static variables of wxDateSpan (the country), return the current moment, year,
month or number of days in it, or do some general calendar-related actions.

Please note that although several function accept an extra Calendarparameter, it is
currently ignored as only the Gregorian calendar is supported. Future versions will
support other calendars.

wxPython note: These methods are standalone functions named
wxDateTime_<StaticMethodName> in wxPython.

SetCountry (p. 310)
GetCountry (p. 307)
IsWestEuropeanCountry (p. 309)
GetCurrentYear (p. 307)
ConvertYearToBC (p. 306)
GetCurrentMonth (p. 308)
IsLeapYear (p. 309)
GetCentury (p. 308)
GetNumberOfDays (p. 308)
GetNumberOfDays (p. 308)

CHAPTER 5

303

GetMonthName (p. 308)
GetWeekDayName (p. 309)
GetAmPmStrings (p. 307)
IsDSTApplicable (p. 309)
GetBeginDST (p. 307)
GetEndDST (p. 308)
Now (p. 309)
UNow (p. 310)
Today (p. 310)

Constructors, assignment operators and setters

Constructors and various Set() methods are collected here. If you construct a date
object from separate values for day, month and year, you should use IsValid (p. 314)
method to check that the values were correct as constructors can not return an error
code.

wxDateTime() (p. 311)
wxDateTime(time_t) (p. 311)
wxDateTime(struct tm) (p. 311)
wxDateTime(double jdn) (p. 311)
wxDateTime(h, m, s, ms) (p. 311)
wxDateTime(day, mon, year, h, m, s, ms) (p. 311)
SetToCurrent (p. 312)
Set(time_t) (p. 312)
Set(struct tm) (p. 312)
Set(double jdn) (p. 312)
Set(h, m, s, ms) (p. 313)
Set(day, mon, year, h, m, s, ms) (p. 313)
ResetTime (p. 313)
SetYear (p. 313)
SetMonth (p. 313)
SetDay (p. 313)
SetHour (p. 313)
SetMinute (p. 314)
SetSecond (p. 314)
SetMillisecond (p. 314)
operator=(time_t) (p. 314)
operator=(struct tm) (p. 314)

Accessors

Here are the trivial accessors. Other functions, which might have to perform some more
complicated calculations to find the answer are under the Calendar calculations (p. 305)
section.

IsValid (p. 314)
GetTicks (p. 315)
GetYear (p. 315)
GetMonth (p. 315)

CHAPTER 5

304

GetDay (p. 315)
GetWeekDay (p. 315)
GetHour (p. 315)
GeTMinute (p. 315)
GetSecond (p. 316)
GetMillisecond (p. 316)
GetDayOfYear (p. 316)
GetWeekOfYear (p. 316)
GetWeekOfMonth (p. 316)
GetYearDay (p. 325)
IsWorkDay (p. 317)
IsGregorianDate (p. 317)

Date comparison

There are several function to allow date comparison. To supplement them, a few global
operators >, < etc taking wxDateTime are defined.

IsEqualTo (p. 317)
IsEarlierThan (p. 317)
IsLaterThan (p. 317)
IsStrictlyBetween (p. 317)
IsBetween (p. 318)
IsSameDate (p. 318)
IsSameTime (p. 318)
IsEqualUpTo (p. 318)

Date arithmetics

These functions carry out arithmetics (p. 1534) on the wxDateTime objects. As explained
in the overview, either wxTimeSpan or wxDateSpan may be added to wxDateTime,
hence all functions are overloaded to accept both arguments.

Also, both Add() and Subtract() have both const and non-const version. The first
one returns a new obejct which represents the sum/difference of the original one with the
argument while the second form modifies the object to which it is applied. The operators
-= and += are defined to be equivalent to the second forms of these functions.

Add(wxTimeSpan) (p. 318)
Add(wxDateSpan) (p. 319)
Subtract(wxTimeSpan) (p. 318)
Subtract(wxDateSpan) (p. 319)
Subtract(wxDateTime) (p. 319)
oparator+=(wxTimeSpan) (p. 318)
oparator+=(wxDateSpan) (p. 319)
oparator-=(wxTimeSpan) (p. 318)
oparator-=(wxDateSpan) (p. 319)

CHAPTER 5

305

Parsing and formatting dates

These functions perform convert wxDateTime obejcts to and from text. The conversions
to text are mostly trivial: you can either do it using the default date and time
representations for the current locale (FormatDate (p. 321) andFormatTime (p. 322)),
using the international standard representation defined by ISO 8601 (FormatISODate (p.
322) andFormatISOTime (p. 322)) or by specifying any format at all and using Format (p.
321) directly.

The conversions from text are more interesting, as there are much more possibilities to
care about. The simples cases can be taken care of withParseFormat (p. 320) which can
parse any date in the given (rigid) format. ParseRfc822Date (p. 319) is another function
for parsing dates in predefined format - the one of RFC 822 which (still...) defines the
format of email messages on the Internet. This format can not be described with
strptime(3)-like format strings used byFormat (p. 321), hence the need for a
separate function.

But the most interesting functions are ParseDateTime (p. 320) and ParseDate (p. 321)
and ParseTime (p. 321). They try to parse the date ans time (or only one of them) in
'free' format, i.e. allow them to be specified in any of possible ways. These functions will
usually be used to parse the (interactive) user input which is not bound to be in any
predefined format. As an example, ParseDateTime (p. 320) can parse the strings such
as "tomorrow", "March first", "next Sunday".

ParseRfc822Date (p. 319)
ParseFormat (p. 320)
ParseDateTime (p. 320)
ParseDate (p. 321)
ParseTime (p. 321)
Format (p. 321)
FormatDate (p. 321)
FormatTime (p. 322)
FormatISODate (p. 322)
FormatISOTime (p. 322)

Calendar calculations

The functions in this section perform the basic calendar calculations, mostly related to
the week days. They allow to find the given week day in the week with given number
(either in the month or in the year) and so on.

All (non-const) functions in this section don't modify the time part of the wxDateTime -
they only work with the date part of it.

SetToWeekDayInSameWeek (p. 322)
GetWeekDayInSameWeek (p. 322)
SetToNextWeekDay (p. 322)
GetNextWeekDay (p. 323)

CHAPTER 5

306

SetToPrevWeekDay (p. 323)
GetPrevWeekDay (p. 323)
SetToWeekDay (p. 323)
GetWeekDay (p. 323)
SetToLastWeekDay (p. 323)
GetLastWeekDay (p. 324)
SetToTheWeek (p. 324)
GetWeek (p. 324)
SetToLastMonthDay (p. 324)
GetLastMonthDay (p. 324)
SetToYearDay (p. 325)
GetYearDay (p. 325)

Astronomical/historical functions

Some degree of support for the date units used in astronomy and/or history is provided.
You can construct a wxDateTime object from aJDN (p. 312) and you may also get its
JDN,MJD (p. 325) orRata Die number (p. 326) from it.

wxDateTime(double jdn) (p. 311)
Set(double jdn) (p. 312)
GetJulianDayNumber (p. 325)
GetJDN (p. 325)
GetModifiedJulianDayNumber (p. 325)
GetMJD (p. 325)
GetRataDie (p. 326)

Time zone and DST support

Please see the time zone overview (p. 1534) for more information about time zones.
ormally, these functions should be rarely used.

ToTimezone (p. 326)
MakeTimezone (p. 326)
ToGMT (p. 326)
MakeGMT (p. 326)
GetBeginDST (p. 307)
GetEndDST (p. 308)
IsDST (p. 326)

wxDateTime::ConvertYearToBC

static int ConvertYearToBC(int year)

Converts the year in absolute notation (i.e. a number which can be negative, positive or

CHAPTER 5

307

zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year
0 is year 1 BC and so for other years there is a difference of 1.

This function should be used like this:

 wxDateTime dt(...);
 int y = dt.GetYear();
 printf("The year is %d%s", wxDateTime::ConvertYearToBC(y), y > 0 ?
"AD" : "BC");

wxDateTime::GetAmPmStrings

static void GetAmPmStrings(wxString *am, wxString *pm)

Returns the translations of the strings AM and PM used for time formatting for the current
locale. Either of the pointers may be NULL if the corresponding value is not needed.

wxDateTime::GetBeginDST

static wxDateTime GetBeginDST (int year = Inv_Year, Country country =
Country_Default)

Get the beginning of DST for the given country in the given year (current one by default).
This function suffers from limitations described inDST overview (p. 1535).

See also

GetEndDST (p. 308)

wxDateTime::GetCountry

static Country GetCountry()

Returns the current default country. The default country is used for DST calculations, for
example.

See also

SetCountry (p. 310)

wxDateTime::GetCurrentYear

static int GetCurrentYear(Calendar cal = Gregorian)

Get the current year in given calendar (only Gregorian is currently supported).

CHAPTER 5

308

wxDateTime::GetCurrentMonth

static Month GetCurrentMonth(Calendar cal = Gregorian)

Get the current month in given calendar (only Gregorian is currently supported).

wxDateTime::GetCentury

static int GetCentury(int year = Inv_Year)

Get the current century, i.e. first two digits of the year, in given calendar (only Gregorian
is currently supported).

wxDateTime::GetEndDST

static wxDateTime GetEndDST (int year = Inv_Year, Country country =
Country_Default)

Returns the end of DST for the given country in the given year (current one by default).

See also

GetBeginDST (p. 307)

wxDateTime::GetMonthName

static wxString GetMonthName (Month month, NameFlags flags = Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given month.

See also

GetWeekDayName (p. 309)

wxDateTime::GetNumberOfDays

static wxDateTime_t GetNumberOfDays(int year, Calendar cal = Gregorian)

static wxDateTime_t GetNumberOfDays(Month month, int year = Inv_Year, Calendar
cal = Gregorian)

Returns the number of days in the given year or in the given month of the year.

The only supported value for cal parameter is currently Gregorian.

CHAPTER 5

309

wxPython note: These two methods are named GetNumberOfDaysInYearand
GetNumberOfDaysInMonth in wxPython.

wxDateTime::GetWeekDayName

static wxString GetWeekDayName (WeekDay weekday, NameFlags flags =
Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given week day.

See also

GetMonthName (p. 308)

wxDateTime::IsLeapYear

static bool IsLeapYear(int year = Inv_Year, Calendar cal = Gregorian)

Returns TRUE if the year is a leap one in the specified calendar.

This functions supports Gregorian and Julian calendars.

wxDateTime::IsWestEuropeanCountry

static bool IsWestEuropeanCountry(Country country = Country_Default)

This function returns TRUE if the specified (or default) country is one of Western
European ones. It is used internally by wxDateTime to determine the DST convention
and date and time formatting rules.

wxDateTime::IsDSTApplicable

static bool IsDSTApplicable(int year = Inv_Year, Country country = Country_Default)

Returns TRUE if DST was usedi n the given year (the current one by default) in the given
country.

wxDateTime::Now

static wxDateTime Now()

Returns the object corresopnding to the current time.

Example:

CHAPTER 5

310

 wxDateTime now = wxDateTime::Now();
 printf("Current time in Paris:\t%s\n", now.Format("%c",
wxDateTime::CET).c_str());

Note that this function is accurate up to second: wxDateTime::UNow (p. 310) should be
used for better precision (but it is less efficient and might not be availabel on all
platforms).

See also

Today (p. 310)

wxDateTime::SetCountry

static void SetCountry(Country country)

Sets the country to use by default. This setting influences the DST calculations, date
formatting and other things.

The possible values for country parameter are enumerated inwxDateTime constants
section (p. 299).

See also

GetCountry (p. 307)

wxDateTime::Today

static wxDateTime Today()

Returns the object corresponding to the midnight of the current day (i.e. the same as
Now() (p. 309), but the time part is set to 0).

See also

Now (p. 309)

wxDateTime::UNow

static wxDateTime UNow()

Returns the object corresopnding to the current time including the milliseconds if a
function to get time with such precision is available on the current platform (supported
under most Unices and Win32).

See also

CHAPTER 5

311

Now (p. 309)

wxDateTime::wxDateTime

 wxDateTime ()

Default constructor. Use one of Set() functions to initialize the object later.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (time_t timet)

Same as Set (p. 311).

wxPython note: This constructor is named wxDateTimeFromTimeT in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (const struct tm& tm)

Same as Set (p. 311)

wxPython note: Unsupported.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (double jdn)

Same as Set (p. 311)

wxPython note: This constructor is named wxDateTimeFromJDN in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime (wxDateTime_t hour, wxDateTime_t minute = 0,
wxDateTime_t second = 0, wxDateTime_t millisec = 0)

Same as Set (p. 311)

wxPython note: This constructor is named wxDateTimeFromHMS in wxPython.

wxDateTime::wxDateTime

CHAPTER 5

312

wxDateTime& wxDateTime (wxDateTime_t day, Month month = Inv_Month,
wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0,
wxDateTime_t millisec = 0)

Same as Set (p. 313)

wxPython note: This constructor is named wxDateTimeFromDMY in wxPython.

wxDateTime::SetToCurrent

wxDateTime& SetToCurrent()

Sets the date and time of to the current values. Same as assigning the result of Now()
(p. 309) to this object.

wxDateTime::Set

wxDateTime& Set(time_t timet)

Constructs the object from timet value holding the number of seconds since Jan 1, 1970.

wxPython note: This method is named SetTimeT in wxPython.

wxDateTime::Set

wxDateTime& Set(const struct tm& tm)

Sets the date and tiem from the broken down representation in the standardtm structure.

wxPython note: Unsupported.

wxDateTime::Set

wxDateTime& Set(double jdn)

Sets the date from the so-called Julian Day Number.

By definition, the Julian Day Number, usually abbreviated as JDN, of a particular instant
is the fractional number of days since 12 hours Universal Coordinated Time
(Greenwhich mean noon) on January 1 of the year -4712 in the Julian proleptic calendar.

wxPython note: This method is named SetJDN in wxPython.

CHAPTER 5

313

wxDateTime::Set

wxDateTime& Set(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t
second = 0, wxDateTime_t millisec = 0)

Sets the date to be equal to Today (p. 310) and the time from supplied parameters.

wxPython note: This method is named SetHMS in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t day, Month month = Inv_Month, wxDateTime_t
hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0, wxDateTime_t millisec
= 0)

Sets the date and time from the parameters.

wxDateTime::ResetTime

wxDateTime& ResetTime ()

Reset time to midnight (00:00:00) without changing the date.

wxDateTime::SetYear

wxDateTime& SetYear(int year)

Sets the year without changing other date components.

wxDateTime::SetMonth

wxDateTime& SetMonth(Month month)

Sets the month without changing other date components.

wxDateTime::SetDay

wxDateTime& SetDay(wxDateTime_t day)

Sets the day without changing other date components.

wxDateTime::SetHour

CHAPTER 5

314

wxDateTime& SetHour(wxDateTime_t hour)

Sets the hour without changing other date components.

wxDateTime::SetMinute

wxDateTime& SetMinute (wxDateTime_t minute)

Sets the minute without changing other date components.

wxDateTime::SetSecond

wxDateTime& SetSecond(wxDateTime_t second)

Sets the second without changing other date components.

wxDateTime::SetMillisecond

wxDateTime& SetMillisecond(wxDateTime_t millisecond)

Sets the millisecond without changing other date components.

wxDateTime::operator=

wxDateTime& operator(time_t timet)

Same as Set (p. 312).

wxDateTime::operator=

wxDateTime& operator(const struct tm& tm)

Same as Set (p. 312).

wxDateTime::IsValid

bool IsValid() const

Returns TRUE if the object represents a valid time moment.

wxDateTime::GetTm

CHAPTER 5

315

Tm GetTm(const TimeZone& tz = Local) const

Returns broken down representation of the date and time.

wxDateTime::GetTicks

time_t GetTicks() const

Returns the number of seconds since Jan 1, 1970. An assert failure will occur if the date
is not in the range covered by time_t type.

wxDateTime::GetYear

int GetYear(const TimeZone& tz = Local) const

Returns the year in the given timezone (local one by default).

wxDateTime::GetMonth

Month GetMonth(const TimeZone& tz = Local) const

Returns the month in the given timezone (local one by default).

wxDateTime::GetDay

wxDateTime_t GetDay(const TimeZone& tz = Local) const

Returns the day in the given timezone (local one by default).

wxDateTime::GetWeekDay

WeekDay GetWeekDay(const TimeZone& tz = Local) const

Returns the week day in the given timezone (local one by default).

wxDateTime::GetHour

wxDateTime_t GetHour(const TimeZone& tz = Local) const

Returns the hour in the given timezone (local one by default).

wxDateTime::GetMinute

CHAPTER 5

316

wxDateTime_t GetMinute (const TimeZone& tz = Local) const

Returns the minute in the given timezone (local one by default).

wxDateTime::GetSecond

wxDateTime_t GetSecond(const TimeZone& tz = Local) const

Returns the seconds in the given timezone (local one by default).

wxDateTime::GetMillisecond

wxDateTime_t GetMillisecond(const TimeZone& tz = Local) const

Returns the milliseconds in the given timezone (local one by default).

wxDateTime::GetDayOfYear

wxDateTime_t GetDayOfYear(const TimeZone& tz = Local) const

Returns the day of the year (in 1...366 range) in the given timezone (local one by
default).

wxDateTime::GetWeekOfYear

wxDateTime_t GetWeekOfYear(WeekFlags flags = Monday_First, const TimeZone&
tz = Local) const

Returns the number of the week of the year this date is in. The first week of the year is,
according to international standards, the one containing Jan 4. The week number is in
1...53 range (52 for non leap years).

The function depends on the week start (p. 299) convention specified by the flags
argument.

wxDateTime::GetWeekOfMonth

wxDateTime_t GetWeekOfMonth(WeekFlags flags = Monday_First, const
TimeZone& tz = Local) const

Returns the ordinal number of the week in the month (in 1...5 range).

As GetWeekOfYear (p. 316), this function supports both conventions for the week start.
See the description of theseweek start (p. 299) conventions.

CHAPTER 5

317

wxDateTime::IsWorkDay

bool IsWorkDay(Country country = Country_Default) const

Returns TRUE is this day is not a holiday in the given country.

wxDateTime::IsGregorianDate

bool IsGregorianDate (GregorianAdoption country = Gr_Standard) const

Returns TRUE if the given date os later than the date of adoption of the Gregorian
calendar in the given country (and hence the Gregorian calendar calculations make
sense for it).

wxDateTime::IsEqualTo

bool IsEqualTo(const wxDateTime&datetime) const

Returns TRUE if the two dates are strictly identical.

wxDateTime::IsEarlierThan

bool IsEarlierThan(const wxDateTime&datetime) const

Returns TRUE if this date precedes the given one.

wxDateTime::IsLaterThan

bool IsLaterThan(const wxDateTime&datetime) const

Returns TRUE if this date is later than the given one.

wxDateTime::IsStrictlyBetween

bool IsStrictlyBetween(const wxDateTime&t1, const wxDateTime&t2) const

Returns TRUE if this date lies strictly between the two others,

See also

IsBetween (p. 318)

CHAPTER 5

318

wxDateTime::IsBetween

bool IsBetween(const wxDateTime&t1, const wxDateTime&t2) const

Returns TRUE if IsStrictlyBetween (p. 317)is TRUE or if the date is equal to one of the limi
values.

See also

IsStrictlyBetween (p. 317)

wxDateTime::IsSameDate

bool IsSameDate(const wxDateTime&dt) const

Returns TRUE if the date is the same without comparing the time parts.

wxDateTime::IsSameTime

bool IsSameTime (const wxDateTime&dt) const

Returns TRUE if the time is the same (although dates may differ).

wxDateTime::IsEqualUpTo

bool IsEqualUpTo(const wxDateTime& dt, const wxTimeSpan& ts) const

Returns TRUE if the date is equal to another one up to the given time interval, i.e. if the
absolute difference between the two dates is less than this interval.

wxDateTime::Add

wxDateTime Add(const wxTimeSpan& diff) const

wxDateTime& Add(const wxTimeSpan& diff)

wxDateTime& operator+=(const wxTimeSpan& diff)

Adds the given time span to this object.

wxPython note: This method is named AddTS in wxPython.

wxDateTime::Subtract

CHAPTER 5

319

wxDateTime Subtract(const wxTimeSpan& diff) const

wxDateTime& Subtract(const wxTimeSpan& diff)

wxDateTime& operator-=(const wxTimeSpan& diff)

Subtracts the given time span from this object.

wxPython note: This method is named SubtractTS in wxPython.

wxDateTime::Add

wxDateTime Add(const wxDateSpan& diff) const

wxDateTime& Add(const wxDateSpan& diff)

wxDateTime& operator+=(const wxDateSpan& diff)

Adds the given date span to this object.

wxPython note: This method is named AddDS in wxPython.

wxDateTime::Subtract

wxDateTime Subtract(const wxDateSpan& diff) const

wxDateTime& Subtract(const wxDateSpan& diff)

wxDateTime& operator-=(const wxDateSpan& diff)

Subtracts the given date span from this object.

wxPython note: This method is named SubtractDS in wxPython.

wxDateTime::Subtract

wxTimeSpan Subtract(const wxDateTime& dt) const

Subtracts another date from this one and returns the difference between them as
wxTimeSpan.

wxDateTime::ParseRfc822Date

const wxChar * ParseRfc822Date (const wxChar* date)

CHAPTER 5

320

Parses the string date looking for a date formatted according to the RFC 822 in it. The
exact description of this format may, of course, be found in the RFC (section 5), but,
briefly, this is the format used in the headers of Internet email messages and one of the
most common strings expressing date in this format may be something like "Sat, 18
Dec 1999 00:48:30 +0100".

Returns NULL if the conversion failed, otherwise return the pointer to the character
immediately following the part of the string which could be parsed. If the entire string
contains only the date in RFC 822 format, the returned pointer will be pointing to a NUL
character.

This function is intenionally strict, it will return an error for any string which is not RFC
822 compliant. If you need to parse date formatted in more free ways, you should use
ParseDateTime (p. 320) orParseDate (p. 321) instead.

wxDateTime::ParseFormat

const wxChar * ParseFormat(const wxChar *date, const wxChar *format = "%c",
const wxDateTime& dateDef = wxDefaultDateTime)

This function parses the string date according to the givenformat. The system
strptime(3) function is used whenever available, but even if it is not, this function is
still implemented (although support for locale-dependent format specificators such as
"%c", "%x" or"%X" may be not perfect). This function does handle the month and
weekday names in the current locale on all platforms, however.

Please the description of ANSI C function strftime(3) for the syntax of the format
string.

The dateDef parameter is used to fill in the fields which could not be determined from the
format string. For example, if the format is "%d"(the day of the month), the month and
the year are taken from dateDef. If it is not specified, Today (p. 310) is used as the
default date.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDateTime

const wxChar * ParseDateTime (const wxChar *datetime)

Parses the string datetime containing the date and time in free format. This function tries
as hard as it can to interpret the given string as date and time. Unlike ParseRfc822Date
(p. 319), it will accept anything that may be accepted and will only reject strings which
can not be parsed in any way at all.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

CHAPTER 5

321

wxDateTime::ParseDate

const wxChar * ParseDate (const wxChar *date)

This function is like ParseDateTime (p. 320), but it only allows the date to be specified. It
is thus less flexible then ParseDateTime (p. 320), but also has less chances to
misinterpret the user input.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseTime

const wxChar * ParseTime (const wxChar *time)

This functions is like ParseDateTime (p. 320), but only allows the time to be specified in
the input string.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::Format

wxString Format(const wxChar *format = "%c", const TimeZone& tz = Local) const

This function does the same as the standard ANSI C strftime(3) function. Please
see its description for the meaning of format parameter.

It also accepts a few wxWindows-specific extensions: you can optionally specify the
width of the field to follow using printf(3)-like syntax and the format specificator %l
can be used to get the number of milliseconds.

See also

ParseFormat (p. 320)

wxDateTime::FormatDate

wxString FormatDate() const

Identical to calling Format() (p. 321) with "%x"argument (which means 'preferred date
representation for the current locale').

CHAPTER 5

322

wxDateTime::FormatTime

wxString FormatTime () const

Identical to calling Format() (p. 321) with "%X"argument (which means 'preferred time
representation for the current locale').

wxDateTime::FormatISODate

wxString FormatISODate() const

This function returns the date representation in the ISO 8601 format (YYYY-MM-DD).

wxDateTime::FormatISOTime

wxString FormatISOTime () const

This function returns the time representation in the ISO 8601 format (HH:MM:SS).

wxDateTime::SetToWeekDayInSameWeek

wxDateTime& SetToWeekDayInSameWeek(WeekDay weekday)

Adjusts the date so that it will still lie in the same week as before, but its week day will be
the given one.

Returns the reference to the modified object itself.

wxDateTime::GetWeekDayInSameWeek

wxDateTime GetWeekDayInSameWeek(WeekDay weekday) const

Returns the copy of this object to whichSetToWeekDayInSameWeek (p. 322) was
applied.

wxDateTime::SetToNextWeekDay

wxDateTime& SetToNextWeekDay(WeekDay weekday)

Sets the date so that it will be the first weekday following the current date.

Returns the reference to the modified object itself.

CHAPTER 5

323

wxDateTime::GetNextWeekDay

wxDateTime GetNextWeekDay(WeekDay weekday) const

Returns the copy of this object to whichSetToNextWeekDay (p. 322) was applied.

wxDateTime::SetToPrevWeekDay

wxDateTime& SetToPrevWeekDay(WeekDay weekday)

Sets the date so that it will be the last weekday before the current date.

Returns the reference to the modified object itself.

wxDateTime::GetPrevWeekDay

wxDateTime GetPrevWeekDay(WeekDay weekday) const

Returns the copy of this object to whichSetToPrevWeekDay (p. 323) was applied.

wxDateTime::SetToWeekDay

bool SetToWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month, int
year = Inv_Year)

Sets the date to the n-th weekday in the given month of the given year (the current
month and year are used by default). The parameter nmay be either opsitive (counting
from the beginning of the month) or negative (counting from the end of it).

For example, SetToWeekDay(2, wxDateTime::Wed) will set the date to the second
Wednesday in the current month andSetToWeekDay(-1, wxDateTime::Sun) - to
the last Sunday in it.

Returns TRUE if the date was modified successfully, FALSEotherwise meaning that the
specified date doesn't exist.

wxDateTime::GetWeekDay

wxDateTime GetWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month,
int year = Inv_Year) const

Returns the copy of this object to whichSetToWeekDay (p. 323) was applied.

wxDateTime::SetToLastWeekDay

CHAPTER 5

324

bool SetToLastWeekDay(WeekDay weekday, Month month = Inv_Month, int year =
Inv_Year)

The effect of calling this function is the same as of callingSetToWeekDay(-1,
weekday, month, year). The date will be set to the lastweekday in the given month
and year (the current ones by default).

Always returns TRUE.

wxDateTime::GetLastWeekDay

wxDateTime GetLastWeekDay(WeekDay weekday, Month month = Inv_Month, int
year = Inv_Year)

Returns the copy of this object to whichSetToLastWeekDay (p. 323) was applied.

wxDateTime::SetToTheWeek

bool SetToTheWeek(wxDateTime_t numWeek, WeekDay weekday = Mon)

Set the date to the given weekday in the week with given numbernumWeek. The number
should be in range 1...53 and FALSE will be returned if the specified date doesn't exist.
TRUE is returned if the date was changed successfully.

wxDateTime::GetWeek

wxDateTime GetWeek(wxDateTime_t numWeek , WeekDay weekday = Mon) const

Returns the copy of this object to whichSetToTheWeek (p. 324) was applied.

wxDateTime::SetToLastMonthDay

wxDateTime& SetToLastMonthDay(Month month = Inv_Month, int year = Inv_Year)

Sets the date to the last day in the specified month (the current one by default).

Returns the reference to the modified object itself.

wxDateTime::GetLastMonthDay

wxDateTime GetLastMonthDay(Month month = Inv_Month, int year = Inv_Year)
const

CHAPTER 5

325

Returns the copy of this object to whichSetToLastMonthDay (p. 324) was applied.

wxDateTime::SetToYearDay

wxDateTime& SetToYearDay(wxDateTime_t yday)

Sets the date to the day number yday in the same year (i.e., unlike the other functions,
this one does not use the current year). The day number should be in the range 1...366
for the leap years and 1...365 for the other ones.

Returns the reference to the modified object itself.

wxDateTime::GetYearDay

wxDateTime GetYearDay(wxDateTime_t yday) const

Returns the copy of this object to whichSetToYearDay (p. 325) was applied.

wxDateTime::GetJulianDayNumber

double GetJulianDayNumber() const

Returns the JDN (p. 312) corresponding to this date. Beware of rounding errors!

See also

GetModifiedJulianDayNumber (p. 325)

wxDateTime::GetJDN

double GetJDN() const

Synonym for GetJulianDayNumber (p. 325).

wxDateTime::GetModifiedJulianDayNumber

double GetModifiedJulianDayNumber() const

Returns the Modified Julian Day Number (MJD) which is, by definition, equal to JDN -
2400000.5. The MJDs are simpler to work with as the integral MJDs correspond to
midnights of the dates in the Gregorian calendar and not th noons like JDN. The MJD 0
is Nov 17, 1858.

wxDateTime::GetMJD

CHAPTER 5

326

double GetMJD() const

Synonym for GetModifiedJulianDayNumber (p. 325).

wxDateTime::GetRataDie

double GetRataDie () const

Return the Rata Die number of this date.

By definition, the Rata Die number is a date specified as the number of days relative to a
base date of December 31 of the year 0. Thus January 1 of the year 1 is Rata Die day 1.

wxDateTime::ToTimezone

wxDateTime ToTimezone (const TimeZone& tz, bool noDST = FALSE) const

Transform the date to the given time zone. If noDST is TRUE, no DST adjustments will
be made.

Returns the date in the new time zone.

wxDateTime::MakeTimezone

wxDateTime& MakeTimezone (const TimeZone& tz, bool noDST = FALSE)

Modifies the object in place to represent the date in another time zone. IfnoDST is TRUE,
no DST adjustments will be made.

wxDateTime::ToGMT

wxDateTime ToGMT(bool noDST = FALSE) const

This is the same as calling ToTimezone (p. 326) with the argument GMT0.

wxDateTime::MakeGMT

wxDateTime& MakeGMT(bool noDST = FALSE)

This is the same as calling MakeTimezone (p. 326) with the argument GMT0.

wxDateTime::IsDST

CHAPTER 5

327

int IsDST(Country country = Country_Default) const

Returns TRUE if the DST is applied for this date in the given country.

See also

GetBeginDST (p. 307) andGetEndDST (p. 308)

wwxxDDaatteeTTiimmeeHHoolliiddaayyAAuutthhoorriittyy

TODO

wwxxDDaatteeTTiimmeeWWoorrkkDDaayyss

TODO

wwxxDDCC

A wxDC is a device context onto which graphics and text can be drawn. It is intended to
represent a number of output devices in a generic way, so a window can have a device
context associated with it, and a printer also has a device context. In this way, the same
piece of code may write to a number of different devices, if the device context is used as
a parameter.

Derived types of wxDC have documentation for specific features only, so refer to this
section for most device context information.

Please note that in addition to the versions of the methods documented here, there are
also versions which accept single wxPoint parameter instead of two wxCoord ones or
wxPoint and wxSize instead of four of them.

Derived from

wxObject (p. 897)

Include files

<wx/dc.h>

CHAPTER 5

328

See also

Overview (p. 1589)

wxDC::wxDC

 wxDC()

Constructor.

wxDC::~wxDC

 ~wxDC()

Destructor.

wxDC::BeginDrawing

void BeginDrawing()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

Drawing to a wxDialog panel device context outside of a system-generated OnPaint
event requires this pair of calls to enclose drawing code. This is because a Windows
dialog box does not have a retained device context associated with it, and selections
such as pen and brush settings would be lost if the device context were obtained and
released for each drawing operation.

wxDC::Blit

bool Blit(wxCoord xdest, wxCoord ydest, wxCoord width, wxCoord height, wxDC*
source, wxCoord xsrc, wxCoord ysrc, int logicalFunc = wxCOPY, bool useMask =
FALSE, wxCoord xsrcMask = -1, wxCoord ysrcMask = -1)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to
copy, source DC, source coordinates, logical function, whether to use a bitmap mask,
and mask source position.

Parameters

xdest

Destination device context x position.

CHAPTER 5

329

ydest
Destination device context y position.

width

Width of source area to be copied.

height

Height of source area to be copied.

source

Source device context.

xsrc

Source device context x position.

ysrc

Source device context y position.

logicalFunc

Logical function to use: see wxDC::SetLogicalFunction (p. 343).

useMask

If TRUE, Blit does a transparent blit using the mask that is associated with the
bitmap selected into the source device context. The Windows implementation does
the following if MaskBlt cannot be used:

 1. Creates a temporary bitmap and copies the destination area into it.
 2. Copies the source area into the temporary bitmap using the specified

logical function.
 3. Sets the masked area in the temporary bitmap to BLACK by ANDing the

mask bitmap with the temp bitmap with the foreground colour set to
WHITE and the bg colour set to BLACK.

 4. Sets the unmasked area in the destination area to BLACK by ANDing the
mask bitmap with the destination area with the foreground colour set to
BLACK and the background colour set to WHITE.

 5. ORs the temporary bitmap with the destination area.
 6. Deletes the temporary bitmap.

This sequence of operations ensures that the source's transparent area need not
be black, and logical functions are supported.

Note: on Windows, blitting with masks can be speeded up considerably by
compiling wxWindows with the wxUSE_DC_CACHE option enabled. You can also
influence whether MaskBlt or the explicit mask blitting code above is used, by
using wxSystemOptions (p. 1201) and setting the no-maskblt option to 1.

xsrcMask

Source x position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on

CHAPTER 5

330

Windows.

ysrcMask

Source y position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on
Windows.

Remarks

There is partial support for Blit in wxPostScriptDC, under X.

See wxMemoryDC (p. 828) for typical usage.

See also

wxMemoryDC (p. 828), wxBitmap (p. 55), wxMask (p. 808)

wxDC::CalcBoundingBox

void CalcBoundingBox(wxCoord x, wxCoord y)

Adds the specified point to the bounding box which can be retrieved with MinX (p. 341),
MaxX (p. 341) and MinY (p. 341), MaxY (p. 341) functions.

See also

ResetBoundingBox (p. 341)

wxDC::Clear

void Clear()

Clears the device context using the current background brush.

wxDC::CrossHair

void CrossHair(wxCoord x, wxCoord y)

Displays a cross hair using the current pen. This is a vertical and horizontal line the
height and width of the window, centred on the given point.

wxDC::DestroyClippingRegion

void DestroyClippingRegion()

Destroys the current clipping region so that none of the DC is clipped. See also

CHAPTER 5

331

wxDC::SetClippingRegion (p. 342).

wxDC::DeviceToLogicalX

wxCoord DeviceToLogicalX(wxCoord x)

Convert device X coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalXRel

wxCoord DeviceToLogicalXRel(wxCoord x)

Convert device X coordinate to relative logical coordinate, using the current mapping
mode. Use this function for converting a width, for example.

wxDC::DeviceToLogicalY

wxCoord DeviceToLogicalY(wxCoord y)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalYRel

wxCoord DeviceToLogicalYRel(wxCoord y)

Convert device Y coordinate to relative logical coordinate, using the current mapping
mode. Use this function for converting a height, for example.

wxDC::DrawArc

void DrawArc(wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, double xc,
double yc)

Draws an arc of a circle, centred on (xc, yc), with starting point (x1, y1) and ending at
(x2, y2). The current pen is used for the outline and the current brush for filling the
shape.

The arc is drawn in an anticlockwise direction from the start point to the end point.

wxDC::DrawBitmap

void DrawBitmap(const wxBitmap& bitmap, wxCoord x, wxCoord y, bool
transparent)

CHAPTER 5

332

Draw a bitmap on the device context at the specified point. If transparent is TRUE and
the bitmap has a transparency mask, the bitmap will be drawn transparently.

When drawing a mono-bitmap, the current text foreground colour will be used to draw
the foreground of the bitmap (all bits set to 1), and the current text background colour to
draw the background (all bits set to 0). See also SetTextForeground (p. 345),
SetTextBackground (p. 345) and wxMemoryDC (p. 828).

wxDC::DrawCheckMark

void DrawCheckMark(wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void DrawCheckMark(const wxRect &rect)

Draws a check mark inside the given rectangle.

wxDC::DrawEllipse

void DrawEllipse (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Draws an ellipse contained in the rectangle with the given top left corner, and with the
given size. The current pen is used for the outline and the current brush for filling the
shape.

wxDC::DrawEllipticArc

void DrawEllipticArc(wxCoord x, wxCoord y, wxCoord width, wxCoord height,
double start, double end)

Draws an arc of an ellipse. The current pen is used for drawing the arc and the current
brush is used for drawing the pie.

x and y specify the x and y coordinates of the upper-left corner of the rectangle that
contains the ellipse.

width and height specify the width and height of the rectangle that contains the ellipse.

start and end specify the start and end of the arc relative to the three-o'clock position
from the center of the rectangle. Angles are specified in degrees (360 is a complete
circle). Positive values mean counter-clockwise motion. If start is equal to end, a
complete ellipse will be drawn.

wxDC::DrawIcon

void DrawIcon(const wxIcon& icon, wxCoord x, wxCoord y)

CHAPTER 5

333

Draw an icon on the display (does nothing if the device context is PostScript). This can
be the simplest way of drawing bitmaps on a window.

wxDC::DrawLine

void DrawLine (wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2)

Draws a line from the first point to the second. The current pen is used for drawing the
line.

wxDC::DrawLines

void DrawLines(int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0)

void DrawLines(wxList *points, wxCoord xoffset = 0, wxCoord yoffset = 0)

Draws lines using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate. The current pen is used for drawing the lines. The
programmer is responsible for deleting the list of points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

wxDC::DrawPolygon

void DrawPolygon(int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

void DrawPolygon(wxList *points, wxCoord xoffset = 0, wxCoord yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

Draws a filled polygon using an array of points of size n, or list of pointers to points,
adding the optional offset coordinate.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE.

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling. The programmer is responsible for
deleting the list of points.

Note that wxWindows automatically closes the first and last points.

CHAPTER 5

334

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

wxDC::DrawPoint

void DrawPoint(wxCoord x, wxCoord y)

Draws a point using the current pen.

wxDC::DrawRectangle

void DrawRectangle (wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Draws a rectangle with the given top left corner, and with the given size. The current
pen is used for the outline and the current brush for filling the shape.

wxDC::DrawRotatedText

void DrawRotatedText(const wxString& text, wxCoord x, wxCoord y, double angle)

Draws the text rotated by angle degrees.

NB: Under Win9x only TrueType fonts can be drawn by this function. In particular, a font
different from wxNORMAL_FONT should be used as the latter is not a TrueType font.
wxSWISS_FONT is an example of a font which is.

See also

DrawText (p. 335)

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle(wxCoord x, wxCoord y, wxCoord width, wxCoord
height, double radius = 20)

Draws a rectangle with the given top left corner, and with the given size. The corners
are quarter-circles using the given radius. The current pen is used for the outline and the
current brush for filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If
radius is negative, the absolute value is assumed to be the proportion of the smallest
dimension of the rectangle. This means that the corner can be a sensible size relative to
the size of the rectangle, and also avoids the strange effects X produces when the

CHAPTER 5

335

corners are too big for the rectangle.

wxDC::DrawSpline

void DrawSpline (wxList *points)

Draws a spline between all given control points, using the current pen. Doesn't delete
the wxList and contents. The spline is drawn using a series of lines, using an algorithm
taken from the X drawing program 'XFIG'.

void DrawSpline (wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, wxCoord x3,
wxCoord y3)

Draws a three-point spline using the current pen.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts a reference to an array of
wxPoint objects.

wxDC::DrawText

void DrawText(const wxString& text, wxCoord x, wxCoord y)

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

The coordinates refer to the top-left corner of the rectangle bounding the string. See
wxDC::GetTextExtent (p. 339) for how to get the dimensions of a text string, which can
be used to position the text more precisely.

NB: under wxGTK the current logical function (p. 337) is used by this function but it is
ignored by wxMSW. Thus, you should avoid using logical functions with this function in
portable programs.

wxDC::EndDoc

void EndDoc()

Ends a document (only relevant when outputting to a printer).

wxDC::EndDrawing

void EndDrawing()

CHAPTER 5

336

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

wxDC::EndPage

void EndPage ()

Ends a document page (only relevant when outputting to a printer).

wxDC::FloodFill

void FloodFill(wxCoord x, wxCoord y, const wxColour& colour, int
style=wxFLOOD_SURFACE)

Flood fills the device context starting from the given point, using the current brush colour,
and using a style:

 • wxFLOOD_SURFACE: the flooding occurs until a colour other than the given

colour is encountered.
 • wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.

Note: this function is available in MS Windows only.

wxDC::GetBackground

wxBrush& GetBackground()

const wxBrush& GetBackground() const

Gets the brush used for painting the background (see wxDC::SetBackground (p. 342)).

wxDC::GetBackgroundMode

int GetBackgroundMode () const

Returns the current background mode: wxSOLID or wxTRANSPARENT.

See also

SetBackgroundMode (p. 342)

wxDC::GetBrush

wxBrush& GetBrush()

CHAPTER 5

337

const wxBrush& GetBrush() const

Gets the current brush (see wxDC::SetBrush (p. 343)).

wxDC::GetCharHeight

wxCoord GetCharHeight()

Gets the character height of the currently set font.

wxDC::GetCharWidth

wxCoord GetCharWidth()

Gets the average character width of the currently set font.

wxDC::GetClippingBox

void GetClippingBox(wxCoord *x, wxCoord *y, wxCoord *width, wxCoord *height)

Gets the rectangle surrounding the current clipping region.

wxPython note: No arguments are required and the four values defining the rectangle
are returned as a tuple.

wxPerl note: This method takes no arguments and returns a four element list(x, y,
width, height)

wxDC::GetFont

wxFont& GetFont()

const wxFont& GetFont() const

Gets the current font (see wxDC::SetFont (p. 343)).

wxDC::GetLogicalFunction

int GetLogicalFunction()

Gets the current logical function (see wxDC::SetLogicalFunction (p. 343)).

wxDC::GetMapMode

CHAPTER 5

338

int GetMapMode ()

Gets the mapping mode for the device context (see wxDC::SetMapMode (p. 344)).

wxDC::GetOptimization

bool GetOptimization()

Returns TRUE if device context optimization is on. See wxDC::SetOptimization (p. 344)
for details.

wxDC::GetPen

wxPen& GetPen()

const wxPen& GetPen() const

Gets the current pen (see wxDC::SetPen (p. 345)).

wxDC::GetPixel

bool GetPixel(wxCoord x, wxCoord y, wxColour *colour)

Sets colour to the colour at the specified location. Windows only; an X implementation is
being worked on. Not available for wxPostScriptDC or wxMetafileDC.

wxPython note: For wxPython the wxColour value is returned and is not required as a
parameter.

wxPerl note: This method only takes the parameters x and y and returns a Wx::Colour
value

wxDC::GetSize

void GetSize(wxCoord *width, wxCoord *height)

For a PostScript device context, this gets the maximum size of graphics drawn so far on
the device context.

For a Windows printer device context, this gets the horizontal and vertical resolution. It
can be used to scale graphics to fit the page when using a Windows printer device
context. For example, if maxX and maxY represent the maximum horizontal and vertical
'pixel' values used in your application, the following code will scale the graphic to fit on
the printer page:

CHAPTER 5

339

 wxCoord w, h;
 dc.GetSize(&w, &h);
 double scaleX=(double)(maxX/w);
 double scaleY=(double)(maxY/h);
 dc.SetUserScale(min(scaleX,scaleY),min(scaleX,scaleY));

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize

GetSizeTuple() Returns a 2-tuple (width, height)

wxPerl note: In place of a single overloaded method, wxPerl uses:

GetSize() Returns a Wx::Size

GetSizeWH() Returns a 2-element list (width, height
)

wxDC::GetTextBackground

wxColour& GetTextBackground()

const wxColour& GetTextBackground() const

Gets the current text background colour (see wxDC::SetTextBackground (p. 345)).

wxDC::GetTextExtent

void GetTextExtent(const wxString& string, wxCoord *w, wxCoord *h,
 wxCoord *descent = NULL, wxCoord *externalLeading = NULL, wxFont *font =
NULL)

Gets the dimensions of the string using the currently selected font. string is the text
string to measure, w and h are the total width and height respectively, descent is the
dimension from the baseline of the font to the bottom of the descender, and
externalLeading is any extra vertical space added to the font by the font designer
(usually is zero).

The optional parameter font specifies an alternative to the currently selected font: but
note that this does not yet work under Windows, so you need to set a font for the device
context first.

See also wxFont (p. 506), wxDC::SetFont (p. 343).

wxPython note: The following methods are implemented in wxPython:

CHAPTER 5

340

GetTextExtent(string) Returns a 2-tuple, (width, height)

GetFullTextExtent(string, font=NULL)Returns a 4-tuple, (width, height,

descent, externalLeading)

wxPerl note: In wxPerl this method is implemented as GetTextExtent(string, font =
undef) returning a four element array (width, height, descent,
externalLeading)

wxDC::GetTextForeground

wxColour& GetTextForeground()

const wxColour& GetTextForeground() const

Gets the current text foreground colour (see wxDC::SetTextForeground (p. 345)).

wxDC::GetUserScale

void GetUserScale(double *x, double *y)

Gets the current user scale factor (set by SetUserScale (p. 345)).

wxPerl note: In wxPerl this method takes no arguments and returna a two element
array (x, y)

wxDC::LogicalToDeviceX

wxCoord LogicalToDeviceX(wxCoord x)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceXRel

wxCoord LogicalToDeviceXRel(wxCoord x)

Converts logical X coordinate to relative device coordinate, using the current mapping
mode. Use this for converting a width, for example.

wxDC::LogicalToDeviceY

wxCoord LogicalToDeviceY(wxCoord y)

CHAPTER 5

341

Converts logical Y coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceYRel

wxCoord LogicalToDeviceYRel(wxCoord y)

Converts logical Y coordinate to relative device coordinate, using the current mapping
mode. Use this for converting a height, for example.

wxDC::MaxX

wxCoord MaxX()

Gets the maximum horizontal extent used in drawing commands so far.

wxDC::MaxY

wxCoord MaxY()

Gets the maximum vertical extent used in drawing commands so far.

wxDC::MinX

wxCoord MinX()

Gets the minimum horizontal extent used in drawing commands so far.

wxDC::MinY

wxCoord MinY()

Gets the minimum vertical extent used in drawing commands so far.

wxDC::Ok

bool Ok()

Returns TRUE if the DC is ok to use.

wxDC::ResetBoundingBox

void ResetBoundingBox()

CHAPTER 5

342

Resets the bounding box: after a call to this function, the bounding box doesn't contain
anything.

See also

CalcBoundingBox (p. 330)

wxDC::SetDeviceOrigin

void SetDeviceOrigin(wxCoord x, wxCoord y)

Sets the device origin (i.e., the origin in pixels after scaling has been applied).

This function may be useful in Windows printing operations for placing a graphic on a
page.

wxDC::SetBackground

void SetBackground(const wxBrush& brush)

Sets the current background brush for the DC.

wxDC::SetBackgroundMode

void SetBackgroundMode (int mode)

mode may be one of wxSOLID and wxTRANSPARENT. This setting determines whether
text will be drawn with a background colour or not.

wxDC::SetClippingRegion

void SetClippingRegion(wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void SetClippingRegion(const wxRegion& region)

Sets the clipping region for the DC. The clipping region is an area to which drawing is
restricted. Possible uses for the clipping region are for clipping text or for speeding up
window redraws when only a known area of the screen is damaged.

See also

wxDC::DestroyClippingRegion (p. 330), wxRegion (p. 1044)

wxDC::SetPalette

CHAPTER 5

343

void SetPalette (const wxPalette& palette)

If this is a window DC or memory DC, assigns the given palette to the window or bitmap
associated with the DC. If the argument is wxNullPalette, the current palette is selected
out of the device context, and the original palette restored.

See wxPalette (p. 912) for further details.

wxDC::SetBrush

void SetBrush(const wxBrush& brush)

Sets the current brush for the DC.

If the argument is wxNullBrush, the current brush is selected out of the device context,
and the original brush restored, allowing the current brush to be destroyed safely.

See also wxBrush (p. 81).

See also wxMemoryDC (p. 828) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetFont

void SetFont(const wxFont& font)

Sets the current font for the DC.

If the argument is wxNullFont, the current font is selected out of the device context, and
the original font restored, allowing the current font to be destroyed safely.

See also wxFont (p. 506).

wxDC::SetLogicalFunction

void SetLogicalFunction(int function)

Sets the current logical function for the device context. This determines how a source
pixel (from a pen or brush colour, or source device context if using wxDC::Blit (p. 328))
combines with a destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values
are as follows:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst

CHAPTER 5

344

wxAND_REVERSE src AND (NOT dst)
wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst
wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxXOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine
the current colour and the background using a logical operation. wxINVERT is
commonly used for drawing rubber bands or moving outlines, since drawing twice
reverts to the original colour.

wxDC::SetMapMode

void SetMapMode (int int)

The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units. Note that in X, text drawing isn't handled
consistently with the mapping mode; a font is always specified in point size. However,
setting the user scale (see wxDC::SetUserScale (p. 345)) scales the text appropriately.
In Windows, scaleable TrueType fonts are always used; in X, results depend on
availability of fonts, but usually a reasonable match is found.

Note that the coordinate origin should ideally be selectable, but for now is always at the
top left of the screen/printer.

Drawing to a Windows printer device context under UNIX uses the current mapping
mode, but mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

wxMM_TWIPS Each logical unit is 1/20 of a point, or 1/1440 of an inch.
wxMM_POINTS Each logical unit is a point, or 1/72 of an inch.
wxMM_METRIC Each logical unit is 1 mm.
wxMM_LOMETRIC Each logical unit is 1/10 of a mm.
wxMM_TEXT Each logical unit is 1 pixel.

wxDC::SetOptimization

void SetOptimization(bool optimize)

CHAPTER 5

345

If optimize is TRUE (the default), this function sets optimization mode on. This currently
means that under X, the device context will not try to set a pen or brush property if it is
known to be set already. This approach can fall down if non-wxWindows code is using
the same device context or window, for example when the window is a panel on which
the windowing system draws panel items. The wxWindows device context 'memory' will
now be out of step with reality.

Setting optimization off, drawing, then setting it back on again, is a trick that must
occasionally be employed.

wxDC::SetPen

void SetPen(const wxPen& pen)

Sets the current pen for the DC.

If the argument is wxNullPen, the current pen is selected out of the device context, and
the original pen restored.

See also wxMemoryDC (p. 828) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetTextBackground

void SetTextBackground(const wxColour& colour)

Sets the current text background colour for the DC.

wxDC::SetTextForeground

void SetTextForeground(const wxColour& colour)

Sets the current text foreground colour for the DC.

See also wxMemoryDC (p. 828) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetUserScale

void SetUserScale(double xScale, double yScale)

Sets the user scaling factor, useful for applications which require 'zooming'.

wxDC::StartDoc

CHAPTER 5

346

bool StartDoc(const wxString& message)

Starts a document (only relevant when outputting to a printer). Message is a message to
show whilst printing.

wxDC::StartPage

bool StartPage()

Starts a document page (only relevant when outputting to a printer).

wwxxDDCCCClliippppeerr

This is a small helper class which sets the specified to its constructor clipping region and
then automatically destroyes it in its destructor. Using it ensures that unwanted clipping
region is not left set on the DC.

Derived from

No base class

Include files

<wx/dc.h>

See also

wxDC (p. 327)

wxDCClipper::wxDCClipper

 wxDCClipper(wxDC& dc, wxCoord x,wxCoord y,wxCoord w,wxCoord h,)

 wxDCClipper(wxDC& dc, const wxRect& rect)

Constructor: sets the the clipping region for the given device context to the specified
rectangle.

wxDCClipper::~wxDCClipper

 ~wxDCClipper()

CHAPTER 5

347

Destructor: destroyes the clipping region set in the constructor.

wwxxDDDDEECClliieenntt

A wxDDEClient object represents the client part of a client-server DDE (Dynamic Data
Exchange) conversation.

To create a client which can communicate with a suitable server, you need to derive a
class from wxDDEConnection and another from wxDDEClient. The custom
wxDDEConnection class will intercept communications in a 'conversation' with a server,
and the custom wxDDEServer is required so that a user-overridden
wxDDEClient::OnMakeConnection (p. 348) member can return a wxDDEConnection of
the required class, when a connection is made.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPClient (p. 1229).

Derived from

wxClientBase
wxObject (p. 897)

Include files

<wx/dde.h>

See also

wxDDEServer (p. 352), wxDDEConnection (p. 348), Interprocess communications
overview (p. 1646)

wxDDEClient::wxDDEClient

 wxDDEClient()

Constructs a client object.

wxDDEClient::MakeConnection

wxConnectionBase * MakeConnection(const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server specified by the host (machine name under

CHAPTER 5

348

UNIX, ignored under Windows), service name (must contain an integer port number
under UNIX), and topic string. If the server allows a connection, a wxDDEConnection
object will be returned. The type of wxDDEConnection returned can be altered by
overriding the wxDDEClient::OnMakeConnection (p. 348) member to return your own
derived connection object.

wxDDEClient::OnMakeConnection

wxConnectionBase * OnMakeConnection()

The type of wxDDEConnection (p. 348) returned from a wxDDEClient::MakeConnection
(p. 347) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxDDEConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxDDEConnection::OnAdvise (p.
350). You may also want to store application-specific data in instances of the new class.

wxDDEClient::ValidHost

bool ValidHost(const wxString& host)

Returns TRUE if this is a valid host name, FALSE otherwise. This always returns TRUE
under MS Windows.

wwxxDDDDEECCoonnnneeccttiioonn

A wxDDEConnection object represents the connection between a client and a server. It
can be created by making a connection using a wxDDEClient (p. 347) object, or by the
acceptance of a connection by a wxDDEServer (p. 352) object. The bulk of a DDE
(Dynamic Data Exchange) conversation is controlled by calling members in a
wxDDEConnection object or by overriding its members.

An application should normally derive a new connection class from wxDDEConnection,
in order to override the communication event handlers to do something interesting.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPConnection (p.
1231).

Derived from

wxConnectionBase
wxObject (p. 897)

CHAPTER 5

349

Include files

<wx/dde.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat
{
 wxIPC_INVALID = 0,
 wxIPC_TEXT = 1, /* CF_TEXT */
 wxIPC_BITMAP = 2, /* CF_BITMAP */
 wxIPC_METAFILE = 3, /* CF_METAFILEPICT */
 wxIPC_SYLK = 4,
 wxIPC_DIF = 5,
 wxIPC_TIFF = 6,
 wxIPC_OEMTEXT = 7, /* CF_OEMTEXT */
 wxIPC_DIB = 8, /* CF_DIB */
 wxIPC_PALETTE = 9,
 wxIPC_PENDATA = 10,
 wxIPC_RIFF = 11,
 wxIPC_WAVE = 12,
 wxIPC_UNICODETEXT = 13,
 wxIPC_ENHMETAFILE = 14,
 wxIPC_FILENAME = 15, /* CF_HDROP */
 wxIPC_LOCALE = 16,
 wxIPC_PRIVATE = 20
};

See also

wxDDEClient (p. 347), wxDDEServer (p. 352), Interprocess communications overview
(p. 1646)

wxDDEConnection::wxDDEConnection

 wxDDEConnection()

 wxDDEConnection(char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxDDEConnection, then the constructor should not be called directly, since the
default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxDDEServer::OnAcceptConnection (p. 353) and/or wxDDEClient::OnMakeConnection
(p. 348) members should be replaced by functions which construct the new connection
object. If the arguments of the wxDDEConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

CHAPTER 5

350

wxDDEConnection::Advise

bool Advise(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxDDEConnection::OnAdvise (p.
350)member to be called. Returns TRUE if successful.

wxDDEConnection::Execute

bool Execute (char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxDDEConnection::Poke (p. 351) in
that respect). Causes the server connection's wxDDEConnection::OnExecute (p. 351)
member to be called. Returns TRUE if successful.

wxDDEConnection::Disconnect

bool Disconnect()

Called by the client or server application to disconnect from the other program; it causes
the wxDDEConnection::OnDisconnect (p. 350) message to be sent to the corresponding
connection object in the other program. The default behaviour of OnDisconnect is to
delete the connection, but the calling application must explicitly delete its side of the
connection having called Disconnect. Returns TRUE if successful.

wxDDEConnection::OnAdvise

virtual bool OnAdvise(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

wxDDEConnection::OnDisconnect

virtual bool OnDisconnect()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.

CHAPTER 5

351

wxDDEConnection::OnExecute

virtual bool OnExecute (const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.

wxDDEConnection::OnPoke

virtual bool OnPoke(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxDDEConnection::OnRequest

virtual char* OnRequest(const wxString& topic, const wxString& item, int *size,
wxIPCFormat format)

Message sent to the server application when the client calls
wxDDEConnection::Request (p. 352). The server should respond by returning a
character string from OnRequest, or NULL to indicate no data.

wxDDEConnection::OnStartAdvise

virtual bool OnStartAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning FALSE.

wxDDEConnection::OnStopAdvise

virtual bool OnStopAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning FALSE, although this doesn't have much meaning in practice.

wxDDEConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =

CHAPTER 5

352

wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxDDEConnection::OnPoke
(p. 351) member to be called. Returns TRUE if successful.

wxDDEConnection::Request

char* Request(const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxDDEConnection::OnRequest (p. 351) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL
otherwise.

wxDDEConnection::StartAdvise

bool StartAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxDDEConnection::OnStartAdvise (p. 351) member to
be called. Returns TRUE if the server okays it, FALSE otherwise.

wxDDEConnection::StopAdvise

bool StopAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxDDEConnection::OnStopAdvise (p. 351) member to be called.
Returns TRUE if the server okays it, FALSE otherwise.

wwxxDDDDEESSeerrvveerr

A wxDDEServer object represents the server part of a client-server DDE (Dynamic Data
Exchange) conversation.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPServer (p. 1235).

Derived from

wxServerBase

Include files

CHAPTER 5

353

<wx/dde.h>

See also

wxDDEClient (p. 347), wxDDEConnection (p. 348), IPC overview (p. 1646)

wxDDEServer::wxDDEServer

 wxDDEServer()

Constructs a server object.

wxDDEServer::Create

bool Create (const wxString& service)

Registers the server using the given service name. Under UNIX, the string must contain
an integer id which is used as an Internet port number. FALSE is returned if the call
failed (for example, the port number is already in use).

wxDDEServer::OnAcceptConnection

virtual wxConnectionBase * OnAcceptConnection(const wxString& topic)

When a client calls MakeConnection, the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxDDEConnection type, or of a user-
derived type. If the topic is "STDIO'', the application may wish to refuse the connection.
Under UNIX, when a server is created the OnAcceptConnection message is always sent
for standard input and output, but in the context of DDE messages it doesn't make a lot
of sense.

wwxxDDeebbuuggCCoonntteexxtt

A class for performing various debugging and memory tracing operations. Full
functionality (such as printing out objects currently allocated) is only present in a
debugging build of wxWindows, i.e. if the __WXDEBUG__ symbol is defined.
wxDebugContext and related functions and macros can be compiled out by setting
wxUSE_DEBUG_CONTEXT to 0 is setup.h

Derived from

CHAPTER 5

354

No parent class.

Include files

<wx/memory.h>

See also

Overview (p. 1553)

wxDebugContext::Check

int Check()

Checks the memory blocks for errors, starting from the currently set checkpoint.

Return value

Returns the number of errors, so a value of zero represents success. Returns -1 if an
error was detected that prevents further checking.

wxDebugContext::Dump

bool Dump()

Performs a memory dump from the currently set checkpoint, writing to the current debug
stream. Calls the Dump member function for each wxObject derived instance.

Return value

TRUE if the function succeeded, FALSE otherwise.

wxDebugContext::GetCheckPrevious

bool GetCheckPrevious()

Returns TRUE if the memory allocator checks all previous memory blocks for errors. By
default, this is FALSE since it slows down execution considerably.

See also

wxDebugContext::SetCheckPrevious (p. 357)

CHAPTER 5

355

wxDebugContext::GetDebugMode

bool GetDebugMode ()

Returns TRUE if debug mode is on. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

See also

wxDebugContext::SetDebugMode (p. 357)

wxDebugContext::GetLevel

int GetLevel()

Gets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 790) functionality.

See also

wxDebugContext::SetLevel (p. 358)

wxDebugContext::GetStream

ostream& GetStream()

Returns the output stream associated with the debug context.

This is obsolete, replaced by wxLog (p. 790) functionality.

See also

wxDebugContext::SetStream (p. 358)

wxDebugContext::GetStreamBuf

streambuf* GetStreamBuf()

Returns a pointer to the output stream buffer associated with the debug context. There
may not necessarily be a stream buffer if the stream has been set by the user.

This is obsolete, replaced by wxLog (p. 790) functionality.

CHAPTER 5

356

wxDebugContext::HasStream

bool HasStream()

Returns TRUE if there is a stream currently associated with the debug context.

This is obsolete, replaced by wxLog (p. 790) functionality.

See also

wxDebugContext::SetStream (p. 358), wxDebugContext::GetStream (p. 355)

wxDebugContext::PrintClasses

bool PrintClasses()

Prints a list of the classes declared in this application, giving derivation and whether
instances of this class can be dynamically created.

See also

wxDebugContext::PrintStatistics (p. 356)

wxDebugContext::PrintStatistics

bool PrintStatistics(bool detailed = TRUE)

Performs a statistics analysis from the currently set checkpoint, writing to the current
debug stream. The number of object and non-object allocations is printed, together with
the total size.

Parameters

detailed

If TRUE, the function will also print how many objects of each class have been
allocated, and the space taken by these class instances.

See also

wxDebugContext::PrintStatistics (p. 356)

wxDebugContext::SetCheckpoint

void SetCheckpoint(bool all = FALSE)

CHAPTER 5

357

Sets the current checkpoint: Dump and PrintStatistics operations will be performed from
this point on. This allows you to ignore allocations that have been performed up to this
point.

Parameters

all

If TRUE, the checkpoint is reset to include all memory allocations since the
program started.

wxDebugContext::SetCheckPrevious

void SetCheckPrevious(bool check)

Tells the memory allocator to check all previous memory blocks for errors. By default,
this is FALSE since it slows down execution considerably.

See also

wxDebugContext::GetCheckPrevious (p. 354)

wxDebugContext::SetDebugMode

void SetDebugMode (bool debug)

Sets the debug mode on or off. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

By default, debug mode is on if __WXDEBUG__ is defined. If the application uses this
function, it should make sure that all object memory allocated is deallocated with the
same value of debug mode. Otherwise, the delete operator might try to look for memory
information that does not exist.

See also

wxDebugContext::GetDebugMode (p. 355)

wxDebugContext::SetFile

bool SetFile (const wxString& filename)

Sets the current debug file and creates a stream. This will delete any existing stream
and stream buffer. By default, the debug context stream outputs to the debugger
(Windows) or standard error (other platforms).

CHAPTER 5

358

wxDebugContext::SetLevel

void SetLevel(int level)

Sets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 790) functionality.

See also

wxDebugContext::GetLevel (p. 355)

wxDebugContext::SetStandardError

bool SetStandardError()

Sets the debugging stream to be the debugger (Windows) or standard error (other
platforms). This is the default setting. The existing stream will be flushed and deleted.

This is obsolete, replaced by wxLog (p. 790) functionality.

wxDebugContext::SetStream

void SetStream(ostream* stream , streambuf* streamBuf = NULL)

Sets the stream and optionally, stream buffer associated with the debug context. This
operation flushes and deletes the existing stream (and stream buffer if any).

This is obsolete, replaced by wxLog (p. 790) functionality.

Parameters

stream

Stream to associate with the debug context. Do not set this to NULL.

streamBuf

Stream buffer to associate with the debug context.

See also

wxDebugContext::GetStream (p. 355), wxDebugContext::HasStream (p. 356)

wwxxDDeebbuuggSSttrreeaammBBuuff

CHAPTER 5

359

This class allows you to treat debugging output in a similar (stream-based) fashion on
different platforms. Under Windows, an ostream constructed with this buffer outputs to
the debugger, or other program that intercepts debugging output. On other platforms, the
output goes to standard error (cerr).

This is soon to be obsolete, replaced by wxLog (p. 790) functionality.

Derived from

streambuf

Include files

<wx/memory.h>

Example

 wxDebugStreamBuf streamBuf;
 ostream stream(&streamBuf);

 stream << "Hello world!" << endl;

See also

Overview (p. 1553)

wwxxDDiiaalloogg

A dialog box is a window with a title bar and sometimes a system menu, which can be
moved around the screen. It can contain controls and other windows.

Derived from

wxPanel (p. 916)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/dialog.h>

Remarks

There are two kinds of dialog - modal and modeless. A modal dialog blocks program
flow and user input on other windows until it is dismissed, whereas a modeless dialog
behaves more like a frame in that program flow continues, and input on other windows is

CHAPTER 5

360

still possible. You specify the type of dialog with the wxDIALOG_MODAL and
wxDIALOG_MODELESS window styles.

A dialog may be loaded from a wxWindows resource file (extension wxr), which may
itself be created by Dialog Editor. For details, see The wxWindows resource system (p.
1576), wxWindows resource functions (p. 1485) and the resource sample.

An application can define an OnCloseWindow (p. 1391) handler for the dialog to respond
to system close events.

Window styles

wxDIALOG_MODAL Specifies that the dialog box will be modal.
wxCAPTION Puts a caption on the dialog box.
wxDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION,

wxSYSTEM_MENU and wxTHICK_FRAME
wxRESIZE_BORDER Display a resizeable frame around the window.
wxSYSTEM_MENU Display a system menu.
wxTHICK_FRAME Display a thick frame around the window.
wxSTAY_ON_TOP The dialog stays on top of all other windows (Windows

only).
wxNO_3D Under Windows, specifies that the child controls should not

have 3D borders unless specified in the control.
wxDIALOG_NO_PARENT By default, the dialogs crated with NULL parent window will

be given the applications top level window (p. 24) as
parent. Use this style to prevent this from happening and
create a really orphan dialog (note that this is not
recommended for modal dialogs).

wxDIALOG_EX_CONTEXTHELP Under Windows, puts a query button on the
caption. When pressed, Windows will go into a context-
sensitive help mode and wxWindows will send a
wxEVT_HELP event if the user clicked on an application
window. Note that this is an extended style and must be
set by calling SetExtraStyle (p. 1408) before Create is
called (two-step construction).

Under Unix or Linux, MWM (the Motif Window Manager) or other window managers
reckognizing the MHM hints should be running for any of these styles to have an effect.

See also Generic window styles (p. 1567).

See also

wxDialog overview (p. 1570), wxFrame (p. 525), Resources (p. 9), Validator overview (p.
1571)

CHAPTER 5

361

wxDialog::wxDialog

 wxDialog()

Default constructor.

 wxDialog(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Constructor.

Parameters

parent

Can be NULL, a frame or another dialog box.

id

An identifier for the dialog. A value of -1 is taken to mean a default.

title

The title of the dialog.

pos

The dialog position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWindows, depending on platform.

size

The dialog size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style

The window style. See wxDialog (p. 359).

name

Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxDialog::Create (p. 362)

wxDialog::~wxDialog

 ~wxDialog()

Destructor. Deletes any child windows before deleting the physical window.

CHAPTER 5

362

wxDialog::Centre

void Centre(int direction = wxBOTH)

Centres the dialog box on the display.

Parameters

direction

May be wxHORIZONTAL, wxVERTICAL or wxBOTH.

wxDialog::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Used for two-step dialog box construction. See wxDialog::wxDialog (p. 361) for details.

wxDialog::EndModal

void EndModal(int retCode)

Ends a modal dialog, passing a value to be returned from the wxDialog::ShowModal (p.
367) invocation.

Parameters

retCode

The value that should be returned by ShowModal.

See also

wxDialog::ShowModal (p. 367), wxDialog::GetReturnCode (p. 362),
wxDialog::SetReturnCode (p. 366)

wxDialog::GetReturnCode

int GetReturnCode ()

Gets the return code for this window.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 367) returns a code to the application.

CHAPTER 5

363

See also

wxDialog::SetReturnCode (p. 366), wxDialog::ShowModal (p. 367), wxDialog::EndModal
(p. 362)

wxDialog::GetTitle

wxString GetTitle() const

Returns the title of the dialog box.

wxDialog::Iconize

void Iconize(const bool iconize)

Iconizes or restores the dialog. Windows only.

Parameters

iconize

If TRUE, iconizes the dialog box; if FALSE, shows and restores it.

Remarks

Note that in Windows, iconization has no effect since dialog boxes cannot be iconized.
However, applications may need to explicitly restore dialog boxes under Motif which
have user-iconizable frames, and under Windows calling Iconize(FALSE) will bring
the window to the front, as does Show(TRUE).

wxDialog::IsIconized

bool IsIconized() const

Returns TRUE if the dialog box is iconized. Windows only.

Remarks

Always returns FALSE under Windows since dialogs cannot be iconized.

wxDialog::IsModal

bool IsModal() const

Returns TRUE if the dialog box is modal, FALSE otherwise.

CHAPTER 5

364

wxDialog::OnCharHook

void OnCharHook(wxKeyEvent& event)

This member is called to allow the window to intercept keyboard events before they are
processed by child windows.

For more information, see wxWindow::OnCharHook (p. 1389)

Remarks

wxDialog implements this handler to fake a cancel command if the escape key has been
pressed. This will dismiss the dialog.

wxDialog::OnApply

void OnApply(wxCommandEvent& event)

The default handler for the wxID_APPLY identifier.

Remarks

This function calls wxWindow::Validate (p. 1418) and
wxWindow::TransferDataToWindow (p. 1417).

See also

wxDialog::OnOK (p. 364), wxDialog::OnCancel (p. 364)

wxDialog::OnCancel

void OnCancel(wxCommandEvent& event)

The default handler for the wxID_CANCEL identifier.

Remarks

The function either calls EndModal(wxID_CANCEL) if the dialog is modal, or sets the
return value to wxID_CANCEL and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnOK (p. 364), wxDialog::OnApply (p. 364)

wxDialog::OnOK

void OnOK(wxCommandEvent& event)

CHAPTER 5

365

The default handler for the wxID_OK identifier.

Remarks

The function calls wxWindow::Validate (p. 1418), then
wxWindow::TransferDataFromWindow (p. 1417). If this returns TRUE, the function either
calls EndModal(wxID_OK) if the dialog is modal, or sets the return value to wxID_OK
and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnCancel (p. 364), wxDialog::OnApply (p. 364)

wxDialog::OnSysColourChanged

void OnSysColourChanged(wxSysColourChangedEvent& event)

The default handler for wxEVT_SYS_COLOUR_CHANGED.

Parameters

event

The colour change event.

Remarks

Changes the dialog's colour to conform to the current settings (Windows only). Add an
event table entry for your dialog class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxWindow::OnSysColourChanged (p. 1400) to propagate the notification to child
windows and controls.

See also

wxSysColourChangedEvent (p. 1200)

wxDialog::SetModal

void SetModal(const bool flag)

NB: This function is deprecated and doesn't work for all ports, just use ShowModal (p.
367) to show a modal dialog instead.

Allows the programmer to specify whether the dialog box is modal (wxDialog::Show
blocks control until the dialog is hidden) or modeless (control returns immediately).

Parameters

CHAPTER 5

366

flag

If TRUE, the dialog will be modal, otherwise it will be modeless.

wxDialog::SetReturnCode

void SetReturnCode (int retCode)

Sets the return code for this window.

Parameters

retCode

The integer return code, usually a control identifier.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 367) returns a code to the application. The function wxDialog::EndModal (p. 362)
calls SetReturnCode .

See also

wxDialog::GetReturnCode (p. 362), wxDialog::ShowModal (p. 367), wxDialog::EndModal
(p. 362)

wxDialog::SetTitle

void SetTitle (const wxString& title)

Sets the title of the dialog box.

Parameters

title

The dialog box title.

wxDialog::Show

bool Show(const bool show)

Hides or shows the dialog.

Parameters

show

If TRUE, the dialog box is shown and brought to the front; otherwise the box is

CHAPTER 5

367

hidden. If FALSE and the dialog is modal, control is returned to the calling
program.

Remarks

The preferred way of dismissing a modal dialog is to use wxDialog::EndModal (p. 362).

wxDialog::ShowModal

int ShowModal()

Shows a modal dialog. Program flow does not return until the dialog has been dismissed
with wxDialog::EndModal (p. 362).

Return value

The return value is the value set with wxDialog::SetReturnCode (p. 366).

See also

wxDialog::EndModal (p. 362), wxDialog:GetReturnCode (p. 362),
wxDialog::SetReturnCode (p. 366)

wwxxDDiiaallUUppEEvveenntt

This is the event class for the dialup events sent by wxDialUpManager (p. 368).

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/dialup.h>

wxDialUpEvent::wxDialUpEvent

 wxDialUpEvent(bool isConnected, bool isOwnEvent)

Constructor is only used by wxDialUpManager (p. 368).

CHAPTER 5

368

wxDialUpEvent::IsConnectedEvent

bool IsConnectedEvent() const

Is this a CONNECTED or DISCONNECTED event? In other words, does it notify about
transition from offline to online state or vice versa?

wxDialUpEvent::IsOwnEvent

bool IsOwnEvent() const

Does this event come from wxDialUpManager::Dial() or from some extrenal process (i.e.
does it result from our own attempt to establish the connection)?

wwxxDDiiaallUUppMMaannaaggeerr

This class encapsulates functions dealing with veryfying the connection status of the
workstation (connected to the Internet via a direct connection, connected through a
modem or not connected at all) and to establish this connection if possible/required (i.e.
in the case of the modem).

The program may also wish to be notified about the change in the connection status (for
example, to perform some action when the user connects to the network the next time
or, on the contrary, to stop receiving data from the net when the user hangs up the
modem). For this, you need to use one of the event macros described below.

This class is different from other wxWindows classes in that there is at most one
instance of this class in the program accessed via wxDialUpManager::Create() (p. 369)
and you can't create the objects of this class directly.

Derived from

No base class

Include files

<wx/dialup.h>

Event table macros

To be notified about the change in the network connection status, use these event
handler macros to direct input to member functions that take a wxDialUpEvent (p. 367)
argument.

EVT_DIALUP_CONNECTED(func) A connection with the network was established.
EVT_DIALUP_DISCONNECTED(func) The connection with the network was lost.

CHAPTER 5

369

See also

dialup sample (p. 1517)
wxDialUpEvent (p. 367)

wxDialUpManager::Create

wxDialUpManager* Create ()

This function should create and return the object of the platform-specific class derived
from wxDialUpManager. You should delete the pointer when you are done with it.

wxDialUpManager::IsOk

bool IsOk() const

Returns TRUE if the dialup manager was initialized correctly. If this function returns
FALSE, no other functions will work neither, so it is a good idea to call this function and
check its result before calling any other wxDialUpManager methods

wxDialUpManager::~wxDialUpManager

 ~wxDialUpManager()

Destructor.

wxDialUpManager::GetISPNames

size_t GetISPNames(wxArrayString& names) const

This function is only implemented under Windows.

Fills the array with the names of all possible values for the first parameter to Dial() (p.
369) on this machine and returns their number (may be 0).

wxDialUpManager::Dial

bool Dial(const wxString& nameOfISP = wxEmptyString, const wxString& username
= wxEmptyString, const wxString& password = wxEmptyString, bool async = TRUE)

Dial the given ISP, use username and password to authentificate.

CHAPTER 5

370

The parameters are only used under Windows currently, for Unix you should use
SetConnectCommand (p. 372) to customize this functions behaviour.

If no nameOfISP is given, the function will select the default one (proposing the user to
choose among all connections defined on this machine) and if no username and/or
password are given, the function will try to do without them, but will ask the user if really
needed.

If async parameter is FALSE, the function waits until the end of dialing and returns TRUE
upon successful completion.

If async is TRUE, the function only initiates the connection and returns immediately - the
result is reported via events (an event is sent anyhow, but if dialing failed it will be a
DISCONNECTED one).

wxDialUpManager::IsDialing

bool IsDialing() const

Returns TRUE if (async) dialing is in progress.

See also

Dial (p. 369)

wxDialUpManager::CancelDialing

bool CancelDialing()

Cancel dialing the number initiated with Dial (p. 369) with async parameter equal to
TRUE.

Note that this won't result in DISCONNECTED event being sent.

See also

IsDialing (p. 370)

wxDialUpManager::HangUp

bool HangUp()

Hang up the currently active dial up connection.

wxDialUpManager::IsAlwaysOnline

CHAPTER 5

371

bool IsAlwaysOnline() const

Returns TRUE if the computer has a permanent network connection (i.e. is on a LAN)
and so there is no need to use Dial() function to go online.

NB: this functions tries to guess the result and it is not always guaranteed to be correct,
so it is better to ask user for confirmation or give him a possibility to override it.

wxDialUpManager::IsOnline

bool IsOnline() const

Returns TRUE if the computer is connected to the network: under Windows, this just
means that a RAS connection exists, under Unix we check that the "well-known host"
(as specified by SetWellKnownHost (p. 372)) is reachable.

wxDialUpManager::SetOnlineStatus

void SetOnlineStatus(bool isOnline = TRUE)

Sometimes the built-in logic for determining the online status may fail, so, in general, the
user should be allowed to override it. This function allows to forcefully set the online
status - whatever our internal algorithm may think about it.

See also

IsOnline (p. 371)

wxDialUpManager::EnableAutoCheckOnlineStatus

bool EnableAutoCheckOnlineStatus(size_t nSeconds = 60)

Enable automatical checks for the connection status and sending of
wxEVT_DIALUP_CONNECTED/wxEVT_DIALUP_DISCONNECTED events. The interval
parameter is only for Unix where we do the check manually and specifies how often
should we repeat the check (each minute by default). Under Windows, the notification
about the change of connection status is sent by the system and so we don't do any
polling and this parameter is ignored.

Returns FALSE if couldn't set up automatic check for online status.

wxDialUpManager::DisableAutoCheckOnlineStatus

void DisableAutoCheckOnlineStatus()

CHAPTER 5

372

Disable automatic check for connection status change - notice that
thewxEVT_DIALUP_XXX events won't be sent any more neither.

wxDialUpManager::SetWellKnownHost

void SetWellKnownHost(const wxString& hostname, int portno = 80)

This method is for Unix only.

Under Unix, the value of well-known host is used to check whether we're connected to
the internet. It is unused under Windows, but this function is always safe to call. The
default value is www.yahoo.com:80.

wxDialUpManager::SetConnectCommand

 SetConnectCommand(const wxString& commandDial = wxT("/usr/bin/pon"), const
wxString& commandHangup = wxT("/usr/bin/poff"))

This method is for Unix only.

Sets the commands to start up the network and to hang up again.

See also

Dial (p. 369)

wwxxDDiirr

wxDir is a portable equivalent of Unix open/read/closedir functions which allow
enumerating of the files in a directory. wxDir allows enumerate files as well as
directories.

wxDir also provides a flexible way to enumerate files recursively using Traverse (p. 375)
or a simpler GetAllFiles (p. 375) function.

Example of use:

 wxDir dir(wxGetCwd());

 if (!dir.IsOpened())
 {
 // deal with the error here - wxDir would already log an error
message
 // explaining the exact reason of the failure
 return;
 }

CHAPTER 5

373

 puts("Enumerating object files in current directory:");

 wxString filename;

 bool cont = dir.GetFirst(&filename, filespec, flags);
 while (cont)
 {
 printf("%s\n", filename.c_str());

 cont = dir.GetNext(&filename);
 }

Derived from

No base class

Constants

These flags define what kind of filenames is included in the list of files enumerated by
GetFirst/GetNext

enum
{
 wxDIR_FILES = 0x0001, // include files
 wxDIR_DIRS = 0x0002, // include directories
 wxDIR_HIDDEN = 0x0004, // include hidden files
 wxDIR_DOTDOT = 0x0008, // include '.' and '..'

 // by default, enumerate everything except '.' and '..'
 wxDIR_DEFAULT = wxDIR_FILES | wxDIR_DIRS | wxDIR_HIDDEN
}

Include files

<wx/dir.h>

wxDir::Exists

static bool Exists(const wxString& dir)

Test for existence of a directory with the given name

wxDir::wxDir

 wxDir()

CHAPTER 5

374

Default constructor, use Open() (p. 374) afterwards.

 wxDir(const wxString& dir)

Opens the directory for enumeration, use IsOpened() (p. 374) to test for errors.

wxDir::~wxDir

 ~wxDir()

Destructor cleans up the associated ressources. It is not virtual and so this class is not
meant to be used polymorphically.

wxDir::Open

bool Open(const wxString& dir)

Open the directory for enumerating, returns TRUE on success or FALSE if an error
occurred.

wxDir::IsOpened

bool IsOpened() const

Returns TRUE if the directory was successfully opened by a previous call to Open (p.
374).

wxDir::GetFirst

bool GetFirst(wxString* filename, const wxString& filespec = wxEmptyString, int
flags = wxDIR_DEFAULT) const

Start enumerating all files matching filespec (or all files if it is empty) and flags, return
TRUE on success.

wxDir::GetNext

bool GetNext(wxString* filename) const

Continue enumerating files satisfying the criteria specified by the last call to GetFirst (p.
374).

wxDir::HasFiles

CHAPTER 5

375

bool HasFiles(const wxString&filespec = wxEmptyString)

Returns TRUE if the directory contains any files matching the given filespec. If filespec is
empty, look for any files at all. In any case, even hidden files are taken into account.

wxDir::HasSubDirs

bool HasSubDirs(const wxString&dirspec = wxEmptyString)

Returns TRUE if the directory contains any subdirectories (if a non empty filespec is
given, only check for directories matching it). The hidden subdirectories are taken into
account as well.

wxDir::Traverse

size_t Traverse(wxDirTraverser&sink , const wxString&filespec = wxEmptyString, int
flags = wxDIR_DEFAULT)

Enumerate all files and directories under the given directory recursively calling the
element of the provided wxDirTraverser (p. 376) object for each of them.

More precisely, the function will really recurse into subdirectories if flags contains
wxDIR_DIRS flag. It will ignore the files (but still possibly recurse into subdirectories) if
wxDIR_FILES flag is given.

For each found directory, sink.OnDir() (p. 377) is called and sink.OnFile() (p. 377) is
called for every file. Depending on the return value, the enumeration may continue or
stop.

The function returns the total number of files found or (size_t)-1 on error.

See also: GetAllFiles (p. 375)

wxDir::GetAllFiles

static size_t GetAllFiles(const wxString&dirname, wxArrayString *files, const
wxString&filespec = wxEmptyString, int flags = wxDIR_DEFAULT)

The function appends the names of all the files under directory dirname to the array files
(note that its old contents is preserved). Only files matching the filespec are taken, with
empty spec matching all the files.

The flags parameter should always include wxDIR_FILES or the array would be
unchanged and should include wxDIR_DIRS flag to recurse into subdirectories (both
flags are included in the value by default).

CHAPTER 5

376

See also: Traverse (p. 375)

wwxxDDiirrTTrraavveerrsseerr

wxDirTraverser is an abstract interface which must be implemented by objects passed to
Traverse (p. 375) function.

Example of use (this works almost like GetAllFiles (p. 375)):

 class wxDirTraverserSimple : public wxDirTraverser
 {
 public:
 wxDirTraverserSimple(wxArrayString& files) : m_files(files) { }

 virtual wxDirTraverseResult OnFile(const wxString& filename)
 {
 m_files.Add(filename);
 return wxDIR_CONTINUE;
 }

 virtual wxDirTraverseResult OnDir(const wxString&
WXUNUSED(dirname))
 {
 return wxDIR_CONTINUE;
 }

 private:
 wxArrayString& m_files;
 };

 // get the names of all files in the array
 wxArrayString files;
 wxDirTraverserSimple traverser(files);

 wxDir dir(dirname);
 dir.Traverse(traverser);

Derived from

No base class

Constants

The elements of wxDirTraverseResult are the possible return values of the callback
functions:

enum wxDirTraverseResult
{
 wxDIR_IGNORE = -1, // ignore this directory but continue with
others

CHAPTER 5

377

 wxDIR_STOP, // stop traversing
 wxDIR_CONTINUE // continue into this directory
};

Include files

<wx/dir.h>

wxDirTraverser::OnFile

virtual wxDirTraverseResult OnFile (const wxString&filename)

This function is called for each file. It may return wxDIR_STOP to abort traversing (for
example, if the file being searched is found) or wxDIR_CONTINUE to proceed.

wxDirTraverser::OnDir

virtual wxDirTraverseResult OnDir(const wxString&dirname)

This function is called for each directory. It may return wxSIR_STOP to abort traversing
completely, wxDIR_IGNORE to skip this directory but continue with others or
wxDIR_CONTINUE to enumerate all files and subdirectories in this directory.

wwxxDDiirrDDiiaalloogg

This class represents the directory chooser dialog.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/dirdlg.h>

See also

wxDirDialog overview (p. 1598), wxFileDialog (p. 461)

CHAPTER 5

378

wxDirDialog::wxDirDialog

 wxDirDialog(wxWindow* parent, const wxString& message = "Choose a directory",
const wxString& defaultPath = "", long style = 0, const wxPoint& pos =
wxDefaultPosition)

Constructor. Use wxDirDialog::ShowModal (p. 379) to show the dialog.

Parameters

parent

Parent window.

message

Message to show on the dialog.

defaultPath

The default path, or the empty string.

style

A dialog style, currently unused.

pos

Dialog position. Not implemented.

wxDirDialog::~wxDirDialog

 ~wxDirDialog()

Destructor.

wxDirDialog::GetPath

wxString GetPath() const

Returns the default or user-selected path.

wxDirDialog::GetMessage

wxString GetMessage () const

Returns the message that will be displayed on the dialog.

CHAPTER 5

379

wxDirDialog::GetStyle

long GetStyle() const

Returns the dialog style.

wxDirDialog::SetMessage

void SetMessage(const wxString& message)

Sets the message that will be displayed on the dialog.

wxDirDialog::SetPath

void SetPath(const wxString& path)

Sets the default path.

wxDirDialog::SetStyle

void SetStyle(long style)

Sets the dialog style. This is currently unused.

wxDirDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wwxxDDllllLLooaaddeerr

wxDllLoader is a class providing an interface similar to Unix's dlopen(). It is used by
the wxLibrary framework and manages the actual loading of shared libraries and the
resolving of symbols in them. There are no instances of this class, it simply serves as a
namespace for its static member functions.

Please note that class wxDynamicLibrary (p. 382) provides alternative, friendlier
interface to wxDllLoader.

CHAPTER 5

380

The terms DLL and shared library/object will both be used in the documentation to refer
to the same thing: a .dll file under Windows or .so or .sl one under Unix.

Example of using this class to dynamically load the strlen() function:

#if defined(__WXMSW__)
 static const wxChar *LIB_NAME = _T("kernel32");
 static const wxChar *FUNC_NAME = _T("lstrlenA");
#elif defined(__UNIX__)
 static const wxChar *LIB_NAME = _T("/lib/libc-2.0.7.so");
 static const wxChar *FUNC_NAME = _T("strlen");
#endif

 wxDllType dllHandle = wxDllLoader::LoadLibrary(LIB_NAME);
 if (!dllHandle)
 {
 ... error ...
 }
 else
 {
 typedef int (*strlenType)(char *);
 strlenType pfnStrlen =
(strlenType)wxDllLoader::GetSymbol(dllHandle, FUNC_NAME);
 if (!pfnStrlen)
 {
 ... error ...
 }
 else
 {
 if (pfnStrlen("foo") != 3)
 {
 ... error ...
 }
 else
 {
 ... ok! ...
 }
 }

 wxDllLoader::UnloadLibrary(dllHandle);
 }

Derived from

No base class

Include files

<wx/dynlib.h>

Data structures

This header defines a platfrom-dependent wxDllType typedef which stores a handle to
a loaded DLLs on the given platform.

CHAPTER 5

381

wxDllLoader::GetDllExt

static wxString GetDllExt()

Returns the string containing the usual extension for shared libraries for the given
systems (including the leading dot if not empty).

For example, this function will return ".dll" under Windows or (usually) ".so" under
Unix.

wxDllLoader::GetProgramHandle

wxDllType GetProgramHandle()

This function returns a valid handle for the main program itself. Notice that the NULL
return value is valid for some systems (i.e. doesn't mean that the function failed).

NB: This function is Unix specific. It will always fail under Windows or OS/2.

wxDllLoader::GetSymbol

void * GetSymbol(wxDllType dllHandle, const wxString& name)

This function resolves a symbol in a loaded DLL, such as a variable or function name.

Returned value will be NULL if the symbol was not found in the DLL or if an error
occured.

Parameters

dllHandle

Valid handle previously returned by LoadLibrary (p. 381)

name

Name of the symbol.

wxDllLoader::LoadLibrary

wxDllType LoadLibrary(const wxString & libname, bool* success = NULL)

This function loads a shared library into memory, with libname being the name of the
library: it may be either the full name including path and (platform-dependent)
extenesion, just the basename (no path and no extension) or a basename with

CHAPTER 5

382

extentsion. In the last two cases, the library will be searched in all standard locations.

Returns a handle to the loaded DLL. Use success parameter to test if it is valid. If the
handle is valid, the library must be unloaded later with UnloadLibrary (p. 382).

Parameters

libname

Name of the shared object to load.

success

May point to a bool variable which will be set to TRUE or FALSE; may also be
NULL.

wxDllLoader::UnloadLibrary

void UnloadLibrary(wxDllType dllhandle)

This function unloads the shared library. The handle dllhandle must have been returned
by LoadLibrary (p. 381) previously.

wwxxDDyynnaammiiccLLiibbrraarryy

wxDynamicLibrary is a class representing dynamically loadable library (Windows DLL,
shared library under Unix etc.). It is implemented as a wrapper to wxDllLoader (p. 379).

See also

wxDllLoader (p. 379)

wxDynamicLibrary::wxDynamicLibrary

 wxDynamicLibrary()

 wxDynamicLibrary(const wxString& name)

Constructor. Second form calls Load (p. 383).

wxDynamicLibrary::IsLoaded

bool IsLoaded() const

Returns TRUE if the library was successfully loaded, FALSE otherwise.

CHAPTER 5

383

wxDynamicLibrary::Load

bool Load(const wxString& name)

Loads DLL into memory.

Returns TRUE if the library was successfully loaded, FALSE otherwise.

wxDynamicLibrary::Unload

void Unload()

Unloads the library from memory.

wxDynamicLibrary::GetSymbol

void* GetSymbol(const wxString& name) const

Returns pointer to symbol name in the library or NULL if the library contains no such
symbol.

wwxxDDooccCChhiillddFFrraammee

The wxDocChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for SDI (not MDI) child frames.

The class is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (p. 1360), wxDocument (p. 404), wxDocManager (p. 385)
and wxDocTemplate (p. 399) classes.

See the example application in samples/docview.

Derived from

wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/docview.h>

See also

CHAPTER 5

384

Document/view overview (p. 1599), wxFrame (p. 525)

wxDocChildFrame::m_childDocument

wxDocument* m_childDocument

The document associated with the frame.

wxDocChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

wxDocChildFrame::wxDocChildFrame

 wxDocChildFrame (wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocChildFrame::~wxDocChildFrame

 ~wxDocChildFrame ()

Destructor.

wxDocChildFrame::GetDocument

wxDocument* GetDocument() const

Returns the document associated with this frame.

wxDocChildFrame::GetView

wxView* GetView() const

Returns the view associated with this frame.

CHAPTER 5

385

wxDocChildFrame::OnActivate

void OnActivate(wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocChildFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocChildFrame::SetDocument

void SetDocument(wxDocument *doc)

Sets the document for this frame.

wxDocChildFrame::SetView

void SetView(wxView *view)

Sets the view for this frame.

wwxxDDooccMMaannaaggeerr

The wxDocManager class is part of the document/view framework supported by
wxWindows, and cooperates with the wxView (p. 1360), wxDocument (p. 404) and
wxDocTemplate (p. 399) classes.

Derived from

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/docview.h>

See also

wxDocManager overview (p. 1603), wxDocument (p. 404), wxView (p. 1360),

CHAPTER 5

386

wxDocTemplate (p. 399), wxFileHistory (p. 467)

wxDocManager::m_currentView

wxView* m_currentView

The currently active view.

wxDocManager::m_defaultDocumentNameCounter

int m_defaultDocumentNameCounter

Stores the integer to be used for the next default document name.

wxDocManager::m_fileHistory

wxFileHistory* m_fileHistory

A pointer to an instance of wxFileHistory (p. 467), which manages the history of recently-
visited files on the File menu.

wxDocManager::m_maxDocsOpen

int m_maxDocsOpen

Stores the maximum number of documents that can be opened before existing
documents are closed. By default, this is 10,000.

wxDocManager::m_docs

wxList m_docs

A list of all documents.

wxDocManager::m_flags

long m_flags

Stores the flags passed to the constructor.

CHAPTER 5

387

wxDocManager::m_lastDirectory

The directory last selected by the user when opening a file.

wxFileHistory* m_fileHistory

wxDocManager::m_templates

wxList mnTemplates

A list of all document templates.

wxDocManager::wxDocManager

void wxDocManager(long flags = wxDEFAULT_DOCMAN_FLAGS, bool initialize =
TRUE)

Constructor. Create a document manager instance dynamically near the start of your
application before doing any document or view operations.

flags is currently unused.

If initialize is TRUE, the Initialize (p. 391) function will be called to create a default history
list object. If you derive from wxDocManager, you may wish to call the base constructor
with FALSE, and then call Initialize in your own constructor, to allow your own Initialize
or OnCreateFileHistory functions to be called.

wxDocManager::~wxDocManager

void ~wxDocManager()

Destructor.

wxDocManager::ActivateView

void ActivateView(wxView* doc, bool activate, bool deleting)

Sets the current view.

wxDocManager::AddDocument

void AddDocument(wxDocument *doc)

Adds the document to the list of documents.

CHAPTER 5

388

wxDocManager::AddFileToHistory

void AddFileToHistory(const wxString& filename)

Adds a file to the file history list, if we have a pointer to an appropriate file menu.

wxDocManager::AssociateTemplate

void AssociateTemplate(wxDocTemplate *temp)

Adds the template to the document manager's template list.

wxDocManager::CreateDocument

wxDocument* CreateDocument(const wxString& path, long flags)

Creates a new document in a manner determined by the flags parameter, which can be:

 • wxDOC_NEW Creates a fresh document.
 • wxDOC_SILENT Silently loads the given document file.

If wxDOC_NEW is present, a new document will be created and returned, possibly after
asking the user for a template to use if there is more than one document template. If
wxDOC_SILENT is present, a new document will be created and the given file loaded
into it. If neither of these flags is present, the user will be presented with a file selector
for the file to load, and the template to use will be determined by the extension
(Windows) or by popping up a template choice list (other platforms).

If the maximum number of documents has been reached, this function will delete the
oldest currently loaded document before creating a new one.

wxDocManager::CreateView

wxView* CreateView(wxDocument*doc, long flags)

Creates a new view for the given document. If more than one view is allowed for the
document (by virtue of multiple templates mentioning the same document type), a choice
of view is presented to the user.

wxDocManager::DisassociateTemplate

void DisassociateTemplate(wxDocTemplate *temp)

Removes the template from the list of templates.

CHAPTER 5

389

wxDocManager::FileHistoryAddFilesToMenu

void FileHistoryAddFilesToMenu()

Appends the files in the history list, to all menus managed by the file history object.

void FileHistoryAddFilesToMenu(wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxDocManager::FileHistoryLoad

void FileHistoryLoad(wxConfigBase& config)

Loads the file history from a config object.

See also

wxConfig (p. 166)

wxDocManager::FileHistoryRemoveMenu

void FileHistoryRemoveMenu(wxMenu* menu)

Removes the given menu from the list of menus managed by the file history object.

wxDocManager::FileHistorySave

void FileHistorySave(wxConfigBase& resourceFile)

Saves the file history into a config object. This must be called explicitly by the
application.

See also

wxConfig (p. 166)

wxDocManager::FileHistoryUseMenu

void FileHistoryUseMenu(wxMenu* menu)

Use this menu for appending recently-visited document filenames, for convenient
access. Calling this function with a valid menu pointer enables the history list
functionality.

CHAPTER 5

390

Note that you can add multiple menus using this function, to be managed by the file
history object.

wxDocManager::FindTemplateForPath

wxDocTemplate * FindTemplateForPath(const wxString& path)

Given a path, try to find template that matches the extension. This is only an
approximate method of finding a template for creating a document.

wxDocManager::GetCurrentDocument

wxDocument * GetCurrentDocument()

Returns the document associated with the currently active view (if any).

wxDocManager::GetCurrentView

wxView * GetCurrentView()

Returns the currently active view

wxDocManager::GetDocuments

wxList& GetDocuments()

Returns a reference to the list of documents.

wxDocManager::GetFileHistory

wxFileHistory * GetFileHistory()

Returns a pointer to file history.

wxDocManager::GetLastDirectory

wxString GetLastDirectory() const

Returns the directory last selected by the user when opening a file. Initially empty.

wxDocManager::GetMaxDocsOpen

CHAPTER 5

391

int GetMaxDocsOpen()

Returns the number of documents that can be open simultaneously.

wxDocManager::GetNoHistoryFiles

int GetNoHistoryFiles()

Returns the number of files currently stored in the file history.

wxDocManager::Initialize

bool Initialize()

Initializes data; currently just calls OnCreateFileHistory. Some data cannot always be
initialized in the constructor because the programmer must be given the opportunity to
override functionality. If OnCreateFileHistory was called from the constructor, an
overridden virtual OnCreateFileHistory would not be called due to C++'s 'interesting'
constructor semantics. In fact Initialize is called from the wxDocManager constructor, but
this can be vetoed by passing FALSE to the second argument, allowing the derived
class's constructor to call Initialize, possibly calling a different OnCreateFileHistory from
the default.

The bottom line: if you're not deriving from Initialize, forget it and construct
wxDocManager with no arguments.

wxDocManager::MakeDefaultName

bool MakeDefaultName (const wxString& buf)

Copies a suitable default name into buf. This is implemented by appending an integer
counter to the string unnamed and incrementing the counter.

wxDocManager::OnCreateFileHistory

wxFileHistory * OnCreateFileHistory()

A hook to allow a derived class to create a different type of file history. Called from
Initialize (p. 391).

wxDocManager::OnFileClose

void OnFileClose()

CHAPTER 5

392

Closes and deletes the currently active document.

wxDocManager::OnFileNew

void OnFileNew()

Creates a document from a list of templates (if more than one template).

wxDocManager::OnFileOpen

void OnFileOpen()

Creates a new document and reads in the selected file.

wxDocManager::OnFileSave

void OnFileSave()

Saves the current document by calling wxDocument::Save for the current document.

wxDocManager::OnFileSaveAs

void OnFileSaveAs()

Calls wxDocument::SaveAs for the current document.

wxDocManager::OnMenuCommand

void OnMenuCommand(int cmd)

Processes menu commands routed from child or parent frames. This deals with the
following predefined menu item identifiers:

 • wxID_OPEN Creates a new document and opens a file into it.
 • wxID_CLOSE Closes the current document.
 • wxID_NEW Creates a new document.
 • wxID_SAVE Saves the document.
 • wxID_SAVE_AS Saves the document into a specified filename.

Unrecognized commands are routed to the currently active wxView's
OnMenuCommand.

wxDocManager::RemoveDocument

CHAPTER 5

393

void RemoveDocument(wxDocument *doc)

Removes the document from the list of documents.

wxDocManager::SelectDocumentPath

wxDocTemplate * SelectDocumentPath(wxDocTemplate **templates, int
noTemplates, const wxString& path, const wxString& bufSize, long flags, bool save)

Under Windows, pops up a file selector with a list of filters corresponding to document
templates. The wxDocTemplate corresponding to the selected file's extension is
returned.

On other platforms, if there is more than one document template a choice list is popped
up, followed by a file selector.

This function is used in wxDocManager::CreateDocument.

wxDocManager::SelectDocumentType

wxDocTemplate * SelectDocumentType(wxDocTemplate **templates, int
noTemplates, bool sort=FALSE)

Returns a document template by asking the user (if there is more than one template).
This function is used in wxDocManager::CreateDocument.

Parameters

templates

Pointer to an array of templates from which to choose a desired template.
noTemplates

Number of templates being pointed to by the templates pointer.
sort

If more than one template is passed in in templates, then this parameter indicates
whether the list of templates that the user will have to choose from is sorted or not
when shown the choice box dialog. Default is FALSE.

wxDocManager::SelectViewType

wxDocTemplate * SelectViewType(wxDocTemplate **templates, int noTemplates,
bool sort=FALSE)

Returns a document template by asking the user (if there is more than one template),
displaying a list of valid views. This function is used in wxDocManager::CreateView. The
dialog normally will not appear because the array of templates only contains those
relevant to the document in question, and often there will only be one such.

CHAPTER 5

394

Parameters

templates

Pointer to an array of templates from which to choose a desired template.
noTemplates

Number of templates being pointed to by the templates pointer.
sort

If more than one template is passed in in templates, then this parameter indicates
whether the list of templates that the user will have to choose from is sorted or not
when shown the choice box dialog. Default is FALSE.

wxDocManager::SetLastDirectory

void SetLastDirectory(const wxString& dir)

Sets the directory to be displayed to the user when opening a file. Initially this is empty.

wxDocManager::SetMaxDocsOpen

void SetMaxDocsOpen(int n)

Sets the maximum number of documents that can be open at a time. By default, this is
10,000. If you set it to 1, existing documents will be saved and deleted when the user
tries to open or create a new one (similar to the behaviour of Windows Write, for
example). Allowing multiple documents gives behaviour more akin to MS Word and
other Multiple Document Interface applications.

wwxxDDooccMMDDIICChhiillddFFrraammee

The wxDocMDIChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for MDI child frames.

The class is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (p. 1360), wxDocument (p. 404), wxDocManager (p. 385)
and wxDocTemplate (p. 399) classes.

See the example application in samples/docview.

Derived from

wxMDIChildFrame (p. 816)
wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)

CHAPTER 5

395

wxObject (p. 897)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. 1599), wxMDIChildFrame (p. 816)

wxDocMDIChildFrame::m_childDocument

wxDocument* m_childDocument

The document associated with the frame.

wxDocMDIChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

wxDocMDIChildFrame::wxDocMDIChildFrame

 wxDocMDIChildFrame (wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocMDIChildFrame::~wxDocMDIChildFrame

 ~wxDocMDIChildFrame ()

Destructor.

wxDocMDIChildFrame::GetDocument

wxDocument* GetDocument() const

Returns the document associated with this frame.

wxDocMDIChildFrame::GetView

CHAPTER 5

396

wxView* GetView() const

Returns the view associated with this frame.

wxDocMDIChildFrame::OnActivate

void OnActivate(wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocMDIChildFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocMDIChildFrame::SetDocument

void SetDocument(wxDocument *doc)

Sets the document for this frame.

wxDocMDIChildFrame::SetView

void SetView(wxView *view)

Sets the view for this frame.

wwxxDDooccMMDDIIPPaarreennttFFrraammee

The wxDocMDIParentFrame class provides a default top-level frame for applications
using the document/view framework. This class can only be used for MDI parent frames.

It cooperates with the wxView (p. 1360), wxDocument (p. 404), wxDocManager (p. 385)
and wxDocTemplates (p. 399) classes.

See the example application in samples/docview.

Derived from

CHAPTER 5

397

wxMDIParentFrame (p. 821)
wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. 1599), wxMDIParentFrame (p. 821)

wxDocMDIParentFrame::wxDocMDIParentFrame

 wxDocParentFrame (wxDocManager* manager, wxFrame *parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocMDIParentFrame::~wxDocMDIParentFrame

 ~wxDocMDIParentFrame ()

Destructor.

wxDocMDIParentFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
{
 if (m_docManager->Clear(!event.CanVeto()))
 {
 this->Destroy();
 }
 else

CHAPTER 5

398

 event.Veto();
}

wwxxDDooccPPaarreennttFFrraammee

The wxDocParentFrame class provides a default top-level frame for applications using
the document/view framework. This class can only be used for SDI (not MDI) parent
frames.

It cooperates with the wxView (p. 1360), wxDocument (p. 404), wxDocManager (p. 385)
and wxDocTemplates (p. 399) classes.

See the example application in samples/docview.

Derived from

wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/docview.h>

See also

Document/view overview (p. 1599), wxFrame (p. 525)

wxDocParentFrame::wxDocParentFrame

 wxDocParentFrame (wxDocManager* manager, wxFrame *parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocParentFrame::~wxDocParentFrame

 ~wxDocParentFrame ()

Destructor.

CHAPTER 5

399

wxDocParentFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
{
 if (m_docManager->Clear(!event.CanVeto()))
 {
 this->Destroy();
 }
 else
 event.Veto();
}

wwxxDDooccTTeemmppllaattee

The wxDocTemplate class is used to model the relationship between a document class
and a view class.

Derived from

wxObject (p. 897)

Include files

<wx/docview.h>

See also

wxDocTemplate overview (p. 1602), wxDocument (p. 404), wxView (p. 1360)

wxDocTemplate::m_defaultExt

wxString m_defaultExt

The default extension for files of this type.

CHAPTER 5

400

wxDocTemplate::m_description

wxString m_description

A short description of this template.

wxDocTemplate::m_directory

wxString m_directory

The default directory for files of this type.

wxDocTemplate::m_docClassInfo

wxClassInfo* m_docClassInfo

Run-time class information that allows document instances to be constructed
dynamically.

wxDocTemplate::m_docTypeName

wxString m_docTypeName

The named type of the document associated with this template.

wxDocTemplate::m_documentManager

wxDocTemplate* m_documentManager

A pointer to the document manager for which this template was created.

wxDocTemplate::m_fileFilter

wxString m_fileFilter

The file filter (such as *.txt) to be used in file selector dialogs.

wxDocTemplate::m_flags

long m_flags

The flags passed to the constructor.

CHAPTER 5

401

wxDocTemplate::m_viewClassInfo

wxClassInfo* m_viewClassInfo

Run-time class information that allows view instances to be constructed dynamically.

wxDocTemplate::m_viewTypeName

wxString m_viewTypeName

The named type of the view associated with this template.

wxDocTemplate::wxDocTemplate

 wxDocTemplate(wxDocManager* manager, const wxString& descr, const
wxString& filter, const wxString& dir, const wxString& ext, const wxString&
docTypeName, const wxString& viewTypeName, wxClassInfo* docClassInfo = NULL,
wxClassInfo* viewClassInfo = NULL, long flags = wxDEFAULT_TEMPLATE_FLAGS)

Constructor. Create instances dynamically near the start of your application after
creating a wxDocManager instance, and before doing any document or view operations.

manager is the document manager object which manages this template.

descr is a short description of what the template is for. This string will be displayed in the
file filter list of Windows file selectors.

filter is an appropriate file filter such as *.txt.

dir is the default directory to use for file selectors.

ext is the default file extension (such as txt).

docTypeName is a name that should be unique for a given type of document, used for
gathering a list of views relevant to a particular document.

viewTypeName is a name that should be unique for a given view.

docClassInfo is a pointer to the run-time document class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyDocumentClass). If this is not supplied, you
will need to derive a new wxDocTemplate class and override the CreateDocument
member to return a new document instance on demand.

viewClassInfo is a pointer to the run-time view class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyViewClass). If this is not supplied, you will
need to derive a new wxDocTemplate class and override the CreateView member to

CHAPTER 5

402

return a new view instance on demand.

flags is a bit list of the following:

 • wxTEMPLATE_VISIBLE The template may be displayed to the user in dialogs.
 • wxTEMPLATE_INVISIBLE The template may not be displayed to the user in

dialogs.
 • wxDEFAULT_TEMPLATE_FLAGS Defined as wxTEMPLATE_VISIBLE.

wxDocTemplate::~wxDocTemplate

void ~wxDocTemplate()

Destructor.

wxDocTemplate::CreateDocument

wxDocument * CreateDocument(const wxString& path, long flags = 0)

Creates a new instance of the associated document class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate document instance.

wxDocTemplate::CreateView

wxView * CreateView(wxDocument *doc, long flags = 0)

Creates a new instance of the associated view class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate view instance.

wxDocTemplate::GetDefaultExtension

wxString GetDefaultExtension()

Returns the default file extension for the document data, as passed to the document
template constructor.

wxDocTemplate::GetDescription

wxString GetDescription()

Returns the text description of this template, as passed to the document template
constructor.

CHAPTER 5

403

wxDocTemplate::GetDirectory

wxString GetDirectory()

Returns the default directory, as passed to the document template constructor.

wxDocTemplate::GetDocumentManager

wxDocManager * GetDocumentManager()

Returns a pointer to the document manager instance for which this template was
created.

wxDocTemplate::GetDocumentName

wxString GetDocumentName ()

Returns the document type name, as passed to the document template constructor.

wxDocTemplate::GetFileFilter

wxString GetFileFilter()

Returns the file filter, as passed to the document template constructor.

wxDocTemplate::GetFlags

long GetFlags()

Returns the flags, as passed to the document template constructor.

wxDocTemplate::GetViewName

wxString GetViewName ()

Returns the view type name, as passed to the document template constructor.

wxDocTemplate::IsVisible

bool IsVisible()

CHAPTER 5

404

Returns TRUE if the document template can be shown in user dialogs, FALSE
otherwise.

wxDocTemplate::SetDefaultExtension

void SetDefaultExtension(const wxString& ext)

Sets the default file extension.

wxDocTemplate::SetDescription

void SetDescription(const wxString& descr)

Sets the template description.

wxDocTemplate::SetDirectory

void SetDirectory(const wxString& dir)

Sets the default directory.

wxDocTemplate::SetDocumentManager

void SetDocumentManager(wxDocManager *manager)

Sets the pointer to the document manager instance for which this template was created.
Should not be called by the application.

wxDocTemplate::SetFileFilter

void SetFileFilter(const wxString& filter)

Sets the file filter.

wxDocTemplate::SetFlags

void SetFlags(long flags)

Sets the internal document template flags (see the constructor description for more
details).

wwxxDDooccuummeenntt

CHAPTER 5

405

The document class can be used to model an application's file-based data. It is part of
the document/view framework supported by wxWindows, and cooperates with the
wxView (p. 1360), wxDocTemplate (p. 399) and wxDocManager (p. 385) classes.

Derived from

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/docview.h>

See also

wxDocument overview (p. 1601), wxView (p. 1360), wxDocTemplate (p. 399),
wxDocManager (p. 385)

wxDocument::m_commandProcessor

wxCommandProcessor* m_commandProcessor

A pointer to the command processor associated with this document.

wxDocument::m_documentFile

wxString m_documentFile

Filename associated with this document ("" if none).

wxDocument::m_documentModified

bool m_documentModified

TRUE if the document has been modified, FALSE otherwise.

wxDocument::m_documentTemplate

wxDocTemplate * m_documentTemplate

A pointer to the template from which this document was created.

CHAPTER 5

406

wxDocument::m_documentTitle

wxString m_documentTitle

Document title. The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.

wxDocument::m_documentTypeName

wxString m_documentTypeName

The document type name given to the wxDocTemplate constructor, copied to this
variable when the document is created. If several document templates are created that
use the same document type, this variable is used in wxDocManager::CreateView to
collate a list of alternative view types that can be used on this kind of document. Do not
change the value of this variable.

wxDocument::m_documentViews

wxList m_documentViews

List of wxView instances associated with this document.

wxDocument::wxDocument

 wxDocument()

Constructor. Define your own default constructor to initialize application-specific data.

wxDocument::~wxDocument

 ~wxDocument()

Destructor. Removes itself from the document manager.

wxDocument::AddView

virtual bool AddView(wxView *view)

If the view is not already in the list of views, adds the view and calls
OnChangedViewList.

wxDocument::Close

CHAPTER 5

407

virtual bool Close()

Closes the document, by calling OnSaveModified and then (if this returned TRUE)
OnCloseDocument. This does not normally delete the document object: use
DeleteAllViews to do this implicitly.

wxDocument::DeleteAllViews

virtual bool DeleteAllViews()

Calls wxView::Close and deletes each view. Deleting the final view will implicitly delete
the document itself, because the wxView destructor calls RemoveView. This in turns
calls wxDocument::OnChangedViewList, whose default implemention is to save and
delete the document if no views exist.

wxDocument::GetCommandProcessor

wxCommandProcessor* GetCommandProcessor() const

Returns a pointer to the command processor associated with this document.

See wxCommandProcessor (p. 161).

wxDocument::GetDocumentTemplate

wxDocTemplate* GetDocumentTemplate() const

Gets a pointer to the template that created the document.

wxDocument::GetDocumentManager

wxDocManager* GetDocumentManager() const

Gets a pointer to the associated document manager.

wxDocument::GetDocumentName

wxString GetDocumentName () const

Gets the document type name for this document. See the comment for
documentTypeName (p. 406).

wxDocument::GetDocumentWindow

CHAPTER 5

408

wxWindow* GetDocumentWindow() const

Intended to return a suitable window for using as a parent for document-related dialog
boxes. By default, uses the frame associated with the first view.

wxDocument::GetFilename

wxString GetFilename () const

Gets the filename associated with this document, or "" if none is associated.

wxDocument::GetFirstView

wxView * GetFirstView() const

A convenience function to get the first view for a document, because in many cases a
document will only have a single view.

See also: GetViews (p. 408)

wxDocument::GetPrintableName

virtual void GetPrintableName (wxString& name) const

Copies a suitable document name into the supplied name buffer. The default function
uses the title, or if there is no title, uses the filename; or if no filename, the string
unnamed.

wxDocument::GetTitle

wxString GetTitle() const

Gets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.

wxDocument::GetViews

wxList & GetViews() const

Returns the list whose elements are the views on the document.

See also: GetFirstView (p. 408)

CHAPTER 5

409

wxDocument::IsModified

virtual bool IsModified() const

Returns TRUE if the document has been modified since the last save, FALSE otherwise.
You may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

See also Modify (p. 409).

wxDocument::LoadObject

virtual istream& LoadObject(istream& stream)

virtual wxInputStream& LoadObject(wxInputStream& stream)

Override this function and call it from your own LoadObject before streaming your own
data. LoadObject is called by the framework automatically when the document contents
need to be loaded.

Note that only one of these forms exists, depending on how wxWindows was configured.

wxDocument::Modify

virtual void Modify(bool modify)

Call with TRUE to mark the document as modified since the last save, FALSE otherwise.
You may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

See also IsModified (p. 409).

wxDocument::OnChangedViewList

virtual void OnChangedViewList()

Called when a view is added to or deleted from this document. The default
implementation saves and deletes the document if no views exist (the last one has just
been removed).

wxDocument::OnCloseDocument

virtual bool OnCloseDocument()

The default implementation calls DeleteContents (an empty implementation) sets the
modified flag to FALSE. Override this to supply additional behaviour when the document

CHAPTER 5

410

is closed with Close.

wxDocument::OnCreate

virtual bool OnCreate (const wxString& path, long flags)

Called just after the document object is created to give it a chance to initialize itself. The
default implementation uses the template associated with the document to create an
initial view. If this function returns FALSE, the document is deleted.

wxDocument::OnCreateCommandProcessor

virtual wxCommandProcessor* OnCreateCommandProcessor()

Override this function if you want a different (or no) command processor to be created
when the document is created. By default, it returns an instance of
wxCommandProcessor.

See wxCommandProcessor (p. 161).

wxDocument::OnNewDocument

virtual bool OnNewDocument()

The default implementation calls OnSaveModified and DeleteContents, makes a default
title for the document, and notifies the views that the filename (in fact, the title) has
changed.

wxDocument::OnOpenDocument

virtual bool OnOpenDocument(const wxString& filename)

Constructs an input file stream for the given filename (which must not be empty), and
calls LoadObject. If LoadObject returns TRUE, the document is set to unmodified;
otherwise, an error message box is displayed. The document's views are notified that
the filename has changed, to give windows an opportunity to update their titles. All of the
document's views are then updated.

wxDocument::OnSaveDocument

virtual bool OnSaveDocument(const wxString& filename)

Constructs an output file stream for the given filename (which must not be empty), and
calls SaveObject. If SaveObject returns TRUE, the document is set to unmodified;
otherwise, an error message box is displayed.

CHAPTER 5

411

wxDocument::OnSaveModified

virtual bool OnSaveModified()

If the document has been modified, prompts the user to ask if the changes should be
changed. If the user replies Yes, the Save function is called. If No, the document is
marked as unmodified and the function succeeds. If Cancel, the function fails.

wxDocument::RemoveView

virtual bool RemoveView(wxView* view)

Removes the view from the document's list of views, and calls OnChangedViewList.

wxDocument::Save

virtual bool Save()

Saves the document by calling OnSaveDocument if there is an associated filename, or
SaveAs if there is no filename.

wxDocument::SaveAs

virtual bool SaveAs()

Prompts the user for a file to save to, and then calls OnSaveDocument.

wxDocument::SaveObject

virtual ostream& SaveObject(ostream& stream)

virtual wxOutputStream& SaveObject(wxOutputStream& stream)

Override this function and call it from your own SaveObject before streaming your own
data. SaveObject is called by the framework automatically when the document contents
need to be saved.

Note that only one of these forms exists, depending on how wxWindows was configured.

wxDocument::SetCommandProcessor

virtual void SetCommandProcessor(wxCommandProcessor *processor)

CHAPTER 5

412

Sets the command processor to be used for this document. The document will then be
responsible for its deletion. Normally you should not call this; override
OnCreateCommandProcessor instead.

See wxCommandProcessor (p. 161).

wxDocument::SetDocumentName

void SetDocumentName (const wxString& name)

Sets the document type name for this document. See the comment for
documentTypeName (p. 406).

wxDocument::SetDocumentTemplate

void SetDocumentTemplate(wxDocTemplate* templ)

Sets the pointer to the template that created the document. Should only be called by the
framework.

wxDocument::SetFilename

void SetFilename (const wxString& filename, bool notifyViews = FALSE)

Sets the filename for this document. Usually called by the framework.

If notifyViews is TRUE, wxView::OnChangeFilename is called for all views.

wxDocument::SetTitle

void SetTitle (const wxString& title)

Sets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.

wxDocument::UpdateAllViews

void UpdateAllViews(wxView* sender = NULL, wxObject* hint = NULL)

Updates all views. If sender is non-NULL, does not update this view.

hint represents optional information to allow a view to optimize its update.

CHAPTER 5

413

wwxxDDrraaggIImmaaggee

This class is used when you wish to drag an object on the screen, and a simple cursor is
not enough.

On Windows, the WIN32 API is used to do achieve smooth dragging. On other
platforms, wxGenericDragImage is used. Applications may also prefer to use
wxGenericDragImage on Windows, too.

wxPython note: wxPython uses wxGenericDragImage on all platforms, but uses the
wxDragImage name.

To use this class, when you wish to start dragging an image, create a wxDragImage
object and store it somewhere you can access it as the drag progresses. Call BeginDrag
to start, and EndDrag to stop the drag. To move the image, initially call Show and then
Move. If you wish to update the screen contents during the drag (for example, highlight
an item as in the dragimag sample), first call Hide, update the screen, call Move, and
then call Show.

You can drag within one window, or you can use full-screen dragging either across the
whole screen, or just restricted to one area of the screen to save resources. If you want
the user to drag between two windows, then you will need to use full-screen dragging.

If you wish to draw the image yourself, use wxGenericDragImage and override
wxDragImage::DoDrawImage (p. 416) and wxDragImage::GetImageRect (p. 416).

Please see samples/dragimag for an example.

Derived from

wxObject (p. 897)

Include files

<wx/dragimag.h>
<wx/generic/dragimgg.h>

wxDragImage::wxDragImage

 wxDragImage()

Default constructor.

 wxDragImage(const wxBitmap& image, const wxCursor& cursor = wxNullCursor,
const wxPoint&cursorHotspot = wxPoint(0, 0))

CHAPTER 5

414

Constructs a drag image from a bitmap and optional cursor.

 wxDragImage(const wxIcon& image, const wxCursor& cursor = wxNullCursor,
const wxPoint&cursorHotspot = wxPoint(0, 0))

Constructs a drag image from an icon and optional cursor.

wxPython note: This constructor is called wxDragIcon in wxPython.

 wxDragImage(const wxString& text, const wxCursor& cursor = wxNullCursor, const
wxPoint&cursorHotspot = wxPoint(0, 0))

Constructs a drag image from a text string and optional cursor.

wxPython note: This constructor is called wxDragString in wxPython.

 wxDragImage(const wxTreeCtrl& treeCtrl, wxTreeItemId& id)

Constructs a drag image from the text in the given tree control item, and optional cursor.

wxPython note: This constructor is called wxDragTreeItem in wxPython.

 wxDragImage(const wxListCtrl& treeCtrl, long id)

Constructs a drag image from the text in the given tree control item, and optional cursor.

wxPython note: This constructor is called wxDragListItem in wxPython.

 wxDragImage(const wxCursor& cursor = wxNullCursor, const
wxPoint&cursorHotspot = wxPoint(0, 0))

Constructs a drag image an optional cursor. This constructor is only available for
wxGenericDragImage, and can be used when the application supplies
wxDragImage::DoDrawImage (p. 416) and wxDragImage::GetImageRect (p. 416).

Parameters

image

Icon or bitmap to be used as the drag image. The bitmap can have a mask.

text

Text used to construct a drag image.

cursor

Optional cursor to combine with the image.

hotspot

This parameter is deprecated.

treeCtrl

Tree control for constructing a tree drag image.

CHAPTER 5

415

listCtrl

List control for constructing a list drag image.

id

Tree or list control item id.

wxDragImage::BeginDrag

bool BeginDrag(const wxPoint& hotspot, wxWindow* window, bool fullScreen =
FALSE, wxRect* rect = NULL)

Start dragging the image, in a window or full screen.

bool BeginDrag(const wxPoint& hotspot, wxWindow* window, wxWindow*
boundingWindow)

Start dragging the image, using the first window to capture the mouse and the second to
specify the bounding area. This form is equivalent to using the first form, but more
convenient than working out the bounding rectangle explicitly.

You need to then call wxDragImage::Show (p. 417) and wxDragImage::Move (p. 416) to
show the image on the screen.

Call wxDragImage::EndDrag (p. 416) when the drag has finished.

Note that this call automatically calls CaptureMouse.

Parameters

hotspot

The location of the drag position relative to the upper-left corner of the image.

window

The window that captures the mouse, and within which the dragging is limited
unless fullScreen is TRUE.

boundingWindow

In the second form of the function, specifies the area within which the drag occurs.

fullScreen

If TRUE, specifies that the drag will be visible over the full screen, or over as much
of the screen as is specified by rect. Note that the mouse will still be captured in
window.

rect

If non-NULL, specifies the rectangle (in screen coordinates) that bounds the
dragging operation. Specifying this can make the operation more efficient by
cutting down on the area under consideration, and it can also make a visual
difference since the drag is clipped to this area.

CHAPTER 5

416

wxDragImage::DoDrawImage

virtual bool DoDrawImage(wxDC& dc, const wxPoint& pos)

Draws the image on the device context with top-left corner at the given position.

This function is only available with wxGenericDragImage, to allow applications to draw
their own image instead of using an actual bitmap. If you override this function, you must
also override wxDragImage::GetImageRect (p. 416).

wxDragImage::EndDrag

bool EndDrag()

Call this when the drag has finished.

Note that this call automatically calls ReleaseMouse.

wxDragImage::GetImageRect

virtual wxRect GetImageRect(const wxPoint& pos) const

Returns the rectangle enclosing the image, assuming that the image is drawn with its
top-left corner at the given point.

This function is available in wxGenericDragImage only, and may be overridden (together
with wxDragImage::DoDrawImage (p. 416)) to provide a virtual drawing capability.

wxDragImage::Hide

bool Hide()

Hides the image. You may wish to call this before updating the window contents
(perhaps highlighting an item). Then call wxDragImage::Move (p. 416) and
wxDragImage::Show (p. 417).

wxDragImage::Move

bool Move(const wxPoint& pt)

Call this to move the image to a new position. The image will only be shown if
wxDragImage::Show (p. 417) has been called previously (for example at the start of the
drag).

CHAPTER 5

417

pt is the position in client coordinates (relative to the window specified in BeginDrag).

You can move the image either when the image is hidden or shown, but in general
dragging will be smoother if you move the image when it is shown.

wxDragImage::Show

bool Show()

Shows the image. Call this at least once when dragging.

wxDragImage::UpdateBackingFromWindow

bool UpdateBackingFromWindow(wxDC& windowDC, wxMemoryDC& destDC,
const wxRect& sourceRect, const wxRect& destRect) const

Override this if you wish to draw the window contents to the backing bitmap yourself.
This can be desirable if you wish to avoid flicker by not having to redraw the updated
window itself just before dragging, which can cause a flicker just as the drag starts.
Instead, paint the drag image's backing bitmap to show the appropriate graphic minus
the objects to be dragged, and leave the window itself to be updated by the drag image.
This can provide eerily smooth, flicker-free drag behaviour.

The default implementation copies the window contents to the backing bitmap. A new
implementation will normally copy information from another source, such as from its own
backing bitmap if it has one, or directly from internal data structures.

This function is available in wxGenericDragImage only.

wwxxDDrrooppFFiilleessEEvveenntt

This class is used for drop files events, that is, when files have been dropped onto the
window. This functionality is currently only available under Windows.

Important note: this is a separate implementation to the more general drag and drop
implementation documented here (p. 1619). It uses the older, Windows message-based
approach of dropping files.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

CHAPTER 5

418

<wx/event.h>

Event table macros

To process a drop files event, use these event handler macros to direct input to a
member function that takes a wxDropFilesEvent argument.

EVT_DROP_FILES(func) Process a wxEVT_DROP_FILES event.

See also

wxWindow::OnDropFiles (p. 1391), Event handling overview (p. 1560)

wxDropFilesEvent::wxDropFilesEvent

 wxDropFilesEvent(WXTYPE id = 0, int noFiles = 0, wxString* files = NULL)

Constructor.

wxDropFilesEvent::m_files

wxString* m_files

An array of filenames.

wxDropFilesEvent::m_noFiles

int m_noFiles

The number of files dropped.

wxDropFilesEvent::m_pos

wxPoint m_pos

The point at which the drop took place.

wxDropFilesEvent::GetFiles

wxString* GetFiles() const

Returns an array of filenames.

CHAPTER 5

419

wxDropFilesEvent::GetNumberOfFiles

int GetNumberOfFiles() const

Returns the number of files dropped.

wxDropFilesEvent::GetPosition

wxPoint GetPosition() const

Returns the position at which the files were dropped.

Returns an array of filenames.

wwxxDDrrooppSSoouurrccee

This class represents a source for a drag and drop operation.

See Drag and drop overview (p. 1619) and wxDataObject overview (p. 1620) for more
information.

Derived from

None

Include files

<wx/dnd.h>

Types

wxDragResult is defined as follows:

enum wxDragResult
{
 wxDragError, // error prevented the d&d operation from
completing
 wxDragNone, // drag target didn't accept the data
 wxDragCopy, // the data was successfully copied
 wxDragMove, // the data was successfully moved
 wxDragCancel // the operation was cancelled by user (not an
error)
};

See also

CHAPTER 5

420

wxDropTarget (p. 421), wxTextDropTarget (p. 1264), wxFileDropTarget (p. 466)

wxDropSource::wxDropSource

 wxDropSource(wxWindow* win = NULL,const wxIconOrCursor& iconCopy =
wxNullIconOrCursor, const wxIconOrCursor& iconCopy = wxNullIconOrCursor, const
wxIconOrCursor& iconNone = wxNullIconOrCursor)

 wxDropSource(wxDataObject& data, wxWindow* win = NULL,const
wxIconOrCursor& iconCopy = wxNullIconOrCursor, const wxIconOrCursor&
iconCopy = wxNullIconOrCursor, const wxIconOrCursor& iconNone =
wxNullIconOrCursor)

The constructors for wxDataObject.

If you use the constructor without data parameter you must call SetData (p. 420) later.

Note that the exact type of iconCopy and subsequent parameters differs between
wxMSW and wxGTK: these are cursors under Windows but icons for GTK. You should
use the macro wxDROP_ICON (p. 1458) in portable programs instead of directly using
either of these types.

Parameters

win

The window which initiates the drag and drop operation.

iconCopy

The icon or cursor used for feedback for copy operation.

iconMove

The icon or cursor used for feedback for move operation.

iconNone

The icon or cursor used for feedback when operation can't be done.

win is the window which initiates the drag and drop operation.

wxDropSource::~wxDropSource

virtual ~wxDropSource ()

wxDropSource::SetData

CHAPTER 5

421

void SetData(wxDataObject& data)

Sets the data wxDataObject (p. 204) associated with the drop source. This will not
delete any previously associated data.

wxDropSource::DoDragDrop

virtual wxDragResult DoDragDrop(bool allowMove = FALSE)

Do it (call this in response to a mouse button press, for example).

If allowMove is FALSE, data can only be copied.

wxDropSource::GiveFeedback

virtual bool GiveFeedback(wxDragResult effect, bool scrolling)

Overridable: you may give some custom UI feedback during the drag and drop operation
in this function. It is called on each mouse move, so your implementation must not be
too slow.

Parameters

effect

The effect to implement. One of wxDragCopy, wxDragMove and wxDragNone.

scrolling

TRUE if the window is scrolling. MSW only.

Return value

Return FALSE if you want default feedback, or TRUE if you implement your own
feedback. The return values is ignored under GTK.

wwxxDDrrooppTTaarrggeett

This class represents a target for a drag and drop operation. A wxDataObject (p.
204)can be associated with it and by default, this object will be filled with the data from
the drag source, if the data formats supported by the data object match the drag source
data format.

There are various virtual handler functions defined in this class which may be overridden
to give visual feedback or react in a more fine-tuned way, e.g. by not accepting data on
the whole window area, but only a small portion of it. The normal sequence of calls
isOnEnter (p. 423), possibly many times OnDragOver (p. 424),OnDrop (p. 423) and

CHAPTER 5

422

finally OnData (p. 423).

See Drag and drop overview (p. 1619) and wxDataObject overview (p. 1620)for more
information.

Derived from

None

Include files

<wx/dnd.h>

Types

wxDragResult is defined as follows:

enum wxDragResult
{
 wxDragError, // error prevented the d&d operation from
completing
 wxDragNone, // drag target didn't accept the data
 wxDragCopy, // the data was successfully copied
 wxDragMove, // the data was successfully moved
 wxDragCancel // the operation was cancelled by user (not an
error)
};

See also

wxDropSource (p. 419), wxTextDropTarget (p. 1264), wxFileDropTarget (p.
466),wxDataFormat (p. 201), wxDataObject (p. 204)

wxDropTarget::wxDropTarget

 wxDropTarget(wxDataObject* data = NULL)

Constructor. data is the data to be associated with the drop target.

wxDropTarget::~wxDropTarget

 ~wxDropTarget()

Destructor. Deletes the associated data object, if any.

wxDropTarget::GetData

CHAPTER 5

423

virtual void GetData()

This method may only be called from within OnData (p. 423). By default, this method
copies the data from the drop source to the wxDataObject (p. 204) associated with this
drop target, calling its wxDataObject::SetData (p. 207) method.

wxDropTarget::OnData

virtual wxDragResult OnData(wxCoord x, wxCoord y, wxDragResult def)

Called after OnDrop (p. 423) returns TRUE. By default this will usually GetData (p. 422)
and will return the suggested default value def.

wxDropTarget::OnDrop

virtual bool OnDrop(wxCoord x, wxCoord y)

Called when the user drops a data object on the target. Return FALSE to veto the
operation.

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

Return value

Return TRUE to accept the data, FALSE to veto the operation.

wxDropTarget::OnEnter

virtual wxDragResult OnEnter(wxCoord x, wxCoord y, wxDragResult def)

Called when the mouse enters the drop target. By default, this calls OnDragOver (p.
424).

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

CHAPTER 5

424

def

Suggested default for return value. Determined by SHIFT or CONTROL key states.

Return value

Returns the desired operation or wxDragNone. This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.

wxDropTarget::OnDragOver

virtual wxDragResult OnDragOver(wxCoord x, wxCoord y, wxDragResult def)

Called when the mouse is being dragged over the drop target. By default, this calls
functions return the suggested return value def.

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

def

Suggested value for return value. Determined by SHIFT or CONTROL key states.

Return value

Returns the desired operation or wxDragNone. This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.

wxDropTarget::OnLeave

virtual void OnLeave()

Called when the mouse leaves the drop target.

wxDropTarget::SetDataObject

void SetDataObject(wxDataObject* data)

Sets the data wxDataObject (p. 204) associated with the drop target and deletes any
previously associated data object.

CHAPTER 5

425

wwxxEEnnccooddiinnggCCoonnvveerrtteerr

This class is capable of converting strings between any two 8-bit encodings/charsets. It
can also convert from/to Unicode (but only if you compiled wxWindows with
wxUSE_WCHAR_T set to 1).

Derived from

wxObject (p. 897)

Include files

<wx/encconv.h>

See also

wxFontMapper (p. 522), wxMBConv (p. 811), Writing non-English applications (p. 1543)

wxEncodingConverter::wxEncodingConverter

 wxEncodingConverter()

Constructor.

wxEncodingConverter::Init

bool Init(wxFontEncoding input_enc, wxFontEncoding output_enc, int method =
wxCONVERT_STRICT)

Initialize convertion. Both output or input encoding may be
wxFONTENCODING_UNICODE, but only if wxUSE_ENCODING is set to 1. All
subsequent calls to Convert() (p. 426) will interpret its argument as a string in input_enc
encoding and will output string in output_enc encoding. You must call this method before
calling Convert. You may call it more than once in order to switch to another
conversion.Method affects behaviour of Convert() in case input character cannot be
converted because it does not exist in output encoding:

wxCONVERT_STRICT follow behaviour of GNU Recode - just copy

unconvertible characters to output and don't
change them (its integer value will stay the
same)

wxCONVERT_SUBSTITUTE try some (lossy) substitutions - e.g. replace
unconvertible latin capitals with acute by
ordinary capitals, replace en-dash or em-dash

CHAPTER 5

426

by '-' etc.

Both modes guarantee that output string will have same length as input string.

Return value

FALSE if given conversion is impossible, TRUE otherwise (conversion may be
impossible either if you try to convert to Unicode with non-Unicode build of wxWindows
or if input or output encoding is not supported.)

wxEncodingConverter::Convert

wxString Convert(const wxString& input)

void Convert(const wxChar* input, wxChar* output)

void Convert(wxChar* str)

void Convert(const char* input, wxChar* output)

Convert input string according to settings passed to Init (p. 425). Note that you must call
Init before using Convert!

wxEncodingConverter::GetPlatformEquivalents

static wxFontEncodingArray GetPlatformEquivalents(wxFontEncoding enc, int
platform = wxPLATFORM_CURRENT)

Return equivalents for given font that are used under given platform. Supported
platforms:

 • wxPLATFORM_UNIX
 • wxPLATFORM_WINDOWS
 • wxPLATFORM_OS2
 • wxPLATFORM_MAC
 • wxPLATFORM_CURRENT

wxPLATFORM_CURRENT means the plaform this binary was compiled for.

Examples:

current platform enc returned value
--
unix CP1250 {ISO8859_2}
unix ISO8859_2 {ISO8859_2}
windows ISO8859_2 {CP1250}
unix CP1252 {ISO8859_1,ISO8859_15}

CHAPTER 5

427

Equivalence is defined in terms of convertibility: two encodings are equivalent if you can
convert text between then without losing information (it may - and will - happen that you
lose special chars like quotation marks or em-dashes but you shouldn't lose any
diacritics and language-specific characters when converting between equivalent
encodings).

Remember that this function does NOT check for presence of fonts in system. It only
tells you what are most suitable encodings. (It usually returns only one encoding.)

Notes

 • Note that argument enc itself may be present in the returned array, so that you

can, as a side-effect, detect whether the encoding is native for this platform or
not.

 • Convert (p. 426) is not limited to converting between equivalent encodings, it
can convert between two arbitrary encodings.

 • If enc is present in the returned array, then it is always the first item of it.
 • Please note that the returned array may contain no items at all.

wxEncodingConverter::GetAllEquivalents

static wxFontEncodingArray GetAllEquivalents(wxFontEncoding enc)

Similar to GetPlatformEquivalents (p. 426), but this one will return ALL equivalent
encodings, regardless of the platform, and including itself.

This platform's encodings are before others in the array. And again, if enc is in the array,
it is the very first item in it.

wwxxEErraasseeEEvveenntt

An erase event is sent when a window's background needs to be repainted.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process an erase event, use this event handler macro to direct input to a member
function that takes a wxEraseEvent argument.

CHAPTER 5

428

EVT_ERASE_BACKGROUND(func) Process a wxEVT_ERASE_BACKGROUND

event.

Remarks

Use the m_DC device context to draw into, don't create wxPaintDC in the event
handler.

See also

wxWindow::OnEraseBackground (p. 1392), Event handling overview (p. 1560)

wxEraseEvent::wxEraseEvent

 wxEraseEvent(int id = 0, wxDC* dc = NULL)

Constructor.

wxEraseEvent::m_dc

wxDC* m_dc

The device context associated with the erase event.

wxEraseEvent::GetDC

wxDC* GetDC() const

Returns the device context to draw into.

wwxxEEvveenntt

An event is a structure holding information about an event passed to a callback or
member function. wxEvent used to be a multipurpose event object, and is an abstract
base class for other event classes (see below).

Derived from

wxObject (p. 897)

CHAPTER 5

429

Include files

<wx/event.h>

See also

wxCommandEvent (p. 156), wxMouseEvent (p. 871)

wxEvent::wxEvent

 wxEvent(int id = 0)

Constructor. Should not need to be used directly by an application.

wxEvent::m_eventObject

wxObject* m_eventObject

The object (usually a window) that the event was generated from, or should be sent to.

wxEvent::m_eventType

WXTYPE m_eventType

The type of the event, such as wxEVENT_TYPE_BUTTON_COMMAND.

wxEvent::m_id

int m_id

Identifier for the window.

wxEvent::m_skipped

bool m_skipped

Set to TRUE by Skip if this event should be skipped.

wxEvent::m_timeStamp

long m_timeStamp

CHAPTER 5

430

Timestamp for this event.

wxEvent::Clone

virtual wxEvent* Clone() const

Returns a copy of the event.

Any event that is posted to the wxWindows event system for later action
(viawxEvtHandler::AddPendingEvent (p. 432) orwxPostEvent (p. 1472)) must implement
this method. All wxWindows events fully implement this method, but any derived events
implemented by the user should also implement this method just in case they (or some
event derived from them) are ever posted.

All wxWindows events implement a copy constructor, so the easiest way of
implementing the Clone function is to implement a copy constructor for a new event (call
it MyEvent) and then define the Clone function like this:
 wxEvent *Clone(void) const { return new MyEvent(*this); }

wxEvent::GetEventObject

wxObject* GetEventObject()

Returns the object associated with the event, if any.

wxEvent::GetEventType

WXTYPE GetEventType()

Returns the identifier of the given event type, such as
wxEVENT_TYPE_BUTTON_COMMAND.

wxEvent::GetId

int GetId()

Returns the identifier associated with this event, such as a button command id.

wxEvent::GetObjectType

WXTYPE GetObjectType()

Returns the type of the object associated with the event, such as wxTYPE_BUTTON.

CHAPTER 5

431

wxEvent::GetSkipped

bool GetSkipped()

Returns TRUE if the event handler should be skipped, FALSE otherwise.

wxEvent::GetTimestamp

long GetTimestamp()

Gets the timestamp for the event.

wxEvent::SetEventObject

void SetEventObject(wxObject* object)

Sets the originating object.

wxEvent::SetEventType

void SetEventType(WXTYPE typ)

Sets the event type.

wxEvent::SetId

void SetId(int id)

Sets the identifier associated with this event, such as a button command id.

wxEvent::SetTimestamp

void SetTimestamp(long timeStamp)

Sets the timestamp for the event.

Sets the originating object.

wxEvent::Skip

void Skip(bool skip = TRUE)

CHAPTER 5

432

Called by an event handler to tell the event system that the event handler should be
skipped, and the next valid handler used instead.

wwxxEEvvttHHaannddlleerr

A class that can handle events from the windowing system. wxWindow (and therefore all
window classes) are derived from this class.

Derived from

wxObject (p. 897)

Include files

<wx/event.h>

See also

Event handling overview (p. 1560)

wxEvtHandler::wxEvtHandler

 wxEvtHandler()

Constructor.

wxEvtHandler::~wxEvtHandler

 ~wxEvtHandler()

Destructor. If the handler is part of a chain, the destructor will unlink itself and restore the
previous and next handlers so that they point to each other.

wxEvtHandler::AddPendingEvent

virtual void AddPendingEvent(wxEvent& event)

This function posts an event to be processed later.

Parameters

event

CHAPTER 5

433

Event to add to process queue.

Remarks

The difference between sending an event (using theProcessEvent (p. 435) method) and
posting it is that in the first case the event is processed before the function returns, while
in the second case, the function returns immediately and the event will be processed
sometime later (usually during the next event loop iteration).

A copy of event is made by the function, so the original can be deleted as soon as
function returns (it is common that the original is created on the stack). This requires
that the wxEvent::Clone (p. 430) method be implemented by event so that it can be
duplicated and stored until it gets processed.

This is also the method to call for inter-thread communication---it will post events safely
between different threads which means that this method is thread-safe by using critical
sections where needed. In a multi-threaded program, you often need to inform the main
GUI thread about the status of other working threads and such notification should be
done using this method.

This method automatically wakes up idle handling if the underlying window system is
currently idle and thus would not send any idle events. (Waking up idle handling is done
calling ::wxWakeUpIdle (p. 1476).)

wxEvtHandler::Connect

void Connect(int id, wxEventType eventType, wxObjectEventFunction function,
wxObject* userData = NULL)

void Connect(int id, int lastId, wxEventType eventType, wxObjectEventFunction
function, wxObject* userData = NULL)

Connects the given function dynamically with the event handler, id and event type. This
is an alternative to the use of static event tables. See the 'dynamic' sample for usage.

Parameters

id

The identifier (or first of the identifier range) to be associated with the event
handler function.

lastId

The second part of the identifier range to be associated with the event handler
function.

eventType

The event type to be associated with this event handler.

function

The event handler function.

CHAPTER 5

434

userData

Data to be associated with the event table entry.

Example

 frame->Connect(wxID_EXIT,
 wxEVT_COMMAND_MENU_SELECTED,
 (wxObjectEventFunction) (wxEventFunction) (wxCommandEventFunction)
MyFrame::OnQuit);

wxEvtHandler::Disconnect

bool Disconnect(int id, wxEventType eventType = wxEVT_NULL,
wxObjectEventFunction function = NULL, wxObject* userData = NULL)

bool Disconnect(int id, int lastId = -1, wxEventType eventType = wxEVT_NULL,
wxObjectEventFunction function = NULL, wxObject* userData = NULL)

Disconnects the given function dynamically from the event handler, using the specified
parameters as search criteria and returning TRUE if a matching function has been found
and removed. This method can only disconnect functions which have been added using
the wxEvtHandler::Connect (p. 433) method. There is no way to disconnect functions
connected using the (static) event tables.

Parameters

id

The identifier (or first of the identifier range) associated with the event handler
function.

lastId

The second part of the identifier range associated with the event handler function.

eventType

The event type associated with this event handler.

function

The event handler function.

userData

Data associated with the event table entry.

wxEvtHandler::GetClientData

void* GetClientData()

Gets user-supplied client data.

CHAPTER 5

435

Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members.

See also

wxEvtHandler::SetClientData (p. 437)

wxEvtHandler::GetEvtHandlerEnabled

bool GetEvtHandlerEnabled()

Returns TRUE if the event handler is enabled, FALSE otherwise.

See also

wxEvtHandler::SetEvtHandlerEnabled (p. 438)

wxEvtHandler::GetNextHandler

wxEvtHandler* GetNextHandler()

Gets the pointer to the next handler in the chain.

See also

wxEvtHandler::SetNextHandler (p. 438), wxEvtHandler::GetPreviousHandler (p. 435),
wxEvtHandler::SetPreviousHandler (p. 439), wxWindow::PushEventHandler (p. 1401),
wxWindow::PopEventHandler (p. 1400)

wxEvtHandler::GetPreviousHandler

wxEvtHandler* GetPreviousHandler()

Gets the pointer to the previous handler in the chain.

See also

wxEvtHandler::SetPreviousHandler (p. 439), wxEvtHandler::GetNextHandler (p. 435),
wxEvtHandler::SetNextHandler (p. 438), wxWindow::PushEventHandler (p. 1401),
wxWindow::PopEventHandler (p. 1400)

wxEvtHandler::ProcessEvent

virtual bool ProcessEvent(wxEvent& event)

CHAPTER 5

436

Processes an event, searching event tables and calling zero or more suitable event
handler function(s).

Parameters

event

Event to process.

Return value

TRUE if a suitable event handler function was found and executed, and the function did
not call wxEvent::Skip (p. 431).

Remarks

Normally, your application would not call this function: it is called in the wxWindows
implementation to dispatch incoming user interface events to the framework (and
application).

However, you might need to call it if implementing new functionality (such as a new
control) where you define new event types, as opposed to allowing the user to override
virtual functions.

An instance where you might actually override the ProcessEvent function is where you
want to direct event processing to event handlers not normally noticed by wxWindows.
For example, in the document/view architecture, documents and views are potential
event handlers. When an event reaches a frame, ProcessEvent will need to be called
on the associated document and view in case event handler functions are associated
with these objects. The property classes library (wxProperty) also overrides
ProcessEvent for similar reasons.

The normal order of event table searching is as follows:

 1. If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled (p.

438)) the function skips to step (6).
 2. If the object is a wxWindow, ProcessEvent is recursively called on the window's

wxValidator (p. 1348). If this returns TRUE, the function exits.
 3. SearchEventTable is called for this event handler. If this fails, the base class

table is tried, and so on until no more tables exist or an appropriate function was
found, in which case the function exits.

 4. The search is applied down the entire chain of event handlers (usually the chain
has a length of one). If this succeeds, the function exits.

 5. If the object is a wxWindow and the event is a wxCommandEvent,
ProcessEvent is recursively applied to the parent window's event handler. If
this returns TRUE, the function exits.

 6. Finally, ProcessEvent is called on the wxApp object.

See also

wxEvtHandler::SearchEventTable (p. 437)

CHAPTER 5

437

wxEvtHandler::SearchEventTable

bool SearchEventTable (wxEventTable& table, wxEvent& event)

Searches the event table, executing an event handler function if an appropriate one is
found.

Parameters

table

Event table to be searched.

event

Event to be matched against an event table entry.

Return value

TRUE if a suitable event handler function was found and executed, and the function did
not call wxEvent::Skip (p. 431).

Remarks

This function looks through the object's event table and tries to find an entry that will
match the event.

An entry will match if:

 1. The event type matches, and
 2. the identifier or identifier range matches, or the event table entry's identifier is

zero.

If a suitable function is called but calls wxEvent::Skip (p. 431), this function will fail, and
searching will continue.

See also

wxEvtHandler::ProcessEvent (p. 435)

wxEvtHandler::SetClientData

void SetClientData(void* data)

Sets user-supplied client data.

Parameters

data

CHAPTER 5

438

Data to be associated with the event handler.

Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members.

See also

wxEvtHandler::GetClientData (p. 434)

wxEvtHandler::SetEvtHandlerEnabled

void SetEvtHandlerEnabled(bool enabled)

Enables or disables the event handler.

Parameters

enabled

TRUE if the event handler is to be enabled, FALSE if it is to be disabled.

Remarks

You can use this function to avoid having to remove the event handler from the chain, for
example when implementing a dialog editor and changing from edit to test mode.

See also

wxEvtHandler::GetEvtHandlerEnabled (p. 435)

wxEvtHandler::SetNextHandler

void SetNextHandler(wxEvtHandler* handler)

Sets the pointer to the next handler.

Parameters

handler

Event handler to be set as the next handler.

See also

wxEvtHandler::GetNextHandler (p. 435), wxEvtHandler::SetPreviousHandler (p. 439),
wxEvtHandler::GetPreviousHandler (p. 435), wxWindow::PushEventHandler (p. 1401),
wxWindow::PopEventHandler (p. 1400)

CHAPTER 5

439

wxEvtHandler::SetPreviousHandler

void SetPreviousHandler(wxEvtHandler* handler)

Sets the pointer to the previous handler.

Parameters

handler

Event handler to be set as the previous handler.

See also

wxEvtHandler::GetPreviousHandler (p. 435), wxEvtHandler::SetNextHandler (p. 438),
wxEvtHandler::GetNextHandler (p. 435), wxWindow::PushEventHandler (p. 1401),
wxWindow::PopEventHandler (p. 1400)

wwxxEExxpprr

The wxExpr class is the building brick of expressions similar to Prolog clauses, or
objects. It can represent an expression of type long integer, float, string, word, or list,
and lists can be nested.

Derived from

None

Include files

<wx/wxexpr.h>

See also

wxExpr overview (p. 1555), wxExprDatabase (p. 446)

wxExpr::wxExpr

 wxExpr(const wxString&functor)

Construct a new clause with this form, supplying the functor name. A clause is an object
that will appear in the data file, with a list of attribute/value pairs.

 wxExpr(wxExprType type, const wxString& wordOrString = "")

CHAPTER 5

440

Construct a new empty list, or a word (will be output with no quotes), or a string,
depending on the value of type.

type can be wxExprList, wxExprWord, or wxExprString. If type is wxExprList, the
value of wordOrString will be ignored.

 wxExpr(long value)

Construct an integer expression.

 wxExpr(float value)

Construct a floating point expression.

 wxExpr(wxList* value)

Construct a list expression. The list's nodes' data should themselves be wxExprs.

wxExpr no longer uses the wxList internally, so this constructor turns the list into its
internal format (assuming a non-nested list) and then deletes the supplied list.

wxExpr::~wxExpr

 ~wxExpr()

Destructor.

wxExpr::AddAttributeValue

Use these on clauses ONLY. Note that the functions for adding strings and words must
be differentiated by function name which is why they are missing from this group (see
wxExpr::AddAttributeValueString (p. 441) and wxExpr::AddAttributeValueWord (p. 441)).

void AddAttributeValue(const wxString& attribute, float value)

Adds an attribute and floating point value pair to the clause.

void AddAttributeValue(const wxString& attribute, long value)

Adds an attribute and long integer value pair to the clause.

void AddAttributeValue(const wxString& attribute, wxList* value)

Adds an attribute and list value pair to the clause, converting the list into internal form
and then deleting value. Note that the list should not contain nested lists (except if in
internal wxExpr form.)

CHAPTER 5

441

void AddAttributeValue(const wxString& attribute, wxExpr* value)

Adds an attribute and wxExpr value pair to the clause. Do not delete value once this
function has been called.

wxExpr::AddAttributeValueString

void AddAttributeValueString(const wxString& attribute, const wxString& value)

Adds an attribute and string value pair to the clause.

wxExpr::AddAttributeValueStringList

void AddAttributeValueStringList(const wxString& attribute, wxList* value)

Adds an attribute and string list value pair to the clause.

Note that the list passed to this function is a list of strings, NOT a list of wxExprs; it gets
turned into a list of wxExprs automatically. This is a convenience function, since lists of
strings are often manipulated in C++.

wxExpr::AddAttributeValueWord

void AddAttributeValueWord(const wxString& attribute, const wxString& value)

Adds an attribute and word value pair to the clause.

wxExpr::Append

void Append(wxExpr* value)

Append the value to the end of the list. 'this' must be a list.

wxExpr::Arg

wxExpr* Arg(wxExprType type, int n) const

Get nth arg of the given clause (starting from 1). NULL is returned if the expression is
not a clause, or n is invalid, or the given type does not match the actual type. See also
wxExpr::Nth (p. 444).

wxExpr::Insert

CHAPTER 5

442

void Insert(wxExpr* value)

Insert the value at the start of the list. 'this' must be a list.

wxExpr::GetAttributeValue

These functions are the easiest way to retrieve attribute values, by passing a pointer to
variable. If the attribute is present, the variable will be filled with the appropriate value. If
not, the existing value is left alone. This style of retrieving attributes makes it easy to set
variables to default values before calling these functions; no code is necessary to check
whether the attribute is present or not.

bool GetAttributeValue(const wxString& attribute, wxString& value) const

Retrieve a string (or word) value.

bool GetAttributeValue(const wxString& attribute, float& value) const

Retrieve a floating point value.

bool GetAttributeValue(const wxString& attribute, int& value) const

Retrieve an integer value.

bool GetAttributeValue(const wxString& attribute, long& value) const

Retrieve a long integer value.

bool GetAttributeValue(const wxString& attribute, wxExpr** value) const

Retrieve a wxExpr pointer.

wxExpr::GetAttributeValueStringList

void GetAttributeValueStringList(const wxString&attribute, wxList* value) const

Use this on clauses ONLY. See above for comments on this style of attribute value
retrieval. This function expects to receive a pointer to a new list (created by the calling
application); it will append strings to the list if the attribute is present in the clause.

wxExpr::AttributeValue

wxExpr* AttributeValue(const wxString& word) const

Use this on clauses ONLY. Searches the clause for an attribute matching word, and
returns the value associated with it.

CHAPTER 5

443

wxExpr::Copy

wxExpr* Copy() const

Recursively copies the expression, allocating new storage space.

wxExpr::DeleteAttributeValue

void DeleteAttributeValue(const wxString& attribute)

Use this on clauses only. Deletes the attribute and its value (if any) from the clause.

wxExpr::Functor

wxString Functor() const

Use this on clauses only. Returns the clause's functor (object name).

wxExpr::GetClientData

wxObject* GetClientData() const

Retrieve arbitrary data stored with this clause. This can be useful when reading in data
for storing a pointer to the C++ object, so when another clause makes a reference to this
clause, its C++ object can be retrieved. See wxExpr::SetClientData (p. 444).

wxExpr::GetFirst

wxExpr* GetFirst() const

If this is a list expression (or clause), gets the first element in the list.

See also wxExpr::GetLast (p. 443), wxExpr::GetNext (p. 444), wxExpr::Nth (p. 444).

wxExpr::GetLast

wxExpr* GetLast() const

If this is a list expression (or clause), gets the last element in the list.

See also wxExpr::GetFirst (p. 443), wxExpr::GetNext (p. 444), wxExpr::Nth (p. 444).

CHAPTER 5

444

wxExpr::GetNext

wxExpr* GetNext() const

If this is a node in a list (any wxExpr may be a node in a list), gets the next element in
the list.

See also wxExpr::GetFirst (p. 443), wxExpr::GetLast (p. 443), wxExpr::Nth (p. 444).

wxExpr::IntegerValue

long IntegerValue() const

Returns the integer value of the expression.

wxExpr::Nth

wxExpr* Nth(int n) const

Get nth arg of the given list expression (starting from 0). NULL is returned if the
expression is not a list expression, or n is invalid. See also wxExpr::Arg (p. 441).

Normally, you would use attribute-value pairs to add and retrieve data from objects
(clauses) in a data file. However, if the data gets complex, you may need to store
attribute values as lists, and pick them apart yourself.

wxExpr::RealValue

float RealValue() const

Returns the floating point value of the expression.

wxExpr::SetClientData

void SetClientData(wxObject *data)

Associate arbitrary data with this clause. This can be useful when reading in data for
storing a pointer to the C++ object, so when another clause makes a reference to this
clause, its C++ object can be retrieved. See wxExpr::GetClientData (p. 443).

wxExpr::StringValue

wxString StringValue() const

CHAPTER 5

445

Returns the string value of the expression.

wxExpr::Type

wxExprType Type() const

Returns the type of the expression. wxExprType is defined as follows:

typedef enum {
 wxExprNull,
 wxExprInteger,
 wxExprReal,
 wxExprWord,
 wxExprString,
 wxExprList
} wxExprType;

wxExpr::WordValue

wxString WordValue() const

Returns the word value of the expression.

wxExpr::WriteClause

void WriteClause (FILE * stream)

Writes the clause to the given stream in Prolog format. Not normally needed, since the
whole wxExprDatabase will usually be written at once. The format is: functor, open
parenthesis, list of comma-separated expressions, close parenthesis, full stop.

wxExpr::WriteExpr

void WriteExpr(FILE * stream)

Writes the expression (not clause) to the given stream in Prolog format. Not normally
needed, since the whole wxExprDatabase will usually be written at once. Lists are
written in square bracketed, comma-delimited format.

Functions and macros

Below are miscellaneous functions and macros associated with wxExpr objects.

bool wxExprIsFunctor(wxExpr *expr, const wxString& functor)

Checks that the functor of expr is functor.

CHAPTER 5

446

void wxExprCleanUp()

Cleans up the wxExpr system (YACC/LEX buffers) to avoid memory-checking warnings
as the program exits.

#define wxMakeInteger(x) (new wxExpr((long)x))
#define wxMakeReal(x) (new wxExpr((float)x))
#define wxMakeString(x) (new wxExpr(PrologString, x))
#define wxMakeWord(x) (new wxExpr(PrologWord, x))
#define wxMake(x) (new wxExpr(x))

Macros to help make wxExpr objects.

wwxxEExxpprrDDaattaabbaassee

The wxExprDatabase class represents a database, or list, of Prolog-like expressions.
Instances of this class are used for reading, writing and creating data files.

Derived from

wxList (p. 743)
wxObject (p. 897)

See also

wxExpr overview (p. 1555), wxExpr (p. 439)

wxExprDatabase::wxExprDatabase

void wxExprDatabase(proioErrorHandler handler = 0)

Construct a new, unhashed database, with an optional error handler. The error handler
must be a function returning a bool and taking an integer and a string argument. When
an error occurs when reading or writing a database, this function is called. The error is
given as the first argument (currently one of WXEXPR_ERROR_GENERAL,
WXEXPR_ERROR_SYNTAX) and an error message is given as the second argument. If
FALSE is returned by the error handler, processing of the wxExpr operation stops.

Another way of handling errors is simply to call wxExprDatabase::GetErrorCount (p. 448)
after the operation, to check whether errors have occurred, instead of installing an error
handler. If the error count is more than zero, wxExprDatabase::Write (p. 449) and
wxExprDatabase::Read (p. 449) will return FALSE to the application.

For example:

CHAPTER 5

447

bool myErrorHandler(int err, chat *msg)
{
 if (err == WXEXPR_ERROR_SYNTAX)
 {
 wxMessageBox(msg, "Syntax error");
 }
 return FALSE;
}

wxExprDatabase database(myErrorHandler);

 wxExprDatabase(wxExprType type, const wxString&attribute, int size = 500,
proioErrorHandler handler = 0)

Construct a new database hashed on a combination of the clause functor and a named
attribute (often an integer identification).

See above for an explanation of the error handler.

wxExprDatabase::~wxExprDatabase

 ~wxExprDatabase()

Delete the database and contents.

wxExprDatabase::Append

void Append(wxExpr* clause)

Append a clause to the end of the database. If the database is hashing, the functor and
a user-specified attribute will be hashed upon, giving the option of random access in
addition to linear traversal of the database.

wxExprDatabase::BeginFind

void BeginFind()

Reset the current position to the start of the database. Subsequent
wxExprDatabase::FindClause (p. 448) calls will move the pointer.

wxExprDatabase::ClearDatabase

void ClearDatabase ()

Clears the contents of the database.

CHAPTER 5

448

wxExprDatabase::FindClause

Various ways of retrieving clauses from the database. A return value of NULL indicates
no (more) clauses matching the given criteria. Calling the functions repeatedly retrieves
more matching clauses, if any.

wxExpr* FindClause(long id)

Find a clause based on the special "id'' attribute.

wxExpr* FindClause(const wxString& attribute, const wxString& value)

Find a clause which has the given attribute set to the given string or word value.

wxExpr* FindClause(const wxString& attribute, long value)

Find a clause which has the given attribute set to the given integer value.

wxExpr* FindClause(const wxString& attribute, float value)

Find a clause which has the given attribute set to the given floating point value.

wxExprDatabase::FindClauseByFunctor

wxExpr* FindClauseByFunctor(const wxString& functor)

Find the next clause with the specified functor.

wxExprDatabase::GetErrorCount

int GetErrorCount() const

Returns the number of errors encountered during the last read or write operation.

wxExprDatabase::HashFind

wxExpr* HashFind(const wxString& functor, long value) const

Finds the clause with the given functor and with the attribute specified in the database
constructor having the given integer value.

For example,

// Hash on a combination of functor and integer "id" attribute when
reading in
wxExprDatabase db(wxExprInteger, "id");

CHAPTER 5

449

// Read it in
db.ReadProlog("data");

// Retrieve a clause with specified functor and id
wxExpr *clause = db.HashFind("node", 24);

This would retrieve a clause which is written: node(id = 24, ...,).

wxExpr* HashFind(const wxString& functor, const wxString& value)

Finds the clause with the given functor and with the attribute specified in the database
constructor having the given string value.

wxExprDatabase::Read

bool Read(const wxString& filename)

Reads in the given file, returning TRUE if successful.

wxExprDatabase::ReadFromString

bool ReadFromString(const wxString& buffer)

Reads a Prolog database from the given string buffer, returning TRUE if successful.

wxExprDatabase::Write

bool Write(FILE *stream)

bool Write(const wxString& filename)

Writes the database as a Prolog-format file.

wwxxFFiillee

A wxFile performs raw file I/O. This is a very small class designed to minimize the
overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers. wxFile
also automatically closes the file in its destructor making it unnecessary to worry about
forgetting to do it. wxFile is a wrapper around file descriptor. - see also wxFFile
(p. 456) for a wrapper around FILE structure.

Derived from

CHAPTER 5

450

None.

Include files

<wx/file.h>

Constants

wx/file.h defines the following constants:

#define wxS_IRUSR 00400
#define wxS_IWUSR 00200
#define wxS_IXUSR 00100

#define wxS_IRGRP 00040
#define wxS_IWGRP 00020
#define wxS_IXGRP 00010

#define wxS_IROTH 00004
#define wxS_IWOTH 00002
#define wxS_IXOTH 00001

// default mode for the new files: corresponds to umask 022
#define wxS_DEFAULT (wxS_IRUSR | wxS_IWUSR | wxS_IRGRP | wxS_IWGRP |
wxS_IROTH | wxS_IWOTH)

These constants define the file access rights and are used with wxFile::Create (p. 452)
and wxFile::Open (p. 454).

The OpenMode enumeration defines the different modes for opening a file, it is defined
inside wxFile class so its members should be specified with wxFile:: scope resolution
prefix. It is also used with wxFile::Access (p. 452) function.

wxFile::read Open file for reading or test if it can be opened

for reading with Access()
wxFile::write Open file for writing deleting the contents of the

file if it already exists or test if it can be opened
for writing with Access()

wxFile::read_write Open file for reading and writing; can not be
used with Access()

wxFile::write_append Open file for appending: the file is opened for
writing, but the old contents of the file is not
erased and the file pointer is initially placed at
the end of the file; can not be used with
Access(). This is the same as wxFile::write if
the file doesn't exist.

wxFile::write_excl Open the file securely for writing (Uses
O_EXCL | O_CREAT). Will fail if the file
already exists, else create and open it
atomically. Useful for opening temporary files
without being vulnerable to race exploits.

CHAPTER 5

451

Other constants defined elsewhere but used by wxFile functions are wxInvalidOffset
which represents an invalid value of type off_t and is returned by functions returning off_t
on error and the seek mode constants used with Seek() (p. 454):

wxFromStart Count offset from the start of the file
wxFromCurrent Count offset from the current position of the file

pointer
wxFromEnd Count offset from the end of the file

(backwards)

wxFile::wxFile

 wxFile()

Default constructor.

 wxFile(const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens a file with the given mode. As there is no way to return whether the operation was
successful or not from the constructor you should test the return value of IsOpened (p.
453) to check that it didn't fail.

 wxFile(int fd)

Associates the file with the given file descriptor, which has already been opened.

Parameters

filename

The filename.

mode

The mode in which to open the file. May be one of wxFile::read, wxFile::write
and wxFile::read_write.

fd

An existing file descriptor (see Attach() (p. 452) for the list of predefined
descriptors)

wxFile::~wxFile

 ~wxFile()

CHAPTER 5

452

Destructor will close the file.

NB: it is not virtual so you should use wxFile polymorphically.

wxFile::Access

static bool Access(const char * name, OpenMode mode)

This function verifies if we may access the given file in specified mode. Only values of
wxFile::read or wxFile::write really make sense here.

wxFile::Attach

void Attach(int fd)

Attaches an existing file descriptor to the wxFile object. Example of predefined file
descriptors are 0, 1 and 2 which correspond to stdin, stdout and stderr (and have
symbolic names of wxFile::fd_stdin, wxFile::fd_stdout and wxFile::fd_stderr).

The descriptor should be already opened and it will be closed by wxFile object.

wxFile::Close

void Close()

Closes the file.

wxFile::Create

bool Create (const char* filename, bool overwrite = FALSE, int access =
wxS_DEFAULT)

Creates a file for writing. If the file already exists, setting overwrite to TRUE will ensure
it is overwritten.

wxFile::Detach

void Detach()

Get back a file descriptor from wxFile object - the caller is responsible for closing the file
if this descriptor is opened. IsOpened() (p. 453) will return FALSE after call to Detach().

wxFile::fd

CHAPTER 5

453

int fd() const

Returns the file descriptor associated with the file.

wxFile::Eof

bool Eof() const

Returns TRUE if the end of the file has been reached.

Note that the behaviour of the file pointer based class wxFFile (p. 456) is different as
wxFFile::Eof (p. 458) will return TRUE here only if an attempt has been made to read
past the last byte of the file, while wxFile::Eof() will return TRUE even before such
attempt is made if the file pointer is at the last position in the file.

Note also that this function doesn't work on unseekable file descriptors (examples
include pipes, terminals and sockets under Unix) and an attempt to use it will result in an
error message in such case. So, to read the entire file into memory, you should write a
loop which uses Read (p. 454) repeatedly and tests its return condition instead of using
Eof() as this will not work for special files under Unix.

wxFile::Exists

static bool Exists(const char* filename)

Returns TRUE if the given name specifies an existing regular file (not a directory or a
link)

wxFile::Flush

bool Flush()

Flushes the file descriptor.

Note that wxFile::Flush is not implemented on some Windows compilers due to a
missing fsync function, which reduces the usefulness of this function (it can still be called
but it will do nothing on unsupported compilers).

wxFile::IsOpened

bool IsOpened() const

Returns TRUE if the file has been opened.

CHAPTER 5

454

wxFile::Length

off_t Length() const

Returns the length of the file.

wxFile::Open

bool Open(const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens the file, returning TRUE if successful.

Parameters

filename

The filename.

mode

The mode in which to open the file. May be one of wxFile::read, wxFile::write
and wxFile::read_write.

wxFile::Read

off_t Read(void* buffer, off_t count)

Reads the specified number of bytes into a buffer, returning the actual number read.

Parameters

buffer

A buffer to receive the data.

count

The number of bytes to read.

Return value

The number of bytes read, or the symbol wxInvalidOffset (-1) if there was an error.

wxFile::Seek

off_t Seek(off_t ofs, wxSeekMode mode = wxFromStart)

Seeks to the specified position.

Parameters

CHAPTER 5

455

ofs
Offset to seek to.

mode

One of wxFromStart, wxFromEnd, wxFromCurrent.

Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::SeekEnd

off_t SeekEnd(off_t ofs = 0)

Moves the file pointer to the specified number of bytes before the end of the file.

Parameters

ofs

Number of bytes before the end of the file.

Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::Tell

off_t Tell() const

Returns the current position or wxInvalidOffset if file is not opened or if another error
occurred.

wxFile::Write

size_t Write(const void* buffer, off_t count)

Writes the specified number of bytes from a buffer.

Parameters

buffer

A buffer containing the data.

count

The number of bytes to write.

Return value

CHAPTER 5

456

the number of bytes actually written

wxFile::Write

bool Write(const wxString& s, wxMBConv& conv = wxConvLibc)

Writes the contents of the string to the file, returns TRUE on success.

The second argument is only meaningful in Unicode build of wxWindows whenconv is
used to convert s to multibyte representation.

wwxxFFFFiillee

wxFFile implements buffered file I/O. This is a very small class designed to minimize the
overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers. It
wraps inside it a FILE * handle used by standard C IO library (also known as stdio).

Derived from

None.

Include files

<wx/ffile.h>

wxFromStart Count offset from the start of the file
wxFromCurrent Count offset from the current position of the file

pointer
wxFromEnd Count offset from the end of the file

(backwards)

wxFFile::wxFFile

 wxFFile()

Default constructor.

 wxFFile(const char* filename, const char* mode = "r")

Opens a file with the given mode. As there is no way to return whether the operation was

CHAPTER 5

457

successful or not from the constructor you should test the return value of IsOpened (p.
458) to check that it didn't fail.

 wxFFile(FILE* fp)

Opens a file with the given file pointer, which has already been opened.

Parameters

filename

The filename.

mode

The mode in which to open the file using standard C strings. Note that you should
use "b" flag if you use binary files under Windows or the results might be
unexpected due to automatic newline conversion done for the text files.

fp

An existing file descriptor, such as stderr.

wxFFile::~wxFFile

 ~wxFFile()

Destructor will close the file.

NB: it is not virtual so you should not derive from wxFFile!

wxFFile::Attach

void Attach(FILE* fp)

Attaches an existing file pointer to the wxFFile object.

The descriptor should be already opened and it will be closed by wxFFile object.

wxFFile::Close

bool Close()

Closes the file and returns TRUE on success.

wxFFile::Detach

void Detach()

CHAPTER 5

458

Get back a file pointer from wxFFile object - the caller is responsible for closing the file if
this descriptor is opened. IsOpened() (p. 458) will return FALSE after call to Detach().

wxFFile::fp

FILE * fp() const

Returns the file pointer associated with the file.

wxFFile::Eof

bool Eof() const

Returns TRUE if the an attempt has been made to read pastthe end of the file.

Note that the behaviour of the file descriptor based classwxFile (p. 449) is different as
wxFile::Eof (p. 453)will return TRUE here as soon as the last byte of the file has been
read.

wxFFile::Flush

bool Flush()

Flushes the file and returns TRUE on success.

wxFFile::IsOpened

bool IsOpened() const

Returns TRUE if the file has been opened.

wxFFile::Length

size_t Length() const

Returns the length of the file.

wxFFile::Open

bool Open(const char* filename, const char* mode = "r")

Opens the file, returning TRUE if successful.

CHAPTER 5

459

Parameters

filename

The filename.

mode

The mode in which to open the file.

wxFFile::Read

size_t Read(void* buffer, off_t count)

Reads the specified number of bytes into a buffer, returning the actual number read.

Parameters

buffer

A buffer to receive the data.

count

The number of bytes to read.

Return value

The number of bytes read.

wxFFile::Seek

bool Seek(long ofs, wxSeekMode mode = wxFromStart)

Seeks to the specified position and returs TRUE on success.

Parameters

ofs

Offset to seek to.

mode

One of wxFromStart, wxFromEnd, wxFromCurrent.

wxFFile::SeekEnd

bool SeekEnd(long ofs = 0)

Moves the file pointer to the specified number of bytes before the end of the file and
returns TRUE on success.

CHAPTER 5

460

Parameters

ofs

Number of bytes before the end of the file.

wxFFile::Tell

size_t Tell() const

Returns the current position.

wxFFile::Write

size_t Write(const void* buffer, size_t count)

Writes the specified number of bytes from a buffer.

Parameters

buffer

A buffer containing the data.

count

The number of bytes to write.

Return value

Number of bytes written.

wxFFile::Write

bool Write(const wxString& s, wxMBConv& conv = wxConvLibc)

Writes the contents of the string to the file, returns TRUE on success.

The second argument is only meaningful in Unicode build of wxWindows whenconv is
used to convert s to multibyte representation.

wwxxFFiilleeDDaattaaOObbjjeecctt

wxFileDataObject is a specialization of wxDataObject (p. 204) for file names. The
program works with it just as if it were a list of absolute file names, but internally it uses
the same format as Explorer and other compatible programs under Windows or
GNOME/KDE filemanager under Unix which makes it possible to receive files from them

CHAPTER 5

461

using this class.

Warning: Under all non-Windows platforms this class is currently "input-only", i.e. you
can receieve the files from another application, but copying (or dragging) file(s) from a
wxWindows application is not currently supported.

Virtual functions to override

None.

Derived from

wxDataObjectSimple (p. 285)
wxDataObject (p. 204)

Include files

<wx/dataobj.h>

See also

wxDataObject (p. 204), wxDataObjectSimple (p. 285), wxTextDataObject (p. 1256),
wxBitmapDataObject (p. 77), wxDataObject (p. 204)

wxFileDataObject

 wxFileDataObject()

Constructor.

wxFileDataObject::AddFile

virtual void AddFile(const wxString& file)

MSW only: adds a file to the file list represented by this data object.

wxFileDataObject::GetFilenames

const wxArrayString& GetFilenames() const

Returns the array (p. 45) of file names.

wwxxFFiilleeDDiiaalloogg

CHAPTER 5

462

This class represents the file chooser dialog.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/filedlg.h>

See also

wxFileDialog overview (p. 1598), wxFileSelector (p. 1444)

Remarks

Pops up a file selector box. In Windows, this is the common file selector dialog. In X, this
is a file selector box with somewhat less functionality. The path and filename are distinct
elements of a full file pathname. If path is "", the current directory will be used. If
filename is "", no default filename will be supplied. The wildcard determines what files
are displayed in the file selector, and file extension supplies a type extension for the
required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxHIDE_READONLY, wxFILE_MUST_EXIST,
wxMULTIPLE or 0.

Both the X and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed. The wildcard may be a specification for
multiple types of file with a description for each, such as:

 "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif"

wxFileDialog::wxFileDialog

 wxFileDialog(wxWindow* parent, const wxString& message = "Choose a file", const
wxString& defaultDir = "", const wxString& defaultFile = "", const wxString& wildcard
= "*.*", long style = 0, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxFileDialog::ShowModal (p. 466) to show the dialog.

Parameters

parent

Parent window.

CHAPTER 5

463

message

Message to show on the dialog.

defaultDir

The default directory, or the empty string.

defaultFile

The default filename, or the empty string.

wildcard

A wildcard, such as "*.*" or "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif".

style

A dialog style. A bitlist of:

wxOPEN This is an open dialog.
wxSAVE This is a save dialog.
wxHIDE_READONLY Hide read-only files.
wxOVERWRITE_PROMPT For save dialog only: prompt for a confirmation if a

file will be overwritten.
wxMULTIPLE For open dialog only: allows selecting multiple files.
wxCHANGE_DIR Change the current working directory to the directory

where the file(s) chosen by the user are.

pos

Dialog position. Not implemented.

NB: Previous versions of wxWindows used wxCHANGE_DIR by default under MS
Windows which allowed the program to simply remember the last directory where user
selected the files to open/save. This (desired) functionality must be implemented in the
program itself now (manually remember the last path used and pass it to the dialog the
next time it is called) or by using this flag.

wxFileDialog::~wxFileDialog

 ~wxFileDialog()

Destructor.

wxFileDialog::GetDirectory

wxString GetDirectory() const

Returns the default directory.

CHAPTER 5

464

wxFileDialog::GetFilename

wxString GetFilename () const

Returns the default filename.

wxFileDialog::GetFilenames

void GetFilenames(wxArrayString& filenames) const

Fills the array filenames with the names of the files chosen. This function should only be
used with the dialogs which have wxMULTIPLE style, use GetFilename (p. 464) for the
others.

wxFileDialog::GetFilterIndex

int GetFilterIndex() const

Returns the index into the list of filters supplied, optionally, in the wildcard parameter.
Before the dialog is shown, this is the index which will be used when the dialog is first
displayed. After the dialog is shown, this is the index selected by the user.

wxFileDialog::GetMessage

wxString GetMessage () const

Returns the message that will be displayed on the dialog.

wxFileDialog::GetPath

wxString GetPath() const

Returns the full path (directory and filename) of the selected file.

wxFileDialog::GetPaths

void GetPaths(wxArrayString& paths) const

Fills the array paths with the full paths of the files chosen. This function should only be
used with the dialogs which have wxMULTIPLE style, use GetPath (p. 464) for the
others.

wxFileDialog::GetStyle

CHAPTER 5

465

long GetStyle() const

Returns the dialog style.

wxFileDialog::GetWildcard

wxString GetWildcard() const

Returns the file dialog wildcard.

wxFileDialog::SetDirectory

void SetDirectory(const wxString& directory)

Sets the default directory.

wxFileDialog::SetFilename

void SetFilename (const wxString& setfilename)

Sets the default filename.

wxFileDialog::SetFilterIndex

void SetFilterIndex(int filterIndex)

Sets the default filter index, starting from zero. Windows only.

wxFileDialog::SetMessage

void SetMessage(const wxString& message)

Sets the message that will be displayed on the dialog.

wxFileDialog::SetPath

void SetPath(const wxString& path)

Sets the path (the combined directory and filename that will be returned when the dialog
is dismissed).

CHAPTER 5

466

wxFileDialog::SetStyle

void SetStyle(long style)

Sets the dialog style. See wxFileDialog::wxFileDialog (p. 462) for details.

wxFileDialog::SetWildcard

void SetWildcard(const wxString& wildCard)

Sets the wildcard, which can contain multiple file types, for example:

"BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif"

wxFileDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wwxxFFiilleeDDrrooppTTaarrggeett

 A drop target which accepts files (dragged from File Manager or Explorer).

Derived from

wxDropTarget (p. 421)

Include files

<wx/dnd.h>

See also

Drag and drop overview (p. 1619), wxDropSource (p. 419), wxDropTarget (p. 421),
wxTextDropTarget (p. 1264)

wxFileDropTarget::wxFileDropTarget

 wxFileDropTarget()

CHAPTER 5

467

Constructor.

wxFileDropTarget::OnDrop

virtual bool OnDrop(long x, long y, const void *data, size_t size)

See wxDropTarget::OnDrop (p. 423). This function is implemented appropriately for files,
and calls wxFileDropTarget::OnDropFiles (p. 467).

wxFileDropTarget::OnDropFiles

virtual bool OnDropFiles(long x, long y, size_t nFiles, const char * constfiles[])

Override this function to receive dropped files.

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

nFiles

The number of files being dropped.

files

An array of filenames.

Return value

Return TRUE to accept the data, FALSE to veto the operation.

wxPerl note: In wxPerl there is just an array reference in place of nFiles and files.

wwxxFFiilleeHHiissttoorryy

The wxFileHistory encapsulates a user interface convenience, the list of most recently
visited files as shown on a menu (usually the File menu).

wxFileHistory can manage one or more file menus. More than one menu may be
required in an MDI application, where the file history should appear on each MDI child
menu as well as the MDI parent frame.

CHAPTER 5

468

Derived from

wxObject (p. 897)

Include files

<wx/docview.h>

See also

wxFileHistory overview (p. 1604), wxDocManager (p. 385)

wxFileHistory::m_fileHistory

char** m_fileHistory

A character array of strings corresponding to the most recently opened files.

wxFileHistory::m_fileHistoryN

int m_fileHistoryN

The number of files stored in the history array.

wxFileHistory::m_fileMaxFiles

int m_fileMaxFiles

The maximum number of files to be stored and displayed on the menu.

wxFileHistory::m_fileMenu

wxMenu* m_fileMenu

The file menu used to display the file history list (if enabled).

wxFileHistory::wxFileHistory

 wxFileHistory(int maxFiles = 9)

Constructor. Pass the maximum number of files that should be stored and displayed.

CHAPTER 5

469

wxFileHistory::~wxFileHistory

 ~wxFileHistory()

Destructor.

wxFileHistory::AddFileToHistory

void AddFileToHistory(const wxString& filename)

Adds a file to the file history list, if the object has a pointer to an appropriate file menu.

wxFileHistory::AddFilesToMenu

void AddFilesToMenu()

Appends the files in the history list, to all menus managed by the file history object.

void AddFilesToMenu(wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxFileHistory::GetHistoryFile

wxString GetHistoryFile(int index) const

Returns the file at this index (zero-based).

wxFileHistory::GetMaxFiles

int GetMaxFiles() const

Returns the maximum number of files that can be stored.

wxFileHistory::GetNoHistoryFiles

int GetNoHistoryFiles() const

Returns the number of files currently stored in the file history.

wxFileHistory::Load

void Load(wxConfigBase& config)

CHAPTER 5

470

Loads the file history from the given config object. This function should be called
explicitly by the application.

See also

wxConfig (p. 166)

wxFileHistory::RemoveMenu

void RemoveMenu(wxMenu* menu)

Removes this menu from the list of those managed by this object.

wxFileHistory::Save

void Save(wxConfigBase& config)

Saves the file history into the given config object. This must be called explicitly by the
application.

See also

wxConfig (p. 166)

wxFileHistory::UseMenu

void UseMenu(wxMenu* menu)

Adds this menu to the list of those managed by this object.

wwxxFFiilleeIInnppuuttSSttrreeaamm

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFile (p. 449) whereas wxFFileInputStream (p. 473) is
based in the wxFFile (p. 456) class.

Note that wxFile (p. 449) and wxFFile (p. 456) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
453) and wxFFile::Eof (p. 458) and the behaviour of the stream classes reflects this
difference, i.e. wxFileInputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFileInputStream will report wxSTREAM_EOF after trying to read past
the last byte.

CHAPTER 5

471

Derived from

wxInputStream (p. 718)

Include files

<wx/wfstream.h>

See also

wxBufferedInputStream (p. 95), wxFileOutputStream (p. 471), wxFFileOutputStream (p.
474)

wxFileInputStream::wxFileInputStream

 wxFileInputStream(const wxString& ifileName)

Opens the specified file using its ifilename name in read-only mode.

 wxFileInputStream(wxFile& file)

Initializes a file stream in read-only mode using the file I/O object file.

 wxFileInputStream(int fd)

Initializes a file stream in read-only mode using the specified file descriptor.

wxFileInputStream::~wxFileInputStream

 ~wxFileInputStream()

Destructor.

wxFileInputStream::Ok

bool Ok() const

Returns TRUE if the stream is initialized and ready.

wwxxFFiilleeOOuuttppuuttSSttrreeaamm

This class represents data written to a file. There are actually two such groups of

CHAPTER 5

472

classes: this one is based on wxFile (p. 449) whereas wxFFileInputStream (p. 473) is
based in the wxFFile (p. 456) class.

Note that wxFile (p. 449) and wxFFile (p. 456) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
453) and wxFFile::Eof (p. 458) and the behaviour of the stream classes reflects this
difference, i.e. wxFileInputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFileInputStream will report wxSTREAM_EOF after trying to read past
the last byte.

Derived from

wxOutputStream (p. 902)

Include files

<wx/wfstream.h>

See also

wxBufferedOutputStream (p. 95), wxFileInputStream (p. 470), wxFFileInputStream (p.
473)

wxFileOutputStream::wxFileOutputStream

 wxFileOutputStream(const wxString& ofileName)

Creates a new file with ofilename name and initializes the stream in write-only mode.

 wxFileOutputStream(wxFile& file)

Initializes a file stream in write-only mode using the file I/O object file.

 wxFileOutputStream(int fd)

Initializes a file stream in write-only mode using the file descriptor fd.

wxFileOutputStream::~wxFileOutputStream

 ~wxFileOutputStream()

Destructor.

wxFileOutputStream::Ok

CHAPTER 5

473

bool Ok() const

Returns TRUE if the stream is initialized and ready.

wwxxFFiilleeSSttrreeaamm

Derived from

wxFileOutputStream (p. 471), wxFileInputStream (p. 470)

Include files

<wx/wfstream.h>

See also

wxStreamBuffer (p. 1163)

wxFileStream::wxFileStream

 wxFileStream(const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

wwxxFFFFiilleeIInnppuuttSSttrreeaamm

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 456) whereas wxFileInputStream (p. 470) is
based in the wxFile (p. 449) class.

Note that wxFile (p. 449) and wxFFile (p. 456) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
453) and wxFFile::Eof (p. 458) and the behaviour of the stream classes reflects this
difference, i.e. wxFileInputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFileInputStream will report wxSTREAM_EOF after trying to read past
the last byte.

Derived from

wxInputStream (p. 718)

CHAPTER 5

474

Include files

<wx/wfstream.h>

See also

wxBufferedInputStream (p. 95), wxFFileOutputStream (p. 474), wxFileOutputStream (p.
471)

wxFFileInputStream::wxFFileInputStream

 wxFFileInputStream(const wxString& ifileName)

Opens the specified file using its ifilename name in read-only mode.

 wxFFileInputStream(wxFFile& file)

Initializes a file stream in read-only mode using the file I/O object file.

 wxFFileInputStream(FILE * fp)

Initializes a file stream in read-only mode using the specified file pointer fp.

wxFFileInputStream::~wxFFileInputStream

 ~wxFFileInputStream()

Destructor.

wxFFileInputStream::Ok

bool Ok() const

Returns TRUE if the stream is initialized and ready.

wwxxFFFFiilleeOOuuttppuuttSSttrreeaamm

This class represents data written to a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 456) whereas wxFileInputStream (p. 473) is
based in the wxFile (p. 449) class.

Note that wxFile (p. 449) and wxFFile (p. 456) differ in one aspect, namely when to

CHAPTER 5

475

report that the end of the file has been reached. This is documented in wxFile::Eof (p.
453) and wxFFile::Eof (p. 458) and the behaviour of the stream classes reflects this
difference, i.e. wxFileInputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFileInputStream will report wxSTREAM_EOF after trying to read past
the last byte.

Derived from

wxOutputStream (p. 902)

Include files

<wx/wfstream.h>

See also

wxBufferedOutputStream (p. 95), wxFFileInputStream (p. 473), wxFileInputStream (p.
470)

wxFFileOutputStream::wxFFileOutputStream

 wxFFileOutputStream(const wxString& ofileName)

Creates a new file with ofilename name and initializes the stream in write-only mode.

 wxFFileOutputStream(wxFFile& file)

Initializes a file stream in write-only mode using the file I/O object file.

 wxFFileOutputStream(FILE * fp)

Initializes a file stream in write-only mode using the file descriptor fp.

wxFFileOutputStream::~wxFFileOutputStream

 ~wxFFileOutputStream()

Destructor.

wxFFileOutputStream::Ok

bool Ok() const

Returns TRUE if the stream is initialized and ready.

CHAPTER 5

476

wwxxFFFFiilleeSSttrreeaamm

Derived from

wxFFileOutputStream (p. 474), wxFFileInputStream (p. 473)

Include files

<wx/wfstream.h>

See also

wxStreamBuffer (p. 1163)

wxFFileStream::wxFFileStream

 wxFFileStream(const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

wwxxFFiilleeNNaammee

wxFileName encapsulates a file name. This class serves two purposes: first, it provides
the functions to split the file names into components and to recombine these
components in the full file name which can then be passed to the OS file functions (and
wxWindows functions (p. 1433) wrapping them). Second, it includes the functions for
working with the files itself. Note that to change the file data you should use wxFile (p.
449) class instead, wxFileName provides functions for working with the file attributes.

Derived from

No base class

Data structures

Many wxFileName methods accept the path format argument which is by
wxPATH_NATIVE by default meaning to use the path format native for the current
platform.

The path format affects the operation of wxFileName functions in several ways: first and
foremost, it defines the path separator character to use, but it also affects other things
such as whether the path has the drive part or not.

CHAPTER 5

477

enum wxPathFormat
{
 wxPATH_NATIVE = 0, // the path format for the current platform
 wxPATH_UNIX,
 wxPATH_MAC,
 wxPATH_DOS,
 wxPATH_VMS,

 wxPATH_BEOS = wxPATH_UNIX,
 wxPATH_WIN = wxPATH_DOS,
 wxPATH_OS2 = wxPATH_DOS
}

The kind of normalization to do with the file name: these values can be or'd together to
perform several operations at once in Normalize (p. 486).

enum wxPathNormalize
{
 wxPATH_NORM_ENV_VARS = 0x0001, // replace env vars with their
values
 wxPATH_NORM_DOTS = 0x0002, // squeeze all .. and . and prepend
cwd
 wxPATH_NORM_TILDE = 0x0004, // Unix only: replace ~ and ~user
 wxPATH_NORM_CASE = 0x0008, // if case insensitive => tolower
 wxPATH_NORM_ABSOLUTE = 0x0010, // make the path absolute
 wxPATH_NORM_LONG = 0x0020, // make the path the long form
 wxPATH_NORM_ALL = 0x003f
}

File name format

wxFileName currently supports the file names in the Unix, DOS/Windows, Mac OS and
VMS formats. Although these formats are quite different, wxFileName tries to treat them
all in the sam generic way. It supposes that all file names consist of the following parts:
the volume (also known as drive under Windows or device under VMS), the path which
is a sequence of directory names separated by the path separators (p. 483) and the full
filename itself which, in turn, is composed from the base file name and the extension. All
of the individual components of the file name may be empty and, for example, the
volume name is always empty under Unix, but if they are all empty simultaneously, the
filename object is considered to be in an invalid state and IsOk (p. 485) returns FALSE
for it.

File names can be case-sensitive or not, the function IsCaseSensitive (p. 485) allows to
determine this.

The rules for determining if the file name is absolute or relative also depends on the file
name format and the only portable way to answer to this question is to use IsAbsolute
(p. 485) method. To ensure that the filename is absolute you may use Normalize (p.
486). There is also an inverse function MakeRelativeTo (p. 485) which undoes what

CHAPTER 5

478

Normalize(wxPATH_NORM_DOTS (p. 486) does.

Other functions returning information about the file format provided by this class are
GetVolumeSeparator (p. 484), IsPathSeparator (p. 485) and IsWild (p. 485).

IsRelative (p. 485)

File name construction

TODO.

File tests

Before doing the other tests you should use IsOk (p. 485) to verify that the filename is
well defined. If it is, FileExists (p. 481) can be used to test if a file with such name exists
and DirExists (p. 481) - if a directory with this name exists.

File names should be compared using SameAs (p. 487) method or == (p. 488).

File name components

These functions allow to examine and modify the directories of the path:

AppendDir (p. 479)
InsertDir (p. 484)
GetDirCount (p. 482)PrependDir (p. 487)
RemoveDir (p. 487)

To change the components of the file name individually you can use the following
functions:

GetExt (p. 482)
GetName (p. 483)
GetVolume (p. 484)
HasExt (p. 484)
HasName (p. 484)
HasVolume (p. 484)
SetExt (p. 487)
SetName (p. 488)
SetVolume (p. 488)

Operations

These methods allow to work with the file creation, access and modification times:

CHAPTER 5

479

GetModificationTime (p. 483)
GetTimes (p. 484)
SetTimes (p. 488)
Touch (p. 488)

Other file system operations functions are:

Mkdir (p. 486)
Rmdir (p. 487)

wxFileName::wxFileName

 wxFileName ()

Default constructor.

 wxFileName (const wxFileName& filename)

Copy constructor.

 wxFileName (const wxString& fullpath, wxPathFormat format = wxPATH_NATIVE)

From a full filename: if it terminates with a '/', a directory path is contructed (the name will
be empty), otherwise a file name and extension are extracted from it

 wxFileName (const wxString& path, const wxString& name, wxPathFormat format =
wxPATH_NATIVE)

Constructor from a directory name and a file name.

 wxFileName (const wxString& path, const wxString& name, const wxString& ext,
wxPathFormat format = wxPATH_NATIVE)

Constructor from a directory name, base file name and extension

 wxFileName (const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, wxPathFormat format = wxPATH_NATIVE)

Constructor from a volume name, a directory name, base file name and extension

wxFileName::AppendDir

void AppendDir(const wxString& dir)

wxFileName::Assign

CHAPTER 5

480

void Assign(const wxFileName& filepath)

void Assign(const wxString& fullpath, wxPathFormat format = wxPATH_NATIVE)

void Assign(const wxString& volume, const wxString& path, const wxString&
name, const wxString& ext, wxPathFormat format = wxPATH_NATIVE)

void Assign(const wxString& path, const wxString& name, wxPathFormat format =
wxPATH_NATIVE)

void Assign(const wxString& path, const wxString& name, const wxString& ext,
wxPathFormat format = wxPATH_NATIVE)

wxFileName::AssignCwd

void AssignCwd(const wxString& volume = "")

Makes this object refer to the current working directory on the specified volume (or
current volume if volume is empty).

See also

GetCwd (p. 482)

wxFileName::AssignDir

void AssignDir(const wxString& dir, wxPathFormat format = wxPATH_NATIVE)

Set this file name object to the given directory name. The name and extension will be
empty.

wxFileName::AssignHomeDir

void AssignHomeDir()

Set this file name object to the home directory.

wxFileName::AssignTempFileName

void AssignTempFileName (const wxString& prefix)

The function calls CreateTempFileName (p. 481) to create a temporary file and sets this
object to the name of the file. If a temporary file couldn't be created, the object is put into
the invalid (p. 485) state.

CHAPTER 5

481

wxFileName::Clear

void Clear()

Reset all components to default, uninitialized state.

wxFileName::CreateTempFileName

static wxString CreateTempFileName (const wxString& prefix)

Returns a temporary file name starting with the given prefix. If the prefix is an absolute
path, the temporary file is created in this directory, otherwise it is created in the default
system directory for the temporary files or in the current directory.

If the function succeeds, the temporary file is actually created (but not opened) as well.
Under Unix, it will have read and write permissions for the owner only.

Return value

The full temporary file name or an empty string on error.

wxFileName::DirExists

bool DirExists()

bool DirExists(const wxString& dir)

Does the directory with this name exists?

wxFileName::DirName

wxFileName DirName (const wxString& dir)

wxFileName::FileExists

bool FileExists()

bool FileExists(const wxString& file)

Does the file with this name exists?

wxFileName::FileName

CHAPTER 5

482

wxFileName FileName (const wxString& file)

static pseudo constructors

wxFileName::GetCwd

wxString GetCwd(const wxString& volume = "")

Retrieve the value of the current working directory on the specified volume. If the volume
is empty, the programs current working directory is returned for the current volume.

Return value

The string containing the current working directory or an empty string on error.

See also

AssignCwd (p. 480)

wxFileName::GetDirCount

size_t GetDirCount() const

wxFileName::GetDirs

const wxArrayString& GetDirs() const

wxFileName::GetExt

wxString GetExt() const

wxFileName::GetFormat

wxPathFormat GetFormat(wxPathFormat format = wxPATH_NATIVE)

various helpers get the canonical path format for this platform

wxFileName::GetFullName

wxString GetFullName () const

wxFileName::GetFullPath

CHAPTER 5

483

wxString GetFullPath(wxPathFormat format = wxPATH_NATIVE) const

add separator Construct full path with name and ext

wxFileName::GetHomeDir

wxString GetHomeDir()

wxFileName::GetLongPath

wxString GetLongPath() const

Return the long form of the path (returns identity on non-Windows platforms)

wxFileName::GetModificationTime

wxDateTime GetModificationTime () const

convenience wrapper: get just the last mod time of the file

wxFileName::GetName

wxString GetName () const

wxFileName::GetPath

wxString GetPath(bool add_separator = FALSE, wxPathFormat format =
wxPATH_NATIVE) const

Construct path only - possibly with the trailing separator

wxFileName::GetPathSeparators

wxString GetPathSeparators(wxPathFormat format = wxPATH_NATIVE)

get the string of path separators for this format

wxFileName::GetPathWithSep

wxString GetPathWithSep(wxPathFormat format = wxPATH_NATIVE) const

CHAPTER 5

484

more readable synonym

wxFileName::GetShortPath

wxString GetShortPath() const

Return the short form of the path (returns identity on non-Windows platforms)

wxFileName::GetTimes

bool GetTimes(wxDateTime* dtAccess, wxDateTime* dtMod, wxDateTime*
dtChange) const

return the last access, last modification and last change times (any of the pointers may
be NULL)

wxFileName::GetVolume

wxString GetVolume () const

wxFileName::GetVolumeSeparator

wxString GetVolumeSeparator(wxPathFormat format = wxPATH_NATIVE)

get the string separating the volume from the path for this format

wxFileName::HasExt

bool HasExt() const

wxFileName::HasName

bool HasName () const

wxFileName::HasVolume

bool HasVolume() const

wxFileName::InsertDir

void InsertDir(int before, const wxString& dir)

CHAPTER 5

485

wxFileName::IsAbsolute

bool IsAbsolute(wxPathFormat format = wxPATH_NATIVE)

is this filename absolute?

wxFileName::IsCaseSensitive

bool IsCaseSensitive(wxPathFormat format = wxPATH_NATIVE)

Tests are the file names of this type cases sensitive?

wxFileName::IsOk

bool IsOk() const

Returns TRUE if the filename is valid, FALSE if it is not initialized yet. The assignment
functions andClear (p. 481) may reset the object to the uninitialized, invalid state (the
former only do it on failure).

wxFileName::IsPathSeparator

bool IsPathSeparator(wxChar ch, wxPathFormat format = wxPATH_NATIVE)

Returns TRUE if the char is a path separator for this format.

wxFileName::IsRelative

bool IsRelative(wxPathFormat format = wxPATH_NATIVE)

Returns TRUE if this filename is not absolute.

wxFileName::IsWild

bool IsWild(wxPathFormat format = wxPATH_NATIVE)

FIXME: what exactly does this do?

wxFileName::MakeRelativeTo

bool MakeRelativeTo(const wxString& pathBase = "", wxPathFormat format =

CHAPTER 5

486

wxPATH_NATIVE)

This function tries to put this file name in a form relative to pathBase. In other words, it
returns the file name which should be used to access this file if the current directory
were pathBase.

pathBase

the directory to use as root, current directory is used by default

format

the file name format, native by default

Return value

TRUE if the file name has been changed, FALSE if we failed to do anything with it
(currently this only happens if the file name is on a volume different from the volume
specified by pathBase).

See also

Normalize (p. 486)

wxFileName::Mkdir

bool Mkdir(int perm = 0777, bool full = FALSE)

static bool Mkdir(const wxString& dir, int perm = 0777, bool full = FALSE)

dir

the directory to create

parm

the permissions for the newly created directory

full

if TRUE, will try to make each directory in the path

Return value

Returns TRUE if the directory was successfully created, FALSEotherwise.

wxFileName::Normalize

bool Normalize(wxPathNormalize flags = wxPATH_NORM_ALL, const wxString&
cwd = wxEmptyString, wxPathFormat format = wxPATH_NATIVE)

operations on the path normalize the path: with the default flags value, the path will be
made absolute, without any ".." and "." and all environment variables will be expanded in

CHAPTER 5

487

it this may be done using another (than current) value of cwd

wxFileName::PrependDir

void PrependDir(const wxString& dir)

wxFileName::RemoveDir

void RemoveDir(int pos)

wxFileName::Rmdir

bool Rmdir()

static bool Rmdir(const wxString& dir)

Deletes the specified directory.

wxFileName::SameAs

bool SameAs(const wxFileName& filepath, wxPathFormat format =
wxPATH_NATIVE)

Compares the filename using the rules of this platform

wxFileName::SetCwd

bool SetCwd()

static bool SetCwd(const wxString& cwd)

change the current working directory

wxFileName::SetExt

void SetExt(const wxString& ext)

wxFileName::SetFullName

void SetFullName (const wxString& fullname)

full name is the file name + extension (but without the path)

CHAPTER 5

488

wxFileName::SetName

void SetName (const wxString& name)

wxFileName::SetTimes

bool SetTimes(const wxDateTime* dtCreate, const wxDateTime* dtAccess, const
wxDateTime* dtMod)

set the file creation and last access/mod times (any of the pointers may be NULL)

wxFileName::SetVolume

void SetVolume(const wxString& volume)

wxFileName::SplitPath

void SplitPath(const wxString& fullpath, wxString* volume, wxString* path,
wxString* name, wxString* ext, wxPathFormat format = wxPATH_NATIVE)

void SplitPath(const wxString& fullpath, wxString* path, wxString* name, wxString*
ext, wxPathFormat format = wxPATH_NATIVE)

split a fullpath into the volume, path, (base) name and extension (all of the pointers can
be NULL)

wxFileName::Touch

bool Touch()

set the access and modification times to the current moment

wxFileName::operator=

wxFileName& operator operator=(const wxFileName& filename)

wxFileName& operator operator=(const wxString& filename)

Assigns the new value to this filename object.

wxFileName::operator==

CHAPTER 5

489

bool operator operator==(const wxFileName& filename)

bool operator operator==(const wxString& filename)

Returns TRUE if the filenames are equal for the native file format.

wwxxFFiilleennaammeeLLiissttVVaalliiddaattoorr

This class validates a filename for a property list view (p. 987), allowing the user to edit it
textually and also popping up a file selector in "detailed editing" mode.

See also

Validator classes (p. 1671)

wxFilenameListValidator::wxFilenameListValidator

void wxFilenameListValidator(wxString message = "Select a file", wxString wildcard
= "*.*", long flags=0)

Constructor. Supply an optional message and wildcard.

wwxxFFiilleeSSyysstteemm

This class provides an interface for opening files on different file systems. It can handle
absolute and/or local filenames. It uses a system of handlers (p. 491) to provide access
to user-defined virtual file systems.

Derived from

wxObject (p. 897)

Include files

<wx/filesys.h>

See Also

wxFileSystemHandler (p. 491), wxFSFile (p. 537), Overview (p. 1558)

CHAPTER 5

490

wxFileSystem::wxFileSystem

 wxFileSystem()

Constructor.

wxFileSystem::AddHandler

static void AddHandler(wxFileSystemHandler *handler)

This static function adds new handler into the list of handlers. The handlers (p. 491)
provide access to virtual FS.

Note

You can call:

wxFileSystem::AddHandler(new My_FS_Handler);

This is because (a) AddHandler is a static method, and (b) the handlers are deleted in
wxFileSystem's destructor so that you don't have to care about it.

wxFileSystem::ChangePathTo

void ChangePathTo(const wxString& location, bool is_dir = FALSE)

Sets the current location. location parameter passed to OpenFile (p. 491) is relative to
this path.

Caution! Unless is_dir is TRUE the location parameter is not directory name but the
name of the file in this directory!! All these commands change path to "dir/subdir/" :

ChangePathTo("dir/subdir/xh.htm");
ChangePathTo("dir/subdir", TRUE);
ChangePathTo("dir/subdir/", TRUE);

Parameters

location

the new location. Its meaning depends on value of is_dir

is_dir

if TRUE location is new directory. If FALSE (default)location is file in the new
directory.

Example

CHAPTER 5

491

f = fs -> OpenFile("hello.htm"); // opens file 'hello.htm'
fs -> ChangePathTo("subdir/folder", TRUE);
f = fs -> OpenFile("hello.htm"); // opens file
'subdir/folder/hello.htm' !!

wxFileSystem::GetPath

wxString GetPath()

Returns actual path (set by ChangePathTo (p. 490)).

wxFileSystem::FindFirst

wxString FindFirst(const wxString& wildcard, int flags = 0)

Works like wxFindFirstFile (p. 1434). Returns name of the first filename (withing
filesystem's current path) that matches wildcard. flags may be one of wxFILE (only files),
wxDIR (only directories) or 0 (both).

wxFileSystem::FindNext

wxString FindNext()

Returns next filename that matches parameters passed to FindFirst (p. 491).

wxFileSystem::OpenFile

wxFSFile* OpenFile (const wxString& location)

Opens file and returns pointer to wxFSFile (p. 537) object or NULL if failed. It first tries to
open the file in relative scope (based on value passed to ChangePathTo() method) and
then as an absolute path.

wwxxFFiilleeSSyysstteemmHHaannddlleerr

Classes derived from wxFileSystemHandler are used to access virtual file systems. Its
public interface consists of two methods: CanOpen (p. 492) and OpenFile (p. 494). It
provides additional protected methods to simplify the process of opening the file:
GetProtocol, GetLeftLocation, GetRightLocation, GetAnchor, GetMimeTypeFromExt.

Please have a look at overview (p. 1558) if you don't know how locations are
constructed.

CHAPTER 5

492

Also consult list of available handlers (p. 1558).

Notes

 • The handlers are shared by all instances of wxFileSystem.
 • wxHTML library provides handlers for local files and HTTP or FTP protocol
 • The location parameter passed to OpenFile or CanOpen methods is always an

absolute path. You don't need to check the FS's current path.

Derived from

wxObject (p. 897)

Include files

<wx/filesys.h>

See also

wxFileSystem (p. 489), wxFSFile (p. 537), Overview (p. 1558)

wxFileSystemHandler::wxFileSystemHandler

 wxFileSystemHandler()

Constructor.

wxFileSystemHandler::CanOpen

virtual bool CanOpen(const wxString& location)

Returns TRUE if the handler is able to open this file. This function doesn't check whether
the file exists or not, it only checks if it knows the protocol. Example:

bool MyHand::CanOpen(const wxString& location)
{
 return (GetProtocol(location) == "http");
}

Must be overridden in derived handlers.

wxFileSystemHandler::GetAnchor

wxString GetAnchor(const wxString& location) const

CHAPTER 5

493

Returns the anchor if present in the location. See wxFSFile (p. 539) for details.

Example: GetAnchor("index.htm#chapter2") == "chapter2"

Note: the anchor is NOT part of the left location.

wxFileSystemHandler::GetLeftLocation

wxString GetLeftLocation(const wxString& location) const

Returns the left location string extracted from location.

Example: GetLeftLocation("file:myzipfile.zip#zip:index.htm") == "file:myzipfile.zip"

wxFileSystemHandler::GetMimeTypeFromExt

wxString GetMimeTypeFromExt(const wxString& location)

Returns the MIME type based on extension of location. (While wxFSFile::GetMimeType
returns real MIME type - either extension-based or queried from HTTP.)

Example : GetMimeTypeFromExt("index.htm") == "text/html"

wxFileSystemHandler::GetProtocol

wxString GetProtocol(const wxString& location) const

Returns the protocol string extracted from location.

Example: GetProtocol("file:myzipfile.zip#zip:index.htm") == "zip"

wxFileSystemHandler::GetRightLocation

wxString GetRightLocation(const wxString& location) const

Returns the right location string extracted from location.

Example : GetRightLocation("file:myzipfile.zip#zip:index.htm") == "index.htm"

wxFileSystemHandler::FindFirst

virtual wxString FindFirst(const wxString& wildcard, int flags = 0)

Works like wxFindFirstFile (p. 1434). Returns name of the first filename (withing

CHAPTER 5

494

filesystem's current path) that matches wildcard. flags may be one of wxFILE (only files),
wxDIR (only directories) or 0 (both).

This method is only called if CanOpen (p. 492) returns TRUE.

wxFileSystemHandler::FindNext

virtual wxString FindNext()

Returns next filename that matches parameters passed to FindFirst (p. 491).

This method is only called if CanOpen (p. 492) returns TRUE and FindFirst returned a
non-empty string.

wxFileSystemHandler::OpenFile

virtual wxFSFile* OpenFile (wxFileSystem& fs, const wxString& location)

Opens the file and returns wxFSFile pointer or NULL if failed.

Must be overridden in derived handlers.

Parameters

fs

Parent FS (the FS from that OpenFile was called). See ZIP handler for details of
how to use it.

location

The absolute location of file.

wwxxFFiilleeTTyyppee

This class holds information about a given file type. File type is the same as MIME type
under Unix, but under Windows it corresponds more to an extension than to MIME type
(in fact, several extensions may correspond to a file type). This object may be created in
several different ways: the program might know the file extension and wish to find out
the corresponding MIME type or, conversely, it might want to find the right extension for
the file to which it writes the contents of given MIME type. Depending on how it was
created some fields may be unknown so the return value of all the accessors must be
checked: FALSE will be returned if the corresponding information couldn't be found.

The objects of this class are never created by the application code but are returned by
wxMimeTypesManager::GetFileTypeFromMimeType (p. 865) and
wxMimeTypesManager::GetFileTypeFromExtension (p. 865) methods. But it is your

CHAPTER 5

495

responsibility to delete the returned pointer when you're done with it!

A brief reminder about what the MIME types are (see the RFC 1341 for more
information): basically, it is just a pair category/type (for example, "text/plain") where the
category is a basic indication of what a file is. Examples of categories are "application",
"image", "text", "binary", and type is a precise definition of the document format: "plain"
in the example above means just ASCII text without any formatting, while "text/html" is
the HTML document source.

A MIME type may have one or more associated extensions: "text/plain" will typically
correspond to the extension ".txt", but may as well be associated with ".ini" or ".conf".

Derived from

None

Include files

<wx/mimetype.h>

See also

wxMimeTypesManager (p. 863)

MessageParameters class

One of the most common usages of MIME is to encode an e-mail message. The MIME
type of the encoded message is an example of a message parameter. These
parameters are found in the message headers ("Content-XXX"). At the very least, they
must specify the MIME type and the version of MIME used, but almost always they
provide additional information about the message such as the original file name or the
charset (for the text documents).

These parameters may be useful to the program used to open, edit, view or print the
message, so, for example, an e-mail client program will have to pass them to this
program. Because wxFileType itself can not know about these parameters, it uses
MessageParameters class to query them. The default implementation only requiers the
caller to provide the file name (always used by the program to be called - it must know
which file to open) and the MIME type and supposes that there are no other parameters.
If you wish to supply additional parameters, you must derive your own class from
MessageParameters and override GetParamValue() function, for example:

// provide the message parameters for the MIME type manager
class MailMessageParameters : public wxFileType::MessageParameters
{
public:
 MailMessageParameters(const wxString& filename,
 const wxString& mimetype)

CHAPTER 5

496

 : wxFileType::MessageParameters(filename, mimetype)
 {
 }

 virtual wxString GetParamValue(const wxString& name) const
 {
 // parameter names are not case-sensitive
 if (name.CmpNoCase("charset") == 0)
 return "US-ASCII";
 else
 return wxFileType::MessageParameters::GetParamValue(name);
 }
};

Now you only need to create an object of this class and pass it to, for example,
GetOpenCommand (p. 497) like this:

wxString command;
if (filetype->GetOpenCommand(&command,
 MailMessageParamaters("foo.txt",
"text/plain")))
{
 // the full command for opening the text documents is in 'command'
 // (it might be "notepad foo.txt" under Windows or "cat foo.txt"
under Unix)
}
else
{
 // we don't know how to handle such files...
}

Windows: As only the file name is used by the program associated with the given
extension anyhow (but no other message parameters), there is no need to ever derive
from MessageParameters class for a Windows-only program.

wxFileType::wxFileType

 wxFileType()

The default constructor is private because you should never create objects of this type:
they are only returned by wxMimeTypesManager (p. 863) methods.

wxFileType::~wxFileType

 ~wxFileType()

The destructor of this class is not virtual, so it should not be derived from.

wxFileType::GetMimeType

CHAPTER 5

497

bool GetMimeType(wxString* mimeType)

If the function returns TRUE, the string pointed to by mimeType is filled with full MIME
type specification for this file type: for example, "text/plain".

wxFileType::GetMimeTypes

bool GetMimeType(wxArrayString& mimeTypes)

Same as GetMimeType (p. 496) but returns array of MIME types. This array will contain
only one item in most cases but sometimes, notably under Unix with KDE, may contain
more MIME types. This happens when one file extension is mapped to different MIME
types by KDE, mailcap and mime.types.

wxFileType::GetExtensions

bool GetExtensions(wxArrayString& extensions)

If the function returns TRUE, the array extensions is filled with all extensions associated
with this file type: for example, it may contain the following two elements for the MIME
type "text/html" (notice the absence of the leading dot): "html" and "htm".

Windows: This function is currently not implemented: there is no (efficient) way to
retrieve associated extensions from the given MIME type on this platform, so it will only
return TRUE if the wxFileType object was created by GetFileTypeFromExtension (p.
865) function in the first place.

wxFileType::GetIcon

bool GetIcon(wxIcon* icon)

If the function returns TRUE, the icon associated with this file type will be created and
assigned to the icon parameter.

Unix: MIME manager gathers information about icons from GNOME and KDE settings
and thus GetIcon's success depends on availability of these desktop environments.

wxFileType::GetDescription

bool GetDescription(wxString* desc)

If the function returns TRUE, the string pointed to by desc is filled with a brief description
for this file type: for example, "text document" for the "text/plain" MIME type.

wxFileType::GetOpenCommand

CHAPTER 5

498

bool GetOpenCommand(wxString* command, MessageParameters& params)

If the function returns TRUE, the string pointed to by command is filled with the
command which must be executed (see wxExecute (p. 1462)) in order to open the file of
the given type. The name of the file is retrieved from MessageParameters (p. 495) class.

wxFileType::GetPrintCommand

bool GetPrintCommand(wxString* command,MessageParameters& params)

If the function returns TRUE, the string pointed to by command is filled with the
command which must be executed (see wxExecute (p. 1462)) in order to print the file of
the given type. The name of the file is retrieved from MessageParameters (p. 495) class.

wxFileType::ExpandCommand

static wxString ExpandCommand(const wxString& command,
MessageParameters& params)

This function is primarly intended for GetOpenCommand and GetPrintCommand usage
but may be also used by the application directly if, for example, you want to use some
non default command to open the file.

The function replaces all occurrences of

format specificator with
%s the full file name
%t the MIME type
%{param} the value of the parameter param

using the MessageParameters object you pass to it.

If there is no '%s' in the command string (and the string is not empty), it is assumed that
the command reads the data on stdin and so the effect is the same as "< %s" were
appended to the string.

Unlike all other functions of this class, there is no error return for this function.

wwxxFFlleexxGGrriiddSSiizzeerr

A flex grid sizer is a sizer which lays out its children in a two-dimensional table with all
table fields in one row having the same height and all fields in one column having the
same width, but all rows or all columns are not necessarily the same height or width as

CHAPTER 5

499

in the wxGridSizer (p. 606).

Derived from

wxGridSizer (p. 606)
wxSizer (p. 1086)
wxObject (p. 897)

wxFlexGridSizer::wxFlexGridSizer

 wxFlexGridSizer(int rows, int cols, int vgap, int hgap)

 wxFlexGridSizer(int cols, int vgap = 0, int hgap = 0)

Constructor for a wxGridSizer. rows and cols determine the number of columns and
rows in the sizer - if either of the parameters is zero, it will be calculated to form the total
number of children in the sizer, thus making the sizer grow dynamically. vgap and hgap
define extra space between all children.

wxFlexGridSizer::AddGrowableCol

void AddGrowableCol(size_t idx)

Specifies that column idx (starting from zero) should be grown if there is extra space
available to the sizer.

wxFlexGridSizer::AddGrowableRow

void AddGrowableRow(size_t idx)

Specifies that row idx (starting from zero) should be grown if there is extra space
available to the sizer.

wxFlexGridSizer::RemoveGrowableCol

void RemoveGrowableCol(size_t idx)

Specifies that column idx is no longer growable.

wxFlexGridSizer::RemoveGrowableRow

void RemoveGrowableRow(size_t idx)

Specifies that row idx is no longer growable.

CHAPTER 5

500

wwxxFFiilltteerrIInnppuuttSSttrreeaamm

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can uncompress or uncrypt the data which are read
from another stream and pass it to the requester.

Derived from

wxInputStream (p. 718)
wxStreamBase (p. 1161)

Include files

<wx/stream.h>

Note

The interface of this class is the same as that of wxInputStream. Only a constructor
differs and it is documented below.

wxFilterInputStream::wxFilterInputStream

 wxFilterInputStream(wxInputStream& stream)

Initializes a "filter" stream.

wwxxFFiilltteerrOOuuttppuuttSSttrreeaamm

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can compress, encrypt the data which are passed to
it and write them to another stream.

Derived from

wxOutputStream (p. 902)
wxStreamBase (p. 1161)

Include files

<wx/stream.h>

Note

CHAPTER 5

501

The use of this class is exactly the same as of wxOutputStream. Only a constructor
differs and it is documented below.

wxFilterOutputStream::wxFilterOutputStream

 wxFilterOutputStream(wxOutputStream& stream)

Initializes a "filter" stream.

wwxxFFiinnddDDiiaallooggEEvveenntt

wxFindReplaceDialog events

Derived from

wxCommandEvent (p. 156)

Include files

<wx/fdrepdlg.h>

Event table macros

To process a command event from wxFindReplaceDialog (p. 504), use these event
handler macros to direct input to member functions that take a wxFindDialogEvent
argument. The id parameter is the identifier of the find dialog and you may usually
specify -1 for it unless you plan to have several find dialogs sending events to the same
owner window simultaneously.

EVT_FIND(id, func) Find button was pressed in the dialog.
EVT_FIND_NEXT(id, func) Find next button was pressed in the dialog.
EVT_FIND_REPLACE(id, func) Replace button was pressed in the dialog.
EVT_FIND_REPLACE_ALL(id, func) Replace all button was pressed in the dialog.
EVT_FIND_CLOSE(id, func) The dialog is being destroyed, any pointers to it

cannot be used any longer.

wxFindDialogEvent::wxFindDialogEvent

 wxFindDialogEvent(wxEventType commandType = wxEVT_NULL, int id = 0)

CHAPTER 5

502

Constuctor used by wxWindows only.

wxFindDialogEvent::GetFlags

int GetFlags() const

Get the currently selected flags: this is the combination of
wxFR_DOWN,wxFR_WHOLEWORD and wxFR_MATCHCASE flags.

wxFindDialogEvent::GetFindString

wxString GetFindString() const

Return the string to find (never empty).

wxFindDialogEvent::GetReplaceString

const wxString& GetReplaceString() const

Return the string to replace the search string with (only for replace and replace all
events).

wxFindDialogEvent::GetDialog

wxFindReplaceDialog* GetDialog() const

Return the pointer to the dialog which generated this event.

wwxxFFiinnddRReeppllaacceeDDaattaa

wxFindReplaceData holds the data for wxFindReplaceDialog (p. 504). It is used to
initialize the dialog with the default values and will keep the last values from the dialog
when it is closed. It is also updated each time a wxFindDialogEvent (p. 501) is generated
so instead of using the wxFindDialogEvent methods you can also directly query this
object.

Note that all SetXXX() methods may only be called before showing the dialog and
calling them has no effect later.

Include files

CHAPTER 5

503

include <wx/fdrepdlg.h>

Derived from

wxObject (p. 897)

Data structures

Flages used by wxFindReplaceData::GetFlags() (p. 504)
andwxFindDialogEvent::GetFlags() (p. 502):

enum wxFindReplaceFlags
{
 // downward search/replace selected (otherwise - upwards)
 wxFR_DOWN = 1,

 // whole word search/replace selected
 wxFR_WHOLEWORD = 2,

 // case sensitive search/replace selected (otherwise - case
insensitive)
 wxFR_MATCHCASE = 4
}

These flags can be specified in wxFindReplaceDialog ctor (p. 505) or Create() (p. 505):

enum wxFindReplaceDialogStyles
{
 // replace dialog (otherwise find dialog)
 wxFR_REPLACEDIALOG = 1,

 // don't allow changing the search direction
 wxFR_NOUPDOWN = 2,

 // don't allow case sensitive searching
 wxFR_NOMATCHCASE = 4,

 // don't allow whole word searching
 wxFR_NOWHOLEWORD = 8
}

wxFindReplaceData::wxFindReplaceData

 wxFindReplaceData(wxUint32 flags = 0)

Constuctor initializes the flags to default value (0).

wxFindReplaceData::GetFindString

CHAPTER 5

504

const wxString& GetFindString()

Get the string to find.

wxFindReplaceData::GetReplaceString

const wxString& GetReplaceString()

Get the replacement string.

wxFindReplaceData::GetFlags

int GetFlags() const

Get the combination of wxFindReplaceFlags values.

wxFindReplaceData::SetFlags

void SetFlags(wxUint32 flags)

Set the flags to use to initialize the controls of the dialog.

wxFindReplaceData::SetFindString

void SetFindString(const wxString& str)

Set the string to find (used as initial value by the dialog).

wxFindReplaceData::SetReplaceString

void SetReplaceString(const wxString& str)

Set the replacement string (used as initial value by the dialog).

wwxxFFiinnddRReeppllaacceeDDiiaalloogg

wxFindReplaceDialog is a standard modeless dialog which is used to allow the user to
search for some text (and possible replace it with something else). The actual searching
is supposed to be done in the owner window which is the parent of this dialog. Note that
it means that unlike for the other standard dialogs this one must have a parent window.
Also note that there is no way to use this dialog in a modal way, it is always, by design

CHAPTER 5

505

and implementation, modeless.

Please see the dialogs sample for example of using it.

Include files

include <wx/fdrepdlg.h>

Derived from

wxDialog (p. 359)

wxFindReplaceDialog::wxFindReplaceDialog

 wxFindReplaceDialog()

 wxFindReplaceDialog(wxWindow * parent, wxFindReplaceData* data, const
wxString& title, int style = 0)

After using default constructor Create() (p. 505) must be called.

The parent and data parameters must be non-NULL.

wxFindReplaceDialog::~wxFindReplaceDialog

 ~wxFindReplaceDialog()

Destructor.

wxFindReplaceDialog::Create

bool Create (wxWindow * parent, wxFindReplaceData* data, const wxString& title,
int style = 0)

Creates the dialog and shows it on screen.

The parent and data parameters must be non-NULL.

wxFindReplaceDialog::GetData

const wxFindReplaceData* GetData() const

Get the wxFindReplaceData (p. 502) object used by this dialog.

CHAPTER 5

506

wwxxFFooccuussEEvveenntt

A focus event is sent when a window's focus changes.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process a focus event, use these event handler macros to direct input to a member
function that takes a wxFocusEvent argument.

EVT_SET_FOCUS(func) Process a wxEVT_SET_FOCUS event.
EVT_KILL_FOCUS(func) Process a wxEVT_KILL_FOCUS event.

See also

wxWindow::OnSetFocus (p. 1399), wxWindow::OnKillFocus (p. 1394), Event handling
overview (p. 1560)

wxFocusEvent::wxFocusEvent

 wxFocusEvent(WXTYPE eventType = 0, int id = 0)

Constructor.

wwxxFFoonntt

A font is an object which determines the appearance of text. Fonts are used for drawing
text to a device context, and setting the appearance of a window's text.

Derived from

wxGDIObject (p. 550)
wxObject (p. 897)

CHAPTER 5

507

Include files

<wx/font.h>

Constants

enum wxFontEncoding
{
 wxFONTENCODING_SYSTEM = -1, // system default
 wxFONTENCODING_DEFAULT, // current default encoding

 // ISO8859 standard defines a number of single-byte charsets
 wxFONTENCODING_ISO8859_1, // West European (Latin1)
 wxFONTENCODING_ISO8859_2, // Central and East European
(Latin2)
 wxFONTENCODING_ISO8859_3, // Esperanto (Latin3)
 wxFONTENCODING_ISO8859_4, // Baltic (old) (Latin4)
 wxFONTENCODING_ISO8859_5, // Cyrillic
 wxFONTENCODING_ISO8859_6, // Arabic
 wxFONTENCODING_ISO8859_7, // Greek
 wxFONTENCODING_ISO8859_8, // Hebrew
 wxFONTENCODING_ISO8859_9, // Turkish (Latin5)
 wxFONTENCODING_ISO8859_10, // Variation of Latin4 (Latin6)
 wxFONTENCODING_ISO8859_11, // Thai
 wxFONTENCODING_ISO8859_12, // doesn't exist currently, but put
it
 // here anyhow to make all ISO8859
 // consecutive numbers
 wxFONTENCODING_ISO8859_13, // Baltic (Latin7)
 wxFONTENCODING_ISO8859_14, // Latin8
 wxFONTENCODING_ISO8859_15, // Latin9 (a.k.a. Latin0, includes
euro)
 wxFONTENCODING_ISO8859_MAX,

 // Cyrillic charset soup (see
http://czyborra.com/charsets/cyrillic.html)
 wxFONTENCODING_KOI8, // we don't support any of KOI8
variants
 wxFONTENCODING_ALTERNATIVE, // same as MS-DOS CP866
 wxFONTENCODING_BULGARIAN, // used under Linux in Bulgaria

 // what would we do without Microsoft? They have their own
encodings
 // for DOS
 wxFONTENCODING_CP437, // original MS-DOS codepage
 wxFONTENCODING_CP850, // CP437 merged with Latin1
 wxFONTENCODING_CP852, // CP437 merged with Latin2
 wxFONTENCODING_CP855, // another cyrillic encoding
 wxFONTENCODING_CP866, // and another one
 // and for Windows
 wxFONTENCODING_CP874, // WinThai
 wxFONTENCODING_CP1250, // WinLatin2
 wxFONTENCODING_CP1251, // WinCyrillic
 wxFONTENCODING_CP1252, // WinLatin1
 wxFONTENCODING_CP1253, // WinGreek (8859-7)

CHAPTER 5

508

 wxFONTENCODING_CP1254, // WinTurkish
 wxFONTENCODING_CP1255, // WinHebrew
 wxFONTENCODING_CP1256, // WinArabic
 wxFONTENCODING_CP1257, // WinBaltic (same as Latin 7)
 wxFONTENCODING_CP12_MAX,

 wxFONTENCODING_UTF7, // UTF-7 Unicode encoding
 wxFONTENCODING_UTF8, // UTF-8 Unicode encoding

 wxFONTENCODING_UNICODE, // Unicode - currently used only by
 // wxEncodingConverter class

 wxFONTENCODING_MAX
};

Predefined objects

Objects:

wxNullFont

Pointers:

wxNORMAL_FONT
wxSMALL_FONT
wxITALIC_FONT
wxSWISS_FONT

See also

wxFont overview (p. 1589), wxDC::SetFont (p. 343), wxDC::DrawText (p. 335),
wxDC::GetTextExtent (p. 339), wxFontDialog (p. 518)

wxFont::wxFont

 wxFont()

Default constructor.

 wxFont(int pointSize, int family, int style, int weight, const bool underline = FALSE,
const wxString& faceName = "", wxFontEncoding encoding =
wxFONTENCODING_DEFAULT)

Creates a font object (see font encoding overview (p. 1590) for the meaning of the last
parameter).

Parameters

pointSize

CHAPTER 5

509

Size in points.

family

Font family, a generic way of referring to fonts without specifying actual facename.
One of:

wxDEFAULT Chooses a default font.
wxDECORATIVE A decorative font.
wxROMAN A formal, serif font.
wxSCRIPT A handwriting font.
wxSWISS A sans-serif font.
wxMODERN A fixed pitch font.

style

One of wxNORMAL , wxSLANT and wxITALIC.

weight

One of wxNORMAL , wxLIGHT and wxBOLD.

underline

The value can be TRUE or FALSE. At present this has an effect on Windows only.

faceName

An optional string specifying the actual typeface to be used. If the empty string, a
default typeface will chosen based on the family.

encoding

An encoding which may be one ofwxFONTENCODING_SYSTEM Default
system encoding.

wxFONTENCODING_DEFAULT Default application encoding: this is the
encoding set by calls to SetDefaultEncoding (p. 512)
and which may be set to, say, KOI8 to create all fonts
by default with KOI8 encoding. Initially, the default
application encoding is the same as default system
encoding.

wxFONTENCODING_ISO8859_1...15 ISO8859 encodings.
wxFONTENCODING_KOI8 The standard russian encoding for Internet.
wxFONTENCODING_CP1250...1252 Windows encodings similar to ISO8859 (but

not identical).
If the specified encoding isn't available, no font is
created.

Remarks

If the desired font does not exist, the closest match will be chosen. Under Windows, only
scaleable TrueType fonts are used.

See also wxDC::SetFont (p. 343), wxDC::DrawText (p. 335)and wxDC::GetTextExtent
(p. 339).

CHAPTER 5

510

wxFont::~wxFont

 ~wxFont()

Destructor.

Remarks

The destructor may not delete the underlying font object of the native windowing system,
since wxFont uses a reference counting system for efficiency.

Although all remaining fonts are deleted when the application exits, the application
should try to clean up all fonts itself. This is because wxWindows cannot know if a
pointer to the font object is stored in an application data structure, and there is a risk of
double deletion.

wxFont::GetDefaultEncoding

static wxFontEncoding GetDefaultEncoding()

Returns the current applications default encoding.

See also

Font encoding overview (p. 1590), SetDefaultEncoding (p. 512)

wxFont::GetFaceName

wxString GetFaceName () const

Returns the typeface name associated with the font, or the empty string if there is no
typeface information.

See also

wxFont::SetFaceName (p. 512)

wxFont::GetFamily

int GetFamily() const

Gets the font family. See wxFont::wxFont (p. 508) for a list of valid family identifiers.

See also

wxFont::SetFamily (p. 512)

CHAPTER 5

511

wxFont::GetFontId

int GetFontId() const

Returns the font id, if the portable font system is in operation. See Font overview (p.
1589) for further details.

wxFont::GetPointSize

int GetPointSize() const

Gets the point size.

See also

wxFont::SetPointSize (p. 513)

wxFont::GetStyle

int GetStyle() const

Gets the font style. See wxFont::wxFont (p. 508) for a list of valid styles.

See also

wxFont::SetStyle (p. 513)

wxFont::GetUnderlined

bool GetUnderlined() const

Returns TRUE if the font is underlined, FALSE otherwise.

See also

wxFont::SetUnderlined (p. 513)

wxFont::GetWeight

int GetWeight() const

Gets the font weight. See wxFont::wxFont (p. 508) for a list of valid weight identifiers.

See also

CHAPTER 5

512

wxFont::SetWeight (p. 514)

wxFont::SetDefaultEncoding

static void SetDefaultEncoding(wxFontEncoding encoding)

Sets the default font encoding.

See also

Font encoding overview (p. 1590), GetDefaultEncoding (p. 510)

wxFont::SetFaceName

void SetFaceName (const wxString& faceName)

Sets the facename for the font.

Parameters

faceName

A valid facename, which should be on the end-user's system.

Remarks

To avoid portability problems, don't rely on a specific face, but specify the font family
instead or as well. A suitable font will be found on the end-user's system. If both the
family and the facename are specified, wxWindows will first search for the specific face,
and then for a font belonging to the same family.

See also

wxFont::GetFaceName (p. 510), wxFont::SetFamily (p. 512)

wxFont::SetFamily

void SetFamily(int family)

Sets the font family.

Parameters

family

One of:

wxDEFAULT Chooses a default font.

CHAPTER 5

513

wxDECORATIVE A decorative font.
wxROMAN A formal, serif font.
wxSCRIPT A handwriting font.
wxSWISS A sans-serif font.
wxMODERN A fixed pitch font.

See also

wxFont::GetFamily (p. 510), wxFont::SetFaceName (p. 512)

wxFont::SetPointSize

void SetPointSize(int pointSize)

Sets the point size.

Parameters

pointSize

Size in points.

See also

wxFont::GetPointSize (p. 511)

wxFont::SetStyle

void SetStyle(int style)

Sets the font style.

Parameters

style

One of wxNORMAL , wxSLANT and wxITALIC.

See also

wxFont::GetStyle (p. 511)

wxFont::SetUnderlined

void SetUnderlined(const bool underlined)

Sets underlining.

CHAPTER 5

514

Parameters

underlining

TRUE to underline, FALSE otherwise.

See also

wxFont::GetUnderlined (p. 511)

wxFont::SetWeight

void SetWeight(int weight)

Sets the font weight.

Parameters

weight

One of wxNORMAL , wxLIGHT and wxBOLD.

See also

wxFont::GetWeight (p. 511)

wxFont::operator =

wxFont& operator =(const wxFont& font)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxFont::operator ==

bool operator ==(const wxFont& font)

Equality operator. Two fonts are equal if they contain pointers to the same underlying
font data. It does not compare each attribute, so two indefontdently-created fonts using
the same parameters will fail the test.

wxFont::operator !=

bool operator !=(const wxFont& font)

Inequality operator. Two fonts are not equal if they contain pointers to different
underlying font data. It does not compare each attribute.

CHAPTER 5

515

wwxxFFoonnttDDaattaa

wxFontDialog overview (p. 1597)

This class holds a variety of information related to font dialogs.

Derived from

wxObject (p. 897)

Include files

<wx/cmndata.h>

See also

Overview (p. 1597), wxFontDialog (p. 518)

wxFontData::wxFontData

 wxFontData()

Constructor. Initializes fontColour to black, showHelp to black, allowSymbols to TRUE,
enableEffects to TRUE, minSize to 0 and maxSize to 0.

wxFontData::~wxFontData

 ~wxFontData()

Destructor.

wxFontData::EnableEffects

void EnableEffects(bool enable)

Enables or disables 'effects' under MS Windows only. This refers to the controls for
manipulating colour, strikeout and underline properties.

The default value is TRUE.

wxFontData::GetAllowSymbols

CHAPTER 5

516

bool GetAllowSymbols()

Under MS Windows, returns a flag determining whether symbol fonts can be selected.
Has no effect on other platforms.

The default value is TRUE.

wxFontData::GetColour

wxColour& GetColour()

Gets the colour associated with the font dialog.

The default value is black.

wxFontData::GetChosenFont

wxFont GetChosenFont()

Gets the font chosen by the user. If the user pressed OK (wxFontDialog::Show returned
TRUE), this returns a new font which is now 'owned' by the application, and should be
deleted if not required. If the user pressed Cancel (wxFontDialog::Show returned
FALSE) or the colour dialog has not been invoked yet, this will return NULL.

wxFontData::GetEnableEffects

bool GetEnableEffects()

Determines whether 'effects' are enabled under Windows. This refers to the controls for
manipulating colour, strikeout and underline properties.

The default value is TRUE.

wxFontData::GetInitialFont

wxFont GetInitialFont()

Gets the font that will be initially used by the font dialog. This should have previously
been set by the application.

wxFontData::GetShowHelp

bool GetShowHelp()

Returns TRUE if the Help button will be shown (Windows only).

CHAPTER 5

517

The default value is FALSE.

wxFontData::SetAllowSymbols

void SetAllowSymbols(bool allowSymbols)

Under MS Windows, determines whether symbol fonts can be selected. Has no effect on
other platforms.

The default value is TRUE.

wxFontData::SetChosenFont

void SetChosenFont(const wxFont& font)

Sets the font that will be returned to the user (for internal use only).

wxFontData::SetColour

void SetColour(const wxColour& colour)

Sets the colour that will be used for the font foreground colour.

The default colour is black.

wxFontData::SetInitialFont

void SetInitialFont(const wxFont&font)

Sets the font that will be initially used by the font dialog.

wxFontData::SetRange

void SetRange (int min, int max)

Sets the valid range for the font point size (Windows only).

The default is 0, 0 (unrestricted range).

wxFontData::SetShowHelp

void SetShowHelp(bool showHelp)

CHAPTER 5

518

Determines whether the Help button will be displayed in the font dialog (Windows only).

The default value is FALSE.

wxFontData::operator =

void operator =(const wxFontData& data)

Assingment operator for the font data.

wwxxFFoonnttDDiiaalloogg

This class represents the font chooser dialog.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/fontdlg.h>

See also

Overview (p. 1597), wxFontData (p. 515)

wxFontDialog::wxFontDialog

 wxFontDialog(wxWindow* parent, wxFontData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of font data,
which will be copied to the font dialog's font data.

wxFontDialog::~wxFontDialog

 ~wxFontDialog()

Destructor.

CHAPTER 5

519

wxFontDialog::GetFontData

wxFontData& GetFontData()

Returns the font data (p. 515) associated with the font dialog.

wxFontDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed Ok, and wxID_CANCEL
otherwise.

If the user cancels the dialog (ShowModal returns wxID_CANCEL), no font will be
created. If the user presses OK (ShowModal returns wxID_OK), a new wxFont will be
created and stored in the font dialog's wxFontData structure.

wwxxFFoonnttEEnnuummeerraattoorr

wxFontEnumerator enumerates either all available fonts on the system or only the ones
with given attributes - either only fixed-width (suited for use in programs such as terminal
emulators and the like) or the fonts available in the given encoding (p. 1590).

To do this, you just have to call one of EnumerateXXX() functions - either
EnumerateFacenames (p. 520) or EnumerateEncodings (p. 520) and the corresponding
callback (OnFacename (p. 520) or OnFontEncoding (p. 521)) will be called repeatedly
until either all fonts satisfying the specified criteria are exhausted or the callback returns
FALSE.

Virtual functions to override

Either OnFacename (p. 520) or OnFontEncoding (p. 521) should be overridden
depending on whether you plan to call EnumerateFacenames (p. 520) or
EnumerateEncodings (p. 520). Of course, if you call both of them, you should override
both functions.

Derived from

None

Include files

<wx/fontenum.h>

CHAPTER 5

520

See also

Font encoding overview (p. 1590), Font sample (p. 1519), wxFont (p. 506),
wxFontMapper (p. 522)

wxFontEnumerator::EnumerateFacenames

virtual bool EnumerateFacenames(wxFontEncoding encoding =
wxFONTENCODING_SYSTEM , bool fixedWidthOnly = FALSE)

Call OnFacename (p. 520) for each font which supports given encoding (only if it is not
wxFONTENCODING_SYSTEM) and is of fixed width (if fixedWidthOnly is TRUE).

Calling this function with default arguments will result in enumerating all fonts available
on the system.

wxFontEnumerator::EnumerateEncodings

virtual bool EnumerateEncodings(const wxString& font = "")

Call OnFontEncoding (p. 521) for each encoding supported by the given font - or for
each encoding supported by at least some font if font is not specified.

wxFontEnumerator::GetEncodings

wxArrayString* GetEncodings()

Return array of strings containing all encodings found by EnumerateEncodings (p. 520).
This is convenience function. It is based on default implementation of OnFontEncoding
(p. 521) so don't expect it to work if you overwrite that method.

wxFontEnumerator::GetFacenames

wxArrayString* GetFacenames()

Return array of strings containing all facenames found by EnumerateFacenames (p.
520). This is convenience function. It is based on default implementation of
OnFacename (p. 520) so don't expect it to work if you overwrite that method.

wxFontEnumerator::OnFacename

virtual bool OnFacename (const wxString& font)

CHAPTER 5

521

Called by EnumerateFacenames (p. 520) for each match. Return TRUE to continue
enumeration or FALSE to stop it.

wxFontEnumerator::OnFontEncoding

virtual bool OnFontEncoding(const wxString& font, const wxString& encoding)

Called by EnumerateEncodings (p. 520) for each match. Return TRUE to continue
enumeration or FALSE to stop it.

wwxxFFoonnttLLiisstt

A font list is a list containing all fonts which have been created. There is only one
instance of this class: wxTheFontList. Use this object to search for a previously
created font of the desired type and create it if not already found. In some windowing
systems, the font may be a scarce resource, so it is best to reuse old resources if
possible. When an application finishes, all fonts will be deleted and their resources
freed, eliminating the possibility of 'memory leaks'.

Derived from

wxList (p. 743)
wxObject (p. 897)

Include files

<wx/gdicmn.h>

See also

wxFont (p. 506)

wxFontList::wxFontList

 wxFontList()

Constructor. The application should not construct its own font list: use the object pointer
wxTheFontList.

wxFontList::AddFont

void AddFont(wxFont *font)

CHAPTER 5

522

Used by wxWindows to add a font to the list, called in the font constructor.

wxFontList::FindOrCreateFont

wxFont * FindOrCreateFont(int point_size, int family, int style, int weight, bool
underline = FALSE, const wxString& facename = NULL, wxFontEncoding encoding =
wxFONTENCODING_DEFAULT)

Finds a font of the given specification, or creates one and adds it to the list. See the
wxFont constructor (p. 508) for details of the arguments.

wxFontList::RemoveFont

void RemoveFont(wxFont *font)

Used by wxWindows to remove a font from the list.

wwxxFFoonnttMMaappppeerr

wxFontMapper manages user-definable correspondence between logical font names
and the fonts present on the machine.

The default implementations of all functions will ask the user if they are not capable of
finding the answer themselves and store the answer in a config file (configurable via
SetConfigXXX functions). This behaviour may be disabled by giving the value of FALSE
to "interactive" parameter.

However, the functions will always consult the config file to allow the user-defined values
override the default logic and there is no way to disable this - which shouldn't be ever
needed because if "interactive" was never TRUE, the config file is never created
anyhow.

In case everything else fails (i.e. there is no record in config file and "interactive" is
FALSE or user denied to choose any replacement), the class queries
wxEncodingConverter (p. 425) for "equivalent" encodings (e.g. iso8859-2 and cp1250)
and tries them.

Global variables

wxFontMapper *wxTheFontMapper is defined.

Using wxFontMapper in conjunction with wxEncodingConverter

If you need to display text in encoding which is not available at host system (see

CHAPTER 5

523

IsEncodingAvailable (p. 524)), you may use these two classes to find font in some
similar encoding (see GetAltForEncoding (p. 524)) and convert the text to this encoding
(wxEncodingConverter::Convert (p. 426)).

Following code snippet demonstrates it:

if (!wxTheFontMapper->IsEncodingAvailable(enc, facename))
{
 wxFontEncoding alternative;
 if (wxTheFontMapper->GetAltForEncoding(enc, &alternative,
 facename, FALSE))
 {
 wxEncodingConverter encconv;
 if (!encconv.Init(enc, alternative))
 ...failure...
 else
 text = encconv.Convert(text);
 }
 else
 ...failure (or we may try iso8859-1/7bit ASCII)...
}
...display text...

Derived from

No base class

Include files

<wx/fontmap.h>

See also

wxEncodingConverter (p. 425), Writing non-English applications (p. 1543)

wxFontMapper::wxFontMapper

 wxFontMapper()

Default ctor.

wxFontMapper::~wxFontMapper

 ~wxFontMapper()

Virtual dtor for a base class.

CHAPTER 5

524

wxFontMapper::GetAltForEncoding

bool GetAltForEncoding(wxFontEncoding encoding, wxNativeEncodingInfo* info,
const wxString& facename = wxEmptyString, bool interactive = TRUE)

bool GetAltForEncoding(wxFontEncoding encoding, wxFontEncoding*
alt_encoding, const wxString& facename = wxEmptyString, bool interactive = TRUE)

Find an alternative for the given encoding (which is supposed to not be available on this
system). If successful, return TRUE and fill info structure with the parameters required to
create the font, otherwise return FALSE.

The first form is for wxWindows' internal use while the second one is better suitable for
general use -- it returns wxFontEncoding which can consequently be passed to wxFont
constructor.

wxFontMapper::IsEncodingAvailable

bool IsEncodingAvailable(wxFontEncoding encoding, const wxString& facename =
wxEmptyString)

Check whether given encoding is available in given face or not. If no facename is given,
find any font in this encoding.

wxFontMapper::CharsetToEncoding

wxFontEncoding CharsetToEncoding(const wxString& charset, bool interactive =
TRUE)

Returns the encoding for the given charset (in the form of RFC 2046) or
wxFONTENCODING_SYSTEM if couldn't decode it.

wxFontMapper::GetEncodingName

static wxString GetEncodingName (wxFontEncoding encoding)

Return internal string identifier for the encoding (see also GetEncodingDescription() (p.
524))

wxFontMapper::GetEncodingDescription

static wxString GetEncodingDescription(wxFontEncoding encoding)

Return user-readable string describing the given encoding.

CHAPTER 5

525

wxFontMapper::SetDialogParent

void SetDialogParent(wxWindow* parent)

The parent window for modal dialogs.

wxFontMapper::SetDialogTitle

void SetDialogTitle (const wxString& title)

The title for the dialogs (note that default is quite reasonable).

wxFontMapper::SetConfig

void SetConfig(wxConfigBase* config)

Set the config object to use (may be NULL to use default).

By default, the global one (from wxConfigBase::Get() will be used) and the default root
path for the config settings is the string returned by GetDefaultConfigPath().

wxFontMapper: :SetConfigPath

void SetConfigPath(const wxString& prefix)

Set the root config path to use (should be an absolute path).

wwxxFFrraammee

A frame is a window whose size and position can (usually) be changed by the user. It
usually has thick borders and a title bar, and can optionally contain a menu bar, toolbar
and status bar. A frame can contain any window that is not a frame or dialog.

A frame that has a status bar and toolbar created via the
CreateStatusBar/CreateToolBar functions manages these windows, and adjusts the
value returned by GetClientSize to reflect the remaining size available to application
windows.

Derived from

wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

CHAPTER 5

526

Include files

<wx/frame.h>

Window styles

wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |

wxMAXIMIZE_BOX | wxRESIZE_BOX |
wxSYSTEM_MENU | wxCAPTION.

wxICONIZE Display the frame iconized (minimized). Windows only.
wxCAPTION Puts a caption on the frame.
wxMINIMIZE Identical to wxICONIZE. Windows only.
wxMINIMIZE_BOX Displays a minimize box on the frame.
wxMAXIMIZE Displays the frame maximized. Windows only.
wxMAXIMIZE_BOX Displays a maximize box on the frame.
wxSTAY_ON_TOP Stay on top of other windows. Windows only.
wxSYSTEM_MENU Displays a system menu.
wxSIMPLE_BORDER Displays no border or decorations. GTK and Windows only.
wxRESIZE_BORDER Displays a resizeable border around the window.
wxFRAME_TOOL_WINDOW Causes a frame with a small titlebar to be created;

the frame does not appear in the taskbar under Windows.
wxFRAME_NO_TASKBAR Creates a normal frame but if this frame has a parent it

does not appear in the taskbar under Windows. Note that a
frame without parent will still appear in the taskbar even
with this style. Has no effect under other platforms.

wxFRAME_FLOAT_ON_PARENT Unused any longer, use
wxFRAME_TOOL_WINDOW or
wxFRAME_NO_TASKBAR instead

wxFRAME_EX_CONTEXTHELP Under Windows, puts a query button on the
caption. When pressed, Windows will go into a context-
sensitive help mode and wxWindows will send a
wxEVT_HELP event if the user clicked on an application
window. Note that this is an extended style and must be
set by calling SetExtraStyle (p. 1408) before Create is
called (two-step construction). You cannot use this style
together with wxMAXIMIZE_BOX or wxMINIMIZE_BOX.

The default frame style is for normal, resizeable frames. To create a frame which can not
be resized by user, you may use the following combination of styles:
wxDEFAULT_FRAME_STYLE & | wxRESIZE_BOX | wxMAXIMIZE_BOX). See
also window styles overview (p. 1567).

Remarks

An application should normally define an OnCloseWindow (p. 1391) handler for the
frame to respond to system close events, for example so that related data and
subwindows can be cleaned up.

See also

CHAPTER 5

527

wxMDIParentFrame (p. 821), wxMDIChildFrame (p. 816), wxMiniFrame (p. 866),
wxDialog (p. 359)

wxFrame::wxFrame

 wxFrame ()

Default constructor.

 wxFrame (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent

The window parent. This may be NULL. If it is non-NULL, the frame will always be
displayed on top of the parent window on Windows.

id

The window identifier. It may take a value of -1 to indicate a default value.

title

The caption to be displayed on the frame's title bar.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWindows, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style

The window style. See wxFrame (p. 525).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

For Motif, MWM (the Motif Window Manager) should be running for any window styles to
work (otherwise all styles take effect).

CHAPTER 5

528

See also

wxFrame::Create (p. 528)

wxFrame::~wxFrame

void ~wxFrame ()

Destructor. Destroys all child windows and menu bar if present.

wxFrame::Centre

void Centre(int direction = wxBOTH)

Centres the frame on the display.

Parameters

direction

The parameter may be wxHORIZONTAL, wxVERTICAL or wxBOTH.

wxFrame::Command

void Command(int id)

Simulate a menu command.

Parameters

id

The identifier for a menu item.

wxFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxFrame::wxFrame (p. 527) for further details.

wxFrame::CreateStatusBar

virtual wxStatusBar* CreateStatusBar(int number = 1, long style = 0, wxWindowID id
= -1, const wxString& name = "statusBar")

CHAPTER 5

529

Creates a status bar at the bottom of the frame.

Parameters

number

The number of fields to create. Specify a value greater than 1 to create a multi-field
status bar.

style

The status bar style. See wxStatusBar (p. 1155) for a list of valid styles.

id

The status bar window identifier. If -1, an identifier will be chosen by wxWindows.

name

The status bar window name.

Return value

A pointer to the the status bar if it was created successfully, NULL otherwise.

Remarks

The width of the status bar is the whole width of the frame (adjusted automatically when
resizing), and the height and text size are chosen by the host windowing system.

By default, the status bar is an instance of wxStatusBar. To use a different class,
override wxFrame::OnCreateStatusBar (p. 532).

Note that you can put controls and other windows on the status bar if you wish.

See also

wxFrame::SetStatusText (p. 535), wxFrame::OnCreateStatusBar (p. 532),
wxFrame::GetStatusBar (p. 530)

wxFrame::CreateToolBar

virtual wxToolBar* CreateToolBar(long style = wxNO_BORDER |
wxTB_HORIZONTAL, wxWindowID id = -1, const wxString& name = "toolBar")

Creates a toolbar at the top or left of the frame.

Parameters

style

The toolbar style. See wxToolBar (p. 1296) for a list of valid styles.

id

CHAPTER 5

530

The toolbar window identifier. If -1, an identifier will be chosen by wxWindows.

name

The toolbar window name.

Return value

A pointer to the the toolbar if it was created successfully, NULL otherwise.

Remarks

By default, the toolbar is an instance of wxToolBar (which is defined to be a suitable
toolbar class on each platform, such as wxToolBar95). To use a different class, override
wxFrame::OnCreateToolBar (p. 533).

When a toolbar has been created with this function, or made known to the frame with
wxFrame::SetToolBar (p. 536), the frame will manage the toolbar position and adjust the
return value from wxWindow::GetClientSize (p. 1377) to reflect the available space for
application windows.

See also

wxFrame::CreateStatusBar (p. 528), wxFrame::OnCreateToolBar (p. 533),
wxFrame::SetToolBar (p. 536), wxFrame::GetToolBar (p. 531)

wxFrame::GetClientAreaOrigin

wxPoint GetClientAreaOrigin() const

Returns the origin of the frame client area (in client coordinates). It may be different from
(0, 0) if the frame has a toolbar.

wxFrame::GetMenuBar

wxMenuBar* GetMenuBar () const

Returns a pointer to the menubar currently associated with the frame (if any).

See also

wxFrame::SetMenuBar (p. 535), wxMenuBar (p. 843), wxMenu (p. 833)

wxFrame::GetStatusBar

wxStatusBar* GetStatusBar () const

Returns a pointer to the status bar currently associated with the frame (if any).

CHAPTER 5

531

See also

wxFrame::CreateStatusBar (p. 528), wxStatusBar (p. 1155)

wxFrame::GetTitle

wxString GetTitle() const

Gets a string containing the frame title. See wxFrame::SetTitle (p. 537).

wxFrame::GetToolBar

wxToolBar* GetToolBar() const

Returns a pointer to the toolbar currently associated with the frame (if any).

See also

wxFrame::CreateToolBar (p. 529), wxToolBar (p. 1296), wxFrame::SetToolBar (p. 536)

wxFrame::Iconize

void Iconize(bool iconize)

Iconizes or restores the frame.

Parameters

izonize

If TRUE, iconizes the frame; if FALSE, shows and restores it.

See also

wxFrame::IsIconized (p. 532), wxFrame::Maximize (p. 532).

wxFrame::IsFullScreen

bool IsFullScreen()

Returns TRUE if the frame is in fullscreen mode.

See also

wxFrame::ShowFullScreen (p. 537)

CHAPTER 5

532

wxFrame::IsIconized

bool IsIconized() const

Returns TRUE if the frame is iconized.

wxFrame::IsMaximized

bool IsMaximized() const

Returns TRUE if the frame is maximized.

wxFrame::Maximize

void Maximize(bool maximize)

Maximizes or restores the frame.

Parameters

maximize

If TRUE, maximizes the frame, otherwise it restores it.

Remarks

This function only works under Windows.

See also

wxFrame::Iconize (p. 531)

wxFrame::OnActivate

void OnActivate(wxActivateEvent& event)

Called when a window is activated or deactivated (MS Windows only). See also
wxActivateEvent (p. 20).

wxFrame::OnCreateStatusBar

virtual wxStatusBar* OnCreateStatusBar(int number, long style, wxWindowID id,
const wxString& name)

Virtual function called when a status bar is requested by wxFrame::CreateStatusBar (p.
528).

CHAPTER 5

533

Parameters

number

The number of fields to create.

style

The window style. See wxStatusBar (p. 1155) for a list of valid styles.

id

The window identifier. If -1, an identifier will be chosen by wxWindows.

name

The window name.

Return value

A status bar object.

Remarks

An application can override this function to return a different kind of status bar. The
default implementation returns an instance of wxStatusBar (p. 1155).

See also

wxFrame::CreateStatusBar (p. 528), wxStatusBar (p. 1155).

wxFrame::OnCreateToolBar

virtual wxToolBar* OnCreateToolBar (long style, wxWindowID id, const wxString&
name)

Virtual function called when a toolbar is requested by wxFrame::CreateToolBar (p. 529).

Parameters

style

The toolbar style. See wxToolBar (p. 1296) for a list of valid styles.

id

The toolbar window identifier. If -1, an identifier will be chosen by wxWindows.

name

The toolbar window name.

Return value

A toolbar object.

CHAPTER 5

534

Remarks

An application can override this function to return a different kind of toolbar. The default
implementation returns an instance of wxToolBar (p. 1296).

See also

wxFrame::CreateToolBar (p. 529), wxToolBar (p. 1296).

wxFrame::OnMenuCommand

void OnMenuCommand(wxCommandEvent& event)

See wxWindow::OnMenuCommand (p. 1395).

wxFrame::OnMenuHighlight

void OnMenuHighlight(wxMenuEvent& event)

See wxWindow::OnMenuHighlight (p. 1395).

wxFrame::OnSize

void OnSize(wxSizeEvent& event)

See wxWindow::OnSize (p. 1399).

The default wxFrame::OnSize implementation looks for a single subwindow, and if one
is found, resizes it to fit inside the frame. Override this member if more complex
behaviour is required (for example, if there are several subwindows).

wxFrame::SetIcon

void SetIcon(const wxIcon& icon)

Sets the icon for this frame.

Parameters

icon

The icon to associate with this frame.

Remarks

The frame takes a 'copy' of icon, but since it uses reference counting, the copy is very
quick. It is safe to delete icon after calling this function.

CHAPTER 5

535

See also wxIcon (p. 680).

wxFrame::SetMenuBar

void SetMenuBar(wxMenuBar* menuBar)

Tells the frame to show the given menu bar.

Parameters

menuBar

The menu bar to associate with the frame.

Remarks

If the frame is destroyed, the menu bar and its menus will be destroyed also, so do not
delete the menu bar explicitly (except by resetting the frame's menu bar to another frame
or NULL).

Under Windows, a call to wxFrame::OnSize (p. 534) is generated, so be sure to initialize
data members properly before calling SetMenuBar.

Note that it is not possible to call this function twice for the same frame object.

See also

wxFrame::GetMenuBar (p. 530), wxMenuBar (p. 843), wxMenu (p. 833).

wxFrame::SetStatusBar

void SetStatusBar (wxStatusBar* statusBar)

Associates a status bar with the frame.

See also

wxFrame::CreateStatusBar (p. 528), wxStatusBar (p. 1155), wxFrame::GetStatusBar (p.
530)

wxFrame::SetStatusText

virtual void SetStatusText(const wxString& text, int number = 0)

Sets the status bar text and redraws the status bar.

Parameters

CHAPTER 5

536

text

The text for the status field.

number

The status field (starting from zero).

Remarks

Use an empty string to clear the status bar.

See also

wxFrame::CreateStatusBar (p. 528), wxStatusBar (p. 1155)

wxFrame::SetStatusWidths

virtual void SetStatusWidths(int n, int *widths)

Sets the widths of the fields in the status bar.

Parameters

nThe number of fields in the status bar. It must be the same used in CreateStatusBar (p.
528).

widths

Must contain an array of n integers, each of which is a status field width in pixels. A
value of -1 indicates that the field is variable width; at least one field must be -1.
You should delete this array after calling SetStatusWidths.

Remarks

The widths of the variable fields are calculated from the total width of all fields, minus the
sum of widths of the non-variable fields, divided by the number of variable fields.

wxPython note: Only a single parameter is required, a Python list of integers.

wxPerl note: In wxPerl this method takes the field widths as parameters.

wxFrame::SetToolBar

void SetToolBar(wxToolBar* toolBar)

Associates a toolbar with the frame.

See also

CHAPTER 5

537

wxFrame::CreateToolBar (p. 529), wxToolBar (p. 1296), wxFrame::GetToolBar (p. 531)

wxFrame::SetTitle

virtual void SetTitle(const wxString& title)

Sets the frame title.

Parameters

title

The frame title.

See also

wxFrame::GetTitle (p. 531)

wxFrame::ShowFullScreen

bool ShowFullScreen(bool show, long style = wxFULLSCREEN_ALL)

Passing TRUE to shows shows the frame full-screen, and passing FALSE restores the
frame again. style is a bit list containing some or all of the following values, which
indicate what elements of the frame to hide in full-screen mode:

 • wxFULLSCREEN_NOMENUBAR
 • wxFULLSCREEN_NOTOOLBAR
 • wxFULLSCREEN_NOSTATUSBAR
 • wxFULLSCREEN_NOBORDER
 • wxFULLSCREEN_NOCAPTION
 • wxFULLSCREEN_ALL (all of the above)

This function has not been tested with MDI frames.

See also

wxFrame::IsFullScreen (p. 531)

wwxxFFSSFFiillee

This class represents a single file opened by wxFileSystem (p. 489). It provides more
information than wxWindow's input stream (stream, filename, mime type, anchor).

Note: Any pointer returned by wxFSFile's member is valid only as long as wxFSFile

CHAPTER 5

538

object exists. For example a call to GetStream() doesn't create the stream but only
returns the pointer to it. In other words after 10 calls to GetStream() you will obtain ten
identical pointers.

Derived from

wxObject (p. 897)

Include files

<wx/filesys.h>

See Also

wxFileSystemHandler (p. 491), wxFileSystem (p. 489), Overview (p. 1558)

wxFSFile::wxFSFile

 wxFSFile(wxInputStream *stream , const wxString& loc, const wxString& mimetype,
const wxString& anchor)

Constructor. You probably won't use it. See Notes for details.

Parameters

stream

The input stream that will be used to access data

location

The full location (aka filename) of the file

mimetype

MIME type of this file. Mime type is either extension-based or HTTP Content-Type

anchor

Anchor. See GetAnchor() (p. 539) for details.

If you are not sure of the meaning of these params, see the description of the
GetXXXX() functions.

Notes

It is seldom used by the application programmer but you will need it if you are writing
your own virtual FS. For example you may need something similar to
wxMemoryInputStream, but because wxMemoryInputStream doesn't free the memory
when destroyed and thus passing a memory stream pointer into wxFSFile constructor
would lead to memory leaks, you can write your own class derived from wxFSFile:

CHAPTER 5

539

class wxMyFSFile : public wxFSFile
{
 private:
 void *m_Mem;
 public:
 wxMyFSFile(.....)
 ~wxMyFSFile() {free(m_Mem);}
 // of course dtor is virtual ;-)
};

wxFSFile::GetAnchor

const wxString& GetAnchor() const

Returns anchor (if present). The term of anchor can be easily explained using few
examples:

index.htm#anchor /* 'anchor' is anchor */
index/wx001.htm /* NO anchor here! */
archive/main.zip#zip:index.htm#global /* 'global' */
archive/main.zip#zip:index.htm /* NO anchor here! */

Usually an anchor is presented only if the MIME type is 'text/html'. But it may have some
meaning with other files; for example myanim.avi#200 may refer to position in animation
or reality.wrl#MyView may refer to a predefined view in VRML.

wxFSFile::GetLocation

const wxString& GetLocation() const

Returns full location of the file, including path and protocol. Examples :

http://www.wxwindows.org
http://www.ms.mff.cuni.cz/~vsla8348/wxhtml/archive.zip#zip:info.txt
file:/home/vasek/index.htm
relative-file.htm

wxFSFile::GetMimeType

const wxString& GetMimeType() const

Returns the MIME type of the content of this file. It is either extension-based (see
wxMimeTypesManager) or extracted from HTTP protocol Content-Type header.

wxFSFile::GetModificationTime

wxDateTime GetModificationTime () const

CHAPTER 5

540

Returns time when this file was modified.

wxFSFile::GetStream

wxInputStream* GetStream() const

Returns pointer to the stream. You can use the returned stream to directly access data.
You may suppose that the stream provide Seek and GetSize functionality (even in the
case of the HTTP protocol which doesn't provide this by default. wxHtml uses local
cache to work around this and to speed up the connection).

wwxxFFTTPP

wxFTP can be used to establish a connection to an FTP server and perform all the usual
operations. Please consult the RFC 959 for more details about the FTP protocol.

To use a commands which doesn't involve file transfer (i.e. directory oriented
commands) you just need to call a corresponding member function or use the generic
SendCommand (p. 542) method. However to actually transfer files you just get or give a
stream to or from this class and the actual data are read or written using the usual
stream methods.

Example of using wxFTP for file downloading:

 wxFTP ftp;

 // if you don't use these lines anonymous login will be used
 ftp.SetUser("user");
 ftp.SetPassword("password");

 if (!ftp.Connect("ftp.wxwindows.org"))
 {
 wxLogError("Couldn't connect");
 return;
 }

 ftp.ChDir("/pub");
 wxInputStream *in = ftp.GetInputStream("wxWindows-4.2.0.tar.gz");
 if (!in)
 {
 wxLogError("Coudln't get file");
 }
 else
 {
 size_t size = in->StreamSize();
 char *data = new char[size];
 if (!in->Read(data, size))
 {
 wxLogError("Read error");

CHAPTER 5

541

 }
 else
 {
 // file data is in the buffer
 ...
 }

 delete [] data;
 delete in;
 }

To upload a file you would do (assuming the connection to the server was opened
successfully):

 wxOutputStream *out = ftp.GetOutputStream("filename");
 if (out)
 {
 out->Write(...); // your data
 delete out;
 }

Constants

wxFTP defines constants corresponding to the two supported transfer modes:

enum TransferMode
{
 ASCII,
 BINARY
};

Derived from

wxProtocol (p. 1002)

Include files

<wx/protocol/ftp.h>

See also

wxSocketBase (p. 1100)

wxFTP::wxFTP

 wxFTP()

Default constructor.

CHAPTER 5

542

wxFTP::~wxFTP

 ~wxFTP()

Destructor will close the connection if connected.

wxFTP::CheckCommand

bool CheckCommand(const wxString& command, char ret)

Send the specified command to the FTP server. ret specifies the expected result.

Return value

TRUE if the command has been sent successfully, else FALSE.

wxFTP::SendCommand

char SendCommand(const wxString& command)

Send the specified command to the FTP server and return the first character of the
return code.

wxFTP::GetLastResult

const wxString& GetLastResult()

Returns the last command result, i.e. the full server reply for the last command.

wxFTP::ChDir

bool ChDir(const wxString& dir)

Change the current FTP working directory. Returns TRUE if successful.

wxFTP::MkDir

bool MkDir(const wxString& dir)

Create the specified directory in the current FTP working directory. Returns TRUE if
successful.

wxFTP::RmDir

CHAPTER 5

543

bool RmDir(const wxString& dir)

Remove the specified directory from the current FTP working directory. Returns TRUE if
successful.

wxFTP::Pwd

wxString Pwd()

Returns the current FTP working directory.

wxFTP::Rename

bool Rename (const wxString& src, const wxString& dst)

Rename the specified src element to dst. Returns TRUE if successful.

wxFTP::RmFile

bool RmFile(const wxString& path)

Delete the file specified by path. Returns TRUE if successful.

wxFTP::SetAscii

bool SetAscii()

Sets the transfer mode to ASCII. It will be used for the next transfer.

wxFTP::SetBinary

bool SetBinary()

Sets the transfer mode to binary (IMAGE). It will be used for the next transfer.

wxFTP::SetTransferMode

bool SetTransferMode (TransferMode mode)

Sets the transfer mode to the specified one. It will be used for the next transfer.

If this function is never called, binary transfer mode is used by default.

CHAPTER 5

544

wxFTP::SetUser

void SetUser(const wxString& user)

Sets the user name to be sent to the FTP server to be allowed to log in.

Default value

The default value of the user name is "anonymous".

Remark

This parameter can be included in a URL if you want to use the URL manager. For
example, you can use: "ftp://a_user:a_password@a.host:service/a_directory/a_file" to
specify a user and a password.

wxFTP::SetPassword

void SetPassword(const wxString& passwd)

Sets the password to be sent to the FTP server to be allowed to log in.

Default value

The default value of the user name is your email address. For example, it could be
"username@userhost.domain". This password is built by getting the current user name
and the host name of the local machine from the system.

Remark

This parameter can be included in a URL if you want to use the URL manager. For
example, you can use: "ftp://a_user:a_password@a.host:service/a_directory/a_file" to
specify a user and a password.

wxFTP::GetDirList

bool GetDirList(wxArrayString& files, const wxString& wildcard = "")

The GetList function is quite low-level. It returns the list of the files in the current
directory. The list can be filtered using the wildcard string. If wildcard is empty (default), it
will return all files in directory.

The form of the list can change from one peer system to another. For example, for a
UNIX peer system, it will look like this:

-r--r--r-- 1 guilhem lavaux 12738 Jan 16 20:17 cmndata.cpp

CHAPTER 5

545

-r--r--r-- 1 guilhem lavaux 10866 Jan 24 16:41 config.cpp
-rw-rw-rw- 1 guilhem lavaux 29967 Dec 21 19:17 cwlex_yy.c
-rw-rw-rw- 1 guilhem lavaux 14342 Jan 22 19:51 cwy_tab.c
-r--r--r-- 1 guilhem lavaux 13890 Jan 29 19:18 date.cpp
-r--r--r-- 1 guilhem lavaux 3989 Feb 8 19:18 datstrm.cpp

But on Windows system, it will look like this:

winamp~1 exe 520196 02-25-1999 19:28 winamp204.exe
 1 file(s) 520 196 bytes

Return value: TRUE if the file list was successfully retrieved, FALSE otherwise.

See also

GetFilesList (p. 545)

wxFTP::GetFilesList

bool GetFilesList(wxArrayString& files, const wxString& wildcard = "")

This function returns the computer-parsable list of the files in the current directory
(optionally only of the files matching the wildcard, all files by default). This list always has
the same format and contains one full (including the directory path) file name per line.

Return value: TRUE if the file list was successfully retrieved, FALSE otherwise.

wxFTP::GetOutputStream

wxOutputStream * GetOutputStream(const wxString& file)

Initializes an output stream to the specified file. The returned stream has all but the seek
functionality of wxStreams. When the user finishes writing data, he has to delete the
stream to close it.

Return value

An initialized write-only stream.

See also

wxOutputStream (p. 902)

wxFTP::GetInputStream

wxInputStream * GetInputStream(const wxString& path)

Creates a new input stream on the the specified path. You can use all but the seek

CHAPTER 5

546

functionality of wxStream. Seek isn't available on all streams. For example, http or ftp
streams do not deal with it. Other functions like Tell are not available for this sort of
stream, at present. You will be notified when the EOF is reached by an error.

Return value

Returns NULL if an error occurred (it could be a network failure or the fact that the file
doesn't exist).

Returns the initialized stream. You will have to delete it yourself when you don't need it
anymore. The destructor closes the DATA stream connection but will leave the
COMMAND stream connection opened. It means that you can still send new commands
without reconnecting.

Example of a standalone connection (without wxURL)

 wxFTP ftp;
 wxInputStream *in_stream;
 char *data;

 ftp.Connect("a.host.domain");
 ftp.ChDir("a_directory");
 in_stream = ftp.GetInputStream("a_file_to_get");

 data = new char[in_stream->StreamSize()];

 in_stream->Read(data, in_stream->StreamSize());
 if (in_stream->LastError() != wxStream_NOERROR) {
 // Do something.
 }

 delete in_stream; /* Close the DATA connection */

 ftp.Close(); /* Close the COMMAND connection */

See also

wxInputStream (p. 718)

wwxxGGaauuggee

A gauge is a horizontal or vertical bar which shows a quantity (often time). There are no
user commands for the gauge.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)

CHAPTER 5

547

wxObject (p. 897)

Include files

<wx/gauge.h>

Window styles

wxGA_HORIZONTAL Creates a horizontal gauge.
wxGA_VERTICAL Creates a vertical gauge.
wxGA_PROGRESSBAR Under Windows 95, creates a horizontal progress bar.
wxGA_SMOOTH Under Windows 95, creates smooth progress bar with one

pixel wide update step.

See also window styles overview (p. 1567).

Event handling

wxGauge is read-only so generates no events.

See also

wxSlider (p. 1091), wxScrollBar (p. 1062)

wxGauge::wxGauge

 wxGauge()

Default constructor.

 wxGauge(wxWindow* parent, wxWindowID id, int range, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxGA_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "gauge")

Constructor, creating and showing a gauge.

Parameters

parent

Window parent.

id

Window identifier.

range

Integer range (maximum value) of the gauge.

CHAPTER 5

548

pos

Window position.

size

Window size.

style

Gauge style. See wxGauge (p. 546).

name

Window name.

Remarks

Under Windows 95, there are two different styles of gauge: normal gauge, and progress
bar (when the wxGA_PROGRESSBAR style is used). A progress bar is always
horizontal.

See also

wxGauge::Create (p. 548)

wxGauge::~wxGauge

 ~wxGauge()

Destructor, destroying the gauge.

wxGauge::Create

bool Create (wxWindow* parent, wxWindowID id, int range, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxGA_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "gauge")

Creates the gauge for two-step construction. See wxGauge::wxGauge (p. 547) for
further details.

wxGauge::GetBezelFace

int GetBezelFace () const

Returns the width of the 3D bezel face.

Remarks

CHAPTER 5

549

Windows only, not for wxGA_PROGRESSBAR .

See also

wxGauge::SetBezelFace (p. 549)

wxGauge::GetRange

int GetRange () const

Returns the maximum position of the gauge.

See also

wxGauge::SetRange (p. 550)

wxGauge::GetShadowWidth

int GetShadowWidth() const

Returns the 3D shadow margin width.

Remarks

Windows only, not for wxGA_PROGRESSBAR .

See also

wxGauge::SetShadowWidth (p. 550)

wxGauge::GetValue

int GetValue() const

Returns the current position of the gauge.

See also

wxGauge::SetValue (p. 550)

wxGauge::SetBezelFace

void SetBezelFace(int width)

Sets the 3D bezel face width.

CHAPTER 5

550

Remarks

Windows only, not for wxGA_PROGRESSBAR .

See also

wxGauge::GetBezelFace (p. 548)

wxGauge::SetRange

void SetRange (int range)

Sets the range (maximum value) of the gauge.

See also

wxGauge::GetRange (p. 549)

wxGauge::SetShadowWidth

void SetShadowWidth(int width)

Sets the 3D shadow width.

Remarks

Windows only, not for wxGA_PROGRESSBAR .

wxGauge::SetValue

void SetValue(int pos)

Sets the position of the gauge.

Parameters

pos

Position for the gauge level.

See also

wxGauge::GetValue (p. 549)

wwxxGGDDIIOObbjjeecctt

CHAPTER 5

551

This class allows platforms to implement functionality to optimise GDI objects, such as
wxPen, wxBrush and wxFont. On Windows, the underling GDI objects are a scarce
resource and are cleaned up when a usage count goes to zero. On some platforms this
class may not have any special functionality.

Since the functionality of this class is platform-specific, it is not documented here in
detail.

Derived from

wxObject (p. 897)

Include files

<wx/gdiobj.h>

See also

wxPen (p. 922), wxBrush (p. 81), wxFont (p. 506)

wxGDIObject::wxGDIObject

 wxGDIObject()

Default constructor.

wwxxGGeenneerriiccDDiirrCCttrrll

This control can be used to place a directory listing (with optional files) on an arbitrary
window.

The control contains a wxTreeCtrl (p. 1313) window representing the directory hierarchy,
and optionally, a wxChoice (p. 116) window containing a list of filters.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

CHAPTER 5

552

<wx/dirctrl.h>

Window styles

wxDIRCTRL_DIR_ONLY Only show directories, and not files.
wxDIRCTRL_3D_INTERNAL Use 3D borders for internal controls.
wxDIRCTRL_SELECT_FIRST When setting the default path, select the first file in

the directory.
wxDIRCTRL_SHOW_FILTERS Show the drop-down filter list.

See also Generic window styles (p. 1567).

Data structures

wxGenericDirCtrl::wxGenericDirCtrl

 wxGenericDirCtrl()

Default constructor.

 wxGenericDirCtrl(wxWindow* parent, const wxWindowID id = -1, const wxString&
dir = wxDirDialogDefaultFolderStr, const wxPoint& pos = wxDefaultPosition, const
wxSize& size = wxDefaultSize, long style =
wxDIRCTRL_3D_INTERNAL|wxSUNKEN_BORDER, const wxString& filter =
wxEmptyString, int defaultFilter = 0, const wxString& name = wxTreeCtrlNameStr)

Main constructor.

Parameters

parent

Parent window.

id

Window identifier.

dir

Initial folder.

pos

Position.

size

Size.

style

Window style. Please see wxGenericDirCtrl (p. 551) for a list of possible styles.

CHAPTER 5

553

filter

A filter string, using the same syntax as that for wxFileDialog (p. 461). This may be
empty if filters are not being used.

Example: "All files (*.*)|*.*|JPEG files (*.jpg)|*.jpg"

defaultFilter

The zero-indexed default filter setting.

name

The window name.

wxGenericDirCtrl::~wxGenericDirCtrl

 ~wxGenericDirCtrl()

Destructor.

wxGenericDirCtrl::Create

bool Create (wxWindow* parent, const wxWindowID id = -1, const wxString& dir =
wxDirDialogDefaultFolderStr, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxDIRCTRL_3D_INTERNAL|wxSUNKEN_BORDER,
const wxString& filter = wxEmptyString, int defaultFilter = 0, const wxString& name =
wxTreeCtrlNameStr)

Create function for two-step construction. See wxGenericDirCtrl::wxGenericDirCtrl (p.
552) for details.

wxGenericDirCtrl::Init

void Init()

Initializes variables.

wxGenericDirCtrl::ExpandPath

bool ExpandPath(const wxString& path)

Tries to expand as much of the given path as possible, so that the filename or directory
is visible in the tree control.

wxGenericDirCtrl::GetDefaultPath

CHAPTER 5

554

wxString GetDefaultPath() const

Gets the default path.

wxGenericDirCtrl::GetPath

wxString GetPath() const

Gets the currently-selected directory or filename.

wxGenericDirCtrl::GetFilePath

wxString GetFilePath() const

Gets selected filename path only (else empty string).

This function doen't count a directory as a selection.

wxGenericDirCtrl::GetFilter

wxString GetFilter() const

Returns the filter string.

wxGenericDirCtrl::GetFilterIndex

int GetFilterIndex() const

Returns the current filter index (zero-based).

wxGenericDirCtrl::GetFilterListCtrl

wxDirFilterListCtrl* GetFilterListCtrl() const

Returns a pointer to the filter list control (if present).

wxGenericDirCtrl::GetRootId

wxTreeItemId GetRootId()

Returns the root id for the tree control.

CHAPTER 5

555

wxGenericDirCtrl::GetTreeCtrl

wxTreeCtrl* GetTreeCtrl() const

Returns a pointer to the tree control.

wxGenericDirCtrl::SetDefaultPath

void SetDefaultPath(const wxString& path)

Sets the default path.

wxGenericDirCtrl::SetFilter

void SetFilter(const wxString& filter)

Sets the filter string.

wxGenericDirCtrl::SetFilterIndex

void SetFilterIndex(int n)

Sets the current filter index (zero-based).

wxGenericDirCtrl::SetPath

void SetPath(const wxString& path)

Sets the current path.

wwxxGGeenneerriiccVVaalliiddaattoorr

wxGenericValidator performs data transfer (but not validation or filtering) for the following
basic controls: wxButton, wxCheckBox, wxListBox, wxStaticText, wxRadioButton,
wxRadioBox, wxChoice, wxComboBox, wxGauge, wxSlider, wxScrollBar, wxSpinButton,
wxTextCtrl, wxCheckListBox.

It checks the type of the window and uses an appropriate type for that window. For
example, wxButton and wxTextCtrl transfer data to and from a wxString variable;
wxListBox uses a wxArrayInt; wxCheckBox uses a bool.

For more information, please see Validator overview (p. 1571).

CHAPTER 5

556

Derived from

wxValidator (p. 1348)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/valgen.h>

See also

Validator overview (p. 1571), wxValidator (p. 1348),wxTextValidator (p. 1267)

wxGenericValidator::wxGenericValidator

 wxGenericValidator(const wxGenericValidator& validator)

Copy constructor.

 wxGenericValidator(bool* valPtr)

Constructor taking a bool pointer. This will be used for wxCheckBox and wxRadioButton.

 wxGenericValidator(wxString* valPtr)

Constructor taking a wxString pointer. This will be used for wxButton, wxComboBox,
wxStaticText, wxTextCtrl.

 wxGenericValidator(int* valPtr)

Constructor taking an integer pointer. This will be used for wxGauge, wxScrollBar,
wxRadioBox, wxSpinButton, wxChoice.

 wxGenericValidator(wxArrayInt* valPtr)

Constructor taking a wxArrayInt pointer. This will be used for wxListBox,
wxCheckListBox.

Parameters

validator

Validator to copy.

valPtr

A pointer to a variable that contains the value. This variable should have a lifetime
equal to or longer than the validator lifetime (which is usually determined by the

CHAPTER 5

557

lifetime of the window).

wxGenericValidator::~wxGenericValidator

 ~wxGenericValidator()

Destructor.

wxGenericValidator::Clone

virtual wxValidator* Clone() const

Clones the generic validator using the copy constructor.

wxGenericValidator::TransferFromWindow

virtual bool TransferToWindow()

Transfers the value to the window.

wxGenericValidator::TransferToWindow

virtual bool TransferToWindow()

Transfers the window value to the appropriate data type.

wwxxGGLLCCaannvvaass

wxGLCanvas is a class for displaying OpenGL graphics. There are wrappers for
OpenGL on Windows, and GTK+ and Motif.

To use this class, create a wxGLCanvas window, call wxGLCanvas::SetCurrent (p. 558)
to direct normal OpenGL commands to the window, and then call
wxGLCanvas::SwapBuffers (p. 559) to show the OpenGL buffer on the window.

Please note that despite deriving from wxScrolledWindow, scrolling is not enabled for
this class under Windows.

To switch wxGLCanvas support on under Windows, edit setup.h and set
wxUSE_GLCANVAS to 1. On Unix, pass --with-opengl to configure to compile using
OpenGL or Mesa.

CHAPTER 5

558

Derived from

wxScrolledWindow (p. 1070)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/glcanvas.h>

Window styles

There are no specific window styles for this class.

See also window styles overview (p. 1567).

wxGLCanvas::wxGLCanvas

void wxGLCanvas(wxWindow* parent, wxWindowID id = -1, const wxPoint& pos,
const wxSize& size, long style=0, const wxString& name="GLCanvas", int* attribList
= 0, const wxPalette& palette = wxNullPalette)

void wxGLCanvas(wxWindow* parent, wxGLCanvas* sharedCanvas = NULL,
wxWindowID id = -1, const wxPoint& pos, const wxSize& size, long style=0, const
wxString& name="GLCanvas", int* attribList = 0, const wxPalette& palette =
wxNullPalette)

void wxGLCanvas(wxWindow* parent, wxGLContext* sharedContext = NULL,
wxWindowID id = -1, const wxPoint& pos, const wxSize& size, long style=0, const
wxString& name="GLCanvas", int* attribList = 0, const wxPalette& palette =
wxNullPalette)

Constructor.

wxGLCanvas::SetCurrent

void SetCurrent()

Sets this canvas as the current recipient of OpenGL calls.

wxGLCanvas::SetColour

void SetColour(const char* colour)

CHAPTER 5

559

Sets the current colour for this window, using the wxWindows colour database to find a
named colour.

wxGLCanvas::SwapBuffers

void SwapBuffers()

Displays the previous OpenGL commands on the window.

wwxxGGrriidd

wxGrid and its related classes are used for displaying and editing tabular data. They
provide a rich set of features for display, editing, and interacting with a variety of data
sources. For simple applications, and to help you get started, wxGrid is the only class
you need to refer to directly. It will set up default instances of the other classes and
manage them for you. For more complex applications you can derive your own classes
for custom grid views, grid data tables, cell editors and renderers. The wxGrid classes
overview (p. 1615) has examples of simple and more complex applications, explains the
relationship between the various grid classes and has a summary of the keyboard
shortcuts and mouse functions provided by wxGrid.

wxGrid has been greatly expanded and redesigned for wxWindows 2.2 onwards. If you
have been using the old wxGrid class you will probably want to have a look at the
wxGrid classes overview (p. 1615) to see how things have changed. The new grid
classes are reasonably backward-compatible but there are some exceptions. There are
also easier ways of doing many things compared to the previous implementation.

Derived from

wxScrolledWindow (p. 1070)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/grid.h>

Window styles

There are presently no specific window styles for wxGrid.

Event handling

See also

CHAPTER 5

560

wxGrid overview (p. 1615)

Constructors and initialization

wxGrid (p. 560)
~wxGrid (p. 560)
CreateGrid (p. 564)
SetTable (p. 585)

Display format

Selection functions

wxGrid::ClearSelection (p. 564)
wxGrid::IsSelection (p. 574)
wxGrid::SelectAll (p. 577)
wxGrid::SelectBlock (p. 577)
wxGrid::SelectCol (p. 578)
wxGrid::SelectRow (p. 578)

wxGrid::wxGrid

 wxGrid()

Default constructor

 wxGrid(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxWANTS_CHARS, const wxString& name = wxPanelNameStr)

Constructor to create a grid object. Call either wxGrid::CreateGrid (p. 564) or
wxGrid::SetTable (p. 585) directly after this to initialize the grid before using it.

wxGrid::~wxGrid

 ~wxGrid()

Destructor. This will also destroy the associated grid table unless you passed a table
object to the grid and specified that the grid should not take ownership of the table (see
wxGrid::SetTable (p. 585)).

CHAPTER 5

561

wxGrid::AppendCols

bool AppendCols(int numCols = 1, bool updateLabels = TRUE)

Appends one or more new columns to the right of the grid and returns TRUE if
successful. The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to override
wxGridTableBase::AppendCols (p. 604). See wxGrid::InsertCols (p. 573) for further
information.

wxGrid::AppendRows

bool AppendRows(int numRows = 1, bool updateLabels = TRUE)

Appends one or more new rows to the bottom of the grid and returns TRUE if
successful. The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to override
wxGridTableBase::AppendRows (p. 604). See wxGrid::InsertRows (p. 573) for further
information.

wxGrid::AutoSize

void AutoSize()

Automatically sets the height and width of all rows and columns to fit their contents.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeColumn

void AutoSizeColumn(int col, bool setAsMin = TRUE)

Automatically sizes the column to fit its contents. If setAsMin is TRUE the calculated
width will also be set as the minimal width for the column.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

CHAPTER 5

562

wxGrid::AutoSizeColumns

void AutoSizeColumns(bool setAsMin = TRUE)

Automatically sizes all columns to fit their contents. If setAsMin is TRUE the calculated
widths will also be set as the minimal widths for the columns.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeRow

void AutoSizeRow(int row, bool setAsMin = TRUE)

Automatically sizes the row to fit its contents. If setAsMin is TRUE the calculated height
will also be set as the minimal height for the row.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::AutoSizeRows

void AutoSizeRows(bool setAsMin = TRUE)

Automatically sizes all rows to fit their contents. If setAsMin is TRUE the calculated
heights will also be set as the minimal heights for the rows.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::BeginBatch

void BeginBatch()

Increments the grid's batch count. When the count is greater than zero repainting of the
grid is suppressed. Each call to BeginBatch must be matched by a later call to
wxGrid::EndBatch (p. 566). Code that does a lot of grid modification can be enclosed
between BeginBatch and EndBatch calls to avoid screen flicker. The final EndBatch will
cause the grid to be repainted.

CHAPTER 5

563

wxGrid::CanDragColSize

bool CanDragColSize()

Returns TRUE if columns can be resized by dragging with the mouse. Columns can be
resized by dragging the edges of their labels. If grid line dragging is enabled they can
also be resized by dragging the right edge of the column in the grid cell area (see
wxGrid::EnableDragGridSize (p. 565)).

wxGrid::CanDragRowSize

bool CanDragRowSize()

Returns TRUE if rows can be resized by dragging with the mouse. Rows can be resized
by dragging the edges of their labels. If grid line dragging is enabled they can also be
resized by dragging the lower edge of the row in the grid cell area (see
wxGrid::EnableDragGridSize (p. 565)).

wxGrid::CanDragGridSize

bool CanDragGridSize()

Return TRUE if the dragging of grid lines to resize rows and columns is enabled or
FALSE otherwise.

wxGrid::CanEnableCellControl

bool CanEnableCellControl() const

Returns TRUE if the in-place edit control for the current grid cell can be used and FALSE
otherwise (e.g. if the current cell is read-only).

wxGrid::CellToRect

wxRect CellToRect(int row, int col)

wxRect CellToRect(const wxGridCellCoords& coords)

Return the rectangle corresponding to the grid cell's size and position in logical
coordinates.

wxGrid::ClearGrid

void ClearGrid()

CHAPTER 5

564

Clears all data in the underlying grid table and repaints the grid. The table is not deleted
by this function. If you are using a derived table class then you need to override
wxGridTableBase::Clear (p. 604) for this function to have any effect.

wxGrid::ClearSelection

void ClearSelection()

Deselects all cells that are currently selected.

wxGrid::CreateGrid

bool CreateGrid(int numRows , int numCols, wxGrid::wxGridSelectionModes
selmode = wxGrid::wxGridSelectCells)

Creates a grid with the specified initial number of rows and columns. Call this directly
after the grid constructor. When you use this function wxGrid will create and manage a
simple table of string values for you. All of the grid data will be stored in memory.

For applications with more complex data types or relationships, or for dealing with very
large datasets, you should derive your own grid table class and pass a table object to
the grid with wxGrid::SetTable (p. 585).

wxGrid::DeleteCols

bool DeleteCols(int pos = 0, int numCols = 1, bool updateLabels = TRUE)

Deletes one or more columns from a grid starting at the specified position and returns
TRUE if successful. The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to override
wxGridTableBase::DeleteCols (p. 604). See wxGrid::InsertCols (p. 573) for further
information.

wxGrid::DeleteRows

bool DeleteRows(int pos = 0, int numRows = 1, bool updateLabels = TRUE)

Deletes one or more rows from a grid starting at the specified position and returns TRUE
if successful. The updateLabels argument is not used at present.

If you are using a derived grid table class you will need to override
wxGridTableBase::DeleteRows (p. 604). See wxGrid::InsertRows (p. 573) for further
information.

CHAPTER 5

565

wxGrid::DisableCellEditControl

void DisableCellEditControl()

Disables in-place editing of grid cells. Equivalent to calling
EnableCellEditControl(FALSE).

wxGrid::DisableDragColSize

void DisableDragColSize()

Disables column sizing by dragging with the mouse. Equivalent to passing FALSE to
wxGrid::EnableDragColSize (p. 565).

wxGrid::DisableDragGridSize

void DisableDragGridSize()

Disable mouse dragging of grid lines to resize rows and columns. Equivalent to passing
FALSE to wxGrid::EnableDragGridSize (p. 565)

wxGrid::DisableDragRowSize

void DisableDragRowSize()

Disables row sizing by dragging with the mouse. Equivalent to passing FALSE to
wxGrid::EnableDragRowSize (p. 566).

wxGrid::EnableCellEditControl

void EnableCellEditControl(bool enable = TRUE)

Enables or disables in-place editing of grid cell data. The grid will issue either a
wxEVT_GRID_EDITOR_SHOWN or wxEVT_GRID_EDITOR_HIDDEN event.

wxGrid::EnableDragColSize

void EnableDragColSize(bool enable = TRUE)

Enables or disables column sizing by dragging with the mouse.

wxGrid::EnableDragGridSize

CHAPTER 5

566

void EnableDragGridSize(bool enable = TRUE)

Enables or disables row and column resizing by dragging gridlines with the mouse.

wxGrid::EnableDragRowSize

void EnableDragRowSize(bool enable = TRUE)

Enables or disables row sizing by dragging with the mouse.

wxGrid::EnableEditing

void EnableEditing(bool edit)

If the edit argument is FALSE this function sets the whole grid as read-only. If the
argument is TRUE the grid is set to the default state where cells may be editable. In the
default state you can set single grid cells and whole rows and columns to be editable or
read-only via wxGridCellAttribute::SetReadOnly (p. 596). For single cells you can also
use the shortcut function wxGrid::SetReadOnly (p. 583).

For more information about controlling grid cell attributes see the wxGridCellAttr (p. 594)
cell attribute class and the wxGrid classes overview (p. 1615).

wxGrid::EnableGridLines

void EnableGridLines(bool enable = TRUE)

Turns the drawing of grid lines on or off.

wxGrid::EndBatch

void EndBatch()

Decrements the grid's batch count. When the count is greater than zero repainting of the
grid is suppressed. Each previous call to wxGrid::BeginBatch (p. 562) must be matched
by a later call to EndBatch. Code that does a lot of grid modification can be enclosed
between BeginBatch and EndBatch calls to avoid screen flicker. The final EndBatch will
cause the grid to be repainted.

wxGrid::ForceRefresh

void ForceRefresh()

Causes immediate repainting of the grid. Use this instead of the usual

CHAPTER 5

567

wxWindow::Refresh.

wxGrid::GetBatchCount

int GetBatchCount()

Returns the number of times that wxGrid::BeginBatch (p. 562) has been called without
(yet) matching calls to wxGrid::EndBatch (p. 566). While the grid's batch count is greater
than zero the display will not be updated.

wxGrid::GetCellAlignment

void GetCellAlignment(int row, int col, int* horiz, int* vert)

Sets the arguments to the horizontal and vertical text alignment values for the grid cell at
the specified location.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::GetCellBackgroundColour

wxColour GetCellBackgroundColour(int row, int col)

Returns the background colour of the cell at the specified location.

wxGrid::GetCellEditor

wxGridCellEditor* GetCellEditor(int row, int col)

Returns a pointer to the editor for the cell at the specified location.

See wxGridCellEditor (p. 598) and the wxGrid overview (p. 1615) for more information
about cell editors and renderers.

wxGrid::GetCellFont

wxFont GetCellFont(int row, int col)

Returns the font for text in the grid cell at the specified location.

wxGrid::GetCellRenderer

CHAPTER 5

568

wxGridCellRenderer* GetCellRenderer(int row, int col)

Returns a pointer to the renderer for the grid cell at the specified location.

See wxGridCellRenderer (p. 600) and the wxGrid overview (p. 1615) for more
information about cell editors and renderers.

wxGrid::GetCellTextColour

wxColour GetCellTextColour(int row, int col)

Returns the text colour for the grid cell at the specified location.

wxGrid::GetCellValue

wxString GetCellValue(int row, int col)

wxString GetCellValue(const wxGridCellCoords&coords)

Returns the string contained in the cell at the specified location. For simple applications
where a grid object automatically uses a default grid table of string values you use this
function together with wxGrid::SetCellValue (p. 579) to access cell values.

For more complex applications where you have derived your own grid table class that
contains various data types (e.g. numeric, boolean or user-defined custom types) then
you only use this function for those cells that contain string values.

See wxGridTableBase::CanGetValueAs (p. 602)and the wxGrid overview (p. 1615) for
more information.

wxGrid::GetColLabelAlignment

void GetColLabelAlignment(int* horiz, int* vert)

Sets the arguments to the current column label alignment values.

Horizontal alignment will be one of wxLEFT, wxCENTRE or wxRIGHT.
Vertical alignment will be one of wxTOP, wxCENTRE or wxBOTTOM.

wxGrid::GetColLabelSize

int GetColLabelSize()

Returns the current height of the column labels.

CHAPTER 5

569

wxGrid::GetColLabelValue

wxString GetColLabelValue(int col)

Returns the specifed column label. The default grid table class provides column labels of
the form A,B...Z,AA,AB...ZZ,AAA... If you are using a custom grid table you can override
wxGridTableBase::GetColLabelValue (p. 604) to provide your own labels.

wxGrid::GetColSize

int GetColSize(int col)

Returns the width of the specified column.

wxGrid::GetDefaultCellAlignment

void GetDefaultCellAlignment(int* horiz, int* vert)

Sets the arguments to the current default horizontal and vertical text alignment values.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::GetDefaultCellBackgroundColour

wxColour GetDefaultCellBackgroundColour()

Returns the current default background colour for grid cells.

wxGrid::GetDefaultCellFont

wxFont GetDefaultCellFont()

Returns the current default font for grid cell text.

wxGrid::GetDefaultCellTextColour

wxColour GetDefaultCellTextColour()

Returns the current default colour for grid cell text.

CHAPTER 5

570

wxGrid::GetDefaultColLabelSize

int GetDefaultColLabelSize()

Returns the default height for column labels.

wxGrid::GetDefaultColSize

int GetDefaultColSize()

Returns the current default width for grid columns.

wxGrid::GetDefaultEditor

wxGridCellEditor* GetDefaultEditor() const

Returns a pointer to the current default grid cell editor.

See wxGridCellEditor (p. 598) and the wxGrid overview (p. 1615) for more information
about cell editors and renderers.

wxGrid::GetDefaultRenderer

wxGridCellRenderer* GetDefaultRenderer() const

Returns a pointer to the current default grid cell renderer.

See wxGridCellRenderer (p. 600) and the wxGrid overview (p. 1615) for more
information about cell editors and renderers.

wxGrid::GetDefaultRowLabelSize

int GetDefaultRowLabelSize()

Returns the default width for the row labels.

wxGrid::GetDefaultRowSize

int GetDefaultRowSize()

Returns the current default height for grid rows.

CHAPTER 5

571

wxGrid::GetGridCursorCol

int GetGridCursorCol()

Returns the current grid cell column position.

wxGrid::GetGridCursorRow

int GetGridCursorRow()

Returns the current grid cell row position.

wxGrid::GetGridLineColour

wxColour GetGridLineColour()

Returns the colour used for grid lines.

wxGrid::GridLinesEnabled

bool GridLinesEnabled()

Returnes TRUE if drawing of grid lines is turned on, FALSE otherwise.

wxGrid::GetLabelBackgroundColour

wxColour GetLabelBackgroundColour()

Returns the colour used for the background of row and column labels.

wxGrid::GetLabelFont

wxFont GetLabelFont()

Returns the font used for row and column labels.

wxGrid::GetLabelTextColour

wxColour GetLabelTextColour()

Returns the colour used for row and column label text.

CHAPTER 5

572

wxGrid::GetNumberCols

int GetNumberCols()

Returns the total number of grid columns (actually the number of columns in the
underlying grid table).

wxGrid::GetNumberRows

int GetNumberRows()

Returns the total number of grid rows (actually the number of rows in the underlying grid
table).

wxGrid::GetRowLabelAlignment

void GetRowLabelAlignment(int* horiz, int* vert)

Sets the arguments to the current row label alignment values.

Horizontal alignment will be one of wxLEFT, wxCENTRE or wxRIGHT.
Vertical alignment will be one of wxTOP, wxCENTRE or wxBOTTOM.

wxGrid::GetRowLabelSize

int GetRowLabelSize()

Returns the current width of the row labels.

wxGrid::GetRowLabelValue

wxString GetRowLabelValue(int row)

Returns the specifed row label. The default grid table class provides numeric row labels.
If you are using a custom grid table you can override
wxGridTableBase::GetRowLabelValue (p. 604) to provide your own labels.

wxGrid::GetRowSize

int GetRowSize(int row)

Returns the height of the specified row.

CHAPTER 5

573

wxGrid::GetTable

wxGridTableBase * GetTable() const

Returns a base pointer to the current table object.

wxGrid::HideCellEditControl

void HideCellEditControl()

Hides the in-place cell edit control.

wxGrid::InsertCols

bool InsertCols(int pos = 0, int numCols = 1, bool updateLabels = TRUE)

Inserts one or more new columns into a grid with the first new column at the specified
position and returns TRUE if successful. The updateLabels argument is not used at
present.

The sequence of actions begins with the grid object requesting the underlying grid table
to insert new columns. If this is successful the table notifies the grid and the grid updates
the display. For a default grid (one where you have called wxGrid::CreateGrid (p. 564))
this process is automatic. If you are using a custom grid table (specified with
wxGrid::SetTable (p. 585)) then you must override wxGridTableBase::InsertCols (p.
604) in your derived table class.

wxGrid::InsertRows

bool InsertRows(int pos = 0, int numRows = 1, bool updateLabels = TRUE)

Inserts one or more new rows into a grid with the first new row at the specified position
and returns TRUE if successful. The updateLabels argument is not used at present.

The sequence of actions begins with the grid object requesting the underlying grid table
to insert new rows. If this is successful the table notifies the grid and the grid updates the
display. For a default grid (one where you have called wxGrid::CreateGrid (p. 564)) this
process is automatic. If you are using a custom grid table (specified with
wxGrid::SetTable (p. 585)) then you must override wxGridTableBase::InsertRows (p.
604) in your derived table class.

wxGrid::IsCellEditControlEnabled

bool IsCellEditControlEnabled() const

Returns TRUE if the in-place edit control is currently enabled.

CHAPTER 5

574

wxGrid::IsCurrentCellReadOnly

bool IsCurrentCellReadOnly() const

Returns TRUE if the current cell has been set to read-only (see wxGrid::SetReadOnly (p.
583)).

wxGrid::IsEditable

bool IsEditable()

Returns FALSE if the whole grid has been set as read-only or TRUE otherwise. See
wxGrid::EnableEditing (p. 566) for more information about controlling the editing status
of grid cells.

wxGrid::IsReadOnly

bool IsReadOnly(int row, int col) const

Returns TRUE if the cell at the specified location can't be edited. See also
wxGrid::IsReadOnly (p. 574).

wxGrid::IsSelection

bool IsSelection()

Returns TRUE if there are currently rows, columns or blocks of cells selected.

wxGrid::IsVisible

bool IsVisible(int row, int col, bool wholeCellVisible = TRUE)

bool IsVisible(const wxGridCellCoords& coords , bool wholeCellVisible = TRUE)

Returns TRUE if a cell is either wholly visible (the default) or at least partially visible in
the grid window.

wxGrid::MakeCellVisible

void MakeCellVisible(int row, int col)

void MakeCellVisible(const wxGridCellCoords& coords)

CHAPTER 5

575

Brings the specified cell into the visible grid cell area with minimal scrolling. Does
nothing if the cell is already visible.

wxGrid::MoveCursorDown

bool MoveCursorDown(bool expandSelection)

Moves the grid cursor down by one row. If a block of cells was previously selected it will
expand if the argument is TRUE or be cleared if the argument is FALSE.

Keyboard
This function is called for Down cursor key presses or Shift+Down to expand a selection.

wxGrid::MoveCursorLeft

bool MoveCursorLeft(bool expandSelection)

Moves the grid cursor left by one column. If a block of cells was previously selected it will
expand if the argument is TRUE or be cleared if the argument is FALSE.

Keyboard
This function is called for Left cursor key presses or Shift+Left to expand a selection.

wxGrid::MoveCursorRight

bool MoveCursorRight(bool expandSelection)

Moves the grid cursor right by one column. If a block of cells was previously selected it
will expand if the argument is TRUE or be cleared if the argument is FALSE.

Keyboard
This function is called for Right cursor key presses or Shift+Right to expand a selection.

wxGrid::MoveCursorUp

bool MoveCursorUp(bool expandSelection)

Moves the grid cursor up by one row. If a block of cells was previously selected it will
expand if the argument is TRUE or be cleared if the argument is FALSE.

Keyboard
This function is called for Up cursor key presses or Shift+Up to expand a selection.

wxGrid::MoveCursorDownBlock

CHAPTER 5

576

bool MoveCursorDownBlock(bool expandSelection)

Moves the grid cursor down in the current column such that it skips to the beginning or
end of a block of non-empty cells. If a block of cells was previously selected it will
expand if the argument is TRUE or be cleared if the argument is FALSE.

Keyboard
This function is called for the Ctrl+Down key combination. Shift+Ctrl+Down expands a
selection.

wxGrid::MoveCursorLeftBlock

bool MoveCursorLeftBlock(bool expandSelection)

Moves the grid cursor left in the current row such that it skips to the beginning or end of
a block of non-empty cells. If a block of cells was previously selected it will expand if the
argument is TRUE or be cleared if the argument is FALSE.

Keyboard
This function is called for the Ctrl+Left key combination. Shift+Ctrl+left expands a
selection.

wxGrid::MoveCursorRightBlock

bool MoveCursorRightBlock(bool expandSelection)

Moves the grid cursor right in the current row such that it skips to the beginning or end of
a block of non-empty cells. If a block of cells was previously selected it will expand if the
argument is TRUE or be cleared if the argument is FALSE.

Keyboard
This function is called for the Ctrl+Right key combination. Shift+Ctrl+Right expands a
selection.

wxGrid::MoveCursorUpBlock

bool MoveCursorUpBlock(bool expandSelection)

Moves the grid cursor up in the current column such that it skips to the beginning or end
of a block of non-empty cells. If a block of cells was previously selected it will expand if
the argument is TRUE or be cleared if the argument is FALSE.

Keyboard
This function is called for the Ctrl+Up key combination. Shift+Ctrl+Up expands a
selection.

CHAPTER 5

577

wxGrid::MovePageDown

bool MovePageDown()

Moves the grid cursor down by some number of rows so that the previous bottom visible
row becomes the top visible row.

Keyboard
This function is called for PgDn keypresses.

wxGrid::MovePageUp

bool MovePageUp()

Moves the grid cursor up by some number of rows so that the previous top visible row
becomes the bottom visible row.

Keyboard
This function is called for PgUp keypresses.

wxGrid::SaveEditControlValue

void SaveEditControlValue()

Sets the value of the current grid cell to the current in-place edit control value. This is
called automatically when the grid cursor moves from the current cell to a new cell. It is
also a good idea to call this function when closing a grid since any edits to the final cell
location will not be saved otherwise.

wxGrid::SelectAll

void SelectAll()

Selects all cells in the grid.

wxGrid::SelectBlock

void SelectBlock(int topRow, int leftCol, int bottomRow, int rightCol, bool
addToSelected = FALSE)

void SelectBlock(const wxGridCellCoords& topLeft, const wxGridCellCoords&
bottomRight, bool addToSelected = FALSE)

Selects a rectangular block of cells. If addToSelected is FALSE then any existing
selection will be deselected; if TRUE the column will be added to the existing selection.

CHAPTER 5

578

wxGrid::SelectCol

void SelectCol(int col, bool addToSelected = FALSE)

Selects the specified column. If addToSelected is FALSE then any existing selection will
be deselected; if TRUE the column will be added to the existing selection.

wxGrid::SelectRow

void SelectRow(int row, bool addToSelected = FALSE)

Selects the specified row. If addToSelected is FALSE then any existing selection will be
deselected; if TRUE the row will be added to the existing selection.

wxGrid::SetCellAlignment

void SetCellAlignment(int row, int col, int horiz, int vert)

void SetCellAlignment(int align, int row, int col)

void SetCellAlignment(int align)

Sets the horizontal and vertial alignment for grid cell text at the specified location.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetCellEditor

void SetCellEditor(int row, int col, wxGridCellEditor* editor)

Sets the editor for the grid cell at the specified location. The grid will take ownership of
the pointer.

See wxGridCellEditor (p. 598) and the wxGrid overview (p. 1615) for more information
about cell editors and renderers.

wxGrid::SetCellFont

void SetCellFont(int row, int col, const wxFont& font)

Sets the font for text in the grid cell at the specified location.

CHAPTER 5

579

wxGrid::SetCellRenderer

void SetCellRenderer(int row, int col, wxGridCellRenderer* renderer)

Sets the renderer for the grid cell at the specified location. The grid will take ownership
of the pointer.

See wxGridCellRenderer (p. 600) and the wxGrid overview (p. 1615) for more
information about cell editors and renderers.

wxGrid::SetCellTextColour

void SetCellTextColour(int row, int col, const wxColour& colour)

void SetCellTextColour(const wxColour& val, int row, int col)

void SetCellTextColour(const wxColour& colour)

Sets the text colour for the grid cell at the specified location.

wxGrid::SetCellValue

void SetCellValue(int row, int col, const wxString& s)

void SetCellValue(const wxGridCellCoords& coords, const wxString& s)

void SetCellValue(const wxString& val, int row, int col)

Sets the string value for the cell at the specified location. For simple applications where
a grid object automatically uses a default grid table of string values you use this function
together with wxGrid::GetCellValue (p. 568) to access cell values.

For more complex applications where you have derived your own grid table class that
contains various data types (e.g. numeric, boolean or user-defined custom types) then
you only use this function for those cells that contain string values.

The last form is for backward compatibility only.

See wxGridTableBase::CanSetValueAs (p. 602)and the wxGrid overview (p. 1615) for
more information.

wxGrid::SetColAttr

void SetColAttr(int col, wxGridCellAttr* attr)

CHAPTER 5

580

Sets the cell attributes for all cells in the specified column.

For more information about controlling grid cell attributes see the wxGridCellAttr (p. 594)
cell attribute class and the wxGrid classes overview (p. 1615).

wxGrid::SetColFormatBool

void SetColFormatBool(int col)

Sets the specified column to display boolean values. wxGrid displays boolean values
with a checkbox.

wxGrid::SetColFormatNumber

void SetColFormatNumber(int col)

Sets the specified column to display integer values.

wxGrid::SetColFormatFloat

void SetColFormatFloat(int col, int width = -1, int precision = -1)

Sets the specified column to display floating point values with the given width and
precision.

wxGrid::SetColFormatCustom

void SetColFormatCustom(int col, const wxString& typeName)

Sets the specified column to display data in a custom format. See the wxGrid overview
(p. 1615) for more information on working with custom data types.

wxGrid::SetColLabelAlignment

void SetColLabelAlignment(int horiz, int vert)

Sets the horizontal and vertical alignment of column label text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

CHAPTER 5

581

wxGrid::SetColLabelSize

void SetColLabelSize(int height)

Sets the height of the column labels.

wxGrid::SetColLabelValue

void SetColLabelValue(int col, const wxString& value)

Set the value for the given column label. If you are using a derived grid table you must
override wxGridTableBase::SetColLabelValue (p. 605)for this to have any effect.

wxGrid::SetColMinimalWidth

void SetColMinimalWidth(int col, int width)

Sets the minimal width for the specified column. This should normally be called when
creating the grid because it will not resize a column that is already narrower than the
minimal width.

wxGrid::SetColSize

void SetColSize(int col, int width)

Sets the width of the specified column.

This function does not refresh the grid. If you are calling it outside of a BeginBatch /
EndBatch block you can use wxGrid::ForceRefresh (p. 566) to see the changes.

Automatically sizes the column to fit its contents. If setAsMin is TRUE the calculated
width will also be set as the minimal width for the column.

Note
wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::SetDefaultCellAlignment

void SetDefaultCellAlignment(int horiz, int vert)

Sets the default horizontal and vertial alignment for grid cell text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.

CHAPTER 5

582

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetDefaultCellBackgroundColour

void SetDefaultCellBackgroundColour(const wxColour& colour)

Sets the default background colour for grid cells.

wxGrid::SetDefaultCellFont

void SetDefaultCellFont(const wxFont& font)

Sets the default font to be used for grid cell text.

wxGrid::SetDefaultEditor

void SetDefaultEditor(wxGridCellEditor* editor)

Sets the default editor for grid cells. The grid will take ownership of the pointer.

See wxGridCellEditor (p. 598) and the wxGrid overview (p. 1615) for more information
about cell editors and renderers.

wxGrid::SetDefaultRenderer

void SetDefaultRenderer(wxGridCellRenderer* renderer)

Sets the default renderer for grid cells. The grid will take ownership of the pointer.

See wxGridCellRenderer (p. 600) and the wxGrid overview (p. 1615) for more
information about cell editors and renderers.

wxGrid::SetDefaultColSize

void SetDefaultColSize(int width, bool resizeExistingCols = FALSE)

Sets the default width for columns in the grid. This will only affect columns subsequently
added to the grid unless resizeExistingCols is TRUE.

wxGrid::SetDefaultRowSize

CHAPTER 5

583

void SetDefaultRowSize(int height, bool resizeExistingRows = FALSE)

Sets the default height for rows in the grid. This will only affect rows subsequently added
to the grid unless resizeExistingRows is TRUE.

wxGrid::SetGridCursor

void SetGridCursor(int row, int col)

Set the grid cursor to the specified cell. This function calls wxGrid::MakeCellVisible (p.
574).

wxGrid::SetGridLineColour

void SetGridLineColour(const wxColour&colour)

Sets the colour used to draw grid lines.

wxGrid::SetLabelBackgroundColour

void SetLabelBackgroundColour(const wxColour& colour)

Sets the background colour for row and column labels.

wxGrid::SetLabelFont

void SetLabelFont(const wxFont& font)

Sets the font for row and column labels.

wxGrid::SetLabelTextColour

void SetLabelTextColour(const wxColour& colour)

Sets the colour for row and column label text.

wxGrid::SetReadOnly

void SetReadOnly(int row, int col, bool isReadOnly = TRUE)

Makes the cell at the specified location read-only or editable. See also
wxGrid::IsReadOnly (p. 574).

CHAPTER 5

584

wxGrid::SetRowAttr

void SetRowAttr(int row, wxGridCellAttr* attr)

Sets the cell attributes for all cells in the specified row. See the wxGridCellAttr (p. 594)
class for more information about controlling cell attributes.

wxGrid::SetRowLabelAlignment

void SetRowLabelAlignment(int horiz, int vert)

Sets the horizontal and vertical alignment of row label text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

wxGrid::SetRowLabelSize

void SetRowLabelSize(int width)

Sets the width of the row labels.

wxGrid::SetRowLabelValue

void SetRowLabelValue(int row, const wxString& value)

Set the value for the given row label. If you are using a derived grid table you must
override wxGridTableBase::SetRowLabelValue (p. 604) for this to have any effect.

wxGrid::SetRowMinimalHeight

void SetRowMinimalHeight(int row, int width)

Sets the minimal height for the specified row. This should normally be called when
creating the grid because it will not resize a row that is already shorter than the minimal
height.

wxGrid::SetRowSize

void SetRowSize(int row, int height)

CHAPTER 5

585

Sets the height of the specified row.

This function does not refresh the grid. If you are calling it outside of a BeginBatch /
EndBatch block you can use wxGrid::ForceRefresh (p. 566) to see the changes.

Automatically sizes the column to fit its contents. If setAsMin is TRUE the calculated
width will also be set as the minimal width for the column.

Note

wxGrid sets up arrays to store individual row and column sizes when non-default sizes
are used. The memory requirements for this could become prohibitive if your grid is very
large.

wxGrid::SetSelectionMode

void SetSelectionMode(wxGrid::wxGridSelectionModes selmode)

Set the selection behaviour of the grid.

Parameters

wxGrid::wxGridSelectCells

The default mode where individual cells are selected.

wxGrid::wxGridSelectRows

Selections will consist of whole rows.

wxGrid::wxGridSelectionColumns

Selections will consist of whole columns.

wxGrid::SetTable

bool SetTable (wxGridTableBase* table, bool takeOwnership = FALSE,
wxGrid::wxGridSelectionModes selmode = wxGrid::wxGridSelectCells)

Passes a pointer to a custom grid table to be used by the grid. This should be called
after the grid constructor and before using the grid object. If takeOwnership is set to
TRUE then the table will be deleted by the wxGrid destructor.

Use this function instead of wxGrid::CreateGrid (p. 564) when your application involves
complex or non-string data or data sets that are too large to fit wholly in memory.

wxGrid::ShowCellEditControl

void ShowCellEditControl()

CHAPTER 5

586

Displays the in-place cell edit control for the current cell.

wxGrid::XToCol

int XToCol(int x)

Returns the grid column that corresponds to the logical x coordinate. Returns
wxNOT_FOUND if there is no column at the x position.

wxGrid::XToEdgeOfCol

int XToEdgeOfCol(int x)

Returns the column whose right hand edge is close to the given logical x position. If no
column edge is near to this position wxNOT_FOUND is returned.

wxGrid::YToEdgeOfRow

int YToEdgeOfRow(int y)

Returns the row whose bottom edge is close to the given logical y position. If no row
edge is near to this position wxNOT_FOUND is returned.

wxGrid::YToRow

int YToRow(int y)

Returns the grid row that corresponds to the logical y coordinate. Returns
wxNOT_FOUND if there is no row at the y position.

wxGrid::IsInSelection

bool IsInSelection(int row, int col)

bool IsInSelection(const wxGridCellCoords& coords)

wxGrid::BlockToDeviceRect

wxRect BlockToDeviceRect(const wxGridCellCoords & topLeft, const
wxGridCellCoords & bottomRight)

This function returns the rectangle that encloses the block of cells limited by TopLeft and

CHAPTER 5

587

BottomRight cell in device coords and clipped to the client size of the grid window.

wxGrid::SelectionToDeviceRect

wxRect SelectionToDeviceRect()

This function returns the rectangle that encloses the selected cells in device coords and
clipped to the client size of the grid window.

wxGrid::GetSelectionBackground

wxColour GetSelectionBackground() const

Access or update the selection fore/back colours

wxGrid::GetSelectionForeground

wxColour GetSelectionForeground() const

wxGrid::SetSelectionBackground

void SetSelectionBackground(const wxColour& c)

wxGrid::SetSelectionForeground

void SetSelectionForeground(const wxColour& c)

wxGrid::RegisterDataType

void RegisterDataType(const wxString& typeName, wxGridCellRenderer* renderer,
wxGridCellEditor* editor)

Methods for a registry for mapping data types to Renderers/Editors

wxGrid::GetDefaultEditorForCell

wxGridCellEditor* GetDefaultEditorForCell(int row, int col) const

wxGridCellEditor* GetDefaultEditorForCell(const wxGridCellCoords& c) const

wxGrid::GetDefaultRendererForCell

CHAPTER 5

588

wxGridCellRenderer* GetDefaultRendererForCell(int row, int col) const

wxGrid::GetDefaultEditorForType

wxGridCellEditor* GetDefaultEditorForType(const wxString& typeName) const

wxGrid::GetDefaultRendererForType

wxGridCellRenderer* GetDefaultRendererForType(const wxString& typeName)
const

wxGrid::SetMargins

void SetMargins(int extraWidth, int extraHeight)

A grid may occupy more space than needed for its rows/columns. This function allows to
set how big this extra space is

wxGrid::wxGrid

 wxGrid(wxWindow* parent, int x, int y, int w = -1, int h = -1, long style =
wxWANTS_CHARS, const wxString& name = wxPanelNameStr)

Backward compatibility.

wxGrid::UpdateDimensions

void UpdateDimensions()

Backward compatibility.

wxGrid::GetRows

int GetRows()

Backward compatibility.

wxGrid::GetCols

int GetCols()

CHAPTER 5

589

Backward compatibility.

wxGrid::GetCursorRow

int GetCursorRow()

Backward compatibility.

wxGrid::GetCursorColumn

int GetCursorColumn()

Backward compatibility.

wxGrid::GetScrollPosX

int GetScrollPosX()

Backward compatibility.

wxGrid::GetScrollPosY

int GetScrollPosY()

Backward compatibility.

wxGrid::SetScrollX

void SetScrollX(int x)

Backward compatibility.

wxGrid::SetScrollY

void SetScrollY(int y)

Backward compatibility.

wxGrid::SetColumnWidth

void SetColumnWidth(int col, int width)

CHAPTER 5

590

Backward compatibility.

wxGrid::GetColumnWidth

int GetColumnWidth(int col)

Backward compatibility.

wxGrid::SetRowHeight

void SetRowHeight(int row, int height)

Backward compatibility.

wxGrid::GetViewHeight

int GetViewHeight()

Backward compatibility.

wxGrid::GetViewWidth

int GetViewWidth()

Returned number of whole cols visible.

wxGrid::SetLabelSize

void SetLabelSize(int orientation, int sz)

wxGrid::GetLabelSize

int GetLabelSize(int orientation)

wxGrid::SetLabelAlignment

void SetLabelAlignment(int orientation, int align)

wxGrid::GetLabelAlignment

int GetLabelAlignment(int orientation, int align)

CHAPTER 5

591

wxGrid::SetLabelValue

void SetLabelValue(int orientation, const wxString& val, int pos)

wxGrid::GetLabelValue

wxString GetLabelValue(int orientation, int pos)

wxGrid::GetCellTextFont

wxFont GetCellTextFont() const

wxFont GetCellTextFont(int row, int col) const

wxGrid::SetCellTextFont

void SetCellTextFont(const wxFont& fnt)

void SetCellTextFont(const wxFont& fnt, int row, int col)

wxGrid::SetCellBackgroundColour

void SetCellBackgroundColour(const wxColour& col)

void SetCellBackgroundColour(int row, int col, const wxColour& colour)

void SetCellBackgroundColour(const wxColour& colour, int row, int col)

wxGrid::GetEditable

bool GetEditable()

wxGrid::SetEditable

void SetEditable (bool edit = TRUE)

wxGrid::GetEditInPlace

bool GetEditInPlace()

CHAPTER 5

592

wxGrid::SetEditInPlace

void SetEditInPlace (bool edit = TRUE)

wxGrid::SetCellBitmap

void SetCellBitmap(wxBitmap* bitmap, int row, int col)

wxGrid::SetDividerPen

void SetDividerPen(const wxPen& pen)

wxGrid::GetDividerPen

wxPen& GetDividerPen() const

wxGrid::OnActivate

void OnActivate(bool active)

wxGrid::Fit

void Fit()

Overridden wxWindow methods

wxGrid::DoGetBestSize

wxSize DoGetBestSize() const

wxGrid::InitRowHeights

void InitRowHeights()

NB: never access m_row/col arrays directly because they are created on demand,
always use accessor functions instead!

Init the m_rowHeights/Bottoms arrays with default values.

wxGrid::InitColWidths

CHAPTER 5

593

void InitColWidths()

Init the m_colWidths/Rights arrays

wxGrid::GetColWidth

int GetColWidth(int col) const

Get the col/row coords

wxGrid::GetColLeft

int GetColLeft(int col) const

wxGrid::GetColRight

int GetColRight(int col) const

wxGrid::GetRowHeight

int GetRowHeight(int row) const

This function must be public for compatibility.

wxGrid::GetRowTop

int GetRowTop(int row) const

wxGrid::GetRowBottom

int GetRowBottom(int row) const

wxGrid::SetOrCalcColumnSizes

int SetOrCalcColumnSizes(bool calcOnly , bool setAsMin = TRUE)

Common part of AutoSizeColumn/Row() and GetBestSize()

wxGrid::SetOrCalcRowSizes

CHAPTER 5

594

int SetOrCalcRowSizes(bool calcOnly, bool setAsMin = TRUE)

wxGrid::AutoSizeColOrRow

void AutoSizeColOrRow(int n, bool setAsMin, bool column)

Common part of AutoSizeColumn/Row() or row?

wxGrid::GetColMinimalWidth

int GetColMinimalWidth(int col) const

get the minimal width of the given column/row

wxGrid::GetRowMinimalHeight

int GetRowMinimalHeight(int col) const

wxGrid::CanHaveAttributes

bool CanHaveAttributes()

Do we have some place to store attributes in?

wxGrid::GetOrCreateCellAttr

wxGridCellAttr* GetOrCreateCellAttr(int row, int col) const

wwxxGGrriiddCCeellllAAttttrr

This class can be used to alter the cells' appearance in the grid by changing their
colour/font/... from default. An object of this class may be returned by
wxGridTable::GetAttr().

Derived from

No base class

Data structures

CHAPTER 5

595

wxGridCellAttr::wxGridCellAttr

 wxGridCellAttr()

Default constructor. wxGridCellAttr(const wxColour& colText, const
wxColour& colBack, const wxFont& font, int hAlign, int vAlign)

VZ: considering the number of members wxGridCellAttr has now, this ctor seems to be
pretty useless... may be we should just remove it?

wxGridCellAttr::Clone

wxGridCellAttr* Clone() const

Creates a new copy of this object.

wxGridCellAttr::IncRef

void IncRef()

This class is ref counted: it is created with ref count of 1, so calling DecRef() once will
delete it. Calling IncRef() allows to lock it until the matching DecRef() is called

wxGridCellAttr::DecRef

void DecRef()

wxGridCellAttr::SetTextColour

void SetTextColour(const wxColour& colText)

Sets the text colour.

wxGridCellAttr::SetBackgroundColour

void SetBackgroundColour(const wxColour& colBack)

Sets the background colour.

wxGridCellAttr::SetFont

CHAPTER 5

596

void SetFont(const wxFont& font)

Sets the font.

wxGridCellAttr::SetAlignment

void SetAlignment(int hAlign, int vAlign)

Sets the alignment.

wxGridCellAttr::SetReadOnly

void SetReadOnly(bool isReadOnly = TRUE)

wxGridCellAttr::SetRenderer

void SetRenderer(wxGridCellRenderer* renderer)

takes ownership of the pointer

wxGridCellAttr::SetEditor

void SetEditor(wxGridCellEditor* editor)

wxGridCellAttr::HasTextColour

bool HasTextColour() const

accessors

wxGridCellAttr::HasBackgroundColour

bool HasBackgroundColour() const

wxGridCellAttr::HasFont

bool HasFont() const

wxGridCellAttr::HasAlignment

bool HasAlignment() const

CHAPTER 5

597

wxGridCellAttr::HasRenderer

bool HasRenderer() const

wxGridCellAttr::HasEditor

bool HasEditor() const

wxGridCellAttr::GetTextColour

const wxColour& GetTextColour() const

wxGridCellAttr::GetBackgroundColour

const wxColour& GetBackgroundColour() const

wxGridCellAttr::GetFont

const wxFont& GetFont() const

wxGridCellAttr::GetAlignment

void GetAlignment(int* hAlign, int* vAlign) const

wxGridCellAttr::GetRenderer

wxGridCellRenderer* GetRenderer(wxGrid* grid, int row, int col) const

wxGridCellAttr::GetEditor

wxGridCellEditor* GetEditor(wxGrid* grid, int row, int col) const

wxGridCellAttr::IsReadOnly

bool IsReadOnly() const

wxGridCellAttr::SetDefAttr

CHAPTER 5

598

void SetDefAttr(wxGridCellAttr* defAttr)

wwxxGGrriiddCCeellllEEddiittoorr

This class is responsible for providing and manipulating the in-place edit controls for the
grid. Instances of wxGridCellEditor (actually, instances of derived classes since it is an
abstract class) can be associated with the cell attributes for individual cells, rows,
columns, or even for the entire grid.

Derived from

wxGridCellWorker

Data structures

wxGridCellEditor::wxGridCellEditor

 wxGridCellEditor()

wxGridCellEditor::IsCreated

bool IsCreated()

wxGridCellEditor::Create

void Create (wxWindow* parent, wxWindowID id, wxEvtHandler* evtHandler)

Creates the actual edit control.

wxGridCellEditor::SetSize

void SetSize(const wxRect& rect)

Size and position the edit control.

wxGridCellEditor::Show

void Show(bool show, wxGridCellAttr* attr = NULL)

CHAPTER 5

599

Show or hide the edit control, use the specified attributes to set colours/fonts for it.

wxGridCellEditor::PaintBackground

void PaintBackground(const wxRect& rectCell, wxGridCellAttr* attr)

Draws the part of the cell not occupied by the control: the base class version just fills it
with background colour from the attribute.

wxGridCellEditor::BeginEdit

void BeginEdit(int row, int col, wxGrid* grid)

Fetch the value from the table and prepare the edit control to begin editing. Set the focus
to the edit control.

wxGridCellEditor::EndEdit

bool EndEdit(int row, int col, wxGrid* grid)

Complete the editing of the current cell. Returns true if the value has changed. If
necessary, the control may be destroyed.

wxGridCellEditor::Reset

void Reset()

Reset the value in the control back to its starting value.

wxGridCellEditor::StartingKey

void StartingKey(wxKeyEvent& event)

If the editor is enabled by pressing keys on the grid, this will be called to let the editor do
something about that first key if desired.

wxGridCellEditor::StartingClick

void StartingClick()

If the editor is enabled by clicking on the cell, this method will be called.

CHAPTER 5

600

wxGridCellEditor::HandleReturn

void HandleReturn(wxKeyEvent& event)

Some types of controls on some platforms may need some help with the Return key.

wxGridCellEditor::Destroy

void Destroy()

Final cleanup.

wxGridCellEditor::Clone

wxGridCellEditor* Clone() const

Create a new object which is the copy of this one.

wxGridCellEditor::~wxGridCellEditor

 ~wxGridCellEditor()

The dtor is private because only DecRef() can delete us.

wwxxGGrriiddCCeellllRReennddeerreerr

This class is responsible for actually drawing the cell in the grid. You may pass it to the
wxGridCellAttr (below) to change the format of one given cell or to
wxGrid::SetDefaultRenderer() to change the view of all cells. This is an abstract class,
and you will normally use one of the predefined derived classes or derive your own class
from it.

Derived from

wxGridCellWorker

Data structures

wxGridCellRenderer::Draw

CHAPTER 5

601

void Draw(wxGrid& grid, wxGridCellAttr& attr, wxDC& dc, const wxRect& rect, int
row, int col, bool isSelected)

Draw the given cell on the provided DC inside the given rectangle using the style
specified by the attribute and the default or selected state corresponding to the
isSelected value.

This pure virtual function has a default implementation which will prepare the DC using
the given attribute: it will draw the rectangle with the background colour from attr and set
the text colour and font.

wxGridCellRenderer::GetBestSize

wxSize GetBestSize(wxGrid& grid, wxGridCellAttr& attr, wxDC& dc, int row, int col)

Get the preferred size of the cell for its contents.

wxGridCellRenderer::Clone

wxGridCellRenderer* Clone() const

wwxxGGrriiddTTaabblleeBBaassee

Grid table classes.

Derived from

wxObject (p. 897)

Data structures

wxGridTableBase::wxGridTableBase

 wxGridTableBase ()

wxGridTableBase::~wxGridTableBase

 ~wxGridTableBase()

CHAPTER 5

602

wxGridTableBase::GetNumberRows

int GetNumberRows()

You must override these functions in a derived table class.

wxGridTableBase::GetNumberCols

int GetNumberCols()

wxGridTableBase::IsEmptyCell

bool IsEmptyCell(int row, int col)

wxGridTableBase::GetValue

wxString GetValue(int row, int col)

wxGridTableBase::SetValue

void SetValue(int row, int col, const wxString& value)

wxGridTableBase::GetTypeName

wxString GetTypeName (int row, int col)

Data type determination and value access.

wxGridTableBase::CanGetValueAs

bool CanGetValueAs(int row, int col, const wxString& typeName)

wxGridTableBase::CanSetValueAs

bool CanSetValueAs(int row, int col, const wxString& typeName)

wxGridTableBase::GetValueAsLong

long GetValueAsLong(int row, int col)

CHAPTER 5

603

wxGridTableBase::GetValueAsDouble

double GetValueAsDouble(int row, int col)

wxGridTableBase::GetValueAsBool

bool GetValueAsBool(int row, int col)

wxGridTableBase::SetValueAsLong

void SetValueAsLong(int row, int col, long value)

wxGridTableBase::SetValueAsDouble

void SetValueAsDouble(int row, int col, double value)

wxGridTableBase::SetValueAsBool

void SetValueAsBool(int row, int col, bool value)

wxGridTableBase::GetValueAsCustom

void* GetValueAsCustom(int row, int col, const wxString& typeName)

For user defined types

wxGridTableBase::SetValueAsCustom

void SetValueAsCustom(int row, int col, const wxString& typeName, void* value)

wxGridTableBase::SetView

void SetView(wxGrid* grid)

Overriding these is optional

wxGridTableBase::GetView

wxGrid * GetView() const

CHAPTER 5

604

wxGridTableBase::Clear

void Clear()

wxGridTableBase::InsertRows

bool InsertRows(size_t pos = 0, size_t numRows = 1)

wxGridTableBase::AppendRows

bool AppendRows(size_t numRows = 1)

wxGridTableBase::DeleteRows

bool DeleteRows(size_t pos = 0, size_t numRows = 1)

wxGridTableBase::InsertCols

bool InsertCols(size_t pos = 0, size_t numCols = 1)

wxGridTableBase::AppendCols

bool AppendCols(size_t numCols = 1)

wxGridTableBase::DeleteCols

bool DeleteCols(size_t pos = 0, size_t numCols = 1)

wxGridTableBase::GetRowLabelValue

wxString GetRowLabelValue(int row)

wxGridTableBase::GetColLabelValue

wxString GetColLabelValue(int col)

wxGridTableBase::SetRowLabelValue

void SetRowLabelValue(int WXUNUSED(row) , const wxString&)

CHAPTER 5

605

wxGridTableBase::SetColLabelValue

void SetColLabelValue(int WXUNUSED(col), const wxString&)

wxGridTableBase::SetAttrProvider

void SetAttrProvider(wxGridCellAttrProvider* attrProvider)

Attribute handling give us the attr provider to use - we take ownership of the pointer

wxGridTableBase::GetAttrProvider

wxGridCellAttrProvider* GetAttrProvider() const

get the currently used attr provider (may be NULL)

wxGridTableBase::CanHaveAttributes

bool CanHaveAttributes()

Does this table allow attributes? Default implementation creates a
wxGridCellAttrProvider if necessary.

wxGridTableBase::UpdateAttrRows

void UpdateAttrRows(size_t pos, int numRows)

change row/col number in attribute if needed

wxGridTableBase::UpdateAttrCols

void UpdateAttrCols(size_t pos, int numCols)

wxGridTableBase::GetAttr

wxGridCellAttr* GetAttr(int row, int col)

by default forwarded to wxGridCellAttrProvider if any. May be overridden to handle
attributes directly in the table.

wxGridTableBase::SetAttr

CHAPTER 5

606

void SetAttr(wxGridCellAttr* attr, int row, int col)

these functions take ownership of the pointer

wxGridTableBase::SetRowAttr

void SetRowAttr(wxGridCellAttr* attr, int row)

wxGridTableBase::SetColAttr

void SetColAttr(wxGridCellAttr* attr, int col)

wwxxGGrriiddSSiizzeerr

A grid sizer is a sizer which lays out its children in a two-dimensional table with all table
fields having the same size, i.e. the width of each field is the width of the widest child,
the height of each field is the height of the tallest child.

Derived from

wxSizer (p. 1086)
wxObject (p. 897)

wxGridSizer::wxGridSizer

 wxGridSizer(int rows, int cols, int vgap, int hgap)

 wxGridSizer(int cols, int vgap = 0, int hgap = 0)

Constructor for a wxGridSizer. rows and cols determine the number of columns and
rows in the sizer - if either of the parameters is zero, it will be calculated to form the total
number of children in the sizer, thus making the sizer grow dynamically. vgap and hgap
define extra space between all children.

wxGridSizer::GetCols

int GetCols()

Returns the number of columns in the sizer.

CHAPTER 5

607

wxGridSizer::GetHGap

int GetHGap()

Returns the horizontal gap (in pixels) between cells in the sizer.

wxGridSizer::GetRows

int GetRows()

Returns the number of rows in the sizer.

wxGridSizer::GetVGap

int GetVGap()

Returns the vertical gap (in pixels) between the cells in the sizer.

wxGridSizer::SetCols

void SetCols(int cols)

Sets the number of columns in the sizer.

wxGridSizer::SetHGap

void SetHGap(int gap)

Sets the horizontal gap (in pixels) between cells in the sizer.

wxGridSizer::SetRows

void SetRows(int rows)

Sets the number of rows in the sizer.

wxGridSizer::SetVGap

void SetVGap(int gap)

Sets the vertical gap (in pixels) between the cells in the sizer.

CHAPTER 5

608

wwxxHHaasshhTTaabbllee

This class provides hash table functionality for wxWindows, and for an application if it
wishes. Data can be hashed on an integer or string key.

Derived from

wxObject (p. 897)

Include files

<wx/hash.h>

Example

Below is an example of using a hash table.

 wxHashTable table(KEY_STRING);

 wxPoint *point = new wxPoint(100, 200);
 table.Put("point 1", point);

 wxPoint *found_point = (wxPoint *)table.Get("point 1");

A hash table is implemented as an array of pointers to lists. When no data has been
stored, the hash table takes only a little more space than this array (default size is 1000).
When a data item is added, an integer is constructed from the integer or string key that
is within the bounds of the array. If the array element is NULL, a new (keyed) list is
created for the element. Then the data object is appended to the list, storing the key in
case other data objects need to be stored in the list also (when a 'collision' occurs).

Retrieval involves recalculating the array index from the key, and searching along the
keyed list for the data object whose stored key matches the passed key. Obviously this
is quicker when there are fewer collisions, so hashing will become inefficient if the
number of items to be stored greatly exceeds the size of the hash table.

See also

wxList (p. 743)

wxHashTable::wxHashTable

 wxHashTable(unsigned int key_type, int size = 1000)

Constructor. key_type is one of wxKEY_INTEGER, or wxKEY_STRING, and indicates

CHAPTER 5

609

what sort of keying is required. size is optional.

wxHashTable::~wxHashTable

 ~wxHashTable ()

Destroys the hash table.

wxHashTable::BeginFind

void BeginFind()

The counterpart of Next. If the application wishes to iterate through all the data in the
hash table, it can call BeginFind and then loop on Next.

wxHashTable::Clear

void Clear()

Clears the hash table of all nodes (but as usual, doesn't delete user data).

wxHashTable::Delete

wxObject * Delete(long key)

wxObject * Delete(const wxString& key)

Deletes entry in hash table and returns the user's data (if found).

wxHashTable::DeleteContents

void DeleteContents(bool flag)

If set to TRUE data stored in hash table will be deleted when hash table object is
destroyed.

wxHashTable::Get

wxObject * Get(long key)

wxObject * Get(const char* key)

Gets data from the hash table, using an integer or string key (depending on which has

CHAPTER 5

610

table constructor was used).

wxHashTable::MakeKey

long MakeKey(const wxString& string)

Makes an integer key out of a string. An application may wish to make a key explicitly
(for instance when combining two data values to form a key).

wxHashTable::Next

wxNode * Next()

If the application wishes to iterate through all the data in the hash table, it can call
BeginFind and then loop on Next. This function returns a wxNode pointer (or NULL if
there are no more nodes). See the description for wxNode (p. 886). The user will
probably only wish to use thewxNode::Data function to retrieve the data; the node may
also be deleted.

wxHashTable::Put

void Put(long key, wxObject *object)

void Put(const char* key, wxObject *object)

Inserts data into the hash table, using an integer or string key (depending on which has
table constructor was used). The key string is copied and stored by the hash table
implementation.

wxHashTable::GetCount

size_t GetCount() const

Returns the number of elements in the hash table.

wwxxHHeellppCCoonnttrroolllleerr

This is a family of classes by which applications may invoke a help viewer to provide on-
line help.

A help controller allows an application to display help, at the contents or at a particular
topic, and shut the help program down on termination. This avoids proliferation of many

CHAPTER 5

611

instances of the help viewer whenever the user requests a different topic via the
application's menus or buttons.

Typically, an application will create a help controller instance when it starts, and
immediately call Initialize to associate a filename with it. The help viewer will only get
run, however, just before the first call to display something.

Most help controller classes actually derive from wxHelpControllerBase and have names
of the form wxXXXHelpController or wxHelpControllerXXX. An appropriate class is
aliased to the name wxHelpController for each platform, as follows:

 • On Windows, wxWinHelpController is used.
 • On all other platforms, wxHelpControllerHtml is used if wxHTML is compiled into

wxWindows; otherwise wxExtHelpController is used (for invoking an external
browser).

The remaining help controller classess need to be named explicitly by an application that
wishes to make use of them.

There are currently the following help controller classes defined:

 • wxWinHelpController, for controlling Windows Help.
 • wxCHMHelpController, for controlling MS HTML Help. To use this, you need to

set wxUSE_MS_HTML_HELP to 1 in setup.h and have htmlhelp.h header from
Microsoft's HTML Help kit (you don't need VC++ specific htmlhelp.lib because
wxWindows loads neccessary DLL at runtime and so it works with all compilers).

 • wxBestHelpController, for controlling MS HTML Help or, if Microsoft's runtime is
not available, wxHtmlHelpController (p. 639). You need to provideboth CHM
and HTB versions of the help file. For 32bit Windows only.

 • wxExtHelpController, for controlling external browsers under Unix. The default
browser is Netscape Navigator. The 'help' sample shows its use.

 • wxHelpControllerHtml, using wxHTML (p. 1650) to display help. See
wx/helpwxht.h for details of use.

 • wxHtmlHelpController (p. 639), a more sophisticated help controller using
wxHTML (p. 1650), in a similar style to the Microsoft HTML Help viewer and
using some of the same files. Although it has an API compatible with other help
controllers, it has more advanced features, so it is recommended that you use
the specific API for this class instead.

Derived from

wxHelpControllerBase
wxObject (p. 897)

Include files

<wx/help.h> (wxWindows chooses the appropriate help controller class)
<wx/helpbase.h> (wxHelpControllerBase class)
<wx/helpwin.h> (Windows Help controller)
<wx/msw/helpchm.h> (MS HTML Help controller)

CHAPTER 5

612

<wx/generic/helpext.h> (external HTML browser controller)
<wx/generic/helpwxht.h> (simple wxHTML-based help controller)
<wx/html/helpctrl.h> (advanced wxHTML based help controller: wxHtmlHelpController)

See also

wxHtmlHelpController (p. 639), wxHTML (p. 1650)

wxHelpController::wxHelpController

 wxHelpController()

Constructs a help instance object, but does not invoke the help viewer.

wxHelpController::~wxHelpController

 ~wxHelpController()

Destroys the help instance, closing down the viewer if it is running.

wxHelpController::Initialize

virtual void Initialize(const wxString& file)

virtual void Initialize(const wxString& file, int server)

Initializes the help instance with a help filename, and optionally a server socket number
if using wxHelp (now obsolete). Does not invoke the help viewer. This must be called
directly after the help instance object is created and before any attempts to communicate
with the viewer.

You may omit the file extension and a suitable one will be chosen. For
wxHtmlHelpController, the extensions zip, htb and hhp will be appended while searching
for a suitable file. For WinHelp, the hlp extension is appended. For wxHelpControllerHtml
(the standard HTML help controller), the filename is assumed to be a directory
containing the HTML files.

wxHelpController::DisplayBlock

virtual bool DisplayBlock(long blockNo)

If the help viewer is not running, runs it and displays the file at the given block number.

WinHelp: Refers to the context number.

CHAPTER 5

613

MS HTML Help: Refers to the context number.

External HTML help: the same as for wxHelpController::DisplaySection (p. 613).

wxHtmlHelpController: sectionNo is an identifier as specified in the .hhc file. See Help
files format (p. 1651).

This function is for backward compatibility only, and applications should use
wxHelpController (p. 613) instead.

wxHelpController::DisplayContents

virtual bool DisplayContents()

If the help viewer is not running, runs it and displays the contents.

wxHelpController::DisplayContextPopup

virtual bool DisplayContextPopup(int contextId)

Displays the section as a popup window using a context id.

Returns FALSE if unsuccessful or not implemented.

wxHelpController::DisplaySection

virtual bool DisplaySection(const wxString& section)

If the help viewer is not running, runs it and displays the given section.

The interpretation of section differs between help viewers. For most viewers, this call is
equivalent to KeywordSearch. For MS HTML Help, external HTML help and simple
wxHTML help, if section has a .htm or .html extension, that HTML file will be displayed;
otherwise a keyword search is done.

virtual bool DisplaySection(int sectionNo)

If the help viewer is not running, runs it and displays the given section.

WinHelp, MS HTML Help: sectionNo is a context id.

External HTML help/simple wxHTML help: wxExtHelpController and
wxHelpControllerHtml implement sectionNo as an id in a map file, which is of the form:

0 wx.html ; Index
1 wx34.html#classref ; Class reference

CHAPTER 5

614

2 wx204.html ; Function reference

wxHtmlHelpController: sectionNo is an identifier as specified in the .hhc file. See Help
files format (p. 1651).

See also the help sample for notes on how to specify section numbers for various help
file formats.

wxHelpController::DisplayTextPopup

virtual bool DisplayTextPopup(const wxString& text, const wxPoint& pos)

Displays the text in a popup window, if possible.

Returns FALSE if unsuccessful or not implemented.

wxHelpController::GetFrameParameters

virtual wxFrame * GetFrameParameters(const wxSize * size = NULL, const wxPoint
* pos = NULL, bool *newFrameEachTime = NULL)

This reads the current settings for the help frame in the case of the
wxHelpControllerHtml, setting the frame size, position and the newFrameEachTime
parameters to the last values used. It also returns the pointer to the last opened help
frame. This can be used for example, to automatically close the help frame on program
shutdown.

wxHtmlHelpController returns the frame, size and position.

For all other help controllers, this function does nothing and just returns NULL.

Parameters

viewer

This defaults to "netscape" for wxExtHelpController.

flags

This defaults to wxHELP_NETSCAPE for wxExtHelpController, indicating that the
viewer is a variant of Netscape Navigator.

wxHelpController::KeywordSearch

virtual bool KeywordSearch(const wxString& keyWord)

If the help viewer is not running, runs it, and searches for sections matching the given
keyword. If one match is found, the file is displayed at this section.

CHAPTER 5

615

WinHelp, MS HTML Help: If more than one match is found, the first topic is displayed.

External HTML help, simple wxHTML help: If more than one match is found, a choice of
topics is displayed.

wxHtmlHelpController: see wxHtmlHelpController::KeywordSearch (p. 642).

wxHelpController::LoadFile

virtual bool LoadFile (const wxString& file = "")

If the help viewer is not running, runs it and loads the given file. If the filename is not
supplied or is empty, the file specified in Initialize is used. If the viewer is already
displaying the specified file, it will not be reloaded. This member function may be used
before each display call in case the user has opened another file.

wxHtmlHelpController ignores this call.

wxHelpController::OnQuit

virtual bool OnQuit()

Overridable member called when this application's viewer is quit by the user.

This does not work for all help controllers.

wxHelpController::SetFrameParameters

virtual void SetFrameParameters(const wxString & title, const wxSize & size, const
wxPoint & pos = wxDefaultPosition, bool newFrameEachTime = FALSE)

For wxHelpControllerHtml, this allows the application to set the default frame title, size
and position for the frame. If the title contains %s, this will be replaced with the page title.
If the parameter newFrameEachTime is set, the controller will open a new help frame
each time it is called.

For wxHtmlHelpController, the title is set (again with %s indicating the page title) and
also the size and position of the frame if the frame is already open. newFrameEachTime
is ignored.

For all other help controllers this function has no effect.

wxHelpController::SetViewer

virtual void SetViewer(const wxString& viewer, long flags)

CHAPTER 5

616

Sets detailed viewer information. So far this is only relevant to wxExtHelpController.

Some examples of usage:

 m_help.SetViewer("kdehelp");
 m_help.SetViewer("gnome-help-browser");
 m_help.SetViewer("netscape", wxHELP_NETSCAPE);

wxHelpController::Quit

virtual bool Quit()

If the viewer is running, quits it by disconnecting.

For Windows Help, the viewer will only close if no other application is using it.

wwxxHHeellppCCoonnttrroolllleerrHHeellppPPrroovviiddeerr

wxHelpControllerHelpProvider is an implementation of wxHelpProvider which supports
both context identifiers and plain text help strings. If the help text is an integer, it is
passed to wxHelpController::DisplayContextPopup. Otherwise, it shows the string in a
tooltip as per wxSimpleHelpProvider. If you use this with a wxCHMHelpController
instance on windows, it will use the native style of tip window instead of wxTipWindow
(p. 1292).

You can use the convenience function wxContextId to convert an integer context id to a
string for passing to wxWindow::SetHelpText (p. 1410).

Derived from

wxSimpleHelpProvider (p. 1078)
wxHelpProvider (p. 618)

Include files

<wx/cshelp.h>

See also

wxHelpProvider (p. 618), wxSimpleHelpProvider (p. 1078), wxContextHelp (p. 180),
wxWindow::SetHelpText (p. 1410), wxWindow::GetHelpText (p. 1379)

wxHelpControllerHelpProvider::wxHelpControllerHelpProvider

CHAPTER 5

617

 wxHelpControllerHelpProvider(wxHelpControllerBase* hc = NULL)

Note that the instance doesn't own the help controller. The help controller should be
deleted separately.

wxHelpControllerHelpProvider::SetHelpController

void SetHelpController(wxHelpControllerBase* hc)

Sets the help controller associated with this help provider.

wxHelpControllerHelpProvider::GetHelpController

wxHelpControllerBase* GetHelpController() const

Returns the help controller associated with this help provider.

wwxxHHeellppEEvveenntt

A help event is sent when the user has requested context-sensitive help. This can either
be caused by the application requesting context-sensitive help mode via wxContextHelp
(p. 180), or (on MS Windows) by the system generating a WM_HELP message when the
user pressed F1 or clicked on the query button in a dialog caption.

A help event is sent to the window that the user clicked on, and is propagated up the
window hierarchy until the event is processed or there are no more event handlers. The
application should call wxEvent::GetId to check the identity of the clicked-on window,
and then either show some suitable help or call wxEvent::Skip if the identifier is
unrecognised. Calling Skip is important because it allows wxWindows to generate further
events for ancestors of the clicked-on window. Otherwise it would be impossible to show
help for container windows, since processing would stop after the first window found.

Derived from

wxCommandEvent (p. 156)
wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

CHAPTER 5

618

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxHelpEvent argument.

EVT_HELP(id, func) Process a wxEVT_HELP event.
EVT_HELP_RANGE(id1, id2, func) Process a wxEVT_HELP event for a range of

ids.

See also

wxContextHelp (p. 180), wxDialog (p. 359), Event handling overview (p. 1560)

wxHelpEvent::wxHelpEvent

 wxHelpEvent(WXTYPE eventType = 0, bool active = TRUE, wxWindowID id = 0,
const wxPoint& point)

Constructor.

wxHelpEvent::GetPosition

const wxPoint& GetPosition() const

Returns the left-click position of the mouse, in screen coordinates. This allows the
application to position the help appropriately.

wxHelpEvent::SetPosition

void SetPosition(const wxPoint& pt)

Sets the left-click position of the mouse, in screen coordinates.

wwxxHHeellppPPrroovviiddeerr

wxHelpProvider is an abstract class used by a program implementing context-sensitive
help to show the help text for the given window.

The current help provider must be explicitly set by the application using
wxHelpProvider::Set().

Derived from

CHAPTER 5

619

No base class

Include files

<wx/cshelp.h>

See also

wxContextHelp (p. 180), wxContextHelpButton (p. 182), wxSimpleHelpProvider (p.
1078), wxHelpControllerHelpProvider (p. 616), wxWindow::SetHelpText (p. 1410),
wxWindow::GetHelpText (p. 1379)

wxHelpProvider::~wxHelpProvider

 ~wxHelpProvider()

Virtual destructor for any base class.

wxHelpProvider::Set

wxHelpProvider* Set(wxHelpProvider* helpProvider)

Get/set the current, application-wide help provider. Returns the previous one.

wxHelpProvider::Get

wxHelpProvider* Get()

Unlike some other classes, the help provider is not created on demand. This must be
explicitly done by the application.

wxHelpProvider::GetHelp

wxString GetHelp(const wxWindowBase* window)

Gets the help string for this window. Its interpretation is dependent on the help provider
except that empty string always means that no help is associated with the window.

wxHelpProvider::ShowHelp

bool ShowHelp(wxWindowBase* window)

Shows help for the given window. Uses GetHelp (p. 619) internally if applicable.

CHAPTER 5

620

Returns TRUE if it was done, or FALSE if no help was available for this window.

wxHelpProvider::AddHelp

void AddHelp(wxWindowBase* window, const wxString& text)

Associates the text with the given window or id. Although all help providers have these
functions to allow making wxWindow::SetHelpText (p. 1410) work, not all of them
implement the functions.

void AddHelp(wxWindowID id, const wxString& text)

This version associates the given text with all windows with this id. May be used to set
the same help string for all Cancel buttons in the application, for example.

wwxxHHttmmllCCeellll

Internal data structure. It represents fragments of parsed HTML page, the so-called cell
- a word, picture, table, horizontal line and so on. It is used by wxHtmlWindow (p. 663)
and wxHtmlWinParser (p. 671) to represent HTML page in memory.

You can divide cells into two groups : visible cells with non-zero width and height and
helper cells (usually with zero width and height) that perform special actions such as
color or font change.

Derived from

wxObject (p. 897)

Include files

<wx/html/htmlcell.h>

See Also

Cells Overview (p. 1653),wxHtmlContainerCell (p. 626)

wxHtmlCell::wxHtmlCell

 wxHtmlCell()

Constructor.

CHAPTER 5

621

wxHtmlCell::AdjustPagebreak

virtual bool AdjustPagebreak(int * pagebreak)

This method is used to adjust pagebreak position. The parameter is variable that
contains y-coordinate of page break (= horizontal line that should not be crossed by
words, images etc.). If this cell cannot be divided into two pieces (each one on another
page) then it moves the pagebreak few pixels up.

Returns TRUE if pagebreak was modified, FALSE otherwise

Usage:
while (container->AdjustPagebreak(&p)) {}

wxHtmlCell::Draw

virtual void Draw(wxDC& dc, int x, int y, int view_y1, int view_y2)

Renders the cell.

Parameters

dc

Device context to which the cell is to be drawn

x,y

Coordinates of parent's upper left corner (origin). You must add this to
m_PosX,m_PosY when passing coordinates to dc's methods Example : dc ->
DrawText("hello", x + m_PosX, y + m_PosY)

view_y1

y-coord of the first line visible in window. This is used to optimize rendering speed

view_y2

y-coord of the last line visible in window. This is used to optimize rendering speed

wxHtmlCell::DrawInvisible

virtual void DrawInvisible(wxDC& dc, int x, int y)

This method is called instead of Draw (p. 621) when the cell is certainly out of the screen
(and thus invisible). This is not nonsense - some tags (like wxHtmlColourCell (p. 626)or
font setter) must be drawn even if they are invisible!

Parameters

CHAPTER 5

622

dc
Device context to which the cell is to be drawn

x,y

Coordinates of parent's upper left corner. You must add this to m_PosX,m_PosY
when passing coordinates to dc's methods Example : dc ->
DrawText("hello", x + m_PosX, y + m_PosY)

wxHtmlCell::Find

virtual const wxHtmlCell* Find(int condition, const void* param)

Returns pointer to itself if this cell matches condition (or if any of the cells following in the
list matches), NULL otherwise. (In other words if you call top-level container's Find it will
return pointer to the first cell that matches the condition)

It is recommended way how to obtain pointer to particular cell or to cell of some type
(e.g. wxHtmlAnchorCell reacts on wxHTML_COND_ISANCHOR condition)

Parameters

condition

Unique integer identifier of condition

param

Optional parameters

Defined conditions

wxHTML_COND_ISANCHOR Finds particular anchor. param is pointer to

wxString with name of the anchor.
wxHTML_COND_USER User-defined conditions start from this number.

wxHtmlCell::GetDescent

int GetDescent() const

Returns descent value of the cell (m_Descent member). See explanation:

CHAPTER 5

623

wxHtmlCell::GetHeight

int GetHeight() const

Returns height of the cell (m_Height member).

wxHtmlCell::GetId

virtual wxString GetId() const

Returns unique cell identifier if there is any, empty string otherwise.

wxHtmlCell::GetLink

virtual wxHtmlLinkInfo* GetLink(int x = 0, int y = 0) const

Returns hypertext link if associated with this cell or NULL otherwise. See wxHtmlLinkInfo
(p. 649). (Note: this makes sense only for visible tags).

Parameters

x,y

Coordinates of position where the user pressed mouse button. These coordinates
are used e.g. by COLORMAP. Values are relative to the upper left corner of THIS
cell (i.e. from 0 to m_Width or m_Height)

wxHtmlCell::GetNext

wxHtmlCell* GetNext() const

Returns pointer to the next cell in list (see htmlcell.h if you're interested in details).

wxHtmlCell::GetParent

CHAPTER 5

624

wxHtmlContainerCell* GetParent() const

Returns pointer to parent container.

wxHtmlCell::GetPosX

int GetPosX() const

Returns X position within parent (the value is relative to parent's upper left corner). The
returned value is meaningful only if parent's Layout (p. 624) was called before!

wxHtmlCell::GetPosY

int GetPosY() const

Returns Y position within parent (the value is relative to parent's upper left corner). The
returned value is meaningful only if parent's Layout (p. 624) was called before!

wxHtmlCell::GetWidth

int GetWidth() const

Returns width of the cell (m_Width member).

wxHtmlCell::Layout

virtual void Layout(int w)

This method performs two actions:

 1. adjusts the cell's width according to the fact that maximal possible width is w.

(this has sense when working with horizontal lines, tables etc.)
 2. prepares layout (=fill-in m_PosX, m_PosY (and sometimes m_Height) members)

based on actual width w

It must be called before displaying cells structure because m_PosX and m_PosY are
undefined (or invalid) before calling Layout.

wxHtmlCell::OnMouseClick

virtual void OnMouseClick(wxWindow* parent, intx, int y, const wxMouseEvent&
event)

This function is simple event handler. Each time the user clicks mouse button over a cell

CHAPTER 5

625

within wxHtmlWindow (p. 663) this method of that cell is called. Default behavior is that it
calls wxHtmlWindow::LoadPage (p. 666).

Note

If you need more "advanced" event handling you should use wxHtmlBinderCell instead.

Parameters

parent

parent window (always wxHtmlWindow!)

x, y

coordinates of mouse click (this is relative to cell's origin

left, middle, right

boolean flags for mouse buttons. TRUE if the left/middle/right button is pressed,
FALSE otherwise

wxHtmlCell::SetId

void SetId(const wxString& id)

Sets unique cell identifier. Default value is no identifier, i.e. empty string.

wxHtmlCell::SetLink

void SetLink(const wxHtmlLinkInfo& link)

Sets the hypertext link asocciated with this cell. (Default value is wxHtmlLinkInfo (p.
649)("", "") (no link))

wxHtmlCell::SetNext

void SetNext(wxHtmlCell *cell)

Sets the next cell in the list. This shouldn't be called by user - it is to be used only by
wxHtmlContainerCell::InsertCell (p. 628).

wxHtmlCell::SetParent

void SetParent(wxHtmlContainerCell *p)

Sets parent container of this cell. This is called fromwxHtmlContainerCell::InsertCell (p.
628).

CHAPTER 5

626

wxHtmlCell::SetPos

void SetPos(int x, int y)

Sets the cell's position within parent container.

wwxxHHttmmllCCoolloouurrCCeellll

This cell changes the colour of either the background or the foreground.

Derived from

wxHtmlCell (p. 620)

Include files

<wx/html/htmlcell.h>

wxHtmlColourCell::wxHtmlColourCell

 wxHtmlColourCell(wxColour clr, int flags = wxHTML_CLR_FOREGROUND)

Constructor.

Parameters

clr

The color

flags

Can be one of following:

wxHTML_CLR_FOREGROUND change color of text
wxHTML_CLR_BACKGROUND change background color

wwxxHHttmmllCCoonnttaaiinneerrCCeellll

The wxHtmlContainerCell class is an implementation of a cell that may contain more

CHAPTER 5

627

cells in it. It is heavily used in the wxHTML layout algorithm.

Derived from

wxHtmlCell (p. 620)

Include files

<wx/html/htmlcell.h>

See Also

Cells Overview (p. 1653)

wxHtmlContainerCell::wxHtmlContainerCell

 wxHtmlContainerCell(wxHtmlContainerCell *parent)

Constructor. parent is pointer to parent container or NULL.

wxHtmlContainerCell::GetAlignHor

int GetAlignHor() const

Returns container's horizontal alignment.

wxHtmlContainerCell::GetAlignVer

int GetAlignVer() const

Returns container's vertical alignment.

wxHtmlContainerCell::GetFirstCell

wxHtmlCell* GetFirstCell()

Returns pointer to the first cell in the list. You can then use wxHtmlCell's GetNext
method to obtain pointer to the next cell in list.

Note: This shouldn't be used by the end user. If you need some way of finding particular
cell in the list, try Find (p. 622) method instead.

wxHtmlContainerCell::GetIndent

CHAPTER 5

628

int GetIndent(int ind) const

Returns the indentation. ind is one of the wxHTML_INDENT_* constants.

Note: You must call GetIndentUnits (p. 628) with same ind parameter in order to
correctly interpret the returned integer value. It is NOT always in pixels!

wxHtmlContainerCell::GetIndentUnits

int GetIndentUnits(int ind) const

Returns the units of indentation for ind where ind is one of the wxHTML_INDENT_*
constants.

wxHtmlContainerCell::InsertCell

void InsertCell(wxHtmlCell *cell)

Inserts new cell into the container.

wxHtmlContainerCell::SetAlign

void SetAlign(const wxHtmlTag& tag)

Sets the container's alignment (both horizontal and vertical) according to the values
stored in tag. (Tags ALIGN parameter is extracted.) In fact it is only a front-end to
SetAlignHor (p. 628) and SetAlignVer (p. 629).

wxHtmlContainerCell::SetAlignHor

void SetAlignHor(int al)

Sets the container's horizontal alignment. During Layout (p. 624) each line is aligned
according to al value.

Parameters

al

new horizontal alignment. May be one of these values:

wxHTML_ALIGN_LEFT lines are left-aligned (default)
wxHTML_ALIGN_JUSTIFY lines are justified
wxHTML_ALIGN_CENTER lines are centered
wxHTML_ALIGN_RIGHT lines are right-aligned

CHAPTER 5

629

wxHtmlContainerCell::SetAlignVer

void SetAlignVer(int al)

Sets the container's vertical alignment. This is per-line alignment!

Parameters

al

new vertical alignment. May be one of these values:

wxHTML_ALIGN_BOTTOM cells are over the line (default)
wxHTML_ALIGN_CENTER cells are centered on line
wxHTML_ALIGN_TOP cells are under the line

wxHtmlContainerCell::SetBackgroundColour

void SetBackgroundColour(const wxColour& clr)

Sets the background colour for this container.

wxHtmlContainerCell::SetBorder

void SetBorder(const wxColour& clr1, const wxColour& clr2)

Sets the border (frame) colours. A border is a rectangle around the container.

Parameters

CHAPTER 5

630

clr1

Colour of top and left lines

clr2

Colour of bottom and right lines

wxHtmlContainerCell::SetIndent

void SetIndent(int i, int what, int units = wxHTML_UNITS_PIXELS)

Sets the indentation (free space between borders of container and subcells).

Parameters

i

Indentation value.

what

Determines which of the four borders we're setting. It is OR combination of
following constants:

wxHTML_INDENT_TOP top border
wxHTML_INDENT_BOTTOM bottom
wxHTML_INDENT_LEFT left
wxHTML_INDENT_RIGHT right
wxHTML_INDENT_HORIZONTAL left and right
wxHTML_INDENT_VERTICAL top and bottom
wxHTML_INDENT_ALL all 4 borders

units

Units of i. This parameter affects interpretation of value.

CHAPTER 5

631

wxHTML_UNITS_PIXELS i is number of pixels
wxHTML_UNITS_PERCENT i is interpreted as percents of width of

parent container

wxHtmlContainerCell::SetMinHeight

void SetMinHeight(int h, int align = wxHTML_ALIGN_TOP)

Sets minimal height of the container.

When container's Layout (p. 624) is called, m_Height is set depending on layout of
subcells to the height of area covered by layed-out subcells. Calling this method
guarantees you that the height of container is never smaller than h - even if the subcells
cover much smaller area.

Parameters

h

The minimal height.

align

If height of the container is lower than the minimum height, empty space must be
inserted somewhere in order to ensure minimal height. This parameter is one of
wxHTML_ALIGN_TOP, wxHTML_ALIGN_BOTTOM,
wxHTML_ALIGN_CENTER. It refers to the contents, not to the empty place.

wxHtmlContainerCell::SetWidthFloat

void SetWidthFloat(int w, int units)

void SetWidthFloat(const wxHtmlTag& tag, double pixel_scale = 1.0)

Sets floating width adjustment.

The normal behaviour of container is that its width is the same as the width of parent
container (and thus you can have only one sub-container per line). You can change this
by setting FWA.

pixel_scale is number of real pixels that equals to 1 HTML pixel.

Parameters

w

Width of the container. If the value is negative it means complement to full width of
parent container (e.g.SetWidthFloat(-50, wxHTML_UNITS_PIXELS) sets the
width of container to parent's width minus 50 pixels. This is useful when creating
tables - you can call SetWidthFloat(50) and SetWidthFloat(-50))

CHAPTER 5

632

units

Units of w This parameter affects the interpretation of value.

wxHTML_UNITS_PIXELS w is number of pixels
wxHTML_UNITS_PERCENT w is interpreted as percents of width of

parent container

tag

In the second version of method, w and unitsinfo is extracted from tag's WIDTH
parameter.

wxPython note: The second form of this method is named SetWidthFloatFromTag in
wxPython.

wwxxHHttmmllDDCCRReennddeerreerr

This class can render HTML document into a specified area of a DC. You can use it in
your own printing code, although use of wxHtmlEasyPrinting (p. 634) or wxHtmlPrintout
(p. 654) is strongly recommended.

Derived from

wxObject (p. 897)

Include files

<wx/html/htmprint.h>

wxHtmlDCRenderer::wxHtmlDCRenderer

 wxHtmlDCRenderer()

Constructor.

wxHtmlDCRenderer::SetDC

void SetDC(wxDC* dc, double pixel_scale = 1.0)

Assign DC instance to the renderer.

pixel_scale can be used when rendering to high-resolution DCs (e.g. printer) to adjust

CHAPTER 5

633

size of pixel metrics. (Many dimensions in HTML are given in pixels -- e.g. image sizes.
300x300 image would be only one inch wide on typical printer. With pixel_scale = 3.0 it
would be 3 inches.)

Parameters

maxwidth

width of the area (on this DC) that is equivalent to screen's width, in pixels (you
should set it to page width minus margins).

Note: In the current implementation the screen width is always 800 pixels: it gives
best results and ensures (almost) same printed outputs across platforms and
differently configured desktops.

See also SetSize (p. 633).

wxHtmlDCRenderer::SetSize

void SetSize(int width, int height)

Set size of output rectangle, in pixels. Note that you can't change width of the rectangle
between calls to Render (p. 633)! (You can freely change height.)

wxHtmlDCRenderer::SetHtmlText

void SetHtmlText(const wxString& html, const wxString& basepath =
wxEmptyString, bool isdir = TRUE)

Assign text to the renderer. Render (p. 633) then draws the text onto DC.

Parameters

html

HTML text. This is not a filename.

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

isdir

FALSE if basepath is filename, TRUE if it is directory name (see wxFileSystem (p.
489) for detailed explanation)

wxHtmlDCRenderer::Render

int Render(int x, int y, int from = 0, int dont_render = FALSE)

CHAPTER 5

634

Renders HTML text to the DC.

Parameters

x,y

 position of upper-left corner of printing rectangle (see SetSize (p. 633))

from

y-coordinate of the very first visible cell

dont_render

if TRUE then this method only returns y coordinate of the next page and does not
output anything

Returned value is y coordinate of first cell than didn't fit onto page. Use this value as
from in next call to Render in order to print multipages document.

Caution!

The Following three methods must always be called before any call to Render
(preferably in this order):

 • SetDC (p. 632)
 • SetSize (p. 633)
 • SetHtmlText (p. 633)

Render() changes the DC's user scale and does NOT restore it.

wxHtmlDCRenderer::GetTotalHeight

int GetTotalHeight()

Returns the height of the HTML text. This is important if area height (see SetSize (p.
633)) is smaller that total height and thus the page cannot fit into it. In that case you're
supposed to call Render (p. 633) as long as its return value is smaller than
GetTotalHeight's.

wwxxHHttmmllEEaassyyPPrriinnttiinngg

This class provides very simple interface to printing architecture. It allows you to print
HTML documents using only a few commands.

Note

Do not create this class on the stack only. You should create an instance on app startup
and use this instance for all printing operations. The reason is that this class stores

CHAPTER 5

635

various settings in it.

Derived from

wxObject (p. 897)

Include files

<wx/html/htmprint.h>

wxHtmlEasyPrinting::wxHtmlEasyPrinting

 wxHtmlEasyPrinting(const wxString& name = "Printing", wxFrame* parent_frame =
NULL)

Constructor.

Parameters

name

Name of the printing. Used by preview frames and setup dialogs.

parent_frame

pointer to the frame that will own preview frame and setup dialogs. May be NULL.

wxHtmlEasyPrinting::PreviewFile

bool PreviewFile(const wxString& htmlfile)

Preview HTML file.

Returns FALSE in case of error -- callwxPrinter::GetLastError (p. 956) to get detailed
information about the kind of the error.

wxHtmlEasyPrinting::PreviewText

bool PreviewText(const wxString& htmltext, const wxString& basepath =
wxEmptyString)

Preview HTML text (not file!).

Returns FALSE in case of error -- callwxPrinter::GetLastError (p. 956) to get detailed
information about the kind of the error.

Parameters

CHAPTER 5

636

htmltext

HTML text.

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

wxHtmlEasyPrinting::PrintFile

bool PrintFile(const wxString& htmlfile)

Print HTML file.

Returns FALSE in case of error -- callwxPrinter::GetLastError (p. 956) to get detailed
information about the kind of the error.

wxHtmlEasyPrinting::PrintText

bool PrintText(const wxString& htmltext, const wxString& basepath =
wxEmptyString)

Print HTML text (not file!).

Returns FALSE in case of error -- callwxPrinter::GetLastError (p. 956) to get detailed
information about the kind of the error.

Parameters

htmltext

HTML text.

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

wxHtmlEasyPrinting::PrinterSetup

void PrinterSetup()

Display printer setup dialog and allows the user to modify settings.

wxHtmlEasyPrinting::PageSetup

void PageSetup()

CHAPTER 5

637

Display page setup dialog and allows the user to modify settings.

wxHtmlEasyPrinting::SetHeader

void SetHeader(const wxString& header, int pg = wxPAGE_ALL)

Set page header.

Parameters

header

HTML text to be used as header. You can use macros in it:

 • @PAGENUM@ is replaced by page number
 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlEasyPrinting::SetFooter

void SetFooter(const wxString& footer, int pg = wxPAGE_ALL)

Set page footer.

Parameters

footer

HTML text to be used as footer. You can use macros in it:

 • @PAGENUM@ is replaced by page number
 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlEasyPrinting::GetPrintData

wxPrintData* GetPrintData()

Returns pointer to wxPrintData (p. 943) instance used by this class. You can set its
parameters (via SetXXXX methods).

wxHtmlEasyPrinting::GetPageSetupData

wxPageSetupDialogData* GetPageSetupData()

CHAPTER 5

638

Returns a pointer to wxPageSetupDialogData (p. 904) instance used by this class. You
can set its parameters (via SetXXXX methods).

wwxxHHttmmllFFiilltteerr

This class is an input filter for wxHtmlWindow (p. 663). It allows you to read and display
files of different file formats.

Derived from

wxObject (p. 897)

Include files

<wx/html/htmlfilt.h>

See Also

Overview (p. 1653)

wxHtmlFilter::wxHtmlFilter

 wxHtmlFilter()

Constructor.

wxHtmlFilter::CanRead

bool CanRead(const wxFSFile& file)

Returns TRUE if this filter is capable of reading file file.

Example:

bool MyFilter::CanRead(const wxFSFile& file)
{
 return (file.GetMimeType() == "application/x-ugh");
}

wxHtmlFilter::ReadFile

CHAPTER 5

639

wxString ReadFile (const wxFSFile& file)

Reads the file and returns string with HTML document.

Example:

wxString MyImgFilter::ReadFile(const wxFSFile& file)
{
 return "<html><body><img src=\"" +
 file.GetLocation() +
 "\"></body></html>";
}

wwxxHHttmmllHHeellppCCoonnttrroolllleerr

WARNING! Although this class has an API compatible with other wxWindows help
controllers as documented by wxHelpController (p. 610), it is recommended that you use
the enhanced capabilities of wxHtmlHelpController's API.

This help controller provides an easy way of displaying HTML help in your application
(see test sample). The help system is based on books (see AddBook (p. 640)). A book
is a logical section of documentation (for example "User's Guide" or "Programmer's
Guide" or "C++ Reference" or "wxWindows Reference"). The help controller can handle
as many books as you want.

wxHTML uses Microsoft's HTML Help Workshop project files (.hhp, .hhk, .hhc) as its
native format. The file format is described here (p. 1651). Have a look at docs/html/
directory where sample project files are stored.

You can use Tex2RTF to produce these files when generating HTML, if you set
htmlWorkshopFiles to true in your tex2rtf.ini file.

In order to use the controller in your application under Windows you must have the
following line in your .rc file:

#include "wx/html/msw/wxhtml.rc"

Note

It is strongly recommended to use preprocessed .hhp.cached version of projects. It can
be either created on-the-fly (see SetTempDir (p. 642)) or you can use hhp2cached
utility from utils/hhp2cached to create it and distribute the cached version together with
helpfiles. See samples/html/help sample for demonstration of its use.

See also

Information about wxBestHelpController (p. 610)

CHAPTER 5

640

Derived from

wxHelpControllerBase

Include files

<wx/html/helpctrl.h>

wxHtmlHelpController::wxHtmlHelpController

 wxHtmlHelpController(int style = wxHF_DEFAULT_STYLE)

Constructor.

Parameters

style is combination of these flags:

wxHF_TOOLBAR Help frame has toolbar.
wxHF_FLAT_TOOLBAR Help frame has toolbar with flat buttons (aka

coolbar).
wxHF_CONTENTS Help frame has contents panel.
wxHF_INDEX Help frame has index panel.
wxHF_SEARCH Help frame has search panel.
wxHF_BOOKMARKS Help frame has bookmarks controls.
wxHF_OPEN_FILES Allow user to open arbitrary HTML document.
wxHF_PRINT Toolbar contains "print" button.
wxHF_MERGE_BOOKS Contents pane does not show book nodes. All

books are merged together and appear as
single book to the user.

wxHF_ICONS_BOOK All nodes in contents pane have a book icon.
This is how Microsoft's HTML help viewer
behaves.

wxHF_ICONS_FOLDER Book nodes in contents pane have a book icon,
book's sections have a folder icon. This is the
default.

wxHF_ICONS_BOOK_CHAPTER Both book nodes and nodes of top-level
sections of a book (i.e. chapters) have a book
icon, all other sections (sections, subsections,
...) have a folder icon.

wxHF_DEFAULT_STYLE wxHF_TOOLBAR | wxHF_CONTENTS |
wxHF_INDEX | wxHF_SEARCH |
wxHF_BOOKMARKS | wxHF_PRINT

wxHtmlHelpController::AddBook

CHAPTER 5

641

bool AddBook(const wxString& book, bool show_wait_msg)

Adds book (.hhp file (p. 1651) - HTML Help Workshop project file) into the list of loaded
books. This must be called at least once before displaying any help.

book may be either .hhp file or ZIP archive that contains arbitrary number of .hhp files in
top-level directory. This ZIP archive must have .zip or .htb extension (the latter stands for
"HTML book"). In other words, AddBook("help.zip") is possible and, in fact,
recommended way.

If show_wait_msg is TRUE then a decorationless window with progress message is
displayed.

wxHtmlHelpController::CreateHelpFrame

virtual wxHtmlHelpFrame* CreateHelpFrame (wxHtmlHelpData * data)

This protected virtual method may be overridden so that the controller uses slightly
different frame. See samples/html/helpview sample for an example.

wxHtmlHelpController::Display

void Display(const wxString& x)

Displays page x. This is THE important function - it is used to display the help in
application.

You can specify the page in many ways:

 • as direct filename of HTML document
 • as chapter name (from contents) or as a book name
 • as some word from index
 • even as any word (will be searched)

Looking for the page runs in these steps:

 1. try to locate file named x (if x is for example "doc/howto.htm")
 2. try to open starting page of book named x
 3. try to find x in contents (if x is for example "How To ...")
 4. try to find x in index (if x is for example "How To ...")
 5. switch to Search panel and start searching

void Display(const int id)

This alternative form is used to search help contents by numeric IDs.

wxPython note: The second form of this method is named DisplayId in wxPython.

CHAPTER 5

642

wxHtmlHelpController::DisplayContents

void DisplayContents()

Displays help window and focuses contents panel.

wxHtmlHelpController::DisplayIndex

void DisplayIndex()

Displays help window and focuses index panel.

wxHtmlHelpController::KeywordSearch

bool KeywordSearch(const wxString& keyword)

Displays help window, focuses search panel and starts searching. Returns TRUE if the
keyword was found.

Important: KeywordSearch searches only pages listed in .hhc file(s). You should list all
pages in the contents file.

wxHtmlHelpController::ReadCustomization

void ReadCustomization(wxConfigBase* cfg, wxString path = wxEmptyString)

Reads the controller's setting (position of window, etc.)

wxHtmlHelpController::SetTempDir

void SetTempDir(const wxString& path)

Sets the path for storing temporary files - cached binary versions of index and contents
files. These binary forms are much faster to read. Default value is empty string (empty
string means that no cached data are stored). Note that these files are not deleted when
program exits.

Once created these cached files will be used in all subsequent executions of your
application. If cached files become older than corresponding .hhp file (e.g. if you
regenerate documentation) it will be refreshed.

wxHtmlHelpController::SetTitleFormat

void SetTitleFormat(const wxString& format)

CHAPTER 5

643

Sets format of title of the frame. Must contain exactly one "%s" (for title of displayed
HTML page).

wxHtmlHelpController::UseConfig

void UseConfig(wxConfigBase* config, const wxString& rootpath = wxEmptyString)

Associates config object with the controller.

If there is associated config object, wxHtmlHelpController automatically reads and writes
settings (including wxHtmlWindow's settings) when needed.

The only thing you must do is create wxConfig object and call UseConfig.

If you do not use UseConfig, wxHtmlHelpController will use default wxConfig object if
available (for details see wxConfigBase::Get (p. 174) and wxConfigBase::Set (p. 179)).

wxHtmlHelpController::WriteCustomization

void WriteCustomization(wxConfigBase* cfg, wxString path = wxEmptyString)

Stores controllers setting (position of window etc.)

wwxxHHttmmllHHeellppDDaattaa

This class is used by wxHtmlHelpController (p. 639) and wxHtmlHelpFrame (p. 645) to
access HTML help items. It is internal class and should not be used directly - except for
the case you're writing your own HTML help controller.

Derived from

wxObject (p. 897)

Include files

<wx/html/helpdata.h>

wxHtmlHelpData::wxHtmlHelpData

 wxHtmlHelpData()

CHAPTER 5

644

Constructor.

wxHtmlHelpData::AddBook

bool AddBook(const wxString& book)

Adds new book. 'book' is location of HTML help project (hhp) or ZIP file that contains
arbitrary number of .hhp projects (this zip file can have either .zip or .htb extension, htb
stands for "html book"). Returns success.

wxHtmlHelpData::FindPageById

wxString FindPageById(int id)

Returns page's URL based on integer ID stored in project.

wxHtmlHelpData::FindPageByName

wxString FindPageByName (const wxString& page)

Returns page's URL based on its (file)name.

wxHtmlHelpData::GetBookRecArray

const wxHtmlBookRecArray& GetBookRecArray()

Returns array with help books info.

wxHtmlHelpData::GetContents

wxHtmlContentsItem* GetContents()

Returns contents lists pointer.

wxHtmlHelpData::GetContentsCnt

int GetContentsCnt()

Returns size of contents list.

wxHtmlHelpData::GetIndex

CHAPTER 5

645

wxHtmlContentsItem* GetIndex()

Returns pointer to index items list.

wxHtmlHelpData::GetIndexCnt

int GetIndexCnt()

Returns size of index list.

wxHtmlHelpData::SetTempDir

void SetTempDir(const wxString& path)

Sets temporary directory where binary cached versions of MS HTML Workshop files will
be stored. (This is turned off by default and you can enable this feature by setting non-
empty temp dir.)

wwxxHHttmmllHHeellppFFrraammee

This class is used by wxHtmlHelpController (p. 639) to display help. It is an internal
class and should not be used directly - except for the case when you're writing your own
HTML help controller.

Derived from

wxFrame (p. 525)

Include files

<wx/html/helpfrm.h>

wxHtmlHelpFrame::wxHtmlHelpFrame

 wxHtmlHelpFrame (wxHtmlHelpData* data = NULL)

 wxHtmlHelpFrame (wxWindow* parent, int wxWindowID, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULT_STYLE, wxHtmlHelpData* data = NULL)

Constructor.

style is combination of these flags:

CHAPTER 5

646

wxHF_TOOLBAR Help frame has toolbar.
wxHF_FLAT_TOOLBAR Help frame has toolbar with flat buttons (aka

coolbar).
wxHF_CONTENTS Help frame has contents panel.
wxHF_INDEX Help frame has index panel.
wxHF_SEARCH Help frame has search panel.
wxHF_BOOKMARKS Help frame has bookmarks controls.
wxHF_OPEN_FILES Allow user to open arbitrary HTML document.
wxHF_PRINT Toolbar contains "print" button.
wxHF_MERGE_BOOKS Contents pane does not show book nodes. All

books are merged together and appear as
single book to the user.

wxHF_ICONS_BOOK All nodes in contents pane have a book icon.
This is how Microsoft's HTML help viewer
behaves.

wxHF_ICONS_FOLDER Book nodes in contents pane have a book icon,
book's sections have a folder icon. This is the
default.

wxHF_ICONS_BOOK_CHAPTER Both book nodes and nodes of top-level
sections of a book (i.e. chapters) have a book
icon, all other sections (sections, subsections,
...) have a folder icon.

wxHF_DEFAULT_STYLE wxHF_TOOLBAR | wxHF_CONTENTS |
wxHF_INDEX | wxHF_SEARCH |
wxHF_BOOKMARKS | wxHF_PRINT

wxHtmlHelpFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULT_STYLE)

Creates the frame. See the constructor (p. 645)for parameters description.

wxHtmlHelpFrame::CreateContents

void CreateContents(bool show_progress = FALSE)

Creates contents panel. (May take some time.)

wxHtmlHelpFrame::CreateIndex

void CreateIndex(bool show_progress = FALSE)

Creates index panel. (May take some time.)

CHAPTER 5

647

wxHtmlHelpFrame::CreateSearch

void CreateSearch()

Creates search panel.

wxHtmlHelpFrame::Display

bool Display(const wxString& x)

bool Display(const int id)

Displays page x. If not found it will give the user the choice of searching books. Looking
for the page runs in these steps:

 1. try to locate file named x (if x is for example "doc/howto.htm")
 2. try to open starting page of book x
 3. try to find x in contents (if x is for example "How To ...")
 4. try to find x in index (if x is for example "How To ...")

The second form takes numeric ID as the parameter. (uses extension to MS format,
<param name="ID" value=id>)

wxPython note: The second form of this method is named DisplayId in wxPython.

wxHtmlHelpFrame::DisplayContents

bool DisplayContents()

Displays contents panel.

wxHtmlHelpFrame::DisplayIndex

bool DisplayIndex()

Displays index panel.

wxHtmlHelpFrame::GetData

wxHtmlHelpData* GetData()

Return wxHtmlHelpData object.

wxHtmlHelpFrame::KeywordSearch

CHAPTER 5

648

bool KeywordSearch(const wxString& keyword)

Search for given keyword.

wxHtmlHelpFrame::ReadCustomization

void ReadCustomization(wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Reads user's settings for this frame (see wxHtmlHelpController::ReadCustomization (p.
642))

wxHtmlHelpFrame::RefreshLists

void RefreshLists(bool show_progress = FALSE)

Refresh all panels. This is necessary if a new book was added.

wxHtmlHelpFrame::SetTitleFormat

void SetTitleFormat(const wxString& format)

Sets the frame's title format. format must contain exactly one "%s" (it will be replaced by
the page title).

wxHtmlHelpFrame::UseConfig

void UseConfig(wxConfigBase* config, const wxString& rootpath = wxEmptyString)

Add books to search choice panel.

wxHtmlHelpFrame::WriteCustomization

void WriteCustomization(wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Saves user's settings for this frame (see wxHtmlHelpController::WriteCustomization (p.
643)).

wxHtmlHelpFrame::AddToolbarButtons

virtual void AddToolbarButtons(wxToolBar *toolBar, int style)

CHAPTER 5

649

You may override this virtual method to add more buttons into help frame's toolbar.
toolBar is a pointer to the toolbar and style is the style flag as passed to Create method.

wxToolBar::Realize is called immediately after returning from this function.

See samples/html/helpview for an example.

wwxxHHttmmllLLiinnkkIInnffoo

This class stores all neccessary information about hypertext links (as represented by
<A> tag in HTML documents). In current implementation it stores URL and target frame
name. Note that frames are not currently supported by wxHTML!

Derived from

wxObject (p. 897)

Include files

<wx/html/htmlcell.h>

wxHtmlLinkInfo::wxHtmlLinkInfo

 wxHtmlLinkInfo()

Default ctor.

 wxHtmlLinkInfo(const wxString& href, const wxString& target = wxEmptyString)

Construct hypertext link from HREF (aka URL) and TARGET (name of target frame).

wxHtmlLinkInfo::GetEvent

const wxMouseEvent * GetEvent()

Return pointer to event that generated OnLinkClicked event. Valid only within
wxHtmlWindow::OnLinkClicked (p. 667), NULL otherwise.

wxHtmlLinkInfo::GetHtmlCell

const wxHtmlCell * GetHtmlCell()

CHAPTER 5

650

Return pointer to the cell that was clicked. Valid only within
wxHtmlWindow::OnLinkClicked (p. 667), NULL otherwise.

wxHtmlLinkInfo::GetHref

wxString GetHref()

Return HREF value of the <A> tag.

wxHtmlLinkInfo::GetTarget

wxString GetTarget()

Return TARGET value of the <A> tag (this value is used to specify in which frame should
be the page pointed by Href (p. 650) opened).

wwxxHHttmmllPPaarrsseerr

This class handles the generic parsing of HTML document: it scans the document and
divide it into blocks of tags (where one block consists of begining and ending tag and of
text between these two tags).

It is independent from wxHtmlWindow and can be used as stand-alone parser (Julian
Smart's idea of speech-only HTML viewer or wget-like utility - see InetGet sample for
example).

It uses system of tag handlers to parse the HTML document. Tag handlers are not
staticaly shared by all instances but are created for each wxHtmlParser instance. The
reason is that the handler may contain document-specific temporary data used during
parsing (e.g. complicated structures like tables).

Typically the user calls only the Parse (p. 653) method.

Derived from

wxObject

Include files

<wx/html/htmlpars.h>

See also

Cells Overview (p. 1653),Tag Handlers Overview (p. 1655),wxHtmlTag (p. 656)

CHAPTER 5

651

wxHtmlParser::wxHtmlParser

 wxHtmlParser()

Constructor.

wxHtmlParser::AddTag

void AddTag(const wxHtmlTag& tag)

This may (and may not) be overwriten in derived class.

This method is called each time new tag is about to be added. tag contains information
about the tag. (See wxHtmlTag (p. 656)for details.)

Default (wxHtmlParser) behaviour is this: First it finds a handler capable of handling this
tag and then it calls handler's HandleTag method.

wxHtmlParser::AddTagHandler

virtual void AddTagHandler(wxHtmlTagHandler *handler)

Adds handler to the internal list (& hash table) of handlers. This method should not be
called directly by user but rather by derived class' constructor.

This adds the handler to this instance of wxHtmlParser, not to all objects of this class!
(Static front-end to AddTagHandler is provided by wxHtmlWinParser).

All handlers are deleted on object deletion.

wxHtmlParser::AddText

virtual void AddWord(const char* txt)

Must be overwriten in derived class.

This method is called by DoParsing (p. 651)each time a part of text is parsed. txt is NOT
only one word, it is substring of input. It is not formatted or preprocessed (so white
spaces are unmodified).

wxHtmlParser::DoParsing

CHAPTER 5

652

void DoParsing(int begin_pos, int end_pos)

void DoParsing()

Parses the m_Source from begin_pos to end_pos-1. (in noparams version it parses
whole m_Source)

wxHtmlParser::DoneParser

virtual void DoneParser()

This must be called after DoParsing().

wxHtmlParser::GetFS

wxFileSystem* GetFS() const

Returns pointer to the file system. Because each tag handler has reference to it is parent
parser it can easily request the file by calling

wxFSFile *f = m_Parser -> GetFS() -> OpenFile("image.jpg");

wxHtmlParser::GetProduct

virtual wxObject* GetProduct()

Returns product of parsing. Returned value is result of parsing of the document. The
type of this result depends on internal representation in derived parser (but it must be
derived from wxObject!).

See wxHtmlWinParser for details.

wxHtmlParser::GetSource

wxString* GetSource ()

Returns pointer to the source being parsed.

wxHtmlParser::InitParser

virtual void InitParser(const wxString& source)

Setups the parser for parsing the source string. (Should be overridden in derived class)

CHAPTER 5

653

wxHtmlParser::Parse

wxObject* Parse(const wxString& source)

Proceeds parsing of the document. This is end-user method. You can simply call it when
you need to obtain parsed output (which is parser-specific)

The method does these things:

 1. calls InitParser(source) (p. 652)
 2. calls DoParsing (p. 651)
 3. calls GetProduct (p. 652)
 4. calls DoneParser (p. 652)
 5. returns value returned by GetProduct

You shouldn't use InitParser, DoParsing, GetProduct or DoneParser directly.

wxHtmlParser::PushTagHandler

void PushTagHandler(wxHtmlTagHandler* handler, wxString tags)

Forces the handler to handle additional tags (not returned by GetSupportedTags (p.
661)). The handler should already be added to this parser.

Parameters

handler

the handler
tags

List of tags (in same format as GetSupportedTags's return value). The parser will
redirect these tags to handler (until call to PopTagHandler (p. 654)).

Example

Imagine you want to parse following pseudo-html structure:

<myitems>
 <param name="one" value="1">
 <param name="two" value="2">
</myitems>

<execute>
 <param program="text.exe">
</execute>

It is obvious that you cannot use only one tag handler for <param> tag. Instead you must
use context-sensitive handlers for <param> inside <myitems> and <param> inside
<execute>.

This is the preferred solution:

CHAPTER 5

654

TAG_HANDLER_BEGIN(MYITEM, "MYITEMS")
 TAG_HANDLER_PROC(tag)
 {
 // ...something...

 m_Parser -> PushTagHandler(this, "PARAM");
 ParseInner(tag);
 m_Parser -> PopTagHandler();

 // ...something...
 }
TAG_HANDLER_END(MYITEM)

wxHtmlParser::PopTagHandler

void PopTagHandler()

Restores parser's state before last call to PushTagHandler (p. 653).

wxHtmlParser::SetFS

void SetFS(wxFileSystem *fs)

Sets the virtual file system that will be used to request additional files. (For example
 tag handler requests wxFSFile with the image data.)

wwxxHHttmmllPPrriinnttoouutt

This class serves as printout class for HTML documents.

Derived from

wxPrintout (p. 958)

Include files

<wx/html/htmprint.h>

wxHtmlPrintout::wxHtmlPrintout

 wxHtmlPrintout(const wxString& title = "Printout")

CHAPTER 5

655

Constructor.

wxHtmlPrintout::SetFooter

void SetFooter(const wxString& footer, int pg = wxPAGE_ALL)

Sets page footer.

Parameters

footer

HTML text to be used as footer. You can use macros in it:
 • @PAGENUM@ is replaced by page number

 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlPrintout::SetHeader

void SetHeader(const wxString& header, int pg = wxPAGE_ALL)

Sets page header.

Parameters

header

HTML text to be used as header. You can use macros in it:
 • @PAGENUM@ is replaced by page number

 • @PAGESCNT@ is replaced by total number of pages

pg

one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlPrintout::SetHtmlFile

void SetHtmlFile(const wxString& htmlfile)

Prepare the class for printing this HTML file. The file may be located on any virtual file
system or it may be normal file.

wxHtmlPrintout::SetHtmlText

void SetHtmlText(const wxString& html, const wxString& basepath =

CHAPTER 5

656

wxEmptyString, bool isdir = TRUE)

Prepare the class for printing this HTML text.

Parameters

html

HTML text. (NOT file!)

basepath

base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

isdir

FALSE if basepath is filename, TRUE if it is directory name (see wxFileSystem (p.
489) for detailed explanation)

wxHtmlPrintout::SetMargins

void SetMargins(float top = 25.2, float bottom = 25.2, float left = 25.2, float right =
25.2, float spaces = 5)

Sets margins in milimeters. Defaults to 1 inch for margins and 0.5cm for space between
text and header and/or footer

wwxxHHttmmllTTaagg

This class represents a single HTML tag. It is used by tag handlers (p. 1655).

Derived from

wxObject

Include files

<wx/html/htmltag.h>

wxHtmlTag::wxHtmlTag

 wxHtmlTag(const wxString& source, int pos, int end_pos, wxHtmlTagsCache*
cache)

Constructor. You will probably never have to construct a wxHtmlTag object yourself.

CHAPTER 5

657

Feel free to ignore the constructor parameters. Have a look at src/html/htmlpars.cpp if
you're interested in creating it.

wxHtmlTag::GetAllParams

const wxString& GetAllParams() const

Returns a string containing all parameters.

Example : tag contains . Call to
tag.GetAllParams() would return SIZE=+2 COLOR="#000000".

wxHtmlTag::GetBeginPos

int GetBeginPos() const

Returns beginning position of the text between this tag and paired ending tag. See
explanation (returned position is marked with '|'):

bla bla bla <MYTAG> bla bla intenal text</MYTAG> bla bla
 |

wxHtmlTag::GetEndPos1

int GetEndPos1() const

Returns ending position of the text between this tag and paired ending tag. See
explanation (returned position is marked with '|'):

bla bla bla <MYTAG> bla bla intenal text</MYTAG> bla bla
 |

wxHtmlTag::GetEndPos2

int GetEndPos2() const

Returns ending position 2 of the text between this tag and paired ending tag. See
explanation (returned position is marked with '|'):

bla bla bla <MYTAG> bla bla intenal text</MYTAG> bla bla
 |

wxHtmlTag::GetName

wxString GetName () const

CHAPTER 5

658

Returns tag's name. The name is always in uppercase and it doesn't contain '<' or '/'
characters. (So the name of tag is "FONT" and name of </table>
is "TABLE")

wxHtmlTag::GetParam

wxString GetParam(const wxString& par, bool with_commas = FALSE) const

Returns the value of the parameter. You should check whether the parameter exists or
not (use HasParam (p. 659)) first.

Parameters

par

The parameter's name.

with_commas

TRUE if you want to get commas as well. See example.

Example

...
/* you have wxHtmlTag variable tag which is equal to
 HTML tag */
dummy = tag.GetParam("SIZE");
 // dummy == "+2"
dummy = tag.GetParam("COLOR");
 // dummy == "#0000FF"
dummy = tag.GetParam("COLOR", TRUE);
 // dummy == "\"#0000FF\"" -- see the difference!!

wxHtmlTag::GetParamAsColour

bool GetParamAsColour(const wxString& par, wxColour *clr) const

Interprets tag parameter par as colour specification and saves its value into wxColour
variable pointed by clr.

Returns TRUE on success and FALSE if par is not colour specification or if the tag has
no such parameter.

wxHtmlTag::GetParamAsInt

bool GetParamAsInt(const wxString& par, int *value) const

Interprets tag parameter par as an integer and saves its value into int variable pointed by
value.

CHAPTER 5

659

Returns TRUE on success and FALSE if par is not an integer or if the tag has no such
parameter.

wxHtmlTag::HasEnding

bool HasEnding() const

Returns TRUE if this tag is paired with ending tag, FALSE otherwise.

See the example of HTML document:

<html><body>
Hello<p>
How are you?
<p align=center>This is centered...</p>
Oops
Oooops!
</body></html>

In this example tags HTML and BODY have ending tags, first P and BR doesn't have
ending tag while the second P has. The third P tag (which is ending itself) of course
doesn't have ending tag.

wxHtmlTag::HasParam

bool HasParam(const wxString& par) const

Returns TRUE if the tag has parameter of the given name. Example : <FONT SIZE=+2
COLOR="#FF00FF"> has two parameters named "SIZE" and "COLOR".

Parameters

par

the parameter you're looking for.

wxHtmlTag::IsEnding

bool IsEnding() const

Returns TRUE if this tag is ending one. (is ending tag, is not)

wxHtmlTag::ScanParam

wxString ScanParam(const wxString& par, const wxChar *format, void *value)
const

CHAPTER 5

660

This method scans given parameter. Usage is exactly the same as sscanf's usage
except that you don't pass string but parameter name as the first parameter and that you
can only retrieve one value (i.e. you can use only one "%" element in format).

Parameters

par

The name of tag you want to query

format

scanf()-like format string.

value

pointer to a variable to store value in

wwxxHHttmmllTTaaggHHaannddlleerr

Derived from

wxObject (p. 897)

Include files

<wx/html/htmlpars.h>

See Also

Overview (p. 1655),wxHtmlTag (p. 656)

wxHtmlTagHandler::m_Parser

wxHtmlParser* m_Parser

This attribute is used to access parent parser. It is protected so that it can't be accessed
by user but can be accessed from derived classes.

wxHtmlTagHandler::wxHtmlTagHandler

 wxHtmlTagHandler()

Constructor.

CHAPTER 5

661

wxHtmlTagHandler::GetSupportedTags

virtual wxString GetSupportedTags()

Returns list of supported tags. The list is in uppercase and tags are delimited by ','.
Example : "I,B,FONT,P"

wxHtmlTagHandler::HandleTag

virtual bool HandleTag(const wxHtmlTag& tag)

This is the core method of each handler. It is called each time one of supported tags is
detected. tag contains all neccessary info (see wxHtmlTag (p. 656) for details).

Return value

TRUE if ParseInner (p. 661) was called, FALSE otherwise.

Example

bool MyHandler::HandleTag(const wxHtmlTag& tag)
{
 ...
 // change state of parser (e.g. set bold face)
 ParseInner(tag);
 ...
 // restore original state of parser
}

You shouldn't call ParseInner if the tag is not paired with ending one.

wxHtmlTagHandler::ParseInner

void ParseInner(const wxHtmlTag& tag)

This method calls parser's DoParsing (p. 651) method for the string between this tag and
paired ending tag:

...Hello, world!...

In this example, a call to ParseInner (with tag pointing to A tag) will parse 'Hello, world!'.

wxHtmlTagHandler::SetParser

virtual void SetParser(wxHtmlParser *parser)

Assigns parser to this handler. Each instance of handler is guaranteed to be called only
from the parser.

CHAPTER 5

662

wwxxHHttmmllTTaaggssMMoodduullee

This class provides easy way of filling wxHtmlWinParser's table of tag handlers. It is
used almost exclusively together with set ofTAGS_MODULE_* macros (p. 1655)

Derived from

wxModule (p. 869)

Include files

<wx/html/winpars.h>

See Also

Tag Handlers (p. 1655),wxHtmlTagHandler (p. 660),wxHtmlWinTagHandler (p. 677),

wxHtmlTagsModule::FillHandlersTable

virtual void FillHandlersTable(wxHtmlWinParser *parser)

You must override this method. In most common case it is body consists only of lines of
following type:

parser -> AddTagHandler(new MyHandler);

I recommend using TAGS_MODULE_* macros.

Paremeters

parser

Pointer to the parser that requested tables filling.

wwxxHHttmmllWWiiddggeettCCeellll

wxHtmlWidgetCell is a class that provides a connection between HTML cells and
widgets (an object derived from wxWindow). You can use it to display things like forms,
input boxes etc. in an HTML window.

wxHtmlWidgetCell takes care of resizing and moving window.

CHAPTER 5

663

Derived from

wxHtmlCell (p. 620)

Include files

<wx/html/htmlcell.h>

wxHtmlWidgetCell::wxHtmlWidgetCell

 wxHtmlWidgetCell(wxWindow* wnd, int w = 0)

Constructor.

Parameters

wnd

Connected window. It is parent window must be the wxHtmlWindow object within
which it is displayed!

w

Floating width. If non-zero width of wnd window is adjusted so that it is always w
percents of parent container's width. (For example w = 100 means that the window
will always have same width as parent container)

wwxxHHttmmllWWiinnddooww

wxHtmlWindow is probably the only class you will directly use unless you want to do
something special (like adding new tag handlers or MIME filters).

The purpose of this class is to display HTML pages (either local file or downloaded via
HTTP protocol) in a window. The width of the window is constant - given in the
constructor - and virtual height is changed dynamically depending on page size. Once
the window is created you can set its content by calling SetPage(text) (p. 669) or
LoadPage(filename) (p. 666).

Derived from

wxScrolledWindow (p. 1070)

Include files

<wx/html/htmlwin.h>

CHAPTER 5

664

wxHtmlWindow::wxHtmlWindow

 wxHtmlWindow()

Default constructor.

 wxHtmlWindow(wxWindow *parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxHW_SCROLLBAR_AUTO, const wxString& name = "htmlWindow")

Constructor. The parameters are the same as for the wxScrolledWindow (p. 1070)
constructor.

Parameters

style

wxHW_SCROLLBAR_NEVER, or wxHW_SCROLLBAR_AUTO. Affects the
appearance of vertical scrollbar in the window.

wxHtmlWindow::AddFilter

static void AddFilter(wxHtmlFilter *filter)

Adds input filter (p. 1653) to the static list of available filters. These filters are present by
default:

 • text/html MIME type
 • image/* MIME types
 • Plain Text filter (this filter is used if no other filter matches)

wxHtmlWindow::AppendToPage

bool AppendToPage(const wxString& source)

Appends HTML fragment to currently displayed text and refreshes the window.

Parameters

source

HTML code fragment

Return value

FALSE if an error occurred, TRUE otherwise.

CHAPTER 5

665

wxHtmlWindow::GetInternalRepresentation

wxHtmlContainerCell* GetInternalRepresentation() const

Returns pointer to the top-level container.

See also: Cells Overview (p. 1653), Printing Overview (p. 1651)

wxHtmlWindow::GetOpenedAnchor

wxString GetOpenedAnchor()

Returns anchor within currently opened page (see GetOpenedPage (p. 665)). If no page
is opened or if the displayed page wasn't produced by call to LoadPage, empty string is
returned.

wxHtmlWindow::GetOpenedPage

wxString GetOpenedPage ()

Returns full location of the opened page. If no page is opened or if the displayed page
wasn't produced by call to LoadPage, empty string is returned.

wxHtmlWindow::GetOpenedPageTitle

wxString GetOpenedPageTitle ()

Returns title of the opened page or wxEmptyString if current page does not contain
<TITLE> tag.

wxHtmlWindow::GetRelatedFrame

wxFrame* GetRelatedFrame () const

Returns the related frame.

wxHtmlWindow::HistoryBack

bool HistoryBack()

Moves back to the previous page. (each page displayed using LoadPage (p. 666) is
stored in history list.)

CHAPTER 5

666

wxHtmlWindow::HistoryCanBack

bool HistoryCanBack()

Returns true if it is possible to go back in the history (i.e. HistoryBack() won't fail).

wxHtmlWindow::HistoryCanForward

bool HistoryCanForward()

Returns true if it is possible to go forward in the history (i.e. HistoryBack() won't fail).

wxHtmlWindow::HistoryClear

void HistoryClear()

Clears history.

wxHtmlWindow::HistoryForward

bool HistoryForward()

Moves to next page in history.

wxHtmlWindow::LoadPage

virtual bool LoadPage (const wxString& location)

Unlike SetPage this function first loads HTML page from location and then displays it.
See example:

htmlwin -> SetPage("help/myproject/index.htm");

Parameters

location

The address of document. See wxFileSystem (p. 489) for details on address
format and behaviour of "opener".

Return value

FALSE if an error occurred, TRUE otherwise

wxHtmlWindow::OnCellClicked

CHAPTER 5

667

virtual void OnCellClicked(wxHtmlCell *cell, wxCoord x, wxCoord y, const
wxMouseEvent& event)

This method is called when a mouse button is clicked inside wxHtmlWindow. The default
behaviour is to call OnLinkClicked (p. 667) if the cell contains a hypertext link.

Parameters

cell

The cell inside which the mouse was clicked, always a simple (i.e. non container)
cell

x, y

The logical coordinates of the click point

event

The mouse event containing other information about the click

wxHtmlWindow::OnCellMouseHover

virtual void OnCellMouseHover(wxHtmlCell *cell, wxCoord x, wxCoord y)

This method is called when a mouse moves over an HTML cell.

Parameters

cell

The cell inside which the mouse is currently, always a simple (i.e. non container)
cell

x, y

The logical coordinates of the click point

wxHtmlWindow::OnLinkClicked

virtual void OnLinkClicked(const wxHtmlLinkInfo& link)

Called when user clicks on hypertext link. Default behaviour is to call LoadPage (p. 666)
and do nothing else.

Also see wxHtmlLinkInfo (p. 649).

wxHtmlWindow::OnSetTitle

virtual void OnSetTitle(const wxString& title)

Called on parsing <TITLE> tag.

CHAPTER 5

668

wxHtmlWindow::ReadCustomization

virtual void ReadCustomization(wxConfigBase *cfg, wxString path =
wxEmptyString)

This reads custom settings from wxConfig. It uses the path 'path' if given, otherwise it
saves info into currently selected path. The values are stored in sub-path
wxHtmlWindow

Read values: all things set by SetFonts, SetBorders.

Parameters

cfg

wxConfig from which you want to read the configuration.

path

Optional path in config tree. If not given current path is used.

wxHtmlWindow::SetBorders

void SetBorders(int b)

This function sets the space between border of window and HTML contents. See image:

Parameters

b

CHAPTER 5

669

indentation from borders in pixels

wxHtmlWindow::SetFonts

void SetFonts(wxString normal_face, wxString fixed_face, const int *sizes)

This function sets font sizes and faces.

Parameters

normal_face

This is face name for normal (i.e. non-fixed) font. It can be either empty string
(then the default face is choosen) or platform-specific face name. Examples are
"helvetica" under Unix or "Times New Roman" under Windows.

fixed_face

The same thing for fixed face (<TT>..</TT>)

sizes

This is an array of 7 items of int type. The values represent size of font with HTML
size from -2 to +4 (to)

Defaults

Under wxGTK:

 SetFonts("", "", {10, 12, 14, 16, 19, 24, 32});

Under Windows:

 SetFonts("", "", {7, 8, 10, 12, 16, 22, 30});

Athough it seems different the fact is that the fonts are of approximately same size under
both platforms (due to wxMSW / wxGTK inconsistency)

wxHtmlWindow::SetPage

bool SetPage (const wxString& source)

Sets HTML page and display it. This won't load the page!! It will display the source. See
example:

htmlwin -> SetPage("<html><body>Hello, world!</body></html>");

If you want to load a document from some location use LoadPage (p. 666) instead.

Parameters

source

CHAPTER 5

670

The HTML document source to be displayed.

Return value

FALSE if an error occurred, TRUE otherwise.

wxHtmlWindow::SetRelatedFrame

void SetRelatedFrame (wxFrame* frame, const wxString& format)

Sets the frame in which page title will be displayed. format is format of frame title, e.g.
"HtmlHelp : %s". It must contain exactly one %s. This%s is substituted with HTML page
title.

wxHtmlWindow::SetRelatedStatusBar

void SetRelatedStatusBar (int bar)

After calling SetRelatedFrame (p. 670), this sets statusbar slot where messages will be
displayed. (Default is -1 = no messages.)

Parameters

bar

statusbar slot number (0..n)

wxHtmlWindow::WriteCustomization

virtual void WriteCustomization(wxConfigBase *cfg, wxString path =
wxEmptyString)

Saves custom settings into wxConfig. It uses the path 'path' if given, otherwise it saves
info into currently selected path. Regardless of whether the path is given or not, the
function creates sub-path wxHtmlWindow.

Saved values: all things set by SetFonts, SetBorders.

Parameters

cfg

wxConfig to which you want to save the configuration.

path

Optional path in config tree. If not given, the current path is used.

CHAPTER 5

671

wwxxHHttmmllWWiinnPPaarrsseerr

This class is derived from wxHtmlParser (p. 650) and its mail goal is to parse HTML
input so that it can be displayed inwxHtmlWindow (p. 663). It uses a special
wxHtmlWinTagHandler (p. 677).

Notes

The product of parsing is a wxHtmlCell (resp. wxHtmlContainer) object.

Derived from

wxHtmlParser (p. 650)

Include files

<wx/html/winpars.h>

See Also

Handlers overview (p. 1655)

wxHtmlWinParser::wxHtmlWinParser

 wxHtmlWinParser()

 wxHtmlWinParser(wxWindow *wnd)

Constructor. Don't use the default one, use constructor withwnd paremeter (wnd is
pointer to associated wxHtmlWindow (p. 663))

wxHtmlWinParser::AddModule

static void AddModule(wxHtmlTagsModule *module)

Adds module (p. 1655) to the list of wxHtmlWinParser tag handler.

wxHtmlWinParser::CloseContainer

wxHtmlContainerCell* CloseContainer()

Closes the container, sets actual container to the parent one and returns pointer to it
(see Overview (p. 1653)).

CHAPTER 5

672

wxHtmlWinParser::CreateCurrentFont

virtual wxFont* CreateCurrentFont()

Creates font based on current setting (see SetFontSize (p. 676), SetFontBold (p. 675),
SetFontItalic (p. 676), SetFontFixed (p. 676), SetFontUnderlined (p. 676)) and returns
pointer to it. If the font was already created only a pointer is returned.

wxHtmlWinParser::GetActualColor

const wxColour& GetActualColor() const

Returns actual text colour.

wxHtmlWinParser::GetAlign

int GetAlign() const

Returns default horizontal alignment.

wxHtmlWinParser::GetCharHeight

int GetCharHeight() const

Returns (average) char height in standard font. It is used as DC-independent metrics.

Note: This function doesn't return the actual height. If you want to know the height of the
current font, call GetDC -> GetCharHeight().

wxHtmlWinParser::GetCharWidth

int GetCharWidth() const

Returns average char width in standard font. It is used as DC-independent metrics.

Note: This function doesn't return the actual width. If you want to know the height of the
current font, call GetDC -> GetCharWidth()

wxHtmlWinParser::GetContainer

wxHtmlContainerCell* GetContainer() const

CHAPTER 5

673

Returns pointer to the currectly opened container (see Overview (p. 1653)). Common
use:

m_WParser -> GetContainer() -> InsertCell(new ...);

wxHtmlWinParser::GetDC

wxDC* GetDC()

Returns pointer to the DC used during parsing.

wxHtmlWinParser::GetEncodingConverter

wxEncodingConverter * GetEncodingConverter() const

Returns wxEncodingConverter (p. 425) class used to do conversion between input
encoding (p. 674) and output encoding (p. 674).

wxHtmlWinParser::GetFontBold

int GetFontBold() const

Returns TRUE if actual font is bold, FALSE otherwise.

wxHtmlWinParser::GetFontFace

wxString GetFontFace() const

Returns actual font face name.

wxHtmlWinParser::GetFontFixed

int GetFontFixed() const

Returns TRUE if actual font is fixed face, FALSE otherwise.

wxHtmlWinParser::GetFontItalic

int GetFontItalic() const

Returns TRUE if actual font is italic, FALSE otherwise.

CHAPTER 5

674

wxHtmlWinParser::GetFontSize

int GetFontSize() const

Returns actual font size (HTML size varies from -2 to +4)

wxHtmlWinParser::GetFontUnderlined

int GetFontUnderlined() const

Returns TRUE if actual font is underlined, FALSE otherwise.

wxHtmlWinParser::GetInputEncoding

wxFontEncoding GetInputEncoding() const

Returns input encoding.

wxHtmlWinParser::GetLink

const wxHtmlLinkInfo& GetLink() const

Returns actual hypertext link. (This value has a non-empty Href (p. 650) string if the
parser is between <A> and tags, wxEmptyString otherwise.)

wxHtmlWinParser::GetLinkColor

const wxColour& GetLinkColor() const

Returns the colour of hypertext link text.

wxHtmlWinParser::GetOutputEncoding

wxFontEncoding GetOutputEncoding() const

Returns output encoding, i.e. closest match to document's input encoding that is
supported by operating system.

wxHtmlWinParser::GetWindow

wxWindow* GetWindow()

Returns associated window (wxHtmlWindow). This may be NULL! (You should always

CHAPTER 5

675

test if it is non-NULL. For example TITLE handler sets window title only if some window
is associated, otherwise it does nothing)

wxHtmlWinParser::OpenContainer

wxHtmlContainerCell* OpenContainer()

Opens new container and returns pointer to it (see Overview (p. 1653)).

wxHtmlWinParser::SetActualColor

void SetActualColor(const wxColour& clr)

Sets actual text colour. Note: this DOESN'T change the colour! You must create
wxHtmlColourCell (p. 626) yourself.

wxHtmlWinParser::SetAlign

void SetAlign(int a)

Sets default horizontal alignment (see wxHtmlContainerCell::SetAlignHor (p. 628).)
Alignment of newly opened container is set to this value.

wxHtmlWinParser::SetContainer

wxHtmlContainerCell* SetContainer(wxHtmlContainerCell *c)

Allows you to directly set opened container. This is not recommended - you should use
OpenContainer wherever possible.

wxHtmlWinParser::SetDC

virtual void SetDC(wxDC *dc, double pixel_scale = 1.0)

Sets the DC. This must be called before Parse (p. 653)!pixel_scale can be used when
rendering to high-resolution DCs (e.g. printer) to adjust size of pixel metrics. (Many
dimensions in HTML are given in pixels -- e.g. image sizes. 300x300 image would be
only one inch wide on typical printer. With pixel_scale = 3.0 it would be 3 inches.)

wxHtmlWinParser::SetFontBold

void SetFontBold(int x)

CHAPTER 5

676

Sets bold flag of actualfont. x is either TRUE of FALSE.

wxHtmlWinParser::SetFontFace

void SetFontFace (const wxString& face)

Sets current font face to face. This affects either fixed size font or proportional,
depending on context (whether the parser is inside <TT> tag or not).

wxHtmlWinParser::SetFontFixed

void SetFontFixed(int x)

Sets fixed face flag of actualfont. x is either TRUE of FALSE.

wxHtmlWinParser::SetFontItalic

void SetFontItalic(int x)

Sets italic flag of actualfont. x is either TRUE of FALSE.

wxHtmlWinParser::SetFontSize

void SetFontSize(int s)

Sets actual font size (HTML size varies from 1 to 7)

wxHtmlWinParser::SetFontUnderlined

void SetFontUnderlined(int x)

Sets underlined flag of actualfont. x is either TRUE of FALSE.

wxHtmlWinParser::SetFonts

void SetFonts(wxString normal_face, wxString fixed_face, const int *sizes)

Sets fonts. This method is identical to wxHtmlWindow::SetFonts (p. 669)

wxHtmlWinParser::SetInputEncoding

void SetInputEncoding(wxFontEncoding enc)

CHAPTER 5

677

Sets input encoding. The parser uses this information to build conversion tables from
document's encoding to some encoding supported by operating system.

wxHtmlWinParser::SetLink

void SetLink(const wxHtmlLinkInfo& link)

Sets actual hypertext link. Empty link is represented by wxHtmlLinkInfo (p. 649) with Href
equal to wxEmptyString.

wxHtmlWinParser::SetLinkColor

void SetLinkColor(const wxColour& clr)

Sets colour of hypertext link.

wwxxHHttmmllWWiinnTTaaggHHaannddlleerr

This is basically wxHtmlTagHandler except that it is extended with protected member
m_WParser pointing to the wxHtmlWinParser object (value of this member is identical to
wxHtmlParser's m_Parser).

Derived from

wxHtmlTagHandler (p. 660)

Include files

<wx/html/winpars.h>

wxHtmlWinTagHandler::m_WParser

wxHtmlWinParser* m_WParser

Value of this attribute is identical to value of m_Parser. The only different is that
m_WParser points to wxHtmlWinParser object while m_Parser points to wxHtmlParser
object. (The same object, but overcast.)

wwxxHHTTTTPP

CHAPTER 5

678

Derived from

wxProtocol (p. 1002)

Include files

<wx/protocol/http.h>

See also

wxSocketBase (p. 1100), wxURL (p. 1345)

wxHTTP::GetInputStream

wxInputStream * GetInputStream(const wxString& path)

Creates a new input stream on the the specified path. You can use all except the seek
functionality of wxStream. Seek isn't available on all streams. For example, http or ftp
streams doesn't deal with it. Other functions like Tell and SeekI for this sort of stream.
You will be notified when the EOF is reached by an error.

Note

You can know the size of the file you are getting using wxStreamBase::GetSize() (p.
1163). But there is a limitation: as HTTP servers aren't obliged to pass the size ofi the
file, in some case, you will be returned 0xfffffff by GetSize(). In these cases, you should
use the value returned by wxInputStream::LastRead() (p. 719): this value will be 0 when
the stream is finished.

Return value

Returns the initialized stream. You will have to delete it yourself once you don't use it
anymore. The destructor closes the network connection. The next time you will try to get
a file the network connection will have to be reestablished: but you don't have to take
care of this wxHTTP reestablishes it automatically.

See also

wxInputStream (p. 718)

wxHTTP::SetHeader

void SetHeader(const wxString& header, const wxString& h_data)

It sets data of a field to be sent during the next request to the HTTP server. The field
name is specified by header and the content by h_data. This is a low level function and it
assumes that you know what you are doing.

CHAPTER 5

679

wxHTTP::GetHeader

wxString GetHeader(const wxString& header)

Returns the data attached with a field whose name is specified by header. If the field
doesn't exist, it will return an empty string and not a NULL string.

Note

The header is not case-sensitive: I mean that "CONTENT-TYPE" and "content-type"
represent the same header.

wwxxIIddlleeEEvveenntt

This class is used for idle events, which are generated when the system is idle.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process an idle event, use this event handler macro to direct input to a member
function that takes a wxIdleEvent argument.

EVT_IDLE(func) Process a wxEVT_IDLE event.

Remarks

Idle events can be caught by the wxApp class, or by top-level window classes.

See also

Event handling overview (p. 1560)

wxIdleEvent::wxIdleEvent

CHAPTER 5

680

 wxIdleEvent()

Constructor.

wxIdleEvent::RequestMore

void RequestMore(bool needMore = TRUE)

Tells wxWindows that more processing is required. This function can be called by an
OnIdle handler for a window or window event handler to indicate that wxApp::OnIdle
should forward the OnIdle event once more to the application windows. If no window
calls this function during OnIdle, then the application will remain in a passive event loop
(not calling OnIdle) until a new event is posted to the application by the windowing
system.

See also

wxIdleEvent::MoreRequested (p. 680)

wxIdleEvent::MoreRequested

bool MoreRequested() const

Returns TRUE if the OnIdle function processing this event requested more processing
time.

See also

wxIdleEvent::RequestMore (p. 680)

wwxxIIccoonn

An icon is a small rectangular bitmap usually used for denoting a minimized application.
It differs from a wxBitmap in always having a mask associated with it for transparent
drawing. On some platforms, icons and bitmaps are implemented identically, since there
is no real distinction between a wxBitmap with a mask and an icon; and there is no
specific icon format on some platforms (X-based applications usually standardize on
XPMs for small bitmaps and icons). However, some platforms (such as Windows) make
the distinction, so a separate class is provided.

Derived from

wxBitmap (p. 55)
wxGDIObject (p. 550)

CHAPTER 5

681

wxObject (p. 897)

Include files

<wx/icon.h>

Predefined objects

Objects:

wxNullIcon

Remarks

It is usually desirable to associate a pertinent icon with a frame. Icons can also be used
for other purposes, for example with wxTreeCtrl (p. 1313) and wxListCtrl (p. 758).

Icons have different formats on different platforms. Therefore, separate icons will usually
be created for the different environments. Platform-specific methods for creating a
wxIcon structure are catered for, and this is an occasion where conditional compilation
will probably be required.

Note that a new icon must be created for every time the icon is to be used for a new
window. In Windows, the icon will not be reloaded if it has already been used. An icon
allocated to a frame will be deleted when the frame is deleted.

For more information please see Bitmap and icon overview (p. 1585).

See also

Bitmap and icon overview (p. 1585), supported bitmap file formats (p. 1587),
wxDC::DrawIcon (p. 332), wxCursor (p. 191)

wxIcon::wxIcon

 wxIcon()

Default constructor.

 wxIcon(const wxIcon& icon)

Copy constructor.

 wxIcon(void* data, int type, int width, int height, int depth = -1)

Creates an icon from the given data, which can be of arbitrary type.

 wxIcon(const char bits[], int width, int height

CHAPTER 5

682

 int depth = 1)

Creates an icon from an array of bits.

 wxIcon(int width, int height, int depth = -1)

Creates a new icon.

 wxIcon(char** bits)

 wxIcon(const char** bits)

Creates an icon from XPM data.

 wxIcon(const wxString& name, long type, int desiredWidth = -1, int desiredHeight =
-1)

Loads an icon from a file or resource.

Parameters

bits

Specifies an array of pixel values.

width

Specifies the width of the icon.

height

Specifies the height of the icon.

desiredWidth

Specifies the desired width of the icon. This parameter only has an effect in
Windows (32-bit) where icon resources can contain several icons of different sizes.

desiredWidth

Specifies the desired height of the icon. This parameter only has an effect in
Windows (32-bit) where icon resources can contain several icons of different sizes.

depth

Specifies the depth of the icon. If this is omitted, the display depth of the screen is
used.

name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the flags parameter.

type

May be one of the following:

wxBITMAP_TYPE_ICO Load a Windows icon file.
wxBITMAP_TYPE_ICO_RESOURCE Load a Windows icon from the resource

CHAPTER 5

683

database.
wxBITMAP_TYPE_GIF Load a GIF bitmap file.
wxBITMAP_TYPE_XBM Load an X bitmap file.
wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports ICO
file, ICO resource, XPM data, and XPM file. Under wxGTK, the available formats
are BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available
formats are XBM data, XBM file, XPM data, XPM file.

Remarks

The first form constructs an icon object with no data; an assignment or another member
function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
icon data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs an icon from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) icon from an array of pixel values,
under both X and Windows.

The sixth form constructs a new icon.

The seventh form constructs an icon from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

...

wxIcon *icon = new wxIcon(mybitmap);

A macro, wxICON, is available which creates an icon using an XPM on the appropriate
platform, or an icon resource on Windows.

wxIcon icon(wxICON(mondrian));

// Equivalent to:

#if defined(__WXGTK__) || defined(__WXMOTIF__)
wxIcon icon(mondrian_xpm);
#endif

#if defined(__WXMSW__)

CHAPTER 5

684

wxIcon icon("mondrian");
#endif

The eighth form constructs an icon from a file or resource. name can refer to a resource
name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_ICO_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxIcon::CopyFromBitmap

void CopyFromBitmap(const wxBitmap& bmp)

Copies bmp bitmap to this icon. Under MS Windows the bitmap must have mask colour
set.

wxIcon::LoadFile (p. 685)

wxPerl note: Constructors supported by wxPerl are:

 •::Icon->new(width, height, depth = -1)
 •::Icon->new(name, type, desiredWidth = -1, desiredHeight = -1)

wxIcon::~wxIcon

 ~wxIcon()

Destroys the wxIcon object and possibly the underlying icon data. Because reference
counting is used, the icon may not actually be destroyed at this point - only when the
reference count is zero will the data be deleted.

If the application omits to delete the icon explicitly, the icon will be destroyed
automatically by wxWindows when the application exits.

Do not delete an icon that is selected into a memory device context.

wxIcon::GetDepth

int GetDepth() const

Gets the colour depth of the icon. A value of 1 indicates a monochrome icon.

wxIcon::GetHeight

CHAPTER 5

685

int GetHeight() const

Gets the height of the icon in pixels.

wxIcon::GetWidth

int GetWidth() const

Gets the width of the icon in pixels.

See also

wxIcon::GetHeight (p. 684)

wxIcon::LoadFile

bool LoadFile(const wxString& name, long type)

Loads an icon from a file or resource.

Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type

One of the following values:

wxBITMAP_TYPE_ICO Load a Windows icon file.

wxBITMAP_TYPE_ICO_RESOURCE Load a Windows icon from the resource
database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

CHAPTER 5

686

wxIcon::wxIcon (p. 681)

wxIcon::Ok

bool Ok() const

Returns TRUE if icon data is present.

wxIcon::SetDepth

void SetDepth(int depth)

Sets the depth member (does not affect the icon data).

Parameters

depth

Icon depth.

wxIcon::SetHeight

void SetHeight(int height)

Sets the height member (does not affect the icon data).

Parameters

height

Icon height in pixels.

wxIcon::SetOk

void SetOk(int isOk)

Sets the validity member (does not affect the icon data).

Parameters

isOk

Validity flag.

wxIcon::SetWidth

void SetWidth(int width)

CHAPTER 5

687

Sets the width member (does not affect the icon data).

Parameters

width

Icon width in pixels.

wxIcon::operator =

wxIcon& operator =(const wxIcon& icon)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in icon and increments a reference counter. It is a fast operation.

Parameters

icon

Icon to assign.

Return value

Returns 'this' object.

wxIcon::operator ==

bool operator ==(const wxIcon& icon)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

icon

Icon to compare with 'this'

Return value

Returns TRUE if the icons were effectively equal, FALSE otherwise.

wxIcon::operator !=

bool operator !=(const wxIcon& icon)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

CHAPTER 5

688

icon

Icon to compare with 'this'

Return value

Returns TRUE if the icons were unequal, FALSE otherwise.

wwxxIIccoonniizzeeEEvveenntt

An event being sent when the frame is iconized (minimized) or restored.

Currently only wxMSW and wxGTK generate such events.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process an iconize event, use this event handler macro to direct input to a member
function that takes a wxIconizeEvent argument.

EVT_ICONIZE(func) Process a wxEVT_ICONIZE event.

See also

Event handling overview (p. 1560), wxFrame::Iconize (p. 531), wxFrame::IsIconized (p.
532)

wxIconizeEvent::wxIconizeEvent

 wxIconizeEvent(int id = 0, bool iconized = TRUE)

Constructor.

wxIconizeEvent::Iconized

CHAPTER 5

689

bool Iconized() const

Returns TRUE if the frame has been iconized, FALSE if it has been restored.

wwxxIImmaaggee

This class encapsulates a platform-independent image. An image can be created from
data, or using wxBitmap::ConvertToImage (p. 60). An image can be loaded from a file in
a variety of formats, and is extensible to new formats via image format handlers.
Functions are available to set and get image bits, so it can be used for basic image
manipulation.

A wxImage cannot (currently) be drawn directly to a wxDC (p. 327). Instead, a platform-
specific wxBitmap (p. 55) object must be created from it using the
wxBitmap::wxBitmap(wxImage,int depth) (p. 55) constructor. This bitmap can then be
drawn in a device context, using wxDC::DrawBitmap (p. 331).

One colour value of the image may be used as a mask colour which will lead to the
automatic creation of a wxMask (p. 808) object associated to the bitmap object.

Available image handlers

The following image handlers are available. wxBMPHandler is always installed by
default. To use other image formats, install the appropiate handler with
wxImage::AddHandler (p. 692) or wxInitAllImageHandlers (p. 1469).

wxBMPHandler Only for loading, always installed.
wxPNGHandler For loading and saving.
wxJPEGHandler For loading and saving.
wxGIFHandler Only for loading, due to legal issues.
wxPCXHandler For loading and saving (see below).
wxPNMHandler For loading and saving (see below).
wxTIFFHandler For loading and saving.
wxXPMHandler For loading and saving.
wxICOHandler For loading and saving.

When saving in PCX format, wxPCXHandler will count the number of different colours in
the image; if there are 256 or less colours, it will save as 8 bit, else it will save as 24 bit.

Loading PNMs only works for ASCII or raw RGB images. When saving in PNM format,
wxPNMHandler will always save as raw RGB.

Derived from

wxObject (p. 897)

CHAPTER 5

690

Include files

<wx/image.h>

See also

wxBitmap (p. 55), wxInitAllImageHandlers (p. 1469)

wxImage::wxImage

 wxImage()

Default constructor.

 wxImage(const wxImage& image)

Copy constructor.

 wxImage(const wxBitmap& bitmap)

(Deprecated form, use wxBitmap::ConvertToImage (p. 60)instead.) Constructs an image
from a platform-dependent bitmap. This preserves mask information so that bitmaps and
images can be converted back and forth without loss in that respect.

 wxImage(int width, int height)

Creates an image with the given width and height.

 wxImage(int width, int height, unsigned char* data, bool static_data=FALSE)

Creates an image from given data with the given width and height. If static_data is
TRUE, then wxImage will not delete the actual image data in its destructor, otherwise it
will free it by callingfree().

 wxImage(const wxString& name, long type = wxBITMAP_TYPE_ANY)

 wxImage(const wxString& name, const wxString& mimetype)

Loads an image from a file.

 wxImage(wxInputStream& stream, long type = wxBITMAP_TYPE_ANY)

 wxImage(wxInputStream& stream, const wxString& mimetype)

Loads an image from an input stream.

Parameters

CHAPTER 5

691

width

Specifies the width of the image.

height

Specifies the height of the image.

name

Name of the file from which to load the image.

stream

Opened input stream from which to load the image. Currently, the stream must
support seeking.

type

May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.
wxBITMAP_TYPE_GIF Load a GIF bitmap file.
wxBITMAP_TYPE_JPEG Load a JPEG bitmap file.
wxBITMAP_TYPE_PNG Load a PNG bitmap file.
wxBITMAP_TYPE_PCX Load a PCX bitmap file.
wxBITMAP_TYPE_PNM Load a PNM bitmap file.
wxBITMAP_TYPE_TIF Load a TIFF bitmap file.
wxBITMAP_TYPE_XPM Load a XPM bitmap file.
wxBITMAP_TYPE_ICO Load a ICO Icon file.
wxBITMAP_TYPE_ANY Will try to autodetect the format.

mimetype

MIME type string (for example 'image/jpeg')

Remarks

Depending on how wxWindows has been configured, not all formats may be available.

Note: any handler other than BMP must be previously initialized with
wxImage::AddHandler (p. 692) or wxInitAllImageHandlers (p. 1469).

See also

wxImage::LoadFile (p. 698)

wxPython note: Constructors supported by wxPython are:

wxImage(name, flag) Loads an image from a file
wxNullImage() Create a null image (has no size or image data)
wxEmptyImage(width, height) Creates an empty image of the given size
wxImageFromMime(name, mimetype Creates an image from the given file

of the given mimetype
wxImageFromBitmap(bitmap) Creates an image from a platform-

CHAPTER 5

692

dependent bitmap

wxPerl note: Constructors supported by wxPerl are:

 •::Image->new(bitmap)
 •::Image->new(width, height)
 •::Image->new(name, type)
 •::Image->new(name, mimetype)

wxImage::~wxImage

 ~wxImage()

Destructor.

wxImage::AddHandler

static void AddHandler(wxImageHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler

A new image format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxImageHandler (p. 706)

wxPython note: In wxPython this static method is named wxImage_AddHandler.

wxImage::CleanUpHandlers

static void CleanUpHandlers()

Deletes all image handlers.

This function is called by wxWindows on exit.

wxImage::ConvertToBitmap

wxBitmap ConvertToBitmap() const

Deprecated, use equivalent wxBitmap constructor (p. 55)(which takes wxImage and
depth as its arguments) instead.

CHAPTER 5

693

wxImage::ConvertToMono

wxImage ConvertToMono(unsigned char r, unsigned char g, unsigned char b)
const

Returns monochromatic version of the image. The returned image has white colour
where the original has (r,g,b) colour and black colour everywhere else.

wxImage::Copy

wxImage Copy() const

Returns an identical copy of the image.

wxImage::Create

bool Create (int width, int height)

Creates a fresh image.

Parameters

width

The width of the image in pixels.

height

The height of the image in pixels.

Return value

TRUE if the call succeeded, FALSE otherwise.

wxImage::Destroy

bool Destroy()

Destroys the image data.

wxImage::FindFirstUnusedColour

bool FindFirstUnusedColour(unsigned char * r, unsigned char * g, unsigned char *
b, unsigned char startR = 1, unsigned char startG = 0, unsigned char startB = 0)

Parameters

r,g,b

CHAPTER 5

694

Pointers to variables to save the colour.

startR,startG,startB

Initial values of the colour. Returned colour will have RGB values equal to or
greater than these.

Finds the first colour that is never used in the image. The search begins at given initial
colour and continues by increasing R, G and B components (in this order) by 1 until an
unused colour is found or the colour space exhausted.

Return value

Returns FALSE if there is no unused colour left, TRUE on success.

Notes

Note that this method involves computing the histogram, which is computationally
intensive operation.

wxImage::FindHandler

static wxImageHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxImageHandler* FindHandler(const wxString& extension, long imageType)

Finds the handler associated with the given extension and type.

static wxImageHandler* FindHandler(long imageType)

Finds the handler associated with the given image type.

static wxImageHandler* FindHandlerMime (const wxString& mimetype)

Finds the handler associated with the given MIME type.

name

The handler name.

extension

The file extension, such as "bmp".

imageType

The image type, such as wxBITMAP_TYPE_BMP.

mimetype

MIME type.

Return value

CHAPTER 5

695

A pointer to the handler if found, NULL otherwise.

See also

wxImageHandler (p. 706)

wxImage::GetBlue

unsigned char GetBlue(int x, int y) const

Returns the blue intensity at the given coordinate.

wxImage::GetData

unsigned char* GetData() const

Returns the image data as an array. This is most often used when doing direct image
manipulation. The return value points to an array of chararcters in RGBGBRGB... format.

wxImage::GetGreen

unsigned char GetGreen(int x, int y) const

Returns the green intensity at the given coordinate.

wxImage::GetRed

unsigned char GetRed(int x, int y) const

Returns the red intensity at the given coordinate.

wxImage::GetHandlers

static wxList& GetHandlers()

Returns the static list of image format handlers.

See also

wxImageHandler (p. 706)

wxImage::GetHeight

CHAPTER 5

696

int GetHeight() const

Gets the height of the image in pixels.

wxImage::GetMaskBlue

unsigned char GetMaskBlue () const

Gets the blue value of the mask colour.

wxImage::GetMaskGreen

unsigned char GetMaskGreen() const

Gets the green value of the mask colour.

wxImage::GetMaskRed

unsigned char GetMaskRed() const

Gets the red value of the mask colour.

wxImage::GetPalette

const wxPalette& GetPalette () const

Returns the palette associated with the image. Currently the palette is only used when
converting to wxBitmap under Windows.

Eventually wxImage handlers will set the palette if one exists in the image file.

wxImage::GetSubImage

wxImage GetSubImage(const wxRect& rect) const

Returns a sub image of the current one as long as the rect belongs entirely to the
image.

wxImage::GetWidth

int GetWidth() const

CHAPTER 5

697

Gets the width of the image in pixels.

See also

wxImage::GetHeight (p. 695)

wxImage::HasMask

bool HasMask() const

Returns TRUE if there is a mask active, FALSE otherwise.

wxImage::GetOption

wxString GetOption(const wxString& name) const

Gets a user-defined option. The function is case-insensitive to name.

For example, when saving as a JPEG file, the option quality is used, which is a number
between 0 and 100 (0 is terrible, 100 is very good).

See also

wxImage::SetOption (p. 704), wxImage::GetOptionInt (p. 697), wxImage::HasOption (p.
697)

wxImage::GetOptionInt

int GetOptionInt(const wxString& name) const

Gets a user-defined option as an integer. The function is case-insensitive to name.

See also

wxImage::SetOption (p. 704), wxImage::GetOption (p. 697), wxImage::HasOption (p.
697)

wxImage::HasOption

bool HasOption(const wxString& name) const

Returns TRUE if the given option is present. The function is case-insensitive to name.

See also

wxImage::SetOption (p. 704), wxImage::GetOption (p. 697), wxImage::GetOptionInt (p.

CHAPTER 5

698

697)

wxImage::InitStandardHandlers

static void InitStandardHandlers()

Internal use only. Adds standard image format handlers. It only install BMP for the time
being, which is used by wxBitmap.

This function is called by wxWindows on startup, and shouldn't be called by the user.

See also

wxImageHandler (p. 706), wxInitAllImageHandlers (p. 1469)

wxImage::InsertHandler

static void InsertHandler(wxImageHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler

A new image format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxImageHandler (p. 706)

wxImage::LoadFile

bool LoadFile(const wxString& name, long type = wxBITMAP_TYPE_ANY)

bool LoadFile(const wxString& name, const wxString& mimetype)

Loads an image from a file. If no handler type is provided, the library will try to autodetect
the format.

bool LoadFile(wxInputStream& stream, long type)

bool LoadFile(wxInputStream& stream, const wxString& mimetype)

Loads an image from an input stream.

Parameters

name

CHAPTER 5

699

Name of the file from which to load the image.

stream

Opened input stream from which to load the image. Currently, the stream must
support seeking.

type

One of the following values:

wxBITMAP_TYPE_BMP Load a Windows image file.

wxBITMAP_TYPE_GIF Load a GIF image file.

wxBITMAP_TYPE_JPEG Load a JPEG image file.

wxBITMAP_TYPE_PCX Load a PCX image file.

wxBITMAP_TYPE_PNG Load a PNG image file.

wxBITMAP_TYPE_PNM Load a PNM image file.

wxBITMAP_TYPE_TIF Load a TIFF image file.

wxBITMAP_TYPE_XPM Load a XPM image file.

wxBITMAP_TYPE_ICO Load a ICO icon file.

wxBITMAP_TYPE_ANY Will try to autodetect the format.

mimetype

MIME type string (for example 'image/jpeg')

Remarks

Depending on how wxWindows has been configured, not all formats may be available.

wxBITMAP_TYPE_ICO will laod the largest image found, with the most colours

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxImage::SaveFile (p. 700)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

LoadFile(filename, type) Loads an image of the given type from a file

CHAPTER 5

700

LoadMimeFile(filename, mimetype) Loads an image of the given

mimetype from a file

wxPerl note: Methods supported by wxPerl are:

 •>LoadFile(name, type)

 •>LoadFile(name, mimetype)

wxImage::Ok

bool Ok() const

Returns TRUE if image data is present.

wxImage::RemoveHandler

static bool RemoveHandler(const wxString& name)

Finds the handler with the given name, and removes it. The handler is not deleted.

name

The handler name.

Return value

TRUE if the handler was found and removed, FALSE otherwise.

See also

wxImageHandler (p. 706)

wxImage::SaveFile

bool SaveFile(const wxString& name, int type)

bool SaveFile(const wxString& name, const wxString& mimetype)

Saves a image in the named file.

bool SaveFile(wxOutputStream& stream , int type)

bool SaveFile(wxOutputStream& stream , const wxString& mimetype)

Saves a image in the given stream.

CHAPTER 5

701

Parameters

name

Name of the file to save the image to.

stream

Opened output stream to save the image to.

type

Currently three types can be used:

wxBITMAP_TYPE_JPEG Save a JPEG image file.

wxBITMAP_TYPE_PNG Save a PNG image file.

wxBITMAP_TYPE_PCX Save a PCX image file (tries to save as 8-bit if
possible, falls back to 24-bit otherwise).

wxBITMAP_TYPE_PNM Save a PNM image file (as raw RGB always).

wxBITMAP_TYPE_TIFF Save a TIFF image file.

wxBITMAP_TYPE_XPM Save a XPM image file.

wxBITMAP_TYPE_ICO Save a ICO image file. (The size may be up to 255
wide by 127 high. A single image is saved in 8 colors
at the size supplied.)

mimetype

MIME type.

Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.

See also

wxImage::LoadFile (p. 698)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SaveFile(filename, type) Saves the image using the given type to the
named file

CHAPTER 5

702

SaveMimeFile(filename, mimetype) Saves the image using the given
mimetype to the named file

wxPerl note: Methods supported by wxPerl are:

 •>SaveFile(name, type)

 •>SaveFile(name, mimetype)

wxImage::Mirror

wxImage Mirror(bool horizontally = TRUE) const

Returns a mirrored copy of the image. The parameter horizontallyindicates the
orientation.

wxImage::Replace

void Replace(unsigned char r1, unsigned char g1, unsigned char b1,unsigned char
r2, unsigned char g2, unsigned char b2)

Replaces the colour specified by r1,g1,b1 by the colour r2,g2,b2.

wxImage::Rescale

wxImage & Rescale(int width, int height)

Changes the size of the image in-place: after a call to this function, the image will have
the given width and height.

Returns the (modified) image itself.

See also

Scale (p. 703)

wxImage::Rotate

wxImage Rotate(double angle, const wxPoint& rotationCentre, bool interpolating =
TRUE, wxPoint* offsetAfterRotation = NULL)

Rotates the image about the given point, by angle radians. Passing TRUE to
interpolating results in better image quality, but is slower. If the image has a mask, then
the mask colour is used for the uncovered pixels in the rotated image background. Else,
black (rgb 0, 0, 0) will be used.

CHAPTER 5

703

Returns the rotated image, leaving this image intact.

wxImage::Rotate90

wxImage Rotate90(bool clockwise = TRUE) const

Returns a copy of the image rotated 90 degrees in the direction indicated by clockwise.

wxImage::Scale

wxImage Scale(int width, int height) const

Returns a scaled version of the image. This is also useful for scaling bitmaps in general
as the only other way to scale bitmaps is to blit a wxMemoryDC into another
wxMemoryDC.

It may be mentioned that the GTK port uses this function internally to scale bitmaps
when using mapping modes in wxDC.

Example:

 // get the bitmap from somewhere
 wxBitmap bmp = ...;

 // rescale it to have size of 32*32
 if (bmp.GetWidth() != 32 || bmp.GetHeight() != 32)
 {
 wxImage image(bmp);
 bmp = wxBitmap(image.Scale(32, 32));

 // another possibility:
 image.Rescale(32, 32);
 bmp = image;
 }

See also

Rescale (p. 702)

wxImage::SetData

void SetData(unsigned char*data)

Sets the image data without performing checks. The data given must have the size
(width*height*3) or results will be unexpected. Don't use this method if you aren't sure
you know what you are doing.

CHAPTER 5

704

wxImage::SetMask

void SetMask(bool hasMask = TRUE)

Specifies whether there is a mask or not. The area of the mask is determined by the
current mask colour.

wxImage::SetMaskColour

void SetMaskColour(unsigned char red, unsigned char blue, unsigned char green)

Sets the mask colour for this image (and tells the image to use the mask).

wxImage::SetMaskFromImage

bool SetMaskFromImage(const wxImage& mask, unsigned char mr, unsigned char
mg, unsigned char mb)

Parameters

mask

The mask image to extract mask shape from. Must have same dimensions as the
image.

mr,mg,mb

RGB value of pixels in mask that will be used to create the mask.

Sets image's mask so that the pixels that have RGB value of mr,mg,mbin mask will be
masked in the image. This is done by first finding an unused colour in the image, setting
this colour as the mask colour and then using this colour to draw all pixels in the image
who corresponding pixel in mask has given RGB value.

Return value

Returns FALSE if mask does not have same dimensions as the image or if there is no
unused colour left. Returns TRUE if the mask was successfully applied.

Notes

Note that this method involves computing the histogram, which is computationally
intensive operation.

wxImage::SetOption

void SetOption(const wxString& name, const wxString& value)

CHAPTER 5

705

void SetOption(const wxString& name, int value)

Sets a user-defined option. The function is case-insensitive to name.

For example, when saving as a JPEG file, the option quality is used, which is a number
between 0 and 100 (0 is terrible, 100 is very good).

See also

wxImage::GetOption (p. 697), wxImage::GetOptionInt (p. 697), wxImage::HasOption (p.
697)

wxImage::SetPalette

void SetPalette (const wxPalette& palette)

Associates a palette with the image. The palette may be used when converting wxImage
to wxBitmap (MSW only at present) or in file save operations (none as yet).

wxImage::SetRGB

void SetRGB(int x, int y, unsigned char red, unsigned char green, unsigned char
blue)

Sets the pixel at the given coordinate. This routine performs bounds-checks for the
coordinate so it can be considered a safe way to manipulate the data, but in some cases
this might be too slow so that the data will have to be set directly. In that case you will
have to get access to the image data using the GetData (p. 695) method.

wxImage::operator =

wxImage& operator =(const wxImage& image)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in image and increments a reference counter. It is a fast operation.

Parameters

image

Image to assign.

Return value

Returns 'this' object.

wxImage::operator ==

CHAPTER 5

706

bool operator ==(const wxImage& image)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

image

Image to compare with 'this'

Return value

Returns TRUE if the images were effectively equal, FALSE otherwise.

wxImage::operator !=

bool operator !=(const wxImage& image)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

image

Image to compare with 'this'

Return value

Returns TRUE if the images were unequal, FALSE otherwise.

wwxxIImmaaggeeHHaannddlleerr

This is the base class for implementing image file loading/saving, and image creation
from data. It is used within wxImage and is not normally seen by the application.

If you wish to extend the capabilities of wxImage, derive a class from wxImageHandler
and add the handler using wxImage::AddHandler (p. 692) in your application
initialisation.

Note (Legal Issue)

This software is based in part on the work of the Independent JPEG Group.

(Applies when wxWindows is linked with JPEG support. wxJPEGHandler uses libjpeg
created by IJG.)

CHAPTER 5

707

Derived from

wxObject (p. 897)

Include files

<wx/image.h>

See also

wxImage (p. 689), wxInitAllImageHandlers (p. 1469)

wxImageHandler::wxImageHandler

 wxImageHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxImageHandler::~wxImageHandler

 ~wxImageHandler()

Destroys the wxImageHandler object.

wxImageHandler::GetName

wxString GetName () const

Gets the name of this handler.

wxImageHandler::GetExtension

wxString GetExtension() const

Gets the file extension associated with this handler.

wxImageHandler::GetImageCount

int GetImageCount(wxInputStream& stream)

If the image file contains more than one image and the image handler is capable of

CHAPTER 5

708

retrieving these individually, this function will return the number of available images.

stream

Opened input stream for reading image data. Currently, the stream must support
seeking.

Return value

Number of available images. For most image handles, this defaults to 1.

wxImageHandler::GetType

long GetType() const

Gets the image type associated with this handler.

wxImageHandler::GetMimeType

wxString GetMimeType() const

Gets the MIME type associated with this handler.

wxImageHandler::LoadFile

bool LoadFile(wxImage* image, wxInputStream& stream, bool verbose=TRUE, int
index=0)

Loads a image from a stream, putting the resulting data into image. If the image file
contains more than one image and the image handler is capable of retrieving these
individually, indexindicates which image to read from the stream.

Parameters

image

The image object which is to be affected by this operation.

stream

Opened input stream for reading image data.

verbose

If set to TRUE, errors reported by the image handler will produce wxLogMessages.

index

The index of the image in the file (starting from zero).

Return value

CHAPTER 5

709

TRUE if the operation succeeded, FALSE otherwise.

See also

wxImage::LoadFile (p. 698), wxImage::SaveFile (p. 700), wxImageHandler::SaveFile (p.
709)

wxImageHandler::SaveFile

bool SaveFile(wxImage* image, wxOutputStream& stream)

Saves a image in the output stream.

Parameters

image

The image object which is to be affected by this operation.

stream

Opened output stream for writing the data.

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxImage::LoadFile (p. 698), wxImage::SaveFile (p. 700), wxImageHandler::LoadFile (p.
708)

wxImageHandler::SetName

void SetName (const wxString& name)

Sets the handler name.

Parameters

name

Handler name.

wxImageHandler::SetExtension

void SetExtension(const wxString& extension)

Sets the handler extension.

CHAPTER 5

710

Parameters

extension

Handler extension.

wxImageHandler::SetMimeType

void SetMimeType(const wxString& mimetype)

Sets the handler MIME type.

Parameters

mimename

Handler MIME type.

wxImageHandler::SetType

void SetType(long type)

Sets the handler type.

Parameters

name

Handler type.

wwxxIImmaaggeeLLiisstt

A wxImageList contains a list of images, which are stored in an unspecified form. Images
can have masks for transparent drawing, and can be made from a variety of sources
including bitmaps and icons.

wxImageList is used principally in conjunction with wxTreeCtrl (p. 1313) and wxListCtrl
(p. 758) classes.

Derived from

wxObject (p. 897)

Include files

<wx/imaglist.h>

See also

CHAPTER 5

711

wxTreeCtrl (p. 1313), wxListCtrl (p. 758)

wxImageList::wxImageList

 wxImageList()

Default constructor.

 wxImageList(int width, int height, const bool mask = TRUE, int initialCount = 1)

Constructor specifying the image size, whether image masks should be created, and the
initial size of the list.

Parameters

width

Width of the images in the list.

height

Height of the images in the list.

mask

TRUE if masks should be created for all images.

initialCount

The initial size of the list.

See also

wxImageList::Create (p. 712)

wxImageList::Add

int Add(const wxBitmap& bitmap, const wxBitmap& mask = wxNullBitmap)

Adds a new image using a bitmap and optional mask bitmap.

int Add(const wxBitmap& bitmap, const wxColour& maskColour)

Adds a new image using a bitmap and mask colour.

int Add(const wxIcon& icon)

Adds a new image using an icon.

CHAPTER 5

712

Parameters

bitmap

Bitmap representing the opaque areas of the image.

mask

Monochrome mask bitmap, representing the transparent areas of the image.

maskColour

Colour indicating which parts of the image are transparent.

icon

Icon to use as the image.

Return value

The new zero-based image index.

Remarks

The original bitmap or icon is not affected by the Add operation, and can be deleted
afterwards.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Add(bitmap, mask=wxNullBitmap)

AddWithColourMask(bitmap, colour)

AddIcon(icon)

wxImageList::Create

bool Create (int width, int height, const bool mask = TRUE, int initialCount = 1)

Initializes the list. See wxImageList::wxImageList (p. 711) for details.

wxImageList::Draw

bool Draw(int index, wxDC& dc, int x, int x, int flags =
wxIMAGELIST_DRAW_NORMAL, const bool solidBackground = FALSE)

Draws a specified image onto a device context.

Parameters

index

CHAPTER 5

713

Image index, starting from zero.

dc

Device context to draw on.

x

X position on the device context.

y

Y position on the device context.

flags

How to draw the image. A bitlist of a selection of the following:

wxIMAGELIST_DRAW_NORMAL Draw the image normally.
wxIMAGELIST_DRAW_TRANSPARENT Draw the image with transparency.
wxIMAGELIST_DRAW_SELECTED Draw the image in selected state.
wxIMAGELIST_DRAW_FOCUSED Draw the image in a focussed state.

solidBackground

For optimisation - drawing can be faster if the function is told that the background
is solid.

wxImageList::GetImageCount

int GetImageCount() const

Returns the number of images in the list.

wxImageList::GetSize

bool GetSize(int index, int& width, int &height) const

Retrieves the size of the images in the list. Currently, the index parameter is ignored as
all images in the list have the same size.

Parameters

index

currently unused, should be 0

width

receives the width of the images in the list

height

receives the height of the images in the list

CHAPTER 5

714

Return value

TRUE if the function succeeded, FALSE if it failed (for example, if the image list was not
yet initialized).

wxImageList::Remove

bool Remove(int index)

Removes the image at the given position.

wxImageList::RemoveAll

bool RemoveAll()

Removes all the images in the list.

wxImageList::Replace

bool Replace (int index, const wxBitmap& bitmap, const wxBitmap& mask =
wxNullBitmap)

Replaces the existing image with the new image.

bool Replace (int index, const wxIcon& icon)

Replaces the existing image with the new image.

Parameters

bitmap

Bitmap representing the opaque areas of the image.

mask

Monochrome mask bitmap, representing the transparent areas of the image.

icon

Icon to use as the image.

Return value

TRUE if the replacement was successful, FALSE otherwise.

Remarks

The original bitmap or icon is not affected by the Replace operation, and can be deleted
afterwards.

CHAPTER 5

715

wxPython note: The second form is called ReplaceIcon in wxPython.

wwxxIInnddiivviidduuaallLLaayyoouuttCCoonnssttrraaiinntt

Objects of this class are stored in the wxLayoutConstraint class as one of eight possible
constraints that a window can be involved in.

Constraints are initially set to have the relationship wxUnconstrained, which means that
their values should be calculated by looking at known constraints.

Derived from

wxObject (p. 897)

Include files

<wx/layout.h>

See also

Overview and examples (p. 1573), wxLayoutConstraints (p. 740),
wxWindow::SetConstraints (p. 1407).

Edges and relationships

The wxEdge enumerated type specifies the type of edge or dimension of a window.

wxLeft The left edge.
wxTop The top edge.
wxRight The right edge.
wxBottom The bottom edge.
wxCentreX The x-coordinate of the centre of the window.
wxCentreY The y-coordinate of the centre of the window.

The wxRelationship enumerated type specifies the relationship that this edge or
dimension has with another specified edge or dimension. Normally, the user doesn't use
these directly because functions such as Below and RightOf are a convenience for using
the more general Set function.

wxUnconstrained The edge or dimension is unconstrained (the default for

edges.
wxAsIs The edge or dimension is to be taken from the current

CHAPTER 5

716

window position or size (the default for dimensions.
wxAbove The edge should be above another edge.
wxBelow The edge should be below another edge.
wxLeftOf The edge should be to the left of another edge.
wxRightOf The edge should be to the right of another edge.
wxSameAs The edge or dimension should be the same as another

edge or dimension.
wxPercentOf The edge or dimension should be a percentage of another

edge or dimension.
wxAbsolute The edge or dimension should be a given absolute value.

wxIndividualLayoutConstraint::wxIndividualLayoutConstraint

void wxIndividualLayoutConstraint()

Constructor. Not used by the end-user.

wxIndividualLayoutConstraint::Above

void Above(wxWindow *otherWin, int margin = 0)

Constrains this edge to be above the given window, with an optional margin. Implicitly,
this is relative to the top edge of the other window.

wxIndividualLayoutConstraint::Absolute

void Absolute(int value)

Constrains this edge or dimension to be the given absolute value.

wxIndividualLayoutConstraint::AsIs

void AsIs()

Sets this edge or constraint to be whatever the window's value is at the moment. If either
of the width and height constraints are as is, the window will not be resized, but moved
instead. This is important when considering panel items which are intended to have a
default size, such as a button, which may take its size from the size of the button label.

wxIndividualLayoutConstraint::Below

void Below(wxWindow *otherWin, int margin = 0)

Constrains this edge to be below the given window, with an optional margin. Implicitly,

CHAPTER 5

717

this is relative to the bottom edge of the other window.

wxIndividualLayoutConstraint::Unconstrained

void Unconstrained()

Sets this edge or dimension to be unconstrained, that is, dependent on other edges and
dimensions from which this value can be deduced.

wxIndividualLayoutConstraint::LeftOf

void LeftOf(wxWindow *otherWin, int margin = 0)

Constrains this edge to be to the left of the given window, with an optional margin.
Implicitly, this is relative to the left edge of the other window.

wxIndividualLayoutConstraint::PercentOf

void PercentOf(wxWindow *otherWin, wxEdge edge, int per)

Constrains this edge or dimension to be to a percentage of the given window, with an
optional margin.

wxIndividualLayoutConstraint::RightOf

void RightOf(wxWindow *otherWin, int margin = 0)

Constrains this edge to be to the right of the given window, with an optional margin.
Implicitly, this is relative to the right edge of the other window.

wxIndividualLayoutConstraint::SameAs

void SameAs(wxWindow *otherWin, wxEdge edge, int margin = 0)

Constrains this edge or dimension to be to the same as the edge of the given window,
with an optional margin.

wxIndividualLayoutConstraint::Set

void Set(wxRelationship rel, wxWindow *otherWin, wxEdge otherEdge, int value = 0,
int margin = 0)

Sets the properties of the constraint. Normally called by one of the convenience

CHAPTER 5

718

functions such as Above, RightOf, SameAs.

wwxxIInniittDDiiaallooggEEvveenntt

A wxInitDialogEvent is sent as a dialog or panel is being initialised. Handlers for this
event can transfer data to the window.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxInitDialogEvent argument.

EVT_INIT_DIALOG(func) Process a wxEVT_INIT_DIALOG event.

See also

wxWindow::OnInitDialog (p. 1394), Event handling overview (p. 1560)

wxInitDialogEvent::wxInitDialogEvent

 wxInitDialogEvent(int id = 0)

Constructor.

wwxxIInnppuuttSSttrreeaamm

wxInputStream is an abstract base class which may not be used directly.

Derived from

wxStreamBase (p. 1161)

CHAPTER 5

719

Include files

<wx/stream.h>

wxInputStream::wxInputStream

 wxInputStream()

Creates a dummy input stream.

wxInputStream::~wxInputStream

 ~wxInputStream()

Destructor.

wxInputStream::GetC

char GetC()

Returns the first character in the input queue and removes it.

wxInputStream::Eof

wxInputStream Eof() const

Returns TRUE if the end of stream has been reached.

wxInputStream::LastRead

size_t LastRead() const

Returns the last number of bytes read.

wxInputStream::Peek

char Peek()

Returns the first character in the input queue without removing it.

CHAPTER 5

720

wxInputStream::Read

wxInputStream& Read(void *buffer, size_t size)

Reads the specified amount of bytes and stores the data in buffer.

Warning

The buffer absolutely needs to have at least the specified size.

Return value

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxInputStream& Read(wxOutputStream& stream_out)

Reads data from the input queue and stores it in the specified output stream. The data is
read until an error is raised by one of the two streams.

Return value

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxInputStream::SeekI

off_t SeekI(off_t pos, wxSeekMode mode = wxFromStart)

Changes the stream current position.

wxInputStream::TellI

off_t TellI() const

Returns the current stream position.

wxInputStream::Ungetch

size_t Ungetch(const char* buffer, size_t size)

This function is only useful in read mode. It is the manager of the "Write-Back" buffer.
This buffer acts like a temporary buffer where datas which has to be read during the next
read IO call are put. This is useful when you get a big block of data which you didn't want
to read: you can replace them at the top of the input queue by this way.

CHAPTER 5

721

Be very careful about this call in connection with calling SeekI() on the same stream.
Any call to SeekI() will invalidate any previous call to this method (otherwise you could
SeekI() to one position, "unread" a few bytes there, SeekI() to another position and data
would be either lost or corrupted).

Return value

Returns the amount of bytes saved in the Write-Back buffer.

bool Ungetch(char c)

This function acts like the previous one except that it takes only one character: it is
sometimes shorter to use than the generic function.

wwxxIInntteeggeerrFFoorrmmVVaalliiddaattoorr

This class validates a range of integer values for a form view. The associated control
must be a wxTextCtrl or wxSlider.

See also

Validator classes (p. 1671)

wxIntegerFormValidator::wxIntegerFormValidator

void wxIntegerFormValidator(long min=0, long max=0, long flags=0)

Constructor. Assigning zero to minimum and maximum values indicates that there is no
range to check.

wwxxIInntteeggeerrLLiissttVVaalliiddaattoorr

This class validates a range of integer values for a list view.

See also

Validator classes (p. 1671)

CHAPTER 5

722

wxIntegerListValidator::wxIntegerListValidator

void wxIntegerListValidator(long min=0, long max=0, long
flags=wxPROP_ALLOW_TEXT_EDITING)

Constructor. Assigning zero to minimum and maximum values indicates that there is no
range to check.

wwxxIIPPVV44aaddddrreessss

Derived from

wxSockAddress (p. 1099)

Include files

<wx/socket.h>

wxIPV4address::Hostname

bool Hostname (const wxString& hostname)

Set the address to hostname, which can be a host name or an IP-style address in dot
notation (a.b.c.d)

Return value

Returns TRUE on success, FALSE if something goes wrong (invalid hostname or invalid
IP address).

wxIPV4address::Hostname

wxString Hostname ()

Returns the hostname which matches the IP address.

wxIPV4address::Service

bool Service (const wxString& service)

Set the port to that corresponding to the specified service.

CHAPTER 5

723

Return value

Returns TRUE on success, FALSE if something goes wrong (invalid service).

wxIPV4address::Service

bool Service (unsigned short service)

Set the port to that corresponding to the specified service.

Return value

Returns TRUE on success, FALSE if something goes wrong (invalid service).

wxIPV4address::Service

unsigned short Service ()

Returns the current service.

wxIPV4address::AnyAddress

bool AnyAddress()

Set address to any of the addresses of the current machine. Whenever possible, use
this function instead of wxIPV4address::LocalHost (p. 723), as this correctly handles
multi-homed hosts and avoids other small problems. Internally, this is the same as
setting the IP address to INADDR_ANY.

Return value

Returns TRUE on success, FALSE if something went wrong.

wxIPV4address::LocalHost

bool LocalHost()

Set address to localhost (127.0.0.1). Whenever possible, use the
wxIPV4address::AnyAddress (p. 723), function instead of this one, as this will correctly
handle multi-homed hosts and avoid other small problems.

Return value

Returns TRUE on success, FALSE if something went wrong.

CHAPTER 5

724

wwxxJJooyyssttiicckk

wxJoystick allows an application to control one or more joysticks.

Derived from

wxObject (p. 897)

Include files

<wx/joystick.h>

See also

wxJoystickEvent (p. 731)

wxJoystick::wxJoystick

 wxJoystick(int joystick = wxJOYSTICK1)

Constructor. joystick may be one of wxJOYSTICK1, wxJOYSTICK2, indicating the
joystick controller of interest.

wxJoystick::~wxJoystick

 ~wxJoystick()

Destroys the wxJoystick object.

wxJoystick::GetButtonState

int GetButtonState() const

Returns the state of the joystick buttons. A bitlist of wxJOY_BUTTONn identifiers, where
n is 1, 2, 3 or 4.

wxJoystick::GetManufacturerId

int GetManufacturerId() const

Returns the manufacturer id.

CHAPTER 5

725

wxJoystick::GetMovementThreshold

int GetMovementThreshold() const

Returns the movement threshold, the number of steps outside which the joystick is
deemed to have moved.

wxJoystick::GetNumberAxes

int GetNumberAxes() const

Returns the number of axes for this joystick.

wxJoystick::GetNumberButtons

int GetNumberButtons() const

Returns the number of buttons for this joystick.

wxJoystick::GetNumberJoysticks

int GetNumberJoysticks() const

Returns the number of joysticks currently attached to the computer.

wxJoystick::GetPollingMax

int GetPollingMax() const

Returns the maximum polling frequency.

wxJoystick::GetPollingMin

int GetPollingMin() const

Returns the minimum polling frequency.

wxJoystick::GetProductId

int GetProductId() const

Returns the product id for the joystick.

CHAPTER 5

726

wxJoystick::GetProductName

wxString GetProductName () const

Returns the product name for the joystick.

wxJoystick::GetPosition

wxPoint GetPosition() const

Returns the x, y position of the joystick.

wxJoystick::GetPOVPosition

int GetPOVPosition() const

Returns the point-of-view position, expressed in discrete units.

wxJoystick::GetPOVCTSPosition

int GetPOVCTSPosition() const

Returns the point-of-view position, expressed in continuous, one-hundredth of a degree
units.

wxJoystick::GetRudderMax

int GetRudderMax() const

Returns the maximum rudder position.

wxJoystick::GetRudderMin

int GetRudderMin() const

Returns the minimum rudder position.

wxJoystick::GetRudderPosition

int GetRudderPosition() const

CHAPTER 5

727

Returns the rudder position.

wxJoystick::GetUMax

int GetUMax() const

Returns the maximum U position.

wxJoystick::GetUMin

int GetUMin() const

Returns the minimum U position.

wxJoystick::GetUPosition

int GetUPosition() const

Gets the position of the fifth axis of the joystick, if it exists.

wxJoystick::GetVMax

int GetVMax() const

Returns the maximum V position.

wxJoystick::GetVMin

int GetVMin() const

Returns the minimum V position.

wxJoystick::GetVPosition

int GetVPosition() const

Gets the position of the sixth axis of the joystick, if it exists.

wxJoystick::GetXMax

int GetXMax() const

CHAPTER 5

728

Returns the maximum x position.

wxJoystick::GetXMin

int GetXMin() const

Returns the minimum x position.

wxJoystick::GetYMax

int GetYMax() const

Returns the maximum y position.

wxJoystick::GetYMin

int GetYMin() const

Returns the minimum y position.

wxJoystick::GetZMax

int GetZMax() const

Returns the maximum z position.

wxJoystick::GetZMin

int GetXMin() const

Returns the minimum z position.

wxJoystick::GetZPosition

int GetZPosition() const

Returns the z position of the joystick.

wxJoystick::HasPOV

bool HasPOV() const

CHAPTER 5

729

Returns TRUE if the joystick has a point of view control.

wxJoystick::HasPOV4Dir

bool HasPOV4Dir() const

Returns TRUE if the joystick point-of-view supports discrete values (centered, forward,
backward, left, and right).

wxJoystick::HasPOVCTS

bool HasPOVCTS() const

Returns TRUE if the joystick point-of-view supports continuous degree bearings.

wxJoystick::HasRudder

bool HasRudder() const

Returns TRUE if there is a rudder attached to the computer.

wxJoystick::HasU

bool HasU() const

Returns TRUE if the joystick has a U axis.

wxJoystick::HasV

bool HasV() const

Returns TRUE if the joystick has a V axis.

wxJoystick::HasZ

bool HasZ() const

Returns TRUE if the joystick has a Z axis.

wxJoystick::IsOk

bool IsOk() const

CHAPTER 5

730

Returns TRUE if the joystick is functioning.

wxJoystick::ReleaseCapture

bool ReleaseCapture()

Releases the capture set by SetCapture.

Return value

TRUE if the capture release succeeded.

See also

wxJoystick::SetCapture (p. 730), wxJoystickEvent (p. 731)

wxJoystick::SetCapture

bool SetCapture(wxWindow* win, int pollingFreq = 0)

Sets the capture to direct joystick events to win.

Parameters

win

The window that will receive joystick events.

pollingFreq

If zero, movement events are sent when above the threshold. If greater than zero,
events are received every pollingFreq milliseconds.

Return value

TRUE if the capture succeeded.

See also

wxJoystick::ReleaseCapture (p. 730), wxJoystickEvent (p. 731)

wxJoystick::SetMovementThreshold

void SetMovementThreshold(int threshold)

Sets the movement threshold, the number of steps outside which the joystick is deemed
to have moved.

CHAPTER 5

731

wwxxJJooyyssttiicckkEEvveenntt

This event class contains information about mouse events, particularly events received
by windows.

Derived from

wxEvent (p. 428)

Include files

<wx/event.h>

Event table macros

To process a mouse event, use these event handler macros to direct input to member
functions that take a wxJoystickEvent argument.

EVT_JOY_BUTTON_DOWN(func) Process a wxEVT_JOY_BUTTON_DOWN

event.
EVT_JOY_BUTTON_UP(func) Process a wxEVT_JOY_BUTTON_UP event.
EVT_JOY_MOVE(func) Process a wxEVT_JOY_MOVE event.
EVT_JOY_ZMOVE(func) Process a wxEVT_JOY_ZMOVE event.

See also

wxJoystick (p. 724)

wxJoystickEvent::wxJoystickEvent

 wxJoystickEvent(WXTYPE eventType = 0, int state = 0, int joystick = wxJOYSTICK1,
int change = 0)

Constructor.

wxJoystickEvent::ButtonDown

bool ButtonDown(int button = wxJOY_BUTTON_ANY) const

Returns TRUE if the event was a down event from the specified button (or any button).

Parameters

CHAPTER 5

732

button
Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::ButtonIsDown

bool ButtonIsDown(int button = wxJOY_BUTTON_ANY) const

Returns TRUE if the specified button (or any button) was in a down state.

Parameters

button

Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::ButtonUp

bool ButtonUp(int button = wxJOY_BUTTON_ANY) const

Returns TRUE if the event was an up event from the specified button (or any button).

Parameters

button

Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::GetButtonChange

int GetButtonChange() const

Returns the identifier of the button changing state. This is a wxJOY_BUTTONn identifier,
where n is one of 1, 2, 3, 4.

wxJoystickEvent::GetButtonState

int GetButtonState() const

Returns the down state of the buttons. This is a bitlist of wxJOY_BUTTONn identifiers,
where n is one of 1, 2, 3, 4.

wxJoystickEvent::GetJoystick

int GetJoystick() const

CHAPTER 5

733

Returns the identifier of the joystick generating the event - one of wxJOYSTICK1 and
wxJOYSTICK2.

wxJoystickEvent::GetPosition

wxPoint GetPosition() const

Returns the x, y position of the joystick event.

wxJoystickEvent::GetZPosition

int GetZPosition() const

Returns the z position of the joystick event.

wxJoystickEvent::IsButton

bool IsButton() const

Returns TRUE if this was a button up or down event (not 'is any button down?').

wxJoystickEvent::IsMove

bool IsMove() const

Returns TRUE if this was an x, y move event.

wxJoystickEvent::IsZMove

bool IsZMove() const

Returns TRUE if this was a z move event.

wwxxKKeeyyEEvveenntt

This event class contains information about keypress (character) events.

Notice that there are three different kinds of keyboard events in wxWindows: key down
and up events and char events. The difference between the first two is clear - the first
corresponds to a key press and the second to a key release - otherwise they are

CHAPTER 5

734

identical. Just note that if the key is maintained in a pressed state you will typically get a
lot of (automatically generated) down events but only up one so it is wrong to assume
that there is one up event corresponding to each down one.

Both key events provide untranslated key codes while the char event carries the
translated one. The untranslated code for alphanumeric keys is always an upper case
value. For the other keys it is one of WXK_XXX values from the keycodes table (p. 1497).
The translated key is, in general, the character the user expects to appear as the result
of the key combination when typing the text into a text entry zone, for example.

A few examples to clarify this (all assume that CAPS LOCK is unpressed and the
standard US keyboard): when the 'A' key is pressed, the key down event key code is
equal to ASCII A == 65. But the char event key code is ASCII a == 97. On the other
hand, if you press both SHIFT and'A' keys simultaneously , the key code in key down
event will still be just 'A' while the char event key code parameter will now be 'A' as
well.

Although in this simple case it is clear that the correct key code could be found in the key
down event handler by checking the value returned by ShiftDown() (p. 737), in general
you should use EVT_CHAR for this as for non alphanumeric keys the translation is
keyboard-layout dependent and can only be done properly by the system itself.

Another kind of translation is done when the control key is pressed: for example, for
CTRL-A key press the key down event still carries the same key code 'a' as usual but
the char event will have key code of1, the ASCII value of this key combination.

You may discover how the other keys on your system behave interactively by running
the text (p. 1522) wxWindows sample and pressing some keys in any of the text controls
shown in it.

Note for Windows programmers: The key and char events in wxWindows are similar
to but slightly different from Windows WM_KEYDOWN and WM_CHAR events. In particular,
Alt-x combination will generate a char event in wxWindows (unless it is used as an
acclerator).

Derived from

wxEvent (p. 428)

Include files

<wx/event.h>

Event table macros

To process a key event, use these event handler macros to direct input to member
functions that take a wxKeyEvent argument.

EVT_KEY_DOWN(func) Process a wxEVT_KEY_DOWN event (any key

has been pressed).

CHAPTER 5

735

EVT_KEY_UP(func) Process a wxEVT_KEY_UP event (any key has
been released).

EVT_CHAR(func) Process a wxEVT_CHAR event.

See also

wxWindow::OnChar (p. 1388), wxWindow::OnCharHook (p. 1389),
wxWindow::OnKeyDown (p. 1392), wxWindow::OnKeyUp (p. 1393)

wxKeyEvent::m_altDown

bool m_altDown

TRUE if the Alt key is pressed down.

wxKeyEvent::m_controlDown

bool m_controlDown

TRUE if control is pressed down.

wxKeyEvent::m_keyCode

long m_keyCode

Virtual keycode. See Keycodes (p. 1497) for a list of identifiers.

wxKeyEvent::m_metaDown

bool m_metaDown

TRUE if the Meta key is pressed down.

wxKeyEvent::m_shiftDown

bool m_shiftDown

TRUE if shift is pressed down.

wxKeyEvent::m_x

CHAPTER 5

736

int m_x

X position of the event.

wxKeyEvent::m_y

int m_y

Y position of the event.

wxKeyEvent::wxKeyEvent

 wxKeyEvent(WXTYPE keyEventType)

Constructor. Currently, the only valid event types are wxEVT_CHAR and
wxEVT_CHAR_HOOK.

wxKeyEvent::AltDown

bool AltDown() const

Returns TRUE if the Alt key was down at the time of the key event.

wxKeyEvent::ControlDown

bool ControlDown() const

Returns TRUE if the control key was down at the time of the key event.

wxKeyEvent::GetKeyCode

int GetKeyCode() const

Returns the virtual key code. ASCII events return normal ASCII values, while non-ASCII
events return values such as WXK_LEFT for the left cursor key. See Keycodes (p.
1497) for a full list of the virtual key codes.

wxKeyEvent::GetX

long GetX() const

Returns the X position of the event.

CHAPTER 5

737

wxKeyEvent::GetY

long GetY() const

Returns the Y position of the event.

wxKeyEvent::MetaDown

bool MetaDown() const

Returns TRUE if the Meta key was down at the time of the key event.

wxKeyEvent::GetPosition

wxPoint GetPosition() const

void GetPosition(long *x, long *y) const

Obtains the position at which the key was pressed.

wxKeyEvent::HasModifiers

bool HasModifiers() const

Returns TRUE if either CTRL or ALT keys was down at the time of the key event. Note
that this function does not take into account neither SHIFT nor META key states (the
reason for ignoring the latter is that it is common for NUMLOCK key to be configured as
META under X but the key presses even while NUMLOCK is on should be still
processed normally).

wxKeyEvent::ShiftDown

bool ShiftDown() const

Returns TRUE if the shift key was down at the time of the key event.

wwxxLLaayyoouuttAAllggoorriitthhmm

wxLayoutAlgorithm implements layout of subwindows in MDI or SDI frames. It sends a
wxCalculateLayoutEvent event to children of the frame, asking them for information

CHAPTER 5

738

about their size. For MDI parent frames, the algorithm allocates the remaining space to
the MDI client window (which contains the MDI child frames). For SDI (normal) frames, a
'main' window is specified as taking up the remaining space.

Because the event system is used, this technique can be applied to any windows, which
are not necessarily 'aware' of the layout classes (no virtual functions in wxWindow refer
to wxLayoutAlgorithm or its events). However, you may wish to use
wxSashLayoutWindow (p. 1052) for your subwindows since this class provides handlers
for the required events, and accessors to specify the desired size of the window. The
sash behaviour in the base class can be used, optionally, to make the windows user-
resizable.

wxLayoutAlgorithm is typically used in IDE (integrated development environment)
applications, where there are several resizable windows in addition to the MDI client
window, or other primary editing window. Resizable windows might include toolbars, a
project window, and a window for displaying error and warning messages.

When a window receives an OnCalculateLayout event, it should call SetRect in the given
event object, to be the old supplied rectangle minus whatever space the window takes
up. It should also set its own size accordingly.
wxSashLayoutWindow::OnCalculateLayout generates an OnQueryLayoutInfo event
which it sends to itself to determine the orientation, alignment and size of the window,
which it gets from internal member variables set by the application.

The algorithm works by starting off with a rectangle equal to the whole frame client area.
It iterates through the frame children, generating OnCalculateLayout events which
subtract the window size and return the remaining rectangle for the next window to
process. It is assumed (by wxSashLayoutWindow::OnCalculateLayout) that a window
stretches the full dimension of the frame client, according to the orientation it specifies.
For example, a horizontal window will stretch the full width of the remaining portion of the
frame client area. In the other orientation, the window will be fixed to whatever size was
specified by OnQueryLayoutInfo. An alignment setting will make the window 'stick' to the
left, top, right or bottom of the remaining client area. This scheme implies that order of
window creation is important. Say you wish to have an extra toolbar at the top of the
frame, a project window to the left of the MDI client window, and an output window
above the status bar. You should therefore create the windows in this order: toolbar,
output window, project window. This ensures that the toolbar and output window take up
space at the top and bottom, and then the remaining height inbetween is used for the
project window.

wxLayoutAlgorithm is quite independent of the way in which OnCalculateLayout chooses
to interpret a window's size and alignment. Therefore you could implement a different
window class with a new OnCalculateLayout event handler, that has a more
sophisticated way of laying out the windows. It might allow specification of whether
stretching occurs in the specified orientation, for example, rather than always assuming
stretching. (This could, and probably should, be added to the existing implementation).

Note: wxLayoutAlgorithm has nothing to do with wxLayoutConstraints. It is an alternative
way of specifying layouts for which the normal constraint system is unsuitable.

Derived from

CHAPTER 5

739

wxObject (p. 897)

Include files

<wx/laywin.h>

Event handling

The algorithm object does not respond to events, but itself generates the following
events in order to calculate window sizes.

EVT_QUERY_LAYOUT_INFO(func) Process a wxEVT_QUERY_LAYOUT_INFO

event, to get size, orientation and alignment
from a window. See wxQueryLayoutInfoEvent
(p. 1010).

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite'
out of a rectangle provided by the algorithm.
See wxCalculateLayoutEvent (p. 96).

Data types

enum wxLayoutOrientation {
 wxLAYOUT_HORIZONTAL,
 wxLAYOUT_VERTICAL
};

enum wxLayoutAlignment {
 wxLAYOUT_NONE,
 wxLAYOUT_TOP,
 wxLAYOUT_LEFT,
 wxLAYOUT_RIGHT,
 wxLAYOUT_BOTTOM,
};

See also

wxSashEvent (p. 1050), wxSashLayoutWindow (p. 1052), Event handling overview (p.
1560)

wxCalculateLayoutEvent (p. 96), wxQueryLayoutInfoEvent (p. 1010),
wxSashLayoutWindow (p. 1052), wxSashWindow (p. 1055)

wxLayoutAlgorithm::wxLayoutAlgorithm

CHAPTER 5

740

 wxLayoutAlgorithm()

Default constructor.

wxLayoutAlgorithm::~wxLayoutAlgorithm

 ~wxLayoutAlgorithm()

Destructor.

wxLayoutAlgorithm::LayoutFrame

bool LayoutFrame (wxFrame* frame, wxWindow* mainWindow = NULL) const

Lays out the children of a normal frame. mainWindow is set to occupy the remaining
space.

This function simply calls wxLayoutAlgorithm::LayoutWindow (p. 740).

wxLayoutAlgorithm::LayoutMDIFrame

bool LayoutMDIFrame (wxMDIParentFrame* frame, wxRect* rect = NULL) const

Lays out the children of an MDI parent frame. If rect is non-NULL, the given rectangle
will be used as a starting point instead of the frame's client area.

The MDI client window is set to occupy the remaining space.

wxLayoutAlgorithm::LayoutWindow

bool LayoutWindow(wxWindow* parent, wxWindow* mainWindow = NULL) const

Lays out the children of a normal frame or other window.

mainWindow is set to occupy the remaining space. If this is not specified, then the last
window that responds to a calculate layout event in query mode will get the remaining
space (that is, a non-query OnCalculateLayout event will not be sent to this window and
the window will be set to the remaining size).

wwxxLLaayyoouuttCCoonnssttrraaiinnttss

CHAPTER 5

741

Objects of this class can be associated with a window to define its layout constraints,
with respect to siblings or its parent.

The class consists of the following eight constraints of class
wxIndividualLayoutConstraint, some or all of which should be accessed directly to set
the appropriate constraints.

 • left: represents the left hand edge of the window
 • right: represents the right hand edge of the window
 • top: represents the top edge of the window
 • bottom: represents the bottom edge of the window
 • width: represents the width of the window
 • height: represents the height of the window
 • centreX: represents the horizontal centre point of the window
 • centreY: represents the vertical centre point of the window

Most constraints are initially set to have the relationship wxUnconstrained, which means
that their values should be calculated by looking at known constraints. The exceptions
are width and height, which are set to wxAsIs to ensure that if the user does not specify
a constraint, the existing width and height will be used, to be compatible with panel items
which often have take a default size. If the constraint is wxAsIs, the dimension will not be
changed.

wxPerl note: In wxPerl the constraints are accessed as
 constraint = Wx::LayoutConstraints->new();
 constraint->centreX->AsIs();
 constraint->centreY->Unconstrained();

Derived from

wxObject (p. 897)

Include files

<wx/layout.h>

See also

Overview and examples (p. 1573), wxIndividualLayoutConstraint (p. 715),
wxWindow::SetConstraints (p. 1407)

wxLayoutConstraints::wxLayoutConstraints

 wxLayoutConstraints()

CHAPTER 5

742

Constructor.

wxLayoutConstraints::bottom

wxIndividualLayoutConstraint bottom

Constraint for the bottom edge.

wxLayoutConstraints::centreX

wxIndividualLayoutConstraint centreX

Constraint for the horizontal centre point.

wxLayoutConstraints::centreY

wxIndividualLayoutConstraint centreY

Constraint for the vertical centre point.

wxLayoutConstraints::height

wxIndividualLayoutConstraint height

Constraint for the height.

wxLayoutConstraints::left

wxIndividualLayoutConstraint left

Constraint for the left-hand edge.

wxLayoutConstraints::right

wxIndividualLayoutConstraint right

Constraint for the right-hand edge.

wxLayoutConstraints::top

wxIndividualLayoutConstraint top

CHAPTER 5

743

Constraint for the top edge.

wxLayoutConstraints::width

wxIndividualLayoutConstraint width

Constraint for the width.

wwxxLLiisstt

wxList classes provide linked list functionality for wxWindows, and for an application if it
wishes. Depending on the form of constructor used, a list can be keyed on integer or
string keys to provide a primitive look-up ability. See wxHashTable (p. 608) for a faster
method of storage when random access is required.

While wxList class in the previous versions of wxWindows only could contain elements
of type wxObject and had essentially untyped interface (thus allowing you to put apples
in the list and read back oranges from it), the new wxList classes family may contain
elements of any type and has much more strict type checking. Unfortunately, it also
requires an additional line to be inserted in your program for each list class you use
(which is the only solution short of using templates which is not done in wxWindows
because of portability issues).

The general idea is to have the base class wxListBase working with void *data but make
all of its dangerous (because untyped) functions protected, so that they can only be used
from derived classes which, in turn, expose a type safe interface. With this approach a
new wxList-like class must be defined for each list type (i.e. list of ints, of wxStrings or of
MyObjects). This is done with WX_DECLARE_LIST and WX_DEFINE_LIST macros like
this (notice the similarity with WX_DECLARE_OBJARRAY and
WX_IMPLEMENT_OBJARRAY macros):

Example

 // this part might be in a header or source (.cpp) file
 class MyListElement
 {
 ... // whatever
 };

 // declare our list class: this macro declares and partly
implements MyList
 // class (which derives from wxListBase)
 WX_DECLARE_LIST(MyListElement, MyList);

 ...

 // the only requirment for the rest is to be AFTER the full
declaration of

CHAPTER 5

744

 // MyListElement (for WX_DECLARE_LIST forward declaration is
enough), but
 // usually it will be found in the source file and not in the
header

 #include <wx/listimpl.cpp>
 WX_DEFINE_LIST(MyList);

 // now MyList class may be used as a usual wxList, but all of its
methods
 // will take/return the objects of the right (i.e. MyListElement)
type. You
 // also have MyList::Node type which is the type-safe version of
wxNode.
 MyList list;
 MyListElement element;
 list.Append(element); // ok
 list.Append(17); // error: incorrect type

 // let's iterate over the list
 for (MyList::Node *node = list.GetFirst(); node; node = node-
>GetNext())
 {
 MyListElement *current = node->GetData();

 ...process the current element...
 }

For compatibility with previous versions wxList and wxStringList classes are still defined,
but their usage is deprecated and they will disappear in the future versions completely.
The use of the latter is especially discouraged as it is not only unsafe but is also much
less efficient than wxArrayString (p. 45) class.

In the documentation of the list classes below, you should replace wxNode with
wxListName::Node and wxObject with the list element type (i.e. the first parameter of
WX_DECLARE_LIST) for the template lists.

Derived from

wxObject (p. 897)

Include files

<wx/list.h>

Example

It is very common to iterate on a list as follows:

 ...
 wxWindow *win1 = new wxWindow(...);
 wxWindow *win2 = new wxWindow(...);

 wxList SomeList;

CHAPTER 5

745

 SomeList.Append(win1);
 SomeList.Append(win2);

 ...

 wxNode *node = SomeList.GetFirst();
 while (node)
 {
 wxWindow *win = node->GetData();
 ...
 node = node->GetNext();
 }

To delete nodes in a list as the list is being traversed, replace

 ...
 node = node->GetNext();
 ...

with

 ...
 delete win;
 delete node;
 node = SomeList.GetFirst();
 ...

See wxNode (p. 886) for members that retrieve the data associated with a node, and
members for getting to the next or previous node.

See also

wxNode (p. 886), wxStringList (p. 1195),wxArray (p. 33)

wxList::wxList

 wxList()

 wxList(unsigned int key_type)

 wxList(int n, wxObject *objects[])

 wxList(wxObject *object, ...)

Constructors. key_type is one of wxKEY_NONE, wxKEY_INTEGER, or
wxKEY_STRING, and indicates what sort of keying is required (if any).

objects is an array of n objects with which to initialize the list.

The variable-length argument list constructor must be supplied with a terminating NULL.

CHAPTER 5

746

wxList::~wxList

 ~wxList()

Destroys the list. Also destroys any remaining nodes, but does not destroy client data
held in the nodes.

wxList::Append

wxNode * Append(wxObject *object)

wxNode * Append(long key, wxObject *object)

wxNode * Append(const wxString& key, wxObject *object)

Appends a new wxNode to the end of the list and puts a pointer to the object in the
node. The last two forms store a key with the object for later retrieval using the key. The
new node is returned in each case.

The key string is copied and stored by the list implementation.

wxList::Clear

void Clear()

Clears the list (but does not delete the client data stored with each node unless you
called DeleteContents(TRUE), in which case it deletes data).

wxList::DeleteContents

void DeleteContents(bool destroy)

If destroy is TRUE, instructs the list to call delete on the client contents of a node
whenever the node is destroyed. The default is FALSE.

wxList::DeleteNode

bool DeleteNode (wxNode *node)

Deletes the given node from the list, returning TRUE if successful.

wxList::DeleteObject

CHAPTER 5

747

bool DeleteObject(wxObject *object)

Finds the given client object and deletes the appropriate node from the list, returning
TRUE if successful. The application must delete the actual object separately.

wxList::Find

wxNode * Find(long key)

wxNode * Find(const wxString& key)

Returns the node whose stored key matches key. Use on a keyed list only.

wxList::GetCount

size_t GetCount() const

Returns the number of elements in the list.

wxList::GetFirst

wxNode * GetFirst()

Returns the first node in the list (NULL if the list is empty).

wxList::GetLast

wxNode * GetLast()

Returns the last node in the list (NULL if the list is empty).

wxList::IndexOf

int IndexOf(wxObject* obj)

Returns the index of obj within the list or wxNOT_FOUND if obj is not found in the list.

wxList::Insert

wxNode * Insert(wxObject *object)

Insert object at front of list.

CHAPTER 5

748

wxNode * Insert(size_t position, wxObject *object)

Insert object before position, i.e. the index of the new item in the list will be equal to
position. position should be less than or equal to GetCount (p. 747); if it is equal to it, this
is the same as calling Append (p. 746).

wxNode * Insert(wxNode *node, wxObject *object)

Inserts the object before the given node.

wxList::Item

wxNode * Item(size_t index) const

Returns the node at given position in the list.

wxList::Member

wxNode * Member(wxObject *object)

NB: This function is deprecated, use Find (p. 747) instead.

Returns the node associated with object if it is in the list, NULL otherwise.

wxList::Nth

wxNode * Nth(int n)

NB: This function is deprecated, use Item (p. 748) instead.

Returns the nth node in the list, indexing from zero (NULL if the list is empty or the nth
node could not be found).

wxList::Number

int Number()

NB: This function is deprecated, use GetCount (p. 747) instead.

Returns the number of elements in the list.

wxList::Sort

void Sort(wxSortCompareFunction compfunc)

CHAPTER 5

749

 // Type of compare function for list sort operation (as in 'qsort')
 typedef int (*wxSortCompareFunction)(const void *elem1, const void
*elem2);

Allows the sorting of arbitrary lists by giving a function to compare two list elements. We
use the system qsort function for the actual sorting process.

If you use untyped wxList the sort function receives pointers to wxObject pointers
(wxObject **), so be careful to dereference appropriately - but, of course, a better
solution is to use list of appropriate type defined withWX_DECLARE_LIST.

Example:

 int listcompare(const void *arg1, const void *arg2)
 {
 return(compare(**(wxString **)arg1, // use the wxString
'compare'
 **(wxString **)arg2)); // function
 }

 void main()
 {
 wxList list;

 list.Append(new wxString("DEF"));
 list.Append(new wxString("GHI"));
 list.Append(new wxString("ABC"));
 list.Sort(listcompare);
 }

wwxxLLiissttBBooxx

A listbox is used to select one or more of a list of strings. The strings are displayed in a
scrolling box, with the selected string(s) marked in reverse video. A listbox can be single
selection (if an item is selected, the previous selection is removed) or multiple selection
(clicking an item toggles the item on or off independently of other selections).

List box elements are numbered from zero. Their number is limited in some platforms
(e.g. ca. 2000 on GTK).

A listbox callback gets an event wxEVT_COMMAND_LISTBOX_SELECT for single
clicks, and wxEVT_COMMAND_LISTBOX_DOUBLE_CLICKED for double clicks.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)

CHAPTER 5

750

wxObject (p. 897)

Include files

<wx/listbox.h>

Window styles

wxLB_SINGLE Single-selection list.
wxLB_MULTIPLE Multiple-selection list: the user can toggle multiple items on

and off.
wxLB_EXTENDED Extended-selection list: the user can select multiple items

using the SHIFT key and the mouse or special key
combinations.

wxLB_HSCROLL Create horizontal scrollbar if contents are too wide
(Windows only).

wxLB_ALWAYS_SB Always show a vertical scrollbar.
wxLB_NEEDED_SB Only create a vertical scrollbar if needed.
wxLB_SORT The listbox contents are sorted in alphabetical order.

Note that wxLB_SINGLE, wxLB_MULTIPLE and wxLB_EXTENDEDstyles are mutually
exclusive and you can specify at most one of them (single selection is the default).

See also window styles overview (p. 1567).

Event handling

EVT_LISTBOX(id, func) Process a

wxEVT_COMMAND_LISTBOX_SELECTED
event, when an item on the list is selected.

EVT_LISTBOX_DCLICK(id, func) Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED event, when the listbox is doubleclicked.

See also

wxChoice (p. 116), wxComboBox (p. 147), wxListCtrl (p. 758), wxCommandEvent (p.
156)

wxListBox::wxListBox

 wxListBox()

Default constructor.

CHAPTER 5

751

 wxListBox(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n

Number of strings with which to initialise the control.

choices

An array of strings with which to initialise the control.

style

Window style. See wxListBox (p. 749).

validator

Window validator.

name

Window name.

See also

wxListBox::Create (p. 752), wxValidator (p. 1348)

wxPython note: The wxListBox constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxListBox::~wxListBox

void ~wxListBox()

CHAPTER 5

752

Destructor, destroying the list box.

wxListBox::Append

void Append(const wxString& item)

Adds the item to the end of the list box.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the list box, associating the given data with the item.

Parameters

item

String to add.

clientData

Client data to associate with the item.

wxListBox::Clear

void Clear()

Clears all strings from the list box.

wxListBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Creates the listbox for two-step construction. See wxListBox::wxListBox (p. 750) for
further details.

wxListBox::Delete

void Delete(int n)

Deletes an item from the listbox.

Parameters

n

CHAPTER 5

753

The zero-based item index.

wxListBox::Deselect

void Deselect(int n)

Deselects an item in the list box.

Parameters

n

The zero-based item to deselect.

Remarks

This applies to multiple selection listboxes only.

wxListBox::FindString

int FindString(const wxString& string)

Finds an item matching the given string.

Parameters

string

String to find.

Return value

The zero-based position of the item, or -1 if the string was not found.

wxListBox::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

n

The zero-based position of the item.

Return value

A pointer to the client data, or NULL if not present.

CHAPTER 5

754

wxListBox::GetSelection

int GetSelection() const

Gets the position of the selected item.

Return value

The position of the current selection.

Remarks

Applicable to single selection list boxes only.

See also

wxListBox::SetSelection (p. 757), wxListBox::GetStringSelection (p. 755),
wxListBox::GetSelections (p. 754)

wxListBox::GetSelections

int GetSelections(wxArrayInt& selections) const

Fill an array of ints with the positions of the currently selected items.

Parameters

selections

A reference to an wxArrayInt instance that is used to store the result of the query.

Return value

The number of selections.

Remarks

Use this with a multiple selection listbox.

See also

wxListBox::GetSelection (p. 754), wxListBox::GetStringSelection (p. 755),
wxListBox::SetSelection (p. 757)

wxPython note: The wxPython version of this method takes no parameters and returns
a tuple of the selected items.

wxPerl note: In wxPerl this method takes no parameters and returna the selected items
as a list.

CHAPTER 5

755

wxListBox::GetString

wxString GetString(int n) const

Returns the string at the given position.

Parameters

n

The zero-based position.

Return value

The string, or an empty string if the position was invalid.

wxListBox::GetStringSelection

wxString GetStringSelection() const

Gets the selected string - for single selection list boxes only. This must be copied by the
calling program if long term use is to be made of it.

See also

wxListBox::GetSelection (p. 754), wxListBox::GetSelections (p. 754),
wxListBox::SetSelection (p. 757)

wxListBox::InsertItems

void InsertItems(int nItems, const wxString items, int pos)

Insert the given number of strings before the specified position.

Parameters

nItems

Number of items in the array items

items

Labels of items to be inserted

pos

Position before which to insert the items: for example, if pos is 0 the items will be
inserted in the beginning of the listbox

wxPython note: The first two parameters are collapsed into a single parameter for

CHAPTER 5

756

wxPython, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nItemsand items.

wxListBox::Number

int Number() const

Returns the number of items in the listbox.

wxListBox::Selected

bool Selected(int n) const

Determines whether an item is selected.

Parameters

n

The zero-based item index.

Return value

TRUE if the given item is selected, FALSE otherwise.

wxListBox::Set

void Set(int n, const wxString* choices)

Clears the list box and adds the given strings. Not implemented for GTK.

Parameters

n

The number of strings to set.

choices

An array of strings to set.

Remarks

Deallocate the array from the calling program after this function has been called.

wxListBox::SetClientData

void SetClientData(int n, void* data)

CHAPTER 5

757

Associates the given client data pointer with the given item.

Parameters

n

The zero-based item index.

data

The client data to associate with the item.

wxListBox::SetFirstItem

void SetFirstItem(int n)

void SetFirstItem(const wxString& string)

Set the specified item to be the first visible item. Windows only.

Parameters

n

The zero-based item index.

string

The string that should be visible.

wxListBox::SetSelection

void SetSelection(int n, const bool select = TRUE)

Selects or deselects the given item. This does not cause a
wxEVT_COMMAND_LISTBOX_SELECT event to get emitted.

Parameters

n

The zero-based item index.

select

If TRUE, will select the item. If FALSE, will deselect it.

wxListBox::SetString

void SetString(int n, const wxString& string)

Sets the string value of an item.

CHAPTER 5

758

Parameters

n

The zero-based item index.

string

The string to set.

wxListBox::SetStringSelection

void SetStringSelection(const wxString& string, const bool select = TRUE)

Sets the current selection. This does not cause a
wxEVT_COMMAND_LISTBOX_SELECT event to get emitted.

Parameters

string

The item to select.

select

If TRUE, will select the item. If FALSE, will deselect it.

wwxxLLiissttCCttrrll

A list control presents lists in a number of formats: list view, report view, icon view and
small icon view. In any case, elements are numbered from zero. For all these modes,
the items are stored in the control and must be added to it using InsertItem (p. 769)
method.

A special case of report view quite different from the other modes of the list control is a
virtual control in which the items data (including text, images and attributes) is managed
by the main program and is requested by the control itself only when needed which
allows to have controls with millions of items without consuming much memory. To use
virtual list control you must use SetItemCount (p. 773) first and overload at least
OnGetItemText (p. 770) (and optionally OnGetItemImage (p. 770) and OnGetItemAttr (p.
770)) to return the information about the items when the control requests it.

Using many of wxListCtrl features is shown in thecorresponding sample (p. 1520).

To intercept events from a list control, use the event table macros described in
wxListEvent (p. 775).

Derived from

CHAPTER 5

759

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/listctrl.h>

Window styles

wxLC_LIST multicolumn list view, with optional small icons.

Columns are computed automatically, i.e. you
don't set columns as in wxLC_REPORT. In
other words, the list wraps, unlike a wxListBox.

wxLC_REPORT single or multicolumn report view, with optional
header.

wxLC_VIRTUAL virtual control, may only be used with
wxLC_REPORT

wxLC_ICON Large icon view, with optional labels.
wxLC_SMALL_ICON Small icon view, with optional labels.
wxLC_ALIGN_TOP Icons align to the top. Win32 default, Win32

only.
wxLC_ALIGN_LEFT Icons align to the left.
wxLC_AUTOARRANGE Icons arrange themselves. Win32 only.
wxLC_USER_TEXT The application provides label text on demand,

except for column headers. Win32 only.
wxLC_EDIT_LABELS Labels are editable: the application will be

notified when editing starts.
wxLC_NO_HEADER No header in report mode. Win32 only.
wxLC_SINGLE_SEL Single selection.
wxLC_SORT_ASCENDING Sort in ascending order (must still supply a

comparison callback in SortItems.
wxLC_SORT_DESCENDING Sort in descending order (must still supply a

comparison callback in SortItems.
wxLC_HRULES Draws light horizontal rules between rows in

report mode.
wxLC_VRULES Draws light vertical rules between columns in

report mode.

See also window styles overview (p. 1567).

Event handling

To process input from a list control, use these event handler macros to direct input to
member functions that take a wxListEvent (p. 775) argument.

EVT_LIST_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.
EVT_LIST_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.
EVT_LIST_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be prevented

CHAPTER 5

760

by calling Veto() (p. 897).
EVT_LIST_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented

by calling Veto() (p. 897).
EVT_LIST_DELETE_ITEM(id, func) Delete an item.
EVT_LIST_DELETE_ALL_ITEMS(id, func) Delete all items.
EVT_LIST_ITEM_SELECTED(id, func) The item has been selected.
EVT_LIST_ITEM_DESELECTED(id, func) The item has been deselected.
EVT_LIST_ITEM_ACTIVATED(id, func) The item has been activated (ENTER or double

click).
EVT_LIST_ITEM_FOCUSED(id, func) The currently focused item has changed.
EVT_LIST_ITEM_RIGHT_CLICK(id, func) An item has been right-clicked.
EVT_LIST_KEY_DOWN(id, func) A key has been pressed.
EVT_LIST_INSERT_ITEM(id, func) An item has been inserted.
EVT_LIST_COL_CLICK(id, func) A column (m_col) has been left-clicked.
EVT_LIST_COL_RIGHT_CLICK(id, func) A column (m_col) has been right-clicked.
EVT_LIST_COL_BEGIN_DRAG(id, func) The user started resizing a column - can be

vetoed.
EVT_LIST_COL_DRAGGING(id, func) The divider between columns is being dragged.
EVT_LIST_COL_END_DRAG(id, func) A column has been resized by the user.
EVT_LIST_CACHE_HINT(id, func) Prepare cache for a virtual list control

See also

wxListCtrl overview (p. 1595), wxListBox (p. 749), wxTreeCtrl (p. 1313), wxImageList (p.
710), wxListEvent (p. 775)

wxListCtrl::wxListCtrl

 wxListCtrl()

Default constructor.

 wxListCtrl(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxLC_ICON,
const wxValidator& validator = wxDefaultValidator, const wxString& name = "listCtrl")

Constructor, creating and showing a list control.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

CHAPTER 5

761

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

style

Window style. See wxListCtrl (p. 758).

validator

Window validator.

name

Window name.

See also

wxListCtrl::Create (p. 762), wxValidator (p. 1348)

wxListCtrl::~wxListCtrl

void ~wxListCtrl()

Destructor, destroying the list control.

wxListCtrl::Arrange

bool Arrange(int flag = wxLIST_ALIGN_DEFAULT)

Arranges the items in icon or small icon view. This only has effect on Win32. flag is one
of:

wxLIST_ALIGN_DEFAULT Default alignment.
wxLIST_ALIGN_LEFT Align to the left side of the control.
wxLIST_ALIGN_TOP Align to the top side of the control.
wxLIST_ALIGN_SNAP_TO_GRID Snap to grid.

wxListCtrl::AssignImageList

void AssignImageList(wxImageList* imageList, int which)

Sets the image list associated with the control and takes ownership of it (i.e. the control
will, unlike when using SetImageList, delete the list when destroyed). which is one of
wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the last
is unimplemented).

CHAPTER 5

762

See also

wxListCtrl::SetImageList (p. 771)

wxListCtrl::ClearAll

void ClearAll()

Deletes all items and all columns.

wxListCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxLC_ICON,
const wxValidator& validator = wxDefaultValidator, const wxString& name = "listCtrl")

Creates the list control. See wxListCtrl::wxListCtrl (p. 760) for further details.

wxListCtrl::DeleteAllItems

bool DeleteAllItems()

Deletes all the items in the list control.

NB: This function does not send thewxEVT_COMMAND_LIST_DELETE_ITEM event
because deleting many items from the control would be too slow then (unlike DeleteItem
(p. 762)).

wxListCtrl::DeleteColumn

bool DeleteColumn(int col)

Deletes a column.

wxListCtrl::DeleteItem

bool DeleteItem(long item)

Deletes the specified item. This function sends
thewxEVT_COMMAND_LIST_DELETE_ITEM event for the item being deleted.

See also: DeleteAllItems (p. 762)

CHAPTER 5

763

wxListCtrl::EditLabel

void EditLabel(long item)

Starts editing the label of the given item. This function generates a
EVT_LIST_BEGIN_LABEL_EDIT event which can be vetoed so that no text control will
appear for in-place editing.

If the user changed the label (i.e. s/he does not press ESC or leave the text control
without changes, a EVT_LIST_END_LABEL_EDIT event will be sent which can be
vetoed as well.

wxListCtrl::EnsureVisible

bool EnsureVisible(long item)

Ensures this item is visible.

wxListCtrl::FindItem

long FindItem(long start, const wxString& str, const bool partial = FALSE)

Find an item whose label matches this string, starting from the item after start or the
beginning if start is -1.

long FindItem(long start, long data)

Find an item whose data matches this data, starting from the item after start or the
beginning if 'start' is -1.

long FindItem(long start, const wxPoint& pt, int direction)

Find an item nearest this position in the specified direction, starting from the item after
start or the beginning if start is -1.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

FindItem(start, str, partial=FALSE)
FindItemData(start, data)
FindItemAtPos(start, point, direction)

wxPerl note: In wxPerl there are three methods instead of a single overloaded method:

FindItem(start, str, partial = FALSE)
FindItemData(start, data)
FindItemAtPos(start, point, direction)

CHAPTER 5

764

wxListCtrl::GetColumn

bool GetColumn(int col, wxListItem& item) const

Gets information about this column. See wxListCtrl::SetItem (p. 772) for more
information.

wxPerl note: In wxPerl this method takes only the col parameter and returns a
Wx::ListItem (or undef).

wxListCtrl::GetColumnWidth

int GetColumnWidth(int col) const

Gets the column width (report view only).

wxListCtrl::GetCountPerPage

int GetCountPerPage() const

Gets the number of items that can fit vertically in the visible area of the list control (list or
report view) or the total number of items in the list control (icon or small icon view).

wxListCtrl::GetEditControl

wxTextCtrl& GetEditControl() const

Gets the edit control for editing labels.

wxListCtrl::GetImageList

wxImageList* GetImageList(int which) const

Returns the specified image list. which may be one of:

wxIMAGE_LIST_NORMAL The normal (large icon) image list.
wxIMAGE_LIST_SMALL The small icon image list.
wxIMAGE_LIST_STATE The user-defined state image list (unimplemented).

wxListCtrl::GetItem

CHAPTER 5

765

bool GetItem(wxListItem& info) const

Gets information about the item. See wxListCtrl::SetItem (p. 772) for more information.

You must call info.SetId() to the ID of item you're interested in before calling this method.

wxPython note: The wxPython version of this method takes an integer parameter for
the item ID, an optional integer for the column number, and returns the wxListItem
object.

wxPerl note: In wxPerl this method takes as parameter the ID of the item and (
optionally) the column, and returns a Wx::ListItem object.

wxListCtrl::GetItemCount

int GetItemCount() const

Returns the number of items in the list control.

wxListCtrl::GetItemData

long GetItemData(long item) const

Gets the application-defined data associated with this item.

wxListCtrl::GetItemPosition

bool GetItemPosition(long item, wxPoint& pos) const

Returns the position of the item, in icon or small icon view.

wxPython note: The wxPython version of this method accepts only the item ID and
returns the wxPoint.

wxPerl note: In wxPerl this method takes only the item parameter and returns a
Wx::Point (or undef).

wxListCtrl::GetItemRect

bool GetItemRect(long item, wxRect& rect, int code = wxLIST_RECT_BOUNDS)
const

Returns the rectangle representing the item's size and position, in client coordinates.

code is one of wxLIST_RECT_BOUNDS, wxLIST_RECT_ICON,

CHAPTER 5

766

wxLIST_RECT_LABEL.

wxPython note: The wxPython version of this method accepts only the item ID and
code and returns the wxRect.

wxPerl note: In wxPerl this method takes only the item parameter and retutrns a
Wx::Rect (or undef).

wxListCtrl::GetItemSpacing

int GetItemSpacing(bool isSmall) const

Retrieves the spacing between icons in pixels. If small is TRUE, gets the spacing for the
small icon view, otherwise the large icon view.

wxListCtrl::GetItemState

int GetItemState(long item, long stateMask) const

Gets the item state. For a list of state flags, see wxListCtrl::SetItem (p. 772).

The stateMask indicates which state flags are of interest.

wxListCtrl::GetItemText

wxString GetItemText(long item) const

Gets the item text for this item.

wxListCtrl::GetNextItem

long GetNextItem(long item, int geometry = wxLIST_NEXT_ALL, int state =
wxLIST_STATE_DONTCARE) const

Searches for an item with the given goemetry or state, starting fromitem but excluding
the item itself. If item is -1, the first item that matches the specified flags will be returned.

Returns the first item with given state following item or -1 if no such item found.

This function may be used to find all selected items in the control like this:

 long item = -1;
 for (;;)
 {
 item = listctrl->GetNextItem(item,
 wxLIST_NEXT_ALL,
 wxLIST_STATE_SELECTED);

CHAPTER 5

767

 if (item == -1)
 break;

 // this item is selected - do whatever is needed with it
 wxLogMessage("Item %ld is selected."), item);
 }

geometry can be one of:

wxLIST_NEXT_ABOVE Searches for an item above the specified item.
wxLIST_NEXT_ALL Searches for subsequent item by index.
wxLIST_NEXT_BELOW Searches for an item below the specified item.
wxLIST_NEXT_LEFT Searches for an item to the left of the specified item.
wxLIST_NEXT_RIGHT Searches for an item to the right of the specified item.

NB: this parameters is only supported by wxMSW currently and ignored on other
platforms.

state can be a bitlist of the following:

wxLIST_STATE_DONTCARE Don't care what the state is.
wxLIST_STATE_DROPHILITED The item indicates it is a drop target.
wxLIST_STATE_FOCUSED The item has the focus.
wxLIST_STATE_SELECTED The item is selected.
wxLIST_STATE_CUT The item is selected as part of a cut and paste operation.

wxListCtrl::GetSelectedItemCount

int GetSelectedItemCount() const

Returns the number of selected items in the list control.

wxListCtrl::GetTextColour

wxColour GetTextColour() const

Gets the text colour of the list control.

wxListCtrl::GetTopItem

long GetTopItem() const

Gets the index of the topmost visible item when in list or report view.

wxListCtrl::HitTest

CHAPTER 5

768

long HitTest(const wxPoint& point, int& flags)

Determines which item (if any) is at the specified point, giving details in flags. flags will
be a combination of the following flags:

wxLIST_HITTEST_ABOVE Above the client area.
wxLIST_HITTEST_BELOW Below the client area.
wxLIST_HITTEST_NOWHERE In the client area but below the last item.
wxLIST_HITTEST_ONITEMICON On the bitmap associated with an item.
wxLIST_HITTEST_ONITEMLABEL On the label (string) associated with an item.
wxLIST_HITTEST_ONITEMRIGHT In the area to the right of an item.
wxLIST_HITTEST_ONITEMSTATEICON On the state icon for a tree view item that is

in a user-defined state.
wxLIST_HITTEST_TOLEFT To the right of the client area.
wxLIST_HITTEST_TORIGHT To the left of the client area.
wxLIST_HITTEST_ONITEM Combination of wxLIST_HITTEST_ONITEMICON,

wxLIST_HITTEST_ONITEMLABEL,
wxLIST_HITTEST_ONITEMSTATEICON.

wxPython note: A tuple of values is returned in the wxPython version of this method.
The first value is the item id and the second is the flags value mentioned above.

wxPerl note: In wxPerl this method only takes the point parameter and returns a 2-
element list (item, flags).

wxListCtrl::InsertColumn

long InsertColumn(long col, wxListItem& info)

For list view mode (only), inserts a column. For more details, see wxListCtrl::SetItem (p.
772).

long InsertColumn(long col, const wxString& heading, int format =
wxLIST_FORMAT_LEFT, int width = -1)

For list view mode (only), inserts a column. For more details, see wxListCtrl::SetItem (p.
772).

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

InsertColumn(col, heading, format=wxLIST_FORMAT_LEFT, width=-1)
 Creates a column using a header string
only.

InsertColumnInfo(col, item) Creates a column using a wxListInfo.

CHAPTER 5

769

wxListCtrl::InsertItem

long InsertItem(wxListItem& info)

Inserts an item, returning the index of the new item if successful, -1 otherwise.

long InsertItem(long index, const wxString& label)

Inserts a string item.

long InsertItem(long index, int imageIndex)

Inserts an image item.

long InsertItem(long index, const wxString& label, int imageIndex)

Insert an image/string item.

Parameters

info

wxListItem object

index

Index of the new item, supplied by the application

label

String label

imageIndex

index into the image list associated with this control and view style

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

InsertItem(item) Inserts an item using a wxListItem.
InsertStringItem(index, label) Inserts a string item.
InsertImageItem(index, imageIndex) Inserts an image item.
InsertImageStringItem(index, label, imageIndex) Insert an image/string

item.

wxPerl note: In wxPerl there are four methods instead of a single overloaded method:

InsertItem(item) Inserts a Wx::ListItem
InsertStringItem(index, label) Inserts a string item
InsertImageItem(index, imageIndex) Inserts an image item
InsertImageStringItem(index, label, imageIndex) Inserts an item with a

string and an image

CHAPTER 5

770

wxListCtrl::OnGetItemAttr

virtual wxString OnGetItemAttr(long item)

This function may be overloaded in the derived class for a control with wxLC_VIRTUAL
style. It should return the attribute for the for the specified item or NULL to use the
default appearance parameters.

The base class version always returns NULL.

See also

OnGetItemImage (p. 770),
OnGetItemText (p. 770)

wxListCtrl::OnGetItemImage

virtual wxString OnGetItemImage(long item)

This function may be overloaded in the derived class for a control with wxLC_VIRTUAL
style. It should return the index of the items image in the controls image list or -1 for no
image.

The base class version always returns -1.

See also

OnGetItemText (p. 770),
OnGetItemAttr (p. 770)

wxListCtrl::OnGetItemText

virtual wxString OnGetItemText(long item, long column)

This function must be overloaded in the derived class for a control with wxLC_VIRTUAL
style. It should return the string containing the text of the given column for the specified
item.

See also

SetItemCount (p. 773),
OnGetItemImage (p. 770),
OnGetItemAttr (p. 770)

wxListCtrl::ScrollList

CHAPTER 5

771

bool ScrollList(int dx, int dy)

Scrolls the list control. If in icon, small icon or report view mode, dx specifies the number
of pixels to scroll. If in list view mode, dx specifies the number of columns to scroll.

If in icon, small icon or list view mode, dy specifies the number of pixels to scroll. If in
report view mode, dy specifies the number of lines to scroll.

wxListCtrl::SetBackgroundColour

void SetBackgroundColour(const wxColour& col)

Sets the background colour (GetBackgroundColour already implicit in wxWindow class).

wxListCtrl::SetColumn

bool SetColumn(int col, wxListItem& item)

Sets information about this column. See wxListCtrl::SetItem (p. 772) for more
information.

wxListCtrl::SetColumnWidth

bool SetColumnWidth(int col, int width)

Sets the column width.

width can be a width in pixels or wxLIST_AUTOSIZE (-1) or
wxLIST_AUTOSIZE_USEHEADER (-2). wxLIST_AUTOSIZE will resize the column to
the length of its longest item. wxLIST_AUTOSIZE_USEHEADER will resize the column
to the length of the header (Win32) or 80 pixels (other platforms).

In small or normal icon view, col must be -1, and the column width is set for all columns.

wxListCtrl::SetImageList

void SetImageList(wxImageList* imageList, int which)

Sets the image list associated with the control. which is one of
wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the last
is unimplemented).

This method does not take ownership of the image list, you have to delete it yourself.

See also

CHAPTER 5

772

wxListCtrl::AssignImageList (p. 761)

wxListCtrl::SetItem

bool SetItem(wxListItem& info)

long SetItem(long index, int col, const wxString& label, int imageId = -1)

Sets information about the item.

wxListItem is a class with the following members:

long m_mask Indicates which fields are valid. See the list of valid mask

flags below.
long m_itemId The zero-based item position.
int m_col Zero-based column, if in report mode.
long m_state The state of the item. See the list of valid state flags below.
long m_stateMask A mask indicating which state flags are valid. See the list of

valid state flags below.
wxString m_text The label/header text.
int m_image The zero-based index into an image list.
long m_data Application-defined data.
int m_format For columns only: the format. Can be

wxLIST_FORMAT_LEFT, wxLIST_FORMAT_RIGHT or
wxLIST_FORMAT_CENTRE.

int m_width For columns only: the column width.

The m_mask member contains a bitlist specifying which of the other fields are valid. The
flags are:

wxLIST_MASK_STATE The m_state field is valid.
wxLIST_MASK_TEXT The m_text field is valid.
wxLIST_MASK_IMAGE The m_image field is valid.
wxLIST_MASK_DATA The m_data field is valid.
wxLIST_MASK_WIDTH The m_width field is valid.
wxLIST_MASK_FORMAT The m_format field is valid.

The m_stateMask and m_state members take flags from the following:

The wxListItem object can also contain item-specific colour and font information: for this
you need to call one of SetTextColour(), SetBackgroundColour() or SetFont() functions
on it passing it the colour/font to use. If the colour/font is not specified, the default list
control colour/font is used.

wxLIST_STATE_DONTCARE Don't care what the state is. Win32 only.
wxLIST_STATE_DROPHILITED The item is highlighted to receive a drop event.

Win32 only.

CHAPTER 5

773

wxLIST_STATE_FOCUSED The item has the focus.
wxLIST_STATE_SELECTED The item is selected.
wxLIST_STATE_CUT The item is in the cut state. Win32 only.

long SetItem(long index, int col, const wxString& label, int imageId = -1)

Sets a string field at a particular column.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetItem(item) Sets information about the given wxListItem.
SetStringItem(index, col, label, imageId) Sets a string or image at a

given location.

wxListCtrl::SetItemCount

void SetItemCount(long count)

This method can only be used with virtual list controls. It is used to indicate to the control
the number of items it contains. After calling it, the main program should be ready to
handle calls to various item callbacks (such asOnGetItemText (p. 770)) for all vitems in
the range from 0 to count.

wxListCtrl::SetItemData

bool SetItemData(long item, long data)

Associates application-defined data with this item.

wxListCtrl::SetItemImage

bool SetItemImage(long item, int image, int selImage)

Sets the unselected and selected images associated with the item. The images are
indices into the image list associated with the list control.

wxListCtrl::SetItemPosition

bool SetItemPosition(long item, const wxPoint& pos)

Sets the position of the item, in icon or small icon view.

CHAPTER 5

774

wxListCtrl::SetItemState

bool SetItemState(long item, long state, long stateMask)

Sets the item state. For a list of state flags, see wxListCtrl::SetItem (p. 772).

The stateMask indicates which state flags are valid.

wxListCtrl::SetItemText

void SetItemText(long item, const wxString& text)

Sets the item text for this item.

wxListCtrl::SetSingleStyle

void SetSingleStyle(long style, const bool add = TRUE)

Adds or removes a single window style.

wxListCtrl::SetTextColour

void SetTextColour(const wxColour& col)

Sets the text colour of the list control.

wxListCtrl::SetWindowStyleFlag

void SetWindowStyleFlag(long style)

Sets the whole window style.

wxListCtrl::SortItems

bool SortItems(wxListCtrlCompare fnSortCallBack, long data)

Call this function to sort the items in the list control. Sorting is done using the specified
fnSortCallBack function. This function must have the following prototype:

int wxCALLBACK wxListCompareFunction(long item1, long item2, long
sortData)

It is called each time when the two items must be compared and should return 0 if the
items are equal, negative value if the first item is less than the second one and positive
value if the first one is greater than the second one (the same convention as used by

CHAPTER 5

775

qsort(3)).

Parameters

item1

client data associated with the first item (NOT the index).

item2

client data associated with the second item (NOT the index).

data

the value passed to SortItems() itself.

Notice that the control may only be sorted on client data associated with the items, so
you must use SetItemData (p. 773) if you want to be able to sort the items in the control.

Please see the listctrl sample (p. 1520) for an example of using this function.

wxPython note: wxPython uses the sortData parameter to pass the Python function to
call, so it is not available for programmer use. Call SortItems with a reference to a
callable object that expects two parameters.

wxPerl note: In wxPerl the comparison function must take just two parameters;
however, you may use a closure to achieve an effect similar to the SortItems third
parameter.

wwxxLLiissttEEvveenntt

A list event holds information about events associated with wxListCtrl objects.

Derived from

wxNotifyEvent (p. 896)
wxCommandEvent (p. 156)
wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/listctrl.h>

Event table macros

To process input from a list control, use these event handler macros to direct input to
member functions that take a wxListEvent argument.

EVT_LIST_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.

CHAPTER 5

776

EVT_LIST_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.
EVT_LIST_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be prevented

by calling Veto() (p. 897).
EVT_LIST_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented

by calling Veto() (p. 897).
EVT_LIST_DELETE_ITEM(id, func) Delete an item.
EVT_LIST_DELETE_ALL_ITEMS(id, func) Delete all items.
EVT_LIST_ITEM_SELECTED(id, func) The item has been selected.
EVT_LIST_ITEM_DESELECTED(id, func) The item has been deselected.
EVT_LIST_ITEM_ACTIVATED(id, func) The item has been activated (ENTER or double

click).
EVT_LIST_ITEM_FOCUSED(id, func) The currently focused item has changed.
EVT_LIST_ITEM_RIGHT_CLICK(id, func) An item has been right-clicked.
EVT_LIST_KEY_DOWN(id, func) A key has been pressed.
EVT_LIST_INSERT_ITEM(id, func) An item has been inserted.
EVT_LIST_COL_CLICK(id, func) A column (m_col) has been left-clicked.
EVT_LIST_COL_RIGHT_CLICK(id, func) A column (m_col) has been right-clicked.
EVT_LIST_COL_BEGIN_DRAG(id, func) The user started resizing a column - can be

vetoed.
EVT_LIST_COL_DRAGGING(id, func) The divider between columns is being dragged.
EVT_LIST_COL_END_DRAG(id, func) A column has been resized by the user.
EVT_LIST_CACHE_HINT(id, func) Prepare cache for a virtual list control

See also

wxListCtrl (p. 758)

wxListEvent::wxListEvent

 wxListEvent(WXTYPE commandType = 0, int id = 0)

Constructor.

wxListEvent::GetCacheFrom

long GetCacheFrom() const

For EVT_LIST_CACHE_HINT event only: return the first item which the list control
advises us to cache.

wxListEvent::GetCacheTo

long GetCacheTo() const

CHAPTER 5

777

For EVT_LIST_CACHE_HINT event only: return the last item (inclusive) which the list
control advises us to cache.

wxListEvent::GetCode

int GetCode () const

Key code if the event is a keypress event.

wxListEvent::GetIndex

long GetIndex() const

The item index.

wxListEvent::GetColumn

int GetColumn() const

The column position: it is only used with COL events. For the column dragging events, it
is the column to the left of the divider being dragged, for the column click events it may
be -1 if the user clicked in the list control header outside any column.

wxListEvent::Cancelled

bool Cancelled() const

TRUE if this event is an end edit event and the user cancelled the edit.

wxListEvent::GetPoint

wxPoint GetPoint() const

The position of the mouse pointer if the event is a drag event.

wxListEvent::GetLabel

const wxString& GetLabel() const

The label.

wxListEvent::GetText

CHAPTER 5

778

const wxString& GetText() const

The text.

wxListEvent::GetImage

int GetImage() const

The image.

wxListEvent::GetData

long GetData() const

The data.

wxListEvent::GetMask

long GetMask() const

The mask.

wxListEvent::GetItem

const wxListItem& GetItem() const

An item object, used by some events. See also wxListCtrl::SetItem (p. 772).

wwxxLLiissttOOffSSttrriinnggssLLiissttVVaalliiddaattoorr

This class validates a list of strings for a list view. When editing the property, a dialog
box is presented for adding, deleting or editing entries in the list. At present no
constraints may be supplied.

You can construct a string list property value by constructing a wxStringList object.

For example:

 myListValidatorRegistry.RegisterValidator((wxString)"stringlist",
 new wxListOfStringsListValidator);

 wxStringList *strings = new wxStringList("earth", "fire", "wind",

CHAPTER 5

779

"water", NULL);

 sheet->AddProperty(new wxProperty("fred", strings, "stringlist"));

See also

Validator classes (p. 1671)

wxListOfStringsListValidator::wxListofStringsListValidator

void wxListOfStringsListValidator(long flags=0)

Constructor.

wwxxLLooccaallee

wxLocale class encapsulates all language-dependent settings and is a generalization of
the C locale concept.

In wxWindows this class manages message catalogs which contain the translations of
the strings used to the current language.

wxPerl note: In wxPerl you can't use the '_' function name, so the Wx::Locale module
can export the gettext and gettext_noop under any given name.
 # this imports gettext (equivalent to Wx::GetTranslation
 # and gettext_noop (a noop)
 # into your module
 use Wx::Locale qw(:default);

 #

 # use the functions
 print gettext(``Panic!'');

 button = Wx::Button->new(window, -1, gettext(``Label''));

If you need to translate a lot of strings, then adding gettext() around each one is a long
task (that is why _() was introduced), so just choose a shorter name for gettext:
 #
 use Wx::Locale 'gettext' => 't',
 'gettext_noop' => 'gettext_noop';

 # ...

 # use the functions
 print t(``Panic!!'');

CHAPTER 5

780

 # ...

Derived from

No base class

See also

I18n overview (p. 1542)

Include files

<wx/intl.h>

Supported languages

The following wxLanguage constants may be used to specify the language in Init (p.
788) and are returned by GetSystemLanguage (p. 788):

 • wxLANGUAGE_DEFAULT -- user's default language as obtained from the

operating system
 • wxLANGUAGE_UNKNOWN -- returned by GetSystemLanguage (p. 788)if it fails

to detect the default language
 • wxLANGUAGE_USER_DEFINED -- user defined languages' integer identifiers

should start from this
 • wxLANGUAGE_ABKHAZIAN
 • wxLANGUAGE_AFAR
 • wxLANGUAGE_AFRIKAANS
 • wxLANGUAGE_ALBANIAN
 • wxLANGUAGE_AMHARIC
 • wxLANGUAGE_ARABIC
 • wxLANGUAGE_ARABIC_ALGERIA
 • wxLANGUAGE_ARABIC_BAHRAIN
 • wxLANGUAGE_ARABIC_EGYPT
 • wxLANGUAGE_ARABIC_IRAQ
 • wxLANGUAGE_ARABIC_JORDAN
 • wxLANGUAGE_ARABIC_KUWAIT
 • wxLANGUAGE_ARABIC_LEBANON
 • wxLANGUAGE_ARABIC_LIBYA
 • wxLANGUAGE_ARABIC_MOROCCO
 • wxLANGUAGE_ARABIC_OMAN
 • wxLANGUAGE_ARABIC_QATAR
 • wxLANGUAGE_ARABIC_SAUDI_ARABIA

CHAPTER 5

781

 • wxLANGUAGE_ARABIC_SUDAN
 • wxLANGUAGE_ARABIC_SYRIA
 • wxLANGUAGE_ARABIC_TUNISIA
 • wxLANGUAGE_ARABIC_UAE
 • wxLANGUAGE_ARABIC_YEMEN
 • wxLANGUAGE_ARMENIAN
 • wxLANGUAGE_ASSAMESE
 • wxLANGUAGE_AYMARA
 • wxLANGUAGE_AZERI
 • wxLANGUAGE_AZERI_CYRILLIC
 • wxLANGUAGE_AZERI_LATIN
 • wxLANGUAGE_BASHKIR
 • wxLANGUAGE_BASQUE
 • wxLANGUAGE_BELARUSIAN
 • wxLANGUAGE_BENGALI
 • wxLANGUAGE_BHUTANI
 • wxLANGUAGE_BIHARI
 • wxLANGUAGE_BISLAMA
 • wxLANGUAGE_BRETON
 • wxLANGUAGE_BULGARIAN
 • wxLANGUAGE_BURMESE
 • wxLANGUAGE_CAMBODIAN
 • wxLANGUAGE_CATALAN
 • wxLANGUAGE_CHINESE
 • wxLANGUAGE_CHINESE_SIMPLIFIED
 • wxLANGUAGE_CHINESE_TRADITIONAL
 • wxLANGUAGE_CHINESE_HONGKONG
 • wxLANGUAGE_CHINESE_MACAU
 • wxLANGUAGE_CHINESE_SINGAPORE
 • wxLANGUAGE_CHINESE_TAIWAN
 • wxLANGUAGE_CORSICAN
 • wxLANGUAGE_CROATIAN
 • wxLANGUAGE_CZECH
 • wxLANGUAGE_DANISH
 • wxLANGUAGE_DUTCH
 • wxLANGUAGE_DUTCH_BELGIAN
 • wxLANGUAGE_ENGLISH
 • wxLANGUAGE_ENGLISH_UK
 • wxLANGUAGE_ENGLISH_US
 • wxLANGUAGE_ENGLISH_AUSTRALIA
 • wxLANGUAGE_ENGLISH_BELIZE
 • wxLANGUAGE_ENGLISH_BOTSWANA
 • wxLANGUAGE_ENGLISH_CANADA
 • wxLANGUAGE_ENGLISH_CARIBBEAN
 • wxLANGUAGE_ENGLISH_DENMARK
 • wxLANGUAGE_ENGLISH_EIRE
 • wxLANGUAGE_ENGLISH_JAMAICA
 • wxLANGUAGE_ENGLISH_NEW_ZEALAND

CHAPTER 5

782

 • wxLANGUAGE_ENGLISH_PHILIPPINES
 • wxLANGUAGE_ENGLISH_SOUTH_AFRICA
 • wxLANGUAGE_ENGLISH_TRINIDAD
 • wxLANGUAGE_ENGLISH_ZIMBABWE
 • wxLANGUAGE_ESPERANTO
 • wxLANGUAGE_ESTONIAN
 • wxLANGUAGE_FAEROESE
 • wxLANGUAGE_FARSI
 • wxLANGUAGE_FIJI
 • wxLANGUAGE_FINNISH
 • wxLANGUAGE_FRENCH
 • wxLANGUAGE_FRENCH_BELGIAN
 • wxLANGUAGE_FRENCH_CANADIAN
 • wxLANGUAGE_FRENCH_LUXEMBOURG
 • wxLANGUAGE_FRENCH_MONACO
 • wxLANGUAGE_FRENCH_SWISS
 • wxLANGUAGE_FRISIAN
 • wxLANGUAGE_GALICIAN
 • wxLANGUAGE_GEORGIAN
 • wxLANGUAGE_GERMAN
 • wxLANGUAGE_GERMAN_AUSTRIAN
 • wxLANGUAGE_GERMAN_BELGIUM
 • wxLANGUAGE_GERMAN_LIECHTENSTEIN
 • wxLANGUAGE_GERMAN_LUXEMBOURG
 • wxLANGUAGE_GERMAN_SWISS
 • wxLANGUAGE_GREEK
 • wxLANGUAGE_GREENLANDIC
 • wxLANGUAGE_GUARANI
 • wxLANGUAGE_GUJARATI
 • wxLANGUAGE_HAUSA
 • wxLANGUAGE_HEBREW
 • wxLANGUAGE_HINDI
 • wxLANGUAGE_HUNGARIAN
 • wxLANGUAGE_ICELANDIC
 • wxLANGUAGE_INDONESIAN
 • wxLANGUAGE_INTERLINGUA
 • wxLANGUAGE_INTERLINGUE
 • wxLANGUAGE_INUKTITUT
 • wxLANGUAGE_INUPIAK
 • wxLANGUAGE_IRISH
 • wxLANGUAGE_ITALIAN
 • wxLANGUAGE_ITALIAN_SWISS
 • wxLANGUAGE_JAPANESE
 • wxLANGUAGE_JAVANESE
 • wxLANGUAGE_KANNADA
 • wxLANGUAGE_KASHMIRI
 • wxLANGUAGE_KASHMIRI_INDIA
 • wxLANGUAGE_KAZAKH

CHAPTER 5

783

 • wxLANGUAGE_KERNEWEK
 • wxLANGUAGE_KINYARWANDA
 • wxLANGUAGE_KIRGHIZ
 • wxLANGUAGE_KIRUNDI
 • wxLANGUAGE_KONKANI
 • wxLANGUAGE_KOREAN
 • wxLANGUAGE_KURDISH
 • wxLANGUAGE_LAOTHIAN
 • wxLANGUAGE_LATIN
 • wxLANGUAGE_LATVIAN
 • wxLANGUAGE_LINGALA
 • wxLANGUAGE_LITHUANIAN
 • wxLANGUAGE_MACEDONIAN
 • wxLANGUAGE_MALAGASY
 • wxLANGUAGE_MALAY
 • wxLANGUAGE_MALAYALAM
 • wxLANGUAGE_MALAY_BRUNEI_DARUSSALAM
 • wxLANGUAGE_MALAY_MALAYSIA
 • wxLANGUAGE_MALTESE
 • wxLANGUAGE_MANIPURI
 • wxLANGUAGE_MAORI
 • wxLANGUAGE_MARATHI
 • wxLANGUAGE_MOLDAVIAN
 • wxLANGUAGE_MONGOLIAN
 • wxLANGUAGE_NAURU
 • wxLANGUAGE_NEPALI
 • wxLANGUAGE_NEPALI_INDIA
 • wxLANGUAGE_NORWEGIAN_BOKMAL
 • wxLANGUAGE_NORWEGIAN_NYNORSK
 • wxLANGUAGE_OCCITAN
 • wxLANGUAGE_ORIYA
 • wxLANGUAGE_OROMO
 • wxLANGUAGE_PASHTO
 • wxLANGUAGE_POLISH
 • wxLANGUAGE_PORTUGUESE
 • wxLANGUAGE_PORTUGUESE_BRAZILIAN
 • wxLANGUAGE_PUNJABI
 • wxLANGUAGE_QUECHUA
 • wxLANGUAGE_RHAETO_ROMANCE
 • wxLANGUAGE_ROMANIAN
 • wxLANGUAGE_RUSSIAN
 • wxLANGUAGE_RUSSIAN_UKRAINE
 • wxLANGUAGE_SAMOAN
 • wxLANGUAGE_SANGHO
 • wxLANGUAGE_SANSKRIT
 • wxLANGUAGE_SCOTS_GAELIC
 • wxLANGUAGE_SERBIAN
 • wxLANGUAGE_SERBIAN_CYRILLIC

CHAPTER 5

784

 • wxLANGUAGE_SERBIAN_LATIN
 • wxLANGUAGE_SERBO_CROATIAN
 • wxLANGUAGE_SESOTHO
 • wxLANGUAGE_SETSWANA
 • wxLANGUAGE_SHONA
 • wxLANGUAGE_SINDHI
 • wxLANGUAGE_SINHALESE
 • wxLANGUAGE_SISWATI
 • wxLANGUAGE_SLOVAK
 • wxLANGUAGE_SLOVENIAN
 • wxLANGUAGE_SOMALI
 • wxLANGUAGE_SPANISH
 • wxLANGUAGE_SPANISH_ARGENTINA
 • wxLANGUAGE_SPANISH_BOLIVIA
 • wxLANGUAGE_SPANISH_CHILE
 • wxLANGUAGE_SPANISH_COLOMBIA
 • wxLANGUAGE_SPANISH_COSTA_RICA
 • wxLANGUAGE_SPANISH_DOMINICAN_REPUBLIC
 • wxLANGUAGE_SPANISH_ECUADOR
 • wxLANGUAGE_SPANISH_EL_SALVADOR
 • wxLANGUAGE_SPANISH_GUATEMALA
 • wxLANGUAGE_SPANISH_HONDURAS
 • wxLANGUAGE_SPANISH_MEXICAN
 • wxLANGUAGE_SPANISH_MODERN
 • wxLANGUAGE_SPANISH_NICARAGUA
 • wxLANGUAGE_SPANISH_PANAMA
 • wxLANGUAGE_SPANISH_PARAGUAY
 • wxLANGUAGE_SPANISH_PERU
 • wxLANGUAGE_SPANISH_PUERTO_RICO
 • wxLANGUAGE_SPANISH_URUGUAY
 • wxLANGUAGE_SPANISH_US
 • wxLANGUAGE_SPANISH_VENEZUELA
 • wxLANGUAGE_SUNDANESE
 • wxLANGUAGE_SWAHILI
 • wxLANGUAGE_SWEDISH
 • wxLANGUAGE_SWEDISH_FINLAND
 • wxLANGUAGE_TAGALOG
 • wxLANGUAGE_TAJIK
 • wxLANGUAGE_TAMIL
 • wxLANGUAGE_TATAR
 • wxLANGUAGE_TELUGU
 • wxLANGUAGE_THAI
 • wxLANGUAGE_TIBETAN
 • wxLANGUAGE_TIGRINYA
 • wxLANGUAGE_TONGA
 • wxLANGUAGE_TSONGA
 • wxLANGUAGE_TURKISH
 • wxLANGUAGE_TURKMEN

CHAPTER 5

785

 • wxLANGUAGE_TWI
 • wxLANGUAGE_UIGHUR
 • wxLANGUAGE_UKRAINIAN
 • wxLANGUAGE_URDU
 • wxLANGUAGE_URDU_INDIA
 • wxLANGUAGE_URDU_PAKISTAN
 • wxLANGUAGE_UZBEK
 • wxLANGUAGE_UZBEK_CYRILLIC
 • wxLANGUAGE_UZBEK_LATIN
 • wxLANGUAGE_VIETNAMESE
 • wxLANGUAGE_VOLAPUK
 • wxLANGUAGE_WELSH
 • wxLANGUAGE_WOLOF
 • wxLANGUAGE_XHOSA
 • wxLANGUAGE_YIDDISH
 • wxLANGUAGE_YORUBA
 • wxLANGUAGE_ZHUANG
 • wxLANGUAGE_ZULU

wxLocale::wxLocale

 wxLocale()

This is the default constructor and it does nothing to initialize the object: Init() (p. 788)
must be used to do that.

 wxLocale(int language, int flags = wxLOCALE_LOAD_DEFAULT |
wxLOCALE_CONV_ENCODING)

See Init() (p. 788) for parameters description.

 wxLocale(const char *szName, const char *szShort = NULL, const char *szLocale =
NULL, bool bLoadDefault = TRUE, bool bConvertEncoding = FALSE)

See Init() (p. 788) for parameters description.

The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of standard C
library functions such as printf() or strftime(). Second, this wxLocale object becomes the
new current global locale for the application and so all subsequent calls to
wxGetTranslation() will try to translate the messages using the message catalogs for this
locale.

wxLocale::~wxLocale

 ~wxLocale()

CHAPTER 5

786

The destructor, like the constructor, also has global side effects: the previously set locale
is restored and so the changes described in Init (p. 788) documentation are rolled back.

wxLocale::AddCatalog

bool AddCatalog(const char *szDomain)

Add a catalog for use with the current locale: it is searched for in standard places
(current directory first, then the system one), but you may also prepend additional
directories to the search path with AddCatalogLookupPathPrefix() (p. 786).

All loaded catalogs will be used for message lookup by GetString() for the current locale.

Returns TRUE if catalog was successfully loaded, FALSE otherwise (which might mean
that the catalog is not found or that it isn't in the correct format).

wxLocale::AddCatalogLookupPathPrefix

void AddCatalogLookupPathPrefix(const wxString& prefix)

Add a prefix to the catalog lookup path: the message catalog files will be looked up
under prefix/<lang>/LC_MESSAGES, prefix/LC_MESSAGES and prefix (in this order).

This only applies to subsequent invocations of AddCatalog()!

wxLocale::AddLanguage

static void AddLanguage(const wxLanguageInfo& info)

Adds custom, user-defined language to the database of known languages. This
database is used in conjuction with the first form of Init (p. 788).

wxLanguageInfo is defined as follows:

struct WXDLLEXPORT wxLanguageInfo
{
 int Language; // wxLanguage id
 wxString CanonicalName; // Canonical name, e.g. fr_FR
#ifdef __WIN32__
 wxUint32 WinLang, WinSublang; // Win32 language identifiers
 // (LANG_xxxx, SUBLANG_xxxx)
#endif
 wxString Description; // human-readable name of the
language
};

Language should be greater than wxLANGUAGE_USER_DEFINED.

CHAPTER 5

787

wxPerl note: In wxPerl Wx::LanguageInfo has only one method:

Wx::LanguageInfo->new(language, canonicalName, WinLang, WinSubLang,
Description)

wxLocale::GetCanonicalName

wxString GetSysName () const

Returns the canonical form of current locale name. Canonical form is the one that is
used on UNIX systems: it is a two- or five-letter string in xx or xx_YY format, where xx is
ISO 639 code of language and YY is ISO 3166 code of the country. Examples are "en",
"en_GB", "en_US" or "fr_FR".

This form is internally used when looking up message catalogs.

Compare GetSysName (p. 788).

wxLocale::GetLanguage

int GetLanguage() const

Returns wxLanguage (p. 780) constant of current language. Note that you can call this
function only if you used the form ofInit (p. 788) that takes wxLanguage argument.

wxLocale::GetLocale

const char* GetLocale() const

Returns the locale name as passed to the constructor or Init() (p. 788). This is full,
human-readable name, e.g. "English" or "French".

wxLocale::GetName

const wxString& GetName () const

Returns the current short name for the locale (as given to the constructor or the Init()
function).

wxLocale::GetString

const char* GetString(const char *szOrigString, const char *szDomain = NULL)
const

Retrieves the translation for a string in all loaded domains unless the szDomain

CHAPTER 5

788

parameter is specified (and then only this catalog/domain is searched).

Returns original string if translation is not available (in this case an error message is
generated the first time a string is not found; use wxLogNull (p. 1549) to suppress it).

Remarks

Domains are searched in the last to first order, i.e. catalogs added later override those
added before.

wxLocale::GetSysName

wxString GetSysName () const

Returns current platform-specific locale name as passed to setlocale().

Compare GetCanonicalName (p. 787).

wxLocale::GetSystemEncoding

static wxFontEncoding GetSystemEncoding() const

Tries to detect the user's default font encoding. Returns wxFontEncoding (p. 506) value
or wxFONTENCODING_SYSTEM if it couldn't be determined.

wxLocale::GetSystemEncodingName

static wxString GetSystemEncodingName () const

Tries to detect the name of the user's default font encoding. This string isn't particularly
useful for the application as its form is platform-dependent and so you should probably
use GetSystemEncoding (p. 788) instead.

Returns a user-readable string value or an empty string if it couldn't be determined.

wxLocale::GetSystemLanguage

static int GetSystemLanguage() const

Tries to detect the user's default language setting. Returns wxLanguage (p. 780) value
or wxLANGUAGE_UNKNOWN if the language-guessing algorithm failed.

wxLocale::Init

bool Init(int language = wxLANGUAGE_DEFAULT, int flags =

CHAPTER 5

789

wxLOCALE_LOAD_DEFAULT | wxLOCALE_CONV_ENCODING)

bool Init(const char *szName, const char *szShort = NULL, const char *szLocale =
NULL, bool bLoadDefault = TRUE, bool bConvertEncoding = FALSE)

The second form is deprecated, use the first one unless you know what you are doing.

Parameters

language

wxLanguage (p. 780) identifier of the locale. wxLANGUAGE_DEFAULT has
special meaning -- wxLocale will use system's default language (see
GetSystemLanguage (p. 788)).

flags

Combination of the following:wxLOCALE_LOAD_DEFAULTLoad the message
catalog for the given locale containing the
translations of standard wxWindows
messages automatically.

wxLOCALE_CONV_ENCODING Automatically convert message catalogs
to platform's native encoding. Note that it
will do only basic conversion between
well-known pair like iso8859-1 and
windows-1252 or iso8859-2 and
windows-1250. See Writing non-English
applications (p. 1543) for detailed
description of this behaviour.

szName

The name of the locale. Only used in diagnostic messages.

szShort

The standard 2 letter locale abbreviation and is used as the directory prefix when
looking for the message catalog files.

szLocale

The parameter for the call to setlocale(). Note that it is platform-specific.

bLoadDefault

May be set to FALSE to prevent loading of the message catalog for the given
locale containing the translations of standard wxWindows messages. This
parameter would be rarely used in normal circumstances.

bConvertEncoding

May be set to TRUE to do automatic conversion of message catalogs to platform's
native encoding. Note that it will do only basic conversion between well-known
pair like iso8859-1 and windows-1252 or iso8859-2 and windows-1250. See
Writing non-English applications (p. 1543) for detailed description of this
behaviour.

CHAPTER 5

790

The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of standard C
library functions such as printf() or strftime(). Second, this wxLocale object becomes the
new current global locale for the application and so all subsequent calls to
wxGetTranslation() will try to translate the messages using the message catalogs for this
locale.

Returns TRUE on success or FALSE if the given locale couldn't be set.

wxLocale::IsLoaded

bool IsLoaded(const char* domain) const

Check if the given catalog is loaded, and returns TRUE if it is.

According to GNU gettext tradition, each catalog normally corresponds to 'domain' which
is more or less the application name.

See also: AddCatalog (p. 786)

wxLocale::IsOk

bool IsOk() const

Returns TRUE if the locale could be set successfully.

wwxxLLoogg

wxLog class defines the interface for the log targets used by wxWindows logging
functions as explained in the wxLog overview (p. 1549). The only situations when you
need to directly use this class is when you want to derive your own log target because
the existing ones don't satisfy your needs. Another case is if you wish to customize the
behaviour of the standard logging classes (all of which respect the wxLog settings): for
example, set which trace messages are logged and which are not or change (or even
remove completely) the timestamp on the messages.

Otherwise, it is completely hidden behind the wxLogXXX() functions and you may not
even know about its existence.

See log overview (p. 1549) for the descriptions of wxWindows logging facilities.

Derived from

No base class

CHAPTER 5

791

Include files

<wx/log.h>

Static functions

The functions in this section work with and manipulate the active log target. The OnLog()
(p. 793) is called by the wxLogXXX() functions and invokes the DoLog() (p. 794) of the
active log target if any. Get/Set methods are used to install/query the current active
target and, finally, DontCreateOnDemand() (p. 795) disables the automatic creation of a
standard log target if none actually exists. It is only useful when the application is
terminating and shouldn't be used in other situations because it may easily lead to a loss
of messages.

OnLog (p. 793)
GetActiveTarget (p. 793)
SetActiveTarget (p. 794)
DontCreateOnDemand (p. 795)
Suspend (p. 794)
Resume (p. 794)

Logging functions

There are two functions which must be implemented by any derived class to actually
process the log messages: DoLog (p. 794) and DoLogString (p. 795). The second
function receives a string which just has to be output in some way and the easiest way to
write a new log target is to override just this function in the derived class. If more control
over the output format is needed, then the first function must be overridden which allows
to construct custom messages depending on the log level or even do completely
different things depending on the message severity (for example, throw away all
messages except warnings and errors, show warnings on the screen and forward the
error messages to the user's (or programmer's) cell phone - maybe depending on
whether the timestamp tells us if it is day or night in the current time zone).

There also functions to support message buffering. Why are they needed? Some of
wxLog implementations, most notably the standard wxLogGui class, buffer the
messages (for example, to avoid showing the user a zillion of modal message boxes one
after another - which would be really annoying). Flush() (p. 795) shows them all and
clears the buffer contents. Although this function doesn't do anything if the buffer is
already empty,HasPendingMessages() (p. 795) is also provided which allows to explicitly
verify it.

Flush (p. 795)
FlushActive (p. 795)
HasPendingMessages (p. 795)

CHAPTER 5

792

Customization

The functions below allow some limited customization of wxLog behaviour without
writing a new log target class (which, aside of being a matter of several minutes, allows
you to do anything you want).

The verbose messages are the trace messages which are not disabled in the release
mode and are generated by wxLogVerbose (p. 1490). They are not normally shown to
the user because they present little interest, but may be activated, for example, in order
to help the user find some program problem.

As for the (real) trace messages, their handling depends on the settings of the
(application global) trace mask. There are two ways to specify it: either by using
SetTraceMask (p. 796) and GetTraceMask (p. 796) and using wxLogTrace (p. 1491)
which takes an integer mask or by using AddTraceMask (p. 793) for string trace masks.

The difference between bit-wise and string trace masks is that a message using integer
trace mask will only be logged if all bits of the mask are set in the current mask while a
message using string mask will be logged simply if the mask had been added before to
the list of allowed ones.

For example,

// wxTraceOleCalls is one of standard bit masks
wxLogTrace(wxTraceRefCount | wxTraceOleCalls, "Active object ref count:
%d", nRef);

will do something only if the current trace mask contains both wxTraceRefCount and
wxTraceOle, but

// wxTRACE_OleCalls is one of standard string masks
wxLogTrace(wxTRACE_OleCalls, "IFoo::Bar() called");

will log the message if it was preceded by

wxLog::AddTraceMask(wxTRACE_OleCalls);

Using string masks is simpler and allows to easily add custom ones, so this is the
preferred way of working with trace messages. The integer trace mask is kept for
compatibility and for additional (but very rarely needed) flexibility only.

The standard trace masks are given in wxLogTrace (p. 1491) documentation.

Finally, the wxLog::DoLog() function automatically prepends a time stamp to all the
messages. The format of the time stamp may be changed: it can be any string with %
specificators fully described in the documentation of the standard strftime() function. For
example, the default format is "[%d/%b/%y %H:%M:%S] " which gives something like
"[17/Sep/98 22:10:16] " (without quotes) for the current date. Setting an empty string as
the time format disables timestamping of the messages completely.

CHAPTER 5

793

NB: Timestamping is disabled for Visual C++ users in debug builds by default because
otherwise it would be impossible to directly go to the line from which the log message
was generated by simply clicking in the debugger window on the corresponding error
message. If you wish to enable it, please use SetTimestamp (p. 796) explicitly.

AddTraceMask (p. 793)
RemoveTraceMask (p. 797)
ClearTraceMasks (p. 793)
IsAllowedTraceMask (p. 796)
SetVerbose (p. 795)
GetVerbose (p. 796)
SetTimestamp (p. 796)
GetTimestamp (p. 796)
SetTraceMask (p. 796)
GetTraceMask (p. 796)

wxLog::AddTraceMask

static void AddTraceMask(const wxString& mask)

Add the mask to the list of allowed masks for wxLogTrace (p. 1491).

See also: RemoveTraceMask (p. 797)

wxLog::ClearTraceMasks

static void ClearTraceMasks()

Removes all trace masks previously set with AddTraceMask (p. 793).

See also: RemoveTraceMask (p. 797)

wxLog::OnLog

static void OnLog(wxLogLevel level, const char * message)

Forwards the message at specified level to the DoLog() function of the active log target if
there is any, does nothing otherwise.

wxLog::GetActiveTarget

static wxLog * GetActiveTarget()

Returns the pointer to the active log target (may be NULL).

CHAPTER 5

794

wxLog::SetActiveTarget

static wxLog * SetActiveTarget(wxLog * logtarget)

Sets the specified log target as the active one. Returns the pointer to the previous active
log target (may be NULL).

wxLog::Suspend

static void Suspend()

Suspends the logging until Resume (p. 794) is called. Note that the latter must be called
the same number of times as the former to undo it, i.e. if you call Suspend() twice you
must call Resume() twice as well.

Note that suspending the logging means that the log sink won't be be flushed
periodically, it doesn't have any effect if the current log target does the logging
immediately without waiting for Flush (p. 795) to be called (the standard GUI log target
only shows the log dialog when it is flushed, so Suspend() works as expected with it).

See also:

Resume (p. 794),
wxLogNull (p. 1549)

wxLog::Resume

static void Resume()

Resumes logging previously suspended by a call to Suspend (p. 794). All messages
logged in the meanwhile will be flushed soon.

wxLog::DoLog

virtual void DoLog(wxLogLevel level, const wxChar *msg, time_t timestamp)

Called to process the message of the specified severity. msg is the text of the message
as specified in the call of wxLogXXX() function which generated it and timestamp is the
moment when the message was generated.

The base class version prepends the timestamp to the message, adds a prefix
corresponding to the log level and then calls DoLogString (p. 795) with the resulting
string.

CHAPTER 5

795

wxLog::DoLogString

virtual void DoLogString(const wxChar *msg, time_t timestamp)

Called to log the specified string. The timestamp is already included into the string but
still passed to this function.

A simple implementation may just send the string to stdout or, better, stderr.

wxLog::DontCreateOnDemand

static void DontCreateOnDemand()

Instructs wxLog to not create new log targets on the fly if there is none currently.
(Almost) for internal use only: it is supposed to be called by the application shutdown
code.

Note that this function also calls ClearTraceMasks (p. 793).

wxLog::Flush

virtual void Flush()

Shows all the messages currently in buffer and clears it. If the buffer is already empty,
nothing happens.

wxLog::FlushActive

static void FlushActive()

Flushes the current log target if any, does nothing if there is none.

See also:

Flush (p. 795)

wxLog::HasPendingMessages

bool HasPendingMessages() const

Returns true if there are any messages in the buffer (not yet shown to the user). (Almost)
for internal use only.

wxLog::SetVerbose

CHAPTER 5

796

static void SetVerbose(bool verbose = TRUE)

Activates or desactivates verbose mode in which the verbose messages are logged as
the normal ones instead of being silently dropped.

wxLog::GetVerbose

static bool GetVerbose()

Returns whether the verbose mode is currently active.

wxLog::SetTimestamp

void SetTimestamp(const char * format)

Sets the timestamp format prepended by the default log targets to all messages. The
string may contain any normal characters as well as %prefixed format specificators, see
strftime() manual for details. Passing a NULL value (not empty string) to this function
disables message timestamping.

wxLog::GetTimestamp

const char * GetTimestamp() const

Returns the current timestamp format string.

wxLog::SetTraceMask

static void SetTraceMask(wxTraceMask mask)

Sets the trace mask, see Customization (p. 792)section for details.

wxLog::GetTraceMask

Returns the current trace mask, see Customization (p. 792) section for details.

wxLog::IsAllowedTraceMask

static bool IsAllowedTraceMask(const wxChar *mask)

Returns TRUE if the mask is one of allowed masks for wxLogTrace (p. 1491).

CHAPTER 5

797

See also: AddTraceMask (p. 793), RemoveTraceMask (p. 797)

wxLog::RemoveTraceMask

static void RemoveTraceMask(const wxString& mask)

Remove the mask from the list of allowed masks for wxLogTrace (p. 1491).

See also: AddTraceMask (p. 793)

wwxxLLooggCChhaaiinn

This simple class allows to chain log sinks, that is to install a new sink but keep passing
log messages to the old one instead of replacing it completely as SetActiveTarget (p.
794) does.

It is especially useful when you want to divert the logs somewhere (for example to a file
or a log window) but also keep showing the error messages using the standard dialogs
as wxLogGui (p. 1549) does by default.

Example of usage:

wxLogChain *logChain = new wxLogChain(new wxLogStderr);

// all the log messages are sent to stderr and also processed as
usually
...

delete logChain;

Derived from

wxLog (p. 790)

Include files

<wx/log.h>

wxLogChain::wxLogChain

 wxLogChain(wxLog *logger)

Sets the specified logger (which may be NULL) as the default log target but the log

CHAPTER 5

798

messages are also passed to the previous log target if any.

wxLogChain::~wxLogChain

 ~wxLogChain()

Destroys the previous log target.

wxLogChain::GetOldLog

wxLog * GetOldLog() const

Returns the pointer to the previously active log target (which may be NULL).

wxLogChain::IsPassingMessages

bool IsPassingMessages() const

Returns TRUE if the messages are passed to the previously active log target (default) or
FALSE if PassMessages (p. 798) had been called.

wxLogChain::PassMessages

void PassMessages(bool passMessages)

By default, the log messages are passed to the previously active log target. Calling this
function with FALSE parameter disables this behaviour (presumably temporarily, as you
shouldn't use wxLogChain at all otherwise) and it can be reenabled by calling it again
with passMessages set to TRUE.

wxLogChain::SetLog

void SetLog(wxLog *logger)

Sets another log target to use (may be NULL). The log target specified in the constructor
(p. 797) or in a previous call to this function is deleted.

This doesn't change the old log target value (the one the messages are forwarded to)
which still remains the same as was active when wxLogChain object was created.

wwxxLLooggGGuuii

CHAPTER 5

799

This is the default log target for the GUI wxWindows applications. It is passed to
wxLog::SetActiveTarget (p. 794) at the program startup and is deleted by wxWindows
during the program shut down.

Derived from

wxLog (p. 790)

Include files

<wx/log.h>

wxLogGui::wxLogGui

 wxLogGui()

Default constructor.

wwxxLLooggNNuullll

This class allows to temporarily suspend logging. All calls to the log functions during the
life time of an object of this class are just ignored.

In particular, it can be used to suppress the log messages given by wxWindows itself but
it should be noted that it is rarely the best way to cope with this problem as all log
messages are suppressed, even if they indicate a completely different error than the one
the programmer wanted to suppress.

For instance, the example of the overview:

 wxFile file;

 // wxFile.Open() normally complains if file can't be opened, we don't
want it
 {
 wxLogNull logNo;
 if (!file.Open("bar"))
 ... process error ourselves ...
 } // ~wxLogNull called, old log sink restored

 wxLogMessage("..."); // ok

CHAPTER 5

800

would be better written as:

 wxFile file;

 // don't try to open file if it doesn't exist, we are prepared to
deal with
 // this ourselves - but all other errors are not expected
 if (wxFile::Exists("bar"))
 {
 // gives an error message if the file couldn't be opened
 file.Open("bar");
 }
 else
 {
 ...
 }

Derived from

wxLog (p. 790)

Include files

<wx/log.h>

wxLogNull::wxLogNull

 wxLogNull()

Suspends logging.

wxLogNull::~wxLogNull

Resumes logging.

wwxxLLooggSSttddeerrrr

This class can be used to redirect the log messages to a C file stream (not to be
confused with C++ streams). It is the default log target for the non-GUI wxWindows
applications which send all the output to stderr.

Derived from

CHAPTER 5

801

wxLog (p. 790)

Include files

<wx/log.h>

See also

wxLogStream (p. 801)

wxLogStderr::wxLogStderr

 wxLogStderr(FILE *fp = NULL)

Constructs a log target which sends all the log messages to the given FILE. If it is NULL,
the messages are sent to stderr.

wwxxLLooggSSttrreeaamm

This class can be used to redirect the log messages to a C++ stream.

Please note that this class is only available if wxWindows was compiled with the
standard iostream library support (wxUSE_STD_IOSTREAM must be on).

Derived from

wxLog (p. 790)

Include files

<wx/log.h>

See also

wxLogStderr (p. 800),
wxStreamToTextRedirector (p. 1169)

wxLogStream::wxLogStream

 wxLogStream(std::ostream *ostr = NULL)

CHAPTER 5

802

Constructs a log target which sends all the log messages to the given output stream. If it
is NULL, the messages are sent to cerr.

wwxxLLooggTTeexxttCCttrrll

Using these target all the log messages can be redirected to a text control. The text
control must have been created with wxTE_MULTILINE style by the caller previously.

Derived from

wxLog (p. 790)

Include files

<wx/log.h>

See also

wxLogTextCtrl (p. 802),
wxStreamToTextRedirector (p. 1169)

wxLogTextCtrl::wxLogTextCtrl

 wxLogTextCtrl(wxTextCtrl *textctrl)

Constructs a log target which sends all the log messages to the given text control. The
textctrl parameter cannot be NULL.

wwxxLLooggWWiinnddooww

This class represents a background log window: to be precise, it collects all log
messages in the log frame which it manages but also passes them on to the log target
which was active at the moment of its creation. This allows, for example, to show all the
log messages in a frame but still continue to process them normally by showing the
standard log dialog.

Derived from

wxLogPassThrough (p. 804)

CHAPTER 5

803

Include files

<wx/log.h>

See also

wxLogTextCtrl (p. 802)

wxLogWindow::wxLogWindow

 wxLogWindow(wxFrame *parent, const wxChar *title, bool show = TRUE, bool
passToOld = TRUE)

Creates the log frame window and starts collecting the messages in it.

Parameters

parent

The parent window for the log frame, may be NULL

title

The title for the log frame

show

TRUE to show the frame initially (default), otherwise wxLogWindow::Show (p. 803)
must be called later.

passToOld

TRUE to process the log messages normally in addition to logging them in the log
frame (default), FALSE to only log them in the log frame.

wxLogWindow::Show

void Show(bool show = TRUE)

Shows or hides the frame.

wxLogWindow::GetFrame

wxFrame * GetFrame () const

Returns the associated log frame window. This may be used to position or resize it but
use wxLogWindow::Show (p. 803) to show or hide it.

CHAPTER 5

804

wxLogWindow::OnFrameCreate

virtual void OnFrameCreate (wxFrame *frame)

Called immediately after the log frame creation allowing for any extra initializations.

wxLogWindow::OnFrameClose

virtual void OnFrameClose(wxFrame *frame)

Called if the user closes the window interactively, will not be called if it is destroyed for
another reason (such as when program exits).

Return TRUE from here to allow the frame to close, FALSE to prevent this from
happening.

See also

wxLogWindow::OnFrameDelete (p. 804)

wxLogWindow::OnFrameDelete

virtual void OnFrameDelete (wxFrame *frame)

Called right before the log frame is going to be deleted: will always be called unlike
OnFrameClose() (p. 804).

wwxxLLooggPPaassssTThhrroouugghh

A special version of wxLogChain (p. 797) which uses itself as the new log target. Maybe
more clearly, it means that this is a log target which forwards the log messages to the
previously installed one in addition to processing them itself.

Unlike wxLogChain (p. 797) which is usually used directly as is, this class must be
derived from to implement DoLog (p. 794) and/or DoLogString (p. 795) methods.

Derived from

wxLogChain (p. 797)

Include files

<wx/log.h>

CHAPTER 5

805

wxLogPassThrough::wxLogPassThrough

Default ctor installs this object as the current active log target.

wwxxLLoonnggLLoonngg

This class represents a signed 64 bit long number. It is implemented using the native 64
bit type where available (machines with 64 bit longs or compilers which have (an analog
of) long long type) and uses the emulation code in the other cases which ensures that it
is the most efficient solution for working with 64 bit integers independently of the
architecture.

wxLongLong defines all usual arithmetic operations such as addition, substraction,
bitwise shifts and logical operations as well as multiplication and division (not yet for the
machines without native long long). It also has operators for implicit construction from
and conversion to the native long long type if it exists and long.

You would usually use this type in exactly the same manner as any other (built-in)
arithmetic type. Note that wxLongLong is a signed type, if you want unsigned values use
wxULongLong.

If a native (i.e. supported directly by the compiler) 64 bit integer type was found a
typedef wxLongLong_t will be defined to correspond it.

Derived from

No base class

Include files

<wx/longlong.h>

wxLongLong::wxLongLong

 wxLongLong()

Default constructor initializes the object to 0.

wxLongLong::wxLongLong

CHAPTER 5

806

 wxLongLong(wxLongLong_t ll)

Constructor from native long long (only for compilers supporting it).

wxLongLong::wxLongLong

 wxLongLong(long hi, unsigned long lo)

Constructor from 2 longs: the high and low part are combined into one wxLongLong.

wxLongLong::operator=

wxLongLong& operator operator=(wxLongLong_t ll)

Assignment operator from native long long (only for compilers supporting it).

wxLongLong::Abs

wxLongLong Abs() const

wxLongLong& Abs()

Returns an absolute value of wxLongLong - either making a copy (const version) or
modifying it in place (the second one). Not in wxULongLong.

wxLongLong::Assign

wxLongLong& Assign(double d)

This allows to convert a double value to wxLongLong type. Such conversion is not
always possible in which case the result will be silently truncated in a platform-
dependent way. Not in wxULongLong.

wxLongLong::GetHi

long GetHi() const

Returnes the high 32 bits of 64 bit integer.

wxLongLong::GetLo

unsigned long GetLo() const

CHAPTER 5

807

Returnes the low 32 bits of 64 bit integer.

wxLongLong::GetValue

wxLongLong_t GetValue() const

Convert to native long long (only for compilers supporting it)

wxLongLong::ToLong

long ToLong() const

Truncate wxLongLong to long. If the conversion loses data (i.e. the wxLongLong value is
outside the range of built-in long type), an assert will be triggered in debug mode.

wxLongLong::ToString

wxString ToString() const

Returns the string representation of a wxLongLong.

wxLongLong::operator+

wxLongLong operator+(const wxLongLong& ll) const

Adds 2 wxLongLongs together and returns the result.

wxLongLong::operator+=

wxLongLong& operator+(const wxLongLong& ll)

Add another wxLongLong to this one.

wxLongLong::operator++

wxLongLong& operator++()

wxLongLong& operator++(int)

Pre/post increment operator.

wxLongLong::operator-

CHAPTER 5

808

wxLongLong operator-() const

Returns the value of this wxLongLong with opposite sign. Not in wxULongLong.

wxLongLong::operator-

wxLongLong operator-(const wxLongLong& ll) const

Substracts 2 wxLongLongs and returns the result.

wxLongLong::operator-=

wxLongLong& operator-(const wxLongLong& ll)

Substracts another wxLongLong from this one.

wxLongLong::operator--

wxLongLong& operator--()

wxLongLong& operator--(int)

Pre/post decrement operator.

wwxxMMaasskk

This class encapsulates a monochrome mask bitmap, where the masked area is black
and the unmasked area is white. When associated with a bitmap and drawn in a device
context, the unmasked area of the bitmap will be drawn, and the masked area will not be
drawn.

Derived from

wxObject (p. 897)

Include files

<wx/bitmap.h>

Remarks

A mask may be associated with a wxBitmap (p. 55). It is used in wxDC::Blit (p. 328)
when the source device context is a wxMemoryDC (p. 828) with wxBitmap selected into

CHAPTER 5

809

it that contains a mask.

See also

wxBitmap (p. 55), wxDC::Blit (p. 328), wxMemoryDC (p. 828)

wxMask::wxMask

 wxMask()

Default constructor.

 wxMask(const wxBitmap (p. 55)& bitmap)

Constructs a mask from a monochrome bitmap.

wxPython note: This is the default constructor for wxMask in wxPython.

 wxMask(const wxBitmap (p. 55)& bitmap, const wxColour (p. 138)& colour)

Constructs a mask from a bitmap and a colour that indicates the background.

wxPython note: wxPython has an alternate wxMask constructor matching this form
called wxMaskColour.

 wxMask(const wxBitmap& bitmap, int index)

Constructs a mask from a bitmap and a palette index that indicates the background. Not
yet implemented for GTK.

Parameters

bitmap

A valid bitmap.

colour

A colour specifying the transparency RGB values.

index

Index into a palette, specifying the transparency colour.

wxMask::~wxMask

 ~wxMask()

Destroys the wxMask object and the underlying bitmap data.

CHAPTER 5

810

wxMask::Create

bool Create (const wxBitmap& bitmap)

Constructs a mask from a monochrome bitmap.

bool Create (const wxBitmap& bitmap, const wxColour& colour)

Constructs a mask from a bitmap and a colour that indicates the background.

bool Create (const wxBitmap& bitmap, int index)

Constructs a mask from a bitmap and a palette index that indicates the background. Not
yet implemented for GTK.

Parameters

bitmap

A valid bitmap.

colour

A colour specifying the transparency RGB values.

index

Index into a palette, specifying the transparency colour.

wwxxMMaaxxiimmiizzeeEEvveenntt

An event being sent when the frame is maximized (minimized) or restored.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process a maximize event, use this event handler macro to direct input to a member
function that takes a wxMaximizeEvent argument.

EVT_MAXIMIZE(func) Process a wxEVT_MAXIMIZE event.

CHAPTER 5

811

See also

Event handling overview (p. 1560), wxFrame::Maximize (p. 532), wxFrame::IsMaximized
(p. 532)

wxMaximizeEvent::wxMaximizeEvent

 wxMaximizeEvent(int id = 0)

Constructor.

wwxxMMBBCCoonnvv

This class is the base class of a hierarchy of classes capable of converting text strings
between multibyte (SBCS or DBCS) encodings and Unicode. It is itself a wrapper around
the standard libc mbstowcs() and wcstombs() routines, and has one predefined instance,
wxConvLibc.

Derived from

No base class

Include files

<wx/strconv.h>

See also

wxCSConv (p. 188), wxEncodingConverter (p. 425), wxMBConv classes overview (p.
1539)

wxMBConv::wxMBConv

 wxMBConv ()

Constructor.

wxMBConv::MB2WC

CHAPTER 5

812

virtual size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from multibyte encoding to Unicode, using the libc routine mbstowcs() (this is
overridden by derived classes). Returns the size of the destination buffer.

wxMBConv::WC2MB

virtual size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to multibyte encoding, using the libc routine wcstombs() (this is
overridden by derived classes). Returns the size of the destination buffer.

wxMBConv::cMB2WC

const wxWCharBuffer cMB2WC(const char* psz) const

Converts from multibyte encoding to Unicode by calling MB2WC, allocating a temporary
wxWCharBuffer to hold the result.

wxMBConv::cWC2MB

const wxCharBuffer cWC2MB(const wchar_t* psz) const

Converts from Unicode to multibyte encoding by calling WC2MB, allocating a temporary
wxCharBuffer to hold the result.

wxMBConv::cMB2WX

const char* cMB2WX(const char* psz) const

const wxWCharBuffer cMB2WX(const char* psz) const

Converts from multibyte encoding to the current wxChar type (which depends on
whether wxUSE_UNICODE is set to 1). If wxChar is char, it returns the parameter
unaltered. If wxChar is wchar_t, it returns the result in a wxWCharBuffer. The macro
wxMB2WXbuf is defined as the correct return type (without const).

wxMBConv::cWX2MB

const char* cWX2MB(const wxChar* psz) const

const wxCharBuffer cWX2MB(const wxChar* psz) const

Converts from the current wxChar type to multibyte encoding. If wxChar is char, it

CHAPTER 5

813

returns the parameter unaltered. If wxChar is wchar_t, it returns the result in a
wxCharBuffer. The macro wxWX2MBbuf is defined as the correct return type (without
const).

wxMBConv::cWC2WX

const wchar_t* cWC2WX(const wchar_t* psz) const

const wxCharBuffer cWC2WX(const wchar_t* psz) const

Converts from Unicode to the current wxChar type. If wxChar is wchar_t, it returns the
parameter unaltered. If wxChar is char, it returns the result in a wxCharBuffer. The
macro wxWC2WXbuf is defined as the correct return type (without const).

wxMBConv::cWX2WC

const wchar_t* cWX2WC(const wxChar* psz) const

const wxWCharBuffer cWX2WC(const wxChar* psz) const

Converts from the current wxChar type to Unicode. If wxChar is wchar_t, it returns the
parameter unaltered. If wxChar is char, it returns the result in a wxWCharBuffer. The
macro wxWX2WCbuf is defined as the correct return type (without const).

wwxxMMBBCCoonnvvFFiillee

This class converts file names between filesystem multibyte encoding and Unicode. It
has one predefined instance, wxConvFile. Since some platforms (e.g. Win32) use
Unicode in the filenames, and others (e.g. Unix) use multibyte encodings, this class
should only be used directly if wxMBFILES is defined to 1. A convenience macro,
wxFNCONV, is defined to wxConvFile.cWX2MB in this case. You could use it like this:

wxChar *name = wxT("rawfile.doc");
FILE *fil = fopen(wxFNCONV(name), "r");

(although it would be better to use wxFopen(name, wxT("r")) in this case.)

Derived from

wxMBConv (p. 811)

Include files

<wx/strconv.h>

CHAPTER 5

814

See also

wxMBConv classes overview (p. 1539)

wxMBConvFile::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from multibyte filename encoding to Unicode. Returns the size of the
destination buffer.

wxMBConvFile::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to multibyte filename encoding. Returns the size of the
destination buffer.

wwxxMMBBCCoonnvvUUTTFF77

This class converts between the UTF-7 encoding and Unicode. It has one predefined
instance, wxConvUTF7. Unfortunately, this class is not quite implemented yet.

Derived from

wxMBConv (p. 811)

Include files

<wx/strconv.h>

See also

wxMBConvUTF8 (p. 815), wxMBConv classes overview (p. 1539)

wxMBConvUTF7::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from UTF-7 encoding to Unicode. Returns the size of the destination buffer.

CHAPTER 5

815

wxMBConvUTF7::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to UTF-7 encoding. Returns the size of the destination buffer.

wwxxMMBBCCoonnvvUUTTFF88

This class converts between the UTF-8 encoding and Unicode. It has one predefined
instance, wxConvUTF8.

Derived from

wxMBConv (p. 811)

Include files

<wx/strconv.h>

See also

wxMBConvUTF7 (p. 814), wxMBConv classes overview (p. 1539)

Remarks

UTF-8 is a compatibility encoding used to encode Unicode text into anything that was
originally written for 8-bit strings, including (but not limited to) filenames, transfer
protocols, and database fields. Notable properties include:

 • Variable-length encoding able to encode up to 31 bits per character
 • ASCII characters (character values under 128) are encoded as plain ASCII (1

byte per character)
 • Null bytes do not occur in the encoding, except when there's an actual Unicode

null character
 • Preserves sort ordering for plain 8-bit comparison routines like strcmp()
 • High bit patterns unambiguates character boundaries, and makes it easy to

detect whether a string is encoded with UTF-8 or not

All of these properties make UTF-8 a very favorable solution in any situation where full
Unicode character support is desired while remaining compatible with code written with
only 8-bit extended-ASCII characters in mind.

CHAPTER 5

816

wxMBConvUTF8::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from UTF-8 encoding to Unicode. Returns the size of the destination buffer.

wxMBConvUTF8::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to UTF-8 encoding. Returns the size of the destination buffer.

wwxxMMDDIICChhiillddFFrraammee

An MDI child frame is a frame that can only exist on a wxMDIClientWindow (p. 819),
which is itself a child of wxMDIParentFrame (p. 821).

Derived from

wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/mdi.h>

Window styles

wxCAPTION Puts a caption on the frame.
wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |

wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION.

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif

only).
wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif

only).
wxRESIZE_BORDER Displays a resizeable border around the window (Motif

only; for Windows, it is implicit in wxTHICK_FRAME).
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (Windows and Motif only).
wxTHICK_FRAME Displays a thick frame around the window (Windows and

CHAPTER 5

817

Motif only).

See also window styles overview (p. 1567).

Remarks

Although internally an MDI child frame is a child of the MDI client window, in wxWindows
you create it as a child of wxMDIParentFrame (p. 821). You can usually forget that the
client window exists.

MDI child frames are clipped to the area of the MDI client window, and may be iconized
on the client window.

You can associate a menubar with a child frame as usual, although an MDI child doesn't
display its menubar under its own title bar. The MDI parent frame's menubar will be
changed to reflect the currently active child frame. If there are currently no children, the
parent frame's own menubar will be displayed.

See also

wxMDIClientWindow (p. 819), wxMDIParentFrame (p. 821), wxFrame (p. 525)

wxMDIChildFrame::wxMDIChildFrame

 wxMDIChildFrame ()

Default constructor.

 wxMDIChildFrame (wxMDIParentFrame* parent, wxWindowID id, const wxString&
title, const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize,
long style = wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent

The window parent. This should not be NULL.

id

The window identifier. It may take a value of -1 to indicate a default value.

title

The caption to be displayed on the frame's title bar.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by

CHAPTER 5

818

either the windowing system or wxWindows, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style

The window style. See wxMDIChildFrame (p. 816).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

None.

See also

wxMDIChildFrame::Create (p. 818)

wxMDIChildFrame::~wxMDIChildFrame

 ~wxMDIChildFrame ()

Destructor. Destroys all child windows and menu bar if present.

wxMDIChildFrame::Activate

void Activate()

Activates this MDI child frame.

See also

wxMDIChildFrame::Maximize (p. 819), wxMDIChildFrame::Restore (p. 819)

wxMDIChildFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxMDIChildFrame::wxMDIChildFrame (p.
817) for further details.

CHAPTER 5

819

wxMDIChildFrame::Maximize

void Maximize()

Maximizes this MDI child frame.

See also

wxMDIChildFrame::Activate (p. 818), wxMDIChildFrame::Restore (p. 819)

wxMDIChildFrame::Restore

void Restore()

Restores this MDI child frame (unmaximizes).

See also

wxMDIChildFrame::Activate (p. 818), wxMDIChildFrame::Maximize (p. 819)

wwxxMMDDIICClliieennttWWiinnddooww

An MDI client window is a child of wxMDIParentFrame (p. 821), and manages zero or
more wxMDIChildFrame (p. 816) objects.

Derived from

wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/mdi.h>

Remarks

The client window is the area where MDI child windows exist. It doesn't have to cover
the whole parent frame; other windows such as toolbars and a help window might
coexist with it. There can be scrollbars on a client window, which are controlled by the
parent window style.

The wxMDIClientWindow class is usually adequate without further derivation, and it is
created automatically when the MDI parent frame is created. If the application needs to
derive a new class, the function wxMDIParentFrame::OnCreateClient (p. 826) must be

CHAPTER 5

820

overridden in order to give an opportunity to use a different class of client window.

Under Windows 95, the client window will automatically have a sunken border style
when the active child is not maximized, and no border style when a child is maximized.

See also

wxMDIChildFrame (p. 816), wxMDIParentFrame (p. 821), wxFrame (p. 525)

wxMDIClientWindow::wxMDIClientWindow

 wxMDIClientWindow()

Default constructor.

 wxMDIClientWindow(wxMDIParentFrame* parent, long style = 0)

Constructor, creating the window.

Parameters

parent

The window parent.

style

The window style. Currently unused.

Remarks

The second style of constructor is called within wxMDIParentFrame::OnCreateClient (p.
826).

See also

wxMDIParentFrame::wxMDIParentFrame (p. 822), wxMDIParentFrame::OnCreateClient
(p. 826)

wxMDIClientWindow::~wxMDIClientWindow

 ~wxMDIClientWindow()

Destructor.

wxMDIClientWindow::CreateClient

CHAPTER 5

821

bool CreateClient(wxMDIParentFrame* parent, long style = 0)

Used in two-step frame construction. See wxMDIClientWindow::wxMDIClientWindow (p.
820) for further details.

wwxxMMDDIIPPaarreennttFFrraammee

An MDI (Multiple Document Interface) parent frame is a window which can contain MDI
child frames in its own 'desktop'. It is a convenient way to avoid window clutter, and is
used in many popular Windows applications, such as Microsoft Word(TM).

Derived from

wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/mdi.h>

Remarks

There may be multiple MDI parent frames in a single application, but this probably only
makes sense within programming development environments.

Child frames may be either wxMDIChildFrame (p. 816), or wxFrame (p. 525).

An MDI parent frame always has a wxMDIClientWindow (p. 819) associated with it,
which is the parent for MDI client frames. This client window may be resized to
accommodate non-MDI windows, as seen in Microsoft Visual C++ (TM) and Microsoft
Publisher (TM), where a documentation window is placed to one side of the workspace.

MDI remains popular despite dire warnings from Microsoft itself that MDI is an obsolete
user interface style.

The implementation is native in Windows, and simulated under Motif. Under Motif, the
child window frames will often have a different appearance from other frames because
the window decorations are simulated.

Window styles

wxCAPTION Puts a caption on the frame.
wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |

wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION.

CHAPTER 5

822

wxHSCROLL Displays a horizontal scrollbar in the client window,
allowing the user to view child frames that are off the
current view.

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif

only).
wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif

only).
wxRESIZE_BORDER Displays a resizeable border around the window (Motif

only; for Windows, it is implicit in wxTHICK_FRAME).
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (Windows and Motif only).
wxTHICK_FRAME Displays a thick frame around the window (Windows and

Motif only).
wxVSCROLL Displays a vertical scrollbar in the client window, allowing

the user to view child frames that are off the current view.
wxFRAME_NO_WINDOW_MENU Under Windows, removes the Window menu that is

normally added automatically.

See also window styles overview (p. 1567).

See also

wxMDIChildFrame (p. 816), wxMDIClientWindow (p. 819), wxFrame (p. 525), wxDialog
(p. 359)

wxMDIParentFrame::wxMDIParentFrame

 wxMDIParentFrame ()

Default constructor.

 wxMDIParentFrame (wxWindow* parent, wxWindowID id, const wxString& title,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxDEFAULT_FRAME_STYLE | wxVSCROLL | wxHSCROLL, const wxString&
name = "frame")

Constructor, creating the window.

Parameters

parent

The window parent. This should be NULL.

id

CHAPTER 5

823

The window identifier. It may take a value of -1 to indicate a default value.

title

The caption to be displayed on the frame's title bar.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWindows, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style

The window style. See wxMDIParentFrame (p. 821).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

During the construction of the frame, the client window will be created. To use a different
class from wxMDIClientWindow (p. 819), override wxMDIParentFrame::OnCreateClient
(p. 826).

Under Windows 95, the client window will automatically have a sunken border style
when the active child is not maximized, and no border style when a child is maximized.

See also

wxMDIParentFrame::Create (p. 824), wxMDIParentFrame::OnCreateClient (p. 826)

wxMDIParentFrame::~wxMDIParentFrame

 ~wxMDIParentFrame ()

Destructor. Destroys all child windows and menu bar if present.

wxMDIParentFrame::ActivateNext

void ActivateNext()

Activates the MDI child following the currently active one.

See also

CHAPTER 5

824

wxMDIParentFrame::ActivatePrevious (p. 824)

wxMDIParentFrame::ActivatePrevious

void ActivatePrevious()

Activates the MDI child preceding the currently active one.

See also

wxMDIParentFrame::ActivateNext (p. 823)

wxMDIParentFrame::ArrangeIcons

void ArrangeIcons()

Arranges any iconized (minimized) MDI child windows.

See also

wxMDIParentFrame::Cascade (p. 824), wxMDIParentFrame::Tile (p. 828)

wxMDIParentFrame::Cascade

void Cascade()

Arranges the MDI child windows in a cascade.

See also

wxMDIParentFrame::Tile (p. 828), wxMDIParentFrame::ArrangeIcons (p. 824)

wxMDIParentFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE | wxVSCROLL | wxHSCROLL, const wxString& name
= "frame")

Used in two-step frame construction. See wxMDIParentFrame::wxMDIParentFrame (p.
822) for further details.

wxMDIParentFrame::GetClientSize

virtual void GetClientSize(int* width, int* height) const

CHAPTER 5

825

This gets the size of the frame 'client area' in pixels.

Parameters

width

Receives the client width in pixels.

height

Receives the client height in pixels.

Remarks

The client area is the area which may be drawn on by the programmer, excluding title
bar, border, status bar, and toolbar if present.

If you wish to manage your own toolbar (or perhaps you have more than one), provide
an OnSize event handler. Call GetClientSize to find how much space there is for your
windows and don't forget to set the size and position of the MDI client window as well as
your toolbar and other windows (but not the status bar).

If you have set a toolbar with wxMDIParentFrame::SetToolbar (p. 827), the client size
returned will have subtracted the toolbar height. However, the available positions for the
client window and other windows of the frame do not start at zero - you must add the
toolbar height.

The position and size of the status bar and toolbar (if known to the frame) are always
managed by wxMDIParentFrame , regardless of what behaviour is defined in your
OnSize event handler. However, the client window position and size are always set in
OnSize, so if you override this event handler, make sure you deal with the client window.

You do not have to manage the size and position of MDI child windows, since they are
managed automatically by the client window.

See also

wxMDIParentFrame::GetToolBar (p. 826), wxMDIParentFrame::SetToolBar (p. 827),
wxWindow (p. 1399), wxMDIClientWindow (p. 819)

wxPython note: The wxPython version of this method takes no arguments and returns
a tuple containing width and height.

wxMDIParentFrame::GetActiveChild

wxMDIChildFrame* GetActiveChild() const

Returns a pointer to the active MDI child, if there is one.

CHAPTER 5

826

wxMDIParentFrame::GetClientWindow

wxMDIClientWindow* GetClientWindow() const

Returns a pointer to the client window.

See also

wxMDIParentFrame::OnCreateClient (p. 826)

wxMDIParentFrame::GetToolBar

virtual wxWindow* GetToolBar() const

Returns the window being used as the toolbar for this frame.

See also

wxMDIParentFrame::SetToolBar (p. 827)

wxMDIParentFrame::GetWindowMenu

wxMenu* GetWindowMenu() const

Returns the current Window menu (added by wxWindows to the menubar). This function
is available under Windows only.

wxMDIParentFrame::OnCreateClient

virtual wxMDIClientWindow* OnCreateClient()

Override this to return a different kind of client window. If you override this function, you
must create your parent frame in two stages, or your function will never be called, due to
the way C++ treats virtual functions called from constructors. For example:

 frame = new MyParentFrame;
 frame->Create(parent, myParentFrameId, wxT("My Parent Frame"));

Remarks

You might wish to derive from wxMDIClientWindow (p. 819) in order to implement
different erase behaviour, for example, such as painting a bitmap on the background.

Note that it is probably impossible to have a client window that scrolls as well as painting
a bitmap or pattern, since in OnScroll, the scrollbar positions always return zero.
(Solutions to: julian.smart@btopenworld.com).

CHAPTER 5

827

See also

wxMDIParentFrame::GetClientWindow (p. 826), wxMDIClientWindow (p. 819)

wxMDIParentFrame::SetToolBar

virtual void SetToolBar(wxWindow* toolbar)

Sets the window to be used as a toolbar for this MDI parent window. It saves the
application having to manage the positioning of the toolbar MDI client window.

Parameters

toolbar

Toolbar to manage.

Remarks

When the frame is resized, the toolbar is resized to be the width of the frame client area,
and the toolbar height is kept the same.

The parent of the toolbar must be this frame.

If you wish to manage your own toolbar (or perhaps you have more than one), don't call
this function, and instead manage your subwindows and the MDI client window by
providing an OnSize event handler. Call wxMDIParentFrame::GetClientSize (p. 824) to
find how much space there is for your windows.

Note that SDI (normal) frames and MDI child windows must always have their toolbars
managed by the application.

See also

wxMDIParentFrame::GetToolBar (p. 826), wxMDIParentFrame::GetClientSize (p. 824)

wxMDIParentFrame::SetWindowMenu

void SetWindowMenu(wxMenu* menu)

Call this to change the current Window menu. Ownership of the menu object passes to
the frame when you call this function.

This call is available under Windows only.

To remove the window completely, use the wxFRAME_NO_WINDOW_MENU window
style.

CHAPTER 5

828

wxMDIParentFrame::Tile

void Tile()

Tiles the MDI child windows.

See also

wxMDIParentFrame::Cascade (p. 824), wxMDIParentFrame::ArrangeIcons (p. 824)

wwxxMMeemmoorryyDDCC

A memory device context provides a means to draw graphics onto a bitmap. When
drawing in to a mono-bitmap, using wxWHITE, wxWHITE_PEN andwxWHITE_BRUSHwill
draw the background colour (i.e. 0) whereas all other colours will draw the foreground
colour (i.e. 1).

Derived from

wxDC (p. 327)
wxObject (p. 897)

Include files

<wx/dcmemory.h>

Remarks

A bitmap must be selected into the new memory DC before it may be used for anything.
Typical usage is as follows:

 // Create a memory DC
 wxMemoryDC temp_dc;
 temp_dc.SelectObject(test_bitmap);

 // We can now draw into the memory DC...
 // Copy from this DC to another DC.
 old_dc.Blit(250, 50, BITMAP_WIDTH, BITMAP_HEIGHT, temp_dc, 0, 0);

Note that the memory DC must be deleted (or the bitmap selected out of it) before a
bitmap can be reselected into another memory DC.

See also

wxBitmap (p. 55), wxDC (p. 327)

CHAPTER 5

829

wxMemoryDC::wxMemoryDC

 wxMemoryDC()

Constructs a new memory device context.

Use the Ok member to test whether the constructor was successful in creating a useable
device context. Don't forget to select a bitmap into the DC before drawing on it.

wxMemoryDC::SelectObject

 SelectObject(const wxBitmap& bitmap)

Selects the given bitmap into the device context, to use as the memory bitmap. Selecting
the bitmap into a memory DC allows you to draw into the DC (and therefore the bitmap)
and also to use Blit to copy the bitmap to a window. For this purpose, you may find
wxDC::DrawIcon (p. 332) easier to use instead.

If the argument is wxNullBitmap (or some other uninitialised wxBitmap) the current
bitmap is selected out of the device context, and the original bitmap restored, allowing
the current bitmap to be destroyed safely.

wwxxMMeemmoorryyFFSSHHaannddlleerr

This wxFileSystem (p. 489) handler can store arbitrary data in memory stream and
make them accessible via URL. It is particularly suitable for storing bitmaps from
resources or included XPM files so that they can be used with wxHTML.

Filenames are prefixed with "memory:", e.g. "memory:myfile.html".

Example:

#ifndef __WXMSW__
#include "logo.xpm"
#endif

void MyFrame::OnAbout(wxCommandEvent&)
{
 wxBusyCursor bcur;

 wxMemoryFSHandler::AddFile("logo.pcx", wxBITMAP(logo),
wxBITMAP_TYPE_PCX);
 wxMemoryFSHandler::AddFile("about.htm",
 "<html><body>About: "
 "<img
src=\"memory:logo.pcx\"></body></html>");

CHAPTER 5

830

 wxDialog dlg(this, -1, wxString(_("About")));
 wxBoxSizer *topsizer;
 wxHtmlWindow *html;
 topsizer = new wxBoxSizer(wxVERTICAL);
 html = new wxHtmlWindow(&dlg, -1, wxDefaultPosition,
 wxSize(380, 160), wxHW_SCROLLBAR_NEVER);
 html->SetBorders(0);
 html->LoadPage("memory:about.htm");
 html->SetSize(html->GetInternalRepresentation()->GetWidth(),
 html->GetInternalRepresentation()->GetHeight());
 topsizer->Add(html, 1, wxALL, 10);
 topsizer->Add(new wxStaticLine(&dlg, -1), 0, wxEXPAND | wxLEFT |
wxRIGHT, 10);
 topsizer->Add(new wxButton(&dlg, wxID_OK, "Ok"),
 0, wxALL | wxALIGN_RIGHT, 15);
 dlg.SetAutoLayout(true);
 dlg.SetSizer(topsizer);
 topsizer->Fit(&dlg);
 dlg.Centre();
 dlg.ShowModal();

 wxMemoryFSHandler::RemoveFile("logo.pcx");
 wxMemoryFSHandler::RemoveFile("about.htm");
}

Derived from

wxFileSystemHandler (p. 491)

Include files

<wx/fs_mem.h>

wxMemoryFSHandler::wxMemoryFSHandler

 wxMemoryFSHandler()

Constructor.

wxMemoryFSHandler::AddFile

static void AddFile(const wxString& filename, wxImage& image, long type)

static void AddFile(const wxString& filename, const wxBitmap& bitmap, long type)

static void AddFile(const wxString& filename, const wxString& textdata)

static void AddFile(const wxString& filename, const void* binarydata, size_t size)

CHAPTER 5

831

Add file to list of files stored in memory. Stored data (bitmap, text or raw data) will be
copied into private memory stream and available under name "memory:" + filename.

Note that when storing image/bitmap, you must use image format that wxWindows can
write (e.g. JPG, PNG, see wxImage documentation (p. 689))!

wxMemoryFSHandler::RemoveFile

static void RemoveFile (const wxString& filename)

Remove file from memory FS and free occupied memory.

wwxxMMeemmoorryyIInnppuuttSSttrreeaamm

Derived from

wxInputStream (p. 718)

Include files

<wx/mstream.h>

See also

wxStreamBuffer (p. 1163), wxMemoryOutputStream (p. 832)

wxMemoryInputStream::wxMemoryInputStream

 wxMemoryInputStream(const char * data, size_t len)

Initializes a new read-only memory stream which will use the specified bufferdata of
length len. The stream does not take ownership of the buffer, i.e. that it will not delete in
its destructor.

wxMemoryInputStream::~wxMemoryInputStream

 ~wxMemoryInputStream()

Destructor.

CHAPTER 5

832

wwxxMMeemmoorryyOOuuttppuuttSSttrreeaamm

Derived from

wxOutputStream (p. 902)

Include files

<wx/mstream.h>

See also

wxStreamBuffer (p. 1163)

wxMemoryOutputStream::wxMemoryOutputStream

 wxMemoryOutputStream(char * data = NULL, size_t length = 0)

If data is NULL, then it will initialize a new empty buffer which will grow if required.

Warning

If the buffer is created, it will be destroyed at the destruction of the stream.

wxMemoryOutputStream::~wxMemoryOutputStream

 ~wxMemoryOutputStream()

Destructor.

wxMemoryOutputStream::CopyTo

size_t CopyTo(char *buffer, size_t len) const

CopyTo allowed you to transfer data from the internal buffer of wxMemoryOutputStream
to an external buffer. len specifies the size of the buffer.

Returned value

CopyTo returns the number of bytes copied to the buffer. Generally it is either len or the
size of the stream buffer.

CHAPTER 5

833

wwxxMMeennuu

A menu is a popup (or pull down) list of items, one of which may be selected before the
menu goes away (clicking elsewhere dismisses the menu). Menus may be used to
construct either menu bars or popup menus.

A menu item has an integer ID associated with it which can be used to identify the
selection, or to change the menu item in some way.

Derived from

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/menu.h>

Event handling

If the menu is part of a menubar, then wxMenuBar (p. 843) event processing is used.

With a popup menu, there is a variety of ways to handle a menu selection event
(wxEVT_COMMAND_MENU_SELECTED).

 1. Derive a new class from wxMenu and define event table entries using the

EVT_MENU macro.
 2. Set a new event handler for wxMenu, using an object whose class has

EVT_MENU entries.
 3. Provide EVT_MENU handlers in the window which pops up the menu, or in an

ancestor of this window.
 4. Define a callback of type wxFunction, which you pass to the wxMenu

constructor. The callback takes a reference to the menu, and a reference to
awxCommandEvent (p. 156). This method is deprecated and should not be
used in the new code, it is provided for backwards compatibility only.

See also

wxMenuBar (p. 843), wxWindow::PopupMenu (p. 1400), Event handling overview (p.
1560)

wxMenu::wxMenu

 wxMenu(const wxString& title = "", long style = 0)

Constructs a wxMenu object.

CHAPTER 5

834

Parameters

title

A title for the popup menu: the empty string denotes no title.

style

If set to wxMENU_TEAROFF, the menu will be detachable (wxGTK only).

 wxMenu(long style)

Constructs a wxMenu object.

Parameters

style

If set to wxMENU_TEAROFF, the menu will be detachable (wxGTK only).

wxMenu::~wxMenu

 ~wxMenu()

Destructor, destroying the menu.

Note: under Motif, a popup menu must have a valid parent (the window it was last
popped up on) when being destroyed. Therefore, make sure you delete or re-use the
popup menu before destroying the parent window. Re-use in this context means popping
up the menu on a different window from last time, which causes an implicit destruction
and recreation of internal data structures.

wxMenu::Append

void Append(int id, const wxString& item, const wxString& helpString = "", const
bool checkable = FALSE)

Adds a string item to the end of the menu.

void Append(int id, const wxString& item, wxMenu *subMenu, const wxString&
helpString = "")

Adds a pull-right submenu to the end of the menu.

void Append(wxMenuItem* menuItem)

Adds a menu item object. This is the most generic variant of Append() method because
it may be used for both items (including separators) and submenus and because you
can also specify various extra properties of a menu item this way, such as bitmaps and
fonts.

CHAPTER 5

835

Parameters

id

The menu command identifier.

item

The string to appear on the menu item.

menu

Pull-right submenu.

checkable

If TRUE, this item is checkable.

helpString

An optional help string associated with the item. By default,
wxFrame::OnMenuHighlight (p. 534) displays this string in the status line.

menuItem

A menuitem object. It will be owned by the wxMenu object after this function is
called, so do not delete it yourself.

Remarks

This command can be used after the menu has been shown, as well as on initial
creation of a menu or menubar.

See also

wxMenu::AppendSeparator (p. 835), wxMenu::Insert (p. 840), wxMenu::SetLabel (p.
841), wxMenu::GetHelpString (p. 838), wxMenu::SetHelpString (p. 841), wxMenuItem (p.
852)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Append(id, string, helpStr="", checkable=FALSE)

AppendMenu(id, string, aMenu, helpStr="")

AppendItem(aMenuItem)

wxMenu::AppendSeparator

void AppendSeparator()

Adds a separator to the end of the menu.

CHAPTER 5

836

See also

wxMenu::Append (p. 834)

wxMenu::Break

void Break()

Inserts a break in a menu, causing the next appended item to appear in a new column.

wxMenu::Check

void Check(int id, const bool check)

Checks or unchecks the menu item.

Parameters

id

The menu item identifier.

check

If TRUE, the item will be checked, otherwise it will be unchecked.

See also

wxMenu::IsChecked (p. 840)

wxMenu::Delete

void Delete(int id)

void Delete(wxMenuItem *item)

Deletes the menu item from the menu. If the item is a submenu, it willnot be deleted.
Use Destroy (p. 837) if you want to delete a submenu.

Parameters

id

Id of the menu item to be deleted.

item

Menu item to be deleted.

See also

CHAPTER 5

837

wxMenu::FindItem (p. 837), wxMenu::Destroy (p. 837), wxMenu::Remove (p. 841)

wxMenu::Destroy

void Destroy(int id)

void Destroy(wxMenuItem *item)

Deletes the menu item from the menu. If the item is a submenu, it will be deleted. Use
Remove (p. 841) if you want to keep the submenu (for example, to reuse it later).

Parameters

id

Id of the menu item to be deleted.

item

Menu item to be deleted.

See also

wxMenu::FindItem (p. 837), wxMenu::Deletes (p. 836), wxMenu::Remove (p. 841)

wxMenu::Enable

void Enable(int id, const bool enable)

Enables or disables (greys out) a menu item.

Parameters

id

The menu item identifier.

enable

TRUE to enable the menu item, FALSE to disable it.

See also

wxMenu::IsEnabled (p. 840)

wxMenu::FindItem

int FindItem(const wxString& itemString) const

Finds the menu item id for a menu item string.

CHAPTER 5

838

wxMenuItem * FindItem(int id, wxMenu **menu = NULL) const

Finds the menu item object associated with the given menu item identifier and,
optionally, the (sub)menu it belongs to.

wxPerl note: In wxPerl this method takes just the id parameter; in scalar context it
returns the associated Wx::MenuItem, in list context it returns a 2-element list (item,
submenu)

Parameters

itemString

Menu item string to find.

id

Menu item identifier.

menu

If the pointer is not NULL, it will be filled with the items parent menu (if the item
was found)

Return value

First form: menu item identifier, or wxNOT_FOUND if none is found.

Second form: returns the menu item object, or NULL if it is not found.

Remarks

Any special menu codes are stripped out of source and target strings before matching.

wxPython note: The name of this method in wxPython is FindItemById and it does
not support the second parameter.

wxMenu::GetHelpString

wxString GetHelpString(int id) const

Returns the help string associated with a menu item.

Parameters

id

The menu item identifier.

Return value

The help string, or the empty string if there is no help string or the item was not found.

CHAPTER 5

839

See also

wxMenu::SetHelpString (p. 841), wxMenu::Append (p. 834)

wxMenu::GetLabel

wxString GetLabel(int id) const

Returns a menu item label.

Parameters

id

The menu item identifier.

Return value

The item label, or the empty string if the item was not found.

See also

wxMenu::SetLabel (p. 841)

wxMenu::GetMenuItemCount

size_t GetMenuItemCount() const

Returns the number of items in the menu.

wxMenu::GetMenuItems

wxMenuItemList& GetMenuItems() const

Returns the list of items in the menu. wxMenuItemList is a pseudo-template list class
containing wxMenuItem pointers.

wxMenu::GetTitle

wxString GetTitle() const

Returns the title of the menu.

Remarks

This is relevant only to popup menus.

CHAPTER 5

840

See also

wxMenu::SetTitle (p. 842)

wxMenu::Insert

bool Insert(size_t pos, wxMenuItem *item)

Inserts the given item before the position pos. Inserting the item at the position
GetMenuItemCount (p. 839) is the same as appending it.

See also

wxMenu::Append (p. 834)

wxMenu::IsChecked

bool IsChecked(int id) const

Determines whether a menu item is checked.

Parameters

id

The menu item identifier.

Return value

TRUE if the menu item is checked, FALSE otherwise.

See also

wxMenu::Check (p. 836)

wxMenu::IsEnabled

bool IsEnabled(int id) const

Determines whether a menu item is enabled.

Parameters

id

The menu item identifier.

Return value

CHAPTER 5

841

TRUE if the menu item is enabled, FALSE otherwise.

See also

wxMenu::Enable (p. 837)

wxMenu::Remove

wxMenuItem * Remove(int id)

wxMenuItem * Remove(wxMenuItem *item)

Removes the menu item from the menu but doesn't delete the associated C++ object.
This allows to reuse the same item later by adding it back to the menu (especially useful
with submenus).

Parameters

id

The identifier of the menu item to remove.

item

The menu item to remove.

Return value

The item which was detached from the menu.

wxMenu::SetHelpString

void SetHelpString(int id, const wxString& helpString)

Sets an item's help string.

Parameters

id

The menu item identifier.

helpString

The help string to set.

See also

wxMenu::GetHelpString (p. 838)

wxMenu::SetLabel

CHAPTER 5

842

void SetLabel(int id, const wxString& label)

Sets the label of a menu item.

Parameters

id

The menu item identifier.

label

The menu item label to set.

See also

wxMenu::Append (p. 834), wxMenu::GetLabel (p. 839)

wxMenu::SetTitle

void SetTitle (const wxString& title)

Sets the title of the menu.

Parameters

title

The title to set.

Remarks

This is relevant only to popup menus.

See also

wxMenu::SetTitle (p. 842)

wxMenu::UpdateUI

void UpdateUI(wxEvtHandler* source = NULL) const

Sends events to source (or owning window if NULL) to update the menu UI. This is
called just before the menu is popped up with wxWindow::PopupMenu (p. 1400), but the
application may call it at other times if required.

See also

wxUpdateUIEvent (p. 1342)

CHAPTER 5

843

wwxxMMeennuuBBaarr

A menu bar is a series of menus accessible from the top of a frame.

Derived from

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/menu.h>

Event handling

To respond to a menu selection, provide a handler for EVT_MENU, in the frame that
contains the menu bar. If you have a toolbar which uses the same identifiers as your
EVT_MENU entries, events from the toolbar will also be processed by your EVT_MENU
event handlers.

Note that menu commands (and UI update events for menus) are first sent to the focus
window within the frame. If no window within the frame has the focus, then the events
are sent directly to the frame. This allows command and UI update handling to be
processed by specific windows and controls, and not necessarily by the application
frame.

Tip: under Windows, if you discover that menu shortcuts (for example, Alt-F to show the
file menu) are not working, check any EVT_CHAR events you are handling in child
windows. If you are not calling event.Skip() for events that you don't process in
these event handlers, menu shortcuts may cease to work.

See also

wxMenu (p. 833), Event handling overview (p. 1560)

wxMenuBar::wxMenuBar

void wxMenuBar(long style = 0)

Default constructor.

void wxMenuBar(int n, wxMenu* menus[], const wxString titles[])

Construct a menu bar from arrays of menus and titles.

Parameters

CHAPTER 5

844

n

The number of menus.

menus

An array of menus. Do not use this array again - it now belongs to the menu bar.

titles

An array of title strings. Deallocate this array after creating the menu bar.

style

If wxMB_DOCKABLE the menu bar can be detached (wxGTK only).

wxPython note: Only the default constructor is supported in wxPython. Use
wxMenuBar.Append instead.

wxPerl note: wxPerl only supports the first contructor: use Append instead.

wxMenuBar::~wxMenuBar

void ~wxMenuBar()

Destructor, destroying the menu bar and removing it from the parent frame (if any).

wxMenuBar::Append

bool Append(wxMenu *menu, const wxString& title)

Adds the item to the end of the menu bar.

Parameters

menu

The menu to add. Do not deallocate this menu after calling Append.

title

The title of the menu.

Return value

TRUE on success, FALSE if an error occurred.

See also

wxMenuBar::Insert (p. 848)

wxMenuBar::Check

CHAPTER 5

845

void Check(int id, const bool check)

Checks or unchecks a menu item.

Parameters

id

The menu item identifier.

check

If TRUE, checks the menu item, otherwise the item is unchecked.

Remarks

Only use this when the menu bar has been associated with a frame; otherwise, use the
wxMenu equivalent call.

wxMenuBar::Enable

void Enable(int id, const bool enable)

Enables or disables (greys out) a menu item.

Parameters

id

The menu item identifier.

enable

TRUE to enable the item, FALSE to disable it.

Remarks

Only use this when the menu bar has been associated with a frame; otherwise, use the
wxMenu equivalent call.

wxMenuBar::EnableTop

void EnableTop(int pos, const bool enable)

Enables or disables a whole menu.

Parameters

pos

The position of the menu, starting from zero.

CHAPTER 5

846

enable
TRUE to enable the menu, FALSE to disable it.

Remarks

Only use this when the menu bar has been associated with a frame.

wxMenuBar::FindMenu

int FindMenu(const wxString& title) const

Returns the index of the menu with the given title or wxNOT_FOUND if no such menu
exists in this menubar. The title parameter may specify either the menu title (with
accelerator characters, i.e. "&File") or just the menu label ("File") indifferently.

wxMenuBar::FindMenuItem

int FindMenuItem(const wxString& menuString, const wxString& itemString) const

Finds the menu item id for a menu name/menu item string pair.

Parameters

menuString

Menu title to find.

itemString

Item to find.

Return value

The menu item identifier, or wxNOT_FOUND if none was found.

Remarks

Any special menu codes are stripped out of source and target strings before matching.

wxMenuBar::FindItem

wxMenuItem * FindItem(int id, wxMenu **menu = NULL) const

Finds the menu item object associated with the given menu item identifier.

Parameters

id

Menu item identifier.

CHAPTER 5

847

menu

If not NULL, menu will get set to the associated menu.

Return value

The found menu item object, or NULL if one was not found.

wxMenuBar::GetHelpString

wxString GetHelpString(int id) const

Gets the help string associated with the menu item identifer.

Parameters

id

The menu item identifier.

Return value

The help string, or the empty string if there was no help string or the menu item was not
found.

See also

wxMenuBar::SetHelpString (p. 850)

wxMenuBar::GetLabel

wxString GetLabel(int id) const

Gets the label associated with a menu item.

Parameters

id

The menu item identifier.

Return value

The menu item label, or the empty string if the item was not found.

Remarks

Use only after the menubar has been associated with a frame.

CHAPTER 5

848

wxMenuBar::GetLabelTop

wxString GetLabelTop(int pos) const

Returns the label of a top-level menu.

Parameters

pos

Position of the menu on the menu bar, starting from zero.

Return value

The menu label, or the empty string if the menu was not found.

Remarks

Use only after the menubar has been associated with a frame.

See also

wxMenuBar::SetLabelTop (p. 851)

wxMenuBar::GetMenu

wxMenu* GetMenu(int menuIndex) const

Returns the menu at menuIndex (zero-based).

wxMenuBar::GetMenuCount

int GetMenuCount() const

Returns the number of menus in this menubar.

wxMenuBar::Insert

bool Insert(size_t pos, wxMenu *menu, const wxString& title)

Inserts the menu at the given position into the menu bar. Inserting menu at position 0 will
insert it in the very beginning of it, inserting at position GetMenuCount() (p. 848) is the
same as calling Append() (p. 844).

Parameters

pos

The position of the new menu in the menu bar

CHAPTER 5

849

menu

The menu to add. wxMenuBar owns the menu and will free it.

title

The title of the menu.

Return value

TRUE on success, FALSE if an error occurred.

See also

wxMenuBar::Append (p. 844)

wxMenuBar::IsChecked

bool IsChecked(int id) const

Determines whether an item is checked.

Parameters

id

The menu item identifier.

Return value

TRUE if the item was found and is checked, FALSE otherwise.

wxMenuBar::IsEnabled

bool IsEnabled(int id) const

Determines whether an item is enabled.

Parameters

id

The menu item identifier.

Return value

TRUE if the item was found and is enabled, FALSE otherwise.

wxMenuBar::Refresh

CHAPTER 5

850

void Refresh()

Redraw the menu bar

wxMenuBar::Remove

wxMenu * Remove(size_t pos)

Removes the menu from the menu bar and returns the menu object - the caller is
reposnbile for deleting it. This function may be used together with wxMenuBar::Insert (p.
848) to change the menubar dynamically.

See also

wxMenuBar::Replace (p. 850)

wxMenuBar::Replace

wxMenu * Replace(size_t pos, wxMenu *menu, const wxString& title)

Replaces the menu at the given position with another one.

Parameters

pos

The position of the new menu in the menu bar

menu

The menu to add.

title

The title of the menu.

Return value

The menu which was previously at the position pos. The caller is responsible for deleting
it.

See also

wxMenuBar::Insert (p. 848), wxMenuBar::Remove (p. 850)

wxMenuBar::SetHelpString

void SetHelpString(int id, const wxString& helpString)

Sets the help string associated with a menu item.

CHAPTER 5

851

Parameters

id

Menu item identifier.

helpString

Help string to associate with the menu item.

See also

wxMenuBar::GetHelpString (p. 847)

wxMenuBar::SetLabel

void SetLabel(int id, const wxString& label)

Sets the label of a menu item.

Parameters

id

Menu item identifier.

label

Menu item label.

Remarks

Use only after the menubar has been associated with a frame.

See also

wxMenuBar::GetLabel (p. 847)

wxMenuBar::SetLabelTop

void SetLabelTop(int pos, const wxString& label)

Sets the label of a top-level menu.

Parameters

pos

The position of a menu on the menu bar, starting from zero.

label

The menu label.

CHAPTER 5

852

Remarks

Use only after the menubar has been associated with a frame.

See also

wxMenuBar::GetLabelTop (p. 848)

wwxxMMeennuuIItteemm

A menu item represents an item in a popup menu. Note that the majority of this class is
only implemented under Windows so far, but everything except fonts, colours and
bitmaps can be achieved via wxMenu on all platforms.

Derived from

wxOwnerDrawn (Windows only)
wxObject (p. 897)

Include files

<wx/menuitem.h>

See also

wxMenuBar (p. 843), wxMenu (p. 833)

wxMenuItem::wxMenuItem

 wxMenuItem(wxMenu* parentMenu = NULL, int id = ID_SEPARATOR, const
wxString& text = "", const wxString& helpString = "", bool checkable = FALSE,
wxMenu* subMenu = NULL,)

Constructs a wxMenuItem object.

Parameters

parentMenu

Menu that the menu item belongs to.

id

Identifier for this menu item, or ID_SEPARATOR to indicate a separator.

CHAPTER 5

853

text
Text for the menu item, as shown on the menu.

helpString

Optional help string that will be shown on the status bar.

checkable

TRUE if this menu item is checkable.

subMenu

If non-NULL, indicates that the menu item is a submenu.

wxMenuItem::~wxMenuItem

 ~wxMenuItem()

Destructor.

wxMenuItem::Check

void Check(bool check)

Checks or unchecks the menu item.

wxMenuItem::DeleteSubMenu

void DeleteSubMenu()

Deletes the submenu, if any.

wxMenuItem::Enable

void Enable(bool enable)

Enables or disables the menu item.

wxMenuItem::GetBackgroundColour

wxColour& GetBackgroundColour() const

Returns the background colour associated with the menu item (Windows only).

wxMenuItem::GetBitmap

CHAPTER 5

854

wxBitmap& GetBitmap(bool checked = TRUE) const

Returns the checked or unchecked bitmap (Windows only).

wxMenuItem::GetFont

wxFont& GetFont() const

Returns the font associated with the menu item (Windows only).

wxMenuItem::GetHelp

wxString GetHelp() const

Returns the help string associated with the menu item.

wxMenuItem::GetId

int GetId() const

Returns the menu item identifier.

wxMenuItem::GetLabel

wxString GetLabel() const

Returns the text associated with the menu item without any accelerator characaters it
might contain.

See also

GetText (p. 855), GetLabelFromText (p. 854)

wxMenuItem::GetLabelFromText

static wxString GetLabelFromText(const wxString& text)

Strips all accelerator characeters and mnemonics from the given text. For example,

wxMenuItem::GetLabelFromText("&Hello\tCtrl-H");

will return just "Hello".

See also

CHAPTER 5

855

GetText (p. 855), GetLabel (p. 854)

wxMenuItem::GetMarginWidth

int GetMarginWidth() const

Gets the width of the menu item checkmark bitmap (Windows only).

wxMenuItem::GetName

wxString GetName () const

Returns the text associated with the menu item.

NB: this function is deprecated, please use GetText (p. 855) or GetLabel (p. 854)
instead.

wxMenuItem::GetText

wxString GetText() const

Returns the text associated with the menu item, such as it was passed to the
wxMenuItem constructor, i.e. with any accelerator characters it may contain.

See also

GetLabel (p. 854), GetLabelFromText (p. 854)

wxMenuItem::GetSubMenu

wxMenu* GetSubMenu() const

Returns the submenu associated with the menu item, or NULL if there isn't one.

wxMenuItem::GetTextColour

wxColour& GetTextColour() const

Returns the text colour associated with the menu item (Windows only).

wxMenuItem::IsCheckable

CHAPTER 5

856

bool IsCheckable() const

Returns TRUE if the item is checkable.

wxMenuItem::IsChecked

bool IsChecked() const

Returns TRUE if the item is checked.

wxMenuItem::IsEnabled

bool IsEnabled() const

Returns TRUE if the item is enabled.

wxMenuItem::IsSeparator

bool IsSeparator() const

Returns TRUE if the item is a separator.

wxMenuItem::SetBackgroundColour

void SetBackgroundColour(const wxColour& colour) const

Sets the background colour associated with the menu item (Windows only).

wxMenuItem::SetBitmap

void SetBitmap(const wxBitmap& bmp) const

Sets the bitmap for the menu item (Windows and GTK+ only). It is equivalent to
SetBitmaps (p. 856)(bmp, wxNullBitmap).

wxMenuItem::SetBitmaps

void SetBitmaps(const wxBitmap& checked, const wxBitmap& unchecked =
wxNullBitmap) const

Sets the checked/unchecked bitmaps for the menu item (Windows only). The first bitmap
is also used as the single bitmap for uncheckable menu items.

CHAPTER 5

857

wxMenuItem::SetFont

void SetFont(const wxFont& font) const

Sets the font associated with the menu item (Windows only).

wxMenuItem::SetHelp

void SetHelp(const wxString& helpString) const

Sets the help string.

wxMenuItem::SetMarginWidth

void SetMarginWidth(int width) const

Sets the width of the menu item checkmark bitmap (Windows only).

wxMenuItem::SetName

void SetName (const wxString& text) const

Sets the text associated with the menu item.

wxMenuItem::SetTextColour

void SetTextColour(const wxColour& colour) const

Sets the text colour associated with the menu item (Windows only).

wwxxMMeennuuEEvveenntt

This class is used for a variety of menu-related events. Note that these do not include
menu command events.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

CHAPTER 5

858

<wx/event.h>

Event table macros

To process a menu event, use these event handler macros to direct input to member
functions that take a wxMenuEvent argument.

EVT_MENU_CHAR(func) Process a wxEVT_MENU_CHAR event (a

keypress when a menu is showing). Windows
only; not yet implemented.

EVT_MENU_INIT(func) Process a wxEVT_MENU_INIT event (the
menu is about to pop up). Windows only; not
yet implemented.

EVT_MENU_HIGHLIGHT(func) Process a wxEVT_MENU_HIGHLIGHT event
(a menu item is being highlighted). Windows
only; not yet implemented.

EVT_POPUP_MENU(func) Process a wxEVT_POPUP_MENU event (a
menu item is being highlighted). Windows only;
not yet implemented.

EVT_CONTEXT_MENU(func) Process a wxEVT_CONTEXT_MENU event
(F1 has been pressed with a particular menu
item highlighted). Windows only; not yet
implemented.

See also

wxWindow::OnMenuHighlight (p. 1395), Event handling overview (p. 1560)

wxMenuEvent::wxMenuEvent

 wxMenuEvent(WXTYPE id = 0, int id = 0, wxDC* dc = NULL)

Constructor.

wxMenuEvent::m_menuId

int m_menuId

The relevant menu identifier.

wxMenuEvent::GetMenuId

int GetMenuId() const

CHAPTER 5

859

Returns the menu identifier associated with the event.

wwxxMMeessssaaggeeDDiiaalloogg

This class represents a dialog that shows a single or multi-line message, with a choice of
OK, Yes, No and Cancel buttons.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/msgdlg.h>

See also

wxMessageDialog overview (p. 1599)

wxMessageDialog::wxMessageDialog

 wxMessageDialog(wxWindow* parent, const wxString& message, const wxString&
caption = "Message box", long style = wxOK | wxCANCEL | wxCENTRE, const
wxPoint& pos = wxDefaultPosition)

Constructor. Use wxMessageDialog::ShowModal (p. 860) to show the dialog.

Parameters

parent

Parent window.

message

Message to show on the dialog.

caption

The dialog caption.

style

A dialog style (bitlist) containing flags chosen from the following:

CHAPTER 5

860

wxOK Show an OK button.
wxCANCEL Show a Cancel button.
wxYES_NO Show Yes and No buttons.
wxYES_DEFAULT Used with wxYES_NO, makes Yes button the default

- which is the default behaviour.
wxNO_DEFAULT Used with wxYES_NO, makes No button the default.
wxCENTRE Centre the message. Not Windows.
wxICON_EXCLAMATION Shows an exclamation mark icon.
wxICON_HAND Shows an error icon.
wxICON_ERROR Shows an error icon - the same as wxICON_HAND.
wxICON_QUESTION Shows a question mark icon.
wxICON_INFORMATION Shows an information (i) icon.

pos

Dialog position. Not Windows.

wxMessageDialog::~wxMessageDialog

 ~wxMessageDialog()

Destructor.

wxMessageDialog::ShowModal

int ShowModal()

Shows the dialog, returning one of wxID_OK, wxID_CANCEL, wxID_YES, wxID_NO.

wwxxMMeettaaffiillee

A wxMetafile represents the MS Windows metafile object, so metafile operations have
no effect in X. In wxWindows, only sufficient functionality has been provided for copying
a graphic to the clipboard; this may be extended in a future version. Presently, the only
way of creating a metafile is to use a wxMetafileDC.

Derived from

wxObject (p. 897)

Include files

<wx/metafile.h>

CHAPTER 5

861

See also

wxMetafileDC (p. 862)

wxMetafile::wxMetafile

 wxMetafile (const wxString& filename = "")

Constructor. If a filename is given, the Windows disk metafile is read in. Check whether
this was performed successfully by using the wxMetafile::Ok (p. 861) member.

wxMetafile::~wxMetafile

 ~wxMetafile()

Destructor.

wxMetafile::Ok

bool Ok()

Returns TRUE if the metafile is valid.

wxMetafile::Play

bool Play(wxDC *dc)

Plays the metafile into the given device context, returning TRUE if successful.

wxMetafile::SetClipboard

bool SetClipboard(int width = 0, int height = 0)

Passes the metafile data to the clipboard. The metafile can no longer be used for
anything, but the wxMetafile object must still be destroyed by the application.

Below is a example of metafle, metafile device context and clipboard use from the
hello.cpp example. Note the way the metafile dimensions are passed to the clipboard,
making use of the device context's ability to keep track of the maximum extent of
drawing commands.

 wxMetafileDC dc;
 if (dc.Ok())

CHAPTER 5

862

 {
 Draw(dc, FALSE);
 wxMetafile *mf = dc.Close();
 if (mf)
 {
 bool success = mf->SetClipboard((int)(dc.MaxX() + 10),
(int)(dc.MaxY() + 10));
 delete mf;
 }
 }

wwxxMMeettaaffiilleeDDCC

This is a type of device context that allows a metafile object to be created (Windows
only), and has most of the characteristics of a normal wxDC. The wxMetafileDC::Close
(p. 863) member must be called after drawing into the device context, to return a
metafile. The only purpose for this at present is to allow the metafile to be copied to the
clipboard (see wxMetafile (p. 860)).

Adding metafile capability to an application should be easy if you already write to a
wxDC; simply pass the wxMetafileDC to your drawing function instead. You may wish to
conditionally compile this code so it is not compiled under X (although no harm will result
if you leave it in).

Note that a metafile saved to disk is in standard Windows metafile format, and cannot be
imported into most applications. To make it importable, call the function
::wxMakeMetafilePlaceable (p. 1452) after closing your disk-based metafile device
context.

Derived from

wxDC (p. 327)
wxObject (p. 897)

Include files

<wx/metafile.h>

See also

wxMetafile (p. 860), wxDC (p. 327)

wxMetafileDC::wxMetafileDC

 wxMetafileDC(const wxString& filename = "")

CHAPTER 5

863

Constructor. If no filename is passed, the metafile is created in memory.

wxMetafileDC::~wxMetafileDC

 ~wxMetafileDC()

Destructor.

wxMetafileDC::Close

wxMetafile * Close()

This must be called after the device context is finished with. A metafile is returned, and
ownership of it passes to the calling application (so it should be destroyed explicitly).

wwxxMMiimmeeTTyyppeessMMaannaaggeerr

This class allows the application to retrieve the information about all known MIME types
from a system-specific location and the filename extensions to the MIME types and vice
versa. After initialization the
functionswxMimeTypesManager::GetFileTypeFromMimeType (p. 865) and
wxMimeTypesManager::GetFileTypeFromExtension (p. 865) may be called: they will
return a wxFileType (p. 494) object which may be further queried for file description, icon
and other attributes.

Windows: MIME type information is stored in the registry and no additional initialization
is needed.

Unix: MIME type information is stored in the files mailcap and mime.types (system-wide)
and .mailcap and .mime.types in the current user's home directory: all of these files are
searched for and loaded if found by default. However, additional functions
wxMimeTypesManager::ReadMailcap (p. 866) and
wxMimeTypesManager::ReadMimeTypes (p. 866) are provided to load additional files.

If GNOME or KDE desktop environment is installed, then wxMimeTypesManager
gathers MIME information from respective files (e.g. .kdelnk files under KDE).

NB: Currently, wxMimeTypesManager is limited to reading MIME type information but it
will support modifying it as well in the future versions.

Global objects

Global instance of wxMimeTypesManager is always available. It is defined as follows:

CHAPTER 5

864

wxMimeTypesManager *wxTheMimeTypesManager;

It is recommended to use this instance instead of creating your own because gathering
MIME information may take quite a long on Unix systems.

Derived from

No base class.

Include files

<wx/mimetype.h>

See also

wxFileType (p. 494)

Helper functions

All of these functions are static (i.e. don't need a wxMimeTypesManager object to call
them) and provide some useful operations for string representations of MIME types.
Their usage is recommended instead of directly working with MIME types using wxString
functions.

IsOfType (p. 866)

Constructor and destructor

NB: You won't normally need to use more than one wxMimeTypesManager object in a
program.

wxMimeTypesManager (p. 865)
~wxMimeTypesManager (p. 865)

Query database

These functions are the heart of this class: they allow to find a file type (p. 494) object
from either file extension or MIME type. If the function is successful, it returns a pointer
to the wxFileType object which must be deleted by the caller, otherwise NULL will be
returned.

GetFileTypeFromMimeType (p. 865)
GetFileTypeFromExtension (p. 865)

CHAPTER 5

865

Initialization functions

Unix: These functions may be used to load additional files (except for the default ones
which are loaded automatically) containing MIME information in either mailcap(5) or
mime.types(5) format.

ReadMailcap (p. 866)
ReadMimeTypes (p. 866)
AddFallbacks (p. 865)

wxMimeTypesManager::wxMimeTypesManager

 wxMimeTypesManager()

Constructor puts the object in the "working" state, no additional initialization are needed -
but ReadXXX (p. 865) may be used to load additional mailcap/mime.types files.

wxMimeTypesManager::~wxMimeTypesManager

 ~wxMimeTypesManager()

Destructor is not virtual, so this class should not be derived from.

wxMimeTypesManager::AddFallbacks

void AddFallbacks(const wxFileTypeInfo *fallbacks)

This function may be used to provdie hard-wired fallbacks for the MIME types and
extensions that might not be present in the system MIME database.

Please see the typetest sample for an example of using it.

wxMimeTypesManager::GetFileTypeFromExtension

wxFileType* GetFileTypeFromExtension(const wxString& extension)

Gather information about the files with given extension and return the corresponding
wxFileType (p. 494) object or NULL if the extension is unknown.

wxMimeTypesManager::GetFileTypeFromMimeType

wxFileType* GetFileTypeFromMimeType(const wxString& mimeType)

CHAPTER 5

866

Gather information about the files with given MIME type and return the corresponding
wxFileType (p. 494) object or NULL if the MIME type is unknown.

wxMimeTypesManager::IsOfType

bool IsOfType(const wxString& mimeType, const wxString& wildcard)

This function returns TRUE if either the given mimeType is exactly the same as wildcard
or if it has the same category and the subtype ofwildcard is '*'. Note that the '*' wildcard
is not allowed inmimeType itself.

The comparaison don by this function is case insensitive so it is not necessary to convert
the strings to the same case before calling it.

wxMimeTypesManager::ReadMailcap

bool ReadMailcap(const wxString& filename, bool fallback = FALSE)

Load additional file containing information about MIME types and associated information
in mailcap format. See metamail(1) and mailcap(5) for more information.

fallback parameter may be used to load additional mailcap files without overriding the
settings found in the standard files: normally, entries from files loaded with ReadMailcap
will override the entries from files loaded previously (and the standard ones are loaded in
the very beginning), but this will not happen if this parameter is set to TRUE (default is
FALSE).

The return value is TRUE if there were no errors in the file or FALSE otherwise.

wxMimeTypesManager::ReadMimeTypes

bool ReadMimeTypes(const wxString& filename)

Load additional file containing information about MIME types and associated information
in mime.types file format. See metamail(1) and mailcap(5) for more information.

The return value is TRUE if there were no errors in the file or FALSE otherwise.

wwxxMMiinniiFFrraammee

A miniframe is a frame with a small title bar. It is suitable for floating toolbars that must
not take up too much screen area.

CHAPTER 5

867

Derived from

wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/minifram.h>

Window styles

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxCAPTION Puts a caption on the frame.
wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |

wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION.

wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif

only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif

only).
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (Windows and Motif only).
wxTHICK_FRAME Displays a thick frame around the window (Windows and

Motif only).
wxTINY_CAPTION_HORIZ Displays a small horizontal caption. Use instead of

wxCAPTION.
wxTINY_CAPTION_VERT Under Windows, displays a small vertical caption. Use

instead of wxCAPTION.
wxRESIZE_BORDER Displays a resizeable border around the window (Motif

only; for Windows, it is implicit in wxTHICK_FRAME).

See also window styles overview (p. 1567). Note that all the window styles above are
ignored under GTK and the mini frame cannot be resized by the user.

Remarks

This class has miniframe functionality under Windows and GTK, i.e. the presence of mini
frame will not be noted in the task bar and focus behaviour is different. On other
platforms, it behaves like a normal frame.

See also

wxMDIParentFrame (p. 821), wxMDIChildFrame (p. 816), wxFrame (p. 525), wxDialog
(p. 359)

CHAPTER 5

868

wxMiniFrame::wxMiniFrame

 wxMiniFrame ()

Default constructor.

 wxMiniFrame (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent

The window parent. This may be NULL. If it is non-NULL, the frame will always be
displayed on top of the parent window on Windows.

id

The window identifier. It may take a value of -1 to indicate a default value.

title

The caption to be displayed on the frame's title bar.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWindows, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style

The window style. See wxMiniFrame (p. 866).

name

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

The frame behaves like a normal frame on non-Windows platforms.

See also

wxMiniFrame::Create (p. 869)

CHAPTER 5

869

wxMiniFrame::~wxMiniFrame

void ~wxMiniFrame ()

Destructor. Destroys all child windows and menu bar if present.

wxMiniFrame::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxMiniFrame::wxMiniFrame (p. 868) for
further details.

wwxxMMoodduullee

The module system is a very simple mechanism to allow applications (and parts of
wxWindows itself) to define initialization and cleanup functions that are automatically
called on wxWindows startup and exit.

To define a new kind of module, derive a class from wxModule, override the OnInit and
OnExit functions, and add the DECLARE_DYNAMIC_CLASS and
IMPLEMENT_DYNAMIC_CLASS to header and implementation files (which can be the
same file). On initialization, wxWindows will find all classes derived from wxModule,
create an instance of each, and call each OnInit function. On exit, wxWindows will call
the OnExit function for each module instance.

Note that your module class does not have to be in a header file.

For example:

 // A module to allow DDE initialization/cleanup
 // without calling these functions from app.cpp or from
 // the user's application.

 class wxDDEModule: public wxModule
 {
 DECLARE_DYNAMIC_CLASS(wxDDEModule)
 public:
 wxDDEModule() {}
 bool OnInit() { wxDDEInitialize(); return TRUE; };
 void OnExit() { wxDDECleanUp(); };
 };

 IMPLEMENT_DYNAMIC_CLASS(wxDDEModule, wxModule)

CHAPTER 5

870

Derived from

wxObject (p. 897)

Include files

<wx/module.h>

wxModule::wxModule

 wxModule()

Constructs a wxModule object.

wxModule::~wxModule

 ~wxModule()

Destructor.

wxModule::CleanupModules

static void CleanupModules()

Calls Exit for each module instance. Called by wxWindows on exit, so there is no need
for an application to call it.

wxModule::Exit

void Exit()

Calls OnExit. This function is called by wxWindows and should not need to be called by
an application.

wxModule::Init

bool Init()

Calls OnInit. This function is called by wxWindows and should not need to be called by
an application.

wxModule::InitializeModules

CHAPTER 5

871

static bool InitializeModules()

Calls Init for each module instance. Called by wxWindows on startup, so there is no
need for an application to call it.

wxModule::OnExit

virtual void OnExit()

Provide this function with appropriate cleanup for your module.

wxModule::OnInit

virtual bool OnInit()

Provide this function with appropriate initialization for your module. If the function returns
FALSE, wxWindows will exit immediately.

wxModule::RegisterModule

static void RegisterModule(wxModule* module)

Registers this module with wxWindows. Called by wxWindows on startup, so there is no
need for an application to call it.

wxModule::RegisterModules

static bool RegisterModules()

Creates instances of and registers all modules. Called by wxWindows on startup, so
there is no need for an application to call it.

wwxxMMoouusseeEEvveenntt

This event class contains information about mouse events. See
wxWindow::OnMouseEvent (p. 1396).

NB: Note that under Windows mouse enter and leave events are not natively supported
by the system but are generated by wxWindows itself. This has several drawbacks: the
LEAVE_WINDOW event might be received some time after the mouse left the window
and the state variables for it may have changed during this time.

CHAPTER 5

872

NB: Note the difference between methods likeLeftDown (p. 878) andLeftIsDown (p.
878): the formet returns TRUEwhen the event corresponds to the left mouse button click
while the latter returns TRUE if the left mouse button is currently being pressed. For
example, when the user is dragging the mouse you can useLeftIsDown (p. 878) to test
whether the left mouse button is (still) depressed. Also, by convention, ifLeftDown (p.
878) returns TRUE,LeftIsDown (p. 878) will also return TRUE in wxWindows whatever the
underlying GUI behaviour is (which is platform-dependent). The same applies, of course,
to other mouse buttons as well.

Derived from

wxEvent (p. 428)

Include files

<wx/event.h>

Event table macros

To process a mouse event, use these event handler macros to direct input to member
functions that take a wxMouseEvent argument.

EVT_LEFT_DOWN(func) Process a wxEVT_LEFT_DOWN event.
EVT_LEFT_UP(func) Process a wxEVT_LEFT_UP event.
EVT_LEFT_DCLICK(func) Process a wxEVT_LEFT_DCLICK event.
EVT_MIDDLE_DOWN(func) Process a wxEVT_MIDDLE_DOWN event.
EVT_MIDDLE_UP(func) Process a wxEVT_MIDDLE_UP event.
EVT_MIDDLE_DCLICK(func) Process a wxEVT_MIDDLE_DCLICK event.
EVT_RIGHT_DOWN(func) Process a wxEVT_RIGHT_DOWN event.
EVT_RIGHT_UP(func) Process a wxEVT_RIGHT_UP event.
EVT_RIGHT_DCLICK(func) Process a wxEVT_RIGHT_DCLICK event.
EVT_MOTION(func) Process a wxEVT_MOTION event.
EVT_ENTER_WINDOW(func) Process a wxEVT_ENTER_WINDOW event.
EVT_LEAVE_WINDOW(func) Process a wxEVT_LEAVE_WINDOW event.
EVT_MOUSEWHEEL(func) Process a wxEVT_MOUSEWHEEL event.
EVT_MOUSE_EVENTS(func) Process all mouse events.

wxMouseEvent::m_altDown

bool m_altDown

TRUE if the Alt key is pressed down.

wxMouseEvent::m_controlDown

CHAPTER 5

873

bool m_controlDown

TRUE if control key is pressed down.

wxMouseEvent::m_leftDown

bool m_leftDown

TRUE if the left mouse button is currently pressed down.

wxMouseEvent::m_middleDown

bool m_middleDown

TRUE if the middle mouse button is currently pressed down.

wxMouseEvent::m_rightDown

bool m_rightDown

TRUE if the right mouse button is currently pressed down.

wxMouseEvent::m_metaDown

bool m_metaDown

TRUE if the Meta key is pressed down.

wxMouseEvent::m_shiftDown

bool m_shiftDown

TRUE if shift is pressed down.

wxMouseEvent::m_x

long m_x

X-coordinate of the event.

wxMouseEvent::m_y

CHAPTER 5

874

long m_y

Y-coordinate of the event.

wxMouseEvent::m_wheelRotation

int m_wheelRotation

The distance the mouse wheel is rotated.

wxMouseEvent::m_wheelDelta

int m_wheelDelta

The wheel delta, normally 120.

wxMouseEvent::m_linesPerAction

int m_linesPerAction

The configured number of lines (or whatever) to be scrolled per wheel action.

wxMouseEvent::wxMouseEvent

 wxMouseEvent(WXTYPE mouseEventType = 0, int id = 0)

Constructor. Valid event types are:

 • wxEVT_ENTER_WINDOW
 • wxEVT_LEAVE_WINDOW
 • wxEVT_LEFT_DOWN
 • wxEVT_LEFT_UP
 • wxEVT_LEFT_DCLICK
 • wxEVT_MIDDLE_DOWN
 • wxEVT_MIDDLE_UP
 • wxEVT_MIDDLE_DCLICK
 • wxEVT_RIGHT_DOWN
 • wxEVT_RIGHT_UP
 • wxEVT_RIGHT_DCLICK
 • wxEVT_MOTION
 • wxEVT_MOUSEWHEEL

wxMouseEvent::AltDown

CHAPTER 5

875

bool AltDown()

Returns TRUE if the Alt key was down at the time of the event.

wxMouseEvent::Button

bool Button(int button)

Returns TRUE if the identified mouse button is changing state. Valid values of button are
1, 2 or 3 for left, middle and right buttons respectively.

Not all mice have middle buttons so a portable application should avoid this one.

wxMouseEvent::ButtonDClick

bool ButtonDClick(int but = -1)

If the argument is omitted, this returns TRUE if the event was a mouse double click
event. Otherwise the argument specifies which double click event was generated (1, 2 or
3 for left, middle and right buttons respectively).

wxMouseEvent::ButtonDown

bool ButtonDown(int but = -1)

If the argument is omitted, this returns TRUE if the event was a mouse button down
event. Otherwise the argument specifies which button-down event was generated (1, 2
or 3 for left, middle and right buttons respectively).

wxMouseEvent::ButtonUp

bool ButtonUp(int but = -1)

If the argument is omitted, this returns TRUE if the event was a mouse button up event.
Otherwise the argument specifies which button-up event was generated (1, 2 or 3 for
left, middle and right buttons respectively).

wxMouseEvent::ControlDown

bool ControlDown()

Returns TRUE if the control key was down at the time of the event.

CHAPTER 5

876

wxMouseEvent::Dragging

bool Dragging()

Returns TRUE if this was a dragging event (motion while a button is depressed).

wxMouseEvent::Entering

bool Entering()

Returns TRUE if the mouse was entering the window.

See also wxMouseEvent::Leaving (p. 877).

wxMouseEvent::GetPosition

wxPoint GetPosition() const

void GetPosition(wxCoord* x, wxCoord* y) const

void GetPosition(long* x, long* y) const

Sets *x and *y to the position at which the event occurred.

Returns the physical mouse position in pixels.

wxMouseEvent::GetLogicalPosition

wxPoint GetLogicalPosition(const wxDC& dc) const

Returns the logical mouse position in pixels (i.e. translated according to the translation
set for the DC, which usually indicates that the window has been scrolled).

wxMouseEvent::GetLinesPerAction

int GetLinesPerAction() const

Returns the configured number of lines (or whatever) to be scrolled per wheel action.
Defaults to three.

wxMouseEvent::GetWheelRotation

int GetWheelRotation() const

CHAPTER 5

877

Get wheel rotation, positive or negative indicates direction of rotation. Current devices
all send an event when rotation is equal to +/-WheelDelta, but this allows for finer
resolution devices to be created in the future. Because of this you shouldn't assume that
one event is equal to 1 line or whatever, but you should be able to either do partial line
scrolling or wait until +/-WheelDelta rotation values have been accumulated before
scrolling.

wxMouseEvent::GetWheelDelta

int GetWheelDelta() const

Get wheel delta, normally 120. This is the threshold for action to be taken, and one such
action (for example, scrolling one increment) should occur for each delta.

wxMouseEvent::GetX

long GetX() const

Returns X coordinate of the physical mouse event position.

wxMouseEvent::GetY

long GetY()

Returns Y coordinate of the physical mouse event position.

wxMouseEvent::IsButton

bool IsButton() const

Returns TRUE if the event was a mouse button event (not necessarily a button down
event - that may be tested using ButtonDown).

wxMouseEvent::Leaving

bool Leaving() const

Returns TRUE if the mouse was leaving the window.

See also wxMouseEvent::Entering (p. 876).

wxMouseEvent::LeftDClick

CHAPTER 5

878

bool LeftDClick() const

Returns TRUE if the event was a left double click.

wxMouseEvent::LeftDown

bool LeftDown() const

Returns TRUE if the left mouse button changed to down.

wxMouseEvent::LeftIsDown

bool LeftIsDown() const

Returns TRUE if the left mouse button is currently down, independent of the current
event type.

Please notice that it is not the same asLeftDown (p. 878) which returns TRUE if the left
mouse button was just pressed. Rather, it describes the state of the mouse button
before the event happened.

This event is usually used in the mouse event handlers which process "move mouse"
messages to determine whether the user is (still) dragging the mouse.

wxMouseEvent::LeftUp

bool LeftUp() const

Returns TRUE if the left mouse button changed to up.

wxMouseEvent::MetaDown

bool MetaDown() const

Returns TRUE if the Meta key was down at the time of the event.

wxMouseEvent::MiddleDClick

bool MiddleDClick() const

Returns TRUE if the event was a middle double click.

wxMouseEvent::MiddleDown

CHAPTER 5

879

bool MiddleDown() const

Returns TRUE if the middle mouse button changed to down.

wxMouseEvent::MiddleIsDown

bool MiddleIsDown() const

Returns TRUE if the middle mouse button is currently down, independent of the current
event type.

wxMouseEvent::MiddleUp

bool MiddleUp() const

Returns TRUE if the middle mouse button changed to up.

wxMouseEvent::Moving

bool Moving() const

Returns TRUE if this was a motion event (no buttons depressed).

wxMouseEvent::RightDClick

bool RightDClick() const

Returns TRUE if the event was a right double click.

wxMouseEvent::RightDown

bool RightDown() const

Returns TRUE if the right mouse button changed to down.

wxMouseEvent::RightIsDown

bool RightIsDown() const

Returns TRUE if the right mouse button is currently down, independent of the current
event type.

CHAPTER 5

880

wxMouseEvent::RightUp

bool RightUp() const

Returns TRUE if the right mouse button changed to up.

wxMouseEvent::ShiftDown

bool ShiftDown() const

Returns TRUE if the shift key was down at the time of the event.

wwxxMMoovveeEEvveenntt

A move event holds information about move change events.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process a move event, use this event handler macro to direct input to a member
function that takes a wxMoveEvent argument.

EVT_MOVE(func) Process a wxEVT_MOVE event, which is

generated when a window is moved.

See also

wxWindow::OnMove (p. 1396), wxPoint (p. 937), Event handling overview (p. 1560)

wxMoveEvent::wxMoveEvent

 wxMoveEvent(const wxPoint& pt, int id = 0)

CHAPTER 5

881

Constructor.

wxMoveEvent::GetPosition

wxPoint GetPosition() const

Returns the position of the window generating the move change event.

wwxxMMuullttiipplleeCChhooiicceeDDiiaalloogg

This class represents a dialog that shows a list of strings, and allows the user to select
one or more.

NOTE: this class is not yet implemented.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/choicdlg.h>

See also

wxMultipleChoiceDialog overview (p. 1599)

wwxxMMuutteexx

A mutex object is a synchronization object whose state is set to signaled when it is not
owned by any thread, and nonsignaled when it is owned. Its name comes from its
usefulness in coordinating mutually-exclusive access to a shared resource. Only one
thread at a time can own a mutex object but the mutexes are recursive in the sense that
a thread can lock a mutex which it had already locked before (instead of dead locking
the entire process in this situation by starting to wait on a mutex which will never be
released while the thread is waiting).

For example, when several thread use the data stored in the linked list, modifications to

CHAPTER 5

882

the list should be only allowed to one thread at a time because during a new node
addition the list integrity is temporarily broken (this is also called program invariant).

Example

 // this variable has an "s_" prefix because it is static: seeing an
"s_" in
 // a multithreaded program is in general a good sign that you
should use a
 // mutex (or a critical section)
 static wxMutex *s_mutexProtectingTheGlobalData;

 // we store some numbers in this global array which is presumably
used by
 // several threads simultaneously
 wxArrayInt s_data;

 void MyThread::AddNewNode(int num)
 {
 // ensure that no other thread accesses the list
 s_mutexProtectingTheGlobalList->Lock();

 s_data.Add(num);

 s_mutexProtectingTheGlobalList->Unlock();
 }

 // return TRUE the given number is greater than all array elements
 bool MyThread::IsGreater(int num)
 {
 // before using the list we must acquire the mutex
 wxMutexLocker lock(s_mutexProtectingTheGlobalData);

 size_t count = s_data.Count();
 for (size_t n = 0; n < count; n++)
 {
 if (s_data[n] > num)
 return FALSE;
 }

 return TRUE;
 }

Notice how wxMutexLocker was used in the second function to ensure that the mutex is
unlocked in any case: whether the function returns TRUE or FALSE (because the
destructor of the local object lock is always called). Using this class instead of directly
using wxMutex is, in general safer and is even more so if your program uses C++
exceptions.

Derived from

None.

CHAPTER 5

883

Include files

<wx/thread.h>

See also

wxThread (p. 1276), wxCondition (p. 164), wxMutexLocker (p. 884), wxCriticalSection (p.
185)

wxMutex::wxMutex

 wxMutex()

Default constructor.

wxMutex::~wxMutex

 ~wxMutex()

Destroys the wxMutex object.

wxMutex::IsLocked

bool IsLocked() const

Returns TRUE if the mutex is locked, FALSE otherwise.

wxMutex::Lock

wxMutexError Lock()

Locks the mutex object.

Return value

One of:

wxMUTEX_NO_ERROR There was no error.
wxMUTEX_DEAD_LOCK A deadlock situation was detected.
wxMUTEX_BUSY The mutex is already locked by another thread.

CHAPTER 5

884

wxMutex::TryLock

wxMutexError TryLock()

Tries to lock the mutex object. If it can't, returns immediately with an error.

Return value

One of:

wxMUTEX_NO_ERROR There was no error.
wxMUTEX_DEAD_LOCK A deadlock situation was detected.
wxMUTEX_BUSY The mutex is already locked by another thread.

wxMutex::Unlock

wxMutexError Unlock()

Unlocks the mutex object.

Return value

One of:

wxMUTEX_NO_ERROR There was no error.
wxMUTEX_DEAD_LOCK A deadlock situation was detected.
wxMUTEX_BUSY The mutex is already locked by another thread.
wxMUTEX_UNLOCKED The calling thread tries to unlock an unlocked

mutex.

wwxxMMuutteexxLLoocckkeerr

This is a small helper class to be used with wxMutex (p. 881) objects. A wxMutexLocker
acquires a mutex lock in the constructor and releases (or unlocks) the mutex in the
destructor making it much more difficult to forget to release a mutex (which, in general,
will promptly lead to the serious problems). See wxMutex (p. 881) for an example of
wxMutexLocker usage.

Derived from

None.

Include files

CHAPTER 5

885

<wx/thread.h>

See also

wxMutex (p. 881), wxCriticalSectionLocker (p. 186)

wxMutexLocker::wxMutexLocker

 wxMutexLocker(wxMutex *mutex)

Constructs a wxMutexLocker object associated with mutex which must be non-NULL
and locks it. Call IsLocked (p. 885) to check if the mutex was successfully locked.

wxMutexLocker::~wxMutexLocker

 ~wxMutexLocker()

Destuctor releases the mutex if it was successfully acquired in the ctor.

wxMutexLocker::IsOk

bool IsOk() const

Returns TRUE if mutex was acquired in the constructor, FALSE otherwise.

wwxxNNootteebbooookkSSiizzeerr

wxNotebookSizer is a specialized sizer to make sizers work in connection with using
notebooks. This sizer is different from any other sizer as you must not add any children
to it - instead, it queries the notebook class itself. The only thing this sizer does is to
determine the size of the biggest page of the notebook and report an adjusted minimal
size to a more toplevel sizer.

In order to query the size of notebook page, this page needs to have its own sizer,
otherwise the wxNotebookSizer will ignore it. Notebook pages get there sizer by assiging
one to them using wxWindow::SetSizer (p. 1415) and setting the auto-layout option to
TRUE using wxWindow::SetAutoLayout (p. 1405). Here is one example showing how to
add a notebook page that the notebook sizer is aware of:

 wxNotebook *notebook = new wxNotebook(&dialog, -1);
 wxNotebookSizer *nbs = new wxNotebookSizer(notebook);

CHAPTER 5

886

 // Add panel as notebook page
 wxPanel *panel = new wxPanel(notebook, -1);
 notebook->AddPage(panel, "My Notebook Page");

 wxBoxSizer *panelsizer = new wxBoxSizer(wxVERTICAL);

 // Add controls to panel and panelsizer here...

 panel->SetAutoLayout(TRUE);
 panel->SetSizer(panelsizer);

See also wxSizer (p. 1086), wxNotebook (p. 887).

Derived from

wxSizer (p. 1086)
wxObject (p. 897)

wxNotebookSizer::wxNotebookSizer

 wxNotebookSizer(wxNotebook* notebook)

Constructor. It takes an associated notebook as its only parameter.

wxNotebookSizer::GetNotebook

wxNotebook* GetNotebook()

Returns the notebook associated with the sizer.

wwxxNNooddeeBBaassee

A node structure used in linked lists (see wxList (p. 743)) and derived classes. You
should never use wxNodeBase class directly because it works with untyped (void *) data
and this is unsafe. Use wxNode-derived classes which are defined by
WX_DECLARE_LIST and WX_DEFINE_LIST macros instead as described in wxList (p.
743) documentation (see example there). wxNode is defined for compatibility as
wxNodeBase containing "wxObject *" pointer, but usage of this class is deprecated.

Derived from

None.

Include files

CHAPTER 5

887

<wx/list.h>

See also

wxList (p. 743), wxHashTable (p. 608)

wxNodeBase::GetData

void * Data()

Retrieves the client data pointer associated with the node.

wxNodeBase::GetNext

wxNodeBase * Next()

Retrieves the next node (NULL if at end of list).

wxNodeBase::GetPrevious

wxNodeBase * GetPrevious()

Retrieves the previous node (NULL if at start of list).

wxNodeBase::SetData

void SetData(void *data)

Sets the data associated with the node (usually the pointer will have been set when the
node was created).

wxNodeBase::IndexOf

int IndexOf()

Returns the zero-based index of this node within the list. The return value will be
NOT_FOUND if the node has not been added to a list yet.

wwxxNNootteebbooookk

CHAPTER 5

888

This class represents a notebook control, which manages multiple windows with
associated tabs.

To use the class, create a wxNotebook object and call AddPage (p. 889) or InsertPage
(p. 892), passing a window to be used as the page. Do not explicitly delete the window
for a page that is currently managed by wxNotebook.

wxNotebookPage is a typedef for wxWindow.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/notebook.h>

Window styles

wxNB_FIXEDWIDTH (Windows only)All tabs will have same width.
wxNB_LEFT Place tabs on the left side.
wxNB_RIGHT Place tabs on the right side.
wxNB_BOTTOM Place tabs under instead of above the notebook pages.

See also window styles overview (p. 1567).

Event handling

To process input from a notebook control, use the following event handler macros to
direct input to member functions that take a wxNotebookEvent (p. 894) argument.

EVT_NOTEBOOK_PAGE_CHANGED(id, func) The page selection was changed.

Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGED event.

EVT_NOTEBOOK_PAGE_CHANGING(id, func) The page selection is about to be
changed. Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGING event. This event can be vetoed (p.
897).

See also

wxNotebookEvent (p. 894), wxImageList (p. 710), wxTabCtrl (p. 1220)

CHAPTER 5

889

wxNotebook::wxNotebook

 wxNotebook()

Default constructor.

 wxNotebook(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size, long style = 0, const wxString& name =
"notebook")

Constructs a notebook control.

Note that sometimes you can reduce flicker by passing the wxCLIP_CHILDREN window
style.

Parameters

parent

The parent window. Must be non-NULL.

id

The window identifier.

pos

The window position.

size

The window size.

style

The window style. See wxNotebook (p. 887).

name

The name of the control (used only under Motif).

wxNotebook::~wxNotebook

 ~wxNotebook()

Destroys the wxNotebook object.

wxNotebook::AddPage

bool AddPage(wxNotebookPage* page, const wxString& text, bool select = FALSE,

CHAPTER 5

890

int imageId = -1)

Adds a new page.

Parameters

page

Specifies the new page.

text

Specifies the text for the new page.

select

Specifies whether the page should be selected.

imageId

Specifies the optional image index for the new page.

Return value

TRUE if successful, FALSE otherwise.

Remarks

Do not delete the page, it will be deleted by the notebook.

See also

wxNotebook::InsertPage (p. 892)

wxNotebook::AdvanceSelection

void AdvanceSelection(bool forward = TRUE)

Cycles through the tabs.

wxNotebook::AssignImageList

void AssignImageList(wxImageList* imageList)

Sets the image list for the page control and takes ownership of the list.

See also

wxImageList (p. 710),SetImageList (p. 893)

wxNotebook::Create

CHAPTER 5

891

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size, long style = 0, const wxString& name =
"notebook")

Creates a notebook control. See wxNotebook::wxNotebook (p. 889) for a description of
the parameters.

wxNotebook::DeleteAllPages

bool DeleteAllPages()

Deletes all pages.

wxNotebook::DeletePage

bool DeletePage (int page)

Deletes the specified page, and the associated window.

wxNotebook::GetImageList

wxImageList* GetImageList() const

Returns the associated image list.

See also

wxImageList (p. 710), wxNotebook::SetImageList (p. 893)

wxNotebook::GetPage

wxNotebookPage* GetPage(int page)

Returns the window at the given page position.

wxNotebook::GetPageCount

int GetPageCount() const

Returns the number of pages in the notebook control.

wxNotebook::GetPageImage

CHAPTER 5

892

int GetPageImage(int nPage) const

Returns the image index for the given page.

wxNotebook::GetPageText

wxString GetPageText(int nPage) const

Returns the string for the given page.

wxNotebook::GetRowCount

int GetRowCount() const

Returns the number of rows in the notebook control.

wxNotebook::GetSelection

int GetSelection() const

Returns the currently selected page, or -1 if none was selected.

Note that this method may return either the previously or newly selected page when
called from the EVT_NOTEBOOK_PAGE_CHANGED handler depending on the platform
and so wxNotebookEvent::GetSelection (p. 896) should be used instead in this case.

wxNotebook::InsertPage

bool InsertPage (int index, wxNotebookPage* page, const wxString& text, bool
select = FALSE, int imageId = -1)

Inserts a new page at the specified position.

Parameters

index

Specifies the position for the new page.

page

Specifies the new page.

text

Specifies the text for the new page.

select

CHAPTER 5

893

Specifies whether the page should be selected.

imageId

Specifies the optional image index for the new page.

Return value

TRUE if successful, FALSE otherwise.

Remarks

Do not delete the page, it will be deleted by the notebook.

See also

wxNotebook::AddPage (p. 889)

wxNotebook::OnSelChange

void OnSelChange(wxNotebookEvent& event)

An event handler function, called when the page selection is changed.

See also

wxNotebookEvent (p. 894)

wxNotebook::RemovePage

bool RemovePage (int page)

Deletes the specified page, without deleting the associated window.

wxNotebook::SetImageList

void SetImageList(wxImageList* imageList)

Sets the image list for the page control. It does not take ownership of the image list, you
must delete it yourself.

See also

wxImageList (p. 710),AssignImageList (p. 890)

wxNotebook::SetPadding

CHAPTER 5

894

void SetPadding(const wxSize& padding)

Sets the amount of space around each page's icon and label, in pixels.

wxNotebook::SetPageSize

void SetPageSize(const wxSize& size)

Sets the width and height of the pages.

wxNotebook::SetPageImage

bool SetPageImage(int page, int image)

Sets the image index for the given page. image is an index into the image list which was
set with wxNotebook::SetImageList (p. 893).

wxNotebook::SetPageText

bool SetPageText(int page, const wxString& text)

Sets the text for the given page.

wxNotebook::SetSelection

int SetSelection(int page)

Sets the selection for the given page, returning the previous selection.

See also

wxNotebook::GetSelection (p. 892)

wwxxNNootteebbooookkEEvveenntt

This class represents the events generated by a notebook control: currently, there are
two of them. The PAGE_CHANGING event is sent before the current page is changed. It
allows to the program to examine the current page (which can be retrieved with
GetOldSelection() (p. 896)) and to veto the page change by calling Veto() (p. 897) if, for
example, the current values in the controls of the old page are invalid.

The second event - PAGE_CHANGED - is sent after the page has been changed and

CHAPTER 5

895

the program cannot veto it any more, it just informs it about the page change.

To summarize, if the program is interested in validating the page values before allowing
the user to change it, it should process the PAGE_CHANGING event, otherwise
PAGE_CHANGED is probably enough. In any case, it is probably unnecessary to
process both events at once.

Derived from

wxNotifyEvent (p. 896)
wxCommandEvent (p. 156)
wxEvent (p. 428)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/notebook.h>

Event handling

To process input from a notebook control, use the following event handler macros to
direct input to member functions that take a wxNotebookEvent (p. 894) argument.

EVT_NOTEBOOK_PAGE_CHANGED(id, func) The page selection was changed.

Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGED event.

EVT_NOTEBOOK_PAGE_CHANGING(id, func) The page selection is about to be
changed. Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGING event. This event can be vetoed (p.
897).

See also

wxNotebook (p. 887), wxTabCtrl (p. 1220), wxTabEvent (p. 1226)

wxNotebookEvent::wxNotebookEvent

 wxNotebookEvent(wxEventType eventType = wxEVT_NULL, int id = 0, int sel = -1,
int oldSel = -1)

Constructor (used internally by wxWindows only).

CHAPTER 5

896

wxNotebookEvent::GetOldSelection

int GetOldSelection() const

Returns the page that was selected before the change, -1 if none was selected.

wxNotebookEvent::GetSelection

int GetSelection() const

Returns the currently selected page, or -1 if none was selected.

NB: under Windows, GetSelection() will return the same value as GetOldSelection() (p.
896) when called fromEVT_NOTEBOOK_PAGE_CHANGING handler and not the page
which is going to be selected.

wxNotebookEvent::SetOldSelection

void SetOldSelection(int page)

Sets the id of the page selected before the change.

wxNotebookEvent::SetSelection

void SetSelection(int page)

Sets the selection member variable.

See also

wxNotebookEvent::GetSelection (p. 896)

wwxxNNoottiiffyyEEvveenntt

This class is not used by the event handlers by itself, but is a base class for other event
classes (such as wxNotebookEvent (p. 894)).

It (or an object of a derived class) is sent when the controls state is being changed and
allows the program to Veto() (p. 897) this change if it wants to prevent it from happening.

Derived from

wxCommandEvent (p. 156)

CHAPTER 5

897

wxEvent (p. 428)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

None

See also

wxNotebookEvent (p. 894)

wxNotifyEvent::wxNotifyEvent

 wxNotifyEvent(wxEventType eventType = wxEVT_NULL, int id = 0)

Constructor (used internally by wxWindows only).

wxNotifyEvent::IsAllowed

bool IsAllowed() const

Returns TRUE if the change is allowed (Veto() (p. 897) hasn't been called) or FALSE
otherwise (if it was).

wxNotifyEvent::Veto

void Veto()

Prevents the change announced by this event from happening.

It is in general a good idea to notify the user about the reasons for vetoing the change
because otherwise the applications behaviour (which just refuses to do what the user
wants) might be quite surprising.

wwxxOObbjjeecctt

This is the root class of all wxWindows classes. It declares a virtual destructor which

CHAPTER 5

898

ensures that destructors get called for all derived class objects where necessary.

wxObject is the hub of a dynamic object creation scheme, enabling a program to create
instances of a class only knowing its string class name, and to query the class hierarchy.

The class contains optional debugging versions of new and delete , which can help trace
memory allocation and deallocation problems.

wxObject can be used to implement reference counted objects, such as wxPen,
wxBitmap and others.

See also

wxClassInfo (p. 122), Debugging overview (p. 1552), wxObjectRefData (p. 901)

wxObject::wxObject

 wxObject()

Default constructor.

wxObject::~wxObject

 wxObject()

Destructor. Performs dereferencing, for those objects that use reference counting.

wxObject::m_refData

wxObjectRefData* m_refData

Pointer to an object which is the object's reference-counted data.

See also

wxObject::Ref (p. 900), wxObject::UnRef (p. 901), wxObject::SetRefData (p. 900),
wxObject::GetRefData (p. 899), wxObjectRefData (p. 901)

wxObject::CopyObject

virtual void CopyObject(wxObject& object_dest)

Create a copy of this object in object_dest. Must perform a full copy of self so that
object_dest will be valid after this object is deleted

CHAPTER 5

899

wxObject::Dump

void Dump(ostream& stream)

A virtual function that should be redefined by derived classes to allow dumping of
memory states.

Parameters

stream

Stream on which to output dump information.

Remarks

Currently wxWindows does not define Dump for derived classes, but programmers may
wish to use it for their own applications. Be sure to call the Dump member of the class's
base class to allow all information to be dumped.

The implementation of this function just writes the class name of the object in debug
build (__WXDEBUG__ defined), otherwise it does nothing.

wxObject::GetClassInfo

wxClassInfo * GetClassInfo()

This virtual function is redefined for every class that requires run-time type information,
when using DECLARE_CLASS macros.

wxObject::GetRefData

wxObjectRefData* GetRefData() const

Returns the m_refData pointer.

See also

wxObject::Ref (p. 900), wxObject::UnRef (p. 901), wxObject::m_refData (p. 898),
wxObject::SetRefData (p. 900), wxObjectRefData (p. 901)

wxObject::IsKindOf

bool IsKindOf(wxClassInfo *info)

Determines whether this class is a subclass of (or the same class as) the given class.

CHAPTER 5

900

Parameters

info

A pointer to a class information object, which may be obtained by using the
CLASSINFO macro.

Return value

TRUE if the class represented by info is the same class as this one or is derived from it.

Example

 bool tmp = obj->IsKindOf(CLASSINFO(wxFrame));

wxObject::Ref

void Ref(const wxObject& clone)

Makes this object refer to the data in clone.

Parameters

clone

The object to 'clone'.

Remarks

First this function calls wxObject::UnRef (p. 901) on itself to decrement (and perhaps
free) the data it is currently referring to.

It then sets its own m_refData to point to that of clone, and increments the reference
count inside the data.

See also

wxObject::UnRef (p. 901), wxObject::m_refData (p. 898), wxObject::SetRefData (p. 900),
wxObject::GetRefData (p. 899), wxObjectRefData (p. 901)

wxObject::SetRefData

void SetRefData(wxObjectRefData* data)

Sets the m_refData pointer.

See also

wxObject::Ref (p. 900), wxObject::UnRef (p. 901), wxObject::m_refData (p. 898),
wxObject::GetRefData (p. 899), wxObjectRefData (p. 901)

CHAPTER 5

901

wxObject::UnRef

void UnRef()

Decrements the reference count in the associated data, and if it is zero, deletes the data.
The m_refData member is set to NULL.

See also

wxObject::Ref (p. 900), wxObject::m_refData (p. 898), wxObject::SetRefData (p. 900),
wxObject::GetRefData (p. 899), wxObjectRefData (p. 901)

wxObject::operator new

void * new(size_t size, const wxString& filename = NULL, int lineNum = 0)

The new operator is defined for debugging versions of the library only, when the
identifier __WXDEBUG__ is defined. It takes over memory allocation, allowing
wxDebugContext operations.

wxObject::operator delete

void delete(void buf)

The delete operator is defined for debugging versions of the library only, when the
identifier __WXDEBUG__ is defined. It takes over memory deallocation, allowing
wxDebugContext operations.

wwxxOObbjjeeccttRReeffDDaattaa

This class is used to store reference-counted data. Derive classes from this to store your
own data. When retrieving information from a wxObject's reference data, you will need
to cast to your own derived class.

Friends

wxObject (p. 897)

See also

wxObject (p. 897)

CHAPTER 5

902

wxObjectRefData::m_count

int m_count

Reference count. When this goes to zero during a wxObject::UnRef (p. 901), an object
can delete the wxObjectRefData object.

wxObjectRefData::wxObjectRefData

 wxObjectRefData()

Default constructor. Initialises the m_count member to 1.

wxObjectRefData::~wxObjectRefData

 wxObjectRefData()

Destructor.

wwxxOOuuttppuuttSSttrreeaamm

wxOutputStream is an abstract base class which may not be used directly.

Derived from

wxStreamBase (p. 1161)

Include files

<wx/stream.h>

wxOutputStream::wxOutputStream

 wxOutputStream()

Creates a dummy wxOutputStream object.

wxOutputStream::~wxOutputStream

CHAPTER 5

903

 ~wxOutputStream()

Destructor.

wxOutputStream::LastWrite

size_t LastWrite() const

Returns the number of bytes written during the last Write().

wxOutputStream::PutC

void PutC(char c)

Puts the specified character in the output queue and increments the stream position.

wxOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Changes the stream current position.

wxOutputStream::TellO

off_t TellO() const

Returns the current stream position.

wxOutputStream::Write

wxOutputStream& Write(const void *buffer, size_t size)

Writes the specified amount of bytes using the data of buffer. WARNING! The buffer
absolutely needs to have at least the specified size.

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxOutputStream& Write(wxInputStream& stream_in)

Reads data from the specified input stream and stores them in the current stream. The
data is read until an error is raised by one of the two streams.

CHAPTER 5

904

wwxxPPaaggeeSSeettuuppDDiiaallooggDDaattaa

This class holds a variety of information related to wxPageSetupDialog (p. 909).

It contains a wxPrintData (p. 943) member which is used to hold basic printer
configuration data (as opposed to the user-interface configuration settings stored by
wxPageSetupDialogData).

Derived from

wxObject (p. 897)

Include files

<wx/cmndata.h>

See also

wxPageSetupDialog (p. 909)

wxPageSetupDialogData::wxPageSetupDialogData

 wxPageSetupDialogData()

Default constructor.

 wxPageSetupDialogData(wxPageSetupDialogData& data)

Copy constructor.

 wxPrintDialogData(wxPrintData& printData)

Construct an object from a print dialog data object.

wxPageSetupDialogData::~wxPageSetupDialogData

 ~wxPageSetupDialogData()

Destructor.

wxPageSetupDialogData::EnableHelp

void EnableHelp(bool flag)

CHAPTER 5

905

Enables or disables the 'Help' button (Windows only).

wxPageSetupDialogData::EnableMargins

void EnableMargins(bool flag)

Enables or disables the margin controls (Windows only).

wxPageSetupDialogData::EnableOrientation

void EnableOrientation(bool flag)

Enables or disables the orientation control (Windows only).

wxPageSetupDialogData::EnablePaper

void EnablePaper(bool flag)

Enables or disables the paper size control (Windows only).

wxPageSetupDialogData::EnablePrinter

void EnablePrinter(bool flag)

Enables or disables the Printer button, which invokes a printer setup dialog.

wxPageSetupDialogData::GetDefaultMinMargins

bool GetDefaultMinMargins() const

Returns TRUE if the page setup dialog will take its minimum margin values from the
currently selected printer properties. Windows only.

wxPageSetupDialogData::GetEnableMargins

bool GetEnableMargins() const

Returns TRUE if the margin controls are enabled (Windows only).

wxPageSetupDialogData::GetEnableOrientation

CHAPTER 5

906

bool GetEnableOrientation() const

Returns TRUE if the orientation control is enabled (Windows only).

wxPageSetupDialogData::GetEnablePaper

bool GetEnablePaper() const

Returns TRUE if the paper size control is enabled (Windows only).

wxPageSetupDialogData::GetEnablePrinter

bool GetEnablePrinter() const

Returns TRUE if the printer setup button is enabled.

wxPageSetupDialogData::GetEnableHelp

bool GetEnableHelp() const

Returns TRUE if the printer setup button is enabled.

wxPageSetupDialogData::GetDefaultInfo

bool GetDefaultInfo() const

Returns TRUE if the dialog will simply return default printer information (such as
orientation) instead of showing a dialog. Windows only.

wxPageSetupDialogData::GetMarginTopLeft

wxPoint GetMarginTopLeft() const

Returns the left (x) and top (y) margins in millimetres.

wxPageSetupDialogData::GetMarginBottomRight

wxPoint GetMarginBottomRight() const

Returns the right (x) and bottom (y) margins in millimetres.

wxPageSetupDialogData::GetMinMarginTopLeft

CHAPTER 5

907

wxPoint GetMinMarginTopLeft() const

Returns the left (x) and top (y) minimum margins the user can enter (Windows only).
Units are in millimetres

wxPageSetupDialogData::GetMinMarginBottomRight

wxPoint GetMinMarginBottomRight() const

Returns the right (x) and bottom (y) minimum margins the user can enter (Windows
only). Units are in millimetres

wxPageSetupDialogData::GetPaperId

wxPaperSize GetPaperId() const

Returns the paper id (stored in the internal wxPrintData object).

For further information, see wxPrintData::SetPaperId (p. 947).

wxPageSetupDialogData::GetPaperSize

wxSize GetPaperSize() const

Returns the paper size in millimetres.

wxPageSetupDialogData::GetPrintData

wxPrintData& GetPrintData()

Returns a reference to the print data (p. 943) associated with this object.

wxPageSetupDialogData::SetDefaultInfo

void SetDefaultInfo(bool flag)

Pass TRUE if the dialog will simply return default printer information (such as orientation)
instead of showing a dialog. Windows only.

wxPageSetupDialogData::SetDefaultMinMargins

void SetDefaultMinMargins(bool flag)

CHAPTER 5

908

Pass TRUE if the page setup dialog will take its minimum margin values from the
currently selected printer properties. Windows only. Units are in millimetres

wxPageSetupDialogData::SetMarginTopLeft

void GetMarginTopLeft(const wxPoint& pt)

Sets the left (x) and top (y) margins in millimetres.

wxPageSetupDialogData::SetMarginBottomRight

void SetMarginBottomRight(const wxPoint& pt)

Sets the right (x) and bottom (y) margins in millimetres.

wxPageSetupDialogData::SetMinMarginTopLeft

void SetMinMarginTopLeft(const wxPoint& pt)

Sets the left (x) and top (y) minimum margins the user can enter (Windows only). Units
are in millimetres.

wxPageSetupDialogData::SetMinMarginBottomRight

void SetMinMarginBottomRight(const wxPoint& pt)

Sets the right (x) and bottom (y) minimum margins the user can enter (Windows only).
Units are in millimetres.

wxPageSetupDialogData::SetPaperId

void SetPaperId(wxPaperSize& id)

Sets the paper size id. For further information, see wxPrintData::SetPaperId (p. 947).

Calling this function overrides the explicit paper dimensions passed in
wxPageSetupDialogData::SetPaperSize (p. 908).

wxPageSetupDialogData::SetPaperSize

void SetPaperSize(const wxSize& size)

CHAPTER 5

909

Sets the paper size in millimetres. If a corresponding paper id is found, it will be set in
the internal wxPrintData object, otherwise the paper size overrides the paper id.

wxPageSetupDialogData::SetPrintData

void SetPrintData(const wxPrintData& printData)

Sets the print data (p. 943) associated with this object.

wxPageSetupDialogData::operator =

void operator =(const wxPrintData& data)

Assigns print data to this object.

void operator =(const wxPageSetupDialogData& data)

Assigns page setup data to this object.

wwxxPPaaggeeSSeettuuppDDiiaalloogg

This class represents the page setup common dialog. The page setup dialog is standard
from Windows 95 on, replacing the print setup dialog (which is retained in Windows and
wxWindows for backward compatibility). On Windows 95 and NT 4.0 and above, the
page setup dialog is native to the windowing system, otherwise it is emulated.

The page setup dialog contains controls for paper size (A4, A5 etc.), orientation
(landscape or portrait), and controls for setting left, top, right and bottom margin sizes in
millimetres.

When the dialog has been closed, you need to query the wxPageSetupDialogData (p.
904) object associated with the dialog.

Note that the OK and Cancel buttons do not destroy the dialog; this must be done by the
application.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

CHAPTER 5

910

<wx/printdlg.h>

See also

wxPrintDialog (p. 949), wxPageSetupDialogData (p. 904)

wxPageSetupDialog::wxPageSetupDialog

 wxPageSetupDialog(wxWindow* parent, wxPageSetupDialogData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of page setup
data, which will be copied to the print dialog's internal data.

wxPageSetupDialog::~wxPageSetupDialog

 ~wxPageSetupDialog()

Destructor.

wxPageSetupDialog::GetPageSetupData

wxPageSetupDialogData& GetPageSetupData()

Returns the page setup data (p. 904) associated with the dialog.

wxPageSetupDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wwxxPPaaiinnttDDCC

A wxPaintDC must be constructed if an application wishes to paint on the client area of a
window from within an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxPaintDC object. If you have an OnPaint handler,
you must create a wxPaintDC object within it even if you don't actually use it.

Using wxPaintDC within OnPaint is important because it automatically sets the clipping

CHAPTER 5

911

area to the damaged area of the window. Attempts to draw outside this area do not
appear.

To draw on a window from outside OnPaint, construct a wxClientDC (p. 123) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1418)
object (Windows only).

Derived from

wxWindowDC (p. 1418)
wxDC (p. 327)

Include files

<wx/dcclient.h>

See also

wxDC (p. 327), wxMemoryDC (p. 828), wxPaintDC (p. 910), wxWindowDC (p. 1418),
wxScreenDC (p. 1060)

wxPaintDC::wxPaintDC

 wxPaintDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wwxxPPaaiinnttEEvveenntt

A paint event is sent when a window's contents needs to be repainted.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process a paint event, use this event handler macro to direct input to a member

CHAPTER 5

912

function that takes a wxPaintEvent argument.

EVT_PAINT(func) Process a wxEVT_PAINT event.

See also

wxWindow::OnPaint (p. 1397), Event handling overview (p. 1560)

wxPaintEvent::wxPaintEvent

 wxPaintEvent(int id = 0)

Constructor.

wwxxPPaalleettttee

A palette is a table that maps pixel values to RGB colours. It allows the colours of a low-
depth bitmap, for example, to be mapped to the available colours in a display.

Derived from

wxGDIObject (p. 550)
wxObject (p. 897)

Include files

<wx/palette.h>

Predefined objects

Objects:

wxNullPalette

See also

wxDC::SetPalette (p. 342), wxBitmap (p. 55)

wxPalette::wxPalette

CHAPTER 5

913

 wxPalette()

Default constructor.

 wxPalette(const wxPalette& palette)

Copy constructor. This uses reference counting so is a cheap operation.

 wxPalette(int n, const unsigned char* red,
 const unsigned char* green, const unsigned char* blue)

Creates a palette from arrays of size n, one for each red, blue or green component.

Parameters

palette

A pointer or reference to the palette to copy.

n

The number of indices in the palette.

red

An array of red values.

green

An array of green values.

blue

An array of blue values.

See also

wxPalette::Create (p. 913)

wxPerl note: In wxPerl the third constructor form takes as parameters 3 array
references (they must be of the same length).

wxPalette::~wxPalette

 ~wxPalette ()

Destructor.

wxPalette::Create

bool Create (int n, const unsigned char* red, const unsigned char* green, const
unsigned char* blue)

CHAPTER 5

914

Creates a palette from arrays of size n, one for each red, blue or green component.

Parameters

n

The number of indices in the palette.

red

An array of red values.

green

An array of green values.

blue

An array of blue values.

Return value

TRUE if the creation was successful, FALSE otherwise.

See also

wxPalette::wxPalette (p. 912)

wxPalette::GetPixel

int GetPixel(const unsigned char red, const unsigned char green, const unsigned
char blue) const

Returns a pixel value (index into the palette) for the given RGB values.

Parameters

red

Red value.

green

Green value.

blue

Blue value.

Return value

The nearest palette index.

See also

wxPalette::GetRGB (p. 915)

CHAPTER 5

915

wxPalette::GetRGB

bool GetPixel(int pixel, const unsigned char* red, const unsigned char* green,
const unsigned char* blue) const

Returns RGB values for a given palette index.

Parameters

pixel

The palette index.

red

Receives the red value.

green

Receives the green value.

blue

Receives the blue value.

Return value

TRUE if the operation was successful.

See also

wxPalette::GetPixel (p. 914)

wxPerl note: In wxPerl this method takes only the pixel parameter and returns a 3-
element list (or the empty list upon failure).

wxPalette::Ok

bool Ok() const

Returns TRUE if palette data is present.

wxPalette::operator =

wxPalette& operator =(const wxPalette& palette)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxPalette::operator ==

CHAPTER 5

916

bool operator ==(const wxPalette& palette)

Equality operator. Two palettes are equal if they contain pointers to the same underlying
palette data. It does not compare each attribute, so two independently-created palettes
using the same parameters will fail the test.

wxPalette::operator !=

bool operator !=(const wxPalette& palette)

Inequality operator. Two palettes are not equal if they contain pointers to different
underlying palette data. It does not compare each attribute.

wwxxPPaanneell

A panel is a window on which controls are placed. It is usually placed within a frame. It
contains minimal extra functionality over and above its parent class wxWindow; its main
purpose is to be similar in appearance and functionality to a dialog, but with the flexibility
of having any window as a parent.

Note: if not all characters are being intercepted by your OnKeyDown or OnChar handler,
it may be because you are using the wxTAB_TRAVERSAL style, which grabs some
keypresses for use by child controls.

Derived from

wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/panel.h>

Window styles

There are no specific styles for this window.

See also window styles overview (p. 1567).

Remarks

By default, a panel has the same colouring as a dialog.

A panel may be loaded from a wxWindows resource file (extension wxr).

CHAPTER 5

917

See also

wxDialog (p. 359)

wxPanel::wxPanel

 wxPanel()

Default constructor.

 wxPanel(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTAB_TRAVERSAL, const wxString& name = "panel")

Constructor.

Parameters

parent

The parent window.

id

An identifier for the panel. A value of -1 is taken to mean a default.

pos

The panel position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWindows, depending on platform.

size

The panel size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style

The window style. See wxPanel (p. 916).

name

Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxPanel::Create (p. 918)

wxPanel::~wxPanel

 ~wxPanel()

CHAPTER 5

918

Destructor. Deletes any child windows before deleting the physical window.

wxPanel::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTAB_TRAVERSAL, const wxString& name = "panel")

Used for two-step panel construction. See wxPanel::wxPanel (p. 917) for details.

wxPanel::GetDefaultItem

wxButton* GetDefaultItem() const

Returns a pointer to the button which is the default for this window, or NULL. The default
button is the one activated by pressing the Enter key.

wxPanel::InitDialog

void InitDialog()

Sends an wxWindow::OnInitDialog (p. 1394) event, which in turn transfers data to the
dialog via validators.

See also

wxWindow::OnInitDialog (p. 1394)

wxPanel::OnSysColourChanged

void OnSysColourChanged(wxSysColourChangedEvent& event)

The default handler for wxEVT_SYS_COLOUR_CHANGED.

Parameters

event

The colour change event.

Remarks

Changes the panel's colour to conform to the current settings (Windows only). Add an
event table entry for your panel class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxWindow::OnSysColourChanged (p. 1400) to propagate the notification to child

CHAPTER 5

919

windows and controls.

See also

wxSysColourChangedEvent (p. 1200)

wxPanel::SetDefaultItem

void SetDefaultItem(wxButton *btn)

Changes the default button for the panel.

See also

GetDefaultItem (p. 918)

wwxxPPaanneellTTaabbVViieeww

The wxPanelTabView is responsible for input and output on a wxPanel.

Derived from

wxTabView (p. 1212)
wxObject (p. 897)

Include files

<wx/tab.h>

See also

wxTabView overview (p. 1609), wxTabView (p. 1212)

wxPanelTabView::wxPanelTabView

void wxPanelTabView(wxPanel *panel, long style = wxTAB_STYLE_DRAW_BOX |
wxTAB_STYLE_COLOUR_INTERIOR)

Constructor. panel should be a wxTabbedPanel or wxTabbedDialog: the type will be
checked by the view at run time.

style may be a bit list of the following:

CHAPTER 5

920

wxTAB_STYLE_DRAW_BOX Draw a box around the view area. Most
commonly used for dialogs.

wxTAB_STYLE_COLOUR_INTERIOR Draw tab backgrounds in the specified colour.
Omitting this style will ensure that the tab
background matches the dialog background.

wxPanelTabView::~wxPanelTabView

void ~wxPanelTabView()

Destructor. This destructor deletes all the panels associated with the view. If you do not
wish this to happen, call ClearWindows with argument FALSE before the view is likely to
be destroyed. This will clear the list of windows, without deleting them.

wxPanelTabView::AddTabWindow

void AddTabPanel(int id, wxWindow *window)

Adds a window to the view. The window is associated with the tab identifier, and will be
shown or hidden as the tab is selected or deselected.

wxPanelTabView::ClearWindows

void ClearWindows(bool deleteWindows = TRUE)

Removes the child windows from the view. If deleteWindows is TRUE, the windows will
be deleted.

wxPanelTabView::GetCurrentWindow

wxPanel * GetCurrentWindow()

Returns the child window currently being displayed on the tabbed panel or dialog box.

wxPanelTabView::GetTabWindow

wxWindow * GetTabWindow(int id)

Returns the window associated with the tab identifier.

wxPanelTabView::ShowWindowForTab

CHAPTER 5

921

void ShowWindowForTab(int id)

Shows the child window corresponding to the tab identifier, and hides the previously
shown window.

wwxxPPaatthhLLiisstt

The path list is a convenient way of storing a number of directories, and when presented
with a filename without a directory, searching for an existing file in those directories.
Storing the filename only in an application's files and using a locally-defined list of
directories makes the application and its files more portable.

Use the wxFileNameFromPath global function to extract the filename from the path.

Derived from

wxList (p. 743)
wxObject (p. 897)

Include files

<wx/filefn.h>

See also

wxList (p. 743)

wxPathList::wxPathList

 wxPathList()

Constructor.

wxPathList::AddEnvList

void AddEnvList(const wxString& env_variable)

Finds the value of the given environment variable, and adds all paths to the path list.
Useful for finding files in the PATH variable, for example.

wxPathList::Add

CHAPTER 5

922

void Add(const wxString& path)

Adds the given directory to the path list, but does not check if the path was already on
the list (use wxPathList::Member) for this).

wxPathList::EnsureFileAccessible

void EnsureFileAccessible(const wxString& filename)

Given a full filename (with path), ensures that files in the same path can be accessed
using the pathlist. It does this by stripping the filename and adding the path to the list if
not already there.

wxPathList::FindAbsoluteValidPath

wxString FindAbsoluteValidPath(const wxString& file)

Searches for a full path for an existing file by appending file to successive members of
the path list. If the file exists, a temporary pointer to the absolute path is returned.

wxPathList::FindValidPath

wxString FindValidPath(const wxString& file)

Searches for a full path for an existing file by appending file to successive members of
the path list. If the file exists, a temporary pointer to the full path is returned. This path
may be relative to the current working directory.

wxPathList::Member

bool Member(const wxString& file)

TRUE if the path is in the path list (ignoring case).

wwxxPPeenn

A pen is a drawing tool for drawing outlines. It is used for drawing lines and painting the
outline of rectangles, ellipses, etc. It has a colour, a width and a style.

Derived from

wxGDIObject (p. 550)

CHAPTER 5

923

wxObject (p. 897)

Include files

<wx/pen.h>

Predefined objects

Objects:

wxNullPen

Pointers:

wxRED_PEN
wxCYAN_PEN
wxGREEN_PEN
wxBLACK_PEN
wxWHITE_PEN
wxTRANSPARENT_PEN
wxBLACK_DASHED_PEN
wxGREY_PEN
wxMEDIUM_GREY_PEN
wxLIGHT_GREY_PEN

Remarks

On a monochrome display, wxWindows shows all non-white pens as black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in OnInit or when required.

An application may wish to dynamically create pens with different characteristics, and
there is the consequent danger that a large number of duplicate pens will be created.
Therefore an application may wish to get a pointer to a pen by using the global list of
pens wxThePenList, and calling the member function FindOrCreatePen. See the entry
for wxPenList (p. 929).

wxPen uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxPen objects instead of pointers without efficiency
problems. Once one wxPen object changes its data it will create its own pen data
internally so that other pens, which previously shared the data using the reference
counting, are not affected.

See also

wxPenList (p. 929), wxDC (p. 327), wxDC::SetPen (p. 345)

CHAPTER 5

924

wxPen::wxPen

 wxPen()

Default constructor. The pen will be uninitialised, and wxPen::Ok (p. 927) will return
FALSE.

 wxPen(const wxColour& colour, int width, int style)

Constructs a pen from a colour object, pen width and style.

 wxPen(const wxString& colourName, int width, int style)

Constructs a pen from a colour name, pen width and style.

 wxPen(const wxBitmap& stipple, int width)

Constructs a stippled pen from a stipple bitmap and a width.

 wxPen(const wxPen& pen)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

colour

A colour object.

colourName

A colour name.

width

Pen width. Under Windows, the pen width cannot be greater than 1 if the style is
wxDOT, wxLONG_DASH, wxSHORT_DASH, wxDOT_DASH, or wxUSER_DASH.

stipple

A stipple bitmap.

pen

A pointer or reference to a pen to copy.

style

The style may be one of the following:

wxSOLID Solid style.
wxTRANSPARENT No pen is used.
wxDOT Dotted style.
wxLONG_DASH Long dashed style.
wxSHORT_DASH Short dashed style.
wxDOT_DASH Dot and dash style.

CHAPTER 5

925

wxSTIPPLE Use the stipple bitmap.
wxUSER_DASH Use the user dashes: see

wxPen::SetDashes (p. 928).
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

Remarks

Different versions of Windows and different versions of other platforms support very
different subsets of the styles above - there is no similarity even between Windows95
and Windows98 - so handle with care.

If the named colour form is used, an appropriate wxColour structure is found in the
colour database.

See also

wxPen::SetStyle (p. 929), wxPen::SetColour (p. 927), wxPen::SetWidth (p. 929),
wxPen::SetStipple (p. 928)

wxPerl note: Constructors supported by wxPerl are:

 •::Pen->new(colour, width, style)
 •::Pen->new(colourName, width, style)
 •::Pen->new(stipple, width)

wxPen::~wxPen

 ~wxPen()

Destructor.

Remarks

The destructor may not delete the underlying pen object of the native windowing system,
since wxBrush uses a reference counting system for efficiency.

Although all remaining pens are deleted when the application exits, the application
should try to clean up all pens itself. This is because wxWindows cannot know if a
pointer to the pen object is stored in an application data structure, and there is a risk of
double deletion.

wxPen::GetCap

CHAPTER 5

926

int GetCap() const

Returns the pen cap style, which may be one of wxCAP_ROUND,
wxCAP_PROJECTING and wxCAP_BUTT. The default is wxCAP_ROUND.

See also

wxPen::SetCap (p. 927)

wxPen::GetColour

wxColour& GetColour() const

Returns a reference to the pen colour.

See also

wxPen::SetColour (p. 927)

wxPen::GetDashes

int GetDashes(wxDash** dashes) const

Gets an array of dashes (defined as char in X, DWORD under Windows).dashes is a
pointer to the internal array. Do not deallocate or store this pointer. The function returns
the number of dashes associated with this pen.

See also

wxPen::SetDashes (p. 928)

wxPen::GetJoin

int GetJoin() const

Returns the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and
wxJOIN_MITER. The default is wxJOIN_ROUND.

See also

wxPen::SetJoin (p. 928)

wxPen::GetStipple

wxBitmap* GetStipple() const

CHAPTER 5

927

Gets a pointer to the stipple bitmap.

See also

wxPen::SetStipple (p. 928)

wxPen::GetStyle

int GetStyle() const

Returns the pen style.

See also

wxPen::wxPen (p. 924), wxPen::SetStyle (p. 929)

wxPen::GetWidth

int GetWidth() const

Returns the pen width.

See also

wxPen::SetWidth (p. 929)

wxPen::Ok

bool Ok() const

Returns TRUE if the pen is initialised.

wxPen::SetCap

void SetCap(int capStyle)

Sets the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING
and wxCAP_BUTT. The default is wxCAP_ROUND.

See also

wxPen::GetCap (p. 925)

wxPen::SetColour

CHAPTER 5

928

void SetColour(wxColour& colour)

void SetColour(const wxString& colourName)

void SetColour(int red, int green, int blue)

The pen's colour is changed to the given colour.

See also

wxPen::GetColour (p. 926)

wxPen::SetDashes

void SetDashes(int n, wxDash* dashes)

Associates an array of pointers to dashes (defined as char in X, DWORD under
Windows) with the pen. The array is not deallocated by wxPen, but neither must it be
deallocated by the calling application until the pen is deleted or this function is called
with a NULL array.

See also

wxPen::GetDashes (p. 926)

wxPen::SetJoin

void SetJoin(intjoin_style)

Sets the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and
wxJOIN_MITER. The default is wxJOIN_ROUND.

See also

wxPen::GetJoin (p. 926)

wxPen::SetStipple

void SetStipple (wxBitmap* stipple)

Sets the bitmap for stippling.

See also

wxPen::GetStipple (p. 926)

CHAPTER 5

929

wxPen::SetStyle

void SetStyle(int style)

Set the pen style.

See also

wxPen::wxPen (p. 924)

wxPen::SetWidth

void SetWidth(int width)

Sets the pen width.

See also

wxPen::GetWidth (p. 927)

wxPen::operator =

wxPen& operator =(const wxPen& pen)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxPen::operator ==

bool operator ==(const wxPen& pen)

Equality operator. Two pens are equal if they contain pointers to the same underlying
pen data. It does not compare each attribute, so two independently-created pens using
the same parameters will fail the test.

wxPen::operator !=

bool operator !=(const wxPen& pen)

Inequality operator. Two pens are not equal if they contain pointers to different
underlying pen data. It does not compare each attribute.

wwxxPPeennLLiisstt

CHAPTER 5

930

There is only one instance of this class: wxThePenList. Use this object to search for a
previously created pen of the desired type and create it if not already found. In some
windowing systems, the pen may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all pens will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the pen list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a pen, because the referencing
counting does it for you. For example, you can set a pen in a device context, and then
immediately delete the pen you passed, because the pen is 'copied'.

So you may find it easier to ignore the pen list, and instead create and copy pens as you
see fit. If your Windows resource meter suggests your application is using too many
resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the pen list is for wxWindows to keep track of pens in order
to clean them up on exit. It is also kept for backward compatibility with earlier versions of
wxWindows.

See also

wxPen (p. 922)

wxPenList::wxPenList

void wxPenList()

Constructor. The application should not construct its own pen list: use the object pointer
wxThePenList.

wxPenList::AddPen

void AddPen(wxPen* pen)

Used internally by wxWindows to add a pen to the list.

wxPenList::FindOrCreatePen

wxPen* FindOrCreatePen(const wxColour& colour, int width, int style)

CHAPTER 5

931

Finds a pen with the specified attributes and returns it, else creates a new pen, adds it to
the pen list, and returns it.

wxPen* FindOrCreatePen(const wxString& colourName, int width, int style)

Finds a pen with the specified attributes and returns it, else creates a new pen, adds it to
the pen list, and returns it.

Parameters

colour

Colour object.

colourName

Colour name, which should be in the colour database (p. 144).

width

Width of pen.

style

Pen style. See wxPen::wxPen (p. 924) for a list of styles.

wxPenList::RemovePen

void RemovePen(wxPen* pen)

Used by wxWindows to remove a pen from the list.

wwxxPPlloottCCuurrvvee

The wxPlotCurve class represents a curve displayed in a wxPlotWindow (p. 933). It is a
virtual curve, i.e. is acts only as an interface, leaving it to the programmer to care for how
the values pairs are matched. wxPlotWindow and wxPlotCurve are designed to display
large amounts of data, i.e. most typically data measured by some sort of machine.

This class is abstract, i.e. you have to derive your own class and implement the pure
virtual functions (GetStartX() (p. 932), GetEndX() (p. 932)and GetY() (p. 932)).

Derived from

wxObject (p. 897)

CHAPTER 5

932

wxPlotCurve::wxPlotCurve

 wxPlotCurve(int offsetY, double startY, double endY)

Constructor assigning start values. See below for interpretation.

wxPlotCurve::GetEndX

wxInt32 GetEndX()

Must be overridden. This function should return the index of the last value of this curve,
typically 99 if 100 values have been measured.

wxPlotCurve::GetEndY

double GetEndY()

See SetStartY (p. 933).

wxPlotCurve::GetOffsetY

int GetOffsetY()

Returns the vertical offset.

wxPlotCurve::GetY

double GetY(wxInt32 x)

Must be overridden. This function will return the actual Y value corresponding to the
given X value. The x value is of an integer type because it is considered to be an index
in row of measured values.

wxPlotCurve::GetStartX

wxInt32 GetStartX()

Must be overridden. This function should return the index of the first value of this curve,
typically zero.

wxPlotCurve::GetStartY

double GetStartY()

See SetStartY (p. 933).

CHAPTER 5

933

wxPlotCurve::SetEndY

void SetEndY(double endY)

The value returned by this function tells the plot window what the highest values in the
curve will be so that a suitable scale can be found for the display. If the Y values in this
curve are in the range of -1.5 to 0.5, this function should return 0.5 or maybe 1.0 for
nicer aesthetics.

wxPlotCurve::SetOffsetY

void SetOffsetY(int offsetY)

When displaying several curves in one window, it is often useful to assign different
offsets to the curves. You should call wxPlotWindow::Move (p. 935) to set this value
after you have added the curve to the window.

wxPlotCurve::SetStartY

void SetStartY(double startY)

The value returned by this function tells the plot window what the lowest values in the
curve will be so that a suitable scale can be found for the display. If the Y values in this
curve are in the range of -1.5 to 0.5, this function should return -1.5 or maybe -2.0 for
nicer aesthetics.

wwxxPPlloottWWiinnddooww

wxPlotWindow is a specialized window designed to display data that typically has been
measured by machines, i.e. that may have thousands of values. One example of such
data would be the well known ECG measuring the electrical activity of your heart: the
measuring device will produce thousands of values per minute, several measurements
are done simultanously and you might want to have a look at parts of the curves,
enlarging them or scrolling from one position to another. Note that this window is not
useful for real-time measuring or for displaying charts with error bars etc.

A single curve in the plot window is represented by the wxPlotCurve (p. 931) class.

The wxPlotWindow interacts with program using events, for example when clicking or
double clicking on a curve or when selecting one by clicking on it (which can be vetoed).
Future versions will hopefully feature selecting values or sections of the displayed curves
etc.

CHAPTER 5

934

Derived from

wxScrolledWindow (p. 1070)
wxPanel (p. 916)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Window styles

wxPLOT_BUTTON_MOVE Display buttons to allao moving individual

curves up or down.
wxPLOT_BUTTON_ENLARGE Display buttons to allow enlarging individual

curves vertically.
wxPLOT_BUTTON_ZOOM Display buttons to allow zooming all curves

horizontally.
wxPLOT_BUTTON_ALL Display all buttons.
wxPLOT_Y_AXIS Display an Y axis to the left of the drawing

area.
wxPLOT_X_AXIS Display a X axis at the bottom of the drawing

area.
wxPLOT_DEFAULT All of the above options.

wxPlotWindow::wxPlotWindow

 wxPlotWindow()

 wxPlotWindow(wxWindow* parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, int flags = wxPLOT_DEFAULT)

Constructor.

wxPlotWindow::~wxPlotWindow

 ~wxPlotWindow()

The destructor will not delete the curves associated to the window.

wxPlotWindow::Add

void Add(wxPlotCurve* curve)

Add a curve to the window.

CHAPTER 5

935

wxPlotWindow::GetCount

size_t GetCount()

Returns number of curves.

wxPlotWindow::GetAt

wxPlotCurve* GetAt(size_t n)

Get the nth curve.

wxPlotWindow::SetCurrent

void SetCurrent(wxPlotCurve* current)

Make one curve the current curve. This will emit a wxPlotEvent.

wxPlotWindow::GetCurrent

wxPlotCurve* GetCurrent()

Returns a pointer to the current curve, or NULL.

wxPlotWindow::Delete

void Delete(wxPlotCurve* curve)

Removes a curve from the window and delete is on screen. This does not delete the
actual curve. If the curve removed was the current curve, the current curve will be set to
NULL.

wxPlotWindow::Move

void Move(wxPlotCurve* curve, int pixels_up)

Move the curve curve up by pixels_up pixels. Down if the value is negative.

wxPlotWindow::Enlarge

void Enlarge (wxPlotCurve* curve, double factor)

CHAPTER 5

936

Changes the representation of the given curve. A factor of more than one will stretch
the curve vertically. The Y axis will change accordingly.

wxPlotWindow::SetUnitsPerValue

void SetUnitsPerValue(double upv)

This sets the virtual untis per value. Normally, you will not be interested in what
measured value you see, but what it stands for. If you want to display seconds on the X
axis and the measuring device produced 50 values per second, set this value to 50. This
will affect all curves being displayed.

wxPlotWindow::GetUnitsPerValue

double GetUnitsPerValue()

See SetUnitsPerValue (p. 936).

wxPlotWindow::SetZoom

void SetZoom(double zoom)

This functions zooms all curves in their horizontal dimension. The X axis will be changed
accordingly.

wxPlotWindow::GetZoom

double GetZoom()

See SetZoom (p. 936).

wxPlotWindow::RedrawEverything

void RedrawEverything()

Helper function which redraws both axes and the central area.

wxPlotWindow::RedrawXAxis

void RedrawXAxis()

Helper function which redraws the X axis.

CHAPTER 5

937

wxPlotWindow::RedrawYAxis

void RedrawYAxis()

Helper function which redraws the Y axis.

wxPlotWindow::SetScrollOnThumbRelease

void SetScrollOnThumbRelease(bool onrelease = TRUE)

This function controls if the plot area will get scrolled only if the scrollbar thumb has been
release or also if the thumb is being dragged. When displaying large amounts of data, it
might become impossible to display the data fast enough to produce smooth scrolling
and then this function should be called.

wxPlotWindow::SetEnlargeAroundWindowCentre

void SetEnlargeAroundWindowCentre(bool aroundwindow = TRUE)

Depending on the kind of data you display, enlarging the individual curves might have
different desired effects. Sometimes, the data will be supposed to get enlarged with the
fixed point being the origin, sometimes the fixed point should be the centre of the current
drawing area. This function controls this behaviour.

wwxxPPooiinntt

A wxPoint is a useful data structure for graphics operations. It simply contains integer x
and y members.

See also wxRealPoint (p. 1022) for a floating point version.

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxRealPoint (p. 1022)

CHAPTER 5

938

wxPoint::wxPoint

 wxPoint()

 wxPoint(int x, int y)

Create a point.

wxPoint::x

int x

x member.

wxPoint::y

int y

y member.

wwxxPPoossttSSccrriippttDDCC

This defines the wxWindows Encapsulated PostScript device context, which can write
PostScript files on any platform. See wxDC (p. 327) for descriptions of the member
functions.

Derived from

wxDC (p. 327)
wxObject (p. 897)

Include files

<wx/dcps.h>

wxPostScriptDC::wxPostScriptDC

 wxPostScriptDC(const wxPrintData& printData)

Constructs a PostScript printer device context from a wxPrintData (p. 943) object.

CHAPTER 5

939

 wxPostScriptDC(const wxString& output, bool interactive = TRUE,
 wxWindow *parent)

Constructor. output is an optional file for printing to, and if interactive is TRUE a dialog
box will be displayed for adjusting various parameters. parent is the parent of the printer
dialog box.

Use the Ok member to test whether the constructor was successful in creating a useable
device context.

See Printer settings (p. 1452) for functions to set and get PostScript printing settings.

This constructor and the global printer settings are now deprecated; use the wxPrintData
constructor instead.

wxPostScriptDC::SetResolution

static void SetResolution(int ppi)

Set resolution (in pixels per inch) that will be used in PostScript output. Default is 720ppi.

wxPostScriptDC::GetResolution

static int GetResolution()

Return resolution used in PostScript output. See SetResolution (p. 939).

wwxxPPrreevviieewwCCaannvvaass

A preview canvas is the default canvas used by the print preview system to display the
preview.

Derived from

wxScrolledWindow (p. 1070)
wxWindow (p. 1366)
wxevthandler (p. 432)
wxObject (p. 897)

Include files

<wx/print.h>

See also

CHAPTER 5

940

wxPreviewFrame (p. 942), wxPreviewControlBar (p. 940), wxPrintPreview (p. 962)

wxPreviewCanvas::wxPreviewCanvas

 wxPreviewCanvas(wxPrintPreview* preview, wxWindow* parent, const wxPoint&
pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "canvas")

Constructor.

wxPreviewCanvas::~wxPreviewCanvas

 ~wxPreviewCanvas()

Destructor.

wxPreviewCanvas::OnPaint

void OnPaint(wxPaintEvent& event)

Calls wxPrintPreview::PaintPage (p. 965) to refresh the canvas.

wwxxPPrreevviieewwCCoonnttrroollBBaarr

This is the default implementation of the preview control bar, a panel with buttons and a
zoom control. You can derive a new class from this and override some or all member
functions to change the behaviour and appearance; or you can leave it as it is.

Derived from

wxPanel (p. 916)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/print.h>

See also

wxPreviewFrame (p. 942), wxPreviewCanvas (p. 939), wxPrintPreview (p. 962)

CHAPTER 5

941

wxPreviewControlBar::wxPreviewControlbar

 wxPreviewControlBar(wxPrintPreview* preview, long buttons, wxWindow* parent,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = 0, const wxString& name = "panel")

Constructor.

The buttons parameter may be a combination of the following, using the bitwise 'or'
operator.

wxPREVIEW_PRINT Create a print button.
wxPREVIEW_NEXT Create a next page button.
wxPREVIEW_PREVIOUS Create a previous page button.
wxPREVIEW_ZOOM Create a zoom control.
wxPREVIEW_DEFAULT Equivalent to a combination of

wxPREVIEW_PREVIOUS,
wxPREVIEW_NEXT and wxPREVIEW_ZOOM.

wxPreviewControlBar::~wxPreviewControlBar

 ~wxPreviewControlBar()

Destructor.

wxPreviewControlBar::CreateButtons

void CreateButtons()

Creates buttons, according to value of the button style flags.

wxPreviewControlBar::GetPrintPreview

wxPrintPreview * GetPrintPreview()

Gets the print preview object associated with the control bar.

wxPreviewControlBar::GetZoomControl

int GetZoomControl()

CHAPTER 5

942

Gets the current zoom setting in percent.

wxPreviewControlBar::SetZoomControl

void SetZoomControl(int percent)

Sets the zoom control.

wwxxPPrreevviieewwFFrraammee

This class provides the default method of managing the print preview interface. Member
functions may be overridden to replace functionality, or the class may be used without
derivation.

Derived from

wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/print.h>

See also

wxPreviewCanvas (p. 939), wxPreviewControlBar (p. 940), wxPrintPreview (p. 962)

wxPreviewFrame::wxPreviewFrame

 wxPreviewFrame (wxPrintPreview* preview, wxFrame* parent, const wxString& title,
const wxPoint& pos = wxDefaultPosition, const wxSize& size size = wxDefaultSize,
long style = wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor. Pass a print preview object plus other normal frame arguments.

wxPreviewFrame::~wxPreviewFrame

 ~wxPreviewFrame ()

Destructor.

CHAPTER 5

943

wxPreviewFrame::CreateControlBar

void CreateControlBar()

Creates a wxPreviewControlBar. Override this function to allow a user-defined preview
control bar object to be created.

wxPreviewFrame::CreateCanvas

void CreateCanvas()

Creates a wxPreviewCanvas. Override this function to allow a user-defined preview
canvas object to be created.

wxPreviewFrame::Initialize

void Initialize()

Creates the preview canvas and control bar, and calls wxWindow::MakeModal(TRUE) to
disable other top-level windows in the application.

This function should be called by the application prior to showing the frame.

wxPreviewFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Enables the other frames in the application, and deletes the print preview object,
implicitly deleting any printout objects associated with the print preview object.

wwxxPPrriinnttDDaattaa

This class holds a variety of information related to printers and printer device contexts.
This class is used to create a wxPrinterDC and a wxPostScriptDC. It is also used as a
data member of wxPrintDialogData and wxPageSetupDialogData, as part of the
mechanism for transferring data between the print dialogs and the application.

Derived from

wxObject (p. 897)

CHAPTER 5

944

Include files

<wx/cmndata.h>

See also

wxPrintDialog (p. 949), wxPageSetupDialog (p. 909), wxPrintDialogData (p. 951),
wxPageSetupDialogData (p. 904), wxPrintDialog Overview (p. 1598), wxPrinterDC (p.
958), wxPostScriptDC (p. 938)

Remarks

The following functions are specific to PostScript printing and have not yet been
documented:

const wxString& GetPrinterCommand() const ;
const wxString& GetPrinterOptions() const ;
const wxString& GetPreviewCommand() const ;
const wxString& GetFilename() const ;
const wxString& GetFontMetricPath() const ;
double GetPrinterScaleX() const ;
double GetPrinterScaleY() const ;
long GetPrinterTranslateX() const ;
long GetPrinterTranslateY() const ;
// wxPRINT_MODE_PREVIEW, wxPRINT_MODE_FILE, wxPRINT_MODE_PRINTER
wxPrintMode GetPrintMode() const ;

void SetPrinterCommand(const wxString& command) ;
void SetPrinterOptions(const wxString& options) ;
void SetPreviewCommand(const wxString& command) ;
void SetFilename(const wxString& filename) ;
void SetFontMetricPath(const wxString& path) ;
void SetPrinterScaleX(double x) ;
void SetPrinterScaleY(double y) ;
void SetPrinterScaling(double x, double y) ;
void SetPrinterTranslateX(long x) ;
void SetPrinterTranslateY(long y) ;
void SetPrinterTranslation(long x, long y) ;
void SetPrintMode(wxPrintMode printMode) ;

wxPrintData::wxPrintData

 wxPrintData()

Default constructor.

 wxPrintData(const wxPrintData& data)

Copy constructor.

CHAPTER 5

945

wxPrintData::~wxPrintData

 ~wxPrintData()

Destructor.

wxPrintData::GetCollate

bool GetCollate () const

Returns TRUE if collation is on.

wxPrintData::GetColour

bool GetColour() const

Returns TRUE if colour printing is on.

wxPrintData::GetDuplex

wxDuplexMode GetDuplex() const

Returns the duplex mode. One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL,
wxDUPLEX_VERTICAL.

wxPrintData::GetNoCopies

int GetNoCopies() const

Returns the number of copies requested by the user.

wxPrintData::GetOrientation

int GetOrientation() const

Gets the orientation. This can be wxLANDSCAPE or wxPORTRAIT.

wxPrintData::GetPaperId

wxPaperSize GetPaperId() const

Returns the paper size id. For more information, see wxPrintData::SetPaperId (p. 947).

CHAPTER 5

946

wxPrintData::GetPrinterName

const wxString& GetPrinterName() const

Returns the printer name. If the printer name is the empty string, it indicates that the
default printer should be used.

wxPrintData::GetQuality

wxPaperQuality GetQuality() const

Returns the current print quality. This can be a positive integer, denoting the number of
dots per inch, or one of the following identifiers:

wxPRINT_QUALITY_HIGH
wxPRINT_QUALITY_MEDIUM
wxPRINT_QUALITY_LOW
wxPRINT_QUALITY_DRAFT

On input you should pass one of these identifiers, but on return you may get back a
positive integer indicating the current resolution setting.

wxPrintData::SetCollate

void SetCollate (bool flag)

Sets collation to on or off.

wxPrintData::SetColour

void SetColour(bool flag)

Sets colour printing on or off.

wxPrintData::SetDuplex

void SetDuplex(wxDuplexMode mode)

Returns the duplex mode. One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL,
wxDUPLEX_VERTICAL.

wxPrintData::SetNoCopies

CHAPTER 5

947

void SetNoCopies(int n)

Sets the default number of copies to be printed out.

wxPrintData::SetOrientation

void SetOrientation(int orientation)

Sets the orientation. This can be wxLANDSCAPE or wxPORTRAIT.

wxPrintData::SetPaperId

void SetPaperId(wxPaperSize paperId)

Sets the paper id. This indicates the type of paper to be used. For a mapping between
paper id, paper size and string name, see wxPrintPaperDatabase in paper.h (not yet
documented).

paperId can be one of:

 wxPAPER_NONE, // Use specific dimensions
 wxPAPER_LETTER, // Letter, 8 1/2 by 11 inches
 wxPAPER_LEGAL, // Legal, 8 1/2 by 14 inches
 wxPAPER_A4, // A4 Sheet, 210 by 297 millimeters
 wxPAPER_CSHEET, // C Sheet, 17 by 22 inches
 wxPAPER_DSHEET, // D Sheet, 22 by 34 inches
 wxPAPER_ESHEET, // E Sheet, 34 by 44 inches
 wxPAPER_LETTERSMALL, // Letter Small, 8 1/2 by 11 inches
 wxPAPER_TABLOID, // Tabloid, 11 by 17 inches
 wxPAPER_LEDGER, // Ledger, 17 by 11 inches
 wxPAPER_STATEMENT, // Statement, 5 1/2 by 8 1/2 inches
 wxPAPER_EXECUTIVE, // Executive, 7 1/4 by 10 1/2 inches
 wxPAPER_A3, // A3 sheet, 297 by 420 millimeters
 wxPAPER_A4SMALL, // A4 small sheet, 210 by 297
millimeters
 wxPAPER_A5, // A5 sheet, 148 by 210 millimeters
 wxPAPER_B4, // B4 sheet, 250 by 354 millimeters
 wxPAPER_B5, // B5 sheet, 182-by-257-millimeter
paper
 wxPAPER_FOLIO, // Folio, 8-1/2-by-13-inch paper
 wxPAPER_QUARTO, // Quarto, 215-by-275-millimeter paper
 wxPAPER_10X14, // 10-by-14-inch sheet
 wxPAPER_11X17, // 11-by-17-inch sheet
 wxPAPER_NOTE, // Note, 8 1/2 by 11 inches
 wxPAPER_ENV_9, // #9 Envelope, 3 7/8 by 8 7/8 inches
 wxPAPER_ENV_10, // #10 Envelope, 4 1/8 by 9 1/2 inches
 wxPAPER_ENV_11, // #11 Envelope, 4 1/2 by 10 3/8 inches
 wxPAPER_ENV_12, // #12 Envelope, 4 3/4 by 11 inches
 wxPAPER_ENV_14, // #14 Envelope, 5 by 11 1/2 inches
 wxPAPER_ENV_DL, // DL Envelope, 110 by 220 millimeters
 wxPAPER_ENV_C5, // C5 Envelope, 162 by 229 millimeters

CHAPTER 5

948

 wxPAPER_ENV_C3, // C3 Envelope, 324 by 458 millimeters
 wxPAPER_ENV_C4, // C4 Envelope, 229 by 324 millimeters
 wxPAPER_ENV_C6, // C6 Envelope, 114 by 162 millimeters
 wxPAPER_ENV_C65, // C65 Envelope, 114 by 229 millimeters
 wxPAPER_ENV_B4, // B4 Envelope, 250 by 353 millimeters
 wxPAPER_ENV_B5, // B5 Envelope, 176 by 250 millimeters
 wxPAPER_ENV_B6, // B6 Envelope, 176 by 125 millimeters
 wxPAPER_ENV_ITALY, // Italy Envelope, 110 by 230
millimeters
 wxPAPER_ENV_MONARCH, // Monarch Envelope, 3 7/8 by 7 1/2
inches
 wxPAPER_ENV_PERSONAL, // 6 3/4 Envelope, 3 5/8 by 6 1/2
inches
 wxPAPER_FANFOLD_US, // US Std Fanfold, 14 7/8 by 11 inches
 wxPAPER_FANFOLD_STD_GERMAN, // German Std Fanfold, 8 1/2 by 12
inches
 wxPAPER_FANFOLD_LGL_GERMAN, // German Legal Fanfold, 8 1/2 by 13
inches

Windows 95 only:
 wxPAPER_ISO_B4, // B4 (ISO) 250 x 353 mm
 wxPAPER_JAPANESE_POSTCARD, // Japanese Postcard 100 x 148 mm
 wxPAPER_9X11, // 9 x 11 in
 wxPAPER_10X11, // 10 x 11 in
 wxPAPER_15X11, // 15 x 11 in
 wxPAPER_ENV_INVITE, // Envelope Invite 220 x 220 mm
 wxPAPER_LETTER_EXTRA, // Letter Extra 9 \275 x 12 in
 wxPAPER_LEGAL_EXTRA, // Legal Extra 9 \275 x 15 in
 wxPAPER_TABLOID_EXTRA, // Tabloid Extra 11.69 x 18 in
 wxPAPER_A4_EXTRA, // A4 Extra 9.27 x 12.69 in
 wxPAPER_LETTER_TRANSVERSE, // Letter Transverse 8 \275 x 11 in
 wxPAPER_A4_TRANSVERSE, // A4 Transverse 210 x 297 mm
 wxPAPER_LETTER_EXTRA_TRANSVERSE, // Letter Extra Transverse 9\275 x
12 in
 wxPAPER_A_PLUS, // SuperA/SuperA/A4 227 x 356 mm
 wxPAPER_B_PLUS, // SuperB/SuperB/A3 305 x 487 mm
 wxPAPER_LETTER_PLUS, // Letter Plus 8.5 x 12.69 in
 wxPAPER_A4_PLUS, // A4 Plus 210 x 330 mm
 wxPAPER_A5_TRANSVERSE, // A5 Transverse 148 x 210 mm
 wxPAPER_B5_TRANSVERSE, // B5 (JIS) Transverse 182 x 257 mm
 wxPAPER_A3_EXTRA, // A3 Extra 322 x 445 mm
 wxPAPER_A5_EXTRA, // A5 Extra 174 x 235 mm
 wxPAPER_B5_EXTRA, // B5 (ISO) Extra 201 x 276 mm
 wxPAPER_A2, // A2 420 x 594 mm
 wxPAPER_A3_TRANSVERSE, // A3 Transverse 297 x 420 mm
 wxPAPER_A3_EXTRA_TRANSVERSE // A3 Extra Transverse 322 x 445 mm

wxPrintData::SetPrinterName

void SetPrinterName (const wxString& printerName)

Sets the printer name. This can be the empty string to indicate that the default printer
should be used.

CHAPTER 5

949

wxPrintData::SetQuality

void SetQuality(wxPaperQuality quality)

Sets the desired print quality. This can be a positive integer, denoting the number of dots
per inch, or one of the following identifiers:

wxPRINT_QUALITY_HIGH
wxPRINT_QUALITY_MEDIUM
wxPRINT_QUALITY_LOW
wxPRINT_QUALITY_DRAFT

On input you should pass one of these identifiers, but on return you may get back a
positive integer indicating the current resolution setting.

wxPrintData::operator =

void operator =(const wxPrintData& data)

Assigns print data to this object.

void operator =(const wxPrintSetupData& data)

Assigns print setup data to this object. wxPrintSetupData is deprecated, but retained for
backward compatibility.

wwxxPPrriinnttDDiiaalloogg

This class represents the print and print setup common dialogs. You may obtain a
wxPrinterDC (p. 958) device context from a successfully dismissed print dialog.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/printdlg.h>

See also

CHAPTER 5

950

wxPrintDialog Overview (p. 1598)

wxPrintDialog::wxPrintDialog

 wxPrintDialog(wxWindow* parent, wxPrintDialogData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of print data,
which will be copied to the print dialog's print data.

See also

wxPrintDialogData (p. 951)

wxPrintDialog::~wxPrintDialog

 ~wxPrintDialog()

Destructor. If wxPrintDialog::GetPrintDC has not been called, the device context
obtained by the dialog (if any) will be deleted.

wxPrintDialog::GetPrintDialogData

wxPrintDialogData& GetPrintDialogData()

Returns the print dialog data (p. 951) associated with the print dialog.

wxPrintDialog::GetPrintDC

wxDC* GetPrintDC()

Returns the device context created by the print dialog, if any. When this function has
been called, the ownership of the device context is transferred to the application, so it
must then be deleted explicitly.

wxPrintDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise. After this function is called, a device context may be retrievable using
wxPrintDialog::GetPrintDC (p. 950).

CHAPTER 5

951

wwxxPPrriinnttDDiiaallooggDDaattaa

This class holds information related to the visual characteristics of wxPrintDialog. It
contains a wxPrintData object with underlying printing settings.

Derived from

wxObject (p. 897)

Include files

<wx/cmndata.h>

See also

wxPrintDialog (p. 949), wxPrintDialog Overview (p. 1598)

wxPrintDialogData::wxPrintDialogData

 wxPrintDialogData()

Default constructor.

 wxPrintDialogData(wxPrintDialogData& dialogData)

Copy constructor.

 wxPrintDialogData(wxPrintData& printData)

Construct an object from a print dialog data object.

wxPrintDialogData::~wxprintdialogdata

 ~wxPrintDialogData()

Destructor.

wxPrintDialogData::EnableHelp

void EnableHelp(bool flag)

Enables or disables the 'Help' button.

CHAPTER 5

952

wxPrintDialogData::EnablePageNumbers

void EnablePageNumbers(bool flag)

Enables or disables the 'Page numbers' controls.

wxPrintDialogData::EnablePrintToFile

void EnablePrintToFile (bool flag)

Enables or disables the 'Print to file' checkbox.

wxPrintDialogData::EnableSelection

void EnableSelection(bool flag)

Enables or disables the 'Selection' radio button.

wxPrintDialogData::GetAllPages

bool GetAllPages() const

Returns TRUE if the user requested that all pages be printed.

wxPrintDialogData::GetCollate

bool GetCollate () const

Returns TRUE if the user requested that the document(s) be collated.

wxPrintDialogData::GetFromPage

int GetFromPage() const

Returns the from page number, as entered by the user.

wxPrintDialogData::GetMaxPage

int GetMaxPage () const

Returns the maximum page number.

CHAPTER 5

953

wxPrintDialogData::GetMinPage

int GetMinPage () const

Returns the minimum page number.

wxPrintDialogData::GetNoCopies

int GetNoCopies() const

Returns the number of copies requested by the user.

wxPrintDialogData::GetPrintData

wxPrintData& GetPrintData()

Returns a reference to the internal wxPrintData object.

wxPrintDialogData::GetPrintToFile

bool GetPrintToFile () const

Returns TRUE if the user has selected printing to a file.

wxPrintDialogData::GetSelection

bool GetSelection() const

Returns TRUE if the user requested that the selection be printed (where 'selection' is a
concept specific to the application).

wxPrintDialogData::GetToPage

int GetToPage () const

Returns the to page number, as entered by the user.

wxPrintDialogData::SetCollate

void SetCollate (bool flag)

Sets the 'Collate' checkbox to TRUE or FALSE.

CHAPTER 5

954

wxPrintDialogData::SetFromPage

void SetFromPage(int page)

Sets the from page number.

wxPrintDialogData::SetMaxPage

void SetMaxPage(int page)

Sets the maximum page number.

wxPrintDialogData::SetMinPage

void SetMinPage (int page)

Sets the minimum page number.

wxPrintDialogData::SetNoCopies

void SetNoCopies(int n)

Sets the default number of copies the user has requested to be printed out.

wxPrintDialogData::SetPrintData

void SetPrintData(const wxPrintData& printData)

Sets the internal wxPrintData.

wxPrintDialogData::SetPrintToFile

void SetPrintToFile(bool flag)

Sets the 'Print to file' checkbox to TRUE or FALSE.

wxPrintDialogData::SetSelection

void SetSelection(bool flag)

Selects the 'Selection' radio button. The effect of printing the selection depends on how

CHAPTER 5

955

the application implements this command, if at all.

wxPrintDialogData::SetSetupDialog

void SetSetupDialog(bool flag)

Determines whether the dialog to be shown will be the Print dialog (pass FALSE) or Print
Setup dialog (pass TRUE).

Note that the setup dialog is (according to Microsoft) obsolete from Windows 95, though
retained for backward compatibility.

wxPrintDialogData::SetToPage

void SetToPage (int page)

Sets the to page number.

wxPrintDialogData::operator =

void operator =(const wxPrintData& data)

Assigns print data to this object.

void operator =(const wxPrintDialogData& data)

Assigns another print dialog data object to this object.

wwxxPPrriinntteerr

This class represents the Windows or PostScript printer, and is the vehicle through
which printing may be launched by an application. Printing can also be achieved through
using of lower functions and classes, but this and associated classes provide a more
convenient and general method of printing.

Derived from

wxObject (p. 897)

Include files

<wx/print.h>

See also

CHAPTER 5

956

Printing framework overview (p. 1617), wxPrinterDC (p. 958), wxPrintDialog (p. 949),
wxPrintout (p. 958), wxPrintPreview (p. 962).

wxPrinter::wxPrinter

 wxPrinter(wxPrintDialogData* data = NULL)

Constructor. Pass an optional pointer to a block of print dialog data, which will be copied
to the printer object's local data.

See also

wxPrintDialogData (p. 951),wxPrintData (p. 943)

wxPrinter::~wxPrinter

 ~wxPrinter()

Destructor.

wxPrinter::Abort

bool Abort()

Returns TRUE if the user has aborted the print job.

wxPrinter::CreateAbortWindow

void CreateAbortWindow(wxWindow* parent, wxPrintout* printout)

Creates the default printing abort window, with a cancel button.

wxPrinter::GetLastError

static wxPrinterError GetLastError()

Return last error. Valid after calling Print (p. 957),PrintDialog (p. 957) or
wxPrintPreview::Print (p. 965). These functions set last error to
wxPRINTER_NO_ERROR if no error happened.

Returned value is one of the following:

CHAPTER 5

957

wxPRINTER_NO_ERROR No error happened.
wxPRINTER_CANCELLED The user cancelled printing.
wxPRINTER_ERROR There was an error during printing.

wxPrinter::GetPrintDialogData

wxPrintDialogData& GetPrintDialogData()

Returns the print data (p. 943) associated with the printer object.

wxPrinter::Print

bool Print(wxWindow *parent, wxPrintout *printout, bool prompt=TRUE)

Starts the printing process. Provide a parent window, a user-defined wxPrintout object
which controls the printing of a document, and whether the print dialog should be
invoked first.

Print could return FALSE if there was a problem initializing the printer device context
(current printer not set, for example) or the user cancelled printing.
CallwxPrinter::GetLastError (p. 956) to get detailed information about the kind of the
error.

wxPrinter::PrintDialog

wxDC* PrintDialog(wxWindow *parent)

Invokes the print dialog. If successful (the user did not press Cancel and no error
occurred), a suitable device context will be returned (otherwise NULL is returned --
callwxPrinter::GetLastError (p. 956) to get detailed information about the kind of the
error).

The application must delete this device context to avoid a memory leak.

wxPrinter::ReportError

void ReportError(wxWindow *parent, wxPrintout *printout, const wxString&
message)

Default error-reporting function.

wxPrinter::Setup

bool Setup(wxWindow *parent)

CHAPTER 5

958

Invokes the print setup dialog. Note that the setup dialog is obsolete from Windows 95,
though retained for backward compatibility.

wwxxPPrriinntteerrDDCC

A printer device context is specific to Windows, and allows access to any printer with a
Windows driver. See wxDC (p. 327) for further information on device contexts, and
wxDC::GetSize (p. 338) for advice on achieving the correct scaling for the page.

Derived from

wxDC (p. 327)
wxObject (p. 327)

Include files

<wx/dcprint.h>

See also

wxDC (p. 327), Printing framework overview (p. 1617)

wxPrinterDC::wxPrinterDC

 wxPrinterDC(const wxPrintData& printData)

Pass a wxPrintData (p. 943) object with information necessary for setting up a suitable
printer device context. This is the recommended way to construct a wxPrinterDC.

 wxPrinterDC(const wxString& driver, const wxString& device, const wxString&
output, const bool interactive = TRUE, int orientation = wxPORTRAIT)

Constructor. With empty strings for the first three arguments, the default printer dialog is
displayed. device indicates the type of printer and outputis an optional file for printing to.
The driver parameter is currently unused. Use the Ok member to test whether the
constructor was successful in creating a useable device context.

This constructor is deprecated and retained only for backward compatibility.

wwxxPPrriinnttoouutt

CHAPTER 5

959

This class encapsulates the functionality of printing out an application document. A new
class must be derived and members overridden to respond to calls such as OnPrintPage
and HasPage. Instances of this class are passed to wxPrinter::Print or a wxPrintPreview
object to initiate printing or previewing.

Derived from

wxObject (p. 897)

Include files

<wx/print.h>

See also

Printing framework overview (p. 1617), wxPrinterDC (p. 958), wxPrintDialog (p. 949),
wxPrinter (p. 955), wxPrintPreview (p. 962)

wxPrintout::wxPrintout

 wxPrintout(const wxString& title = "Printout")

Constructor. Pass an optional title argument (currently unused).

wxPrintout::~wxPrintout

 ~wxPrintout()

Destructor.

wxPrintout::GetDC

wxDC * GetDC()

Returns the device context associated with the printout (given to the printout at start of
printing or previewing). This will be a wxPrinterDC if printing under Windows, a
wxPostScriptDC if printing on other platforms, and a wxMemoryDC if previewing.

wxPrintout::GetPageInfo

void GetPageInfo(int *minPage, int *maxPage, int *pageFrom, int *pageTo)

Called by the framework to obtain information from the application about minimum and

CHAPTER 5

960

maximum page values that the user can select, and the required page range to be
printed. By default this returns 1, 32000 for the page minimum and maximum values,
and 1, 1 for the required page range.

If minPage is zero, the page number controls in the print dialog will be disabled.

wxPython note: When this method is implemented in a derived Python class, it should
be designed to take no parameters (other than the self reference) and to return a tuple of
four integers.

wxPerl note: When this method is overridden in a derived class, it must not take any
parameters, an return a 4-element list.

wxPrintout::GetPageSizeMM

void GetPageSizeMM(int *w, int *h)

Returns the size of the printer page in millimetres.

wxPython note: This method returns the output-only parameters as a tuple.

wxPerl note: In wxPerl this method takes no arguments and returns a 2-element list (
w, h)

wxPrintout::GetPageSizePixels

void GetPageSizePixels(int *w, int *h)

Returns the size of the printer page in pixels. These may not be the same as the values
returned from wxDC::GetSize (p. 338) if the printout is being used for previewing, since
in this case, a memory device context is used, using a bitmap size reflecting the current
preview zoom. The application must take this discrepancy into account if previewing is to
be supported.

wxPython note: This method returns the output-only parameters as a tuple.

wxPerl note: In wxPerl this method takes no arguments and returns a 2-element list (
w, h)

wxPrintout::GetPPIPrinter

void GetPPIPrinter(int *w, int *h)

Returns the number of pixels per logical inch of the printer device context. Dividing the
printer PPI by the screen PPI can give a suitable scaling factor for drawing text onto the
printer. Remember to multiply this by a scaling factor to take the preview DC size into
account.

CHAPTER 5

961

wxPython note: This method returns the output-only parameters as a tuple.

wxPerl note: In wxPerl this method takes no arguments and returns a 2-element list (
w, h)

wxPrintout::GetPPIScreen

void GetPPIScreen(int *w, int *h)

Returns the number of pixels per logical inch of the screen device context. Dividing the
printer PPI by the screen PPI can give a suitable scaling factor for drawing text onto the
printer. Remember to multiply this by a scaling factor to take the preview DC size into
account.

wxPython note: This method returns the output-only parameters as a tuple.

wxPerl note: In wxPerl this method takes no arguments and returns a 2-element list (
w, h)

wxPrintout::HasPage

bool HasPage(int pageNum)

Should be overridden to return TRUE if the document has this page, or FALSE if not.
Returning FALSE signifies the end of the document. By default, HasPage behaves as if
the document has only one page.

wxPrintout::IsPreview

bool IsPreview()

Returns TRUE if the printout is currently being used for previewing.

wxPrintout::OnBeginDocument

bool OnBeginDocument(int startPage, int endPage)

Called by the framework at the start of document printing. Return FALSE from this
function cancels the print job. OnBeginDocument is called once for every copy printed.

The base wxPrintout::OnBeginDocument must be called (and the return value checked)
from within the overridden function, since it calls wxDC::StartDoc.

wxPython note: If this method is overridden in a Python class then the base class
version can be called by using the methodbase_OnBeginDocument(startPage,

CHAPTER 5

962

endPage).

wxPrintout::OnEndDocument

void OnEndDocument()

Called by the framework at the end of document printing. OnEndDocument is called
once for every copy printed.

The base wxPrintout::OnEndDocument must be called from within the overridden
function, since it calls wxDC::EndDoc.

wxPrintout::OnBeginPrinting

void OnBeginPrinting()

Called by the framework at the start of printing. OnBeginPrinting is called once for every
print job (regardless of how many copies are being printed).

wxPrintout::OnEndPrinting

void OnEndPrinting()

Called by the framework at the end of printing. OnEndPrinting is called once for every
print job (regardless of how many copies are being printed).

wxPrintout::OnPreparePrinting

void OnPreparePrinting()

Called once by the framework before any other demands are made of the wxPrintout
object. This gives the object an opportunity to calculate the number of pages in the
document, for example.

wxPrintout::OnPrintPage

bool OnPrintPage (int pageNum)

Called by the framework when a page should be printed. Returning FALSE cancels the
print job. The application can use wxPrintout::GetDC to obtain a device context to draw
on.

wwxxPPrriinnttPPrreevviieeww

CHAPTER 5

963

Objects of this class manage the print preview process. The object is passed a
wxPrintout object, and the wxPrintPreview object itself is passed to a wxPreviewFrame
object. Previewing is started by initializing and showing the preview frame. Unlike
wxPrinter::Print, flow of control returns to the application immediately after the frame is
shown.

Derived from

wxObject (p. 897)

Include files

<wx/print.h>

See also

Printing framework overview (p. 1617), wxPrinterDC (p. 958), wxPrintDialog (p. 949),
wxPrintout (p. 958), wxPrinter (p. 955), wxPreviewCanvas (p. 939),
wxPreviewControlBar (p. 940), wxPreviewFrame (p. 942).

wxPrintPreview::wxPrintPreview

 wxPrintPreview(wxPrintout* printout, wxPrintout* printoutForPrinting,wxPrintData*
data=NULL)

Constructor. Pass a printout object, an optional printout object to be used for actual
printing, and the address of an optional block of printer data, which will be copied to the
print preview object's print data.

If printoutForPrinting is non-NULL, a Print... button will be placed on the preview frame
so that the user can print directly from the preview interface.

Do not explicitly delete the printout objects once this destructor has been called, since
they will be deleted in the wxPrintPreview constructor. The same does not apply to the
data argument.

Test the Ok member to check whether the wxPrintPreview object was created correctly.
Ok could return FALSE if there was a problem initializing the printer device context
(current printer not set, for example).

wxPrintPreview::~wxPrintPreview

 ~wxPrinter()

Destructor. Deletes both print preview objects, so do not destroy these objects in your

CHAPTER 5

964

application.

wxPrintPreview::DrawBlankPage

bool DrawBlankPage(wxWindow* window)

Draws a representation of the blank page into the preview window. Used internally.

wxPrintPreview::GetCanvas

wxWindow* GetCanvas()

Gets the preview window used for displaying the print preview image.

wxPrintPreview::GetCurrentPage

int GetCurrentPage()

Gets the page currently being previewed.

wxPrintPreview::GetFrame

wxFrame * GetFrame ()

Gets the frame used for displaying the print preview canvas and control bar.

wxPrintPreview::GetMaxPage

int GetMaxPage ()

Returns the maximum page number.

wxPrintPreview::GetMinPage

int GetMinPage ()

Returns the minimum page number.

wxPrintPreview::GetPrintData

wxPrintData& GetPrintData()

CHAPTER 5

965

Returns a reference to the internal print data.

wxPrintPreview::GetPrintout

wxPrintout * GetPrintout()

Gets the preview printout object associated with the wxPrintPreview object.

wxPrintPreview::GetPrintoutForPrinting

wxPrintout * GetPrintoutForPrinting()

Gets the printout object to be used for printing from within the preview interface, or NULL
if none exists.

wxPrintPreview::Ok

bool Ok()

Returns TRUE if the wxPrintPreview is valid, FALSE otherwise. It could return FALSE if
there was a problem initializing the printer device context (current printer not set, for
example).

wxPrintPreview::PaintPage

bool PaintPage(wxWindow* window)

This refreshes the preview window with the preview image. It must be called from the
preview window's OnPaint member.

The implementation simply blits the preview bitmap onto the canvas, creating a new
preview bitmap if none exists.

wxPrintPreview::Print

bool Print(bool prompt)

Invokes the print process using the second wxPrintout object supplied in the
wxPrintPreview constructor. Will normally be called by the Print... panel item on the
preview frame's control bar.

Returns FALSE in case of error -- callwxPrinter::GetLastError (p. 956) to get detailed
information about the kind of the error.

CHAPTER 5

966

wxPrintPreview::RenderPage

bool RenderPage(int pageNum)

Renders a page into a wxMemoryDC. Used internally by wxPrintPreview.

wxPrintPreview::SetCanvas

void SetCanvas(wxWindow* window)

Sets the window to be used for displaying the print preview image.

wxPrintPreview::SetCurrentPage

void SetCurrentPage (int pageNum)

Sets the current page to be previewed.

wxPrintPreview::SetFrame

void SetFrame (wxFrame *frame)

Sets the frame to be used for displaying the print preview canvas and control bar.

wxPrintPreview::SetPrintout

void SetPrintout(wxPrintout *printout)

Associates a printout object with the wxPrintPreview object.

wxPrintPreview::SetZoom

void SetZoom(int percent)

Sets the percentage preview zoom, and refreshes the preview canvas accordingly.

wwxxPPrriivvaatteeDDrrooppTTaarrggeett

wxPrivateDropTarget is for...

Derived from

CHAPTER 5

967

wxDropTarget (p. 421)

Include files

<wx/dnd.h>

See also

wxDropTarget (p. 421)

wxPrivateDropTarget::wxPrivateDropTarget

 wxPrivateDropTarget()

wxPrivateDropTarget::SetId

void SetId(const wxString& id)

Yu have to override OnDrop to get at the data. The string ID identifies the format of
clipboard or DnD data. A word rocessor would e.g. add a wxTextDataObject and a
wxPrivateDataObject to the clipboard - the latter with the Id "WXWORD_FORMAT".

wxPrivateDropTarget::GetId

virtual wxString GetId() const

wwxxPPrroocceessss

The objects of this class are used in conjunction with the wxExecute (p. 1462) function.
When a wxProcess object is passed to wxExecute(), its OnTerminate() (p. 970) virtual
method is called when the process terminates. This allows the program to be
(asynchronously) notified about the process termination and also retrieve its exit status
which is unavailable from wxExecute() in the case of asynchronous execution.

Please note that if the process termination notification is processed by the parent, it is
responsible for deleting the wxProcess object which sent it. However, if it is not
processed, the object will delete itself and so the library users should only delete those
objects whose notifications have been processed (and call Detach() (p. 969) for others).

wxProcess also supports IO redirection of the child process. For this, you have to call its
Redirect (p. 971) method before passing it to wxExecute (p. 1462). If the child process

CHAPTER 5

968

was launched successfully, GetInputStream (p. 969), GetOutputStream (p. 969) and
GetErrorStream (p. 969) can then be used to retrieve the streams corresponding to the
child process stdandard output, input and error output respectively.

Derived from

wxEvtHandler (p. 432)

Include files

<wx/process.h>

See also

wxExecute (p. 1462)
exec sample (p. 1519)

wxProcess::wxProcess

 wxProcess(wxEvtHandler * parent = NULL, int id = -1)

Constructs a process object. id is only used in the case you want to use wxWindows
events. It identifies this object, or another window that will receive the event.

If the parent parameter is different from NULL, it will receive a wxEVT_END_PROCESS
notification event (you should insert EVT_END_PROCESS macro in the event table of
the parent to handle it) with the given id.

Parameters

parent

The event handler parent.

id

id of an event.

wxProcess::~wxProcess

 ~wxProcess()

Destroys the wxProcess object.

wxProcess::CloseOutput

void CloseOutput()

CHAPTER 5

969

Closes the output stream (the one connected to the stdin of the child process). This
function can be used to indicate to the child process that there is no more data to be
read - usually, a filter program will only terminate when the input stream is closed.

wxProcess::Detach

void Detach()

Normally, a wxProcess object is deleted by its parent when it receives the notification
about the process termination. However, it might happen that the parent object is
destroyed before the external process is terminated (e.g. a window from which this
external process was launched is closed by the user) and in this case it should not
delete the wxProcess object, but should call Detach() instead. After the wxProcess
object is detached from its parent, no notification events will be sent to the parent and
the object will delete itself upon reception of the process termination notification.

wxProcess::GetErrorStream

wxInputStream* GetErrorStream() const

Returns an input stream which corresponds to the standard error output (stderr) of the
child process.

wxProcess::GetInputStream

wxInputStream* GetInputStream() const

It returns an input stream corresponding to the standard output stream of the
subprocess. If it is NULL, you have not turned on the redirection. See
wxProcess::Redirect (p. 971).

wxProcess::GetOutputStream

wxOutputStream* GetOutputStream() const

It returns an output stream correspoding to the input stream of the subprocess. If it is
NULL, you have not turned on the redirection. See wxProcess::Redirect (p. 971).

wxProcess::Kill

static wxKillError Kill(int pid, wxSignal signal = wxSIGNONE)

Send the specified signal to the given process. Possible signal values are:

CHAPTER 5

970

enum wxSignal
{
 wxSIGNONE = 0, // verify if the process exists under Unix
 wxSIGHUP,
 wxSIGINT,
 wxSIGQUIT,
 wxSIGILL,
 wxSIGTRAP,
 wxSIGABRT,
 wxSIGEMT,
 wxSIGFPE,
 wxSIGKILL, // forcefully kill, dangerous!
 wxSIGBUS,
 wxSIGSEGV,
 wxSIGSYS,
 wxSIGPIPE,
 wxSIGALRM,
 wxSIGTERM // terminate the process gently
};

wxSIGNONE, wxSIGKILL and wxSIGTERM have the same meaning under both Unix and
Windows but all the other signals are equivalent to wxSIGTERM under Windows.

Returns the element of wxKillError enum:

enum wxKillError
{
 wxKILL_OK, // no error
 wxKILL_BAD_SIGNAL, // no such signal
 wxKILL_ACCESS_DENIED, // permission denied
 wxKILL_NO_PROCESS, // no such process
 wxKILL_ERROR // another, unspecified error
};

See also

wxProcess::Exists (p. 970), wxKill (p. 1470), Exec sample (p. 1519)

wxProcess::Kill

static bool Exists(int pid)

Returns TRUE if the given process exists in the system.

See also

wxProcess::Kill (p. 969), Exec sample (p. 1519)

wxProcess::OnTerminate

void OnTerminate(int pid, int status) const

CHAPTER 5

971

It is called when the process with the pid pid finishes. It raises a wxWindows event when
it isn't overridden.

pid

The pid of the process which has just terminated.

status

The exit code of the process.

wxProcess::Redirect

void Redirect()

Turns on redirection. wxExecute will try to open a couple of pipes to catch the
subprocess stdio. The caught input stream is returned by GetOutputStream() as a non-
seekable stream. The caught output stream is returned by GetInputStream() as a non-
seekable stream.

wwxxPPrrooggrreessssDDiiaalloogg

This class represents a dialog that shows a short message and a progress bar.
Optionally, it can display an ABORT button.

Derived from

wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/progdlg.h>

wxProgressDialog::wxProgressDialog

 wxProgressDialog(const wxString& title, const wxString& message, int maximum
= 100, wxWindow * parent = NULL, int style = wxPD_AUTO_HIDE |
wxPD_APP_MODAL)

Constructor. Creates the dialog, displays it and disables user input for other windows, or,
if wxPD_APP_MODAL flag is not given, for its parent window only.

CHAPTER 5

972

Parameters

title

Dialog title to show in titlebar.

message

Message displayed above the progress bar.

maximum

Maximum value for the progress bar.

parent

Parent window.

message

Message to show on the dialog.

style

The dialog style. This is the combination of the following bitmask constants defined
in wx/defs.h:

wxPD_APP_MODAL Make the progress dialog modal. If this

flag is not given, it is only "locally" modal -
that is the input to the parent window is
disabled, but not to the other ones.

wxPD_AUTO_HIDE Causes the progress dialog to disappear
from screen as soon as the maximum
value of the progress meter has been
reached.

wxPD_CAN_ABORT This flag tells the dialog that it should
have a "Cancel" button which the user
may press. If this happens, the next call
to Update() (p. 973) will return FALSE.

wxPD_ELAPSED_TIME This flag tells the dialog that it should
show elapsed time (since creating the
dialog).

wxPD_ESTIMATED_TIME This flag tells the dialog that it should
show estimated time.

wxPD_REMAINING_TIME This flag tells the dialog that it should
show remaining time.

wxProgressDialog::~wxProgressDialog

 ~wxMessageDialog()

Destructor. Deletes the dialog and enables all top level windows.

CHAPTER 5

973

wxProgressDialog::Update

bool Update(int value = -1, const char * newmsg = NULL,)

Updates the dialog, setting the progress bar to the new value and, if given changes the
message above it. Returns TRUE if the ABORT button has not been pressed.

If FALSE is returned, the application can either immediately destroy the dialog or ask the
user for the confirmation and if the abort is not confirmed the dialog may be resumed
with Resume (p. 973) function.

value

The new value of the progress meter. It must be strictly less than the maximum
value given to the constructor (i.e., as usual in C, the index runs from 0 to
maximum-1).

newmsg
The new messages for the progress dialog text, if none is given the message is not
changed.

wxProgressDialog::Resume

void Resume()

Can be used to continue with the dialog, after the user had chosen ABORT.

wwxxPPrroocceessssEEvveenntt

A process event is sent when a process is terminated.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/process.h>

Event table macros

To process a wxProcessEvent, use these event handler macros to direct input to a
member function that takes a wxProcessEvent argument.

EVT_END_PROCESS(id, func) Process a wxEVT_END_PROCESS event.id is

the identifier of the process object (the id
passed to the wxProcess constructor) or a

CHAPTER 5

974

window to receive the event.

See also

wxProcess (p. 967), Event handling overview (p. 1560)

wxProcessEvent::wxProcessEvent

 wxProcessEvent(int id = 0, int pid = 0)

Constructor. Takes a wxProcessObject or window id, and a process id.

wxProcessEvent::m_pid

int m_pid

Contains the process id.

wxProcessEvent::GetPid

int GetPid() const

Returns the process id.

wxProcessEvent::SetPid

void SetPid(int pid)

Sets the process id.

wwxxPPrrooppeerrttyy

The wxProperty class represents a property, with a wxPropertyValue (p. 994)
containing the actual value, a name a role, an optional validator, and an optional
associated window.

A property might correspond to an actual C++ data member, or it might correspond to a
conceptual property, such as the width of a window. There is no explicit data member
wxWindow::width, but it may be convenient to invent such a property for the purposes of

CHAPTER 5

975

editing attributes of the window. The properties in the property sheet can be mapped to
"reality" by whatever means (in this case by calling wxWindow::SetSize when the user
has finished editing the property sheet).

A validator may be associated with the property in order to ensure that this and only this
validator will be used for editing and validating the property. An alternative method is to
use the role parameter to specify what kind of validator would be appropriate; for
example, specifying "filename" for the role would allow the property view to find an
appropriate validator at edit time.

wxProperty::wxProperty

void wxProperty()

void wxProperty(wxProperty& prop)

void wxProperty(wxString name, wxString role, wxPropertyValidator
*validator=NULL)

void wxProperty(wxString name, const wxPropertyValue& val, wxString role,
wxPropertyValidator *validator=NULL)

Constructors.

wxProperty::~wxProperty

void ~wxProperty()

Destructor. Destroys the wxPropertyValue, and the property validator if there is one.
However, if the actual C++ value in the wxPropertyValue is a pointer, the data in that
variable is not destroyed.

wxProperty::GetValue

wxPropertyValue& GetValue()

Returns a reference to the property value.

wxProperty::GetValidator

wxPropertyValidator * GetValidator()

Returns a pointer to the associated property validator (if any).

CHAPTER 5

976

wxProperty::GetName

wxString& GetName ()

Returns the name of the property.

wxProperty::GetRole

wxRole& GetRole ()

Returns the role of the property, to be used when choosing an appropriate validator.

wxProperty::GetWindow

wxWindow * GetWindow()

Returns the window associated with the property (if any).

wxProperty::SetValue

void SetValue(wxPropertyValue& val)

Sets the value of the property.

wxProperty::SetName

void SetName (wxString& name)

Sets the name of the property.

wxProperty::SetRole

void SetRole (wxString& role)

Sets the role of the property.

wxProperty::SetValidator

void SetValidator(wxPropertyValidator *validator)

Sets the validator: this will be deleted when the property is deleted.

CHAPTER 5

977

wxProperty::SetWindow

void SetWindow(wxWindow *win)

Sets the window associated with the property.

wxProperty::operator =

void operator =(const wxPropertyValue& val)

Assignment operator.

wwxxPPrrooppeerrttyyFFoorrmmDDiiaalloogg

The wxPropertyFormDialog class is a prepackaged dialog which can be used for
viewing a form property sheet. Pass a property form view object, and the dialog will pass
OnClose and OnDefaultAction listbox messages to the view class for processing.

wxPropertyFormDialog::wxPropertyFormDialog

void wxPropertyFormDialog(wxPropertyFormView *view, wxWindow *parent, char
*title, bool modal=FALSE, int x=-1, int y=-1, int width=-1, intheight=-1, long
style=wxDEFAULT_DIALOG_STYLE, char *name="dialogBox")

Constructor.

wxPropertyFormDialog::~wxPropertyFormDialog

void ~wxPropertyFormDialog()

Destructor.

wwxxPPrrooppeerrttyyFFoorrmmFFrraammee

The wxPropertyFormFrame class is a prepackaged frame which can be used for
viewing a property form. Pass a property form view object, and the frame will pass
OnClose messages to the view class for processing.

CHAPTER 5

978

Call Initialize to create the panel and associate the view; override OnCreatePanel if you
wish to use a panel class other than the default wxPropertyFormPanel.

wxPropertyFormFrame::wxPropertyFormFrame

void wxPropertyFormFrame (wxPropertyFormView *view, wxFrame *parent, char
*title, int x=-1, int y=-1, int width=-1, intheight=-1, long style=wxSDI |
wxDEFAULT_FRAME, char *name="frame")

Constructor.

wxPropertyFormFrame::~wxPropertyFormFrame

void ~wxPropertyFormFrame ()

Destructor.

wxPropertyFormFrame::GetPropertyPanel

wxPanel * GetPropertyPanel()

Returns the panel associated with the frame.

wxPropertyFormFrame::Initialize

bool Initialize()

Must be called to create the panel and associate the view with the panel and frame.

wxPropertyFormFrame::OnCreatePanel

wxPanel * OnCreatePanel(wxFrame *parent, wxPropertyFormView *view)

Creates a panel. Override this to create a panel type other than wxPropertyFormPanel.

wwxxPPrrooppeerrttyyFFoorrmmPPaanneell

The wxPropertyFormPanel class is a prepackaged panel which can be used for

CHAPTER 5

979

viewing a property form. Pass a property form view object, and the panel will pass
OnDefaultAction listbox messages to the view class for processing.

wxPropertyFormPanel::wxPropertyFormPanel

void wxPropertyFormPanel(wxPropertyFormView *view, wxWindow *parent, int x=-
1, int y=-1, int width=-1, intheight=-1, long style=0, char *name="panel")

Constructor.

wxPropertyFormPanel::~wxPropertyFormPanel

void ~wxPropertyFormPanel()

Destructor.

wwxxPPrrooppeerrttyyFFoorrmmVVaalliiddaattoorr

The wxPropertyFormValidator class defines a base class for form validators. By
overriding virtual functions, the programmer can create custom behaviour for kinds of
property.

See also

wxPropertyFormValidator overview (p. 1669)

wxPropertyFormValidator::wxPropertyFormValidator

void wxPropertyFormValidator(long flags = 0)

Constructor.

wxPropertyFormValidator::~wxPropertyFormValidator

void ~wxPropertyFormValidator()

Destructor.

CHAPTER 5

980

wxPropertyFormValidator::OnCommand

bool OnCommand(wxProperty *property, wxPropertyFormView *view, wxWindow
*parentWindow, wxCommandEvent& event)

Called when the control corresponding to the property receives a command (if not
intercepted by a callback associated with the actual control).

wxPropertyFormValidator::OnCheckValue

bool OnCheckValue(wxProperty *property, wxPropertyFormView *view, wxWindow
*parentWindow) Called when the view checks the property value. The value checked by
this validator should be taken from the panel item corresponding to the property.

wxPropertyFormValidator::OnDisplayValue

bool OnDisplayValue(wxProperty *property, wxPropertyFormView *view,
wxWindow *parentWindow)

Should display the property value in the appropriate control.

wxPropertyFormValidator::OnDoubleClick

bool OnDoubleClick(wxProperty *property, wxPropertyFormView *view, wxWindow
*parentWindow)

Called when the control corresponding to the property is double clicked (listboxes only).

wxPropertyFormValidator::OnRetrieveValue

bool OnRetrieveValue(wxProperty *property, wxPropertyFormView *view,
wxWindow *parentWindow)

Should do the transfer from the property editing area to the property itself.

wwxxPPrrooppeerrttyyFFoorrmmVViieeww

The wxPropertyFormView class shows a wxPropertySheet as a view onto a panel or
dialog box which has already been created.

See also

wxPropertyFormView overview (p. 1669)

CHAPTER 5

981

wxPropertyFormView::wxPropertyFormView

void wxPropertyFormView(long flags = 0)

Constructor.

wxPropertyFormView::~wxPropertyFormView

void ~wxPropertyFormView()

Destructor.

wxPropertyFormView::AssociateNames

void AssociateNames()

Associates the properties with the controls on the panel. For each panel item, if the
panel item name is the same as a property name, the two objects will be associated.
This function should be called manually since the programmer may wish to do the
association manually.

wxPropertyFormView::Check

bool Check()

Checks all properties by calling the appropriate validators; returns FALSE if a validation
failed.

wxPropertyFormView::GetPanel

wxPanel * GetPanel()

Returns the panel associated with the view.

wxPropertyFormView::GetManagedWindow

wxWindow * GetManagedWindow()

Returns the managed window (a frame or dialog) associated with the view.

CHAPTER 5

982

wxPropertyFormView::OnOk

void OnOk()

Virtual function that will be called when the OK button on the physical window is
pressed. By default, checks and updates the form values, closes and deletes the frame
or dialog, then deletes the view.

wxPropertyFormView::OnCancel

void OnCancel()

Virtual function that will be called when the Cancel button on the physical window is
pressed. By default, closes and deletes the frame or dialog, then deletes the view.

wxPropertyFormView::OnHelp

void OnHelp()

Virtual function that will be called when the Help button on the physical window is
pressed. This needs to be overridden by the application for anything interesting to
happen.

wxPropertyFormView::OnRevert

void OnRevert()

Virtual function that will be called when the Revert button on the physical window is
pressed. By default transfers the wxProperty values to the panel items (in effect undoing
any unsaved changes in the items).

wxPropertyFormView::OnUpdate

void OnUpdate ()

Virtual function that will be called when the Update button on the physical window is
pressed. By defaults transfers the displayed values to the wxProperty objects.

wxPropertyFormView::SetManagedWindow

void SetManagedWindow(wxWindow *win)

Sets the managed window (a frame or dialog) associated with the view.

CHAPTER 5

983

wxPropertyFormView::TransferToDialog

bool TransferToDialog()

Transfers property values to the controls in the dialog.

wxPropertyFormView::TransferToPropertySheet

bool TransferToPropertySheet()

Transfers property values from the controls in the dialog to the property sheet.

wwxxPPrrooppeerrttyyLLiissttDDiiaalloogg

The wxPropertyListDialog class is a prepackaged dialog which can be used for
viewing a property list. Pass a property list view object, and the dialog will pass OnClose
and OnDefaultAction listbox messages to the view class for processing.

wxPropertyListDialog::wxPropertyListDialog

void wxPropertyListDialog(wxPropertyListView *view, wxWindow *parent, char
*title, bool modal=FALSE, int x=-1, int y=-1, int width=-1, intheight=-1, long
style=wxDEFAULT_DIALOG_STYLE, char *name="dialogBox")

Constructor.

wxPropertyListDialog::~wxPropertyListDialog

void ~wxPropertyListDialog()

Destructor.

wwxxPPrrooppeerrttyyLLiissttFFrraammee

The wxPropertyListFrame class is a prepackaged frame which can be used for viewing
a property list. Pass a property list view object, and the frame will pass OnClose

CHAPTER 5

984

messages to the view class for processing.

Call Initialize to create the panel and associate the view; override OnCreatePanel if you
wish to use a panel class other than the default wxPropertyListPanel.

wxPropertyListFrame::wxPropertyListFrame

void wxPropertyListFrame(wxPropertyListView *view, wxFrame *parent, char *title,
int x=-1, int y=-1, int width=-1, intheight=-1, long style=wxSDI | wxDEFAULT_FRAME,
char *name="frame")

Constructor.

wxPropertyListFrame::~wxPropertyListFrame

void ~wxPropertyListFrame ()

Destructor.

wxPropertyListFrame::GetPropertyPanel

wxPanel * GetPropertyPanel()

Returns the panel associated with the frame.

wxPropertyListFrame::Initialize

bool Initialize()

Must be called to create the panel and associate the view with the panel and frame.

wxPropertyListFrame::OnCreatePanel

wxPanel * OnCreatePanel(wxFrame *parent, wxPropertyListView *view)

Creates a panel. Override this to create a panel type other than wxPropertyListPanel.

wwxxPPrrooppeerrttyyLLiissttPPaanneell

CHAPTER 5

985

The wxPropertyListPanel class is a prepackaged panel which can be used for viewing
a property list. Pass a property list view object, and the panel will pass OnDefaultAction
listbox messages to the view class for processing.

wxPropertyListPanel::wxPropertyListPanel

void wxPropertyListPanel(wxPropertyListView *view, wxWindow *parent, int x=-1,
int y=-1, int width=-1, intheight=-1, long style=0, char *name="panel")

Constructor.

wxPropertyListPanel::~wxPropertyListPanel

void ~wxPropertyListPanel()

Destructor.

wwxxPPrrooppeerrttyyLLiissttVVaalliiddaattoorr

The wxPropertyListValidator abstract class is the base class for deriving validators for
property lists.

See also

wxPropertyListValidator overview (p. 1668)

wxPropertyListValidator::wxPropertyListValidator

void wxPropertyListValidator(long flags = wxPROP_ALLOW_TEXT_EDITING)

Constructor.

wxPropertyListValidator::~wxPropertyListValidator

void ~wxPropertyListValidator()

Destructor.

CHAPTER 5

986

wxPropertyListValidator::OnCheckValue

bool OnCheckValue(wxProperty *property, wxPropertyListView *view, wxWindow
*parentWindow) Called when the Tick (Confirm) button is pressed or focus is list. Return
FALSE if the value was invalid, which is a signal restores the old value. Return TRUE if
the value was valid.

wxPropertyListValidator::OnClearControls

bool OnClearControls(wxProperty *property, wxPropertyListView *view, wxWindow
*parentWindow) Allows the clearing (enabling, disabling) of property list controls, when
the focus leaves the current property.

wxPropertyListValidator::OnClearDetailControls

bool OnClearDetailControls(wxProperty *property, wxPropertyListView *view,
wxWindow *parentWindow) Called when the focus is lost, if the validator is in detailed
editing mode.

wxPropertyListValidator::OnDisplayValue

bool OnDisplayValue(wxProperty *property, wxPropertyListView *view, wxWindow
*parentWindow)

Should display the value in the appropriate controls. The default implementation gets the
textual value from the property and inserts it into the text edit control.

wxPropertyListValidator::OnDoubleClick

bool OnDoubleClick(wxProperty *property, wxPropertyListView *view, wxWindow
*parentWindow)

Called when the property is double clicked. Extra functionality can be provided, such as
cycling through possible values.

wxPropertyListValidator::OnEdit

bool OnEdit(wxProperty *property, wxPropertyListView *view, wxWindow
*parentWindow) Called when the Edit (detailed editing) button is pressed. The default
implementation calls wxPropertyListView::BeginDetailedEditing; a filename validator (for
example) overrides this function to show the file selector.

wxPropertyListValidator::OnPrepareControls

CHAPTER 5

987

bool OnPrepareControls(wxProperty *property, wxPropertyListView *view,
wxWindow *parentWindow)

Called to allow the validator to setup the display, such enabling or disabling buttons, and
setting the values and selection in the standard listbox control (the one optionally used
for displaying value options).

wxPropertyListValidator::OnPrepareDetailControls

bool OnPrepareDetailControls(wxProperty *property, wxPropertyListView *view,
wxWindow *parentWindow) Called when the property is edited 'in detail', i.e. when the
Edit button is pressed.

wxPropertyListValidator::OnRetrieveValue

bool OnRetrieveValue(wxProperty *property, wxPropertyListView *view, wxWindow
*parentWindow)

Called when Tick (Confirm) is pressed or focus is lost or view wants to update the
property list. Should do the transfer from the property editing area to the property itself

wxPropertyListValidator::OnSelect

bool OnSelect(bool select, wxProperty *property, wxPropertyListView *view,
wxWindow *parentWindow)

Called when the property is selected or deselected: typically displays the value in the
edit control (having chosen a suitable control to display: (non)editable text or listbox).

wxPropertyListValidator::OnValueListSelect

bool OnValueListSelect(wxProperty *property, wxPropertyListView *view,
wxWindow *parentWindow)

Called when the value listbox is selected. The default behaviour is to copy string to text
control, and retrieve the value into the property.

wwxxPPrrooppeerrttyyLLiissttVViieeww

The wxPropertyListView class shows a wxPropertySheet as a Visual Basic-style
property list.

CHAPTER 5

988

See also

wxPropertyListView overview (p. 1669)

wxPropertyListView::wxPropertyListView

void wxPropertyListView(long flags = wxPROP_BUTTON_DEFAULT)

Constructor.

The flags argument can be a bit list of the following:

 • wxPROP_BUTTON_CLOSE
 • wxPROP_BUTTON_OK
 • wxPROP_BUTTON_CANCEL
 • wxPROP_BUTTON_CHECK_CROSS
 • wxPROP_BUTTON_HELP
 • wxPROP_DYNAMIC_VALUE_FIELD
 • wxPROP_PULLDOWN

wxPropertyListView::~wxPropertyListView

void ~wxPropertyListView()

Destructor.

wxPropertyListView::AssociatePanel

void AssociatePanel(wxPanel *panel)

Associates the window on which the controls will be displayed, with the view (sets an
internal pointer to the window).

wxPropertyListView::BeginShowingProperty

bool BeginShowingProperty(wxProperty *property)

Finds the appropriate validator and loads the property into the controls, by calling
wxPropertyValidator::OnPrepareControls and then wxPropertyListView::DisplayProperty.

wxPropertyListView::DisplayProperty

CHAPTER 5

989

bool DisplayProperty(wxProperty *property)

Calls wxPropertyValidator::OnDisplayValue for the current property's validator. This
function gets called by wxPropertyListView::BeginShowingProperty, which is in turn
called from ShowProperty, called by OnPropertySelect, called by the listbox callback
when selected.

wxPropertyListView::EndShowingProperty

bool EndShowingProperty(wxProperty *property)

Finds the appropriate validator and unloads the property from the controls, by calling
wxPropertyListView::RetrieveProperty, wxPropertyValidator::OnClearControls and (if
we're in detailed editing mdoe) wxPropertyValidator::OnClearDetailControls.

wxPropertyListView::GetPanel

wxPanel * GetPanel()

Returns the panel associated with the view.

wxPropertyListView::GetManagedWindow

wxWindow * GetManagedWindow()

Returns the managed window (a frame or dialog) associated with the view.

wxPropertyListView::GetWindowCancelButton

wxButton * GetWindowCancelButton()

Returns the window cancel button, if any.

wxPropertyListView::GetWindowCloseButton

wxButton * GetWindowCloseButton()

Returns the window close or OK button, if any.

wxPropertyListView::GetWindowHelpButton

wxButton * GetWindowHelpButton()

CHAPTER 5

990

Returns the window help button, if any.

wxPropertyListView::SetManagedWindow

void SetManagedWindow(wxWindow *win)

Sets the managed window (a frame or dialog) associated with the view.

wxPropertyListView::UpdatePropertyDisplayInList

bool UpdatePropertyDisplayInList(wxProperty *property)

Updates the display for the given changed property.

wxPropertyListView::UpdatePropertyList

bool UpdatePropertyList(bool clearEditArea = TRUE)

Updates the whole property list display.

wwxxPPrrooppeerrttyySShheeeett

The wxPropertySheet class is used for storing a number of wxProperty objects
(essentially names and values).

See also

wxPropertySheet overview (p. 1670)

wxPropertySheet::wxPropertySheet

void wxPropertySheet(const wxString name = "")

Constructor. Sets property sheet's name to name if present.

wxPropertySheet::~wxPropertySheet

void ~wxPropertySheet()

CHAPTER 5

991

Destructor. Destroys all contained properties.

wxPropertySheet::AddProperty

void AddProperty(wxProperty *property)

Adds a property to the sheet.

wxPropertySheet::Clear

void Clear()

Clears all the properties from the sheet (deleting them).

wxPropertySheet::GetName

wxString GetName ()

Gets the sheet's name.

wxPropertySheet::GetProperty

wxProperty * GetProperty(wxString name)

Gets a property by name.

wxPropertySheet::GetProperties

wxList& GetProperties()

Returns a reference to the internal list of properties.

wxPropertySheet::HasProperty

bool HasProperty(wxString propname)

Returns true if sheet contains property propname.

wxPropertySheet::RemoveProperty

void RemoveProperty(wxString propname)

CHAPTER 5

992

Removes property propname from sheet, deleting it.

wxPropertySheet::SetName

void SetName (wxString sheetname)

Set the sheet's name to sheetname

wxPropertySheet::SetProperty

bool SetProperty(wxString propname, wxPropertyValue value)

Sets property propname to value. Returns false if property is not a member of sheet.

wxPropertySheet::SetAllModified

void SetAllModified(bool flag)

Sets the 'modified' flag of each property value.

wwxxPPrrooppeerrttyyVVaalliiddaattoorr

The wxPropertyValidator abstract class is the base class for deriving validators for
properties.

See also

wxPropertyValidator overview (p. 1668)

wxPropertyValidator::wxPropertyValidator

void wxPropertyValidator(long flags = 0)

Constructor.

wxPropertyValidator::~wxPropertyValidator

void ~wxPropertyValidator()

CHAPTER 5

993

Destructor.

wxPropertyValidator::GetFlags

long GetFlags()

Returns the flags for the validator.

wxPropertyValidator::GetValidatorProperty

wxProperty * GetValidatorProperty()

Gets the property for the validator.

wxPropertyValidator::SetValidatorProperty

void SetValidatorProperty(wxProperty *property)

Sets the property for the validator.

wwxxPPrrooppeerrttyyVVaalliiddaattoorrRReeggiissttrryy

The wxPropertyValidatorRegistry class is used for storing validators, indexed by the
'role name' of the property, by which groups of property can be identified for the purpose
of validation and editing.

wxPropertyValidatorRegistry::wxPropertyValidatorRegistry

void wxPropertyValidatorRegistry()

Constructor.

wxPropertyValidatorRegistry::~wxPropertyValidatorRegistry

void ~wxPropertyValidatorRegistry()

Destructor.

CHAPTER 5

994

wxPropertyValidatorRegistry::Clear

void ClearRegistry()

Clears the registry, deleting the validators.

wxPropertyValidatorRegistry::GetValidator

wxPropertyValidator * GetValidator(wxString& roleName)

Retrieve a validator by the property role name.

wxPropertyValidatorRegistry::RegisterValidator

void RegisterValidator(wxString& roleName, wxPropertyValidator *validator)

Register a validator with the registry. roleName is a name indicating the role of the
property, such as "filename''. Later, when a validator is chosen for editing a property, this
role name is matched against the class names of the property, if the property does not
already have a validator explicitly associated with it.

wwxxPPrrooppeerrttyyVVaalluuee

The wxPropertyValue class represents the value of a property, and is normally
associated with a wxProperty object.

A wxPropertyValue has one of the following types:

 • wxPropertyValueNull
 • wxPropertyValueInteger
 • wxPropertyValueReal
 • wxPropertyValueBool
 • wxPropertyValueString
 • wxPropertyValueList
 • wxPropertyValueIntegerPtr
 • wxPropertyValueRealPtr
 • wxPropertyValueBoolPtr
 • wxPropertyValueStringPtr

wxPropertyValue::wxPropertyValue

CHAPTER 5

995

void wxPropertyValue()

Default constructor.

void wxPropertyValue(const wxPropertyValue& copyFrom)

Copy constructor.

void wxPropertyValue(char *val)

Construction from a string value.

void wxPropertyValue(long val)

Construction from an integer value. You may need to cast to (long) to avoid confusion
with other constructors (such as the bool constructor).

void wxPropertyValue(bool val)

Construction from a boolean value.

void wxPropertyValue(float val)

Construction from a floating point value.

void wxPropertyValue(double val)

Construction from a floating point value.

void wxPropertyValue(wxList * val)

Construction from a list of wxPropertyValue objects. The list, but not each contained
wxPropertyValue, will be deleted by the constructor. The wxPropertyValues will be
assigned to this wxPropertyValue list. In other words, so do not delete wxList or its data
after calling this constructor.

void wxPropertyValue(wxStringList * val)

Construction from a list of strings. The list (including the strings contained in it) will be
deleted by the constructor, so do not destroy val explicitly.

void wxPropertyValue(char **val)

Construction from a string pointer.

void wxPropertyValue(long *val)

Construction from an integer pointer.

void wxPropertyValue(bool *val)

CHAPTER 5

996

Construction from an boolean pointer.

void wxPropertyValue(float *val)

Construction from a floating point pointer.

The last four constructors use pointers to various C++ types, and do not store the types
themselves; this allows the values to stand in for actual data values defined elsewhere.

wxPropertyValue::~wxPropertyValue

void ~wxPropertyValue()

Destructor.

wxPropertyValue::Append

void Append(wxPropertyValue *expr)

Appends a property value to the list.

wxPropertyValue::BoolValue

bool BoolValue()

Returns the boolean value.

wxPropertyValue::BoolValuePtr

bool * BoolValuePtr()

Returns the pointer to the boolean value.

wxPropertyValue::ClearList

void ClearList()

Deletes the contents of the list.

wxPropertyValue::Delete

void Delete(wxPropertyValue *expr)

CHAPTER 5

997

Deletes expr from this list.

wxPropertyValue::GetFirst

wxPropertyValue * GetFirst()

Gets the first value in the list.

wxPropertyValue::GetLast

wxPropertyValue * GetFirst()

Gets the last value in the list.

wxPropertyValue::GetModified

bool GetModified()

Returns TRUE if the value was modified since being created (or since SetModified was
called).

wxPropertyValue::GetNext

wxPropertyValue * GetNext()

Gets the next value in the list (the one after 'this').

wxPropertyValue::GetStringRepresentation

wxString GetStringRepresentation()

Gets a string representation of the value.

wxPropertyValue::IntegerValue

long IntegerValue()

Returns the integer value.

wxPropertyValue::Insert

void Insert(wxPropertyValue *expr)

CHAPTER 5

998

Inserts a property value at the front of a list.

wxPropertyValue::IntegerValuePtr

long * IntegerValuePtr()

Returns the pointer to the integer value.

wxPropertyValue::Nth

wxPropertyValue * Nth(int n)

Returns the nth value of a list expression (starting from zero).

wxPropertyValue::Number

int Number()

Returns the number of elements in a list expression.

wxPropertyValue::RealValue

float RealValue()

Returns the floating point value.

wxPropertyValue::RealValuePtr

float * RealValuePtr()

Returns the pointer to the floating point value.

wxPropertyValue::SetModified

void SetModified(bool flag)

Sets the 'modified' flag.

wxPropertyValue::StringValue

char * StringValue()

CHAPTER 5

999

Returns the string value.

wxPropertyValue::StringValuePtr

char ** StringValuePtr()

Returns the pointer to the string value.

wxPropertyValue::Type

wxPropertyValueType Type()

Returns the value type.

wxPropertyValue::operator =

void operator =(const wxPropertyValue& val)

void operator =(const char *val)

void operator =(const long val)

void operator =(const bool val)

void operator =(const float val)

void operator =(const char **val)

void operator =(const long *val)

void operator =(const bool *val)

void operator =(const float *val)

Assignment operators.

wwxxPPrrooppeerrttyyVViieeww

The wxPropertyView abstract class is the base class for views of property sheets,
acting as intermediaries between properties and actual windows.

See also

CHAPTER 5

1000

wxPropertyView overview (p. 1669)

wxPropertyView::wxPropertyView

void wxPropertyView(long flags = wxPROP_BUTTON_DEFAULT)

Constructor.

The flags argument can be a bit list of the following:

 • wxPROP_BUTTON_CLOSE
 • wxPROP_BUTTON_OK
 • wxPROP_BUTTON_CANCEL
 • wxPROP_BUTTON_CHECK_CROSS
 • wxPROP_BUTTON_HELP
 • wxPROP_DYNAMIC_VALUE_FIELD
 • wxPROP_PULLDOWN

wxPropertyView::~wxPropertyView

void ~wxPropertyView()

Destructor.

wxPropertyView::AddRegistry

void AddRegistry(wxPropertyValidatorRegistry *registry)

Adds a registry (list of property validators) the view's list of registries, which is initially
empty.

wxPropertyView::FindPropertyValidator

wxPropertyValidator * FindPropertyValidator(wxProperty *property)

Finds the property validator that is most appropriate to this property.

wxPropertyView::GetPropertySheet

wxPropertySheet * GetPropertySheet()

Gets the property sheet for this view.

CHAPTER 5

1001

wxPropertyView::GetRegistryList

wxList& GetRegistryList()

Returns a reference to the list of property validator registries.

wxPropertyView::OnOk

void OnOk()

Virtual function that will be called when the OK button on the physical window is pressed
(if it exists).

wxPropertyView::OnCancel

void OnCancel()

Virtual function that will be called when the Cancel button on the physical window is
pressed (if it exists).

wxPropertyView::OnClose

bool OnClose ()

Virtual function that will be called when the physical window is closed. The default
implementation returns FALSE.

wxPropertyView::OnHelp

void OnHelp()

Virtual function that will be called when the Help button on the physical window is
pressed (if it exists).

wxPropertyView::OnPropertyChanged

void OnPropertyChanged(wxProperty *property)

Virtual function called by a view or validator when a property's value changed. Validators
must be written correctly for this to be called. You can override this function to respond
immediately to property value changes.

CHAPTER 5

1002

wxPropertyView::OnUpdateView

bool OnUpdateView()

Called by the viewed object to update the view. The default implementation just returns
FALSE.

wxPropertyView::SetPropertySheet

void SetPropertySheet(wxPropertySheet *sheet)

Sets the property sheet for this view.

wxPropertyView::ShowView

void ShowView(wxPropertySheet *sheet, wxPanel *panel)

Associates this view with the given panel, and shows the view.

wwxxPPrroottooccooll

Derived from

wxSocketClient (p. 1118)

Include files

<wx/protocol/protocol.h>

See also

wxSocketBase (p. 1100), wxURL (p. 1345)

wxProtocol::Reconnect

bool Reconnect()

Tries to reestablish a previous opened connection (close and renegotiate connection).

Return value

CHAPTER 5

1003

TRUE, if the connection is established, else FALSE.

wxProtocol::GetInputStream

wxInputStream * GetInputStream(const wxString& path)

Creates a new input stream on the the specified path. You can use all but seek
functionnality of wxStream. Seek isn't available on all stream. For example, http or ftp
streams doesn't deal with it. Other functions like StreamSize and Tell aren't available for
the moment for this sort of stream. You will be notified when the EOF is reached by an
error.

Return value

Returns the initialized stream. You will have to delete it yourself once you don't use it
anymore. The destructor closes the network connection.

See also

wxInputStream (p. 718)

wxProtocol::Abort

bool Abort()

Abort the current stream.

Warning

It is advised to destroy the input stream instead of aborting the stream this way.

Return value

Returns TRUE, if successful, else FALSE.

wxProtocol::GetError

wxProtocolError GetError()

Returns the last occurred error.

wxPROTO_NOERR No error.
wxPROTO_NETERR A generic network error occurred.
wxPROTO_PROTERR An error occurred during negotiation.
wxPROTO_CONNERR The client failed to connect the server.
wxPROTO_INVVAL Invalid value.

CHAPTER 5

1004

wxPROTO_NOHNDLR .
wxPROTO_NOFILE The remote file doesn't exist.
wxPROTO_ABRT Last action aborted.
wxPROTO_RCNCT An error occurred during reconnection.
wxPROTO_STREAM Someone tried to send a command during a

transfer.

wxProtocol::GetContentType

wxString GetContentType()

Returns the type of the content of the last opened stream. It is a mime-type.

wxProtocol::SetUser

void SetUser(const wxString& user)

Sets the authentication user. It is mainly useful when FTP is used.

wxProtocol::SetPassword

void SetPassword(const wxString& user)

Sets the authentication password. It is mainly useful when FTP is used.

wwxxQQuuaannttiizzee

Performs quantization, or colour reduction, on a wxImage.

Functions in this class are static and so a wxQuantize object need not be created.

Derived from

wxObject (p. 897)

Include files

<wx/quantize.h>

wxQuantize::wxQuantize

CHAPTER 5

1005

 wxQuantize()

Constructor. You do not need to construct a wxQuantize object since its functions are
static.

wxQuantize::Quantize

bool Quantize(const wxImage& src, wxImage& dest, wxPalette** pPalette, int
desiredNoColours = 236, unsigned char** eightBitData = 0, int flags =
wxQUANTIZE_INCLUDE_WINDOWS_COLOURS|wxQUANTIZE_FILL_DESTINATION_
IMAGE|wxQUANTIZE_RETURN_8BIT_DATA)

Reduce the colours in the source image and put the result into the destination image.
Both images may be the same, to overwrite the source image. Specify an optional
palette pointer to receive the resulting palette. This palette may be passed to
ConvertImageToBitmap, for example.

If you pass a palette pointer, you must free the palette yourself.

bool Quantize(const wxImage& src, wxImage& dest, int desiredNoColours = 236,
unsigned char** eightBitData = 0, int flags =
wxQUANTIZE_INCLUDE_WINDOWS_COLOURS|wxQUANTIZE_FILL_DESTINATION_
IMAGE|wxQUANTIZE_RETURN_8BIT_DATA)

This version sets a palette in the destination image so you don't have to manage it
yourself.

wxQuantize::DoQuantize

void DoQuantize(unsigned w, unsigned h, unsigned char** in_rows, unsigned
char** out_rows , unsigned char* palette, int desiredNoColours)

Converts input bitmap(s) into 8bit representation with custom palette.

in_rows and out_rows are arrays [0..h-1] of pointer to rows (in_rows contains w * 3 bytes
per row, out_rows w bytes per row).

Fills out_rows with indexes into palette (which is also stored into palette variable).

wwxxQQuueerryyCCooll

Every ODBC data column is represented by an instance of this class.

Derived from

CHAPTER 5

1006

wxObject (p. 897)

Include files

<wx/odbc.h>

See also

wxQueryCol overview (p. 1643), wxDatabase overview (p. 1642)

wxQueryCol::wxQueryCol

void wxQueryCol()

Constructor. Sets the attributes of the column to default values.

wxQueryCol::~wxQueryCol

void ~wxQueryCol()

Destructor. Deletes the wxQueryField list.

wxQueryCol::BindVar

void * BindVar(void *v, long sz)

Binds a user-defined variable to a column. Whenever a column is bound to a variable, it
will automatically copy the data of the current field into this buffer (to a maximum of sz
bytes).

wxQueryCol::FillVar

void FillVar(int recnum)

Fills the bound variable with the data of the field recnum. When no variable is bound to
the column nothing will happen.

wxQueryCol::GetData

void * GetData(int field)

Returns a pointer to the data of the field.

CHAPTER 5

1007

wxQueryCol::GetName

wxString GetName ()

Returns the name of a column.

wxQueryCol::GetType

short GetType()

Returns the data type of a column.

wxQueryCol::GetSize

long GetSize(int field)

Return the size of the data of the field field.

wxQueryCol::IsRowDirty

bool IsRowDirty(int field)

Returns TRUE if the given field has been changed, but not saved.

wxQueryCol::IsNullable

bool IsNullable()

Returns TRUE if a column may contain no data.

wxQueryCol::AppendField

void AppendField(void *buf, long len)

Appends a wxQueryField instance to the field list of the column. len bytes from buf will
be copied into the field's buffer.

wxQueryCol::SetData

bool SetData(int field, void *buf, long len)

Sets the data of a field. This function finds the wxQueryField corresponding to field and
calls wxQueryField::SetData with buf and len arguments.

CHAPTER 5

1008

wxQueryCol::SetName

void SetName (const wxString& name)

Sets the name of a column. Only useful when creating new tables or appending
columns.

wxQueryCol::SetNullable

void SetNullable (bool nullable)

Determines whether a column may contain no data. Only useful when creating new
tables or appending columns.

wxQueryCol::SetFieldDirty

void SetFieldDirty(int field, bool dirty = TRUE)

Sets the dirty tag of a given field.

wxQueryCol::SetType

void SetType(short type) Sets the data type of a column. Only useful when creating
new tables or appending columns.

wwxxQQuueerryyFFiieelldd

Represents the data item for one or several columns.

Derivation

wxObject (p. 897)

See also

wxQueryField overview (p. 1643), wxDatabase overview (p. 1642)

wxQueryField::wxQueryField

 wxQueryField()

CHAPTER 5

1009

Constructor. Sets type and size of the field to default values.

wxQueryField::~wxQueryField

 ~wxQueryField()

Destructor. Frees the associated memory depending on the field type.

wxQueryField::AllocData

bool AllocData()

Allocates memory depending on the size and type of the field.

wxQueryField::ClearData

void ClearData()

Deletes the contents of the field buffer without deallocating the memory.

wxQueryField::GetData

void * GetData()

Returns a pointer to the field buffer.

wxQueryField::GetSize

long GetSize()

Returns the size of the field buffer.

wxQueryField::GetType

short GetType()

Returns the type of the field (currently SQL_CHAR, SQL_VARCHAR or
SQL_INTEGER).

wxQueryField::IsDirty

bool IsDirty()

Returns TRUE if the data of a field has been changed, but not saved.

CHAPTER 5

1010

wxQueryField::SetData

bool SetData(void *data, long sz)

Allocates memory of the size sz and copies the contents of d into the field buffer.

wxQueryField::SetDirty

void SetDirty(bool dirty = TRUE)

Sets the dirty tag of a field.

wxQueryField::SetSize

void SetSize(long size)

Resizes the field buffer. Stored data will be lost.

wxQueryField::SetType

void SetType(short type)

Sets the type of the field. Currently the types SQL_CHAR, SQL_VARCHAR and
SQL_INTEGER are supported.

wwxxQQuueerryyLLaayyoouuttIInnffooEEvveenntt

This event is sent when wxLayoutAlgorithm (p. 737) wishes to get the size, orientation
and alignment of a window. More precisely, the event is sent by the OnCalculateLayout
handler which is itself invoked by wxLayoutAlgorithm.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/laywin.h>

Event table macros

EVT_QUERY_LAYOUT_INFO(func) Process a wxEVT_QUERY_LAYOUT_INFO

event, to get size, orientation and alignment
from a window.

CHAPTER 5

1011

Data structures

enum wxLayoutOrientation {
 wxLAYOUT_HORIZONTAL,
 wxLAYOUT_VERTICAL
};

enum wxLayoutAlignment {
 wxLAYOUT_NONE,
 wxLAYOUT_TOP,
 wxLAYOUT_LEFT,
 wxLAYOUT_RIGHT,
 wxLAYOUT_BOTTOM,
};

See also

wxCalculateLayoutEvent (p. 96), wxSashLayoutWindow (p. 1052), wxLayoutAlgorithm
(p. 737).

wxQueryLayoutInfoEvent::wxQueryLayoutInfoEvent

 wxQueryLayoutInfoEvent(wxWindowID id = 0)

Constructor.

wxQueryLayoutInfoEvent::GetAlignment

void GetAlignment() const

Specifies the alignment of the window (which side of the remaining parent client area the
window sticks to). One of wxLAYOUT_TOP, wxLAYOUT_LEFT, wxLAYOUT_RIGHT,
wxLAYOUT_BOTTOM.

wxQueryLayoutInfoEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxQueryLayoutInfoEvent::GetOrientation

CHAPTER 5

1012

wxLayoutOrientation GetOrientation() const

Returns the orientation that the event handler specified to the event object. May be one
of wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

wxQueryLayoutInfoEvent::GetRequestedLength

int GetRequestedLength() const

Returns the requested length of the window in the direction of the window orientation.
This information is not yet used.

wxQueryLayoutInfoEvent::GetSize

wxSize GetSize() const

Returns the size that the event handler specified to the event object as being the
requested size of the window.

wxQueryLayoutInfoEvent::SetAlignment

void SetAlignment(wxLayoutAlignment alignment)

Call this to specify the alignment of the window (which side of the remaining parent client
area the window sticks to). May be one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

wxQueryLayoutInfoEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxQueryLayoutInfoEvent::SetOrientation

void SetOrientation(wxLayoutOrientation orientation)

Call this to specify the orientation of the window. May be one of
wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

wxQueryLayoutInfoEvent::SetRequestedLength

void SetRequestedLength(int length)

CHAPTER 5

1013

Sets the requested length of the window in the direction of the window orientation. This
information is not yet used.

wxQueryLayoutInfoEvent::SetSize

void SetSize(const wxSize& size)

Call this to let the calling code know what the size of the window is.

wwxxRRaaddiiooBBooxx

A radio box item is used to select one of number of mutually exclusive choices. It is
displayed as a vertical column or horizontal row of labelled buttons.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/radiobox.h>

Window styles

wxRA_SPECIFY_ROWS The major dimension parameter refers to the maximum

number of rows.
wxRA_SPECIFY_COLS The major dimension parameter refers to the maximum

number of columns.

See also window styles overview (p. 1567).

Event handling

EVT_RADIOBOX(id, func) Process a

wxEVT_COMMAND_RADIOBOX_SELECTED
event, when a radiobutton is clicked.

See also

Event handling overview (p. 1560), wxRadioButton (p. 1019), wxCheckBox (p. 111)

CHAPTER 5

1014

wxRadioBox::wxRadioBox

 wxRadioBox()

Default constructor.

 wxRadioBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& point = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n = 0,
const wxString choices[] = NULL, int majorDimension = 0, long style =
wxRA_SPECIFY_COLS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "radioBox")

Constructor, creating and showing a radiobox.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

label

Label for the static box surrounding the radio buttons.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

n

Number of choices with which to initialize the radiobox.

choices

An array of choices with which to initialize the radiobox.

majorDimension

Specifies the maximum number of rows (if style contains wxRA_SPECIFY_ROWS)
or columns (if style contains wxRA_SPECIFY_COLS) for a two-dimensional
radiobox.

style

Window style. See wxRadioBox (p. 1013).

validator

CHAPTER 5

1015

Window validator.

name

Window name.

See also

wxRadioBox::Create (p. 1015), wxValidator (p. 1348)

wxPython note: The wxRadioBox constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxRadioBox::~wxRadioBox

 ~wxRadioBox()

Destructor, destroying the radiobox item.

wxRadioBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& point = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n = 0,
const wxString choices[] = NULL, int majorDimension = 0, long style =
wxRA_SPECIFY_COLS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "radioBox")

Creates the radiobox for two-step construction. See wxRadioBox::wxRadioBox (p. 1014)
for further details.

wxRadioBox::Enable

void Enable(const bool enable)

Enables or disables the entire radiobox.

void Enable(int n, const bool enable)

Enables or disables an individual button in the radiobox.

Parameters

enable

TRUE to enable, FALSE to disable.

n

CHAPTER 5

1016

The zero-based button to enable or disable.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Enable(flag) Enables or disables the entire
radiobox.

EnableItem(n, flag) Enables or disables an individual
button in the radiobox.

wxRadioBox::FindString

int FindString(const wxString& string) const

Finds a button matching the given string, returning the position if found, or -1 if not
found.

Parameters

string

The string to find.

wxRadioBox::GetLabel

wxString GetLabel() const

Returns the radiobox label.

wxString GetLabel(int n) const

Returns the label for the given button.

Parameters

n

The zero-based button index.

See also

wxRadioBox::SetLabel (p. 1017)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetLabel() Returns the radiobox label.
GetItemLabel(n) Returns the label for the given

button.

CHAPTER 5

1017

wxRadioBox::GetSelection

int GetSelection() const

Returns the zero-based position of the selected button.

wxRadioBox::GetStringSelection

wxString GetStringSelection() const

Returns the selected string.

wxRadioBox::Number

int Number() const

Returns the number of buttons in the radiobox.

wxRadioBox::SetLabel

void SetLabel(const wxString& label)

Sets the radiobox label.

void SetLabel(int n, const wxString& label)

Sets a label for a radio button.

Parameters

label

The label to set.

n

The zero-based button index.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetLabel(string) Sets the radiobox label.
SetItemLabel(n, string) Sets a label for a radio button.

CHAPTER 5

1018

wxRadioBox::SetSelection

void SetSelection(int n)

Sets a button by passing the desired string position. This does not cause a
wxEVT_COMMAND_RADIOBOX_SELECTED event to get emitted.

Parameters

n

The zero-based button position.

wxRadioBox::SetStringSelection

void SetStringSelection(const wxString& string)

Sets the selection to a button by passing the desired string. This does not cause a
wxEVT_COMMAND_RADIOBOX_SELECTED event to get emitted.

Parameters

string

The label of the button to select.

wxRadioBox::Show

void Show(const bool show)

Shows or hides the entire radiobox.

void Show(int item, const bool show)

Shows or hides individual buttons.

Parameters

show

TRUE to show, FALSE to hide.

item

The zero-based position of the button to show or hide.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Show(flag) Shows or hides the entire radiobox.
ShowItem(n, flag) Shows or hides individual buttons.

CHAPTER 5

1019

wxRadioBox::GetString

wxString GetString(int n) const

Returns the label for the button at the given position.

Parameters

n

The zero-based button position.

wwxxRRaaddiiooBBuuttttoonn

A radio button item is a button which usually denotes one of several mutually exclusive
options. It has a text label next to a (usually) round button.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/radiobut.h>

Window styles

wxRB_GROUP Marks the beginning of a new group of radio buttons.

See also window styles overview (p. 1567).

Event handling

EVT_RADIOBUTTON(id, func) Process a

wxEVT_COMMAND_RADIOBUTTON_SELEC
TED event, when the radiobutton is clicked.

See also

Event handling overview (p. 1560), wxRadioBox (p. 1013), wxCheckBox (p. 111)

CHAPTER 5

1020

wxRadioButton::wxRadioButton

 wxRadioButton()

Default constructor.

 wxRadioButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& validator = wxDefaultValidator, const wxString& name =
"radioButton")

Constructor, creating and showing a radio button.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

label

Label for the radio button.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxRadioButton (p. 1019).

validator

Window validator.

name

Window name.

See also

wxRadioButton::Create (p. 1021), wxValidator (p. 1348)

wxRadioButton::~wxRadioButton

CHAPTER 5

1021

void ~wxRadioButton()

Destructor, destroying the radio button item.

wxRadioButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& validator = wxDefaultValidator, const wxString& name =
"radioButton")

Creates the choice for two-step construction. See wxRadioButton::wxRadioButton (p.
1020) for further details.

wxRadioButton::GetValue

bool GetValue() const

Returns TRUE if the radio button is depressed, FALSE otherwise.

wxRadioButton::SetValue

void SetValue(const bool value)

Sets the radio button to selected or deselected status. This does not cause a
wxEVT_COMMAND_RADIOBUTTON_SELECTED event to get emitted.

Parameters

value

TRUE to select, FALSE to deselect.

wwxxRReeaallFFoorrmmVVaalliiddaattoorr

This class validates a range of real values for form views. The associated panel item
must be a wxText.

See also

Validator classes (p. 1671)

CHAPTER 5

1022

wxRealFormValidator::wxRealFormValidator

void wxRealFormValidator(float min=0.0, float max=0.0, long flags=0)

Constructor. Assigning zero to minimum and maximum values indicates that there is no
range to check.

wwxxRReeaallLLiissttVVaalliiddaattoorr

This class validates a range of real values for property lists.

See also

Validator classes (p. 1671)

wxPropertySheet overview (p. 1670)

wxRealListValidator::wxRealListValidator

void wxRealListValidator(float min=0.0, float max=0.0, long
flags=wxPROP_ALLOW_TEXT_EDITING)

Constructor. Assigning zero to minimum and maximum values indicates that there is no
range to check.

wwxxRReeaallPPooiinntt

A wxRealPoint is a useful data structure for graphics operations. It contains floating
point point x and y members. See also wxPoint (p. 937) for an integer version.

Derived from

None

Include files

<wx/gdicmn.h>

See also

CHAPTER 5

1023

wxPoint (p. 937)

wxRealPoint::wxRealPoint

 wxRealPoint()

 wxRealPoint(double x, double y)

Create a point.

double x

double y

Members of the wxRealPoint object.

wwxxRReecctt

A class for manipulating rectangles.

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxPoint (p. 937), wxSize (p. 1083)

wxRect::wxRect

 wxRect()

Default constructor.

 wxRect(int x, int y, int width, int height)

Creates a wxRect object from x, y, width and height values.

CHAPTER 5

1024

 wxRect(const wxPoint& topLeft, const wxPoint& bottomRight)

Creates a wxRect object from top-left and bottom-right points.

 wxRect(const wxPoint& pos, const wxSize& size)

Creates a wxRect object from position and size values.

wxRect::x

int x

x coordinate of the top-level corner of the rectangle.

wxRect::y

int y

y coordinate of the top-level corner of the rectangle.

wxRect::width

int width

Width member.

wxRect::height

int height

Height member.

wxRect::GetBottom

int GetBottom() const

Gets the bottom point of the rectangle.

wxRect::GetHeight

int GetHeight() const

CHAPTER 5

1025

Gets the height member.

wxRect::GetLeft

int GetLeft() const

Gets the left point of the rectangle (the same as wxRect::GetX (p. 1025)).

wxRect::GetPosition

wxPoint GetPosition() const

Gets the position.

wxRect::GetRight

int GetRight() const

Gets the right point of the rectangle.

wxRect::GetSize

wxSize GetSize() const

Gets the size.

wxRect::GetTop

int GetTop() const

Gets the top point of the rectangle (the same as wxRect::GetY (p. 1026)).

wxRect::GetWidth

int GetWidth() const

Gets the width member.

wxRect::GetX

int GetX() const

CHAPTER 5

1026

Gets the x member.

wxRect::GetY

int GetY() const

Gets the y member.

wxRect::Inflate

void Inflate (wxCoord dx, wxCoord dy)

void Inflate (wxCoord diff)

Increase the rectangle size by dx in x direction and dy in y direction. Both (or one of)
parameters may be negative to decrease the rectngle size.

The second form uses the same diff for both dx and dy.

wxRect::SetHeight

void SetHeight(int height)

Sets the height.

wxRect::SetWidth

void SetWidth(int width)

Sets the width.

wxRect::SetX

void SetX(int x)

Sets the x position.

wxRect::SetY

void SetY(int y)

Sets the y position.

CHAPTER 5

1027

wxRect::operator =

void operator =(const wxRect& rect)

Assignment operator.

wxRect::operator ==

bool operator ==(const wxRect& rect)

Equality operator.

wxRect::operator !=

bool operator !=(const wxRect& rect)

Inequality operator.

wwxxRReeccoorrddSSeett

Each wxRecordSet represents an ODBC database query. You can make multiple
queries at a time by using multiple wxRecordSets with a wxDatabase or you can make
your queries in sequential order using the same wxRecordSet.

Note: this class is considered obsolete, replaced by the Remstar wxDB/wxDbTable
classes

Derived from

wxObject (p. 897)

Include files

<wx/odbc.h>

See also

wxRecordSet overview (p. 1643), wxDatabase overview (p. 1642)

wxRecordSet::wxRecordSet

CHAPTER 5

1028

 wxRecordSet(wxDatabase *db, int type = wxOPEN_TYPE_DYNASET, int opt =
wxOPTION_DEFAULT)

Constructor. db is a pointer to the wxDatabase instance you wish to use the
wxRecordSet with. Currently there are two possible values of type:

 • wxOPEN_TYPE_DYNASET: Loads only one record at a time into memory. The

other data of the result set will be loaded dynamically when moving the cursor.
This is the default type.

 • wxOPEN_TYPE_SNAPSHOT: Loads all records of a result set at once. This will
need much more memory, but will result in faster access to the ODBC data.

The option parameter is not used yet.

The constructor appends the wxRecordSet object to the parent database's list of
wxRecordSet objects, for later destruction when the wxDatabase is destroyed.

wxRecordSet::~wxRecordSet

 ~wxRecordSet()

Destructor. All data except that stored in user-defined variables will be lost. It also
unlinks the wxRecordSet object from the parent database's list of wxRecordSet objects.

wxRecordSet::AddNew

void AddNew()

Not implemented.

wxRecordSet::BeginQuery

bool BeginQuery(int openType, const wxString& sql = NULL, int options =
wxOPTION_DEFAULT)

Not implemented.

wxRecordSet::BindVar

void * BindVar(int col, void *buf, long size)

Binds a user-defined variable to the column col. Whenever the current field's data
changes, it will be copied into buf (maximum size bytes).

void * BindVar(const wxString& col, void *buf, long size)

The same as above, but uses the column name as the identifier.

CHAPTER 5

1029

wxRecordSet::CanAppend

bool CanAppend()

Not implemented.

wxRecordSet::Cancel

void Cancel()

Not implemented.

wxRecordSet::CanRestart

bool CanRestart()

Not implemented.

wxRecordSet::CanScroll

bool CanScroll()

Not implemented.

wxRecordSet::CanTransact

bool CanTransact()

Not implemented.

wxRecordSet::CanUpdate

bool CanUpdate ()

Not implemented.

wxRecordSet::ConstructDefaultSQL

bool ConstructDefaultSQL()

Not implemented.

CHAPTER 5

1030

wxRecordSet::Delete

bool Delete ()

Deletes the current record. Not implemented.

wxRecordSet::Edit

void Edit()

Not implemented.

wxRecordSet::EndQuery

bool EndQuery()

Not implemented.

wxRecordSet::ExecuteSQL

bool ExecuteSQL(const wxString& sql)

Directly executes a SQL statement. The data will be presented as a normal result set.
Note that the recordset must have been created as a snapshot, not dynaset. Dynasets
will be implemented in the near future.

Examples of common SQL statements are given in A selection of SQL commands (p.
1644).

wxRecordSet::FillVars

void FillVars(int recnum)

Fills in the user-defined variables of the columns. You can set these variables with
wxQueryCol::BindVar. This function will be automatically called after every successful
database operation.

wxRecordSet::GetColName

wxString GetColName (int col)

Returns the name of the column at position col. Returns NULL if col does not exist.

CHAPTER 5

1031

wxRecordSet::GetColType

short GetColType(int col)

Returns the data type of the column at position col. Returns SQL_TYPE_NULL if col
does not exist.

short GetColType(const wxString& name)

The same as above, but uses the column name as the identifier.

See ODBC SQL data types (p. 1644) for a list of possible data types.

wxRecordSet::GetColumns

bool GetColumns(const wxString& table = NULL)

Returns the columns of the table with the specified name. If no name is given the class
member tablename will be used. If both names are NULL nothing will happen. The data
will be presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) COLUMN_NAME
4 (SMALLINT) DATA_TYPE
5 (VARCHAR) TYPE_NAME
6 (INTEGER) PRECISION
7 (INTEGER) LENGTH
8 (SMALLINT) SCALE
9 (SMALLINT) RADIX
10 (SMALLINT) NULLABLE
11 (VARCHAR) REMARKS

wxRecordSet::GetCurrentRecord

long GetCurrentRecord()

Not implemented.

wxRecordSet::GetDatabase

wxDatabase * GetDatabase ()

CHAPTER 5

1032

Returns the wxDatabase object bound to a wxRecordSet.

wxRecordSet::GetDataSources

bool GetDataSources()

Gets the currently-defined data sources via the ODBC manager. The data will be
presented as a normal result set. See the documentation for the ODBC function
SQLDataSources for how the data is organized.

Example:
 wxDatabase Database;

 wxRecordSet *Record = new wxRecordSet(&Database);

 if (!Record->GetDataSources()) {
 char buf[300];
 sprintf(buf, "%s %s\n", Database.GetErrorClass(),
Database.GetErrorMessage());
 frame->output->SetValue(buf);
 }
 else {
 do {
 frame->DataSource->Append((char*)Record->GetFieldDataPtr(0,
SQL_CHAR));
 } while (Record->MoveNext());
 }

wxRecordSet::GetDefaultConnect

wxString GetDefaultConnect()

Not implemented.

wxRecordSet::GetDefaultSQL

wxString GetDefaultSQL()

Not implemented.

wxRecordSet::GetErrorCode

wxRETCODE GetErrorCode ()

Returns the error code of the last ODBC action. This will be one of:

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC

CHAPTER 5

1033

function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESS The call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information

can be obtained from the ODBC manager.

wxRecordSet::GetFieldData

bool GetFieldData(int col, int dataType, void *dataPtr)

Copies the current data of the column at position col into the buffer dataPtr. To be sure
to get the right type of data, the user has to pass the correct data type. The function
returns FALSE if col does not exist or the wrong data type was given.

bool GetFieldData(const wxString& name, int dataType, void *dataPtr)

The same as above, but uses the column name as the identifier.

See ODBC SQL data types (p. 1644) for a list of possible data types.

wxRecordSet::GetFieldDataPtr

void * GetFieldDataPtr(int col, int dataType)

Returns the current data pointer of the column at position col. To be sure to get the right
type of data, the user has to pass the data type. Returns NULL if col does not exist or if
dataType is incorrect.

void * GetFieldDataPtr(const wxString& name, int dataType)

The same as above, but uses the column name as the identifier.

See ODBC SQL data types (p. 1644) for a list of possible data types.

wxRecordSet::GetFilter

wxString GetFilter()

Returns the current filter.

wxRecordSet::GetForeignKeys

bool GetPrimaryKeys(const wxString& ptable = NULL, const wxString& ftable =
NULL)

CHAPTER 5

1034

Returns a list of foreign keys in the specified table (columns in the specified table that
refer to primary keys in other tables), or a list of foreign keys in other tables that refer to
the primary key in the specified table.

If ptable contains a table name, this function returns a result set containing the primary
key of the specified table.

If ftable contains a table name, this functions returns a result set of containing all of the
foreign keys in the specified table and the primary keys (in other tables) to which they
refer.

If both ptable and ftable contain table names, this function returns the foreign keys in the
table specified in ftable that refer to the primary key of the table specified in ptable. This
should be one key at most.

GetForeignKeys returns results as a standard result set. If the foreign keys associated
with a primary key are requested, the result set is ordered by FKTABLE_QUALIFIER,
FKTABLE_OWNER, FKTABLE_NAME, and KEY_SEQ. If the primary keys associated
with a foreign key are requested, the result set is ordered by PKTABLE_QUALIFIER,
PKTABLE_OWNER, PKTABLE_NAME, and KEY_SEQ. The following table lists the
columns in the result set.

0 (VARCHAR) PKTABLE_QUALIFIER
1 (VARCHAR) PKTABLE_OWNER
2 (VARCHAR) PKTABLE_NAME
3 (VARCHAR) PKCOLUMN_NAME
4 (VARCHAR) FKTABLE_QUALIFIER
5 (VARCHAR) FKTABLE_OWNER
6 (VARCHAR) FKTABLE_NAME
7 (VARCHAR) FKCOLUMN_NAME
8 (SMALLINT) KEY_SEQ
9 (SMALLINT) UPDATE_RULE
10 (SMALLINT) DELETE_RULE
11 (VARCHAR) FK_NAME
12 (VARCHAR) PK_NAME

wxRecordSet::GetNumberCols

long GetNumberCols()

Returns the number of columns in the result set.

wxRecordSet::GetNumberFields

int GetNumberFields()

Not implemented.

CHAPTER 5

1035

wxRecordSet::GetNumberParams

int GetNumberParams()

Not implemented.

wxRecordSet::GetNumberRecords

long GetNumberRecords()

Returns the number of records in the result set.

wxRecordSet::GetPrimaryKeys

bool GetPrimaryKeys(const wxString& table = NULL)

Returns the column names that comprise the primary key of the table with the specified
name. If no name is given the class member tablename will be used. If both names are
NULL nothing will happen. The data will be presented as a normal result set, organized
as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) COLUMN_NAME
4 (SMALLINT) KEY_SEQ
5 (VARCHAR) PK_NAME

wxRecordSet::GetOptions

int GetOptions()

Returns the options of the wxRecordSet. Options are not supported yet.

wxRecordSet::GetResultSet

bool GetResultSet()

Copies the data presented by ODBC into wxRecordSet. Depending on the wxRecordSet
type all or only one record(s) will be copied. Usually this function will be called
automatically after each successful database operation.

wxRecordSet::GetSortString

wxString GetSortString()

CHAPTER 5

1036

Not implemented.
wxRecordSet::GetSQL

wxString GetSQL()

Not implemented.

wxRecordSet::GetTableName

wxString GetTableName ()

Returns the name of the current table.

wxRecordSet::GetTables

bool GetTables()

Gets the tables of a database. The data will be presented as a normal result set,
organized as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) TABLE_TYPE (TABLE, VIEW, SYSTEM

TABLE, GLOBAL TEMPORARY, LOCAL
TEMPORARY, ALIAS, SYNONYM, or
database-specific type)

4 (VARCHAR) REMARKS

wxRecordSet::GetType

int GetType()

Returns the type of the wxRecordSet: wxOPEN_TYPE_DYNASET or
wxOPEN_TYPE_SNAPSHOT. See the wxRecordSet description for details.

wxRecordSet::GoTo

bool GoTo(long n)

Moves the cursor to the record with the number n, where the first record has the number
0.

wxRecordSet::IsBOF

bool IsBOF()

CHAPTER 5

1037

Returns TRUE if the user tried to move the cursor before the first record in the set.

wxRecordSet::IsFieldDirty

bool IsFieldDirty(int field)

Returns TRUE if the given field has been changed but not saved yet.

bool IsFieldDirty(const wxString& name)

Same as above, but uses the column name as the identifier.

wxRecordSet::IsFieldNull

bool IsFieldNull(int field)

Returns TRUE if the given field has no data.

bool IsFieldNull(const wxString& name)

Same as above, but uses the column name as the identifier.

wxRecordSet::IsColNullable

bool IsColNullable(int col)

Returns TRUE if the given column may contain no data.

bool IsColNullable(const wxString& name)

Same as above, but uses the column name as the identifier.

wxRecordSet::IsEOF

bool IsEOF()

Returns TRUE if the user tried to move the cursor behind the last record in the set.

wxRecordSet::IsDeleted

bool IsDeleted()

Not implemented.

wxRecordSet::IsOpen

CHAPTER 5

1038

bool IsOpen()

Returns TRUE if the parent database is open.

wxRecordSet::Move

bool Move(long rows)

Moves the cursor a given number of rows. Negative values are allowed.

wxRecordSet::MoveFirst

bool MoveFirst()

Moves the cursor to the first record.

wxRecordSet::MoveLast

bool MoveLast()

Moves the cursor to the last record.

wxRecordSet::MoveNext

bool MoveNext()

Moves the cursor to the next record.

wxRecordSet::MovePrev

bool MovePrev()

Moves the cursor to the previous record.

wxRecordSet::Query

bool Query(const wxString& columns, const wxString& table, const wxString& filter
= NULL)

Start a query. An SQL string of the following type will automatically be generated and
executed: "SELECT columns FROM table WHERE filter".

wxRecordSet::RecordCountFinal

bool RecordCountFinal()

Not implemented.

wxRecordSet::Requery

bool Requery()

CHAPTER 5

1039

Re-executes the last query. Not implemented.

wxRecordSet::SetFieldDirty

void SetFieldDirty(int field, bool dirty = TRUE)

Sets the dirty tag of the field field. Not implemented.

void SetFieldDirty(const wxString& name, bool dirty = TRUE)

Same as above, but uses the column name as the identifier.

wxRecordSet::SetDefaultSQL

void SetDefaultSQL(const wxString& s)

Not implemented.

wxRecordSet::SetFieldNull

void SetFieldNull(void *p, bool isNull = TRUE)

Not implemented.

wxRecordSet::SetOptions

void SetOptions(int opt)

Sets the options of the wxRecordSet. Not implemented.

wxRecordSet::SetTableName

void SetTableName (const wxString& tablename)

Specify the name of the table you want to use.

wxRecordSet::SetType

void SetType(int type)

Sets the type of the wxRecordSet. See the wxRecordSet class description for details.

wxRecordSet::Update

bool Update()

CHAPTER 5

1040

Writes back the current record. Not implemented.

wwxxRReeggEExx

wxRegEx represents a regular expression. The regular expressions syntax supported is
the POSIX one. Both basic and extended regular expressions are supported but, unlike
POSIX C API, the extended ones are used by default.

This class provides support for regular expressions matching and also replacement. It is
built on top of either the system library (if it has support for POSIX regular expressions -
which is the case of the most modern Unices) or uses the built in Henry Spencer's
library. In the latter case you need to abide by the terms of its copyright:

Copyright 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of
California.

Permission is granted to anyone to use this software for any purpose on
any computer system, and to alter it and redistribute it, subject
to the following restrictions:

1. The author is not responsible for the consequences of use of this
 software, no matter how awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by
 explicit claim or by omission. Since few users ever read sources,
 credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be
 misrepresented as being the original software. Since few users
 ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

Derived from

No base class

Data structures

Flags for regex compilation to be used with Compile() (p. 1042):

enum
{
 // use extended regex syntax (default)
 wxRE_EXTENDED = 0,

 // use basic RE syntax
 wxRE_BASIC = 2,

CHAPTER 5

1041

 // ignore case in match
 wxRE_ICASE = 4,

 // only check match, don't set back references
 wxRE_NOSUB = 8,

 // if not set, treat '\n' as an ordinary character, otherwise it is
 // special: it is not matched by '.' and '^' and '$' always match
 // after/before it regardless of the setting of wxRE_NOT[BE]OL
 wxRE_NEWLINE = 16,

 // default flags
 wxRE_DEFAULT = wxRE_EXTENDED
}

Flags for regex matching to be used with Matches() (p. 1043).

These flags are mainly useful when doing several matches in a long string to prevent
erroneous matches for '^' and '$':

enum
{
 // '^' doesn't match at the start of line
 wxRE_NOTBOL = 32,

 // '$' doesn't match at the end of line
 wxRE_NOTEOL = 64
}

Examples

A bad example of processing some text containing email addresses (the example is bad
because the real email addresses can have more complicated form
thanuser@host.net):

wxString text;
...
wxRegEx reEmail = "([^@]+)@([[:alnum:].-_].)+([[:alnum:]]+)";
if (reEmail.Matches(text))
{
 wxString text = reEmail.GetMatch(email);
 wxString username = reEmail.GetMatch(email, 1);
 if (reEmail.GetMatch(email, 3) == "com") // .com TLD?
 {
 ...
 }
}

// or we could do this to hide the email address
size_t count = reEmail.ReplaceAll(text, "HIDDEN@\\2\\3");
printf("text now contains %u hidden addresses", count);

CHAPTER 5

1042

wxRegEx::wxRegEx

 wxRegEx()

Default ctor: use Compile() (p. 1042) later.

 wxRegEx(const wxString& expr, int flags = wxRE_DEFAULT)

Create and compile the regular expression, use IsValid (p. 1042) to test for compilation
errors.

wxRegEx::~wxRegEx

 ~wxRegEx()

dtor not virtual, don't derive from this class

wxRegEx::Compile

bool Compile(const wxString& pattern, int flags = wxRE_DEFAULT)

Compile the string into regular expression, return TRUE if ok or FALSE if string has a
syntax error.

wxRegEx::IsValid

bool IsValid() const

Return TRUE if this is a valid compiled regular expression, FALSE otherwise.

wxRegEx::GetMatch

bool GetMatch(size_t* start, size_t* len, size_t index = 0) const

Get the start index and the length of the match of the expression (if index is 0) or a
bracketed subexpression (index different from 0).

May only be called after successful call to Matches() (p. 1043) and only if wxRE_NOSUB
was not used in Compile() (p. 1042).

Returns FALSE if no match or if an error occured.

wxString GetMatch(const wxString& text, size_t index = 0) const

CHAPTER 5

1043

Returns the part of string corresponding to the match where index is interpreted as
above. Empty string is returned if match failed

May only be called after successful call to Matches() (p. 1043) and only if wxRE_NOSUB
was not used in Compile() (p. 1042).

wxRegEx::Matches

bool Matches(const wxChar* text, int flags = 0) const

Matches the precompiled regular expression against the string text, returns TRUE if
matches and FALSE otherwise.

Flags may be combination of wxRE_NOTBOL and wxRE_NOTEOL.

May only be called after successful call to Compile() (p. 1042).

wxRegEx::Replace

int Replace (wxString* text, const wxString& replacement, size_t maxMatches = 0)
const

Replaces the current regular expression in the string pointed to bytext, with the text in
replacement and return number of matches replaced (maybe 0 if none found) or -1 on
error.

The replacement text may contain back references \number which will be replaced with
the value of the corresponding subexpression in the pattern match. \0 corresponds to
the entire match and & is a synonym for it. Backslash may be used to quote itself or &
character.

maxMatches may be used to limit the number of replacements made, setting it to 1, for
example, will only replace first occurence (if any) of the pattern in the text while default
value of 0 means replace all.

wxRegEx::ReplaceAll

int ReplaceAll(wxString* text, const wxString& replacement) const

Replace all occurences: this is actually a synonym for Replace() (p. 1043).

See also

ReplaceFirst (p. 1044)

CHAPTER 5

1044

wxRegEx::ReplaceFirst

int ReplaceFirst(wxString* text, const wxString& replacement) const

Replace the first occurence.

See also

Replace (p. 1043)

wwxxRReeggiioonn

A wxRegion represents a simple or complex region on a device context or window. It
uses reference counting, so copying and assignment operations are fast.

Derived from

wxGDIObject (p. 550)
wxObject (p. 897)

Include files

<wx/region.h>

See also

wxRegionIterator (p. 1048)

wxRegion::wxRegion

 wxRegion()

Default constructor.

 wxRegion(long x, long y, long width, long height)

Constructs a rectangular region with the given position and size.

 wxRegion(const wxPoint& topLeft, const wxPoint& bottomRight)

Constructs a rectangular region from the top left point and the bottom right point.

 wxRegion(const wxRect& rect)

CHAPTER 5

1045

Constructs a rectangular region a wxRect object.

 wxRegion(const wxRegion& region)

Constructs a region by copying another region.

 wxRegion(size_t n, const wxPoint *points, int fillStyle = wxWINDING_RULE)

Constructs a region corresponding to the polygon made of n points in the provided array.
fillStyle parameter may have values wxWINDING_RULE or wxODDEVEN_RULE.

NB: This constructor is only implemented for Win32 and GTK+ wxWindows ports.

wxRegion::~wxRegion

 ~wxRegion()

Destructor.

wxRegion::Clear

void Clear()

Clears the current region.

wxRegion::Contains

wxRegionContain Contains(long& x, long& y) const

Returns a value indicating whether the given point is contained within the region.

wxRegionContain Contains(const wxPoint& pt) const

Returns a value indicating whether the given point is contained within the region.

wxRegionContain Contains(long& x, long& y, long& width, long& height) const

Returns a value indicating whether the given rectangle is contained within the region.

wxRegionContain Contains(const wxRect& rect) const

Returns a value indicating whether the given rectangle is contained within the region.

Return value

The return value is one of wxOutRegion, wxPartRegion and wxInRegion.

CHAPTER 5

1046

On Windows, only wxOutRegion and wxInRegion are returned; a value wxInRegion then
indicates that all or some part of the region is contained in this region.

wxRegion::GetBox

void GetBox(long& x, long& y, long& width, long& height) const

Returns the outer bounds of the region.

wxRect GetBox() const

Returns the outer bounds of the region.

wxRegion::Intersect

bool Intersect(long x, long y, long width, long height)

Finds the intersection of this region and another, rectangular region, specified using
position and size.

bool Intersect(const wxRect& rect)

Finds the intersection of this region and another, rectangular region.

bool Intersect(const wxRegion& region)

Finds the intersection of this region and another region.

Return value

TRUE if successful, FALSE otherwise.

Remarks

Creates the intersection of the two regions, that is, the parts which are in both regions.
The result is stored in this region.

wxRegion::IsEmpty

bool IsEmpty() const

Returns TRUE if the region is empty, FALSE otherwise.

wxRegion::Subtract

bool Subtract(const wxRect& rect)

CHAPTER 5

1047

Subtracts a rectangular region from this region.

bool Subtract(const wxRegion& region)

Subtracts a region from this region.

Return value

TRUE if successful, FALSE otherwise.

Remarks

This operation combines the parts of 'this' region that are not part of the second region.
The result is stored in this region.

wxRegion::Union

bool Union(long x, long y, long width, long height)

Finds the union of this region and another, rectangular region, specified using position
and size.

bool Union(const wxRect& rect)

Finds the union of this region and another, rectangular region.

bool Union(const wxRegion& region)

Finds the union of this region and another region.

Return value

TRUE if successful, FALSE otherwise.

Remarks

This operation creates a region that combines all of this region and the second region.
The result is stored in this region.

wxRegion::Xor

bool Xor(long x, long y, long width, long height)

Finds the Xor of this region and another, rectangular region, specified using position and
size.

bool Xor(const wxRect& rect)

CHAPTER 5

1048

Finds the Xor of this region and another, rectangular region.

bool Xor(const wxRegion& region)

Finds the Xor of this region and another region.

Return value

TRUE if successful, FALSE otherwise.

Remarks

This operation creates a region that combines all of this region and the second region,
except for any overlapping areas. The result is stored in this region.

wxRegion::operator =

void operator =(const wxRegion& region)

Copies region by reference counting.

wwxxRReeggiioonnIItteerraattoorr

This class is used to iterate through the rectangles in a region, typically when examining
the damaged regions of a window within an OnPaint call.

To use it, construct an iterator object on the stack and loop through the regions, testing
the object and incrementing the iterator at the end of the loop.

See wxWindow::OnPaint (p. 1397) for an example of use.

Derived from

wxObject (p. 897)

Include files

<wx/region.h>

See also

wxWindow::OnPaint (p. 1397)

CHAPTER 5

1049

wxRegionIterator::wxRegionIterator

 wxRegionIterator()

Default constructor.

 wxRegionIterator(const wxRegion& region)

Creates an iterator object given a region.

wxRegionIterator::GetX

long GetX() const

Returns the x value for the current region.

wxRegionIterator::GetY

long GetY() const

Returns the y value for the current region.

wxRegionIterator::GetW

long GetW() const

An alias for GetWidth.

wxRegionIterator::GetWidth

long GetWidth() const

Returns the width value for the current region.

wxRegionIterator::GetH

long GetH() const

An alias for GetHeight.

wxRegionIterator::GetHeight

CHAPTER 5

1050

long GetWidth() const

Returns the width value for the current region.

wxRegionIterator::GetRect

wxRect GetRect() const

Returns the current rectangle.

wxRegionIterator::HaveRects

bool HaveRects() const

Returns TRUE if there are still some rectangles; otherwise returns FALSE.

wxRegionIterator::Reset

void Reset()

Resets the iterator to the beginning of the rectangles.

void Reset(const wxRegion& region)

Resets the iterator to the given region.

wxRegionIterator::operator ++

void operator ++()

Increment operator. Increments the iterator to the next region.

wxPython note: A wxPython alias for this operator is called Next.

wxRegionIterator::operator bool

 operator bool() const

Returns TRUE if there are still some rectangles; otherwise returns FALSE.

You can use this to test the iterator object as if it were of type bool.

wwxxSSaasshhEEvveenntt

CHAPTER 5

1051

A sash event is sent when the sash of a wxSashWindow (p. 1055) has been dragged by
the user.

Derived from

wxCommandEvent (p. 156)
wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/sashwin.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxSashEvent argument.

EVT_SASH_DRAGGED(id, func) Process a wxEVT_SASH_DRAGGED event,

when the user has finished dragging a sash.
EVT_SASH_DRAGGED_RANGE(id1, id2, func) Process a

wxEVT_SASH_DRAGGED_RANGE event,
when the user has finished dragging a sash.
The event handler is called when windows with
ids in the given range have their sashes
dragged.

Data structures

enum wxSashDragStatus
{
 wxSASH_STATUS_OK,
 wxSASH_STATUS_OUT_OF_RANGE
};

Remarks

When a sash belonging to a sash window is dragged by the user, and then released, this
event is sent to the window, where it may be processed by an event table entry in a
derived class, a plug-in event handler or an ancestor class.

Note that the wxSashWindow doesn't change the window's size itself. It relies on the
application's event handler to do that. This is because the application may have to
handle other consequences of the resize, or it may wish to veto it altogether. The event
handler should look at the drag rectangle: see wxSashEvent::GetDragRect (p. 1052) to
see what the new size of the window would be if the resize were to be applied. It should
also call wxSashEvent::GetDragStatus (p. 1052) to see whether the drag was OK or out

CHAPTER 5

1052

of the current allowed range.

See also

wxSashWindow (p. 1055), Event handling overview (p. 1560)

wxSashEvent::wxSashEvent

 wxSashEvent(int id = 0, wxSashEdgePosition edge = wxSASH_NONE)

Constructor.

wxSashEvent::GetEdge

wxSashEdgePosition GetEdge () const

Returns the dragged edge. The return value is one of wxSASH_TOP, wxSASH_RIGHT,
wxSASH_BOTTOM, wxSASH_LEFT.

wxSashEvent::GetDragRect

wxRect GetDragRect() const

Returns the rectangle representing the new size the window would be if the resize was
applied. It is up to the application to set the window size if required.

wxSashEvent::GetDragStatus

wxSashDragStatus GetDragStatus() const

Returns the status of the sash: one of wxSASH_STATUS_OK,
wxSASH_STATUS_OUT_OF_RANGE. If the drag caused the notional bounding box of
the window to flip over, for example, the drag will be out of rage.

wwxxSSaasshhLLaayyoouuttWWiinnddooww

wxSashLayoutWindow responds to OnCalculateLayout events generated by
wxLayoutAlgorithm (p. 737). It allows the application to use simple accessors to specify
how the window should be laid out, rather than having to respond to events. The fact
that the class derives from wxSashWindow allows sashes to be used if required, to allow

CHAPTER 5

1053

the windows to be user-resizable.

The documentation for wxLayoutAlgorithm (p. 737) explains the purpose of this class in
more detail.

Derived from

wxSashWindow (p. 1055)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/laywin.h>

Window styles

See wxSashWindow (p. 1055).

Event handling

This class handles the EVT_QUERY_LAYOUT_INFO and EVT_CALCULATE_LAYOUT
events for you. However, if you use sashes, see wxSashWindow (p. 1055) for relevant
event information.

See also wxLayoutAlgorithm (p. 737) for information about the layout events.

See also

wxLayoutAlgorithm (p. 737), wxSashWindow (p. 1055), Event handling overview (p.
1560)

wxSashLayoutWindow::wxSashLayoutWindow

 wxSashLayoutWindow()

Default constructor.

 wxSashLayoutWindow(wxSashLayoutWindow* parent, wxSashLayoutWindowID
id, const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize,
long style = wxCLIP_CHILDREN | wxSW_3D, const wxString& name =
"layoutWindow")

Constructs a sash layout window, which can be a child of a frame, dialog or any other
non-control window.

Parameters

CHAPTER 5

1054

parent

Pointer to a parent window.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that
wxSashLayoutWindows should generate a default position for the window. If using
the wxSashLayoutWindow class directly, supply an actual position.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxSashLayoutWindows
should generate a default size for the window.

style

Window style. For window styles, please see wxSashLayoutWindow (p. 1052).

name

Window name.

wxSashLayoutWindow::~wxSashLayoutWindow

 ~wxSashLayoutWindow()

Destructor.

wxSashLayoutWindow::GetAlignment

wxLayoutAlignment GetAlignment() const

Returns the alignment of the window: one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

wxSashLayoutWindow::GetOrientation

wxLayoutOrientation GetOrientation() const

Returns the orientation of the window: one of wxLAYOUT_HORIZONTAL,
wxLAYOUT_VERTICAL.

wxSashLayoutWindow::OnCalculateLayout

void OnCalculateLayout(wxCalculateLayoutEvent& event)

CHAPTER 5

1055

The default handler for the event that is generated by wxLayoutAlgorithm. The
implementation of this function calls wxCalculateLayoutEvent::SetRect to shrink the
provided size according to how much space this window takes up. For further details,
see wxLayoutAlgorithm (p. 737) and wxCalculateLayoutEvent (p. 96).

wxSashLayoutWindow::OnQueryLayoutInfo

void OnQueryLayoutInfo(wxQueryLayoutInfoEvent& event)

The default handler for the event that is generated by OnCalculateLayout to get size,
alignment and orientation information for the window. The implementation of this function
uses member variables as set by accessors called by the application. For further details,
see wxLayoutAlgorithm (p. 737) and wxQueryLayoutInfoEvent (p. 1010).

wxSashLayoutWindow::SetAlignment

void SetAlignment(wxLayoutAlignment alignment)

Sets the alignment of the window (which edge of the available parent client area the
window is attached to). alignment is one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

wxSashLayoutWindow::SetDefaultSize

void SetDefaultSize(const wxSize& size)

Sets the default dimensions of the window. The dimension other than the orientation will
be fixed to this value, and the orientation dimension will be ignored and the window
stretched to fit the available space.

wxSashLayoutWindow::SetOrientation

void SetOrientation(wxLayoutOrientation orientation)

Sets the orientation of the window (the direction the window will stretch in, to fill the
available parent client area). orientation is one of wxLAYOUT_HORIZONTAL,
wxLAYOUT_VERTICAL.

wwxxSSaasshhWWiinnddooww

wxSashWindow allows any of its edges to have a sash which can be dragged to resize
the window. The actual content window will be created by the application as a child of

CHAPTER 5

1056

wxSashWindow. The window (or an ancestor) will be notified of a drag via a
wxSashEvent (p. 1050) notification.

Derived from

wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/sashwin.h>

Window styles

The following styles apply in addition to the normal wxWindow styles.

wxSW_3D Draws a 3D effect sash and border.
wxSW_3DSASH Draws a 3D effect sash.
wxSW_3DBORDER Draws a 3D effect border.
wxSW_BORDER Draws a thin black border.

See also window styles overview (p. 1567).

Event handling

EVT_SASH_DRAGGED(id, func) Process a wxEVT_SASH_DRAGGED event,

when the user has finished dragging a sash.
EVT_SASH_DRAGGED_RANGE(id1, id2, func) Process a

wxEVT_SASH_DRAGGED_RANGE event,
when the user has finished dragging a sash.
The event handler is called when windows with
ids in the given range have their sashes
dragged.

Data types

enum wxSashEdgePosition {
 wxSASH_TOP = 0,
 wxSASH_RIGHT,
 wxSASH_BOTTOM,
 wxSASH_LEFT,
 wxSASH_NONE = 100
};

See also

CHAPTER 5

1057

wxSashEvent (p. 1050), wxSashLayoutWindow (p. 1052), Event handling overview (p.
1560)

wxSashWindow::wxSashWindow

 wxSashWindow()

Default constructor.

 wxSashWindow(wxSashWindow* parent, wxSashWindowID id, const wxPoint&
pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxCLIP_CHILDREN | wxSW_3D, const wxString& name = "sashWindow")

Constructs a sash window, which can be a child of a frame, dialog or any other non-
control window.

Parameters

parent

Pointer to a parent window.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that
wxSashWindows should generate a default position for the window. If using the
wxSashWindow class directly, supply an actual position.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxSashWindows
should generate a default size for the window.

style

Window style. For window styles, please see wxSashWindow (p. 1055).

name

Window name.

wxSashWindow::~wxSashWindow

 ~wxSashWindow()

Destructor.

CHAPTER 5

1058

wxSashWindow::GetSashVisible

bool GetSashVisible(wxSashEdgePosition edge) const

Returns TRUE if a sash is visible on the given edge, FALSE otherwise.

Parameters

edge

Edge. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

See also

wxSashWindow::SetSashVisible (p. 1059)

wxSashWindow::GetMaximumSizeX

int GetMaximumSizeX() const

Gets the maximum window size in the x direction.

wxSashWindow::GetMaximumSizeY

int GetMaximumSizeY() const

Gets the maximum window size in the y direction.

wxSashWindow::GetMinimumSizeX

int GetMinimumSizeX()

Gets the minimum window size in the x direction.

wxSashWindow::GetMinimumSizeY

int GetMinimumSizeY(int min) const

Gets the minimum window size in the y direction.

wxSashWindow::HasBorder

bool HasBorder(wxSashEdgePosition edge) const

CHAPTER 5

1059

Returns TRUE if the sash has a border, FALSE otherwise.

Parameters

edge

Edge. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

See also

wxSashWindow::SetSashBorder (p. 1060)

wxSashWindow::SetMaximumSizeX

void SetMaximumSizeX(int min)

Sets the maximum window size in the x direction.

wxSashWindow::SetMaximumSizeY

void SetMaximumSizeY(int min)

Sets the maximum window size in the y direction.

wxSashWindow::SetMinimumSizeX

void SetMinimumSizeX(int min)

Sets the minimum window size in the x direction.

wxSashWindow::SetMinimumSizeY

void SetMinimumSizeY(int min)

Sets the minimum window size in the y direction.

wxSashWindow::SetSashVisible

void SetSashVisible(wxSashEdgePosition edge, bool visible)

Call this function to make a sash visible or invisible on a particular edge.

Parameters

edge

CHAPTER 5

1060

Edge to change. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

visible

TRUE to make the sash visible, FALSE to make it invisible.

See also

wxSashWindow::GetSashVisible (p. 1058)

wxSashWindow::SetSashBorder

void SetSashBorder(wxSashEdgePosition edge, bool hasBorder)

Call this function to give the sash a border, or remove the border.

Parameters

edge

Edge to change. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

hasBorder

TRUE to give the sash a border visible, FALSE to remove it.

See also

wxSashWindow::HashBorder (p. 1058)

wwxxSSccrreeeennDDCC

A wxScreenDC can be used to paint on the screen. This should normally be constructed
as a temporary stack object; don't store a wxScreenDC object.

Derived from

wxDC (p. 327)

Include files

<wx/dcscreen.h>

See also

wxDC (p. 327), wxMemoryDC (p. 828), wxPaintDC (p. 910), wxClientDC (p. 123),
wxWindowDC (p. 1418)

CHAPTER 5

1061

wxScreenDC::wxScreenDC

 wxScreenDC()

Constructor.

wxScreenDC::StartDrawingOnTop

bool StartDrawingOnTop(wxWindow* window)

bool StartDrawingOnTop(wxRect* rect = NULL)

Use this in conjunction with EndDrawingOnTop (p. 1061) to ensure that drawing to the
screen occurs on top of existing windows. Without this, some window systems (such as
X) only allow drawing to take place underneath other windows.

By using the first form of this function, an application is specifying that the area that will
be drawn on coincides with the given window.

By using the second form, an application can specify an area of the screen which is to
be drawn on. If NULL is passed, the whole screen is available.

It is recommended that an area of the screen is specified because with large regions,
flickering effects are noticeable when destroying the temporary transparent window used
to implement this feature.

You might use this pair of functions when implementing a drag feature, for example as in
the wxSplitterWindow (p. 1137) implementation.

Remarks

This function is probably obsolete since the X implementations allow drawing directly on
the screen now. However, the fact that this function allows the screen to be refreshed
afterwards, may be useful to some applications.

wxScreenDC::EndDrawingOnTop

bool EndDrawingOnTop()

Use this in conjunction with StartDrawingOnTop (p. 1061).

This function destroys the temporary window created to implement on-top drawing (X
only).

CHAPTER 5

1062

wwxxSSccrroollllBBaarr

A wxScrollBar is a control that represents a horizontal or vertical scrollbar. It is distinct
from the two scrollbars that some windows provide automatically, but the two types of
scrollbar share the way events are received.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/scrolbar.h>

Remarks

A scrollbar has the following main attributes: range, thumb size, page size, and position.

The range is the total number of units associated with the view represented by the
scrollbar. For a table with 15 columns, the range would be 15.

The thumb size is the number of units that are currently visible. For the table example,
the window might be sized so that only 5 columns are currently visible, in which case the
application would set the thumb size to 5. When the thumb size becomes the same as or
greater than the range, the scrollbar will be automatically hidden on most platforms.

The page size is the number of units that the scrollbar should scroll by, when 'paging'
through the data. This value is normally the same as the thumb size length, because it is
natural to assume that the visible window size defines a page.

The scrollbar position is the current thumb position.

Most applications will find it convenient to provide a function called AdjustScrollbars
which can be called initially, from an OnSize event handler, and whenever the
application data changes in size. It will adjust the view, object and page size according
to the size of the window and the size of the data.

Window styles

wxSB_HORIZONTAL Specifies a horizontal scrollbar.
wxSB_VERTICAL Specifies a vertical scrollbar.

See also window styles overview (p. 1567).

Event handling

CHAPTER 5

1063

To process input from a scrollbar, use one of these event handler macros to direct input
to member functions that take a wxScrollEvent (p. 1068) argument:

EVT_COMMAND_SCROLL(id, func) Catch all scroll commands.
EVT_COMMAND_SCROLL_TOP(id, func) Catch a command to put the scroll thumb at

the maximum position.
EVT_COMMAND_SCROLL_BOTTOM(id, func) Catch a command to put the scroll

thumb at the maximum position.
EVT_COMMAND_SCROLL_LINEUP(id, func) Catch a line up command.
EVT_COMMAND_SCROLL_LINEDOWN(id, func) Catch a line down command.
EVT_COMMAND_SCROLL_PAGEUP(id, func) Catch a page up command.
EVT_COMMAND_SCROLL_PAGEDOWN(id, func) Catch a page down

command.
EVT_COMMAND_SCROLL_THUMBTRACK(id, func) Catch a thumbtrack

command (continuous movement of the scroll
thumb).

See also

Scrolling overview (p. 1584), Event handling overview (p. 1560), wxScrolledWindow (p.
1070)

wxScrollBar::wxScrollBar

 wxScrollBar()

Default constructor.

 wxScrollBar(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSB_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "scrollBar")

Constructor, creating and showing a scrollbar.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

CHAPTER 5

1064

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxScrollBar (p. 1062).

validator

Window validator.

name

Window name.

See also

wxScrollBar::Create (p. 1064), wxValidator (p. 1348)

wxScrollBar::~wxScrollBar

void ~wxScrollBar()

Destructor, destroying the scrollbar.

wxScrollBar::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSB_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "scrollBar")

Scrollbar creation function called by the scrollbar constructor. See
wxScrollBar::wxScrollBar (p. 1063) for details.

wxScrollBar::GetRange

int GetRange () const

Returns the length of the scrollbar.

See also

wxScrollBar::SetScrollbar (p. 1065)

wxScrollBar::GetPageSize

int GetPageSize() const

CHAPTER 5

1065

Returns the page size of the scrollbar. This is the number of scroll units that will be
scrolled when the user pages up or down. Often it is the same as the thumb size.

See also

wxScrollBar::SetScrollbar (p. 1065)

wxScrollBar::GetThumbPosition

int GetThumbPosition() const

Returns the current position of the scrollbar thumb.

See also

wxScrollBar::SetThumbPosition (p. 1065)

wxScrollBar::GetThumbLength

int GetThumbLength() const

Returns the thumb or 'view' size.

See also

wxScrollBar::SetScrollbar (p. 1065)

wxScrollBar::SetThumbPosition

void SetThumbPosition(int viewStart)

Sets the position of the scrollbar.

Parameters

viewStart

The position of the scrollbar thumb.

See also

wxScrollBar::GetThumbPosition (p. 1065)

wxScrollBar::SetScrollbar

virtual void SetScrollbar(int position, int thumbSize, int range, int pageSize, const

CHAPTER 5

1066

bool refresh = TRUE)

Sets the scrollbar properties.

Parameters

position

The position of the scrollbar in scroll units.

thumbSize

The size of the thumb, or visible portion of the scrollbar, in scroll units.

range

The maximum position of the scrollbar.

pageSize

The size of the page size in scroll units. This is the number of units the scrollbar
will scroll when it is paged up or down. Often it is the same as the thumb size.

refresh

TRUE to redraw the scrollbar, FALSE otherwise.

Remarks

Let's say you wish to display 50 lines of text, using the same font. The window is sized
so that you can only see 16 lines at a time.

You would use:

 scrollbar->SetScrollbar(0, 16, 50, 15);

The page size is 1 less than the thumb size so that the last line of the previous page will
be visible on the next page, to help orient the user.

Note that with the window at this size, the thumb position can never go above 50 minus
16, or 34.

You can determine how many lines are currently visible by dividing the current view size
by the character height in pixels.

When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which can be
called initially and also from a wxWindow::OnSize (p. 1399) event handler function.

See also

Scrolling overview (p. 1584), wxWindow::SetScrollbar (p. 1411), wxScrolledWindow (p.

CHAPTER 5

1067

1070)

wwxxSSccrroollllWWiinnEEvveenntt

A scroll event holds information about events sent from scrolling windows.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process a scroll window event, use these event handler macros to direct input to
member functions that take a wxScrollWinEvent argument. You can use the
EVT_SCROLLWIN... macros for intercepting scroll window events from the receiving
window.

EVT_SCROLLWIN(func) Process all scroll events.
EVT_SCROLLWIN_TOP(func) Process wxEVT_SCROLLWIN_TOP scroll-to-

top events.
EVT_SCROLLWIN_BOTTOM(func) Process wxEVT_SCROLLWIN_TOP scroll-to-

bottom events.
EVT_SCROLLWIN_LINEUP(func) Process wxEVT_SCROLLWIN_LINEUP line up

events.
EVT_SCROLLWIN_LINEDOWN(func) Process wxEVT_SCROLLWIN_LINEDOWN

line down events.
EVT_SCROLLWIN_PAGEUP(func) Process wxEVT_SCROLLWIN_PAGEUP page

up events.
EVT_SCROLLWIN_PAGEDOWN(func) Process wxEVT_SCROLLWIN_PAGEDOWN

page down events.
EVT_SCROLLWIN_THUMBTRACK(func) Process

wxEVT_SCROLLWIN_THUMBTRACK
thumbtrack events (frequent events sent as the
user drags the thumtrack).

EVT_SCROLLWIN_THUMBRELEASE(func) Process
wxEVT_SCROLLWIN_THUMBRELEASE
thumb release events.

See also

wxWindow::OnScroll (p. 1398), wxScrollEvent (p. 1068), Event handling overview (p.

CHAPTER 5

1068

1560)

wxScrollWinEvent::wxScrollWinEvent

 wxScrollWinEvent(WXTYPE commandType = 0, int id = 0, int pos = 0, int orientation
= 0)

Constructor.

wxScrollWinEvent::GetOrientation

int GetOrientation() const

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
scrollbar.

wxScrollWinEvent::GetPosition

int GetPosition() const

Returns the position of the scrollbar for the thumb track and release events. Note that
this field can't be used for the other events, you need to query the window itself for the
current position in that case.

wwxxSSccrroollllEEvveenntt

A scroll event holds information about events sent from stand-alone scrollbars, spin-
buttons and sliders. Note that starting from wxWindows 2.1, scrolled windows send the
wxScrollWinEvent (p. 1067) which does not derive from wxCommandEvent, but from
wxEvent directly - don't confuse these two kinds of events and use the event table
macros mentioned below only for the scrollbar-like controls.

Derived from

wxCommandEvent (p. 156)
wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

CHAPTER 5

1069

Event table macros

To process a scroll event, use these event handler macros to direct input to member
functions that take a wxScrollEvent argument. You can useEVT_COMMAND_SCROLL...
macros with window IDs for when intercepting scroll events from controls, or
EVT_SCROLL... macros without window IDs for intercepting scroll events from the
receiving window - except for this, the macros behave exactly the same

EVT_SCROLL(func) Process all scroll events.
EVT_SCROLL_TOP(func) Process wxEVT_SCROLL_TOP scroll-to-top

events.
EVT_SCROLL_BOTTOM(func) Process wxEVT_SCROLL_TOP scroll-to-

bottom events.
EVT_SCROLL_LINEUP(func) Process wxEVT_SCROLL_LINEUP line up

events.
EVT_SCROLL_LINEDOWN(func) Process wxEVT_SCROLL_LINEDOWN line

down events.
EVT_SCROLL_PAGEUP(func) Process wxEVT_SCROLL_PAGEUP page up

events.
EVT_SCROLL_PAGEDOWN(func) Process wxEVT_SCROLL_PAGEDOWN page

down events.
EVT_SCROLL_THUMBTRACK(func) Process wxEVT_SCROLL_THUMBTRACK

thumbtrack events (frequent events sent as the
user drags the thumtrack).

EVT_SCROLL_THUMBRELEASE(func) Process
wxEVT_SCROLL_THUMBRELEASE thumb
release events.

EVT_COMMAND_SCROLL(id, func) Process all scroll events.
EVT_COMMAND_SCROLL_TOP(id, func) Process wxEVT_SCROLL_TOP scroll-to-

top events.
EVT_COMMAND_SCROLL_BOTTOM(id, func) Process wxEVT_SCROLL_TOP

scroll-to-bottom events.
EVT_COMMAND_SCROLL_LINEUP(id, func) Process wxEVT_SCROLL_LINEUP

line up events.
EVT_COMMAND_SCROLL_LINEDOWN(id, func) Process

wxEVT_SCROLL_LINEDOWN line down
events.

EVT_COMMAND_SCROLL_PAGEUP(id, func) Process wxEVT_SCROLL_PAGEUP
page up events.

EVT_COMMAND_SCROLL_PAGEDOWN(id, func) Process
wxEVT_SCROLL_PAGEDOWN page down
events.

EVT_COMMAND_SCROLL_THUMBTRACK(id, func) Process
wxEVT_SCROLL_THUMBTRACK thumbtrack
events (frequent events sent as the user drags
the thumtrack).

EVT_COMMAND_SCROLL_THUMBRELEASE(func) Process
wxEVT_SCROLL_THUMBRELEASE thumb
release events.

CHAPTER 5

1070

Remarks

Note that unless specifying a scroll control identifier, you will need to test for scrollbar
orientation with wxScrollEvent::GetOrientation (p. 1070), since horizontal and vertical
scroll events are processed using the same event handler.

See also

wxScrollBar (p. 1062), wxSlider (p. 1091), wxSpinButton (p. 1125),
wxScrollWinEvent (p. 1067), Event handling overview (p. 1560)

wxScrollEvent::wxScrollEvent

 wxScrollEvent(WXTYPE commandType = 0, int id = 0, int pos = 0, int orientation = 0)

Constructor.

wxScrollEvent::GetOrientation

int GetOrientation() const

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
scrollbar.

wxScrollEvent::GetPosition

int GetPosition() const

Returns the position of the scrollbar.

wwxxSSccrroolllleeddWWiinnddooww

The wxScrolledWindow class manages scrolling for its client area, transforming the
coordinates according to the scrollbar positions, and setting the scroll positions, thumb
sizes and ranges according to the area in view.

As with all windows, an application can draw onto a wxScrolledWindow using a device
context (p. 1589).

You have the option of handling the OnPaint handler or overriding the OnDraw (p. 1076)
function, which is passed a pre-scrolled device context (prepared by PrepareDC (p.
1075)).

CHAPTER 5

1071

If you don't wish to calculate your own scrolling, you must call PrepareDC when not
drawing from within OnDraw, to set the device origin for the device context according to
the current scroll position.

A wxScrolledWindow will normally scroll itself and therefore its child windows as well. It
might however be desired to scroll a different window than itself: e.g. when designing a
spreadsheet, you will normally only have to scroll the (usually white) cell area, whereas
the (usually grey) label area will scroll very differently. For this special purpose, you can
call SetTargetWindow (p. 1078) which means that pressing the scrollbars will scroll a
different window.

Note that the underlying system knows nothing about scrolling coordinates, so that all
system functions (mouse events, expose events, refresh calls etc) as well as the position
of subwindows are relative to the "physical" origin of the scrolled window. If the user
insert a child window at position (10,10) and scrolls the window down 100 pixels (moving
the child window out of the visible area), the child window will report a position of (10,-
90).

Derived from

wxPanel (p. 916)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/scrolwin.h>

Window styles

wxRETAINED Uses a backing pixmap to speed refreshes. Motif only.

See also window styles overview (p. 1567).

Remarks

Use wxScrolledWindow for applications where the user scrolls by a fixed amount, and
where a 'page' can be interpreted to be the current visible portion of the window. For
more sophisticated applications, use the wxScrolledWindow implementation as a guide
to build your own scroll behaviour.

See also

wxScrollBar (p. 1062), wxClientDC (p. 123), wxPaintDC (p. 910)

CHAPTER 5

1072

wxScrolledWindow::wxScrolledWindow

 wxScrolledWindow()

Default constructor.

 wxScrolledWindow(wxWindow* parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxHSCROLL |
wxVSCROLL, const wxString& name = "scrolledWindow")

Constructor.

Parameters

parent

Parent window.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position. If a position of (-1, -1) is specified then a default position is
chosen.

size

Window size. If a size of (-1, -1) is specified then the window is sized appropriately.

style

Window style. See wxScrolledWindow (p. 1070).

name

Window name.

Remarks

The window is initially created without visible scrollbars. Call
wxScrolledWindow::SetScrollbars (p. 1077) to specify how big the virtual window size
should be.

wxScrolledWindow::~wxScrolledWindow

 ~wxScrolledWindow()

Destructor.

wxScrolledWindow::CalcScrolledPosition

void CalcScrolledPosition(int x, int y, int *xx int *yy) const

CHAPTER 5

1073

Translates the logical coordinates to the device ones. For example, if a window is
scrolled 10 pixels to the bottom, the device coordinates of the origin are (0, 0) (as
always), but the logical coordinates are (0, 10) and so the call to CalcScrolledPosition(0,
10, &xx, &yy) will return 0 in yy.

See also

CalcUnscrolledPosition (p. 1073)

wxPython note: The wxPython version of this methods accepts only two parameters
and returns xx and yy as a tuple of values.

wxPerl note: In wxPerl this method takes two parameters and returns a 2-element list (
xx, yy).

wxScrolledWindow::CalcUnscrolledPosition

void CalcUnscrolledPosition(int x, int y, int *xx int *yy) const

Translates the device coordinates to the logical ones. For example, if a window is
scrolled 10 pixels to the bottom, the device coordinates of the origin are (0, 0) (as
always), but the logical coordinates are (0, 10) and so the call to
CalcUnscrolledPosition(0, 0, &xx, &yy) will return 10 in yy.

See also

CalcScrolledPosition (p. 1072)

wxPython note: The wxPython version of this methods accepts only two parameters
and returns xx and yy as a tuple of values.

wxPerl note: In wxPerl this method takes two parameters and returns a 2-element list (
xx, yy).

wxScrolledWindow::Create

bool Create (wxWindow* parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxHSCROLL |
wxVSCROLL, const wxString& name = "scrolledWindow")

Creates the window for two-step construction. Derived classes should call or replace this
function. See wxScrolledWindow::wxScrolledWindow (p. 1072) for details.

wxScrolledWindow::EnableScrolling

void EnableScrolling(const bool xScrolling, const bool yScrolling)

CHAPTER 5

1074

Enable or disable physical scrolling in the given direction. Physical scrolling is the
physical transfer of bits up or down the screen when a scroll event occurs. If the
application scrolls by a variable amount (e.g. if there are different font sizes) then
physical scrolling will not work, and you should switch it off. Note that you will have to
reposition child windows yourself, if physical scrolling is disabled.

Parameters

xScrolling

If TRUE, enables physical scrolling in the x direction.

yScrolling

If TRUE, enables physical scrolling in the y direction.

Remarks

Physical scrolling may not be available on all platforms. Where it is available, it is
enabled by default.

wxScrolledWindow::GetScrollPixelsPerUnit

void GetScrollPixelsPerUnit(int* xUnit, int* yUnit) const

Get the number of pixels per scroll unit (line), in each direction, as set by
wxScrolledWindow::SetScrollbars (p. 1077). A value of zero indicates no scrolling in that
direction.

Parameters

xUnit

Receives the number of pixels per horizontal unit.

yUnit

Receives the number of pixels per vertical unit.

See also

wxScrolledWindow::SetScrollbars (p. 1077), wxScrolledWindow::GetVirtualSize (p.
1074)

wxPython note: The wxPython version of this methods accepts no parameters and
returns a tuple of values for xUnit and yUnit.

wxPerl note: In wxPerl this method takes no parameters and returns a 2-element list (
xUnit, yUnit).

wxScrolledWindow::GetVirtualSize

CHAPTER 5

1075

void GetVirtualSize(int* x, int* y) const

Gets the size in device units of the scrollable window area (as opposed to the client size,
which is the area of the window currently visible).

Parameters

x

Receives the length of the scrollable window, in pixels.

y

Receives the height of the scrollable window, in pixels.

Remarks

Use wxDC::DeviceToLogicalX (p. 331) and wxDC::DeviceToLogicalY (p. 331) to
translate these units to logical units.

See also

wxScrolledWindow::SetScrollbars (p. 1077), wxScrolledWindow::GetScrollPixelsPerUnit
(p. 1074)

wxPython note: The wxPython version of this methods accepts no parameters and
returns a tuple of values for x and y.

wxPerl note: In wxPerl this method takes no parameters and returns a 2-element list (
x, y).

wxScrolledWindow::IsRetained

bool IsRetained() const

Motif only: TRUE if the window has a backing bitmap.

wxScrolledWindow::PrepareDC

void PrepareDC(wxDC& dc)

Call this function to prepare the device context for drawing a scrolled image. It sets the
device origin according to the current scroll position.

PrepareDC is called automatically within the default wxScrolledWindow::OnPaint event
handler, so your wxScrolledWindow::OnDraw (p. 1076) override will be passed a 'pre-
scrolled' device context. However, if you wish to draw from outside of OnDraw (via
OnPaint), or you wish to implement OnPaint yourself, you must call this function
yourself. For example:

CHAPTER 5

1076

void MyWindow::OnEvent(wxMouseEvent& event)
{
 wxClientDC dc(this);
 PrepareDC(dc);

 dc.SetPen(*wxBLACK_PEN);
 float x, y;
 event.Position(&x, &y);
 if (xpos > -1 && ypos > -1 && event.Dragging())
 {
 dc.DrawLine(xpos, ypos, x, y);
 }
 xpos = x;
 ypos = y;
}

wxScrolledWindow::OnDraw

virtual void OnDraw(wxDC& dc)

Called by the default paint event handler to allow the application to define painting
behaviour without having to worry about callingwxScrolledWindow::PrepareDC (p.
1075).

Instead of overriding this function you may also just process the paint event in the
derived class as usual, but then you will have to call PrepareDC() yourself.

wxScrolledWindow::Scroll

void Scroll(int x, int y)

Scrolls a window so the view start is at the given point.

Parameters

x

The x position to scroll to, in scroll units.

y

The y position to scroll to, in scroll units.

Remarks

The positions are in scroll units, not pixels, so to convert to pixels you will have to
multiply by the number of pixels per scroll increment. If either parameter is -1, that
position will be ignored (no change in that direction).

See also

CHAPTER 5

1077

wxScrolledWindow::SetScrollbars (p. 1077), wxScrolledWindow::GetScrollPixelsPerUnit
(p. 1074)

wxScrolledWindow::SetScrollbars

void SetScrollbars(int pixelsPerUnitX, int pixelsPerUnitY, int noUnitsX, int noUnitsY,
int xPos = 0, int yPos = 0, bool noRefresh = FALSE)

Sets up vertical and/or horizontal scrollbars.

Parameters

pixelsPerUnitX

Pixels per scroll unit in the horizontal direction.

pixelsPerUnitY

Pixels per scroll unit in the vertical direction.

noUnitsX

Number of units in the horizontal direction.

noUnitsY

Number of units in the vertical direction.

xPos

Position to initialize the scrollbars in the horizontal direction, in scroll units.

yPos

Position to initialize the scrollbars in the vertical direction, in scroll units.

noRefresh

Will not refresh window if TRUE.

Remarks

The first pair of parameters give the number of pixels per 'scroll step', i.e. amount moved
when the up or down scroll arrows are pressed. The second pair gives the length of
scrollbar in scroll steps, which sets the size of the virtual window.

xPos and yPos optionally specify a position to scroll to immediately.

For example, the following gives a window horizontal and vertical scrollbars with 20
pixels per scroll step, and a size of 50 steps (1000 pixels) in each direction.

 window->SetScrollbars(20, 20, 50, 50);

wxScrolledWindow manages the page size itself, using the current client window size as
the page size.

Note that for more sophisticated scrolling applications, for example where scroll steps

CHAPTER 5

1078

may be variable according to the position in the document, it will be necessary to derive
a new class from wxWindow, overriding OnSize and adjusting the scrollbars
appropriately.

wxScrolledWindow::SetTargetWindow

void SetTargetWindow(wxWindow* window)

Call this function to tell wxScrolledWindow to perform the actually scrolling on a different
window (not on itself).

wxScrolledWindow::GetViewStart

void GetViewStart(int* x, int* y) const

Get the position at which the visible portion of the window starts.

Parameters

x

Receives the first visible x position in scroll units.

y

Receives the first visible y position in scroll units.

Remarks

If either of the scrollbars is not at the home position, x and/or y will be greater than zero.
Combined with wxWindow::GetClientSize (p. 1377), the application can use this function
to efficiently redraw only the visible portion of the window. The positions are in logical
scroll units, not pixels, so to convert to pixels you will have to multiply by the number of
pixels per scroll increment.

See also

wxScrolledWindow::SetScrollbars (p. 1077)

wxPython note: The wxPython version of this methods accepts no parameters and
returns a tuple of values for x and y.

wxPerl note: In wxPerl this method takes no parameters and returns a 2-element list (
x, y).

wwxxSSiimmpplleeHHeellppPPrroovviiddeerr

CHAPTER 5

1079

wxSimpleHelpProvider is an implementation of wxHelpProvider (p. 618) which supports
only plain text help strings, and shows the string associated with the control (if any) in a
tooltip.

Derived from

wxHelpProvider (p. 618)

Include files

<wx/cshelp.h>

See also

wxHelpProvider (p. 618), wxHelpControllerHelpProvider (p. 616), wxContextHelp (p.
180), wxWindow::SetHelpText (p. 1410), wxWindow::GetHelpText (p. 1379)

wwxxSSiinngglleeCChhooiicceeDDiiaalloogg

This class represents a dialog that shows a list of strings, and allows the user to select
one. Double-clicking on a list item is equivalent to single-clicking and then pressing OK.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/choicdlg.h>

See also

wxSingleChoiceDialog overview (p. 1599)

wxSingleChoiceDialog::wxSingleChoiceDialog

 wxSingleChoiceDialog(wxWindow* parent, const wxString& message, const
wxString& caption, int n, const wxString* choices, void** clientData = NULL, long
style = wxOK | wxCANCEL | wxCENTRE, const wxPoint& pos = wxDefaultPosition)

Constructor, taking an array of wxString choices and optional client data.

CHAPTER 5

1080

 wxSingleChoiceDialog(wxWindow* parent, const wxString& message, const
wxString& caption, const wxStringList& choices, void** clientData = NULL, long style
= wxOK | wxCANCEL | wxCENTRE, const wxPoint& pos = wxDefaultPosition)

Constructor, taking a string list and optional client data.

Parameters

parent

Parent window.

message

Message to show on the dialog.

caption

The dialog caption.

n

The number of choices.

choices

An array of strings, or a string list, containing the choices.

style

A dialog style (bitlist) containing flags chosen from the following:

wxOK Show an OK button.
wxCANCEL Show a Cancel button.
wxCENTRE Centre the message. Not Windows.

pos

Dialog position. Not Windows.

Remarks

Use wxSingleChoiceDialog::ShowModal (p. 1081) to show the dialog.

wxPython note: For Python the two parametes n and choices are collapsed into a
single parameter choices which is expected to be a Python list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices, and
the client data array, if present, must have the same length as the choices array.

wxSingleChoiceDialog::~wxSingleChoiceDialog

 ~wxSingleChoiceDialog()

CHAPTER 5

1081

Destructor.

wxSingleChoiceDialog::GetSelection

int GetSelection() const

Returns the index of selected item.

wxSingleChoiceDialog::GetSelectionClientData

char* GetSelectionClientData() const

Returns the client data associated with the selection.

wxSingleChoiceDialog::GetStringSelection

wxString GetStringSelection() const

Returns the selected string.

wxSingleChoiceDialog::SetSelection

void SetSelection(int selection) const

Sets the index of the initially selected item.

wxSingleChoiceDialog::ShowModal

int ShowModal()

Shows the dialog, returning either wxID_OK or wxID_CANCEL.

wwxxSSiinngglleeIInnssttaanncceeCChheecckkeerr

wxSingleInstanceChecker class allows to check that only a single instance of a program
is running. To do it, you should create an object of this class. As long as this object is
alive, calls to IsAnotherRunning() (p. 1083) from other processes will return TRUE.

As the object should have the life span as big as possible, it makes sense to create it
either as a global or in wxApp::OnInit (p. 28). For example:

CHAPTER 5

1082

bool MyApp::OnInit()
{
 m_checker = new wxSingleInstanceChecker(GetAppName());
 if (m_checker->IsAnotherRunning())
 {
 wxLogError(_("Another program instance is already running,
aborting."));

 return FALSE;
 }

 ... more initializations ...

 return TRUE;
}

int MyApp::OnExit()
{
 delete m_checker;

 return 0;
}

This class is implemented for Win32 and Unix platforms supporting fcntl()system call
only.

Derived from

No base class

wxSingleInstanceChecker::wxSingleInstanceChecker

 wxSingleInstanceChecker()

Default ctor, use Create() (p. 1082) after it.

wxSingleInstanceChecker::wxSingleInstanceChecker

 wxSingleInstanceChecker(const wxString& name, const wxString& path =
wxEmptyString)

Like Create() (p. 1082) but without error checking.

wxSingleInstanceChecker::Create

bool Create (const wxString& name, const wxString& path = wxEmptyString)

CHAPTER 5

1083

Initialize the object if it had been created using the default constructor. Note that you
can't call Create() more than once, so calling it if the non default ctor (p. 1082) had been
used is an error.

Parameters

name

must be given and be as unique as possible. It is used as the mutex name under
Win32 and the lock file name under Unix. GetAppName() (p. 23) may be a good
value for this parameter

path

is optional and is ignored under Win32 and used as the directory to create the lock
file in under Unix (default is wxGetHomeDir() (p. 1465))

Return value

Returns FALSE if initialization failed, it doesn't mean that another instance is running -
use IsAnotherRunning() (p. 1083) to check for it.

wxSingleInstanceChecker::IsAnotherRunning

bool IsAnotherRunning() const

Returns TRUE if another copy of this program is already running, FALSE otherwise.

wxSingleInstanceChecker::~wxSingleInstanceChecker

 ~wxSingleInstanceChecker()

Destructor frees the associated resources.

Note that it is not virtual, this class is not meant to be used polymorphically

wwxxSSiizzee

A wxSize is a useful data structure for graphics operations. It simply contains integer
width and height members.

wxSize is used throughout wxWindows as well as wxPoint which, although almost
equivalent to wxSize, has a different meaning: wxPoint represents a position while
wxSize - the size.

wxPython note: wxPython defines aliases for the x and y members named width and
height since it makes much more sense for sizes.

CHAPTER 5

1084

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxPoint (p. 937), wxRealPoint (p. 1022)

wxSize::wxSize

 wxSize()

 wxSize(int width, int height)

Creates a size object.

wxSize::GetWidth

int GetWidth() const

Gets the width member.

wxSize::GetHeight

int GetHeight() const

Gets the height member.

wxSize::Set

void Set(int width, int height)

Sets the width and height members.

wxSize::SetHeight

void SetHeight(int height)

CHAPTER 5

1085

Sets the height.

wxSize::SetWidth

void SetWidth(int width)

Sets the width.

wxSize::operator =

void operator =(const wxSize& sz)

Assignment operator.

wwxxSSiizzeeEEvveenntt

A size event holds information about size change events.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process a size event, use this event handler macro to direct input to a member
function that takes a wxSizeEvent argument.

EVT_SIZE(func) Process a wxEVT_SIZE event.

See also

wxSize (p. 1083), Event handling overview (p. 1560)

wxSizeEvent::wxSizeEvent

 wxSizeEvent(const wxSize& sz, int id = 0)

CHAPTER 5

1086

Constructor.

wxSizeEvent::GetSize

wxSize GetSize() const

Returns the entire size of the window generating the size change event.

wwxxSSiizzeerr

wxSizer is the abstract base class used for laying out subwindows in a window. You
cannot use wxSizer directly; instead, you will have to use one of the sizer classes
derived from it. Currently there are wxBoxSizer (p. 79), wxStaticBoxSizer (p.
1150),wxNotebookSizer (p. 885), wxGridSizer (p. 606) and wxFlexGridSizer (p. 498).

The layout algorithm used by sizers in wxWindows is closely related to layout in other
GUI toolkits, such as Java's AWT, the GTK toolkit or the Qt toolkit. It is based upon the
idea of the individual subwindows reporting their minimal required size and their ability to
get stretched if the size of the parent window has changed. This will most often mean,
that the programmer does not set the original size of a dialog in the beginning, rather the
dialog will assigned a sizer and this sizer will be queried about the recommended size.
The sizer in turn will query its children, which can be normal windows, empty space or
other sizers, so that a hierarchy of sizers can be constructed. Note that wxSizer does not
derive from wxWindow and thus do not interfere with tab ordering and requires very little
resources compared to a real window on screen.

What makes sizers so well fitted for use in wxWindows is the fact that every control
reports its own minimal size and the algorithm can handle differences in font sizes or
different window (dialog item) sizes on different platforms without problems. If e.g. the
standard font as well as the overall design of Motif widgets requires more space than on
Windows, the initial dialog size will automatically be bigger on Motif than on Windows.

wxPython note: If you wish to create a sizer class in wxPython you should derive the
class from wxPySizer in order to get Python-aware capabilities for the various virtual
methods.

Derived from

wxObject (p. 897)

wxSizer::wxSizer

CHAPTER 5

1087

 wxSizer()

The constructor. Note that wxSizer is an abstract base class and may not be
instantiated.

wxSizer::~wxSizer

 ~wxSizer()

The destructor.

wxSizer::Add

void Add(wxWindow* window, int option = 0,int flag = 0, int border = 0, wxObject*
userData = NULL)

void Add(wxSizer* sizer, int option = 0, int flag = 0, int border = 0, wxObject*
userData = NULL)

void Add(int width, int height, int option = 0, int flag = 0, int border = 0, wxObject*
userData = NULL)

Adds the window to the sizer. As wxSizer itself is an abstract class, the parameters have
no meaning in the wxSizer class itself, but as there currently is only one class deriving
directly from wxSizer and this class does not override these methods, the meaning of the
parameters is described here:

window

The window to be added to the sizer. Its initial size (either set explicitly by the user
or calculated internally when using wxDefaultSize) is interpreted as the minimal
and in many cases also the initial size. This is particularly useful in connection with
SetSizeHints (p. 1091).

sizer

The (child-)sizer to be added to the sizer. This allows placing a child sizer in a sizer
and thus to create hierarchies of sizers (typically a vertical box as the top sizer and
several horizontal boxes on the level beneath).

width and height

The dimension of a spacer to be added to the sizer. Adding spacers to sizers gives
more flexilibilty in the design of dialogs; imagine for example a horizontal box with
two buttons at the bottom of a dialog: you might want to insert a space between
the two buttons and make that space stretchable using the option flag and the
result will be that the left button will be aligned with the left side of the dialog and
the right button with the right side - the space in between will shrink and grow with
the dialog.

option

CHAPTER 5

1088

Although the meaning of this parameter is undefined in wxSizer, it is used in
wxBoxSizer to indicate if a child of a sizer can change its size in the main
orientation of the wxBoxSizer - where 0 stands for not changable and a value of
more than zero is interpreted relative to the value of other children of the same
wxBoxSizer. For example, you might have a horizontal wxBoxSizer with three
children, two of which are supposed to change their size with the sizer. Then the
two stretchable windows would get a value of 1 each to make them grow and
shrink equally with the sizer's horizontal dimension.

flag

This parameter can be used to set a number of flags which can be combined using
the binary OR operator |. Two main behaviours are defined using these flags. One
is the border around a window: the borderparameter determines the border width
whereas the flags given here determine where the border may be (wxTOP,
wxBOTTOM, wxLEFT, wxRIGHT or wxALL). The other flags determine the child
window's behaviour if the size of the sizer changes. However this is not - in
contrast to the option flag - in the main orientation, but in the respectively other
orientation. So if you created a wxBoxSizer with the wxVERTICAL option, these
flags will be relevant if the sizer changes its horizontal size. A child may get
resized to completely fill out the new size (using either wxGROW or wxEXPAND),
it may get proportionally resized (wxSHAPED), it may get centered
(wxALIGN_CENTER or wxALIGN_CENTRE) or it may get aligned to either side
(wxALIGN_LEFT and wxALIGN_TOP are set to 0 and thus represent the default,
wxALIGN_RIGHT and wxALIGN_BOTTOM have their obvious meaning). With
proportional resize, a child may also be centered in the main orientation using
wxALIGN_CENTER_VERTICAL (same as wxALIGN_CENTRE_VERTICAL) and
wxALIGN_CENTER_HORIZONTAL (same as
wxALIGN_CENTRE_HORIZONTAL) flags. Finally, you can also specify
wxADJUST_MINSIZE flag to make the minimal size of the control dynamically
adjust to the value returned by its GetBestSize() (p. 1376)method - this allows, for
example, for correct relayouting of a static text control even if its text is changed
during run-time.

border

Determines the border width, if the flag parameter is set to any border.

userData

Allows an extra object to be attached to the sizer item, for use in derived classes
when sizing information is more complex than the option and flag will allow for.

wxSizer::CalcMin

wxSize CalcMin()

This method is abstract and has to be overwritten by any derived class. Here, the sizer
will do the actual calculation of its children minimal sizes.

wxSizer::Fit

CHAPTER 5

1089

void Fit(wxWindow* window)

Tell the sizer to resize the window to match the sizer's minimal size. This is commonly
done in the constructor of the window itself, see sample in the description of wxBoxSizer
(p. 79).

wxSizer::GetSize

wxSize GetSize()

Returns the current size of the sizer.

wxSizer::GetPosition

wxPoint GetPosition()

Returns the current position of the sizer.

wxSizer::GetMinSize

wxSize GetMinSize()

Returns the minimal size of the sizer. This is either the combined minimal size of all the
children and their borders or the minimal size set by SetMinSize (p. 1090), depending on
which is bigger.

wxSizer::Layout

void Layout()

Call this to force layout of the children anew, e.g. after having added a child to or
removed a child (window, other sizer or space) from the sizer while keeping the current
dimension.

wxSizer::Prepend

void Prepend(wxWindow* window, int option = 0, int flag = 0, int border = 0,
wxObject* userData = NULL)

void Prepend(wxSizer* sizer, int option = 0, int flag = 0, int border = 0, wxObject*
userData = NULL)

void Prepend(int width, int height, int option = 0, int flag = 0, int border= 0, wxObject*
userData = NULL)

CHAPTER 5

1090

Same as wxSizer::Add (p. 1087), but prepends the items to the beginning of the list of
items (windows, subsizers or spaces) owned by this sizer.

wxSizer::RecalcSizes

void RecalcSizes()

This method is abstract and has to be overwritten by any derived class. Here, the sizer
will do the actual calculation of its children's positions and sizes.

wxSizer::Remove

bool Remove(wxWindow* window)

bool Remove(wxSizer* sizer)

bool Remove(int nth)

Removes a child from the sizer. window is the window to be removed, sizer is the
equivalent sizer and nth is the position of the child in the sizer, typically 0 for the first
item. This method does not cause any layout or resizing to take place and does not
delete the window itself. Call wxSizer::Layout (p. 1089) to update the layout "on screen"
after removing a child fom the sizer.

Returns TRUE if the child item was found and removed, FALSE otherwise.

wxSizer::SetDimension

void SetDimension(int x, int y, int width, int height)

Call this to force the sizer to take the given dimension and thus force the items owned by
the sizer to resize themselves according to the rules defined by the paramater in the Add
(p. 1087) and Prepend (p. 1089) methods.

wxSizer::SetMinSize

void SetMinSize(int width, int height)

void SetMinSize(wxSize size)

Call this to give the sizer a minimal size. Normally, the sizer will calculate its minimal size
based purely on how much space its children need. After calling this method GetMinSize
(p. 1089) will return either the minimal size as requested by its children or the minimal
size set here, depending on which is bigger.

CHAPTER 5

1091

wxSizer::SetItemMinSize

void SetItemMinSize(wxWindow* window, int width, int height)

void SetItemMinSize(wxSizer* sizer, int width, int height)

void SetItemMinSize(int pos, int width, int height)

Set an item's minimum size by window, sizer, or position. The item will be found
recursively in the sizer's descendants. This function enables an application to set the
size of an item after initial creation.

wxSizer::SetSizeHints

void SetSizeHints(wxWindow* window)

Tell the sizer to set the minimal size of the window to match the sizer's minimal size.
This is commonly done in the constructor of the window itself, see sample in the
description of wxBoxSizer (p. 79) if the window is resizable (as are many dialogs under
Unix and frames on probably all platforms).

wwxxSSlliiddeerr

A slider is a control with a handle which can be pulled back and forth to change the
value.

In Windows versions below Windows 95, a scrollbar is used to simulate the slider. In
Windows 95, the track bar control is used.

Slider events are handled in the same way as a scrollbar.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/slider.h>

Window styles

wxSL_HORIZONTAL Displays the slider horizontally.

CHAPTER 5

1092

wxSL_VERTICAL Displays the slider vertically.
wxSL_AUTOTICKS Displays tick marks.
wxSL_LABELS Displays minimum, maximum and value labels. (NB: only

displays the current value label under wxGTK)
wxSL_LEFT Displays ticks on the left, if a vertical slider.
wxSL_RIGHT Displays ticks on the right, if a vertical slider.
wxSL_TOP Displays ticks on the top, if a horizontal slider.
wxSL_SELRANGE Allows the user to select a range on the slider. Windows 95

only.

See also window styles overview (p. 1567).

Event handling

To process input from a slider, use one of these event handler macros to direct input to
member functions that take a wxScrollEvent (p. 1068) argument:

EVT_COMMAND_SCROLL(id, func) Catch all scroll commands.
EVT_COMMAND_TOP(id, func) Catch a command to put the scroll thumb at the

maximum position.
EVT_COMMAND_BOTTOM(id, func) Catch a command to put the scroll thumb at the

maximum position.
EVT_COMMAND_LINEUP(id, func) Catch a line up command.
EVT_COMMAND_LINEDOWN(id, func) Catch a line down command.
EVT_COMMAND_PAGEUP(id, func) Catch a page up command.
EVT_COMMAND_PAGEDOWN(id, func) Catch a page down command.
EVT_COMMAND_THUMBTRACK(id, func) Catch a thumbtrack command

(continuous movement of the scroll thumb).
EVT_SLIDER(id, func) Process a

wxEVT_COMMAND_SLIDER_UPDATED
event, when the slider is moved. Though
provided for backward compatibility, this is
obsolete.

See also

Event handling overview (p. 1560), wxScrollBar (p. 1062)

wxSlider::wxSlider

 wxSlider()

Default slider.

 wxSlider(wxWindow* parent, wxWindowID id, int value , int minValue, int maxValue,
const wxPoint& point = wxDefaultPosition, const wxSize& size = wxDefaultSize, long

CHAPTER 5

1093

style = wxSL_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "slider")

Constructor, creating and showing a slider.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

value

Initial position for the slider.

minValue

Minimum slider position.

maxValue

Maximum slider position.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxSlider (p. 1091).

validator

Window validator.

name

Window name.

See also

wxSlider::Create (p. 1094), wxValidator (p. 1348)

wxSlider::~wxSlider

void ~wxSlider()

Destructor, destroying the slider.

wxSlider::ClearSel

void ClearSel()

CHAPTER 5

1094

Clears the selection, for a slider with the wxSL_SELRANGE style.

Remarks

Windows 95 only.

wxSlider::ClearTicks

void ClearTicks()

Clears the ticks.

Remarks

Windows 95 only.

wxSlider::Create

bool Create (wxWindow* parent, wxWindowID id, int value , int minValue, int
maxValue, const wxPoint& point = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxSL_HORIZONTAL, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "slider")

Used for two-step slider construction. See wxSlider::wxSlider (p. 1092) for further details.

wxSlider::GetLineSize

int GetLineSize() const

Returns the line size.

See also

wxSlider::SetLineSize (p. 1097)

wxSlider::GetMax

int GetMax() const

Gets the maximum slider value.

See also

wxSlider::GetMin (p. 1095), wxSlider::SetRange (p. 1096)

CHAPTER 5

1095

wxSlider::GetMin

int GetMin() const

Gets the minimum slider value.

See also

wxSlider::GetMin (p. 1095), wxSlider::SetRange (p. 1096)

wxSlider::GetPageSize

int GetPageSize() const

Returns the page size.

See also

wxSlider::SetPageSize (p. 1097)

wxSlider::GetSelEnd

int GetSelEnd() const

Returns the selection end point.

Remarks

Windows 95 only.

See also

wxSlider::GetSelStart (p. 1095), wxSlider::SetSelection (p. 1098)

wxSlider::GetSelStart

int GetSelStart() const

Returns the selection start point.

Remarks

Windows 95 only.

See also

wxSlider::GetSelEnd (p. 1095), wxSlider::SetSelection (p. 1098)

CHAPTER 5

1096

wxSlider::GetThumbLength

int GetThumbLength() const

Returns the thumb length.

Remarks

Windows 95 only.

See also

wxSlider::SetThumbLength (p. 1098)

wxSlider::GetTickFreq

int GetTickFreq() const

Returns the tick frequency.

Remarks

Windows 95 only.

See also

wxSlider::SetTickFreq (p. 1097)

wxSlider::GetValue

int GetValue() const

Gets the current slider value.

See also

wxSlider::GetMin (p. 1095), wxSlider::GetMax (p. 1094), wxSlider::SetValue (p. 1099)

wxSlider::SetRange

void SetRange (int minValue, int maxValue)

Sets the minimum and maximum slider values.

See also

CHAPTER 5

1097

wxSlider::GetMin (p. 1095), wxSlider::GetMax (p. 1094)

wxSlider::SetTickFreq

void SetTickFreq(int n, int pos)

Sets the tick mark frequency and position.

Parameters

n

Frequency. For example, if the frequency is set to two, a tick mark is displayed for
every other increment in the slider's range.

pos

Position. Must be greater than zero. TODO: what is this for?

Remarks

Windows 95 only.

See also

wxSlider::GetTickFreq (p. 1096)

wxSlider::SetLineSize

void SetLineSize(int lineSize)

Sets the line size for the slider.

Parameters

lineSize

The number of steps the slider moves when the user moves it up or down a line.

See also

wxSlider::GetLineSize (p. 1094)

wxSlider::SetPageSize

void SetPageSize(int pageSize)

Sets the page size for the slider.

CHAPTER 5

1098

Parameters

pageSize

The number of steps the slider moves when the user pages up or down.

See also

wxSlider::GetPageSize (p. 1095)

wxSlider::SetSelection

void SetSelection(int startPos , int endPos)

Sets the selection.

Parameters

startPos

The selection start position.

endPos

The selection end position.

Remarks

Windows 95 only.

See also

wxSlider::GetSelStart (p. 1095), wxSlider::GetSelEnd (p. 1095)

wxSlider::SetThumbLength

void SetThumbLength(int len)

Sets the slider thumb length.

Parameters

len

The thumb length.

Remarks

Windows 95 only.

See also

CHAPTER 5

1099

wxSlider::GetThumbLength (p. 1096)

wxSlider::SetTick

void SetTick(int tickPos)

Sets a tick position.

Parameters

tickPos

The tick position.

Remarks

Windows 95 only.

See also

wxSlider::SetTickFreq (p. 1097)

wxSlider::SetValue

void SetValue(int value)

Sets the slider position.

Parameters

value

The slider position.

See also

wxSlider::GetValue (p. 1096)

wwxxSSoocckkAAddddrreessss

You are unlikely to need to use this class: only wxSocketBase uses it.

Derived from

wxObject (p. 897)

Include files

CHAPTER 5

1100

<wx/socket.h>

See also

wxSocketBase (p. 1100)wxIPV4address (p. 722)

wxSockAddress::wxSockAddress

 wxSockAddress()

Default constructor.

wxSockAddress::~wxSockAddress

 ~wxSockAddress()

Default destructor.

wxSockAddress::Clear

void Clear()

Delete all informations about the address.

wxSockAddress::SockAddrLen

int SockAddrLen()

Returns the length of the socket address.

wwxxSSoocckkeettBBaassee

wxSocketBase is the base class for all socket-related objects, and it defines all basic IO
functionality.

Derived from

wxObject (p. 897)

CHAPTER 5

1101

Include files

<wx/socket.h>

wxSocket errors

wxSOCKET_NOERROR No error happened.
wxSOCKET_INVOP Invalid operation.
wxSOCKET_IOERR Input/Output error.
wxSOCKET_INVADDR Invalid address passed to wxSocket.
wxSOCKET_INVSOCK Invalid socket (uninitialized).
wxSOCKET_NOHOST No corresponding host.
wxSOCKET_INVPORT Invalid port.
wxSOCKET_WOULDBLOCK The socket is non-blocking and the operation

would block.
wxSOCKET_TIMEDOUT The timeout for this operation expired.
wxSOCKET_MEMERR Memory exhausted.

wxSocket events

wxSOCKET_INPUT There is data available for reading.
wxSOCKET_OUTPUT The socket is ready to be written to.
wxSOCKET_CONNECTION Incoming connection request (server), or

successful connection establishment (client).
wxSOCKET_LOST The connection has been closed.

A brief note on how to use these events:

The wxSOCKET_INPUT event will be issued whenever there is data available for
reading. This will be the case if the input queue was empty and new data arrives, or if
the application has read some data yet there is still more data available. This means that
the application does not need to read all available data in response to a
wxSOCKET_INPUT event, as more events will be produced as necessary.

The wxSOCKET_OUTPUT event is issued when a socket is first connected with
Connect (p. 1118) or accepted with Accept (p. 1122). After that, new events will be
generated only after an output operation fails with wxSOCKET_WOULDBLOCK and
buffer space becomes available again. This means that the application should assume
that it can write data to the socket until an wxSOCKET_WOULDBLOCK error occurs;
after this, whenever the socket becomes writable again the application will be notified
with another wxSOCKET_OUTPUT event.

The wxSOCKET_CONNECTION event is issued when a delayed connection request
completes succesfully (client) or when a new connection arrives at the incoming queue
(server).

The wxSOCKET_LOST event is issued when a close indication is received for the
socket. This means that the connection broke down or that it was closed by the peer.
Also, this event will be issued if a connection request fails.

CHAPTER 5

1102

Event handling

To process events coming from a socket object, use the following event handler macro
to direct events to member functions that take a wxSocketEvent (p. 1120) argument.

EVT_SOCKET(id, func) Process a wxEVT_SOCKET event.

See also

wxSocketEvent (p. 1120), wxSocketClient (p. 1118), wxSocketServer (p. 1121), Sockets
sample (p. 1521)

Construction and destruction

wxSocketBase (p. 1103)
~wxSocketBase (p. 1104)
Destroy (p. 1105)

Socket state

Functions to retrieve current state and miscellaneous info.

Error (p. 1106)
GetLocal (p. 1106)
GetPeer (p. 1106)IsConnected (p. 1107)
IsData (p. 1107)
IsDisconnected (p. 1107)
LastCount (p. 1107)
LastError (p. 1108)
Ok (p. 1108)
SaveState (p. 1109)
RestoreState (p. 1108)

Basic IO

Functions that perform basic IO functionality.

Close (p. 1105)
Discard (p. 1105)
Peek (p. 1111)
Read (p. 1112)
ReadMsg (p. 1113)
Unread (p. 1113)

CHAPTER 5

1103

Write (p. 1116)
WriteMsg (p. 1117)

Functions that perform a timed wait on a certain IO condition.

InterruptWait (p. 1107)
Wait (p. 1114)
WaitForLost (p. 1115)
WaitForRead (p. 1115)
WaitForWrite (p. 1116)

and also:

wxSocketServer::WaitForAccept (p. 1123)
wxSocketClient::WaitOnConnect (p. 1119)

Functions that allow applications to customize socket IO as needed.

GetFlags (p. 1106)
SetFlags (p. 1110)
SetTimeout (p. 1111)

Handling socket events

Functions that allow applications to receive socket events.

Notify (p. 1108)
SetNotify (p. 1111)
GetClientData (p. 1106)
SetClientData (p. 1109)
SetEventHandler (p. 1109)

Callback functions are also available, but they are provided for backwards compatibility
only. Their use is strongly discouraged in favour of events, and should be considered
deprecated. Callbacks may be unsupported in future releases of wxWindows.

Callback (p. 1104)
CallbackData (p. 1104)

wxSocketBase::wxSocketBase

 wxSocketBase()

Default constructor. Don't use it directly; instead, use wxSocketClient (p. 1118) to
construct a socket client, or wxSocketServer (p. 1121) to construct a socket server.

CHAPTER 5

1104

wxSocketBase::~wxSocketBase

 ~wxSocketBase ()

Destructor. Do not destroy a socket using the delete operator directly; use Destroy (p.
1105) instead. Also, do not create socket objects in the stack.

wxSocketBase::Callback

wxSocketBase::wxSockCbk Callback(wxSocketBase::wxSockCbk callback)

You can setup a callback function to be called when an event occurs. The function will
be called only for those events for which notification has been enabled with Notify (p.
1108) and SetNotify (p. 1111). The prototype of the callback must be as follows:

void SocketCallback(wxSocketBase& sock, wxSocketNotify evt, char
*cdata);

The first parameter is a reference to the socket object in which the event occurred. The
second parameter tells you which event occurred. (See wxSocket events (p. 1100)). The
third parameter is the user data you specified using CallbackData (p. 1104).

Return value

A pointer to the previous callback.

Remark/Warning

Note that callbacks are now deprecated and unsupported, and they remain for
backwards compatibility only. Use events instead.

See also

wxSocketBase::CallbackData (p. 1104), wxSocketBase::SetNotify (p. 1111),
wxSocketBase::Notify (p. 1108)

wxSocketBase::CallbackData

char * CallbackData(char *cdata)

This function sets the the user data which will be passed to a callback function set via
Callback (p. 1104).

Return value

A pointer to the previous user data.

CHAPTER 5

1105

Remark/Warning

Note that callbacks are now deprecated and unsupported, and they remain for
backwards compatibility only. Use events instead.

See also

wxSocketBase::Callback (p. 1104), wxSocketBase::SetNotify (p. 1111),
wxSocketBase::Notify (p. 1108)

wxSocketBase::Close

void Close()

This function shuts down the socket, disabling further transmission and reception of
data; it also disables events for the socket and frees the associated system resources.
Upon socket destruction, Close is automatically called, so in most cases you won't need
to do it yourself, unless you explicitly want to shut down the socket, typically to notify the
peer that you are closing the connection.

Remark/Warning

Although Close immediately disables events for the socket, it is possible that event
messages may be waiting in the application's event queue. The application must
therefore be prepared to handle socket event messages even after calling Close.

wxSocketBase::Destroy

bool Destroy()

Destroys the socket safely. Use this function instead of the delete operator, since
otherwise socket events could reach the application even after the socket has been
destroyed. To prevent this problem, this function appends the wxSocket to a list of object
to be deleted on idle time, after all events have been processed. For the same reason,
you should avoid creating socket objects in the stack.

Destroy calls Close (p. 1105) automatically.

Return value

Always TRUE.

wxSocketBase::Discard

wxSocketBase& Discard()

CHAPTER 5

1106

This function simply deletes all bytes in the incoming queue. This function always returns
immediately and its operation is not affected by IO flags.

Use LastCount (p. 1107) to verify the number of bytes actually discarded.

If you use Error (p. 1106), it will always return FALSE.

wxSocketBase::Error

bool Error() const

Returns TRUE if an error occurred in the last IO operation.

Use this function to check for an error condition after one of the following calls: Discard,
Peek, Read, ReadMsg, Unread, Write, WriteMsg.

wxSocketBase::GetClientData

void * GetClientData() const

Returns a pointer of the client data for this socket, as set with SetClientData (p. 1109)

wxSocketBase::GetLocal

bool GetLocal(wxSockAddress& addr) const

This function returns the local address field of the socket. The local address field
contains the complete local address of the socket (local address, local port, ...).

Return value

TRUE if no error happened, FALSE otherwise.

wxSocketBase::GetFlags

wxSocketFlags GetFlags() const

Returns current IO flags, as set with SetFlags (p. 1110)

wxSocketBase::GetPeer

bool GetPeer(wxSockAddress& addr) const

This function returns the peer address field of the socket. The peer address field
contains the complete peer host address of the socket (address, port, ...).

CHAPTER 5

1107

Return value

TRUE if no error happened, FALSE otherwise.

wxSocketBase::InterruptWait

void InterruptWait()

Use this function to interrupt any wait operation currently in progress. Note that this is
not intended as a regular way to interrupt a Wait call, but only as an escape mechanism
for exceptional situations where it is absolutely necessary to use it, for example to abort
an operation due to some exception or abnormal problem. InterruptWait is automatically
called when you Close (p. 1105) a socket (and thus also upon socket destruction), so
you don't need to use it in these cases.

wxSocketBase::Wait (p. 1114), wxSocketServer::WaitForAccept (p. 1123),
wxSocketBase::WaitForLost (p. 1115), wxSocketBase::WaitForRead (p. 1115),
wxSocketBase::WaitForWrite (p. 1116), wxSocketClient::WaitOnConnect (p. 1119)

wxSocketBase::IsConnected

bool IsConnected() const

Returns TRUE if the socket is connected.

wxSocketBase::IsData

bool IsData() const

This function waits until the socket is readable. This might mean that queued data is
available for reading or, for streamed sockets, that the connection has been closed, so
that a read operation will complete immediately without blocking (unless the
wxSOCKET_WAITALL flag is set, in which case the operation might still block).

wxSocketBase::IsDisconnected

bool IsDisconnected() const

Returns TRUE if the socket is not connected.

wxSocketBase::LastCount

wxUint32 LastCount() const

CHAPTER 5

1108

Returns the number of bytes read or written by the last IO call.

Use this function to get the number of bytes actually transferred after using one of the
following IO calls: Discard, Peek, Read, ReadMsg, Unread, Write, WriteMsg.

wxSocketBase::LastError

wxSocketError LastError() const

Returns the last wxSocket error. See wxSocket errors (p. 1100).

Please note that this function merely returns the last error code, but it should not be
used to determine if an error has occurred (this is because successful operations do not
change the LastError value). Use Error (p. 1106) first, in order to determine if the last IO
call failed. If this returns TRUE, use LastError to discover the cause of the error.

wxSocketBase::Notify

void Notify(bool notify)

According to the notify value, this function enables or disables socket events. If notify is
TRUE, the events configured with SetNotify (p. 1111) will be sent to the application. If
notify is FALSE; no events will be sent.

wxSocketBase::Ok

bool Ok() const

Returns TRUE if the socket is initialized and ready and FALSE in other cases.

Remark/Warning

For wxSocketClient (p. 1118), Ok won't return TRUE unless the client is connected to a
server.

For wxSocketServer (p. 1121), Ok will return TRUE if the server could bind to the
specified address and is already listening for new connections.

Ok does not check for IO errors; use Error (p. 1106) instead for that purpose.

wxSocketBase::RestoreState

void RestoreState ()

This function restores the previous state of the socket, as saved with SaveState (p.
1109)

CHAPTER 5

1109

Calls to SaveState and RestoreState can be nested.

See also

wxSocketBase::SaveState (p. 1109)

wxSocketBase::SaveState

void SaveState ()

This function saves the current state of the socket in a stack. Socket state includes flags,
as set with SetFlags (p. 1110), event mask, as set with SetNotify (p. 1111) and Notify (p.
1108), user data, as set with SetClientData (p. 1109), and asynchronous callback
settings, as set with Callback (p. 1104) and CallbackData (p. 1104).

Calls to SaveState and RestoreState can be nested.

See also

wxSocketBase::RestoreState (p. 1108)

wxSocketBase::SetClientData

void SetClientData(void *data)

Sets user-supplied client data for this socket. All socket events will contain a pointer to
this data, which can be retrieved with the wxSocketEvent::GetClientData (p. 1121)
function.

wxSocketBase::SetEventHandler

void SetEventHandler(wxEvtHandler& handler, int id = -1)

Sets an event handler to be called when a socket event occurs. The handler will be
called for those events for which notification is enabled with SetNotify (p. 1111) and
Notify (p. 1108).

Parameters

handler

Specifies the event handler you want to use.

id

The id of socket event.

See also

CHAPTER 5

1110

wxSocketBase::SetNotify (p. 1111), wxSocketBase::Notify (p. 1108), wxSocketEvent (p.
1120), wxEvtHandler (p. 432)

wxSocketBase::SetFlags

void SetFlags(wxSocketFlags flags)

Use SetFlags to customize IO operation for this socket. The flags parameter may be a
combination of flags ORed toghether. The following flags can be used:

wxSOCKET_NONE Normal functionality.
wxSOCKET_NOWAIT Read/write as much data as possible and

return immediately.
wxSOCKET_WAITALL Wait for all required data to be read/written

unless an error occurs.
wxSOCKET_BLOCK Block the GUI (do not yield) while

reading/writing data.

A brief overview on how to use these flags follows.

If no flag is specified (this is the same as wxSOCKET_NONE), IO calls will return after
some data has been read or written, even when the transfer might not be complete. This
is the same as issuing exactly one blocking low-level call to recv() or send(). Note that
blocking here refers to when the function returns, not to whether the GUI blocks during
this time.

If wxSOCKET_NOWAIT is specified, IO calls will return immediately. Read operations
will retrieve only available data. Write operations will write as much data as possible,
depending on how much space is available in the output buffer. This is the same as
issuing exactly one nonblocking low-level call to recv() or send(). Note that nonblocking
here refers to when the function returns, not to whether the GUI blocks during this time.

If wxSOCKET_WAITALL is specified, IO calls won't return until ALL the data has been
read or written (or until an error occurs), blocking if necessary, and issuing several low
level calls if necessary. This is the same as having a loop which makes as many
blocking low-level calls to recv() or send() as needed so as to transfer all the data. Note
that blocking here refers to when the function returns, not to whether the GUI blocks
during this time.

The wxSOCKET_BLOCK flag controls whether the GUI blocks during IO operations. If
this flag is specified, the socket will not yield during IO calls, so the GUI will remain
blocked until the operation completes. If it is not used, then the application must take
extra care to avoid unwanted reentrance.

So:

wxSOCKET_NONE will try to read at least SOME data, no matter how much.

CHAPTER 5

1111

wxSOCKET_NOWAIT will always return immediately, even if it cannot read or write
ANY data.

wxSOCKET_WAITALL will only return when it has read or written ALL the data.

wxSOCKET_BLOCK has nothing to do with the previous flags and it controls whether
the GUI blocks.

wxSocketBase::SetNotify

void SetNotify(wxSocketEventFlags flags)

SetNotify specifies which socket events are to be sent to the event handler. The flags
parameter may be combination of flags ORed toghether. The following flags can be
used:

wxSOCKET_INPUT_FLAG to receive wxSOCKET_INPUT
wxSOCKET_OUTPUT_FLAG to receive wxSOCKET_OUTPUT
wxSOCKET_CONNECTION_FLAG to receive wxSOCKET_CONNECTION
wxSOCKET_LOST_FLAG to receive wxSOCKET_LOST

For example:

 sock.SetNotify(wxSOCKET_INPUT_FLAG | wxSOCKET_LOST_FLAG);
 sock.Notify(TRUE);

In this example, the user will be notified about incoming socket data and whenever the
connection is closed.

For more information on socket events see wxSocket events (p. 1100).

wxSocketBase::SetTimeout

void SetTimeout(int seconds)

This function sets the default socket timeout in seconds. This timeout applies to all IO
calls, and also to the Wait (p. 1114) family of functions if you don't specify a wait interval.
Initially, the default timeout is 10 minutes.

wxSocketBase::Peek

wxSocketBase& Peek(void * buffer, wxUint32 nbytes)

This function peeks a buffer of nbytes bytes from the socket. Peeking a buffer doesn't
delete it from the socket input queue.

CHAPTER 5

1112

Use LastCount (p. 1107) to verify the number of bytes actually peeked.

Use Error (p. 1106) to determine if the operation succeeded.

Parameters

buffer

Buffer where to put peeked data.

nbytes

Number of bytes.

Return value

Returns a reference to the current object.

Remark/Warning

The exact behaviour of wxSocketBase::Peek depends on the combination of flags being
used. For a detailed explanation, see wxSocketBase::SetFlags (p. 1110)

See also

wxSocketBase::Error (p. 1106), wxSocketBase::LastError (p. 1108),
wxSocketBase::LastCount (p. 1107), wxSocketBase::SetFlags (p. 1110)

wxSocketBase::Read

wxSocketBase& Read(void * buffer, wxUint32 nbytes)

This function reads a buffer of nbytes bytes from the socket.

Use LastCount (p. 1107) to verify the number of bytes actually read.

Use Error (p. 1106) to determine if the operation succeeded.

Parameters

buffer

Buffer where to put read data.

nbytes

Number of bytes.

Return value

Returns a reference to the current object.

Remark/Warning

CHAPTER 5

1113

The exact behaviour of wxSocketBase::Read depends on the combination of flags being
used. For a detailed explanation, see wxSocketBase::SetFlags (p. 1110).

See also

wxSocketBase::Error (p. 1106), wxSocketBase::LastError (p. 1108),
wxSocketBase::LastCount (p. 1107), wxSocketBase::SetFlags (p. 1110)

wxSocketBase::ReadMsg

wxSocketBase& ReadMsg(void * buffer, wxUint32 nbytes)

This function reads a buffer sent by WriteMsg (p. 1117) on a socket. If the buffer passed
to the function isn't big enough, the remaining bytes will be discarded. This function
always waits for the buffer to be entirely filled, unless an error occurs.

Use LastCount (p. 1107) to verify the number of bytes actually read.

Use Error (p. 1106) to determine if the operation succeeded.

Parameters

buffer

Buffer where to put read data.

nbytes

Size of the buffer.

Return value

Returns a reference to the current object.

Remark/Warning

wxSocketBase::ReadMsg will behave as if the wxSOCKET_WAITALL flag was always
set and it will always ignore the wxSOCKET_NOWAIT flag. The exact behaviour of
ReadMsg depends on the wxSOCKET_BLOCK flag. For a detailed explanation, see
wxSocketBase::SetFlags (p. 1110).

See also

wxSocketBase::Error (p. 1106), wxSocketBase::LastError (p. 1108),
wxSocketBase::LastCount (p. 1107), wxSocketBase::SetFlags (p. 1110),
wxSocketBase::WriteMsg (p. 1117)

wxSocketBase::Unread

wxSocketBase& Unread(const void * buffer, wxUint32 nbytes)

CHAPTER 5

1114

This function unreads a buffer. That is, the data in the buffer is put back in the incoming
queue. This function is not affected by wxSocket flags.

If you use LastCount (p. 1107), it will always return nbytes.

If you use Error (p. 1106), it will always return FALSE.

Parameters

buffer

Buffer to be unread.

nbytes

Number of bytes.

Return value

Returns a reference to the current object.

See also

wxSocketBase::Error (p. 1106), wxSocketBase::LastCount (p. 1107),
wxSocketBase::LastError (p. 1108)

wxSocketBase::Wait

bool Wait(long seconds = -1, long millisecond = 0)

This function waits until any of the following conditions is TRUE:
 • The socket becomes readable.
 • The socket becomes writable.
 • An ongoing connection request has completed (wxSocketClient (p. 1118) only)
 • An incoming connection request has arrived (wxSocketServer (p. 1121) only)
 • The connection has been closed.

Note that it is recommended to use the individual Wait functions to wait for the required
condition, instead of this one.

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1111).

millisecond

Number of milliseconds to wait.

Return value

CHAPTER 5

1115

Returns TRUE when any of the above conditions is satisfied, FALSE if the timeout was
reached.

See also

wxSocketBase::InterruptWait (p. 1107), wxSocketServer::WaitForAccept (p. 1123),
wxSocketBase::WaitForLost (p. 1115), wxSocketBase::WaitForRead (p. 1115),
wxSocketBase::WaitForWrite (p. 1116), wxSocketClient::WaitOnConnect (p. 1119)

wxSocketBase::WaitForLost

bool Wait(long seconds = -1, long millisecond = 0)

This function waits until the connection is lost. This may happen if the peer gracefully
closes the connection or if the connection breaks.

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1111).

millisecond

Number of milliseconds to wait.

Return value

Returns TRUE if the connection was lost, FALSE if the timeout was reached.

See also

wxSocketBase::InterruptWait (p. 1107),wxSocketBase::Wait (p. 1114)

wxSocketBase::WaitForRead

bool WaitForRead(long seconds = -1, long millisecond = 0)

This function waits until the socket is readable. This might mean that queued data is
available for reading or, for streamed sockets, that the connection has been closed, so
that a read operation will complete immediately without blocking (unless the
wxSOCKET_WAITALL flag is set, in which case the operation might still block).

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1111).

CHAPTER 5

1116

millisecond

Number of milliseconds to wait.

Return value

Returns TRUE if the socket becomes readable, FALSE on timeout.

See also

wxSocketBase::InterruptWait (p. 1107), wxSocketBase::Wait (p. 1114)

wxSocketBase::WaitForWrite

bool WaitForWrite(long seconds = -1, long millisecond = 0)

This function waits until the socket becomes writable. This might mean that the socket is
ready to send new data, or for streamed sockets, that the connection has been closed,
so that a write operation is guaranteed to complete immediately (unless the
wxSOCKET_WAITALL flag is set, in which case the operation might still block).

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1111).

millisecond

Number of milliseconds to wait.

Return value

Returns TRUE if the socket becomes writable, FALSE on timeout.

See also

wxSocketBase::InterruptWait (p. 1107), wxSocketBase::Wait (p. 1114)

wxSocketBase::Write

wxSocketBase& Write(const void * buffer, wxUint32 nbytes)

This function writes a buffer of nbytes bytes to the socket.

Use LastCount (p. 1107) to verify the number of bytes actually written.

Use Error (p. 1106) to determine if the operation succeeded.

CHAPTER 5

1117

Parameters

buffer

Buffer with the data to be sent.

nbytes

Number of bytes.

Return value

Returns a reference to the current object.

Remark/Warning

The exact behaviour of wxSocketBase::Write depends on the combination of flags being
used. For a detailed explanation, see wxSocketBase::SetFlags (p. 1110).

See also

wxSocketBase::Error (p. 1106), wxSocketBase::LastError (p. 1108),
wxSocketBase::LastCount (p. 1107), wxSocketBase::SetFlags (p. 1110)

wxSocketBase::WriteMsg

wxSocketBase& WriteMsg(const void * buffer, wxUint32 nbytes)

This function writes a buffer of nbytes bytes from the socket, but it writes a short header
before so that ReadMsg (p. 1113) knows how much data should it actually read. So, a
buffer sent with WriteMsg must be read with ReadMsg. This function always waits for
the entire buffer to be sent, unless an error occurs.

Use LastCount (p. 1107) to verify the number of bytes actually written.

Use Error (p. 1106) to determine if the operation succeeded.

Parameters

buffer

Buffer with the data to be sent.

nbytes

Number of bytes to send.

Return value

Returns a reference to the current object.

Remark/Warning

wxSocketBase::WriteMsg will behave as if the wxSOCKET_WAITALL flag was always

CHAPTER 5

1118

set and it will always ignore the wxSOCKET_NOWAIT flag. The exact behaviour of
WriteMsg depends on the wxSOCKET_BLOCK flag. For a detailed explanation, see
wxSocketBase::SetFlags (p. 1110).

See also

wxSocketBase::Error (p. 1106), wxSocketBase::LastError (p. 1108),
wxSocketBase::LastCount (p. 1107), wxSocketBase::SetFlags (p. 1110),
wxSocketBase::ReadMsg (p. 1113)

wwxxSSoocckkeettCClliieenntt

Derived from

wxSocketBase (p. 1100)

Include files

<wx/socket.h>

wxSocketClient::wxSocketClient

 wxSocketClient(wxSocketFlags flags = wxSOCKET_NONE)

Constructor.

Parameters

flags

Socket flags (See wxSocketBase::SetFlags (p. 1110))

wxSocketClient::~wxSocketClient

 ~wxSocketClient()

Destructor. Please see wxSocketBase::Destroy (p. 1105).

wxSocketClient::Connect

bool Connect(wxSockAddress& address, bool wait = TRUE)

Connects to a server using the specified address.

CHAPTER 5

1119

If wait is TRUE, Connect will wait until the connection completes. Warning: This will
block the GUI.

If wait is FALSE, Connect will try to establish the connection and return immediately,
without blocking the GUI. When used this way, even if Connect returns FALSE, the
connection request can be completed later. To detect this, use WaitOnConnect (p.
1119), or catch wxSOCKET_CONNECTION events (for successful establishment) and
wxSOCKET_LOST events (for connection failure).

Parameters

address

Address of the server.

wait

If TRUE, waits for the connection to complete.

Return value

Returns TRUE if the connection is established and no error occurs.

If wait was TRUE, and Connect returns FALSE, an error occurred and the connection
failed.

If wait was FALSE, and Connect returns FALSE, you should still be prepared to handle
the completion of this connection request, either with WaitOnConnect (p. 1119) or by
watching wxSOCKET_CONNECTION and wxSOCKET_LOST events.

See also

wxSocketClient::WaitOnConnect (p. 1119), wxSocketBase::SetNotify (p. 1111),
wxSocketBase::Notify (p. 1108)

wxSocketClient::WaitOnConnect

bool WaitOnConnect(long seconds = -1, long milliseconds = 0)

Wait until a connection request completes, or until the specified timeout elapses. Use
this function after issuing a call to Connect (p. 1118) with wait set to FALSE.

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1111).

millisecond

Number of milliseconds to wait.

CHAPTER 5

1120

Return value

WaitOnConnect returns TRUE if the connection request completes. This does not
necessarily mean that the connection was succesfully established; it might also happen
that the connection was refused by the peer. Use IsConnected (p. 1107) to distinguish
between these two situations.

If the timeout elapses, WaitOnConnect returns FALSE.

These semantics allow code like this:

// Issue the connection request
client->Connect(addr, FALSE);

// Wait until the request completes or until we decide to give up
bool waitmore = TRUE;
while (!client->WaitOnConnect(seconds, millis) && waitmore)
{
 // possibly give some feedback to the user,
 // and update waitmore as needed.
}
bool success = client->IsConnected();

See also

wxSocketClient::Connect (p. 1118), wxSocketBase::InterruptWait (p. 1107),
wxSocketBase::IsConnected (p. 1107)

wwxxSSoocckkeettEEvveenntt

This event class contains information about socket events.

Derived from

wxEvent (p. 428)

Include files

<wx/socket.h>

Event table macros

To process a socket event, use these event handler macros to direct input to member
functions that take a wxSocketEvent argument.

EVT_SOCKET(id, func) Process a socket event, supplying the member

function.

CHAPTER 5

1121

See also

wxSocketBase (p. 1100), wxSocketClient (p. 1118), wxSocketServer (p. 1121)

wxSocketEvent::wxSocketEvent

 wxSocketEvent(int id = 0)

Constructor.

wxSocketEvent::GetClientData

void * GetClientData()

Gets the client data of the socket which generated this event, as set with
wxSocketBase::SetClientData (p. 1109).

wxSocketEvent::GetSocket

wxSocketBase * GetSocket() const

Returns the socket object to which this event refers to. This makes it possible to use the
same event handler for different sockets.

wxSocketEvent::GetSocketEvent

wxSocketNotify GetSocketEvent() const

Returns the socket event type.

wwxxSSoocckkeettSSeerrvveerr

Derived from

wxSocketBase (p. 1100)

Include files

<wx/socket.h>

CHAPTER 5

1122

wxSocketServer::wxSocketServer

 wxSocketServer(wxSockAddress& address, wxSocketFlags flags =
wxSOCKET_NONE)

Constructs a new server and tries to bind to the specified address. Before trying to
accept new connections, test whether it succeeded with wxSocketBase::Ok (p. 1108).

Parameters

address

Specifies the local address for the server (e.g. port number).

flags

Socket flags (See wxSocketBase::SetFlags (p. 1110))

wxSocketServer::~wxSocketServer

 ~wxSocketServer()

Destructor (it doesn't close the accepted connections).

wxSocketServer::Accept

wxSocketBase * Accept(bool wait = TRUE)

Accepts an incoming connection request, and creates a new wxSocketBase (p. 1100)
object which represents the server-side of the connection.

If wait is TRUE and there are no pending connections to be accepted, it will wait for the
next incoming connection to arrive. Warning: This will block the GUI.

If wait is FALSE, it will try to accept a pending connection if there is one, but it will
always return immediately without blocking the GUI. If you want to use Accept in this
way, you can either check for incoming connections with WaitForAccept (p. 1123) or
catch wxSOCKET_CONNECTION events, then call Accept once you know that there is
an incoming connection waiting to be accepted.

Return value

Returns an opened socket connection, or NULL if an error occurred or if the wait
parameter was FALSE and there were no pending connections.

See also

CHAPTER 5

1123

wxSocketServer::WaitForAccept (p. 1123), wxSocketBase::SetNotify (p. 1111),
wxSocketBase::Notify (p. 1108), wxSocketServer::AcceptWith (p. 1123)

wxSocketServer::AcceptWith

bool AcceptWith(wxSocketBase& socket, bool wait = TRUE)

Accept an incoming connection using the specified socket object.

Parameters

socket

Socket to be initialized

Return value

Returns TRUE on success, or FALSE if an error occurred or if thewait parameter was
FALSE and there were no pending connections.

wxSocketServer::WaitForAccept (p. 1123), wxSocketBase::SetNotify (p. 1111),
wxSocketBase::Notify (p. 1108), wxSocketServer::Accept (p. 1122)

wxSocketServer::WaitForAccept

bool WaitForAccept(long seconds = -1, long millisecond = 0)

This function waits for an incoming connection. Use it if you want to call Accept (p. 1122)
or AcceptWith (p. 1123) with wait set to FALSE, to detect when an incoming connection
is waiting to be accepted.

Parameters

seconds

Number of seconds to wait. If -1, it will wait for the default timeout, as set with
SetTimeout (p. 1111).

millisecond

Number of milliseconds to wait.

Return value

Returns TRUE if an incoming connection arrived, FALSE if the timeout elapsed.

See also

wxSocketServer::Accept (p. 1122), wxSocketServer::AcceptWith (p.
1123),wxSocketBase::InterruptWait (p. 1107)

CHAPTER 5

1124

wwxxSSoocckkeettIInnppuuttSSttrreeaamm

This class implements an input stream which reads data from a connected socket. Note
that this stream is purely sequential and it does not support seeking.

Derived from

wxInputStream (p. 718)

Include files

<wx/sckstrm.h>

See also

wxSocketBase (p. 1100)

wxSocketInputStream::wxSocketInputStream

 wxSocketInputStream(wxSocketBase& s)

Creates a new read-only socket stream using the specified initialized socket connection.

wwxxSSoocckkeettOOuuttppuuttSSttrreeaamm

This class implements an output stream which writes data from a connected socket.
Note that this stream is purely sequential and it does not support seeking.

Derived from

wxOutputStream (p. 902)

Include files

<wx/sckstrm.h>

See also

wxSocketBase (p. 1100)

CHAPTER 5

1125

wxSocketOutputStream::wxSocketOutputStream

 wxSocketInputStream(wxSocketBase& s)

Creates a new write-only socket stream using the specified initialized socket connection.

wwxxSSppiinnBBuuttttoonn

A wxSpinButton has two small up and down (or left and right) arrow buttons. It is often
used next to a text control for increment and decrementing a value. Portable programs
should try to use wxSpinCtrl (p. 1128) instead as wxSpinButton is not implemented for
all platforms (Win32 and GTK only currently).

NB: the range supported by this control (and wxSpinCtrl) depends on the platform but is
at least SHRT_MIN to SHRT_MAX.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

See also

wxSpinCtrl (p. 1128)

Include files

<wx/spinbutt.h>

Window styles

wxSP_HORIZONTAL Specifies a horizontal spin button (note that this style is not

supported in wxGTK).
wxSP_VERTICAL Specifies a vertical spin button.
wxSP_ARROW_KEYS The user can use arrow keys.
wxSP_WRAP The value wraps at the minimum and maximum.

See also window styles overview (p. 1567).

Event handling

CHAPTER 5

1126

To process input from a spin button, use one of these event handler macros to direct
input to member functions that take a wxSpinEvent (p. 1131) argument:

EVT_SPIN(id, func) Generated whenever an arros is pressed.
EVT_SPIN_UP(id, func) Generated when left/up arrow is pressed.
EVT_SPIN_DOWN(id, func) Generated when right/down arrow is pressed.

See also

Event handling overview (p. 1560)

wxSpinButton::wxSpinButton

 wxSpinButton()

Default constructor.

 wxSpinButton(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSP_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "spinButton")

Constructor, creating and showing a spin button.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxSpinButton (p. 1125).

validator

Window validator.

name

Window name.

CHAPTER 5

1127

See also

wxSpinButton::Create (p. 1127), wxValidator (p. 1348)

wxSpinButton::~wxSpinButton

void ~wxSpinButton()

Destructor, destroying the spin button.

wxSpinButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSP_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "spinButton")

Scrollbar creation function called by the spin button constructor. See
wxSpinButton::wxSpinButton (p. 1126) for details.

wxSpinButton::GetMax

int GetMax() const

Returns the maximum permissible value.

See also

wxSpinButton::SetRange (p. 1128)

wxSpinButton::GetMin

int GetMin() const

Returns the minimum permissible value.

See also

wxSpinButton::SetRange (p. 1128)

wxSpinButton::GetValue

int GetValue() const

CHAPTER 5

1128

Returns the current spin button value.

See also

wxSpinButton::SetValue (p. 1128)

wxSpinButton::SetRange

void SetRange (int min, int max)

Sets the range of the spin button.

Parameters

min

The minimum value for the spin button.

max

The maximum value for the spin button.

See also

wxSpinButton::GetMin (p. 1127), wxSpinButton::GetMax (p. 1127)

wxSpinButton::SetValue

void SetValue(int value)

Sets the value of the spin button.

Parameters

value

The value for the spin button.

See also

wxSpinButton::GetValue (p. 1127)

wwxxSSppiinnCCttrrll

wxSpinCtrl combines wxTextCtrl (p. 1240) and wxSpinButton (p. 1125) in one control.

Derived from

CHAPTER 5

1129

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/spinctrl.h>

Window styles

wxSP_ARROW_KEYS The user can use arrow keys.
wxSP_WRAP The value wraps at the minimum and maximum.

Event handling

To process input from a spin button, use one of these event handler macros to direct
input to member functions that take a wxSpinEvent (p. 1131) argument:

EVT_SPINCTRL(id, func) Generated whenever spinctrl is updated

See also

Event handling overview (p. 1560),wxSpinButton (p. 1125),wxControl (p. 183)

wxSpinCtrl::wxSpinCtrl

 wxSpinCtrl()

Default constructor.

 wxSpinCtrl(wxWindow* parent, wxWindowID id = -1, const wxString& value =
wxEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxSP_ARROW_KEYS, int min = 0, int max = 100, int initial
= 0, const wxString& name = _T("wxSpinCtrl"))

Constructor, creating and showing a spin control.

Parameters

parent

Parent window. Must not be NULL.

value

Default value.

CHAPTER 5

1130

id
Window identifier. A value of -1 indicates a default value.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Window size. If the default size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxSpinButton (p. 1125).

min

Minimal value.

max

Maximal value.

initial

Initial value.

name

Window name.

See also

wxSpinCtrl::Create (p. 1130)

wxSpinCtrl::Create

bool Create (wxWindow* parent, wxWindowID id = -1, const wxString& value =
wxEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxSP_ARROW_KEYS, int min = 0, int max = 100, int initial
= 0, const wxString& name = _T("wxSpinCtrl"))

Creation function called by the spin control constructor.

See wxSpinCtrl::wxSpinCtrl (p. 1129) for details.

wxSpinCtrl::SetValue

void SetValue(const wxString& text)

void SetValue(int value)

Sets the value of the spin control.

CHAPTER 5

1131

wxSpinCtrl::GetValue

int GetValue() const

Gets the value of the spin control.

wxSpinCtrl::SetRange

void SetRange (int minVal, int maxVal)

Sets range of allowable values.

wxSpinCtrl::GetMin

int GetMin() const

Gets minimal allowable value.

wxSpinCtrl::GetMax

int GetMax() const

Gets maximal allowable value.

wwxxSSppiinnEEvveenntt

This event class is used for the events generated by wxSpinButton (p. 1125) and
wxSpinCtrl (p. 1128).

Derived from

wxNotifyEvent (p. 896)
wxCommandEvent (p. 156)
wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/spinbutt.h> or <wx/spinctrl.h>

See also

CHAPTER 5

1132

wxSpinButton (p. 1125) and wxSpinCtrl (p. 1128)

wxSpinEvent::wxSpinEvent

 wxSpinEvent(wxEventType commandType = wxEVT_NULL, int id = 0)

The constructor is not normally used by the user code.

wxSpinEvent::GetPosition

int GetPosition() const

Retrieve the current spin button or control value.

wxSpinEvent::SetPosition

void SetPosition(int pos)

Set the value associated with the event.

wwxxSSppllaasshhSSccrreeeenn

wxSplashScreen shows a window with a thin border, displaying a bitmap describing your
application. Show it in application initialisation, and then either explicitly destroy it or let it
time-out.

Example usage:

 wxBitmap bitmap;
 if (bitmap.LoadFile("splash16.png", wxBITMAP_TYPE_PNG))
 {
 wxSplashScreen* splash = new wxSplashScreen(bitmap,
 wxSPLASH_CENTRE_ON_SCREEN|wxSPLASH_TIMEOUT,
 6000, NULL, -1, wxDefaultPosition, wxDefaultSize,
 wxSIMPLE_BORDER|wxSTAY_ON_TOP);
 }
 wxYield();

 Derived from

wxFrame (p. 525)
wxWindow (p. 1366)
wxEvtHandler (p. 432)

CHAPTER 5

1133

wxObject (p. 897)

Include files

<wx/splash.h>

wxSplashScreen::wxSplashScreen

 wxSplashScreen(const wxBitmap& bitmap, long splashStyle, int milliseconds,
wxWindow* parent, wxWindowID id, const wxPoint& pos = wxDefaultPosition, const
wxSize& size = wxDefaultSize, long style = wxSIMPLE_BORDER)

Construct the splash screen passing a bitmap, a style, a timeout, a window id, optional
position and size, and a window style.

splashStyle is a bitlist of some of the following:

 • wxSPLASH_CENTRE_ON_PARENT
 • wxSPLASH_CENTRE_ON_SCREEN
 • wxSPLASH_NO_CENTRE
 • wxSPLASH_TIMEOUT
 • wxSPLASH_NO_TIMEOUT

milliseconds is the timeout in milliseconds.

wxSplashScreen::~wxSplashScreen

 ~wxSplashScreen()

Destroys the splash screen.

wxSplashScreen::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Reimplement this event handler if you want to set an application variable on window
destruction, for example.

wxSplashScreen::GetSplashStyle

long GetSplashStyle() const

Returns the splash style (see wxSplashScreen::wxSplashScreen (p. 1133) for details).

CHAPTER 5

1134

wxSplashScreen::GetSplashWindow

wxSplashScreenWindow* GetSplashWindow() const

Returns the window used to display the bitmap.

wxSplashScreen::GetTimeout

int GetTimeout() const

Returns the timeout in milliseconds.

wwxxSSpplliitttteerrEEvveenntt

This class represents the events generated by a splitter control. Also there is only one
event class, the data associated to the different events is not the same and so not all
accessor functions may be called for each event. The documentation mentions the kind
of event(s) for which the given acessor function makes sense: calling it for other types of
events will result in assert failure (in debug mode) and will return meaningless results.

Derived from

wxCommandEvent (p. 156)
wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/splitter.h>

Event table macros

To process a splitter event, use these event handler macros to direct input to member
functions that take a wxSplitterEvent argument.

EVT_SPLITTER_SASH_POS_CHANGING(id, func) The sash position is in the

process of being changed.
May be used to modify the
position of the tracking bar to
properly reflect the position
that would be set if the drag
were to be completed at this
point. Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGIN

CHAPTER 5

1135

G event.
EVT_SPLITTER_SASH_POS_CHANGED(id, func) The sash position was

changed. May be used to
modify the sash position
before it is set, or to prevent
the change from taking place.
Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGED
event.

EVT_SPLITTER_UNSPLIT(id, func) The splitter has been just
unsplit. Processes a
wxEVT_COMMAND_SPLITT
ER_UNSPLIT event.

EVT_SPLITTER_DOUBLECLICKED(id, func) The sash was double clicked.
The default behaviour is to
unsplit the window when this
happens (unless the
minimum pane size has been
set to a value greater than
zero). Processes a
wxEVT_COMMAND_SPLITT
ER_DOUBLECLICKED
event.

See also

wxSplitterWindow (p. 1137), Event handling overview (p. 1560)

wxSplitterEvent::wxSplitterEvent

 wxSplitterEvent(wxEventType eventType = wxEVT_NULL,
wxSplitterWindow * splitter = NULL)

Constructor. Used internally by wxWindows only.

wxSplitterEvent::GetSashPosition

int GetSashPosition() const

Returns the new sash position.

May only be called while processing
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGING and
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGED events.

CHAPTER 5

1136

wxSplitterEvent::GetX

int GetX() const

Returns the x coordinate of the double-click point.

May only be called while processing
wxEVT_COMMAND_SPLITTER_DOUBLECLICKED events.

wxSplitterEvent::GetY

int GetY() const

Returns the y coordinate of the double-click point.

May only be called while processing
wxEVT_COMMAND_SPLITTER_DOUBLECLICKED events.

wxSplitterEvent::GetWindowBeingRemoved

wxWindow* GetWindowBeingRemoved() const

Returns a pointer to the window being removed when a splitter window is unsplit.

May only be called while processing wxEVT_COMMAND_SPLITTER_UNSPLIT events.

wxSplitterEvent::SetSashPosition

void SetSashPosition(int pos)

In the case of wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGED events, sets
the the new sash position. In the case of
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGING events, sets the new
tracking bar position so visual feedback during dragging will represent that change that
will actually take place. Set to -1 from the event handler code to prevent repositioning.

May only be called while processing
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGING and
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGED events.

Parameters

pos

New sash position.

CHAPTER 5

1137

wwxxSSpplliitttteerrWWiinnddooww

wxSplitterWindow overview (p. 1592)

This class manages up to two subwindows. The current view can be split into two
programmatically (perhaps from a menu command), and unsplit either programmatically
or via the wxSplitterWindow user interface.

Appropriate 3D shading for the Windows 95 user interface is an option - this is also
recommended for GTK. Optionally, the sash can be made to look more like the native
control under MacOS X.

Window styles

wxSP_3D Draws a 3D effect border and

sash.
wxSP_3DSASH Draws a 3D effect sash.
wxSP_3DBORDER Draws a 3D effect border.
wxSP_FULLSASH Draws the ends of the sash

(so the window can be used
without a border).

wxSP_SASH_AQUA Draws a sash with an Aqua-
like appearance.

wxSP_BORDER Draws a thin black border
around the window.

wxSP_NOBORDER No border, and a black sash.
wxSP_PERMIT_UNSPLIT Always allow to unsplit, even

with the minimum pane size
other than zero.

wxSP_LIVE_UPDATE Don't draw XOR line but
resize the child windows
immediately.

See also window styles overview (p. 1567).

Derived from

wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/splitter.h>

Event handling

To process input from a splitter control, use the following event handler macros to direct

CHAPTER 5

1138

input to member functions that take a wxSplitterEvent (p. 1134) argument.

EVT_SPLITTER_SASH_POS_CHANGING(id, func) The sash position is in the

process of being changed.
May be used to modify the
position of the tracking bar to
properly reflect the position
that would be set if the drag
were to be completed at this
point. Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGIN
G event.

EVT_SPLITTER_SASH_POS_CHANGED(id, func) The sash position was
changed. May be used to
modify the sash position
before it is set, or to prevent
the change from taking place.
Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGED
event.

EVT_SPLITTER_UNSPLIT(id, func) The splitter has been just
unsplit. Processes a
wxEVT_COMMAND_SPLITT
ER_UNSPLIT event.

EVT_SPLITTER_DOUBLECLICKED(id, func) The sash was double clicked.
The default behaviour is to
unsplit the window when this
happens (unless the
minimum pane size has been
set to a value greater than
zero). Processes a
wxEVT_COMMAND_SPLITT
ER_DOUBLECLICKED
event.

See also

wxSplitterEvent (p. 1134)

wxSplitterWindow::wxSplitterWindow

 wxSplitterWindow()

Default constructor.

CHAPTER 5

1139

 wxSplitterWindow(wxWindow* parent, wxWindowID id, const wxPoint& point =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style=wxSP_3D, const
wxString& name = "splitterWindow")

Constructor for creating the window.

Parameters

parent

The parent of the splitter window.

id

The window identifier.

pos

The window position.

size

The window size.

style

The window style. See wxSplitterWindow (p. 1137).

name

The window name.

Remarks

After using this constructor, you must create either one or two subwindows with the
splitter window as parent, and then call one of wxSplitterWindow::Initialize (p. 1141),
wxSplitterWindow::SplitVertically (p. 1145) and wxSplitterWindow::SplitHorizontally (p.
1144) in order to set the pane(s).

You can create two windows, with one hidden when not being shown; or you can create
and delete the second pane on demand.

See also

wxSplitterWindow::Initialize (p. 1141), wxSplitterWindow::SplitVertically (p. 1145),
wxSplitterWindow::SplitHorizontally (p. 1144), wxSplitterWindow::Create (p. 1139)

wxSplitterWindow::~wxSplitterWindow

 ~wxSplitterWindow()

Destroys the wxSplitterWindow and its children.

wxSplitterWindow::Create

CHAPTER 5

1140

bool Create (wxWindow* parent, wxWindowID id, int x, const wxPoint& point =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style=wxSP_3D, const
wxString& name = "splitterWindow")

Creation function, for two-step construction. See wxSplitterWindow::wxSplitterWindow
(p. 1138) for details.

wxSplitterWindow::GetMinimumPaneSize

int GetMinimumPaneSize() const

Returns the current minimum pane size (defaults to zero).

See also

wxSplitterWindow::SetMinimumPaneSize (p. 1143)

wxSplitterWindow::GetSashPosition

int GetSashPosition()

Returns the current sash position.

See also

wxSplitterWindow::SetSashPosition (p. 1143)

wxSplitterWindow::GetSplitMode

int GetSplitMode() const

Gets the split mode.

See also

wxSplitterWindow::SetSplitMode (p. 1144), wxSplitterWindow::SplitVertically (p. 1145),
wxSplitterWindow::SplitHorizontally (p. 1144).

wxSplitterWindow::GetWindow1

wxWindow* GetWindow1() const

Returns the left/top or only pane.

CHAPTER 5

1141

wxSplitterWindow::GetWindow2

wxWindow* GetWindow2() const

Returns the right/bottom pane.

wxSplitterWindow::Initialize

void Initialize(wxWindow* window)

Initializes the splitter window to have one pane.

Parameters

window

The pane for the unsplit window.

Remarks

This should be called if you wish to initially view only a single pane in the splitter window.

See also

wxSplitterWindow::SplitVertically (p. 1145), wxSplitterWindow::SplitHorizontally (p. 1144)

wxSplitterWindow::IsSplit

bool IsSplit() const

Returns TRUE if the window is split, FALSE otherwise.

wxSplitterWindow::OnDoubleClickSash

virtual void OnDoubleClickSash(int x, int y)

Application-overridable function called when the sash is double-clicked with the left
mouse button.

Parameters

x

The x position of the mouse cursor.

y

The y position of the mouse cursor.

Remarks

CHAPTER 5

1142

The default implementation of this function calls Unsplit (p. 1146) if the minimum pane
size is zero.

See also

wxSplitterWindow::Unsplit (p. 1146)

wxSplitterWindow::OnUnsplit

virtual void OnUnsplit(wxWindow* removed)

Application-overridable function called when the window is unsplit, either
programmatically or using the wxSplitterWindow user interface.

Parameters

removed

The window being removed.

Remarks

The default implementation of this function simply hides removed. You may wish to
delete the window.

wxSplitterWindow::OnSashPositionChange

virtual bool OnSashPositionChange (int newSashPosition)

Application-overridable function called when the sash position is changed by user. It
may return FALSE to prevent the change or TRUE to allow it.

Parameters

newSashPosition

The new sash position (always positive or zero)

Remarks

The default implementation of this function verifies that the sizes of both panes of the
splitter are greater than minimum pane size.

wxSplitterWindow::ReplaceWindow

bool ReplaceWindow(wxWindow * winOld, wxWindow * winNew)

This function replaces one of the windows managed by the wxSplitterWindow with

CHAPTER 5

1143

another one. It is in general better to use it instead of calling Unsplit() and then resplitting
the window back because it will provoke much less flicker (if any). It is valid to call this
function whether the splitter has two windows or only one.

Both parameters should be non-NULL and winOld must specify one of the windows
managed by the splitter. If the parameters are incorrect or the window couldn't be
replaced, FALSE is returned. Otherwise the function will return TRUE, but please notice
that it will not delete the replaced window and you may wish to do it yourself.

See also

wxSplitterWindow::GetMinimumPaneSize (p. 1140)

See also

wxSplitterWindow::Unsplit (p. 1146)
wxSplitterWindow::SplitVertically (p. 1145)
wxSplitterWindow::SplitHorizontally (p. 1144)

wxSplitterWindow::SetSashPosition

void SetSashPosition(int position, const bool redraw = TRUE)

Sets the sash position.

Parameters

position

The sash position in pixels.

redraw

If TRUE, resizes the panes and redraws the sash and border.

Remarks

Does not currently check for an out-of-range value.

See also

wxSplitterWindow::GetSashPosition (p. 1140)

wxSplitterWindow::SetMinimumPaneSize

void SetMinimumPaneSize(int paneSize)

Sets the minimum pane size.

Parameters

CHAPTER 5

1144

paneSize

Minimum pane size in pixels.

Remarks

The default minimum pane size is zero, which means that either pane can be reduced to
zero by dragging the sash, thus removing one of the panes. To prevent this behaviour
(and veto out-of-range sash dragging), set a minimum size, for example 20 pixels. If the
wxSP_PERMIT_UNSPLIT style is used when a splitter window is created, the window
may be unsplit even if minimum size is non-zero.

See also

wxSplitterWindow::GetMinimumPaneSize (p. 1140)

wxSplitterWindow::SetSplitMode

void SetSplitMode (int mode)

Sets the split mode.

Parameters

mode

Can be wxSPLIT_VERTICAL or wxSPLIT_HORIZONTAL.

Remarks

Only sets the internal variable; does not update the display.

See also

wxSplitterWindow: :GetSplitMode (p. 1140), wxSplitterWindow::SplitVertically (p. 1145),
wxSplitterWindow::SplitHorizontally (p. 1144).

wxSplitterWindow::SplitHorizontally

bool SplitHorizontally(wxWindow* window1, wxWindow* window2, int sashPosition =
0)

Initializes the top and bottom panes of the splitter window.

Parameters

window1

The top pane.

CHAPTER 5

1145

window2
The bottom pane.

sashPosition

The initial position of the sash. If this value is positive, it specifies the size of the
upper pane. If it is negative, it is absolute value gives the size of the lower pane.
Finally, specify 0 (default) to choose the default position (half of the total window
height).

Return value

TRUE if successful, FALSE otherwise (the window was already split).

Remarks

This should be called if you wish to initially view two panes. It can also be called at any
subsequent time, but the application should check that the window is not currently split
using IsSplit (p. 1141).

See also

wxSplitterWindow::SplitVertically (p. 1145), wxSplitterWindow::IsSplit (p. 1141),
wxSplitterWindow::Unsplit (p. 1146)

wxSplitterWindow::SplitVertically

bool SplitVertically(wxWindow* window1, wxWindow* window2, int sashPosition = 0)

Initializes the left and right panes of the splitter window.

Parameters

window1

The left pane.

window2

The right pane.

sashPosition

The initial position of the sash. If this value is positive, it specifies the size of the
left pane. If it is negative, it is absolute value gives the size of the right pane.
Finally, specify 0 (default) to choose the default position (half of the total window
width).

Return value

TRUE if successful, FALSE otherwise (the window was already split).

Remarks

CHAPTER 5

1146

This should be called if you wish to initially view two panes. It can also be called at any
subsequent time, but the application should check that the window is not currently split
using IsSplit (p. 1141).

See also

wxSplitterWindow::SplitHorizontally (p. 1144), wxSplitterWindow::IsSplit (p. 1141),
wxSplitterWindow::Unsplit (p. 1146).

wxSplitterWindow::Unsplit

bool Unsplit(wxWindow* toRemove = NULL)

Unsplits the window.

Parameters

toRemove

The pane to remove, or NULL to remove the right or bottom pane.

Return value

TRUE if successful, FALSE otherwise (the window was not split).

Remarks

This call will not actually delete the pane being removed; it calls OnUnsplit (p. 1142)
which can be overridden for the desired behaviour. By default, the pane being removed
is hidden.

See also

wxSplitterWindow::SplitHorizontally (p. 1144), wxSplitterWindow::SplitVertically (p.
1145), wxSplitterWindow::IsSplit (p. 1141), wxSplitterWindow::OnUnsplit (p. 1142)

wwxxSSttaattiiccBBiittmmaapp

A static bitmap control displays a bitmap.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

CHAPTER 5

1147

Include files

<wx/statbmp.h>

Window styles

There are no special styles for this control.

See also window styles overview (p. 1567).

See also

wxStaticBitmap (p. 1146), wxStaticBox (p. 1148)

Remarks

The bitmap to be displayed should have a small number of colours, such as 16, to avoid
palette problems.

wxStaticBitmap::wxStaticBitmap

 wxStaticBitmap()

Default constructor.

 wxStaticBitmap(wxWindow* parent, wxWindowID id, const wxBitmap& label = "",
const wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "staticBitmap")

Constructor, creating and showing a text control.

Parameters

parent

Parent window. Should not be NULL.

id

Control identifier. A value of -1 denotes a default value.

label

Bitmap label.

pos

Window position.

size

Window size.

CHAPTER 5

1148

style
Window style. See wxStaticBitmap (p. 1146).

name

Window name.

See also

wxStaticBitmap::Create (p. 1148)

wxStaticBitmap::Create

bool Create (wxWindow* parent, wxWindowID id, const wxBitmap& label = "", const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const wxString&
name = "staticBitmap")

Creation function, for two-step construction. For details see
wxStaticBitmap::wxStaticBitmap (p. 1147).

wxStaticBitmap::GetBitmap

wxBitmap& GetBitmap() const

Returns a reference to the label bitmap.

See also

wxStaticBitmap::SetBitmap (p. 1148)

wxStaticBitmap::SetBitmap

virtual void SetBitmap(const wxBitmap& label)

Sets the bitmap label.

Parameters

label

The new bitmap.

See also

wxStaticBitmap::GetBitmap (p. 1148)

wwxxSSttaattiiccBBooxx

CHAPTER 5

1149

A static box is a rectangle drawn around other panel items to denote a logical grouping
of items.

Please note that a static box should not be used as the parent for the controls it
contains, instead they should be siblings of each other. Although using a static box as a
parent might work in some versions of wxWindows, it results in a crash under, for
example, wxGTK.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/statbox.h>

Window styles

There are no special styles for this control.

See also window styles overview (p. 1567).

See also

wxStaticText (p. 1153)

wxStaticBox::wxStaticBox

 wxStaticBox()

Default constructor.

 wxStaticBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = "staticBox")

Constructor, creating and showing a static box.

Parameters

parent

Parent window. Must not be NULL.

id

CHAPTER 5

1150

Window identifier. A value of -1 indicates a default value.

label

Text to be displayed in the static box, the empty string for no label.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Checkbox size. If the size (-1, -1) is specified then a default size is chosen.

style

Window style. See wxStaticBox (p. 1148).

name

Window name.

See also

wxStaticBox::Create (p. 1150)

wxStaticBox::~wxStaticBox

void ~wxStaticBox()

Destructor, destroying the group box.

wxStaticBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = "staticBox")

Creates the static box for two-step construction. See wxStaticBox::wxStaticBox (p. 1149)
for further details.

wwxxSSttaattiiccBBooxxSSiizzeerr

wxStaticBoxSizer is a sizer derived from wxBoxSizer but adds a static box around the
sizer. Note that this static box has to be created separately.

See also wxSizer (p. 1086), wxStaticBox (p. 1148) and wxBoxSizer (p. 79).

Derived from

CHAPTER 5

1151

wxBoxSizer (p. 79)
wxSizer (p. 1086)
wxObject (p. 897)

wxStaticBoxSizer::wxStaticBoxSizer

 wxStaticBoxSizer(wxStaticBox* box, int orient)

Constructor. It takes an associated static box and the orientation orient as parameters -
orient can be either of wxVERTICAL or wxHORIZONTAL.

wxStaticBoxSizer::GetStaticBox

wxStaticBox* GetStaticBox()

Returns the static box associated with the sizer.

wwxxSSttaattiiccLLiinnee

A static line is just a line which may be used in a dialog to separate the groups of
controls. The line may be only vertical or horizontal.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/statline.h>

Window styles

wxLI_HORIZONTAL Creates a horizontal line.
wxLI_VERTICAL Creates a vertical line.

See also

wxStaticBox (p. 1148)

CHAPTER 5

1152

wxStaticLine::wxStaticLine

 wxStaticLine()

Default constructor.

 wxStaticLine(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxLI_HORIZONTAL, const wxString& name = "staticLine")

Constructor, creating and showing a static line.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position. If the position (-1, -1) is specified then a default position is
chosen.

size

Size. Note that either the height or the width (depending on whether the line if
horizontal or vertical) is ignored.

style

Window style (either wxLI_HORIZONTAL or wxLI_VERTICAL).

name

Window name.

See also

wxStaticLine::Create (p. 1152)

wxStaticLine::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "staticLine")

Creates the static line for two-step construction. See wxStaticLine::wxStaticLine (p.

CHAPTER 5

1153

1152) for further details.

wxStaticLine::IsVertical

bool IsVertical() const

Returns TRUE if the line is vertical, FALSE if horizontal.

wxStaticLine::GetDefaultSize

int GetDefaultSize()

This static function returns the size which will be given to the smaller dimension of the
static line, i.e. its height for a horizontal line or its width for a vertical one.

wwxxSSttaattiiccTTeexxtt

A static text control displays one or more lines of read-only text.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/stattext.h>

Window styles

wxALIGN_LEFT Align the text to the left
wxALIGN_RIGHT Align the text to the right
wxALIGN_CENTRE Center the text (horisontally)
wxST_NO_AUTORESIZE By default, the control will adjust its size to exactly fit to the

size of the text when SetLabel (p. 1155) is called. If this
style flag is given, the control will not change its size (this
style is especially useful with controls which also have
wxALIGN_RIGHT or CENTER style because otherwise
they won't make sense any longer after a call to SetLabel)

See also window styles overview (p. 1567).

CHAPTER 5

1154

See also

wxStaticBitmap (p. 1146), wxStaticBox (p. 1148)

wxStaticText::wxStaticText

 wxStaticText()

Default constructor.

 wxStaticText(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const wxString&
name = "staticText")

Constructor, creating and showing a text control.

Parameters

parent

Parent window. Should not be NULL.

id

Control identifier. A value of -1 denotes a default value.

label

Text label.

pos

Window position.

size

Window size.

style

Window style. See wxStaticText (p. 1153).

name

Window name.

See also

wxStaticText::Create (p. 1154)

wxStaticText::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const

CHAPTER 5

1155

wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const wxString&
name = "staticText")

Creation function, for two-step construction. For details see wxStaticText::wxStaticText
(p. 1154).

wxStaticText::GetLabel

wxString GetLabel() const

Returns the contents of the control.

wxStaticText::SetLabel

virtual void SetLabel(const wxString& label)

Sets the static text label and updates the controls size to exactly fit the label unless the
control has wxST_NO_AUTORESIZE flag.

Parameters

label

The new label to set. It may contain newline characters.

wwxxSSttaattuussBBaarr

A status bar is a narrow window that can be placed along the bottom of a frame to give
small amounts of status information. It can contain one or more fields, one or more of
which can be variable length according to the size of the window.

wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Derived from

wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/statusbr.h>

Window styles

CHAPTER 5

1156

wxSB_SIZEGRIP On Windows 95, displays a gripper at right-hand side of the

status bar.

See also window styles overview (p. 1567).

Remarks

It is possible to create controls and other windows on the status bar. Position these
windows from an OnSize event handler.

See also

wxFrame (p. 525), Status bar sample (p. 1522)

wxStatusBar::wxStatusBar

 wxStatusBar()

Default constructor.

 wxStatusBar(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "statusBar")

Constructor, creating the window.

Parameters

parent

The window parent, usually a frame.

id

The window identifier. It may take a value of -1 to indicate a default value.

pos

The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWindows, depending on platform.

size

The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style

The window style. See wxStatusBar (p. 1155).

name

CHAPTER 5

1157

The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

See also

wxStatusBar::Create (p. 1157)

wxStatusBar::~wxStatusBar

void ~wxStatusBar()

Destructor.

wxStatusBar::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "statusBar")

Creates the window, for two-step construction.

See wxStatusBar::wxStatusBar (p. 1156) for details.

wxStatusBar::GetFieldRect

virtual bool GetFieldRect(int i, wxRect& rect) const

Returns the size and position of a fields internal bounding rectangle.

Parameters

i

The field in question.

rect

The rectangle values are placed in this variable.

Return value

TRUE if the field index is valid, FALSE otherwise.

See also

wxRect (p. 1023)

wxPerl note: In wxPerl this function returns a Wx::Rect if the field index is valid,

CHAPTER 5

1158

undef otherwise.

wxStatusBar::GetFieldsCount

int GetFieldsCount() const

Returns the number of fields in the status bar.

wxStatusBar::GetStatusText

virtual wxString GetStatusText(int ir = 0) const

Returns the string associated with a status bar field.

Parameters

i

The number of the status field to retrieve, starting from zero.

Return value

The status field string if the field is valid, otherwise the empty string.

See also

wxStatusBar::SetStatusText (p. 1159)

wxStatusBar::SetFieldsCount

virtual void SetFieldsCount(int number = 1, int* widths = NULL)

Sets the number of fields, and optionally the field widths.

wxPython note: Only the first parameter is accepted. Use SetStatusWidths to set the
widths of the fields.

wxPerl note: In wxPerl this function acceps only the n parameter. Use SetStatusWidths
to set the field widths.

Parameters

number

The number of fields.

widths

An array of n integers, each of which is a status field width in pixels. A value of -1
indicates that the field is variable width; at least one field must be -1.

CHAPTER 5

1159

wxStatusBar::SetMinHeight

void SetMinHeight(int height)

Sets the minimal possible hight for the status bar. The real height may be bigger than
the height specified here depending on the size of the font used by the status bar.

wxStatusBar::SetStatusText

virtual void SetStatusText(const wxString& text, int i = 0)

Sets the text for one field.

Parameters

text

The text to be set. Use an empty string ("") to clear the field.

i

The field to set, starting from zero.

See also

wxStatusBar::GetStatusText (p. 1158), wxFrame::SetStatusText (p. 535)

wxStatusBar::SetStatusWidths

virtual void SetStatusWidths(int n, int *widths)

Sets the widths of the fields in the status line. There are two types of fields: fixed widths
one and variable width fields. For the fixed width fields you should specify their
(constant) width in pixels. For the variable width fields, specify a negative number which
indicates how should the field expand: the space left for all variable width fields is
divided between them according to the absolute value of this number. A variable width
field with width of -2gets twice as much of it as a field with width -1 and so on.

For example, to create one fixed width field of width 50 in the right part of the status bar
and two more fields which get 66% and 33% of the remaining space correspondingly,
you should use an array containing -2, -1 and 100.

Parameters

n

The number of fields in the status bar. Must be equal to the number passed to
SetFieldsCount (p. 1158) the last time it was called.

CHAPTER 5

1160

widths
Contains an array of n integers, each of which is either an absolute status field
width in pixels if positive or indicates a variable width field if negative

Remarks

The widths of the variable fields are calculated from the total width of all fields, minus the
sum of widths of the non-variable fields, divided by the number of variable fields.

See also

wxStatusBar::SetFieldsCount (p. 1158), wxFrame::SetStatusWidths (p. 536)

wxPython note: Only a single parameter is required, a Python list of integers.

wxPerl note: In wxPerl this method takes as parameters the field widths.

wwxxSSttooppWWaattcchh

The wxStopWatch class allow you to measure time intervals.

Include files

<wx/timer.h>

See also

::wxStartTimer (p. 1493), ::wxGetElapsedTime (p. 1492), wxTimer (p. 1288)

wxStopWatch::wxStopWatch

 wxStopWatch()

Constructor. This starts the stop watch.

wxStopWatch::Pause

void Pause()

Pauses the stop watch. Call wxStopWatch::Resume (p. 1161) to resume time
measuring again.

CHAPTER 5

1161

wxStopWatch::Start

void Start(long milliseconds = 0)

(Re)starts the stop watch with a given initial value.

wxStopWatch::Resume

void Resume()

Resumes the stop watch after having been paused with wxStopWatch::Pause (p. 1160).

wxStopWatch::Time

long Time()

Returns the time in milliseconds since the start (or restart) or the last call of
wxStopWatch::Pause (p. 1160).

wwxxSSttrreeaammBBaassee

This class is the base class of most stream related classes in wxWindows. It must not be
used directly.

Derived from

None

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1163)

wxStreamBase::wxStreamBase

 wxStreamBase()

Creates a dummy stream object. It doesn't do anything.

CHAPTER 5

1162

wxStreamBase::~wxStreamBase

 ~wxStreamBase()

Destructor.

wxStreamBase::IsOk

wxStreamError IsOk() const

Returns TRUE if no error occurred on the stream.

See also

LastError (p. 1162)

wxStreamBase::LastError

wxStreamError LastError() const

This function returns the last error.

wxSTREAM_NO_ERROR No error occurred.
wxSTREAM_EOF An End-Of-File occurred.
wxSTREAM_WRITE_ERROR A generic error occurred on the last write call.
wxSTREAM_READ_ERROR A generic error occurred on the last read call.

wxStreamBase::OnSysRead

size_t OnSysRead(void* buffer, size_t bufsize)

Internal function. It is called when the stream wants to read data of the specified size. It
should return the size that was actually read.

wxStreamBase::OnSysSeek

off_t OnSysSeek(off_t pos, wxSeekMode mode)

Internal function. It is called when the stream needs to change the current position.

wxStreamBase::OnSysTell

CHAPTER 5

1163

off_t OnSysTell() const

Internal function. Is is called when the stream needs to know the real position.

wxStreamBase::OnSysWrite

size_t OnSysWrite(void *buffer, size_t bufsize)

See OnSysRead (p. 1162).

wxStreamBase::GetSize

size_t GetSize() const

This function returns the size of the stream. For example, for a file it is the size of the file.

Warning

There are streams which do not have size by definition, such as socket streams. In that
cases, GetSize returns an invalid size represented by

~(size_t)0

wwxxSSttrreeaammBBuuffffeerr

Derived from

None

Include files

<wx/stream.h>

See also

wxStreamBase (p. 1161)

wxStreamBuffer::wxStreamBuffer

 wxStreamBuffer(wxStreamBase& stream , BufMode mode)

CHAPTER 5

1164

Constructor, creates a new stream buffer using stream as a parent stream and mode as
the IO mode. mode can be: wxStreamBuffer::read, wxStreamBuffer::write,
wxStreamBuffer::read_write.

One stream can have many stream buffers but only one is used internally to pass IO call
(e.g. wxInputStream::Read() -> wxStreamBuffer::Read()), but you can call directly
wxStreamBuffer::Read without any problems. Note that all errors and messages linked
to the stream are stored in the stream, not the stream buffers:

 streambuffer.Read(...);
 streambuffer2.Read(...); /* This call erases previous error messages
set by
 ``streambuffer'' */

 wxStreamBuffer(BufMode mode)

Constructor, creates a new empty stream buffer which won't flush any data to a stream.
mode specifies the type of the buffer (read, write, read_write). This stream buffer has the
advantage to be stream independent and to work only on memory buffers but it is still
compatible with the rest of the wxStream classes. You can write, read to this special
stream and it will grow (if it is allowed by the user) its internal buffer. Briefly, it has all
functionality of a "normal'' stream.

Warning

The "read_write" mode may not work: it isn't completely finished.

 wxStreamBuffer(const wxStreamBuffer&buffer)

Constructor. It initializes the stream buffer with the data of the specified stream buffer.
The new stream buffer has the same attributes, size, position and they share the same
buffer. This will cause problems if the stream to which the stream buffer belong is
destroyed and the newly cloned stream buffer continues to be used, trying to call
functions in the (destroyed) stream. It is advised to use this feature only in very local
area of the program.

See also

wxStreamBuffer:SetBufferIO (p. 1167)

wxStreamBuffer::~wxStreamBuffer

 wxStreamBuffer(~wxStreamBuffer)

Destructor. It finalizes all IO calls and frees all internal buffers if necessary.

wxStreamBuffer::Read

size_t Read(void *buffer, size_t size)

CHAPTER 5

1165

Reads a block of the specified size and stores the data in buffer. This function tries to
read from the buffer first and if more data has been requested, reads more data from the
associated stream and updates the buffer accordingly until all requested data is read.

Return value

It returns the size of the data read. If the returned size is different of the specified size,
an error has occurred and should be tested using LastError (p. 1162).

size_t Read(wxStreamBuffer *buffer)

Reads a buffer. The function returns when buffer is full or when there isn't data anymore
in the current buffer.

See also

wxStreamBuffer::Write (p. 1165)

wxStreamBuffer::Write

size_t Write(const void *buffer, size_t size)

Writes a block of the specified size using datas of buffer. The datas are cached in a
buffer before being sent in one block to the stream.

size_t Write(wxStreamBuffer *buffer)

See Read (p. 1164).

wxStreamBuffer::GetChar

char GetChar()

Gets a single char from the stream buffer. It acts like the Read call.

Problem

You aren't directly notified if an error occurred during the IO call.

See also

wxStreamBuffer::Read (p. 1164)

wxStreamBuffer::PutChar

void PutChar(char c)

CHAPTER 5

1166

Puts a single char to the stream buffer.

Problem

You aren't directly notified if an error occurred during the IO call.

See also

wxStreamBuffer::Read (p. 1165)

wxStreamBuffer::Tell

off_t Tell() const

Gets the current position in the stream. This position is calculated from the real position
in the stream and from the internal buffer position: so it gives you the position in the real
stream counted from the start of the stream.

Return value

Returns the current position in the stream if possible, wxInvalidOffset in the other case.

wxStreamBuffer::Seek

off_t Seek(off_t pos, wxSeekMode mode)

Changes the current position.

mode may be one of the following:

wxFromStart The position is counted from the start of the stream.
wxFromCurrent The position is counted from the current position of the

stream.
wxFromEnd The position is counted from the end of the stream.

Return value

Upon successful completion, it returns the new offset as measured in bytes from the
beginning of the stream. Otherwise, it returns wxInvalidOffset.

wxStreamBuffer::ResetBuffer

void ResetBuffer()

Resets to the initial state variables concerning the buffer.

CHAPTER 5

1167

wxStreamBuffer::SetBufferIO

void SetBufferIO(char* buffer_start, char* buffer_end)

Specifies which pointers to use for stream buffering. You need to pass a pointer on the
start of the buffer end and another on the end. The object will use this buffer to cache
stream data. It may be used also as a source/destination buffer when you create an
empty stream buffer (See wxStreamBuffer::wxStreamBuffer (p. 1163)).

Remarks

When you use this function, you will have to destroy the IO buffers yourself after the
stream buffer is destroyed or don't use it anymore. In the case you use it with an empty
buffer, the stream buffer will not resize it when it is full.

See also

wxStreamBuffer constructor (p. 1163)
wxStreamBuffer::Fixed (p. 1168)
wxStreamBuffer::Flushable (p. 1169)

void SetBufferIO(size_t bufsize)

Destroys or invalidates the previous IO buffer and allocates a new one of the specified
size.

Warning

All previous pointers aren't valid anymore.

Remark

The created IO buffer is growable by the object.

See also

wxStreamBuffer::Fixed (p. 1168)
wxStreamBuffer::Flushable (p. 1169)

wxStreamBuffer::GetBufferStart

char * GetBufferStart() const

Returns a pointer on the start of the stream buffer.

wxStreamBuffer::GetBufferEnd

CHAPTER 5

1168

char * GetBufferEnd() const

Returns a pointer on the end of the stream buffer.

wxStreamBuffer::GetBufferPos

char * GetBufferPos() const

Returns a pointer on the current position of the stream buffer.

wxStreamBuffer::GetIntPosition

off_t GetIntPosition() const

Returns the current position (counted in bytes) in the stream buffer.

wxStreamBuffer::SetIntPosition

void SetIntPosition()

Sets the current position (in bytes) in the stream buffer.

Warning

Since it is a very low-level function, there is no check on the position: specify an invalid
position can induce unexpected results.

wxStreamBuffer::GetLastAccess

size_t GetLastAccess() const

Returns the amount of bytes read during the last IO call to the parent stream.

wxStreamBuffer::Fixed

void Fixed(bool fixed)

Toggles the fixed flag. Usually this flag is toggled at the same time as flushable. This flag
allows (when it has the FALSE value) or forbids (when it has the TRUE value) the
stream buffer to resize dynamically the IO buffer.

See also

wxStreamBuffer::SetBufferIO (p. 1167)

CHAPTER 5

1169

wxStreamBuffer::Flushable

void Flushable(bool flushable)

Toggles the flushable flag. If flushable is disabled, no datas are sent to the parent
stream.

wxStreamBuffer::FlushBuffer

bool FlushBuffer()

Flushes the IO buffer.

wxStreamBuffer::FillBuffer

bool FillBuffer()

Fill the IO buffer.

wxStreamBuffer::GetDataLeft

size_t GetDataLeft()

Returns the amount of available datas in the buffer.

wxStreamBuffer::Stream

wxStreamBase* Stream()

Returns the parent stream of the stream buffer.

wwxxSSttrreeaammTTooTTeexxttRReeddiirreeccttoorr

This class can be used to (temporarily) redirect all output sent to a C++ ostream object
to a wxTextCtrl (p. 1240) instead.

NB: Some compilers and/or build configurations don't support multiply inheriting
wxTextCtrl (p. 1240) from std::streambuf in which case this class is not compiled in.
You also must have wxUSE_STD_IOSTREAM option on (i.e. set to 1) in your setup.h to
be able to use it. Under Unix, specify --enable-std_iostreams switch when running

CHAPTER 5

1170

configure for this.

Example of usage:
 using namespace std;

 wxTextCtrl *text = new wxTextCtrl(...);

 {
 wxStreamToTextRedirector redirect(text);

 // this goes to the text control
 cout << "Hello, text!" << endl;
 }

 // this goes soemwhere else, presumably to stdout
 cout << "Hello, console!" << endl;

Derived from

No base class

Include files

<wx/textctrl.h>

See also

wxTextCtrl (p. 1240)

wxStreamToTextRedirector::wxStreamToTextRedirector

 wxStreamToTextRedirector(wxTextCtrl *text, ostream *ostr = NULL)

The constructor starts redirecting output sent to ostr or cout for the default parameter
value to the text control text.

Parameters

text

The text control to append output too, must be non NULL

ostr

The C++ stream to redirect, cout is used if it is NULL

wxStreamToTextRedirector::~wxStreamToTextRedirector

 ~wxStreamToTextRedirector()

CHAPTER 5

1171

When a wxStreamToTextRedirector object is destroyed, the redirection is ended and
any output sent to the C++ ostream which had been specified at the time of the object
construction will go to its original destination.

wwxxSSttrriinngg

wxString is a class representing a character string. Please see the wxString overview (p.
1527) for more information about it. As explained there, wxString implements about 90%
of methods of the std::string class (iterators are not supported, nor all methods which
use them). These standard functions are not documented in this manual so please see
the STL documentation. The behaviour of all these functions is identical to the behaviour
described there.

Derived from

None

Include files

<wx/string.h>

Predefined objects

Objects:

wxEmptyString

See also

Overview (p. 1527)

Constructors and assignment operators

A strign may be constructed either from a C string, (some number of copies of) a single
character or a wide (UNICODE) string. For all constructors (except the default which
creates an empty string) there is also a corresponding assignment operator.

wxString (p. 1178)
operator = (p. 1191)
~wxString (p. 1179)

String length

CHAPTER 5

1172

These functions return the string length and check whether the string is empty or empty
it.

Len (p. 1186)
IsEmpty (p. 1184)
operator! (p. 1191)
Empty (p. 1182)
Clear (p. 1180)

Character access

Many functions in this section take a character index in the string. As with C strings
and/or arrays, the indices start from 0, so the first character of a string is string[0].
Attempt to access a character beyond the end of the string (which may be even 0 if the
string is empty) will provocate an assert failure in debug build (p. 1552), but no checks
are done in release builds.

This section also contains both implicit and explicit conversions to C style strings.
Although implicit conversion is quite convenient, it is advised to use explicit c_str() (p.
1180) method for the sake of clarity. Also see overview (p. 1528) for the cases where it
is necessary to use it.

GetChar (p. 1183)
GetWritableChar (p. 1183)
SetChar (p. 1188)
Last (p. 1185)
operator [] (p. 1192)
c_str (p. 1180)
operator const char* (p. 1193)

Concatenation

Anything may be concatenated (appended to) with a string. However, you can't append
something to a C string (including literal constants), so to do this it should be converted
to a wxString first.

operator << (p. 1192)
operator += (p. 1192)
operator + (p. 1191)
Append (p. 1179)
Prepend (p. 1187)

Comparison

The default comparison function Cmp (p. 1181) is case-sensitive and so is the default
version of IsSameAs (p. 1184). For case insensitive comparisons you should use
CmpNoCase (p. 1181) or give a second parameter to IsSameAs. This last function is

CHAPTER 5

1173

may be more convenient if only equality of the strings matters because it returns a
boolean true value if the strings are the same and not 0 (which is usually FALSE in C) as
Cmp() does.

Matches (p. 1186) is a poor man's regular expression matcher: it only understands '*'
and '?' metacharacters in the sense of DOS command line interpreter.

StartsWith (p. 1189) is helpful when parsing a line of text which should start with some
predefined prefix and is more efficient than doing direct string comparaison as you would
also have to precalculate the length of the prefix then.

Cmp (p. 1181)
CmpNoCase (p. 1181)
IsSameAs (p. 1184)
Matches (p. 1186)
StartsWith (p. 1189)

Substring extraction

These functions allow to extract substring from this string. All of them don't modify the
original string and return a new string containing the extracted substring.

Mid (p. 1187)
operator() (p. 1192)
Left (p. 1185)
Right (p. 1188)
BeforeFirst (p. 1180)
BeforeLast (p. 1180)
AfterFirst (p. 1180)
AfterLast (p. 1180)
StartsWith (p. 1189)

Case conversion

The MakeXXX() variants modify the string in place, while the other functions return a
new string which containts the original text converted to the upper or lower case and
leave the original string unchanged.

MakeUpper (p. 1186)
Upper (p. 1191)
MakeLower (p. 1186)
Lower (p. 1186)

Searching and replacing

These functions replace the standard strchr() and strstr() functions.

CHAPTER 5

1174

Find (p. 1182)
Replace (p. 1188)

Conversion to numbers

The string provides functions for conversion to signed and unsigned integer and floating
point numbers. All three functions take a pointer to the variable to put the numeric value
in and return TRUE if the entire string could be converted to a number.

ToLong (p. 1189)
ToULong (p. 1190)
ToDouble (p. 1189)

Writing values into the string

Both formatted versions (Printf (p. 1187)) and stream-like insertion operators exist (for
basic types only). Additionally, the Format (p. 1182) function allows to use simply
append formatted value to a string:

 // the following 2 snippets are equivalent

 wxString s = "...";
 s += wxString::Format("%d", n);

 wxString s;
 s.Printf("...%d", n);

Format (p. 1182)
FormatV (p. 1182)
Printf (p. 1187)
PrintfV (p. 1187)
operator << (p. 1192)

Memory management

These are "advanced" functions and they will be needed quite rarily. Alloc (p. 1179) and
Shrink (p. 1188) are only interesting for optimization purposes. GetWriteBuf (p. 1183)
may be very useful when working with some external API which requires the caller to
provide a writable buffer, but extreme care should be taken when using it: before
performing any other operation on the string UngetWriteBuf (p. 1191) must be called!

Alloc (p. 1179)
Shrink (p. 1188)
GetWriteBuf (p. 1183)
UngetWriteBuf (p. 1191)

Miscellaneous

CHAPTER 5

1175

Other string functions.

Trim (p. 1190)
Pad (p. 1187)
Truncate (p. 1190)

wxWindows 1.xx compatibility functions

These functions are deprecated, please consider using new wxWindows 2.0 functions
instead of them (or, even better, std::string compatible variants).

SubString (p. 1189)
sprintf (p. 1188)
CompareTo (p. 1181)
Length (p. 1186)
Freq (p. 1183)
LowerCase (p. 1186)
UpperCase (p. 1191)
Strip (p. 1189)
Index (p. 1183)
Remove (p. 1187)
First (p. 1182)
Last (p. 1185)
Contains (p. 1181)
IsNull (p. 1184)
IsAscii (p. 1184)
IsNumber (p. 1184)
IsWord (p. 1185)

std::string compatibility functions

The supported functions are only listed here, please see any STL reference for their
documentation.

 // take nLen chars starting at nPos
 wxString(const wxString& str, size_t nPos, size_t nLen);
 // take all characters from pStart to pEnd (poor man's iterators)
 wxString(const void *pStart, const void *pEnd);

 // lib.string.capacity
 // return the length of the string
 size_t size() const;
 // return the length of the string
 size_t length() const;
 // return the maximum size of the string
 size_t max_size() const;
 // resize the string, filling the space with c if c != 0
 void resize(size_t nSize, char ch = '\0');
 // delete the contents of the string

CHAPTER 5

1176

 void clear();
 // returns true if the string is empty
 bool empty() const;

 // lib.string.access
 // return the character at position n
 char at(size_t n) const;
 // returns the writable character at position n
 char& at(size_t n);

 // lib.string.modifiers
 // append a string
 wxString& append(const wxString& str);
 // append elements str[pos], ..., str[pos+n]
 wxString& append(const wxString& str, size_t pos, size_t n);
 // append first n (or all if n == npos) characters of sz
 wxString& append(const char *sz, size_t n = npos);

 // append n copies of ch
 wxString& append(size_t n, char ch);

 // same as `this_string = str'
 wxString& assign(const wxString& str);
 // same as ` = str[pos..pos + n]
 wxString& assign(const wxString& str, size_t pos, size_t n);
 // same as `= first n (or all if n == npos) characters of sz'
 wxString& assign(const char *sz, size_t n = npos);
 // same as `= n copies of ch'
 wxString& assign(size_t n, char ch);

 // insert another string
 wxString& insert(size_t nPos, const wxString& str);
 // insert n chars of str starting at nStart (in str)
 wxString& insert(size_t nPos, const wxString& str, size_t nStart,
size_t n);

 // insert first n (or all if n == npos) characters of sz
 wxString& insert(size_t nPos, const char *sz, size_t n = npos);
 // insert n copies of ch
 wxString& insert(size_t nPos, size_t n, char ch);

 // delete characters from nStart to nStart + nLen
 wxString& erase(size_t nStart = 0, size_t nLen = npos);

 // replaces the substring of length nLen starting at nStart
 wxString& replace(size_t nStart, size_t nLen, const char* sz);
 // replaces the substring with nCount copies of ch
 wxString& replace(size_t nStart, size_t nLen, size_t nCount, char
ch);
 // replaces a substring with another substring
 wxString& replace(size_t nStart, size_t nLen,
 const wxString& str, size_t nStart2, size_t nLen2);
 // replaces the substring with first nCount chars of sz
 wxString& replace(size_t nStart, size_t nLen,
 const char* sz, size_t nCount);

 // swap two strings

CHAPTER 5

1177

 void swap(wxString& str);

 // All find() functions take the nStart argument which specifies
the
 // position to start the search on, the default value is 0. All
functions
 // return npos if there were no match.

 // find a substring
 size_t find(const wxString& str, size_t nStart = 0) const;

 // find first n characters of sz
 size_t find(const char* sz, size_t nStart = 0, size_t n = npos)
const;

 // find the first occurrence of character ch after nStart
 size_t find(char ch, size_t nStart = 0) const;

 // rfind() family is exactly like find() but works right to left

 // as find, but from the end
 size_t rfind(const wxString& str, size_t nStart = npos) const;

 // as find, but from the end
 size_t rfind(const char* sz, size_t nStart = npos,
 size_t n = npos) const;
 // as find, but from the end
 size_t rfind(char ch, size_t nStart = npos) const;

 // find first/last occurrence of any character in the set

 //
 size_t find_first_of(const wxString& str, size_t nStart = 0) const;
 //
 size_t find_first_of(const char* sz, size_t nStart = 0) const;
 // same as find(char, size_t)
 size_t find_first_of(char c, size_t nStart = 0) const;
 //
 size_t find_last_of (const wxString& str, size_t nStart = npos)
const;
 //
 size_t find_last_of (const char* s, size_t nStart = npos) const;
 // same as rfind(char, size_t)
 size_t find_last_of (char c, size_t nStart = npos) const;

 // find first/last occurrence of any character not in the set

 //
 size_t find_first_not_of(const wxString& str, size_t nStart = 0)
const;
 //
 size_t find_first_not_of(const char* s, size_t nStart = 0) const;
 //
 size_t find_first_not_of(char ch, size_t nStart = 0) const;
 //
 size_t find_last_not_of(const wxString& str, size_t nStart=npos)
const;

CHAPTER 5

1178

 //
 size_t find_last_not_of(const char* s, size_t nStart = npos) const;
 //
 size_t find_last_not_of(char ch, size_t nStart = npos) const;

 // All compare functions return a negative, zero or positive value
 // if the [sub]string is less, equal or greater than the compare()
argument.

 // just like strcmp()
 int compare(const wxString& str) const;
 // comparison with a substring
 int compare(size_t nStart, size_t nLen, const wxString& str) const;
 // comparison of 2 substrings
 int compare(size_t nStart, size_t nLen,
 const wxString& str, size_t nStart2, size_t nLen2) const;
 // just like strcmp()
 int compare(const char* sz) const;
 // substring comparison with first nCount characters of sz
 int compare(size_t nStart, size_t nLen,
 const char* sz, size_t nCount = npos) const;

 // substring extraction
 wxString substr(size_t nStart = 0, size_t nLen = npos) const;

wxString::wxString

 wxString()

Default constructor.

 wxString(const wxString& x)

Copy constructor.

 wxString(char ch, size_t n = 1)

Constructs a string of n copies of character ch.

 wxString(const char* psz, size_t nLength = wxSTRING_MAXLEN)

Takes first nLength characters from the C string psz. The default value of
wxSTRING_MAXLEN means to take all the string.

Note that this constructor may be used even if psz points to a buffer with binary data (i.e.
containing NUL characters) as long as you provide the correct value for nLength.
However, the default form of it works only with strings without intermediate NULs
because it uses strlen() to calculate the effective length and it would not give correct
results otherwise.

CHAPTER 5

1179

 wxString(const unsigned char* psz, size_t nLength = wxSTRING_MAXLEN)

For compilers using unsigned char: takes first nLength characters from the C string psz.
The default value of wxSTRING_MAXLEN means take all the string.

 wxString(const wchar_t* psz)

Constructs a string from the wide (UNICODE) string.

wxString::~wxString

 ~wxString()

String destructor. Note that this is not virtual, so wxString must not be inherited from.

wxString::Alloc

void Alloc(size_t nLen)

Preallocate enough space for wxString to store nLen characters. This function may be
used to increase speed when the string is constructed by repeated concatenation as in

// delete all vowels from the string
wxString DeleteAllVowels(const wxString& original)
{
 wxString result;

 size_t len = original.length();

 result.Alloc(len);

 for (size_t n = 0; n < len; n++)
 {
 if (strchr("aeuio", tolower(original[n])) == NULL)
 result += original[n];
 }

 return result;
}

because it will avoid the need of reallocating string memory many times (in case of long
strings). Note that it does not set the maximal length of a string - it will still expand if
more than nLen characters are stored in it. Also, it does not truncate the existing string
(use Truncate() (p. 1190) for this) even if its current length is greater than nLen

wxString::Append

wxString& Append(const char* psz)

CHAPTER 5

1180

Concatenates psz to this string, returning a reference to it.

wxString& Append(char ch, int count = 1)

Concatenates character ch to this string, count times, returning a reference to it.

wxString::AfterFirst

wxString AfterFirst(char ch) const

Gets all the characters after the first occurrence of ch. Returns the empty string if ch is
not found.

wxString::AfterLast

wxString AfterLast(char ch) const

Gets all the characters after the last occurrence of ch. Returns the whole string if ch is
not found.

wxString::BeforeFirst

wxString BeforeFirst(char ch) const

Gets all characters before the first occurrence of ch. Returns the whole string if ch is not
found.

wxString::BeforeLast

wxString BeforeLast(char ch) const

Gets all characters before the last occurrence of ch. Returns the empty string if ch is not
found.

wxString::c_str

const char * c_str() const

Returns a pointer to the string data.

wxString::Clear

CHAPTER 5

1181

void Clear()

Empties the string and frees memory occupied by it.

See also: Empty (p. 1182)

wxString::Cmp

int Cmp(const char* psz) const

Case-sensitive comparison.

Returns a positive value if the string is greater than the argument, zero if it is equal to it
or a negative value if it is less than the argument (same semantics as the standard
strcmp() function).

See also CmpNoCase (p. 1181), IsSameAs (p. 1184).

wxString::CmpNoCase

int CmpNoCase(const char* psz) const

Case-insensitive comparison.

Returns a positive value if the string is greater than the argument, zero if it is equal to it
or a negative value if it is less than the argument (same semantics as the standard
strcmp() function).

See also Cmp (p. 1181), IsSameAs (p. 1184).

wxString::CompareTo

#define NO_POS ((int)(-1)) // undefined position
enum caseCompare {exact, ignoreCase};

int CompareTo(const char* psz, caseCompare cmp = exact) const

Case-sensitive comparison. Returns 0 if equal, 1 if greater or -1 if less.

wxString::Contains

bool Contains(const wxString& str) const

Returns 1 if target appears anyhere in wxString; else 0.

CHAPTER 5

1182

wxString::Empty

void Empty()

Makes the string empty, but doesn't free memory occupied by the string.

See also: Clear() (p. 1180).

wxString::Find

int Find(char ch, bool fromEnd = FALSE) const

Searches for the given character. Returns the starting index, or -1 if not found.

int Find(const char* sz) const

Searches for the given string. Returns the starting index, or -1 if not found.

wxString::First

size_t First(char c)

size_t First(const char* psz) const

size_t First(const wxString& str) const

size_t First(const char ch) const

Returns the first occurrence of the item.

wxString::Format

static wxString Format(const wxChar *format, ...)

This static function returns the string containing the result of calling Printf (p. 1187) with
the passed parameters on it.

See also

FormatV (p. 1182), Printf (p. 1187)

wxString::FormatV

static wxString Format(const wxChar *format, va_list argptr)

This static function returns the string containing the result of calling PrintfV (p. 1187) with

CHAPTER 5

1183

the passed parameters on it.

See also

Format (p. 1182), PrintfV (p. 1187)

wxString::Freq

int Freq(char ch) const

Returns the number of occurrences of ch in the string.

wxString::GetChar

char GetChar(size_t n) const

Returns the character at position n (read-only).

wxString::GetData

const char* GetData() const

wxWindows compatibility conversion. Returns a constant pointer to the data in the string.

wxString::GetWritableChar

char& GetWritableChar (size_t n)

Returns a reference to the character at position n.

wxString::GetWriteBuf

char* GetWriteBuf(size_t len)

Returns a writable buffer of at least len bytes.

Call wxString::UngetWriteBuf (p. 1191) as soon as possible to put the string back into a
reasonable state.

wxString::Index

size_t Index(char ch, int startpos = 0) const

CHAPTER 5

1184

Same as wxString::Find (p. 1182).

size_t Index(const char* sz) const

Same as wxString::Find (p. 1182).

size_t Index(const char* sz, bool caseSensitive = TRUE, bool fromEnd = FALSE)
const

Search the element in the array, starting from either side.

If fromEnd is TRUE, reverse search direction.

If caseSensitive, comparison is case sensitive (the default).

Returns the index of the first item matched, or NOT_FOUND.

wxString::IsAscii

bool IsAscii() const

Returns TRUE if the string contains only ASCII characters.

wxString::IsEmpty

bool IsEmpty() const

Returns TRUE if the string is empty.

wxString::IsNull

bool IsNull() const

Returns TRUE if the string is empty (same as IsEmpty (p. 1184)).

wxString::IsNumber

bool IsNumber() const

Returns TRUE if the string is an integer (with possible sign).

wxString::IsSameAs

bool IsSameAs(const char* psz, bool caseSensitive = TRUE) const

CHAPTER 5

1185

Test for string equality, case-sensitive (default) or not.

caseSensitive is TRUE by default (case matters).

Returns TRUE if strings are equal, FALSE otherwise.

See also Cmp (p. 1181), CmpNoCase (p. 1181), IsSameAs (p. 1185)

wxString::IsSameAs

bool IsSameAs(char c, bool caseSensitive = TRUE) const

Test whether the string is equal to the single character c. The test is case-sensitive if
caseSensitive is TRUE (default) or not if it is FALSE.

Returns TRUE if the string is equal to the character, FALSE otherwise.

See also Cmp (p. 1181), CmpNoCase (p. 1181), IsSameAs (p. 1184)

wxString::IsWord

bool IsWord() const

Returns TRUE if the string is a word. TODO: what's the definition of a word?

wxString::Last

char Last() const

Returns the last character.

char& Last()

Returns a reference to the last character (writable).

wxString::Left

wxString Left(size_t count) const

Returns the first count characters.

wxString Left(char ch) const

Returns all characters before the first occurrence of ch. Returns the whole string if ch is
not found.

CHAPTER 5

1186

wxString::Len

size_t Len() const

Returns the length of the string.

wxString::Length

size_t Length() const

Returns the length of the string (same as Len).

wxString::Lower

wxString Lower() const

Returns this string converted to the lower case.

wxString::LowerCase

void LowerCase()

Same as MakeLower.

wxString::MakeLower

void MakeLower()

Converts all characters to lower case.

wxString::MakeUpper

void MakeUpper()

Converts all characters to upper case.

wxString::Matches

bool Matches(const char* szMask) const

Returns TRUE if the string contents matches a mask containing '*' and '?'.

CHAPTER 5

1187

wxString::Mid

wxString Mid(size_t first, size_t count = wxSTRING_MAXLEN) const

Returns a substring starting at first, with length count, or the rest of the string if count is
the default value.

wxString::Pad

wxString& Pad(size_t count, char pad = ' ', bool fromRight = TRUE)

Adds count copies of pad to the beginning, or to the end of the string (the default).

Removes spaces from the left or from the right (default).

wxString::Prepend

wxString& Prepend(const wxString& str)

Prepends str to this string, returning a reference to this string.

wxString::Printf

int Printf(const char* pszFormat, ...)

Similar to the standard function sprintf(). Returns the number of characters written, or an
integer less than zero on error.

NB: This function will use a safe version of vsprintf() (usually called vsnprintf())
whenever available to always allocate the buffer of correct size. Unfortunately, this
function is not available on all platforms and the dangerous vsprintf() will be used then
which may lead to buffer overflows.

wxString::PrintfV

int PrintfV(const char* pszFormat, va_list argPtr)

Similar to vprintf. Returns the number of characters written, or an integer less than zero
on error.

wxString::Remove

wxString& Remove(size_t pos)

CHAPTER 5

1188

Same as Truncate. Removes the portion from pos to the end of the string.

wxString& Remove(size_t pos, size_t len)

Removes the len characters from the string, starting at pos.

wxString::RemoveLast

wxString& RemoveLast()

Removes the last character.

wxString::Replace

size_t Replace (const char* szOld, const char* szNew, bool replaceAll = TRUE)

Replace first (or all) occurrences of substring with another one.

replaceAll: global replace (default), or only the first occurrence.

Returns the number of replacements made.

wxString::Right

wxString Right(size_t count) const

Returns the last count characters.

wxString::SetChar

void SetChar(size_t n, charch)

Sets the character at position n.

wxString::Shrink

void Shrink()

Minimizes the string's memory. This can be useful after a call to Alloc() (p. 1179) if too
much memory were preallocated.

wxString::sprintf

CHAPTER 5

1189

void sprintf(const char* fmt)

The same as Printf.

wxString::StartsWith

bool StartsWith(const wxChar *prefix, wxString *rest = NULL) const

This function can be used to test if the string starts with the specified prefix. If it does, the
function will return TRUE and put the rest of the string (i.e. after the prefix) into rest string
if it is not NULL. Otherwise, the function returns FALSE and doesn't modify the rest.

wxString::Strip

enum stripType {leading = 0x1, trailing = 0x2, both = 0x3};

wxString Strip(stripType s = trailing) const

Strip characters at the front and/or end. The same as Trim except that it doesn't change
this string.

wxString::SubString

wxString SubString(size_t from, size_t to) const

Deprecated, use Mid (p. 1187) instead (but note that parameters have different
meaning).

Returns the part of the string between the indices from and toinclusive.

wxString::ToDouble

bool ToDouble(double *val) const

Attempts to convert the string to a floating point number. Returns TRUE on success (the
number is stored in the location pointed to by val) or FALSE if the string does not
represent such number.

See also

wxString::ToLong (p. 1189),
wxString::ToULong (p. 1190)

wxString::ToLong

CHAPTER 5

1190

bool ToLong(long *val, int base = 0) const

Attempts to convert the string to a signed integer in base base. ReturnsTRUE on success
in which case the number is stored in the location pointed to by val or FALSE if the string
does not represent a valid number in the given base.

The default value of base 0 is special and means that the usual rules of C numbers are
applied: if the number starts with 0x it is considered to be in base 16, if it starts with 0 -
in base 8 and in base 10 otherwise.

See also

wxString::ToDouble (p. 1189),
wxString::ToULong (p. 1190)

wxString::ToULong

bool ToULong(unsigned long *val, int base = 0) const

Attempts to convert the string to a ansigned integer in base base. Returns TRUE on
success in which case the number is stored in the location pointed to by val or FALSE if
the string does not represent a valid number in the given base.

The default value of base 0 is special and means that the usual rules of C numbers are
applied: if the number starts with 0x it is considered to be in base 16, if it starts with 0 -
in base 8 and in base 10 otherwise.

See also

wxString::ToDouble (p. 1189),
wxString::ToLong (p. 1189)

wxString::Trim

wxString& Trim(bool fromRight = TRUE)

Removes spaces from the left or from the right (default).

wxString::Truncate

wxString& Truncate(size_t len)

Truncate the string to the given length.

CHAPTER 5

1191

wxString::UngetWriteBuf

void UngetWriteBuf()

Puts the string back into a reasonable state, after wxString::GetWriteBuf (p. 1183) was
called.

wxString::Upper

wxString Upper() const

Returns this string converted to upper case.

wxString::UpperCase

void UpperCase()

The same as MakeUpper.

wxString::operator!

bool operator!() const

Empty string is FALSE, so !string will only return TRUE if the string is empty. This allows
the tests for NULLness of a const char * pointer and emptyness of the string to look the
same in the code and makes it easier to port old code to wxString.

See also IsEmpty() (p. 1184).

wxString::operator =

wxString& operator =(const wxString& str)

wxString& operator =(const char* psz)

wxString& operator =(char c)

wxString& operator =(const unsigned char* psz)

wxString& operator =(const wchar_t* pwz)

Assignment: the effect of each operation is the same as for the corresponding
constructor (see wxString constructors (p. 1178)).

wxString::operator +

CHAPTER 5

1192

Concatenation: all these operators return a new strign equal to the sum of the operands.

wxString operator +(const wxString& x, const wxString& y)

wxString operator +(const wxString& x, const char* y)

wxString operator +(const wxString& x, char y)

wxString operator +(const char* x, const wxString& y)

wxString::operator +=

void operator +=(const wxString& str)

void operator +=(const char* psz)

void operator +=(char c)

Concatenation in place: the argument is appended to the string.

wxString::operator []

char& operator [](size_t i)

char operator [](size_t i)

char operator [](int i)

Element extraction.

wxString::operator ()

wxString operator ()(size_t start, size_t len)

Same as Mid (substring extraction).

wxString::operator <<

wxString& operator <<(const wxString& str)

wxString& operator <<(const char* psz)

wxString& operator <<(char ch)

Same as +=.

CHAPTER 5

1193

wxString& operator <<(int i)

wxString& operator <<(float f)

wxString& operator <<(double d)

These functions work as C++ stream insertion operators: they insert the given value into
the string. Precision or format cannot be set using them, you can use Printf (p. 1187) for
this.

wxString::operator >>

friend istream& operator >>(istream& is, wxString& str)

Extraction from a stream.

wxString::operator const char*

 operator const char*() const

Implicit conversion to a C string.

Comparison operators

bool operator ==(const wxString& x, const wxString& y)

bool operator ==(const wxString& x, const char* t)

bool operator !=(const wxString& x, const wxString& y)

bool operator !=(const wxString& x, const char* t)

bool operator >(const wxString& x, const wxString& y)

bool operator >(const wxString& x, const char* t)

bool operator >=(const wxString& x, const wxString& y)

bool operator >=(const wxString& x, const char* t)

bool operator <(const wxString& x, const wxString& y)

bool operator <(const wxString& x, const char* t)

bool operator <=(const wxString& x, const wxString& y)

CHAPTER 5

1194

bool operator <=(const wxString& x, const char* t)

Remarks

These comparisons are case-sensitive.

wwxxSSttrriinnggBBuuffffeerr

This tiny class allows to conveniently access the wxString (p. 1171) internal buffer as a
writable pointer without any risk to forget to restore the string to the usable state later.

For example, assuming you have a low-level OS function called
GetMeaningOfLifeAsString(char *) returning the value in the provided buffer
(which must be writable, of course) you might call it like this:

 wxString theAnswer;
 GetMeaningOfLifeAsString(wxStringBuffer(theAnswer, 1024));
 if (theAnswer != "42")
 {
 wxLogError("Something is very wrong!");
 }

Derived from

None

Include files

<wx/string.h>

wxStringBuffer::wxStringBuffer

 wxStringBuffer(const wxString& str, size_t len)

Constructs a writable string buffer object associated with the given string and containing
enough space for at least len characters. Basicly, this is equivalent to calling
GetWriteBuf (p. 1183) and saving the result.

wxStringBuffer::~wxStringBuffer

 ~wxStringBuffer()

Restores the string passed to the constructor to the usable state by calling

CHAPTER 5

1195

UngetWriteBuf (p. 1191) on it.

wxStringBuffer::operator wxChar *

wxChar * operator wxChar *() const

Returns the writable pointer to a buffer of the size at least equal to the length specified in
the constructor.

wwxxSSttrriinnggFFoorrmmVVaalliiddaattoorr

This class validates a string value for a form view, with an optional choice of possible
values. The associated panel item must be a wxText, wxListBox or wxChoice. For
wxListBox and wxChoice items, if the item is empty, the validator attempts to initialize
the item from the strings in the validator. Note that this does not happen for XView
wxChoice items since XView cannot reinitialize a wxChoice.

See also

Validator classes (p. 1671)

wxStringFormValidator::wxStringFormValidator

void wxStringFormValidator(wxStringList *list=NULL, long flags=0)

Constructor. Supply a list of strings to indicate a choice, or no strings to allow the user to
freely edit the string. The string list will be deleted when the validator is deleted.

wwxxSSttrriinnggLLiisstt

A string list is a list which is assumed to contain strings. Memory is allocated when
strings are added to the list, and deallocated by the destructor or by the Delete member.

Derived from

wxList (p. 743)
wxObject (p. 897)

Include files

CHAPTER 5

1196

<wx/list.h>

See also

wxString (p. 1171), wxList (p. 743)

wxStringList::wxStringList

 wxStringList()

Constructor.

void wxStringList(char* first, ...)

Constructor, taking NULL-terminated string argument list. wxStringList allocates memory
for the strings.

wxStringList::~wxStringList

 ~wxStringList()

Deletes string list, deallocating strings.

wxStringList::Add

wxNode * Add(const wxString& s)

Adds string to list, allocating memory.

wxStringList::Clear

void Clear()

Clears all strings from the list.

wxStringList::Delete

void Delete(const wxString& s)

Searches for string and deletes from list, deallocating memory.

CHAPTER 5

1197

wxStringList::ListToArray

char* ListToArray(bool new_copies = FALSE)

Converts the list to an array of strings, only allocating new memory if new_copies is
TRUE.

wxStringList::Member

bool Member(const wxString& s)

Returns TRUE if s is a member of the list (tested using strcmp).

wxStringList::Sort

void Sort()

Sorts the strings in ascending alphabetical order. Note that all nodes (but not strings) get
deallocated and new ones allocated.

wwxxSSttrriinnggLLiissttVVaalliiddaattoorr

This class validates a string value, with an optional choice of possible values.

See also

Validator classes (p. 1671)

wxStringListValidator::wxStringListValidator

void wxStringListValidator(wxStringList *list=NULL, long flags=0)

Constructor. Supply a list of strings to indicate a choice, or no strings to allow the user to
freely edit the string. The string list will be deleted when the validator is deleted.

wwxxSSttrriinnggTTookkeenniizzeerr

wxStringTokenizer helps you to break a string up into a number of tokens. It replaces the

CHAPTER 5

1198

standard C function strtok() and also extends it in a number of ways.

To use this class, you should create a wxStringTokenizer object, give it the string to
tokenize and also the delimiters which separate tokens in the string (by default, white
space characters will be used).

Then GetNextToken (p. 1199) may be called repeatedly until it HasMoreTokens (p.
1199) returns FALSE.

For example:

wxStringTokenizer tkz("first:second:third:fourth", ":");
while (tkz.HasMoreTokens())
{
 wxString token = tkz.GetNextToken();

 // process token here
}

By default, wxStringTokenizer will behave in the same way as strtok() if the
delimiters string only contains white space characters but, unlike the standard function, it
will return empty tokens if this is not the case. This is helpful for parsing strictly formatted
data where the number of fields is fixed but some of them may be empty (i.e. TAB or
comma delimited text files).

The behaviour is governed by the last constructor (p. 1199)/SetString (p. 1200)
parameter mode which may be one of the following:

wxTOKEN_DEFAULT Default behaviour (as described above): same as

wxTOKEN_STRTOK if the delimiter string contains only
whitespaces, same as wxTOKEN_RET_EMPTY otherwise

wxTOKEN_RET_EMPTY In this mode, the empty tokens in the middle of the string
will be returned, i.e. "a::b:" will be tokenized in three
tokens 'a', '' and 'b'.

wxTOKEN_RET_EMPTY_ALL In this mode, empty trailing token (after the last delimiter
character) will be returned as well. The string as above will
contain four tokens: the already mentioned ones and
another empty one as the last one.

wxTOKEN_RET_DELIMS In this mode, the delimiter character after the end of the
current token (there may be none if this is the last token) is
returned appended to the token. Otherwise, it is the same
mode as wxTOKEN_RET_EMPTY.

wxTOKEN_STRTOK In this mode the class behaves exactly like the standard
strtok() function. The empty tokens are never returned.

Derived from

wxObject (p. 897)

CHAPTER 5

1199

Include files

<wx/tokenzr.h>

wxStringTokenizer::wxStringTokenizer

 wxStringTokenizer()

Default constructor. You must call SetString (p. 1200) before calling any other methods.

 wxStringTokenizer(const wxString& str, const wxString& delims = " \t\r\n",
wxStringTokenizerMode mode = wxTOKEN_DEFAULT)

Constructor. Pass the string to tokenize, a string containing delimiters and the mode
specifying how the string should be tokenized.

wxStringTokenizer::CountTokens

int CountTokens() const

Returns the number of tokens in the input string.

wxStringTokenizer::HasMoreTokens

bool HasMoreTokens() const

Returns TRUE if the tokenizer has further tokens, FALSE if none are left.

wxStringTokenizer::GetNextToken

wxString GetNextToken()

Returns the next token or empty string if the end of string was reached.

wxStringTokenizer::GetPosition

size_t GetPosition() const

Returns the current position (i.e. one index after the last returned token or 0 if
GetNextToken() has never been called) in the original string.

wxStringTokenizer::GetString

CHAPTER 5

1200

wxString GetString() const

Returns the part of the starting string without all token already extracted.

wxStringTokenizer::SetString

void SetString(const wxString& to_tokenize, const wxString& delims = " \t\r\n",
wxStringTokenizerMode mode = wxTOKEN_DEFAULT)

Initializes the tokenizer.

Pass the string to tokenize, a string containing delimiters, and the mode specifying how
the string should be tokenized.

wwxxSSyyssCCoolloouurrCChhaannggeeddEEvveenntt

This class is used for system colour change events, which are generated when the user
changes the colour settings using the control panel. This is only appropriate under
Windows.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process a system colour changed event, use this event handler macro to direct input
to a member function that takes a wxSysColourChanged argument.

EVT_SYS_COLOUR_CHANGED(func) Process a wxEVT_SYS_COLOUR_CHANGED

event.

Remarks

The default event handler for this event propagates the event to child windows, since
Windows only sends the events to top-level windows. If intercepting this event for a top-
level window, remember to call the base class handler, or to pass the event on to the
window's children explicitly.

CHAPTER 5

1201

See also

wxWindow::OnSysColourChanged (p. 1400), Event handling overview (p. 1560)

wxSysColourChangedEvent::wxSysColourChanged

 wxSysColourChanged()

Constructor.

wwxxSSyysstteemmOOppttiioonnss

wxSystemOptions stores option/value pairs that wxWindows itself or applications can
use to alter behaviour at run-time. It can be used to optimize behaviour that doesn't
deserve a distinct API, but is still important to be able to configure.

These options are currently recognised by wxWindows:

Option Value
no-maskblt 1 to never use WIN32's MaskBlt function, 0 to

allow it to be used where possible. Default: 0.

In some circumstances the MaskBlt function
can be slower than using the fallback code,
especially if using DC cacheing. By default,
MaskBlt will be used where it is implemented
by the operating system and driver.

The compile-time option to include or exclude this functionality is
wxUSE_SYSTEM_OPTIONS.

Derived from

wxObject (p. 897)

Include files

<wx/sysopt.h>

wxSystemOptions::wxSystemOptions

CHAPTER 5

1202

 wxSystemOptions()

Default constructor. You don't need to create an instance of wxSystemOptions since all
of its functions are static.

wxSystemOptions::GetOption

wxString GetOption(const wxString& name) const

Gets an option. The function is case-insensitive to name.

See also

wxSystemOptions::SetOption (p. 1202), wxSystemOptions::GetOptionInt (p. 1202),
wxSystemOptions::HasOption (p. 1202)

wxSystemOptions::GetOptionInt

int GetOptionInt(const wxString& name) const

Gets an option as an integer. The function is case-insensitive to name.

See also

wxSystemOptions::SetOption (p. 1202), wxSystemOptions::GetOption (p. 1202),
wxSystemOptions::HasOption (p. 1202)

wxSystemOptions::HasOption

bool HasOption(const wxString& name) const

Returns TRUE if the given option is present. The function is case-insensitive to name.

See also

wxSystemOptions::SetOption (p. 1202), wxSystemOptions::GetOption (p. 1202),
wxSystemOptions::GetOptionInt (p. 1202)

wxSystemOptions::SetOption

void SetOption(const wxString& name, const wxString& value)

void SetOption(const wxString& name, int value)

Sets an option. The function is case-insensitive to name.

CHAPTER 5

1203

See also

wxSystemOptions::GetOption (p. 1202), wxSystemOptions::GetOptionInt (p. 1202),
wxSystemOptions::HasOption (p. 1202)

wwxxSSyysstteemmSSeettttiinnggss

wxSystemSettings allows the application to ask for details about the system. This can
include settings such as standard colours, fonts, and user interface element sizes.

Derived from

wxObject (p. 897)

Include files

<wx/settings.h>

See also

wxFont (p. 506), wxColour (p. 138)

wxSystemSettings::wxSystemSettings

 wxSystemSettings()

Default constructor. You don't need to create an instance of wxSystemSettings since all
of its functions are static.

wxSystemSettings::GetSystemColour

static wxColour GetSystemColour(int index)

Returns a system colour.

index can be one of:

wxSYS_COLOUR_SCROLLBAR The scrollbar grey area.
wxSYS_COLOUR_BACKGROUND The desktop colour.
wxSYS_COLOUR_ACTIVECAPTION Active window caption.
wxSYS_COLOUR_INACTIVECAPTION Inactive window caption.
wxSYS_COLOUR_MENU Menu background.

CHAPTER 5

1204

wxSYS_COLOUR_WINDOW Window background.
wxSYS_COLOUR_WINDOWFRAME Window frame.
wxSYS_COLOUR_MENUTEXT Menu text.
wxSYS_COLOUR_WINDOWTEXT Text in windows.
wxSYS_COLOUR_CAPTIONTEXT Text in caption, size box and scrollbar arrow

box.
wxSYS_COLOUR_ACTIVEBORDER Active window border.
wxSYS_COLOUR_INACTIVEBORDER Inactive window border.
wxSYS_COLOUR_APPWORKSPACE Background colour MDI applications.
wxSYS_COLOUR_HIGHLIGHT Item(s) selected in a control.
wxSYS_COLOUR_HIGHLIGHTTEXT Text of item(s) selected in a control.
wxSYS_COLOUR_BTNFACE Face shading on push buttons.
wxSYS_COLOUR_BTNSHADOW Edge shading on push buttons.
wxSYS_COLOUR_GRAYTEXT Greyed (disabled) text.
wxSYS_COLOUR_BTNTEXT Text on push buttons.
wxSYS_COLOUR_INACTIVECAPTIONTEXT Colour of text in active captions.
wxSYS_COLOUR_BTNHIGHLIGHT Highlight colour for buttons (same as

wxSYS_COLOUR_3DHILIGHT).
wxSYS_COLOUR_3DDKSHADOW Dark shadow for three-dimensional dispaly

elements.
wxSYS_COLOUR_3DLIGHT Light colour for three-dimensional display

elements.
wxSYS_COLOUR_INFOTEXT Text colour for tooltip controls.
wxSYS_COLOUR_INFOBK Background colour for tooltip controls.
wxSYS_COLOUR_DESKTOP Same as wxSYS_COLOUR_BACKGROUND.
wxSYS_COLOUR_3DFACE Same as wxSYS_COLOUR_BTNFACE.
wxSYS_COLOUR_3DSHADOW Same as wxSYS_COLOUR_BTNSHADOW.
wxSYS_COLOUR_3DHIGHLIGHT Same as wxSYS_COLOUR_BTNHIGHLIGHT.
wxSYS_COLOUR_3DHILIGHT Same as wxSYS_COLOUR_BTNHIGHLIGHT.
wxSYS_COLOUR_BTNHILIGHT Same as wxSYS_COLOUR_BTNHIGHLIGHT.

wxPython note: This static method is implemented in Python as a standalone function
named wxSystemSettings_GetSystemColour

wxSystemSettings::GetSystemFont

static wxFont GetSystemFont(int index)

Returns a system font.

index can be one of:

wxSYS_OEM_FIXED_FONT Original equipment manufacturer dependent

fixed-pitch font.
wxSYS_ANSI_FIXED_FONT Windows fixed-pitch font.
wxSYS_ANSI_VAR_FONT Windows variable-pitch (proportional) font.
wxSYS_SYSTEM_FONT System font.
wxSYS_DEVICE_DEFAULT_FONT Device-dependent font (Windows NT only).

CHAPTER 5

1205

wxSYS_DEFAULT_GUI_FONT Default font for user interface objects such as
menus and dialog boxes. Not available in
versions of Windows earlier than Windows 95
or Windows NT 4.0.

wxPython note: This static method is implemented in Python as a standalone function
named wxSystemSettings_GetSystemFont

wxSystemSettings::GetSystemMetric

static int GetSystemMetric(int index)

Returns a system metric.

index can be one of:

wxSYS_MOUSE_BUTTONS Number of buttons on mouse, or zero if no

mouse was installed.
wxSYS_BORDER_X Width of single border.
wxSYS_BORDER_Y Height of single border.
wxSYS_CURSOR_X Width of cursor.
wxSYS_CURSOR_Y Height of cursor.
wxSYS_DCLICK_X Width in pixels of rectangle within which two

successive mouse clicks must fall to generate a
double-click.

wxSYS_DCLICK_Y Height in pixels of rectangle within which two
successive mouse clicks must fall to generate a
double-click.

wxSYS_DRAG_X Width in pixels of a rectangle centered on a
drag point to allow for limited movement of the
mouse pointer before a drag operation begins.

wxSYS_DRAG_Y Height in pixels of a rectangle centered on a
drag point to allow for limited movement of the
mouse pointer before a drag operation begins.

wxSYS_EDGE_X Width of a 3D border, in pixels.
wxSYS_EDGE_Y Height of a 3D border, in pixels.
wxSYS_HSCROLL_ARROW_X Width of arrow bitmap on horizontal scrollbar.
wxSYS_HSCROLL_ARROW_Y Height of arrow bitmap on horizontal scrollbar.
wxSYS_HTHUMB_X Width of horizontal scrollbar thumb.
wxSYS_ICON_X The default width of an icon.
wxSYS_ICON_Y The default height of an icon.
wxSYS_ICONSPACING_X Width of a grid cell for items in large icon view,

in pixels. Each item fits into a rectangle of this
size when arranged.

wxSYS_ICONSPACING_Y Height of a grid cell for items in large icon view,
in pixels. Each item fits into a rectangle of this
size when arranged.

wxSYS_WINDOWMIN_X Minimum width of a window.

CHAPTER 5

1206

wxSYS_WINDOWMIN_Y Minimum height of a window.
wxSYS_SCREEN_X Width of the screen in pixels.
wxSYS_SCREEN_Y Height of the screen in pixels.
wxSYS_FRAMESIZE_X Width of the window frame for a

wxTHICK_FRAME window.
wxSYS_FRAMESIZE_Y Height of the window frame for a

wxTHICK_FRAME window.
wxSYS_SMALLICON_X Recommended width of a small icon (in window

captions, and small icon view).
wxSYS_SMALLICON_Y Recommended height of a small icon (in

window captions, and small icon view).
wxSYS_HSCROLL_Y Height of horizontal scrollbar in pixels.
wxSYS_VSCROLL_X Width of vertical scrollbar in pixels.
wxSYS_VSCROLL_ARROW_X Width of arrow bitmap on a vertical scrollbar.
wxSYS_VSCROLL_ARROW_Y Height of arrow bitmap on a vertical scrollbar.
wxSYS_VTHUMB_Y Height of vertical scrollbar thumb.
wxSYS_CAPTION_Y Height of normal caption area.
wxSYS_MENU_Y Height of single-line menu bar.
wxSYS_NETWORK_PRESENT 1 if there is a network present, 0 otherwise.
wxSYS_PENWINDOWS_PRESENT 1 if PenWindows is installed, 0 otherwise.
wxSYS_SHOW_SOUNDS Non-zero if the user requires an application to

present information visually in situations where
it would otherwise present the information only
in audible form; zero otherwise.

wxSYS_SWAP_BUTTONS Non-zero if the meanings of the left and right
mouse buttons are swapped; zero otherwise.

wxPython note: This static method is implemented in Python as a standalone function
named wxSystemSettings_GetSystemMetric

wwxxTTaabbbbeeddDDiiaalloogg

A dialog suitable for handling tabs.

Please note that the preferred class for programming tabbed windows is wxNotebook (p.
887). This class is retained for backward compatibility.

Derived from

wxDialog (p. 359)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/tab.h>

CHAPTER 5

1207

See also

Tab classes overview (p. 1605)

wxTabbedDialog::wxTabbedDialog

 wxTabbedDialog(wxWindow *parent, wxWindowID id, const wxString& title, const
wxPoint& pos, const wxSize& size, long style=wxDEFAULT_DIALOG_STYLE, const
wxString& name="dialogBox")

Constructor.

wxTabbedDialog::~wxTabbedDialog

 ~wxTabbedDialog()

Destructor. This destructor deletes the tab view associated with the dialog box. If you do
not wish this to happen, set the tab view to NULL before destruction (for example, in the
OnCloseWindow event handler).

wxTabbedDialog::SetTabView

void SetTabView(wxTabView *view)

Sets the tab view associated with the dialog box.

wxTabbedDialog::GetTabView

wxTabView * GetTabView()

Returns the tab view associated with the dialog box.

wwxxTTaabbbbeeddPPaanneell

A panel suitable for handling tabs.

Please note that the preferred class for programming tabbed windows is wxNotebook (p.
887). This class is retained for backward compatibility.

CHAPTER 5

1208

Derived from

wxPanel (p. 916)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/tab.h>

See also

Tab classes overview (p. 1605)

wxTabbedPanel::wxTabbedPanel

 wxTabbedPanel(wxWindow *parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, long style=0, const wxString& name="panel")

Constructor.

wxTabbedPanel::SetTabView

void SetTabView(wxTabView *view)

Sets the tab view associated with the panel.

wxTabbedPanel::GetTabView

wxTabView * GetTabView()

Returns the tab view associated with the panel.

wwxxTTaabbCCoonnttrrooll

You will rarely need to use this class directly.

Please note that the preferred class for programming tabbed windows is wxNotebook (p.
887). This class is retained for backward compatibility.

Derived from

CHAPTER 5

1209

wxObject (p. 897)

Include files

<wx/tab.h>

See also

Tab classes overview (p. 1605)

wxTabControl::wxTabControl

void wxTabControl(wxTabView *view = NULL)

Constructor.

wxTabControl::GetColPosition

int GetColPosition()

Returns the position of the tab in the tab column.

wxTabControl::GetFont

wxFont * GetFont()

Returns the font to be used for this tab.

wxTabControl::GetHeight

int GetHeight()

Returns the tab height.

wxTabControl::GetId

int GetId()

Returns the tab identifier.

wxTabControl::GetLabel

CHAPTER 5

1210

wxString GetLabel()

Returns the tab label.

wxTabControl::GetRowPosition

int GetRowPosition()

Returns the position of the tab in the layer or row.

wxTabControl::GetSelected

bool GetSelected()

Returns the selected flag.

wxTabControl::GetWidth

int GetWidth()

Returns the tab width.

wxTabControl::GetX

int GetX()

Returns the x offset from the top-left of the view area.

wxTabControl::GetY

int GetY()

Returns the y offset from the top-left of the view area.

wxTabControl::HitTest

bool HitTest(int x, int y)

Returns TRUE if the point x, y is within the tab area.

wxTabControl::OnDraw

CHAPTER 5

1211

void OnDraw(wxDC& dc, bool lastInRow)

Draws the tab control on the given device context.

wxTabControl::SetColPosition

void SetColPosition(int pos)

Sets the position in the column.

wxTabControl::SetFont

void SetFont(wxFont *font)

Sets the font to be used for this tab.

wxTabControl::SetId

void SetId(int id)

Sets the tab identifier.

wxTabControl::SetLabel

void SetLabel(const wxString& str)

Sets the label for the tab.

wxTabControl::SetPosition

void SetPosition(int x, int y)

Sets the x and y offsets for this tab, measured from the top-left of the view area.

wxTabControl::SetRowPosition

void SetRowPosition(int pos)

Sets the position on the layer (row).

wxTabControl::SetSelected

CHAPTER 5

1212

void SetSelected(bool selected)

Sets the selection flag for this tab (does not set the current tab for the view; use
wxTabView::SetSelectedTab for that).

wxTabControl::SetSize

void SetSize(int width, int height)

Sets the width and height for this tab.

wwxxTTaabbVViieeww

Responsible for drawing tabs onto a window, and dealing with input.

Please note that the preferred class for programming tabbed windows is wxNotebook (p.
887). This class is retained for backward compatibility.

Derived from

wxObject (p. 897)

Include files

<wx/tab.h>

See also

wxTabView overview (p. 1609), wxPanelTabView (p. 919)

wxTabView::wxTabView

 wxTabView(long style = wxTAB_STYLE_DRAW_BOX |
wxTAB_STYLE_COLOUR_INTERIOR)

Constructor.

style may be a bit list of the following:

wxTAB_STYLE_DRAW_BOX Draw a box around the view area. Most

commonly used for dialogs.
wxTAB_STYLE_COLOUR_INTERIOR Draw tab backgrounds in the specified colour.

CHAPTER 5

1213

Omitting this style will ensure that the tab
background matches the dialog background.

wxTabView::AddTab

wxTabControl * AddTab(int id, const wxString& label, wxTabControl
*existingTab=NULL)

Adds a tab to the view.

id is the application-chosen identifier for the tab, which will be used in subsequent tab
operations.

label is the label to give the tab.

existingTab maybe NULL to specify a new tab, or non-NULL to indicate that an existing
tab should be used.

A new layer (row) is started when the current layer has been filled up with tabs.

wxTabView::CalculateTabWidth

int CalculateTabWidth(int noTabs, bool adjustView = FALSE)

The application can specify the tab width using this function, in terms of the number of
tabs per layer (row) which will fit the view area, which should have been set previously
with SetViewRect.

noTabs is the number of tabs which should take up the full width of the view area.

adjustView can be set to TRUE in order to readjust the view width to exactly fit the given
number of tabs.

The new tab width is returned.

wxTabView::ClearTabs

void ClearTabs(bool deleteTabs=TRUE)

Clears the tabs, deleting them if deleteTabs is TRUE.

wxTabView::Draw

void Draw(wxDC& dc)

CHAPTER 5

1214

Draws the tabs and (optionally) a box around the view area.

wxTabView::FindTabControlForId

wxTabControl * FindTabControlForId(int id)

Finds the wxTabControl corresponding to id.

wxTabView::FindTabControlForPosition

wxTabControl * FindTabControlForPosition(int layer, int position)

Finds the wxTabControl at layer layer, position in layer position, both starting from zero.
Note that tabs change layer as they are selected or deselected.

wxTabView::GetBackgroundBrush

wxBrush * GetBackgroundBrush()

Returns the brush used to draw in the background colour. It is set when
SetBackgroundColour is called.

wxTabView::GetBackgroundColour

wxColour GetBackgroundColour()

Returns the colour used for each tab background. By default, this is light grey. To ensure
a match with the dialog or panel background, omit the
wxTAB_STYLE_COLOUR_INTERIOR flag from the wxTabView constructor.

wxTabView::GetBackgroundPen

wxPen * GetBackgroundPen()

Returns the pen used to draw in the background colour. It is set when
SetBackgroundColour is called.

wxTabView::GetHighlightColour

wxColour GetHighlightColour()

Returns the colour used for bright highlights on the left side of '3D' surfaces. By default,
this is white.

CHAPTER 5

1215

wxTabView::GetHighlightPen

wxPen * GetHighlightPen()

Returns the pen used to draw 3D effect highlights. This is set when SetHighlightColour is
called.

wxTabView::GetHorizontalTabOffset

int GetHorizontalTabOffset()

Returns the horizontal spacing by which each tab layer is offset from the one below.

wxTabView::GetNumberOfLayers

int GetNumberOfLayers()

Returns the number of layers (rows of tabs).

wxTabView::GetSelectedTabFont

wxFont * GetSelectedTabFont()

Returns the font to be used for the selected tab label.

wxTabView::GetShadowColour

wxColour GetShadowColour()

Returns the colour used for shadows on the right-hand side of '3D' surfaces. By default,
this is dark grey.

wxTabView::GetTabHeight

int GetTabHeight()

Returns the tab default height.

wxTabView::GetTabFont

wxFont * GetTabFont()

CHAPTER 5

1216

Returns the tab label font.

wxTabView::GetTabSelectionHeight

int GetTabSelectionHeight()

Returns the height to be used for the currently selected tab; normally a few pixels higher
than the other tabs.

wxTabView::GetTabStyle

long GetTabStyle()

Returns the tab style. See constructor documentation for details of valid styles.

wxTabView::GetTabWidth

int GetTabWidth()

Returns the tab default width.

wxTabView::GetTextColour

wxColour GetTextColour()

Returns the colour used to draw label text. By default, this is black.

wxTabView::GetTopMargin

int GetTopMargin()

Returns the height between the top of the view area and the bottom of the first row of
tabs.

wxTabView::GetShadowPen

wxPen * GetShadowPen()

Returns the pen used to draw 3D effect shadows. This is set when SetShadowColour is
called.

CHAPTER 5

1217

wxTabView::GetViewRect

wxRectangle GetViewRect()

Returns the rectangle specifying the view area (above which tabs are placed).

wxTabView::GetVerticalTabTextSpacing

int GetVerticalTabTextSpacing()

Returns the vertical spacing between the top of an unselected tab, and the tab label.

wxTabView::GetWindow

wwxWindow * GetWindow()

Returns the window for the view.

wxTabView::OnCreateTabControl

wxTabControl * OnCreateTabControl()

Creates a new tab control. By default, this returns a wxTabControl object, but the
application may wish to define a derived class, in which case the tab view should be
subclassed and this function overridden.

wxTabView::LayoutTabs

void LayoutTabs()

Recalculates the positions of the tabs, and adjusts the layer of the selected tab if
necessary.

You may want to call this function if the view width has changed (for example, from an
OnSize handler).

wxTabView::OnEvent

bool OnEvent(wxMouseEvent& event)

Processes mouse events sent from the panel or dialog. Returns TRUE if the event was
processed, FALSE otherwise.

CHAPTER 5

1218

wxTabView::OnTabActivate

void OnTabActivate(int activateId, int deactivateId)

Called when a tab is activated, with the new active tab id, and the former active tab id.

wxTabView::OnTabPreActivate

bool OnTabPreActivate(int activateId, int deactivateId)

Called just before a tab is activated, with the new active tab id, and the former active tab
id.

If the function returns FALSE, the tab is not activated.

wxTabView::SetBackgroundColour

void SetBackgroundColour(const wxColour& col)

Sets the colour to be used for each tab background. By default, this is light grey. To
ensure a match with the dialog or panel background, omit the
wxTAB_STYLE_COLOUR_INTERIOR flag from the wxTabView constructor.

wxTabView::SetHighlightColour

void SetHighlightColour(const wxColour& col)

Sets the colour to be used for bright highlights on the left side of '3D' surfaces. By
default, this is white.

wxTabView::SetHorizontalTabOffset

void SetHorizontalTabOffset(int offset)

Sets the horizontal spacing by which each tab layer is offset from the one below.

wxTabView::SetSelectedTabFont

void SetSelectedTabFont(wxFont *font)

Sets the font to be used for the selected tab label.

wxTabView::SetShadowColour

CHAPTER 5

1219

void SetShadowColour(const wxColour& col)

Sets the colour to be used for shadows on the right-hand side of '3D' surfaces. By
default, this is dark grey.

wxTabView::SetTabFont

void SetTabFont(wxFont *font)

Sets the tab label font.

wxTabView::SetTabStyle

void SetTabStyle(long tabStyle)

Sets the tab style. See constructor documentation for details of valid styles.

wxTabView::SetTabSize

void SetTabSize(int width, int height)

Sets the tab default width and height.

wxTabView::SetTabSelectionHeight

void SetTabSelectionHeight(int height)

Sets the height to be used for the currently selected tab; normally a few pixels higher
than the other tabs.

wxTabView::SetTabSelection

void SetTabSelection(int sel, bool activateTool=TRUE)

Sets the selected tab, calling the application's OnTabActivate function.

If activateTool is FALSE, OnTabActivate will not be called.

wxTabView::SetTextColour

void SetTextColour(const wxColour& col)

CHAPTER 5

1220

Sets the colour to be used to draw label text. By default, this is black.

wxTabView::SetTopMargin

void SetTopMargin(int margin)

Sets the height between the top of the view area and the bottom of the first row of tabs.

wxTabView::SetVerticalTabTextSpacing

void SetVerticalTabTextSpacing(int spacing)

Sets the vertical spacing between the top of an unselected tab, and the tab label.

wxTabView::SetViewRect

void SetViewRect(const wxRectangle& rect)

Sets the rectangle specifying the view area (above which tabs are placed). This must be
set by the application.

wxTabView::SetWindow

void SetWindow(wxWindow *window)

Set the window that the tab view will use for drawing onto.

wwxxTTaabbCCttrrll

This class represents a tab control, which manages multiple tabs.

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/tabctrl.h>

CHAPTER 5

1221

See also

wxTabEvent (p. 1226), wxImageList (p. 710), wxNotebook (p. 887)

wxTabCtrl::wxTabCtrl

 wxTabCtrl()

Default constructor.

 wxTabCtrl(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size, long style = 0, const wxString& name =
"tabCtrl")

Constructs a tab control.

Parameters

parent

The parent window. Must be non-NULL.

id

The window identifier.

pos

The window position.

size

The window size.

style

The window style. Its value is a bit list of zero or more of wxTC_MULTILINE,
wxTC_RIGHTJUSTIFY, wxTC_FIXEDWIDTH and wxTC_OWNERDRAW.

wxTabCtrl::~wxTabCtrl

 ~wxTabCtrl()

Destroys the wxTabCtrl object.

wxTabCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size, long style = 0, const wxString& name =
"tabCtrl")

CHAPTER 5

1222

Creates a tab control. See wxTabCtrl::wxTabCtrl (p. 1221) for a description of the
parameters.

wxTabCtrl::DeleteAllItems

bool DeleteAllItems()

Deletes all tab items.

wxTabCtrl::DeleteItem

bool DeleteItem(int item)

Deletes the specified tab item.

wxTabCtrl::GetCurFocus

int GetCurFocus() const

Returns the index for the tab with the focus, or -1 if none has the focus.

wxTabCtrl::GetImageList

wxImageList* GetImageList() const

Returns the associated image list.

See also

wxImageList (p. 710), wxTabCtrl::SetImageList (p. 1225)

wxTabCtrl::GetItemCount

int GetItemCount() const

Returns the number of tabs in the tab control.

wxTabCtrl::GetItemData

void* GetItemData() const

Returns the client data for the given tab.

CHAPTER 5

1223

wxTabCtrl::GetItemImage

int GetItemImage() const

Returns the image index for the given tab.

wxTabCtrl::GetItemRect

bool GetItemRect(int item, wxRect& rect) const

Returns the rectangle bounding the given tab.

See also

wxRect (p. 1023)

wxTabCtrl::GetItemText

wxString GetItemText() const

Returns the string for the given tab.

wxTabCtrl::GetRowCount

int GetRowCount() const

Returns the number of rows in the tab control.

wxTabCtrl::GetSelection

int GetSelection() const

Returns the index for the currently selected tab.

See also

wxTabCtrl::SetSelection (p. 1225)

wxTabCtrl::HitTest

int HitTest(const wxPoint& pt, long& flags)

CHAPTER 5

1224

Tests whether a tab is at the specified position.

Parameters

pt

Specifies the point for the hit test.

flags

Return value for detailed information. One of the following values:

wxTAB_HITTEST_NOWHERE There was no tab under this point.
wxTAB_HITTEST_ONICON The point was over an icon.
wxTAB_HITTEST_ONLABEL The point was over a label.
wxTAB_HITTEST_ONITEM The point was over an item, but not on

the label or icon.

Return value

Returns the zero-based tab index or -1 if no tab is at the specified position.

wxTabCtrl::InsertItem

void InsertItem(int item, const wxString& text, int imageId = -1, void* clientData =
NULL)

Inserts a new tab.

Parameters

item

Specifies the index for the new item.

text

Specifies the text for the new item.

imageId

Specifies the optional image index for the new item.

clientData

Specifies the optional client data for the new item.

Return value

TRUE if successful, FALSE otherwise.

wxTabCtrl::SetItemData

CHAPTER 5

1225

bool SetItemData(int item, void* data)

Sets the client data for a tab.

wxTabCtrl::SetItemImage

bool SetItemImage(int item, int image)

Sets the image index for the given tab. image is an index into the image list which was
set with wxTabCtrl::SetImageList (p. 1225).

wxTabCtrl::SetImageList

void SetImageList(wxImageList* imageList)

Sets the image list for the tab control.

See also

wxImageList (p. 710)

wxTabCtrl::SetItemSize

void SetItemSize(const wxSize& size)

Sets the width and height of the tabs.

wxTabCtrl::SetItemText

bool SetItemText(int item, const wxString& text)

Sets the text for the given tab.

wxTabCtrl::SetPadding

void SetPadding(const wxSize& padding)

Sets the amount of space around each tab's icon and label.

wxTabCtrl::SetSelection

int SetSelection(int item)

CHAPTER 5

1226

Sets the selection for the given tab, returning the index of the previously selected tab.
Returns -1 if the call was unsuccessful.

See also

wxTabCtrl::GetSelection (p. 1223)

wwxxTTaabbEEvveenntt

This class represents the events generated by a tab control.

Derived from

wxCommandEvent (p. 156)
wxEvent (p. 428)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/tabctrl.h>

Event table macros

To process a tab event, use these event handler macros to direct input to member
functions that take a wxTabEvent argument.

EVT_TAB_SEL_CHANGED(id, func) Process a wxEVT_TAB_SEL_CHANGED

event, indicating that the tab selection has
changed.

EVT_TAB_SEL_CHANGING(id, func) Process a wxEVT_TAB_SEL_CHANGING
event, indicating that the tab selection is
changing.

See also

wxTabCtrl (p. 1220)

wxTabEvent::wxTabEvent

 wxTabEvent(WXTYPE commandType = 0, int id = 0)

Constructor.

CHAPTER 5

1227

wwxxTTaasskkBBaarrIIccoonn

This class represents a Windows 95 taskbar icon, appearing in the 'system tray' and
responding to mouse clicks. An icon has an optional tooltip. This class is only supported
for Windows 95/NT.

Derived from

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/taskbar.h>

Event handling

To process input from a taskbar icon, use the following event handler macros to direct
input to member functions that take a wxTaskBarIconEvent argument.

EVT_TASKBAR_MOVE(func) Process a wxEVT_TASKBAR_MOVE event.
EVT_TASKBAR_LEFT_DOWN(func) Process a wxEVT_TASKBAR_LEFT_DOWN

event.
EVT_TASKBAR_LEFT_UP(func) Process a wxEVT_TASKBAR_LEFT_UP event.
EVT_TASKBAR_RIGHT_DOWN(func) Process a wxEVT_TASKBAR_RIGHT_DOWN

event.
EVT_TASKBAR_RIGHT_UP(func) Process a wxEVT_TASKBAR_RIGHT_UP

event.
EVT_TASKBAR_LEFT_DCLICK(func) Process a wxEVT_TASKBAR_LEFT_DCLICK

event.
EVT_TASKBAR_RIGHT_DCLICK(func)Process a wxEVT_TASKBAR_RIGHT_DCLICK

event.

wxTaskBarIcon::wxTaskBarIcon

 wxTaskBarIcon()

Default constructor.

wxTaskBarIcon::~wxTaskBarIcon

CHAPTER 5

1228

 ~wxTaskBarIcon()

Destroys the wxTaskBarIcon object, removing the icon if not already removed.

wxTaskBarIcon::IsIconInstalled

bool IsIconInstalled()

Returns TRUE if SetIcon (p. 1229) was called with no subsequent RemoveIcon (p.
1229).

wxTaskBarIcon::IsOK

bool IsOK()

Returns TRUE if the object initialized successfully.

wxTaskBarIcon::OnLButtonDown

virtual void OnLButtonDown()

Override this function to intercept left mouse button down events.

wxTaskBarIcon::OnLButtonDClick

virtual void OnLButtonDClick()

Override this function to intercept left mouse button double-click events.

wxTaskBarIcon::OnLButtonUp

virtual void OnLButtonUp()

Override this function to intercept left mouse button up events.

wxTaskBarIcon::OnRButtonDown

virtual void OnRButtonDown()

Override this function to intercept right mouse button down events.

wxTaskBarIcon::OnRButtonDClick

CHAPTER 5

1229

virtual void OnRButtonDClick()

Override this function to intercept right mouse button double-click events.

wxTaskBarIcon::OnRButtonUp

virtual void OnRButtonUp()

Override this function to intercept right mouse button up events.

wxTaskBarIcon::OnMouseMove

virtual void OnMouseMove()

Override this function to intercept mouse move events.

wxTaskBarIcon::RemoveIcon

bool RemoveIcon()

Removes the icon previously set with SetIcon (p. 1229).

wxTaskBarIcon::SetIcon

bool SetIcon(const wxIcon& icon, const wxString& tooltip)

Sets the icon, and optional tooltip text.

wwxxTTCCPPCClliieenntt

A wxTCPClient object represents the client part of a client-server conversation. It
emulates a DDE-style protocol, but uses TCP/IP which is available on most platforms.

A DDE-based implementation for Windows is available using wxDDEClient (p. 347).

To create a client which can communicate with a suitable server, you need to derive a
class from wxTCPConnection and another from wxTCPClient. The custom
wxTCPConnection class will intercept communications in a 'conversation' with a server,
and the custom wxTCPServer is required so that a user-overridden
wxTCPClient::OnMakeConnection (p. 1230) member can return a wxTCPConnection of
the required class, when a connection is made.

CHAPTER 5

1230

Derived from

wxClientBase
wxObject (p. 897)

Include files

<wx/sckipc.h>

See also

wxTCPServer (p. 1235), wxTCPConnection (p. 1231), Interprocess communications
overview (p. 1646)

wxTCPClient::wxTCPClient

 wxTCPClient()

Constructs a client object.

wxTCPClient::MakeConnection

wxConnectionBase * MakeConnection(const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server specified by the host (a machine name under
Unix), service name (must contain an integer port number under Unix), and a topic
string. If the server allows a connection, a wxTCPConnection object will be returned. The
type of wxTCPConnection returned can be altered by overriding the
wxTCPClient::OnMakeConnection (p. 1230) member to return your own derived
connection object.

wxTCPClient::OnMakeConnection

wxConnectionBase * OnMakeConnection()

The type of wxTCPConnection (p. 1231) returned from a wxTCPClient::MakeConnection
(p. 1230) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxTCPConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxTCPConnection::OnAdvise (p.
1233). You may also want to store application-specific data in instances of the new
class.

CHAPTER 5

1231

wxTCPClient::ValidHost

bool ValidHost(const wxString& host)

Returns TRUE if this is a valid host name, FALSE otherwise.

wwxxTTCCPPCCoonnnneeccttiioonn

A wxTCPClient object represents the connection between a client and a server. It
emulates a DDE-style protocol, but uses TCP/IP which is available on most platforms.

A DDE-based implementation for Windows is available using wxDDEConnection (p.
348).

A wxTCPConnection object can be created by making a connection using a
wxTCPClient (p. 1229) object, or by the acceptance of a connection by a wxTCPServer
(p. 1235) object. The bulk of a conversation is controlled by calling members in a
wxTCPConnection object or by overriding its members.

An application should normally derive a new connection class from wxTCPConnection,
in order to override the communication event handlers to do something interesting.

Derived from

wxConnectionBase
wxObject (p. 897)

Include files

<wx/sckipc.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat
{
 wxIPC_INVALID = 0,
 wxIPC_TEXT = 1, /* CF_TEXT */
 wxIPC_BITMAP = 2, /* CF_BITMAP */
 wxIPC_METAFILE = 3, /* CF_METAFILEPICT */
 wxIPC_SYLK = 4,
 wxIPC_DIF = 5,
 wxIPC_TIFF = 6,
 wxIPC_OEMTEXT = 7, /* CF_OEMTEXT */
 wxIPC_DIB = 8, /* CF_DIB */

CHAPTER 5

1232

 wxIPC_PALETTE = 9,
 wxIPC_PENDATA = 10,
 wxIPC_RIFF = 11,
 wxIPC_WAVE = 12,
 wxIPC_UNICODETEXT = 13,
 wxIPC_ENHMETAFILE = 14,
 wxIPC_FILENAME = 15, /* CF_HDROP */
 wxIPC_LOCALE = 16,
 wxIPC_PRIVATE = 20
};

See also

wxTCPClient (p. 1229), wxTCPServer (p. 1235), Interprocess communications overview
(p. 1646)

wxTCPConnection::wxTCPConnection

 wxTCPConnection()

 wxTCPConnection(char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxTCPConnection, then the constructor should not be called directly, since the
default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxTCPServer::OnAcceptConnection (p. 1236) and/or wxTCPClient::OnMakeConnection
(p. 1230) members should be replaced by functions which construct the new connection
object. If the arguments of the wxTCPConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

wxTCPConnection::Advise

bool Advise(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxTCPConnection::OnAdvise (p.
1233) member to be called. Returns TRUE if successful.

wxTCPConnection::Execute

bool Execute (char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used

CHAPTER 5

1233

to transfer arbitrary data to the server (similar to wxTCPConnection::Poke (p. 1234) in
that respect). Causes the server connection's wxTCPConnection::OnExecute (p. 1233)
member to be called. Returns TRUE if successful.

wxTCPConnection::Disconnect

bool Disconnect()

Called by the client or server application to disconnect from the other program; it causes
the wxTCPConnection::OnDisconnect (p. 1233) message to be sent to the
corresponding connection object in the other program. The default behaviour of
OnDisconnect is to delete the connection, but the calling application must explicitly
delete its side of the connection having called Disconnect. Returns TRUE if successful.

wxTCPConnection::OnAdvise

virtual bool OnAdvise(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

wxTCPConnection::OnDisconnect

virtual bool OnDisconnect()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.

wxTCPConnection::OnExecute

virtual bool OnExecute (const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.

wxTCPConnection::OnPoke

virtual bool OnPoke(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

CHAPTER 5

1234

wxTCPConnection::OnRequest

virtual char* OnRequest(const wxString& topic, const wxString& item, int *size,
wxIPCFormat format)

Message sent to the server application when the client calls wxTCPConnection::Request
(p. 1234). The server should respond by returning a character string from OnRequest,
or NULL to indicate no data.

wxTCPConnection::OnStartAdvise

virtual bool OnStartAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning FALSE.

wxTCPConnection::OnStopAdvise

virtual bool OnStopAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning FALSE, although this doesn't have much meaning in practice.

wxTCPConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxTCPConnection::OnPoke
(p. 1233) member to be called. Returns TRUE if successful.

wxTCPConnection::Request

char* Request(const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxTCPConnection::OnRequest (p. 1234) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL
otherwise.

wxTCPConnection::StartAdvise

CHAPTER 5

1235

bool StartAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxTCPConnection::OnStartAdvise (p. 1234) member to
be called. Returns TRUE if the server okays it, FALSE otherwise.

wxTCPConnection::StopAdvise

bool StopAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxTCPConnection::OnStopAdvise (p. 1234) member to be called.
Returns TRUE if the server okays it, FALSE otherwise.

wwxxTTCCPPSSeerrvveerr

A wxTCPServer object represents the server part of a client-server conversation. It
emulates a DDE-style protocol, but uses TCP/IP which is available on most platforms.

A DDE-based implementation for Windows is available using wxDDEServer (p. 352).

Derived from

wxServerBase
wxObject (p. 897)

Include files

<wx/sckipc.h>

See also

wxTCPClient (p. 1229), wxTCPConnection (p. 1231), IPC overview (p. 1646)

wxTCPServer::wxTCPServer

 wxTCPServer()

Constructs a server object.

wxTCPServer::Create

CHAPTER 5

1236

bool Create (const wxString& service)

Registers the server using the given service name. Under Unix, the string must contain
an integer id which is used as an Internet port number. FALSE is returned if the call
failed (for example, the port number is already in use).

wxTCPServer::OnAcceptConnection

virtual wxConnectionBase * OnAcceptConnection(const wxString& topic)

When a client calls MakeConnection, the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxTCPConnection type, or of a user-
derived type. If the topic is "STDIO'', the application may wish to refuse the connection.
Under Unix, when a server is created the OnAcceptConnection message is always sent
for standard input and output.

wwxxTTeemmppFFiillee

wxTempFile provides a relatively safe way to replace the contents of the existing file.
The name is explained by the fact that it may be also used as just a temporary file if you
don't replace the old file contents.

Usually, when a program replaces the contents of some file it first opens it for writing,
thus losing all of the old data and then starts recreating it. This approach is not very safe
because during the regeneration of the file bad things may happen: the program may
find that there is an internal error preventing it from completing file generation, the user
may interrupt it (especially if file generation takes long time) and, finally, any other
external interrupts (power supply failure or a disk error) will leave you without either the
original file or the new one.

wxTempFile addresses this problem by creating a temporary file which is meant to
replace the original file - but only after it is fully written. So, if the user interrupts the
program during the file generation, the old file won't be lost. Also, if the program
discovers itself that it doesn't want to replace the old file there is no problem - in fact,
wxTempFile will not replace the old file by default, you should explicitly call Commit (p.
1238) to do it. Calling Discard (p. 1238) explicitly discards any modifications: it closes
and deletes the temporary file and leaves the original file unchanged. If you don't call
neither of Commit() and Discard(), the destructor will call Discard() automatically.

To summarize: if you want to replace another file, create an instance of wxTempFile
passing the name of the file to be replaced to the constructor (you may also use default
constructor and pass the file name to Open (p. 1237)). Then you can write (p. 1237) to
wxTempFile using wxFile (p. 449)-like functions and later call Commit() to replace the
old file (and close this one) or call Discard() to cancel the modifications.

CHAPTER 5

1237

Derived from

No base class

Include files

<wx/file.h>

See also:

wxFile (p. 449)

wxTempFile::wxTempFile

 wxTempFile()

Default constructor - Open (p. 1237) must be used to open the file.

wxTempFile::wxTempFile

 wxTempFile(const wxString& strName)

Associates wxTempFile with the file to be replaced and opens it. You should use
IsOpened (p. 1237) to verify if the constructor succeeded.

wxTempFile::Open

bool Open(const wxString& strName)

Open the temporary file (strName is the name of file to be replaced), returns TRUE on
success, FALSE if an error occurred.

wxTempFile::IsOpened

bool IsOpened() const

Returns TRUE if the file was successfully opened.

wxTempFile::Write

bool Write(const void *p, size_t n)

CHAPTER 5

1238

Write to the file, return TRUE on success, FALSE on failure.

wxTempFile::Write

bool Write(const wxString& str, wxMBConv& conv = wxConvLibc)

Write to the file, return TRUE on success, FALSE on failure.

The second argument is only meaningful in Unicode build of wxWindows whenconv is
used to convert str to multibyte representation.

wxTempFile::Commit

bool Commit()

Validate changes: deletes the old file of name m_strName and renames the new file to
the old name. Returns TRUE if both actions succeeded. If FALSE is returned it may
unfortunately mean two quite different things: either that either the old file couldn't be
deleted or that the new file couldn't be renamed to the old name.

wxTempFile::Discard

void Discard()

Discard changes: the old file contents is not changed, temporary file is deleted.

wxTempFile::~wxTempFile

 ~wxTempFile()

Destructor calls Discard() (p. 1238) if temporary file is still opened.

wwxxTTeexxttAAttttrr

wxTextAttr represents the attributes, or style, for a range of text in a wxTextCtrl (p.
1240).

Derived from

No base class

Include files

CHAPTER 5

1239

<wx/textctrl.h>

wxTextAttr::wxTextAttr

 wxTextAttr()

 wxTextAttr(const wxColour& colText, const wxColour& colBack = wxNullColour,
const wxFont& font = wxNullFont)

The constructors initialize one or more of the text foreground and background colours
and font. The values not initialized in the constructor can be set later, otherwise
wxTextCtrl::SetStyle (p. 1254) will use the default values for them.

wxTextAttr::GetBackgroundColour

const wxColour& GetBackgroundColour() const

Return the background colour specified by this attribute.

wxTextAttr::GetFont

const wxFont& GetFont() const

Return the text font specified by this attribute.

wxTextAttr::GetTextColour

const wxColour& GetTextColour() const

Return the text colour specified by this attribute.

wxTextAttr::HasBackgroundColour

bool HasBackgroundColour() const

Returns TRUE if this style specifies the background colour to use.

wxTextAttr::HasFont

bool HasFont() const

CHAPTER 5

1240

Returns TRUE if this style specifies the font to use.

wxTextAttr::HasTextColour

bool HasTextColour() const

Returns TRUE if this style specifies the foreground colour to use.

wxTextAttr::IsDefault

bool IsDefault() const

Returns TRUE if this style specifies any non-default attributes.

wwxxTTeexxttCCttrrll

A text control allows text to be displayed and edited. It may be single line or multi-line.

Derived from

streambuf
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/textctrl.h>

Window styles

wxTE_PROCESS_ENTER The control will generate the message

wxEVENT_TYPE_TEXT_ENTER_COMMAND (otherwise
pressing <Enter> is either processed internally by the
control or used for navigation between dialog controls).

wxTE_PROCESS_TAB The control will receieve EVT_CHAR messages for TAB
pressed - normally, TAB is used for passing to the next
control in a dialog instead. For the control created with this
style, you can still use Ctrl-Enter to pass to the next control
from the keyboard.

wxTE_MULTILINE The text control allows multiple lines.
wxTE_PASSWORD The text will be echoed as asterisks.
wxTE_READONLY The text will not be user-editable.

CHAPTER 5

1241

wxTE_RICH Use rich text control under Win32, this allows to have more
than 64Kb of text in the control even under Win9x. This
style is ignored under other platforms.

wxTE_AUTO_URL Highlight the URLs and generate the wxTextUrlEvents
when mouse events occur over them. This style is
supported under Win32 only and requires wxTE_RICH.

wxTE_NOHIDESEL By default, the Windows text control doesn't show the
selection when it doesn't have focus - use this style to force
it to always show it. It doesn't do anything under other
platforms.

wxHSCROLL A horizontal scrollbar will be created. No effect under
GTK+.

See also window styles overview (p. 1567) andwxTextCtrl::wxTextCtrl (p. 1243).

wxTextCtrl styles

Multi-line text controls support the styles, i.e. provide a possibility to set colours and font
for individual characters in it (note that under Windows wxTE_RICH style is required for
style support). To use the styles you can either call SetDefaultStyle (p. 1252) before
inserting the text or call SetStyle (p. 1254) later to change the style of the text already in
the control (the first solution is much more efficient).

In either case, if the style doesn't specify some of the attributes (for example you only
want to set the text colour but without changing the font nor the text background), the
values of the default style will be used for them. If there is no default style, the attributes
of the text control itself are used.

So the following code correctly describes what it does: the second call to SetDefaultStyle
(p. 1252) doesn't change the text foreground colour (which stays red) while the last one
doesn't change the background colour (which stays grey):

 text->SetDefaultStyle(wxTextAttr(*wxRED));
 text->AppendText("Red text\n");
 text->SetDefaultStyle(wxTextAttr(wxNullColour, *wxLIGHT_GREY));
 text->AppendText("Red on grey text\n");
 text->SetDefaultStyle(wxTextAttr(*wxBLUE);
 text->AppendText("Blue on grey text\n");

wxTextCtrl and C++ streams

This class multiply-inherits from streambuf where compilers allow, allowing code such
as the following:

 wxTextCtrl *control = new wxTextCtrl(...);

 ostream stream(control)

 stream << 123.456 << " some text\n";

CHAPTER 5

1242

 stream.flush();

If your compiler does not support derivation from streambuf and gives a compile error,
define the symbol NO_TEXT_WINDOW_STREAM in the wxTextCtrl header file.

Note that independently of this setting you can always use wxTextCtrl itself in a stream-
like manner:

 wxTextCtrl *control = new wxTextCtrl(...);

 *control << 123.456 << " some text\n";

always works. However the possibility to create an ostream associated with wxTextCtrl
may be useful if you need to redirect the output of a function taking an ostream as
parameter to a text control.

Another commonly requested need is to redirect std::cout to the text control. This could
be done in the following way:

 #include <iostream>

 wxTextCtrl *control = new wxTextCtrl(...);

 std::streambuf *sbOld = std::cout.rdbuf();
 std::cout.rdbuf(*control);

 // use cout as usual, the output appears in the text control
 ...

 std::cout.rdbuf(sbOld);

But wxWindows provides a convenient class to make it even simpler so instead you may
just do

 #include <iostream>

 wxTextCtrl *control = new wxTextCtrl(...);

 wxStreamToTextRedirector redirect(control);

 // all output to cout goes into the text control until the exit from
current
 // scope

See wxStreamToTextRedirector (p. 1169) for more details.

Event handling

The following commands are processed by default event handlers in wxTextCtrl:
wxID_CUT, wxID_COPY, wxID_PASTE, wxID_UNDO, wxID_REDO. The associated UI
update events are also processed automatically, when the control has the focus.

CHAPTER 5

1243

To process input from a text control, use these event handler macros to direct input to
member functions that take a wxCommandEvent (p. 156) argument.

EVT_TEXT(id, func) Respond to a

wxEVT_COMMAND_TEXT_UPDATED event,
generated when the text changes. Notice that
this event will always be sent when the text
controls contents changes - whether this is due
to user input or comes from the program itself
(for example, if SetValue() is called)

EVT_TEXT_ENTER(id, func) Respond to a
wxEVT_COMMAND_TEXT_ENTER event,
generated when enter is pressed in a single-
line text control.

EVT_TEXT_URL(id, func) A mouse event occured over an URL in the text
control (Win32 only)

EVT_TEXT_MAXLEN(id, func) User tried to enter more text into the control
than the limit set bySetMaxLength (p. 1253).

wxTextCtrl::wxTextCtrl

 wxTextCtrl()

Default constructor.

 wxTextCtrl(wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "text")

Constructor, creating and showing a text control.

Parameters

parent

Parent window. Should not be NULL.

id

Control identifier. A value of -1 denotes a default value.

value

Default text value.

pos

Text control position.

size

Text control size.

CHAPTER 5

1244

style

Window style. See wxTextCtrl (p. 1240).

validator

Window validator.

name

Window name.

Remarks

The horizontal scrollbar (wxTE_HSCROLL style flag) will only be created for multi-line
text controls. Without a horizontal scrollbar, text lines that don't fit in the control's size will
be wrapped (but no newline character is inserted). Single line controls don't have a
horizontal scrollbar, the text is automatically scrolled so that the insertion point (p. 1246)
is always visible.

See also

wxTextCtrl::Create (p. 1246), wxValidator (p. 1348)

wxTextCtrl::~wxTextCtrl

 ~wxTextCtrl()

Destructor, destroying the text control.

wxTextCtrl::AppendText

void AppendText(const wxString& text)

Appends the text to the end of the text control.

Parameters

text

Text to write to the text control.

Remarks

After the text is appended, the insertion point will be at the end of the text control. If this
behaviour is not desired, the programmer should use GetInsertionPoint (p. 1246) and
SetInsertionPoint (p. 1253).

See also

wxTextCtrl::WriteText (p. 1255)

CHAPTER 5

1245

wxTextCtrl::CanCopy

virtual bool CanCopy()

Returns TRUE if the selection can be copied to the clipboard.

wxTextCtrl::CanCut

virtual bool CanCut()

Returns TRUE if the selection can be cut to the clipboard.

wxTextCtrl::CanPaste

virtual bool CanPaste ()

Returns TRUE if the contents of the clipboard can be pasted into the text control. On
some platforms (Motif, GTK) this is an approximation and returns TRUE if the control is
editable, FALSE otherwise.

wxTextCtrl::CanRedo

virtual bool CanRedo()

Returns TRUE if there is a redo facility available and the last operation can be redone.

wxTextCtrl::CanUndo

virtual bool CanUndo()

Returns TRUE if there is an undo facility available and the last operation can be undone.

wxTextCtrl::Clear

virtual void Clear()

Clears the text in the control.

wxTextCtrl::Copy

virtual void Copy()

CHAPTER 5

1246

Copies the selected text to the clipboard under Motif and MS Windows.

wxTextCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "text")

Creates the text control for two-step construction. Derived classes should call or replace
this function. See wxTextCtrl::wxTextCtrl (p. 1243) for further details.

wxTextCtrl::Cut

virtual void Cut()

Copies the selected text to the clipboard and removes the selection.

wxTextCtrl::DiscardEdits

void DiscardEdits()

Resets the internal 'modified' flag as if the current edits had been saved.

wxTextCtrl::GetDefaultStyle

const wxTextAttr& GetDefaultStyle() const

Returns the style currently used for the new text.

See also

SetDefaultStyle (p. 1252)

wxTextCtrl::GetInsertionPoint

virtual long GetInsertionPoint() const

Returns the insertion point. This is defined as the zero based index of the character
position to the right of the insertion point. For example, if the insertion point is at the end
of the text control, it is equal to both GetValue() (p. 1248).Length() andGetLastPosition()
(p. 1247).

The following code snippet safely returns the character at the insertion point or the zero
character if the point is at the end of the control.

CHAPTER 5

1247

 char GetCurrentChar(wxTextCtrl *tc) {
 if (tc->GetInsertionPoint() == tc->GetLastPosition())
 return '\0';
 return tc->GetValue[tc->GetInsertionPoint()];
 }

wxTextCtrl::GetLastPosition

virtual long GetLastPosition() const

Returns the zero based index of the last position in the text control, which is equal to the
number of characters in the control.

wxTextCtrl::GetLineLength

int GetLineLength(long lineNo) const

Gets the length of the specified line, not including any trailing newline character(s).

Parameters

lineNo

Line number (starting from zero).

Return value

The length of the line, or -1 if lineNo was invalid.

wxTextCtrl::GetLineText

wxString GetLineText(long lineNo) const

Returns the contents of a given line in the text control, not including any trailing newline
character(s).

Parameters

lineNo

The line number, starting from zero.

Return value

The contents of the line.

wxTextCtrl::GetNumberOfLines

CHAPTER 5

1248

int GetNumberOfLines() const

Returns the number of lines in the text control buffer.

Remarks

Note that even empty text controls have one line (where the insertion point is), so
GetNumberOfLines() never returns 0.

For gtk_text (multi-line) controls, the number of lines is calculated by actually counting
newline characters in the buffer. You may wish to avoid using functions that work with
line numbers if you are working with controls that contain large amounts of text.

wxTextCtrl::GetSelection

virtual void GetSelection(long* from, long* to)

Gets the current selection span. If the returned values are equal, there was no selection.

Please note that the indices returned may be used with the other wxTextctrl methods but
don't necessarily represent the correct indices into the string returned by GetValue() (p.
1248) for multiline controls under Windows (at least,) you should
useGetStringSelection() (p. 1248) to get the selected text.

Parameters

from

The returned first position.

to

The returned last position.

wxPython note: The wxPython version of this method returns a tuple consisting of the
from and to values.

wxPerl note: In wxPerl this method takes no parameter and returns a 2-element list (
from, to).

wxTextCtrl::GetStringSelection

virtual wxString GetStringSelection()

Gets the text currently selected in the control. If there is no selection, the returned string
is empty.

wxTextCtrl::GetValue

CHAPTER 5

1249

wxString GetValue() const

Gets the contents of the control. Notice that for a multiline text control, the lines will be
separated by (Unix-style) \n characters, even under Windows where they are separated
by a \r\n sequence in the native control.

wxTextCtrl::IsModified

bool IsModified() const

Returns TRUE if the text has been modified.

wxTextCtrl::LoadFile

bool LoadFile(const wxString& filename)

Loads and displays the named file, if it exists.

Parameters

filename

The filename of the file to load.

Return value

TRUE if successful, FALSE otherwise.

wxTextCtrl::OnChar

void OnChar(wxKeyEvent& event)

Default handler for character input.

Remarks

It is possible to intercept character input by overriding this member. Call this function to
let the default behaviour take place; not calling it results in the character being ignored.
You can replace the keyCode member of event to translate keystrokes.

Note that Windows and Motif have different ways of implementing the default behaviour.
In Windows, calling wxTextCtrl::OnChar immediately processes the character. In Motif,
calling this function simply sets a flag to let default processing happen. This might affect
the way in which you write your OnChar function on different platforms.

See also

CHAPTER 5

1250

wxKeyEvent (p. 733)

wxTextCtrl::OnDropFiles

void OnDropFiles(wxDropFilesEvent& event)

This event handler function implements default drag and drop behaviour, which is to load
the first dropped file into the control.

Parameters

event

The drop files event.

Remarks

This is not implemented on non-Windows platforms.

See also

wxDropFilesEvent (p. 417)

wxTextCtrl::Paste

virtual void Paste()

Pastes text from the clipboard to the text item.

wxTextCtrl::PositionToXY

bool PositionToXY(long pos, long *x, long *y) const

Converts given position to a zero-based column, line number pair.

Parameters

pos

Position.

x

Receives zero based column number.

y

Receives zero based line number.

Return value

CHAPTER 5

1251

TRUE on success, FALSE on failure (most likely due to a too large position parameter).

See also

wxTextCtrl::XYToPosition (p. 1256)

wxPython note: In Python, PositionToXY() returns a tuple containing the x and y
values, so (x,y) = PositionToXY() is equivalent to the call described above.

wxPerl note: In wxPerl this method only takes the pos parameter, and returns a 2-
element list (x, y).

wxTextCtrl::Redo

virtual void Redo()

If there is a redo facility and the last operation can be redone, redoes the last operation.
Does nothing if there is no redo facility.

wxTextCtrl::Remove

virtual void Remove(long from, long to)

Removes the text starting at the first given position up to (but not including) the character
at the last position.

Parameters

from

The first position.

to

The last position.

wxTextCtrl::Replace

virtual void Replace(long from, long to, const wxString& value)

Replaces the text starting at the first position up to (but not including) the character at
the last position with the given text.

Parameters

from

The first position.

to

CHAPTER 5

1252

The last position.

value

The value to replace the existing text with.

wxTextCtrl::SaveFile

bool SaveFile(const wxString& filename)

Saves the contents of the control in a text file.

Parameters

filename

The name of the file in which to save the text.

Return value

TRUE if the operation was successful, FALSE otherwise.

wxTextCtrl::SetDefaultStyle

bool SetDefaultStyle(const wxTextAttr& style)

Changes the default style to use for the new text which is going to be added to the
control using WriteText (p. 1255) or AppendText (p. 1244).

If either of the font, foreground, or background colour is not set in style, the values of the
previous default style are used for them. If the previous default style didn't set them
neither, the global font or colours of the text control itself are used as fall back.

However if the style parameter is the default wxTextAttr, then the default style is just
reset (instead of being combined with the new style which wouldn't change it at all).

Parameters

style

The style for the new text.

Return value

TRUE on success, FALSE if an error occured - may also mean that the styles are not
supported under this platform.

See also

GetDefaultStyle (p. 1246)

CHAPTER 5

1253

wxTextCtrl::SetEditable

virtual void SetEditable (const bool editable)

Makes the text item editable or read-only, overriding the wxTE_READONLY flag.

Parameters

editable

If TRUE, the control is editable. If FALSE, the control is read-only.

wxTextCtrl::SetInsertionPoint

virtual void SetInsertionPoint(long pos)

Sets the insertion point at the given position.

Parameters

pos

Position to set.

wxTextCtrl::SetInsertionPointEnd

virtual void SetInsertionPointEnd()

Sets the insertion point at the end of the text control. This is equivalent to
SetInsertionPoint (p. 1253)(GetLastPosition (p. 1247)()).

wxTextCtrl::SetMaxLength

virtual void SetMaxLength(unsigned long len)

This function sets the maximum number of characters the user can enter into the control.
In other words, it allows to limit the text value length to lennot counting the terminating
NUL character.

If len is 0, the previously set max length limi, if any, is discarded and the user may enter
as much text as the underlying native text control widget supports (typically at least
32Kb).

If the user tries to enter more characters into the text control when it already is filled up
to the maximal length, awxEVT_COMMAND_TEXT_MAXLEN event is sent to notify the
program about it (giving it the possibility to show an explanatory message, for example)
and the extra input is discarded.

CHAPTER 5

1254

Note that this function may only be used with single line text controls.

Compatibility

Only implemented in wxMSW/wxGTK starting with wxWindows 2.3.2.

wxTextCtrl::SetSelection

virtual void SetSelection(long from, long to)

Selects the text starting at the first position up to (but not including) the character at the
last position.

Parameters

from

The first position.

to

The last position.

wxTextCtrl::SetStyle

bool SetStyle(long start, long end, const wxTextAttr& style)

Changes the style of the selection. If either of the font, foreground, or background colour
is not set in style, the values of GetDefaultStyle() (p. 1246) are used.

Parameters

start

The start of selection to change.

end

The end of selection to change.

style

The new style for the selection.

Return value

TRUE on success, FALSE if an error occured - may also mean that the styles are not
supported under this platform.

wxTextCtrl::SetValue

virtual void SetValue(const wxString& value)

CHAPTER 5

1255

Sets the text value and marks the control as not-modified.

Parameters

value

The new value to set. It may contain newline characters if the text control is multi-
line.

wxTextCtrl::ShowPosition

void ShowPosition(long pos)

Makes the line containing the given position visible.

Parameters

pos

The position that should be visible.

wxTextCtrl::Undo

virtual void Undo()

If there is an undo facility and the last operation can be undone, undoes the last
operation. Does nothing if there is no undo facility.

wxTextCtrl::WriteText

void WriteText(const wxString& text)

Writes the text into the text control at the current insertion position.

Parameters

text

Text to write to the text control.

Remarks

Newlines in the text string are the only control characters allowed, and they will cause
appropriate line breaks. See wxTextCtrl::<< (p. 1256) and wxTextCtrl::AppendText (p.
1244) for more convenient ways of writing to the window.

After the write operation, the insertion point will be at the end of the inserted text, so
subsequent write operations will be appended. To append text after the user may have
interacted with the control, call wxTextCtrl::SetInsertionPointEnd (p. 1253) before writing.

CHAPTER 5

1256

wxTextCtrl::XYToPosition

long XYToPosition(long x, long y)

Converts the given zero based column and line number to a position.

Parameters

x

The column number.

y

The line number.

Return value

The position value.

wxTextCtrl::operator <<

wxTextCtrl& operator <<(const wxString& s)

wxTextCtrl& operator <<(int i)

wxTextCtrl& operator <<(long i)

wxTextCtrl& operator <<(float f)

wxTextCtrl& operator <<(double d)

wxTextCtrl& operator <<(char c)

Operator definitions for appending to a text control, for example:

 wxTextCtrl *wnd = new wxTextCtrl(my_frame);

 (*wnd) << "Welcome to text control number " << 1 << ".\n";

wwxxTTeexxttDDaattaaOObbjjeecctt

wxTextDataObject is a specialization of wxDataObject for text data. It can be used
without change to paste data into the wxClipboard (p. 124) or a wxDropSource (p. 419).
A user may wish to derive a new class from this class for providing text on-demand in
order to minimize memory consumption when offering data in several formats, such as

CHAPTER 5

1257

plain text and RTF because by default the text is stored in a string in this class, but it
might as well be generated when requested. For this, GetTextLength (p. 1257) and
GetText (p. 1258) will have to be overridden.

Note that if you already have the text inside a string, you will not achieve any efficiency
gain by overriding these functions because copying wxStrings is already a very efficient
operation (data is not actually copied because wxStrings are reference counted).

wxPython note: If you wish to create a derived wxTextDataObject class in wxPython
you should derive the class from wxPyTextDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but all of the data transfer functions may be overridden to
increase efficiency.

Derived from

wxDataObjectSimple (p. 285)
wxDataObject (p. 204)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1619), wxDataObject (p. 204),
wxDataObjectSimple (p. 285), wxFileDataObject (p. 460), wxBitmapDataObject (p. 77)

wxTextDataObject::wxTextDataObject

 wxTextDataObject(const wxString& text = wxEmptyString)

Constructor, may be used to initialise the text (otherwise SetText (p. 1258) should be
used later).

wxTextDataObject::GetTextLength

virtual size_t GetTextLength() const

Returns the data size. By default, returns the size of the text data set in the constructor
or using SetText (p. 1258). This can be overridden to provide text size data on-demand.
It is recommended to return the text length plus 1 for a trailing zero, but this is not strictly
required.

CHAPTER 5

1258

wxTextDataObject::GetText

virtual wxString GetText() const

Returns the text associated with the data object. You may wish to override this method
when offering data on-demand, but this is not required by wxWindows' internals. Use this
method to get data in text form from the wxClipboard (p. 124).

wxTextDataObject::SetText

virtual void SetText(const wxString& strText)

Sets the text associated with the data object. This method is called when the data object
receives the data and, by default, copies the text into the member variable. If you want to
process the text on the fly you may wish to override this function.

wwxxTTeexxttIInnppuuttSSttrreeaamm

This class provides functions that read text datas using an input stream. So, you can
read text floats, integers.

The wxTextInputStream correctly reads text files (or streams) in DOS, Macintosh and
Unix formats and reports a single newline char as a line ending.

Operator >> is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
int on 32-bit architectures) so that you cannot use long. To avoid problems (here and
elsewhere), make use of wxInt32, wxUint32 and similar types.

For example:

 wxFileInputStream input("mytext.txt");
 wxTextInputStream text(input);
 wxUint8 i1;
 float f2;
 wxString line;

 text >> i1; // read a 8 bit integer.
 text >> i1 >> f2; // read a 8 bit integer followed by float.
 text >> line; // read a text line

Include files

<wx/txtstrm.h>

CHAPTER 5

1259

wxTextInputStream::wxTextInputStream

 wxTextInputStream(wxInputStream& stream)

Constructs a text stream object from an input stream. Only read methods will be
available.

Parameters

stream

The input stream.

wxTextInputStream::~wxTextInputStream

 ~wxTextInputStream()

Destroys the wxTextInputStream object.

wxTextInputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

wxTextInputStream::Read16

wxUint16 Read16()

Reads a 16 bit integer from the stream.

wxTextInputStream::Read32

wxUint16 Read32()

Reads a 32 bit integer from the stream.

wxTextInputStream::ReadDouble

double ReadDouble ()

CHAPTER 5

1260

Reads a double (IEEE encoded) from the stream.

wxTextInputStream::ReadLine

wxString wxTextInputStream::ReadLine()

Reads a line from the input stream and returns it (without the end of line character).

wxTextInputStream::ReadString

wxString wxTextInputStream::ReadString()

NB: This method is deprecated, use ReadLine (p. 1260) or ReadWord (p. 1260)
instead.

Same as ReadLine (p. 1260).

wxTextInputStream::ReadWord

wxString wxTextInputStream::ReadWord()

Reads a word (a sequence of characters until the next separator) from the input stream.

See also

SetStringSeparators (p. 1260)

wxTextInputStream::SetStringSeparators

void SetStringSeparators(const wxString& sep)

Sets the characters which are used to define the word boundaries in ReadWord (p.
1260).

The default separators are the space and TAB characters.

wwxxTTeexxttOOuuttppuuttSSttrreeaamm

This class provides functions that write text datas using an output stream. So, you can
write text floats, integers.

You can also simulate the C++ cout class:

CHAPTER 5

1261

 wxFFileOutputStream output(stderr);
 wxTextOutputStream cout(output);

 cout << "This is a text line" << endl;
 cout << 1234;
 cout << 1.23456;

The wxTextOutputStream writes text files (or streams) on DOS, Macintosh and Unix in
their native formats (concerning the line ending).

wxTextOutputStream::wxTextOutputStream

 wxTextOutputStream(wxOutputStream& stream , wxEOL mode = wxEOL_NATIVE)

Constructs a text stream object from an output stream. Only write methods will be
available.

Parameters

stream

The output stream.

mode

The end-of-line mode. One of wxEOL_NATIVE, wxEOL_DOS, wxEOL_MAC and
wxEOL_UNIX.

wxTextOutputStream::~wxTextOutputStream

 ~wxTextOutputStream()

Destroys the wxTextOutputStream object.

wxTextOutputStream::GetMode

wxEOL wxTextOutputStream::GetMode ()

Returns the end-of-line mode. One of wxEOL_DOS, wxEOL_MAC and wxEOL_UNIX.

wxTextOutputStream::SetMode

void wxTextOutputStream::SetMode (wxEOL mode = wxEOL_NATIVE)

Set the end-of-line mode. One of wxEOL_NATIVE, wxEOL_DOS, wxEOL_MAC and
wxEOL_UNIX.

CHAPTER 5

1262

wxTextOutputStream::Write8

void wxTextOutputStream::Write8(wxUint8 i8)

Writes the single byte i8 to the stream.

wxTextOutputStream::Write16

void wxTextOutputStream::Write16(wxUint16 i16)

Writes the 16 bit integer i16 to the stream.

wxTextOutputStream::Write32

void wxTextOutputStream::Write32(wxUint32 i32)

Writes the 32 bit integer i32 to the stream.

wxTextOutputStream::WriteDouble

virtual void wxTextOutputStream::WriteDouble (double f)

Writes the double f to the stream using the IEEE format.

wxTextOutputStream::WriteString

virtual void wxTextOutputStream::WriteString(const wxString& string)

Writes string as a line. Depending on the end-of-line mode, it adds \n, \r or \r\n.

wwxxTTeexxttEEnnttrryyDDiiaalloogg

This class represents a dialog that requests a one-line text string from the user. It is
implemented as a generic wxWindows dialog.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)

CHAPTER 5

1263

wxObject (p. 897)

Include files

<wx/textdlg.h>

See also

wxTextEntryDialog overview (p. 1598)

wxTextEntryDialog::wxTextEntryDialog

 wxTextEntryDialog(wxWindow* parent, const wxString& message, const
wxString& caption = "Please enter text", const wxString& defaultValue = "", long style
= wxOK | wxCANCEL | wxCENTRE, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxTextEntryDialog::ShowModal (p. 1264) to show the dialog.

Parameters

parent

Parent window.

message

Message to show on the dialog.

defaultValue

The default value, which may be the empty string.

style

A dialog style, specifying the buttons (wxOK, wxCANCEL) and an optional
wxCENTRE style. Additionally, wxTextCtrl styles (such aswxTE_PASSWORD may
be specified here.

pos

Dialog position.

wxTextEntryDialog::~wxTextEntryDialog

 ~wxTextEntryDialog()

Destructor.

wxTextEntryDialog::GetValue

CHAPTER 5

1264

wxString GetValue() const

Returns the text that the user has entered if the user has pressed OK, or the original
value if the user has pressed Cancel.

wxTextEntryDialog::SetValue

void SetValue(const wxString& value)

Sets the default text value.

wxTextEntryDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wwxxTTeexxttDDrrooppTTaarrggeett

A predefined drop target for dealing with text data.

Derived from

wxDropTarget (p. 421)

Include files

<wx/dnd.h>

See also

Drag and drop overview (p. 1619), wxDropSource (p. 419), wxDropTarget (p. 421),
wxFileDropTarget (p. 466)

wxTextDropTarget::wxTextDropTarget

 wxTextDropTarget()

Constructor.

CHAPTER 5

1265

wxTextDropTarget::OnDrop

virtual bool OnDrop(long x, long y, const void *data, size_t size)

See wxDropTarget::OnDrop (p. 423). This function is implemented appropriately for text,
and calls wxTextDropTarget::OnDropText (p. 1265).

wxTextDropTarget::OnDropText

virtual bool OnDropText(long x, long y, const char *data)

Override this function to receive dropped text.

Parameters

x

The x coordinate of the mouse.

y

The y coordinate of the mouse.

data

The data being dropped: a NULL-terminated string.

Return value

Return TRUE to accept the data, FALSE to veto the operation.

wwxxTTiimmeeSSppaann

wxTimeSpan class represents a time interval.

Derived from

No base class

Include files

<wx/datetime.h>

See also

Date classes overview (p. 1532), wxDateTime (p. 299)

CHAPTER 5

1266

Static functions

Constructors

wxTimeSpan()
wxTimeSpan(hours, min, sec, msec) (p. 1265)

Accessors

Operations

Tests

Formatting time spans

Format (p. 1266)

wxTimeSpan::Format

wxString Format(const wxChar * format = "%H:%M:%S")

Returns the string containing the formatted representation of the time span. The
following format specifiers are allowed after %:

H number of Hours
M number of Minutes
S number of Seconds
l number of milliseconds
D number of Days
E number of wEeks
% the percent character

Note that, for example, the number of hours in the description above is not well defined:
it can be either the total number of hours (for example, for a time span of 50 hours this
would be 50) or just the hour part of the time span, which would be 2 in this case as 50
hours is equal to 2 days and2 hours.

wxTimeSpan resolves this ambiguity in the following way: if there had been, indeed, the
%D format specified preceding the %H, then it is interpreted as 2. Otherwise, it is 50.

CHAPTER 5

1267

The same applies to all other format specifiers: if they follow a specifier of larger unit,
only the rest part is taken, otherwise the full value is used.

wwxxTTeexxttVVaalliiddaattoorr

wxTextValidator validates text controls, providing a variety of filtering behaviours.

For more information, please see Validator overview (p. 1571).

Derived from

wxValidator (p. 1348)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/valtext.h>

See also

Validator overview (p. 1571), wxValidator (p. 1348),wxGenericValidator (p. 555)

wxTextValidator::wxTextValidator

 wxTextValidator(const wxTextValidator& validator)

Copy constructor.

 wxTextValidator(long style = wxFILTER_NONE, wxString* valPtr = NULL)

Constructor, taking a style and optional pointer to a wxString variable.

Parameters

style

A bitlist of flags, which can be:

wxFILTER_NONE No filtering takes place.
wxFILTER_ASCII Non-ASCII characters are filtered out.
wxFILTER_ALPHA Non-alpha characters are filtered out.
wxFILTER_ALPHANUMERIC Non-alphanumeric characters are filtered out.
wxFILTER_NUMERIC Non-numeric characters are filtered out.

CHAPTER 5

1268

wxFILTER_INCLUDE_LIST Use an include list. The validator checks if the user
input is on the list, complaining if not.

wxFILTER_EXCLUDE_LIST Use an exclude list. The validator checks if the user
input is on the list, complaining if it is.

valPtr

A pointer to a wxString variable that contains the value. This variable should have
a lifetime equal to or longer than the validator lifetime (which is usually determined
by the lifetime of the window). If NULL, the validator uses its own internal storage
for the value.

wxTextValidator::~wxTextValidator

 ~wxTextValidator()

Destructor.

wxTextValidator::Clone

virtual wxValidator* Clone() const

Clones the text validator using the copy constructor.

wxTextValidator::GetExcludeList

wxStringList& GetExcludeList() const

Returns a reference to the exclude list (the list of invalid values).

wxTextValidator::GetIncludeList

wxStringList& GetIncludeList() const

Returns a reference to the include list (the list of valid values).

wxTextValidator::GetStyle

long GetStyle() const

Returns the validator style.

wxTextValidator::OnChar

CHAPTER 5

1269

void OnChar(wxKeyEvent& event)

Receives character input from the window and filters it according to the current validator
style.

wxTextValidator::SetExcludeList

void SetExcludeList(const wxStringList& stringList)

Sets the exclude list (invalid values for the user input).

wxTextValidator::SetIncludeList

void SetIncludeList(const wxStringList& stringList)

Sets the include list (valid values for the user input).

wxTextValidator::SetStyle

void SetStyle(long style)

Sets the validator style.

wxTextValidator::TransferFromWindow

virtual bool TransferFromWindow()

Transfers the string value to the window.

wxTextValidator::TransferToWindow

virtual bool TransferToWindow()

Transfers the window value to the string.

wxTextValidator::Validate

virtual bool Validate(wxWindow* parent)

Validates the window contents against the include or exclude lists, depending on the
validator style.

CHAPTER 5

1270

wwxxTTeexxttFFiillee

The wxTextFile is a simple class which allows to work with text files on line by line basis.
It also understands the differences in line termination characters under different
platforms and will not do anything bad to files with "non native" line termination
sequences - in fact, it can be also used to modify the text files and change the line
termination characters from one type (say DOS) to another (say Unix).

One word of warning: the class is not at all optimized for big files and so it will load the
file entirely into memory when opened. Of course, you should not work in this way with
large files (as an estimation, anything over 1 Megabyte is surely too big for this class).
On the other hand, it is not a serious limitation for the small files like configuration files or
programs sources which are well handled by wxTextFile.

The typical things you may do with wxTextFile in order are:

 • Create and open it: this is done with either Create (p. 1272) or Open (p. 1275)

function which opens the file (name may be specified either as the argument to
these functions or in the constructor), reads its contents in memory (in the case
of Open()) and closes it.

 • Work with the lines in the file: this may be done either with "direct access"
functions like GetLineCount (p. 1272) and GetLine (p. 1272) (operator[] does
exactly the same but looks more like array addressing) or with "sequential
access" functions which include GetFirstLine (p. 1273)/GetNextLine (p. 1274)
and also GetLastLine (p. 1274)/GetPrevLine (p. 1274). For the sequential
access functions the current line number is maintained: it is returned by
GetCurrentLine (p. 1273) and may be changed with GoToLine (p. 1273).

 • Add/remove lines to the file: AddLine (p. 1271) and InsertLine (p. 1275) add new
lines while RemoveLine (p. 1275) deletes the existing ones.

 • Save your changes: notice that the changes you make to the file will not be
saved automatically; calling Close (p. 1271) or doing nothing discards them! To
save the changes you must explicitly call Write (p. 1275) - here, you may also
change the line termination type if you wish.

Derived from

No base class

Include files

<wx/textfile.h>

Data structures

The following constants identify the line termination type:

enum wxTextFileType
{
 wxTextFileType_None, // incomplete (the last line of the file

CHAPTER 5

1271

only)
 wxTextFileType_Unix, // line is terminated with 'LF' = 0xA = 10 =
'\n'
 wxTextFileType_Dos, // 'CR' 'LF'
 wxTextFileType_Mac // 'CR' = 0xD = 13 =
'\r'
};

See also

wxFile (p. 449)

wxTextFile::wxTextFile

 wxTextFile () const

Default constructor, use Create (p. 1272) or Open (p. 1275) with a file name parameter
to initialize the object.

wxTextFile::wxTextFile

 wxTextFile (const wxString& strFile) const

Constructor does not load the file into memory, use Open() to do it.

wxTextFile::~wxTextFile

 ~wxTextFile() const

Destructor does nothing.

wxTextFile::AddLine

void AddLine(const wxString& str, wxTextFileType type = typeDefault) const

Adds a line to the end of file.

wxTextFile::Close

bool Close() const

Closes the file and frees memory, losing all changes. Use Write() (p. 1275) if you want
to save them.

CHAPTER 5

1272

wxTextFile::Create

bool Create () const

bool Create (const wxString& strFile) const

Creates the file with the given name or the name which was given in theconstructor (p.
1271). The array of file lines is initially empty.

It will fail if the file already exists, Open (p. 1275) should be used in this case.

wxTextFile::Exists

bool Exists() const

Return TRUE if file exists - the name of the file should have been specified in the
constructor before calling Exists().

wxTextFile::IsOpened

bool IsOpened() const

Returns TRUE if the file is currently opened.

wxTextFile::GetLineCount

size_t GetLineCount() const

Get the number of lines in the file.

wxTextFile::GetLine

wxString& GetLine (size_t n) const

Retrieves the line number n from the file. The returned line may be modified but you
shouldn't add line terminator at the end - this will be done by wxTextFile.

wxTextFile::operator[]

wxString& operator[](size_t n) const

The same as GetLine (p. 1272).

CHAPTER 5

1273

wxTextFile::GetCurrentLine

size_t GetCurrentLine () const

Returns the current line: it has meaning only when you're using
GetFirstLine()/GetNextLine() functions, it doesn't get updated when you're using "direct
access" functions like GetLine(). GetFirstLine() and GetLastLine() also change the value
of the current line, as well as GoToLine().

wxTextFile::GoToLine

void GoToLine (size_t n) const

Changes the value returned by GetCurrentLine (p. 1273) and used by GetFirstLine() (p.
1273)/GetNextLine() (p. 1274).

wxTextFile::Eof

bool Eof() const

Returns TRUE if the current line is the last one.

wxTextFile::GetEOL

static const char* GetEOL(wxTextFileType type = typeDefault) const

Get the line termination string corresponding to given constant. typeDefault is the value
defined during the compilation and corresponds to the native format of the platform, i.e. it
will be wxTextFileType_Dos under Windows, wxTextFileType_Unix under Unix
(including Mac OS X when compiling with the Apple Developer Tools) and
wxTextFileType_Mac under Mac OS (including Mac OS X when compiling with
CodeWarrior).

wxTextFile::GetFirstLine

wxString& GetFirstLine () const

This method together with GetNextLine() (p. 1274) allows more "iterator-like" traversal
of the list of lines, i.e. you may write something like:

wxTextFile file;
...
for (str = file.GetFirstLine(); !file.Eof(); str = file.GetNextLine()
)

CHAPTER 5

1274

{
 // do something with the current line in str
}
// do something with the last line in str

wxTextFile::GetNextLine

wxString& GetNextLine ()

Gets the next line (see GetFirstLine (p. 1273) for the example).

wxTextFile::GetPrevLine

wxString& GetPrevLine ()

Gets the previous line in the file.

wxTextFile::GetLastLine

wxString& GetLastLine()

Gets the last line of the file. Together with GetPrevLine (p. 1274) it allows to enumerate
the lines in the file from the end to the beginning like this:

wxTextFile file;
...
for (str = file.GetLastLine();
 file.GetCurrentLine() > 0;
 str = file.GetPrevLine())
{
 // do something with the current line in str
}
// do something with the first line in str

wxTextFile::GetLineType

wxTextFileType GetLineType(size_t n) const

Get the type of the line (see also GetEOL (p. 1273))

wxTextFile::GuessType

wxTextFileType GuessType() const

Guess the type of file (which is supposed to be opened). If sufficiently many lines of the
file are in DOS/Unix/Mac format, the corresponding value will be returned. If the

CHAPTER 5

1275

detection mechanism fails wxTextFileType_None is returned.

wxTextFile::GetName

const char* GetName () const

Get the name of the file.

wxTextFile::InsertLine

void InsertLine (const wxString& str, size_t n, wxTextFileType type = typeDefault)
const

Insert a line before the line number n.

wxTextFile::Open

bool Open(wxMBConv& conv = wxConvLibc) const

bool Open(const wxString& strFile, wxMBConv& conv = wxConvLibc) const

Open() opens the file with the given name or the name which was given in
theconstructor (p. 1271) and also loads file in memory on success. It will fail if the file
does not exist, Create (p. 1272) should be used in this case.

The conv argument is only meaningful in Unicode build of wxWindows when it is used to
convert the file to wide character representation.

wxTextFile::RemoveLine

void RemoveLine (size_t n) const

Delete line number n from the file.

wxTextFile::Write

bool Write(wxTextFileType typeNew = wxTextFileType_None, wxMBConv& conv =
wxConvLibc) const

Change the file on disk. The typeNew parameter allows you to change the file format
(default argument means "don't change type") and may be used to convert, for example,
DOS files to Unix.

The conv argument is only meaningful in Unicode build of wxWindows when it is used to
convert all lines to multibyte representation before writing them them to physical file.

CHAPTER 5

1276

Returns TRUE if operation succeeded, FALSE if it failed.

wwxxTThhrreeaadd

A thread is basically a path of execution through a program. Threads are sometimes
called light-weight processes, but the fundamental difference between threads and
processes is that memory spaces of different processes are separated while all threads
share the same address space. While it makes it much easier to share common data
between several threads, it also makes much easier to shoot oneself in the foot, so
careful use of synchronization objects such as mutexes (p. 881) and/or critical sections
(p. 185) is recommended.

There are two types of threads in wxWindows: detached and joinableones, just as in the
POSIX thread API (but unlike Win32 threads where all threads are joinable). The
difference between the two is that only joinable threads can return a return code - this is
returned by the Wait() function. Detached threads (the default type) cannot be waited for.

You shouldn't hurry to create all the threads joinable, however, because this has a
disadvantage as well: you must Wait() for a joinable thread or the system resources
used by it will never be freed, and you also must delete the corresponding wxThread
object yourself. In contrast, detached threads are of the "fire-and-forget" kind: you only
have to start a detached thread and it will terminate and destroy itself.

This means, of course, that all detached threads must be created on the heap because
the thread will call delete this; upon termination. Joinable threads may be created
on the stack although more usually they will be created on the heap as well. Don't create
global thread objects because they allocate memory in their constructor, which will
cause problems for the memory checking system.

Derived from

None.

Include files

<wx/thread.h>

See also

wxMutex (p. 881), wxCondition (p. 164), wxCriticalSection (p. 185)

wxThread::wxThread

CHAPTER 5

1277

 wxThread(wxThreadKind kind = wxTHREAD_DETACHED)

This constructor creates a new detached (default) or joinable C++ thread object. It does
not create or start execution of the real thread - for this you should use the Create (p.
1277) and Run (p. 1281) methods.

The possible values for kind parameters are:

wxTHREAD_DETACHED Create a detached thread.
wxTHREAD_JOINABLE Create a joinable thread

wxThread::~wxThread

 ~wxThread()

The destructor frees the resources associated with the thread. Notice that you should
never delete a detached thread - you may only call Delete (p. 1277) on it or wait until it
terminates (and auto destructs) itself. Because the detached threads delete themselves,
they can only be allocated on the heap.

Joinable threads should be deleted explicitly. The Delete (p. 1277) and Kill (p. 1280)
functions will not delete the C++ thread object. It is also safe to allocate them on stack.

wxThread::Create

wxThreadError Create ()

Creates a new thread. The thread object is created in the suspended state, and you
should call Run (p. 1281) to start running it.

Return value

One of:

wxTHREAD_NO_ERROR There was no error.
wxTHREAD_NO_RESOURCE There were insufficient resources to create a

new thread.
wxTHREAD_RUNNING The thread is already running.

wxThread::Delete

void Delete()

Calling Delete (p. 1277) is a graceful way to terminate the thread. It asks the thread to
terminate and, if the thread code is well written, the thread will terminate after the next

CHAPTER 5

1278

call to TestDestroy (p. 1282) which should happen quite soon.

However, if the thread doesn't call TestDestroy (p. 1282) often enough (or at all), the
function will not return immediately, but wait until the thread terminates. As it may take a
long time, and the message processing is not stopped during this function execution,
message handlers may be called from inside it!

Delete() may be called for thread in any state: running, paused or even not yet created.
Moreover, it must be called if Create (p. 1277) or Run (p. 1281) failed for a detached
thread to free the memory occupied by the thread object. This cleanup will be done in
the destructor for joinable threads.

Delete() may be called for a thread in any state: running, paused or even not yet
created. Moreover, it must be called if Create (p. 1277) or Run (p. 1281) fail to free the
memory occupied by the thread object. However, you should not call Delete() on a
detached thread which already terminated - doing so will probably result in a crash
because the thread object doesn't exist any more.

For detached threads Delete() will also delete the C++ thread object, but it will not do
this for joinable ones.

This function can only be called from another thread context.

wxThread::Entry

virtual ExitCode Entry()

This is the entry point of the thread. This function is pure virtual and must be
implemented by any derived class. The thread execution will start here.

The returned value is the thread exit code which is only useful for joinable threads and is
the value returned by Wait (p. 1282).

This function is called by wxWindows itself and should never be called directly.

wxThread::Exit

void Exit(ExitCode exitcode = 0)

This is a protected function of the wxThread class and thus can only be called from a
derived class. It also can only be called in the context of this thread, i.e. a thread can
only exit from itself, not from another thread.

This function will terminate the OS thread (i.e. stop the associated path of execution)
and also delete the associated C++ object for detached threads. wxThread::OnExit (p.
1280) will be called just before exiting.

CHAPTER 5

1279

wxThread::GetCPUCount

static int GetCPUCount()

Returns the number of system CPUs or -1 if the value is unknown.

See also

SetConcurrency (p. 1282)

wxThread::GetId

unsigned long GetId() const

Gets the thread identifier: this is a platform dependent number that uniquely identifies
the thread throughout the system during its existence (i.e. the thread identifiers may be
reused).

wxThread::GetPriority

int GetPriority() const

Gets the priority of the thread, between zero and 100.

The following priorities are defined:

WXTHREAD_MIN_PRIORITY 0
WXTHREAD_DEFAULT_PRIORITY 50
WXTHREAD_MAX_PRIORITY 100

wxThread::IsAlive

bool IsAlive() const

Returns TRUE if the thread is alive (i.e. started and not terminating).

wxThread::IsDetached

bool IsDetached() const

Returns TRUE if the thread is of the detached kind, FALSE if it is a joinable one.

wxThread::IsMain

CHAPTER 5

1280

static bool IsMain()

Returns TRUE if the calling thread is the main application thread.

wxThread::IsPaused

bool IsPaused() const

Returns TRUE if the thread is paused.

wxThread::IsRunning

bool IsRunning() const

Returns TRUE if the thread is running.

wxThread::Kill

wxThreadError Kill()

Immediately terminates the target thread. This function is dangerous and should be
used with extreme care (and not used at all whenever possible)! The resources
allocated to the thread will not be freed and the state of the C runtime library may
become inconsistent. Use Delete() (p. 1277) instead.

For detached threads Kill() will also delete the associated C++ object. However this will
not happen for joinable threads and this means that you will still have to delete the
wxThread object yourself to avoid memory leaks. In neither case OnExit (p. 1280) of the
dying thread will be called, so no thread-specific cleanup will be performed.

This function can only be called from another thread context, i.e. a thread cannot kill
itself.

It is also an error to call this function for a thread which is not running or paused (in the
latter case, the thread will be resumed first) - if you do it, a wxTHREAD_NOT_RUNNING
error will be returned.

wxThread::OnExit

void OnExit()

Called when the thread exits. This function is called in the context of the thread
associated with the wxThread object, not in the context of the main thread. This function
will not be called if the thread was killed (p. 1280).

CHAPTER 5

1281

This function should never be called directly.

wxThread::Pause

wxThreadError Pause()

Suspends the thread. Under some implementations (Win32), the thread is suspended
immediately, under others it will only be suspended when it calls TestDestroy (p. 1282)
for the next time (hence, if the thread doesn't call it at all, it won't be suspended).

This function can only be called from another thread context.

wxThread::Run

wxThreadError Run()

Starts the thread execution. Should be called after Create (p. 1277).

This function can only be called from another thread context.

wxThread::SetPriority

void SetPriority(int priority)

Sets the priority of the thread, between 0 and 100. It can only be set after calling
Create() (p. 1277) but before calling Run() (p. 1281).

The following priorities are already defined:

WXTHREAD_MIN_PRIORITY 0
WXTHREAD_DEFAULT_PRIORITY 50
WXTHREAD_MAX_PRIORITY 100

wxThread::Sleep

static void Sleep(unsigned long milliseconds)

Pauses the thread execution for the given amount of time.

This function should be used instead of wxSleep (p. 1473) by all worker threads (i.e. all
except the main one).

wxThread::Resume

CHAPTER 5

1282

wxThreadError Resume()

Resumes a thread suspended by the call to Pause (p. 1281).

This function can only be called from another thread context.

wxThread::SetConcurrency

static bool SetConcurrency(size_t level)

Sets the thread concurrency level for this process. This is, roughly, the number of
threads that the system tries to schedule to run in parallel. The value of 0 for level may
be used to set the default one.

Returns TRUE on success or FALSE otherwise (for example, if this function is not
implemented for this platform - currently everything except Solaris).

wxThread::TestDestroy

bool TestDestroy()

This function should be called periodically by the thread to ensure that calls to Pause (p.
1281) and Delete (p. 1277) will work. If it returns TRUE, the thread should exit as soon
as possible.

wxThread::This

static wxThread * This()

Return the thread object for the calling thread. NULL is returned if the calling thread is
the main (GUI) thread, but IsMain (p. 1279) should be used to test whether the thread is
really the main one because NULL may also be returned for the thread not created with
wxThread class. Generally speaking, the return value for such a thread is undefined.

wxThread::Yield

void Yield()

Give the rest of the thread time slice to the system allowing the other threads to run. See
also Sleep() (p. 1281).

wxThread::Wait

ExitCode Wait() const

CHAPTER 5

1283

Waits until the thread terminates and returns its exit code or (ExitCode)-1 on error.

You can only Wait() for joinable (not detached) threads.

This function can only be called from another thread context.

wwxxTTiimmee

Representation of time and date.

NOTE: this class is retained only for compatibility, and has been replaced by
wxDateTime (p. 299). wxTime may be withdrawn in future versions of wxWindows.

Derived from

wxObject (p. 897)

Include files

<wx/time.h>

Data structures

typedef unsigned short hourTy;
typedef unsigned short minuteTy;
typedef unsigned short secondTy;
typedef unsigned long clockTy;
enum tFormat { wx12h, wx24h };
enum tPrecision { wxStdMinSec, wxStdMin };

See also

wxDate (p. 291)

wxTime::wxTime

 wxTime()

Initialize the object using the current time.

 wxTime(clockTy s)

Initialize the object using the number of seconds that have elapsed since ???.

 wxTime(const wxTime& time)

CHAPTER 5

1284

Copy constructor.

 wxTime(hourTy h, minuteTy m, secondTy s = 0, bool dst = FALSE)

Initialize using hours, minutes, seconds, and whether DST time.

 wxTime(const wxDate& date, hourTy h = 0, minuteTy m = 0, secondTy s = 0, bool
dst = FALSE)

Initialize using a wxDate (p. 291) object, hours, minutes, seconds, and whether DST
time.

wxTime::GetDay

int GetDay() const

Returns the day of the month.

wxTime::GetDayOfWeek

int GetDayOfWeek() const

Returns the day of the week, a number from 0 to 6 where 0 is Sunday and 6 is Saturday.

wxTime::GetHour

hourTy GetHour() const

Returns the hour in local time.

wxTime::GetHourGMT

hourTy GetHourGMT() const

Returns the hour in GMT.

wxTime::GetMinute

minuteTy GetMinute () const

Returns the minute in local time.

wxTime::GetMinuteGMT

CHAPTER 5

1285

minuteTy GetMinuteGMT() const

Returns the minute in GMT.

wxTime::GetMonth

int GetMonth() const

Returns the month.

wxTime::GetSecond

secondTy GetSecond() const

Returns the second in local time or GMT.

wxTime::GetSecondGMT

secondTy GetSecondGMT() const

Returns the second in GMT.

wxTime::GetSeconds

clockTy GetSeconds() const

Returns the number of seconds since ???.

wxTime::GetYear

int GetYear() const

Returns the year.

wxTime::FormatTime

char* FormatTime () const

Formats the time according to the current formatting options: see wxTime::SetFormat (p.
1286).

CHAPTER 5

1286

wxTime::IsBetween

bool IsBetween(const wxTime& a, const wxTime& b) const

Returns TRUE if this time is between the two given times.

wxTime::Max

wxTime Max(const wxTime& time) const

Returns the maximum of the two times.

wxTime::Min

wxTime Min(const wxTime& time) const

Returns the minimum of the two times.

wxTime::SetFormat

static void SetFormat(const tFormat format = wx12h, const tPrecision precision =
wxStdMinSec)

Sets the format and precision.

wxTime::operator char*

operator char*()

Returns a pointer to a static char* containing the formatted time.

wxTime::operator wxDate

operator wxDate() const

Converts the wxTime into a wxDate.

wxTime::operator =

void operator =(const wxTime& t)

Assignment operator.

CHAPTER 5

1287

wxTime::operator <

bool operator <(const wxTime& t) const

Less than operator.

wxTime::operator <=

bool operator <=(const wxTime& t) const

Less than or equal to operator.

wxTime::operator >

bool operator >(const wxTime& t) const

Greater than operator.

wxTime::operator >=

bool operator >=(const wxTime& t) const

Greater than or equal to operator.

wxTime::operator ==

bool operator ==(const wxTime& t) const

Equality operator.

wxTime::operator !=

bool operator !=(const wxTime& t) const

Inequality operator.

wxTime::operator +

bool operator +(long sec) const

Addition operator.

CHAPTER 5

1288

wxTime::operator -

bool operator -(long sec) const

Subtraction operator.

wxTime::operator +=

bool operator +=(long sec) const

Increment operator.

wxTime::operator -=

bool operator -=(long sec) const

Decrement operator.

wwxxTTiimmeerr

The wxTimer class allows you to execute code at specified intervals. Its precision is
platform-dependent, but in general will not be better than 1ms nor worse than 1s.

There are two different ways to use this class:

 1. You may derive a new class from wxTimer and override the Notify (p. 1290)

member to perform the required action.
 2. Or you may redirect the notifications to any wxEvtHandler (p. 432) derived

object by using the non default constructor or SetOwner (p. 1290). Then use
EVT_TIMER macro to connect it to the event handler which will receive
wxTimerEvent (p. 1290) notifications.

In any case, you must start the timer with Start (p. 1290) after constructing it before it
actually starts sending notifications. It can be stopped later with Stop (p. 1290).

Derived from

wxObject (p. 897)

Include files

<wx/timer.h>

See also

CHAPTER 5

1289

::wxStartTimer (p. 1493), ::wxGetElapsedTime (p. 1492), wxStopWatch (p. 1160)

wxTimer::wxTimer

 wxTimer()

Default constructor. If you use it to construct the object and don't call SetOwner (p. 1290)
later, you must override Notify (p. 1290) method to process the notifications.

 wxTimer(wxEvtHandler *owner, int id = -1)

Creates a timer and associates it with owner. Please see SetOwner (p. 1290) for the
description of parameters.

wxTimer::~wxTimer

 ~wxTimer()

Destructor. Stops the timer if it is running.

wxTimer::GetInterval

wxtimergetinterval

int GetInterval() const

Returns the current interval for the timer (in milliseconds).

wxTimer::IsOneShot

bool IsOneShot() const

Returns TRUE if the timer is one shot, i.e. if it will stop after firing the first notification
automatically.

wxTimer::IsRunning

bool IsRunning() const

Returns TRUE if the timer is running, FALSE if it is stopped.

CHAPTER 5

1290

wxTimer::Notify

void Notify()

This member should be overridden by the user if the default constructor was used and
SetOwner (p. 1290) wasn't called.

Perform whatever action which is to be taken periodically here.

wxTimer::SetOwner

void SetOwner(wxEvtHandler *owner, int id = -1)

Associates the timer with the given owner object. When the timer is running, the owner
will receive timer events (p. 1290) with id equal to id specified here.

wxTimer::Start

bool Start(int milliseconds = -1, bool oneShot=FALSE)

(Re)starts the timer. If milliseconds parameter is -1 (value by default), the previous value
is used. Returns FALSE if the timer could not be started, TRUE otherwise (in MS
Windows timers are a limited resource).

If oneShot is FALSE (the default), the Notify (p. 1290) function will be called repeatedly
until the timer is stopped. If TRUE, it will be called only once and the timer will stop
automatically.

If the timer was already running, it will be stopped by this method before restarting it.

wxTimer::Stop

void Stop()

Stops the timer.

wwxxTTiimmeerrEEvveenntt

wxTimerEvent object is passed to the event handler of timer events.

For example:

class MyFrame : public wxFrame
{

CHAPTER 5

1291

public:
 ...
 void OnTimer(wxTimerEvent& event);

private:
 wxTimer m_timer;
};

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_TIMER(TIMER_ID, MyFrame::OnTimer)
END_EVENT_TABLE()

MyFrame::MyFrame()
 : m_timer(this, TIMER_ID)
{
 m_timer.Start(1000); // 1 second interval
}

void MyFrame::OnTimer(wxTimerEvent& event)
{
 // do whatever you want to do every second here
}

Include files

<wx/timer.h>

See also

wxTimer (p. 1288)

wxTimerEvent::GetInterval

int GetInterval() const

Returns the interval of the timer which generated this event.

wwxxTTiippPPrroovviiddeerr

This is the class used together with wxShowTip (p. 1450) function. It must implement
GetTip (p. 1292) function and return the current tip from it (different tip each time it is
called).

You will never use this class yourself, but you need it to show startup tips with
wxShowTip. Also, if you want to get the tips text from elsewhere than a simple text file,

CHAPTER 5

1292

you will want to derive a new class from wxTipProvider and use it instead of the one
returned by wxCreateFileTipProvider (p. 1443).

Derived from

None.

Include files

<wx/tipdlg.h>

See also

Startup tips overview (p. 1616), ::wxShowTip (p. 1450)

wxTipProvider::wxTipProvider

 wxTipProvider(size_t currentTip)

Constructor.

currentTip

The starting tip index.

wxTipProvider::GetTip

wxString GetTip()

Return the text of the current tip and pass to the next one. This function is pure virtual, it
should be implemented in the derived classes.

wxCurrentTipProvider::GetCurrentTip

size_t GetCurrentTip() const

Returns the index of the current tip (i.e. the one which would be returned by GetTip).

The program usually remembers the value returned by this function after calling
wxShowTip (p. 1450). Note that it is not the same as the value which was passed to
wxShowTip + 1 because the user might have pressed the "Next" button in the tip dialog.

wwxxTTiippWWiinnddooww

CHAPTER 5

1293

Shows simple text in a popup tip window on creation. This is used by
wxSimpleHelpProvider (p. 1078) to show popup help. The window automatically
destroys itself when the user clicks on it or it loses the focus.

You should not normally need to use it explicitly in your application since a help provider
class will create it when required.

Derived from

wxPopupTransientWindow
wxPopupWindow
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/tipwin.h>

wxTipWindow::wxTipWindow

 wxTipWindow(wxWindow* parent, const wxString& text, wxCoord maxLength =
100)

Constructor. The tip is shown immediately the window is constructed.

wxTipWindow::Adjust

void Adjust(const wxString& text, wxCoord maxLength)

Calculates the client rect we need to display the text.

wwxxTToogggglleeBBuuttttoonn

wxToggleButton is a button that stays pressed when clicked by the user. In other words,
it is similar to wxCheckBox (p. 111) in functionality but looks like a wxButton (p. 91).

You can see wxToggleButton in action in the sixth page of the controls (p. 1516) sample.

NB: This class is only available under wxMSW and wxGTK currently.

Derived from

CHAPTER 5

1294

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/tglbtn.h>

Window styles

There are no special styles for wxToggleButton.

See also window styles overview (p. 1567).

Event handling

EVT_TOGGLEBUTTON(id, func) Handles button click event.

See also

wxCheckBox (p. 111), wxButton (p. 91)

wxToggleButton::wxToggleButton

 wxToggleButton()

Default constructor.

 wxToggleButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a toggle button.

Parameters

parent

Parent window. Must not be NULL.

id

Toggle button identifier. A value of -1 indicates a default value.

label

Text to be displayed next to the toggle button.

CHAPTER 5

1295

pos

Toggle button position. If the position (-1, -1) is specified then a default position is
chosen.

size

Toggle button size. If the default size (-1, -1) is specified then a default size is
chosen.

style

Window style. See wxToggleButton (p. 1293).

validator

Window validator.

name

Window name.

See also

wxToggleButton::Create (p. 1295), wxValidator (p. 1348)

wxToggleButton::~wxToggleButton

 ~wxToggleButton()

Destructor, destroying the toggle button.

wxToggleButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the toggle button for two-step construction. See
wxToggleButton::wxToggleButton (p. 1294) for details.

wxToggleButton::GetValue

bool GetValue() const

Gets the state of the toggle button.

Return value

Returns TRUE if it is pressed, FALSE otherwise.

CHAPTER 5

1296

wxToggleButton::SetValue

void SetValue(const bool state)

Sets the toggle button to the given state. This does not cause a EVT_TOGGLEBUTTON
event to be emitted.

Parameters

state

If TRUE, the button is pressed.

wwxxTToooollBBaarr

The name wxToolBar is defined to be a synonym for one of the following classes:

 • wxToolBar95 The native Windows 95 toolbar. Used on Windows 95, NT 4 and

above.
 • wxToolBarMSW A Windows implementation. Used on 16-bit Windows.
 • wxToolBarGTK The GTK toolbar.
 • wxToolBarSimple A simple implementation, with scrolling. Used on platforms

with no native toolbar control, or where scrolling is required.

Note that the base class wxToolBarBase defines automatic scrolling management
functionality which is similar to wxScrolledWindow (p. 1070), so please refer to this class
also. Not all toolbars support scrolling, but wxToolBarSimple does.

Derived from

wxToolBarBase
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/toolbar.h> (to allow wxWindows to select an appropriate toolbar class)
<wx/tbarbase.h> (the base class)
<wx/tbarmsw.h> (the non-Windows 95 Windows toolbar class)
<wx/tbar95.h> (the Windows 95/98 toolbar class)
<wx/tbarsmpl.h> (the generic simple toolbar class)

Remarks

You may also create a toolbar that is managed by the frame, by calling

CHAPTER 5

1297

wxFrame::CreateToolBar (p. 529).

Due to the use of native toolbars on the various platforms, certain adaptions will often
have to be made in order to get optimal look on all platforms as some platforms ignore
the values for explicit placement and use their own layout and the meaning of a
"separator" is a vertical line under Windows95 vs. simple space under GTK etc.

wxToolBar95: Note that this toolbar paints tools to reflect user-selected colours. The
toolbar orientation must always be wxHORIZONTAL .

wxToolBarGtk: The toolbar orientation is ignored and is always wxHORIZONTAL .

Window styles

wxTB_FLAT Gives the toolbar a flat look ('coolbar' or 'flatbar' style).

Windows 95 and GTK 1.2 only.
wxTB_DOCKABLE Makes the toolbar floatable and dockable. GTK only.
wxTB_HORIZONTAL Specifies horizontal layout.
wxTB_VERTICAL Specifies vertical layout (not available for the GTK and

Windows 95 toolbar).
wxTB_3DBUTTONS Gives wxToolBarSimple a mild 3D look to its buttons.

See also window styles overview (p. 1567).

Event handling

The toolbar class emits menu commands in the same was that a frame menubar does,
so you can use one EVT_MENU macro for both a menu item and a toolbar button. The
event handler functions take a wxCommandEvent argument. For most event macros, the
identifier of the tool is passed, but for EVT_TOOL_ENTER the toolbar window is passed
and the tool id is retrieved from the wxCommandEvent. This is because the id may be -1
when the mouse moves off a tool, and -1 is not allowed as an identifier in the event
system.

Note that tool commands (and UI update events for tools) are first sent to the focus
window within the frame that contains the toolbar. If no window within the frame has the
focus, then the events are sent directly to the toolbar (and up the hierarchy to the frame,
depending on where the application has put its event handlers). This allows command
and UI update handling to be processed by specific windows and controls, and not
necessarily by the application frame.

EVT_TOOL(id, func) Process a

wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_MENU(id, func) The same as EVT_TOOL.
EVT_TOOL_RANGE(id1, id2, func) Process a

wxEVT_COMMAND_TOOL_CLICKED event
for a range id identifiers. Pass the ids of the

CHAPTER 5

1298

tools.
EVT_MENU_RANGE(id1, id2, func) The same as EVT_TOOL_RANGE.

EVT_TOOL_RCLICKED(id, func) Process a

wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

See also

Toolbar overview (p. 1610), wxScrolledWindow (p. 1070)

wxToolBar::wxToolBar

 wxToolBar()

Default constructor.

 wxToolBar(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTB_HORIZONTAL | wxNO_BORDER, const wxString& name = wxPanelNameStr)

Constructs a toolbar.

Parameters

parent

Pointer to a parent window.

id

Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that wxWindows
should generate a default position for the window. If using the wxWindow class
directly, supply an actual position.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxWindows should
generate a default size for the window.

CHAPTER 5

1299

style

Window style. See wxToolBar (p. 1296) for details.

name

Window name.

Remarks

After a toolbar is created, you use wxToolBar::AddTool (p. 1299) and perhaps
wxToolBar::AddSeparator (p. 1299), and then you must call wxToolBar::Realize (p.
1308) to construct and display the toolbar tools.

You may also create a toolbar that is managed by the frame, by calling
wxFrame::CreateToolBar (p. 529).

wxToolBar::~wxToolBar

void ~wxToolBar()

Toolbar destructor.

wxToolBar::AddControl

bool AddControl(wxControl* control)

Adds any control to the toolbar, typically e.g. a combobox.

control

The control to be added.

wxToolBar::AddSeparator

void AddSeparator()

Adds a separator for spacing groups of tools.

See also

wxToolBar::AddTool (p. 1299), wxToolBar::SetToolSeparation (p. 1311)

wxToolBar::AddTool

wxToolBarTool* AddTool(int toolId, const wxBitmap& bitmap1, const wxString&
shortHelpString = "", const wxString& longHelpString = "")

CHAPTER 5

1300

wxToolBarTool* AddTool(int toolId, const wxBitmap& bitmap1, const wxBitmap&
bitmap2 = wxNullBitmap, bool isToggle = FALSE, long xPos = -1, long yPos = -1,
wxObject* clientData = NULL, const wxString& shortHelpString = "", const wxString&
longHelpString = "")

Adds a tool to the toolbar. The first (short and most commonly used) version adds a
normal (and not a togglable) button without any associated client data.

Parameters

toolId

An integer by which the tool may be identified in subsequent operations.

isToggle

Specifies whether the tool is a toggle or not: a toggle tool may be in two states,
whereas a non-toggle tool is just a button.

bitmap1

The primary tool bitmap for toggle and button tools.

bitmap2

The second bitmap specifies the on-state bitmap for a toggle tool. If this is
wxNullBitmap, either an inverted version of the primary bitmap is used for the on-
state of a toggle tool (monochrome displays) or a black border is drawn around the
tool (colour displays) or the pixmap is shown as a pressed button (GTK).

xPos

Specifies the x position of the tool if automatic layout is not suitable.

yPos

Specifies the y position of the tool if automatic layout is not suitable.

clientData

An optional pointer to client data which can be retrieved later using
wxToolBar::GetToolClientData (p. 1303).

shortHelpString

This string is used for the tools tooltip

longHelpString

This string is shown in the statusbar (if any) of the parent frame when the mouse
pointer is inside the tool

Remarks

After you have added tools to a toolbar, you must call wxToolBar::Realize (p. 1308) in
order to have the tools appear.

See also

wxToolBar::AddSeparator (p. 1299),wxToolBar::InsertTool (p.

CHAPTER 5

1301

1306),wxToolBar::DeleteTool (p. 1301),wxToolBar::Realize (p. 1308),

wxToolBar::DeleteTool

bool DeleteTool(int toolId)

Removes the specified tool from the toolbar and deletes it. If you don't want to delete the
tool, but just to remove it from the toolbar (to possibly add it back later), you may use
RemoveTool (p. 1308) instead.

Note that it is unnecessary to call Realize (p. 1308) for the change to take place, it will
happen immediately.

Returns TRUE if the tool was deleted, FALSE otherwise.

See also

DeleteToolByPos (p. 1301)

wxToolBar::DeleteToolByPos

bool DeleteToolByPos(size_t pos)

This function behaves like DeleteTool (p. 1301) but it deletes the tool at the specified
position and not the one with the given id.

wxToolBar::EnableTool

void EnableTool(int toolId, const bool enable)

Enables or disables the tool.

Parameters

toolId

Tool to enable or disable.

enable

If TRUE, enables the tool, otherwise disables it.

NB: This function should only be called after Realize (p. 1308).

Remarks

For wxToolBarSimple, does nothing. Some other implementations will change the visible
state of the tool to indicate that it is disabled.

CHAPTER 5

1302

See also

wxToolBar::GetToolEnabled (p. 1303), wxToolBar::ToggleTool (p. 1311)

wxToolBar::FindToolForPosition

wxToolBarTool* FindToolForPosition(const float x, const float y) const

Finds a tool for the given mouse position.

Parameters

x

X position.

y

Y position.

Return value

A pointer to a tool if a tool is found, or NULL otherwise.

Remarks

Used internally, and should not need to be used by the programmer.

wxToolBar::GetToolSize

wxSize GetToolSize()

Returns the size of a whole button, which is usually larger than a tool bitmap because of
added 3D effects.

See also

wxToolBar::SetToolBitmapSize (p. 1309), wxToolBar::GetToolBitmapSize (p. 1302)

wxToolBar::GetToolBitmapSize

wxSize GetToolBitmapSize()

Returns the size of bitmap that the toolbar expects to have. The default bitmap size is 16
by 15 pixels.

Remarks

Note that this is the size of the bitmap you pass to wxToolBar::AddTool (p. 1299), and

CHAPTER 5

1303

not the eventual size of the tool button.

See also

wxToolBar::SetToolBitmapSize (p. 1309), wxToolBar::GetToolSize (p. 1302)

wxToolBar::GetMargins

wxSize GetMargins() const

Returns the left/right and top/bottom margins, which are also used for inter-toolspacing.

See also

wxToolBar::SetMargins (p. 1308)

wxToolBar::GetToolClientData

wxObject* GetToolClientData(int toolId) const

Get any client data associated with the tool.

Parameters

toolId

Id of the tool, as passed to wxToolBar::AddTool (p. 1299).

Return value

Client data, or NULL if there is none.

wxToolBar::GetToolEnabled

bool GetToolEnabled(int toolId) const

Called to determine whether a tool is enabled (responds to user input).

Parameters

toolId

Id of the tool in question.

Return value

TRUE if the tool is enabled, FALSE otherwise.

See also

CHAPTER 5

1304

wxToolBar::EnableTool (p. 1301)

wxToolBar::GetToolLongHelp

wxString GetToolLongHelp(int toolId) const

Returns the long help for the given tool.

Parameters

toolId

The tool in question.

See also

wxToolBar::SetToolLongHelp (p. 1309), wxToolBar::SetToolShortHelp (p. 1310)

wxToolBar::GetToolPacking

int GetToolPacking() const

Returns the value used for packing tools.

See also

wxToolBar::SetToolPacking (p. 1310)

wxToolBar::GetToolSeparation

int GetToolSeparation() const

Returns the default separator size.

See also

wxToolBar::SetToolSeparation (p. 1311)

wxToolBar::GetToolShortHelp

wxString GetToolShortHelp(int toolId) const

Returns the short help for the given tool.

Parameters

CHAPTER 5

1305

toolId
The tool in question.

See also

wxToolBar::GetToolLongHelp (p. 1304), wxToolBar::SetToolShortHelp (p. 1310)

wxToolBar::GetToolState

bool GetToolState (int toolId) const

Gets the on/off state of a toggle tool.

Parameters

toolId

The tool in question.

Return value

TRUE if the tool is toggled on, FALSE otherwise.

See also

wxToolBar::ToggleTool (p. 1311)

wxToolBar::InsertControl

wxToolBarTool * InsertControl(size_t pos, wxControl *control)

Inserts the control into the toolbar at the given position.

You must call Realize (p. 1308) for the change to take place.

See also

AddControl (p. 1299),
InsertTool (p. 1306)

wxToolBar::InsertSeparator

wxToolBarTool * InsertSeparator(size_t pos)

Inserts the separator into the toolbar at the given position.

You must call Realize (p. 1308) for the change to take place.

CHAPTER 5

1306

See also

AddSeparator (p. 1299),
InsertTool (p. 1306)

wxToolBar::InsertTool

wxToolBarTool * InsertTool(size_t pos, int toolId, const wxBitmap& bitmap1, const
wxBitmap& bitmap2 = wxNullBitmap, bool isToggle = FALSE, wxObject* clientData =
NULL, const wxString& shortHelpString = "", const wxString& longHelpString = "")

Inserts the tool with the specified attributes into the toolbar at the given position.

You must call Realize (p. 1308) for the change to take place.

See also

AddTool (p. 1299),
InsertControl (p. 1305),
InsertSeparator (p. 1305)

wxToolBar::OnLeftClick

bool OnLeftClick(int toolId, bool toggleDown)

Called when the user clicks on a tool with the left mouse button.

This is the old way of detecting tool clicks; although it will still work, you should use the
EVT_MENU or EVT_TOOL macro instead.

Parameters

toolId

The identifier passed to wxToolBar::AddTool (p. 1299).

toggleDown

TRUE if the tool is a toggle and the toggle is down, otherwise is FALSE.

Return value

If the tool is a toggle and this function returns FALSE, the toggle toggle state (internal
and visual) will not be changed. This provides a way of specifying that toggle operations
are not permitted in some circumstances.

See also

wxToolBar::OnMouseEnter (p. 1307), wxToolBar::OnRightClick (p. 1307)

CHAPTER 5

1307

wxToolBar::OnMouseEnter

void OnMouseEnter(int toolId)

This is called when the mouse cursor moves into a tool or out of the toolbar.

This is the old way of detecting mouse enter events; although it will still work, you should
use the EVT_TOOL_ENTER macro instead.

Parameters

toolId

Greater than -1 if the mouse cursor has moved into the tool, or -1 if the mouse
cursor has moved. The programmer can override this to provide extra information
about the tool, such as a short description on the status line.

Remarks

With some derived toolbar classes, if the mouse moves quickly out of the toolbar,
wxWindows may not be able to detect it. Therefore this function may not always be
called when expected.

wxToolBar::OnRightClick

void OnRightClick(int toolId, float x, float y)

Called when the user clicks on a tool with the right mouse button. The programmer
should override this function to detect right tool clicks.

This is the old way of detecting tool right clicks; although it will still work, you should use
the EVT_TOOL_RCLICKED macro instead.

Parameters

toolId

The identifier passed to wxToolBar::AddTool (p. 1299).

x

The x position of the mouse cursor.

y

The y position of the mouse cursor.

Remarks

A typical use of this member might be to pop up a menu.

See also

CHAPTER 5

1308

wxToolBar::OnMouseEnter (p. 1307), wxToolBar::OnLeftClick (p. 1306)

wxToolBar::Realize

bool Realize()

This function should be called after you have added tools.

If you are using absolute positions for your tools when using a wxToolBarSimple object,
do not call this function. You must call it at all other times.

wxToolBar::RemoveTool

wxToolBarTool * RemoveTool(int id)

Removes the given tool from the toolbar but doesn't delete it. This allows to insert/add
this tool back to this (or another) toolbar later.

Note that it is unnecessary to call Realize (p. 1308) for the change to take place, it will
happen immediately.

See also

DeleteTool (p. 1301)

wxToolBar::SetMargins

void SetMargins(const wxSize& size)

void SetMargins(int x, int y)

Set the values to be used as margins for the toolbar.

Parameters

size

Margin size.

x

Left margin, right margin and inter-tool separation value.

y

Top margin, bottom margin and inter-tool separation value.

Remarks

CHAPTER 5

1309

This must be called before the tools are added if absolute positioning is to be used, and
the default (zero-size) margins are to be overridden.

See also

wxToolBar::GetMargins (p. 1303), wxSize (p. 1083)

wxToolBar::SetToolBitmapSize

void SetToolBitmapSize(const wxSize& size)

Sets the default size of each tool bitmap. The default bitmap size is 16 by 15 pixels.

Parameters

size

The size of the bitmaps in the toolbar.

Remarks

This should be called to tell the toolbar what the tool bitmap size is. Call it before you
add tools.

Note that this is the size of the bitmap you pass to wxToolBar::AddTool (p. 1299), and
not the eventual size of the tool button.

See also

wxToolBar::GetToolBitmapSize (p. 1302), wxToolBar::GetToolSize (p. 1302)

wxToolBar::SetToolClientData

void GetToolClientData(wxObject* clientData)

Sets the client data associated with the tool.

wxToolBar::SetToolLongHelp

void SetToolLongHelp(int toolId, const wxString& helpString)

Sets the long help for the given tool.

Parameters

toolId

The tool in question.

CHAPTER 5

1310

helpString
A string for the long help.

Remarks

You might use the long help for displaying the tool purpose on the status line.

See also

wxToolBar::GetToolLongHelp (p. 1304), wxToolBar::SetToolShortHelp (p. 1310),

wxToolBar::SetToolPacking

void SetToolPacking(int packing)

Sets the value used for spacing tools. The default value is 1.

Parameters

packing

The value for packing.

Remarks

The packing is used for spacing in the vertical direction if the toolbar is horizontal, and
for spacing in the horizontal direction if the toolbar is vertical.

See also

wxToolBar::GetToolPacking (p. 1304)

wxToolBar::SetToolShortHelp

void SetToolShortHelp(int toolId, const wxString& helpString)

Sets the short help for the given tool.

Parameters

toolId

The tool in question.

helpString

The string for the short help.

Remarks

An application might use short help for identifying the tool purpose in a tooltip.

CHAPTER 5

1311

See also

wxToolBar::GetToolShortHelp (p. 1304), wxToolBar::SetToolLongHelp (p. 1309)

wxToolBar::SetToolSeparation

void SetToolSeparation(int separation)

Sets the default separator size. The default value is 5.

Parameters

separation

The separator size.

See also

wxToolBar::AddSeparator (p. 1299)

wxToolBar::ToggleTool

void ToggleTool(int toolId, const bool toggle)

Toggles a tool on or off. This does not cause any event to get emitted.

Parameters

toolId

Tool in question.

toggle

If TRUE, toggles the tool on, otherwise toggles it off.

Remarks

Only applies to a tool that has been specified as a toggle tool.

See also

wxToolBar::GetToolState (p. 1305)

wwxxTToooollTT iipp

This class holds information about a tooltip associated with a window (see

CHAPTER 5

1312

wxWindow::SetToolTip (p. 1416)).

The two static methods, wxToolTip::Enable (p. 1312) andwxToolTip::SetDelay (p. 1312)
can be used to globally alter tooltips behaviour.

Derived from

wxObject (p. 897)

wxToolTip::Enable

static void Enable(bool flag)

Enable or disable tooltips globally.

wxToolTip::SetDelay

static void SetDelay(long msecs)

Set the delay after which the tooltip appears.

wxToolTip::wxToolTip

 wxToolTip(const wxString& tip)

Constructor.

wxToolTip::SetTip

void SetTip(const wxString& tip)

Set the tooltip text.

wxToolTip::GetTip

wxString GetTip() const

Get the tooltip text.

wxToolTip::GetWindow

CHAPTER 5

1313

wxWindow* GetWindow() const

Get the associated window.

wwxxTTrreeeeCCttrrll

A tree control presents information as a hierarchy, with items that may be expanded to
show further items. Items in a tree control are referenced by wxTreeItemId handles.

To intercept events from a tree control, use the event table macros described in
wxTreeEvent (p. 1332).

Derived from

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/treectrl.h>

Window styles

wxTR_EDIT_LABELS Use this style if you wish the user to be able to edit labels

in the tree control.
wxTR_NO_BUTTONS For convenience to document that no buttons are to be

drawn.
wxTR_HAS_BUTTONS Use this style to show + and - buttons to the left of parent

items.
wxTR_TWIST_BUTTONS Use this style to show Mac-style twister buttons to the left

of parent items. If both wxTR_HAS_BUTTONS and
wxTR_TWIST_BUTTONS are given, twister buttons are
generated. Generic only.

wxTR_NO_LINES Use this style to hide vertical level connectors.
wxTR_LINES_AT_ROOT Use this style to show lines between root nodes. Only

applicable if wxTR_HIDE_ROOT is set and
wxTR_NO_LINES is not set.

wxTR_HIDE_ROOT Use this style to suppress the display of the root node,
effectively causing the first-level nodes to appear as a
series of root nodes. Generic only.

wxTR_ROW_LINES Use this style to draw a contrasting border between
displayed rows.

wxTR_HAS_VARIABLE_ROW_HEIGHT Use this style to cause row heights to be
just big enough to fit the content. If not set, all rows use the
largest row height. The default is that this flag is unset.

CHAPTER 5

1314

Generic only.
wxTR_SINGLE For convenience to document that only one item may be

selected at a time. Selecting another item causes the
current selection, if any, to be deselected. This is the
default.

wxTR_MULTIPLE Use this style to allow a range of items to be selected. If a
second range is selected, the current range, if any, is
deselected.

wxTR_EXTENDED Use this style to allow disjoint items to be selected. (Only
partially implemented; may not work in all cases.)

wxTR_DEFAULT_STYLE The set of flags that are closest to the defaults for the
native control for a particular toolkit.

See also window styles overview (p. 1567).

Event handling

To process input from a tree control, use these event handler macros to direct input to
member functions that take a wxTreeEvent (p. 1332) argument.

EVT_TREE_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.
EVT_TREE_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.
EVT_TREE_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be

prevented by calling Veto() (p. 897).
EVT_TREE_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented

by calling Veto() (p. 897).
EVT_TREE_DELETE_ITEM(id, func) Delete an item.
EVT_TREE_GET_INFO(id, func) Request information from the application.
EVT_TREE_SET_INFO(id, func) Information is being supplied.
EVT_TREE_ITEM_ACTIVATED(id, func) The item has been activated, i.e. chosen by

double clicking it with mouse or from keyboard
EVT_TREE_ITEM_COLLAPSED(id, func) The item has been collapsed.
EVT_TREE_ITEM_COLLAPSING(id, func) The item is being collapsed. This can be

prevented by calling Veto() (p. 897).
EVT_TREE_ITEM_EXPANDED(id, func) The item has been expanded.
EVT_TREE_ITEM_EXPANDING(id, func) The item is being expanded. This can be

prevented by calling Veto() (p. 897).
EVT_TREE_SEL_CHANGED(id, func) Selection has changed.
EVT_TREE_SEL_CHANGING(id, func) Selection is changing. This can be prevented

by calling Veto() (p. 897).
EVT_TREE_KEY_DOWN(id, func) A key has been pressed.

See also

wxTreeItemData (p. 1330), wxTreeCtrl overview (p. 1593), wxListBox (p. 749), wxListCtrl
(p. 758), wxImageList (p. 710), wxTreeEvent (p. 1332)

Win32 notes

CHAPTER 5

1315

wxTreeCtrl class uses the standard common treeview control under Win32 implemented
in the system library comctl32.dll. Some versions of this library are known to have
bugs with handling the tree control colours: the usual symptom is that the expanded
items leave black (or otherwise incorrectly coloured) background behind them, especially
for the controls using non default background colour. The recommended solution is to
upgrade the comctl32.dllto a newer version:
seehttp://www.microsoft.com/msdownload/ieplatform/ie/comctrlx86.asp
(http://www.microsoft.com/msdownload/ieplatform/ie/comctrlx86.asp)
.

wxTreeCtrl::wxTreeCtrl

 wxTreeCtrl()

Default constructor.

 wxTreeCtrl(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTR_HAS_BUTTONS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "listCtrl")

Constructor, creating and showing a tree control.

Parameters

parent

Parent window. Must not be NULL.

id

Window identifier. A value of -1 indicates a default value.

pos

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

style

Window style. See wxTreeCtrl (p. 1313).

validator

Window validator.

name

Window name.

CHAPTER 5

1316

See also

wxTreeCtrl::Create (p. 1317), wxValidator (p. 1348)

wxTreeCtrl::~wxTreeCtrl

void ~wxTreeCtrl()

Destructor, destroying the list control.

wxTreeCtrl::AddRoot

wxTreeItemId AddRoot(const wxString& text, int image = -1, int selImage = -1,
wxTreeItemData* data = NULL)

Adds the root node to the tree, returning the new item.

The image and selImage parameters are an index within the normal image list specifying
the image to use for unselected and selected items, respectively. If image > -1 and
selImage is -1, the same image is used for both selected and unselected items.

wxTreeCtrl::AppendItem

wxTreeItemId AppendItem(const wxTreeItemId& parent, const wxString& text, int
image = -1, int selImage = -1, wxTreeItemData* data = NULL)

Appends an item to the end of the branch identified by parent, return a new item id.

The image and selImage parameters are an index within the normal image list specifying
the image to use for unselected and selected items, respectively. If image > -1 and
selImage is -1, the same image is used for both selected and unselected items.

wxTreeCtrl::AssignButtonsImageList

void AssignButtonsImageList(wxImageList* imageList)

Sets the buttons image list. The button images assigned with this method will be
automatically deleted by wxTreeCtrl as appropriate (i.e. it takes ownership of the list).

Setting or assigning the button image list enables the display of image buttons. Once
enabled, the only way to disable the display of button images is to set the button image
list to NULL.

This function is only available in the generic version.

See also SetButtonsImageList (p. 1327).

CHAPTER 5

1317

wxTreeCtrl::AssignImageList

void AssignImageList(wxImageList* imageList)

Sets the normal image list. Image list assigned with this method will be automatically
deleted by wxTreeCtrl as appropriate (i.e. it takes ownership of the list).

See also SetImageList (p. 1327).

wxTreeCtrl::AssignStateImageList

void AssignStateImageList(wxImageList* imageList)

Sets the state image list. Image list assigned with this method will be automatically
deleted by wxTreeCtrl as appropriate (i.e. it takes ownership of the list).

See also SetStateImageList (p. 1329).

wxTreeCtrl::Collapse

void Collapse (const wxTreeItemId& item)

Collapses the given item.

wxTreeCtrl::CollapseAndReset

void CollapseAndReset(const wxTreeItemId& item)

Collapses the given item and removes all children.

wxTreeCtrl::Create

bool wxTreeCtrl(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTR_HAS_BUTTONS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "listCtrl")

Creates the tree control. See wxTreeCtrl::wxTreeCtrl (p. 1315) for further details.

wxTreeCtrl::Delete

void Delete(const wxTreeItemId& item)

CHAPTER 5

1318

Deletes the specified item.

wxTreeCtrl::DeleteAllItems

void DeleteAllItems()

Deletes all the items in the control.

wxTreeCtrl::EditLabel

void EditLabel(const wxTreeItemId& item)

Starts editing the label of the given item. This function generates a
EVT_TREE_BEGIN_LABEL_EDIT event which can be vetoed so that no text control will
appear for in-place editing.

If the user changed the label (i.e. s/he does not press ESC or leave the text control
without changes, a EVT_TREE_END_LABEL_EDIT event will be sent which can be
vetoed as well.

See also

wxTreeCtrl::EndEditLabel (p. 1318),wxTreeEvent (p. 1332)

wxTreeCtrl::EndEditLabel

void EndEditLabel(bool cancelEdit)

Ends label editing. If cancelEdit is TRUE, the edit will be cancelled.

This function is currently supported under Windows only.

See also

wxTreeCtrl::EditLabel (p. 1318)

wxTreeCtrl::EnsureVisible

void EnsureVisible(const wxTreeItemId& item)

Scrolls and/or expands items to ensure that the given item is visible.

wxTreeCtrl::Expand

CHAPTER 5

1319

void Expand(const wxTreeItemId& item)

Expands the given item.

wxTreeCtrl::GetBoundingRect

bool GetBoundingRect(const wxTreeItemId& item, wxRect& rect, bool textOnly =
FALSE) const

Retrieves the rectangle bounding the item. If textOnly is TRUE, only the rectangle
around the item's label will be returned, otherwise the item's image is also taken into
account.

The return value is TRUE if the rectangle was successfully retrieved or FALSE if it was
not (in this case rect is not changed) - for example, if the item is currently invisible.

wxPython note: The wxPython version of this method requires only theitem and
textOnly parameters. The return value is either awxRect object or None.

wxPerl note: In wxPerl this method only takes the parameters item and textOnly,
and returns a Wx::Rect (or undef).

wxTreeCtrl::GetButtonsImageList

wxImageList* GetButtonsImageList() const

Returns the buttons image list (from which application-defined button images are taken).

This function is only available in the generic version.

wxTreeCtrl::GetChildrenCount

size_t GetChildrenCount(const wxTreeItemId& item, bool recursively = TRUE) const

Returns the number of items in the branch. If recursively is TRUE, returns the total
number of descendants, otherwise only one level of children is counted.

wxTreeCtrl::GetCount

int GetCount() const

Returns the number of items in the control.

wxTreeCtrl::GetEditControl

CHAPTER 5

1320

wxTextCtrl& GetEditControl() const

Returns the edit control used to edit a label.

wxTreeCtrl::GetFirstChild

wxTreeItemId GetFirstChild(const wxTreeItemId& item, long& cookie) const

Returns the first child; call wxTreeCtrl::GetNextChild (p. 1322) for the next child.

For this enumeration function you must pass in a 'cookie' parameter which is opaque for
the application but is necessary for the library to make these functions reentrant (i.e.
allow more than one enumeration on one and the same object simultaneously). The
cookie passed to GetFirstChild and GetNextChild should be the same.

Returns an invalid tree item if there are no further children.

See also

wxTreeCtrl::GetNextChild (p. 1322)

wxPython note: In wxPython the returned wxTreeItemId and the new cookie value are
both returned as a tuple containing the two values.

wxPerl note: In wxPerl this method only takes the item parameter, and returns a 2-
element list (item, cookie).

wxTreeCtrl::GetFirstVisibleItem

wxTreeItemId GetFirstVisibleItem() const

Returns the first visible item.

wxTreeCtrl::GetImageList

wxImageList* GetImageList() const

Returns the normal image list.

wxTreeCtrl::GetIndent

int GetIndent() const

Returns the current tree control indentation.

CHAPTER 5

1321

wxTreeCtrl::GetItemData

wxTreeItemData* GetItemData(const wxTreeItemId& item) const

Returns the tree item data associated with the item.

See also

wxTreeItemData (p. 1330)

wxPython note: wxPython provides the following shortcut method:

GetPyData(item) Returns the Python Object
associated with the
wxTreeItemData for the given item
Id.

wxPerl note: wxPerl provides the following shortcut method:GetPlData(

item) Returns the Perl data
associated with the
Wx::TreeItemData (it is just the
same as tree->GetItemData(item)-
>GetData();).

wxTreeCtrl::GetItemImage

int GetItemImage(const wxTreeItemId& item, wxTreeItemIcon which =
wxTreeItemIcon_Normal) const

Gets the specified item image. The value of which may be:

 •_Normal to get the normal item image
 •_Selected to get the selected item image (i.e. the image which is shown when the

item is currently selected)
 •_Expanded to get the expanded image (this only makes sense for items which have

children - then this image is shown when the item is expanded and the normal
image is shown when it is collapsed)

 •_SelectedExpanded to get the selected expanded image (which is shown when an
expanded item is currently selected)

wxTreeCtrl::GetItemText

wxString GetItemText(const wxTreeItemId& item) const

Returns the item label.

CHAPTER 5

1322

wxTreeCtrl::GetLastChild

wxTreeItemId GetLastChild(const wxTreeItemId& item) const

Returns the last child of the item (or an invalid tree item if this item has no children).

See also

GetFirstChild (p. 1320),GetLastChild (p. 1322)

wxTreeCtrl::GetNextChild

wxTreeItemId GetNextChild(const wxTreeItemId& item, long& cookie) const

Returns the next child; call wxTreeCtrl::GetFirstChild (p. 1320) for the first child.

For this enumeration function you must pass in a 'cookie' parameter which is opaque for
the application but is necessary for the library to make these functions reentrant (i.e.
allow more than one enumeration on one and the same object simultaneously). The
cookie passed to GetFirstChild and GetNextChild should be the same.

Returns an invalid tree item if there are no further children.

See also

wxTreeCtrl::GetFirstChild (p. 1320)

wxPython note: In wxPython the returned wxTreeItemId and the new cookie value are
both returned as a tuple containing the two values.

wxPerl note: In wxPerl this method returns a 2-element list (item, cookie), instead of
modifying its parameters.

wxTreeCtrl::GetNextSibling

wxTreeItemId GetNextSibling(const wxTreeItemId& item) const

Returns the next sibling of the specified item; call wxTreeCtrl::GetPrevSibling (p. 1323)
for the previous sibling.

Returns an invalid tree item if there are no further siblings.

See also

wxTreeCtrl::GetPrevSibling (p. 1323)

CHAPTER 5

1323

wxTreeCtrl::GetNextVisible

wxTreeItemId GetNextVisible(const wxTreeItemId& item) const

Returns the next visible item.

wxTreeCtrl::GetParent

wxTreeItemId GetParent(const wxTreeItemId& item) const

Returns the item's parent.

wxPython note: This method is named GetItemParent to avoid a name clash with
wxWindow::GetParent.

wxTreeCtrl::GetPrevSibling

wxTreeItemId GetPrevSibling(const wxTreeItemId& item) const

Returns the previous sibling of the specified item; call wxTreeCtrl::GetNextSibling (p.
1322) for the next sibling.

Returns an invalid tree item if there are no further children.

See also

wxTreeCtrl::GetNextSibling (p. 1322)

wxTreeCtrl::GetPrevVisible

wxTreeItemId GetPrevVisible(const wxTreeItemId& item) const

Returns the previous visible item.

wxTreeCtrl::GetRootItem

wxTreeItemId GetRootItem() const

Returns the root item for the tree control.

wxTreeCtrl::GetItemSelectedImage

int GetItemSelectedImage(const wxTreeItemId& item) const

CHAPTER 5

1324

Gets the selected item image (this function is obsolete, useGetItemImage(item,
wxTreeItemIcon_Selected) instead).

wxTreeCtrl::GetSelection

wxTreeItemId GetSelection() const

Returns the selection, or an invalid item if there is no selection. This function only works
with the controls without wxTR_MULTIPLE style, useGetSelections (p. 1324) for the
controls which do have this style.

wxTreeCtrl::GetSelections

size_t GetSelections(wxArrayTreeItemIds& selection) const

Fills the array of tree items passed in with the currently selected items. This function can
be called only if the control has the wxTR_MULTIPLE style.

Returns the number of selected items.

wxPython note: The wxPython version of this method accepts no parameters and
returns a Python list of wxTreeItemIds.

wxPerl note: In wxPerl this method takes no parameters and returns a list of
Wx::TreeItemIds.

wxTreeCtrl::GetStateImageList

wxImageList* GetStateImageList() const

Returns the state image list (from which application-defined state images are taken).

wxTreeCtrl::HitTest

wxTreeItemId HitTest(const wxPoint& point, int& flags)

Calculates which (if any) item is under the given point, returning the tree item id at this
point plus extra information flags. flags is a bitlist of the following:

wxTREE_HITTEST_ABOVE Above the client area.
wxTREE_HITTEST_BELOW Below the client area.
wxTREE_HITTEST_NOWHERE In the client area but below the last item.
wxTREE_HITTEST_ONITEMBUTTON On the button associated with an item.
wxTREE_HITTEST_ONITEMICON On the bitmap associated with an item.
wxTREE_HITTEST_ONITEMINDENT In the indentation associated with an item.

CHAPTER 5

1325

wxTREE_HITTEST_ONITEMLABEL On the label (string) associated with an item.
wxTREE_HITTEST_ONITEMRIGHT In the area to the right of an item.
wxTREE_HITTEST_ONITEMSTATEICON On the state icon for a tree view item that is

in a user-defined state.
wxTREE_HITTEST_TOLEFT To the right of the client area.
wxTREE_HITTEST_TORIGHT To the left of the client area.

wxPython note: in wxPython both the wxTreeItemId and the flags are returned as a
tuple.

wxPerl note: In wxPerl this method only takes the point parameter and returns a 2-
element list (item, flags).

wxTreeCtrl::InsertItem

wxTreeItemId InsertItem(const wxTreeItemId& parent, const wxTreeItemId&
previous, const wxString& text, int image = -1, int selImage = -1, wxTreeItemData*
data = NULL)

wxTreeItemId InsertItem(const wxTreeItemId& parent, size_t before, const
wxString& text, int image = -1, int selImage = -1, wxTreeItemData* data = NULL)

Inserts an item after a given one (previous) or before one identified by its position
(before).

The image and selImage parameters are an index within the normal image list specifying
the image to use for unselected and selected items, respectively. If image > -1 and
selImage is -1, the same image is used for both selected and unselected items.

wxPython note: The second form of this method is calledInsertItemBefore in
wxPython.

wxTreeCtrl::IsBold

bool IsBold(const wxTreeItemId& item) const

Returns TRUE if the given item is in bold state.

See also: SetItemBold (p. 1328)

wxTreeCtrl::IsExpanded

bool IsExpanded(const wxTreeItemId& item) const

Returns TRUE if the item is expanded (only makes sense if it has children).

CHAPTER 5

1326

wxTreeCtrl::IsSelected

bool IsSelected(const wxTreeItemId& item) const

Returns TRUE if the item is selected.

wxTreeCtrl::IsVisible

bool IsVisible(const wxTreeItemId& item) const

Returns TRUE if the item is visible (it might be outside the view, or not expanded).

wxTreeCtrl::ItemHasChildren

bool ItemHasChildren(const wxTreeItemId& item) const

Returns TRUE if the item has children.

wxTreeCtrl::OnCompareItems

int OnCompareItems(const wxTreeItemId& item1, const wxTreeItemId& item2)

Override this function in the derived class to change the sort order of the items in the
tree control. The function should return a negative, zero or positive value if the first item
is less than, equal to or greater than the second one.

The base class version compares items alphabetically.

See also: SortChildren (p. 1330)

wxTreeCtrl::PrependItem

wxTreeItemId PrependItem(const wxTreeItemId& parent, const wxString& text, int
image = -1, int selImage = -1, wxTreeItemData* data = NULL)

Appends an item as the first child of parent, return a new item id.

The image and selImage parameters are an index within the normal image list specifying
the image to use for unselected and selected items, respectively. If image > -1 and
selImage is -1, the same image is used for both selected and unselected items.

wxTreeCtrl::ScrollTo

CHAPTER 5

1327

void ScrollTo(const wxTreeItemId& item)

Scrolls the specified item into view.

wxTreeCtrl::SelectItem

bool SelectItem(const wxTreeItemId& item)

Selects the given item.

wxTreeCtrl::SetButtonsImageList

void SetButtonsImageList(wxImageList* imageList)

Sets the buttons image list (from which application-defined button images are taken).
The button images assigned with this method willnot be deleted by wxTreeCtrl's
destructor, you must delete it yourself.

Setting or assigning the button image list enables the display of image buttons. Once
enabled, the only way to disable the display of button images is to set the button image
list to NULL.

This function is only available in the generic version.

See also AssignButtonsImageList (p. 1316).

wxTreeCtrl::SetIndent

void SetIndent(int indent)

Sets the indentation for the tree control.

wxTreeCtrl::SetImageList

void SetImageList(wxImageList* imageList)

Sets the normal image list. Image list assigned with this method willnot be deleted by
wxTreeCtrl's destructor, you must delete it yourself.

See also AssignImageList (p. 1317).

wxTreeCtrl::SetItemBackgroundColour

void SetItemBackgroundColour(const wxTreeItemId& item, const wxColour& col)

CHAPTER 5

1328

Sets the colour of the item's background.

wxTreeCtrl::SetItemBold

void SetItemBold(const wxTreeItemId& item, bool bold = TRUE)

Makes item appear in bold font if bold parameter is TRUE or resets it to the normal state.

See also: IsBold (p. 1325)

wxTreeCtrl::SetItemData

void SetItemData(const wxTreeItemId& item, wxTreeItemData* data)

Sets the item client data.

wxPython note: wxPython provides the following shortcut method:

SetPyData(item, obj) Associate the given Python Object with the
wxTreeItemData for the given item Id.

wxPerl note: wxPerl provides the following shortcut method:SetPlData(

item, data) Sets the Perl data associated
with the Wx::TreeItemData (it is just the same
as tree->GetItemData(item)->SetData(data);
).

wxTreeCtrl::SetItemFont

void SetItemFont(const wxTreeItemId& item, const wxFont& font)

Sets the item's font. All items in the tree should have the same height to avoid text
clipping, so the fonts height should be the same for all of them, although font attributes
may vary.

See also

SetItemBold (p. 1328)

wxTreeCtrl::SetItemHasChildren

void SetItemHasChildren(const wxTreeItemId& item, bool hasChildren = TRUE)

Force appearance of the button next to the item. This is useful to allow the user to

CHAPTER 5

1329

expand the items which don't have any children now, but instead adding them only when
needed, thus minimizing memory usage and loading time.

wxTreeCtrl::SetItemImage

void SetItemImage(const wxTreeItemId& item, int image, wxTreeItemIcon which =
wxTreeItemIcon_Normal)

Sets the specified item image. See GetItemImage (p. 1321)for the description of the
which parameter.

wxTreeCtrl::SetItemSelectedImage

void SetItemSelectedImage(const wxTreeItemId& item, int selImage)

Sets the selected item image (this function is obsolete, use SetItemImage(item,
wxTreeItemIcon_Selected) instead).

wxTreeCtrl::SetItemText

void SetItemText(const wxTreeItemId& item, const wxString& text)

Sets the item label.

wxTreeCtrl::SetItemTextColour

void SetItemTextColour(const wxTreeItemId& item, const wxColour& col)

Sets the colour of the item's text.

wxTreeCtrl::SetStateImageList

void SetStateImageList(wxImageList* imageList)

Sets the state image list (from which application-defined state images are taken). Image
list assigned with this method willnot be deleted by wxTreeCtrl's destructor, you must
delete it yourself.

See also AssignStateImageList (p. 1317).

void SetWindowStyle(longstyles)

Sets the mode flags associated with the display of the tree control. The new mode takes
effect immediately. (Generic only; MSW ignores changes.)

CHAPTER 5

1330

wxTreeCtrl::SortChildren

void SortChildren(const wxTreeItemId& item)

Sorts the children of the given item usingOnCompareItems (p. 1326) method of
wxTreeCtrl. You should override that method to change the sort order (the default is
ascending alphabetical order).

See also

wxTreeItemData (p. 1330), OnCompareItems (p. 1326)

wxTreeCtrl::Toggle

void Toggle (const wxTreeItemId& item)

Toggles the given item between collapsed and expanded states.

wxTreeCtrl::Unselect

void Unselect()

Removes the selection from the currently selected item (if any).

wxTreeCtrl::UnselectAll

void UnselectAll()

This function either behaves the same as Unselect (p. 1330)if the control doesn't have
wxTR_MULTIPLE style, or removes the selection from all items if it does have this style.

wwxxTTrreeeeIItteemmDDaattaa

wxTreeItemData is some (arbitrary) user class associated with some item. The main
advantage of having this class (compared to the old untyped interface) is that
wxTreeItemData's are destroyed automatically by the tree and, as this class has virtual
dtor, it means that the memory will be automatically freed. We don't just use wxObject
instead of wxTreeItemData because the size of this class is critical: in any real
application, each tree leaf will have wxTreeItemData associated with it and number of
leaves may be quite big.

Because the objects of this class are deleted by the tree, they should always be

CHAPTER 5

1331

allocated on the heap.

Derived from

wxTreeItemId

Include files

<wx/treectrl.h>

See also

wxTreeCtrl (p. 1313)

wxTreeItemData::wxTreeItemData

 wxTreeItemData()

Default constructor.

wxPython note: The wxPython version of this constructor optionally accepts any Python
object as a parameter. This object is then associated with the tree item using the
wxTreeItemData as a container.

In addition, the following methods are added in wxPython for accessing the object:

GetData() Returns a reference to the Python Object
SetData(obj) Associates a new Python Object with the

wxTreeItemData

wxPerl note: In wxPerl the constructor accepts as parameter an optional scalar, and
stores it as client data. You may retrieve this data by calling GetData(), and set it by
callling SetData(data).

wxTreeItemData::~wxTreeItemData

void ~wxTreeItemData()

Virtual destructor.

wxTreeItemData::GetId

const wxTreeItem& GetId()

CHAPTER 5

1332

Returns the item associated with this node.

wxTreeItemData::SetId

void SetId(const wxTreeItemId& id)

Sets the item associated with this node.

wwxxTTrreeeeEEvveenntt

A tree event holds information about events associated with wxTreeCtrl objects.

Derived from

wxNotifyEvent (p. 896)
wxCommandEvent (p. 156)
wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/treectrl.h>

Event table macros

To process input from a tree control, use these event handler macros to direct input to
member functions that take a wxTreeEvent argument.

EVT_TREE_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.
EVT_TREE_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.
EVT_TREE_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be

prevented by calling Veto() (p. 897).
EVT_TREE_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented

by calling Veto() (p. 897).
EVT_TREE_DELETE_ITEM(id, func) Delete an item.
EVT_TREE_GET_INFO(id, func) Request information from the application.
EVT_TREE_SET_INFO(id, func) Information is being supplied.
EVT_TREE_ITEM_COLLAPSED(id, func) The item has been collapsed.
EVT_TREE_ITEM_COLLAPSING(id, func) The item is being collapsed. This can be

prevented by calling Veto() (p. 897).
EVT_TREE_ITEM_EXPANDED(id, func) The item has been expanded.
EVT_TREE_ITEM_EXPANDING(id, func) The item is being expanded. This can be

prevented by calling Veto() (p. 897).
EVT_TREE_SEL_CHANGED(id, func) Selection has changed.
EVT_TREE_SEL_CHANGING(id, func) Selection is changing. This can be prevented

by calling Veto() (p. 897).

CHAPTER 5

1333

EVT_TREE_KEY_DOWN(id, func) A key has been pressed.

See also

wxTreeCtrl (p. 1313)

wxTreeEvent::wxTreeEvent

 wxTreeEvent(WXTYPE commandType = 0, int id = 0)

Constructor.

wxTreeEvent::GetCode

int GetCode () const

Returns the key code if the event was is a key event. Use GetKeyEvent (p. 1333) to get
the values of the modifier keys for this event (i.e. Shift or Ctrl).

wxTreeEvent::GetItem

wxTreeItemId GetItem() const

Returns he item (valid for all events).

wxTreeEvent::GetKeyEvent

const wxKeyEvent& GetKeyEvent() const

Returns the key event for EVT_TREE_KEY_DOWN events.

wxTreeEvent::GetLabel

const wxString& GetLabel() const

Returns the label if the event was a begin or end edit label event.

wxTreeEvent::GetOldItem

wxTreeItemId GetOldItem() const

CHAPTER 5

1334

Returns the old item index (valid for EVT_TREE_ITEM_CHANGING and CHANGED
events)

wxTreeEvent::GetPoint()

wxPoint GetPoint() const

Returns the position of the mouse pointer if the event is a drag event.

wwxxTTrreeeeLLaayyoouutt

wxTreeLayout provides layout of simple trees with one root node, drawn left-to-right, with
user-defined spacing between nodes.

wxTreeLayout is an abstract class that must be subclassed. The programmer defines
various member functions which will access whatever data structures are appropriate for
the application, and wxTreeLayout uses these when laying out the tree.

Nodes are identified by long integer identifiers. The derived class communicates the
actual tree structure to wxTreeLayout by defining wxTreeLayout::GetChildren (p. 1337)
and wxTreeLayout::GetNodeParent (p. 1337) functions.

The application should call wxTreeLayout::DoLayout (p. 1336) to do the tree layout.
Depending on how the derived class has been defined, either wxTreeLayout::Draw (p.
1336) must be called (for example by the OnPaint member of a wxScrolledWindow) or
the application-defined drawing code should be called as normal.

For example, if you have an image drawing system already defined, you may want
wxTreeLayout to position existing node images in that system. So you just need a way
for wxTreeLayout to set the node image positions according to the layout algorithm, and
the rest will be done by your own image drawing system.

The algorithm is due to Gabriel Robins [1], a linear-time algorithm originally implemented
in LISP for AI applications.

The original algorithm has been modified so that both X and Y planes are calculated
simultaneously, increasing efficiency slightly. The basic code is only a page or so long.

Below is the example tree generated by the program test.cc.

CHAPTER 5

1335

Figure 1: Example tree

Derived from

wxObject

See also

wxTreeLayoutStored (p. 1340)

wxTreeLayout::wxTreeLayout

 wxTreeLayout()

Constructor.

wxTreeLayout::ActivateNode

void ActivateNode (long id, bool active)

Define this so wxTreeLayout can turn nodes on and off for drawing purposes (not all
nodes may be connected in the tree). See also wxTreeLayout::NodeActive (p. 1339).

CHAPTER 5

1336

wxTreeLayout::CalcLayout

void CalcLayout(long id, int level)

Private function for laying out a branch.

wxTreeLayout::DoLayout

void DoLayout(wxDC& dc, long topNode = -1)

Calculates the layout for the tree, optionally specifying the top node.

wxTreeLayout::Draw

void Draw(wxDC& dc)

Call this to let wxTreeLayout draw the tree itself, once the layout has been calculated
with wxTreeLayout::DoLayout (p. 1336).

wxTreeLayout::DrawBranch

void DrawBranch(long from, long to, wxDC& dc)

Defined by wxTreeLayout to draw an arc between two nodes.

wxTreeLayout::DrawBranches

void DrawBranches(wxDC& dc)

Defined by wxTreeLayout to draw the arcs between nodes.

wxTreeLayout::DrawNode

void DrawNode (long id, wxDC& dc)

Defined by wxTreeLayout to draw a node.

wxTreeLayout::DrawNodes

void DrawNodes(wxDC& dc)

CHAPTER 5

1337

Defined by wxTreeLayout to draw the nodes.

wxTreeLayout::GetChildren

void GetChildren(long id, wxList &list)

Must be defined to return the children of node id in the given list of integers.

wxTreeLayout::GetNextNode

long GetNextNode (long id)

Must be defined to return the next node after id, so that wxTreeLayout can iterate
through all relevant nodes. The ordering is not important. The function should return -1 if
there are no more nodes.

wxTreeLayout::GetNodeName

wxString GetNodeName (long id) const

May optionally be defined to get a node's name (for example if leaving the drawing to
wxTreeLayout).

wxTreeLayout::GetNodeSize

void GetNodeSize(long id, long* x, long* y) const

Can be defined to indicate a node's size, or left to wxTreeLayout to use the name as an
indication of size.

wxTreeLayout::GetNodeParent

long GetNodeParent(long id) const

Must be defined to return the parent node of id. The function should return -1 if there is
no parent.

wxTreeLayout::GetNodeX

long GetNodeX(long id) const

Must be defined to return the current X position of the node. Note that coordinates are
assumed to be at the top-left of the node so some conversion may be necessary for your

CHAPTER 5

1338

application.

wxTreeLayout::GetNodeY

long GetNodeY(long id) const

Must be defined to return the current Y position of the node. Note that coordinates are
assumed to be at the top-left of the node so some conversion may be necessary for your
application.

wxTreeLayout::GetLeftMargin

long GetLeftMargin() const

Gets the left margin set with wxTreeLayout::SetMargins (p. 1340).

wxTreeLayout::GetOrientation

bool GetOrientation() const

Gets the orientation: TRUE means top-to-bottom, FALSE means left-to-right (the
default).

wxTreeLayout::GetTopMargin

long GetTopMargin() const

Gets the top margin set with wxTreeLayout::SetMargins (p. 1340).

wxTreeLayout::GetTopNode

long GetTopNode () const

wxTreeLayout calls this to get the top of the tree. Don't redefine this; call
wxTreeLayout::SetTopNode (p. 1340) instead before calling wxTreeLayout::DoLayout
(p. 1336).

wxTreeLayout::GetXSpacing

long GetXSpacing() const

Gets the horizontal spacing between nodes.

CHAPTER 5

1339

wxTreeLayout::GetYSpacing

long GetYSpacing() const

Gets the vertical spacing between nodes.

wxTreeLayout::Initialize

void Initialize()

Initializes wxTreeLayout. Call from application or overridden Initializeor constructor.

wxTreeLayout::NodeActive

bool NodeActive(long id)

Define this so wxTreeLayout can know which nodes are to be drawn (not all nodes may
be connected in the tree). See also wxTreeLayout::ActivateNode (p. 1335).

wxTreeLayout::SetNodeName

void SetNodeName (long id, const wxString& name)

May optionally be defined to set a node's name.

wxTreeLayout::SetNodeX

void SetNodeX(long id, long x)

Must be defined to set the current X position of the node. Note that coordinates are
assumed to be at the top-left of the node so some conversion may be necessary for your
application.

wxTreeLayout::SetNodeY

void SetNodeY(long id, long y)

Must be defined to set the current Y position of the node. Note that coordinates are
assumed to be at the top-left of the node so some conversion may be necessary for your
application.

wxTreeLayout::SetOrientation

CHAPTER 5

1340

void SetOrientation(bool orientation)

Sets the tree orientation: TRUE means top-to-bottom, FALSE means left-to-right (the
default).

wxTreeLayout::SetTopNode

void SetTopNode(long id)

Call this to identify the top of the tree to wxTreeLayout.

wxTreeLayout::SetSpacing

void SetSpacing(long x, long y)

Sets the horizontal and vertical spacing between nodes in the tree.

wxTreeLayout::SetMargins

void SetMargins(long x, long y)

Sets the left and top margins of the whole tree.

wwxxTTrreeeeLLaayyoouuttSSttoorreedd

wxTreeLayoutStored provides storage for node labels, position and client data. It also
provides hit-testing (which node a mouse event occurred on). It is usually a more
convenient class to use than wxTreeLayout.

Derived from

wxTreeLayout (p. 1334)
wxObject (p. 897)

See also

wxTreeLayout (p. 1334)

wxTreeLayoutStored::wxTreeLayoutStored

CHAPTER 5

1341

 wxTreeLayoutStored(int noNodes = 200)

Constructor. Specify the maximum number of nodes to be allocated.

wxTreeLayoutStored::AddChild

long AddChild(const wxString& name, const wxString& parent = "")

Adds a child with a given parent, returning the node id.

wxTreeLayoutStored::GetClientData

long GetClientData(long id) const

Gets the client data for the given node.

wxTreeLayoutStored::GetNode

wxStoredNode* GetNode (long id) const

Returns the wxStoredNode object for the given node id.

wxTreeLayoutStored::GetNodeCount

int GetNodeCount() const

Returns the current number of nodes.

wxTreeLayoutStored::GetNumNodes

int GetNumNodes() const

Returns the maximum number of nodes.

wxTreeLayoutStored::HitTest

wxString HitTest(wxMouseEvent& event, wxDC& dc)

Returns a string with the node name corresponding to the position of the mouse event,
or the empty string if no node was detected.

CHAPTER 5

1342

wxTreeLayoutStored::NameToId

long NameToId(const wxString& name)

Returns the id for the given node name, or -1 if there was no such node.

wxTreeLayoutStored::SetClientData

void SetClientData(long id, long clientData)

Sets client data for the given node.

wwxxUUppddaatteeUUIIEEvveenntt

This class is used for pseudo-events which are called by wxWindows to give an
application the chance to update various user interface elements.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

Event table macros

To process an update event, use these event handler macros to direct input to member
functions that take a wxUpdateUIEvent argument.

EVT_UPDATE_UI(id, func) Process a wxEVT_UPDATE_UI event for the

command with the given id.
EVT_UPDATE_UI_RANGE(id1, id2, func) Process a wxEVT_UPDATE_UI event for

any command with id included in the given
range.

Remarks

Without update UI events, an application has to work hard to check/uncheck,
enable/disable, and set the text for elements such as menu items and toolbar buttons.
The code for doing this has to be mixed up with the code that is invoked when an action
is invoked for a menu item or button.

With update UI events, you define an event handler to look at the state of the application

CHAPTER 5

1343

and change UI elements accordingly. wxWindows will call your member functions in idle
time, so you don't have to worry where to call this code. In addition to being a clearer
and more declarative method, it also means you don't have to worry whether you're
updating a toolbar or menubar identifier. The same handler can update a menu item and
toolbar button, if the identifier is the same.

Instead of directly manipulating the menu or button, you call functions in the event
object, such as wxUpdateUIEvent::Check (p. 1344). wxWindows will determine whether
such a call has been made, and which UI element to update.

These events will work for popup menus as well as menubars. Just before a menu is
popped up, wxMenu::UpdateUI (p. 842) is called to process any UI events for the
window that owns the menu.

See also

Event handling overview (p. 1560)

wxUpdateUIEvent::wxUpdateUIEvent

 wxUpdateUIEvent(wxWindowID commandId = 0)

Constructor.

wxUpdateUIEvent::m_checked

bool m_checked

TRUE if the element should be checked, FALSE otherwise.

wxUpdateUIEvent::m_enabled

bool m_checked

TRUE if the element should be enabled, FALSE otherwise.

wxUpdateUIEvent::m_setChecked

bool m_setChecked

TRUE if the application has set the m_checked member.

wxUpdateUIEvent::m_setEnabled

CHAPTER 5

1344

bool m_setEnabled

TRUE if the application has set the m_enabled member.

wxUpdateUIEvent::m_setText

bool m_setText

TRUE if the application has set the m_text member.

wxUpdateUIEvent::m_text

wxString m_text

Holds the text with which the the application wishes to update the UI element.

wxUpdateUIEvent::Check

void Check(bool check)

Check or uncheck the UI element.

wxUpdateUIEvent::Enable

void Enable(bool enable)

Enable or disable the UI element.

wxUpdateUIEvent::GetChecked

bool GetChecked() const

Returns TRUE if the UI element should be checked.

wxUpdateUIEvent::GetEnabled

bool GetEnabled() const

Returns TRUE if the UI element should be enabled.

wxUpdateUIEvent::GetSetChecked

CHAPTER 5

1345

bool GetSetChecked() const

Returns TRUE if the application has called SetChecked. For wxWindows internal use
only.

wxUpdateUIEvent::GetSetEnabled

bool GetSetEnabled() const

Returns TRUE if the application has called SetEnabled. For wxWindows internal use
only.

wxUpdateUIEvent::GetSetText

bool GetSetText() const

Returns TRUE if the application has called SetText. For wxWindows internal use only.

wxUpdateUIEvent::GetText

wxString GetText() const

Returns the text that should be set for the UI element.

wxUpdateUIEvent::SetText

void SetText(const wxString& text)

Sets the text for this UI element.

wwxxUURRLL

Derived from

wxObject (p. 897)

Include files

<wx/url.h>

See also

CHAPTER 5

1346

wxSocketBase (p. 1100), wxProtocol (p. 1002)

Example

 wxURL url("http://a.host/a.dir/a.file");
 wxInputStream *in_stream;

 in_stream = url.GetInputStream();
 // Then, you can use all IO calls of in_stream (See wxStream)

wxURL::wxURL

 wxURL(const wxString& url)

Constructs an URL object from the string.

Parameters

url

Url string to parse.

wxURL::~wxURL

 ~wxURL()

Destroys the URL object.

wxURL::GetProtocolName

wxString GetProtocolName () const

Returns the name of the protocol which will be used to get the URL.

wxURL::GetProtocol

wxProtocol& GetProtocol()

Returns a reference to the protocol which will be used to get the URL.

wxURL::GetPath

wxString GetPath()

CHAPTER 5

1347

Returns the path of the file to fetch. This path was encoded in the URL.

wxURL::GetError

wxURLError GetError() const

Returns the last error. This error refers to the URL parsing or to the protocol. It can be
one of these errors:

wxURL_NOERR No error.
wxURL_SNTXERR Syntax error in the URL string.
wxURL_NOPROTO Found no protocol which can get this URL.
wxURL_NOHOST An host name is required for this protocol.
wxURL_NOPATH A path is required for this protocol.
wxURL_CONNERR Connection error.
wxURL_PROTOERR An error occurred during negotiation.

wxURL::GetInputStream

wxInputStream * GetInputStream()

Creates a new input stream on the the specified URL. You can use all but seek
functionnality of wxStream. Seek isn't available on all stream. For example, http or ftp
streams doesn't deal with it.

Return value

Returns the initialized stream. You will have to delete it yourself.

See also

wxInputStream (p. 718)

wxURL::SetDefaultProxy

static void SetDefaultProxy(const wxString& url_proxy)

Sets the default proxy server to use to get the URL. The string specifies the proxy like
this: <hostname>:<port number>.

Parameters

url_proxy

Specifies the proxy to use

CHAPTER 5

1348

See also

wxURL::SetProxy (p. 1348)

wxURL::SetProxy

void SetProxy(const wxString& url_proxy)

Sets the proxy to use for this URL.

See also

wxURL::SetDefaultProxy (p. 1347)

wxURL::ConvertToValidURI

static wxString ConvertToValidURI(const wxString& uri)

It converts a non-standardized URI to a valid network URI. It encodes non standard
characters.

wwxxVVaalliiddaattoorr

wxValidator is the base class for a family of validator classes that mediate between a
class of control, and application data.

A validator has three major roles:

 1. to transfer data from a C++ variable or own storage to and from a control;
 2. to validate data in a control, and show an appropriate error message;
 3. to filter events (such as keystrokes), thereby changing the behaviour of the

associated control.

Validators can be plugged into controls dynamically.

To specify a default, 'null' validator, use the symbol wxDefaultValidator.

For more information, please see Validator overview (p. 1571).

wxPython note: If you wish to create a validator class in wxPython you should derive
the class from wxPyValidator in order to get Python-aware capabilities for the various
virtual methods.

Derived from

CHAPTER 5

1349

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/validate.h>

See also

Validator overview (p. 1571), wxTextValidator (p. 1267), wxGenericValidator (p. 555),

wxValidator::wxValidator

 wxValidator()

Constructor.

wxValidator::~wxValidator

 ~wxValidator()

Destructor.

wxValidator::Clone

virtual wxObject* Clone() const

All validator classes must implement the Clone function, which returns an identical copy
of itself. This is because validators are passed to control constructors as references
which must be copied. Unlike objects such as pens and brushes, it does not make sense
to have a reference counting scheme to do this cloning, because all validators should
have separate data.

This base function returns NULL.

wxValidator::GetWindow

wxWindow* GetWindow() const

Returns the window associated with the validator.

wxValidator::SetBellOnError

CHAPTER 5

1350

wxvalidatorsetbellonerror

void SetBellOnError(bool doIt = TRUE)

This functions switches on or turns off the error sound produced by the validators if an
invalid key is pressed.

wxValidator::SetWindow

void SetWindow(wxWindow* window)

Associates a window with the validator.

wxValidator::TransferFromWindow

virtual bool TransferToWindow()

This overridable function is called when the value in the window must be transferred to
the validator. Return FALSE if there is a problem.

wxValidator::TransferToWindow

virtual bool TransferToWindow()

This overridable function is called when the value associated with the validator must be
transferred to the window. Return FALSE if there is a problem.

wxValidator::Validate

virtual bool Validate(wxWindow* parent)

This overridable function is called when the value in the associated window must be
validated. Return FALSE if the value in the window is not valid; you may pop up an error
dialog.

wwxxVVaarriiaanntt

The wxVariant class represents a container for any type. A variant's value can be
changed at run time, possibly to a different type of value.

As standard, wxVariant can store values of type bool, char, double, long, string, string
list, time, date, void pointer, list of strings, and list of variants. However, an application

CHAPTER 5

1351

can extend wxVariant's capabilities by deriving from the class wxVariantData (p. 1359)
and using the wxVariantData form of the wxVariant constructor or assignment operator
to assign this data to a variant. Actual values for user-defined types will need to be
accessed via the wxVariantData object, unlike the case for basic data types where
convenience functions such as GetLong can be used.

This class is useful for reducing the programming for certain tasks, such as an editor for
different data types, or a remote procedure call protocol.

An optional name member is associated with a wxVariant. This might be used, for
example, in CORBA or OLE automation classes, where named parameters are required.

wxVariant is similar to wxExpr and also to wxPropertyValue. However, wxExpr is
efficiency-optimized for a restricted range of data types, whereas wxVariant is less
efficient but more extensible. wxPropertyValue may be replaced by wxVariant
eventually.

Derived from

wxObject (p. 897)

Include files

<wx/variant.h>

See also

wxVariantData (p. 1359)

wxVariant::wxVariant

 wxVariant()

Default constructor.

 wxVariant(const wxVariant& variant)

Copy constructor.

 wxVariant(const char* value, const wxString& name = "")

 wxVariant(const wxString& value, const wxString& name = "")

Construction from a string value.

 wxVariant(char value, const wxString& name = "")

Construction from a character value.

CHAPTER 5

1352

 wxVariant(long value, const wxString& name = "")

Construction from an integer value. You may need to cast to (long) to avoid confusion
with other constructors (such as the bool constructor).

 wxVariant(bool value, const wxString& name = "")

Construction from a boolean value.

 wxVariant(double value, const wxString& name = "")

Construction from a double-precision floating point value.

 wxVariant(const wxList& value, const wxString& name = "")

Construction from a list of wxVariant objects. This constructor copies value, the
application is still responsible for deleting value and its contents.

 wxVariant(const wxStringList& value, const wxString& name = "")

Construction from a list of strings. This construc tor copies value, the application is still
responsible for deleting value and its contents.

 wxVariant(const wxTime& value, const wxString& name = "")

Construction from a time.

 wxVariant(const wxDate& value, const wxString& name = "")

Construction from a date.

 wxVariant(void* value, const wxString& name = "")

Construction from a void pointer.

 wxVariant(wxVariantData* data, const wxString& name = "")

Construction from user-defined data. The variant holds on to the data pointer.

wxVariant::~wxVariant

 ~wxVariant()

Destructor.

wxVariant::Append

CHAPTER 5

1353

void Append(const wxVariant& value)

Appends a value to the list.

wxVariant::ClearList

void ClearList()

Deletes the contents of the list.

wxVariant::GetCount

int GetCount() const

Returns the number of elements in the list.

wxVariant::Delete

bool Delete (int item)

Deletes the zero-based item from the list.

wxVariant::GetBool

bool GetBool() const

Returns the boolean value.

wxVariant::GetChar

char GetChar() const

Returns the character value.

wxVariant::GetData

wxVariantData* GetData() const

Returns a pointer to the internal variant data.

wxVariant::GetDate

CHAPTER 5

1354

wxDate GetDate () const

Gets the date value.

wxVariant::GetDouble

double GetDouble () const

Returns the floating point value.

wxVariant::GetLong

long GetLong() const

Returns the integer value.

wxVariant::GetName

const wxString& GetName () const

Returns a constant reference to the variant name.

wxVariant::GetString

wxString GetString() const

Gets the string value.

wxVariant::GetTime

wxTime GetTime () const

Gets the time value.

wxVariant::GetType

wxString GetType() const

Returns the value type as a string. The built-in types are: bool, char, date, double, list,
long, string, stringlist, time, void*.

If the variant is null, the value type returned is the string "null" (not the empty string).

CHAPTER 5

1355

wxVariant::GetVoidPtr

void* GetVoidPtr() const

Gets the void pointer value.

wxVariant::Insert

void Insert(const wxVariant& value)

Inserts a value at the front of the list.

wxVariant::IsNull

bool IsNull() const

Returns TRUE if there is no data associated with this variant, FALSE if there is data.

wxVariant::IsType

bool IsType(const wxString& type) const

Returns TRUE if type matches the type of the variant, FALSE otherwise.

wxVariant::MakeNull

void MakeNull()

Makes the variant null by deleting the internal data.

wxVariant::MakeString

wxString MakeString() const

Makes a string representation of the variant value (for any type).

wxVariant::Member

bool Member(const wxVariant& value) const

Returns TRUE if value matches an element in the list.

CHAPTER 5

1356

wxVariant::NullList

void NullList()

Makes an empty list. This differs from a null variant which has no data; a null list is of
type list, but the number of elements in the list is zero.

wxVariant::SetData

void SetData(wxVariantData* data)

Sets the internal variant data, deleting the existing data if there is any.

wxVariant::operator =

void operator =(const wxVariant& value)

void operator =(wxVariantData* value)

void operator =(const wxString& value)

void operator =(const char* value)

void operator =(char value)

void operator =(const long value)

void operator =(const bool value)

void operator =(const double value)

void operator =(const wxDate& value)

void operator =(const wxTime& value)

void operator =(void* value)

void operator =(const wxList& value)

void operator =(const wxStringList& value)

Assignment operators.

wxVariant::operator ==

bool operator ==(const wxVariant& value)

CHAPTER 5

1357

bool operator ==(const wxString& value)

bool operator ==(const char* value)

bool operator ==(char value)

bool operator ==(const long value)

bool operator ==(const bool value)

bool operator ==(const double value)

bool operator ==(const wxDate& value)

bool operator ==(const wxTime& value)

bool operator ==(void* value)

bool operator ==(const wxList& value)

bool operator ==(const wxStringList& value)

Equality test operators.

wxVariant::operator !=

bool operator !=(const wxVariant& value)

bool operator !=(const wxString& value)

bool operator !=(const char* value)

bool operator !=(char value)

bool operator !=(const long value)

bool operator !=(const bool value)

bool operator !=(const double value)

bool operator !=(const wxDate& value)

bool operator !=(const wxTime& value)

bool operator !=(void* value)

bool operator !=(const wxList& value)

bool operator !=(const wxStringList& value)

CHAPTER 5

1358

Inequality test operators.

wxVariant::operator []

wxVariant operator [](size_t idx) const

Returns the value at idx (zero-based).

wxVariant& operator [](size_t idx)

Returns a reference to the value at idx (zero-based). This can be used to change the
value at this index.

wxVariant::operator char

char operator char() const

Operator for implicit conversion to a char, using wxVariant::GetChar (p. 1353).

wxVariant::operator double

double operator double () const

Operator for implicit conversion to a double, using wxVariant::GetDouble (p. 1354).

long operator long() const

Operator for implicit conversion to a long, using wxVariant::GetLong (p. 1354).

wxVariant::operator wxDate

wxDate operator wxDate () const

Operator for implicit conversion to a wxDate, using wxVariant::GetDate (p. 1353).

wxVariant::operator wxString

wxString operator wxString() const

Operator for implicit conversion to a string, using wxVariant::MakeString (p. 1355).

wxVariant::operator wxTime

CHAPTER 5

1359

wxTime operator wxTime () const

Operator for implicit conversion to a wxTime, using wxVariant::GetTime (p. 1354).

wxVariant::operator void*

void* operator void*() const

Operator for implicit conversion to a pointer to a void, using wxVariant::GetVoidPtr (p.
1355).

wwxxVVaarriiaannttDDaattaa

The wxVariantData is used to implement a new type for wxVariant. Derive from
wxVariantData, and override the pure virtual functions.

Derived from

wxObject (p. 897)

Include files

<wx/variant.h>

See also

wxVariant (p. 1350)

wxVariantData::wxVariantData

 wxVariantData()

Default constructor.

wxVariantData::Copy

void Copy(wxVariantData& data)

Copy the data from 'this' object to data.

CHAPTER 5

1360

wxVariantData::Eq

bool Eq(wxVariantData& data) const

Returns TRUE if this object is equal to data.

wxVariantData::GetType

wxString GetType() const

Returns the string type of the data.

wxVariantData::Read

bool Read(ostream& stream)

bool Read(wxString& string)

Reads the data from stream or string.

wxVariantData::Write

bool Write(ostream& stream) const

bool Write(wxString& string) const

Writes the data to stream or string.

wwxxVViieeww

The view class can be used to model the viewing and editing component of an
application's file-based data. It is part of the document/view framework supported by
wxWindows, and cooperates with the wxDocument (p. 404), wxDocTemplate (p. 399)
and wxDocManager (p. 385) classes.

Derived from

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/docview.h>

CHAPTER 5

1361

See also

wxView overview (p. 1601), wxDocument (p. 404), wxDocTemplate (p. 399),
wxDocManager (p. 385)

wxView::m_viewDocument

wxDocument* m_viewDocument

The document associated with this view. There may be more than one view per
document, but there can never be more than one document for one view.

wxView::m_viewFrame

wxFrame* m_viewFrame

Frame associated with the view, if any.

wxView::m_viewTypeName

wxString m_viewTypeName

The view type name given to the wxDocTemplate constructor, copied to this variable
when the view is created. Not currently used by the framework.

wxView::wxView

 wxView()

Constructor. Define your own default constructor to initialize application-specific data.

wxView::~wxView

 ~wxView()

Destructor. Removes itself from the document's list of views.

wxView::Activate

virtual void Activate(bool activate)

CHAPTER 5

1362

Call this from your view frame's OnActivate member to tell the framework which view is
currently active. If your windowing system doesn't call OnActivate, you may need to call
this function from OnMenuCommand or any place where you know the view must be
active, and the framework will need to get the current view.

The prepackaged view frame wxDocChildFrame calls wxView::Activate from its
OnActivate member and from its OnMenuCommand member.

This function calls wxView::OnActivateView.

wxView::Close

virtual bool Close(bool deleteWindow = TRUE)

Closes the view by calling OnClose. If deleteWindow is TRUE, this function should
delete the window associated with the view.

wxView::GetDocument

wxDocument* GetDocument() const

Gets a pointer to the document associated with the view.

wxView::GetDocumentManager

wxDocumentManager* GetDocumentManager() const

Returns a pointer to the document manager instance associated with this view.

wxView::GetFrame

wxFrame * GetFrame ()

Gets the frame associated with the view (if any).

wxView::GetViewName

wxString GetViewName () const

Gets the name associated with the view (passed to the wxDocTemplate constructor).
Not currently used by the framework.

wxView::OnActivateView

CHAPTER 5

1363

virtual void OnActivateView(bool activate, wxView *activeView, wxView
*deactiveView)

Called when a view is activated by means of wxView::Activate. The default
implementation does nothing.

wxView::OnChangeFilename

virtual void OnChangeFilename ()

Called when the filename has changed. The default implementation constructs a suitable
title and sets the title of the view frame (if any).

wxView::OnClose

virtual bool OnClose(bool deleteWindow)

Implements closing behaviour. The default implementation calls wxDocument::Close to
close the associated document. Does not delete the view. The application may wish to
do some cleaning up operations in this function, if a call to wxDocument::Close
succeeded. For example, if your application's all share the same window, you need to
disassociate the window from the view and perhaps clear the window. If deleteWindow is
TRUE, delete the frame associated with the view.

wxView::OnCreate

virtual bool OnCreate (wxDocument* doc, long flags)

Called just after view construction to give the view a chance to initialize itself based on
the passed document and flags (unused). By default, simply returns TRUE. If the
function returns FALSE, the view will be deleted.

The predefined document child frame, wxDocChildFrame, calls this function
automatically.

wxView::OnCreatePrintout

virtual wxPrintout* OnCreatePrintout()

If the printing framework is enabled in the library, this function returns a wxPrintout (p.
958) object for the purposes of printing. It should create a new object everytime it is
called; the framework will delete objects it creates.

By default, this function returns an instance of wxDocPrintout, which prints and previews
one page by calling wxView::OnDraw.

CHAPTER 5

1364

Override to return an instance of a class other than wxDocPrintout.

wxView::OnUpdate

virtual void OnUpdate (wxView* sender, wxObject* hint)

Called when the view should be updated. sender is a pointer to the view that sent the
update request, or NULL if no single view requested the update (for instance, when the
document is opened). hint is as yet unused but may in future contain application-specific
information for making updating more efficient.

wxView::SetDocument

void SetDocument(wxDocument* doc)

Associates the given document with the view. Normally called by the framework.

wxView::SetFrame

void SetFrame (wxFrame* frame)

Sets the frame associated with this view. The application should call this if possible, to
tell the view about the frame.

wxView::SetViewName

void SetViewName (const wxString& name)

Sets the view type name. Should only be called by the framework.

wwxxWWaavvee

This class represents a short wave file, in Windows WAV format, that can be stored in
memory and played. Currently this class is implemented on Windows and GTK (Linux)
only.

Derived from

wxObject (p. 897)

Include files

CHAPTER 5

1365

<wx/wave.h>

wxWave::wxWave

 wxWave()

Default constructor.

 wxWave(const wxString& fileName, bool isResource = FALSE)

Constructs a wave object from a file or resource. Call wxWave::IsOk (p. 1366) to
determine whether this succeeded.

Parameters

fileName

The filename or Windows resource.

isResource

TRUE if fileName is a resource, FALSE if it is a filename.

wxWave::~wxWave

 ~wxWave()

Destroys the wxWave object.

wxWave::Create

bool Create (const wxString& fileName, bool isResource = FALSE)

Constructs a wave object from a file or resource.

Parameters

fileName

The filename or Windows resource.

isResource

TRUE if fileName is a resource, FALSE if it is a filename.

Return value

TRUE if the call was successful, FALSE otherwise.

CHAPTER 5

1366

wxWave::IsOk

bool IsOk() const

Returns TRUE if the object contains a successfully loaded file or resource, FALSE
otherwise.

wxWave::Play

bool Play(bool async = TRUE, bool looped = FALSE) const

Plays the wave file synchronously or asynchronously, looped or single-shot.

wwxxWWiinnddooww

wxWindow is the base class for all windows. Any children of the window will be deleted
automatically by the destructor before the window itself is deleted.

Please note that we documented a number of handler functions (OnChar(), OnMouse()
etc.) in this help text. These must not be called by a user program and are documented
only for illustration. On several platforms, only a few of these handlers are actually
written (they are not always needed) and if you are uncertain on how to add a certain
behaviour to a window class, intercept the respective event as usual and call
wxEvent::Skip (p. 431) so that the native platform can implement its native behaviour or
just ignore the event if nothing needs to be done.

Derived from

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/window.h>

Window styles

The following styles can apply to all windows, although they will not always make sense
for a particular window class or on all platforms.

wxSIMPLE_BORDER Displays a thin border around the window. wxBORDER is

the old name for this style.
wxDOUBLE_BORDER Displays a double border. Windows only.
wxSUNKEN_BORDER Displays a sunken border.

CHAPTER 5

1367

wxRAISED_BORDER Displays a raised border. GTK only.
wxSTATIC_BORDER Displays a border suitable for a static control. Windows

only.
wxTRANSPARENT_WINDOW The window is transparent, that is, it will not receive

paint events. Windows only.
wxNO_3D Prevents the children of this window taking on 3D styles,

even though the application-wide policy is for 3D controls.
Windows only.

wxTAB_TRAVERSAL Use this to enable tab traversal for non-dialog windows.
wxWANTS_CHARS Use this to indicate that the window wants to get all char

events - even for keys like TAB or ENTER which are
usually used for dialog navigation and which wouldn't be
generated without this style

wxNO_FULL_REPAINT_ON_RESIZE Disables repainting the window completely
when its size is changed - you will have to repaint the new
window area manually if you use this style. Currently only
has an effect for Windows.

wxVSCROLL Use this style to enable a vertical scrollbar. (Still used?)
wxHSCROLL Use this style to enable a horizontal scrollbar. (Still used?)
wxCLIP_CHILDREN Use this style to eliminate flicker caused by the background

being repainted, then children being painted over them.
Windows only.

See also window styles overview (p. 1567).

See also

Event handling overview (p. 1560)

wxWindow::wxWindow

 wxWindow()

Default constructor.

 wxWindow(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxPanelNameStr)

Constructs a window, which can be a child of a frame, dialog or any other non-control
window.

Parameters

parent

Pointer to a parent window.

CHAPTER 5

1368

id
Window identifier. If -1, will automatically create an identifier.

pos

Window position. wxDefaultPosition is (-1, -1) which indicates that wxWindows
should generate a default position for the window. If using the wxWindow class
directly, supply an actual position.

size

Window size. wxDefaultSize is (-1, -1) which indicates that wxWindows should
generate a default size for the window. If no suitable size can be found, the
window will be sized to 20x20 pixels so that the window is visible but obviously not
correctly sized.

style

Window style. For generic window styles, please see wxWindow (p. 1366).

name

Window name.

wxWindow::~wxWindow

 ~wxWindow()

Destructor. Deletes all subwindows, then deletes itself. Instead of using the delete
operator explicitly, you should normally use wxWindow::Destroy (p. 1373) so that
wxWindows can delete a window only when it is safe to do so, in idle time.

See also

Window deletion overview (p. 1568), wxWindow::OnCloseWindow (p. 1391),
wxWindow::Destroy (p. 1373), wxCloseEvent (p. 127)

wxWindow::AddChild

virtual void AddChild(wxWindow* child)

Adds a child window. This is called automatically by window creation functions so
should not be required by the application programmer.

Parameters

child

Child window to add.

wxWindow::CaptureMouse

CHAPTER 5

1369

virtual void CaptureMouse ()

Directs all mouse input to this window. Call wxWindow::ReleaseMouse (p. 1402) to
release the capture.

See also

wxWindow::ReleaseMouse (p. 1402)

wxWindow::Center

void Center(int direction)

A synonym for Centre (p. 1369).

wxWindow::CenterOnParent

void CenterOnParent(int direction)

A synonym for CentreOnParent (p. 1370).

wxWindow::CenterOnScreen

void CenterOnScreen(int direction)

A synonym for CentreOnScreen (p. 1370).

wxWindow::Centre

void Centre(int direction = wxBOTH)

Centres the window.

Parameters

direction

Specifies the direction for the centering. May be wxHORIZONTAL, wxVERTICAL or
wxBOTH. It may also include wxCENTRE_ON_SCREEN flag if you want to center the
window on the entire screen and not on its parent window.

The flag wxCENTRE_FRAME is obsolete and should not be used any longer (it has no
effect).

Remarks

If the window is a top level one (i.e. doesn't have a parent), it will be centered relative to

CHAPTER 5

1370

the screen anyhow.

See also

wxWindow::Center (p. 1369)

wxWindow::CentreOnParent

void CentreOnParent(int direction = wxBOTH)

Centres the window on its parent. This is a more readable synonym forCentre (p. 1369).

Parameters

direction

Specifies the direction for the centering. May be wxHORIZONTAL, wxVERTICAL or
wxBOTH.

Remarks

This methods provides for a way to center top level windows over their parents instead
of the entire screen. If there is no parent or if the window is not a top level window, then
behaviour is the same aswxWindow::Centre (p. 1369).

See also

wxWindow::CentreOnScreen (p. 1369)

wxWindow::CentreOnScreen

void CentreOnScreen(int direction = wxBOTH)

Centres the window on screen. This only works for top level windows - otherwise, the
window will still be centered on its parent.

Parameters

direction

Specifies the direction for the centering. May be wxHORIZONTAL, wxVERTICAL or
wxBOTH.

See also

wxWindow::CentreOnParent (p. 1369)

wxWindow::Clear

CHAPTER 5

1371

void Clear()

Clears the window by filling it with the current background colour. Does not cause an
erase background event to be generated.

wxWindow::ClientToScreen

virtual void ClientToScreen(int* x, int* y) const

wxPerl note: In wxPerl this method returns a 2-element list intead of modifying its
parameters.

virtual wxPoint ClientToScreen(const wxPoint& pt) const

Converts to screen coordinates from coordinates relative to this window.

x

A pointer to a integer value for the x coordinate. Pass the client coordinate in, and
a screen coordinate will be passed out.

y

A pointer to a integer value for the y coordinate. Pass the client coordinate in, and
a screen coordinate will be passed out.

pt

The client position for the second form of the function.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ClientToScreen(point) Accepts and returns a wxPoint
ClientToScreenXY(x, y) Returns a 2-tuple, (x, y)

wxWindow::Close

virtual bool Close(bool force = FALSE)

The purpose of this call is to provide a safer way of destroying a window than using the
delete operator.

Parameters

force

FALSE if the window's close handler should be able to veto the destruction of this
window, TRUE if it cannot.

Remarks

CHAPTER 5

1372

Close calls the close handler (p. 127) for the window, providing an opportunity for the
window to choose whether to destroy the window.

The close handler should check whether the window is being deleted forcibly, using
wxCloseEvent::GetForce (p. 129), in which case it should destroy the window using
wxWindow::Destroy (p. 1373).

Applies to managed windows (wxFrame and wxDialog classes) only.

Note that calling Close does not guarantee that the window will be destroyed; but it
provides a way to simulate a manual close of a window, which may or may not be
implemented by destroying the window. The default implementation of
wxDialog::OnCloseWindow does not necessarily delete the dialog, since it will simply
simulate an wxID_CANCEL event which itself only hides the dialog.

To guarantee that the window will be destroyed, call wxWindow::Destroy (p. 1373)
instead.

See also

Window deletion overview (p. 1568), wxWindow::OnCloseWindow (p. 1391),
wxWindow::Destroy (p. 1373), wxCloseEvent (p. 127)

wxWindow::ConvertDialogToPixels

wxPoint ConvertDialogToPixels(const wxPoint& pt)

wxSize ConvertDialogToPixels(const wxSize& sz)

Converts a point or size from dialog units to pixels.

For the x dimension, the dialog units are multiplied by the average character width and
then divided by 4.

For the y dimension, the dialog units are multiplied by the average character height and
then divided by 8.

Remarks

Dialog units are used for maintaining a dialog's proportions even if the font changes.
Dialogs created using Dialog Editor optionally use dialog units.

You can also use these functions programmatically. A convenience macro is defined:

#define wxDLG_UNIT(parent, pt) parent->ConvertDialogToPixels(pt)

CHAPTER 5

1373

See also

wxWindow::ConvertPixelsToDialog (p. 1373)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ConvertDialogPointToPixels(point) Accepts and returns a wxPoint
ConvertDialogSizeToPixels(size) Accepts and returns a wxSize

Additionally, the following helper functions are defined:

wxDLG_PNT(win, point) Converts a wxPoint from dialog units to pixels
wxDLG_SZE(win, size) Converts a wxSize from dialog units to pixels

wxWindow::ConvertPixelsToDialog

wxPoint ConvertPixelsToDialog(const wxPoint& pt)

wxSize ConvertPixelsToDialog(const wxSize& sz)

Converts a point or size from pixels to dialog units.

For the x dimension, the pixels are multiplied by 4 and then divided by the average
character width.

For the y dimension, the pixels are multipled by 8 and then divided by the average
character height.

Remarks

Dialog units are used for maintaining a dialog's proportions even if the font changes.
Dialogs created using Dialog Editor optionally use dialog units.

See also

wxWindow::ConvertDialogToPixels (p. 1372)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ConvertDialogPointToPixels(point) Accepts and returns a wxPoint
ConvertDialogSizeToPixels(size) Accepts and returns a wxSize

wxWindow::Destroy

CHAPTER 5

1374

virtual bool Destroy()

Destroys the window safely. Use this function instead of the delete operator, since
different window classes can be destroyed differently. Frames and dialogs are not
destroyed immediately when this function is called - they are added to a list of windows
to be deleted on idle time, when all the window's events have been processed. This
prevents problems with events being sent to non-existant windows.

Return value

TRUE if the window has either been successfully deleted, or it has been added to the list
of windows pending real deletion.

wxWindow::DestroyChildren

virtual void DestroyChildren()

Destroys all children of a window. Called automatically by the destructor.

wxWindow::Disable

void Disable ()

Disables the window, same as Enable(FALSE) (p. 1375).

wxWindow::DragAcceptFiles

virtual void DragAcceptFiles(bool accept)

Enables or disables elibility for drop file events (OnDropFiles).

Parameters

accept

If TRUE, the window is eligible for drop file events. If FALSE, the window will not
accept drop file events.

Remarks

Windows only.

See also

wxWindow::OnDropFiles (p. 1391)

CHAPTER 5

1375

wxWindow::Enable

virtual void Enable(bool enable = TRUE)

Enable or disable the window for user input.

Parameters

enable

If TRUE, enables the window for input. If FALSE, disables the window.

See also

wxWindow::IsEnabled (p. 1385), wxWindow::Disable (p. 1374)

wxWindow::FindFocus

static wxWindow* FindFocus()

Finds the window or control which currently has the keyboard focus.

Remarks

Note that this is a static function, so it can be called without needing a wxWindow
pointer.

See also

wxWindow::SetFocus (p. 1409)

wxWindow::FindWindow

wxWindow* FindWindow(long id)

Find a child of this window, by identifier.

wxWindow* FindWindow(const wxString& name)

Find a child of this window, by name.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

FindWindowById(id) Accepts an integer
FindWindowByName(name) Accepts a string

CHAPTER 5

1376

wxWindow::Fit

virtual void Fit()

Sizes the window so that it fits around its subwindows. This function won't do anything if
there are no subwindows.

wxWindow::Freeze

virtual void Freeze()

Freezes the window or, in other words, prevents any updates from taking place on
screen, the window is not redrawn at all. Thaw (p. 1417) must be called to reenable
window redrawing.

This method is useful for visual appearance optimization (for example, it is a good idea
to use it before inserting large amount of text into a wxTextCtrl under wxGTK) but is not
implemented on all platforms nor for all controls so it is mostly just a hint to wxWindows
and not a mandatory directive.

wxWindow::GetBackgroundColour

virtual wxColour GetBackgroundColour() const

Returns the background colour of the window.

See also

wxWindow::SetBackgroundColour (p. 1405), wxWindow::SetForegroundColour (p.
1409), wxWindow::GetForegroundColour (p. 1379), wxWindow::OnEraseBackground (p.
1392)

wxWindow::GetBestSize

virtual wxSize GetBestSize() const

This functions returns the best acceptable minimal size for the window. For example, for
a static control, it will be the minimal size such that the control label is not truncated. For
windows containing subwindows (typicallywxPanel (p. 916)), the size returned by this
function will be the same as the size the window would have had after callingFit (p.
1376).

wxWindow::GetCaret

wxCaret * GetCaret() const

CHAPTER 5

1377

Returns the caret (p. 108) associated with the window.

wxWindow::GetCharHeight

virtual int GetCharHeight() const

Returns the character height for this window.

wxWindow::GetCharWidth

virtual int GetCharWidth() const

Returns the average character width for this window.

wxWindow::GetChildren

wxList& GetChildren()

Returns a reference to the list of the window's children.

wxWindow::GetClientSize

virtual void GetClientSize(int* width, int* height) const

wxPerl note: In wxPerl this method takes no parameter and returns a 2-element list (
width, height).

virtual wxSize GetClientSize() const

This gets the size of the window 'client area' in pixels. The client area is the area which
may be drawn on by the programmer, excluding title bar, border etc.

Parameters

width

Receives the client width in pixels.

height

Receives the client height in pixels.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetClientSizeTuple() Returns a 2-tuple of (width, height)
GetClientSize() Returns a wxSize object

CHAPTER 5

1378

wxWindow::GetConstraints

wxLayoutConstraints* GetConstraints() const

Returns a pointer to the window's layout constraints, or NULL if there are none.

wxWindow::GetDropTarget

wxDropTarget* GetDropTarget() const

Returns the associated drop target, which may be NULL.

See also

wxWindow::SetDropTarget (p. 1408),Drag and drop overview (p. 1619)

wxWindow::GetEventHandler

wxEvtHandler* GetEventHandler() const

Returns the event handler for this window. By default, the window is its own event
handler.

See also

wxWindow::SetEventHandler (p. 1408), wxWindow::PushEventHandler (p. 1401),
wxWindow::PopEventHandler (p. 1401), wxEvtHandler::ProcessEvent (p. 435),
wxEvtHandler (p. 432)

wxWindow::GetExtraStyle

long GetExtraStyle() const

Returns the extra style bits for the window.

wxWindow::GetFont

wxFont& GetFont() const

Returns a reference to the font for this window.

See also

wxWindow::SetFont (p. 1409)

CHAPTER 5

1379

wxWindow::GetForegroundColour

virtual wxColour GetForegroundColour()

Returns the foreground colour of the window.

Remarks

The interpretation of foreground colour is open to interpretation according to the window
class; it may be the text colour or other colour, or it may not be used at all.

See also

wxWindow::SetForegroundColour (p. 1409), wxWindow::SetBackgroundColour (p.
1405), wxWindow::GetBackgroundColour (p. 1376)

wxWindow::GetGrandParent

wxWindow* GetGrandParent() const

Returns the grandparent of a window, or NULL if there isn't one.

wxWindow::GetHandle

void* GetHandle () const

Returns the platform-specific handle of the physical window. Cast it to an appropriate
handle, such as HWND for Windows, Widget for Motif or GtkWidget for GTK.

wxPython note: This method will return an integer in wxPython.

wxWindow::GetHelpText

virtual wxString GetHelpText() const

Gets the help text to be used as context-sensitive help for this window.

Note that the text is actually stored by the current wxHelpProvider (p. 618)
implementation, and not in the window object itself.

See also

SetHelpText (p. 1410), wxHelpProvider (p. 618)

CHAPTER 5

1380

wxWindow::GetId

int GetId() const

Returns the identifier of the window.

Remarks

Each window has an integer identifier. If the application has not provided one (or the
default Id -1) an unique identifier with a negative value will be generated.

See also

wxWindow::SetId (p. 1410), Window identifiers (p. 1564)

wxWindow::GetLabel

virtual wxString GetLabel() const

Generic way of getting a label from any window, for identification purposes.

Remarks

The interpretation of this function differs from class to class. For frames and dialogs, the
value returned is the title. For buttons or static text controls, it is the button text. This
function can be useful for meta-programs (such as testing tools or special-needs access
programs) which need to identify windows by name.

wxWindow::GetName

virtual wxString GetName() const

Returns the window's name.

Remarks

This name is not guaranteed to be unique; it is up to the programmer to supply an
appropriate name in the window constructor or via wxWindow::SetName (p. 1410).

See also

wxWindow::SetName (p. 1410)

wxWindow::GetParent

virtual wxWindow* GetParent() const

CHAPTER 5

1381

Returns the parent of the window, or NULL if there is no parent.

wxWindow::GetPosition

virtual void GetPosition(int* x, int* y) const

wxPoint GetPosition() const

This gets the position of the window in pixels, relative to the parent window or if no
parent, relative to the whole display.

Parameters

x

Receives the x position of the window.

y

Receives the y position of the window.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetPosition() Returns a wxPoint
GetPositionTuple() Returns a tuple (x, y)

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetPosition() Returns a Wx::Point
GetPositionXY() Returns a 2-element list (x, y)

wxWindow::GetRect

virtual wxRect GetRect() const

Returns the size and position of the window as a wxRect (p. 1023) object.

wxWindow::GetScrollThumb

virtual int GetScrollThumb(int orientation)

Returns the built-in scrollbar thumb size.

See also

wxWindow::SetScrollbar (p. 1411)

CHAPTER 5

1382

wxWindow::GetScrollPos

virtual int GetScrollPos(int orientation)

Returns the built-in scrollbar position.

See also

See wxWindow::SetScrollbar (p. 1411)

wxWindow::GetScrollRange

virtual int GetScrollRange (int orientation)

Returns the built-in scrollbar range.

See also

wxWindow::SetScrollbar (p. 1411)

wxWindow::GetSize

virtual void GetSize(int* width, int* height) const

virtual wxSize GetSize() const

This gets the size of the entire window in pixels.

Parameters

width

Receives the window width.

height

Receives the window height.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize
GetSizeTuple() Returns a 2-tuple (width, height)

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size

CHAPTER 5

1383

GetSizeWH() Returns a 2-element list (width, height)

wxWindow::GetSizer

const wxSizer * GetSizer() const

Return the sizer associated with the window by a previous call to SetSizer() (p. 1415) or
NULL.

virtual void GetTextExtent(const wxString& string, int* x, int* y, int* descent = NULL,
int* externalLeading = NULL, const wxFont* font = NULL, bool use16 = FALSE) const

Gets the dimensions of the string as it would be drawn on the window with the currently
selected font.

Parameters

string

String whose extent is to be measured.

x

Return value for width.

y

Return value for height.

descent

Return value for descent (optional).

externalLeading

Return value for external leading (optional).

font

Font to use instead of the current window font (optional).

use16

If TRUE, string contains 16-bit characters. The default is FALSE.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetTextExtent(string) Returns a 2-tuple, (width, height)
GetFullTextExtent(string, font=NULL)Returns a 4-tuple, (width, height,

descent, externalLeading)

wxPerl note: In wxPerl this method takes only the string and optionally font
parameters, and returns a 4-element list (x, y, descent, externalLeading).

CHAPTER 5

1384

wxWindow::GetTitle

virtual wxString GetTitle ()

Gets the window's title. Applicable only to frames and dialogs.

See also

wxWindow::SetTitle (p. 1415)

wxWindow::GetUpdateRegion

virtual wxRegion GetUpdateRegion() const

Returns the region specifying which parts of the window have been damaged. Should
only be called within an OnPaint (p. 1397) event handler.

See also

wxRegion (p. 1044), wxRegionIterator (p. 1048), wxWindow::OnPaint (p. 1397)

wxWindow::GetValidator

wxValidator* GetValidator() const

Returns a pointer to the current validator for the window, or NULL if there is none.

wxWindow::GetWindowStyleFlag

long GetWindowStyleFlag() const

Gets the window style that was passed to the constructor or Createmethod.
GetWindowStyle() is another name for the same function.

wxWindow::InitDialog

void InitDialog()

Sends an wxWindow::OnInitDialog (p. 1394) event, which in turn transfers data to the
dialog via validators.

See also

wxWindow::OnInitDialog (p. 1394)

CHAPTER 5

1385

wxWindow::IsEnabled

virtual bool IsEnabled() const

Returns TRUE if the window is enabled for input, FALSE otherwise.

See also

wxWindow::Enable (p. 1375)

wxWindow:IsExposed

bool IsExposed(int x, int y) const

bool IsExposed(wxPoint &pt) const

bool IsExposed(int x, int y, int w, int h) const

bool IsExposed(wxRect &rect) const

Returns TRUE if the given point or rectange area has been exposed since the last
repaint. Call this in an paint event handler to optimize redrawing by only redrawing those
areas, which have been exposed.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

IsExposed(x,y, w=0,h=0
IsExposedPoint(pt)
IsExposedRect(rect)

wxWindow::IsRetained

virtual bool IsRetained() const

Returns TRUE if the window is retained, FALSE otherwise.

Remarks

Retained windows are only available on X platforms.

wxWindow::IsShown

virtual bool IsShown() const

CHAPTER 5

1386

Returns TRUE if the window is shown, FALSE if it has been hidden.

wxWindow::IsTopLevel

bool IsTopLevel() const

Returns TRUE if the given window is a top-level one. Currently all frames and dialogs
are considered to be top-level windows (even if they have a parent window).

wxWindow::Layout

void Layout()

Invokes the constraint-based layout algorithm or the sizer-based algorithm for this
window.

See wxWindow::SetAutoLayout (p. 1405) on when this function gets called automatically
using auto layout.

wxWindow::LoadFromResource

virtual bool LoadFromResource(wxWindow* parent, const wxString&
resourceName, const wxResourceTable* resourceTable = NULL)

Loads a panel or dialog from a resource file.

Parameters

parent

Parent window.

resourceName

The name of the resource to load.

resourceTable

The resource table to load it from. If this is NULL, the default resource table will be
used.

Return value

TRUE if the operation succeeded, otherwise FALSE.

wxWindow::Lower

void Lower()

CHAPTER 5

1387

Lowers the window to the bottom of the window hierarchy if it is a managed window
(dialog or frame).

wxWindow::MakeModal

virtual void MakeModal(bool flag)

Disables all other windows in the application so that the user can only interact with this
window. (This function is not implemented anywhere).

Parameters

flag

If TRUE, this call disables all other windows in the application so that the user can
only interact with this window. If FALSE, the effect is reversed.

wxWindow::Move

void Move(int x, int y)

void Move(const wxPoint& pt)

Moves the window to the given position.

Parameters

x

Required x position.

y

Required y position.

pt

wxPoint (p. 937) object representing the position.

Remarks

Implementations of SetSize can also implicitly implement the wxWindow::Move function,
which is defined in the base wxWindow class as the call:

 SetSize(x, y, -1, -1, wxSIZE_USE_EXISTING);

See also

wxWindow::SetSize (p. 1413)

wxPython note: In place of a single overloaded method name, wxPython implements

CHAPTER 5

1388

the following methods:

Move(point) Accepts a wxPoint
MoveXY(x, y) Accepts a pair of integers

wxWindow::OnActivate

void OnActivate(wxActivateEvent& event)

Called when a window is activated or deactivated.

Parameters

event

Object containing activation information.

Remarks

If the window is being activated, wxActivateEvent::GetActive (p. 21) returns TRUE,
otherwise it returns FALSE (it is being deactivated).

See also

wxActivateEvent (p. 20), Event handling overview (p. 1560)

wxWindow::OnChar

void OnChar(wxKeyEvent& event)

Called when the user has pressed a key that is not a modifier (SHIFT, CONTROL or
ALT).

Parameters

event

Object containing keypress information. See wxKeyEvent (p. 733) for details about
this class.

Remarks

This member function is called in response to a keypress. To intercept this event, use
the EVT_CHAR macro in an event table definition. Your OnChar handler may call this
default function to achieve default keypress functionality.

Note that the ASCII values do not have explicit key codes: they are passed as ASCII
values.

CHAPTER 5

1389

Note that not all keypresses can be intercepted this way. If you wish to intercept modifier
keypresses, then you will need to use wxWindow::OnKeyDown (p. 1392)
orwxWindow::OnKeyUp (p. 1393).

Most, but not all, windows allow keypresses to be intercepted.

Tip: be sure to call event.Skip() for events that you don't process in this function,
otherwise menu shortcuts may cease to work under Windows.

See also

wxWindow::OnKeyDown (p. 1392), wxWindow::OnKeyUp (p. 1393), wxKeyEvent (p.
733), wxWindow::OnCharHook (p. 1389), Event handling overview (p. 1560)

wxWindow::OnCharHook

void OnCharHook(wxKeyEvent& event)

This member is called to allow the window to intercept keyboard events before they are
processed by child windows.

Parameters

event

Object containing keypress information. See wxKeyEvent (p. 733) for details about
this class.

Remarks

This member function is called in response to a keypress, if the window is active. To
intercept this event, use the EVT_CHAR_HOOK macro in an event table definition. If
you do not process a particular keypress, call wxEvent::Skip (p. 431) to allow default
processing.

An example of using this function is in the implementation of escape-character
processing for wxDialog, where pressing ESC dismisses the dialog by OnCharHook
'forging' a cancel button press event.

Note that the ASCII values do not have explicit key codes: they are passed as ASCII
values.

This function is only relevant to top-level windows (frames and dialogs), and under
Windows only. Under GTK the normal EVT_CHAR_ event has the functionality, i.e. you
can intercepts it and if you don't call wxEvent::Skip (p. 431)the window won't get the
event.

See also

wxKeyEvent (p. 733), wxWindow::OnCharHook (p. 1389), Event handling overview (p.

CHAPTER 5

1390

1560)

wxWindow::OnCommand

virtual void OnCommand(wxEvtHandler& object, wxCommandEvent& event)

This virtual member function is called if the control does not handle the command event.

Parameters

object

Object receiving the command event.

event

Command event

Remarks

This virtual function is provided mainly for backward compatibility. You can also intercept
commands from child controls by using an event table, with identifiers or identifier
ranges to identify the control(s) in question.

See also

wxCommandEvent (p. 156), Event handling overview (p. 1560)

wxWindow::OnClose

virtual bool OnClose()

Called when the user has tried to close a a frame or dialog box using the window
manager (X) or system menu (Windows).

Note: This is an obsolete function. It is superceded by the wxWindow::OnCloseWindow
(p. 1391) event handler.

Return value

If TRUE is returned by OnClose, the window will be deleted by the system, otherwise the
attempt will be ignored. Do not delete the window from within this handler, although you
may delete other windows.

See also

Window deletion overview (p. 1568), wxWindow::Close (p. 1371),
wxWindow::OnCloseWindow (p. 1391), wxCloseEvent (p. 127)

CHAPTER 5

1391

wxWindow::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

This is an event handler function called when the user has tried to close a a frame or
dialog box using the window manager (X) or system menu (Windows). It is called via the
wxWindow::Close (p. 1371) function, so that the application can also invoke the handler
programmatically.

Use the EVT_CLOSE event table macro to handle close events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 129). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 1373). If not, it is up to you whether you respond by destroying
the window.

(Note: GetForce is now superceded by CanVeto. So to test whether forced destruction of
the window is required, test for the negative of CanVeto. If CanVeto returns FALSE, it is
not possible to skip window deletion.)

If you don't destroy the window, you should call wxCloseEvent::Veto (p. 129) to let the
calling code know that you did not destroy the window. This allows the wxWindow::Close
(p. 1371) function to return TRUE or FALSE depending on whether the close instruction
was honoured or not.

Remarks

The wxWindow::OnClose (p. 1390) virtual function remains for backward compatibility
with earlier versions of wxWindows. The default OnCloseWindow handler for wxFrame
and wxDialog will call OnClose, destroying the window if it returns TRUE or if the close
is being forced.

See also

Window deletion overview (p. 1568), wxWindow::Close (p. 1371), wxWindow::OnClose
(p. 1390), wxWindow::Destroy (p. 1373), wxCloseEvent (p. 127),
wxApp::OnQueryEndSession (p. 28)

wxWindow::OnDropFiles

void OnDropFiles(wxDropFilesEvent& event)

Called when files have been dragged from the file manager to the window.

Parameters

event

Drop files event. For more information, see wxDropFilesEvent (p. 417).

Remarks

CHAPTER 5

1392

The window must have previously been enabled for dropping by calling
wxWindow::DragAcceptFiles (p. 1374).

This event is only generated under Windows.

To intercept this event, use the EVT_DROP_FILES macro in an event table definition.

See also

wxDropFilesEvent (p. 417), wxWindow::DragAcceptFiles (p. 1374), Event handling
overview (p. 1560)

wxWindow::OnEraseBackground

void OnEraseBackground(wxEraseEvent& event)

Called when the background of the window needs to be erased.

Parameters

event

Erase background event. For more information, see wxEraseEvent (p. 427).

Remarks

Under non-Windows platforms, this event is simulated (simply generated just before the
paint event) and may cause flicker. It is therefore recommended that you set the text
background colour explicitly in order to prevent flicker. The default background colour
under GTK is grey.

To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table
definition.

See also

wxEraseEvent (p. 427), Event handling overview (p. 1560)

wxWindow::OnKeyDown

void OnKeyDown(wxKeyEvent& event)

Called when the user has pressed a key, before it is translated into an ASCII value using
other modifier keys that might be pressed at the same time.

Parameters

event

Object containing keypress information. See wxKeyEvent (p. 733) for details about

CHAPTER 5

1393

this class.

Remarks

This member function is called in response to a key down event. To intercept this event,
use the EVT_KEY_DOWN macro in an event table definition. Your OnKeyDown handler
may call this default function to achieve default keypress functionality.

Note that not all keypresses can be intercepted this way. If you wish to intercept special
keys, such as shift, control, and function keys, then you will need to use
wxWindow::OnKeyDown (p. 1392) orwxWindow::OnKeyUp (p. 1393).

Most, but not all, windows allow keypresses to be intercepted.

Tip: be sure to call event.Skip() for events that you don't process in this function,
otherwise menu shortcuts may cease to work under Windows.

See also

wxWindow::OnChar (p. 1388), wxWindow::OnKeyUp (p. 1393), wxKeyEvent (p. 733),
wxWindow::OnCharHook (p. 1389), Event handling overview (p. 1560)

wxWindow::OnKeyUp

void OnKeyUp(wxKeyEvent& event)

Called when the user has released a key.

Parameters

event

Object containing keypress information. See wxKeyEvent (p. 733) for details about
this class.

Remarks

This member function is called in response to a key up event. To intercept this event,
use the EVT_KEY_UP macro in an event table definition. Your OnKeyUp handler may
call this default function to achieve default keypress functionality.

Note that not all keypresses can be intercepted this way. If you wish to intercept special
keys, such as shift, control, and function keys, then you will need to use
wxWindow::OnKeyDown (p. 1392) orwxWindow::OnKeyUp (p. 1393).

Most, but not all, windows allow key up events to be intercepted.

See also

wxWindow::OnChar (p. 1388), wxWindow::OnKeyDown (p. 1392), wxKeyEvent (p. 733),

CHAPTER 5

1394

wxWindow::OnCharHook (p. 1389), Event handling overview (p. 1560)

wxWindow::OnKillFocus

void OnKillFocus(wxFocusEvent& event)

Called when a window's focus is being killed.

Parameters

event

The focus event. For more information, see wxFocusEvent (p. 506).

Remarks

To intercept this event, use the macro EVT_KILL_FOCUS in an event table definition.

Most, but not all, windows respond to this event.

See also

wxFocusEvent (p. 506), wxWindow::OnSetFocus (p. 1399), Event handling overview (p.
1560)

wxWindow::OnIdle

void OnIdle (wxIdleEvent& event)

Provide this member function for any processing which needs to be done when the
application is idle.

See also

wxIdleEvent (p. 679)

wxWindow::OnInitDialog

void OnInitDialog(wxInitDialogEvent& event)

Default handler for the wxEVT_INIT_DIALOG event. Calls
wxWindow::TransferDataToWindow (p. 1417).

Parameters

event

Dialog initialisation event.

CHAPTER 5

1395

Remarks

Gives the window the default behaviour of transferring data to child controls via the
validator that each control has.

See also

wxValidator (p. 1348), wxWindow::TransferDataToWindow (p. 1417)

wxWindow::OnMenuCommand

void OnMenuCommand(wxCommandEvent& event)

Called when a menu command is received from a menu bar.

Parameters

event

The menu command event. For more information, see wxCommandEvent (p. 156).

Remarks

A function with this name doesn't actually exist; you can choose any member function to
receive menu command events, using the EVT_COMMAND macro for individual
commands or EVT_COMMAND_RANGE for a range of commands.

See also

wxCommandEvent (p. 156), wxWindow::OnMenuHighlight (p. 1395), Event handling
overview (p. 1560)

wxWindow::OnMenuHighlight

void OnMenuHighlight(wxMenuEvent& event)

Called when a menu select is received from a menu bar: that is, the mouse cursor is
over a menu item, but the left mouse button has not been pressed.

Parameters

event

The menu highlight event. For more information, see wxMenuEvent (p. 857).

Remarks

You can choose any member function to receive menu select events, using the
EVT_MENU_HIGHLIGHT macro for individual menu items or
EVT_MENU_HIGHLIGHT_ALL macro for all menu items.

CHAPTER 5

1396

The default implementation for wxFrame::OnMenuHighlight (p. 534) displays help text in
the first field of the status bar.

This function was known as OnMenuSelect in earlier versions of wxWindows, but this
was confusing since a selection is normally a left-click action.

See also

wxMenuEvent (p. 857), wxWindow::OnMenuCommand (p. 1395), Event handling
overview (p. 1560)

wxWindow::OnMouseEvent

void OnMouseEvent(wxMouseEvent& event)

Called when the user has initiated an event with the mouse.

Parameters

event

The mouse event. See wxMouseEvent (p. 871) for more details.

Remarks

Most, but not all, windows respond to this event.

To intercept this event, use the EVT_MOUSE_EVENTS macro in an event table
definition, or individual mouse event macros such as EVT_LEFT_DOWN.

See also

wxMouseEvent (p. 871), Event handling overview (p. 1560)

wxWindow::OnMove

void OnMove(wxMoveEvent& event)

Called when a window is moved.

Parameters

event

The move event. For more information, see wxMoveEvent (p. 880).

Remarks

Use the EVT_MOVE macro to intercept move events.

CHAPTER 5

1397

Remarks

Not currently implemented.

See also

wxMoveEvent (p. 880), wxFrame::OnSize (p. 534), Event handling overview (p. 1560)

wxWindow::OnPaint

void OnPaint(wxPaintEvent& event)

Sent to the event handler when the window must be refreshed.

Parameters

event

Paint event. For more information, see wxPaintEvent (p. 911).

Remarks

Use the EVT_PAINT macro in an event table definition to intercept paint events.

Note that In a paint event handler, the application must always create a wxPaintDC (p.
910) object, even if you do not use it. Otherwise, under MS Windows, refreshing for this
and other windows will go wrong.

For example:

 void MyWindow::OnPaint(wxPaintEvent\& event)
 {
 wxPaintDC dc(this);

 DrawMyDocument(dc);
 }

You can optimize painting by retrieving the rectangles that have been damaged and only
repainting these. The rectangles are in terms of the client area, and are unscrolled, so
you will need to do some calculations using the current view position to obtain logical,
scrolled units.

Here is an example of using the wxRegionIterator (p. 1048) class:

// Called when window needs to be repainted.
void MyWindow::OnPaint(wxPaintEvent\& event)
{
 wxPaintDC dc(this);

CHAPTER 5

1398

 // Find Out where the window is scrolled to
 int vbX,vbY; // Top left corner of client
 GetViewStart(&vbX,&vbY);

 int vX,vY,vW,vH; // Dimensions of client area in
pixels
 wxRegionIterator upd(GetUpdateRegion()); // get the update rect list

 while (upd)
 {
 vX = upd.GetX();
 vY = upd.GetY();
 vW = upd.GetW();
 vH = upd.GetH();

 // Alternatively we can do this:
 // wxRect rect;
 // upd.GetRect(&rect);

 // Repaint this rectangle
 ...some code...

 upd ++ ;
 }
}

See also

wxPaintEvent (p. 911), wxPaintDC (p. 910), Event handling overview (p. 1560)

wxWindow::OnScroll

void OnScroll(wxScrollWinEvent& event)

Called when a scroll window event is received from one of the window's built-in
scrollbars.

Parameters

event

Command event. Retrieve the new scroll position by calling
wxScrollEvent::GetPosition (p. 1070), and the scrollbar orientation by calling
wxScrollEvent::GetOrientation (p. 1070).

Remarks

Note that it is not possible to distinguish between horizontal and vertical scrollbars until
the function is executing (you can't have one function for vertical, another for horizontal
events).

See also

CHAPTER 5

1399

wxScrollWinEvent (p. 1067), Event handling overview (p. 1560)

wxWindow::OnSetFocus

void OnSetFocus(wxFocusEvent& event)

Called when a window's focus is being set.

Parameters

event

The focus event. For more information, see wxFocusEvent (p. 506).

Remarks

To intercept this event, use the macro EVT_SET_FOCUS in an event table definition.

Most, but not all, windows respond to this event.

See also

wxFocusEvent (p. 506), wxWindow::OnKillFocus (p. 1394), Event handling overview (p.
1560)

wxWindow::OnSize

void OnSize(wxSizeEvent& event)

Called when the window has been resized.

Parameters

event

Size event. For more information, see wxSizeEvent (p. 1085).

Remarks

You may wish to use this for frames to resize their child windows as appropriate.

Note that the size passed is of the whole window: call wxWindow::GetClientSize (p.
1377) for the area which may be used by the application.

When a window is resized, usually only a small part of the window is damaged and you
may only need to repaint that area. However, if your drawing depends on the size of the
window, you may need to clear the DC explicitly and repaint the whole window. In which
case, you may need to call wxWindow::Refresh (p. 1402) to invalidate the entire window.

See also

CHAPTER 5

1400

wxSizeEvent (p. 1085), Event handling overview (p. 1560)

wxWindow::OnSysColourChanged

void OnSysColourChanged(wxOnSysColourChangedEvent& event)

Called when the user has changed the system colours. Windows only.

Parameters

event

System colour change event. For more information, see
wxSysColourChangedEvent (p. 1200).

See also

wxSysColourChangedEvent (p. 1200), Event handling overview (p. 1560)

wxWindow::PopEventHandler

wxEvtHandler* PopEventHandler(bool deleteHandler = FALSE) const

Removes and returns the top-most event handler on the event handler stack.

Parameters

deleteHandler

If this is TRUE, the handler will be deleted after it is removed. The default value is
FALSE.

See also

wxWindow::SetEventHandler (p. 1408), wxWindow::GetEventHandler (p. 1378),
wxWindow::PushEventHandler (p. 1401), wxEvtHandler::ProcessEvent (p. 435),
wxEvtHandler (p. 432)

wxWindow::PopupMenu

bool PopupMenu(wxMenu* menu, const wxPoint& pos)

bool PopupMenu(wxMenu* menu, int x, int y)

Pops up the given menu at the specified coordinates, relative to this window, and returns
control when the user has dismissed the menu. If a menu item is selected, the
corresponding menu event is generated and will be processed as usually.

CHAPTER 5

1401

Parameters

menu

Menu to pop up.

pos

The position where the menu will appear.

x

Required x position for the menu to appear.

y

Required y position for the menu to appear.

See also

wxMenu (p. 833)

Remarks

Just before the menu is popped up, wxMenu::UpdateUI (p. 842) is called to ensure that
the menu items are in the correct state. The menu does not get deleted by the window.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

PopupMenu(menu, point) Specifies position with a wxPoint
PopupMenuXY(menu, x, y) Specifies position with two integers (x, y)

wxWindow::PushEventHandler

void PushEventHandler(wxEvtHandler* handler)

Pushes this event handler onto the event stack for the window.

Parameters

handler

Specifies the handler to be pushed.

Remarks

An event handler is an object that is capable of processing the events sent to a window.
By default, the window is its own event handler, but an application may wish to substitute
another, for example to allow central implementation of event-handling for a variety of
different window classes.

wxWindow::PushEventHandler (p. 1401) allows an application to set up a chain of event
handlers, where an event not handled by one event handler is handed to the next one in

CHAPTER 5

1402

the chain. Use wxWindow::PopEventHandler (p. 1400) to remove the event handler.

See also

wxWindow::SetEventHandler (p. 1408), wxWindow::GetEventHandler (p. 1378),
wxWindow::PopEventHandler (p. 1401), wxEvtHandler::ProcessEvent (p. 435),
wxEvtHandler (p. 432)

wxWindow::Raise

void Raise()

Raises the window to the top of the window hierarchy if it is a managed window (dialog
or frame).

wxWindow::Refresh

virtual void Refresh(bool eraseBackground = TRUE, const wxRect* rect = NULL)

Causes a message or event to be generated to repaint the window.

Parameters

eraseBackground

If TRUE, the background will be erased.

rect

If non-NULL, only the given rectangle will be treated as damaged.

wxWindow::ReleaseMouse

virtual void ReleaseMouse ()

Releases mouse input captured with wxWindow::CaptureMouse (p. 1368).

See also

wxWindow::CaptureMouse (p. 1368)

wxWindow::RemoveChild

virtual void RemoveChild(wxWindow* child)

Removes a child window. This is called automatically by window deletion functions so
should not be required by the application programmer.

CHAPTER 5

1403

Parameters

child

Child window to remove.

wxWindow::Reparent

virtual bool Reparent(wxWindow* newParent)

Reparents the window, i.e the window will be removed from its current parent window
(e.g. a non-standard toolbar in a wxFrame) and then re-inserted into another. Available
on Windows and GTK.

Parameters

newParent

New parent.

wxWindow::ScreenToClient

virtual void ScreenToClient(int* x, int* y) const

virtual wxPoint ScreenToClient(const wxPoint& pt) const

Converts from screen to client window coordinates.

Parameters

x

Stores the screen x coordinate and receives the client x coordinate.

y

Stores the screen x coordinate and receives the client x coordinate.

pt

The screen position for the second form of the function.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ScreenToClient(point) Accepts and returns a wxPoint
ScreenToClientXY(x, y) Returns a 2-tuple, (x, y)

wxWindow::ScrollLines

virtual bool ScrollLines(int lines)

CHAPTER 5

1404

Scrolls the window by the given number of lines down (if lines is positive) or up.

Return value

Returns TRUE if the window was scrolled, FALSE if it was already on top/bottom and
nothing was done.

Remarks

This function is currently only implemented under MSW and wxTextCtrl under wxGTK (it
also works for wxScrolledWindow derived classes under all platforms).

See also

ScrollPages (p. 1404)

wxWindow::ScrollPages

virtual bool ScrollPages(int pages)

Scrolls the window by the given number of pages down (if pages is positive) or up.

Return value

Returns TRUE if the window was scrolled, FALSE if it was already on top/bottom and
nothing was done.

Remarks

This function is currently only implemented under MSW and wxTextCtrl under wxGTK (it
also works for wxScrolledWindow derived classes under all platforms).

See also

ScrollLines (p. 1403)

wxWindow::ScrollWindow

virtual void ScrollWindow(int dx, int dy, const wxRect* rect = NULL)

Physically scrolls the pixels in the window and move child windows accordingly.

Parameters

dx

Amount to scroll horizontally.

CHAPTER 5

1405

dy
Amount to scroll vertically.

rect

Rectangle to invalidate. If this is NULL, the whole window is invalidated. If you
pass a rectangle corresponding to the area of the window exposed by the scroll,
your painting handler can optimize painting by checking for the invalidated region.
This parameter is ignored under GTK.

Remarks

Use this function to optimise your scrolling implementations, to minimise the area that
must be redrawn. Note that it is rarely required to call this function from a user program.

wxWindow::SetAcceleratorTable

virtual void SetAcceleratorTable(const wxAcceleratorTable& accel)

Sets the accelerator table for this window. See wxAcceleratorTable (p. 17).

wxWindow::SetAutoLayout

void SetAutoLayout(bool autoLayout)

Determines whether the wxWindow::Layout (p. 1386) function will be called
automatically when the window is resized. Use in connection with wxWindow::SetSizer
(p. 1415) and wxWindow::SetConstraints (p. 1407) for laying out subwindows.

Parameters

autoLayout

Set this to TRUE if you wish the Layout function to be called from within
wxWindow::OnSize functions.

See also

wxWindow::SetConstraints (p. 1407)

wxWindow::SetBackgroundColour

virtual void SetBackgroundColour(const wxColour& colour)

Sets the background colour of the window.

Parameters

colour

CHAPTER 5

1406

The colour to be used as the background colour.

Remarks

The background colour is usually painted by the default
wxWindow::OnEraseBackground (p. 1392) event handler function under Windows and
automatically under GTK.

Note that setting the background colour does not cause an immediate refresh, so you
may wish to call wxWindow::Clear (p. 1370) or wxWindow::Refresh (p. 1402) after
calling this function.

Use this function with care under GTK as the new appearance of the window might not
look equally well when used with "Themes", i.e GTK's ability to change its look as the
user wishes with run-time loadable modules.

See also

wxWindow::GetBackgroundColour (p. 1376), wxWindow::SetForegroundColour (p.
1409), wxWindow::GetForegroundColour (p. 1379), wxWindow::Clear (p. 1370),
wxWindow::Refresh (p. 1402), wxWindow::OnEraseBackground (p. 1392)

wxWindow::SetCaret

void SetCaret(wxCaret *caret) const

Sets the caret (p. 108) associated with the window.

wxWindow::SetClientSize

virtual void SetClientSize(int width, int height)

virtual void SetClientSize(const wxSize& size)

This sets the size of the window client area in pixels. Using this function to size a window
tends to be more device-independent than wxWindow::SetSize (p. 1413), since the
application need not worry about what dimensions the border or title bar have when
trying to fit the window around panel items, for example.

Parameters

width

The required client area width.

height

The required client area height.

size

CHAPTER 5

1407

The required client size.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetClientSize(size) Accepts a wxSize
SetClientSizeWH(width, height)

wxWindow::SetCursor

virtual void SetCursor(const wxCursor&cursor)

Sets the window's cursor. Notice that the window cursor also sets it for the children of
the window implicitly.

The cursor may be wxNullCursor in which case the window cursor will be reset back
to default.

Parameters

cursor

Specifies the cursor that the window should normally display.

See also

::wxSetCursor (p. 1452), wxCursor (p. 191)

wxWindow::SetConstraints

void SetConstraints(wxLayoutConstraints* constraints)

Sets the window to have the given layout constraints. The window will then own the
object, and will take care of its deletion. If an existing layout constraints object is already
owned by the window, it will be deleted.

Parameters

constraints

The constraints to set. Pass NULL to disassociate and delete the window's
constraints.

Remarks

You must call wxWindow::SetAutoLayout (p. 1405) to tell a window to use the
constraints automatically in OnSize; otherwise, you must override OnSize and call
Layout() explicitly. When setting both a wxLayoutConstraints and a wxSizer (p. 1086),
only the sizer will have effect.

CHAPTER 5

1408

wxWindow::SetDropTarget

void SetDropTarget(wxDropTarget* target)

Associates a drop target with this window.

If the window already has a drop target, it is deleted.

See also

wxWindow::GetDropTarget (p. 1378),Drag and drop overview (p. 1619)

wxWindow::SetEventHandler

void SetEventHandler(wxEvtHandler* handler)

Sets the event handler for this window.

Parameters

handler

Specifies the handler to be set.

Remarks

An event handler is an object that is capable of processing the events sent to a window.
By default, the window is its own event handler, but an application may wish to substitute
another, for example to allow central implementation of event-handling for a variety of
different window classes.

It is usually better to use wxWindow::PushEventHandler (p. 1401) since this sets up a
chain of event handlers, where an event not handled by one event handler is handed to
the next one in the chain.

See also

wxWindow::GetEventHandler (p. 1378), wxWindow::PushEventHandler (p. 1401),
wxWindow::PopEventHandler (p. 1401), wxEvtHandler::ProcessEvent (p. 435),
wxEvtHandler (p. 432)

wxWindow::SetExtraStyle

void SetExtraStyle(long exStyle)

Sets the extra style bits for the window. The currently defined extra style bits are:

CHAPTER 5

1409

wxWS_EX_VALIDATE_RECURSIVELY TransferDataTo/FromWindow() and
Validate() methods will recursively descend into all children
of the window if it has this style flag set.

wxWS_EX_BLOCK_EVENTS Normally, the command events are propagared
upwards to the window parent recursively until a handler
for them is found. Using this style allows to prevent them
from being propagated beyond this window. Notice that
wxDialog has this style on by default for the reasons
explained in the event processing overview (p. 1561).

wxWS_EX_TRANSIENT This can be used to prevent a window from being used as
an implicit parent for the dialogs which were created
without a parent. It is useful for the windows which can
disappear at any moment as creating childs of such
windows results in fatal problems.

wxWindow::SetFocus

virtual void SetFocus()

This sets the window to receive keyboard input.

wxWindow::SetFont

void SetFont(const wxFont& font)

Sets the font for this window.

Parameters

font

Font to associate with this window.

See also

wxWindow::GetFont (p. 1378)

wxWindow::SetForegroundColour

virtual void SetForegroundColour(const wxColour& colour)

Sets the foreground colour of the window.

Parameters

colour

The colour to be used as the foreground colour.

CHAPTER 5

1410

Remarks

The interpretation of foreground colour is open to interpretation according to the window
class; it may be the text colour or other colour, or it may not be used at all.

Note that when using this functions under GTK, you will disable the so called "themes",
i.e. the user chosen apperance of windows and controls, including the themes of their
parent windows.

See also

wxWindow::GetForegroundColour (p. 1379), wxWindow::SetBackgroundColour (p.
1405), wxWindow::GetBackgroundColour (p. 1376)

wxWindow::SetHelpText

virtual void SetHelpText(const wxString& helpText)

Sets the help text to be used as context-sensitive help for this window.

Note that the text is actually stored by the current wxHelpProvider (p. 618)
implementation, and not in the window object itself.

See also

GetHelpText (p. 1379), wxHelpProvider (p. 618)

wxWindow::SetId

void SetId(int id)

Sets the identifier of the window.

Remarks

Each window has an integer identifier. If the application has not provided one, an
identifier will be generated. Normally, the identifier should be provided on creation and
should not be modified subsequently.

See also

wxWindow::GetId (p. 1380), Window identifiers (p. 1564)

wxWindow::SetName

virtual void SetName (const wxString& name)

CHAPTER 5

1411

Sets the window's name.

Parameters

name

A name to set for the window.

See also

wxWindow::GetName (p. 1380)

wxWindow::SetPalette

virtual void SetPalette (wxPalette* palette)

Obsolete - use wxDC::SetPalette (p. 342) instead.

wxWindow::SetScrollbar

virtual void SetScrollbar(int orientation, int position, int thumbSize, int range, bool
refresh = TRUE)

Sets the scrollbar properties of a built-in scrollbar.

Parameters

orientation

Determines the scrollbar whose page size is to be set. May be wxHORIZONTAL or
wxVERTICAL.

position

The position of the scrollbar in scroll units.

thumbSize

The size of the thumb, or visible portion of the scrollbar, in scroll units.

range

The maximum position of the scrollbar.

refresh

TRUE to redraw the scrollbar, FALSE otherwise.

Remarks

Let's say you wish to display 50 lines of text, using the same font. The window is sized
so that you can only see 16 lines at a time.

CHAPTER 5

1412

You would use:

 SetScrollbar(wxVERTICAL, 0, 16, 50);

Note that with the window at this size, the thumb position can never go above 50 minus
16, or 34.

You can determine how many lines are currently visible by dividing the current view size
by the character height in pixels.

When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which can be
called initially and also from your wxWindow::OnSize (p. 1399) event handler function.

See also

Scrolling overview (p. 1584), wxScrollBar (p. 1062), wxScrolledWindow (p. 1070)

wxWindow::SetScrollPos

virtual void SetScrollPos(int orientation, int pos, bool refresh = TRUE)

Sets the position of one of the built-in scrollbars.

Parameters

orientation

Determines the scrollbar whose position is to be set. May be wxHORIZONTAL or
wxVERTICAL.

pos

Position in scroll units.

refresh

TRUE to redraw the scrollbar, FALSE otherwise.

Remarks

This function does not directly affect the contents of the window: it is up to the
application to take note of scrollbar attributes and redraw contents accordingly.

See also

wxWindow::SetScrollbar (p. 1411), wxWindow::GetScrollPos (p. 1412),
wxWindow::GetScrollThumb (p. 1381), wxScrollBar (p. 1062), wxScrolledWindow (p.
1070)

CHAPTER 5

1413

wxWindow::SetSize

virtual void SetSize(int x, int y, int width, int height, int sizeFlags = wxSIZE_AUTO)

virtual void SetSize(const wxRect& rect)

Sets the size and position of the window in pixels.

virtual void SetSize(int width, int height)

virtual void SetSize(const wxSize& size)

Sets the size of the window in pixels.

Parameters

x

Required x position in pixels, or -1 to indicate that the existing value should be
used.

y

Required y position in pixels, or -1 to indicate that the existing value should be
used.

width

Required width in pixels, or -1 to indicate that the existing value should be used.

height

Required height position in pixels, or -1 to indicate that the existing value should be
used.

size

wxSize (p. 1083) object for setting the size.

rect

wxRect (p. 1023) object for setting the position and size.

sizeFlags

Indicates the interpretation of other parameters. It is a bit list of the following:

wxSIZE_AUTO_WIDTH: a -1 width value is taken to indicate a wxWindows-
supplied default width.
wxSIZE_AUTO_HEIGHT : a -1 height value is taken to indicate a wxWindows-
supplied default width.
wxSIZE_AUTO: -1 size values are taken to indicate a wxWindows-supplied default
size.
wxSIZE_USE_EXISTING: existing dimensions should be used if -1 values are
supplied.
wxSIZE_ALLOW_MINUS_ONE: allow dimensions of -1 and less to be interpreted

CHAPTER 5

1414

as real dimensions, not default values.

Remarks

The second form is a convenience for calling the first form with default x and y
parameters, and must be used with non-default width and height values.

The first form sets the position and optionally size, of the window. Parameters may be -1
to indicate either that a default should be supplied by wxWindows, or that the current
value of the dimension should be used.

See also

wxWindow::Move (p. 1387)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetDimensions(x, y, width, height, sizeFlags=wxSIZE_AUTO)
SetSize(size)
SetPosition(point)

wxWindow::SetSizeHints

virtual void SetSizeHints(int minW=-1, int minH=-1, int maxW=-1, int maxH=-1, int
incW=-1, int incH=-1)

Allows specification of minimum and maximum window sizes, and window size
increments. If a pair of values is not set (or set to -1), the default values will be used.

Parameters

minW

Specifies the minimum width allowable.

minH

Specifies the minimum height allowable.

maxW

Specifies the maximum width allowable.

maxH

Specifies the maximum height allowable.

incW

Specifies the increment for sizing the width (Motif/Xt only).

incH

Specifies the increment for sizing the height (Motif/Xt only).

CHAPTER 5

1415

Remarks

If this function is called, the user will not be able to size the window outside the given
bounds.

The resizing increments are only significant under Motif or Xt.

wxWindow::SetSizer

void SetSizer(wxSizer* sizer)

Sets the window to have the given layout sizer. The window will then own the object, and
will take care of its deletion. If an existing layout constraints object is already owned by
the window, it will be deleted.

Parameters

sizer

The sizer to set. Pass NULL to disassociate and delete the window's sizer.

Remarks

You must call wxWindow::SetAutoLayout (p. 1405) to tell a window to use the sizer
automatically in OnSize; otherwise, you must override OnSize and call Layout()
explicitly. When setting both a wxSizer and a wxLayoutConstraints (p. 740), only the
sizer will have effect.

wxWindow::SetTitle

virtual void SetTitle (const wxString& title)

Sets the window's title. Applicable only to frames and dialogs.

Parameters

title

The window's title.

See also

wxWindow::GetTitle (p. 1384)

wxWindow::SetValidator

virtual void SetValidator(const wxValidator& validator)

CHAPTER 5

1416

Deletes the current validator (if any) and sets the window validator, having called
wxValidator::Clone to create a new validator of this type.

wxWindow::SetToolTip

void SetToolTip(const wxString& tip)

void SetToolTip(wxToolTip* tip)

Attach a tooltip to the window.

See also: GetToolTip (p. 1416), wxToolTip (p. 1311)

wxWindow::GetToolTip

wxToolTip* GetToolTip() const

Get the associated tooltip or NULL if none.

wxWindow::SetWindowStyle

void SetWindowStyle(long style)

Identical to SetWindowStyleFlag (p. 1416).

wxWindow::SetWindowStyleFlag

virtual void SetWindowStyleFlag(long style)

Sets the style of the window. Please note that some styles cannot be changed after the
window creation and that Refresh() (p. 1402) might be called after changing the others
for the change to take place immediately.

See Window styles (p. 1567) for more information about flags.

See also

GetWindowStyleFlag (p. 1384)

wxWindow::Show

virtual bool Show(bool show)

Shows or hides the window. You may need to call Raise (p. 1402) for a top level
window if you want to bring it to top, although this is not needed if Show() is called

CHAPTER 5

1417

immediately after the frame creation.

Parameters

show

If TRUE displays the window. Otherwise, hides it.

See also

wxWindow::IsShown (p. 1385)

wxWindow::Thaw

virtual void Thaw()

Reenables window updating after a previous call to Freeze (p. 1376).

wxWindow::TransferDataFromWindow

virtual bool TransferDataFromWindow()

Transfers values from child controls to data areas specified by their validators. Returns
FALSE if a transfer failed.

If the window has wxWS_EX_VALIDATE_RECURSIVELY extra style flag set, the method
will also call TransferDataFromWindow() of all child windows.

See also

wxWindow::TransferDataToWindow (p. 1417), wxValidator (p. 1348),
wxWindow::Validate (p. 1418)

wxWindow::TransferDataToWindow

virtual bool TransferDataToWindow()

Transfers values to child controls from data areas specified by their validators.

If the window has wxWS_EX_VALIDATE_RECURSIVELY extra style flag set, the method
will also call TransferDataToWindow() of all child windows.

Return value

Returns FALSE if a transfer failed.

See also

CHAPTER 5

1418

wxWindow::TransferDataFromWindow (p. 1417), wxValidator (p. 1348),
wxWindow::Validate (p. 1418)

wxWindow::Validate

virtual bool Validate()

Validates the current values of the child controls using their validators.

If the window has wxWS_EX_VALIDATE_RECURSIVELY extra style flag set, the method
will also call Validate() of all child windows.

Return value

Returns FALSE if any of the validations failed.

See also

wxWindow::TransferDataFromWindow (p. 1417), wxWindow::TransferDataFromWindow
(p. 1417), wxValidator (p. 1348)

wxWindow::WarpPointer

void WarpPointer(int x, int y)

Moves the pointer to the given position on the window.

Parameters

x

The new x position for the cursor.

y

The new y position for the cursor.

wwxxWWiinnddoowwDDCC

A wxWindowDC must be constructed if an application wishes to paint on the whole area
of a window (client and decorations). This should normally be constructed as a
temporary stack object; don't store a wxWindowDC object.

To draw on a window from inside OnPaint, construct a wxPaintDC (p. 910) object.

To draw on the client area of a window from outside OnPaint, construct a wxClientDC
(p. 123) object.

CHAPTER 5

1419

To draw on the whole window including decorations, construct a wxWindowDC (p. 1418)
object (Windows only).

Derived from

wxDC (p. 327)

Include files

<wx/dcclient.h>

See also

wxDC (p. 327), wxMemoryDC (p. 828), wxPaintDC (p. 910), wxClientDC (p. 123),
wxScreenDC (p. 1060)

wxWindowDC::wxWindowDC

 wxWindowDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wwxxWWiinnddoowwDDiissaabblleerr

This class disables all windows of the application (may be with the exception of one of
them) in its constructor and enables them back in its destructor. This comes in handy
when you want to indicate to the user that the application is currently busy and cannot
respond to user input.

Derived from

None

Include files

<wx/utils.h>

See also

wxBusyCursor (p. 89)

CHAPTER 5

1420

wxWindowDisabler::wxWindowDisabler

 wxWindowDisabler(wxWindow *winToSkip = NULL)

Disables all top level windows of the applications with the exception of winToSkip if it is
not NULL.

wxWindowDisabler::~wxWindowDisabler

 ~wxWindowDisabler()

Reenables back the windows disabled by the constructor.

wwxxWWiizzaarrdd

wxWizard is the central class for implementing 'wizard-like' dialogs. These dialogs are
mostly familiar to Windows users and are nothing else but a sequence of 'pages' each of
them displayed inside a dialog which has the buttons to pass to the next (and previous)
pages.

The wizards are typically used to decompose a complex dialog into several simple steps
and are mainly useful to the novice users, hence it is important to keep them as simple
as possible.

To show a wizard dialog, you must first create an object of wxWizard class using Create
(p. 1422) function. Then you should add all pages you want the wizard to show and call
RunWizard (p. 1423). Finally, don't forget to call wizard->Destroy().

Derived from

wxDialog (p. 359)
wxPanel (p. 916)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/wizard.h>

Event table macros

To process input from a wizard dialog, use these event handler macros to direct input to
member functions that take a wxWizardEvent (p. 1423) argument. For some events,
Veto() (p. 897) can be called to prevent the event from happening.

CHAPTER 5

1421

EVT_WIZARD_PAGE_CHANGED(id, func) The page has been just changed

(this event can not be vetoed).

EVT_WIZARD_PAGE_CHANGING(id, func) The page is being changed (this
event can be vetoed).

EVT_WIZARD_CANCEL(id, func) The user attempted to cancel the wizard (this
event may also be vetoed).

EVT_WIZARD_HELP(id, func) The wizard help button was pressed.

Extended styles

Use the wxWindow::SetExtraStyle (p. 1408) function to set the following style. You will
need to use two-step construction (use the default constructor, call SetExtraStyle, then
call Create).

wxWIZARD_EX_HELPBUTTON Shows a Help button using wxID_HELP.

See also wxDialog (p. 359) for other extended styles.

See also

wxWizardEvent (p. 1423), wxWizardPage (p. 1425), wxWizard sample (p. 1523)

wxWizard::wxWizard

 wxWizard()

Default constructor. Use this if you wish to derive from wxWizard and then call Create ,
for example if you wish to set an extra style with wxWindow::SetExtraStyle (p. 1408).

 wxWizard(wxWindow* parent, int id = -1, const wxString& title = wxEmptyString,
const wxBitmap& bitmap = wxNullBitmap, const wxPoint& pos = wxDefaultPosition)

Creates the wizard dialog. The wizard should not be deleted directly, you should rather
call Destroy() on it and wxWindows will delete it itself.

Notice that unlike almost all other wxWindows classes, there is no size parameter in
wxWizard constructor because the wizard will have a predefined default size by default.
If you want to change this, you should use the SetPageSize (p. 1423) function.

Parameters

CHAPTER 5

1422

parent
The parent window, may be NULL.

id

The id of the dialog, will usually be just -1.

title

The title of the dialog.

bitmap

The default bitmap used in the left side of the wizard. See also GetBitmap (p.
1426).

pos

The position of the dialog, it will be centered on the screen by default.

wxWizard::Create

static wxWizard* Create(wxWindow* parent, int id = -1, const wxString& title =
wxEmptyString, const wxBitmap& bitmap = wxNullBitmap, const wxPoint& pos =
wxDefaultPosition)

Creates the wizard dialog. The returned pointer should not be deleted directly, you
should rather call Destroy() on it and wxWindows will delete it itself.

Notice that unlike almost all other wxWindows classes, there is no size parameter in
wxWizard constructor because the wizard will have a predefined default size by default.
If you want to change this, you should use the SetPageSize (p. 1423) function.

bool Create (wxWindow* parent, int id = -1, const wxString& title = wxEmptyString,
const wxBitmap& bitmap = wxNullBitmap, const wxPoint& pos = wxDefaultPosition)

Alternative, non-static constructor for two-step construction of a class derived from
wxWizard.

Parameters

parent

The parent window, may be NULL.

id

The id of the dialog, will usually be just -1.

title

The title of the dialog.

bitmap

The default bitmap used in the left side of the wizard. See also GetBitmap (p.
1426).

CHAPTER 5

1423

pos

The position of the dialog, it will be centered on the screen by default.

wxWizard::RunWizard

bool RunWizard(wxWizardPage* firstPage)

Executes the wizard starting from the given page, returns TRUE if it was successfully
finished or FALSE if user cancelled it. The firstPage can not be NULL.

wxWizard::GetCurrentPage

wxWizardPage* GetCurrentPage () const

Get the current page while the wizard is running. NULL is returned if RunWizard() (p.
1423) is not being executed now.

wxWizard::GetPageSize

wxSize GetPageSize() const

Returns the size available for the pages.

wxWizard::SetPageSize

void SetPageSize(const wxSize& sizePage)

Sets the minimal size to be made available for the wizard pages. The wizard will take
into account the size of the bitmap (if any) itself. Also, the wizard will never be smaller
than the default size.

The recommended way to use this function is to layout all wizard pages using the sizers
(even though the wizard is not resizeable) and then use wxSizer::CalcMin (p. 1088) in a
loop to calculate the maximum of minimal sizes of the pages and pass it to
SetPageSize().

wwxxWWiizzaarrddEEvveenntt

wxWizardEvent class represents an event generated by thewizard (p. 1420): this event
is first sent to the page itself and, if not processed there, goes up the window hierarchy
as usual.

CHAPTER 5

1424

Derived from

wxNotifyEvent (p. 896)
wxCommandEvent (p. 156)
wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/wizard.h>

Event table macros

To process input from a wizard dialog, use these event handler macros to direct input to
member functions that take a wxWizardEvent argument.

EVT_WIZARD_PAGE_CHANGED(id, func) The page has been just changed

(this event can not be vetoed).

EVT_WIZARD_PAGE_CHANGING(id, func) The page is being changed (this
event can be vetoed).

EVT_WIZARD_CANCEL(id, func) The user attempted to cancel the wizard (this
event may also be vetoed).

EVT_WIZARD_HELP(id, func) The wizard help button was pressed.

See also

wxWizard (p. 1420), wxWizard sample (p. 1523)

wxWizardEvent::wxWizardEvent

 wxWizardEvent(wxEventType type = wxEVT_NULL, int id = -1, bool direction =
TRUE)

Constructor. It is not normally used by the user code as the objects of this type are
constructed by wxWizard.

wxWizardEvent::GetDirection

bool GetDirection() const

Return the direction in which the page is changing: for EVT_WIZARD_PAGE_CHANGING,

CHAPTER 5

1425

return TRUE if we're going forward or FALSE otherwise and for
EVT_WIZARD_PAGE_CHANGED return TRUE if we came from the previous page and
FALSE if we returned from the next one.

wxWizardEvent::GetPage

wxWizardPage GetPage () const

Returns the wxWizardPage (p. 1425) which was active when this event was generated.

wwxxWWiizzaarrddPPaaggee

wxWizardPage is one of the screens in wxWizard (p. 1420): it must know what are the
following and preceding pages (which may be NULL for the first/last page). Except for
this extra knowledge, wxWizardPage is just a panel, so the controls may be placed
directly on it in the usual way.

This class allows the programmer to decide the order of pages in the wizard dynamically
(during run-time) and so provides maximal flexibility. Usually, however, the order of
pages is known in advance in which case wxWizardPageSimple (p. 1427) class is
enough and it is simpler to use.

Virtual functions to override

To use this class, you must override GetPrev (p. 1426) and GetNext (p. 1426) pure
virtual functions (or you may use wxWizardPageSimple (p. 1427) instead).

GetBitmap (p. 1426) can also be overridden, but this should be very rarely needed.

Derived from

wxPanel (p. 916)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/wizard.h>

See also

wxWizard (p. 1420), wxWizard sample (p. 1523)

CHAPTER 5

1426

wxWizardPage::wxWizardPage

 wxWizardPage(wxWizard* parent, const wxBitmap& bitmap = wxNullBitmap, const
wxChar *resource = NULL)

Constructor accepts an optional bitmap which will be used for this page instead of the
default one for this wizard (note that all bitmaps used should be of the same size).
Notice that no other parameters are needed because the wizard will resize and
reposition the page anyhow.

Parameters

parent

The parent wizard

bitmap

The page-specific bitmap if different from the global one

resource

Load the page from the specified resource if non NULL

wxWizardPage::GetPrev

wxWizardPage* GetPrev() const

Get the page which should be shown when the user chooses the "Back"button: if NULL
is returned, this button will be disabled. The first page of the wizard will usually return
NULL from here, but the others will not.

See also

GetNext (p. 1426)

wxWizardPage::GetNext

wxWizardPage* GetNext() const

Get the page which should be shown when the user chooses the "Next"button: if NULL
is returned, this button will be disabled. The last page of the wizard will usually return
NULL from here, but the others will not.

See also

GetPrev (p. 1426)

wxWizardPage::GetBitmap

CHAPTER 5

1427

wxBitmap GetBitmap() const

This method is called by wxWizard to get the bitmap to display alongside the page. By
default, m_bitmap member variable which was set in the constructor (p. 1426).

If the bitmap was not explicitly set (i.e. if wxNullBitmap is returned), the default bitmap
for the wizard should be used.

The only cases when you would want to override this function is if the page bitmap
depends dynamically on the user choices, i.e. almost never.

wwxxWWiizzaarrddPPaaggeeSSiimmppllee

wxWizardPageSimple is the simplest possible wxWizardPage (p. 1425) implementation:
it just returns the pointers given to its constructor from GetNext() and GetPrev()
functions.

This makes it very easy to use the obejcts of this class in the wizards where the pages
order is known statically - on the other hand, if this is not the case you must derive your
own class from wxWizardPage (p. 1425) instead.

Derived from

wxWizardPage (p. 1425)
wxPanel (p. 916)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/wizard.h>

See also

wxWizard (p. 1420), wxWizard sample (p. 1523)

wxWizardPageSimple::wxWizardPageSimple

 wxWizardPageSimple(wxWizard* parent = NULL, wxWizardPage* prev = NULL,
wxWizardPage* next = NULL)

Constructor takes the previous and next pages. They may be modified later bySetPrev()

CHAPTER 5

1428

(p. 1428) or SetNext() (p. 1428).

wxWizardPageSimple::SetPrev

void SetPrev(wxWizardPage* prev)

Sets the previous page.

wxWizardPageSimple::SetNext

void SetNext(wxWizardPage* next)

Sets the next page.

wxWizardPageSimple::Chain

static void Chain(wxWizardPageSimple* first, wxWizardPageSimple* second)

A convenience function to make the pages follow each other.

Example:
 wxRadioboxPage *page3 = new wxRadioboxPage(wizard);
 wxValidationPage *page4 = new wxValidationPage(wizard);

 wxWizardPageSimple::Chain(page3, page4);

wwxxZZiippIInnppuuttSSttrreeaamm

This class is input stream from ZIP archive. The archive must be local file (accessible via
FILE*). It has all features including GetSize and seeking.

Note

If you need to enumerate files in ZIP archive, you can use wxFileSystem (p. 489)
together with wxZipFSHandler (see the overview (p. 1558).

Derived from

wxInputStream (p. 718)

Include files

<wx/zipstrm.h>

CHAPTER 5

1429

wxZipInputStream::wxZipInputStream

 wxZipInputStream(const wxString& archive, const wxString& file)

Constructor.

Parameters

archive

name of ZIP file

file

name of file stored in the archive

wwxxZZlliibbIInnppuuttSSttrreeaamm

This stream uncompresses all data read from it. It uses the "filtered" stream to get new
compressed data.

Derived from

wxFilterInputStream (p. 500)

Include files

<wx/zstream.h>

See also

wxInputStream (p. 718)

wwxxZZlliibbOOuuttppuuttSSttrreeaamm

This stream compresses all data written to it, and passes the compressed data to the
"filtered" stream.

Derived from

wxFilterOutputStream (p. 500)

Include files

CHAPTER 5

1430

<wx/zstream.h>

See also

wxOutputStream (p. 902)

wxZlibOutputStream::wxZlibOutputStream

 wxZlibOutputStream(wxOutputStream& stream ,int level = -1)

Creates a new write-only compressed stream. level means level of compression. It is
number between 0 and 9 (including these values) where 0 means no compression and 9
best but slowest compression. -1 is default value (currently equivalent to 6).

1431

Chapter 6 Functions

The functions and macros defined in wxWindows are described here.

VVeerrssiioonn mmaaccrrooss

The following constants are defined in wxWindows:

 • wxMAJOR_VERSION is the major version of wxWindows
 • wxMINOR_VERSION is the minor version of wxWindows
 • wxRELEASE_NUMBER is the release number

For example, the values or these constants for wxWindows 2.1.15 are 2, 1 and 15.

Additionally, wxVERSION_STRING is a user-readable string containing the full
wxWindows version and wxVERSION_NUMBER is a combination of the three version
numbers above: for 2.1.15, it is 2115 and it is 2200 for wxWindows 2.2.

Include files

<wx/version.h> or <wx/defs.h>

wxCHECK_VERSION

bool wxCHECK_VERSION(major, minor, release)

This is a macro which evaluates to true if the current wxWindows version is at least
major.minor.release.

For example, to test if the program is compiled with wxWindows 2.2 or higher, the
following can be done:

 wxString s;
#if wxCHECK_VERSION(2, 2, 0)
 if (s.StartsWith("foo"))
#else // replacement code for old version
 if (strncmp(s, "foo", 3) == 0)
#endif
 {
 ...
 }

CHAPTER 6

1432

TThhrreeaadd ffuunnccttiioonnss

Include files

<wx/thread.h>

See also

wxThread (p. 1276), wxMutex (p. 881), Multithreading overview (p. 1618)

::wxMutexGuiEnter

void wxMutexGuiEnter()

This function must be called when any thread other than the main GUI thread wants to
get access to the GUI library. This function will block the execution of the calling thread
until the main thread (or any other thread holding the main GUI lock) leaves the GUI
library and no other thread will enter the GUI library until the calling thread calls
::wxMutexGuiLeave() (p. 1432).

Typically, these functions are used like this:

void MyThread::Foo(void)
{
 // before doing any GUI calls we must ensure that this thread is
the only
 // one doing it!

 wxMutexGuiEnter();

 // Call GUI here:
 my_window->DrawSomething();

 wxMutexGuiLeave();
}

Note that under GTK, no creation of top-level windows is allowed in any thread but the
main one.

This function is only defined on platforms which support preemptive threads.

::wxMutexGuiLeave

void wxMutexGuiLeave()

See ::wxMutexGuiEnter() (p. 1432).

CHAPTER 6

1433

This function is only defined on platforms which support preemptive threads.

FFiillee ffuunnccttiioonnss

Include files

<wx/utils.h>

See also

wxPathList (p. 921), wxDir (p. 372), wxFile (p. 449)

::wxDirExists

bool wxDirExists(const wxString& dirname)

Returns TRUE if the directory exists.

::wxDos2UnixFilename

void wxDos2UnixFilename (wxChar *s)

Converts a DOS to a Unix filename by replacing backslashes with forward slashes.

::wxFileExists

bool wxFileExists(const wxString& filename)

Returns TRUE if the file exists. It also returns TRUE if the file is a directory.

::wxFileModificationTime

time_t wxFileModificationTime (const wxString& filename)

Returns time of last modification of given file.

::wxFileNameFromPath

wxString wxFileNameFromPath(const wxString& path)

char* wxFileNameFromPath(char* path)

CHAPTER 6

1434

Returns the filename for a full path. The second form returns a pointer to temporary
storage that should not be deallocated.

::wxFindFirstFile

wxString wxFindFirstFile(const char*spec , int flags = 0)

This function does directory searching; returns the first file that matches the path spec,
or the empty string. Use wxFindNextFile (p. 1434) to get the next matching file. Neither
will report the current directory "." or the parent directory "..".

spec may contain wildcards.

flags may be wxDIR for restricting the query to directories, wxFILE for files or zero for
either.

For example:

 wxString f = wxFindFirstFile("/home/project/*.*");
 while (!f.IsEmpty())
 {
 ...
 f = wxFindNextFile();
 }

::wxFindNextFile

wxString wxFindNextFile()

Returns the next file that matches the path passed to wxFindFirstFile (p. 1434).

See wxFindFirstFile (p. 1434) for an example.

::wxGetDiskSpace

bool wxGetDiskSpace (const wxString& path, wxLongLong *total = NULL,
wxLongLong *free = NULL)

This function returns the total number of bytes and number of free bytes on the disk
containing the directory path (it should exist). Bothtotal and free parameters may be
NULL if the corresponding information is not needed.

Returns

TRUE on success, FALSE if an error occured (for example, the directory doesn't exist).

Portability

CHAPTER 6

1435

This function is implemented for Win16 (only for drives less than 2Gb), Win32, Mac OS
and generic Unix provided the system has statfs() function.

This function first appeared in wxWindows 2.3.2.

::wxGetOSDirectory

wxString wxGetOSDirectory()

Returns the Windows directory under Windows; on other platforms returns the empty
string.

::wxIsAbsolutePath

bool wxIsAbsolutePath(const wxString& filename)

Returns TRUE if the argument is an absolute filename, i.e. with a slash or drive name at
the beginning.

::wxPathOnly

wxString wxPathOnly(const wxString& path)

Returns the directory part of the filename.

::wxUnix2DosFilename

void wxUnix2DosFilename (const wxString& s)

Converts a Unix to a DOS filename by replacing forward slashes with backslashes.

::wxConcatFiles

bool wxConcatFiles(const wxString& file1, const wxString& file2,const wxString&
file3)

Concatenates file1 and file2 to file3, returning TRUE if successful.

::wxCopyFile

bool wxCopyFile(const wxString& file1, const wxString& file2, bool overwrite =
TRUE)

CHAPTER 6

1436

Copies file1 to file2, returning TRUE if successful. Ifoverwrite parameter is TRUE
(default), the destination file is overwritten if it exists, but if overwrite is FALSE, the
functions failes in this case.

::wxGetCwd

wxString wxGetCwd()

Returns a string containing the current (or working) directory.

::wxGetWorkingDirectory

wxString wxGetWorkingDirectory(char*buf=NULL, int sz=1000)

This function is obsolete: use wxGetCwd (p. 1436) instead.

Copies the current working directory into the buffer if supplied, or copies the working
directory into new storage (which you must delete yourself) if the buffer is NULL.

sz is the size of the buffer if supplied.

::wxGetTempFileName

char* wxGetTempFileName (const wxString& prefix, char* buf=NULL)

bool wxGetTempFileName (const wxString& prefix, wxString& buf)

These functions are obsolete, please use wxFileName::CreateTempFileName (p. 481)
instead.

::wxIsWild

bool wxIsWild(const wxString& pattern)

Returns TRUE if the pattern contains wildcards. See wxMatchWild (p. 1436).

::wxMatchWild

bool wxMatchWild(const wxString& pattern, const wxString& text, bool dot_special)

Returns TRUE if the pattern matches the text; if dot_special is TRUE, filenames
beginning with a dot are not matched with wildcard characters. See wxIsWild (p. 1436).

CHAPTER 6

1437

::wxMkdir

bool wxMkdir(const wxString& dir, int perm = 0777)

Makes the directory dir, returning TRUE if successful.

perm is the access mask for the directory for the systems on which it is supported (Unix)
and doesn't have effect for the other ones.

::wxRemoveFile

bool wxRemoveFile (const wxString& file)

Removes file, returning TRUE if successful.

::wxRenameFile

bool wxRenameFile(const wxString& file1, const wxString& file2)

Renames file1 to file2, returning TRUE if successful.

::wxRmdir

bool wxRmdir(const wxString& dir, int flags=0)

Removes the directory dir, returning TRUE if successful. Does not work under VMS.

The flags parameter is reserved for future use.

::wxSetWorkingDirectory

bool wxSetWorkingDirectory(const wxString& dir)

Sets the current working directory, returning TRUE if the operation succeeded. Under
MS Windows, the current drive is also changed if dir contains a drive specification.

::wxSplitPath

void wxSplitPath(const char * fullname, wxString * path, wxString * name, wxString
* ext)

This function splits a full file name into components: the path (including possible
disk/drive specification under Windows), the base name and the extension. Any of the
output parameters (path, name or ext) may be NULL if you are not interested in the

CHAPTER 6

1438

value of a particular component.

wxSplitPath() will correctly handle filenames with both DOS and Unix path separators
under Windows, however it will not consider backslashes as path separators under Unix
(where backslash is a valid character in a filename).

On entry, fullname should be non-NULL (it may be empty though).

On return, path contains the file path (without the trailing separator), namecontains the
file name and ext contains the file extension without leading dot. All three of them may
be empty if the corresponding component is. The old contents of the strings pointed to
by these parameters will be overwritten in any case (if the pointers are not NULL).

::wxTransferFileToStream

bool wxTransferFileToStream(const wxString& filename, ostream& stream)

Copies the given file to stream. Useful when converting an old application to use
streams (within the document/view framework, for example).

Use of this function requires the file wx_doc.h to be included.

::wxTransferStreamToFile

bool wxTransferStreamToFile (istream& stream const wxString& filename)

Copies the given stream to the file filename. Useful when converting an old application
to use streams (within the document/view framework, for example).

Use of this function requires the file wx_doc.h to be included.

NNeettwwoorrkk ffuunnccttiioonnss

::wxGetFullHostName

wxString wxGetFullHostName ()

Returns the FQDN (fully qualified domain host name) or an empty string on error.

See also

wxGetHostName (p. 1439)

Include files

CHAPTER 6

1439

<wx/utils.h>

::wxGetEmailAddress

bool wxGetEmailAddress(const wxString& buf, int sz)

Copies the user's email address into the supplied buffer, by concatenating the values
returned by wxGetFullHostName (p. 1438) and wxGetUserId (p. 1439).

Returns TRUE if successful, FALSE otherwise.

Include files

<wx/utils.h>

::wxGetHostName

wxString wxGetHostName ()

bool wxGetHostName (char * buf, int sz)

Copies the current host machine's name into the supplied buffer. Please note that the
returned name is not fully qualified, i.e. it does not include the domain name.

Under Windows or NT, this function first looks in the environment variable
SYSTEM_NAME; if this is not found, the entry HostName in the wxWindows section of
the WIN.INI file is tried.

The first variant of this function returns the hostname if successful or an empty string
otherwise. The second (deprecated) function returns TRUE if successful, FALSE
otherwise.

See also

wxGetFullHostName (p. 1438)

Include files

<wx/utils.h>

UUsseerr iiddeennttiiffiiccaattiioonn

::wxGetUserId

CHAPTER 6

1440

wxString wxGetUserId()

bool wxGetUserId(char * buf, int sz)

This function returns the "user id" also known as "login name" under Unix i.e. something
like "jsmith". It uniquely identifies the current user (on this system).

Under Windows or NT, this function first looks in the environment variables USER and
LOGNAME; if neither of these is found, the entry UserId in the wxWindows section of
the WIN.INI file is tried.

The first variant of this function returns the login name if successful or an empty string
otherwise. The second (deprecated) function returns TRUE if successful, FALSE
otherwise.

See also

wxGetUserName (p. 1440)

Include files

<wx/utils.h>

::wxGetUserName

wxString wxGetUserName ()

bool wxGetUserName (char * buf, int sz)

This function returns the full user name (something like "Mr. John Smith").

Under Windows or NT, this function looks for the entry UserName in the wxWindows
section of the WIN.INI file. If PenWindows is running, the entry Current in the section
User of the PENWIN.INI file is used.

The first variant of this function returns the user name if successful or an empty string
otherwise. The second (deprecated) function returns TRUE if successful, FALSE
otherwise.

See also

wxGetUserId (p. 1439)

Include files

<wx/utils.h>

CHAPTER 6

1441

SSttrriinngg ffuunnccttiioonnss

::copystring

char* copystring(const char* s)

Makes a copy of the string s using the C++ new operator, so it can be deleted with the
delete operator.

::wxIsEmpty

bool wxIsEmpty(const char * p)

Returns TRUE if the pointer is either NULL or points to an empty string, FALSE otherwise.

::wxStricmp

int wxStricmp(const char *p1, const char *p2)

Returns a negative value, 0, or positive value if p1 is less than, equal to or greater than
p2. The comparison is case-insensitive.

This function complements the standard C function strcmp() which performs case-
sensitive comparison.

::wxStringMatch

bool wxStringMatch(const wxString& s1, const wxString& s2,
 bool subString = TRUE, bool exact = FALSE)

Returns TRUE if the substring s1 is found within s2, ignoring case if exact is FALSE. If
subString is FALSE, no substring matching is done.

This function is obsolete, use wxString::Find (p. 1182) instead.

::wxStringEq

bool wxStringEq(const wxString& s1, const wxString& s2)

A macro defined as:

#define wxStringEq(s1, s2) (s1 && s2 && (strcmp(s1, s2) == 0))

CHAPTER 6

1442

This function is obsolete, use wxString (p. 1171) instead.

::wxStrlen

size_t wxStrlen(const char * p)

This is a safe version of standard function strlen(): it does exactly the same thing (i.e.
returns the length of the string) except that it returns 0 ifp is the NULL pointer.

::wxGetTranslation

const char * wxGetTranslation(const char * str)

This function returns the translation of string str in the currentlocale (p. 779). If the string
is not found in any of the loaded message catalogs (see internationalization overview (p.
1542)), the original string is returned. In debug build, an error message is logged - this
should help to find the strings which were not yet translated. As this function is used very
often, an alternative syntax is provided: the _() macro is defined as wxGetTranslation().

::wxSnprintf

int wxSnprintf(wxChar *buf, size_t len, const wxChar *format, ...)

This function replaces the dangerous standard function sprintf() and is like
snprintf() available on some platforms. The only difference with sprintf() is that an
additional argument - buffer size - is taken and the buffer is never overflowed.

Returns the number of characters copied to the buffer or -1 if there is not enough space.

See also

wxVsnprintf (p. 1442), wxString::Printf (p. 1187)

::wxVsnprintf

int wxVsnprintf(wxChar *buf, size_t len, const wxChar *format, va_list argptr)

The same as wxSnprintf (p. 1442) but takes a va_listargument instead of arbitrary
number of parameters.

See also

wxSnprintf (p. 1442), wxString::PrintfV (p. 1187)

CHAPTER 6

1443

DDiiaalloogg ffuunnccttiioonnss

Below are a number of convenience functions for getting input from the user or
displaying messages. Note that in these functions the last three parameters are optional.
However, it is recommended to pass a parent frame parameter, or (in MS Windows or
Motif) the wrong window frame may be brought to the front when the dialog box is
popped up.

::wxCreateFileTipProvider

wxTipProvider * wxCreateFileTipProvider(const wxString& filename, size_t
currentTip)

This function creates a wxTipProvider (p. 1291) which may be used with wxShowTip (p.
1450).

filename

The name of the file containing the tips, one per line
currentTip

The index of the first tip to show - normally this index is remembered between the
2 program runs.

See also

Tips overview (p. 1616)

Include files

<wx/tipdlg.h>

::wxDirSelector

wxString wxDirSelector(const wxString& message = wxDirSelectorPromptStr,
 const wxString& default_path = "",
 long style = 0, const wxPoint& pos = wxDefaultPosition,
 wxWindow *parent = NULL)

Pops up a directory selector dialog. The arguments have the same meaning as those of
wxDirDialog::wxDirDialog(). The message is displayed at the top, and the default_path, if
specified, is set as the initial selection.

The application must check for an empty return value (if the user pressed Cancel). For
example:

const wxString& dir = wxDirSelector("Choose a folder");
if (!dir.empty())
{

CHAPTER 6

1444

 ...
}

Include files

<wx/dirdlg.h>

::wxFileSelector

wxString wxFileSelector(const wxString& message, const wxString& default_path =
"",
 const wxString& default_filename = "", const wxString& default_extension = "",
 const wxString& wildcard = "*.*'', int flags = 0, wxWindow *parent = "",
 int x = -1, int y = -1)

Pops up a file selector box. In Windows, this is the common file selector dialog. In X, this
is a file selector box with the same functionality. The path and filename are distinct
elements of a full file pathname. If path is empty, the current directory will be used. If
filename is empty, no default filename will be supplied. The wildcard determines what
files are displayed in the file selector, and file extension supplies a type extension for the
required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxHIDE_READONLY, wxFILE_MUST_EXIST,
wxMULTIPLE or 0.

Both the Unix and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed.

The wildcard may be a specification for multiple types of file with a description for each,
such as:

 "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif"

The application must check for an empty return value (the user pressed Cancel). For
example:

const wxString& s = wxFileSelector("Choose a file to open");
if (s)
{
 ...
}

Include files

<wx/filedlg.h>

::wxGetColourFromUser

wxColour wxGetColourFromUser(wxWindow *parent, const wxColour& colInit)

CHAPTER 6

1445

Shows the colour selection dialog and returns the colour selected by user or invalid
colour (use wxColour::Ok (p. 141) to test whether a colour is valid) if the dialog was
cancelled.

Parameters

parent

The parent window for the colour selection dialog

colInit

If given, this will be the colour initially selected in the dialog.

Include files

<wx/colordlg.h>

::wxGetMultipleChoices

size_t wxGetMultipleChoices(
 wxArrayInt& selections,
 const wxString& message,
 const wxString& caption,
 const wxArrayString& aChoices,
 wxWindow *parent = NULL,
 int x = -1, int y = -1,
 bool centre = TRUE,
 int width=150, int height=200)

size_t wxGetMultipleChoices(
 wxArrayInt& selections,
 const wxString& message,
 const wxString& caption,
 int n, const wxString& choices[],
 wxWindow *parent = NULL,
 int x = -1, int y = -1,
 bool centre = TRUE,
 int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a multiple-selection
listbox. The user may choose an arbitrary (including 0) number of items in the listbox
whose indices will be returned inselection array. The initial contents of this array will be
used to select the items when the dialog is shown.

You may pass the list of strings to choose from either using choiceswhich is an array of
n strings for the listbox or by using a singleaChoices parameter of type wxArrayString (p.
45).

If centre is TRUE, the message text (which may include new line characters) is centred;
if FALSE, the message is left-justified.

CHAPTER 6

1446

Include files

<wx/choicdlg.h>

wxPerl note: In wxPerl there is just an array reference in place of nand choices, and
no selections parameter; the function returns an array containing the user selections.

::wxGetNumberFromUser

long wxGetNumberFromUser(const wxString& message, const wxString& prompt,
const wxString& caption, long value, long min = 0, long max = 100, wxWindow
*parent = NULL, const wxPoint& pos = wxDefaultPosition)

Shows a dialog asking the user for numeric input. The dialogs title is set tocaption, it
contains a (possibly) multiline message above the single line prompt and the zone for
entering the number.

The number entered must be in the range min..max (both of which should be positive)
and value is the initial value of it. If the user enters an invalid value or cancels the dialog,
the function will return -1.

Dialog is centered on its parent unless an explicit position is given inpos.

Include files

<wx/textdlg.h>

::wxGetPasswordFromUser

wxString wxGetTextFromUser(const wxString& message, const wxString& caption
= "Input text",
 const wxString& default_value = "", wxWindow *parent = NULL)

Similar to wxGetTextFromUser (p. 1446) but the text entered in the dialog is not shown
on screen but replaced with stars. This is intended to be used for entering passwords as
the function name implies.

Include files

<wx/textdlg.h>

::wxGetTextFromUser

wxString wxGetTextFromUser(const wxString& message, const wxString& caption
= "Input text",
 const wxString& default_value = "", wxWindow *parent = NULL,

CHAPTER 6

1447

 int x = -1, int y = -1, bool centre = TRUE)

Pop up a dialog box with title set to caption, message, and a default_value. The user
may type in text and press OK to return this text, or press Cancel to return the empty
string.

If centre is TRUE, the message text (which may include new line characters) is centred;
if FALSE, the message is left-justified.

Include files

<wx/textdlg.h>

::wxGetMultipleChoice

int wxGetMultipleChoice (const wxString& message, const wxString& caption, int n,
const wxString& choices[],
 int nsel, int *selection, wxWindow *parent = NULL, int x = -1, int y = -1,
 bool centre = TRUE, int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a multiple-selection
listbox. The user may choose one or more item(s) and press OK or Cancel.

The number of initially selected choices, and array of the selected indices, are passed in;
this array will contain the user selections on exit, with the function returning the number
of selections. selection must be as big as the number of choices, in case all are
selected.

If Cancel is pressed, -1 is returned.

choices is an array of n strings for the listbox.

If centre is TRUE, the message text (which may include new line characters) is centred;
if FALSE, the message is left-justified.

Include files

<wx/choicdlg.h>

::wxGetSingleChoice

wxString wxGetSingleChoice (const wxString& message,
 const wxString& caption,
 const wxArrayString& aChoices,
 wxWindow *parent = NULL,
 int x = -1, int y = -1,
 bool centre = TRUE,
 int width=150, int height=200)

CHAPTER 6

1448

wxString wxGetSingleChoice (const wxString& message,
 const wxString& caption,
 int n, const wxString& choices[],
 wxWindow *parent = NULL,
 int x = -1, int y = -1,
 bool centre = TRUE,
 int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a single-selection
listbox. The user may choose an item and press OK to return a string or Cancel to return
the empty string. UsewxGetSingleChoiceIndex (p. 1448) if empty string is a valid choice
and if you want to be able to detect pressing Cancel reliably.

You may pass the list of strings to choose from either using choiceswhich is an array of
n strings for the listbox or by using a singleaChoices parameter of type wxArrayString (p.
45).

If centre is TRUE, the message text (which may include new line characters) is centred;
if FALSE, the message is left-justified.

Include files

<wx/choicdlg.h>

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

::wxGetSingleChoiceIndex

int wxGetSingleChoiceIndex(const wxString& message,
 const wxString& caption,
 const wxArrayString& aChoices,
 wxWindow *parent = NULL, int x = -1, int y = -1,
 bool centre = TRUE, int width=150, int height=200)

int wxGetSingleChoiceIndex(const wxString& message,
 const wxString& caption,
 int n, const wxString& choices[],
 wxWindow *parent = NULL, int x = -1, int y = -1,
 bool centre = TRUE, int width=150, int height=200)

As wxGetSingleChoice but returns the index representing the selected string. If the
user pressed cancel, -1 is returned.

Include files

<wx/choicdlg.h>

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

CHAPTER 6

1449

::wxGetSingleChoiceData

wxString wxGetSingleChoiceData(const wxString& message,
 const wxString& caption,
 const wxArrayString& aChoices,
 const wxString& client_data[],
 wxWindow *parent = NULL,
 int x = -1, int y = -1,
 bool centre = TRUE, int width=150, int height=200)

wxString wxGetSingleChoiceData(const wxString& message,
 const wxString& caption,
 int n, const wxString& choices[],
 const wxString& client_data[],
 wxWindow *parent = NULL,
 int x = -1, int y = -1,
 bool centre = TRUE, int width=150, int height=200)

As wxGetSingleChoice but takes an array of client data pointers corresponding to the
strings, and returns one of these pointers or NULL if Cancel was pressed. The
client_data array must have the same number of elements as choices or aChoices!

Include files

<wx/choicdlg.h>

wxPerl note: In wxPerl there is just an array reference in place of nand choices, and
the client data array must have the same length as the choices array.

::wxMessageBox

int wxMessageBox(const wxString& message, const wxString& caption =
"Message", int style = wxOK | wxCENTRE,
 wxWindow *parent = NULL, int x = -1, int y = -1)

General purpose message dialog. style may be a bit list of the following identifiers:

wxYES_NO Puts Yes and No buttons on the message box.

May be combined with wxCANCEL.
wxCANCEL Puts a Cancel button on the message box. May

be combined with wxYES_NO or wxOK.
wxOK Puts an Ok button on the message box. May

be combined with wxCANCEL.
wxCENTRE Centres the text.
wxICON_EXCLAMATION Displays an exclamation mark symbol.
wxICON_HAND Displays an error symbol.
wxICON_ERROR Displays an error symbol - the same as

CHAPTER 6

1450

wxICON_HAND.
wxICON_QUESTION Displays a question mark symbol.
wxICON_INFORMATION Displays an information symbol.

The return value is one of: wxYES, wxNO, wxCANCEL, wxOK.

For example:

 ...
 int answer = wxMessageBox("Quit program?", "Confirm",
 wxYES_NO | wxCANCEL, main_frame);
 if (answer == wxYES)
 delete main_frame;
 ...

message may contain newline characters, in which case the message will be split into
separate lines, to cater for large messages.

Under Windows, the native MessageBox function is used unless wxCENTRE is specified
in the style, in which case a generic function is used. This is because the native
MessageBox function cannot centre text. The symbols are not shown when the generic
function is used.

Include files

<wx/msgdlg.h>

::wxShowTip

bool wxShowTip(wxWindow *parent, wxTipProvider *tipProvider, bool showAtStartup
= TRUE)

This function shows a "startup tip" to the user.

parent

The parent window for the modal dialog

tipProvider

An object which is used to get the text of the tips. It may be created with the
wxCreateFileTipProvider (p. 1443) function.

showAtStartup

Should be TRUE if startup tips are shown, FALSE otherwise. This is used as the
initial value for "Show tips at startup" checkbox which is shown in the tips dialog.

See also

Tips overview (p. 1616)

CHAPTER 6

1451

Include files

<wx/tipdlg.h>

GGDDII ffuunnccttiioonnss

The following are relevant to the GDI (Graphics Device Interface).

Include files

<wx/gdicmn.h>

::wxClientDisplayRect

void wxClientDisplayRect(int *x, int *y,int *width, int *height)

wxRect wxGetClientDisplayRect()

Returns the dimensions of the work area on the display. On Windows this means the
area not covered by the taskbar, etc. Other platforms are currently defaulting to the
whole display until a way is found to provide this info for all window managers, etc.

::wxColourDisplay

bool wxColourDisplay()

Returns TRUE if the display is colour, FALSE otherwise.

::wxDisplayDepth

int wxDisplayDepth()

Returns the depth of the display (a value of 1 denotes a monochrome display).

::wxDisplaySize

void wxDisplaySize(int *width, int *height)

wxSize wxGetDisplaySize()

Returns the display size in pixels.

CHAPTER 6

1452

::wxDisplaySizeMM

void wxDisplaySizeMM(int *width, int *height)

wxSize wxGetDisplaySizeMM()

Returns the display size in millimeters.

::wxMakeMetafilePlaceable

bool wxMakeMetafilePlaceable(const wxString& filename, int minX, int minY, int
maxX, int maxY, float scale=1.0)

Given a filename for an existing, valid metafile (as constructed using wxMetafileDC (p.
862)) makes it into a placeable metafile by prepending a header containing the given
bounding box. The bounding box may be obtained from a device context after drawing
into it, using the functions wxDC::MinX, wxDC::MinY, wxDC::MaxX and wxDC::MaxY.

In addition to adding the placeable metafile header, this function adds the equivalent of
the following code to the start of the metafile data:

 SetMapMode(dc, MM_ANISOTROPIC);
 SetWindowOrg(dc, minX, minY);
 SetWindowExt(dc, maxX - minX, maxY - minY);

This simulates the wxMM_TEXT mapping mode, which wxWindows assumes.

Placeable metafiles may be imported by many Windows applications, and can be used
in RTF (Rich Text Format) files.

scale allows the specification of scale for the metafile.

This function is only available under Windows.

::wxSetCursor

void wxSetCursor(wxCursor *cursor)

Globally sets the cursor; only has an effect in Windows and GTK. See also wxCursor (p.
191), wxWindow::SetCursor (p. 1407).

PPrriinntteerr sseettttiinnggss

These routines are obsolete and should no longer be used!

CHAPTER 6

1453

The following functions are used to control PostScript printing. Under Windows,
PostScript output can only be sent to a file.

Include files

<wx/dcps.h>

::wxGetPrinterCommand

wxString wxGetPrinterCommand()

Gets the printer command used to print a file. The default is lpr.

::wxGetPrinterFile

wxString wxGetPrinterFile()

Gets the PostScript output filename.

::wxGetPrinterMode

int wxGetPrinterMode()

Gets the printing mode controlling where output is sent (PS_PREVIEW, PS_FILE or
PS_PRINTER). The default is PS_PREVIEW.

::wxGetPrinterOptions

wxString wxGetPrinterOptions()

Gets the additional options for the print command (e.g. specific printer). The default is
nothing.

::wxGetPrinterOrientation

int wxGetPrinterOrientation()

Gets the orientation (PS_PORTRAIT or PS_LANDSCAPE). The default is
PS_PORTRAIT.

::wxGetPrinterPreviewCommand

CHAPTER 6

1454

wxString wxGetPrinterPreviewCommand()

Gets the command used to view a PostScript file. The default depends on the platform.

::wxGetPrinterScaling

void wxGetPrinterScaling(float *x, float *y)

Gets the scaling factor for PostScript output. The default is 1.0, 1.0.

::wxGetPrinterTranslation

void wxGetPrinterTranslation(float *x, float *y)

Gets the translation (from the top left corner) for PostScript output. The default is 0.0,
0.0.

::wxSetPrinterCommand

void wxSetPrinterCommand(const wxString& command)

Sets the printer command used to print a file. The default is lpr.

::wxSetPrinterFile

void wxSetPrinterFile (const wxString& filename)

Sets the PostScript output filename.

::wxSetPrinterMode

void wxSetPrinterMode (int mode)

Sets the printing mode controlling where output is sent (PS_PREVIEW, PS_FILE or
PS_PRINTER). The default is PS_PREVIEW.

::wxSetPrinterOptions

void wxSetPrinterOptions(const wxString& options)

Sets the additional options for the print command (e.g. specific printer). The default is
nothing.

CHAPTER 6

1455

::wxSetPrinterOrientation

void wxSetPrinterOrientation(int orientation)

Sets the orientation (PS_PORTRAIT or PS_LANDSCAPE). The default is
PS_PORTRAIT.

::wxSetPrinterPreviewCommand

void wxSetPrinterPreviewCommand(const wxString& command)

Sets the command used to view a PostScript file. The default depends on the platform.

::wxSetPrinterScaling

void wxSetPrinterScaling(float x, float y)

Sets the scaling factor for PostScript output. The default is 1.0, 1.0.

::wxSetPrinterTranslation

void wxSetPrinterTranslation(float x, float y)

Sets the translation (from the top left corner) for PostScript output. The default is 0.0,
0.0.

CClliippbbooaarrdd ffuunnccttiioonnss

These clipboard functions are implemented for Windows only. The use of these
functions is deprecated and the code is no longer maintained. Use the wxClipboard (p.
124)class instead.

Include files

<wx/clipbrd.h>

::wxClipboardOpen

bool wxClipboardOpen()

Returns TRUE if this application has already opened the clipboard.

CHAPTER 6

1456

::wxCloseClipboard

bool wxCloseClipboard()

Closes the clipboard to allow other applications to use it.

::wxEmptyClipboard

bool wxEmptyClipboard()

Empties the clipboard.

::wxEnumClipboardFormats

int wxEnumClipboardFormats(intdataFormat)

Enumerates the formats found in a list of available formats that belong to the clipboard.
Each call to this function specifies a known available format; the function returns the
format that appears next in the list.

dataFormat specifies a known format. If this parameter is zero, the function returns the
first format in the list.

The return value specifies the next known clipboard data format if the function is
successful. It is zero if the dataFormat parameter specifies the last format in the list of
available formats, or if the clipboard is not open.

Before it enumerates the formats function, an application must open the clipboard by
using the wxOpenClipboard function.

::wxGetClipboardData

wxObject * wxGetClipboardData(intdataFormat)

Gets data from the clipboard.

dataFormat may be one of:

 • wxCF_TEXT or wxCF_OEMTEXT: returns a pointer to new memory containing

a null-terminated text string.
 • wxCF_BITMAP: returns a new wxBitmap.

The clipboard must have previously been opened for this call to succeed.

CHAPTER 6

1457

::wxGetClipboardFormatName

bool wxGetClipboardFormatName (intdataFormat, const wxString& formatName,
intmaxCount)

Gets the name of a registered clipboard format, and puts it into the buffer formatName
which is of maximum length maxCount. dataFormat must not specify a predefined
clipboard format.

::wxIsClipboardFormatAvailable

bool wxIsClipboardFormatAvailable(intdataFormat)

Returns TRUE if the given data format is available on the clipboard.

::wxOpenClipboard

bool wxOpenClipboard()

Opens the clipboard for passing data to it or getting data from it.

::wxRegisterClipboardFormat

int wxRegisterClipboardFormat(const wxString& formatName)

Registers the clipboard data format name and returns an identifier.

::wxSetClipboardData

bool wxSetClipboardData(intdataFormat, wxObject *data, intwidth, intheight)

Passes data to the clipboard.

dataFormat may be one of:

 • wxCF_TEXT or wxCF_OEMTEXT: data is a null-terminated text string.
 • wxCF_BITMAP: data is a wxBitmap.
 • wxCF_DIB: data is a wxBitmap. The bitmap is converted to a DIB (device

independent bitmap).
 • wxCF_METAFILE: data is a wxMetafile. width and height are used to give

recommended dimensions.

The clipboard must have previously been opened for this call to succeed.

CHAPTER 6

1458

MMiisscceellllaanneeoouuss ffuunnccttiioonnss

::wxDROP_ICON

wxIconOrCursor wxDROP_ICON(const char *name)

This macro creates either a cursor (MSW) or an icon (elsewhere) with the given name.
Under MSW, the cursor is loaded from the resource file and the icon is loaded from XPM
file under other platforms.

This macro should be used withwxDropSource constructor (p. 420).

Include files

<wx/dnd.h>

::wxNewId

long wxNewId()

Generates an integer identifier unique to this run of the program.

Include files

<wx/utils.h>

::wxRegisterId

void wxRegisterId(long id)

Ensures that ids subsequently generated by NewId do not clash with the given id.

Include files

<wx/utils.h>

::wxBeginBusyCursor

void wxBeginBusyCursor(wxCursor *cursor = wxHOURGLASS_CURSOR)

Changes the cursor to the given cursor for all windows in the application. Use
wxEndBusyCursor (p. 1461) to revert the cursor back to its previous state. These two
calls can be nested, and a counter ensures that only the outer calls take effect.

CHAPTER 6

1459

See also wxIsBusy (p. 1469), wxBusyCursor (p. 89).

Include files

<wx/utils.h>

::wxBell

void wxBell()

Ring the system bell.

Include files

<wx/utils.h>

::wxCreateDynamicObject

wxObject * wxCreateDynamicObject(const wxString& className)

Creates and returns an object of the given class, if the class has been registered with
the dynamic class system using DECLARE... and IMPLEMENT... macros.

::wxDDECleanUp

void wxDDECleanUp()

Called when wxWindows exits, to clean up the DDE system. This no longer needs to be
called by the application.

See also wxDDEInitialize (p. 1459).

Include files

<wx/dde.h>

::wxDDEInitialize

void wxDDEInitialize()

Initializes the DDE system. May be called multiple times without harm.

This no longer needs to be called by the application: it will be called by wxWindows if
necessary.

See also wxDDEServer (p. 352), wxDDEClient (p. 347), wxDDEConnection (p.

CHAPTER 6

1460

348),wxDDECleanUp (p. 1459).

Include files

<wx/dde.h>

::wxDebugMsg

void wxDebugMsg(const wxString& fmt, ...)

This function is deprecated, use wxLogDebug (p. 1490) instead!

Display a debugging message; under Windows, this will appear on the debugger
command window, and under Unix, it will be written to standard error.

The syntax is identical to printf: pass a format string and a variable list of arguments.

Tip: under Windows, if your application crashes before the message appears in the
debugging window, put a wxYield call after each wxDebugMsg call. wxDebugMsg seems
to be broken under WIN32s (at least for Watcom C++): preformat your messages and
use OutputDebugString instead.

This function is now obsolete, replaced by Log functions (p. 1489).

Include files

<wx/utils.h>

::wxDisplaySize

void wxDisplaySize(int *width, int *height)

Gets the physical size of the display in pixels.

Include files

<wx/gdicmn.h>

::wxEnableTopLevelWindows

void wxEnableTopLevelWindow(bool enable = TRUE)

This function enables or disables all top level windows. It is used by::wxSafeYield (p.
1472).

Include files

CHAPTER 6

1461

<wx/utils.h>

::wxEntry

This initializes wxWindows in a platform-dependent way. Use this if you are not using the
default wxWindows entry code (e.g. main or WinMain). For example, you can initialize
wxWindows from an Microsoft Foundation Classes application using this function.

void wxEntry(HANDLE hInstance, HANDLE hPrevInstance, const wxString&
commandLine, int cmdShow, bool enterLoop = TRUE)

wxWindows initialization under Windows (non-DLL). If enterLoop is FALSE, the function
will return immediately after calling wxApp::OnInit. Otherwise, the wxWindows message
loop will be entered.

void wxEntry(HANDLE hInstance, HANDLE hPrevInstance, WORD wDataSegment,
WORD wHeapSize, const wxString& commandLine)

wxWindows initialization under Windows (for applications constructed as a DLL).

int wxEntry(int argc, const wxString& *argv)

wxWindows initialization under Unix.

Remarks

To clean up wxWindows, call wxApp::OnExit followed by the static function
wxApp::CleanUp. For example, if exiting from an MFC application that also uses
wxWindows:

int CTheApp::ExitInstance()
{
 // OnExit isn't called by CleanUp so must be called explicitly.
 wxTheApp->OnExit();
 wxApp::CleanUp();

 return CWinApp::ExitInstance();
}

Include files

<wx/app.h>

::wxEndBusyCursor

void wxEndBusyCursor()

Changes the cursor back to the original cursor, for all windows in the application. Use
with wxBeginBusyCursor (p. 1458).

CHAPTER 6

1462

See also wxIsBusy (p. 1469), wxBusyCursor (p. 89).

Include files

<wx/utils.h>

::wxError

void wxError(const wxString& msg, const wxString& title = "wxWindows Internal
Error")

Displays msg and continues. This writes to standard error under Unix, and pops up a
message box under Windows. Used for internal wxWindows errors. See also
wxFatalError (p. 1463).

Include files

<wx/utils.h>

::wxExecute

long wxExecute(const wxString& command, bool sync = FALSE, wxProcess
*callback = NULL)

long wxExecute(char **argv, bool sync = FALSE, wxProcess *callback = NULL)

long wxExecute(const wxString& command, wxArrayString& output)

long wxExecute(const wxString& command, wxArrayString& output,
wxArrayString& errors)

Executes another program in Unix or Windows.

The first form takes a command string, such as "emacs file.txt".

The second form takes an array of values: a command, any number of arguments,
terminated by NULL.

The semantics of the third and fourth versions is different from the first two and is
described in more details below.

If sync is FALSE (the default), flow of control immediately returns. If TRUE, the current
application waits until the other program has terminated.

In the case of synchronous execution, the return value is the exit code of the process
(which terminates by the moment the function returns) and will be-1 if the process
couldn't be started and typically 0 if the process terminated successfully. Also, while

CHAPTER 6

1463

waiting for the process to terminate, wxExecute will call wxYield (p. 1476). The caller
should ensure that this can cause no recursion, in the simplest case by calling
wxEnableTopLevelWindows(FALSE) (p. 1460).

For asynchronous execution, however, the return value is the process id and zero value
indicates that the command could not be executed. As an added complication, the return
value of -1 in this case indicattes that we didn't launch a new process, but connected to
the running one (this can only happen in case of using DDE under Windows for
command execution). In particular, in this, and only this, case the calling code will not
get the notification about process termination.

If callback isn't NULL and if execution is asynchronous (note that callback parameter can
not be non-NULL for synchronous execution),wxProcess::OnTerminate (p. 970) will be
called when the process finishes.

Finally, you may use the third overloaded version of this function to execute a process
(always synchronously) and capture its output in the arrayoutput. The fourth version
adds the possibility to additionally capture the messages from standard error output in
the errors array.

See also wxShell (p. 1473), wxProcess (p. 967),Exec sample (p. 1519).

Include files

<wx/utils.h>

::wxExit

void wxExit()

Exits application after calling wxApp::OnExit (p. 26). Should only be used in an
emergency: normally the top-level frame should be deleted (after deleting all other
frames) to terminate the application. See wxWindow::OnCloseWindow (p. 1391) and
wxApp (p. 21).

Include files

<wx/app.h>

::wxFatalError

void wxFatalError(const wxString& msg, const wxString& title = "wxWindows Fatal
Error")

Displays msg and exits. This writes to standard error under Unix, and pops up a
message box under Windows. Used for fatal internal wxWindows errors. See also
wxError (p. 1462).

CHAPTER 6

1464

Include files

<wx/utils.h>

::wxFindMenuItemId

int wxFindMenuItemId(wxFrame *frame, const wxString& menuString, const
wxString& itemString)

Find a menu item identifier associated with the given frame's menu bar.

Include files

<wx/utils.h>

::wxFindWindowByLabel

wxWindow * wxFindWindowByLabel(const wxString& label, wxWindow
*parent=NULL)

Find a window by its label. Depending on the type of window, the label may be a window
title or panel item label. If parent is NULL, the search will start from all top-level frames
and dialog boxes; if non-NULL, the search will be limited to the given window hierarchy.
The search is recursive in both cases.

Include files

<wx/utils.h>

::wxFindWindowByName

wxWindow * wxFindWindowByName (const wxString& name, wxWindow
*parent=NULL)

Find a window by its name (as given in a window constructor or Create function call). If
parent is NULL, the search will start from all top-level frames and dialog boxes; if non-
NULL, the search will be limited to the given window hierarchy. The search is recursive
in both cases.

If no such named window is found, wxFindWindowByLabel is called.

Include files

<wx/utils.h>

::wxFindWindowAtPoint

CHAPTER 6

1465

wxWindow * wxFindWindowAtPoint(const wxPoint& pt)

Find the deepest window at the given mouse position in screen coordinates, returning
the window if found, or NULL if not.

::wxFindWindowAtPointer

wxWindow * wxFindWindowAtPointer(wxPoint& pt)

Find the deepest window at the mouse pointer position, returning the window and
current pointer position in screen coordinates.

::wxGetActiveWindow

wxWindow * wxGetActiveWindow()

Gets the currently active window (Windows only).

Include files

<wx/windows.h>

::wxGetDisplayName

wxString wxGetDisplayName ()

Under X only, returns the current display name. See also wxSetDisplayName (p. 1473).

Include files

<wx/utils.h>

::wxGetHomeDir

wxString wxGetHomeDir()

Return the (current) user's home directory.

See also

wxGetUserHome (p. 1468)

Include files

<wx/utils.h>

CHAPTER 6

1466

::wxGetFreeMemory

long wxGetFreeMemory()

Returns the amount of free memory in bytes under environments which support it, and -1
if not supported. Currently, it is supported only under Windows, Linux and Solaris.

Include files

<wx/utils.h>

::wxGetMousePosition

wxPoint wxGetMousePosition()

Returns the mouse position in screen coordinates.

Include files

<wx/utils.h>

::wxGetOsDescription

wxString wxGetOsDescription()

Returns the string containing the description of the current platform in a user-readable
form. For example, this function may return strings likeWindows NT Version 4.0 or
Linux 2.2.2 i386.

See also

::wxGetOsVersion (p. 1466)

Include files

<wx/utils.h>

::wxGetOsVersion

int wxGetOsVersion(int *major = NULL, int *minor = NULL)

Gets operating system version information.

Platform Return types
Mac OS Return value is wxMAC when compiled with

CHAPTER 6

1467

CodeWarrior under Mac OS 8.x/9.x and Mac
OS X, wxMAC_DARWIN when compiled with
the Apple Developer Tools under Mac OS X.

GTK Return value is wxGTK, For GTK 1.0, major is
1, minor is 0.

Motif Return value is wxMOTIF_X, major is X
version, minor is X revision.

OS/2 Return value is wxOS2_PM.
Windows 3.1 Return value is wxWINDOWS, major is 3,

minor is 1.
Windows NT/2000 Return value is wxWINDOWS_NT, version is

returned in major and minor
Windows 98 Return value is wxWIN95, major is 4, minor is 1

or greater.
Windows 95 Return value is wxWIN95, major is 4, minor is

0.
Win32s (Windows 3.1) Return value is wxWIN32S, major is 3, minor is

1.
Watcom C++ 386 supervisor mode (Windows 3.1) Return value is wxWIN386, major is

3, minor is 1.

See also

::wxGetOsDescription (p. 1466)

Include files

<wx/utils.h>

::wxGetResource

bool wxGetResource (const wxString& section, const wxString& entry, const
wxString& *value, const wxString& file = NULL)

bool wxGetResource (const wxString& section, const wxString& entry, float *value,
const wxString& file = NULL)

bool wxGetResource (const wxString& section, const wxString& entry, long *value,
const wxString& file = NULL)

bool wxGetResource (const wxString& section, const wxString& entry, int *value,
const wxString& file = NULL)

Gets a resource value from the resource database (for example, WIN.INI, or .Xdefaults).
If file is NULL, WIN.INI or .Xdefaults is used, otherwise the specified file is used.

Under X, if an application class (wxApp::GetClassName) has been defined, it is
appended to the string /usr/lib/X11/app-defaults/ to try to find an applications default file
when merging all resource databases.

CHAPTER 6

1468

The reason for passing the result in an argument is that it can be convenient to define a
default value, which gets overridden if the value exists in the resource file. It saves a
separate test for that resource's existence, and it also allows the overloading of the
function for different types.

See also wxWriteResource (p. 1476), wxConfigBase (p. 166).

Include files

<wx/utils.h>

::wxGetUserId

bool wxGetUserId(const wxString& buf, int bufSize)

Copies the user's login identity (such as "jacs'') into the buffer buf, of maximum size
bufSize, returning TRUE if successful. Under Windows, this returns "user''.

Include files

<wx/utils.h>

::wxGetUserHome

const wxChar * wxGetUserHome (const wxString& user = "")

Returns the home directory for the given user. If the username is empty (default value),
this function behaves likewxGetHomeDir (p. 1465).

Include files

<wx/utils.h>

::wxGetUserName

bool wxGetUserName (const wxString& buf, int bufSize)

Copies the user's name (such as "Julian Smart'') into the buffer buf, of maximum size
bufSize, returning TRUE if successful. Under Windows, this returns "unknown''.

Include files

<wx/utils.h>

::wxHandleFatalExceptions

CHAPTER 6

1469

bool wxHandleFatalExceptions(bool doIt = TRUE)

If doIt is TRUE, the fatal exceptions (also known as general protection faults under
Windows or segmentation violations in the Unix world) will be caught and passed to
wxApp::OnFatalException (p. 27). By default, i.e. before this function is called, they will
be handled in the normal way which usually just means that the application will be
terminated. Calling wxHandleFatalExceptions() with doIt equal to FALSE will restore this
default behaviour.

::wxInitAllImageHandlers

void wxInitAllImageHandlers()

Initializes all available image handlers. For a list of available handlers, see wxImage (p.
689).

See also

wxImage (p. 689), wxImageHandler (p. 706)

Include files

<wx/image.h>

::wxInitialize

bool wxInitialize()

This function is used in wxBase only and only if you don't createwxApp (p. 21) object at
all. In this case you must call it from yourmain() function before calling any other
wxWindows functions.

If the function returns FALSE the initialization could not be performed, in this case the
library cannot be used andwxUninitialize (p. 1475) shouldn't be called neither.

This function may be called several times butwxUninitialize (p. 1475) must be called for
each successful call to this function.

Include files

<wx/app.h>

::wxIsBusy

bool wxIsBusy()

CHAPTER 6

1470

Returns TRUE if between two wxBeginBusyCursor (p. 1458) and wxEndBusyCursor (p.
1461) calls.

See also wxBusyCursor (p. 89).

Include files

<wx/utils.h>

::wxKill

int wxKill(long pid, int sig = wxSIGTERM, wxKillError *rc = NULL)

Equivalent to the Unix kill function: send the given signal sig to the process with PID pid.
The valud signal values are

enum wxSignal
{
 wxSIGNONE = 0, // verify if the process exists under Unix
 wxSIGHUP,
 wxSIGINT,
 wxSIGQUIT,
 wxSIGILL,
 wxSIGTRAP,
 wxSIGABRT,
 wxSIGEMT,
 wxSIGFPE,
 wxSIGKILL, // forcefully kill, dangerous!
 wxSIGBUS,
 wxSIGSEGV,
 wxSIGSYS,
 wxSIGPIPE,
 wxSIGALRM,
 wxSIGTERM // terminate the process gently
};

wxSIGNONE, wxSIGKILL and wxSIGTERM have the same meaning under both Unix and
Windows but all the other signals are equivalent towxSIGTERM under Windows.

Returns 0 on success, -1 on failure. If rc parameter is not NULL, it will be filled with an
element of wxKillError enum:

enum wxKillError
{
 wxKILL_OK, // no error
 wxKILL_BAD_SIGNAL, // no such signal
 wxKILL_ACCESS_DENIED, // permission denied
 wxKILL_NO_PROCESS, // no such process
 wxKILL_ERROR // another, unspecified error
};

See also

CHAPTER 6

1471

wxProcess::Kill (p. 969), wxProcess::Exists (p. 970), Exec sample (p. 1519)

Include files

<wx/utils.h>

::wxLoadUserResource

wxString wxLoadUserResource (const wxString& resourceName, const wxString&
resourceType="TEXT")

Loads a user-defined Windows resource as a string. If the resource is found, the function
creates a new character array and copies the data into it. A pointer to this data is
returned. If unsuccessful, NULL is returned.

The resource must be defined in the .rc file using the following syntax:

myResource TEXT file.ext

where file.ext is a file that the resource compiler can find.

One use of this is to store .wxr files instead of including the data in the C++ file; some
compilers cannot cope with the long strings in a .wxr file. The resource data can then
be parsed using wxResourceParseString (p. 1488).

This function is available under Windows only.

Include files

<wx/utils.h>

::wxNow

wxString wxNow()

Returns a string representing the current date and time.

Include files

<wx/utils.h>

::wxPostDelete

void wxPostDelete(wxObject *object)

Tells the system to delete the specified object when all other events have been

CHAPTER 6

1472

processed. In some environments, it is necessary to use this instead of deleting a frame
directly with the delete operator, because some GUIs will still send events to a deleted
window.

Now obsolete: use wxWindow::Close (p. 1371) instead.

Include files

<wx/utils.h>

::wxPostEvent

void wxPostEvent(wxEvtHandler *dest, wxEvent& event)

This function posts the event to the specified dest object. The difference between
sending an event and posting it is that in the first case the event is processed before the
function returns (in wxWindows, event sending is done with ProcessEvent (p. 435)
function), but in the second, the function returns immediately and the event will be
processed sometime later - usually during the next even loop iteration.

Note that a copy of the event is made by the function, so the original copy can be
deleted as soon as function returns. This function can also be used to send events
between different threads safely. As this function makes a copy of the event, the event
needs to have a fully implemented Clone() method, which may not be the case for all
event in wxWindows.

See also AddPendingEvent (p. 432) (which this function uses internally).

Include files

<wx/app.h>

::wxSafeYield

bool wxSafeYield(wxWindow* win = NULL)

This function is similar to wxYield, except that it disables the user input to all program
windows before calling wxYield and re-enables it again afterwards. If win is not NULL,
this window will remain enabled, allowing the implementation of some limited user
interaction.

Returns the result of the call to ::wxYield (p. 1476).

Include files

<wx/utils.h>

CHAPTER 6

1473

::wxSetDisplayName

void wxSetDisplayName (const wxString& displayName)

Under X only, sets the current display name. This is the X host and display name such
as "colonsay:0.0", and the function indicates which display should be used for creating
windows from this point on. Setting the display within an application allows multiple
displays to be used.

See also wxGetDisplayName (p. 1465).

Include files

<wx/utils.h>

::wxShell

bool wxShell(const wxString& command = NULL)

Executes a command in an interactive shell window. If no command is specified, then
just the shell is spawned.

See also wxExecute (p. 1462), Exec sample (p. 1519).

Include files

<wx/utils.h>

::wxSleep

void wxSleep(int secs)

Sleeps for the specified number of seconds.

Include files

<wx/utils.h>

::wxStripMenuCodes

wxString wxStripMenuCodes(const wxString& in)

void wxStripMenuCodes(char* in, char* out)

Strips any menu codes from in and places the result in out (or returns the new string, in
the first form).

CHAPTER 6

1474

Menu codes include & (mark the next character with an underline as a keyboard
shortkey in Windows and Motif) and \t (tab in Windows).

Include files

<wx/utils.h>

::wxToLower

char wxToLower(char ch)

Converts the character to lower case. This is implemented as a macro for efficiency.

Include files

<wx/utils.h>

::wxToUpper

char wxToUpper(char ch)

Converts the character to upper case. This is implemented as a macro for efficiency.

Include files

<wx/utils.h>

::wxTrace

void wxTrace(const wxString& fmt, ...)

Takes printf-style variable argument syntax. Output is directed to the current output
stream (see wxDebugContext (p. 1553)).

This function is now obsolete, replaced by Log functions (p. 1489).

Include files

<wx/memory.h>

::wxTraceLevel

void wxTraceLevel(int level, const wxString& fmt, ...)

Takes printf-style variable argument syntax. Output is directed to the current output
stream (see wxDebugContext (p. 1553)). The first argument should be the level at which

CHAPTER 6

1475

this information is appropriate. It will only be output if the level returned by
wxDebugContext::GetLevel is equal to or greater than this value.

This function is now obsolete, replaced by Log functions (p. 1489).

Include files

<wx/memory.h>

::wxTrap

void wxTrap()

In debug mode (when __WXDEBUG__ is defined) this function generates a debugger
exception meaning that the control is passed to the debugger if one is attached to the
process. Otherwise the program just terminates abnormally.

In release mode this function does nothing.

Include files

<wx/debug.h>

::wxUninitialize

void wxUninitialize()

This function is for use in console (wxBase) programs only. It must be called once for
each previous successful call to wxInitialize (p. 1469).

Include files

<wx/app.h>

::wxUsleep

void wxUsleep(unsigned long milliseconds)

Sleeps for the specified number of milliseconds. Notice that usage of this function is
encouraged instead of calling usleep(3) directly because the standard usleep() function
is not MT safe.

Include files

<wx/utils.h>

CHAPTER 6

1476

::wxWriteResource

bool wxWriteResource (const wxString& section, const wxString& entry, const
wxString& value, const wxString& file = NULL)

bool wxWriteResource (const wxString& section, const wxString& entry, float value,
const wxString& file = NULL)

bool wxWriteResource (const wxString& section, const wxString& entry, long value,
const wxString& file = NULL)

bool wxWriteResource (const wxString& section, const wxString& entry, int value,
const wxString& file = NULL)

Writes a resource value into the resource database (for example, WIN.INI, or
.Xdefaults). If file is NULL, WIN.INI or .Xdefaults is used, otherwise the specified file is
used.

Under X, the resource databases are cached until the internal function
wxFlushResources is called automatically on exit, when all updated resource
databases are written to their files.

Note that it is considered bad manners to write to the .Xdefaults file under Unix, although
the WIN.INI file is fair game under Windows.

See also wxGetResource (p. 1467), wxConfigBase (p. 166).

Include files

<wx/utils.h>

::wxYield

bool wxYield()

Calls wxApp::Yield (p. 32).

This function is kept only for backwards compatibility, please use the wxApp method
instead in any new code.

Include files

<wx/app.h> or <wx/utils.h>

::wxWakeUpIdle

void wxWakeUpIdle()

CHAPTER 6

1477

This functions wakes up the (internal and platform dependent) idle system, i.e. it will
force the system to send an idle event even if the system currently is idle and thus would
not send any idle event until after some other event would get sent. This is also useful
for sending events between two threads and is used by the corresponding functions
::wxPostEvent (p. 1472) andwxEvtHandler::AddPendingEvent (p. 432).

Include files

<wx/app.h>

MMaaccrrooss

These macros are defined in wxWindows.

wxINTXX_SWAP_ALWAYS

wxInt32 wxINT32_SWAP_ALWAYS(wxInt32 value)

wxUint32 wxUINT32_SWAP_ALWAYS(wxUint32 value)

wxInt16 wxINT16_SWAP_ALWAYS(wxInt16 value)

wxUint16 wxUINT16_SWAP_ALWAYS(wxUint16 value)

This macro will swap the bytes of the value variable from little endian to big endian or
vice versa.

wxINTXX_SWAP_ON_BE

wxInt32 wxINT32_SWAP_ON_BE(wxInt32 value)

wxUint32 wxUINT32_SWAP_ON_BE(wxUint32 value)

wxInt16 wxINT16_SWAP_ON_BE(wxInt16 value)

wxUint16 wxUINT16_SWAP_ON_BE(wxUint16 value)

This macro will swap the bytes of the value variable from little endian to big endian or
vice versa if the program is compiled on a big-endian architecture (such as Sun work
stations). If the program has been compiled on a little-endian architecture, the value will
be unchanged.

Use these macros to read data from and write data to a file that stores data in little
endian (Intel i386) format.

CHAPTER 6

1478

wxINTXX_SWAP_ON_LE

wxInt32 wxINT32_SWAP_ON_LE(wxInt32 value)

wxUint32 wxUINT32_SWAP_ON_LE(wxUint32 value)

wxInt16 wxINT16_SWAP_ON_LE(wxInt16 value)

wxUint16 wxUINT16_SWAP_ON_LE(wxUint16 value)

This macro will swap the bytes of the value variable from little endian to big endian or
vice versa if the program is compiled on a little-endian architecture (such as Intel PCs). If
the program has been compiled on a big-endian architecture, the value will be
unchanged.

Use these macros to read data from and write data to a file that stores data in big endian
format.

CLASSINFO

wxClassInfo * CLASSINFO(className)

Returns a pointer to the wxClassInfo object associated with this class.

Include files

<wx/object.h>

DECLARE_ABSTRACT_CLASS

 DECLARE_ABSTRACT_CLASS(className)

Used inside a class declaration to declare that the class should be made known to the
class hierarchy, but objects of this class cannot be created dynamically. The same as
DECLARE_CLASS.

Example:

class wxCommand: public wxObject
{
 DECLARE_ABSTRACT_CLASS(wxCommand)

 private:
 ...
 public:
 ...
};

CHAPTER 6

1479

Include files

<wx/object.h>

DECLARE_APP

 DECLARE_APP(className)

This is used in headers to create a forward declaration of the wxGetApp function
implemented by IMPLEMENT_APP. It creates the declaration className&
wxGetApp(void).

Example:

 DECLARE_APP(MyApp)

Include files

<wx/app.h>

DECLARE_CLASS

 DECLARE_CLASS(className)

Used inside a class declaration to declare that the class should be made known to the
class hierarchy, but objects of this class cannot be created dynamically. The same as
DECLARE_ABSTRACT_CLASS.

Include files

<wx/object.h>

DECLARE_DYNAMIC_CLASS

 DECLARE_DYNAMIC_CLASS(className)

Used inside a class declaration to declare that the objects of this class should be
dynamically creatable from run-time type information.

Example:

class wxFrame: public wxWindow
{
 DECLARE_DYNAMIC_CLASS(wxFrame)

 private:
 const wxString\& frameTitle;
 public:

CHAPTER 6

1480

 ...
};

Include files

<wx/object.h>

IMPLEMENT_ABSTRACT_CLASS

 IMPLEMENT_ABSTRACT_CLASS(className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information. The same as IMPLEMENT_CLASS.

Example:

IMPLEMENT_ABSTRACT_CLASS(wxCommand, wxObject)

wxCommand::wxCommand(void)
{
...
}

Include files

<wx/object.h>

IMPLEMENT_ABSTRACT_CLASS2

 IMPLEMENT_ABSTRACT_CLASS2(className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information and two base classes. The same as IMPLEMENT_CLASS2.

Include files

<wx/object.h>

IMPLEMENT_APP

 IMPLEMENT_APP(className)

This is used in the application class implementation file to make the application class
known to wxWindows for dynamic construction. You use this instead of

Old form:

 MyApp myApp;

CHAPTER 6

1481

New form:

 IMPLEMENT_APP(MyApp)

See also DECLARE_APP (p. 1479).

Include files

<wx/app.h>

IMPLEMENT_CLASS

 IMPLEMENT_CLASS(className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information. The same as IMPLEMENT_ABSTRACT_CLASS.

Include files

<wx/object.h>

IMPLEMENT_CLASS2

 IMPLEMENT_CLASS2(className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information and two base classes. The same as
IMPLEMENT_ABSTRACT_CLASS2.

Include files

<wx/object.h>

IMPLEMENT_DYNAMIC_CLASS

 IMPLEMENT_DYNAMIC_CLASS(className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information, and whose instances can be created dynamically.

Example:

IMPLEMENT_DYNAMIC_CLASS(wxFrame, wxWindow)

wxFrame::wxFrame(void)
{
...

CHAPTER 6

1482

}

Include files

<wx/object.h>

IMPLEMENT_DYNAMIC_CLASS2

 IMPLEMENT_DYNAMIC_CLASS2(className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information, and whose instances can be created dynamically. Use this for
classes derived from two base classes.

Include files

<wx/object.h>

wxBITMAP

 wxBITMAP (bitmapName)

This macro loads a bitmap from either application resources (on the platforms for which
they exist, i.e. Windows and OS2) or from an XPM file. It allows to avoid using #ifdefs
when creating bitmaps.

See also

Bitmaps and icons overview (p. 1585),wxICON (p. 1484)

Include files

<wx/gdicmn.h>

wxConstCast

classname * wxConstCast(ptr, classname)

This macro expands into const_cast<classname *>(ptr) if the compiler supports
const_cast or into an old, C-style cast, otherwise.

See also

wxDynamicCast (p. 1483)
wxStaticCast (p. 1484)

CHAPTER 6

1483

WXDEBUG_NEW

 WXDEBUG_NEW(arg)

This is defined in debug mode to be call the redefined new operator with filename and
line number arguments. The definition is:

#define WXDEBUG_NEW new(__FILE__,__LINE__)

In non-debug mode, this is defined as the normal new operator.

Include files

<wx/object.h>

wxDynamicCast

classname * wxDynamicCast(ptr, classname)

This macro returns the pointer ptr cast to the type classname * if the pointer is of this
type (the check is done during the run-time) orNULL otherwise. Usage of this macro is
preferred over obsoleted wxObject::IsKindOf() function.

The ptr argument may be NULL, in which case NULL will be returned.

Example:

 wxWindow *win = wxWindow::FindFocus();
 wxTextCtrl *text = wxDynamicCast(win, wxTextCtrl);
 if (text)
 {
 // a text control has the focus...
 }
 else
 {
 // no window has the focus or it is not a text control
 }

See also

RTTI overview (p. 1525)
wxDynamicCastThis (p. 1483)
wxConstCast (p. 1482)
wxStatiicCast (p. 1484)

wxDynamicCastThis

classname * wxDynamicCastThis(classname)

CHAPTER 6

1484

This macro is equivalent to wxDynamicCast(this, classname) but the latter
provokes spurious compilation warnings from some compilers (because it tests whether
this pointer is non NULL which is always true), so this macro should be used to avoid
them.

See also

wxDynamicCast (p. 1483)

wxICON

 wxICON(iconName)

This macro loads an icon from either application resources (on the platforms for which
they exist, i.e. Windows and OS2) or from an XPM file. It allows to avoid using #ifdefs
when creating icons.

See also

Bitmaps and icons overview (p. 1585),wxBITMAP (p. 1482)

Include files

<wx/gdicmn.h>

wxStaticCast

classname * wxStaticCast(ptr, classname)

This macro checks that the cast is valid in debug mode (an assert failure will result if
wxDynamicCast(ptr, classname) == NULL) and then returns the result of
executing an equivalent of static_cast<classname *>(ptr).

wxDynamicCast (p. 1483)
wxConstCast (p. 1482)

WXTRACE

Include files

<wx/object.h>

 WXTRACE(formatString, ...)

Calls wxTrace with printf-style variable argument syntax. Output is directed to the current
output stream (see wxDebugContext (p. 1553)).

CHAPTER 6

1485

This macro is now obsolete, replaced by Log functions (p. 1489).

Include files

<wx/memory.h>

WXTRACELEVEL

 WXTRACELEVEL(level, formatString, ...)

Calls wxTraceLevel with printf-style variable argument syntax. Output is directed to the
current output stream (see wxDebugContext (p. 1553)). The first argument should be the
level at which this information is appropriate. It will only be output if the level returned by
wxDebugContext::GetLevel is equal to or greater than this value.

This function is now obsolete, replaced by Log functions (p. 1489).

Include files

<wx/memory.h>

wwxxWWiinnddoowwss rreessoouurrccee ffuunnccttiioonnss

wxWindows resource system (p. 1576)

This section details functions for manipulating wxWindows (.WXR) resource files and
loading user interface elements from resources.

Please note that this use of the word 'resource' is different from that used when talking
about initialisation file resource reading and writing, using such functions as
wxWriteResource and wxGetResource. It is just an unfortunate clash of terminology.

For an overview of the wxWindows resource mechanism, see the wxWindows resource
system (p. 1576).

See also wxWindow::LoadFromResource (p. 1386) for loading from resource data.

::wxResourceAddIdentifier

bool wxResourceAddIdentifier(const wxString& name, int value)

Used for associating a name with an integer identifier (equivalent to dynamically defining
a name to an integer). Unlikely to be used by an application except perhaps for
implementing resource functionality for interpreted languages.

CHAPTER 6

1486

::wxResourceClear

void wxResourceClear ()

Clears the wxWindows resource table.

::wxResourceCreateBitmap

wxBitmap * wxResourceCreateBitmap(const wxString& resource)

Creates a new bitmap from a file, static data, or Windows resource, given a valid
wxWindows bitmap resource identifier. For example, if the .WXR file contains the
following:

static const wxString\& project_resource = "bitmap(name =
'project_resource',\
 bitmap = ['project', wxBITMAP_TYPE_BMP_RESOURCE, 'WINDOWS'],\
 bitmap = ['project.xpm', wxBITMAP_TYPE_XPM, 'X']).";

then this function can be called as follows:

 wxBitmap *bitmap = wxResourceCreateBitmap("project_resource");

::wxResourceCreateIcon

wxIcon * wxResourceCreateIcon(const wxString& resource)

Creates a new icon from a file, static data, or Windows resource, given a valid
wxWindows icon resource identifier. For example, if the .WXR file contains the following:

static const wxString\& project_resource = "icon(name =
'project_resource',\
 icon = ['project', wxBITMAP_TYPE_ICO_RESOURCE, 'WINDOWS'],\
 icon = ['project', wxBITMAP_TYPE_XBM_DATA, 'X']).";

then this function can be called as follows:

 wxIcon *icon = wxResourceCreateIcon("project_resource");

::wxResourceCreateMenuBar

wxMenuBar * wxResourceCreateMenuBar(const wxString& resource)

Creates a new menu bar given a valid wxWindows menubar resource identifier. For
example, if the .WXR file contains the following:

static const wxString\& menuBar11 = "menu(name = 'menuBar11',\

CHAPTER 6

1487

 menu = \
 [\
 ['&File', 1, '', \
 ['&Open File', 2, 'Open a file'],\
 ['&Save File', 3, 'Save a file'],\
 [],\
 ['E&xit', 4, 'Exit program']\
],\
 ['&Help', 5, '', \
 ['&About', 6, 'About this program']\
]\
]).";

then this function can be called as follows:

 wxMenuBar *menuBar = wxResourceCreateMenuBar("menuBar11");

::wxResourceGetIdentifier

int wxResourceGetIdentifier(const wxString& name)

Used for retrieving the integer value associated with an identifier. A zero value indicates
that the identifier was not found.

See wxResourceAddIdentifier (p. 1485).

::wxResourceParseData

bool wxResourceParseData(const wxString& resource, wxResourceTable *table =
NULL)

Parses a string containing one or more wxWindows resource objects. If the resource
objects are global static data that are included into the C++ program, then this function
must be called for each variable containing the resource data, to make it known to
wxWindows.

resource should contain data in the following form:

dialog(name = 'dialog1',
 style = 'wxCAPTION | wxDEFAULT_DIALOG_STYLE',
 title = 'Test dialog box',
 x = 312, y = 234, width = 400, height = 300,
 modal = 0,
 control = [1000, wxStaticBox, 'Groupbox', '0', 'group6', 5, 4, 380,
262,
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]],
 control = [1001, wxTextCtrl, '', 'wxTE_MULTILINE', 'text3',
 156, 126, 200, 70, 'wxWindows is a multi-platform, GUI toolkit.',
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0],
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]]).

CHAPTER 6

1488

This function will typically be used after including a .wxr file into a C++ program as
follows:

#include "dialog1.wxr"

Each of the contained resources will declare a new C++ variable, and each of these
variables should be passed to wxResourceParseData.

::wxResourceParseFile

bool wxResourceParseFile(const wxString& filename, wxResourceTable *table =
NULL)

Parses a file containing one or more wxWindows resource objects in C++-compatible
syntax. Use this function to dynamically load wxWindows resource data.

::wxResourceParseString

bool wxResourceParseString(char* s, wxResourceTable *table = NULL)

Parses a string containing one or more wxWindows resource objects. If the resource
objects are global static data that are included into the C++ program, then this function
must be called for each variable containing the resource data, to make it known to
wxWindows.

resource should contain data with the following form:

dialog(name = 'dialog1',
 style = 'wxCAPTION | wxDEFAULT_DIALOG_STYLE',
 title = 'Test dialog box',
 x = 312, y = 234, width = 400, height = 300,
 modal = 0,
 control = [1000, wxStaticBox, 'Groupbox', '0', 'group6', 5, 4, 380,
262,
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]],
 control = [1001, wxTextCtrl, '', 'wxTE_MULTILINE', 'text3',
 156, 126, 200, 70, 'wxWindows is a multi-platform, GUI toolkit.',
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0],
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]]).

This function will typically be used after calling wxLoadUserResource (p. 1471) to load
an entire .wxr file into a string.

::wxResourceRegisterBitmapData

bool wxResourceRegisterBitmapData(const wxString& name, char* xbm_data, int
width,int height, wxResourceTable *table = NULL)

CHAPTER 6

1489

bool wxResourceRegisterBitmapData(const wxString& name, char** xpm_data)

Makes included XBM or XPM bitmap data known to the wxWindows resource system.
This is required if other resources will use the bitmap data, since otherwise there is no
connection between names used in resources, and the global bitmap data.

::wxResourceRegisterIconData

Another name for wxResourceRegisterBitmapData (p. 1488).

LLoogg ffuunnccttiioonnss

These functions provide a variety of logging functions: see Log classes overview (p.
1549) for further information. The functions use (implicitly) the currently active log target,
so their descriptions here may not apply if the log target is not the standard one
(installed by wxWindows in the beginning of the program).

Include files

<wx/log.h>

::wxLogError

void wxLogError(const char* formatString, ...)

The function to use for error messages, i.e. the messages that must be shown to the
user. The default processing is to pop up a message box to inform the user about it.

::wxLogFatalError

void wxLogFatalError(const char* formatString, ...)

Like wxLogError (p. 1489), but also terminates the program with the exit code 3. Using
abort() standard function also terminates the program with this exit code.

::wxLogWarning

void wxLogWarning(const char* formatString, ...)

For warnings - they are also normally shown to the user, but don't interrupt the program
work.

CHAPTER 6

1490

::wxLogMessage

void wxLogMessage(const char* formatString, ...)

for all normal, informational messages. They also appear in a message box by default
(but it can be changed). Notice that the standard behaviour is to not show informational
messages if there are any errors later - the logic being that the later error messages
make the informational messages preceding them meaningless.

::wxLogVerbose

void wxLogVerbose(const char* formatString, ...)

For verbose output. Normally, it is suppressed, but might be activated if the user wishes
to know more details about the program progress (another, but possibly confusing name
for the same function is wxLogInfo).

::wxLogStatus

void wxLogStatus(wxFrame *frame, const char* formatString, ...)

void wxLogStatus(const char* formatString, ...)

Messages logged by this function will appear in the statusbar of the frame or of the top
level application window by default (i.e. when using the second version of the function).

If the target frame doesn't have a statusbar, the message will be lost.

::wxLogSysError

void wxLogSysError(const char* formatString, ...)

Mostly used by wxWindows itself, but might be handy for logging errors after system call
(API function) failure. It logs the specified message text as well as the last system error
code (errno or ::GetLastError() depending on the platform) and the corresponding error
message. The second form of this function takes the error code explicitly as the first
argument.

See also

wxSysErrorCode (p. 1491),wxSysErrorMsg (p. 1492)

::wxLogDebug

void wxLogDebug(const char* formatString, ...)

CHAPTER 6

1491

The right function for debug output. It only does anything at all in the debug mode (when
the preprocessor symbol __WXDEBUG__ is defined) and expands to nothing in release
mode (otherwise).

::wxLogTrace

void wxLogTrace(const char* formatString, ...)

void wxLogTrace(const char *mask, const char *formatString, ...)

void wxLogTrace(wxTraceMask mask, const char *formatString, ...)

As wxLogDebug, trace functions only do something in debug build and expand to
nothing in the release one. The reason for making it a separate function from it is that
usually there are a lot of trace messages, so it might make sense to separate them from
other debug messages.

The trace messages also usually can be separated into different categories and the
second and third versions of this function only log the message if themask which it has is
currently enabled in wxLog (p. 790). This allows to selectively trace only some
operations and not others by changing the value of the trace mask (possible during the
run-time).

For the second function (taking a string mask), the message is logged only if the mask
has been previously enabled by the call toAddTraceMask (p. 793). The predefined string
trace masks used by wxWindows are:

 • wxTRACE_MemAlloc: trace memory allocation (new/delete)
 • wxTRACE_Messages: trace window messages/X callbacks
 • wxTRACE_ResAlloc: trace GDI resource allocation
 • wxTRACE_RefCount: trace various ref counting operations
 • wxTRACE_OleCalls: trace OLE method calls (Win32 only)

The third version of the function only logs the message if all the bit corresponding to the
mask are set in the wxLog trace mask which can be set by SetTraceMask (p. 796). This
version is less flexible than the previous one because it doesn't allow defining the user
trace masks easily - this is why it is deprecated in favour of using string trace masks.

 • wxTraceMemAlloc: trace memory allocation (new/delete)
 • wxTraceMessages: trace window messages/X callbacks
 • wxTraceResAlloc: trace GDI resource allocation
 • wxTraceRefCount: trace various ref counting operations
 • wxTraceOleCalls: trace OLE method calls (Win32 only)

::wxSysErrorCode

unsigned long wxSysErrorCode()

CHAPTER 6

1492

Returns the error code from the last system call. This function useserrno on Unix
platforms and GetLastError under Win32.

See also

wxSysErrorMsg (p. 1492),wxLogSysError (p. 1490)

::wxSysErrorMsg

const wxChar * wxSysErrorMsg(unsigned long errCode = 0)

Returns the error message corresponding to the given system error code. IferrCode is 0
(default), the last error code (as returned bywxSysErrorCode (p. 1491)) is used.

See also

wxSysErrorCode (p. 1491),wxLogSysError (p. 1490)

TTiimmee ffuunnccttiioonnss

The functions in this section deal with getting the current time and starting/stopping the
global timers. Please note that the timer functions are deprecated because they work
with one global timer only andwxTimer (p. 1288) and/or wxStopWatch (p. 1160) classes
should be used instead. For retrieving the current time, you may also
usewxDateTime::Now (p. 309) orwxDateTime::UNow (p. 310) methods.

::wxGetElapsedTime

long wxGetElapsedTime (bool resetTimer = TRUE)

Gets the time in milliseconds since the last ::wxStartTimer (p. 1493).

If resetTimer is TRUE (the default), the timer is reset to zero by this call.

See also wxTimer (p. 1288).

Include files

<wx/timer.h>

::wxGetLocalTime

long wxGetLocalTime ()

CHAPTER 6

1493

Returns the number of seconds since local time 00:00:00 Jan 1st 1970.

See also

wxDateTime::Now (p. 309)

Include files

<wx/timer.h>

::wxGetLocalTimeMillis

wxLongLone wxGetLocalTimeMillis()

Returns the number of milliseconds since local time 00:00:00 Jan 1st 1970.

See also

wxDateTime::Now (p. 309),
wxLongLone (p. 805)

Include files

<wx/timer.h>

::wxGetUTCTime

long wxGetUTCTime ()

Returns the number of seconds since GMT 00:00:00 Jan 1st 1970.

See also

wxDateTime::Now (p. 309)

Include files

<wx/timer.h>

::wxStartTimer

void wxStartTimer()

Starts a stopwatch; use ::wxGetElapsedTime (p. 1492) to get the elapsed time.

See also wxTimer (p. 1288).

CHAPTER 6

1494

Include files

<wx/timer.h>

DDeebbuuggggiinngg mmaaccrrooss aanndd ffuunnccttiioonnss

Useful macros and functions for error checking and defensive programming. ASSERTs
are only compiled if __WXDEBUG__ is defined, whereas CHECK macros stay in release
builds.

Include files

<wx/debug.h>

::wxOnAssert

void wxOnAssert(const char* fileName, int lineNumber, const char* msg = NULL)

This function may be redefined to do something non trivial and is called whenever one of
debugging macros fails (i.e. condition is false in an assertion).

wxASSERT

 wxASSERT(condition)

Assert macro. An error message will be generated if the condition is FALSE in debug
mode, but nothing will be done in the release build.

Please note that the condition in wxASSERT() should have no side effects because it
will not be executed in release mode at all.

See also: wxASSERT_MSG (p. 1494)

wxASSERT_MSG

 wxASSERT_MSG(condition, msg)

Assert macro with message. An error message will be generated if the condition is
FALSE.

See also: wxASSERT (p. 1494)

wxFAIL

CHAPTER 6

1495

 wxFAIL()

Will always generate an assert error if this code is reached (in debug mode).

See also: wxFAIL_MSG (p. 1495)

wxFAIL_MSG

 wxFAIL_MSG(msg)

Will always generate an assert error with specified message if this code is reached (in
debug mode).

This macro is useful for marking unreachable" code areas, for example it may be used in
the "default:" branch of a switch statement if all possible cases are processed above.

See also: wxFAIL (p. 1494)

wxCHECK

 wxCHECK(condition, retValue)

Checks that the condition is true, returns with the given return value if not (FAILs in
debug mode). This check is done even in release mode.

wxCHECK_MSG

 wxCHECK_MSG(condition, retValue, msg)

Checks that the condition is true, returns with the given return value if not (FAILs in
debug mode). This check is done even in release mode.

This macro may be only used in non void functions, see alsowxCHECK_RET (p. 1495).

wxCHECK_RET

 wxCHECK_RET (condition, msg)

Checks that the condition is true, and returns if not (FAILs with given error message in
debug mode). This check is done even in release mode.

This macro should be used in void functions instead ofwxCHECK_MSG (p. 1495).

wxCHECK2

CHAPTER 6

1496

 wxCHECK2(condition, operation)

Checks that the condition is true and wxFAIL (p. 1494) and executeoperation if it is not.
This is a generalisation ofwxCHECK (p. 1495) and may be used when something else
than just returning from the function must be done when the condition is false.

This check is done even in release mode.

wxCHECK2_MSG

 wxCHECK2(condition, operation, msg)

This is the same as wxCHECK2 (p. 1495), butwxFAIL_MSG (p. 1495) with the specified
msg is called instead of wxFAIL() if the condition is false.

EEnnvviirroonnmmeenntt aacccceessss ffuunnccttiioonnss

The functions in this section allow to access (get) or change value of environment
variables in a portable way. They are currently implemented under Win32 and POSIX-
like systems (Unix).

Include files

<wx/utils.h>

wxGetenv

wxChar * wxGetEnv (const wxString& var)

This is a macro defined as getenv() or its wide char version in Unicode mode.

Note that under Win32 it may not return correct value for the variables set with
wxSetEnv (p. 1497), use wxGetEnv (p. 1496) function instead.

wxGetEnv

bool wxGetEnv (const wxString& var, wxString *value)

Returns the current value of the environment variable var in value.value may be NULL if
you just want to know if the variable exists and are not interested in its value.

Returns TRUE if the variable exists, FALSE otherwise.

CHAPTER 6

1497

wxSetEnv

bool wxSetEnv (const wxString& var, const wxChar *value)

Sets the value of the environment variable var (adding it if necessary) to value.

Returns TRUE on success.

wxUnsetEnv

bool wxUnsetEnv (const wxString& var)

Removes the variable var from the environment.wxGetEnv (p. 1496) will return NULL
after the call to this function.

Returns TRUE on success.

KKeeyyccooddeess

Keypresses are represented by an enumerated type, wxKeyCode. The possible values
are the ASCII character codes, plus the following:

 WXK_BACK = 8
 WXK_TAB = 9
 WXK_RETURN = 13
 WXK_ESCAPE = 27
 WXK_SPACE = 32
 WXK_DELETE = 127

 WXK_START = 300
 WXK_LBUTTON
 WXK_RBUTTON
 WXK_CANCEL
 WXK_MBUTTON
 WXK_CLEAR
 WXK_SHIFT
 WXK_CONTROL
 WXK_MENU
 WXK_PAUSE
 WXK_CAPITAL
 WXK_PRIOR
 WXK_NEXT
 WXK_END
 WXK_HOME
 WXK_LEFT

CHAPTER 6

1498

 WXK_UP
 WXK_RIGHT
 WXK_DOWN
 WXK_SELECT
 WXK_PRINT
 WXK_EXECUTE
 WXK_SNAPSHOT
 WXK_INSERT
 WXK_HELP
 WXK_NUMPAD0
 WXK_NUMPAD1
 WXK_NUMPAD2
 WXK_NUMPAD3
 WXK_NUMPAD4
 WXK_NUMPAD5
 WXK_NUMPAD6
 WXK_NUMPAD7
 WXK_NUMPAD8
 WXK_NUMPAD9
 WXK_MULTIPLY
 WXK_ADD
 WXK_SEPARATOR
 WXK_SUBTRACT
 WXK_DECIMAL
 WXK_DIVIDE
 WXK_F1
 WXK_F2
 WXK_F3
 WXK_F4
 WXK_F5
 WXK_F6
 WXK_F7
 WXK_F8
 WXK_F9
 WXK_F10
 WXK_F11
 WXK_F12
 WXK_F13
 WXK_F14
 WXK_F15
 WXK_F16
 WXK_F17
 WXK_F18
 WXK_F19
 WXK_F20
 WXK_F21
 WXK_F22
 WXK_F23
 WXK_F24
 WXK_NUMLOCK
 WXK_SCROLL

1499

Chapter 7 Classes by category

A classification of wxWindows classes by category.

Managed windows

There are several types of window that are directly controlled by the window manager
(such as MS Windows, or the Motif Window Manager). Frames may contain windows,
and dialog boxes may directly contain controls.

wxDialog (p. 359) Dialog box
wxFrame (p. 525) Normal frame
wxMDIChildFrame (p. 816) MDI child frame
wxMDIParentFrame (p. 821) MDI parent frame
wxMiniFrame (p. 866) A frame with a small title bar
wxSplashScreen (p. 1132) Splash screen class
wxTabbedDialog (p. 1206) Tabbed dialog (deprecated, use wxNotebook instead)
wxTipWindow (p. 1292) Shows text in a small window
wxWizard (p. 1420) A wizard dialog

See also Common dialogs.

Miscellaneous windows

The following are a variety of classes that are derived from wxWindow.

wxPanel (p. 916) A window whose colour changes according to current user

settings
wxScrolledWindow (p. 1070) Window with automatically managed scrollbars
wxGrid (p. 559) A grid (table) window
wxSplitterWindow (p. 1137) Window which can be split vertically or horizontally
wxStatusBar (p. 1155) Implements the status bar on a frame
wxToolBar (p. 1296) Toolbar class
wxNotebook (p. 887) Notebook class
wxPlotWindow (p. 933) A class to display data.
wxSashWindow (p. 1055) Window with four optional sashes that can be dragged
wxSashLayoutWindow (p. 1052) Window that can be involved in an IDE-like layout

arrangement
wxWizardPage (p. 1425) A base class for the page in wizard dialog.
wxWizardPageSimple (p. 1427) A page in wizard dialog.

Common dialogs

Overview (p. 1595)

Common dialogs are ready-made dialog classes which are frequently used in an

CHAPTER 7

1500

application.

wxDialog (p. 359) Base class for common dialogs
wxColourDialog (p. 145) Colour chooser dialog
wxDirDialog (p. 377) Directory selector dialog
wxFileDialog (p. 461) File selector dialog
wxFindReplaceDialog (p. 504) Text search/replace dialog
wxMultipleChoiceDialog (p. 881) Dialog to get one or more selections from a list
wxSingleChoiceDialog (p. 1079) Dialog to get a single selection from a list and

return the string
wxTextEntryDialog (p. 1262) Dialog to get a single line of text from the user
wxFontDialog (p. 518) Font chooser dialog
wxPageSetupDialog (p. 909) Standard page setup dialog
wxPrintDialog (p. 949) Standard print dialog
wxPageSetupDialog (p. 909) Standard page setup dialog
wxMessageDialog (p. 859) Simple message box dialog
wxWizard (p. 1420) A wizard dialog.

Controls

Typically, these are small windows which provide interaction with the user. Controls that
are not static can have validators (p. 1348) associated with them.

wxControl (p. 183) The base class for controls
wxButton (p. 91) Push button control, displaying text
wxBitmapButton (p. 72) Push button control, displaying a bitmap
wxToggleButton (p. 1293) A button which stays pressed when clicked by user.
wxCalendarCtrl (p. 98) Date picker control
wxCheckBox (p. 111) Checkbox control
wxCheckListBox (p. 114) A listbox with a checkbox to the left of each item
wxChoice (p. 116) Choice control (a combobox without the editable area)
wxComboBox (p. 147) A choice with an editable area
wxGauge (p. 546) A control to represent a varying quantity, such as time

remaining
wxGenericDirCtrl (p. 551) A control for displaying a directory tree
wxStaticBox (p. 1148) A static, or group box for visually grouping related controls
wxListBox (p. 749) A list of strings for single or multiple selection
wxListCtrl (p. 758) A control for displaying lists of strings and/or icons, plus a

multicolumn report view
wxTabCtrl (p. 1220) Manages several tabs
wxTextCtrl (p. 1240) Single or multiline text editing control
wxTreeCtrl (p. 1313) Tree (hierarchy) control
wxScrollBar (p. 1062) Scrollbar control
wxSpinButton (p. 1125) A spin or 'up-down' control
wxSpinCtrl (p. 1128) A spin control - i.e. spin button and text control
wxStaticText (p. 1153) One or more lines of non-editable text
wxStaticBitmap (p. 1146) A control to display a bitmap
wxRadioBox (p. 1013) A group of radio buttons
wxRadioButton (p. 1019) A round button to be used with others in a mutually

exclusive way

CHAPTER 7

1501

wxSlider (p. 1091) A slider that can be dragged by the user

Menus

wxMenu (p. 833) Displays a series of menu items for selection
wxMenuBar (p. 843) Contains a series of menus for use with a frame
wxMenuItem (p. 852) Represents a single menu item

Window layout

There are two different systems for layouting windows (and dialogs in particular). One is
based upon so-called sizers and it requires less typing, thinking and calculating and will
in almost all cases produce dialogs looking equally well on all platforms, the other is
based on so-called constraints and allows for more detailed layouts.

These are the classes relevant to the sizer-based layout.

wxSizer (p. 1086) Abstract base class
wxGridSizer (p. 606) A sizer for laying out windows in a grid with all fields having

the same size
wxFlexGridSizer (p. 498) A sizer for laying out windows in a flexible grid
wxBoxSizer (p. 79) A sizer for laying out windows in a row or column
wxStaticBoxSizer (p. 1150) Same as wxBoxSizer, but with surrounding static box
wxNotebookSizer (p. 885) Sizer to use with the wxNotebook control.

Overview (p. 1573) over the constraints-based layout.

These are the classes relevant to constraints-based window layout.

wxIndividualLayoutConstraint (p. 715) Represents a single constraint dimension
wxLayoutConstraints (p. 740) Represents the constraints for a window class

Device contexts

Overview (p. 1589)

Device contexts are surfaces that may be drawn on, and provide an abstraction that
allows parameterisation of your drawing code by passing different device contexts.

wxClientDC (p. 123) A device context to access the client area outside OnPaint

events
wxPaintDC (p. 910) A device context to access the client area inside OnPaint

events
wxWindowDC (p. 1418) A device context to access the non-client area
wxScreenDC (p. 1060) A device context to access the entire screen
wxDC (p. 327) The device context base class

CHAPTER 7

1502

wxMemoryDC (p. 828) A device context for drawing into bitmaps
wxMetafileDC (p. 862) A device context for drawing into metafiles
wxPostScriptDC (p. 938) A device context for drawing into PostScript files
wxPrinterDC (p. 958) A device context for drawing to printers

Graphics device interface

Bitmaps overview (p. 1585)

These classes are related to drawing on device contexts and windows.

wxColour (p. 138) Represents the red, blue and green elements of a colour
wxDCClipper (p. 346) Wraps the operations of setting and destroying the clipping

region
wxBitmap (p. 55) Represents a bitmap
wxBrush (p. 81) Used for filling areas on a device context
wxBrushList (p. 87) The list of previously-created brushes
wxCursor (p. 191) A small, transparent bitmap representing the cursor
wxFont (p. 506) Represents fonts
wxFontList (p. 521) The list of previously-created fonts
wxIcon (p. 680) A small, transparent bitmap for assigning to frames and

drawing on device contexts
wxImage (p. 689) A platform-independent image class
wxImageList (p. 710) A list of images, used with some controls
wxMask (p. 808) Represents a mask to be used with a bitmap for

transparent drawing
wxPen (p. 922) Used for drawing lines on a device context
wxPenList (p. 929) The list of previously-created pens
wxPalette (p. 912) Represents a table of indices into RGB values
wxRegion (p. 1044) Represents a simple or complex region on a window or

device context

Events

Overview (p. 1560)

An event object contains information about a specific event. Event handlers (usually
member functions) have a single, event argument.

wxActivateEvent (p. 20) A window or application activation event
wxCalendarEvent (p. 107) Used with wxCalendarCtrl (p. 98)
wxCalculateLayoutEvent (p. 96) Used to calculate window layout
wxCloseEvent (p. 127) A close window or end session event
wxCommandEvent (p. 156) An event from a variety of standard controls
wxDialUpEvent (p. 367) Event send by wxDialUpManager (p. 368)
wxDropFilesEvent (p. 417) A drop files event
wxEraseEvent (p. 427) An erase background event
wxEvent (p. 428) The event base class

CHAPTER 7

1503

wxFindDialogEvent (p. 501) Event sent by wxFindReplaceDialog (p. 504)
wxFocusEvent (p. 506) A window focus event
wxKeyEvent (p. 733) A keypress event
wxIconizeEvent (p. 688) An iconize/restore event
wxIdleEvent (p. 679) An idle event
wxInitDialogEvent (p. 718) A dialog initialisation event
wxJoystickEvent (p. 731) A joystick event
wxListEvent (p. 775) A list control event
wxMaximizeEvent (p. 810) A maximize event
wxMenuEvent (p. 857) A menu event
wxMouseEvent (p. 871) A mouse event
wxMoveEvent (p. 880) A move event
wxNotebookEvent (p. 894) A notebook control event
wxNotifyEvent (p. 896) A notification event, which can be vetoed
wxPaintEvent (p. 911) A paint event
wxProcessEvent (p. 973) A process ending event
wxQueryLayoutInfoEvent (p. 1010) Used to query layout information
wxScrollEvent (p. 1068) A scroll event from sliders, stand-alone scrollbars and spin

buttons
wxScrollWinEvent (p. 1067) A scroll event from scrolled windows
wxSizeEvent (p. 1085) A size event
wxSocketEvent (p. 1120) A socket event
wxSpinEvent (p. 1131) An event from wxSpinButton (p. 1125)
wxSysColourChangedEvent (p. 1200) A system colour change event
wxTabEvent (p. 1226) A tab control event
wxTreeEvent (p. 1332) A tree control event
wxUpdateUIEvent (p. 1342) A user interface update event
wxWizardEvent (p. 1423) A wizard event

Validators

Overview (p. 1571)

These are the window validators, used for filtering and validating user input.

wxValidator (p. 1348) Base validator class
wxTextValidator (p. 1267) Text control validator class
wxGenericValidator (p. 555) Generic control validator class

Data structures

These are the data structure classes supported by wxWindows.

wxCmdLineParser (p. 129) Command line parser class
wxDate (p. 291) A class for date manipulation (deprecated in favour of

wxDateTime)
wxDateSpan (p. 299) A logical time interval.
wxDateTime (p. 299) A class for date/time manipulations

CHAPTER 7

1504

wxExpr (p. 439) A class for flexible I/O
wxExprDatabase (p. 446) A class for flexible I/O
wxHashTable (p. 608) A simple hash table implementation
wxList (p. 743) A simple linked list implementation
wxLongLong (p. 805) A portable 64 bit integer type
wxNode (p. 886) Represents a node in the wxList implementation
wxObject (p. 897) The root class for most wxWindows classes
wxPathList (p. 921) A class to help search multiple paths
wxPoint (p. 937) Representation of a point
wxRect (p. 1023) A class representing a rectangle
wxRegEx (p. 1040) Regular expression support
wxRegion (p. 1044) A class representing a region
wxString (p. 1171) A string class
wxStringList (p. 1195) A class representing a list of strings
wxStringTokenizer (p. 1197) A class for interpreting a string as a list of tokens or words
wxRealPoint (p. 1022) Representation of a point using floating point numbers
wxSize (p. 1083) Representation of a size
wxTime (p. 1283) A class for time manipulation (deprecated in favour of

wxDateTime)
wxTimeSpan (p. 1265) A time interval.
wxVariant (p. 1350) A class for storing arbitrary types that may change at run-

time

Run-time class information system

Overview (p. 1525)

wxWindows supports run-time manipulation of class information, and dynamic creation
of objects given class names.

wxClassInfo (p. 122) Holds run-time class information
wxObject (p. 897) Root class for classes with run-time information
Macros (p. 1477) Macros for manipulating run-time information

Debugging features

Overview (p. 1549)

wxWindows provides several classes and functions for the message logging. Please see
the wxLog overview (p. 1549) for more details.

wxLog (p. 790) The base log class
wxLogStderr (p. 800) Log messages to a C STDIO stream
wxLogStream (p. 801) Log messages to a C++ iostream
wxLogTextCtrl (p. 802) Log messages to a wxTextCtrl (p. 1240)
wxLogWindow (p. 802) Log messages to a log frame
wxLogGui (p. 798) Default log target for GUI programs
wxLogNull (p. 799) Temporarily suppress message logging

CHAPTER 7

1505

wxLogChain (p. 797) Allows to chain two log targets
wxLogPassThrough (p. 804) Allows to filter the log messages
wxStreamToTextRedirector (p. 1169) Allows to redirect output sent to cout to a

wxTextCtrl (p. 1240)
Log functions (p. 1489) Error and warning logging functions

Debugging features

Overview (p. 1552)

wxWindows supports some aspects of debugging an application through classes,
functions and macros.

wxDebugContext (p. 353) Provides memory-checking facilities
Debugging macros (p. 1494) Debug macros for assertion and checking
WXDEBUG_NEW (p. 1483) Use this macro to give further debugging information

Networking classes

wxWindows provides its own classes for socket based networking.

wxDialUpManager (p. 368) Provides functions to check the status of network

connection and to establish one
wxIPV4address (p. 722) Represents an Internet address
wxSocketBase (p. 1100) Represents a socket base object
wxSocketClient (p. 1118) Represents a socket client
wxSocketServer (p. 1121) Represents a socket server
wxSocketEvent (p. 1120) A socket event
wxFTP (p. 540) FTP protocol class
wxHTTP (p. 677) HTTP protocol class
wxURL (p. 1345) Represents a Universal Resource Locator

Interprocess communication

Overview (p. 1646)

wxWindows provides a simple interprocess communications facilities based on DDE.

wxDDEClient (p. 347) Represents a client
wxDDEConnection (p. 348) Represents the connection between a client and a server
wxDDEServer (p. 352) Represents a server
wxTCPClient (p. 1229) Represents a client
wxTCPConnection (p. 1231) Represents the connection between a client and a server
wxTCPServer (p. 1235) Represents a server

Document/view framework

CHAPTER 7

1506

Overview (p. 1599)

wxWindows supports a document/view framework which provides housekeeping for a
document-centric application.

wxDocument (p. 404) Represents a document
wxView (p. 1360) Represents a view
wxDocTemplate (p. 399) Manages the relationship between a document class and a

view class
wxDocManager (p. 385) Manages the documents and views in an application
wxDocChildFrame (p. 383) A child frame for showing a document view
wxDocParentFrame (p. 398) A parent frame to contain views

Printing framework

Overview (p. 1617)

A printing and previewing framework is implemented to make it relatively straightforward
to provide document printing facilities.

wxPreviewFrame (p. 942) Frame for displaying a print preview
wxPreviewCanvas (p. 939) Canvas for displaying a print preview
wxPreviewControlBar (p. 940) Standard control bar for a print preview
wxPrintDialog (p. 949) Standard print dialog
wxPageSetupDialog (p. 909) Standard page setup dialog
wxPrinter (p. 955) Class representing the printer
wxPrinterDC (p. 958) Printer device context
wxPrintout (p. 958) Class representing a particular printout
wxPrintPreview (p. 962) Class representing a print preview
wxPrintData (p. 943) Represents information about the document being printed
wxPrintDialogData (p. 951) Represents information about the print dialog
wxPageSetupDialogData (p. 904) Represents information about the page setup

dialog

Drag and drop and clipboard classes

Drag and drop and clipboard overview (p. 1619)

wxDataObject (p. 204) Data object class
wxDataFormat (p. 201) Represents a data format
wxTextDataObject (p. 1256) Text data object class
wxFileDataObject (p. 1256) File data object class
wxBitmapDataObject (p. 77) Bitmap data object class
wxCustomDataObject (p. 189) Custom data object class
wxClipboard (p. 124) Clipboard class
wxDropTarget (p. 421) Drop target class
wxFileDropTarget (p. 466) File drop target class

CHAPTER 7

1507

wxTextDropTarget (p. 1264) Text drop target class
wxDropSource (p. 419) Drop source class

File related classes

wxWindows has several small classes to work with disk files, see file classes overview
(p. 1546) for more details.

wxFileName (p. 476) Operations with the file name and attributes
wxDir (p. 372) Class for enumerating files/subdirectories.
wxDirTraverser (p. 376) Class used together with wxDir for recursively enumerating

the files/subdirectories
wxFile (p. 449) Low-level file input/output class.
wxFFile (p. 456) Another low-level file input/output class.
wxTempFile (p. 1236) Class to safely replace an existing file
wxTextFile (p. 1270) Class for working with text files as with arrays of lines

Stream classes

wxWindows has its own set of stream classes, as an alternative to often buggy standard
stream libraries, and to provide enhanced functionality.

wxStreamBase (p. 1161) Stream base class
wxStreamBuffer (p. 1163) Stream buffer class
wxInputStream (p. 718) Input stream class
wxOutputStream (p. 902) Output stream class
wxCountingOutputStream (p. 184) Stream class for querying what size a stream would

have.
wxFilterInputStream (p. 500) Filtered input stream class
wxFilterOutputStream (p. 500) Filtered output stream class
wxBufferedInputStream (p. 95) Buffered input stream class
wxBufferedOutputStream (p. 95) Buffered output stream class
wxMemoryInputStream (p. 831) Memory input stream class
wxMemoryOutputStream (p. 832) Memory output stream class
wxDataInputStream (p. 287) Platform-independent binary data input stream class
wxDataOutputStream (p. 289) Platform-independent binary data output stream

class
wxTextInputStream (p. 1258) Platform-independent text data input stream class
wxTextOutputStream (p. 1260) Platform-independent text data output stream class
wxFileInputStream (p. 470) File input stream class
wxFileOutputStream (p. 471) File output stream class
wxFFileInputStream (p. 473) Another file input stream class
wxFFileOutputStream (p. 474) Another file output stream class
wxZlibInputStream (p. 1429) Zlib (compression) input stream class
wxZlibOutputStream (p. 1429) Zlib (compression) output stream class
wxZipInputStream (p. 1428) Input stream for reading from ZIP archives
wxSocketInputStream (p. 1124) Socket input stream class
wxSocketOutputStream (p. 1124) Socket output stream class

CHAPTER 7

1508

Threading classes

Multithreading overview (p. 1618)

wxWindows provides a set of classes to make use of the native thread capabilities of the
various platforms.

wxThread (p. 1276) Thread class
wxMutex (p. 881) Mutex class
wxMutexLocker (p. 884) Mutex locker utility class
wxCriticalSection (p. 185) Critical section class
wxCriticalSectionLocker (p. 186) Critical section locker utility class
wxCondition (p. 164) Condition class

HTML classes

wxWindows provides a set of classes to display text in HTML format. These class
include a help system based on the HTML widget.

wxHtmlHelpController (p. 639) HTML help controller class
wxHtmlWindow (p. 663) HTML window class
wxHtmlEasyPrinting (p. 634) Simple class for printing HTML
wxHtmlPrintout (p. 654) Generic HTML wxPrintout class
wxHtmlParser (p. 650) Generic HTML parser class
wxHtmlTagHandler (p. 660) HTML tag handler, pluginable into wxHtmlParser
wxHtmlWinParser (p. 671) HTML parser class for wxHtmlWindow
wxHtmlWinTagHandler (p. 677) HTML tag handler, pluginable into

wxHtmlWinParser

Virtual file system classes

wxWindows provides a set of classes that implement an extensible virtual file system,
used internally by the HTML classes.

wxFSFile (p. 537) Represents a file in the virtual file system
wxFileSystem (p. 489) Main interface for the virtual file system
wxFileSystemHandler (p. 491) Class used to announce file system type

Online help

wxHelpController (p. 610) Family of classes for controlling help windows
wxHtmlHelpController (p. 639) HTML help controller class
wxContextHelp (p. 180) Class to put application into context-sensitive help mode
wxContextHelpButton (p. 182) Button class for putting application into context-

sensitive help mode

CHAPTER 7

1509

wxHelpProvider (p. 618) Abstract class for context-sensitive help provision
wxSimpleHelpProvider (p. 1078) Class for simple context-sensitive help provision
wxHelpControllerHelpProvider (p. 616) Class for context-sensitive help provision

via a help controller
wxToolTip (p. 1311) Class implementing tooltips

Database classes

Database classes overview (p. 1622)

wxWindows provides two alternative sets of classes for accessing Microsoft's ODBC
(Open Database Connectivity) product. The new version by Remstar, known as
wxODBC, is more powerful, portable, flexible and better supported, so please use the
classes below for working with databases:

wxDb (p. 207) ODBC database connection
wxDbTable (p. 247) Provides access to a database table
wxDbInf (p. 246)
wxDbTableInf (p. 283)
wxDbColDef (p. 238)
wxDbColInf (p. 239)
wxDbColDataPtr (p. 238)
wxDbColFor (p. 240)
wxDbConnectInf (p. 241)
wxDbIdxDef (p. 246)

The documentation for the older classes is still included, but you should avoid using any
of them in the new programs:

wxDatabase (p. 195) Database class
wxQueryCol (p. 1005) Class representing a column
wxQueryField (p. 1008) Class representing a field
wxRecordSet (p. 1027) Class representing one or more record

Miscellaneous

wxApp (p. 21) Application class
wxCaret (p. 108) A caret (cursor) object
wxCmdLineParser (p. 129) Command line parser class
wxConfig (p. 166) Classes for configuration reading/writing (using either INI

files or registry)
wxDllLoader (p. 379) Class to work with shared libraries.
wxLayoutAlgorithm (p. 737) An alternative window layout facility
wxProcess (p. 967) Process class
wxTimer (p. 1288) Timer class
wxStopWatch (p. 1160) Stop watch class
wxMimeTypesManager (p. 863) MIME-types manager class

CHAPTER 7

1510

wxSystemSettings (p. 1203) System settings class for obtaining various global
parameters

wxSystemOptions (p. 1201) System options class for run-time configuration
wxAcceleratorTable (p. 17) Accelerator table
wxAutomationObject (p. 50) OLE automation class
wxFontMapper (p. 522) Font mapping, finding suitable font for given encoding
wxEncodingConverter (p. 425) Encoding conversions
wxCalendarDateAttr (p. 104) Used with wxCalendarCtrl (p. 98)
wxQuantize (p. 1004) Class to perform quantization, or colour reduction
wxSingleInstanceChecker (p. 1081) Check that only single program instance is running

1511

Chapter 8 Topic overviews

This chapter contains a selection of topic overviews, first things first:

NNootteess oonn uussiinngg tthhee rreeffeerreennccee

In the descriptions of the wxWindows classes and their member functions, note that
descriptions of inherited member functions are not duplicated in derived classes unless
their behaviour is different. So in using a class such as wxScrolledWindow, be aware
that wxWindow functions may be relevant.

Note also that arguments with default values may be omitted from a function call, for
brevity. Size and position arguments may usually be given a value of -1 (the default), in
which case wxWindows will choose a suitable value.

Most strings are returned as wxString objects. However, for remaining char * return
values, the strings are allocated and deallocated by wxWindows. Therefore, return
values should always be copied for long-term use, especially since the same buffer is
often used by wxWindows.

The member functions are given in alphabetical order except for constructors and
destructors which appear first.

WWrriittiinngg aa wwxxWWiinnddoowwss aapppplliiccaattiioonn:: aa rroouugghh gguuiiddee

To set a wxWindows application going, you will need to derive a wxApp (p. 21) class and
override wxApp::OnInit (p. 28).

An application must have a top-level wxFrame (p. 525) or wxDialog (p. 359) window.
Each frame may contain one or more instances of classes such as wxPanel (p. 916),
wxSplitterWindow (p. 1137) or other windows and controls.

A frame can have a wxMenuBar (p. 843), a wxToolBar (p. 1296), a status line, and a
wxIcon (p. 680) for when the frame is iconized.

A wxPanel (p. 916) is used to place controls (classes derived from wxControl (p. 183))
which are used for user interaction. Examples of controls are wxButton (p. 91),
wxCheckBox (p. 111), wxChoice (p. 116), wxListBox (p. 749), wxRadioBox (p. 1013),
wxSlider (p. 1091).

Instances of wxDialog (p. 359) can also be used for controls and they have the
advantage of not requiring a separate frame.

CHAPTER 8

1512

Instead of creating a dialog box and populating it with items, it is possible to choose one
of the convenient common dialog classes, such as wxMessageDialog (p. 859) and
wxFileDialog (p. 461).

You never draw directly onto a window - you use a device context (DC). wxDC (p. 327)
is the base for wxClientDC (p. 123), wxPaintDC (p. 910), wxMemoryDC (p. 828),
wxPostScriptDC (p. 938), wxMemoryDC (p. 828), wxMetafileDC (p. 862) and
wxPrinterDC (p. 958). If your drawing functions have wxDC as a parameter, you can
pass any of these DCs to the function, and thus use the same code to draw to several
different devices. You can draw using the member functions of wxDC, such as
wxDC::DrawLine (p. 333) and wxDC::DrawText (p. 335). Control colour on a window
(wxColour (p. 138)) with brushes (wxBrush (p. 81)) and pens (wxPen (p. 922)).

To intercept events, you add a DECLARE_EVENT_TABLE macro to the window class
declaration, and put a BEGIN_EVENT_TABLE ... END_EVENT_TABLE block in the
implementation file. Between these macros, you add event macros which map the event
(such as a mouse click) to a member function. These might override predefined event
handlers such as wxWindow::OnChar (p. 1388) and wxWindow::OnMouseEvent (p.
1396).

Most modern applications will have an on-line, hypertext help system; for this, you need
wxHelp and the wxHelpController (p. 610) class to control wxHelp.

GUI applications aren't all graphical wizardry. List and hash table needs are catered for
by wxList (p. 743), wxStringList (p. 1195) and wxHashTable (p. 608). You will
undoubtedly need some platform-independent file functions (p. 1433), and you may find
it handy to maintain and search a list of paths using wxPathList (p. 921). There's a
miscellany (p. 1458) of operating system and other functions.

See also Classes by Category (p. 1499) for a list of classes.

wwxxWWiinnddoowwss ""HHeelllloo WWoorrlldd""

As many people have requested a mini-sample to be published here so that some quick
judgments concerning syntax and basic principles can be made, you can now look at
wxWindows' "Hello World":

You have to include wxWindows' header files, of course. This can be done on a file by
file basis (such as #include "wx/window.h") or using one global include (#include
"wx/wx.h"). This is also useful on platforms which support precompiled headers such as
all major compilers on the Windows platform.

//
// file name: hworld.cpp
//
// purpose: wxWindows "Hello world"
//

CHAPTER 8

1513

// For compilers that support precompilation, includes "wx/wx.h".
#include "wx/wxprec.h"

#ifdef __BORLANDC__
 #pragma hdrstop
#endif

#ifndef WX_PRECOMP
 #include "wx/wx.h"
#endif

Practically every app should define a new class derived from wxApp. By overriding
wxApp's OnInit() the program can be initialized, e.g. by creating a new main window.

class MyApp: public wxApp
{
 virtual bool OnInit();
};

The main window is created by deriving a class from wxFrame and giving it a menu and
a status bar in its constructor. Also, any class that wishes to respond to any "event"
(such as mouse clicks or messages from the menu or a button) must declare an event
table using the macro below. Finally, the way to react to such events must be done in
"handlers". In our sample, we react to two menu items, one for "Quit" and one for
displaying an "About" window. These handlers should not be virtual.

class MyFrame: public wxFrame
{
public:
 MyFrame(const wxString& title, const wxPoint& pos, const wxSize&
size);

 void OnQuit(wxCommandEvent& event);
 void OnAbout(wxCommandEvent& event);

private:
 DECLARE_EVENT_TABLE()
};

In order to be able to react to a menu command, it must be given a unique identifier such
as a const or an enum.

enum
{
 ID_Quit = 1,
 ID_About,
};

We then proceed to actually implement an event table in which the events are routed to
their respective handler functions in the class MyFrame. There are predefined macros
for routing all common events, ranging from the selection of a list box entry to a resize
event when a user resizes a window on the screen. If -1 is given as the ID, the given
handler will be invoked for any event of the specified type, so that you could add just one

CHAPTER 8

1514

entry in the event table for all menu commands or all button commands etc. The origin of
the event can still be distinguished in the event handler as the (only) parameter in an
event handler is a reference to a wxEvent object, which holds various information about
the event (such as the ID of and a pointer to the class, which emitted the event).

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU(ID_Quit, MyFrame::OnQuit)
 EVT_MENU(ID_About, MyFrame::OnAbout)
END_EVENT_TABLE()

As in all programs there must be a "main" function. Under wxWindows main is
implemented using this macro, which creates an application instance and starts the
program.

IMPLEMENT_APP(MyApp)

As mentioned above, wxApp::OnInit() is called upon startup and should be used to
initialize the program, maybe showing a "splash screen" and creating the main window
(or several). The frame should get a title bar text ("Hello World") and a position and start-
up size. One frame can also be declared to be the top window. Returning TRUE
indicates a successful initialization.

bool MyApp::OnInit()
{
 MyFrame *frame = new MyFrame("Hello World", wxPoint(50,50),
wxSize(450,340));
 frame->Show(TRUE);
 SetTopWindow(frame);
 return TRUE;
}

In the constructor of the main window (or later on) we create a menu with two menu
items as well as a status bar to be shown at the bottom of the main window. Both have
to be "announced" to the frame with respective calls.

MyFrame::MyFrame(const wxString& title, const wxPoint& pos, const
wxSize& size)
 : wxFrame((wxFrame *)NULL, -1, title, pos, size)
{
 wxMenu *menuFile = new wxMenu;

 menuFile->Append(ID_About, "&About...");
 menuFile->AppendSeparator();
 menuFile->Append(ID_Quit, "E&xit");

 wxMenuBar *menuBar = new wxMenuBar;
 menuBar->Append(menuFile, "&File");

 SetMenuBar(menuBar);

 CreateStatusBar();
 SetStatusText("Welcome to wxWindows!");
}

CHAPTER 8

1515

Here are the actual event handlers. MyFrame::OnQuit() closes the main window by
calling Close(). The parameter TRUE indicates that other windows have no veto power
such as after asking "Do you really want to close?". If there is no other main window left,
the application will quit.

void MyFrame::OnQuit(wxCommandEvent& WXUNUSED(event))
{
 Close(TRUE);
}

MyFrame::OnAbout() will display a small window with some text in it. In this case a
typical "About" window with information about the program.

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(event))
{
 wxMessageBox("This is a wxWindows' Hello world sample",
 "About Hello World", wxOK | wxICON_INFORMATION);
}

wwxxWWiinnddoowwss ssaammpplleess

Probably the best way to learn wxWindows is by reading the source of some 50+
samples provided with it. Many aspects of wxWindows programming can be learnt from
them, but sometimes it is not simple to just choose the right sample to look at. This
overview aims at describing what each sample does/demonstrates to make it easier to
find the relevant one if a simple grep through all sources didn't help. They also provide
some notes about using the samples and what features of wxWindows are they
supposed to test.

There are currently more than 50 different samples as part of wxWindows and this list is
not complete. You should start your tour of wxWindows with the minimal sample (p.
1516) which is the wxWindows version of "Hello, world!". It shows the basic structure of
wxWindows program and is the most commented sample of all - looking at its source
code is recommended.

The next most useful sample is probably the controls (p. 1516) one which shows many
of wxWindows standard controls, such as buttons, listboxes, checkboxes, comboboxes
etc.

Other, more complicated controls, have their own samples. In this category you may find
the following samples showing the corresponding controls:

wxCalendarCtrl (p. 1516) Calendar a.k.a. date picker control
wxListCtrl (p. 1520) List view control
wxTreeCtrl (p. 1523) Tree view control
wxGrid (p. 1519) Grid control

CHAPTER 8

1516

Finally, it might be helpful to do a search in the entire sample directory if you can't find
the sample you showing the control you are interested in by name. Most of wxWindows
classes, occur in at least one of the samples.

Minimal sample

The minimal sample is what most people will know under the term Hello World, i.e. a
minimal program that doesn't demonstrate anything apart from what is needed to write a
program that will display a "hello" dialog. This is usually a good starting point for learning
how to use wxWindows.

Calendar sample

This font shows the calendar control (p. 98) in action. It shows how to configure the
control (see the different options in the calendar menu) and also how to process the
notifications from it.

Checklist sample

This sample demonstrates the use of the wxCheckListBox (p. 114)class intercepting
check, select and double click events. It also tests the use of various methods modifying
the control, such as by deleting items from it or inserting new once (these functions are
actually implemented in the parent class wxListBox (p. 749) so the sample tests that
class as well). The layout of the dialog is created using a wxBoxSizer (p.
79)demonstrating a simple dynamic layout.

Config sample

This sample demonstrates the wxConfig (p. 166) classes in a platform indenpedent way,
i.e. it uses text based files to store a given configuration under Unix and uses the
Registry under Windows.

See wxConfig overview (p. 1554) for the descriptions of all features of this class.

Controls sample

The controls sample is the main test program for most simple controls used in
wxWindows. The sample tests their basic functionality, events, placement, modification
in terms of colour and font as well as the possibility to change the controls
programmatically, such as adding item to a list box etc. Apart from that, the sample uses
a wxNotebook (p. 887) and tests most features of this special control (using bitmap in
the tabs, using wxSizers (p. 1086) and constraints (p. 740) within notebook pages,
advancing pages programmatically and vetoing a page change by intercepting the
wxNotebookEvent (p. 894).

CHAPTER 8

1517

The various controls tested are listed here:

wxButton (p. 91) Push button control, displaying text
wxBitmapButton (p. 72) Push button control, displaying a bitmap
wxCheckBox (p. 111) Checkbox control
wxChoice (p. 116) Choice control (a combobox without the editable area)
wxComboBox (p. 147) A choice with an editable area
wxGauge (p. 546) A control to represent a varying quantity, such as time

remaining
wxStaticBox (p. 1148) A static, or group box for visually grouping related controls
wxListBox (p. 749) A list of strings for single or multiple selection
wxSpinCtrl A spin ctrl with a text field and a 'up-down' control
wxSpinButton (p. 1125) A spin or 'up-down' control
wxStaticText (p. 1153) One or more lines of non-editable text
wxStaticBitmap (p. 1146) A control to display a bitmap
wxRadioBox (p. 1013) A group of radio buttons
wxRadioButton (p. 1019) A round button to be used with others in a mutually

exclusive way
wxSlider (p. 1091) A slider that can be dragged by the user

Database sample

The database sample is a small test program showing how to use the ODBC classes
written by Remstar Intl. Obviously, this sample requires a database with ODBC support
to be correctly installed on your system.

Dialogs sample

This sample shows how to use the common dialogs available from wxWindows. These
dialogs are described in details in the Common dialogs overview (p. 1595).

Dialup sample

This sample shows wxDialUpManager (p. 368) class. It displays in the status bar the
information gathered through itsi nterface: in particular, the current connection status
(online or offline) and whether the connection is permanent (in which case a string 'LAN'
appears in the thrid status bar field - but note that you may have be on a LAN not
connected to the Internet, in which case you will not see this) or not.

Using the menu entries, you may also dial or hang up the line if you have a modem
attached and (this only makes sense for Windows) list the available connections.

DnD sample

This sample shows both clipboard and drag and drop in action. It is quite non trivial and

CHAPTER 8

1518

may be safely used as a basis for implementing the clipboard and drag and drop
operations in a real-life program.

When you run the sample, its screen is split in several parts. On the top, there are two
listboxes which show the standard derivations of wxDropTarget (p. 421):
wxTextDropTarget (p. 1264) and wxFileDropTarget (p. 466).

The middle of the sample window is taken by the log window which shows what is going
on (of course, this only works in debug builds) and may be helpful to see the sequence
of steps of data transfer.

Finally, the last part is used for dragging text from it to either one of the listboxes (only
one will accept it) or another application. The last functionality available from the main
frame is to paste a bitmap from the clipboard (or, in the case of Windows version, also a
metafile) - it will be shown in a new frame.

So far, everything we mentioned was implemented with minimal amount of code using
standard wxWindows classes. The more advanced features are demonstrated if you
create a shape frame from the main frame menu. A shape is a geometric object which
has a position, size and color. It models some application-specific data in this sample. A
shape object supports its own private wxDataFormat (p. 201) which means that you may
cut and paste it or drag and drop (between one and the same or different shapes) from
one sample instance to another (or the same). However, chances are that no other
program supports this format and so shapes can also be rendered as bitmaps which
allows them to be pasted/dropped in many other applications (and, under Windows, also
as metafiles which are supported by most of Windows programs as well - try
Write/Wordpad, for example).

Take a look at DnDShapeDataObject class to see how you may use wxDataObject (p.
204) to achieve this.

Dynamic sample

This sample is a very small sample that demonstrates the use of
thewxEvtHandler::Connect (p. 433) method. This method should be used whenever it is
not known at compile time, which control will receive which event or which controls are
actually going to be in a dialog or frame. This is most typically the case for any scripting
language that would work as a wrapper for wxWindows or programs where forms or
similar datagrams can be created by the uses.

See also the event sample (p. 1518)

Event sample

The event sample demonstrates various features of the wxWindows events. It shows
using dynamic events and connecting/disconnecting the event handlers during the run
time and also using PushEventHandler() (p. 1401) andPopEventHandler() (p. 1400).

CHAPTER 8

1519

It replaces the old dynamic sample.

Exec sample

The exec sample demonstrates the wxExecute (p. 1462) and wxShell (p. 1473)
functions. Both of them are used to execute the external programs and the sample
shows how to do this synchronously (waiting until the program terminates) or
asynchronously (notification will come later).

It also shows how to capture the output of the child process in both synchronous and
asynchronous cases and how to kill the processes with wxProcess::Kill (p. 969) and test
for their existence with wxProcess::Exists (p. 970).

Font sample

The font sample demonstrates wxFont (p. 506), wxFontEnumerator (p. 519) and
wxFontMapper (p. 522) classes. It allows you to see the fonts available (to wxWindows)
on the computer and shows all characters of the chosen font as well.

Grid sample

TODO.

HTML samples

Eight HTML samples (you can find them in directory samples/html) cover all features
of HTML sub-library.

Test demonstrates how to create wxHtmlWindow (p. 663) and also shows most of
supported HTML tags.

Widget shows how you can embed ordinary controls or windows within HTML page. It
also nicely explains how to write new tag handlers and extend the library to work with
unsupported tags.

About may give you an idea how to write good-looking about boxes.

Zip demonstrates use of virtual file systems in wxHTML. The zip archives handler (ships
with wxWindows) allows you to access HTML pages stored in compressed archive as if
they were ordinary files.

Virtual is yet another virtual file systems demo. This one generates pages at run-time.
You may find it useful if you need to display some reports in your application.

Printing explains use of wxHtmlEasyPrinting (p. 634) class which serves as as -simple-
as-possible interface for printing HTML documents without much work. In fact, only few

CHAPTER 8

1520

function calls are sufficient.

Help and Helpview are variations on displaying HTML help (compatible with MS HTML
Help Workshop). Help shows how to embed wxHtmlHelpController (p. 639) in your
application while Helpview is simple tool that only pops up help window and displays
help books given at command line.

Image sample

The image sample demonstrates the use of the wxImage (p. 689) class and shows how
to download images in a variety of formats, currently PNG, GIF, TIFF, JPEG, BMP, PNM
and PCX. The top of the sample shows to rectangles, one of which is drawn directly in
the window, the other one is drawn into a wxBitmap (p. 55), converted to a wxImage,
saved as a PNG image and then reloaded from the PNG file again so that conversions
between wxImage and wxBitmap as well as loading and save PNG files are tested.

At the bottom of the main frame is a test for using a monochrome bitmap by drawing into
a wxMemoryDC (p. 828). The bitmap is then drawn specifying the foreground and
background colours with wxDC::SetTextForeground (p. 345) and
wxDC::SetTextBackground (p. 345) (on the left). The bitmap is then converted to a
wxImage and the foreground colour (black) is replaced with red using wxImage::Replace
(p. 702).

Layout sample

The layout sample demonstrates the two different layout systems offered by
wxWindows. When starting the program, you will see a frame with some controls and
some graphics. The controls will change their size whenever you resize the entire frame
and the exact behaviour of the size changes is determined using the
wxLayoutConstraints (p. 740) class. See also the overview (p. 1573) and the
wxIndividualLayoutConstraint (p. 715) class for further information.

The menu in this sample offers two more tests, one showing how to use a wxBoxSizer
(p. 79) in a simple dialog and the other one showing how to use sizers in connection with
a wxNotebook (p. 887) class. See also wxNotebookSizer (p. 885) and wxSizer (p.
1086).

Listctrl sample

This sample shows wxListCtrl (p. 758) control. Different modes supported by the control
(list, icons, small icons, report) may be chosen from the menu.

The sample also provides some timings for adding/deleting/sorting a lot of (several
thousands) controls into the control.

Rotate sample

CHAPTER 8

1521

This is a simple example which demonstrates how to rotate an image with the
wxImage::Rotate (p. 702) method. The rotation can be done without interpolation (left
mouse button) which will be faster, or with interpolation (right mouse button) which is
slower but gives better results.

Scroll subwindow sample

This sample demonstrates the use of the wxScrolledWindow (p. 1070) class including
placing subwindows into it and drawing simple graphics. It uses the SetTargetWindow
(p. 1078) method and thus the effect of scrolling does not show in the scrolled window
itself, but in one of its subwindows.

Additionally, this samples demonstrates how to optimize drawing operations in
wxWindows, in particular using the wxWindow::IsExposed (p. 1385) method with the
aim to prevent unnecessary drawing in the window and thus reducing or removing
flicker on screen.

Sockets sample

The sockets sample demonstrates how to use the communication facilities provided by
wxSocket (p. 1100). There are two different applications in this sample: a server, which
is implemented using a wxSocketServer (p. 1121) object, and a client, which is
implemented as a wxSocketClient (p. 1118).

The server binds to the local address, using TCP port number 3000, sets up an event
handler to be notified of incoming connection requests (wxSOCKET_CONNECTION
events), and stands there, waiting for clients (listening in the socket parlance). For each
accepted connection, a new wxSocketBase (p. 1100) object is created. These socket
objects are independent from the server that created them, so they set up their own
event handler, and then request to be notified of wxSOCKET_INPUT (incoming data) or
wxSOCKET_LOST (connection closed at the remote end) events. In the sample, the
event handler is the same for all connections; to find out which socket the event is
addressed to, the GetSocket (p. 1121) function is used.

Although it might take some time to get used to the event-oriented system upon which
wxSocket is built, the benefits are many. See, for example, that the server application,
while being single-threaded (and of course without using fork() or ugly select() loops)
can handle an arbitrary number of connections.

The client starts up unconnected, so you can use the Connect... option to specify the
address of the server you are going to connect to (the TCP port number is hard-coded
as 3000). Once connected, a number of tests are possible. Currently, three tests are
implemented. They show how to use the basic IO calls in wxSocketBase (p. 1100), such
as Read (p. 1112), Write (p. 1116), ReadMsg (p. 1113) and WriteMsg (p. 1117), and
how to set up the correct IO flags depending on what you are going to do. See the
comments in the code for more information. Note that because both clients and
connection objects in the server set up an event handler to catch wxSOCKET_LOST

CHAPTER 8

1522

events, each one is immediately notified if the other end closes the connection.

There is also an URL test which shows how to use the wxURL (p. 1345) class to fetch
data from a given URL.

The sockets sample is work in progress. Some things to do:

 • More tests for basic socket functionality.
 • More tests for protocol classes (wxProtocol and its descendants).
 • Tests for the recently added (and still in alpha stage) datagram sockets.
 • New samples which actually do something useful (suggestions accepted).

Statbar sample

This sample shows how to create and use wxStatusBar. Although most of the samples
have a statusbar, they usually only create a default one and only do it once.

Here you can see how to recreate the statusbar (with possibly different number of fields)
and how to use it to show icons/bitmaps and/or put arbitrary controls into it.

Text sample

This sample demonstrates four features: firstly the use and many variants of the
wxTextCtrl (p. 1240) class (single line, multi line, read only, password, ignoring TAB,
ignoring ENTER).

Secondly it shows how to intercept a wxKeyEvent (p. 733) in both the raw form using the
EVT_KEY_UP and EVT_KEY_DOWN macros and the higher level from using the
EVT_CHAR macro. All characters will be logged in a log window at the bottom of the main
window. By pressing some of the function keys, you can test some actions in the text ctrl
as well as get statistics on the text ctrls, which is useful for testing if these stastitics
actually are correct.

Thirdly, on platforms which support it, the sample will offer to copy text to the
wxClipboard (p. 124) and to paste text from it. The GTK version will use the so called
PRIMARY SELECTION, which is the pseudo clipboard under X and best known from
pasting text to the XTerm program.

Last not least: some of the text controls have tooltips and the sample also shows how
tooltips can be centrally disabled and their latency controlled.

Thread sample

This sample demonstrates the use of threads in connection with GUI programs. There
are two fundamentally different ways to use threads in GUI programs and either way has
to take care of the fact that the GUI library itself usually is not multi-threading safe, i.e.
that it might crash if two threads try to access the GUI class simultaneously. One way to

CHAPTER 8

1523

prevent that is have a normal GUI program in the main thread and some worker threads
which work in the background. In order to make communication between the main
thread and the worker threads possible, wxWindows offers the wxPostEvent (p. 1472)
function and this sample makes use of this function.

The other way to use a so called Mutex (such as those offered in the wxMutex (p. 881)
class) that prevent threads from accessing the GUI classes as long as any other thread
accesses them. For this, wxWindows has the wxMutexGuiEnter (p. 1432) and
wxMutexGuiLeave (p. 1432) functions, both of which are used and tested in the sample
as well.

See also Multithreading overview (p. 1618) and wxThread (p. 1276).

Toolbar sample

The toolbar sample shows the wxToolBar (p. 1296) class in action.

The following things are demonstrated:

 • Creating the toolbar using wxToolBar::AddTool (p. 1299) and

wxToolBar::AddControl (p. 1299): see MyApp::InitToolbar in the sample.
 • Using EVT_UPDATE_UI handler for automatically enabling/disabling toolbar

buttons without having to explicitly call EnableTool. This is done in
MyFrame::OnUpdateCopyAndCut.

 • Using wxToolBar::DeleteTool (p. 1301) and wxToolBar::InsertTool (p. 1306) to
dynamically update the toolbar.

Treectrl sample

This sample demonstrates using wxTreeCtrl (p. 1313) class. Here you may see how to
process various notification messages sent by this control and also when they occur (by
looking at the messages in the text control in the bottom part of the frame).

Adding, inserting and deleting items and branches from the tree as well as sorting (in
default alphabetical order as well as in custom one) is demonstrated here as well - try
the corresponding menu entries.

Wizard sample

This sample shows so-called wizard dialog (implemented using wxWizard (p. 1420) and
related classes). It shows almost all features supported:

 • Using bitmaps with the wizard and changing them depending on the page

shown (notice that wxValidationPage in the sample has a different image from
the other ones)

 • Using TransferDataFromWindow (p. 1417) to verify that the data entered is
correct before passing to the next page (done in wxValidationPage which forces

CHAPTER 8

1524

the user to check a checkbox before continuing).
 • Using more elaborated techniques to allow returning to the previous page, but

not continuing to the next one or vice versa (in wxRadioboxPage)
 • This (wxRadioboxPage) page also shows how the page may process Cancel

button itself instead of relying on the wizard parent to do it.
 • Normally, the order of the pages in the wizard is known at compile-time, but

sometimes it depends on the user choices: wxCheckboxPage shows how to
dynamically decide which page to display next (see also wxWizardPage (p.
1425))

wwxxAApppp oovveerrvviieeww

Classes: wxApp (p. 21)

A wxWindows application does not have a main procedure; the equivalent is the OnInit
(p. 28) member defined for a class derived from wxApp. OnInit will usually create a top
window as a bare minimum.

Unlike in earlier versions of wxWindows, OnInit does not return a frame. Instead it
returns a boolean value which indicates whether processing should continue (TRUE) or
not (FALSE). You call wxApp::SetTopWindow (p. 31) to let wxWindows know about the
top window.

Note that the program's command line arguments, represented by argc and argv, are
available from within wxApp member functions.

An application closes by destroying all windows. Because all frames must be destroyed
for the application to exit, it is advisable to use parent frames wherever possible when
creating new frames, so that deleting the top level frame will automatically delete child
frames. The alternative is to explicitly delete child frames in the top-level frame's
wxWindow::OnCloseWindow (p. 1391) handler.

In emergencies the wxExit (p. 1463) function can be called to kill the application.

An example of defining an application follows:

class DerivedApp : public wxApp
{
public:
 virtual bool OnInit();
};

IMPLEMENT_APP(DerivedApp)

bool DerivedApp::OnInit()
{
 wxFrame *the_frame = new wxFrame(NULL, argv[0]);
 ...

CHAPTER 8

1525

 SetTopWindow(the_frame);

 return TRUE;
}

Note the use of IMPLEMENT_APP(appClass), which allows wxWindows to dynamically
create an instance of the application object at the appropriate point in wxWindows
initialization. Previous versions of wxWindows used to rely on the creation of a global
application object, but this is no longer recommended, because required global
initialization may not have been performed at application object construction time.

You can also use DECLARE_APP(appClass) in a header file to declare the wxGetApp
function which returns a reference to the application object.

RRuunn ttiimmee ccllaassss iinnffoorrmmaattiioonn oovveerrvviieeww

Classes: wxObject (p. 897), wxClassInfo (p. 122).

One of the failings of C++ used to be that no run-time information was provided about a
class and its position in the inheritance hierarchy. Another, which still persists, is that
instances of a class cannot be created just by knowing the name of a class, which
makes facilities such as persistent storage hard to implement.

Most C++ GUI frameworks overcome these limitations by means of a set of macros and
functions and wxWindows is no exception. As it originated before the addition of RTTI to
the standard C++ and as support for it still missing from some (albeit old) compilers,
wxWindows doesn't (yet) use it, but provides its own macro-based RTTI system.

In the future, the standard C++ RTTI will be used though and you're encouraged to use
whenever possible wxDynamicCast() (p. 1483) macro which, for the implementations
that support it, is defined just as dynamic_cast<> and uses wxWindows RTTI for all the
others. This macro is limited to wxWindows classes only and only works with pointers
(unlike the real dynamic_cast<> which also accepts references).

Each class that you wish to be known the type system should have a macro such as
DECLARE_DYNAMIC_CLASS just inside the class declaration. The macro
IMPLEMENT_DYNAMIC_CLASS should be in the implementation file. Note that these
are entirely optional; use them if you wish to check object types, or create instances of
classes using the class name. However, it is good to get into the habit of adding these
macros for all classes.

Variations on these macros (p. 1477) are used for multiple inheritance, and abstract
classes that cannot be instantiated dynamically or otherwise.

DECLARE_DYNAMIC_CLASS inserts a static wxClassInfo declaration into the class,
initialized by IMPLEMENT_DYNAMIC_CLASS. When initialized, the wxClassInfo object
inserts itself into a linked list (accessed through wxClassInfo::first and wxClassInfo::next
pointers). The linked list is fully created by the time all global initialisation is done.

CHAPTER 8

1526

IMPLEMENT_DYNAMIC_CLASS is a macro that not only initialises the static
wxClassInfo member, but defines a global function capable of creating a dynamic object
of the class in question. A pointer to this function is stored in wxClassInfo, and is used
when an object should be created dynamically.

wxObject::IsKindOf (p. 899) uses the linked list of wxClassInfo. It takes a wxClassInfo
argument, so use CLASSINFO(className) to return an appropriate wxClassInfo pointer
to use in this function.

The function wxCreateDynamicObject (p. 1459) can be used to construct a new object of
a given type, by supplying a string name. If you have a pointer to the wxClassInfo object
instead, then you can simply call wxClassInfo::CreateObject.

wxClassInfo

Run time class information overview (p. 1525)

Class: wxClassInfo (p. 122)

This class stores meta-information about classes. An application may use macros such
as DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS to record run-
time information about a class, including:

 • its position in the inheritance hierarchy;
 • the base class name(s) (up to two base classes are permitted);
 • a string representation of the class name;
 • a function that can be called to construct an instance of this class.

The DECLARE_... macros declare a static wxClassInfo variable in a class, which is
initialized by macros of the form IMPLEMENT_... in the implementation C++ file. Classes
whose instances may be constructed dynamically are given a global constructor function
which returns a new object.

You can get the wxClassInfo for a class by using the CLASSINFO macro, e.g.
CLASSINFO(wxFrame). You can get the wxClassInfo for an object using
wxObject::GetClassInfo.

See also wxObject (p. 897) and wxCreateDynamicObject (p. 1459).

Example

In a header file frame.h:

class wxFrame : public wxWindow
{
DECLARE_DYNAMIC_CLASS(wxFrame)

private:

CHAPTER 8

1527

 wxString m_title;

public:
 ...
};

In a C++ file frame.cpp:

IMPLEMENT_DYNAMIC_CLASS(wxFrame, wxWindow)

wxFrame::wxFrame()
{
...
}

wwxxSSttrriinngg oovveerrvviieeww

Classes: wxString (p. 1171), wxArrayString (p. 45), wxStringTokenizer (p. 1197)

Introduction

wxString is a class which represents a character string of arbitrary length (limited by
MAX_INT which is usually 2147483647 on 32 bit machines) and containing arbitrary
characters. The ASCII NUL character is allowed, although care should be taken when
passing strings containing it to other functions.

wxString works with both ASCII (8 bit characters) as well as UNICODE (16 but
characters) strings.

This class has all the standard operations you can expect to find in a string class:
dynamic memory management (string extends to accommodate new characters),
construction from other strings, C strings and characters, assignment operators, access
to individual characters, string concatenation and comparison, substring extraction, case
conversion, trimming and padding (with spaces), searching and replacing and both C-
like Printf() (p. 1187) and stream-like insertion functions as well as much more - see
wxString (p. 1171) for a list of all functions.

Comparison of wxString to other string classes

The advantages of using a special string class instead of working directly with C strings
are so obvious that there is a huge number of such classes available. The most
important advantage is the need to always remember to allocate/free memory for C
strings; working with fixed size buffers almost inevitably leads to buffer overflows. At last,
C++ has a standard string class (std::string). So why the need for wxString?

There are several advantages:

CHAPTER 8

1528

 1. Efficiency This class was made to be as efficient as possible: both in terms of

size (each wxString objects takes exactly the same space as a char * pointer,
sing reference counting (p. 1530)) and speed. It also provides performance
statistics gathering code (p. 1530) which may be enabled to fine tune the
memory allocation strategy for your particular application - and the gain might be
quite big.

 2. Compatibility This class tries to combine almost full compatibility with the old
wxWindows 1.xx wxString class, some reminiscence to MFC CString class and
90% of the functionality of std::string class.

 3. Rich set of functions Some of the functions present in wxString are very useful
but don't exist in most of other string classes: for example, AfterFirst (p. 1180),
BeforeLast (p. 1180), operator<< (p. 1192) or Printf (p. 1187). Of course, all the
standard string operations are supported as well.

 4. UNICODE In this release, wxString only supports construction from a UNICODE
string, but in the next one it will be capable of also storing its internal data in
either ASCII or UNICODE format.

 5. Used by wxWindows And, of course, this class is used everywhere inside
wxWindows so there is no performance loss which would result from
conversions of objects of any other string class (including std::string) to wxString
internally by wxWindows.

However, there are several problems as well. The most important one is probably that
there are often several functions to do exactly the same thing: for example, to get the
length of the string either one of length(), Len() (p. 1186) or Length() (p. 1186) may be
used. The first function, as almost all the other functions in lowercase, is std::string
compatible. The second one is "native" wxString version and the last one is wxWindows
1.xx way. So the question is: which one is better to use? And the answer is that:

The usage of std::string compatible functions is strongly advised! It will both make
your code more familiar to other C++ programmers (who are supposed to have
knowledge of std::string but not of wxString), let you reuse the same code in both
wxWindows and other programs (by just typedefing wxString as std::string when used
outside wxWindows) and by staying compatible with future versions of wxWindows
which will probably start using std::string sooner or later too.

In the situations where there is no corresponding std::string function, please try to use
the new wxString methods and not the old wxWindows 1.xx variants which are
deprecated and may disappear in future versions.

Some advice about using wxString

Probably the main trap with using this class is the implicit conversion operator to const
char *. It is advised that you use c_str() (p. 1180)instead to clearly indicate when the
conversion is done. Specifically, the danger of this implicit conversion may be seen in
the following code fragment:

// this function converts the input string to uppercase, output it to
the screen
// and returns the result

CHAPTER 8

1529

const char *SayHELLO(const wxString& input)
{
 wxString output = input.Upper();

 printf("Hello, %s!\n", output);

 return output;
}

There are two nasty bugs in these three lines. First of them is in the call to the printf()
function. Although the implicit conversion to C strings is applied automatically by the
compiler in the case of

 puts(output);

because the argument of puts() is known to be of the type const char *, this is not done
for printf() which is a function with variable number of arguments (and whose arguments
are of unknown types). So this call may do anything at all (including displaying the
correct string on screen), although the most likely result is a program crash. The solution
is to use c_str() (p. 1180): just replace this line with

 printf("Hello, %s!\n", output.c_str());

The second bug is that returning output doesn't work. The implicit cast is used again, so
the code compiles, but as it returns a pointer to a buffer belonging to a local variable
which is deleted as soon as the function exits, its contents is totally arbitrary. The
solution to this problem is also easy: just make the function return wxString instead of a
C string.

This leads us to the following general advice: all functions taking string arguments
should take const wxString& (this makes assignment to the strings inside the function
faster because of reference counting (p. 1530)) and all functions returning strings should
return wxString - this makes it safe to return local variables.

Other string related functions and classes

As most programs use character strings, the standard C library provides quite a few
functions to work with them. Unfortunately, some of them have rather counter-intuitive
behaviour (like strncpy() which doesn't always terminate the resulting string with a NULL)
and are in general not very safe (passing NULL to them will probably lead to program
crash). Moreover, some very useful functions are not standard at all. This is why in
addition to all wxString functions, there are also a few global string functions which try to
correct these problems: wxIsEmpty() (p. 1441) verifies whether the string is empty
(returning TRUE for NULL pointers), wxStrlen() (p. 1442) also handles NULLs correctly
and returns 0 for them and wxStricmp() (p. 1441) is just a platform-independent version
of case-insensitive string comparison function known either as stricmp() or strcasecmp()
on different platforms.

The <wx/string.h> header also defines wxSnprintf (p. 1442) and wxVsnprintf (p.
1442) functions which should be used instead of the inherently dangerous standard

CHAPTER 8

1530

sprintf() and which use snprintf() instead which does buffer size checks
whenever possible. Of course, you may also use wxString::Printf (p. 1187) which is also
safe.

There is another class which might be useful when working with wxString:
wxStringTokenizer (p. 1197). It is helpful when a string must be broken into tokens and
replaces the standard C library strtok() function.

And the very last string-related class is wxArrayString (p. 45): it is just a version of the
"template" dynamic array class which is specialized to work with strings. Please note
that this class is specially optimized (using its knowledge of the internal structure of
wxString) for storing strings and so it is vastly better from a performance point of view
than a wxObjectArray of wxStrings.

Reference counting and why you shouldn't care about it

wxString objects use a technique known as copy on write (COW). This means that when
a string is assigned to another, no copying really takes place: only the reference count
on the shared string data is incremented and both strings share the same data.

But as soon as one of the two (or more) strings is modified, the data has to be copied
because the changes to one of the strings shouldn't be seen in the others. As data
copying only happens when the string is written to, this is known as COW.

What is important to understand is that all this happens absolutely transparently to the
class users and that whether a string is shared or not is not seen from the outside of the
class - in any case, the result of any operation on it is the same.

Probably the unique case when you might want to think about reference counting is
when a string character is taken from a string which is not a constant (or a constant
reference). In this case, due to C++ rules, the "read-only" operator[] (which is the same
as GetChar() (p. 1183)) cannot be chosen and the "read/write" operator[] (the same as
GetWritableChar() (p. 1183)) is used instead. As the call to this operator may modify the
string, its data is unshared (COW is done) and so if the string was really shared there is
some performance loss (both in terms of speed and memory consumption). In the rare
cases when this may be important, you might prefer using GetChar() (p. 1183) instead of
the array subscript operator for this reasons. Please note that at() (p. 1175) method has
the same problem as the subscript operator in this situation and so using it is not really
better. Also note that if all string arguments to your functions are passed as const
wxString& (see the section Some advice (p. 1528)) this situation will almost never arise
because for constant references the correct operator is called automatically.

Tuning wxString for your application

Note: this section is strictly about performance issues and is absolutely not necessary to
read for using wxString class. Please skip it unless you feel familiar with profilers and
relative tools. If you do read it, please also read the preceding section about reference
counting (p. 1530).

CHAPTER 8

1531

For the performance reasons wxString doesn't allocate exactly the amount of memory
needed for each string. Instead, it adds a small amount of space to each allocated block
which allows it to not reallocate memory (a relatively expensive operation) too often as
when, for example, a string is constructed by subsequently adding one character at a
time to it, as for example in:

// delete all vowels from the string
wxString DeleteAllVowels(const wxString& original)
{
 wxString result;

 size_t len = original.length();
 for (size_t n = 0; n < len; n++)
 {
 if (strchr("aeuio", tolower(original[n])) == NULL)
 result += original[n];
 }

 return result;
}

This is quite a common situation and not allocating extra memory at all would lead to
very bad performance in this case because there would be as many memory
(re)allocations as there are consonants in the original string. Allocating too much extra
memory would help to improve the speed in this situation, but due to a great number of
wxString objects typically used in a program would also increase the memory
consumption too much.

The very best solution in precisely this case would be to use Alloc() (p. 1179) function to
preallocate, for example, len bytes from the beginning - this will lead to exactly one
memory allocation being performed (because the result is at most as long as the original
string).

However, using Alloc() is tedious and so wxString tries to do its best. The default
algorithm assumes that memory allocation is done in granularity of at least 16 bytes
(which is the case on almost all of wide-spread platforms) and so nothing is lost if the
amount of memory to allocate is rounded up to the next multiple of 16. Like this, no
memory is lost and 15 iterations from 16 in the example above won't allocate memory
but use the already allocated pool.

The default approach is quite conservative. Allocating more memory may bring important
performance benefits for programs using (relatively) few very long strings. The amount
of memory allocated is configured by the setting of EXTRA_ALLOC in the file string.cpp
during compilation (be sure to understand why its default value is what it is before
modifying it!). You may try setting it to greater amount (say twice nLen) or to 0 (to see
performance degradation which will follow) and analyse the impact of it on your program.
If you do it, you will probably find it helpful to also define WXSTRING_STATISTICS
symbol which tells the wxString class to collect performance statistics and to show them
on stderr on program termination. This will show you the average length of strings your
program manipulates, their average initial length and also the percent of times when
memory wasn't reallocated when string concatenation was done but the already

CHAPTER 8

1532

preallocated memory was used (this value should be about 98% for the default allocation
policy, if it is less than 90% you should really consider fine tuning wxString for your
application).

It goes without saying that a profiler should be used to measure the precise difference
the change to EXTRA_ALLOC makes to your program.

DDaattee aanndd ttiimmee ccllaasssseess oovveerrvviieeww

Classes: wxDateTime (p. 299), wxDateSpan (p. 299), wxTimeSpan (p. 1265),
wxCalendarCtrl (p. 98)

Introduction

wxWindows provides a set of powerful classes to work with dates and times. Some of
the supported features of wxDateTime (p. 299) class are:

Wide range The range of supported dates goes from about

4714 B.C. to some 480 million years in the
future.

Precision Not using floating point calculations anywhere
ensures that the date calculations don't suffer
from rounding errors.

Many features Not only all usual calculations with dates are
supported, but also more exotic week and year
day calculations, work day testing, standard
astronomical functions, conversion to and from
strings in either strict or free format.

Efficiency Objects of wxDateTime are small (8 bytes) and
working with them is fast

All date/time classes at a glance

There are 3 main classes declared in <wx/datetime.h>: except wxDateTime (p. 299)
itself which represents an absolute moment in the time, there are also two classes -
wxTimeSpan (p. 1265) and wxDateSpan (p. 299) which represent the intervals of time.

There are also helper classes which are used together with wxDateTime:
wxDateTimeHolidayAuthority (p. 327) which is used to determine whether a given date is
a holiday or not and wxDateTimeWorkDays (p. 327) which is a derivation of this class for
which (only) Saturdays and Sundays are the holidays. See more about these classes in
the discussion of the holidays (p. 1535).

Finally, in other parts of this manual you may find mentions of wxDate and wxTime

CHAPTER 8

1533

classes. These classes (p. 1535) are obsolete and superseded by wxDateTime.

wxDateTime characteristics

wxDateTime (p. 299) stores the time as a signed number of milliseconds since the
Epoch which is fixed, by convention, to Jan 1, 1970 - however this is not visible to the
class users (in particular, dates prior to the Epoch are handled just as well (or as bad) as
the dates after it). But it does mean that the best resolution which can be achieved with
this class is 1 millisecond.

The size of wxDateTime object is 8 bytes because it is represented as a 64 bit integer.
The resulting range of supported dates is thus approximatively 580 million years, but due
to the current limitations in the Gregorian calendar support, only dates from Nov 24,
4714BC are supported (this is subject to change if there is sufficient interest in doing it).

Finally, the internal representation is time zone independent (always in GMT) and the
time zones only come into play when a date is broken into year/month/day components.
See more about timezones (p. 1534) below.

Currently, the only supported calendar is Gregorian one (which is used even for the
dates prior to the historic introduction of this calendar which was first done on Oct 15,
1582 but is, generally speaking, country, and even region, dependent). Future versions
will probably have Julian calendar support as well and support for other calendars
(Maya, Hebrew, Chinese...) is not ruled out.

Difference between wxDateSpan and wxTimeSpan

While there is only one logical way to represent an absolute moment in the time (and
hence only one wxDateTime class), there are at least two methods to describe a time
interval.

First, there is the direct and self-explaining way implemented by wxTimeSpan (p. 1265):
it is just a difference in milliseconds between two moments in the time. Adding and
substracting such interval to wxDateTime is always well-defined and is a fast operation.

But in the daily life other, calendar-dependent time interval specifications are used. For
example, 'one month later' is commonly used. However, it is clear that this is not the
same as wxTimeSpan of 60*60*24*31 seconds because 'one month later' Feb 15 is Mar
15 and not Mar 17 or Mar 16 (depending on whether the year is leap or not).

This is why there is another class for representing such intervals called wxDateSpan (p.
299). It handles this sort of operations in the most natural way possible, but note that
manipulating with thei ntervals of this kind is not always well-defined. Consider, for
example, Jan 31 + '1 month': this will give Feb 28 (or 29), i.e. the last day of February
and not the non-existing Feb 31. Of course, this is what is usually wanted, but you still
might be surprized to notice that now substracting back the same interval from Feb 28
will result in Jan 28 and not Jan 31 we started with!

CHAPTER 8

1534

So, unless you plan to implement some kind of natural language parsing in the program,
you should probably use wxTimeSpan instead of wxDateSpan (which is also more
efficient). However, wxDateSpan may be very useful in situations when you do need to
understand what does 'in a month' mean (of course, it is just wxDateTime::Now() +
wxDateSpan::Month()).

Date arithmetics

Many different operations may be performed with the dates, however not all of them
make sense. For example, multiplying date by a number is an invalid operation, even
though multiplying either of time span classes by a number is perfectly valid.

Here is what can be done:

Additiona wxTimeSpan or wxDateSpan can be added
to wxDateTime resulting in a new wxDateTime
object and also 2 objects of the same span
class can be added together giving another
object of the smae class.

Substractionthe same types of operations as above
are allowed and, additionally, a difference
between two wxDateTime objects can be taken
and this will yield wxTimeSpan.

Multiplicationa wxTimeSpan or wxDateSpan object
can be multiplied by an integer number
resulting in an object of the same type.

Unary minusa wxTimeSpan or wxDateSpan object
may finally be negated giving an interval of the
same magnitude but of opposite time direction.

For all these operations there are corresponding global (overloaded) operators and also
member functions which are synonyms for them: Add(), Substract() and Multiply(). Unary
minus as well as composite assignment operations (like +=) are only implemented as
members and Neg() is the synonym for unary minus.

Time zone considerations

Although the time is always stored internally in GMT, you will usually work in the local
time zone. Because of this, all wxDateTime constructors and setters which take the
broken down date assume that these values are for the local time zone. Thus,
wxDateTime(1, wxDateTime::Jan, 1970) will not correspond to the wxDateTime
Epoch unless you happen to live in the UK.

All methods returning the date components (year, month, day, hour, minute, second...)
will also return the correct values for the local time zone by default, so, generally, doing
the natural things will lead to natural and correct results.

If you only want to do this, you may safely skip the rest of this section. However, if you

CHAPTER 8

1535

want to work with different time zones, you should read it to the end.

In this (rare) case, you are still limited to the local time zone when constructing
wxDateTime objects, i.e. there is no way to construct a wxDateTime corresponding to
the given date in, say, Pacific Standard Time. To do it, you will need to call ToTimezone
(p. 326) or MakeTimezone (p. 326) methods to adjust the date for the target time zone.
There are also special versions of these functions ToGMT (p. 326) and MakeGMT (p.
326) for the most common case - when the date should be constructed in GMT.

You also can just retrieve the value for some time zone without converting the obejct to it
first. For this you may pass TimeZone argument to any of the methods which are
affected by the time zone (all methods getting date components and the date formatting
ones, for example). In particular, the Format() family of methods accepts a TimeZone
parameter and this allows to simply print time in any time zone.

To see how to do it, the last issue to address is how to construct a TimeZone object
which must be passed to all these methods. First of all, you may construct it manually by
specifying the time zone offset in seconds from GMT, but usually you will just use one of
the symbolic time zone names (p. 299) and let the conversion constructor do the job. I.e.
you would just write

wxDateTime dt(...whatever...);
printf("The time is %s in local time zone", dt.FormatTime().c_str());
printf("The time is %s in GMT",
dt.FormatTime(wxDateTime::GMT).c_str());

Daylight saving time (DST)

DST (a.k.a. 'summer time') handling is always a delicate task which is better left to the
operating system which is supposed to be configured by the administrator to behave
correctly. Unfortunately, when doing calculations with date outside of the range
supported by the standard library, we are forced to deal with these issues ourselves.

Several functions are provided to calculate the beginning and end of DST in the given
year and to determine whether it is in effect at the given moment or not, but they should
not be considered as absolutely correct because, first of all, they only work more or less
correctly for only a handful of countries (any information about other ones appreciated!)
and even for them the rules may perfectly well change in the future.

The time zone handling methods (p. 1534) use these functions too, so they are subject
to the same limitations.

wxDateTime and Holidays

TODO.

Compatibility

CHAPTER 8

1536

The old classes for date/time manipulations ported from wxWindows version 1.xx are still
included but are reimplemented in terms of wxDateTime. However, using them is
strongly discouraged because they have a few quirks/bugs and were not 'Y2K'
compatible.

UUnniiccooddee ssuuppppoorrtt iinn wwxxWWiinnddoowwss

This section briefly describes the state of the Unicode support in wxWindows. Read it if
you want to know more about how to write programs able to work with characters from
languages other than English.

What is Unicode?

Starting with release 2.1 wxWindows has support for compiling in Unicode mode on the
platforms which support it. Unicode is a standard for character encoding which
addresses the shortcomings of the previous, 8 bit standards, by using 16 bit for encoding
each character. This allows to have 65536 characters instead of the usual 256 and is
sufficient to encode all of the world languages at once. More details about Unicode may
be found at www.unicode.org.

As this solution is obviously preferable to the previous ones (think of incompatible
encodings for the same language, locale chaos and so on), many modern operating
systems support it. The probably first example is Windows NT which uses only Unicode
internally since its very first version.

Writing internationalized programs is much easier with Unicode and, as the support for it
improves, it should become more and more so. Moreover, in the Windows NT/2000
case, even the program which uses only standard ASCII can profit from using Unicode
because they will work more efficiently - there will be no need for the system to convert
all strings the program uses to/from Unicode each time a system call is made.

Unicode and ANSI modes

As not all platforms supported by wxWindows support Unicode (fully) yet, in many cases
it is unwise to write a program which can only work in Unicode environment. A better
solution is to write programs in such way that they may be compiled either in ANSI
(traditional) mode or in the Unicode one.

This can be achieved quite simply by using the means provided by wxWindows.
Basically, there are only a few things to watch out for:

 • Character type (char or wchar_t)
 • Literal strings (i.e. "Hello, world!" or '*')
 • String functions (strlen(), strcpy(), ...)

CHAPTER 8

1537

Let's look at them in order. First of all, each character in an Unicode program takes 2
bytes instead of usual one, so another type should be used to store the characters
(char only holds 1 byte usually). This type is called wchar_t which stands for wide-
character type.

Also, the string and character constants should be encoded on 2 bytes instead of one.
This is achieved by using the standard C (and C++) way: just put the letter 'L' after any
string constant and it becomes a longconstant, i.e. a wide character one. To make things
a bit more readable, you are also allowed to prefix the constant with 'L' instead of
putting it after it.

Finally, the standard C functions don't work with wchar_t strings, so another set of
functions exists which do the same thing but accept wchar_t * instead of char *. For
example, a function to get the length of a wide-character string is called wcslen()
(compare with strlen() - you see that the only difference is that the "str" prefix
standing for "string" has been replaced with "wcs" standing for "wide-character string").

To summarize, here is a brief example of how a program which can be compiled in both
ANSI and Unicode modes could look like:

#ifdef __UNICODE__
 wchar_t wch = L'*';
 const wchar_t *ws = L"Hello, world!";
 int len = wcslen(ws);
#else // ANSI
 char ch = '*';
 const char *s = "Hello, world!";
 int len = strlen(s);
#endif // Unicode/ANSI

Of course, it would be nearly impossibly to write such programs if it had to be done this
way (try to imagine the number of #ifdef UNICODE an average program would have
had!). Luckily, there is another way - see the next section.

Unicode support in wxWindows

In wxWindows, the code fragment from above should be written instead:

 wxChar ch = wxT('*');
 wxString s = wxT("Hello, world!");
 int len = s.Len();

What happens here? First of all, you see that there are no more #ifdefs at all. Instead,
we define some types and macros which behave differently in the Unicode and ANSI
builds and allows us to avoid using conditional compilation in the program itself.

We have a wxChar type which maps either on char or wchar_t depending on the
mode in which program is being compiled. There is no need for a separate type for
strings though, because the standard wxString (p. 1171) supports Unicode, i.e. it stores

CHAPTER 8

1538

either ANSI or Unicode strings depending on the compile mode.

Finally, there is a special wxT() macro which should enclose all literal strings in the
program. As it is easy to see comparing the last fragment with the one above, this macro
expands to nothing in the (usual) ANSI mode and prefixes 'L' to its argument in the
Unicode mode.

The important conclusion is that if you use wxChar instead of char, avoid using C style
strings and use wxString instead and don't forget to enclose all string literals inside
wxT() macro, your program automatically becomes (almost) Unicode compliant!

Just let us state once again the rules:

 • Always use wxChar instead of char

 • Always enclose literal string constants in wxT() macro unless they're already

converted to the right representation (another standard wxWindows macro _()
does it, so there is no need for wxT() in this case) or you intend to pass the
constant directly to an external function which doesn't accept wide-character
strings.

 • Use wxString instead of C style strings.

Unicode and the outside world

We have seen that it was easy to write Unicode programs using wxWindows types and
macros, but it has been also mentioned that it isn't quite enough. Although everything
works fine inside the program, things can get nasty when it tries to communicate with the
outside world which, sadly, often expects ANSI strings (a notable exception is the entire
Win32 API which accepts either Unicode or ANSI strings and which thus makes it
unnecessary to ever perform any conversions in the program).

To get a ANSI string from a wxString, you may use the mb_str() function which always
returns an ANSI string (independently of the mode - while the usual c_str() (p. 1180)
returns a pointer to the internal representation which is either ASCII or Unicode). More
rarely used, but still useful, is wc_str() function which always returns the Unicode string.

Unicode-related compilation settings

You should define wxUSE_UNICODE to 1 to compile your program in Unicode mode.
Note that it currently only works in Win32 and that some parts of wxWindows are not
Unicode-compliant yet (ODBC classes, for example). If you compile your program in
ANSI mode you can still define wxUSE_WCHAR_T to get some limited support for
wchar_t type.

This will allow your program to perform conversions between Unicode strings and ANSI
ones (wxEncodingConverter (p. 425) depends on this partially) and construct wxString

CHAPTER 8

1539

objects from Unicode strings (presumably read from some external file or elsewhere).

wwxxMMBBCCoonnvv ccllaasssseess oovveerrvviieeww

Classes: wxMBConv (p. 811), wxMBConvFile (p. 813), wxMBConvUTF7 (p. 814),
wxMBConvUTF8 (p. 815), wxCSConv (p. 188)

The wxMBConv classes in wxWindows enables an Unicode-aware application to easily
convert between Unicode and the variety of 8-bit encoding systems still in use.

Background: The need for conversion

As programs are becoming more and more globalized, and users exchange documents
across country boundaries as never before, applications increasingly need to take into
account all the different character sets in use around the world. It is no longer enough to
just depend on the default byte-sized character set that computers have traditionally
used.

A few years ago, a solution was proposed: the Unicode standard. Able to contain the
complete set of characters in use in one unified global coding system, it would resolve
the character set problems once and for all.

But it hasn't happened yet, and the migration towards Unicode has created new
challenges, resulting in "compatibility encodings" such as UTF-8. A large number of
systems out there still depends on the old 8-bit encodings, hampered by the huge
amounts of legacy code still widely deployed. Even sending Unicode data from one
Unicode-aware system to another may need encoding to an 8-bit multibyte encoding
(UTF-7 or UTF-8 is typically used for this purpose), to pass unhindered through any
traditional transport channels.

Background: The wxString class

If you have compiled wxWindows in Unicode mode, the wxChar type will become
identical to wchar_t rather than char, and a wxString stores wxChars. Hence, all
wxString manipulation in your application will then operate on Unicode strings, and
almost as easily as working with ordinary char strings (you just need to remember to use
the wxT() macro to encapsulate any string literals).

But often, your environment doesn't want Unicode strings. You could be sending data
over a network, or processing a text file for some other application. You need a way to
quickly convert your easily-handled Unicode data to and from a traditional 8-bit-
encoding. And this is what the wxMBConv classes do.

wxMBConv classes

CHAPTER 8

1540

The base class for all these conversions is the wxMBConv class (which itself implements
standard libc locale conversion). Derived classes include wxMBConvFile,
wxMBConvUTF7, wxMBConvUTF8, and wxCSConv, which implement different kinds of
conversions. You can also derive your own class for your own custom encoding and use
it, should you need it. All you need to do is override the MB2WC and WC2MB methods.

wxMBConv objects

In C++, for a class to be useful and possible to pass around, it needs to be instantiated.
All of the wxWindows-provided wxMBConv classes have predefined instances
(wxConvLibc, wxConvFile, wxConvUTF7, wxConvUTF8, wxConvLocal). You can use
these predefined objects directly, or you can instantiate your own objects.

A variable, wxConvCurrent, points to the conversion object that the user interface is
supposed to use, in the case that the user interface is not Unicode-based (like with
GTK+ 1.2). By default, it points to wxConvLibc or wxConvLocal, depending on which
works best on the current platform.

wxCSConv

The wxCSConv class is special because when it is instantiated, you can tell it which
character set it should use, which makes it meaningful to keep many instances of them
around, each with a different character set (or you can create a wxCSConv instance on
the fly).

The predefined wxCSConv instance, wxConvLocal, is preset to use the default user
character set, but you should rarely need to use it directly, it is better to go through
wxConvCurrent.

Converting strings

Once you have chosen which object you want to use to convert your text, here is how
you would use them with wxString. These examples all assume that you are using a
Unicode build of wxWindows, although they will still compile in a non-Unicode build (they
just won't convert anything).

Example 1: Constructing a wxString from input in current encoding.

wxString str(input_data, *wxConvCurrent);

Example 2: Input in UTF-8 encoding.

wxString str(input_data, wxConvUTF8);

Example 3: Input in KOI8-R. Construction of wxCSConv instance on the fly.

CHAPTER 8

1541

wxString str(input_data, wxCSConv(wxT("koi8-r")));

Example 4: Printing a wxString to stdout in UTF-8 encoding.

puts(str.mb_str(wxConvUTF8));

Example 5: Printing a wxString to stdout in custom encoding. Using preconstructed
wxCSConv instance.

wxCSConv cust(user_encoding);
printf("Data: %s\n", (const char*) str.mb_str(cust));

Note: Since mb_str() returns a temporary wxCharBuffer to hold the result of the
conversion, you need to explicitly cast it to const char* if you use it in a vararg context
(like with printf).

Converting buffers

If you have specialized needs, or just don't want to use wxString, you can also use the
conversion methods of the conversion objects directly. This can even be useful if you
need to do conversion in a non-Unicode build of wxWindows; converting a string from
UTF-8 to the current encoding should be possible by doing this:

wxString str(wxConvUTF8.cMB2WC(input_data), *wxConvCurrent);

Here, cMB2WC of the UTF8 object returns a wxWCharBuffer containing a Unicode
string. The wxString constructor then converts it back to an 8-bit character set using the
passed conversion object, *wxConvCurrent. (In a Unicode build of wxWindows, the
constructor ignores the passed conversion object and retains the Unicode data.)

This could also be done by first making a wxString of the original data:

wxString input_str(input_data);
wxString str(input_str.wc_str(wxConvUTF8), *wxConvCurrent);

To print a wxChar buffer to a non-Unicode stdout:

printf("Data: %s\n", (const char*) wxConvCurrent-
>cWX2MB(unicode_data));

If you need to do more complex processing on the converted data, you may want to
store the temporary buffer in a local variable:

const wxWX2MBbuf tmp_buf = wxConvCurrent->cWX2MB(unicode_data);
const char *tmp_str = (const char*) tmp_buf;
printf("Data: %s\n", tmp_str);
process_data(tmp_str);

If a conversion had taken place in cWX2MB (i.e. in a Unicode build), the buffer will be
deallocated as soon as tmp_buf goes out of scope. (The macro wxWX2MBbuf reflects
the correct return value of cWX2MB (either char* or wxCharBuffer), except for the

CHAPTER 8

1542

const.)

IInntteerrnnaattiioonnaalliizzaattiioonn

Although internationalization of an application (i18n for short) involves far more than just
translating its text messages to another message -- date, time and currency formats
need changing too, some languages are written left to right and others right to left,
character encoding may differ and many other things may need changing too -- it is a
necessary first step. wxWindows provides facilities for message translation with its
wxLocale (p. 779) class and is itself fully translated into several languages. Please
consult wxWindows home page for the most up-to-date translations - and if you translate
it into one of the languages not done yet, your translations would be gratefully accepted
for inclusion into the future versions of the library!

The wxWindows approach to i18n closely follows GNU gettext package. wxWindows
uses the message catalogs which are binary compatible with gettext catalogs and this
allows to use all of the programs in this package to work with them. But note that no
additional libraries are needed during the run-time, however, so you have only the
message catalogs to distribute and nothing else.

During program development you will need the gettext package for working with
message catalogs. Warning: gettext versions < 0.10 are known to be buggy, so you
should find a later version of it!

There are two kinds of message catalogs: source catalogs which are text files with
extension .po and binary catalogs which are created from the source ones with msgfmt
program (part of gettext package) and have the extension .mo. Only the binary files are
needed during program execution.

The program i18n involves several steps:

 1. Translating the strings in the program text using wxGetTranslation (p. 1442) or

equivalently the _() macro.
 2. Extracting the strings to be translated from the program: this uses the work done

in the previous step because xgettext program used for string extraction may be
told (using its -k option) to recognise _() and wxGetTranslation and extract all
strings inside the calls to these functions. Alternatively, you may use -a option to
extract all the strings, but it will usually result in many strings being found which
don't have to be translated at all. This will create a text message catalog - a .po
file.

 3. Translating the strings extracted in the previous step to other language(s). It
involves editing the .po file.

 4. Compiling the .po file into .mo file to be used by the program.
 5. Setting the appropriate locale in your program to use the strings for the given

language: see wxLocale (p. 779).

See also the GNU gettext documentation linked from docs/html/index.htm in your

CHAPTER 8

1543

wxWindows distribution.

See also Writing non-English applications (p. 1543). It focuses on handling charsets
related problems.

WWrriittiinngg nnoonn--EEnngglliisshh aapppplliiccaattiioonnss

This article describes how to write applications that communicate with user in language
other than English. Unfortunately many languages use different charsets under Unix and
Windows (and other platforms, to make situation even more complicated). These
charsets usually differ in so many characters it is impossible to use same texts under all
platforms.

wxWindows library provides mechanism that helps you avoid distributing many identical,
only differently encoded, packages with your application (e.g. help files and menu items
in iso8859-13 and windows-1257). Thanks to this mechanism you can, for example,
distribute only iso8859-13 data and it will be handled transparently under all systems.

Please read Internationalization (p. 1542) which describes the locales concept.

In the following text, wherever iso8859-2 and windows-1250 are used, any encodings
are meant and any encodings may be substituted there.

Locales

The best way to ensure correctly displayed texts in a GUI across platforms is to use
locales. Write your in-code messages in English or without diacritics and put real
messages into the message catalog (see Internationalization (p. 1542)).

A standard .po file begins with a header like this:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR Free Software Foundation, Inc.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 1999-02-19 16:03+0100\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: ENCODING\n"

Notice this particular line:

"Content-Type: text/plain; charset=CHARSET\n"

CHAPTER 8

1544

It specifies the charset used by the catalog. All strings in the catalog are encoded using
this charset.

You have to fill in proper charset information. Your .po file may look like this after doing
so:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR Free Software Foundation, Inc.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 1999-02-19 16:03+0100\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=iso8859-2\n"
"Content-Transfer-Encoding: 8bit\n"

(Make sure that the header is not marked as fuzzy.)

wxWindows is able to use this catalog under any supported platform (although iso8859-2
is a Unix encoding and is normally not understood by Windows).

How is this done? When you tell the wxLocale class to load a message catalog that
contains correct header, it checks the charset. If the charset is "alien" on the platform the
program is currently running (e.g. any of ISO encodings under Windows or CP12XX
under Unix) it uses wxEncodingConverter::GetPlatformEquivalents (p. 426)to obtain an
encoding that is more common on this platform and converts the message catalog to this
encoding. Note that it does not check for presence of fonts in the "platform" encoding! It
only assumes that it is always better to have strings in platform native encoding than in
an encoding that is rarely (if ever) used.

The behaviour described above is disabled by default. You must set bConvertEncoding
to TRUE in wxLocale constructor (p. 785) in order to enable runtime encoding
conversion.

Font mapping

You can use wxEncodingConverter (p. 425) and wxFontMapper (p. 522) to display text:

if (!wxTheFontMapper->IsEncodingAvailable(enc, facename))
{
 wxFontEncoding alternative;
 if (wxTheFontMapper->GetAltForEncoding(enc, &alternative,
 facename, FALSE))
 {
 wxEncodingConverted encconv;
 if (!encconv.Init(enc, alternative))
 ...failure...

CHAPTER 8

1545

 else
 text = encconv.Convert(text);
 }
 else
 ...failure...
}
...display text...

Converting data

You may want to store all program data (created documents etc.) in the same encoding,
let's say windows1250. Obviously, the best way would be to use wxEncodingConverter
(p. 425).

Help files

If you're using wxHtmlHelpController (p. 639) there is no problem at all. You must only
make sure that all the HTML files contain the META tag, e.g.

<meta http-equiv="Content-Type" content="text/html; charset=iso8859-2">

and that the hhp project file contains one additional line in the OPTIONSsection:

Charset=iso8859-2

This additional entry tells the HTML help controller what encoding is used in contents
and index tables.

CCoonnttaaiinneerr ccllaasssseess oovveerrvviieeww

Classes: wxList (p. 743), wxArray (p. 33)

wxWindows uses itself several container classes including doubly-linked lists and
dynamic arrays (i.e. arrays which expand automatically when they become full). For both
historical and portability reasons wxWindows does not use STL which provides the
standard implementation of many container classes in C++. First of all, wxWindows has
existed since well before STL was written, and secondly we don't believe that today
compilers can deal really well with all of STL classes (this is especially true for some less
common platforms). Of course, the compilers are evolving quite rapidly and hopefully
their progress will allow to base future versions of wxWindows on STL - but this is not
yet the case.

wxWindows container classes don't pretend to be as powerful or full as STL ones, but
they are quite useful and may be compiled with absolutely any C++ compiler. They're
used internally by wxWindows, but may, of course, be used in your programs as well if
you wish.

The list classes in wxWindows are doubly-linked lists which may either own the objects

CHAPTER 8

1546

they contain (meaning that the list deletes the object when it is removed from the list or
the list itself is destroyed) or just store the pointers depending on whether you called or
not wxList::DeleteContents (p. 746) method.

Dynamic arrays resemble C arrays but with two important differences: they provide run-
time range checking in debug builds and they expand automatically the allocated
memory when there is no more space for new items. They come in two sorts: the "plain"
arrays which store either built-in types such as "char", "int" or "bool" or the pointers to
arbitrary objects, or "object arrays" which own the object pointers to which they store.

For the same portability reasons, the container classes implementation in wxWindows
does not use templates, but is rather based on C preprocessor i.e. is done with the
macros: WX_DECLARE_LIST and WX_DEFINE_LIST for the linked lists and
WX_DECLARE_ARRAY, WX_DECLARE_OBJARRAY and WX_DEFINE_OBJARRAY
for the dynamic arrays. The "DECLARE" macro declares a new container class
containing the elements of given type and is needed for all three types of container
classes: lists, arrays and objarrays. The "DEFINE" classes must be inserted in your
program in a place where the full declaration of container element class is in scope
(i.e. not just forward declaration), otherwise destructors of the container elements will not
be called! As array classes never delete the items they contain anyhow, there is no
WX_DEFINE_ARRAY macro for them.

Examples of usage of these macros may be found in wxList (p. 743) and wxArray (p. 33)
documentation.

Finally, wxWindows predefines several commonly used container classes. wxList is
defined for compatibility with previous versions as a list containing wxObjects and
wxStringList as a list of C-style strings (char *), both of these classes are deprecated and
should not be used in new programs. The following array classes are defined:
wxArrayInt, wxArrayLong, wxArrayPtrVoid and wxArrayString. The first three store
elements of corresponding types, but wxArrayString is somewhat special: it is an
optimized version of wxArray which uses its knowledge about wxString (p. 1171)
reference counting schema.

FFiillee ccllaasssseess aanndd ffuunnccttiioonnss oovveerrvviieeww

Classes: wxFile (p. 449), wxDir (p. 372), wxTempFile (p. 1236), wxTextFile (p. 1270)

Functions: see file functions (p. 1433).

wxWindows provides some functions and classes to facilitate working with files. As
usual, the accent is put on cross-platform features which explains, for example, the
wxTextFile (p. 1270) class which may be used to convert between different types of text
files (DOS/Unix/Mac).

wxFile may be used for low-level IO. It contains all the usual functions to work with files
(opening/closing, reading/writing, seeking, and so on) but compared with using standard

CHAPTER 8

1547

C functions, has error checking (in case of an error a message is logged using wxLog (p.
790) facilities) and closes the file automatically in the destructor which may be quite
convenient.

wxTempFile is a very small file designed to make replacing the files contents safer - see
its documentation (p. 1236) for more details.

wxTextFile is a general purpose class for working with small text files on line by line
basis. It is especially well suited for working with configuration files and program source
files. It can be also used to work with files with "non native" line termination characters
and write them as "native" files if needed (in fact, the files may be written in any format).

wxDir is a helper class for enumerating the files or subdirectories of a directory. It may
be used to enumerate all files, only files satisfying the given template mask or only non-
hidden files.

wwxxSSttrreeaammss oovveerrvviieeww

Classes: wxStreamBase (p. 1161), wxStreamBuffer (p. 1163), wxInputStream (p. 718),
wxOutputStream (p. 902), wxFilterInputStream (p. 500), wxFilterOutputStream (p. 500)

Purpose of wxStream

We had troubles with standard C++ streams on several platforms: they react quite well in
most cases, but in the multi-threaded case, for example, they have many problems.
Some Borland Compilers refuse to work at all with them and using iostreams on Linux
makes writing programs, that are binary compatible across different Linux distributions,
impossible.

Therefore, wxStreams have been added to wxWindows because an application should
compile and run on all supported platforms and we don't want users to depend on
release X.XX of libg++ or some other compiler to run the program.

wxStreams is divided in two main parts:

 1. the core: wxStreamBase, wxStreamBuffer, wxInputStream, wxOutputStream,

wxFilterIn/OutputStream
 2. the "IO" classes: wxSocketIn/OutputStream, wxDataIn/OutputStream,

wxFileIn/OutputStream, ...

wxStreamBase is the base definition of a stream. It defines, for example, the API of
OnSysRead, OnSysWrite, OnSysSeek and OnSysTell. These functions are really
implemented by the "IO" classes. wxInputStream and wxOutputStream inherit from it.

wxStreamBuffer is a cache manager for wxStreamBase (it manages a stream buffer
linked to a stream). One stream can have multiple stream buffers but one stream have
always one autoinitialized stream buffer.

CHAPTER 8

1548

wxInputStream is the base class for read-only streams. It implements Read, SeekI (I for
Input), and all read or IO generic related functions. wxOutputStream does the same
thing but it is for write-only streams.

wxFilterIn/OutputStream is the base class definition for stream filtering. Stream filtering
means a stream which does no syscall but filters data which are passed to it and then
pass them to another stream. For example, wxZLibInputStream is an inline stream
decompressor.

The "IO" classes implements the specific parts of the stream. This could be nothing in
the case of wxMemoryIn/OutputStream which bases itself on wxStreamBuffer. This
could also be a simple link to the a true syscall (for example read(...), write(...)).

Generic usage: an example

Usage is simple. We can take the example of wxFileInputStream and here is some
sample code:

 ...
 // The constructor initializes the stream buffer and open the file
descriptor
 // associated to the name of the file.
 wxFileInputStream in_stream("the_file_to_be_read");

 // Ok, read some bytes ... nb_datas is expressed in bytes.
 in_stream.Read(data, nb_datas);
 if (in_stream.LastError() != wxSTREAM_NOERROR) {
 // Oh oh, something bad happens.
 // For a complete list, look into the documentation at wxStreamBase.
 }

 // You can also inline all like this.
 if (in_stream.Read(data, nb_datas).LastError() != wxSTREAM_NOERROR) {
 // Do something.
 }

 // You can also get the last number of bytes REALLY put into the
buffer.
 size_t really_read = in_stream.LastRead();

 // Ok, moves to the beginning of the stream. SeekI returns the last
position
 // in the stream counted from the beginning.
 off_t old_position = in_stream.SeekI(0, wxFromBeginning);

 // What is my current position ?
 off_t position = in_stream.TellI();

 // wxFileInputStream will close the file descriptor on the
destruction.

Compatibility with C++ streams

CHAPTER 8

1549

As I said previously, we could add a filter stream so it takes an istream argument and
builds a wxInputStream from it: I don't think it should be difficult to implement it and it
may be available in the fix of wxWindows 2.0.

wwxxLLoogg ccllaasssseess oovveerrvviieeww

Classes: wxLog (p. 790),
wxLogStderr (p. 800),
wxLogStream (p. 801),
wxLogTextCtrl (p. 802),
wxLogWindow (p. 802),
wxLogGui (p. 798),
wxLogNull (p. 799),
wxLogChain (p. 797),
wxLogPassThrough (p. 804),
wxStreamToTextRedirector (p. 1169)

This is a general overview of logging classes provided by wxWindows. The word logging
here has a broad sense, including all of the program output, not only non interactive
messages. The logging facilities included in wxWindows provide the base wxLog class
which defines the standard interface for a log target as well as several standard
implementations of it and a family of functions to use with them.

First of all, no knowledge of wxLog classes is needed to use them. For this, you should
only know about wxLogXXX() functions. All of them have the same syntax as printf(), i.e.
they take the format string as the first argument and a variable number of arguments.
Here are all of them:

 • wxLogFatalError which is like wxLogError, but also terminates the program

with the exit code 3 (using abort() standard function also terminates the program
with this exit code).

 • wxLogError is the function to use for error messages, i.e. the messages that
must be shown to the user. The default processing is to pop up a message box
to inform the user about it.

 • wxLogWarning for warnings - they are also normally shown to the user, but
don't interrupt the program work.

 • wxLogMessage is for all normal, informational messages. They also appear in
a message box by default (but it can be changed, see below). Notice that the
standard behaviour is to not show informational messages if there are any errors
later - the logic being that the later error messages make the informational
messages preceding them meaningless.

 • wxLogVerbose is for verbose output. Normally, it is suppressed, but might be
activated if the user wishes to know more details about the program progress
(another, but possibly confusing name for the same function is wxLogInfo).

 • wxLogStatus is for status messages - they will go into the status bar of the
active or specified (as the first argument) wxFrame (p. 525) if it has one.

 • wxLogSysError is mostly used by wxWindows itself, but might be handy for

CHAPTER 8

1550

logging errors after system call (API function) failure. It logs the specified
message text as well as the last system error code (errno or ::GetLastError()
depending on the platform) and the corresponding error message. The second
form of this function takes the error code explicitly as the first argument.

 • wxLogDebug is the right function for debug output. It only does anything at all
in the debug mode (when the preprocessor symbol__WXDEBUG__ is defined)
and expands to nothing in release mode (otherwise).Tip: under Windows, you
must either run the program under debugger or use a 3rd party program such as
DbgView (http://www.sysinternals.com) to actually see the debug
output.

 • wxLogTrace as wxLogDebug only does something in debug build. The reason
for making it a separate function from it is that usually there are a lot of trace
messages, so it might make sense to separate them from other debug
messages which would be flooded in them. Moreover, the second version of this
function takes a trace mask as the first argument which allows to further restrict
the amount of messages generated.

The usage of these functions should be fairly straightforward, however it may be asked
why not use the other logging facilities, such as C standard stdio functions or C++
streams. The short answer is that they're all very good generic mechanisms, but are not
really adapted for wxWindows, while the log classes are. Some of advantages in using
wxWindows log functions are:

 • Portability It is a common practice to use printf() statements or cout/cerr C++

streams for writing out some (debug or otherwise) information. Although it works
just fine under Unix, these messages go strictly nowhere under Windows where
the stdout of GUI programs is not assigned to anything. Thus, you might view
wxLogMessage() as a simple substitute for printf().

You can also redirect the wxLogXXX calls to cout by just writing:
 wxLog *logger=new wxLogStream(&cout);
 wxLog::SetActiveTarget(logger);

Finally, there is also a possibility to redirect the output sent to cout to a
wxTextCtrl (p. 1240) by using the wxStreamToTextRedirector (p. 1169) class.

 • Flexibility The output of wxLog functions can be redirected or suppressed
entirely based on their importance, which is either impossible or difficult to do
with traditional methods. For example, only error messages, or only error
messages and warnings might be logged, filtering out all informational
messages.

 • Completeness Usually, an error message should be presented to the user
when some operation fails. Let's take a quite simple but common case of a file
error: suppose that you're writing your data file on disk and there is not enough
space. The actual error might have been detected inside wxWindows code (say,
in wxFile::Write), so the calling function doesn't really know the exact reason of
the failure, it only knows that the data file couldn't be written to the disk.
However, as wxWindows uses wxLogError() in this situation, the exact error

CHAPTER 8

1551

code (and the corresponding error message) will be given to the user together
with "high level" message about data file writing error.

After having enumerated all the functions which are normally used to log the messages,
and why would you want to use them we now describe how all this works.

wxWindows has the notion of a log target: it is just a class deriving from wxLog (p. 790).
As such, it implements the virtual functions of the base class which are called when a
message is logged. Only one log target is active at any moment, this is the one used by
wxLogXXX()functions. The normal usage of a log object (i.e. object of a class derived
from wxLog) is to install it as the active target with a call to SetActiveTarget() and it will
be used automatically by all subsequent calls to wxLogXXX() functions.

To create a new log target class you only need to derive it from wxLog and implement
one (or both) of DoLog() and DoLogString() in it. The second one is enough if you're
happy with the standard wxLog message formatting (prepending "Error:" or "Warning:",
timestamping &c) but just want to send the messages somewhere else. The first one
may be overridden to do whatever you want but you have to distinguish between the
different message types yourself.

There are some predefined classes deriving from wxLog and which might be helpful to
see how you can create a new log target class and, of course, may also be used without
any change. There are:

 • wxLogStderr This class logs messages to a FILE *, using stderr by default as

its name suggests.
 • wxLogStream This class has the same functionality as wxLogStderr, but uses

ostream and cerr instead of FILE * and stderr.
 • wxLogGui This is the standard log target for wxWindows applications (it is used

by default if you don't do anything) and provides the most reasonable handling
of all types of messages for given platform.

 • wxLogWindow This log target provides a "log console" which collects all
messages generated by the application and also passes them to the previous
active log target. The log window frame has a menu allowing user to clear the
log, close it completely or save all messages to file.

 • wxLogNull The last log class is quite particular: it doesn't do anything. The
objects of this class may be instantiated to (temporarily) suppress output of
wxLogXXX() functions. As an example, trying to open a non-existing file will
usually provoke an error message, but if for some reasons it is unwanted, just
use this construction:

 wxFile file;

 // wxFile.Open() normally complains if file can't be opened, we
don't want it
 {
 wxLogNull logNo;
 if (!file.Open("bar"))
 ... process error ourselves ...
 } // ~wxLogNull called, old log sink restored

CHAPTER 8

1552

 wxLogMessage("..."); // ok

The log targets can also be combined: for example you may wish to redirect the
messages somewhere else (for example, to a log file) but also process them as
normally. For this the wxLogChain (p. 797) and wxLogPassThrough (p. 804) can be
used.

DDeebbuuggggiinngg oovveerrvviieeww

Classes, functions and macros: wxDebugContext (p. 353), wxObject (p. 897), wxLog (p.
790), Log functions (p. 1489), Debug macros (p. 1494)

Various classes, functions and macros are provided in wxWindows to help you debug
your application. Most of these are only available if you compile both wxWindows, your
application and all libraries that use wxWindows with the __WXDEBUG__ symbol
defined. You can also test the __WXDEBUG__ symbol in your own applications to
execute code that should be active only in debug mode.

wxDebugContext

wxDebugContext (p. 353) is a class that never gets instantiated, but ties together various
static functions and variables. It allows you to dump all objects to that stream, write
statistics about object allocation, and check memory for errors.

It is good practice to define a wxObject::Dump (p. 899) member function for each class
you derive from a wxWindows class, so that wxDebugContext::Dump (p. 354) can call it
and give valuable information about the state of the application.

If you have difficulty tracking down a memory leak, recompile in debugging mode and
call wxDebugContext::Dump (p. 354) and wxDebugContext::PrintStatistics (p. 356) at
appropriate places. They will tell you what objects have not yet been deleted, and what
kinds of object they are. In fact, in debug mode wxWindows will automatically detect
memory leaks when your application is about to exit, and if there are any leaks, will give
you information about the problem. (How much information depends on the operating
system and compiler -- some systems don't allow all memory logging to be enabled).
See the memcheck sample for example of usage.

For wxDebugContext to do its work, the new and delete operators for wxObject have
been redefined to store extra information about dynamically allocated objects (but not
statically declared objects). This slows down a debugging version of an application, but
can find difficult-to-detect memory leaks (objects are not deallocated), overwrites (writing
past the end of your object) and underwrites (writing to memory in front of the object).

If debugging mode is on and the symbol wxUSE_GLOBAL_MEMORY_OPERATORS is
set to 1 in setup.h, 'new' is defined to be:

CHAPTER 8

1553

#define new new(__FILE__,__LINE__)

All occurrences of 'new' in wxWindows and your own application will use the overridden
form of the operator with two extra arguments. This means that the debugging output
(and error messages reporting memory problems) will tell you what file and on what line
you allocated the object. Unfortunately not all compilers allow this definition to work
properly, but most do.

Debug macros

You should also use debug macros (p. 1494) as part of a 'defensive programming'
strategy, scattering wxASSERTs liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

wxASSERT (p. 1494) is used to pop up an error message box when a condition is not
true. You can also use wxASSERT_MSG (p. 1494) to supply your own helpful error
message. For example:

 void MyClass::MyFunction(wxObject* object)
 {
 wxASSERT_MSG((object != NULL), "object should not be NULL in
MyFunction!");

 ...
 };

The message box allows you to continue execution or abort the program. If you are
running the application inside a debugger, you will be able to see exactly where the
problem was.

Logging functions

You can use the wxLogDebug (p. 1490) and wxLogTrace (p. 1491) functions to output
debugging information in debug mode; it will do nothing for non-debugging code.

wxDebugContext overview

Debugging overview (p. 1552)

Class: wxDebugContext (p. 353)

wxDebugContext is a class for performing various debugging and memory tracing
operations.

This class has only static data and function members, and there should be no instances.
Probably the most useful members are SetFile (for directing output to a file, instead of
the default standard error or debugger output); Dump (for dumping the dynamically

CHAPTER 8

1554

allocated objects) and PrintStatistics (for dumping information about allocation of
objects). You can also call Check to check memory blocks for integrity.

Here's an example of use. The SetCheckpoint ensures that only the allocations done
after the checkpoint will be dumped.

 wxDebugContext::SetCheckpoint();

 wxDebugContext::SetFile("c:\\temp\\debug.log");

 wxString *thing = new wxString;

 char *ordinaryNonObject = new char[1000];

 wxDebugContext::Dump();
 wxDebugContext::PrintStatistics();

You can use wxDebugContext if __WXDEBUG__ is defined, or you can use it at any
other time (if wxUSE_DEBUG_CONTEXT is set to 1 in setup.h). It is not disabled in non-
debug mode because you may not wish to recompile wxWindows and your entire
application just to make use of the error logging facility.

Note: wxDebugContext::SetFile has a problem at present, so use the default stream
instead. Eventually the logging will be done through the wxLog facilities instead.

wwxxCCoonnffiigg ccllaasssseess oovveerrvviieeww

Classes: wxConfig (p. 166)

This overview briefly describes what the config classes are and what they are for. All the
details about how to use them may be found in the description of the wxConfigBase (p.
166) class and the documentation of the file, registry and INI file based implementations
mentions all the features/limitations specific to each one of these versions.

The config classes provide a way to store some application configuration information.
They were especially designed for this usage and, although may probably be used for
many other things as well, should be limited to it. It means that this information should
be:

 1. Typed, i.e. strings or numbers for the moment. You can not store binary data, for

example.
 2. Small. For instance, it is not recommended to use the Windows registry for

amounts of data more than a couple of kilobytes.
 3. Not performance critical, neither from speed nor from a memory consumption

point of view.

On the other hand, the features provided make them very useful for storing all kinds of
small to medium volumes of hierarchically-organized, heterogeneous data. In short, this

CHAPTER 8

1555

is a place where you can conveniently stuff all your data (numbers and strings)
organizing it in a tree where you use the filesystem-like paths to specify the location of a
piece of data. In particular, these classes were designed to be as easy to use as
possible.

From another point of view, they provide an interface which hides the differences
between the Windows registry and the standard Unix text format configuration files.
Other (future) implementations of wxConfigBase might also understand GTK resource
files or their analogues on the KDE side.

In any case, each implementation of wxConfigBase does its best to make the data look
the same way everywhere. Due to the limitations of the underlying physical storage as in
the case of wxIniConfig, it may not implement 100% of the base class functionality.

There are groups of entries and the entries themselves. Each entry contains either a
string or a number (or a boolean value; support for other types of data such as dates or
timestamps is planned) and is identified by the full path to it: something like
/MyApp/UserPreferences/Colors/Foreground. The previous elements in the path are the
group names, and each name may contain an arbitrary number of entries and
subgroups. The path components are always separated with a slash, even though some
implementations use the backslash internally. Further details (including how to read/write
these entries) may be found in the documentation for wxConfigBase (p. 166).

wwxxEExxpprr oovveerrvviieeww

wxExpr is a C++ class reading and writing a subset of Prolog-like syntax, supporting
objects attribute/value pairs.

wxExpr can be used to develop programs with readable and robust data files. Within
wxWindows itself, it is used to parse the .wxr dialog resource files.

History of wxExpr

During the development of the tool Hardy within the AIAI, a need arose for a data file
format for C++ that was easy for both humans and programs to read, was robust in the
face of fast-moving software development, and that provided some compatibility with AI
languages such as Prolog and LISP.

The result was the wxExpr library (formerly called PrologIO), which is able to read and
write a Prolog-like attribute-value syntax, and is additionally capable of writing LISP
syntax for no extra programming effort. The advantages of such a library are as follows:

 1. The data files are readable by humans;
 2. I/O routines are easier to write and debug compared with using binary files;
 3. the files are robust: unrecognised data will just be ignored by the application
 4. Inbuilt hashing gives a random access capability, useful for when linking up C++

objects as data is read in;

CHAPTER 8

1556

 5. Prolog and LISP programs can load the files using a single command.

The library was extended to use the ability to read and write Prolog-like structures for
remote procedure call (RPC) communication. The next two sections outline the two main
ways the library can be used.

wxExpr for data file manipulation

The fact that the output is in Prolog syntax is irrelevant for most programmers, who just
need a reasonable I/O facility. Typical output looks like this:

diagram_definition(type = "Spirit Belief Network").

node_definition(type = "Model",
 image_type = "Diamond",
 attribute_for_label = "name",
 attribute_for_status_line = "label",
 colour = "CYAN",
 default_width = 120,
 default_height = 80,
 text_size = 10,
 can_resize = 1,
 has_hypertext_item = 1,
 attributes = ["name", "combining_function", "level_of_belief"]).

arc_definition(type = "Potentially Confirming",
 image_type = "Spline",
 arrow_type = "End",
 line_style = "Solid",
 width = 1,
 segmentable = 0,
 attribute_for_label = "label",
 attribute_for_status_line = "label",
 colour = "BLACK",
 text_size = 10,
 has_hypertext_item = 1,
 can_connect_to = ["Evidence", "Cluster", "Model", "Evidence",
"Evidence", "Cluster"],
 can_connect_from = ["Data", "Evidence", "Cluster", "Evidence",
"Data", "Cluster"]).

This is substantially easier to read and debug than a series of numbers and strings.

Note the object-oriented style: a file comprises a series of clauses. Each clause is an
object with a functor or object name, followed by a list of attribute-value pairs enclosed in
parentheses, and finished with a full stop. Each attribute value may be a string, a word
(no quotes), an integer, a real number, or a list with potentially recursive elements.

The way that the facility is used by an application to read in a file is as follows:

 1. The application creates a wxExprDatabase instance.
 2. The application tells the database to read in the entire file.
 3. The application searches the database for objects it requires, decomposing the

CHAPTER 8

1557

objects using the wxExpr API. The database may be hashed, allowing rapid
linking-up of application data.

 4. The application deletes or clears the wxExprDatabase.

Writing a file is just as easy:

 1. The application creates a wxExprDatabase instance.
 2. The application adds objects to the database using the API.
 3. The application tells the database to write out the entire database, in Prolog or

LISP notation.
 4. The application deletes or clears the wxExprDatabase.

To use the library, include "wxexpr.h".

wxExpr compilation

For UNIX compilation, ensure that YACC and LEX or FLEX are on your system. Check
that the makefile uses the correct programs: a common error is to compile y_tab.c with a
C++ compiler. Edit the CCLEX variable in make.env to specify a C compiler. Also, do not
attempt to compile lex_yy.c since it is included by y_tab.c.

For DOS compilation, the simplest thing is to copy dosyacc.c to y_tab.c, and doslex.c to
lex_yy.c. It is y_tab.c that must be compiled (lex_yy.c is included by y_tab.c) so if adding
source files to a project file, ONLY add y_tab.c plus the .cc files. If you wish to alter the
parser, you will need YACC and FLEX on DOS.

The DOS tools are available at the AIAI ftp site, in the tools directory. Note that for FLEX
installation, you need to copy flex.skl into the directory c:/lib.

If you are using Borland C++ and wish to regenerate lex_yy.c and y_tab.c you need to
generate lex_yy.c with FLEX and then comment out the 'malloc' and 'free' prototypes in
lex_yy.c. It will compile with lots of warnings. If you get an undefined _PROIO_YYWRAP
symbol when you link, you need to remove USE_DEFINE from the makefile and
recompile. This is because the parser.y file has a choice of defining this symbol as a
function or as a define, depending on what the version of FLEX expects. See the bottom
of parser.y, and if necessary edit it to make it compile in the opposite way to the current
compilation.

Bugs

These are the known bugs:

 1. Functors are permissible only in the main clause (object). Therefore nesting of

structures must be done using lists, not predicates as in Prolog.
 2. There is a limit to the size of strings read in (about 5000 bytes).

Using wxExpr

CHAPTER 8

1558

This section is a brief introduction to using the wxExpr package.

First, some terminology. A wxExprDatabase is a list of clauses, each of which
represents an object or record which needs to be saved to a file. A clause has a functor
(name), and a list of attributes, each of which has a value. Attributes may take the
following types of value: string, word, integer, floating point number, and list. A list can
itself contain any type, allowing for nested data structures.

Consider the following code.

wxExprDatabase db;

wxExpr *my_clause = new wxExpr("object");
my_clause->AddAttributeValue("id", (long)1);
my_clause->AddAttributeValueString("name", "Julian Smart");
db.Append(my_clause);

ofstream file("my_file");
db.Write(file);

This creates a database, constructs a clause, adds it to the database, and writes the
whole database to a file. The file it produces looks like this:

object(id = 1,
 name = "Julian Smart").

To read the database back in, the following will work:

wxExprDatabase db;
db.Read("my_file");

db.BeginFind();

wxExpr *my_clause = db.FindClauseByFunctor("object");
int id = 0;
wxString name = "None found";

my_clause->GetAttributeValue("id", id);
my_clause->GetAttributeValue("name", name);

cout << "Id is " << id << ", name is " << name << "\n";

Note the setting of defaults before attempting to retrieve attribute values, since they may
not be found.

wwxxFFiilleeSSyysstteemm

The wxHTML library uses a virtual file systems mechanism similar to the one used in
Midnight Commander, Dos Navigator, FAR or almost any modern file manager. It allows

CHAPTER 8

1559

the user to access data stored in archives as if they were ordinary files. On-the-fly
generated files that exist only in memory are also supported.

Classes

Three classes are used in order to provide virtual file systems mechanism:

 • The wxFSFile (p. 537) class provides information about opened file (name, input

stream, mime type and anchor).
 • The wxFileSystem (p. 489) class is the interface. Its main methods are

ChangePathTo() and OpenFile(). This class is most often used by the end user.
 • The wxFileSystemHandler (p. 491) is the core of virtual file systems mechanism.

You can derive your own handler and pass it to of the VFS mechanism. You can
derive your own handler and pass it to wxFileSystem's AddHandler() method. In
the new handler you only need to override the OpenFile() and CanOpen()
methods.

Locations

Locations (aka filenames aka addresses) are constructed from four parts:

 • protocol - handler can recognize if it is able to open a file by checking its

protocol. Examples are "http", "file" or "ftp".
 • right location - is the name of file within the protocol. In

"http://www.wxwindows.org/index.html" the right location is
"//www.wxwindows.org/index.html".

 • anchor - an anchor is optional and is usually not present. In
"index.htm#chapter2" the anchor is "chapter2".

 • left location - this is usually an empty string. It is used by 'local' protocols such
as ZIP. See Combined Protocols paragraph for details.

Combined Protocols

The left location precedes the protocol in the URL string. It is not used by global
protocols like HTTP but it becomes handy when nesting protocols - for example you may
want to access files in a ZIP archive:

file:archives/cpp_doc.zip#zip:reference/fopen.htm#syntax

In this example, the protocol is "zip", the left location is "reference/fopen.htm", the
anchor is "syntax" and the right location is "file:archives/cpp_doc.zip".

There are two protocols used in this example: "zip" and "file".

File Systems Included in wxHTML

The following virtual file system handlers are part of wxWindows so far:

wxInternetFSHandler A handler for accessing documents via HTTP

or FTP protocols. Include file is <wx/fs_inet.h>.

CHAPTER 8

1560

wxZipFSHandler A handler for ZIP archives. Include file is

<wx/fs_zip.h>. URL is in form
"archive.zip#zip:filename".

wxMemoryFSHandler This handler allows you to access data stored
in memory (such as bitmaps) as if they were
regular files. See wxMemoryFSHandler
documentation (p. 829) for details. Include file
is <wx/fs_mem.h>. UURL is prefixed with
memory:, e.g. "memory:myfile.htm"

In addition, wxFileSystem itself can access local files.

Initializing file system handlers

Use wxFileSystem::AddHandler (p. 490) to initialize a handler, for example:

#include <wx/fs_mem.h>

...

bool MyApp::OnInit()
{
 wxFileSystem::AddHandler(new wxMemoryFSHandler);
...
}

EEvveenntt hhaannddlliinngg oovveerrvviieeww

Classes: wxEvtHandler (p. 432), wxWindow (p. 1366), wxEvent (p. 428)

Introduction

Before version 2.0 of wxWindows, events were handled by the application either by
supplying callback functions, or by overriding virtual member functions such as OnSize.

From wxWindows 2.0, event tables are used instead, with a few exceptions.

An event table is placed in an implementation file to tell wxWindows how to map events
to member functions. These member functions are not virtual functions, but they are all
similar in form: they take a single wxEvent-derived argument, and have a void return
type.

Here's an example of an event table.

CHAPTER 8

1561

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU (wxID_EXIT, MyFrame::OnExit)
 EVT_MENU (DO_TEST, MyFrame::DoTest)
 EVT_SIZE (MyFrame::OnSize)
 EVT_BUTTON (BUTTON1, MyFrame::OnButton1)
END_EVENT_TABLE()

The first two entries map menu commands to two different member functions. The
EVT_SIZE macro doesn't need a window identifier, since normally you are only
interested in the current window's size events. (In fact you could intercept a particular
window's size event by using EVT_CUSTOM(wxEVT_SIZE, id, func).)

The EVT_BUTTON macro demonstrates that the originating event does not have to
come from the window class implementing the event table - if the event source is a
button within a panel within a frame, this will still work, because event tables are
searched up through the hierarchy of windows. In this case, the button's event table will
be searched, then the parent panel's, then the frame's.

As mentioned before, the member functions that handle events do not have to be virtual.
Indeed, the member functions should not be virtual as the event handler ignores that the
functions are virtual, i.e. overriding a virtual member function in a derived class will not
have any effect. These member functions take an event argument, and the class of
event differs according to the type of event and the class of the originating window. For
size events, wxSizeEvent (p. 1085) is used. For menu commands and most control
commands (such as button presses), wxCommandEvent (p. 156) is used. When controls
get more complicated, then specific event classes are used, such as wxTreeEvent (p.
1332) for events from wxTreeCtrl (p. 1313) windows.

As well as the event table in the implementation file, there must be a
DECLARE_EVENT_TABLE macro in the class definition. For example:

class MyFrame: public wxFrame {

 DECLARE_DYNAMIC_CLASS(MyFrame)

public:
 ...
 void OnExit(wxCommandEvent& event);
 void OnSize(wxSizeEvent& event);
protected:
 int m_count;
 ...
 DECLARE_EVENT_TABLE()
};

How events are processed

When an event is received from the windowing system, wxWindows calls
wxEvtHandler::ProcessEvent (p. 435) on the first event handler object belonging to the
window generating the event.

CHAPTER 8

1562

It may be noted that wxWindows' event processing system implements something very
close to virtual methods in normal C++, i.e. it is possible to alter the behaviour of a class
by overriding its event handling functions. In many cases this works even for changing
the behaviour of native controls. For example it is possible to filter out a number of key
events sent by the system to a native text control by overriding wxTextCtrl and defining a
handler for key events using EVT_KEY_DOWN. This would indeed prevent any key
events from being sent to the native control - which might not be what is desired. In this
case the event handler function has to call Skip() so as to indicate that the search for the
event handler should continue.

To summarize, instead of explicitly calling the base class version as you would have
done with C++ virtual functions (i.e. wxTextCtrl::OnChar()), you should instead call Skip
(p. 431).

In practice, this would look like this if the derived text control only accepts 'a' to 'z' and 'A'
to 'Z':

void MyTextCtrl::OnChar(wxKeyEvent& event)
{
 if (isalpha(event.KeyCode()))
 {
 // key code is within legal range. we call event.Skip() so the
 // event can be processed either in the base wxWindows class
 // or the native control.

 event.Skip();
 }
 else
 {
 // illegal key hit. we don't call event.Skip() so the
 // event is not processed anywhere else.

 wxBell();
 }
}

The normal order of event table searching by ProcessEvent is as follows:

 1. If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled (p.

438)) the function skips to step (6).
 2. If the object is a wxWindow, ProcessEvent is recursively called on the window's

wxValidator (p. 1348). If this returns TRUE, the function exits.
 3. SearchEventTable is called for this event handler. If this fails, the base class

table is tried, and so on until no more tables exist or an appropriate function was
found, in which case the function exits.

 4. The search is applied down the entire chain of event handlers (usually the chain
has a length of one). If this succeeds, the function exits.

 5. If the object is a wxWindow and the event is a wxCommandEvent,
ProcessEvent is recursively applied to the parent window's event handler. If
this returns TRUE, the function exits.

 6. Finally, ProcessEvent is called on the wxApp object.

CHAPTER 8

1563

Pay close attention to Step 5. People often overlook or get confused by this powerful
feature of the wxWindows event processing system. To put it a different way, events
derived either directly or indirectly from wxCommandEvent will travel up the containment
hierarchy from child to parent until an event handler is found that doesn't call
event.Skip(). Events not derived from wxCommandEvent are sent only to the window
they occurred in and then stop.

Finally, there is another additional complication (which, in fact, simplifies life of
wxWindows programmers significantly): when propagating the command events
upwards to the parent window, the event propagation stops when it reaches the parent
dialog, if any. This means that you don't risk to get unexpected events from the dialog
controls (which might be left unprocessed by the dialog itself because it doesn't care
about them) when a modal dialog is popped up. The events do propagate beyond the
frames, however. The rationale for this choice is that there are only a few frames in a
typical application and their parent-child relation are well understood by the programmer
while it may be very difficult, if not impossible, to track down all the dialogs which may be
popped up in a complex program (remember that some are created automatically by
wxWindows). If you need to specify a different behaviour for some reason, you can use
SetExtraStyle(wxWS_EX_BLOCK_EVENTS) (p. 1408) explicitly to prevent the events
from being propagated beyond the given window or unset this flag for the dialogs which
have it on by default.

Typically events that deal with a window as a window (size, motion, paint, mouse,
keyboard, etc.) are sent only to the window. Events that have a higher level of meaning
and/or are generated by the window itself, (button click, menu select, tree expand, etc.)
are command events and are sent up to the parent to see if it is interested in the event.

Note that your application may wish to override ProcessEvent to redirect processing of
events. This is done in the document/view framework, for example, to allow event
handlers to be defined in the document or view. To test for command events (which will
probably be the only events you wish to redirect), you may use
wxEvent::IsCommandEvent for efficiency, instead of using the slower run-time type
system.

As mentioned above, only command events are recursively applied to the parents event
handler. As this quite often causes confusion for users, here is a list of system events
which will NOT get sent to the parent's event handler:

wxEvent (p. 428) The event base class
wxActivateEvent (p. 20) A window or application activation event
wxCloseEvent (p. 127) A close window or end session event
wxEraseEvent (p. 427) An erase background event
wxFocusEvent (p. 506) A window focus event
wxKeyEvent (p. 733) A keypress event
wxIdleEvent (p. 679) An idle event
wxInitDialogEvent (p. 718) A dialog initialisation event
wxJoystickEvent (p. 731) A joystick event
wxMenuEvent (p. 857) A menu event
wxMouseEvent (p. 871) A mouse event
wxMoveEvent (p. 880) A move event
wxPaintEvent (p. 911) A paint event

CHAPTER 8

1564

wxQueryLayoutInfoEvent (p. 1010) Used to query layout information
wxSizeEvent (p. 1085) A size event
wxScrollWinEvent (p. 1067) A scroll event sent by a scrolled window (not a

scroll bar)
wxSysColourChangedEvent (p. 1200) A system colour change event
wxUpdateUIEvent (p. 1342) A user interface update event

In some cases, it might be desired by the programmer to get a certain number of system
events in a parent window, for example all key events sent to, but not used by, the native
controls in a dialog. In this case, a special event handler will have to be written that will
override ProcessEvent() in order to pass all events (or any selection of them) to the
parent window.

Pluggable event handlers

In fact, you don't have to derive a new class from a window class if you don't want to.
You can derive a new class from wxEvtHandler instead, defining the appropriate event
table, and then call wxWindow::SetEventHandler (p. 1408) (or, preferably,
wxWindow::PushEventHandler (p. 1401)) to make this event handler the object that
responds to events. This way, you can avoid a lot of class derivation, and use the same
event handler object to handle events from instances of different classes. If you ever
have to call a window's event handler manually, use the GetEventHandler function to
retrieve the window's event handler and use that to call the member function. By default,
GetEventHandler returns a pointer to the window itself unless an application has
redirected event handling using SetEventHandler or PushEventHandler.

One use of PushEventHandler is to temporarily or permanently change the behaviour of
the GUI. For example, you might want to invoke a dialog editor in your application that
changes aspects of dialog boxes. You can grab all the input for an existing dialog box,
and edit it 'in situ', before restoring its behaviour to normal. So even if the application has
derived new classes to customize behaviour, your utility can indulge in a spot of body-
snatching. It could be a useful technique for on-line tutorials, too, where you take a user
through a serious of steps and don't want them to diverge from the lesson. Here, you
can examine the events coming from buttons and windows, and if acceptable, pass them
through to the original event handler. Use PushEventHandler/PopEventHandler to form
a chain of event handlers, where each handler processes a different range of events
independently from the other handlers.

Window identifiers

Window identifiers are integers, and are used to uniquely determine window identity in
the event system (though you can use it for other purposes). In fact, identifiers do not
need to be unique across your entire application just so long as they are unique within a
particular context you're interested in, such as a frame and its children. You may use the
wxID_OK identifier, for example, on any number of dialogs so long as you don't have
several within the same dialog.

CHAPTER 8

1565

If you pass -1 to a window constructor, an identifier will be generated for you, but
beware: if things don't respond in the way they should, it could be because of an id
conflict. It is safer to supply window ids at all times. Automatic generation of identifiers
starts at 1 so may well conflict with your own identifiers.

The following standard identifiers are supplied. You can use wxID_HIGHEST to
determine the number above which it is safe to define your own identifiers. Or, you can
use identifiers below wxID_LOWEST.

#define wxID_LOWEST 4999

#define wxID_OPEN 5000
#define wxID_CLOSE 5001
#define wxID_NEW 5002
#define wxID_SAVE 5003
#define wxID_SAVEAS 5004
#define wxID_REVERT 5005
#define wxID_EXIT 5006
#define wxID_UNDO 5007
#define wxID_REDO 5008
#define wxID_HELP 5009
#define wxID_PRINT 5010
#define wxID_PRINT_SETUP 5011
#define wxID_PREVIEW 5012
#define wxID_ABOUT 5013
#define wxID_HELP_CONTENTS 5014
#define wxID_HELP_COMMANDS 5015
#define wxID_HELP_PROCEDURES 5016
#define wxID_HELP_CONTEXT 5017

#define wxID_CUT 5030
#define wxID_COPY 5031
#define wxID_PASTE 5032
#define wxID_CLEAR 5033
#define wxID_FIND 5034
#define wxID_DUPLICATE 5035
#define wxID_SELECTALL 5036

#define wxID_FILE1 5050
#define wxID_FILE2 5051
#define wxID_FILE3 5052
#define wxID_FILE4 5053
#define wxID_FILE5 5054
#define wxID_FILE6 5055
#define wxID_FILE7 5056
#define wxID_FILE8 5057
#define wxID_FILE9 5058

#define wxID_OK 5100
#define wxID_CANCEL 5101
#define wxID_APPLY 5102
#define wxID_YES 5103
#define wxID_NO 5104
#define wxID_STATIC 5105

#define wxID_HIGHEST 5999

CHAPTER 8

1566

Event macros summary

Generic event table macros

EVT_CUSTOM(event, id, func) Allows you to add a custom event table

entry by specifying the event identifier
(such as wxEVT_SIZE), the window
identifier, and a member function to call.

EVT_CUSTOM_RANGE(event, id1, id2, func) The same as EVT_CUSTOM, but
responds to a range of window
identifiers.

EVT_COMMAND(id, event, func) The same as EVT_CUSTOM, but
expects a member function with a
wxCommandEvent argument.

EVT_COMMAND_RANGE(id1, id2, event, func) The same as
EVT_CUSTOM_RANGE, but expects a
member function with a
wxCommandEvent argument.

Macros listed by event class

The documentation for specific event macros is organised by event class. Please refer to
these sections for details.

wxActivateEvent (p. 20) The EVT_ACTIVATE and

EVT_ACTIVATE_APP macros intercept
activation and deactivation events.

wxCommandEvent (p. 156) A range of commonly-used control
events.

wxCloseEvent (p. 127) The EVT_CLOSE macro handles window
closure called via wxWindow::Close (p.
1371).

wxDropFilesEvent (p. 417) The EVT_DROP_FILES macros handles
file drop events.

wxEraseEvent (p. 427) The EVT_ERASE_BACKGROUND
macro is used to handle window erase
requests.

wxFocusEvent (p. 506) The EVT_SET_FOCUS and
EVT_KILL_FOCUS macros are used to
handle keyboard focus events.

wxKeyEvent (p. 733) EVT_CHAR, EVT_KEY_DOWN and
EVT_KEY_UP macros handle keyboard
input for any window.

wxIdleEvent (p. 679) The EVT_IDLE macro handle application
idle events (to process background tasks,
for example).

wxInitDialogEvent (p. 718) The EVT_INIT_DIALOG macro is used to
handle dialog initialisation.

CHAPTER 8

1567

wxListEvent (p. 775) These macros handle wxListCtrl (p. 758)
events.

wxMenuEvent (p. 857) These macros handle special menu
events (not menu commands).

wxMouseEvent (p. 871) Mouse event macros can handle either
individual mouse events or all mouse
events.

wxMoveEvent (p. 880) The EVT_MOVE macro is used to handle
a window move.

wxPaintEvent (p. 911) The EVT_PAINT macro is used to handle
window paint requests.

wxScrollEvent (p. 1068) These macros are used to handle scroll
events from wxScrollBar (p. 1062),
wxSlider (p. 1091),and wxSpinButton (p.
1125).

wxSizeEvent (p. 1085) The EVT_SIZE macro is used to handle a
window resize.

wxSplitterEvent (p. 1134) The
EVT_SPLITTER_SASH_POS_CHANGE
D, EVT_SPLITTER_UNSPLIT and
EVT_SPLITTER_DOUBLECLICKED
macros are used to handle the various
splitter window events.

wxSysColourChangedEvent (p. 1200) The EVT_SYS_COLOUR_CHANGED
macro is used to handle events informing
the application that the user has changed
the system colours (Windows only).

wxTreeEvent (p. 1332) These macros handle wxTreeCtrl (p.
1313) events.

wxUpdateUIEvent (p. 1342) The EVT_UPDATE_UI macro is used to
handle user interface update pseudo-
events, which are generated to give the
application the chance to update the
visual state of menus, toolbars and
controls.

WWiinnddooww ssttyylleess

Window styles are used to specify alternative behaviour and appearances for windows,
when they are created. The symbols are defined in such as way that they can be
combined in a 'bit-list' using the C++ bitwise-or operator. For example:

 wxCAPTION | wxMINIMIZE_BOX | wxMAXIMIZE_BOX | wxTHICK_FRAME

For the window styles specific to each window class, please see the documentation for
the window. Most windows can use the generic styles listed for wxWindow (p. 1366) in

CHAPTER 8

1568

addition to their own styles.

WWiinnddooww ddeelleettiioonn oovveerrvviieeww

Classes: wxCloseEvent (p. 127), wxWindow (p. 1366)

Window deletion can be a confusing subject, so this overview is provided to help make it
clear when and how you delete windows, or respond to user requests to close windows.

What is the sequence of events in a window deletion?

When the user clicks on the system close button or system close command, in a frame
or a dialog, wxWindows calls wxWindow::Close (p. 1371). This in turn generates an
EVT_CLOSE event: see wxWindow::OnCloseWindow (p. 1391).

It is the duty of the application to define a suitable event handler, and decide whether or
not to destroy the window. If the application is for some reason forcing the application to
close (wxCloseEvent::CanVeto (p. 128) returns FALSE), the window should always be
destroyed, otherwise there is the option to ignore the request, or maybe wait until the
user has answered a question before deciding whether it is safe to close. The handler
for EVT_CLOSE should signal to the calling code if it does not destroy the window, by
calling wxCloseEvent::Veto (p. 129). Calling this provides useful information to the
calling code.

The wxCloseEvent handler should only call wxWindow::Destroy (p. 1373) to delete the
window, and not use the delete operator. This is because for some window classes,
wxWindows delays actual deletion of the window until all events have been processed,
since otherwise there is the danger that events will be sent to a non-existent window.

As reinforced in the next section, calling Close does not guarantee that the window will
be destroyed. Call wxWindow::Destroy (p. 1373) if you want to be certain that the
window is destroyed.

How can the application close a window itself?

Your application can either use wxWindow::Close (p. 1371) event just as the framework
does, or it can call wxWindow::Destroy (p. 1373) directly. If using Close(), you can pass
a TRUE argument to this function to tell the event handler that we definitely want to
delete the frame and it cannot be vetoed.

The advantage of using Close instead of Destroy is that it will call any clean-up code
defined by the EVT_CLOSE handler; for example it may close a document contained in
a window after first asking the user whether the work should be saved. Close can be
vetoed by this process (return FALSE), whereas Destroy definitely destroys the window.

What is the default behaviour?

CHAPTER 8

1569

The default close event handler for wxDialog simulates a Cancel command, generating a
wxID_CANCEL event. Since the handler for this cancel event might itself call Close,
there is a check for infinite looping. The default handler for wxID_CANCEL hides the
dialog (if modeless) or calls EndModal(wxID_CANCEL) (if modal). In other words, by
default, the dialog is not destroyed (it might have been created on the stack, so the
assumption of dynamic creation cannot be made).

The default close event handler for wxFrame destroys the frame using Destroy().

Under Windows, wxDialog defines a handler for wxWindow::OnCharHook (p. 1389) that
generates a Cancel event if the Escape key has been pressed.

What should I do when the user calls up Exit from a menu?

You can simply call wxWindow::Close (p. 1371) on the frame. This will invoke your own
close event handler which may destroy the frame.

You can do checking to see if your application can be safely exited at this point, either
from within your close event handler, or from within your exit menu command handler.
For example, you may wish to check that all files have been saved. Give the user a
chance to save and quit, to not save but quit anyway, or to cancel the exit command
altogether.

What should I do to upgrade my 1.xx OnClose to 2.0?

In wxWindows 1.xx, the OnClose function did not actually delete 'this', but signaled to
the calling function (either Close, or the wxWindows framework) to delete or not delete
the window.

To update your code, you should provide an event table entry in your frame or dialog,
using the EVT_CLOSE macro. The event handler function might look like this:

 void MyFrame::OnCloseWindow(wxCloseEvent& event)
 {
 if (MyDataHasBeenModified())
 {
 wxMessageDialog* dialog = new wxMessageDialog(this,
 "Save changed data?", "My app", wxYES_NO|wxCANCEL);

 int ans = dialog->ShowModal();
 dialog->Destroy();

 switch (ans)
 {
 case wxID_YES: // Save, then destroy, quitting app
 SaveMyData();
 this->Destroy();
 break;
 case wxID_NO: // Don't save; just destroy, quitting app
 this->Destroy();
 break;
 case wxID_CANCEL: // Do nothing - so don't quit app.

CHAPTER 8

1570

 default:
 if (!event.CanVeto()) // Test if we can veto this deletion
 this->Destroy(); // If not, destroy the window anyway.
 else
 event.Veto(); // Notify the calling code that we didn't
delete the frame.
 break;
 }
 }
 }

How do I exit the application gracefully?

A wxWindows application automatically exits when the designated top window, or the
last frame or dialog, is destroyed. Put any application-wide cleanup code in
wxApp::OnExit (p. 26) (this is a virtual function, not an event handler).

Do child windows get deleted automatically?

Yes, child windows are deleted from within the parent destructor. This includes any
children that are themselves frames or dialogs, so you may wish to close these child
frame or dialog windows explicitly from within the parent close handler.

What about other kinds of window?

So far we've been talking about 'managed' windows, i.e. frames and dialogs. Windows
with parents, such as controls, don't have delayed destruction and don't usually have
close event handlers, though you can implement them if you wish. For consistency,
continue to use the wxWindow::Destroy (p. 1373) function instead of the delete operator
when deleting these kinds of windows explicitly.

wwxxDDiiaalloogg oovveerrvviieeww

Classes: wxDialog (p. 359)

A dialog box is similar to a panel, in that it is a window which can be used for placing
controls, with the following exceptions:

 1. A surrounding frame is implicitly created.
 2. Extra functionality is automatically given to the dialog box, such as tabbing

between items (currently Windows only).
 3. If the dialog box is modal, the calling program is blocked until the dialog box is

dismissed.

Under Windows 3, modal dialogs have to be emulated using modeless dialogs and a
message loop. This is because Windows 3 expects the contents of a modal dialog to be
loaded from a resource file or created on receipt of a dialog initialization message. This
is too restrictive for wxWindows, where any window may be created and displayed
before its contents are created.

CHAPTER 8

1571

For a set of dialog convenience functions, including file selection, see Dialog functions
(p. 1443).

See also wxPanel (p. 916) and wxWindow (p. 1366) for inherited member functions.
Validation of data in controls is covered in Validator overview (p. 1571).

wwxxVVaalliiddaattoorr oovveerrvviieeww

Classes: wxValidator (p. 1348), wxTextValidator (p. 1267), wxGenericValidator (p. 555)

The aim of the validator concept is to make dialogs very much easier to write. A validator
is an object that can be plugged into a control (such as a wxTextCtrl), and mediates
between C++ data and the control, transferring the data in either direction and validating
it. It also is able to intercept events generated by the control, providing filtering behaviour
without the need to derive a new control class.

You can use a stock validator, such as wxTextValidator (p. 1267) (which does text
control data transfer, validation and filtering) and wxGenericValidator (p. 555) (which
does data transfer for a range of controls); or you can write your own.

Example

Here is an example of wxTextValidator usage.

 wxTextCtrl *txt1 = new wxTextCtrl(this, VALIDATE_TEXT, "",
 wxPoint(10, 10), wxSize(100, 80), 0,
 wxTextValidator(wxFILTER_ALPHA, &g_data.m_string));

In this example, the text validator object provides the following functionality:

 1. It transfers the value of g_data.m_string (a wxString variable) to the wxTextCtrl

when the dialog is initialised.
 2. It transfers the wxTextCtrl data back to this variable when the dialog is

dismissed.
 3. It filters input characters so that only alphabetic characters are allowed.

The validation and filtering of input is accomplished in two ways. When a character is
input, wxTextValidator checks the character against the allowed filter flag
(wxFILTER_ALPHA in this case). If the character is inappropriate, it is vetoed (does not
appear) and a warning beep sounds. The second type of validation is performed when
the dialog is about to be dismissed, so if the default string contained invalid characters
already, a dialog box is shown giving the error, and the dialog is not dismissed.

Anatomy of a validator

A programmer creating a new validator class should provide the following functionality.

CHAPTER 8

1572

A validator constructor is responsible for allowing the programmer to specify the kind of
validation required, and perhaps a pointer to a C++ variable that is used for storing the
data for the control. If such a variable address is not supplied by the user, then the
validator should store the data internally.

The wxValidator::Validate (p. 1350) member function should return TRUE if the data in
the control (not the C++ variable) is valid. It should also show an appropriate message if
data was not valid.

The wxValidator::TransferToWindow (p. 1350) member function should transfer the data
from the validator or associated C++ variable to the control.

The wxValidator::TransferFromWindow (p. 1350) member function should transfer the
data from the control to the validator or associated C++ variable.

There should be a copy constructor, and a wxValidator::Clone (p. 1349) function which
returns a copy of the validator object. This is important because validators are passed by
reference to window constructors, and must therefore be cloned internally.

You can optionally define event handlers for the validator, to implement filtering. These
handlers will capture events before the control itself does.

For an example implementation, see the valtext.h and valtext.cpp files in the wxWindows
library.

How validators interact with dialogs

For validators to work correctly, validator functions must be called at the right times
during dialog initialisation and dismissal.

When a wxDialog::Show (p. 366) is called (for a modeless dialog) or
wxDialog::ShowModal (p. 367) is called (for a modal dialog), the function
wxWindow::InitDialog (p. 1384) is automatically called. This in turn sends an initialisation
event to the dialog. The default handler for the wxEVT_INIT_DIALOG event is defined in
the wxWindow class to simply call the function wxWindow::TransferDataToWindow (p.
1417). This function finds all the validators in the window's children and calls the
TransferToWindow function for each. Thus, data is transferred from C++ variables to the
dialog just as the dialog is being shown.

If you are using a window or panel instead of a dialog, you will need to call
wxWindow::InitDialog (p. 1384) explicitly before showing the window.

When the user clicks on a button, for example the OK button, the application should first
call wxWindow::Validate (p. 1418), which returns FALSE if any of the child window
validators failed to validate the window data. The button handler should return
immediately if validation failed. Secondly, the application should call
wxWindow::TransferDataFromWindow (p. 1417) and return if this failed. It is then safe to
end the dialog by calling EndModal (if modal) or Show (if modeless).

In fact, wxDialog contains a default command event handler for the wxID_OK button. It
goes like this:

CHAPTER 8

1573

void wxDialog::OnOK(wxCommandEvent& event)
{
 if (Validate() && TransferDataFromWindow())
 {
 if (IsModal())
 EndModal(wxID_OK);
 else
 {
 SetReturnCode(wxID_OK);
 this->Show(FALSE);
 }
 }
}

So if using validators and a normal OK button, you may not even need to write any code
for handling dialog dismissal.

If you load your dialog from a resource file, you will need to iterate through the controls
setting validators, since validators can't be specified in a dialog resource.

CCoonnssttrraaiinnttss oovveerrvviieeww

Classes: wxLayoutConstraints (p. 740), wxIndividualLayoutConstraint (p. 715).

Objects of class wxLayoutConstraint can be associated with a window to define the way
it is laid out, with respect to its siblings or the parent.

The class consists of the following eight constraints of class
wxIndividualLayoutConstraint, some or all of which should be accessed directly to set
the appropriate constraints.

 • left: represents the left hand edge of the window
 • right: represents the right hand edge of the window
 • top: represents the top edge of the window
 • bottom: represents the bottom edge of the window
 • width: represents the width of the window
 • height: represents the height of the window
 • centreX: represents the horizontal centre point of the window
 • centreY: represents the vertical centre point of the window

The constraints are initially set to have the relationship wxUnconstrained, which means
that their values should be calculated by looking at known constraints. To calculate the
position and size of the control, the layout algorithm needs to know exactly 4 constraints
(as it has 4 numbers to calculate from them), so you should always set exactly 4 of the
constraints from the above table.

If you want the controls height or width to have the default value, you may use a special

CHAPTER 8

1574

value for the constraint: wxAsIs. If the constraint is wxAsIs, the dimension will not be
changed which is useful for the dialog controls which often have the default size (e.g. the
buttons whose size is determined by their label).

The constrains calculation is done in wxWindow::Layout (p. 1386) function which
evaluates constraints. To call it you can either callwxWindow::SetAutoLayout (p. 1405) if
the parent window is a frame, panel or a dialog to tell default OnSize handlers to call
Layout automatically whenever the window size changes, or override OnSize and call
Layout yourself (note that you do have to call Layout (p. 1386) yourself if the parent
window is not a frame, panel or dialog).

Constraint layout: more detail

By default, windows do not have a wxLayoutConstraints object. In this case, much layout
must be done explicitly, by performing calculations in OnSize members, except for the
case of frames that have exactly one subwindow (not counting toolbar and statusbar
which are also positioned by the frame automatically), where wxFrame::OnSize takes
care of resizing the child to always fill the frame.

To avoid the need for these rather awkward calculations, the user can create a
wxLayoutConstraints object and associate it with a window with
wxWindow::SetConstraints. This object contains a constraint for each of the window
edges, two for the centre point, and two for the window size. By setting some or all of
these constraints appropriately, the user can achieve quite complex layout by defining
relationships between windows.

In wxWindows, each window can be constrained relative to either its siblings on the
same window, or the parent. The layout algorithm therefore operates in a top-down
manner, finding the correct layout for the children of a window, then the layout for the
grandchildren, and so on. Note that this differs markedly from native Motif layout, where
constraints can ripple upwards and can eventually change the frame window or dialog
box size. We assume in wxWindows that the user is always 'boss' and specifies the size
of the outer window, to which subwindows must conform. Obviously, this might be a
limitation in some circumstances, but it suffices for most situations, and the simplification
avoids some of the nightmarish problems associated with programming Motif.

When the user sets constraints, many of the constraints for windows edges and
dimensions remain unconstrained. For a given window, the wxWindow::Layout algorithm
first resets all constraints in all children to have unknown edge or dimension values, and
then iterates through the constraints, evaluating them. For unconstrained edges and
dimensions, it tries to find the value using known relationships that always hold. For
example, an unconstrained width may be calculated from the left and right edges, if both
are currently known. For edges and dimensions with user-supplied constraints, these
constraints are evaluated if the inputs of the constraint are known.

The algorithm stops when all child edges and dimension are known (success), or there
are unknown edges or dimensions but there has been no change in this cycle (failure).

It then sets all the window positions and sizes according to the values it has found.

CHAPTER 8

1575

Because the algorithm is iterative, the order in which constraints are considered is
irrelevant, however you may reduce the number of iterations (and thus speed up the
layout calculations) by creating the controls in such order that as many constraints as
possible can be calculated during the first iteration. For example, if you have 2 buttons
which you'd like to position in the lower right corner, it is slightly more efficient to first
create the second button and specify that its right border IsSameAs(parent, wxRight)
and then create the first one by specifying that it should be LeftOf() the second one than
to do in a more natural left-to-right order.

Window layout examples

Example 1: subwindow layout

This example specifies a panel and a window side by side, with a text subwindow below
it.

 frame->panel = new wxPanel(frame, -1, wxPoint(0, 0), wxSize(1000,
500), 0);
 frame->scrollWindow = new MyScrolledWindow(frame, -1, wxPoint(0, 0),
wxSize(400, 400), wxRETAINED);
 frame->text_window = new MyTextWindow(frame, -1, wxPoint(0, 250),
wxSize(400, 250));

 // Set constraints for panel subwindow
 wxLayoutConstraints *c1 = new wxLayoutConstraints;

 c1->left.SameAs (frame, wxLeft);
 c1->top.SameAs (frame, wxTop);
 c1->right.PercentOf (frame, wxWidth, 50);
 c1->height.PercentOf (frame, wxHeight, 50);

 frame->panel->SetConstraints(c1);

 // Set constraints for scrollWindow subwindow
 wxLayoutConstraints *c2 = new wxLayoutConstraints;

 c2->left.SameAs (frame->panel, wxRight);
 c2->top.SameAs (frame, wxTop);
 c2->right.SameAs (frame, wxRight);
 c2->height.PercentOf (frame, wxHeight, 50);

 frame->scrollWindow->SetConstraints(c2);

 // Set constraints for text subwindow
 wxLayoutConstraints *c3 = new wxLayoutConstraints;
 c3->left.SameAs (frame, wxLeft);
 c3->top.Below (frame->panel);
 c3->right.SameAs (frame, wxRight);
 c3->bottom.SameAs (frame, wxBottom);

 frame->text_window->SetConstraints(c3);

CHAPTER 8

1576

Example 2: panel item layout

This example sizes a button width to 80 percent of the panel width, and centres it
horizontally. A listbox and multitext item are placed below it. The listbox takes up 40
percent of the panel width, and the multitext item takes up the remainder of the width.
Margins of 5 pixels are used.

 // Create some panel items
 wxButton *btn1 = new wxButton(frame->panel, -1, "A button") ;

 wxLayoutConstraints *b1 = new wxLayoutConstraints;
 b1->centreX.SameAs (frame->panel, wxCentreX);
 b1->top.SameAs (frame->panel, wxTop, 5);
 b1->width.PercentOf (frame->panel, wxWidth, 80);
 b1->height.PercentOf (frame->panel, wxHeight, 10);
 btn1->SetConstraints(b1);

 wxListBox *list = new wxListBox(frame->panel, -1, "A list",
 wxPoint(-1, -1), wxSize(200, 100));

 wxLayoutConstraints *b2 = new wxLayoutConstraints;
 b2->top.Below (btn1, 5);
 b2->left.SameAs (frame->panel, wxLeft, 5);
 b2->width.PercentOf (frame->panel, wxWidth, 40);
 b2->bottom.SameAs (frame->panel, wxBottom, 5);
 list->SetConstraints(b2);

 wxTextCtrl *mtext = new wxTextCtrl(frame->panel, -1, "Multiline
text", "Some text",
 wxPoint(-1, -1), wxSize(150, 100),
wxTE_MULTILINE);

 wxLayoutConstraints *b3 = new wxLayoutConstraints;
 b3->top.Below (btn1, 5);
 b3->left.RightOf (list, 5);
 b3->right.SameAs (frame->panel, wxRight, 5);
 b3->bottom.SameAs (frame->panel, wxBottom, 5);
 mtext->SetConstraints(b3);

TThhee wwxxWWiinnddoowwss rreessoouurrccee ssyysstteemm

wxWindows has an optional resource file facility, which allows separation of dialog,
menu, bitmap and icon specifications from the application code.

It is similar in principle to the Windows resource file (whose ASCII form is suffixed .RC
and whose binary form is suffixed .RES). The wxWindows resource file is currently
ASCII-only, suffixed .WXR. Note that under Windows, the .WXR file does not replace the
native Windows resource file, it merely supplements it. There is no existing native
resource format in X (except for the defaults file, which has limited expressive power).

CHAPTER 8

1577

For details of functions for manipulating resource files and loading user interface
elements, see wxWindows resource functions (p. 1485).

You can use Dialog Editor to create resource files. Unfortunately neither Dialog Editor
nor the .WXR format currently cover all wxWindows controls; some are missing, such as
wxSpinCtrl, wxSpinButton, wxListCtrl, wxTreeCtrl and others.

Note that in later versions of wxWindows, this resource format will be replaced by XML
specifications that can also include sizers.

The format of a .WXR file

A wxWindows resource file may look a little odd at first. It is C++ compatible, comprising
mostly of static string variable declarations with wxExpr syntax within the string.

Here's a sample .WXR file:

/*
 * wxWindows Resource File
 *
 */

#include "noname.ids"

static char *my_resource = "bitmap(name = 'my_resource',\
 bitmap = ['myproject', wxBITMAP_TYPE_BMP_RESOURCE, 'WINDOWS'],\
 bitmap = ['myproject.xpm', wxBITMAP_TYPE_XPM, 'X']).";

static char *menuBar11 = "menu(name = 'menuBar11',\
 menu = \
 [\
 ['&File', 1, '', \
 ['&Open File', 2, 'Open a file'],\
 ['&Save File', 3, 'Save a file'],\
 [],\
 ['E&xit', 4, 'Exit program']\
],\
 ['&Help', 5, '', \
 ['&About', 6, 'About this program']\
]\
]).";

static char *project_resource = "icon(name = 'project_resource',\
 icon = ['project', wxBITMAP_TYPE_ICO_RESOURCE, 'WINDOWS'],\
 icon = ['project_data', wxBITMAP_TYPE_XBM, 'X']).";

static char *panel3 = "dialog(name = 'panel3',\
 style = '',\
 title = 'untitled',\
 button_font = [14, 'wxSWISS', 'wxNORMAL', 'wxBOLD', 0],\
 label_font = [10, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0],\
 x = 0, y = 37, width = 292, height = 164,\

CHAPTER 8

1578

 control = [1000, wxButton, 'OK', '', 'button5', 23, 34, -1, -1,
'my_resource'],\
 control = [1001, wxStaticText, 'A Label', '', 'message7', 166, 61, -
1, -1, 'my_resource'],\
 control = [1002, wxTextCtrl, 'Text', 'wxTE_MULTITEXT', 'text8', 24,
110, -1, -1]).";

As you can see, C++-style comments are allowed, and apparently include files are
supported too: but this is a special case, where the included file is a file of defines
shared by the C++ application code and resource file to relate identifiers (such as
FILE_OPEN) to integers.

Each resource object is of standard wxExpr (p. 439) syntax, that is, an object name such
as dialog or icon, then an open parenthesis, a list of comma-delimited attribute/value
pairs, a closing parenthesis, and a full stop. Backslashes are required to escape
newlines, for the benefit of C++ syntax. If double quotation marks are used to delimit
strings, they need to be escaped with backslash within a C++ string (so it is easier to use
single quotation marks instead).

A note on string syntax: A string that begins with an alphabetic character, and contains
only alphanumeric characters, hyphens and underscores, need not be quoted at all.
Single quotes and double quotes may be used to delimit more complex strings. In fact,
single-quoted and no-quoted strings are actually called words, but are treated as strings
for the purpose of the resource system.

A resource file like this is typically included in the application main file, as if it were a
normal C++ file. This eliminates the need for a separate resource file to be distributed
alongside the executable. However, the resource file can be dynamically loaded if
desired (useful for non-C++ languages such as Python).

Once included, the resources need to be 'parsed' (interpreted), because so far the data
is just a number of static string variables. The function ::wxResourceParseData is
called early on in initialization of the application (usually in wxApp::OnInit) with a
variable as argument. This may need to be called a number of times, one for each
variable. However, more than one resource 'object' can be stored in one string variable
at a time, so you can get all your resources into one variable if you want to.

::wxResourceParseData parses the contents of the resource, ready for use by
functions such as ::wxResourceCreateBitmap and wxPanel::LoadFromResource.

If a wxWindows resource object (such as a bitmap resource) refers to a C++ data
structure, such as static XPM data, a further call (::wxResourceRegisterBitmapData)
needs to be made on initialization to tell wxWindows about this data. The wxWindows
resource object will refer to a string identifier, such as 'project_data' in the example file
above. This identifier will be looked up in a table to get the C++ static data to use for the
bitmap or icon.

In the C++ fragment below, the WXR resource file is included, and appropriate resource
initialization is carried out in OnInit. Note that at this stage, no actual wxWindows
dialogs, menus, bitmaps or icons are created; their 'templates' are merely being set up
for later use.

CHAPTER 8

1579

/*
 * File: project.cpp
 * Purpose: main application module
 */

#include "wx/wx.h"
#include "project.h"

// Includes the dialog, menu etc. resources
#include "project.wxr"

// Includes XPM data
#include "project.xpm"

IMPLEMENT_APP(AppClass)

// Called to initialize the program
bool AppClass::OnInit()
{
 wxResourceRegisterBitmapData("project_data", project_bits,
project_width, project_height);

 wxResourceParseData(menuBar11);
 wxResourceParseData(my_resource);
 wxResourceParseData(project_resource);
 wxResourceParseData(panel3);
 ...

 return TRUE;
}

The following code shows a dialog:

 // project.wxr contains dialog1
 MyDialog *dialog = new MyDialog;
 if (dialog->LoadFromResource(this, "dialog1"))
 {
 wxTextCtrl *text = (wxTextCtrl *)wxFindWindowByName("text3",
dialog);
 if (text)
 text->SetValue("wxWindows resource demo");
 dialog->ShowModal();
 }
 dialog->Destroy();

Please see also the resource sample.

Dialog resource format

A dialog resource object may be used for either panels or dialog boxes, and consists of
the following attributes. In the following, a font specification is a list consisting of point
size, family, style, weight, underlined, optional facename.

CHAPTER 8

1580

Attribute Value
id The integer identifier of the resource.
name The name of the resource.
style Optional dialog box or panel window

style.
title The title of the dialog box (unused if a

panel).
.modal Whether modal: 1 if modal, 0 if modeless,

absent if a panel resource.
use_dialog_units If 1, use dialog units (dependent on the

dialog font size) for control sizes and
positions.

use_system_defaults If 1, override colours and fonts to use
system settings instead.

button_font The font used for control buttons: a list
comprising point size (integer), family
(string), font style (string), font weight
(string) and underlining (0 or 1).

label_font The font used for control labels: a list
comprising point size (integer), family
(string), font style (string), font weight
(string) and underlining (0 or 1). Now
obsolete; use button_font instead.

x The x position of the dialog or panel.
y The y position of the dialog or panel.
width The width of the dialog or panel.
height The height of the dialog or panel.
background_colour The background colour of the dialog or

panel.
label_colour The default label colour for the children of

the dialog or panel. Now obsolete; use
button_colour instead.

button_colour The default button text colour for the
children of the dialog or panel.

Then comes zero or more attributes named 'control' for each control (panel item) on the
dialog or panel. The value is a list of further elements. In the table below, the names in
the first column correspond to the first element of the value list, and the second column
details the remaining elements of the list. Note that titles for some controls are obsolete
(they don't have titles), but the syntax is retained for backward compatibility.

Control Values
wxButton id (integer), title (string), window style

(string), name (string), x, y, width, height,
button bitmap resource (optional string),
button font spec

wxCheckBox id (integer), title (string), window style
(string), name (string), x, y, width, height,
default value (optional integer, 1 or 0),

CHAPTER 8

1581

label font spec
wxChoice id (integer), title (string), window style

(string), name (string), x, y, width, height,
values (optional list of strings), label font
spec, button font spec

wxComboBox id (integer), title (string), window style
(string), name (string), x, y, width, height,
default text value, values (optional list of
strings), label font spec, button font spec

wxGauge id (integer), title (string), window style
(string), name (string), x, y, width, height,
value (optional integer), range (optional
integer), label font spec, button font spec

wxStaticBox id (integer), title (string), window style
(string), name (string), x, y, width, height,
label font spec

wxListBox id (integer), title (string), window style
(string), name (string), x, y, width, height,
values (optional list of strings), multiple
(optional string, wxSINGLE or
wxMULTIPLE), label font spec, button
font spec

wxStaticText id (integer), title (string), window style
(string), name (string), x, y, width, height,
message bitmap resource (optional
string), label font spec

wxRadioBox id (integer), title (string), window style
(string), name (string), x, y, width, height,
values (optional list of strings), number of
rows or cols, label font spec, button font
spec

wxRadioButton id (integer), title (string), window style
(string), name (string), x, y, width, height,
default value (optional integer, 1 or 0),
label font spec

wxScrollBar id (integer), title (string), window style
(string), name (string), x, y, width, height,
value (optional integer), page length
(optional integer), object length (optional
integer), view length (optional integer)

wxSlider id (integer), title (string), window style
(string), name (string), x, y, width, height,
value (optional integer), minimum
(optional integer), maximum (optional
integer), label font spec, button font spec

wxTextCtrl id (integer), title (string), window style
(string), name (string), x, y, width, height,
default value (optional string), label font
spec, button font spec

CHAPTER 8

1582

Menubar resource format

A menubar resource object consists of the following attributes.

Attribute Value
name The name of the menubar resource.
menu A list containing all the menus, as

detailed below.

The value of the menu attribute is a list of menu item specifications, where each menu
item specification is itself a list comprising:

 • title (a string)
 • menu item identifier (a string or non-zero integer, see below)
 • help string (optional)
 • 0 or 1 for the 'checkable' parameter (optional)
 • optionally, further menu item specifications if this item is a pulldown menu.

If the menu item specification is the empty list ([]), this is interpreted as a menu
separator.

If further (optional) information is associated with each menu item in a future release of
wxWindows, it will be placed after the help string and before the optional pulldown menu
specifications.

Note that the menu item identifier must be an integer if the resource is being included as
C++ code and then parsed on initialisation. Unfortunately, #define substitution is not
performed inside strings, and therefore the program cannot know the mapping.
However, if the .WXR file is being loaded dynamically, wxWindows will attempt to
replace string identifiers with #defined integers, because it is able to parse the included
#defines.

Bitmap resource format

A bitmap resource object consists of a name attribute, and one or more bitmap
attributes. There can be more than one of these to allow specification of bitmaps that are
optimum for the platform and display.

 • Bitmap name or filename.
 • Type of bitmap; for example, wxBITMAP_TYPE_BMP_RESOURCE. See class

reference under wxBitmap for a full list).
 • Platform this bitmap is valid for; one of WINDOWS, X, MAC and ANY.
 • Number of colours (optional).
 • X resolution (optional).
 • Y resolution (optional).

CHAPTER 8

1583

Icon resource format

An icon resource object consists of a name attribute, and one or more icon attributes.
There can be more than one of these to allow specification of icons that are optimum for
the platform and display.

 • Icon name or filename.
 • Type of icon; for example, wxBITMAP_TYPE_ICO_RESOURCE. See class

reference under wxBitmap for a full list).
 • Platform this bitmap is valid for; one of WINDOWS, X, MAC and ANY.
 • Number of colours (optional).
 • X resolution (optional).
 • Y resolution (optional).

Resource format design issues

The .WXR file format is a recent addition and subject to change. The use of an ASCII
resource file format may seem rather inefficient, but this choice has a number of
advantages:

 • Since it is C++ compatible, it can be included into an application's source code,

eliminating the problems associated with distributing a separate resource file
with the executable. However, it can also be loaded dynamically from a file,
which will be required for non-C++ programs that use wxWindows.

 • No extra binary file format and separate converter need be maintained for the
wxWindows project (although others are welcome to add the equivalent of the
Windows 'rc' resource parser and a binary format).

 • It would be difficult to append a binary resource component onto an executable
in a portable way.

 • The file format is essentially the wxExpr (p. 439) object format, for which a
parser already exists, so parsing is easy. For those programs that use wxExpr
anyway, the size overhead of the parser is minimal.

The disadvantages of the approach include:

 • Parsing adds a small execution overhead to program initialization.
 • Under 16-bit Windows especially, global data is at a premium. Using a .RC

resource table for some wxWindows resource data may be a partial solution,
although .RC strings are limited to 255 characters.

 • Without a resource preprocessor, it is not possible to substitute integers for
identifiers (so menu identifiers have to be written as integers in the resource
object, in addition to providing #defines for application code convenience).

Compiling the resource system

To enable the resource system, set wxUSE_WX_RESOURCES to 1 in setup.h.

CHAPTER 8

1584

SSccrroolllliinngg oovveerrvviieeww

Classes: wxWindow (p. 1366), wxScrolledWindow (p. 1070), wxIcon (p. 680),
wxScrollBar (p. 1062).

Scrollbars come in various guises in wxWindows. All windows have the potential to show
a vertical scrollbar and/or a horizontal scrollbar: it is a basic capability of a window.
However, in practice, not all windows do make use of scrollbars, such as a single-line
wxTextCtrl.

Because any class derived from wxWindow (p. 1366) may have scrollbars, there are
functions to manipulate the scrollbars and event handlers to intercept scroll events. But
just because a window generates a scroll event, doesn't mean that the window
necessarily handles it and physically scrolls the window. The base class wxWindow in
fact doesn't have any default functionality to handle scroll events. If you created a
wxWindow object with scrollbars, and then clicked on the scrollbars, nothing at all would
happen. This is deliberate, because the interpretation of scroll events varies from one
window class to another.

wxScrolledWindow (p. 1070) (formerly wxCanvas) is an example of a window that adds
functionality to make scrolling really work. It assumes that scrolling happens in
consistent units, not different-sized jumps, and that page size is represented by the
visible portion of the window. It is suited to drawing applications, but perhaps not so
suitable for a sophisticated editor in which the amount scrolled may vary according to the
size of text on a given line. For this, you would derive from wxWindow and implement
scrolling yourself. wxGrid (p. 559) is an example of a class that implements its own
scrolling, largely because columns and rows can vary in size.

The scrollbar model

The function wxWindow::SetScrollbar (p. 1411) gives a clue about the way a scrollbar is
modeled. This function takes the following arguments:

orientation Which scrollbar: wxVERTICAL or wxHORIZONTAL.

position The position of the scrollbar in scroll units.

visible The size of the visible portion of the scrollbar, in scroll

units.

range The maximum position of the scrollbar.

refresh Whether the scrollbar should be repainted.

orientation determines whether we're talking about the built-in horizontal or vertical

CHAPTER 8

1585

scrollbar.

position is simply the position of the 'thumb' (the bit you drag to scroll around). It is given
in scroll units, and so is relative to the total range of the scrollbar.

visible gives the number of scroll units that represents the portion of the window
currently visible. Normally, a scrollbar is capable of indicating this visually by showing a
different length of thumb.

range is the maximum value of the scrollbar, where zero is the start position. You
choose the units that suit you, so if you wanted to display text that has 100 lines, you
would set this to 100. Note that this doesn't have to correspond to the number of pixels
scrolled - it is up to you how you actually show the contents of the window.

refresh just indicates whether the scrollbar should be repainted immediately or not.

An example

Let's say you wish to display 50 lines of text, using the same font. The window is sized
so that you can only see 16 lines at a time.

You would use:

 SetScrollbar(wxVERTICAL, 0, 16, 50);

Note that with the window at this size, the thumb position can never go above 50 minus
16, or 34.

You can determine how many lines are currently visible by dividing the current view size
by the character height in pixels.

When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which can be
called initially and also from your wxWindow::OnSize (p. 1399) event handler function.

BBiittmmaappss aanndd iiccoonnss oovveerrvviieeww

Classes: wxBitmap (p. 55), wxBitmapHandler (p. 68), wxIcon (p. 680), wxCursor (p.
191).

The wxBitmap class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour. Platform-specific methods for creating a wxBitmap object from
an existing file are catered for, and this is an occasion where conditional compilation will
sometimes be required.

CHAPTER 8

1586

A bitmap created dynamically or loaded from a file can be selected into a memory device
context (instance of wxMemoryDC (p. 828)). This enables the bitmap to be copied to a
window or memory device context using wxDC::Blit (p. 328), or to be used as a drawing
surface. The wxToolBarSimple class is implemented using bitmaps, and the toolbar
demo shows one of the toolbar bitmaps being used for drawing a miniature version of
the graphic which appears on the main window.

See wxMemoryDC (p. 828) for an example of drawing onto a bitmap.

The following shows the conditional compilation required to load a bitmap under Unix
and in Windows. The alternative is to use the string version of the bitmap constructor,
which loads a file under Unix and a resource or file under Windows, but has the
disadvantage of requiring the XPM icon file to be available at run-time.

#if defined(__WXGTK__) || defined(__WXMOTIF__)
#include "mondrian.xpm"
#endif

A macro, wxICON (p. 1484), is available which creates an icon using an XPM on the
appropriate platform, or an icon resource on Windows.

wxIcon icon(wxICON(mondrian));

// Equivalent to:

#if defined(__WXGTK__) || defined(__WXMOTIF__)
wxIcon icon(mondrian_xpm);
#endif

#if defined(__WXMSW__)
wxIcon icon("mondrian");
#endif

There is also a corresponding wxBITMAP (p. 1482) macro which allows to create the
bitmaps in much the same way as wxICON (p. 1484) creates icons. It assumes that
bitmaps live in resources under Windows or OS2 and XPM files under all other platforms
(for XPMs, the corresponding file must be included before this macro is used, of course,
and the name of the bitmap should be the same as the resource name under Windows
with _xpmsuffix). For example:

// an easy and portable way to create a bitmap
wxBitmap bmp(wxBITMAP(bmpname));

// which is roughly equivalent to the following
#if defined(__WXMSW__) || defined(__WXPM__)
 wxBitmap bmp("bmpname", wxBITMAP_TYPE_RESOURCE);
#else // Unix
 wxBitmap bmp(bmpname_xpm, wxBITMAP_TYPE_XPM);
#endif

You should always use wxICON and wxBITMAP macros because they work for any
platform (unlike the code above which doesn't deal with wxMac, wxBe, ...) and are more

CHAPTER 8

1587

short and clear than versions with #ifdefs.

Supported bitmap file formats

The following lists the formats handled on different platforms. Note that missing or
partially-implemented formats are automatically supplemented by the wxImage (p. 689)
to load the data, and then converting it to wxBitmap form. Note that using wxImage is the
preferred way to load images in wxWindows, with the exception of resources (XPM-files
or native Windows resources). Writing an image format handler for wxImage is also far
easier than writing one for wxBitmap, because wxImage has exactly one format on all
platforms whereas wxBitmap can store pixel data very differently, depending on colour
depths and platform.

wxBitmap

Under Windows, wxBitmap may load the following formats:

 • Windows bitmap resource (wxBITMAP_TYPE_BMP_RESOURCE)
 • Windows bitmap file (wxBITMAP_TYPE_BMP)
 • XPM data and file (wxBITMAP_TYPE_XPM)
 • All formats that are supported by the wxImage (p. 689) class.

Under wxGTK, wxBitmap may load the following formats:

 • XPM data and file (wxBITMAP_TYPE_XPM)
 • All formats that are supported by the wxImage (p. 689) class.

Under wxMotif, wxBitmap may load the following formats:

 • XBM data and file (wxBITMAP_TYPE_XBM)
 • XPM data and file (wxBITMAP_TYPE_XPM)
 • All formats that are supported by the wxImage (p. 689) class.

wxIcon

Under Windows, wxIcon may load the following formats:

 • Windows icon resource (wxBITMAP_TYPE_ICO_RESOURCE)
 • Windows icon file (wxBITMAP_TYPE_ICO)
 • XPM data and file (wxBITMAP_TYPE_XPM)

Under wxGTK, wxIcon may load the following formats:

 • XPM data and file (wxBITMAP_TYPE_XPM)
 • All formats that are supported by the wxImage (p. 689) class.

Under wxMotif, wxIcon may load the following formats:

CHAPTER 8

1588

 • XBM data and file (wxBITMAP_TYPE_XBM)
 • XPM data and file (wxBITMAP_TYPE_XPM)
 • All formats that are supported by the wxImage (p. 689) class (?).

wxCursor

Under Windows, wxCursor may load the following formats:

 • Windows cursor resource (wxBITMAP_TYPE_CUR_RESOURCE)
 • Windows cursor file (wxBITMAP_TYPE_CUR)
 • Windows icon file (wxBITMAP_TYPE_ICO)
 • Windows bitmap file (wxBITMAP_TYPE_BMP)

Under wxGTK, wxCursor may load the following formats (in additional to stock cursors):

 • None (stock cursors only).

Under wxMotif, wxCursor may load the following formats:

 • XBM data and file (wxBITMAP_TYPE_XBM)

Bitmap format handlers

To provide extensibility, the functionality for loading and saving bitmap formats is not
implemented in the wxBitmap class, but in a number of handler classes, derived from
wxBitmapHandler. There is a static list of handlers which wxBitmap examines when a file
load/save operation is requested. Some handlers are provided as standard, but if you
have special requirements, you may wish to initialise the wxBitmap class with some
extra handlers which you write yourself or receive from a third party.

To add a handler object to wxBitmap, your application needs to include the header which
implements it, and then call the static function wxBitmap::AddHandler (p. 59). For
example:

 #include <wx/xpmhand.h>
 ...
 // Initialisation
 wxBitmap::AddHandler(new wxXPMFileHandler);
 wxBitmap::AddHandler(new wxXPMDataHandler);
 ...

Assuming the handlers have been written correctly, you should now be able to load and
save XPM files using the usual wxBitmap API.

Note: bitmap handlers are not implemented on all platforms. Currently, the above is only
necessary on Windows, to save the extra overhead of formats that may not be
necessary (if you don't use them, they are not linked into the executable). Unix platforms

CHAPTER 8

1589

have XPM capability built-in (where supported).

Also, just because a handler (such as a PNG handler) is not present does not mean that
wxBitmap does not support that file format. If wxBitmap fails to find a suitable handler,
the file-loading capabilities of wxImage are used instead.

DDeevviiccee ccoonntteexxtt oovveerrvviieeww

Classes: wxDC (p. 327), wxPostScriptDC (p. 938), wxMetafileDC (p. 862),
wxMemoryDC (p. 828), wxPrinterDC (p. 958), wxScreenDC (p. 1060), wxClientDC (p.
123), wxPaintDC (p. 910), wxWindowDC (p. 1418).

A wxDC is a device context onto which graphics and text can be drawn. The device
context is intended to represent a number of output devices in a generic way, with the
same API being used throughout.

Some device contexts are created temporarily in order to draw on a window. This is true
of wxScreenDC (p. 1060), wxClientDC (p. 123), wxPaintDC (p. 910), and wxWindowDC
(p. 1418). The following describes the differences between these device contexts and
when you should use them.

 • wxScreenDC. Use this to paint on the screen, as opposed to an individual

window.
 • wxClientDC. Use this to paint on the client area of window (the part without

borders and other decorations), but do not use it from within an
wxWindow::OnPaint (p. 1397) event.

 • wxPaintDC. Use this to paint on the client area of a window, but only from within
an wxWindow::OnPaint (p. 1397) event.

 • wxWindowDC. Use this to paint on the whole area of a window, including
decorations. This may not be available on non-Windows platforms.

To use a client, paint or window device context, create an object on the stack with the
window as argument, for example:

 void MyWindow::OnMyCmd(wxCommandEvent& event)
 {
 wxClientDC dc(window);
 DrawMyPicture(dc);
 }

Try to write code so it is parameterised by wxDC - if you do this, the same piece of code
may write to a number of different devices, by passing a different device context. This
doesn't work for everything (for example not all device contexts support bitmap drawing)
but will work most of the time.

wwxxFFoonntt oovveerrvviieeww

CHAPTER 8

1590

Class: wxFont (p. 506)

A font is an object which determines the appearance of text, primarily when drawing text
to a window or device context. A font is determined by the following parameters (not all
of them have to be specified, of course):

Point size This is the standard way of referring to text size.
Family Supported families are: wxDEFAULT, wxDECORATIVE,

wxROMAN, wxSCRIPT, wxSWISS, wxMODERN.
wxMODERN is a fixed pitch font; the others are either fixed
or variable pitch.

Style The value can be wxNORMAL, wxSLANT or wxITALIC.
Weight The value can be wxNORMAL, wxLIGHT or wxBOLD.
Underlining The value can be TRUE or FALSE.
Face name An optional string specifying the actual typeface to be

used. If NULL, a default typeface will chosen based on the
family.

Encoding The font encoding (see
wxFONTENCODING_XXXconstants and the font overview
(p. 1590) for more details)

Specifying a family, rather than a specific typeface name, ensures a degree of portability
across platforms because a suitable font will be chosen for the given font family.

Under Windows, the face name can be one of the installed fonts on the user's system.
Since the choice of fonts differs from system to system, either choose standard Windows
fonts, or if allowing the user to specify a face name, store the family id with any file that
might be transported to a different Windows machine or other platform.

Note: There is currently a difference between the appearance of fonts on the two
platforms, if the mapping mode is anything other than wxMM_TEXT. Under X, font size
is always specified in points. Under MS Windows, the unit for text is points but the text is
scaled according to the current mapping mode. However, user scaling on a device
context will also scale fonts under both environments.

FFoonntt eennccooddiinngg oovveerrvviieeww

wxWindows has support for multiple font encodings starting from release 2.2. By
encoding we mean here the mapping between the character codes and the letters.
Probably the most well-known encoding is (7 bit) ASCII one which is used almost
universally now to represent the letters of the English alphabet and some other common
characters. However, it is not enough to represent the letters of foreign alphabets and
here other encodings come into play. Please note that we will only discuss 8-bit fonts
here and not Unicode (p. 1536).

CHAPTER 8

1591

Font encoding support is assured by several classes: wxFont (p. 506) itself, but also
wxFontEnumerator (p. 519) and wxFontMapper (p. 522). wxFont encoding support is
reflected by a (new) constructor parameter encoding which takes one of the following
values (elements of enumeration type wxFontEncoding):

wxFONTENCODING_SYSTEM The default encoding of the underlying operating

system (notice that this might be a "foreign" encoding for
foreign versions of Windows 9x/NT).

wxFONTENCODING_DEFAULT The applications default encoding as returned by
wxFont::GetDefaultEncoding (p. 510). On program startup,
the applications default encoding is the same as
wxFONTENCODING_SYSTEM, but may be changed to
make all the fonts created later to use it (by default).

wxFONTENCODING_ISO8859_1..15 ISO8859 family encodings which are usually
used by all non-Microsoft operating systems

wxFONTENCODING_KOI8 Standard Cyrillic encoding for the Internet (but see also
wxFONTENCODING_ISO8859_5 and
wxFONTENCODING_CP1251)

wxFONTENCODING_CP1250 Microsoft analogue of ISO8859-2
wxFONTENCODING_CP1251 Microsoft analogue of ISO8859-5
wxFONTENCODING_CP1252 Microsoft analogue of ISO8859-1

As you may see, Microsoft's encoding partly mirror the standard ISO8859 ones, but
there are (minor) differences even between ISO8859-1 (Latin1, ISO encoding for
Western Europe) and CP1251 (WinLatin1, standard code page for English versions of
Windows) and there are more of them for other encodings.

The situation is particularly complicated with Cyrillic encodings for which (more than)
three incompatible encodings exist: KOI8 (the old standard, widely used on the Internet),
ISO8859-5 (ISO standard for Cyrillic) and CP1251 (WinCyrillic).

This abundance of (incompatible) encoding:w s should make it clear that using
encodings is less easy than it might seem. The problems arise both from the fact that the
standard encodings for the given language (say Russian, which is written in Cyrillic) are
different on differe nt platforms and because the fonts in the given encoding might just
not be installed (this is especially a problem with Unix, or, in general, not Win32,
systems).

To allow to see clearer in this, wxFontEnumerator (p. 519) class may be used to
enumerate both all available encodings and to find the facename(s) in which the given
encoding exists. If you can find the font in the correct encoding with wxFontEnumerator
then your troubles are over, but, unfortunately, sometimes this is not enough. For
example, there is no standard way (I know of, please tell me if you do!) to find a font on a
Windows system for KOI8 encoding (only for WinCyrillic one which is quite different), so
wxFontEnumerator (p. 519) will never return one, even if the user has installed a KOI8
font on his system.

To solve this problem, a wxFontMapper (p. 522) class is provided. This class stores the
mapping between the encodings and the font face names which support them in
wxConfig (p. 1554) object. Of course, it would be fairly useless if it tried to determine

CHAPTER 8

1592

these mappings by itself, so, instead, it (optionally) ask the user and remember his
answers so that the next time the program will automatically choose the correct font.

All these topics are illustrated by the font sample (p. 1519), please refer to it and the
documentation of the classes mentioned here for further explanations.

wwxxSSpplliitttteerrWWiinnddooww oovveerrvviieeww

Classes: wxSplitterWindow (p. 1137)

The following screenshot shows the appearance of a splitter window with a vertical split.

The style wxSP_3D has been used to show a 3D border and 3D sash.

Example

The following fragment shows how to create a splitter window, creating two subwindows
and hiding one of them.

 splitter = new wxSplitterWindow(this, -1, wxPoint(0, 0), wxSize(400,
400), wxSP_3D);

CHAPTER 8

1593

 leftWindow = new MyWindow(splitter);
 leftWindow->SetScrollbars(20, 20, 50, 50);

 rightWindow = new MyWindow(splitter);
 rightWindow->SetScrollbars(20, 20, 50, 50);
 rightWindow->Show(FALSE);

 splitter->Initialize(leftWindow);

 // Set this to prevent unsplitting
// splitter->SetMinimumPaneSize(20);

The next fragment shows how the splitter window can be manipulated after creation.

 void MyFrame::OnSplitVertical(wxCommandEvent& event)
 {
 if (splitter->IsSplit())
 splitter->Unsplit();
 leftWindow->Show(TRUE);
 rightWindow->Show(TRUE);
 splitter->SplitVertically(leftWindow, rightWindow);
 }

 void MyFrame::OnSplitHorizontal(wxCommandEvent& event)
 {
 if (splitter->IsSplit())
 splitter->Unsplit();
 leftWindow->Show(TRUE);
 rightWindow->Show(TRUE);
 splitter->SplitHorizontally(leftWindow, rightWindow);
 }

 void MyFrame::OnUnsplit(wxCommandEvent& event)
 {
 if (splitter->IsSplit())
 splitter->Unsplit();
 }

wwxxTTrreeeeCCttrrll oovveerrvviieeww

Classes: wxTreeCtrl (p. 1313), wxImageList (p. 710)

The tree control displays its items in a tree like structure. Each item has its own
(optional) icon and a label. An item may be either collapsed (meaning that its children
are not visible) or expanded (meaning that its children are shown). Each item in the tree

CHAPTER 8

1594

is identified by its itemId which is of opaque data type wxTreeItemId.

The items text and image may be retrieved and changed with GetItemText (p.
1321)/SetItemText (p. 1329) and GetItemImage (p. 1321)/SetItemImage (p. 1329). In
fact, an item may even have two images associated with it: the normal one and another
one for selected state which is set/retrieved with SetItemSelectedImage (p.
1329)/GetItemSelectedImage (p. 1323) functions, but this functionality might be
unavailable on some platforms.

Tree items have several attributes: an item may be selected or not, visible or not, bold or
not. It may also be expanded or collapsed. All these attributes may be retrieved with the
corresponding functions: IsSelected (p. 1326), IsVisible (p. 1326), IsBold (p. 1325) and
IsExpanded (p. 1325). Only one item at a time may be selected, selecting another one
(with SelectItem (p. 1327)) automatically unselects the previously selected one.

In addition to its icon and label, a user-specific data structure may be associated with all
tree items. If you wish to do it, you should derive a class from wxTreeItemData which is
a very simple class having only one function GetId() which returns the id of the item this
data is associated with. This data will be freed by the control itself when the associated
item is deleted (all items are deleted when the control is destroyed), so you shouldn't
delete it yourself (if you do it, you should call SetItemData(NULL) (p. 1328) to prevent
the tree from deleting the pointer second time). The associated data may be retrieved
with GetItemData() (p. 1321) function.

Working with trees is relatively straightforward if all the items are added to the tree at the
moment of its creation. However, for large trees it may be very inefficient. To improve
the performance you may want to delay adding the items to the tree until the branch
containing the items is expanded: so, in the beginning, only the root item is created (with
AddRoot (p. 1316)). Other items are added when EVT_TREE_ITEM_EXPANDING event
is received: then all items lying immediately under the item being expanded should be
added, but, of course, only when this event is received for the first time for this item -
otherwise, the items would be added twice if the user expands/collapses/re-expands the
branch.

The tree control provides functions for enumerating its items. There are 3 groups of
enumeration functions: for the children of a given item, for the sibling of the given item
and for the visible items (those which are currently shown to the user: an item may be
invisible either because its branch is collapsed or because it is scrolled out of view).
Child enumeration functions require the caller to give them a cookie parameter: it is a
number which is opaque to the caller but is used by the tree control itself to allow
multiple enumerations to run simultaneously (this is explicitly allowed). The only thing to
remember is that the cookie passed to GetFirstChild (p. 1320) and to GetNextChild (p.
1322) should be the same variable (and that nothing should be done with it by the user
code).

Among other features of the tree control are: item sorting with SortChildren (p. 1330)
which uses the user-defined comparison function OnCompareItems (p. 1326) (by default
the comparison is the alphabetic comparison of tree labels), hit testing (determining to
which portion of the control the given point belongs, useful for implementing drag-and-
drop in the tree) with HitTest (p. 1324) and editing of the tree item labels in place (see
EditLabel (p. 1318)).

CHAPTER 8

1595

Finally, the tree control has a keyboard interface: the cursor navigation (arrow) keys may
be used to change the current selection. <HOME> and <END> are used to go to the
first/last sibling of the current item. '+', '-' and '*' expand, collapse and toggle the current
branch. Note, however, that and <INS> keys do nothing by default, but it is usual
to associate them with deleting item from a tree and inserting a new one into it.

wwxxLLiissttCCttrrll oovveerrvviieeww

Classes: wxListCtrl (p. 758), wxImageList (p. 710)

Sorry, this topic has yet to be written.

wwxxIImmaaggeeLLiisstt oovveerrvviieeww

Classes: wxImageList (p. 710)

An image list is a list of images that may have transparent areas. The class helps an
application organise a collection of images so that they can be referenced by integer
index instead of by pointer.

Image lists are used in wxNotebook (p. 887), wxListCtrl (p. 758), wxTreeCtrl (p. 758) and
some other control classes.

CCoommmmoonn ddiiaallooggss oovveerrvviieeww

Classes: wxColourDialog (p. 145), wxFontDialog (p. 518), wxPrintDialog (p. 949),
wxFileDialog (p. 461), wxDirDialog (p. 377), wxTextEntryDialog (p. 1262),
wxMessageDialog (p. 859), wxSingleChoiceDialog (p. 1079), wxMultipleChoiceDialog (p.
881)

Common dialog classes and functions encapsulate commonly-needed dialog box
requirements. They are all 'modal', grabbing the flow of control until the user dismisses
the dialog, to make them easy to use within an application.

Some dialogs have both platform-dependent and platform-independent implementations,
so that if underlying windowing systems that do not provide the required functionality, the
generic classes and functions can stand in. For example, under MS Windows,
wxColourDialog uses the standard colour selector. There is also an equivalent called
wxGenericColourDialog for other platforms, and a macro defines wxColourDialog to be

CHAPTER 8

1596

the same as wxGenericColourDialog on non-MS Windows platforms. However, under
MS Windows, the generic dialog can also be used, for testing or other purposes.

wxColourDialog overview

Classes: wxColourDialog (p. 145), wxColourData (p. 142)

The wxColourDialog presents a colour selector to the user, and returns with colour
information.

The MS Windows colour selector

Under Windows, the native colour selector common dialog is used. This presents a
dialog box with three main regions: at the top left, a palette of 48 commonly-used colours
is shown. Under this, there is a palette of 16 'custom colours' which can be set by the
application if desired. Additionally, the user may open up the dialog box to show a right-
hand panel containing controls to select a precise colour, and add it to the custom colour
palette.

The generic colour selector

Under non-MS Windows platforms, the colour selector is a simulation of most of the
features of the MS Windows selector. Two palettes of 48 standard and 16 custom
colours are presented, with the right-hand area containing three sliders for the user to
select a colour from red, green and blue components. This colour may be added to the
custom colour palette, and will replace either the currently selected custom colour, or the
first one in the palette if none is selected. The RGB colour sliders are not optional in the
generic colour selector. The generic colour selector is also available under MS Windows;
use the name wxGenericColourDialog.

Example

In the samples/dialogs directory, there is an example of using the wxColourDialog class.
Here is an excerpt, which sets various parameters of a wxColourData object, including a
grey scale for the custom colours. If the user did not cancel the dialog, the application
retrieves the selected colour and uses it to set the background of a window.

 wxColourData data;
 data.SetChooseFull(TRUE);
 for (int i = 0; i < 16; i++)
 {
 wxColour colour(i*16, i*16, i*16);
 data.SetCustomColour(i, colour);
 }

 wxColourDialog dialog(this, &data);
 if (dialog.ShowModal() == wxID_OK)
 {
 wxColourData retData = dialog.GetColourData();
 wxColour col = retData.GetColour();
 wxBrush brush(col, wxSOLID);

CHAPTER 8

1597

 myWindow->SetBackground(brush);
 myWindow->Clear();
 myWindow->Refresh();
 }

wxFontDialog overview

Classes: wxFontDialog (p. 518), wxFontData (p. 515)

The wxFontDialog presents a font selector to the user, and returns with font and colour
information.

The MS Windows font selector

Under Windows, the native font selector common dialog is used. This presents a dialog
box with controls for font name, point size, style, weight, underlining, strikeout and text
foreground colour. A sample of the font is shown on a white area of the dialog box. Note
that in the translation from full MS Windows fonts to wxWindows font conventions,
strikeout is ignored and a font family (such as Swiss or Modern) is deduced from the
actual font name (such as Arial or Courier). The full range of Windows fonts cannot be
used in wxWindows at present.

The generic font selector

Under non-MS Windows platforms, the font selector is simpler. Controls for font family,
point size, style, weight, underlining and text foreground colour are provided, and a
sample is shown upon a white background. The generic font selector is also available
under MS Windows; use the name wxGenericFontDialog.

In both cases, the application is responsible for deleting the new font returned from
calling wxFontDialog::Show (if any). This returned font is guaranteed to be a new object
and not one currently in use in the application.

Example

In the samples/dialogs directory, there is an example of using the wxFontDialog class.
The application uses the returned font and colour for drawing text on a canvas. Here is
an excerpt:

 wxFontData data;
 data.SetInitialFont(canvasFont);
 data.SetColour(canvasTextColour);

 wxFontDialog dialog(this, &data);
 if (dialog.ShowModal() == wxID_OK)
 {
 wxFontData retData = dialog.GetFontData();
 canvasFont = retData.GetChosenFont();
 canvasTextColour = retData.GetColour();
 myWindow->Refresh();
 }

CHAPTER 8

1598

wxPrintDialog overview

Classes: wxPrintDialog (p. 949), wxPrintData (p. 943)

This class represents the print and print setup common dialogs. You may obtain a
wxPrinterDC (p. 958) device context from a successfully dismissed print dialog.

The samples/printing example shows how to use it: see Printing overview (p. 1617) for
an excerpt from this example.

wxFileDialog overview

Classes: wxFileDialog (p. 461)

Pops up a file selector box. In Windows, this is the common file selector dialog. In X, this
is a file selector box with somewhat less functionality. The path and filename are distinct
elements of a full file pathname. If path is "", the current directory will be used. If
filename is "", no default filename will be supplied. The wildcard determines what files
are displayed in the file selector, and file extension supplies a type extension for the
required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxHIDE_READONLY, wxFILE_MUST_EXIST or 0.

Both the X and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed. In the X version, supplying no default
name will result in the wildcard filter being inserted in the filename text item; the filter is
ignored if a default name is supplied.

The wildcard may be a specification for multiple types of file with a description for each,
such as:

 "BMP files (*.bmp) | *.bmp | GIF files (*.gif) | *.gif"

wxDirDialog overview

Classes: wxDirDialog (p. 377)

This dialog shows a directory selector dialog, allowing the user to select a single
directory.

wxTextEntryDialog overview

Classes: wxTextEntryDialog (p. 1262)

This is a dialog with a text entry field. The value that the user entered is obtained using

CHAPTER 8

1599

wxTextEntryDialog::GetValue (p. 1263).

wxMessageDialog overview

Classes: wxMessageDialog (p. 859)

This dialog shows a message, plus buttons that can be chosen from OK, Cancel, Yes,
and No. Under Windows, an optional icon can be shown, such as an exclamation mark
or question mark.

The return value of wxMessageDialog::ShowModal (p. 860) indicates which button the
user pressed.

wxSingleChoiceDialog overview

Classes: wxSingleChoiceDialog (p. 1079)

This dialog shows a list of choices, plus OK and (optionally) Cancel. The user can select
one of them. The selection can be obtained from the dialog as an index, a string or client
data.

wxMultipleChoiceDialog overview

Classes: wxMultipleChoiceDialog (p. 881)

This dialog shows a list of choices, plus OK and (optionally) Cancel. The user can select
one or more of them.

DDooccuummeenntt//vviieeww oovveerrvviieeww

Classes: wxDocument (p. 404), wxView (p. 1360), wxDocTemplate (p. 399),
wxDocManager (p. 385), wxDocParentFrame (p. 398), wxDocChildFrame (p. 383),
wxDocMDIParentFrame (p. 396), wxDocMDIChildFrame (p. 394), wxCommand (p. 154),
wxCommandProcessor (p. 161)

The document/view framework is found in most application frameworks, because it can
dramatically simplify the code required to build many kinds of application.

The idea is that you can model your application primarily in terms of documents to store
data and provide interface-independent operations upon it, and views to visualise and
manipulate the data. Documents know how to do input and output given stream objects,
and views are responsible for taking input from physical windows and performing the
manipulation on the document data. If a document's data changes, all views should be
updated to reflect the change.

CHAPTER 8

1600

The framework can provide many user-interface elements based on this model. Once
you have defined your own classes and the relationships between them, the framework
takes care of popping up file selectors, opening and closing files, asking the user to save
modifications, routing menu commands to appropriate (possibly default) code, even
some default print/preview functionality and support for command undo/redo. The
framework is highly modular, allowing overriding and replacement of functionality and
objects to achieve more than the default behaviour.

These are the overall steps involved in creating an application based on the
document/view framework:

 1. Define your own document and view classes, overriding a minimal set of

member functions e.g. for input/output, drawing and initialization.
 2. Define any subwindows (such as a scrolled window) that are needed for the

view(s). You may need to route some events to views or documents, for
example OnPaint needs to be routed to wxView::OnDraw.

 3. Decide what style of interface you will use: Microsoft's MDI (multiple document
child frames surrounded by an overall frame), SDI (a separate, unconstrained
frame for each document), or single-window (one document open at a time, as
in Windows Write).

 4. Use the appropriate wxDocParentFrame and wxDocChildFrame classes.
Construct an instance of wxDocParentFrame in your wxApp::OnInit, and a
wxDocChildFrame (if not single-window) when you initialize a view. Create
menus using standard menu ids (such as wxID_OPEN, wxID_PRINT), routing
non-application-specific identifiers to the base frame's OnMenuCommand.

 5. Construct a single wxDocManager instance at the beginning of your
wxApp::OnInit, and then as many wxDocTemplate instances as necessary to
define relationships between documents and views. For a simple application,
there will be just one wxDocTemplate.

If you wish to implement Undo/Redo, you need to derive your own class(es) from
wxCommand and use wxCommandProcessor::Submit instead of directly executing
code. The framework will take care of calling Undo and Do functions as appropriate, so
long as the wxID_UNDO and wxID_REDO menu items are defined in the view menu.

Here are a few examples of the tailoring you can do to go beyond the default framework
behaviour:

 • Override wxDocument::OnCreateCommandProcessor to define a different

Do/Undo strategy, or a command history editor.
 • Override wxView::OnCreatePrintout to create an instance of a derived

wxPrintout (p. 958) class, to provide multi-page document facilities.
 • Override wxDocManager::SelectDocumentPath to provide a different file

selector.
 • Limit the maximum number of open documents and the maximum number of

undo commands.

Note that to activate framework functionality, you need to use some or all of the
wxWindows predefined command identifiers (p. 1605) in your menus.

CHAPTER 8

1601

wxDocument overview

Document/view framework overview (p. 1599)

Class: wxDocument (p. 404)

The wxDocument class can be used to model an application's file-based data. It is part
of the document/view framework supported by wxWindows, and cooperates with the
wxView (p. 1360), wxDocTemplate (p. 399) and wxDocManager (p. 385) classes.

Using this framework can save a lot of routine user-interface programming, since a
range of menu commands -- such as open, save, save as -- are supported automatically.
The programmer just needs to define a minimal set of classes and member functions for
the framework to call when necessary. Data, and the means to view and edit the data,
are explicitly separated out in this model, and the concept of multiple views onto the
same data is supported.

Note that the document/view model will suit many but not all styles of application. For
example, it would be overkill for a simple file conversion utility, where there may be no
call for views on documents or the ability to open, edit and save files. But probably the
majority of applications are document-based.

See the example application in samples/docview.

To use the abstract wxDocument class, you need to derive a new class and override at
least the member functions SaveObject and LoadObject. SaveObject and LoadObject
will be called by the framework when the document needs to be saved or loaded.

Use the macros DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS in
order to allow the framework to create document objects on demand. When you create a
wxDocTemplate (p. 399) object on application initialization, you should pass
CLASSINFO(YourDocumentClass) to the wxDocTemplate constructor so that it knows
how to create an instance of this class.

If you do not wish to use the wxWindows method of creating document objects
dynamically, you must override wxDocTemplate::CreateDocument to return an instance
of the appropriate class.

wxView overview

Document/view framework overview (p. 1599)

Class: wxView (p. 1360)

The wxView class can be used to model the viewing and editing component of an
application's file-based data. It is part of the document/view framework supported by
wxWindows, and cooperates with the wxDocument (p. 404), wxDocTemplate (p.

CHAPTER 8

1602

399)and wxDocManager (p. 385) classes.

See the example application in samples/docview.

To use the abstract wxView class, you need to derive a new class and override at least
the member functions OnCreate, OnDraw, OnUpdate and OnClose. You will probably
want to override OnMenuCommand to respond to menu commands from the frame
containing the view.

Use the macros DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS in
order to allow the framework to create view objects on demand. When you create a
wxDocTemplate (p. 399) object on application initialization, you should pass
CLASSINFO(YourViewClass) to the wxDocTemplate constructor so that it knows how to
create an instance of this class.

If you do not wish to use the wxWindows method of creating view objects dynamically,
you must override wxDocTemplate::CreateView to return an instance of the appropriate
class.

wxDocTemplate overview

Document/view framework overview (p. 1599)

Class: wxDocTemplate (p. 399)

The wxDocTemplate class is used to model the relationship between a document class
and a view class. The application creates a document template object for each
document/view pair. The list of document templates managed by the wxDocManager
instance is used to create documents and views. Each document template knows what
file filters and default extension are appropriate for a document/view combination, and
how to create a document or view.

For example, you might write a small doodling application that can load and save lists of
line segments. If you had two views of the data -- graphical, and a list of the segments --
then you would create one document class DoodleDocument, and two view classes
(DoodleGraphicView and DoodleListView). You would also need two document
templates, one for the graphical view and another for the list view. You would pass the
same document class and default file extension to both document templates, but each
would be passed a different view class. When the user clicks on the Open menu item,
the file selector is displayed with a list of possible file filters -- one for each
wxDocTemplate. Selecting the filter selects the wxDocTemplate, and when a file is
selected, that template will be used for creating a document and view. Under non-
Windows platforms, the user will be prompted for a list of templates before the file
selector is shown, since most file selectors do not allow a choice of file filters.

For the case where an application has one document type and one view type, a single
document template is constructed, and dialogs will be appropriately simplified.

wxDocTemplate is part of the document/view framework supported by wxWindows, and

CHAPTER 8

1603

cooperates with the wxView (p. 1360), wxDocument (p. 404) and wxDocManager (p.
385) classes.

See the example application in samples/docview.

To use the wxDocTemplate class, you do not need to derive a new class. Just pass
relevant information to the constructor including CLASSINFO(YourDocumentClass) and
CLASSINFO(YourViewClass) to allow dynamic instance creation. If you do not wish to
use the wxWindows method of creating document objects dynamically, you must
override wxDocTemplate::CreateDocument and wxDocTemplate::CreateView to return
instances of the appropriate class.

NOTE: the document template has nothing to do with the C++ template construct. C++
templates are not used anywhere in wxWindows.

wxDocManager overview

Document/view framework overview (p. 1599)

Class: wxDocManager (p. 385)

The wxDocManager class is part of the document/view framework supported by
wxWindows, and cooperates with the wxView (p. 1360), wxDocument (p. 404) and
wxDocTemplate (p. 399) classes.

A wxDocManager instance coordinates documents, views and document templates. It
keeps a list of document and template instances, and much functionality is routed
through this object, such as providing selection and file dialogs. The application can use
this class 'as is' or derive a class and override some members to extend or change the
functionality. Create an instance of this class near the beginning of your application
initialization, before any documents, views or templates are manipulated.

There may be multiple wxDocManager instances in an application.

See the example application in samples/docview.

wxCommand overview

Document/view framework overview (p. 1599)

Classes: wxCommand (p. 154), wxCommandProcessor (p. 161)

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Instead of the application functionality being scattered around switch statements and
functions in a way that may be hard to read and maintain, the functionality for a

CHAPTER 8

1604

command is explicitly represented as an object which can be manipulated by a
framework or application. When a user interface event occurs, the application submits a
command to a wxCommandProcessor (p. 1604) object to execute and store.

The wxWindows document/view framework handles Undo and Redo by use of
wxCommand and wxCommandProcessor objects. You might find further uses for
wxCommand, such as implementing a macro facility that stores, loads and replays
commands.

An application can derive a new class for every command, or, more likely, use one class
parameterized with an integer or string command identifier.

wxCommandProcessor overview

Document/view framework overview (p. 1599)

Classes: wxCommandProcessor (p. 161), wxCommand (p. 154)

wxCommandProcessor is a class that maintains a history of wxCommand instances,
with undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

wxFileHistory overview

Document/view framework overview (p. 1599)

Classes: wxFileHistory (p. 467), wxDocManager (p. 385)

wxFileHistory encapsulates functionality to record the last few files visited, and to allow
the user to quickly load these files using the list appended to the File menu.

Although wxFileHistory is used by wxDocManager, it can be used independently. You
may wish to derive from it to allow different behaviour, such as popping up a scrolling list
of files.

By calling wxFileHistory::FileHistoryUseMenu you can associate a file menu with the file
history, that will be used for appending the filenames. They are appended using menu
identifiers in the range wxID_FILE1 to wxID_FILE9.

In order to respond to a file load command from one of these identifiers, you need to
handle them using an event handler, for example:

BEGIN_EVENT_TABLE(wxDocParentFrame, wxFrame)
 EVT_MENU(wxID_EXIT, wxDocParentFrame::OnExit)
 EVT_MENU_RANGE(wxID_FILE1, wxID_FILE9, wxDocParentFrame::OnMRUFile)
END_EVENT_TABLE()

void wxDocParentFrame::OnExit(wxCommandEvent& WXUNUSED(event))

CHAPTER 8

1605

{
 Close();
}

void wxDocParentFrame::OnMRUFile(wxCommandEvent& event)
{
 wxString f(m_docManager->GetHistoryFile(event.GetSelection() -
wxID_FILE1));
 if (f != "")
 (void)m_docManager->CreateDocument(f, wxDOC_SILENT);
}

wxWindows predefined command identifiers

To allow communication between the application's menus and the document/view
framework, several command identifiers are predefined for you to use in menus. The
framework recognizes them and processes them if you forward commands from
wxFrame::OnMenuCommand (or perhaps from toolbars and other user interface
constructs).

 • wxID_OPEN (5000)
 • wxID_CLOSE (5001)
 • wxID_NEW (5002)
 • wxID_SAVE (5003)
 • wxID_SAVEAS (5004)
 • wxID_REVERT (5005)
 • wxID_EXIT (5006)
 • wxID_UNDO (5007)
 • wxID_REDO (5008)
 • wxID_HELP (5009)
 • wxID_PRINT (5010)
 • wxID_PRINT_SETUP (5011)
 • wxID_PREVIEW (5012)

wwxxTTaabb ccllaasssseess oovveerrvviieeww

Classes: wxTabView (p. 1212), wxPanelTabView (p. 919), wxTabbedPanel (p. 1207),
wxTabbedDialog (p. 1206), wxTabControl (p. 1208)

The tab classes provides a way to display rows of tabs (like file divider tabs), which can
be used to switch between panels or other information. Tabs are most commonly used in
dialog boxes where the number of options is too great to fit on one dialog.

Please note that the preferred class for programming tabbed windows is wxNotebook
(p. 887). The old tab classes are retained for backward compatibility and also to

CHAPTER 8

1606

implement wxNotebook on platforms that don't have native tab controls.

The appearance and behaviour of a wxTabbedDialog

The following screenshot shows the appearance of the sample tabbed dialog
application.

By clicking on the tabs, the user can display a different set of controls. In the example,
the Close and Help buttons remain constant. These two buttons are children of the main
dialog box, whereas the other controls are children of panels which are shown and
hidden according to which tab is active.

A tabbed dialog may have several layers (rows) of tabs, each being offset vertically and
horizontally from the previous. Tabs work in columns, in that when a tab is pressed, it
swaps place with the tab on the first row of the same column, in order to give the effect
of displaying that tab. All tabs must be of the same width. This is a constraint of the
implementation, but it also means that the user will find it easier to find tabs since there
are distinct tab columns. On some tabbed dialog implementations, tabs jump around
seemingly randomly because tabs have different widths. In this implementation, a tab
can always be found on the same column.

Tabs are always drawn along the top of the view area; the implementation does not
allow for vertical tabs or any other configuration.

Using tabs

CHAPTER 8

1607

The tab classes provide facilities for switching between contexts by means of 'tabs',
which look like file divider tabs.

You must create both a view to handle the tabs, and a window to display the tabs and
related information. The wxTabbedDialog and wxTabbedPanel classes are provided for
convenience, but you could equally well construct your own window class and derived
tab view.

If you wish to display a tabbed dialog - the most common use - you should follow these
steps.

 1. Create a new wxTabbedDialog class, and any buttons you wish always to be

displayed (regardless of which tab is active).
 2. Create a new wxPanelTabView, passing the dialog as the first argument.
 3. Set the view rectangle with wxTabView::SetViewRect (p. 1220), to specify the

area in which child panels will be shown. The tabs will sit on top of this view
rectangle.

 4. Call wxTabView::CalculateTabWidth (p. 1213) to calculate the width of the tabs
based on the view area. This is optional if, for example, you have one row of
tabs which does not extend the full width of the view area.

 5. Call wxTabView::AddTab (p. 1213) for each of the tabs you wish to create,
passing a unique identifier and a tab label.

 6. Construct a number of windows, one for each tab, and call
wxPanelTabView::AddTabWindow (p. 920) for each of these, passing a tab
identifier and the window.

 7. Set the tab selection.
 8. Show the dialog.

Under Motif, you may also need to size the dialog just before setting the tab selection,
for unknown reasons.

Some constraints you need to be aware of:

 • All tabs must be of the same width.
 • Omit the wxTAB_STYLE_COLOUR_INTERIOR flag to ensure that the dialog

background and tab backgrounds match.

Example

The following fragment is taken from the file test.cpp.

void MyDialog::Init(void)
{
 int dialogWidth = 365;
 int dialogHeight = 390;

 wxButton *okButton = new wxButton(this, wxID_OK, "Close",
wxPoint(100, 330), wxSize(80, 25));

CHAPTER 8

1608

 wxButton *cancelButton = new wxButton(this, wxID_CANCEL, "Cancel",
wxPoint(185, 330), wxSize(80, 25));
 wxButton *HelpButton = new wxButton(this, wxID_HELP, "Help",
wxPoint(270, 330), wxSize(80, 25));
 okButton->SetDefault();

 // Note, omit the wxTAB_STYLE_COLOUR_INTERIOR, so we will guarantee a
match
 // with the panel background, and save a bit of time.
 wxPanelTabView *view = new wxPanelTabView(this,
wxTAB_STYLE_DRAW_BOX);

 wxRectangle rect;
 rect.x = 5;
 rect.y = 70;
 // Could calculate the view width from the tab width and spacing,
 // as below, but let's assume we have a fixed view width.
// rect.width = view->GetTabWidth()*4 + 3*view-
>GetHorizontalTabSpacing();
 rect.width = 326;
 rect.height = 250;

 view->SetViewRect(rect);

 // Calculate the tab width for 4 tabs, based on a view width of 326
and
 // the current horizontal spacing. Adjust the view width to exactly
fit
 // the tabs.
 view->CalculateTabWidth(4, TRUE);

 if (!view->AddTab(TEST_TAB_CAT, wxString("Cat")))
 return;

 if (!view->AddTab(TEST_TAB_DOG, wxString("Dog")))
 return;
 if (!view->AddTab(TEST_TAB_GUINEAPIG, wxString("Guinea Pig")))
 return;
 if (!view->AddTab(TEST_TAB_GOAT, wxString("Goat")))
 return;
 if (!view->AddTab(TEST_TAB_ANTEATER, wxString("Ant-eater")))
 return;
 if (!view->AddTab(TEST_TAB_SHEEP, wxString("Sheep")))
 return;
 if (!view->AddTab(TEST_TAB_COW, wxString("Cow")))
 return;
 if (!view->AddTab(TEST_TAB_HORSE, wxString("Horse")))
 return;
 if (!view->AddTab(TEST_TAB_PIG, wxString("Pig")))
 return;
 if (!view->AddTab(TEST_TAB_OSTRICH, wxString("Ostrich")))
 return;
 if (!view->AddTab(TEST_TAB_AARDVARK, wxString("Aardvark")))
 return;
 if (!view->AddTab(TEST_TAB_HUMMINGBIRD,wxString("Hummingbird")))
 return;

CHAPTER 8

1609

 // Add some panels
 wxPanel *panel1 = new wxPanel(this, -1, wxPoint(rect.x + 20, rect.y +
10), wxSize(290, 220), wxTAB_TRAVERSAL);
 (void)new wxButton(panel1, -1, "Press me", wxPoint(10, 10));
 (void)new wxTextCtrl(panel1, -1, "1234", wxPoint(10, 40), wxSize(120,
150));

 view->AddTabWindow(TEST_TAB_CAT, panel1);

 wxPanel *panel2 = new wxPanel(this, -1, wxPoint(rect.x + 20, rect.y +
10), wxSize(290, 220));

 wxString animals[] = { "Fox", "Hare", "Rabbit", "Sabre-toothed
tiger", "T Rex" };
 (void)new wxListBox(panel2, -1, wxPoint(5, 5), wxSize(170, 80), 5,
animals);

 (void)new wxTextCtrl(panel2, -1, "Some notes about the animals in
this house", wxPoint(5, 100), wxSize(170, 100)),
 wxTE_MULTILINE;

 view->AddTabWindow(TEST_TAB_DOG, panel2);

 // Don't know why this is necessary under Motif...
#ifdef wx_motif
 this->SetSize(dialogWidth, dialogHeight-20);
#endif

 view->SetTabSelection(TEST_TAB_CAT);

 this->Centre(wxBOTH);
}

wwxxTTaabbVViieeww oovveerrvviieeww

Classes: wxTabView (p. 1212), wxPanelTabView (p. 919)

A wxTabView manages and draws a number of tabs. Because it is separate from the
tabbed window implementation, it can be reused in a number of contexts. This library
provides tabbed dialog and panel classes to use with the wxPanelTabView class, but an
application could derive other kinds of view from wxTabView.

For example, a help application might draw a representation of a book on a window, with
a row of tabs along the top. The new tab view class might be called wxCanvasTabView,
for example, with the wxBookCanvas posting the OnEvent function to the
wxCanvasTabView before processing further, application-specific event processing.

A window class designed to work with a view class must call the view's OnEvent and
Draw functions at appropriate times.

CHAPTER 8

1610

TToooollbbaarr oovveerrvviieeww

Classes: wxToolBar (p. 1296)

The toolbar family of classes allows an application to use toolbars in a variety of
configurations and styles.

The toolbar is a popular user interface component and contains a set of bitmap buttons
or toggles. A toolbar gives faster access to an application's facilities than menus, which
have to be popped up and selected rather laboriously.

Instead of supplying one toolbar class with a number of different implementations
depending on platform, wxWindows separates out the classes. This is because there are
a number of different toolbar styles that you may wish to use simultaneously, and also,
future toolbar implementations will emerge which cannot all be shoe-horned into the one
class.

For each platform, the symbol wxToolBar is defined to be one of the specific toolbar
classes.

The following is a summary of the toolbar classes and their differences.

 • wxToolBarBase. This is a base class with pure virtual functions, and should not

be used directly.
 • wxToolBarSimple. A simple toolbar class written entirely with generic

wxWindows functionality. A simple 3D effect for buttons is possible, but it is not
consistent with the Windows look and feel. This toolbar can scroll, and you can
have arbitrary numbers of rows and columns.

 • wxToolBarMSW. This class implements an old-style Windows toolbar, only on
Windows. There are small, three-dimensional buttons, which do not (currently)
reflect the current Windows colour settings: the buttons are grey. This is the
default wxToolBar on 16-bit windows.

 • wxToolBar95. Uses the native Windows 95 toolbar class. It dynamically adjusts
its background and button colours according to user colour settings.
CreateTools must be called after the tools have been added. No absolute
positioning is supported but you can specify the number of rows, and add tool
separators with AddSeparator. Tooltips are supported. OnRightClick is not
supported. This is the default wxToolBar on Windows 95, Windows NT 4 and
above. With the style wxTB_FLAT, the flat toolbar look is used, with a border
that is highlighted when the cursor moves over the buttons.

A toolbar might appear as a single row of images under the menubar, or it might be in a
separate frame layout in several rows and columns. The class handles the layout of the
images, unless explicit positioning is requested.

A tool is a bitmap which can either be a button (there is no 'state', it just generates an

CHAPTER 8

1611

event when clicked) or it can be a toggle. If a toggle, a second bitmap can be provided to
depict the 'on' state; if the second bitmap is omitted, either the inverse of the first bitmap
will be used (for monochrome displays) or a thick border is drawn around the bitmap (for
colour displays where inverting will not have the desired result).

The Windows-specific toolbar classes expect 16-colour bitmaps that are 16 pixels wide
and 15 pixels high. If you want to use a different size, call SetToolBitmapSize as the
demo shows, before adding tools to the button bar. Don't supply more than one bitmap
for each tool, because the toolbar generates all three images (normal, depressed and
checked) from the single bitmap you give it.

Using the toolbar library

Include "wx/toolbar.h", or if using a class directly, one of:

 • "wx/msw/tbarmsw.h for wxToolBarMSW
 • "wx/msw/tbar95.h for wxToolBar95
 • "wx/tbarsmpl.h for wxToolBarSimple

Example of toolbar use are given in the sample program "toolbar''. The source is given
below. In fact it is out of date because recommended practise is to use event handlers
(using EVT_MENU or EVT_TOOL) instead of overriding OnLeftClick.

///
//////
// Name: test.cpp
// Purpose: wxToolBar sample
// Author: Julian Smart
// Modified by:
// Created: 04/01/98
// RCS-ID: $Id: ttoolbar.tex,v 1.7 2000/07/15 19:49:55 cvsuser Exp
$
// Copyright: (c) Julian Smart
// License: wxWindows license
///
//////

// For compilers that support precompilation, includes "wx/wx.h".
#include "wx/wxprec.h"

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
#include "wx/wx.h"
#endif

#include "wx/toolbar.h"
#include <wx/log.h>

CHAPTER 8

1612

#include "test.h"

#if defined(__WXGTK__) || defined(__WXMOTIF__)
#include "mondrian.xpm"
#include "bitmaps/new.xpm"
#include "bitmaps/open.xpm"
#include "bitmaps/save.xpm"
#include "bitmaps/copy.xpm"
#include "bitmaps/cut.xpm"
#include "bitmaps/print.xpm"
#include "bitmaps/preview.xpm"
#include "bitmaps/help.xpm"
#endif

IMPLEMENT_APP(MyApp)

// The `main program' equivalent, creating the windows and returning
the
// main frame
bool MyApp::OnInit(void)
{
 // Create the main frame window
 MyFrame* frame = new MyFrame((wxFrame *) NULL, -1, (const wxString)
"wxToolBar Sample",
 wxPoint(100, 100), wxSize(450, 300));

 // Give it a status line
 frame->CreateStatusBar();

 // Give it an icon
 frame->SetIcon(wxICON(mondrian));

 // Make a menubar
 wxMenu *fileMenu = new wxMenu;
 fileMenu->Append(wxID_EXIT, "E&xit", "Quit toolbar sample");

 wxMenu *helpMenu = new wxMenu;
 helpMenu->Append(wxID_HELP, "&About", "About toolbar sample");

 wxMenuBar* menuBar = new wxMenuBar;

 menuBar->Append(fileMenu, "&File");
 menuBar->Append(helpMenu, "&Help");

 // Associate the menu bar with the frame
 frame->SetMenuBar(menuBar);

 // Create the toolbar
 frame->CreateToolBar(wxNO_BORDER|wxHORIZONTAL|wxTB_FLAT, ID_TOOLBAR);

 frame->GetToolBar()->SetMargins(2, 2);

 InitToolbar(frame->GetToolBar());

 // Force a resize. This should probably be replaced by a call to a
wxFrame
 // function that lays out default decorations and the remaining

CHAPTER 8

1613

content window.
 wxSizeEvent event(wxSize(-1, -1), frame->GetId());
 frame->OnSize(event);
 frame->Show(TRUE);

 frame->SetStatusText("Hello, wxWindows");

 SetTopWindow(frame);

 return TRUE;
}

bool MyApp::InitToolbar(wxToolBar* toolBar)
{
 // Set up toolbar
 wxBitmap* toolBarBitmaps[8];

#ifdef __WXMSW__
 toolBarBitmaps[0] = new wxBitmap("icon1");
 toolBarBitmaps[1] = new wxBitmap("icon2");
 toolBarBitmaps[2] = new wxBitmap("icon3");
 toolBarBitmaps[3] = new wxBitmap("icon4");
 toolBarBitmaps[4] = new wxBitmap("icon5");
 toolBarBitmaps[5] = new wxBitmap("icon6");
 toolBarBitmaps[6] = new wxBitmap("icon7");
 toolBarBitmaps[7] = new wxBitmap("icon8");
#else
 toolBarBitmaps[0] = new wxBitmap(new_xpm);
 toolBarBitmaps[1] = new wxBitmap(open_xpm);
 toolBarBitmaps[2] = new wxBitmap(save_xpm);
 toolBarBitmaps[3] = new wxBitmap(copy_xpm);
 toolBarBitmaps[4] = new wxBitmap(cut_xpm);
 toolBarBitmaps[5] = new wxBitmap(preview_xpm);
 toolBarBitmaps[6] = new wxBitmap(print_xpm);
 toolBarBitmaps[7] = new wxBitmap(help_xpm);
#endif

#ifdef __WXMSW__
 int width = 24;
#else
 int width = 16;
#endif
 int currentX = 5;

 toolBar->AddTool(wxID_NEW, *(toolBarBitmaps[0]), wxNullBitmap, FALSE,
currentX, -1, (wxObject *) NULL, "New file");
 currentX += width + 5;
 toolBar->AddTool(wxID_OPEN, *(toolBarBitmaps[1]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Open file");
 currentX += width + 5;
 toolBar->AddTool(wxID_SAVE, *(toolBarBitmaps[2]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Save file");
 currentX += width + 5;
 toolBar->AddSeparator();
 toolBar->AddTool(wxID_COPY, *(toolBarBitmaps[3]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Copy");
 currentX += width + 5;

CHAPTER 8

1614

 toolBar->AddTool(wxID_CUT, *(toolBarBitmaps[4]), wxNullBitmap, FALSE,
currentX, -1, (wxObject *) NULL, "Cut");
 currentX += width + 5;
 toolBar->AddTool(wxID_PASTE, *(toolBarBitmaps[5]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Paste");
 currentX += width + 5;
 toolBar->AddSeparator();
 toolBar->AddTool(wxID_PRINT, *(toolBarBitmaps[6]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Print");
 currentX += width + 5;
 toolBar->AddSeparator();
 toolBar->AddTool(wxID_HELP, *(toolBarBitmaps[7]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Help");

 toolBar->Realize();

 // Can delete the bitmaps since they're reference counted
 int i;
 for (i = 0; i < 8; i++)
 delete toolBarBitmaps[i];

 return TRUE;
}

// wxID_HELP will be processed for the 'About' menu and the toolbar
help button.

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU(wxID_EXIT, MyFrame::OnQuit)
 EVT_MENU(wxID_HELP, MyFrame::OnAbout)
 EVT_CLOSE(MyFrame::OnCloseWindow)
 EVT_TOOL_RANGE(wxID_OPEN, wxID_PASTE, MyFrame::OnToolLeftClick)
 EVT_TOOL_ENTER(wxID_OPEN, MyFrame::OnToolEnter)
END_EVENT_TABLE()

// Define my frame constructor
MyFrame::MyFrame(wxFrame* parent, wxWindowID id, const wxString& title,
const wxPoint& pos,
 const wxSize& size, long style):
 wxFrame(parent, id, title, pos, size, style)
{
 m_textWindow = new wxTextCtrl(this, -1, "", wxPoint(0, 0), wxSize(-1,
-1), wxTE_MULTILINE);
}

void MyFrame::OnQuit(wxCommandEvent& WXUNUSED(event))
{
 Close(TRUE);
}

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(event))
{
 (void)wxMessageBox("wxWindows toolbar sample", "About wxToolBar");
}

// Define the behaviour for the frame closing
// - must delete all frames except for the main one.

CHAPTER 8

1615

void MyFrame::OnCloseWindow(wxCloseEvent& WXUNUSED(event))
{
 Destroy();
}

void MyFrame::OnToolLeftClick(wxCommandEvent& event)
{
 wxString str;
 str.Printf("Clicked on tool %d", event.GetId());
 SetStatusText(str);
}

void MyFrame::OnToolEnter(wxCommandEvent& event)
{
 if (event.GetSelection() > -1)
 {
 wxString str;
 str.Printf("This is tool number %d", event.GetSelection());
 SetStatusText(str);
 }
 else
 SetStatusText("");
}

wwxxGGrriidd ccllaasssseess oovveerrvviieeww

Classes: wxGrid (p. 559)

Introduction

wxGrid and its related classes are used for displaying and editing tabular data.

Getting started: a simple example

For simple applications you need only refer to the wxGrid class in your code. This
example shows how you might create a grid in a frame or dialog constructor and
illustrates some of the formatting functions.

 // Create a wxGrid object

 grid = new wxGrid(this,
 -1,
 wxPoint(0, 0),
 wxSize(400, 300));

 // Then we call CreateGrid to set the dimensions of the grid

CHAPTER 8

1616

 // (100 rows and 10 columns in this example)
 grid->CreateGrid(100, 10);

 // We can set the sizes of individual rows and columns
 // in pixels
 grid->SetRowSize(0, 60);
 grid->SetColSize(0, 120);

 // And set grid cell contents as strings
 grid->SetCellValue(0, 0, "wxGrid is good");

 // We can specify that some cells are read-only
 grid->SetCellValue(0, 3, "This is read-only");
 grid->SetReadOnly(0, 3);

 // Colours can be specified for grid cell contents
 grid->SetCellValue(3, 3, "green on grey");
 grid->SetCellTextColour(3, 3, *wxGREEN);
 grid->SetCellBackgroundColour(3, 3, *wxLIGHT_GREY);

 // We can specify the some cells will store numeric
 // values rather than strings. Here we set grid column 5
 // to hold floating point values displayed with width of 6
 // and precision of 2
 grid->SetColFormatFloat(5, 6, 2);
 grid->SetCellValue(0, 6, "3.1415");

A more complex example

Yet to be written

How the wxGrid classes relate to each other

Yet to be written

Keyboard and mouse actions

Yet to be written

wwxxTTiippPPrroovviiddeerr oovveerrvviieeww

Many "modern" Windows programs have a feature (some would say annoyance) of
presenting the user tips at program startup. While this is probably useless to the
advanced users of the program, the experience shows that the tips may be quite helpful
for the novices and so more and more programs now do this.

CHAPTER 8

1617

For a wxWindows programmer, implementing this feature is extremely easy. To show a
tip, it is enough to just call wxShowTip (p. 1450) function like this:

 if (...show tips at startup?...)
 {
 wxTipProvider *tipProvider =
wxCreateFileTipProvider("tips.txt", 0);
 wxShowTip(windowParent, tipProvider);
 delete tipProvider;
 }

Of course, you need to get the text of the tips from somewhere - in the example above,
the text is supposed to be in the file tips.txt from where it is read by the tip provider. The
tip provider is just an object of a class deriving from wxTipProvider (p. 1291). It has to
implement one pure virtual function of the base class: GetTip (p. 1292). In the case of
the tip provider created by wxCreateFileTipProvider (p. 1443), the tips are just the lines
of the text file.

If you want to implement your own tip provider (for example, if you wish to hardcode the
tips inside your program), you just have to derive another class from wxTipProvider and
pass a pointer to the object of this class to wxShowTip - then you don't need
wxCreateFileTipProvider at all.

Finally, you will probably want to save somewhere the index of the tip last shown - so
that the program doesn't always show the same tip on startup. As you also need to
remember whether to show tips or not (you shouldn't do it if the user unchecked "Show
tips on startup" checkbox in the dialog), you will probably want to store both the index of
the last shown tip (as returned by wxTipProvider::GetCurrentTip (p. 1292) and the flag
telling whether to show the tips at startup at all.

PPrriinnttiinngg oovveerrvviieeww

Classes: wxPrintout (p. 958), wxPrinter (p. 955), wxPrintPreview (p. 962), wxPrinterDC
(p. 958), wxPrintDialog (p. 949), wxPrintData (p. 943), wxPrintDialogData (p. 951),
wxPageSetupDialog (p. 909), wxPageSetupDialogData (p. 904)

The printing framework relies on the application to provide classes whose member
functions can respond to particular requests, such as 'print this page' or 'does this page
exist in the document?'. This method allows wxWindows to take over the housekeeping
duties of turning preview pages, calling the print dialog box, creating the printer device
context, and so on: the application can concentrate on the rendering of the information
onto a device context.

The document/view framework (p. 1599) creates a default wxPrintout object for every
view, calling wxView::OnDraw to achieve a prepackaged print/preview facility.

A document's printing ability is represented in an application by a derived wxPrintout

CHAPTER 8

1618

class. This class prints a page on request, and can be passed to the Print function of a
wxPrinter object to actually print the document, or can be passed to a wxPrintPreview
object to initiate previewing. The following code (from the printing sample) shows how
easy it is to initiate printing, previewing and the print setup dialog, once the wxPrintout
functionality has been defined. Notice the use of MyPrintout for both printing and
previewing. All the preview user interface functionality is taken care of by wxWindows.
For details on how MyPrintout is defined, please look at the printout sample code.

 case WXPRINT_PRINT:
 {
 wxPrinter printer;
 MyPrintout printout("My printout");
 printer.Print(this, &printout, TRUE);
 break;
 }
 case WXPRINT_PREVIEW:
 {
 // Pass two printout objects: for preview, and possible printing.
 wxPrintPreview *preview = new wxPrintPreview(new MyPrintout, new
MyPrintout);
 wxPreviewFrame *frame = new wxPreviewFrame(preview, this, "Demo
Print Preview", 100, 100, 600, 650);
 frame->Centre(wxBOTH);
 frame->Initialize();
 frame->Show(TRUE);
 break;
 }
 case WXPRINT_PRINT_SETUP:
 {
 wxPrintDialog printerDialog(this);
 printerDialog.GetPrintData().SetSetupDialog(TRUE);
 printerDialog.Show(TRUE);
 break;
 }

MMuullttiitthhrreeaaddiinngg oovveerrvviieeww

Classes: wxThread (p. 1276), wxMutex (p. 881), wxCriticalSection (p. 185), wxCondition
(p. 164)

wxWindows provides a complete set of classes encapsulating objects necessary in
multithreaded (MT) programs: the thread (p. 1276) class itself and different
synchronization objects: mutexes (p. 881) and critical sections (p. 185) with conditions
(p. 164). The thread API in wxWindows resembles to POSIX1.c threads API (a.k.a.
pthreads), although several functions have different names and some features inspired
by Win32 thread API are there as well.

These classes will hopefully make writing MT programs easier and they also provide
some extra error checking (compared to the native (be it Win32 or Posix) thread API),
however it is still an non-trivial undertaking especially for large projects. Before starting

CHAPTER 8

1619

an MT application (or starting to add MT features to an existing one) it is worth asking
oneself if there is no easier and safer way to implement the same functionality. Of
course, in some situations threads really make sense (classical example is a server
application which launches a new thread for each new client), but in others it might be a
very poor choice (example: launching a separate thread when doing a long computation
to show a progress dialog). Other implementation choices are available: for the progress
dialog example it is far better to do the calculations in the idle handler (p. 679) or call
wxYield() (p. 1476) periodically to update the screen.

If you do decide to use threads in your application, it is strongly recommended that no
more than one thread calls GUI functions. The thread sample shows that it is possible
for many different threads to call GUI functions at once (all the threads created in the
sample access GUI), but it is a very poor design choice for anything except an example.
The design which uses one GUI thread and several worker threads which communicate
with the main one using events is much more robust and will undoubtedly save you
countless problems (example: under Win32 a thread can only access GDI objects such
as pens, brushes, &c created by itself and not by the other threads).

For communication between threads, use wxEvtHandler::AddPendingEvent (p. 432)or its
short version wxPostEvent (p. 1472). These functions have thread safe implementation
so that they can be used as they are for sending event from one thread to another.

DDrraagg aanndd ddrroopp oovveerrvviieeww

Classes: wxDataObject (p. 204), wxTextDataObject (p. 1256), wxDropSource (p. 419),
wxDropTarget (p. 421), wxTextDropTarget (p. 1264), wxFileDropTarget (p. 466)

Note that wxUSE_DRAG_AND_DROP must be defined in setup.h in order to use drag
and drop in wxWindows.

See also: wxDataObject overview (p. 1620) and DnD sample (p. 1517)

It may be noted that data transfer to and from the clipboard is quite similar to data
transfer with drag and drop and the code to implement these two types is almost the
same. In particular, both data transfer mechanisms store data in some kind of
wxDataObject (p. 204)and identify its format(s) using the wxDataFormat (p. 201)class.

To be a drag source, i.e. to provide the data which may be dragged by user elsewhere,
you should implement the following steps:

 • Preparation: First of all, a data object must be created and initialized with the

data you wish to drag. For example:

 wxTextDataObject my_data("This text will be dragged.");

 • Drag start: To start dragging process (typically in response to a mouse click)

CHAPTER 8

1620

you must call wxDropSource::DoDragDrop (p. 421)like this:

 wxDropSource dragSource(this);
 dragSource.SetData(my_data);
 wxDragResult result = dragSource.DoDragDrop(TRUE);

 • Dragging: The call to DoDragDrop() blocks the program until the user release
the mouse button (unless you override GiveFeedback (p. 421) function to do
something special). When the mouse moves in a window of a program which
understands the same drag-and-drop protocol (any program under Windows or
any program supporting the XDnD protocol under X Windows), the
corresponding wxDropTarget (p. 421) methods are called - see below.

 • Processing the result: DoDragDrop() returns an effect code which is one of the
values of wxDragResult enum (explained here (p. 421)):

 switch (result)
 {
 case wxDragCopy: /* copy the data */ break;
 case wxDragMove: /* move the data */ break;
 default: /* do nothing */ break;
 }

To be a drop target, i.e. to receive the data dropped by user you should follow the
instructions below:

 • Initialization: For a window to be drop target, it needs to have an associated

wxDropTarget (p. 421) object. Normally, you will call wxWindow::SetDropTarget
(p. 1408) during window creation associating you drop target with it. You must
derive a class from wxDropTarget and override its pure virtual methods.
Alternatively, you may derive from wxTextDropTarget (p. 1264)
orwxFileDropTarget (p. 466) and override their OnDropText() or OnDropFiles()
method.

 • Drop: When the user releases the mouse over a window, wxWindows queries
the associated wxDropTarget object if it accepts the data. For this, a
wxDataObject (p. 204) must be associated with the drop target and this data
object will be responsible for the format negotiation between the drag source
and the drop target. If all goes well, then OnData (p. 423) will get called and the
wxDataObject belonging to the drop target can get filled with data.

 • The end: After processing the data, DoDragDrop() returns either wxDragCopy
or wxDragMove depending on the state of the keys (<Ctrl>, <Shift> and <Alt>) at
the moment of drop. There is currently no way for the drop target to change this
return code.

wwxxDDaattaaOObbjjeecctt oovveerrvviieeww

CHAPTER 8

1621

Classes: wxDataObject (p. 204), wxClipboard (p. 124), wxDataFormat (p. 201),
wxDropSource (p. 419), wxDropTarget (p. 421)

See also: Drag and drop overview (p. 1619) and DnD sample (p. 1517)

This overview discusses data transfer through clipboard or drag and drop. In
wxWindows, these two ways to transfer data (either between different applications or
inside one and the same) are very similar which allows to implement both of them using
almost the same code - or, in other words, if you implement drag and drop support for
your application, you get clipboard support for free and vice versa.

At the heart of both clipboard and drag and drop operations lies the wxDataObject (p.
204) class. The objects of this class (or, to be precise, classes derived from it) represent
the data which is being carried by the mouse during drag and drop operation or copied
to or pasted from the clipboard. wxDataObject is a "smart" piece of data because it
knows which formats it supports (see GetFormatCount and GetAllFormats) and knows
how to render itself in any of them (see GetDataHere). It can also receive its value from
the outside in a format it supports if it implements the SetData method. Please see the
documentation of this class for more details.

Both clipboard and drag and drop operations have two sides: the source and target, the
data provider and the data receiver. These which may be in the same application and
even the same window when, for example, you drag some text from one position to
another in a word processor. Let us describe what each of them should do.

The data provider (source) duties

The data provider is responsible for creating a wxDataObject (p. 204) containing the
data to be transferred. Then it should either pass it to the clipboard using SetData (p.
127) function or to wxDropSource (p. 419) and call DoDragDrop (p. 421) function.

The only (but important) difference is that the object for the clipboard transfer must
always be created on the heap (i.e. using new) and it will be freed by the clipboard when
it is no longer needed (indeed, it is not known in advance when, if ever, the data will be
pasted from the clipboard). On the other hand, the object for drag and drop operation
must only exist while DoDragDrop (p. 421) executes and may be safely deleted
afterwards and so can be created either on heap or on stack (i.e. as a local variable).

Another small difference is that in the case of clipboard operation, the application usually
knows in advance whether it copies or cuts (i.e. copies and deletes) data - in fact, this
usually depends on which menu item the user chose. But for drag and drop it can only
know it after DoDragDrop (p. 421) returns (from its return value).

The data receiver (target) duties

To receive (paste in usual terminology) data from the clipboard, you should create a
wxDataObject (p. 204) derived class which supports the data formats you need and pass
it as argument to wxClipboard::GetData (p. 126). If it returns FALSE, no data in (any of)

CHAPTER 8

1622

the supported format(s) is available. If it returns TRUE, the data has been successfully
transferred to wxDataObject.

For drag and drop case, the wxDropTarget::OnData (p. 423) virtual function will be
called when a data object is dropped, from which the data itself may be requested by
calling wxDropTarget::GetData (p. 422) method which fills the data object.

DDaattaabbaassee ccllaasssseess oovveerrvviieeww

The more sophisticated wxODBC classes (wxDb/wxDbTable) are the recommended
classes for doing database/ODBC work with wxWindows. These new classes replace
the wxWindows v1.6x classes wxDatabase. Documentation for the old wxDatabase
class and its associated classes is still included in the class documentation and in this
overview section, but support for these old classes has been phased out, and all future
development work is being done solely on the new wxDb/wxDbTable classes.

Different ODBC Class Libraries in wxWindows

Following is detailed overview of how to use the wxWindows ODBC classes - wxDb (p.
207) and wxDbTable (p. 247) and their associated functions. These are the ODBC
classes donated by Remstar International, and are collectively referred to herein as the
wxODBC classes. Since their initial inclusion with wxWindows v2.x, they have become
the recommended wxWindows classes for database access.

An older version of some classes ported over from wxWindows v1.68 still exist (see
wxDatabase (p. 195) in odbc.cpp), but are now deprecated in favor of the more robust
and comprehensive wxDb/wxDbTable classes. All current and future feature
development, as well as active debugging, are only being done on the wxODBC
classes. Documentation for the older classes is still provided in this manual. The
wxDatabase overview (p. 1642) of the older classes follows the overview of the new
classes.

wxDb/wxDbTable wxODBC Overview

Classes: wxDb (p. 207), wxDbTable (p. 247)

The wxODBC classes were designed for database independence. Although SQL and
ODBC both have standards which define the minimum requirements they must support
to be in compliance with specifications, different database vendors may implement
things slightly different. One example of this is that Oracle requires all user names for
the datasources to be supplied in uppercase characters. In situations like this, the
wxODBC classes have been written to make this transparent to the programmer when
using functions that require database specific syntax.

CHAPTER 8

1623

Currently several major databases, along with other widely used databases, have been
tested and supported through the wxODBC classes. The list of supported databases is
certain to grow as more users start implementing software with these classes, but at the
time of the writing of this document, users have successfully used the classes with the
following datasources:

 • Oracle (v7, v8, v8i)
 • Sybase (ASA and ASE)
 • MS SQL Server (v7 - minimal testing)
 • MS Access (97 and 2000)
 • MySQL
 • DBase (IV, V)**
 • PostgreSQL
 • INFORMIX
 • VIRTUOSO
 • DB2
 • Interbase
 • Pervasive SQL

An up-to-date list can be obtained by looking in the comments of the function
wxDb::Dbms (p. 218) in db.cpp, or in the enumerated type wxDBMS (p. 208) in db.h.

**dBase is not truly an ODBC datasource, but there are drivers which can emulate
much of the functionality of an ODBC connection to a dBase table. See the wxODBC
Known Issues (p. 1637) section of this overview for details.

wxODBC Where To Start

First, if you are not familiar with SQL and ODBC, go to your local bookstore and pick up
a good book on each. This documentation is not meant to teach you many details
about SQL or ODBC, though you may learn some just from immersion in the subject.

If you have worked with non-SQL/ODBC datasources before, there are some things you
will need to un-learn. First some terminology as these phrases will be used heavily in
this section of the manual.

Datasource (usually a database) that contains the data that will be

accessed by the wxODBC classes.
Data table The section of the datasource that contains the rows and

columns of data.
ODBC driver The middle-ware software that interprets the ODBC

commands sent by your application and converts them to
the SQL format expected by the target datasource.

Datasource connection An open pipe between your application and the ODBC
driver which in turn has a connection to the target
datasource. Datasource connections can have a virtually
unlimited number of wxDbTable instances using the same
connect (dependent on the ODBC driver). A separate
connection is not needed for each table (the exception is

CHAPTER 8

1624

for isolating commits/rollbacks on different tables from
affecting more than the desired table. See the class
documentation on wxDb::CommitTrans (p. 216) and
wxDb::RollbackTrans (p. 232).

Rows Similar to records in old relational databases, a row is a
collection of one instance of each column of the data table
that are all associated with each other.

Columns Individual fields associated with each row of a data table.
Query Request from the client to the datasource asking for the

data that matches the requirements specified in the users
request. When a query is performed, the datasource
performs the lookup of the rows with satisfy the query, and
creates a result set.

Result set The data which matches the requirements specified in a
query sent to the datasource. Dependent on drivers, a
result set typically remains at the datasource (no data is
transmitted to the ODBC driver) until the client actually
instructs the ODBC driver to retrieve it.

Cursor a logical pointer into the result set that a query generates,
indicating the next record that will be returned to the client
when a request for the next record is made.

Scrolling cursors Scrolling refers to the movement of cursors through the
result set. Cursors can always scroll forward sequentially
in the result set (FORWARD ONLY scrolling cursors).
With Forward only scrolling cursors, once a row in the
result set has been returned to the ODBC driver and on to
the client, there is no way to have the cursor move
backward in the result set to look at the row that is
previous to the current row in the result set. If
BACKWARD scrolling cursors are supported by both the
ODBC driver and the datasource that are being used, then
backward scrolling cursor functions may be used
(wxDbTable::GetPrev (p. 265), wxDbTable::GetFirst (p.
262), and wxDbTable::GetLast (p. 263)). If the datasource
or the ODBC driver only support forward scrolling cursors,
your program and logic must take this in to account.

Commit/Rollback Commit will physically save insertions/deletions/updates,
while rollback basically does an undo of everything done
against the datasource connection that has not been
previously committed. Note that Commit and Rollbacks
are done on a connection, not on individual tables. All
tables which use a shared connection to the datasource
are all committed/rolled back at the same time when a call
to wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p.
232) is made.

Index Indexes are datasource maintained lookup structures that
allow the datasource to quickly locate data rows based on
the values of certain columns. Without indexes, the
datasource would need to do a sequential search of a
table every time a query request is made. Proper unique
key index construction can make datasource queries

CHAPTER 8

1625

nearly instantaneous.

Before you are able to read data from a data table in a datasource, you must have a
connection to the datasource. Each datasource connection may be used to open
multiple tables all on the same connection (number of tables open are dependent on the
driver, datasource configuration and the amount of memory on the client workstation).
Multiple connections can be opened to the same datasource by the same client
(number of concurrent connections is dependent on the driver and datasource
configuration).

When a query is performed, the client passes the query to the ODBC driver, and the
driver then translates it and passes it along to the datasource. The database engine (in
most cases - exceptions are text and dBase files) running on the machine hosting the
database does all the work of performing the search for the requested data. The client
simply waits for a status to come back through the ODBC driver from the datasource.

Depending on the ODBC driver, the result set either remains "queued" on the database
server side, or is transferred to the machine that the driver is queued on. The client
does not receive this data. The client must request some or all of the result set to be
returned before any data rows are returned to the client application.

Result sets do not need to include all columns of every row matching the query. In fact,
result sets can actually be joinings of columns from two or more data tables, may have
derived column values, or calculated values returned.

For each result set, a cursor is maintained (typically by the database) which keeps track
of where in the result set the user currently is. Depending on the database, ODBC
driver, and how you configured the wxWindows ODBC settings in setup.h (see
wxODBC - Compiling (p. 1627)), cursors can be either forward or backward scrolling.
At a minim, cursors must scroll forward. For example, if a query resulted in a result set
with 100 rows, as the data is read by the client application, it will read row 1, then 2,
then 3, etc, etc. With forward only cursors, once the cursor has moved to the next row,
the previous row cannot be accessed again without re-querying the datasource for the
result set over again. Backward scrolling cursors allow you to request the previous row
from the result set, actually scrolling the cursor backward.

Backward scrolling cursors are not supported on all database/driver combinations. For
this reason, forward-only cursors are the default in the wxODBC classes. If your
datasource does support backward scrolling cursors and you wish to use them, make
the appropriate changes in setup.h to enable them (see wxODBC - Compiling (p.
1627)). For greatest portability between datasources, writing your program in such a
way that it only requires forward scrolling cursors is your best bet. On the other hand, if
you are focusing on using only datasources that support backward scrolling cursors,
potentially large performance benefits can be gained from using them.

There is a limit to the number of cursors that can be open on each connection to the
datasource, and usually a maximum number of cursors for the datasource itself. This is
all dependent on the database. Each connection that is opened (each instance of a
wxDb) opens a minimum of 5 cursors for on creation that are required for things such as
updates/deletions/rollbacks/queries. Cursors are a limited resource, so use care in

CHAPTER 8

1626

creating large numbers of cursors.

Additional cursors can be created if necessary with the wxDbTable::GetNewCursor (p.
263) function. One example use for additional cursors are to track multiple scroll points
in result sets. By creating a new cursor, a program could request a second result set
from the datasource while still maintaining the original cursor position in the first result
set.

Different than non-SQL/ODBC datasources, when a program performs an insertion,
deletion, or update (or other SQL functions like altering tables, etc) through ODBC, the
program must issue a "commit" to the datasource to tell the datasource that the
action(s) it has been told to perform are to be recorded as permanent. Until a commit is
performed, any other programs that query the datasource will not see the changes that
have been made (although there are databases that can be configured to auto-commit).
NOTE: With most all datasources, until the commit is performed, any cursor that is open
on that same datasource connection will be able to see the changes that are
uncommitted. Check your database's documentation/configuration to verify this before
counting on it though.

A rollback is basically an UNDO command on the datasource connection. When a
rollback is issued, the datasource will flush all commands it has been told to do since
the last commit that was performed.

NOTE: Commits/Rollbacks are done on datasource connections (wxDb instances) not
on the wxDbTable instances. This means that if more than one table shares the same
connection, and a commit or rollback is done on that connection, all pending changes
for ALL tables using that connection are committed/rolled back.

wxODBC - Configuring your system for ODBC use

Before you are able to access a datasource, you must have installed and configured an
ODBC driver. Doing this is system specific, so it will not be covered in detail here. But
here are a few details to get you started.

Most database vendors provide at least a minimal ODBC driver with their database
product. In practice, many of these drivers have proven to be slow and/or incomplete.
Rumor has it that this is because the vendors do not want you using the ODBC interface
to their products, they want you to use their applications to access the data.

Whatever the reason, for database intensive applications, you may want to think of
using a third-party ODBC driver for your needs. One example of a third party set of
ODBC drivers that has been heavily tested and used is Rogue Wave's drivers. Rogue
Wave has drivers available for many different platforms and databases. Under
Microsoft Windows, install the ODBC driver you are planning to use. You will then use
the ODBC Administrator in the Control Panel to configure an instance of the driver for
your intended datasource. Note that with all flavors of NT, this configuration can be set
up as a System or User DSN (datasource name). Configuring it as a system resource
will make it available to all users (if you are logged in as 'administrator'), otherwise the
datasource will only be available to the who configured the DSN.

CHAPTER 8

1627

Under Unix, iODBC is used for implementation of the ODBC API. To compile the
wxODBC classes, you must first obtain (http://www.iodbc.org) and install iODBC. Then
you must create the file " /.odbc.ini" (or optionally create "/etc/odbc.ini" for access for all
users on the system). This file contains the settings for your system/datasource. Below
is an example section of a odbc.ini file for use with the "samples/db" sample program
using MySQL:

 [contacts]
 Trace = Off
 TraceFile= stderr
 Driver = /usr/local/lib/libmyodbc.so
 DSN = contacts
 SERVER = 192.168.1.13
 USER = qet
 PASSWORD =
 PORT = 3306

wxODBC - Compiling

The wxWindows setup.h file has several settings in it pertaining to compiling the
wxODBC classes.

wxUSE_ODBC This must be set to 1 in order for the compiler to compile

the wxODBC classes. Without setting this to 1, there will
be no access to any of the wxODBC classes. The default
is 0.

wxODBC_FWD_ONLY_CURSORS When a new database connection is requested,
this setting controls the default of whether the connection
allows only forward scrolling cursors, or forward and
backward scrolling cursors (see the section in "WHERE
TO START" on cursors for more information on cursors).
This default can be overridden by passing a second
parameter to either the wxDbGetConnection (p. 212) or
wxDb constructor (p. 214). The default is 1.

wxODBC_BACKWARD_COMPATABILITY Between v2.0 and 2.2, massive renaming
efforts were done to the ODBC classes to get naming
conventions similar to those used throughout wxWindows,
as well as to preface all wxODBC classes names and
functions with a wxDb preface. Because this renaming
would affect applications written using the v2.0 names,
this compile-time directive was added to allow those
programs written for v2.0 to still compile using the old
naming conventions. These deprecated names are all
define'd to their corresponding new function names at the
end of the db.cpp/dbtable.cpp source files. These
deprecated class/function names should not be used in
future development, as at some point in the future they will
be removed. The default is 0.

CHAPTER 8

1628

Under MS Windows

You are required to include the "odbc32.lib" provided by your compiler vendor in the list
of external libraries to be linked in. If using the makefiles supplied with wxWindows, this
library should already be included for use with makefile.b32, makefile.vc, and
makefile.g95.

You cannot compile the wxODBC classes under Win16 - sorry.

MORE TO COME

Under Unix--with-iodbc flag for configure

MORE TO COME

wxODBC - Basic Step-By-Step Guide

To use the classes in an application, there are eight basic steps:

 • Define datasource connection information
 • Get a datasource connection
 • Create table definition
 • Open the table
 • Use the table
 • Close the table
 • Close the datasource connection
 • Release the ODBC environment handle

Following each of these steps is detailed to explain the step, and to hopefully mention
as many of the pitfalls that beginning users fall in to when first starting to use the
classes. Throughout the steps, small snippets of code are shown to show the syntax of
performing the step. A complete code snippet is provided at the end of this overview
that shows a complete working flow of all these steps (see wxODBC - Sample Code 1
(p. 1638)).

Define datasource connection information

To be able to connect to a datasource through the ODBC driver, a program must supply
a minimum of three pieces of information: Datasource name, User ID, and Authorization
string (password). A fourth piece of information, a default directory indicating where the
data file is stored, is required for Text and dBase drivers for ODBC.

The wxWindows data class wxDbConnectInf exists for holding all of these values, plus
some others that may be desired.

The 'Henv' member is the environment handle used to access memory for use by the
ODBC driver. Use of this member is described below in the "Getting a Connection to

CHAPTER 8

1629

the Datasource" section.

The 'Dsn' must exactly match the datasource name used to configure the ODBC
datasource (in the ODBC Administrator (MSW only) or in the .odbc.ini file).

The 'Uid' is the User ID that is to be used to log in to the datasource. This User ID must
already have been created and assigned rights within the datasource to which you are
connecting. The user that the connection is establish by will determine what rights and
privileges the datasource connection will allow the program to have when using the
connection that this connection information was used to establish. Some datasources
are case sensitive for User IDs, and though the wxODBC classes attempt to hide this
from you by manipulating whatever data you pass in to match the datasource's needs, it
is always best to pass the 'Uid' in the case that the datasource requires.

The 'AuthStr' is the password for the User ID specified in the 'Uid' member. As with the
'Uid', some datasources are case sensitive (in fact most are). The wxODBC classes do
NOT try to manage the case of the 'AuthStr' at all. It is passed verbatim to the
datasource, so you must use the case that the datasource is expecting.

The 'defaultDir' member is used with file based datasources (i.e. dBase, FoxPro, text
files). It contains a full path to the location where the data table or file is located. When
setting this value, use forward slashes '/' rather than backslashes ' avoid compatibility
differences between ODBC drivers.

The other fields are currently unused. The intent of these fields are that they will be
used to write our own ODBC Administrator type program that will work on both MSW
and Un*x systems, regardless of the datasource. Very little work has been done on this
to date.

Get a Datasource Connection

There are two methods of establishing a connection to a datasource. You may either
manually create your own wxDb instance and open the connection, or you may use the
caching functions provided with the wxODBC classes to create/maintain/delete the
connections.

Regardless of which method you use, you must first have a fully populated
wxDbConnectInf object. In the wxDbConnectInf instance, provide a valid Dns, Uid, and
AuthStr (along with a 'defaultDir' if necessary). Before using this though, you must
allocate an environment handle to the 'Henv' member.

 wxDbConnectInf DbConnectInf;
 DbConnectInf.SetDsn,"MyDSN");
 DbConnectInf.SetUserID,"MyUserName");
 DbConnectInf.SetPassword("MyPassword");
 DbConnectInf.SetDefaultDir("");

To allocate an environment handle for the ODBC connection to use, the
wxDbConnectInf class has a datasource independent method for creating the
necessary handle:

CHAPTER 8

1630

 if (DbConnectInf.AllocHenv())
 {
 wxMessageBox("Unable to allocate an ODBC environment handle",
 "DB CONNECTION ERROR", wxOK | wxICON_EXCLAMATION);
 return;
 }

When the wxDbConnectInf::AllocHenv() function is called successfully, a value of TRUE
will be returned. A value of FALSE means allocation failed, and the handle will be
undefined.

A shorter form of doing the above steps is encapsulated into the long form of the
constructor for wxDbConnectInf.

 wxDbConnectInf *DbConnectInf;

 DbConnectInf = new wxDbConnectInf(NULL, "MyDSN", "MyUserName",
 "MyPassword", "");

This shorthand form of initializing the constructor passes a NULL for the SQL
environment handle, telling the constructor to allocate a handle during construction.
This handle is also managed for the life of wxDbConnectInf instance, and is freed
automatically upon destruction of the instance.

Once the wxDbConnectInf instance is initialized, you are ready to connect to the
datasource.

To manually create datasource connections, you must create a wxDb instance, and
then open it.

 wxDb *db = new wxDb(DbConnectInf->GetHenv());

 opened = db->Open(DbConnectInf);

The first line does the house keeping needed to initialize all the members of the wxDb
class. The second line actually sends the request to the ODBC driver to open a
connection to its associated datasource using the parameters supplied in the call to
wxDb::Open (p. 231).

A more advanced form of opening a connection is to used the connection caching
functions that are included with the wxODBC classes. The caching mechanisms do the
same functions are the manual approach to opening a connection, but they also
manage each connection they have created, re-using them and cleaning them up when
they are closed, without you programmatically needing to do the coding.

To use the caching function wxDbGetConnection (p. 212) to get a connection to a
datasource, simply call it with a single parameter of the type wxDbConnectInf:

 db = wxDbGetConnection(DbConnectInf);

The wxDb pointer that is returned is both initialized and opened. If something failed in
creating or opening the connection, the return value from wxDbGetConnection (p. 212)

CHAPTER 8

1631

will be NULL.

The connection that is returned is either a new connection, or it is a "free" connection
from the cache of connections that the class maintains that was no longer in use. Any
wxDb instance created with a call to wxDbGetConnection (p. 212) is kept track of in a
linked list of established connections. When a program is done with a connection, a call
to wxDbFreeConnection (p. 212) is made, and the datasource connection will then be
tagged as FREE, making it available for the next call to wxDbGetConnection (p. 212)
that needs a connection using the same connection information (Dsn, Uid, AuthStr).
The cached connections remain cached until a call to wxDbCloseConnections (p. 212)
is made, at which time all cached connections are closed and deleted.

Besides the obvious advantage of using the single command caching routine to obtain a
datasource connection, using cached connections can be quite a performance boost as
well. Each time that a new connection is created (not retrieved from the cache of free
connections), the wxODBC classes perform many queries against the datasource to
determine the datasource's datatypes and other fundamental behaviors. Depending on
the hardware, network bandwidth, and datasource speed, this can in some cases take a
few seconds to establish the new connection (with well balanced systems, it should only
be a fraction of a second). Re-using already established datasource connections rather
than creating/deleting, creating/deleting connections can be quite a time saver.

Another time saver is the "copy connection" features of both wxDb::Open (p. 231) and
wxDbGetConnection (p. 212). If manually creating a wxDb instance and opening it, you
must pass an existing connection to the wxDb::Open (p. 231) function yourself to gain
the performance benefit of copying existing connection settings. The
wxDbGetConnection (p. 212) function automatically does this for you, checking the Dsn,
Uid, and AuthStr parameters when you request a connection for any existing
connections that use those same settings. If one is found, wxDbGetConnection (p. 212)
copies the datasource settings for datatypes and other datasource specific information
that was previously queried, rather than re-querying the datasource for all those same
settings.

One final note on creating a connection. When a connection is created, it will default to
only allowing cursor scrolling to be either forward only, or both backward and forward
scrolling cursors. The default behavior is determined by the setting
wxODBC_FWD_ONLY_CURSORS in setup.h when you compile the wxWindows library.
The library default is to only support forward scrolling cursors only, though this can be
overridden by parameters for wxDb() constructor or the wxDbGetConnection (p. 212)
function. All datasources and ODBC drivers must support forward scrolling cursors.
Many datasources support backward scrolling cursors, and many ODBC drivers support
backward scrolling cursors. Before planning on using backward scrolling cursors, you
must be certain that both your datasource and ODBC driver fully support backward
scrolling cursors. See the small blurb about "Scrolling cursors" in the definitions at the
beginning of this overview, or other details of setting the cursor behavior in the wxDb
class documentation.

Create Table Definition

Data can be accessed in a datasource's tables directly through various functions of the
wxDb class (see wxDb::GetData (p. 224)). But to make life much simpler, the

CHAPTER 8

1632

wxDbTable class encapsulates all of the SQL specific API calls that would be necessary
to do this, wrapping it in an intuitive class of APIs.

The first step in accessing data in a datasource's tables via the wxDbTable class is to
create a wxDbTable instance.

 table = new wxDbTable(db, tableName, numTableColumns, "",
 !wxDB_QUERY_ONLY, "");

When you create the instance, you indicate the previously established datasource
connection to be used to access the table, the name of the primary table that is to be
accessed with the datasource's tables, how many columns of each row are going to be
returned, the name of the view of the table that will actually be used to query against
(works with Oracle only at this time), whether the data returned is for query purposes
only, and finally the path to the table, if different than the path specified when
connecting to the datasource.

Each of the above parameters are described in detail in the wxDbTable class'
description, but one special note here about the fifth parameter - queryOnly setting. If a
wxDbTable instance is created as wxDB_QUERY_ONLY, then no inserts/deletes/updates
are able to be performed using this instance of the wxDbTable. Any calls to
wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) against the datasource
connection used by this wxDbTable instance are ignored by this instance. If the
wxDbTable instance is created with !wxDB_QUERY_ONLY as shown above, then all the
cursors and other overhead associated with being able to insert/update/delete data in
the table are created, and thereby those operations can then be performed against the
associated table with this wxDbTable instance.

If a table is to be accessed via a wxDbTable instance, and the table will only be read
from, not written to, there is a performance benefit (not as many cursors need to be
maintained/updated, hence speeding up access times), as well as a resource savings
due to fewer cursors being created for the wxDbTable instance. Also, with some
datasources, the number of simultaneous cursors is limited.

When defining the columns to be retrievable by the wxDbTable instance, you can
specify anywhere from one column up to all columns in the table.

 table->SetColDefs(0, "FIRST_NAME", DB_DATA_TYPE_VARCHAR, FirstName,
 SQL_C_CHAR, sizeof(name), TRUE, TRUE);
 table->SetColDefs(1, "LAST_NAME", DB_DATA_TYPE_VARCHAR, LastName,
 SQL_C_CHAR, sizeof(LastName), TRUE, TRUE);

Notice that column definitions start at index 0 and go up to one less than the number of
columns specified when the wxDbTable instance was created (in this example, two
columns - one with index 0, one with index 1).

The above lines of code "bind" the datasource columns specified to the memory
variables in the client application. So when the application makes a call to
wxDbTable::GetNext (p. 264) (or any other function that retrieves data from the result
set), the variables that are bound to the columns will have the column value stored into
them. See the wxDbTable::SetColDefs (p. 275) class documentation for more details

CHAPTER 8

1633

on all the parameters for this function.

The bound memory variables have undefined data in them until a call to a function that
retrieves data from a result set is made (e.g. wxDbTable::GetNext (p.
264),wxDbTable::GetPrev (p. 265), etc). The variables are not initialized to any data by
the wxODBC classes, and they still contain undefined data after a call to
wxDbTable::Query (p. 270). Only after a successful call to one of the ::GetXxxx()
functions is made do the variables contain valid data.

It is not necessary to define column definitions for columns whose data is not going to
be returned to the client. For example, if you want to query the datasource for all users
with a first name of 'GEORGE', but you only want the list of last names associated with
those rows (why return the FIRST_NAME column every time when you already know it
is 'GEORGE'), you would only have needed to define one column above.

You may have as many wxDbTable instances accessing the same table using the same
wxDb instance as you desire. There is no limit imposed by the classes on this. All
datasources supported (so far) also have no limitations on this.

Open the table

Opening the table technically is not doing anything with the datasource itself. Calling
wxDbTable::Open (p. 268) simply does all the house keeping of checking that the
specified table exists, that the current connected user has at least SELECT privileges
for accessing the table, setting up the requisite cursors, binding columns and cursors,
and constructing the default INSERT statement that is used when a new row is inserted
into the table (non-wxDB_QUERY_ONLY tables only).

 if (!table->Open())
 {
 // An error occurred opening (setting up) the table
 }

The only reason that a call to wxDbTable::Open (p. 268) will likely fail is if the user has
insufficient privileges to even SELECT the table. Other problems could occur, such as
being unable to bind columns, but these other reason point to some lack of resource
(like memory). Any errors generated internally in the wxDbTable::Open (p. 268)
function are logged to the error log if SQL logging is turned on for the classes.

Use the table

To use the table and the definitions that are now set up, we must first define what data
we want the datasource to collect in to a result set, tell it where to get the data from, and
in what sequence we want the data returned.

 // the WHERE clause limits/specifies which rows in the table
 // are to be returned in the result set
 table->SetWhereClause("FIRST_NAME = 'GEORGE'");

 // Result set will be sorted in ascending alphabetical
 // order on the data in the 'LAST_NAME' column of each row
 // If the same last name is in the table for two rows,

CHAPTER 8

1634

 // sub-sort on the 'AGE' column
 table->SetOrderByClause("LAST_NAME, AGE");

 // No other tables (joins) are used for this query
 table->SetFromClause("");

The above lines will be used to tell the datasource to return in the result all the rows in
the table whose column "FIRST_NAME" contains the name 'GEORGE' (note the
required use of the single quote around the string literal) and that the result set will
return the rows sorted by ascending last names (ascending is the default, and can be
overridden with the "DESC" keyword for datasources that support it - "LAST_NAME
DESC").

Specifying a blank WHERE clause will result in the result set containing all rows in the
datasource.

Specifying a blank ORDERBY clause means that the datasource will return the result
set in whatever sequence it encounters rows which match the selection criteria. What
this sequence is can be hard to determine. Typically it depends on the index that the
datasource used to find the rows which match the WHERE criteria. BEWARE - relying
on the datasource to return data in a certain sequence when you have not provided an
ORDERBY clause will eventually cause a problem for your program. Databases can be
tuned to be COST-based, SPEED-based, or some other basis for how it gets your result
set. In short, if you need your result set returned in a specific sequence, ask for it that
way by providing an ORDERBY clause.

Using an ORDERBY clause can be a performance hit, as the database must sort the
items before making the result set available to the client. Creating efficient indexes that
cause the data to be "found" in the correct ORDERBY sequence can be a big
performance benefit. Also, in the large majority of cases, the database will be able to
sort the records faster than your application can read all the records in (unsorted) and
then sort them. Let the database do the work for you!

Notice in the example above, a column that is not included in the bound data columns
('AGE') will be used to sub-sort the result set.

The FROM clause in this example is blanked, as we are not going to be performing any
table joins with this simple query. When the FROM clause is blank, it is assumed that
all columns referenced are coming from the default table for the wxDbTable instance.

After the selection criteria have been specified, the program can now ask the
datasource to perform the search and create a result set that can be retrieved:

 // Instruct the datasource to perform a query based on the
 // criteria specified above in the where/orderBy/from clauses.
 if (!table->Query())
 {
 // An error occurred performing the query
 }

Typically, when an error occurs when calling wxDbTable::Query (p. 270), it is a syntax
problem in the WHERE clause that was specified. The exact SQL (datasource specific)

CHAPTER 8

1635

reason for what caused the failure of wxDbTable::Query (p. 270) (and all other
operations against the datasource can be found by parsing the table's database
connection's "errorList[]" array member for the stored text of the error.

When the wxDbTable::Query (p. 270) returns TRUE, the database was able to
successfully complete the requested query using the provided criteria. This does not
mean that there are any rows in the result set, it just mean that the query was
successful.

IMPORTANT: The result created by the call to wxDbTable::Query (p. 270) can be one of
two forms. It is either a snapshot of the data at the exact moment that the database
determined the record matched the search criteria, or it is a pointer to the row that
matched the selection criteria. Which form of behavior is datasource dependent. If it is
a snapshot, the data may have changed since the result set was constructed, so
beware if your datasource uses snapshots and call wxDbTable::Refresh (p. 275). Most
larger brand databases do not use snapshots, but it is important to mention so that your
application can handle it properly if your datasource does.

To retrieve the data, one of the data fetching routines must be used to request a row
from the result set, and to store the data from the result set into the bound memory
variables. After wxDbTable::Query (p. 270) has completed successfully, the
default/current cursor is placed so it is pointing just before the first record in the result
set. If the result set is empty (no rows matched the criteria), then any calls to retrieve
data from the result set will return FALSE.

 wxString msg;

 while (table->GetNext())
 {
 msg.Printf("Row #%lu -- First Name : %s Last Name is %s",
 table->GetRowNum(), FirstName, LastName);
 wxMessageBox(msg, "Data", wxOK | wxICON_INFORMATION, NULL);
 }

The sample code above will read the next record in the result set repeatedly until the
end of the result set has been reached. The first time that wxDbTable::GetNext (p. 264)
is called right after the successful call to wxDbTable::Query (p. 270), it actually returns
the first record in the result set.

When wxDbTable::GetNext (p. 264) is called and there are no rows remaining in the
result set after the current cursor position, wxDbTable::GetNext (p. 264) (as well as all
the other wxDbTable::GetXxxxx() functions) will return FALSE.

Close the table

When the program is done using a wxDbTable instance, it is as simple as deleting the
table pointer (or if declared statically, letting the variable go out of scope). Typically the
default destructor will take care of all that is required for cleaning up the wxDbTable
instance.

 if (table)
 {

CHAPTER 8

1636

 delete table;
 table = NULL;
 }

Deleting a wxDbTable instance releases all of its cursors, deletes the column definitions
and frees the SQL environment handles used by the table (but not the environment
handle used by the datasource connection that the wxDbTable instance was using).

Close the datasource connection

After all tables that have been using a datasource connection have been closed (this
can be checked by calling wxDb::GetTableCount (p. 227) and checking that it returns
0), then you may close the datasource connection. The method of doing this is
dependent on whether the non-caching or caching method was used to obtain the
datasource connection.

If the datasource connection was created manually (non-cached), closing the
connection is done like this:

 if (db)
 {
 db->Close();
 delete db;
 db = NULL;
 }

If the program used the wxDbGetConnection (p. 212) function to get a datasource
connection, the following is the code that should be used to free the connection(s):

 if (db)
 {
 wxDbFreeConnection(db);
 db = NULL;
 }

Note that the above code just frees the connection so that it can be re-used on the next
call the wxDbGetConnection (p. 212). To actually dispose of the connection, releasing
all of its resources (other than the environment handle), do the following:

 wxDbCloseConnections();

Release the ODBC environment handle

Once all of the connections that used the ODBC environment handle (in this example it
was stored in "DbConnectInf.Henv") have been closed, then it is safe to release the
environment handle:

 DbConnectInf->FreeHenv());

Or, if the long form of the constructor was used and the constructor was allowed to
allocate its own SQL environment handle, leaving scope or destruction of the
wxDbConnectInf will free the handle automatically.

CHAPTER 8

1637

 delete DbConnectInf;

Remember to never release this environment handle if there are any connections still
using the handle.

wxODBC - Known Issues

As with creating wxWindows, writing the wxODBC classes was not the simple task of
writing an application to run on a single type of computer system. The classes need to
be cross-platform for different operating systems, and they also needed to take in to
account different database manufacturers and different ODBC driver manufacturers.
Because of all the possible combinations of OS/database/drivers, it is impossible to say
that these classes will work perfectly with datasource ABC, ODBC driver XYZ, on
platform LMN. You may run in to some incompatibilities or unsupported features when
moving your application from one environment to another. But that is what makes
cross-platform programming fun. It is also pinpoints one of the great things about open
source software. It can evolve!

The most common difference between different database/ODBC driver manufacturers in
regards to these wxODBC classes is the lack of standard error codes being returned to
the calling program. Sometimes manufacturers have even changed the error codes
between versions of their databases/drivers.

In all the tested databases, every effort has been made to determine the correct error
codes and handle them in the class members that need to check for specific error codes
(such as TABLE DOES NOT EXIST when you try to open a table that has not been
created yet). Adding support for additional databases in the future requires adding an
entry for the database in the wxDb::Dbms (p. 218) function, and then handling any error
codes returned by the datasource that do not match the expected values.

Databases

Following is a list of known issues and incompatibilities that the wxODBC classes have
between different datasources. An up to date listing of known issues can be seen in the
comments of the source for wxDb::Dbms (p. 218).

ORACLE
 • Currently the only database supported by the wxODBC classes to support

VIEWS

DBASE

NOTE: dBase is not a true ODBC datasource. You only have access to as much
functionality as the driver can emulate.

 • Does not support the SQL_TIMESTAMP structure
 • Supports only one cursor and one connect (apparently? with Microsoft driver

only?)

CHAPTER 8

1638

 • Does not automatically create the primary index if the 'keyField' param of
SetColDef is TRUE. The user must create ALL indexes from their program with
calls to wxDbTable::CreateIndex (p. 255)

 • Table names can only be 8 characters long
 • Column names can only be 10 characters long
 • Currently cannot CREATE a dBase table - bug or limitation of the drivers used??
 • Currently cannot insert rows that have integer columns - bug??

SYBASE (all)
 • To lock a record during QUERY functions, the reserved word 'HOLDLOCK' must

be added after every table name involved in the query/join if that table's
matching record(s) are to be locked

 • Ignores the keywords 'FOR UPDATE'. Use the HOLDLOCK functionality
described above

SYBASE (Enterprise)
 • If a column is part of the Primary Key, the column cannot be NULL
 • Maximum row size is somewhere in the neighborhood of 1920 bytes

mySQL
 • If a column is part of the Primary Key, the column cannot be NULL.
 • Cannot support selecting for update [wxDbTable::CanSelectForUpdate (p. 252)].

Always returns FALSE.
 • Columns that are part of primary or secondary keys must be defined as being

NOT NULL when they are created. Some code is added in
wxDbTable::CreateIndex (p. 255) to try to adjust the column definition if it is not
defined correctly, but it is experimental (as of wxWindows v2.2.1)

 • Does not support sub-queries in SQL statements

POSTGRES
 • Does not support the keywords 'ASC' or 'DESC' as of release v6.5.0
 • Does not support sub-queries in SQL statements

DB2
 • Columns which are part of a primary key must be declared as NOT NULL

UNICODE with wxODBC classes

The ODBC classes support for Unicode is yet in early experimental stage and hasn't
been tested extensively. It might work for you or it might not: please report the
bugs/problems you have encountered in the latter case.

wxODBC - Sample Code 1

Simplest example of establishing/opening a connection to an ODBC datasource,
binding variables to the columns for read/write usage, opening an existing table in the
datasource, setting the query parameters (where/orderBy/from), querying the
datasource, reading each row of the result set, then cleaning up.

CHAPTER 8

1639

NOTE: Not all error trapping is shown here, to reduce the size of the code and to make
it more easily readable.

wxDbConnectInf *DbConnectInf = NULL;

wxDb *db = NULL; // The database connection
wxDbTable *table = NULL; // The data table to access

wxChar FirstName[50+1]; // buffer for data from column
"FIRST_NAME"
wxChar LastName[50+1]; // buffer for data from column
"LAST_NAME"

bool errorOccured = FALSE;

const wxChar tableName[] = "CONTACTS";
const UWORD numTableColumns = 2; // Number of bound
columns

FirstName[0] = 0;
LastName[0] = 0;

DbConnectInf = new wxDbConnectInf(NULL,"MyDSN","MyUserName",
"MyPassword");

if (!DbConnectInf || !DbConnectInf->GetHenv())
{
 wxMessageBox("Unable to allocate an ODBC environment handle",
 "DB CONNECTION ERROR", wxOK | wxICON_EXCLAMATION);
 return;
}

// Get a database connection from the cached connections
db = wxDbGetConnection(DbConnectInf);

// Create the table connection
table = new wxDbTable(db, tableName, numTableColumns, "",
 !wxDB_QUERY_ONLY, "");

//
// Bind the columns that you wish to retrieve. Note that there must be
// 'numTableColumns' calls to SetColDefs(), to match the wxDbTable
definition
//
// Not all columns need to be bound, only columns whose values are to
be
// returned back to the client.
//
table->SetColDefs(0, "FIRST_NAME", DB_DATA_TYPE_VARCHAR, FirstName,
 SQL_C_CHAR, sizeof(name), TRUE, TRUE);
table->SetColDefs(1, "LAST_NAME", DB_DATA_TYPE_VARCHAR, LastName,
 SQL_C_CHAR, sizeof(LastName), TRUE, TRUE);

// Open the table for access
table->Open();

CHAPTER 8

1640

// Set the WHERE clause to limit the result set to only
// return all rows that have a value of 'GEORGE' in the
// FIRST_NAME column of the table.
table->SetWhereClause("FIRST_NAME = 'GEORGE'");

// Result set will be sorted in ascending alphabetical
// order on the data in the 'LAST_NAME' column of each row
table->SetOrderByClause("LAST_NAME");

// No other tables (joins) are used for this query
table->SetFromClause("");

// Instruct the datasource to perform a query based on the
// criteria specified above in the where/orderBy/from clauses.
if (!table->Query())
{
 wxMessageBox("Error on Query()","ERROR!",
 wxOK | wxICON_EXCLAMATION);
 errorOccured = TRUE;
}

wxString msg;

// Start and continue reading every record in the table
// displaying info about each record read.
while (table->GetNext())
{
 msg.Printf("Row #%lu -- First Name : %s Last Name is %s",
 table->GetRowNum(), FirstName, LastName);
 wxMessageBox(msg, "Data", wxOK | wxICON_INFORMATION, NULL);
}

// If the wxDbTable instance was successfully created
// then delete it as I am done with it now.
if (table)
{
 delete table;
 table = NULL;
}

// If we have a valid wxDb instance, then free the connection
// (meaning release it back in to the cache of datasource
// connections) for the next time a call to wxDbGetConnection()
// is made.
if (db)
{
 wxDbFreeConnection(db);
 db = NULL;
}

// The program is now ending, so we need to close
// any cached connections that are still being
// maintained.
wxDbCloseConnections();

// Release the environment handle that was created

CHAPTER 8

1641

// for use with the ODBC datasource connections
delete DbConnectInf;

wxDatabase ODBC class overview [DEPRECATED]

Classes: wxDatabase (p. 195), wxRecordSet (p. 1027), wxQueryCol (p. 1005),
wxQueryField (p. 1008)

The more sophisticated wxODBC classes (wxDb/wxDbTable) are the recommended
classes for doing database/ODBC work with wxWindows. These new classes replace
the wxWindows v1.6x classes wxDatabase.

Documentation for the old wxDatabase class and its associated classes is still included
in the class documentation and in this overview section, but support for these old
classes has been phased out, and all future development work is being done solely on
the new wxDb/wxDbTable classes.

wxWindows provides a set of classes for accessing a subset of Microsoft's ODBC (Open
Database Connectivity) product. Currently, this wrapper is available under MS Windows
only, although ODBC may appear on other platforms, and a generic or product-specific
SQL emulator for the ODBC classes may be provided in wxWindows at a later date.

ODBC presents a unified API (Application Programmer's Interface) to a wide variety of
databases, by interfacing indirectly to each database or file via an ODBC driver. The
language for most of the database operations is SQL, so you need to learn a small
amount of SQL as well as the wxWindows ODBC wrapper API. Even though the
databases may not be SQL-based, the ODBC drivers translate SQL into appropriate
operations for the database or file: even text files have rudimentary ODBC support,
along with dBASE, Access, Excel and other file formats.

The run-time files for ODBC are bundled with many existing database packages,
including MS Office. The required header files, sql.h and sqlext.h, are bundled with
several compilers including MS VC++ and Watcom C++. The only other way to obtain
these header files is from the ODBC SDK, which is only available with the MS Developer
Network CD-ROMs -- at great expense. If you have odbc.dll, you can make the required
import library odbc.lib using the tool 'implib'. You need to have odbc.lib in your compiler
library path.

The minimum you need to distribute with your application is odbc.dll, which must go in
the Windows system directory. For the application to function correctly, ODBC drivers
must be installed on the user's machine. If you do not use the database classes, odbc.dll
will be loaded but not called (so ODBC does not need to be setup fully if no ODBC calls
will be made).

A sample is distributed with wxWindows in samples/odbc. You will need to install the
sample dbf file as a data source using the ODBC setup utility, available from the control
panel if ODBC has been fully installed.

CHAPTER 8

1642

Procedures for writing an ODBC application using wxDatabase
[DEPRECATED]

You first need to create a wxDatabase object. If you want to get information from the
ODBC manager instead of from a particular database (for example using
wxRecordSet::GetDataSources (p. 1032)), then you do not need to call
wxDatabase::Open (p. 200). If you do wish to connect to a datasource, then call
wxDatabase::Open. You can reuse your wxDatabase object, calling wxDatabase::Close
and wxDatabase::Open multiple times.

Then, create a wxRecordSet object for retrieving or sending information. For ODBC
manager information retrieval, you can create it as a dynaset (retrieve the information as
needed) or a snapshot (get all the data at once). If you are going to call
wxRecordSet::ExecuteSQL (p. 1030), you need to create it as a snapshot. Dynaset
mode is not yet implemented for user data.

Having called a function such as wxRecordSet::ExecuteSQL or
wxRecordSet::GetDataSources, you may have a number of records associated with the
recordset, if appropriate to the operation. You can now retrieve information such as the
number of records retrieved and the actual data itself. Use wxRecordSet::GetFieldData
(p. 1033) orwxRecordSet::GetFieldDataPtr (p. 1033) to get the data or a pointer to it,
passing a column index or name. The data returned will be for the current record. To
move around the records, use wxRecordSet::MoveNext (p. 1038),
wxRecordSet::MovePrev (p. 1038) and associated functions.

You can use the same recordset for multiple operations, or delete the recordset and
create a new one.

Note that when you delete a wxDatabase, any associated recordsets also get deleted,
so beware of holding onto invalid pointers.

wxDatabase class overview [DEPRECATED]

Class: wxDatabase (p. 195)

DEPRECATED

Use wxDb (p. 207) and wxDbTable (p. 247) instead.

Every database object represents an ODBC connection. To do anything useful with a
database object you need to bind a wxRecordSet object to it. All you can do with
wxDatabase is opening/closing connections and getting some info about it (users,
passwords, and so on).

See also

Database classes overview (p. 1622)

CHAPTER 8

1643

wxQueryCol class overview [DEPRECATED]

Class: wxQueryCol (p. 1005)

DEPRECATED

Use wxDb (p. 207) and wxDbTable (p. 247) instead.

Every data column is represented by an instance of this class. It contains the name and
type of a column and a list of wxQueryFields where the real data is stored. The links to
user-defined variables are stored here, as well.

See also

Database classes overview (p. 1622)

wxQueryField class overview [DEPRECATED]

Class: wxQueryField (p. 1008)

DEPRECATED

Use wxDb (p. 207) and wxDbTable (p. 247) instead.

As every data column is represented by an instance of the class wxQueryCol, every data
item of a specific column is represented by an instance of wxQueryField. Each column
contains a list of wxQueryFields. If wxRecordSet is of the type
wxOPEN_TYPE_DYNASET, there will be only one field for each column, which will be
updated every time you call functions like wxRecordSet::Move or wxRecordSet::GoTo. If
wxRecordSet is of the type wxOPEN_TYPE_SNAPSHOT, all data returned by an ODBC
function will be loaded at once and the number of wxQueryField instances for each
column will depend on the number of records.

See also

Database classes overview (p. 1622)

wxRecordSet overview [DEPRECATED]

Class: wxRecordSet (p. 1027)

DEPRECATED

Use wxDb (p. 207) and wxDbTable (p. 247) instead.

Each wxRecordSet represents a database query. You can make multiple queries at a
time by using multiple wxRecordSets with a wxDatabase or you can make your queries

CHAPTER 8

1644

in sequential order using the same wxRecordSet.

See also

Database classes overview (p. 1622)

ODBC SQL data types [DEPRECATED]

These are the data types supported in ODBC SQL. Note that there are other, extended
level conformance types, not currently supported in wxWindows.

CHAR(n) A character string of fixed length n.
VARCHAR(n) A varying length character string of maximum length n.
LONG VARCHAR(n) A varying length character string: equivalent to VARCHAR

for the purposes of ODBC.
DECIMAL(p, s) An exact numeric of precision p and scale s.
NUMERIC(p, s) Same as DECIMAL.
SMALLINT A 2 byte integer.
INTEGER A 4 byte integer.
REAL A 4 byte floating point number.
FLOAT An 8 byte floating point number.
DOUBLE PRECISION Same as FLOAT.

These data types correspond to the following ODBC identifiers:

SQL_CHAR A character string of fixed length.
SQL_VARCHAR A varying length character string.
SQL_DECIMAL An exact numeric.
SQL_NUMERIC Same as SQL_DECIMAL.
SQL_SMALLINT A 2 byte integer.
SQL_INTEGER A 4 byte integer.
SQL_REAL A 4 byte floating point number.
SQL_FLOAT An 8 byte floating point number.
SQL_DOUBLE Same as SQL_FLOAT.

See also

Database classes overview (p. 1622)

A selection of SQL commands [DEPRECATED]

The following is a very brief description of some common SQL commands, with
examples.

See also

CHAPTER 8

1645

Database classes overview (p. 1622)

Create

Creates a table.

Example:

CREATE TABLE Book
 (BookNumber INTEGER PRIMARY KEY
 , CategoryCode CHAR(2) DEFAULT 'RO' NOT NULL
 , Title VARCHAR(100) UNIQUE
 , NumberOfPages SMALLINT
 , RetailPriceAmount NUMERIC(5,2)
)

Insert

Inserts records into a table.

Example:

INSERT INTO Book
 (BookNumber, CategoryCode, Title)
 VALUES(5, 'HR', 'The Lark Ascending')

Select

The Select operation retrieves rows and columns from a table. The criteria for selection
and the columns returned may be specified.

Examples:

SELECT * FROM Book

Selects all rows and columns from table Book.

SELECT Title, RetailPriceAmount FROM Book WHERE RetailPriceAmount
> 20.0

Selects columns Title and RetailPriceAmount from table Book, returning only the rows
that match the WHERE clause.

SELECT * FROM Book WHERE CatCode = 'LL' OR CatCode = 'RR'

Selects all columns from table Book, returning only the rows that match the WHERE
clause.

SELECT * FROM Book WHERE CatCode IS NULL

CHAPTER 8

1646

Selects all columns from table Book, returning only rows where the CatCode column is
NULL.

SELECT * FROM Book ORDER BY Title

Selects all columns from table Book, ordering by Title, in ascending order. To specify
descending order, add DESC after the ORDER BY Title clause.

SELECT Title FROM Book WHERE RetailPriceAmount >= 20.0 AND
RetailPriceAmount <= 35.0

Selects records where RetailPriceAmount conforms to the WHERE expression.

Update

Updates records in a table.

Example:

UPDATE Incident SET X = 123 WHERE ASSET = 'BD34'

This example sets a field in column 'X' to the number 123, for the record where the
column ASSET has the value 'BD34'.

IInntteerrpprroocceessss ccoommmmuunniiccaattiioonn oovveerrvviieeww

Classes: wxDDEServer (p. 352), wxDDEConnection (p. 348), wxDDEClient (p. 347),
wxTCPServer (p. 1235), wxTCPConnection (p. 1231), wxTCPClient (p. 1229)

wxWindows has a number of different classes to help with interprocess communication
and network programming. This section only discusses one family of classes - the DDE-
like protocol - but here's a list of other useful classes:

 • wxSocketEvent (p. 1120), wxSocketBase (p. 1100), wxSocketClient (p. 1118),

wxSocketServer (p. 1121): classes for the low-level TCP/IP API.
 • wxProtocol (p. 1002), wxURL (p. 1345), wxFTP (p. 540), wxHTTP: classes for

programming popular Internet protocols.

Further information on these classes will be available in due course.

wxWindows has a high-level protocol based on Windows DDE. There are two
implementations of this DDE-like protocol: one using real DDE running on Windows only,
and another using TCP/IP (sockets) that runs on most platforms. Since the API is the
same apart from the names of the classes, you should find it easy to switch between the
two implementations.

CHAPTER 8

1647

The following description refers to 'DDE' but remember that the equivalent wxTCP...
classes can be used in much the same way.

Three classes are central to the DDE API:

 1. wxDDEClient. This represents the client application, and is used only within a

client program.
 2. wxDDEServer. This represents the server application, and is used only within a

server program.
 3. wxDDEConnection. This represents the connection from the current client or

server to the other application (server or client), and can be used in both server
and client programs. Most DDE transactions operate on this object.

Messages between applications are usually identified by three variables: connection
object, topic name and item name. A data string is a fourth element of some messages.
To create a connection (a conversation in Windows parlance), the client application
sends the message MakeConnection to the client object, with a string service name to
identify the server and a topic name to identify the topic for the duration of the
connection. Under Unix, the service name must contain an integer port identifier.

The server then responds and either vetoes the connection or allows it. If allowed, a
connection object is created which persists until the connection is closed. The
connection object is then used for subsequent messages between client and server.

To create a working server, the programmer must:

 1. Derive a class from wxDDEServer.
 2. Override the handler OnAcceptConnection for accepting or rejecting a

connection, on the basis of the topic argument. This member must create and
return a connection object if the connection is accepted.

 3. Create an instance of your server object, and call Create to activate it, giving it a
service name.

 4. Derive a class from wxDDEConnection.
 5. Provide handlers for various messages that are sent to the server side of a

wxDDEConnection.

To create a working client, the programmer must:

 1. Derive a class from wxDDEClient.
 2. Override the handler OnMakeConnection to create and return an appropriate

connection object.
 3. Create an instance of your client object.
 4. Derive a class from wxDDEConnection.
 5. Provide handlers for various messages that are sent to the client side of a

wxDDEConnection.
 6. When appropriate, create a new connection by sending a MakeConnection

message to the client object, with arguments host name (processed in Unix
only), service name, and topic name for this connection. The client object will
call OnMakeConnection to create a connection object of the desired type.

 7. Use the wxDDEConnection member functions to send messages to the server.

CHAPTER 8

1648

Data transfer

These are the ways that data can be transferred from one application to another.

 • Execute: the client calls the server with a data string representing a command

to be executed. This succeeds or fails, depending on the server's willingness to
answer. If the client wants to find the result of the Execute command other than
success or failure, it has to explicitly call Request.

 • Request: the client asks the server for a particular data string associated with a
given item string. If the server is unwilling to reply, the return value is NULL.
Otherwise, the return value is a string (actually a pointer to the connection
buffer, so it should not be deallocated by the application).

 • Poke: The client sends a data string associated with an item string directly to
the server. This succeeds or fails.

 • Advise: The client asks to be advised of any change in data associated with a
particular item. If the server agrees, the server will send an OnAdvise message
to the client along with the item and data.

The default data type is wxCF_TEXT (ASCII text), and the default data size is the length
of the null-terminated string. Windows-specific data types could also be used on the PC.

Examples

See the sample programs server and client in the IPC samples directory. Run the
server, then the client. This demonstrates using the Execute, Request, and Poke
commands from the client, together with an Advise loop: selecting an item in the server
list box causes that item to be highlighted in the client list box.

More DDE details

A wxDDEClient object represents the client part of a client-server DDE (Dynamic Data
Exchange) conversation (available in both Windows and Unix).

To create a client which can communicate with a suitable server, you need to derive a
class from wxDDEConnection and another from wxDDEClient. The custom
wxDDEConnection class will intercept communications in a 'conversation' with a server,
and the custom wxDDEServer is required so that a user-overridden
wxDDEClient::OnMakeConnection (p. 348) member can return a wxDDEConnection of
the required class, when a connection is made.

For example:

class MyConnection: public wxDDEConnection
{
 public:
 MyConnection(void)::wxDDEConnection(ipc_buffer, 3999) {}

CHAPTER 8

1649

 ~MyConnection(void) { }
 bool OnAdvise(const wxString& topic, const wxString& item, char
*data, int size, wxIPCFormat format)
 { wxMessageBox(topic, data); }
};

class MyClient: public wxDDEClient
{
 public:
 MyClient(void) {}
 wxConnectionBase *OnMakeConnection(void) { return new MyConnection; }
};

Here, MyConnection will respond to OnAdvise (p. 350) messages sent by the server.

When the client application starts, it must create an instance of the derived
wxDDEClient. In the following, command line arguments are used to pass the host name
(the name of the machine the server is running on) and the server name (identifying the
server process). Calling wxDDEClient::MakeConnection (p. 347) implicitly creates an
instance of MyConnection if the request for a connection is accepted, and the client
then requests an Advise loop from the server, where the server calls the client when
data has changed.

 wxString server = "4242";
 wxString hostName;
 wxGetHostName(hostName);

 // Create a new client
 MyClient *client = new MyClient;
 connection = (MyConnection *)client->MakeConnection(hostName, server,
"IPC TEST");

 if (!connection)
 {
 wxMessageBox("Failed to make connection to server", "Client Demo
Error");
 return NULL;
 }
 connection->StartAdvise("Item");

Note that it is no longer necessary to call wxDDEInitialize or wxDDECleanUp, since
wxWindows will do this itself if necessary.

1650

Chapter 9 wxHTML Notes

This addendum is written by Vaclav Slavik, the author of the wxHTML library.

The wxHTML library provides classes for parsing and displaying HTML.

(It is not intended to be a high-end HTML browser. If you are looking for something like
that try http://www.mozilla.org (http://www.mozilla.org))

wxHTML can be used as a generic rich text viewer - for example to display a nice About
Box (like those of GNOME apps) or to display the result of database searching. There is
a wxFileSystem (p. 489) class which allows you to use your own virtual file systems.

wxHtmlWindow supports tag handlers. This means that you can easily extend wxHtml
library with new, unsupported tags. Not only that, you can even use your own application
specific tags! See lib/mod_*.cpp files for details.

There is a generic (i.e. independent on wxHtmlWindow) wxHtmlParser class.

wwxxHHTTMMLL qquuiicckk ssttaarrtt

Displaying HMTL

First of all, you must include <wx/wxhtml.h>.

Class wxHtmlWindow (p. 663) (derived from wxScrolledWindow) is used to display
HTML documents. It has two important methods: LoadPage (p. 666) and SetPage (p.
669). LoadPage loads and displays HTML file while SetPage displays directly the
passed string. See the example:

 mywin -> LoadPage("test.htm");
 mywin -> SetPage("<html><body>"
 "<h1>Error</h1>"
 "Some error occurred :-H)"
 "</body></hmtl>");

I think the difference is quite clear.

Displaying Help

See wxHtmlHelpController (p. 639).

Setting up wxHtmlWindow

Because wxHtmlWindow is derived from wxScrolledWindow and not from wxFrame, it

CHAPTER 9

1651

doesn't have visible frame. But the user usually want to see the title of HTML page
displayed somewhere and frame's titlebar is ideal place for it.

wxHtmlWindow provides 2 methods in order to handle this: SetRelatedFrame (p. 670)
and SetRelatedStatusBar (p. 670). See the example:

 html = new wxHtmlWindow(this);
 html -> SetRelatedFrame(this, "HTML : %%s");
 html -> SetRelatedStatusBar(0);

The first command associates html object with it is parent frame (this points to wxFrame
object there) and sets format of title. Page title "Hello, world!" will be displayed as "HTML
: Hello, world!" in this example.

The second command sets which frame's status bar should be used to display browser's
messages (such as "Loading..." or "Done" or hypertext links).

Customizing wxHtmlWindow

You can customize wxHtmlWindow by setting font size, font face and borders (space
between border of window and displayed HTML). Related functions:

 • SetFonts (p. 669)
 • SetBorders (p. 668)
 • ReadCustomization (p. 668)
 • WriteCustomization (p. 670)

The last two functions are used to store user customization info wxConfig stuff (for
example in the registry under Windows, or in a dotfile under Unix).

HHTTMMLL PPrriinnttiinngg

The wxHTML library provides printing facilities with several levels of complexity.

The easiest way to print an HTML document is to use wxHtmlEasyPrinting class (p.
634). It lets you print HTML documents with only one command and you don't have to
worry about deriving from the wxPrintout class at all. It is only a simple wrapper around
the wxHtmlPrintout (p. 654), normal wxWindows printout class.

And finally there is the low level class wxHtmlDCRenderer (p. 632) which you can use to
render HTML into a rectangular area on any DC. It supports rendering into multiple
rectangles with the same width. (The most common use of this is placing one rectangle
on each page or printing into two columns.)

HHeellpp FFiilleess FFoorrmmaatt

CHAPTER 9

1652

wxHTML library uses a reduced version of MS HTML Workshop format. Tex2RTF can
produce these files when generating HTML, if you set htmlWorkshopFiles to true in
your tex2rtf.ini file.

(See wxHtmlHelpController (p. 639) for help controller description.)

A book consists of three files: header file, contents file and index file. You can make a
regular zip archive of these files, plus the HTML and any image files, for wxHTML (or
helpview) to read; and the .zip file can optionally be renamed to .htb.

Header file (.hhp)

Header file must contain these lines (and may contain additional lines which are ignored)
:

Contents file=<filename.hhc>
Index file=<filename.hhk>
Title=<title of your book>
Default topic=<default page to be displayed.htm>

All filenames (including the Default topic) are relative to the location of .hhp file.

Localization note: In addition, .hhp file may contain line

Charset=<rfc_charset>

which specifies what charset (e.g. "iso8859_1") was used in contents and index files.
Please note that this line is incompatible with MS HTML Help Workshop and it would
either silently remove it or complain with some error. See also Writing non-English
applications (p. 1543).

Contents file (.hhc)

Contents file has HTML syntax and it can be parsed by regular HTML parser. It contains
exactly one list (.... statement):

 <object type="text/sitemap">
 <param name="Name" value="@topic name@">
 <param name="ID" value=@numeric_id@>
 <param name="Local" value="@filename.htm@">
 </object>
 <object type="text/sitemap">
 <param name="Name" value="@topic name@">
 <param name="ID" value=@numeric_id@>
 <param name="Local" value="@filename.htm@">
 </object>
 ...

CHAPTER 9

1653

You can modify value attributes of param tags. topic name is name of chapter/topic as is
displayed in contents, filename.htm is HTML page name (relative to .hhp file) and
numeric_id is optional - it is used only when you use wxHtmlHelpController::Display(int)
(p. 641)

Items in the list may be nested - one statement may contain a sub-
statement:

 <object type="text/sitemap">
 <param name="Name" value="Top node">
 <param name="Local" value="top.htm">
 </object>

 <object type="text/sitemap">
 <param name="Name" value="subnode in topnode">
 <param name="Local" value="subnode1.htm">
 </object>
 ...

 <object type="text/sitemap">
 <param name="Name" value="Another Top">
 <param name="Local" value="top2.htm">
 </object>
 ...

Index file (.hhk)

Index files have same format as contents file except that ID params are ignored and
sublists are not allowed.

IInnppuutt FFiilltteerrss

The wxHTML library provides a mechanism for reading and displaying files of many
different file formats.

wxHtmlWindow::LoadPage (p. 666) can load not only HTML files but any known file. To
make a file type known to wxHtmlWindow you must create a wxHtmlFilter (p. 638) filter
and register it using wxHtmlWindow::AddFilter (p. 664).

CCeellllss aanndd CCoonnttaaiinneerrss

CHAPTER 9

1654

This article describes mechanism used by wxHtmlWinParser (p. 671) and
wxHtmlWindow (p. 663) to parse and display HTML documents.

Cells

You can divide any text (or HTML) into small fragments. Let's call these fragments cells.
Cell is for example one word, horizontal line, image or any other part of document. Each
cell has width and height (except special "magic" cells with zero dimensions - e.g. colour
changers or font changers).

See wxHtmlCell (p. 620).

Containers

Container is kind of cell that may contain sub-cells. Its size depends on number and
sizes of its sub-cells (and also depends on width of window).

See wxHtmlContainerCell (p. 626), wxHtmlCell::Layout (p. 624).

Using Containers in Tag Handler

wxHtmlWinParser (p. 671) provides a user-friendly way of managing containers. It is
based on the idea of opening and closing containers.

Use OpenContainer (p. 675) to open new a container within an already opened
container. This new container is a sub-container of the old one. (If you want to create a
new container with the same depth level you can call CloseContainer();
OpenContainer();.)

Use CloseContaier (p. 671) to close the container. This doesn't create a new container
with same depth level but it returns "control" to the parent container.

It is clear there must be same number of calls to OpenContainer as to CloseContainer...

Example

This code creates a new paragraph (container at same depth level) with "Hello, world!":

m_WParser -> CloseContainer();
c = m_WParser -> OpenContainer();

m_WParser -> AddWord("Hello, ");
m_WParser -> AddWord("world!");

m_WParser -> CloseContainer();
m_WParser -> OpenContainer();

You can see that there was opened container before running the code. We closed it,
created our own container, then closed our container and opened new container. The
result was that we had same depth level after executing. This is general rule that should
be followed by tag handlers: leave depth level of containers unmodified (in other words,

CHAPTER 9

1655

number of OpenContainer and CloseContainer calls should be same within HandleTag
(p. 661)'s body).

TTaagg HHaannddlleerrss

The wxHTML library provides architecture of pluggable tag handlers. Tag handler is
class that understands particular HTML tag (or tags) and is able to interpret it.

wxHtmlWinParser (p. 671) has static table of modules. Each module contains one or
more tag handlers. Each time a new wxHtmlWinParser object is constructed all modules
are scanned and handlers are added to wxHtmlParser's list of available handlers (note:
wxHtmlParser's list is non-static).

How it works

Common tag handler's HandleTag (p. 661) method works in four steps:

 1. Save state of parent parser into local variables
 2. Change parser state according to tag's params
 3. Parse text between the tag and paired ending tag (if present)
 4. Restore original parser state

See wxHtmlWinParser (p. 671) for methods for modifying parser's state. In general you
can do things like opening/closing containers, changing colors, fonts etc.

Providing own tag handlers

You should create new .cpp file and place following lines into it:

#include <mod_templ.h>
#include <forcelink.h>
FORCE_LINK_ME(yourmodulefilenamewithoutcpp)

Then you must define handlers and one module.

Tag handlers

The handler is derived from wxHtmlWinTagHandler (p. 677)(or directly from
wxHtmlTagHandler (p. 660))

You can use set of macros to define the handler (see src/mod_*.cpp files for details).
Handler definition must start with TAG_HANDLER_BEGIN macro and end with
TAG_HANDLER_END macro. I strongly recommend to have a look at
include/wxhtml/mod_templ.h file. Otherwise you won't understand the structure of
macros. See macros reference:

TAG_HANDLER_BEGIN(name, tags)

CHAPTER 9

1656

Starts handler definition. name is handler identifier (in fact part of class name), tags is
string containing list of tags supported by this handler (in uppercase). This macro derives
new class from wxHtmlWinTagHandler and implements it is GetSupportedTags (p. 661)
method.

Example: TAG_HANDLER_BEGIN(FONTS, "B,I,U,T")

TAG_HANDLER_VARS

This macro starts block of variables definitions. (Variables are identical to class
attributes.) Example:

TAG_HANDLER_BEGIN(VARS_ONLY, "CRAZYTAG")
 TAG_HANDLER_VARS
 int my_int_var;
 wxString something_else;
TAG_HANDLER_END(VARS_ONLY)

This macro is used only in rare cases.

TAG_HANDLER_CONSTR(name)

This macro supplies object constructor. name is same name as the one from
TAG_HANDLER_BEGIN macro. Body of constructor follow after this macro (you must
use and). Example:

TAG_HANDLER_BEGIN(VARS2, "CRAZYTAG")
 TAG_HANDLER_VARS
 int my_int_var;
 TAG_HANDLER_CONSTR(vars2)
 { // !!!!!!
 my_int_var = 666;
 } // !!!!!!
TAG_HANDLER_END(VARS2)

Never used in wxHTML :-)

TAG_HANDLER_PROC(varib)

This is very important macro. It defines HandleTag (p. 661)method. varib is name of
parameter passed to the method, usuallytag. Body of method follows after this macro.
Note than you must use and ! Example:

TAG_HANDLER_BEGIN(TITLE, "TITLE")
 TAG_HANDLER_PROC(tag)
 {
 printf("TITLE found...\n");
 }
TAG_HANDLER_END(TITLE)

TAG_HANDLER_END(name)

Ends definition of tag handler name.

CHAPTER 9

1657

Tags Modules

You can use set of 3 macros TAGS_MODULE_BEGIN, TAGS_MODULE_ADD and
TAGS_MODULE_END to inherit new module fromwxHtmlTagsModule (p. 662) and to
create instance of it. See macros reference:

TAGS_MODULE_BEGIN(modname)

Begins module definition. modname is part of class name and must be unique.

TAGS_MODULE_ADD(name)

Adds the handler to this module. name is the identifier from TAG_HANDLER_BEGIN.

TAGS_MODULE_END(modname)

Ends the definition of module.

Example:

TAGS_MODULE_BEGIN(Examples)
 TAGS_MODULE_ADD(VARS_ONLY)
 TAGS_MODULE_ADD(VARS2)
 TAGS_MODULE_ADD(TITLE)
TAGS_MODULE_END(Examples)

TTaaggss ssuuppppoorrtteedd bbyy wwxxHHTTMMLL

wxHTML is not full implementation of HTML standard. Instead, it supports most common
tags so that it is possible to display simple HTML documents with it. (For example it
works fine with pages created in Netscape Composer or generated by tex2rtf).

Following tables list all tags known to wxHTML, together with supported parameters. A
tag has general form of <tagname param_1 param_2 ... param_n> where
param_i is either paramname="paramvalue" or paramname=paramvalue - these
two are equivalent. Unless stated otherwise, wxHTML is case-insensitive.

Table of common parameter values

We will use these substitutions in tags descriptions:

[alignment] CENTER
 LEFT
 RIGHT
 JUSTIFY

[v_alignment] TOP

CHAPTER 9

1658

 BOTTOM
 CENTER

[color] #nnnnnn
 where n is hexadecimal digit

[fontsize] -2
 -1
 +0
 +1
 +2
 +3
 +4
 1
 2
 3
 4
 5
 6
 7

[pixels] integer value that represents dimension in pixels

[percent] i%
 where i is integer

[url] an URL

[string] text string

[coords] c(1),c(2),c(3),...,c(n)
 where c(i) is integer

List of supported tags

P ALIGN=[alignment]

BR ALIGN=[alignment]

DIV ALIGN=[alignment]

CENTER

BLOCKQUOTE

TITLE

BODY TEXT=[color]
 LINK=[color]
 BGCOLOR=[color]

HR ALIGN=[alignment]
 SIZE=[pixels]
 WIDTH=[percent]
 WIDTH=[pixels]

CHAPTER 9

1659

FONT COLOR=[color]
 SIZE=[fontsize]
 FACE=[comma-separated list of facenames]

U

B

I

EM

STRONG

CITE

ADDRESS

CODE

KBD

SAMP

TT

H1

H2

H3

H4

H5

H6

A NAME=[string]
 HREF=[url]

PRE

LI

UL

OL

DL

DT

DD

TABLE ALIGN=[alignment]

CHAPTER 9

1660

 WIDTH=[percent]
 WIDTH=[pixels]
 BORDER=[pixels]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
 CELLSPACING=[pixels]
 CELLPADDING=[pixels]

TR ALIGN=[alignment]
 VALIGN=[v_alignment]
 BGCOLOR=[color]

TH ALIGN=[alignment]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
 WIDTH=[percent]
 WIDTH=[pixels]
 COLSPAN=[pixels]
 ROWSPAN=[pixels]

TD ALIGN=[alignment]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
 WIDTH=[percent]
 WIDTH=[pixels]
 COLSPAN=[pixels]
 ROWSPAN=[pixels]

IMG SRC=[url]
 WIDTH=[pixels]
 HEIGHT=[pixels]
 ALIGN=TEXTTOP
 ALIGN=CENTER
 ALIGN=ABSCENTER
 ALIGN=BOTTOM
 USEMAP=[url]

MAP NAME=[string]

AREA SHAPE=POLY
 SHAPE=CIRCLE
 SHAPE=RECT
 COORDS=[coords]
 HREF=[url]

META HTTP-EQUIV="Content-Type"
 CONTENT=[string]

1661

Chapter 10 Property sheet classes

IInnttrroodduuccttiioonn

The Property Sheet Classes help the programmer to specify complex dialogs and their
relationship with their associated data. By specifying data as a wxPropertySheet
containing wxProperty objects, the programmer can use a range of available or custom
wxPropertyView classes to allow the user to edit this data. Classes derived from
wxPropertyView act as mediators between the wxPropertySheet and the actual window
(and associated panel items).

For example, the wxPropertyListView is a kind of wxPropertyView which displays data in
a Visual Basic-style property list (see the next section (p. 1661) for screen shots). This is
a listbox containing names and values, with an edit control and other optional controls
via which the user edits the selected data item.

wxPropertyFormView is another kind of wxPropertyView which mediates between the
data and a panel or dialog box which has already been created. This makes it a
contender for the replacement of wxForm, since programmer-controlled layout is going
to be much more satisfactory. If automatic layout is desired, then wxPropertyListView
could be used instead.

The main intention of this class library was to provide property list behaviour, but it has
been generalised as much as possible so that the concept of a property sheet and its
viewers can reduce programming effort in a range of user interface tasks.

For further details on the classes and how they are used, please see Property classes
overview (p. 1663).

The appearance and behaviour of a property list view

The property list, as seen in an increasing number of development tools such as Visual
Basic and Delphi, is a convenient and compact method for displaying and editing a
number of items without the need for one control per item, and without the need for
designing a special form. The controls are as follows:

 • A listbox showing the properties and their current values, which has double-click

properties dependent on the nature of the current property;
 • a text editing area at the top of the display, allowing the user to edit the currently

selected property if appropriate;
 • 'confirm' and 'cancel' buttons to confirm or cancel an edit (for the property, not

the whole sheet);
 • an optional list that appears when the user can make a choice from several

CHAPTER 9

1662

known possible values;
 • a small Edit button to invoke 'detailed editing' (perhaps showing or hiding the

above value list, or maybe invoking a common dialog);
 • optional OK/Close, Cancel and Help buttons for the whole dialog.

The concept of 'detailed editing' versus quick editing gives the user a choice of editing
mode, so novice and expert behaviour can be catered for, or the user can just use what
he feels comfortable with.

Behaviour alters depending on the kind of property being edited. For example, a boolean
value has the following behaviour:

 • Double-clicking on the item toggles between TRUE and FALSE.
 • Showing the value list enables the user to select TRUE or FALSE.
 • The user may be able to type in the word TRUE or FALSE, or the edit control

may be read-only to disallow this since it is error-prone.

A list of strings may pop up a dialog for editing them, a simple string just allows text
editing, double-clicking a colour property may show a colour selector, double-clicking on
a filename property may show a file selector (in addition to being able to type in the
name in the edit control), etc.

Note that the 'type' of property, such as string or integer, does not necessarily determine
the behaviour of the property. The programmer has to be able to specify different
behaviours for the same type, depending on the meaning of the property. For example, a
colour and a filename may both be strings, but their editing behaviour should be
different. This is why objects of type wxPropertyValidator need to be used, to define
behaviour for a given class of properties or even specific property name. Objects of
class wxPropertyView contain a list of property registries, which enable reuse of
bunches of these validators in different circumstances. Or a wxProperty can be explicitly
set to use a particular validator object.

The following screen shot of the property classes test program shows the user editing a
string, which is constrained to be one of three possible values.

The second picture shows the user having entered a integer that was outside the range
specified to the validator. Note that in this picture, the value list is hidden because it is

CHAPTER 9

1663

not used when editing an integer.

HHeeaaddeerrss

The property class library comprises the following files:

 • prop.h: base property class header
 • proplist.h: wxPropertyListView and associated classes
 • propform.h: wxPropertyListView and associated classes

TTooppiicc oovveerrvviieewwss

This chapter contains a selection of topic overviews.

Property classes overview

The property classes help a programmer to express relationships between data and
physical windows, in particular:

 • the transfer of data to and from the physical controls;
 • the behaviour of various controls and custom windows for particular types of

data;
 • the validation of data, notifying the user when incorrect data is entered, or even

better, constraining the input so only valid data can be entered.

CHAPTER 9

1664

With a consistent framework, the programmer should be able to use existing
components and design new ones in a principled manner, to solve many data entry
requirements.

Each datum is represented in a wxProperty (p. 974), which has a name and a value.
Various C++ types are permitted in the value of a property, and the property can store a
pointer to the data instead of a copy of the data. A wxPropertySheet (p. 990) represents
a number of these properties.

These two classes are independent from the way in which the data is visually
manipulated. To mediate between property sheets and windows, the abstract class
wxPropertyView (p. 999) is available for programmers to derive new kinds of view. One
kind of view that is available is the wxPropertyListView (p. 987), which displays the data
in a Visual Basic-style list, with a small number of controls for editing the currently
selected property. Another is wxPropertyFormView (p. 980) which mediates between an
existing dialog or panel and the property sheet.

The hard work of mediation is actually performed by validators, which are instances of
classes derived from wxPropertyValidator (p. 992). A validator is associated with a
particular property and is responsible for responding to user interface events, and
displaying, updating and checking the property value. Because a validator's behaviour
depends largely on the kind of view being used, there has to be a separate hierarchy of
validators for each class of view. So for wxPropertyListView, there is an abstract class
wxPropertyListValidator (p. 985) from which concrete classes are derived, such as
wxRealListValidator (p. 1022) and wxStringListValidator (p. 1197).

A validator can be explicitly set for a property, so there is no doubt which validator
should be used to edit that property. However, it is also possible to define a registry of
validators, and have the validator chosen on the basis of the role of the property. So a
property with a "filename" role would match the "filename" validator, which pops up a file
selector when the user double clicks on the property.

You don't have to define your own frame or window classes: there are some predefined
that will work with the property list view. See Window classes (p. 1672) for further
details.

Example 1: Property list view

The following code fragment shows the essentials of creating a registry of standard
validators, a property sheet containing some properties, and a property list view and
dialog or frame. RegisterValidators will be called on program start, and
PropertySheetTest is called in response to a menu command.

Note how some properties are created with an explicit reference to a validator, and
others are provided with a "role'' which can be matched against a validator in the
registry.

The interface generated by this test program is shown in the section Appearance and
behaviour of a property list view (p. 1661).

CHAPTER 9

1665

void RegisterValidators(void)
{
 myListValidatorRegistry.RegisterValidator((wxString)"real", new
wxRealListValidator);
 myListValidatorRegistry.RegisterValidator((wxString)"string", new
wxStringListValidator);
 myListValidatorRegistry.RegisterValidator((wxString)"integer", new
wxIntegerListValidator);
 myListValidatorRegistry.RegisterValidator((wxString)"bool", new
wxBoolListValidator);
}

void PropertyListTest(Bool useDialog)
{
 wxPropertySheet *sheet = new wxPropertySheet;

 sheet->AddProperty(new wxProperty("fred", 1.0, "real"));
 sheet->AddProperty(new wxProperty("tough choice", (Bool)TRUE,
"bool"));
 sheet->AddProperty(new wxProperty("ian", (long)45, "integer", new
wxIntegerListValidator(-50, 50)));
 sheet->AddProperty(new wxProperty("bill", 25.0, "real", new
wxRealListValidator(0.0, 100.0)));
 sheet->AddProperty(new wxProperty("julian", "one", "string"));
 sheet->AddProperty(new wxProperty("bitmap", "none", "string", new
wxFilenameListValidator("Select a bitmap file", "*.bmp")));
 wxStringList *strings = new wxStringList("one", "two", "three",
NULL);
 sheet->AddProperty(new wxProperty("constrained", "one", "string", new
wxStringListValidator(strings)));

 wxPropertyListView *view =
 new wxPropertyListView(NULL,

wxPROP_BUTTON_CHECK_CROSS|wxPROP_DYNAMIC_VALUE_FIELD|wxPROP_PULLDOWN);

 wxDialogBox *propDialog = NULL;
 wxPropertyListFrame *propFrame = NULL;
 if (useDialog)
 {
 propDialog = new wxPropertyListDialog(view, NULL, "Property Sheet
Test", TRUE, -1, -1, 400, 500);
 }
 else
 {
 propFrame = new wxPropertyListFrame(view, NULL, "Property Sheet
Test", -1, -1, 400, 500);
 }

 view->AddRegistry(&myListValidatorRegistry);

 if (useDialog)
 {
 view->ShowView(sheet, propDialog);
 propDialog->Centre(wxBOTH);
 propDialog->Show(TRUE);
 }

CHAPTER 9

1666

 else
 {
 propFrame->Initialize();
 view->ShowView(sheet, propFrame->GetPropertyPanel());
 propFrame->Centre(wxBOTH);
 propFrame->Show(TRUE);
 }
}

Example 2: Property form view

This example is similar to Example 1, but uses a property form view to edit a property
sheet using a predefined dialog box.

void RegisterValidators(void)
{
 myFormValidatorRegistry.RegisterValidator((wxString)"real", new
wxRealFormValidator);
 myFormValidatorRegistry.RegisterValidator((wxString)"string", new
wxStringFormValidator);
 myFormValidatorRegistry.RegisterValidator((wxString)"integer", new
wxIntegerFormValidator);
 myFormValidatorRegistry.RegisterValidator((wxString)"bool", new
wxBoolFormValidator);
}

void PropertyFormTest(Bool useDialog)
{
 wxPropertySheet *sheet = new wxPropertySheet;

 sheet->AddProperty(new wxProperty("fred", 25.0, "real", new
wxRealFormValidator(0.0, 100.0)));
 sheet->AddProperty(new wxProperty("tough choice", (Bool)TRUE,
"bool"));
 sheet->AddProperty(new wxProperty("ian", (long)45, "integer", new
wxIntegerFormValidator(-50, 50)));
 sheet->AddProperty(new wxProperty("julian", "one", "string"));
 wxStringList *strings = new wxStringList("one", "two", "three",
NULL);
 sheet->AddProperty(new wxProperty("constrained", "one", "string", new
wxStringFormValidator(strings)));

 wxPropertyFormView *view = new wxPropertyFormView(NULL);

 wxDialogBox *propDialog = NULL;
 wxPropertyFormFrame *propFrame = NULL;
 if (useDialog)
 {
 propDialog = new wxPropertyFormDialog(view, NULL, "Property Form
Test", TRUE, -1, -1, 400, 300);
 }
 else
 {
 propFrame = new wxPropertyFormFrame(view, NULL, "Property Form
Test", -1, -1, 400, 300);

CHAPTER 9

1667

 propFrame->Initialize();
 }

 wxPanel *panel = propDialog ? propDialog : propFrame-
>GetPropertyPanel();
 panel->SetLabelPosition(wxVERTICAL);

 // Add items to the panel

 (void) new wxButton(panel, (wxFunction)NULL, "OK", -1, -1, -1, -1, 0,
"ok");
 (void) new wxButton(panel, (wxFunction)NULL, "Cancel", -1, -1, 80, -
1, 0, "cancel");
 (void) new wxButton(panel, (wxFunction)NULL, "Update", -1, -1, 80, -
1, 0, "update");
 (void) new wxButton(panel, (wxFunction)NULL, "Revert", -1, -1, -1, -
1, 0, "revert");
 panel->NewLine();

 // The name of this text item matches the "fred" property
 (void) new wxText(panel, (wxFunction)NULL, "Fred", "", -1, -1, 90, -
1, 0, "fred");
 (void) new wxCheckBox(panel, (wxFunction)NULL, "Yes or no", -1, -1, -
1, -1, 0, "tough choice");
 (void) new wxSlider(panel, (wxFunction)NULL, "Sliding scale", 0, -50,
50, 100, -1, -1, wxHORIZONTAL, "ian");
 panel->NewLine();
 (void) new wxListBox(panel, (wxFunction)NULL, "Constrained",
wxSINGLE, -1, -1, 100, 90, 0, NULL, 0, "constrained");

 view->AddRegistry(&myFormValidatorRegistry);

 if (useDialog)
 {
 view->ShowView(sheet, propDialog);
 view->AssociateNames();
 view->TransferToDialog();
 propDialog->Centre(wxBOTH);
 propDialog->Show(TRUE);
 }
 else
 {
 view->ShowView(sheet, propFrame->GetPropertyPanel());
 view->AssociateNames();
 view->TransferToDialog();
 propFrame->Centre(wxBOTH);
 propFrame->Show(TRUE);
 }
}

Validator classes overview

Classes: Validator classes (p. 1671)

The validator classes provide functionality for mediating between a wxProperty and the

CHAPTER 9

1668

actual display. There is a separate family of validator classes for each class of view,
since the differences in user interface for these views implies that little common
functionality can be shared amongst validators.

wxPropertyValidator overview

Class: wxPropertyValidator (p. 992)

This class is the root of all property validator classes. It contains a small amount of
common functionality, including functions to convert between strings and C++ values.

A validator is notionally an object which sits between a property and its displayed value,
and checks that the value the user enters is correct, giving an error message if the
validation fails. In fact, the validator does more than that, and is akin to a view class but
at a finer level of detail. It is also responsible for loading the dialog box control with the
value from the property, putting it back into the property, preparing special controls for
editing the value, and may even invoke special dialogs for editing the value in a
convenient way.

In a property list dialog, there is quite a lot of scope for supplying custom dialogs, such
as file or colour selectors. For a form dialog, there is less scope because there is no
concept of 'detailed editing' of a value: one control is associated with one property, and
there is no provision for invoking further dialogs. The reader may like to work out how
the form view could be extended to provide some of the functionality of the property list!

Validator objects may be associated explicitly with a wxProperty, or they may be
indirectly associated by virtue of a property 'kind' that matches validators having that
kind. In the latter case, such validators are stored in a validator registry which is passed
to the view before the dialog is shown. If the validator takes arguments, such as
minimum and maximum values in the case of a wxIntegerListValidator, then the validator
must be associated explicitly with the property. The validator will be deleted when the
property is deleted.

wxPropertyListValidator overview

Class: wxPropertyListValidator (p. 985)

This class is the abstract base class for property list view validators. The list view acts
upon a user interface containing a list of properties, a text item for direct property value
editing, confirm/cancel buttons for the value, a pulldown list for making a choice between
values, and OK/Cancel/Help buttons for the dialog (see property list appearance (p.
1661)).

By overriding virtual functions, the programmer can create custom behaviour for different
kinds of property. Custom behaviour can use just the available controls on the property
list dialog, or the validator can invoke custom editors with quite different controls, which
pop up in 'detailed editing' mode.

See the detailed class documentation for the members you should override to give your

CHAPTER 9

1669

validator appropriate behaviour.

wxPropertyFormValidator overview

This class is the abstract base class for property form view validators. The form view
acts upon an existing dialog box or panel, where either the panel item names
correspond to property names, or the programmer has explicitly associated the panel
item with the property.

By overriding virtual functions, the programmer determines how values are displayed or
retrieved, and the checking that the validator does.

See the detailed class documentation for the members you should override to give your
validator appropriate behaviour.

View classes overview

Classes: View classes (p. 1672)

An instance of a view class relates a property sheet with an actual window. Currently,
there are two classes of view: wxPropertyListView and wxPropertyFormView.

wxPropertyView overview

Class: wxPropertyView (p. 999)

This is the abstract base class for property views.

wxPropertyListView overview

Class: wxPropertyListView (p. 987)

The property list view defines the relationship between a property sheet and a property
list dialog or panel. It manages user interface events such as clicking on a property,
pressing return in the text edit field, and clicking on Confirm or Cancel. These events
cause member functions of the class to be called, and these in turn may call member
functions of the appropriate validator to be called, to prepare controls, check the property
value, invoke detailed editing, etc.

wxPropertyFormView overview

Class: wxPropertyFormView (p. 980)

The property form view manages the relationship between a property sheet and an
existing dialog or panel.

CHAPTER 9

1670

You must first create a panel or dialog box for the view to work on. The panel should
contain panel items with names that correspond to properties in your property sheet; or
you can explicitly set the panel item for each property.

Apart from any custom panel items that you wish to control independently of the
property-editing items, wxPropertyFormView takes over the processing of item events. It
can also control normal dialog behaviour such as OK, Cancel, so you should also create
some standard buttons that the property view can recognise. Just create the buttons with
standard names and the view will do the rest. The following button names are
recognised:

 • ok: indicates the OK button. Calls wxPropertyFormView::OnOk. By default,

checks and updates the form values, closes and deletes the frame or dialog,
then deletes the view.

 • cancel: indicates the Cancel button. Calls wxPropertyFormView::OnCancel. By
default, closes and deletes the frame or dialog, then deletes the view.

 • help: indicates the Help button. Calls wxPropertyFormView::OnHelp. This needs
to be overridden by the application for anything interesting to happen.

 • revert: indicates the Revert button. Calls wxPropertyFormView::OnRevert,
which by default transfers the wxProperty values to the panel items (in effect
undoing any unsaved changes in the items).

 • update: indicates the Revert button. Calls wxPropertyFormView::OnUpdate,
which by defaults transfers the displayed values to the wxProperty objects.

wxPropertySheet overview

Classes: wxPropertySheet (p. 990), wxProperty (p. 974), wxPropertyValue (p. 994)

A property sheet defines zero or more properties. This is a bit like an explicit
representation of a C++ object. wxProperty objects can have values which are pointers
to C++ values, or they can allocate their own storage for values.

Because the property sheet representation is explicit and can be manipulated by a
program, it is a convenient form to be used for a variety of editing purposes.
wxPropertyListView and wxPropertyFormView are two classes that specify the
relationship between a property sheet and a user interface. You could imagine other
uses for wxPropertySheet, for example to generate a form-like user interface without the
need for GUI programming. Or for storing the names and values of command-line
switches, with the option to subsequently edit these values using a wxPropertyListView.

A typical use for a property sheet is to represent values of an object which are only
implicit in the current representation of it. For example, in Visual Basic and similar
programming environments, you can 'edit a button', or rather, edit the button's
properties. One of the properties you can edit is width - but there is no explicit
representation of width in a wxWindows button; instead, you call SetSize and GetSize
members. To translate this into a consistent, property-oriented scheme, we could derive
a new class wxButtonWithProperties, which has two new functions: SetProperty and
GetProperty. SetProperty accepts a property name and a value, and calls an

CHAPTER 9

1671

appropriate function for the property that is being passed. GetProperty accepts a
property name, returning a property value. So instead of having to use the usual
arbitrary set of C++ member functions to set or access attributes of a window,
programmer deals merely with SetValue/GetValue, and property names and values. We
now have a single point at which we can modify or query an object by specifying names
and values at run-time. (The implementation of SetProperty and GetProperty is probably
quite messy and involves a large if-then-else statement to test the property name and
act accordingly.)

When the user invokes the property editor for a wxButtonWithProperties, the system
creates a wxPropertySheet with 'imaginary' properties such as width, height, font size
and so on. For each property, wxButtonWithProperties::GetProperty is called, and the
result is passed to the corresponding wxProperty. The wxPropertySheet is passed to a
wxPropertyListView as described elsewhere, and the user edits away. When the user
has finished editing, the system calls wxButtonWithProperties::SetProperty to transfer
the wxProperty value back into the button by way of an appropriate call,
wxWindow::SetSize in the case of width and height properties.

CCllaasssseess bbyy ccaatteeggoorryy

A classification of property sheet classes by category.

Data classes

 • wxProperty (p. 974)
 • wxPropertyValue (p. 994)
 • wxPropertySheet (p. 990)

Validator classes

Validators check that the values the user has entered for a property are valid. They can
also define specific ways of entering data, such as a file selector for a filename, and they
are responsible for transferring values between the wxProperty and the physical display.

Base classes:

 • wxPropertyValidator (p. 974)
 • wxPropertyListValidator (p. 985)
 • wxPropertyFormValidator (p. 979)

List view validators:

 • wxBoolListValidator (p. 78)
 • wxFilenameListValidator (p. 489)

CHAPTER 9

1672

 • wxIntegerListValidator (p. 721)
 • wxListOfStringsListValidator (p. 778)
 • wxRealListValidator (p. 1022)
 • wxStringListValidator (p. 1197)

Form view validators:

 • wxBoolFormValidator (p. 78)
 • wxIntegerFormValidator (p. 721)
 • wxRealFormValidator (p. 1021)
 • wxStringFormValidator (p. 1195)

View classes

View classes mediate between a property sheet and a physical window.

 • wxPropertyView (p. 999)
 • wxPropertyListView (p. 987)
 • wxPropertyFormView (p. 980)

Window classes

The class library defines some window classes that can be used as-is with a suitable
view class and property sheet.

 • wxPropertyFormFrame (p. 977)
 • wxPropertyFormDialog (p. 977)
 • wxPropertyFormPanel (p. 978)
 • wxPropertyListFrame (p. 983)
 • wxPropertyListDialog (p. 983)
 • wxPropertyListPanel (p. 984)

Registry classes

A validator registry is a list of validators that can be applied to properties in a property
sheet. There may be one or more registries per property view.

 • wxPropertyValidatorRegistry (p. 993)

1673

Chapter 11 wxPython Notes

This addendum is written by Robin Dunn, author of the wxPython wrapper

WWhhaatt iiss wwxxPPyytthhoonn??

wxPython is a blending of the wxWindows GUI classes and thePython
(http://www.python.org/) programming language.

Python

So what is Python? Go tohttp://www.python.org (http://www.python.org) to learn
more, but in a nutshell Python is an interpreted, interactive, object-oriented programming
language. It is often compared to Tcl, Perl, Scheme or Java.

Python combines remarkable power with very clear syntax. It has modules, classes,
exceptions, very high level dynamic data types, and dynamic typing. There are
interfaces to many system calls and libraries, and new built-in modules are easily written
in C or C++. Python is also usable as an extension language for applications that need a
programmable interface.

Python is copyrighted but freely usable and distributable, even for commercial use.

wxPython

wxPython is a Python package that can be imported at runtime that includes a collection
of Python modules and an extension module (native code). It provides a series of Python
classes that mirror (or shadow) many of the wxWindows GUI classes. This extension
module attempts to mirror the class heirarchy of wxWindows as closely as possible. This
means that there is a wxFrame class in wxPython that looks, smells, tastes and acts
almost the same as the wxFrame class in the C++ version.

wxPython is very versitile. It can be used to create standalone GUI applications, or in
situations where Python is embedded in a C++ application as an internal scripting or
macro language.

Currently wxPython is available for Win32 platforms and the GTK toolkit (wxGTK) on
most Unix/X-windows platforms. See the wxPython website http://wxPython.org/
(http://wxPython.org/) for details about getting wxPython working for you.

WWhhyy uussee wwxxPPyytthhoonn??

CHAPTER 11

1674

So why would you want to use wxPython over just C++ and wxWindows? Personally I
prefer using Python for everything. I only use C++ when I absolutely have to eek more
performance out of an algorithm, and even then I usually code it as an extension module
and leave the majority of the program in Python.

Another good thing to use wxPython for is quick prototyping of your wxWindows apps.
With C++ you have to continuously go though the edit-compile-link-run cycle, which can
be quite time consuming. With Python it is only an edit-run cycle. You can easily build an
application in a few hours with Python that would normally take a few days or longer with
C++. Converting a wxPython app to a C++/wxWindows app should be a straight forward
task.

OOtthheerr PPyytthhoonn GGUUIIss

There are other GUI solutions out there for Python.

Tkinter

Tkinter is the defacto standard GUI for Python. It is available on nearly every platform
that Python and Tcl/TK are. Why Tcl/Tk? Well because Tkinter is just a wrapper around
Tcl's GUI toolkit, Tk. This has its upsides and its downsides...

The upside is that Tk is a pretty versatile toolkit. It can be made to do a lot of things in a
lot of different environments. It is fairly easy to create new widgets and use them
interchangeably in your programs.

The downside is Tcl. When using Tkinter you actually have two separate language
interpreters running, the Python interpreter and the Tcl interpreter for the GUI. Since the
guts of Tcl is mostly about string processing, it is fairly slow as well. (Not too bad on a
fast Pentium II, but you really notice the difference on slower machines.)

It wasn't until the latest version of Tcl/Tk that native Look and Feel was possible on non-
Motif platforms. This is because Tk usually implements its own widgets (controls) even
when there are native controls available.

Tkinter is a pretty low-level toolkit. You have to do a lot of work (verbose program code)
to do things that would be much simpler with a higher level of abstraction.

PythonWin

PythonWin is an add-on package for Python for the Win32 platform. It includes wrappers
for MFC as well as much of the Win32 API. Because of its foundation, it is very familiar
for programmers who have experience with MFC and the Win32 API. It is obviously not
compatible with other platforms and toolkits. PythonWin is organized as separate
packages and modules so you can use the pieces you need without having to use the
GUI portions.

CHAPTER 11

1675

Others

There are quite a few other GUI modules available for Python, some in active use, some
that haven't been updated for ages. Most are simple wrappers around some C or C++
toolkit or another, and most are not cross-platform compatible. See this link
(http://www.python.org/download/Contributed.html#Graphics)for a listing
of a few of them.

UUssiinngg wwxxPPyytthhoonn

First things first...

I'm not going to try and teach the Python language here. You can do that at the Python
Tutorial (http://www.python.org/doc/tut/tut.html). I'm also going to assume
that you know a bit about wxWindows already, enough to notice the similarities in the
classes used.

Take a look at the following wxPython program. You can find a similar program in the
wxPython/demo directory, named DialogUnits.py. If your Python and wxPython are
properly installed, you should be able to run it by issuing this command:

 python DialogUnits.py

001: ## import all of the wxPython GUI package
002: from wxPython.wx import *
003:
004: ## Create a new frame class, derived from the wxPython Frame.
005: class MyFrame(wxFrame):
006:
007: def __init__(self, parent, id, title):
008: # First, call the base class' __init__ method to create
the frame
009: wxFrame.__init__(self, parent, id, title,
010: wxPoint(100, 100), wxSize(160, 100))
011:
012: # Associate some events with methods of this class
013: EVT_SIZE(self, self.OnSize)
014: EVT_MOVE(self, self.OnMove)
015:
016: # Add a panel and some controls to display the size and
position
017: panel = wxPanel(self, -1)
018: wxStaticText(panel, -1, "Size:",
019: wxDLG_PNT(panel, wxPoint(4, 4)),
wxDefaultSize)
020: wxStaticText(panel, -1, "Pos:",

CHAPTER 11

1676

021: wxDLG_PNT(panel, wxPoint(4, 14)),
wxDefaultSize)
022: self.sizeCtrl = wxTextCtrl(panel, -1, "",
023: wxDLG_PNT(panel, wxPoint(24,
4)),
024: wxDLG_SZE(panel, wxSize(36, -
1)),
025: wxTE_READONLY)
026: self.posCtrl = wxTextCtrl(panel, -1, "",
027: wxDLG_PNT(panel, wxPoint(24,
14)),
028: wxDLG_SZE(panel, wxSize(36, -
1)),
029: wxTE_READONLY)
030:
031:
032: # This method is called automatically when the CLOSE event is
033: # sent to this window
034: def OnCloseWindow(self, event):
035: # tell the window to kill itself
036: self.Destroy()
037:
038: # This method is called by the system when the window is
resized,
039: # because of the association above.
040: def OnSize(self, event):
041: size = event.GetSize()
042: self.sizeCtrl.SetValue("%s, %s" % (size.width,
size.height))
043:
044: # tell the event system to continue looking for an event
handler,
045: # so the default handler will get called.
046: event.Skip()
047:
048: # This method is called by the system when the window is
moved,
049: # because of the association above.
050: def OnMove(self, event):
051: pos = event.GetPosition()
052: self.posCtrl.SetValue("%s, %s" % (pos.x, pos.y))
053:
054:
055: # Every wxWindows application must have a class derived from wxApp
056: class MyApp(wxApp):
057:
058: # wxWindows calls this method to initialize the application
059: def OnInit(self):
060:
061: # Create an instance of our customized Frame class
062: frame = MyFrame(NULL, -1, "This is a test")
063: frame.Show(true)
064:
065: # Tell wxWindows that this is our main window
066: self.SetTopWindow(frame)
067:
068: # Return a success flag

CHAPTER 11

1677

069: return true
070:
071:
072: app = MyApp(0) # Create an instance of the application class
073: app.MainLoop() # Tell it to start processing events
074:

Things to notice

 1. At line 2 the wxPython classes, constants, and etc. are imported into the current

module's namespace. If you prefer to reduce namespace pollution you can use
"from wxPython import wx" and then access all the wxPython identifiers
through the wx module, for example, "wx.wxFrame".

 2. At line 13 the frame's sizing and moving events are connected to methods of the

class. These helper functions are intended to be like the event table macros that
wxWindows employs. But since static event tables are impossible with
wxPython, we use helpers that are named the same to dynamically build the
table. The only real difference is that the first argument to the event helpers is
always the window that the event table entry should be added to.

 3. Notice the use of wxDLG_PNT and wxDLG_SZE in lines 19 - 29 to convert from

dialog units to pixels. These helpers are unique to wxPython since Python can't
do method overloading like C++.

 4. There is an OnCloseWindow method at line 34 but no call to EVT_CLOSE to

attach the event to the method. Does it really get called? The answer is, yes it
does. This is because many of thestandard events are attached to windows that
have the associatedstandard method names. I have tried to follow the lead of
the C++ classes in this area to determine what is standard but since that
changes from time to time I can make no guarantees, nor will it be fully
documented. When in doubt, use an EVT_*** function.

 5. At lines 17 to 21 notice that there are no saved references to the panel or the

static text items that are created. Those of you who know Python might be
wondering what happens when Python deletes these objects when they go out
of scope. Do they disappear from the GUI? They don't. Remember that in
wxPython the Python objects are just shadows of the corresponding C++
objects. Once the C++ windows and controls are attached to their parents, the
parents manage them and delete them when necessary. For this reason, most
wxPython objects do not need to have a __del__ method that explicitly causes
the C++ object to be deleted. If you ever have the need to forcibly delete a
window, use the Destroy() method as shown on line 36.

 6. Just like wxWindows in C++, wxPython apps need to create a class derived from

wxApp (line 56) that implements a method namedOnInit, (line 59.) This
method should create the application's main window (line 62) and use
wxApp.SetTopWindow() (line 66) to inform wxWindows about it.

CHAPTER 11

1678

 7. And finally, at line 72 an instance of the application class is created. At this point
wxPython finishes initializing itself, and calls the OnInit method to get things
started. (The zero parameter here is a flag for functionality that isn't quite
implemented yet. Just ignore it for now.) The call to MainLoop at line 73 starts
the event loop which continues until the application terminates or all the top level
windows are closed.

wwxxWWiinnddoowwss ccllaasssseess iimmpplleemmeenntteedd iinn wwxxPPyytthhoonn

The following classes are supported in wxPython. Most provide nearly full
implementations of the public interfaces specified in the C++ documentation, others are
less so. They will all be brought as close as possible to the C++ spec over time.

 • wxAcceleratorEntry (p. 16)
 • wxAcceleratorTable (p. 17)
 • wxActivateEvent (p. 20)
 • wxBitmap (p. 55)
 • wxBitmapButton (p. 72)
 • wxBitmapDataObject (p. 77)
 • wxBMPHandler
 • wxBoxSizer (p. 79)
 • wxBrush (p. 81)
 • wxBusyInfo (p. 90)
 • wxBusyCursor (p. 89)
 • wxButton (p. 91)
 • wxCalculateLayoutEvent (p. 96)
 • wxCalendarCtrl (p. 98)
 • wxCaret
 • wxCheckBox (p. 111)
 • wxCheckListBox (p. 114)
 • wxChoice (p. 116)
 • wxClientDC (p. 123)
 • wxClipboard (p. 124)
 • wxCloseEvent (p. 127)
 • wxColourData (p. 142)
 • wxColourDialog (p. 145)
 • wxColour (p. 138)
 • wxComboBox (p. 147)
 • wxCommandEvent (p. 156)
 • wxConfig (p. 166)
 • wxControl (p. 183)
 • wxCursor (p. 191)
 • wxCustomDataObject (p. 189)
 • wxDataFormat (p. 201)
 • wxDataObject (p. 204)

CHAPTER 11

1679

 • wxDataObjectComposite (p. 284)
 • wxDataObjectSimple (p. 285)
 • wxDateTime (p. 299)
 • wxDateSpan (p. 299)
 • wxDC (p. 327)
 • wxDialog (p. 359)
 • wxDirDialog (p. 377)
 • wxDragImage (p. 413)
 • wxDropFilesEvent (p. 417)
 • wxDropSource (p. 419)
 • wxDropTarget (p. 421)
 • wxEraseEvent (p. 427)
 • wxEvent (p. 428)
 • wxEvtHandler (p. 432)
 • wxFileConfig
 • wxFileDataObject (p. 460)
 • wxFileDialog (p. 461)
 • wxFileDropTarget (p. 466)
 • wxFileSystem (p. 489)
 • wxFileSystemHandler (p. 491)
 • wxFocusEvent (p. 506)
 • wxFontData (p. 515)
 • wxFontDialog (p. 518)
 • wxFont (p. 506)
 • wxFrame (p. 525)
 • wxFSFile (p. 537)
 • wxGauge (p. 546)
 • wxGIFHandler
 • wxGLCanvas
 • wxHtmlCell (p. 620)
 • wxHtmlContainerCell (p. 626)
 • wxHtmlDCRenderer (p. 632)
 • wxHtmlEasyPrinting (p. 634)
 • wxHtmlParser (p. 650)
 • wxHtmlTagHandler (p. 660)
 • wxHtmlTag (p. 656)
 • wxHtmlWinParser (p. 671)
 • wxHtmlPrintout (p. 654)
 • wxHtmlWinTagHandler (p. 677)
 • wxHtmlWindow (p. 663)
 • wxIconizeEvent
 • wxIcon (p. 680)
 • wxIdleEvent (p. 679)
 • wxImage (p. 689)
 • wxImageHandler (p. 706)
 • wxImageList (p. 710)
 • wxIndividualLayoutConstraint (p. 715)
 • wxInitDialogEvent (p. 718)

CHAPTER 11

1680

 • wxInputStream (p. 718)
 • wxInternetFSHandler (p. 1558)
 • wxJoystickEvent (p. 731)
 • wxJPEGHandler
 • wxKeyEvent (p. 733)
 • wxLayoutAlgorithm (p. 737)
 • wxLayoutConstraints (p. 740)
 • wxListBox (p. 749)
 • wxListCtrl (p. 758)
 • wxListEvent (p. 775)
 • wxListItem (p. 772)
 • wxMask (p. 808)
 • wxMaximizeEvent
 • wxMDIChildFrame (p. 816)
 • wxMDIClientWindow (p. 819)
 • wxMDIParentFrame (p. 821)
 • wxMemoryDC (p. 828)
 • wxMemoryFSHandler (p. 829)
 • wxMenuBar (p. 843)
 • wxMenuEvent (p. 857)
 • wxMenuItem (p. 852)
 • wxMenu (p. 833)
 • wxMessageDialog (p. 859)
 • wxMetaFileDC (p. 862)
 • wxMiniFrame (p. 866)
 • wxMouseEvent (p. 871)
 • wxMoveEvent (p. 880)
 • wxNotebookEvent (p. 894)
 • wxNotebook (p. 887)
 • wxPageSetupDialogData (p. 904)
 • wxPageSetupDialog (p. 909)
 • wxPaintDC (p. 910)
 • wxPaintEvent (p. 911)
 • wxPalette (p. 912)
 • wxPanel (p. 916)
 • wxPen (p. 922)
 • wxPNGHandler
 • wxPoint (p. 937)
 • wxPostScriptDC (p. 938)
 • wxPreviewFrame (p. 942)
 • wxPrintData (p. 943)
 • wxPrintDialogData (p. 951)
 • wxPrintDialog (p. 949)
 • wxPrinter (p. 955)
 • wxPrintPreview (p. 962)
 • wxPrinterDC (p. 958)
 • wxPrintout (p. 958)
 • wxProcess (p. 967)

CHAPTER 11

1681

 • wxQueryLayoutInfoEvent (p. 1010)
 • wxRadioBox (p. 1013)
 • wxRadioButton (p. 1019)
 • wxRealPoint (p. 1022)
 • wxRect (p. 1023)
 • wxRegionIterator (p. 1048)
 • wxRegion (p. 1044)
 • wxSashEvent (p. 1050)
 • wxSashLayoutWindow (p. 1052)
 • wxSashWindow (p. 1055)
 • wxScreenDC (p. 1060)
 • wxScrollBar (p. 1062)
 • wxScrollEvent (p. 1068)
 • wxScrolledWindow (p. 1070)
 • wxScrollWinEvent (p. 1067)
 • wxShowEvent
 • wxSingleChoiceDialog (p. 1079)
 • wxSizeEvent (p. 1085)
 • wxSize (p. 1083)
 • wxSizer (p. 1086)
 • wxSizerItem
 • wxSlider (p. 1091)
 • wxSpinButton (p. 1125)
 • wxSpinEvent
 • wxSplitterWindow (p. 1137)
 • wxStaticBitmap (p. 1146)
 • wxStaticBox (p. 1148)
 • wxStaticBoxSizer (p. 1150)
 • wxStaticLine (p. 1151)
 • wxStaticText (p. 1153)
 • wxStatusBar (p. 1155)
 • wxSysColourChangedEvent (p. 1200)
 • wxTaskBarIcon (p. 1227)
 • wxTextCtrl (p. 1240)
 • wxTextDataObject (p. 1256)
 • wxTextDropTarget (p. 1264)
 • wxTextEntryDialog (p. 1262)
 • wxTimer (p. 1288)
 • wxTimerEvent (p. 1290)
 • wxTimeSpan (p. 1265)
 • wxTipProvider (p. 1291)
 • wxToolBarTool
 • wxToolBar (p. 1296)
 • wxToolTip
 • wxTreeCtrl (p. 1313)
 • wxTreeEvent (p. 1332)
 • wxTreeItemData (p. 1330)
 • wxTreeItemId

CHAPTER 11

1682

 • wxUpdateUIEvent (p. 1342)
 • wxValidator (p. 1348)
 • wxWindowDC (p. 1418)
 • wxWindow (p. 1366)
 • wxZipFSHandler (p. 1558)

WWhheerree ttoo ggoo ffoorr hheellpp

Since wxPython is a blending of multiple technologies, help comes from multiple
sources. Seehttp://wxpython.org/ (http://wxpython.org/) for details on various
sources of help, but probably the best source is the wxPython-users mail list. You can
view the archive or subscribe by going to

http://lists.wxwindows.org/mailman/listinfo/wxpython-users
(http://lists.wxwindows.org/mailman/listinfo/wxpython-users)

Or you can send mail directly to the list using this address:

wxpython-users@lists.wxwindows.org

1683

Chapter 12 Porting from wxWindows 1.xx

This addendum gives guidelines and tips for porting applications from version 1.xx of
wxWindows to version 2.0.

The first section offers tips for writing 1.xx applications in a way to minimize porting time.
The following sections detail the changes and how you can modify your application to be
2.0-compliant.

You may be worrying that porting to 2.0 will be a lot of work, particularly if you have only
recently started using 1.xx. In fact, the wxWindows 2.0 API has far more in common with
1.xx than it has differences. The main challenges are using the new event system, doing
without the default panel item layout, and the lack of automatic labels in some controls.

Please don't be freaked out by the jump to 2.0! For one thing, 1.xx is still available and
will be supported by the user community for some time. And when you have changed to
2.0, we hope that you will appreciate the benefits in terms of greater flexibility, better
user interface aesthetics, improved C++ conformance, improved compilation speed, and
many other enhancements. The revised architecture of 2.0 will ensure that wxWindows
can continue to evolve for the foreseeable future.

Please note that this document is a work in progress.

PPrreeppaarriinngg ffoorr vveerrssiioonn 22..00

Even before compiling with version 2.0, there's also a lot you can do right now to make
porting relatively simple. Here are a few tips.

 • Use constraints or .wxr resources for layout, rather than the default layout

scheme. Constraints should be the same in 2.0, and resources will be
translated.

 • Use separate wxMessage items instead of labels for wxText, wxMultiText,

wxChoice, wxComboBox. These labels will disappear in 2.0. Use separate
wxMessages whether you're creating controls programmatically or using the
dialog editor. The future dialog editor will be able to translate from old to new
more accurately if labels are separated out.

 • Parameterise functions that use wxDC or derivatives, i.e. make the wxDC an

argument to all functions that do drawing. Minimise the use of
wxWindow::GetDC and definitely don't store wxDCs long-term because in 2.0,
you can't use GetDC() and wxDCs are not persistent. You will use wxClientDC,
wxPaintDC stack objects instead. Minimising the use of GetDC() will ensure that
there are very few places you have to change drawing code for 2.0.

CHAPTER 11

1684

 • Don't set GDI objects (wxPen, wxBrush etc.) in windows or wxCanvasDCs
before they're needed (e.g. in constructors) - do so within your drawing routine
instead. In 2.0, these settings will only take effect between the construction and
destruction of temporary wxClient/PaintDC objects.

 • Don't rely on arguments to wxDC functions being floating point - they will be 32-

bit integers in 2.0.

 • Don't use the wxCanvas member functions that duplicate wxDC functions,

such as SetPen and DrawLine, since they are going.

 • Using member callbacks called from global callback functions will make the

transition easier - see the FAQ for some notes on using member functions for
callbacks. wxWindows 2.0 will banish global callback functions (and
OnMenuCommand), and nearly all event handling will be done by functions
taking a single event argument. So in future you will have code like:

void MyFrame::OnOK(wxCommandEvent& event)
{
 ...
}

You may find that writing the extra code to call a member function isn't worth it
at this stage, but the option is there.

 • Use wxString wherever possible. 2.0 replaces char * with wxString in most
cases, and if you use wxString to receive strings returned from wxWindows
functions (except when you need to save the pointer if deallocation is required),
there should be no conversion problems later on.

 • Be aware that under Windows, font sizes will change to match standard

Windows font sizes (for example, a 12-point font will appear bigger than before).
Write your application to be flexible where fonts are concerned. Don't rely on
fonts being similarly-sized across platforms, as they were (by chance) between
Windows and X under wxWindows 1.66. Yes, this is not easy... but I think it is
better to conform to the standards of each platform, and currently the size
difference makes it difficult to conform to Windows UI standards. You may
eventually wish to build in a global 'fudge-factor' to compensate for size
differences. The old font sizing will still be available via wx_setup.h, so do not
panic...

 • Consider dropping wxForm usage: wxPropertyFormView can be used in a

wxForm-like way, except that you specify a pre-constructed panel or dialog; or
you can use a wxPropertyListView to show attributes in a scrolling list - you don't
even need to lay panel items out.

Because wxForm uses a number of features to be dropped in wxWindows 2.0, it
cannot be supported in the future, at least in its present state.

 • When creating a wxListBox, put the wxLB_SINGLE, wxLB_MULTIPLE,

CHAPTER 11

1685

wxLB_EXTENDED styles in the window style parameter, and put zero in the
multiple parameter. The multiple parameter will be removed in 2.0.

 • For MDI applications, don't reply on MDI being run-time-switchable in the way

that the MDI sample is. In wxWindows 2.0, MDI functionality is separated into
distinct classes.

TThhee nneeww eevveenntt ssyysstteemm

The way that events are handled has been radically changed in wxWindows 2.0. Please
read the topic 'Event handling overview' in the wxWindows 2.0 manual for background
on this.

Callbacks

Instead of callbacks for panel items, menu command events, control commands and
other events are directed to the originating window, or an ancestor, or an event handler
that has been plugged into the window or its ancestor. Event handlers always have one
argument, a derivative of wxEvent.

For menubar commands, the OnMenuCommand member function will be replaced by a
series of separate member functions, each of which responds to a particular command.
You need to add these (non-virtual) functions to your frame class, add a
DECLARE_EVENT_TABLE entry to the class, and then add an event table to your
implementation file, as a BEGIN_EVENT_TABLE and END_EVENT_TABLE block. The
individual event mapping macros will be of the form:

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU(MYAPP_NEW, MyFrame::OnNew)
 EVT_MENU(wxID_EXIT, MyFrame::OnExit)
END_EVENT_TABLE()

Control commands, such as button commands, can be routed to a derived button class,
the parent window, or even the frame. Here, you use a function of the form
EVT_BUTTON(id, func). Similar macros exist for other control commands.

Other events

To intercept other events, you used to override virtual functions, such as OnSize. Now,
while you can use the OnSize name for such event handlers (or any other name of your
choice), it has only a single argument (wxSizeEvent) and must again be 'mapped' using
the EVT_SIZE macro. The same goes for all other events, including OnClose (although
in fact you can still use the old, virtual form of OnClose for the time being).

CHAPTER 11

1686

CCllaassss hhiieerraarrcchhyy

The class hierarchy has changed somewhat. wxToolBar and wxButtonBar classes have
been split into several classes, and are derived from wxControl (which was called
wxItem). wxPanel derives from wxWindow instead of from wxCanvas, which has
disappeared in favour of wxScrolledWindow (since all windows are now effectively
canvases which can be drawn into). The status bar has become a class in its own right,
wxStatusBar.

There are new MDI classes so that wxFrame does not have to be overloaded with this
functionality.

There are new device context classes, with wxPanelDC and wxCanvasDC disappearing.
See Device contexts and painting (p. 1688).

GGDDII oobbjjeeccttss

These objects - instances of classes such as wxPen, wxBrush, wxBitmap (but not
wxColour) - are now implemented with reference-counting. This makes assignment a
very cheap operation, and also means that management of the resource is largely
automatic. You now pass references to objects to functions such as wxDC::SetPen, not
pointers, so you will need to dereference your pointers. The device context does not
store a copy of the pen itself, but takes a copy of it (via reference counting), and the
object's data gets freed up when the reference count goes to zero. The application does
not have to worry so much about who the object belongs to: it can pass the reference,
then destroy the object without leaving a dangling pointer inside the device context.

For the purposes of code migration, you can use the old style of object management -
maintaining pointers to GDI objects, and using the FindOrCreate... functions. However, it
is preferable to keep this explicit management to a minimum, instead creating objects on
the fly as needed, on the stack, unless this causes too much of an overhead in your
application.

At a minimum, you will have to make sure that calls to SetPen, SetBrush etc. work. Also,
where you pass NULL to these functions, you will need to use an identifier such as
wxNullPen or wxNullBrush.

DDiiaallooggss aanndd ccoonnttrroollss

Labels

Most controls no longer have labels and values as they used to in 1.xx. Instead, labels

CHAPTER 11

1687

should be created separately using wxStaticText (the new name for wxMessage). This
will need some reworking of dialogs, unfortunately; programmatic dialog creation that
doesn't use constraints will be especially hard-hit. Perhaps take this opportunity to make
more use of dialog resources or constraints. Or consider using the wxPropertyListView
class which can do away with dialog layout issues altogether by presenting a list of
editable properties.

Constructors

All window constructors have two main changes, apart from the label issue mentioned
above. Windows now have integer identifiers; and position and size are now passed as
wxPoint and wxSize objects. In addition, some windows have a wxValidator argument.

Show versus ShowModal

If you have used or overridden the wxDialog::Show function in the past, you may find
that modal dialogs no longer work as expected. This is because the function for modal
showing is now wxDialog:ShowModal. This is part of a more fundamental change in
which a control may tell the dialog that it caused the dismissal of a dialog, by calling
wxDialog::EndModal or wxWindow::SetReturnCode . Using this information,
ShowModal now returns the id of the control that caused dismissal, giving greater
feedback to the application than just TRUE or FALSE.

If you overrode or called wxDialog::Show, use ShowModal and test for a returned
identifier, commonly wxID_OK or wxID_CANCEL.

wxItem

This is renamed wxControl.

wxText, wxMultiText and wxTextWindow

These classes no longer exist and are replaced by the single class wxTextCtrl. Multi-line
text items are created using the wxTE_MULTILINE style.

wxButton

Bitmap buttons are now a separate class, instead of being part of wxBitmap.

wxMessage

Bitmap messages are now a separate class, wxStaticBitmap, and wxMessage is
renamed wxStaticText.

wxGroupBox

wxGroupBox is renamed wxStaticBox.

wxForm

Note that wxForm is no longer supported in wxWindows 2.0. Consider using the

CHAPTER 11

1688

wxPropertyFormView class instead, which takes standard dialogs and panels and
associates controls with property objects. You may also find that the new validation
method, combined with dialog resources, is easier and more flexible than using wxForm.

DDeevviiccee ccoonntteexxttss aanndd ppaaiinnttiinngg

In wxWindows 2.0, device contexts are used for drawing into, as per 1.xx, but the way
they are accessed and constructed is a bit different.

You no longer use GetDC to access device contexts for panels, dialogs and canvases.
Instead, you create a temporary device context, which means that any window or control
can be drawn into. The sort of device context you create depends on where your code is
called from. If painting within an OnPaint handler, you create a wxPaintDC. If not within
an OnPaint handler, you use a wxClientDC or wxWindowDC. You can still parameterise
your drawing code so that it doesn't have to worry about what sort of device context to
create - it uses the DC it is passed from other parts of the program.

You must create a wxPaintDC if you define an OnPaint handler, even if you do not
actually use this device context, or painting will not work correctly under Windows.

If you used device context functions with wxPoint or wxIntPoint before, please note that
wxPoint now contains integer members, and there is a new class wxRealPoint.
wxIntPoint no longer exists.

wxMetaFile and wxMetaFileDC have been renamed to wxMetafile and wxMetafileDC.

MMiisscceellllaanneeoouuss

Strings

wxString has replaced char* in the majority of cases. For passing strings into functions,
this should not normally require you to change your code if the syntax is otherwise the
same. This is because C++ will automatically convert a char* or const char* to a
wxString by virtue of appropriate wxString constructors.

However, when a wxString is returned from a function in wxWindows 2.0 where a char*
was returned in wxWindows 1.xx, your application will need to be changed. Usually you
can simplify your application's allocation and deallocation of memory for the returned
string, and simply assign the result to a wxString object. For example, replace this:

 char* s = wxFunctionThatReturnsString();
 s = copystring(s); // Take a copy in case it is temporary

CHAPTER 11

1689

 // Do something with it
 delete[] s;

with this:

 wxString s = wxFunctionThatReturnsString();
 // Do something with it

To indicate an empty return value or a problem, a function may return either the empty
string ("") or a null string. You can check for a null string with wxString::IsNull().

Use of const

The const keyword is now used to denote constant functions that do not affect the
object, and for function arguments to denote that the object passed cannot be changed.

This should not affect your application except for where you are overriding virtual
functions which now have a different signature. If functions are not being called which
were previously, check whether there is a parameter mismatch (or function type
mismatch) involving consts.

Try to use the const keyword in your own code where possible.

BBaacckkwwaarrdd ccoommppaattiibbiilliittyy

Some wxWindows 1.xx functionality has been left to ease the transition to 2.0. This
functionality (usually) only works if you compile with WXWIN_COMPATIBILITY set to 1
in setup.h.

Mostly this defines old names to be the new names (e.g. wxRectangle is defined to be
wxRect).

QQuuiicckk rreeffeerreennccee

This section allows you to quickly find features that need to be converted.

Include files

CHAPTER 11

1690

Use the form:

#include <wx/wx.h>
#include <wx/button.h>

For precompiled header support, use this form:

// For compilers that support precompilation, includes "wx.h".
#include <wx/wxprec.h>

#ifdef __BORLANDC__
 #pragma hdrstop
#endif

// Any files you want to include if not precompiling by including
// the whole of <wx/wx.h>
#ifndef WX_PRECOMP
 #include <stdio.h>
 #include <wx/setup.h>
 #include <wx/bitmap.h>
 #include <wx/brush.h>
#endif

// Any files you want to include regardless of precompiled headers
#include <wx/toolbar.h>

IPC classes

These are now separated out into wxDDEServer/Client/Connection (Windows only) and
wxTCPServer/Client/Connection (Windows and Unix). Take care to use wxString for
your overridden function arguments, instead of char*, as per the documentation.

MDI style frames

MDI is now implemented as a family of separate classes, so you can't switch to MDI just
by using a different frame style. Please see the documentation for the MDI frame
classes, and the MDI sample may be helpful too.

OnActivate

Replace the arguments with one wxActivateEvent& argument, make sure the function
isn't virtual, and add an EVT_ACTIVATE event table entry.

OnChar

This is now a non-virtual function, with the same wxKeyEvent& argument as before. Add
an EVT_CHAR macro to the event table for your window, and the implementation of

CHAPTER 11

1691

your function will need very few changes.

OnClose

The old virtual function OnClose is now obsolete. Add an OnCloseWindow event handler
using an EVT_CLOSE event table entry. For details about window destruction, see the
Windows Deletion Overview in the manual. This is a subtle topic so please read it very
carefully. Basically, OnCloseWindow is now responsible for destroying a window with
Destroy(), but the default implementation (for example for wxDialog) may not destroy the
window, so to be sure, always provide this event handler so it is obvious what's going
on.

OnEvent

This is now a non-virtual function, with the same wxMouseEvent& argument as before.
However you may wish to rename it OnMouseEvent. Add an EVT_MOUSE_EVENTS
macro to the event table for your window, and the implementation of your function will
need very few changes. However, if you wish to intercept different events using different
functions, you can specify specific events in your event table, such as
EVT_LEFT_DOWN.

Your OnEvent function is likely to have references to GetDC(), so make sure you create
a wxClientDC instead. See Device contexts (p. 1688).

If you are using a wxScrolledWindow (formerly wxCanvas), you should call
PrepareDC(dc) to set the correct translation for the current scroll position.

OnMenuCommand

You need to replace this virtual function with a series of non-virtual functions, one for
each case of your old switch statement. Each function takes a wxCommandEvent&
argument. Create an event table for your frame containing EVT_MENU macros, and
insert DECLARE_EVENT_TABLE() in your frame class, as per the samples.

OnPaint

This is now a non-virtual function, with a wxPaintEvent& argument. Add an EVT_PAINT
macro to the event table for your window.

Your function must create a wxPaintDC object, instead of using GetDC to obtain the
device context.

If you are using a wxScrolledWindow (formerly wxCanvas), you should call
PrepareDC(dc) to set the correct translation for the current scroll position.

CHAPTER 11

1692

OnSize

Replace the arguments with one wxSizeEvent& argument, make it non-virtual, and add
to your event table using EVT_SIZE.

wxApp definition

The definition of OnInit has changed. Return a bool value, not a wxFrame.

Also, do not declare a global application object. Instead, use the macros
DECLARE_APP and IMPLEMENT_APP as per the samples. Remove any occurrences
of IMPLEMENT_WXWIN_MAIN: this is subsumed in IMPLEMENT_APP.

wxButton

For bitmap buttons, use wxBitmapButton.

wxCanvas

Change the name to wxScrolledWindow.

wxDialogBox

Change the name to wxDialog, and for modal dialogs, use ShowModal instead of Show.

wxDialog::Show

If you used Show to show a modal dialog or to override the standard modal dialog
Show, use ShowModal instead.

See also

Dialogs and controls (p. 1686)

wxForm

Sorry, this class is no longer available. Try using the wxPropertyListView or
wxPropertyFormView class instead, or use .wxr files and validators.

wxPoint

The old wxPoint is called wxRealPoint, and wxPoint now uses integers.

CHAPTER 11

1693

wxRectangle

This is now called wxRect.

wxScrollBar

The function names have changed for this class: please refer to the documentation for
wxScrollBar. Instead of setting properties individually, you will call SetScrollbar with
several parameters.

wxText, wxMultiText, wxTextWindow

Change all these to wxTextCtrl. Add the window style wxTE_MULTILINE if you wish to
have a multi-line text control.

wxToolBar

This name is an alias for the most popular form of toolbar for your platform. There is now
a family of toolbar classes, with for example wxToolBar95, wxToolBarMSW and
wxToolBarSimple classes existing under Windows 95.

Toolbar management is supported by frames, so calling wxFrame::CreateToolBar and
adding tools is usually enough, and the SDI or MDI frame will manage the positioning for
you. The client area of the frame is the space left over when the menu bar, toolbar and
status bar have been taken into account.

1694

Chapter 13 References

[1] Robins, Gabriel. 1987 (September). The ISI grapher: a portable tool for displaying

graphs pictorially (ISI/RS-87-196). Technical report. University of South California.

REFERENCES

1695

1696

Chapter 14 Index

—:—

::copystring, 1434
::wxBeginBusyCursor, 1451
::wxBell, 1451
::wxClientDisplayRect, 1444
::wxClipboardOpen, 1448
::wxCloseClipboard, 1448
::wxColourDisplay, 1444
::wxConcatFiles, 1428
::wxCopyFile, 1428
::wxCreateDynamicObject, 1452
::wxCreateFileTipProvider, 1436
::wxDDECleanUp, 1452
::wxDDEInitialize, 1452
::wxDebugMsg, 1452
::wxDirExists, 1426
::wxDirSelector, 1436
::wxDisplayDepth, 1444
::wxDisplaySize, 1444, 1453
::wxDisplaySizeMM, 1444
::wxDos2UnixFilename, 1426
::wxDROP_ICON, 1450
::wxEmptyClipboard, 1449
::wxEnableTopLevelWindows, 1453
::wxEndBusyCursor, 1454
::wxEntry, 1453
::wxEnumClipboardFormats, 1449
::wxError, 1454
::wxExecute, 1455
::wxExit, 1456
::wxFatalError, 1456
::wxFileExists, 1426
::wxFileModificationTime, 1426
::wxFileNameFromPath, 1426
::wxFileSelector, 1437
::wxFindFirstFile, 1427
::wxFindMenuItemId, 1456
::wxFindNextFile, 1427
::wxFindWindowAtPoint, 1457
::wxFindWindowAtPointer, 1457
::wxFindWindowByLabel, 1457
::wxFindWindowByName, 1457
::wxGetActiveWindow, 1458
::wxGetClipboardData, 1449

::wxGetClipboardFormatName, 1449
::wxGetColourFromUser, 1437
::wxGetCwd, 1429
::wxGetDiskSpace, 1427
::wxGetDisplayName, 1458
::wxGetElapsedTime, 1485
::wxGetEmailAddress, 1432
::wxGetFreeMemory, 1458
::wxGetFullHostName, 1431
::wxGetHomeDir, 1458
::wxGetHostName, 1432
::wxGetLocalTime, 1485
::wxGetLocalTimeMillis, 1485
::wxGetMousePosition, 1459
::wxGetMultipleChoice, 1440
::wxGetMultipleChoices, 1438
::wxGetNumberFromUser, 1439
::wxGetOsDescription, 1459
::wxGetOSDirectory, 1428
::wxGetOsVersion, 1459
::wxGetPasswordFromUser, 1439
::wxGetPrinterCommand, 1446
::wxGetPrinterFile, 1446
::wxGetPrinterMode, 1446
::wxGetPrinterOptions, 1446
::wxGetPrinterOrientation, 1446
::wxGetPrinterPreviewCommand, 1446
::wxGetPrinterScaling, 1446
::wxGetPrinterTranslation, 1447
::wxGetResource, 1460
::wxGetSingleChoice, 1440
::wxGetSingleChoiceData, 1441
::wxGetSingleChoiceIndex, 1441
::wxGetTempFileName, 1429
::wxGetTextFromUser, 1439
::wxGetTranslation, 1435
::wxGetUserHome, 1461
::wxGetUserId, 1432, 1461
::wxGetUserName, 1433, 1461
::wxGetUTCTime, 1486
::wxGetWorkingDirectory, 1429
::wxHandleFatalExceptions, 1461
::wxInitAllImageHandlers, 1462
::wxInitialize, 1462
::wxIsAbsolutePath, 1428

INDEX

1697

::wxIsBusy, 1462
::wxIsClipboardFormatAvailable, 1450
::wxIsEmpty, 1434
::wxIsWild, 1429
::wxKill, 1462
::wxLoadUserResource, 1463
::wxLogDebug, 1483
::wxLogError, 1482
::wxLogFatalError, 1482
::wxLogMessage, 1482
::wxLogStatus, 1482
::wxLogSysError, 1483
::wxLogTrace, 1483
::wxLogVerbose, 1482
::wxLogWarning, 1482
::wxMakeMetafilePlaceable, 1445
::wxMatchWild, 1429
::wxMessageBox, 1442
::wxMkdir, 1429
::wxMutexGuiEnter, 1425
::wxMutexGuiLeave, 1425
::wxNewId, 1451
::wxNow, 1464
::wxOnAssert, 1486
::wxOpenClipboard, 1450
::wxPathOnly, 1428
::wxPostDelete, 1464
::wxPostEvent, 1464
::wxRegisterClipboardFormat, 1450
::wxRegisterId, 1451
::wxRemoveFile, 1430
::wxRenameFile, 1430
::wxResourceAddIdentifier, 1478
::wxResourceClear, 1478
::wxResourceCreateBitmap, 1478
::wxResourceCreateIcon, 1479
::wxResourceCreateMenuBar, 1479
::wxResourceGetIdentifier, 1479
::wxResourceParseData, 1480
::wxResourceParseFile, 1480
::wxResourceParseString, 1480
::wxResourceRegisterBitmapData, 1481
::wxResourceRegisterIconData, 1481
::wxRmdir, 1430
::wxSafeYield, 1465
::wxSetClipboardData, 1450
::wxSetCursor, 1445
::wxSetDisplayName, 1465
::wxSetPrinterCommand, 1447
::wxSetPrinterFile, 1447
::wxSetPrinterMode, 1447

::wxSetPrinterOptions, 1447
::wxSetPrinterOrientation, 1447
::wxSetPrinterPreviewCommand, 1448
::wxSetPrinterScaling, 1448
::wxSetPrinterTranslation, 1448
::wxSetWorkingDirectory, 1430
::wxShell, 1466
::wxShowTip, 1443
::wxSleep, 1466
::wxSnprintf, 1435
::wxSplitPath, 1430
::wxStartTimer, 1486
::wxStricmp, 1434
::wxStringEq, 1434
::wxStringMatch, 1434
::wxStripMenuCodes, 1466
::wxStrlen, 1434
::wxSysErrorCode, 1484
::wxSysErrorMsg, 1484
::wxToLower, 1466
::wxToUpper, 1467
::wxTrace, 1467
::wxTraceLevel, 1467
::wxTransferFileToStream, 1431
::wxTransferStreamToFile, 1431
::wxTrap, 1467
::wxUninitialize, 1468
::wxUnix2DosFilename, 1428
::wxUsleep, 1468
::wxVsnprintf, 1435
::wxWakeUpIdle, 1469
::wxWriteResource, 1468
::wxYield, 1469

—~—
~wxAcceleratorTable, 19
~wxApp, 22
~wxArray, 40
~wxArrayString, 46
~wxAutomationObject, 51
~wxBitmap, 58
~wxBitmapButton, 73
~wxBitmapHandler, 68
~wxBrush, 83
~wxBufferedOutputStream, 95
~wxBusyCursor, 89
~wxBusyInfo, 91
~wxButton, 93
~wxCalendarCtrl, 100
~wxCheckBox, 112

INDEX

1698

~wxCheckListBox, 115
~wxChoice, 117
~wxClipboard, 125
~wxCmdLineParser, 134
~wxColourData, 142
~wxColourDialog, 145
~wxComboBox, 148
~wxCommand, 154
~wxCommandProcessor, 161
~wxCondition, 164
~wxConfigBase, 172
~wxContextHelp, 180
~wxCountingOutputStream, 184
~wxCriticalSection, 185
~wxCriticalSectionLocker, 186
~wxCSConv, 187
~wxCursor, 193
~wxCustomDataObject, 189
~wxDatabase, 195
~wxDataInputStream, 285
~wxDataObject, 205
~wxDataOutputStream, 287
~wxDate, 289
~wxDbConnectInf, 240
~wxDbTable, 246
~wxDC, 325
~wxDCClipper, 343
~wxDialog, 358
~wxDialUpManager, 366
~wxDir, 370
~wxDirDialog, 375
~wxDocChildFrame, 381
~wxDocManager, 384
~wxDocMDIChildFrame, 392
~wxDocMDIParentFrame, 394
~wxDocParentFrame, 395
~wxDocTemplate, 398
~wxDocument, 403
~wxDropSource, 417
~wxDropTarget, 419
~wxEvtHandler, 429
~wxExpr, 437
~wxExprDatabase, 443
~wxFFile, 453
~wxFFileInputStream, 471
~wxFFileOutputStream, 472
~wxFile, 448
~wxFileDialog, 460
~wxFileHistory, 465
~wxFileInputStream, 468
~wxFileOutputStream, 469

~wxFileType, 493
~wxFindReplaceDialog, 501
~wxFont, 506
~wxFontData, 511
~wxFontDialog, 515
~wxFontMapper, 520
~wxFrame, 524
~wxFTP, 538
~wxGauge, 544
~wxGenericDirCtrl, 549
~wxGenericValidator, 553
~wxGrid, 556
~wxGridCellEditor, 596
~wxGridTableBase, 597
~wxHashTable, 605
~wxHelpController, 608
~wxHelpProvider, 615
~wxIcon, 680
~wxImage, 687
~wxImageHandler, 703
~wxInputStream, 714
~wxJoystick, 720
~wxLayoutAlgorithm, 735
~wxList, 741
~wxListBox, 747
~wxListCtrl, 756
~wxLocale, 781
~wxLogChain, 793
~wxMask, 804
~wxMDIChildFrame, 813
~wxMDIClientWindow, 815
~wxMDIParentFrame, 818
~wxMemoryInputStream, 826
~wxMemoryOutputStream, 827
~wxMenu, 829
~wxMenuBar, 839
~wxMenuItem, 848
~wxMessageDialog, 855, 967
~wxMetafile, 856
~wxMetafileDC, 857
~wxMimeTypesManager, 860
~wxMiniFrame, 863
~wxModule, 865
~wxMutex, 878
~wxMutexLocker, 880
~wxNotebook, 884
~wxObjArray, 40
~wxOutputStream, 897
~wxPageSetupDialog, 905
~wxPageSetupDialogData, 899
~wxPalette, 908

INDEX

1699

~wxPanel, 912
~wxPanelTabView, 914
~wxPen, 920
~wxPlotWindow, 929
~wxPreviewCanvas, 934
~wxPreviewControlBar, 936
~wxPreviewFrame, 937
~wxPrintData, 939
~wxPrintDialog, 944
~wxPrintDialogData, 946
~wxPrinter, 950, 958
~wxPrintout, 954
~wxProcess, 963
~wxProperty, 969
~wxPropertyFormDialog, 972
~wxPropertyFormFrame, 972
~wxPropertyFormPanel, 973
~wxPropertyFormValidator, 974
~wxPropertyFormView, 975
~wxPropertyListDialog, 978
~wxPropertyListFrame, 978
~wxPropertyListPanel, 979
~wxPropertyListValidator, 980
~wxPropertyListView, 982
~wxPropertySheet, 985
~wxPropertyValidator, 987
~wxPropertyValidatorRegistry, 988
~wxPropertyValue, 990
~wxPropertyView, 994
~wxQueryCol, 1000
~wxQueryField, 1003
~wxRadioBox, 1009
~wxRadioButton, 1015
~wxRecordSet, 1022
~wxRegEx, 1036
~wxRegion, 1039
~wxSashLayoutWindow, 1048
~wxSashWindow, 1051
~wxScrollBar, 1058
~wxScrolledWindow, 1066
~wxSingleChoiceDialog, 1075
~wxSingleInstanceChecker, 1077
~wxSizer, 1081
~wxSlider, 1087
~wxSockAddress, 1094
~wxSocketBase, 1098
~wxSocketClient, 1112
~wxSocketServer, 1116
~wxSortedArray, 40
~wxSpinButton, 1121
~wxSplashScreen, 1127

~wxSplitterWindow, 1133
~wxStaticBox, 1144
~wxStatusBar, 1151
~wxStreamBase, 1156
~wxStreamToTextRedirector, 1164
~wxString, 1172
~wxStringBuffer, 1188
~wxStringList, 1189
~wxTabbedDialog, 1200
~wxTabCtrl, 1215
~wxTaskBarIcon, 1221
~wxTempFile, 1231
~wxTextCtrl, 1237
~wxTextEntryDialog, 1256
~wxTextFile, 1264
~wxTextInputStream, 1252
~wxTextOutputStream, 1254
~wxTextValidator, 1261
~wxThread, 1270
~wxTimer, 1282
~wxToggleButton, 1288
~wxToolBar, 1292
~wxTreeCtrl, 1309
~wxTreeItemData, 1324
~wxURL, 1339
~wxValidator, 1342
~wxVariant, 1345
~wxView, 1354
~wxWave, 1358
~wxWindow, 1361
~wxWindowDisabler, 1413

—A—

A more complex example, 1607
A selection of SQL commands

[DEPRECATED], 1635
Abort, 950, 997
Above, 712
Abs, 801
Absolute, 712
Accept, 1116
AcceptWith, 1117
Access, 448
Accessors, 300, 1259
Activate, 813, 1354
ActivateNext, 818
ActivateNode, 1328
ActivatePrevious, 819
ActivateView, 384
Add, 41, 47, 282, 315, 316, 707, 916, 929, 1081,

INDEX

1700

1190
AddAttributeValue, 437
AddAttributeValueString, 437
AddAttributeValueStringList, 437
AddAttributeValueWord, 438
AddBook, 636, 639
AddBrush, 88
AddCatalog, 781
AddCatalogLookupPathPrefix, 781
AddChild, 1334, 1361
AddControl, 1292
AddData, 125
AddDocument, 384
AddEnvList, 916
AddFallbacks, 860
AddFile, 458, 825
AddFilesToMenu, 465
AddFileToHistory, 384, 465
AddFilter, 660
AddFont, 518
AddGrowableCol, 495
AddGrowableRow, 495
AddHandler, 59, 486, 687
AddHelp, 616
Adding items, 36
AddLanguage, 781
AddLine, 1264
AddModule, 667
AddMonths, 289
AddNew, 1022
AddOption, 136
AddPage, 884
AddParam, 136
AddPen, 925
AddPendingEvent, 429
AddProperty, 985
AddRegistry, 995
AddRoot, 1309
AddSeparator, 1292
AddSwitch, 136
AddTab, 1206
AddTabPanel, 915
AddTag, 646
AddTagHandler, 647
AddTool, 1292
AddToolbarButtons, 644
AddTraceMask, 788
AddView, 403
AddWeeks, 290
AddWord, 647
AddYears, 290

Adjust, 1286
AdjustPagebreak, 616
AdvanceSelection, 885
Advise, 346, 1225
AfterFirst, 1173
AfterLast, 1173
All date/time classes at a glance, 1525
Alloc, 41, 47, 189, 1172
AllocData, 1003
AllocHenv, 240
AltDown, 732, 869
AnyAddress, 719
Append, 117, 148, 438, 444, 741, 747, 829,

839, 990, 1173, 1345
AppendCols, 557, 600
AppendDir, 476
AppendField, 1002
AppendItem, 1309
AppendRows, 557, 600
AppendSeparator, 830
AppendText, 1237
AppendToPage, 660
Arg, 438
argc, 22
argv, 23
Arrange, 756
ArrangeIcons, 819
AsIs , 712
Assign, 476, 801
AssignButtonsImageList, 1309
AssignCwd, 476
AssignDir, 477
AssignHomeDir, 477
AssignImageList, 757, 885, 1309
AssignStateImageList, 1310
AssignTempFileName, 477
Associated non-class functions, 211
AssociateNames, 975
AssociatePanel, 983
AssociateTemplate, 384
Astronomical/historical functions, 303
Attach, 448, 454
AttributeValue, 439
AutoSize, 557
AutoSizeColOrRow, 590
AutoSizeColumn, 557
AutoSizeColumns, 558
AutoSizeRow, 558
AutoSizeRows, 558

INDEX

1701

—B—

Background: The need for conversion,
1531

Background: The wxString class, 1532
Basic IO, 1096
BeforeFirst, 1174
BeforeLast, 1174
BeginBatch, 558
BeginContextHelp, 180
BeginDrag, 411
BeginDrawing, 325
BeginEdit, 595
BeginFind, 444, 605
BeginQuery, 1022
BeginShowingProperty, 983
BeginTrans, 195
Below, 712
BigEndianOrdered, 285, 287
BindVar, 1000, 1023
Bitmap format handlers, 1579
Bitmap resource format, 1574
Blit, 325
BlockToDeviceRect, 582
Blue, 139
BoolValue, 990
BoolValuePtr, 991
bottom, 737
Break, 831
Broadcast, 164
Bugs, 1550
BuildDeleteStmt, 247
BuildSelectStmt, 247, 249
BuildUpdateStmt, 248
Button, 869
ButtonDClick, 870
ButtonDown, 727, 870
ButtonIsDown, 727
ButtonUp, 728, 870

—C—

c_str, 1174
CalcBoundingBox, 327
CalcLayout, 1329
CalcMin, 81, 1082
CalcScrolledPosition, 1067
CalculateTabWidth, 1206
CalcUnscrolledPosition, 1067
Calendar calculations, 302
Calendar sample, 1509
Callback, 1098

CallbackData, 1098
Callbacks, 1676
CallMethod, 51
CanAppend, 1023
Cancel, 195, 1023
CancelDialing, 367
Cancelled, 772
CanCopy, 1238
CanCut, 1238
CanDragColSize, 559
CanDragGridSize, 559
CanDragRowSize, 559
CanEnableCellControl, 559
CanGetValueAs , 598
CanHaveAttributes, 590, 601
CanOpen, 489
CanPaste, 1238
CanRead, 634
CanRedo, 1238
CanRestart, 1023
CanScroll, 1023
CanSelectForUpdate, 249
CanSetValueAs , 598
CanTransact, 195, 1023
CanUndo, 154, 161, 1238
CanUpdate, 195, 1024
CanUpdateByROWID, 250
CanVeto, 127
CaptureMouse, 1361
Cascade, 819
Case conversion, 1167
Catalog, 214
CellToRect, 559
Center, 1362
CenterOnParent, 1362
CenterOnScreen, 1362
Centre, 358, 524, 1362
CentreOnParent, 1363
CentreOnScreen, 1363
centreX, 737
centreY, 737
Chain, 1421
ChangePathTo, 486
char*, 1279
Character access, 1166
CharsetToEncoding, 520
ChDir, 538
Check, 115, 351, 831, 839, 848, 975, 1337
Check Windows debug messages, 15
CheckCommand, 538
Checked, 159

INDEX

1702

Checklist sample, 1509
CLASSINFO, 1471
CleanUpHandlers, 59, 688
CleanupModules, 865
Clear, 41, 47, 118, 125, 148, 327, 477, 600,

605, 741, 747, 985, 1039, 1094, 1174, 1190,
1238, 1363

ClearAll, 757
ClearCommands, 162
ClearData, 1003
ClearDatabase, 444
ClearGrid, 559
ClearList, 991, 1346
ClearMemberVar, 251
ClearMemberVars, 251
ClearRegistry, 988
ClearSel, 1087
ClearSelection, 560
ClearTabs, 1207
ClearTicks, 1088
ClearTraceMasks, 788
ClearWindows, 915
ClientToScreen, 1364
Clone, 426, 553, 591, 596, 597, 1261, 1342
Close, 125, 195, 214, 403, 448, 454, 858, 1099,

1264, 1355, 1364
CloseContainer, 667
CloseCursor, 251
CloseOutput, 963
cMB2WC, 807
cMB2WX, 807
Cmp, 1174
CmpNoCase, 1174
Collapse, 1310
CollapseAndReset, 1310
Command, 183, 524
Commit, 1231
CommitTrans, 196, 215
CompareTo, 1175
Comparison, 1166
Comparison of wxString to other string

classes, 1520
Comparison operators, 1186
Compatibility, 1528
Compile, 1036
Compiling the resource system , 1575
Concatenation, 1166
Config sample, 1509
Connect, 430, 1112
Constraint layout: more detail, 1566
ConstructDefaultSQL, 1024

Construction, 131
Construction and destruction, 1096
Constructor and destructor, 167, 859
Constructors, 1259
Constructors and assignment operators,

1165
Constructors and destructors, 36
Constructors and initialization, 556
Constructors, assignment operators and

setters, 300
Contains, 1039, 1175
ControlDown, 732, 870
Controls sample, 1509
Conversion to numbers, 1167
Convert, 422
ConvertDialogToPixels, 1365
Converting buffers, 1533
Converting strings, 1533
ConvertPixelsToDialog, 1366
ConvertStringToArgs, 134
ConvertToBitmap, 688
ConvertToImage, 59
ConvertToMono, 688
ConvertToValidURI, 1341
ConvertYearToBC, 304
Copy, 149, 439, 688, 1239, 1352
CopyFromBitmap, 679
CopyObject, 893
copystring, 1434
CopyTo, 827
Count, 41, 47, 252
CountTokens, 1192
Create, 59, 68, 74, 93, 99, 108, 112, 118, 145,

149, 172, 350, 359, 366, 449, 502, 524, 544,
549, 594, 642, 688, 708, 748, 757, 805, 813,
819, 864, 885, 908, 912, 1009, 1015, 1058,
1067, 1076, 1088, 1121, 1124, 1133, 1142,
1144, 1146, 1148, 1151, 1215, 1229, 1239,
1265, 1270, 1288, 1358, 1415, 1635

CreateAbortWindow, 951
CreateButtons, 936
CreateCanvas, 937
CreateClient, 816
CreateContents, 642
CreateControlBar, 937
CreateCurrentFont, 667
CreateDocument, 385, 398
CreateGrid, 560
CreateHelpFrame, 637
CreateIndex, 253, 642
CreateInstance, 52
CreateLogTarget, 23

INDEX

1703

CreateObject, 122
CreateSearch, 642
CreateStatusBar, 525
CreateTable, 254
CreateTempFileName, 477
CreateToolBar, 525
CreateView, 216, 385, 399
CrossHair, 327
Customization, 132, 787
Cut, 149, 1239
cWC2MB, 807
cWC2WX, 808
cWX2MB, 807
cWX2WC, 808

—D—

Data, 881
Data classes , 1662
Data transfer, 1638
Database sample, 1510
Date arithmetics, 301, 1526
Date comparison, 301
Daylight saving time (DST), 1528
DB_STATUS, 255
Dbms, 216
DECLARE_ABSTRACT_CLASS, 1471
DECLARE_APP, 1471
DECLARE_CLASS, 1472
DECLARE_DYNAMIC_CLASS, 1472
DecRef, 591
Default constructors, 39
delete, 896
Delete, 149, 255, 605, 748, 831, 930, 991,

1024, 1190, 1270, 1310, 1346
Delete entries/groups, 170
DeleteAll, 173
DeleteAllItems, 757, 1215, 1311
DeleteAllPages, 885
DeleteAllViews, 403
DeleteAttributeValue, 439
DeleteCols, 560, 600
DeleteColumn, 757
DeleteContents, 605, 742
DeleteCursor, 256
DeleteEntry, 173
DeleteGroup, 173
DeleteItem, 758, 1215
DeleteMatching, 256
DeleteNode, 742
DeleteObject, 742

DeletePage, 886
DeleteRows, 560, 600
DeleteSubMenu, 848
DeleteTool, 1294
DeleteToolByPos, 1294
DeleteWhere, 257
Deselect, 748
Destroy, 596, 689, 832, 1099, 1367
DestroyChildren, 1367
DestroyClippingRegion, 327
Detach, 41, 449, 454, 963
DeviceToLogicalX, 328
DeviceToLogicalXRel, 328
DeviceToLogicalY, 328
DeviceToLogicalYRel, 328
Dial, 366
Dialog resource format, 1571
Dialogs sample, 1510
Dialup sample, 1510
Difference between wxDateSpan and

wxTimeSpan, 1526
Different ODBC Class Libraries in

wxWindows, 1613
DirExists, 477
DirName, 478
Disable, 1367
DisableAutoCheckOnlineStatus, 368
DisableCellEditControl, 561
DisableDragColSize, 561
DisableDragGridSize, 561
DisableDragRowSize, 561
DisableLongOptions, 135
DisassociateTemplate, 385
Discard, 1099, 1231
DiscardEdits , 1239
Disconnect, 347, 430, 1226
DispAllErrors, 217
Dispatch, 23
Display, 637, 642
Display format, 556
DisplayBlock, 608
DisplayContents, 609, 637, 643
DisplayContextPopup, 609
DisplayIndex, 637, 643
DisplayProperty, 983
DisplaySection, 609
DisplayTextPopup, 610
DispNextError, 218
DnD sample, 1510
Do, 154, 162
DoDragDrop, 417

INDEX

1704

DoDrawImage, 412
DoGetBestSize, 588
DoLayout, 1329
DoLog, 789
DoLogString, 790
DoneParser, 647
DontCreateOnDemand, 172, 790
DoParsing, 647
DoQuantize, 1000
DragAcceptFiles, 1367
Dragging, 870
Draw, 597, 617, 708, 1207, 1329
DrawArc, 328
DrawBitmap, 328
DrawBlankPage, 958
DrawBranch, 1329
DrawBranches , 1329
DrawCheckMark, 329
DrawEllipse, 329
DrawEllipticArc, 329
DrawIcon, 329
DrawInvisible, 617
DrawLine, 330
DrawLines, 330
DrawNode, 1329
DrawNodes, 1329
DrawPoint, 331
DrawPolygon, 330
DrawRectangle, 331
DrawRotatedText, 331
DrawRoundedRectangle, 331
DrawSpline, 332
DrawText, 332
DropIndex, 258
DropTable, 258
DropView, 219
Dump, 351, 893
Dynamic sample, 1511

—E—

Edges and relationships, 711
Edit, 1024
EditLabel, 758, 1311
Empty, 42, 47, 1175
Enable, 832, 840, 848, 1010, 1305, 1337, 1368
EnableAutoCheckOnlineStatus, 368
EnableCellEditControl, 561
EnableDragColSize, 561
EnableDragGridSize, 561
EnableDragRowSize, 562

EnableEditing, 562
EnableEffects, 511
EnableGridLines, 562
EnableHelp, 899, 946
EnableHolidayDisplay, 100
EnableLongOptions, 135
EnableMargins, 899
EnableMonthChange, 100
EnableOrientation, 899
EnablePageNumbers, 946
EnablePaper, 900
EnablePrinter, 900
EnablePrintToFile, 946
EnableScrolling, 1068
EnableSelection, 946
EnableTool, 1294
EnableTop, 840
EnableYearChange, 100
EndBatch, 562
EndContextHelp, 181
EndDoc, 332
EndDrag, 412
EndDrawing, 332
EndDrawingOnTop, 1055
EndEdit, 595
EndEditLabel, 1311
EndModal, 359
EndPage, 333
EndQuery, 1024
EndShowingProperty, 983
Enlarge, 930
EnsureFileAccessible, 916
EnsureVisible, 758, 1311
Enter, 185
Entering, 871
Entry, 1271
Enumerated types, 207
EnumerateEncodings, 516
EnumerateFacenames , 516
Enumeration, 168
Eof, 449, 454, 715, 1266
Eq, 1353
Error, 1100
ErrorOccured, 196
ErrorSnapshot, 196
Event macros summary, 1558
Event sample, 1511
EVT_COMMAND(id, event, func), 1558
EVT_COMMAND_RANGE(id1, id2,

event, func), 1558
EVT_CUSTOM(event, id, func), 1558

INDEX

1705

EVT_CUSTOM_RANGE(event, id1, id2,
func), 1558

Example, 1519, 1584, 1599
Example 1: Property list view, 1655
Example 1: subwindow layout, 1567
Example 2: panel item layout, 1567
Example 2: Property form view, 1657
Examples, 1638
Exec sample, 1511
ExecSql, 219
Execute, 347, 1226
ExecuteSQL, 1024
Exists, 173, 370, 449, 965, 1265
Exit, 865, 1271
ExitMainLoop, 25
Expand, 1311
ExpandCommand, 494
ExpandPath, 549

—F—

fd, 449
File name components, 474
File name construction, 474
File name format, 474
File tests, 474
FileExists, 478
FileHistoryAddFilesToMenu, 385
FileHistoryLoad, 385
FileHistoryRemoveMenu, 386
FileHistorySave, 386
FileHistoryUseMenu, 386
FileName, 478
FillBuffer, 1163
FillHandlersTable, 658
FillVar, 1001
FillVars, 1025
Find, 618, 742, 1175
FindAbsoluteValidPath, 917
FindClass, 122
FindClause, 444
FindClauseByFunctor, 445
FindColour, 144
FindFirst, 487, 490
FindFirstUnusedColour, 689
FindFocus, 1368
FindHandler, 60, 690
FindHandlerMime, 690
FindItem, 758, 832, 841
FindMenu, 841
FindMenuItem, 841

FindName, 144
FindNext, 487, 490
FindOrCreateBrush, 88
FindOrCreateFont, 518
FindOrCreatePen, 925
FindPageById , 639
FindPageByName, 640
FindPropertyValidator, 995
FindString, 118, 149, 748, 1010
FindTabControlForId , 1207
FindTabControlForPosition, 1207
FindTemplateForPath, 386
FindToolForPosition, 1295
FindValidPath, 917
FindWindow, 1368
First, 1175, 1176
Fit, 588, 1083, 1369
Fixed, 1162
FloodFill, 333
Flush, 173, 450, 454, 790
Flushable, 1163
FlushActive, 790
FlushBuffer, 1163
Font sample, 1512
ForceRefresh, 562
Format, 238, 318, 1176, 1259
FormatDate, 290, 318
FormatISODate, 319
FormatISOTime, 319
FormatTime, 319, 1278
Formatting time spans, 1259
Found, 137
fp, 454
Free, 189
FreeHenv, 241
Freeze, 1369
Freq, 1176
From, 259
Functions and macros , 442
Functor, 439

—G—

Genetic mutation, 15
Get, 173, 605, 615
GetActive, 21
GetActiveChild, 820
GetActiveTarget, 789
GetActualColor, 667
GetAlign, 668
GetAlignHor, 623

INDEX

1706

GetAlignment, 593, 1006, 1048
GetAlignVer, 623
GetAllEquivalents, 424
GetAllFiles, 372
GetAllFormats, 205
GetAllowSymbols, 512
GetAllPages, 946
GetAllParams, 652
GetAltForEncoding, 520
GetAmPmStrings, 304
GetAnchor, 489, 535
GetAppName, 23, 174
GetAt, 929
GetAttr, 102, 601
GetAttributeValue, 438, 439
GetAttributeValueStringList, 439
GetAttrProvider, 601
GetAuthStr, 241
GetAuto3D, 24
GetBackground, 333
GetBackgroundBrush, 1207
GetBackgroundColour, 106, 593, 848, 1207,

1232, 1369
GetBackgroundMode, 333
GetBackgroundPen, 1208
GetBaseClassName1, 122
GetBaseClassName2, 122
GetBatchCount, 563
GetBeginDST, 304
GetBeginPos, 653
GetBestSize, 597, 1369
GetBezelFace, 544
GetBitmap, 77, 848, 1142, 1419
GetBitmapDisabled, 74
GetBitmapFocus, 74
GetBitmapLabel, 74
GetBitmapSelected, 75
GetBlinkTime, 108
GetBlue, 690
GetBookRecArray, 640
GetBool, 1346
GetBorder, 106
GetBorderColour, 106
GetBottom, 1019
GetBoundingRect, 1312
GetBox, 1040
GetBrush, 333
GetBufferEnd, 1161
GetBufferPos, 1162
GetBufferStart, 1161
GetButtonChange, 728

GetButtonsImageList, 1312
GetButtonState, 720, 728
GetC, 715
GetCacheFrom, 772
GetCacheTo, 772
GetCanvas, 958
GetCap, 920
GetCaret, 1369
GetCatalog, 220
GetCellAlignment, 563
GetCellBackgroundColour, 563
GetCellEditor, 563
GetCellFont, 563
GetCellRenderer, 564
GetCellTextColour, 564
GetCellTextFont, 587
GetCellValue, 564
GetCentury, 305
GetChar, 1159, 1176, 1346
GetCharHeight, 334, 668, 1370
GetCharWidth, 334, 668, 1370
GetChecked, 1337
GetCheckPrevious, 351
GetChildren, 1330, 1370
GetChildrenCount, 1312
GetChooseFull, 142
GetChosenFont, 512
GetClassInfo, 894
GetClassName, 24, 122
GetClientAreaOrigin, 526
GetClientData, 119, 150, 159, 431, 440, 749,

1100, 1115, 1334
GetClientSize, 819, 1370
GetClientWindow, 821
GetClippingBox, 334
GetCode, 772, 1326
GetColDefs, 259
GetColLabelAlignment, 564
GetColLabelSize, 564
GetColLabelValue, 565, 600
GetCollate, 939, 947
GetColLeft, 589
GetColMinimalWidth, 590
GetColName, 1025
GetColour, 84, 142, 512, 920, 939
GetColourData, 145
GetColPosition, 1202
GetColRight, 589
GetCols, 584, 602
GetColSize, 565
GetColType, 1025

INDEX

1707

GetColumn, 759, 772
GetColumnCount, 220
GetColumns, 118, 221, 1025
GetColumnWidth, 586, 759
GetColWidth, 589
GetCommand, 17
GetCommandProcessor, 404
GetCommands, 162
GetConstraints, 1371
GetContainer, 668
GetContents, 640
GetContentsCnt, 640
GetContentType, 998
GetCount, 42, 48, 606, 742, 929, 1312, 1346
GetCountPerPage, 759
GetCountry, 304
GetCPUCount, 1272
GetCurFocus, 1215
GetCurrent, 930
GetCurrentDocument, 386
GetCurrentLine, 1266
GetCurrentMonth, 305
GetCurrentPage, 958, 1416
GetCurrentRecord, 1026
GetCurrentTip, 1285
GetCurrentView, 387
GetCurrentWindow, 915
GetCurrentYear, 305
GetCursor, 259
GetCursorColumn, 585
GetCursorRow, 585
GetCustomColour, 142
GetCwd, 478
GetDashes, 921
GetData, 125, 189, 222, 419, 502, 643, 690,

773, 1001, 1003, 1176, 1346
GetDatabase, 1026
GetDatabaseName, 196, 223
GetDataHere, 205, 284
GetDataLeft, 1163
GetDataSize, 206, 284
GetDataSource, 196
GetDatasourceName, 223
GetDataSources, 1026
GetDate, 100, 107, 1346
GetDay, 290, 312, 1277
GetDayOfWeek, 290, 1277
GetDayOfWeekName, 291
GetDayOfYear, 291, 313
GetDaysInMonth, 291
GetDb, 260

GetDC, 425, 668, 954
GetDebugMode, 351
GetDefaultCellAlignment, 565
GetDefaultCellBackgroundColour, 565
GetDefaultCellFont, 565
GetDefaultCellTextColour, 565
GetDefaultColLabelSize, 566
GetDefaultColSize, 566
GetDefaultConnect, 1026
GetDefaultDir, 241
GetDefaultEditor, 566
GetDefaultEditorForCell, 583
GetDefaultEditorForType, 584
GetDefaultEncoding, 506
GetDefaultExtension, 399
GetDefaultInfo, 901
GetDefaultItem, 912
GetDefaultMinMargins, 900
GetDefaultPath, 549
GetDefaultRenderer, 566
GetDefaultRendererForCell, 584
GetDefaultRendererForType, 584
GetDefaultRowLabelSize, 566
GetDefaultRowSize, 566
GetDefaultSize, 93, 1147
GetDefaultSQL, 1026
GetDefaultStyle, 1239
GetDepth, 61, 680
GetDescent, 618
GetDescription, 241, 399, 494
GetDialog, 498
GetDirCount, 478
GetDirection, 1417
GetDirectory, 399, 460
GetDirList, 540
GetDirs, 478
GetDispatchPtr, 52
GetDividerPen, 588
GetDllExt, 377
GetDocument, 381, 392, 1355
GetDocumentManager, 399, 404, 1355
GetDocumentName, 399, 404
GetDocuments, 387
GetDocumentTemplate, 404
GetDocumentWindow, 404
GetDouble, 1347
GetDragRect, 1046
GetDragStatus, 1046
GetDropTarget, 1371
GetDsn, 242
GetDuplex, 940

INDEX

1708

GetEdge, 1046
GetEditable, 587
GetEditControl, 759, 1312
GetEditInPlace, 587
GetEditMenu, 162
GetEditor, 593
GetEnabled, 1337
GetEnableEffects, 512
GetEnableHelp, 901
GetEnableMargins, 900
GetEnableOrientation, 900
GetEnablePaper, 900
GetEnablePrinter, 900
GetEncodingConverter, 668
GetEncodingDescription, 521
GetEncodingName, 520
GetEncodings, 516
GetEndDST, 305
GetEndPos1, 653
GetEndPos2, 653
GetEndX, 926
GetEndY, 927
GetEntryType, 174
GetEOL, 1266
GetError, 998, 1340
GetErrorClass, 196
GetErrorCode, 197, 1027
GetErrorCount, 445
GetErrorMessage, 197
GetErrorNumber, 197
GetErrorStream, 963
GetEvent, 645
GetEventHandler, 1371
GetEventObject, 427
GetEventType, 427
GetEvtHandlerEnabled, 431
GetExcludeList, 1261
GetExitFrameOnDelete, 24
GetExt, 479
GetExtension, 69, 703
GetExtensions, 493
GetExtraLong, 159
GetExtraStyle, 1371
GetFaceName, 506
GetFacenames, 516
GetFamily, 507
GetFieldData, 1027
GetFieldDataPtr, 1027
GetFieldRect, 1151
GetFieldsCount, 1152
GetFileFilter, 400

GetFileHistory, 387
GetFilename, 404, 460
GetFilenames, 458, 460
GetFilePath, 550
GetFiles, 415
GetFilesList, 541
GetFileType, 242
GetFileTypeFromExtension, 860
GetFileTypeFromMimeType, 860
GetFilter, 550, 1028
GetFilterIndex, 460, 550
GetFilterListCtrl, 550
GetFindString, 498, 500
GetFirst, 260, 371, 440, 742, 991
GetFirstCell, 623
GetFirstChild, 1313
GetFirstDayOfMonth, 291
GetFirstEntry, 174
GetFirstGroup, 174
GetFirstLine, 1266
GetFirstView, 404
GetFirstVisibleItem, 1313
GetFlags, 17, 96, 400, 498, 500, 987, 1006,

1100
GetFont, 106, 334, 593, 849, 1202, 1232, 1371
GetFontBold, 669
GetFontData, 515
GetFontFace, 669
GetFontFixed, 669
GetFontId , 507
GetFontItalic, 669
GetFontSize, 669
GetFontUnderlined, 669
GetForce, 128
GetForegroundColour, 1372
GetFormat, 283, 479
GetFormatCount, 206
GetFrame, 798, 958, 1355
GetFrameParameters, 610
GetFromClause, 260
GetFromPage, 947
GetFS, 648
GetFullName, 479
GetFullPath, 479
GetGrandParent, 1372
GetGreen, 691
GetGridCursorCol, 567
GetGridCursorRow, 567
GetGridLineColour, 567
GetH, 1043
GetHandle, 1372

INDEX

1709

GetHandlers, 61, 691
GetHDBC, 197, 223
GetHeader, 674
GetHeaderColourBg, 101
GetHeaderColourFg, 101
GetHeight, 61, 619, 680, 691, 1019, 1078,

1203
GetHelp, 615, 849
GetHelpController, 613
GetHelpString, 833, 842
GetHelpText, 1372
GetHenv, 242
GetHENV, 197, 223
GetHGap, 603
GetHi, 801
GetHighlightColour, 1208
GetHighlightColourBg, 102
GetHighlightColourFg, 101
GetHighlightPen, 1208
GetHistoryFile, 466
GetHolidayColourBg, 102
GetHolidayColourFg, 102
GetHomeDir, 479
GetHorizontalTabOffset, 1208
GetHour, 312, 1277
GetHourGMT, 1277
GetHref, 645
GetHSTMT , 224
GetHtmlCell, 645
GetIcon, 493
GetId, 202, 427, 619, 849, 962, 1203, 1272,

1324, 1373
GetImage, 773
GetImageCount, 703, 709
GetImageList, 760, 886, 1215, 1313
GetImageRect, 413
GetIncludeList, 1261
GetIndent, 623, 1313
GetIndentUnits, 623
GetIndex, 640, 772
GetIndexCnt, 640
GetInfo, 197
GetInitialFont, 512
GetInputEncoding, 669
GetInputStream, 541, 673, 964, 997, 1340
GetInsertionPoint, 150, 1239
GetInstance, 52
GetInt, 159
GetInternalRepresentation, 660
GetInterval, 1282, 1284
GetIntPosition, 1162

GetISPNames, 366
GetItem, 760, 773, 1326
GetItemCount, 760, 1216
GetItemData, 760, 1216, 1313
GetItemImage, 1216, 1314
GetItemPosition, 760
GetItemRect, 761, 1216
GetItemSelectedImage, 1316
GetItemSpacing, 761
GetItemState, 761
GetItemText, 761, 1216, 1314
GetJDN, 322
GetJoin, 921
GetJoystick, 728
GetJulianDate, 291
GetJulianDayNumber, 322
GetKeyCode, 17, 732
GetKeyEvent, 1326
GetKeyFields, 224
GetLabel, 93, 183, 773, 834, 842, 849, 1010,

1149, 1203, 1326, 1373
GetLabelAlignment, 586
GetLabelBackgroundColour, 567
GetLabelFont, 567
GetLabelFromText, 849
GetLabelSize, 586
GetLabelTextColour, 567
GetLabelTop, 842
GetLabelValue, 587
GetLanguage, 782
GetLast, 261, 440, 743
GetLastAccess, 1162
GetLastChild, 1314
GetLastDirectory, 387
GetLastError, 951
GetLastLine, 1267
GetLastMonthDay, 321
GetLastPosition, 150, 1240
GetLastResult, 538
GetLastWeekDay, 321
GetLeft, 1019
GetLeftLocation, 489
GetLeftMargin, 1331
GetLevel, 352
GetLine, 1265
GetLineCount, 1265
GetLineLength, 1240
GetLineSize, 1088
GetLinesPerAction, 871
GetLineText, 1240
GetLineType, 1267

INDEX

1710

GetLink, 619, 670
GetLinkColor, 670
GetLo, 801
GetLocal, 1100
GetLocale, 782
GetLocation, 535
GetLoggingOff, 128
GetLogicalFunction, 334
GetLogicalPosition, 871
GetLong, 1347
GetLongPath, 479
GetManagedWindow, 976, 983
GetManufacturerId , 720
GetMapMode, 334
GetMarginBottomRight, 901
GetMargins, 1296
GetMarginTopLeft, 901, 902
GetMarginWidth, 850
GetMask, 62, 773
GetMaskBlue, 691
GetMaskGreen, 691
GetMaskRed, 692
GetMatch, 1036, 1037
GetMax, 1088, 1121, 1125
GetMaxCommands, 162
GetMaxDocsOpen, 387
GetMaxFiles, 466
GetMaximumSizeX, 1052
GetMaximumSizeY, 1052
GetMaxPage, 947, 959
GetMenu, 843
GetMenuBar, 526
GetMenuCount, 843
GetMenuId, 853
GetMenuItemCount, 834
GetMenuItems, 834
GetMessage, 375, 461
GetMillisecond, 313
GetMimeType, 493, 535, 704
GetMimeTypeFromExt, 489
GetMin, 1089, 1121, 1125
GetMinimumPaneSize, 1134
GetMinimumSizeX, 1052
GetMinimumSizeY, 1052
GetMinMarginBottomRight, 901
GetMinMarginTopLeft, 901
GetMinPage, 947, 959
GetMinSize, 1083
GetMinute, 313, 1277
GetMinuteGMT , 1278
GetMJD, 322

GetModificationTime, 479, 536
GetModified, 991
GetModifiedJulianDayNumber, 322
GetMonth, 291, 312, 1278
GetMonthEnd, 291
GetMonthName, 292, 305
GetMonthStart, 292
GetMovementThreshold, 720
GetName, 69, 155, 479, 653, 703, 782, 850,

970, 985, 1001, 1268, 1347, 1373
GetNewCursor, 261
GetNext, 224, 262, 371, 440, 619, 991, 1419
GetNextChild, 1315
GetNextEntry, 175
GetNextError, 225
GetNextGroup, 174
GetNextHandler, 432
GetNextItem, 761
GetNextLine, 1267
GetNextNode, 1330
GetNextSibling, 1315
GetNextToken, 1193
GetNextVisible, 1315
GetNextWeekDay, 320
GetNoCopies, 940, 947
GetNode, 1334
GetNodeCount, 1334
GetNodeName, 1330
GetNodeParent, 1330
GetNodeSize, 1330
GetNodeX, 1330
GetNodeY, 1331
GetNoHistoryFiles, 387, 466
GetNotebook, 881
GetNumberAxes, 720
GetNumberButtons, 720
GetNumberCols, 568, 598, 1029
GetNumberFields, 1029
GetNumberJoysticks, 721
GetNumberOfColumns, 262
GetNumberOfDays, 305
GetNumberOfEntries, 175
GetNumberOfFiles, 415
GetNumberOfGroups, 175
GetNumberOfLayers, 1208
GetNumberOfLines, 1241
GetNumberParams, 1029
GetNumberRecords, 1029
GetNumberRows, 568, 598
GetNumNodes, 1334
GetObject, 52

INDEX

1711

GetObjectType, 427
GetODBCVersionFloat, 198
GetODBCVersionString, 198
GetOffsetY, 927
GetOldItem, 1326
GetOldLog, 793
GetOldSelection, 890
GetOpenCommand, 494
GetOpenedAnchor, 660
GetOpenedPage, 661
GetOpenedPageTitle, 661
GetOptimization, 335
GetOption, 692, 1195
GetOptionInt, 693, 1195
GetOptions, 1029
GetOrCreateCellAttr, 590
GetOrderByClause, 262
GetOrientation, 81, 940, 1006, 1048, 1062,

1064, 1331
GetOutputEncoding, 670
GetOutputStream, 541, 964
GetPage, 886, 1417
GetPageCount, 886
GetPageImage, 886
GetPageInfo, 954
GetPageSetupData, 633, 905
GetPageSize, 1059, 1089, 1416
GetPageSizeMM, 954
GetPageSizePixels, 954
GetPageText, 886
GetPalette, 61, 692
GetPanel, 976, 983
GetPaperId, 902, 940
GetPaperSize, 902
GetParam, 137, 653
GetParamAsColour, 654
GetParamAsInt, 654
GetParamCount, 137
GetParent, 619, 1316, 1373
GetPassword, 198, 225, 242
GetPath, 175, 375, 461, 480, 487, 550, 1339
GetPaths, 461
GetPathSeparators, 480
GetPathWithSep, 480
GetPeer, 1100
GetPen, 335
GetPid, 968
GetPixel, 140, 335, 909
GetPlatformEquivalents, 423
GetPoint, 772, 1326
GetPointSize, 507

GetPollingMax, 721
GetPollingMin, 721
GetPosition, 108, 415, 614, 721, 728, 732,

733, 871, 875, 1019, 1062, 1064, 1083, 1126,
1193, 1374

GetPosX, 619
GetPosY, 620
GetPOVCTSPosition, 722
GetPOVPosition, 721
GetPPIPrinter, 955
GetPPIScreen, 955
GetPreferredFormat, 206
GetPrev, 262, 1419
GetPrevious, 882
GetPreviousHandler, 432
GetPrevLine, 1267
GetPrevSibling, 1316
GetPrevVisible, 1316
GetPrevWeekDay, 320
GetPrimaryKeys, 1028, 1029
GetPrintableName, 405
GetPrintCommand, 494
GetPrintData, 633, 902, 947, 959
GetPrintDC, 945
GetPrintDialogData, 944, 951
GetPrinterName, 940
GetPrintout, 959
GetPrintoutForPrinting, 959
GetPrintPreview, 936
GetPrintToFile, 947
GetPriority, 1272
GetProduct, 648
GetProductId , 721
GetProductName, 721
GetProgramHandle, 377
GetProperties, 986
GetProperty, 53, 985
GetPropertyPanel, 972, 978
GetPropertySheet, 995
GetProtocol, 489, 1339
GetProtocolName, 1339
GetQuality, 940
GetQueryTableName, 263
GetRange, 545, 1058
GetRataDie, 323
GetRect, 97, 1044, 1374
GetRed, 691
GetRedoAccelerator, 162
GetRefData, 894
GetRegistryList, 995
GetRelatedFrame, 661

INDEX

1712

GetRenderer, 593
GetReplaceString, 498, 500
GetRequestedLength, 1006
GetResolution, 934
GetResultSet, 1030
GetReturnCode, 359
GetRight, 1019
GetRightLocation, 490
GetRole, 970
GetRootId, 550
GetRootItem, 1316
GetRowBottom, 589
GetRowCount, 887, 1216
GetRowHeight, 589
GetRowLabelAlignment, 568
GetRowLabelSize, 568
GetRowLabelValue, 568, 600
GetRowMinimalHeight, 590
GetRowNum, 263
GetRowPosition, 1203
GetRows, 584, 603
GetRowSize, 568
GetRowTop, 589
GetRudderMax, 722
GetRudderMin, 722
GetRudderPosition, 722
GetSashPosition, 1129, 1134
GetSashVisible, 1052
GetScrollPixelsPerUnit, 1068
GetScrollPos, 1375
GetScrollPosX, 585
GetScrollPosY, 585
GetScrollRange, 1375
GetScrollThumb, 1374
GetSecond, 313, 1278
GetSecondGMT, 1278
GetSeconds, 1278
GetSelected, 1203
GetSelectedItemCount, 762
GetSelectedTabFont, 1208
GetSelection, 119, 150, 159, 749, 887, 890,

948, 1011, 1075, 1217, 1241, 1317
GetSelectionBackground, 583
GetSelectionClientData, 1075
GetSelectionForeground, 583
GetSelections, 749, 1317
GetSelEnd, 1089
GetSelStart, 1089
GetSessionEnding, 128
GetSetChecked, 1338
GetSetEnabled, 1338

GetSetText, 1338
GetShadowColour, 1208
GetShadowPen, 1210
GetShadowWidth, 545
GetShortPath, 480
GetShowHelp, 513
GetSize, 109, 122, 184, 189, 335, 709, 1001,

1004, 1006, 1019, 1080, 1083, 1157, 1375
GetSizer, 1376
GetSkipped, 427
GetSocket, 1115
GetSocketEvent, 1115
GetSortString, 1030
GetSource, 648
GetSplashStyle, 1127
GetSplashWindow, 1127
GetSplitMode, 1134
GetSQL, 1030
GetStartX, 927
GetStartY, 927
GetStateImageList, 1317
GetStaticBox, 1145
GetStatusBar, 527
GetStatusText, 1152
GetStdIcon, 32
GetStipple, 84, 921
GetStream, 352, 536
GetStreamBuf, 352
GetString, 119, 150, 159, 750, 783, 1013,

1193, 1347
GetStringRepresentation, 992
GetStringSelection, 119, 151, 750, 1011,

1075, 1241
GetStyle, 84, 375, 461, 507, 921, 1261
GetSubBitmap, 62
GetSubImage, 692
GetSubMenu, 850
GetSupportedTags, 656
GetSymbol, 378, 380
GetSysName, 782, 783
GetSystemColour, 1197
GetSystemEncoding, 783
GetSystemEncodingName, 783
GetSystemFont, 1198
GetSystemLanguage, 783
GetSystemMetric, 1198
GetTabFont, 1209
GetTabHeight, 1209
GetTable, 569
GetTableCount, 225
GetTableName, 263, 1030

INDEX

1713

GetTablePath, 264
GetTables, 1030
GetTabSelectionHeight, 1209
GetTabStyle, 1209
GetTabView, 1201
GetTabWidth, 1209
GetTabWindow, 915
GetTarget, 645
GetText, 773, 850, 1251, 1338
GetTextBackground, 336
GetTextColour, 106, 593, 762, 850, 1209,

1232
GetTextExtent, 336, 1376
GetTextForeground, 337
GetTextLength, 1250
GetThumbLength, 1059, 1090
GetThumbPosition, 1059
GetTickFreq, 1090
GetTicks, 312
GetTime, 1347
GetTimeout, 1128
GetTimes, 480
GetTimestamp, 427, 791
Getting results, 132
Getting started: a simple example, 1606
GetTip, 1285, 1305
GetTitle, 360, 405, 527, 834, 1377
GetTm, 312
GetToolBar, 527, 821
GetToolBitmapSize, 1295
GetToolClientData, 1296, 1302
GetToolEnabled, 1296
GetToolLongHelp, 1297
GetToolPacking, 1297
GetToolSeparation, 1297
GetToolShortHelp, 1297
GetToolSize, 1295
GetToolState, 1298
GetToolTip, 1409
GetTop, 1019
GetToPage, 948
GetTopItem, 763
GetTopMargin, 1210, 1331
GetTopNode, 1331
GetTopWindow, 24
GetTotalHeight, 630
GetTreeCtrl, 551
GetType, 69, 202, 703, 1001, 1004, 1030,

1347, 1353
GetTypeName, 598
GetUid, 242

GetUMax, 722
GetUMin, 722
GetUnderlined, 507
GetUndoAccelerator, 162
GetUnitsPerValue, 931
GetUpdateRegion, 1377
GetUPosition, 722
GetUseBestVisual, 25
GetUserID, 242
GetUsername, 198, 226
GetUserScale, 337
GetValidator, 970, 988, 1377
GetValidatorProperty, 987
GetValue, 112, 151, 545, 598, 802, 970, 1015,

1090, 1121, 1124, 1242, 1257, 1288
GetValueAsBool, 599
GetValueAsCustom, 599
GetValueAsDouble, 599
GetValueAsLong, 598
GetVendorName, 25, 175
GetVerbose, 791
GetVerticalTabTextSpacing, 1210
GetVGap, 603
GetView, 381, 392, 599
GetViewHeight, 586
GetViewName, 400, 1355
GetViewRect, 1210
GetViews, 405
GetViewStart, 1072
GetViewWidth, 586
GetVirtualSize, 1069
GetVMax, 723
GetVMin, 723
GetVoidPtr, 1348
GetVolume, 480
GetVolumeSeparator, 480
GetVPosition, 723
GetW, 1043
GetWeek, 321
GetWeekDay, 107, 312, 320
GetWeekDayInSameWeek, 319
GetWeekDayName, 306
GetWeekOfMonth, 292, 313
GetWeekOfYear, 292, 313
GetWeight, 508
GetWheelDelta, 872
GetWheelRotation, 871
GetWhereClause, 264
GetWidth, 62, 620, 680, 692, 922, 1020, 1043,

1044, 1078, 1203
GetWildcard, 461

INDEX

1714

GetWindow, 109, 670, 970, 1210, 1305, 1342
GetWindow1, 1134
GetWindow2, 1134
GetWindowBeingRemoved, 1130
GetWindowCancelButton, 984
GetWindowCloseButton, 984
GetWindowHelpButton, 984
GetWindowMenu, 821
GetWindowStyleFlag, 1377
GetWritableChar, 1177
GetWriteBuf, 1177
GetX, 732, 872, 1020, 1043, 1129, 1203
GetXMax, 723
GetXMin, 723, 724
GetXSpacing, 1331
GetY, 732, 872, 927, 1020, 1043, 1130, 1204
GetYear, 292, 312, 1278
GetYearDay, 322
GetYearEnd, 292
GetYearStart, 292
GetYMax, 723
GetYMin, 723
GetYSpacing, 1332
GetZMax, 724
GetZoom, 931
GetZoomControl, 936
GetZPosition, 724, 728
GiveFeedback, 417
GoTo, 1031
GoToLine, 1266
Grant, 226
Green, 140
Grid sample, 1512
GridLinesEnabled, 567
GuessType, 1267

—H—

HandleReturn, 596
HandleTag, 656
Handling socket events, 1097
HangUp, 367
HasAlignment, 592
HasBackgroundColour, 105, 592, 1233
HasBorder, 105, 1053
HasBorderColour, 105
HasEditor, 593
HasEnding, 654
HasEntry, 175
HasExt, 481
HasFiles, 371

HasFont, 105, 592, 1233
HasGroup, 176
HashFind, 445
HasMask, 692
HasModifiers, 733
HasMoreTokens, 1192
HasName, 481
HasOption, 693, 1196
HasPage, 955
HasParam, 655
HasPendingMessages, 790
HasPOV, 724
HasPOV4Dir, 724
HasPOVCTS, 724
HasProperty, 986
HasRenderer, 593
HasRudder, 725
HasStream, 352
HasSubDirs, 371
HasTextColour, 105, 592, 1233
HasU, 725
HasV, 725
HasVolume, 481
HasZ, 725
HaveRects, 1044
height, 738, 1018
Helper functions, 859
Hide, 109, 413
HideCellEditControl, 569
HistoryBack, 661
HistoryCanBack, 661
HistoryCanForward, 661
HistoryClear, 661
HistoryForward, 662
HitTest, 103, 763, 1204, 1217, 1317, 1334
Hostname, 718
How events are processed, 1553
How the wxGrid classes relate to each

other, 1607
HTML samples, 1512

—I—

Icon resource format, 1574
Iconize, 360, 527
Iconized, 684
identifiers, 1556
Image sample, 1513
IMPLEMENT_ABSTRACT_CLASS, 1472
IMPLEMENT_ABSTRACT_CLASS2,

1473

INDEX

1715

IMPLEMENT_APP, 1473
IMPLEMENT_CLASS, 1473
IMPLEMENT_CLASS2, 1474
IMPLEMENT_DYNAMIC_CLASS, 1474
IMPLEMENT_DYNAMIC_CLASS2, 1474
Include files, 1680
IncRef, 591
Index, 42, 48, 1177
IndexOf, 743, 882
Inflate, 1020
Init, 422, 549, 784, 865
InitColWidths, 589
InitDialog, 913, 1377
Initialization functions, 859
Initialize, 144, 163, 387, 608, 938, 973, 979,

1135, 1332
InitializeClasses , 122
Initialized, 25
InitializeModules, 865
InitParser, 648
InitRowHeights, 588
InitStandardHandlers, 62, 693
Insert, 42, 48, 264, 438, 743, 835, 843, 992,

1348, 1635
InsertCell, 624
InsertCols, 569, 600
InsertColumn, 763
InsertControl, 1298
InsertDir, 481
InsertHandler, 63, 693
InsertItem, 764, 1217, 1318
InsertItems, 750
InsertLine, 1268
InsertPage, 887
InsertRows, 569, 600
InsertSeparator, 1298
InsertTool, 1299
IntegerValue, 440, 992
IntegerValuePtr, 992
InterruptWait, 1101
Intersect, 1040
Introduction, 1520, 1525, 1552, 1606
Invoke, 53
InWaitForDataSource, 199
IPC classes , 1681
IsAbsolute, 481
IsAlive, 1272
IsAllowed, 892
IsAllowedTraceMask, 792
IsAlwaysOnline, 367
IsAnotherRunning, 1077

IsAscii, 1177
IsBetween, 315, 1279
IsBOF, 1031
IsBold, 1318
IsButton, 729, 872
IsCaseSensitive, 481
IsCellEditControlEnabled, 569
IsCheckable, 850
IsChecked, 115, 160, 835, 844, 851
IsColNull, 265
IsColNullable, 1031
IsConnected, 1101
IsConnectedEvent, 364
IsCreated, 594
IsCurrentCellReadOnly, 570
IsCursorClosedOnCommit, 265
IsData, 1101
IsDefault, 1233
IsDeleted, 1032
IsDetached, 1272
IsDialing, 367
IsDirty, 1004
IsDisconnected, 1101
IsDST, 323
IsDSTApplicable, 306
IsEarlierThan, 314
IsEditable, 570
IsEmpty, 43, 48, 1040, 1177
IsEmptyCell, 598
IsEnabled, 835, 844, 851, 1378
IsEncodingAvailable, 520
IsEnding, 655
IsEOF, 1032
IsEqualTo, 314
IsEqualUpTo, 315
IsExpanded, 1318
IsExpandingEnvVars, 176
IsExposed, 1378
IsFieldDirty, 1031
IsFieldNull, 1031
IsFullScreen, 528
IsFwdOnlyCursors, 219, 226
IsGregorianDate, 314
IsHoliday, 106
IsIconInstalled, 1221
IsIconized, 360, 528
IsInSelection, 582
IsKindOf, 123, 894
IsLaterThan, 314
IsLeapYear, 293, 306
IsLoaded, 379, 785

INDEX

1716

IsLocked, 878
IsMain, 1272
IsMaximized, 528
IsModal, 360
IsModified, 405, 1242
IsMove, 729
IsNull, 1178, 1348
IsNullable, 1001
IsNumber, 1178
IsOfType, 861
IsOk, 109, 366, 481, 725, 785, 880, 1156, 1359
IsOK, 1221
IsOneShot, 1282
IsOnline, 368
IsOpen, 199, 227, 1032
IsOpened, 126, 371, 450, 455, 1231, 1265
IsOwnEvent, 365
IsPassingMessages, 793
IsPathSeparator, 481
IsPaused, 1273
IsPreview, 956
IsQueryOnly, 266
IsReadOnly, 570, 593
IsRecordingDefaults, 176
IsRelative, 482
IsRetained, 1069, 1378
IsRowDirty, 1001
IsRunning, 1273, 1282
IsSameAs , 1178
IsSameDate, 315
IsSameTime, 315
IsSelected, 1318
IsSelection, 160, 570
IsSeparator, 851
IsShown, 1378
IsSplit, 1135
IsStrictlyBetween, 314
IsSupported, 126
IsTopLevel, 1379
IsType, 1348
IsValid, 311, 1036
IsVertical, 1147
IsVisible, 109, 400, 570, 1319
IsWestEuropeanCountry, 306
IsWild, 482
IsWord, 1178
IsWorkDay, 314
IsZMove, 729
Item, 43, 49, 743
ItemHasChildren, 1319

—K—

Key access, 170
Keyboard and mouse actions, 1607
KeywordSearch, 610, 638, 643
Kill, 964, 1273

—L—

Last, 43, 49, 1179
LastCount, 1101
LastError, 1102, 1156
LastRead, 715
LastWrite, 897
Layout, 620, 1083, 1379
Layout sample, 1513
LayoutFrame, 735
LayoutMDIFrame, 736
LayoutTabs, 1210
LayoutWindow, 736
Leave, 185
Leaving, 872
left, 738
Left, 1179
LeftDClick, 872
LeftDown, 872
LeftIsDown, 873
LeftOf, 712
LeftUp, 873
Len, 1179
Length, 450, 455, 1179
Listctrl sample, 1513
ListToArray, 1190
Load, 379, 466
LoadFile, 63, 69, 611, 680, 694, 704, 1242
LoadFromResource, 1379
LoadLibrary, 378
LoadNow, 187
LoadObject, 405
LoadPage, 662
LocalHost, 719
Lock, 878
LogError, 228
Logging functions, 786
LogicalToDeviceX, 337
LogicalToDeviceXRel, 337
LogicalToDeviceY, 337
LogicalToDeviceYRel, 338
Lower, 1179, 1379
LowerCase, 1179

INDEX

1717

—M—

m_active, 21
m_altDown, 730, 867
m_checked, 1336
m_childDocument, 380, 391
m_childView, 380, 392
m_clientData, 158
m_commandInt, 158
m_commandProcessor, 402
m_commandString, 158
m_controlDown, 731, 867
m_count, 896
m_currentView, 382
m_dc, 425
m_defaultDocumentNameCounter, 382
m_defaultExt, 396
m_description, 396
m_directory, 396
m_docClassInfo, 396
m_docs, 383
m_docTypeName, 397
m_documentFile, 402
m_documentManager, 397
m_documentModified, 402
m_documentTemplate, 402
m_documentTitle, 402
m_documentTypeName, 402
m_documentViews, 403
m_eventObject, 426
m_eventType, 426
m_extraLong, 158
m_fileFilter, 397
m_fileHistory, 383, 464
m_fileHistoryN, 464
m_fileMaxFiles, 465
m_fileMenu, 465
m_files, 415
m_flags, 383, 397
m_id, 426
m_keyCode, 731
m_leftDown, 867
m_linesPerAction, 869
m_maxDocsOpen, 383
m_menuId, 853
m_metaDown, 731, 868
m_middleDown, 868
m_noFiles, 415
m_pid, 968
m_pos, 415
m_refData, 893

m_rightDown, 868
m_setChecked, 1336
m_setEnabled, 1337
m_setText, 1337
m_shiftDown, 731, 868
m_skipped, 426
m_text, 1337
m_timeStamp, 426
m_viewClassInfo, 397
m_viewDocument, 1354
m_viewFrame, 1354
m_viewTypeName, 397, 1354
m_wheelDelta, 869
m_wheelRotation, 868
m_x, 731, 868
m_y, 731, 868
Macros for template array definition, 35
MainLoop, 25
MakeCellVisible, 570
MakeConnection, 344, 1223
MakeDefaultName, 388
MakeGMT , 323
MakeKey, 606
MakeLower, 1180
MakeModal, 1380
MakeNull, 1348
MakeRelativeTo, 482
MakeString, 1348
MakeTimezone, 323
MakeUpper, 1180
Matches, 1037, 1180
Max, 1279
Maximize, 528, 814
MaxX, 338
MaxY, 338
MB2WC, 187, 807, 809, 811
MDI style frames, 1681
Member, 743, 917, 1190, 1348
Memory management, 36, 1168
Menubar resource format, 1573
MessageParameters class, 491
MetaDown, 732, 873
Mid, 1180
MiddleDClick, 873
MiddleDown, 873
MiddleIsDown, 873
MiddleUp, 874
Min, 1279
Minimal sample, 1508
MinX, 338
MinY, 338

INDEX

1718

Mirror, 697
Miscellaneous, 1168
Miscellaneous functions, 169
Mkdir, 482
MkDir, 538
mnTemplates, 383
Modify, 406
ModifyColumn, 228
Module definition file, 9
More DDE details, 1639
MoreRequested, 676
Move, 110, 413, 930, 1032, 1380
MoveCursorDown, 571
MoveCursorDownBlock, 572
MoveCursorLeft, 571
MoveCursorLeftBlock, 572
MoveCursorRight, 571
MoveCursorRightBlock, 572
MoveCursorUp, 571
MoveCursorUpBlock, 572
MoveFirst, 1032
MoveLast, 1032
MoveNext, 1032
MovePageDown, 573
MovePageUp, 573
MovePrev, 1032
Moving, 874

—N—

NameToId, 1335
new, 896
Next, 606, 882
NodeActive, 1332
Normalize, 483
Notify, 1102, 1283
Now, 306
Nth, 440, 744, 992
NullList, 1349
Number, 119, 151, 744, 751, 992, 1011
Number of elements and simple item

access, 36

—O—

ODBC SQL data types [DEPRECATED],
1634

Ok, 19, 64, 84, 140, 193, 338, 468, 469, 471,
472, 681, 695, 856, 910, 922, 959, 1102

OnAcceptConnection, 350, 1229
OnActivate, 381, 392, 528, 588, 1381, 1681
OnActivateView, 1356

OnAdvise, 347, 1226
OnApply, 361
OnAssert, 26
OnBeginDocument, 956
OnBeginPrinting, 956
OnCalculateLayout, 1049
OnCancel, 361, 976, 995
OnCellClicked, 662
OnCellMouseHover, 663
OnChangedViewList, 406
OnChangeFilename, 1356
OnChar, 1242, 1262, 1381, 1681
OnCharHook, 360, 1382
OnCheckValue, 974, 980
OnClearControls, 980
OnClearDetailControls, 980
OnClose, 995, 1356, 1383, 1682
OnCloseDocument, 406
OnCloseWindow, 381, 392, 394, 395, 938,

1127, 1383
OnCmdLineError, 26
OnCmdLineHelp, 27
OnCmdLineParsed, 27
OnCommand, 974, 1383
OnCompareItems, 1319
OnCreate, 406, 1356
OnCreateClient, 821
OnCreateCommandProcessor, 406
OnCreateFileHistory, 388
OnCreatePanel, 973, 979
OnCreatePrintout, 1356
OnCreateStatusBar, 529
OnCreateTabControl, 1210
OnCreateToolBar, 529
OnData, 419
OnDir, 374
OnDisconnect, 347, 1226
OnDisplayValue, 974, 980
OnDoubleClick, 974, 981
OnDoubleClickSash, 1135
OnDragOver, 420
OnDraw, 1070, 1204
OnDrop, 419, 463, 1258
OnDropFiles, 463, 1243, 1384
OnDropText, 1258
OnEdit, 981
OnEndDocument, 956
OnEndPrinting, 956
OnEnter, 420
OnEraseBackground, 1385
OnEvent, 1211, 1682

INDEX

1719

OnExecute, 347, 1226
OnExit, 26, 866, 1273
OnFacename, 517
OnFatalException, 27
OnFile, 374
OnFileClose, 388
OnFileNew, 388
OnFileOpen, 388
OnFileSave, 389
OnFileSaveAs , 389
OnFontEncoding, 517
OnFrameClose, 799
OnFrameCreate, 799
OnFrameDelete, 799
OnGetItemAttr, 765
OnGetItemImage, 765
OnGetItemText, 765
OnHelp, 976, 996
OnIdle, 1387
OnInit, 28, 866
OnInitCmdLine, 28
OnInitDialog, 1387
OnKeyDown, 1385
OnKeyUp, 1386
OnKillFocus, 1387
OnLButtonDClick, 1221
OnLButtonDown, 1221
OnLButtonUp, 1221
OnLeave, 421
OnLeftClick, 1299
OnLinkClicked, 663
OnLog, 788
OnMakeConnection, 345, 1224
OnMenuCommand, 389, 530, 1388, 1682
OnMenuHighlight, 530, 1388
OnMouseClick, 620
OnMouseEnter, 1299
OnMouseEvent, 1389
OnMouseMove, 1222
OnMove, 1389
OnNewDocument, 407
OnOk, 976, 995
OnOK, 361
OnOpenDocument, 407
OnPaint, 935, 1390, 1682
OnPoke, 348, 1227
OnPrepareControls, 981
OnPrepareDetailControls, 981
OnPreparePrinting, 957
OnPrintPage, 957
OnPropertyChanged, 996

OnQueryEndSession, 28
OnQueryLayoutInfo, 1049
OnQuit, 611
OnRButtonDClick, 1222
OnRButtonDown, 1222
OnRButtonUp, 1222
OnRequest, 348, 1227
OnRetrieveValue, 975, 981
OnRevert, 976
OnRightClick, 1300
OnSashPositionChange, 1136
OnSaveDocument, 407
OnSaveModified, 407
OnScroll, 1391
OnSelChange, 888
OnSelect, 981
OnSetFocus, 1391
OnSetOptions, 199
OnSetTitle, 663
OnSize, 530, 1392, 1682
OnStartAdvise, 348, 1227
OnStopAdvise, 348, 1227
OnSysColourChanged, 362, 913, 1392
OnSysRead, 1156
OnSysSeek, 1156
OnSysTell, 1156
OnSysWrite, 1157
OnTabActivate, 1211
OnTabPreActivate, 1211
OnTerminate, 965
OnUnsplit, 1136
OnUpdate, 977, 1357
OnUpdateView, 996
OnValueListSelect, 982
OnWaitForDataSource, 199
Open, 126, 199, 229, 266, 371, 450, 455, 1230,

1268
OpenContainer, 670
OpenFile, 488, 490
Operations, 475, 1259
operator, 311, 1184
operator-, 803
operator--, 803
operator

=, 46, 202, 1280
operator -, 294, 1281
operator --, 281, 295
operator !=, 20, 67, 86, 141, 194, 296, 511,

683, 701, 910, 924, 1021, 1187, 1350
operator (), 1186
operator [], 1185, 1186, 1351

INDEX

1720

operator +, 294, 1185, 1280
operator ++, 280, 295, 1044
operator +=, 294, 1185, 1281
operator <, 295, 1187, 1280
operator <<, 296, 1186, 1249
operator <=, 295, 1187, 1280
operator =, 19, 46, 66, 86, 140, 143, 193, 510,

514, 682, 701, 903, 904, 910, 924, 943, 949,
971, 993, 994, 1021, 1042, 1079, 1185, 1279,
1349

operator -=, 295, 1281
operator ==, 20, 46, 67, 86, 141, 194, 202,

296, 510, 683, 701, 910, 924, 1021, 1186,
1187, 1280, 1349, 1350

operator >, 295, 1187, 1280
operator >=, 295, 1187, 1280
operator >>, 1186
operator bool, 1044
operator char, 1351
operator const char*, 1186
operator double, 1351
operator long, 1351
operator void*, 1352
operator wxChar *, 1188
operator wxDate, 1351
operator wxString, 294, 1351
operator wxTime, 1352
operator[], 46, 1265
operator+, 802
operator++, 802
operator+=, 315, 316
operator=, 40, 485, 801
operator-=, 316
operator==, 485
Options, 171
OrderBy, 267
Other events, 1676
Other string related functions and

classes, 1522

—P—

Pad, 1180
PageSetup, 632
PaintBackground, 595
PaintPage, 960
Parse, 136, 648
ParseDate, 318
ParseDateTime, 317
ParseFormat, 317
ParseInner, 657
ParseRfc822Date, 316

ParseTime, 318
Parsing and formatting dates, 302
Parsing command line, 132
PassMessages , 793
Paste, 151, 1243
Path management, 167
Pause, 1154, 1274
Peek, 715, 1105
Pending, 29
PercentOf, 713
Play, 856, 1359
Pluggable event handlers, 1556
Poke, 348, 1227
PopEventHandler, 1393
PopTagHandler, 649
PopupMenu, 1393
PositionToXY, 1243
Positive thinking, 14
Precompiled headers, 11
PrepareDC, 1069
Prepend, 1083, 1180
PrependDir, 483
PrependItem, 1319
PreviewFile, 631
PreviewText, 631
Print, 951, 960
PrintClasses , 353
PrintDialog, 952
PrinterSetup, 632
Printf, 1181
PrintFile, 631
PrintfV, 1181
PrintStatistics, 353
PrintText, 632
Procedures for writing an ODBC

application using wxDatabase
[DEPRECATED], 1632

ProcessEvent, 432
ProcessMessage, 29
Property classes overview, 1654
PushEventHandler, 1394
PushTagHandler, 649
Put, 606
PutC, 897
PutChar, 1159
PutProperty, 54
Pwd, 539

—Q—

Quantize, 999

INDEX

1721

Query, 267, 1032
Query database, 859
QueryBySqlStmt, 269
QueryMatching, 270
QueryOnKeyFields, 272
Quit, 612

—R—

Raise, 1395
Read, 176, 177, 445, 450, 455, 715, 1106,

1158, 1159, 1353
Read16, 286, 1252
Read32, 286, 1252
Read8, 286, 1252
ReadCustomization, 638, 643, 663
ReadDouble, 286, 1253
ReadFile, 634
ReadFromString, 445
ReadMailcap, 861
ReadMimeTypes, 861
ReadMsg, 1107
ReadString, 286
Realize, 1301
RealValue, 441, 992
RealValuePtr, 993
RecalcSizes, 80, 1084
Reconnect, 997
RecordCountFinal, 1033
Red, 140
Redirect, 965
Redo, 1244
RedrawEverything, 931
RedrawXAxis, 931
RedrawYAxis, 931
Ref, 895
Reference counting and why you

shouldn't care about it, 1523
Refresh, 272, 844, 1395
RefreshLists, 644
RegisterDataType, 583
RegisterModule, 866
RegisterModules, 866
RegisterValidator, 988
Registry classes, 1663
ReleaseCapture, 725
ReleaseMouse, 1395
Remove, 43, 49, 152, 709, 836, 845, 1084,

1181, 1244
RemoveAll, 709
RemoveAt, 44

RemoveBrush, 88
RemoveChild, 1395
RemoveDir, 483
RemoveDocument, 389
RemoveFile, 826
RemoveFont, 518
RemoveGrowableCol, 496
RemoveGrowableRow, 496
RemoveHandler, 64, 696
RemoveIcon, 1222
RemoveLast, 1181
RemoveLine, 1268
RemoveMenu, 466
RemovePage, 888
RemovePen, 926
RemoveProperty, 986
RemoveTool, 1301
RemoveTraceMask, 792
RemoveView, 407
Removing items, 37
Rename, 539
Rename entries/groups, 170
RenameEntry, 177
RenameGroup, 178
Render, 629
RenderPage, 960
Reparent, 1396
Replace, 151, 698, 710, 845, 1037, 1181, 1244
ReplaceAll, 1037
ReplaceFirst, 1038
ReplaceWindow, 1136
ReportError, 952
Requery, 1033
Request, 349, 1228
RequestMore, 675
Rescale, 698
Reset, 595, 1044
ResetAttr, 103
ResetBoundingBox, 338
ResetBuffer, 1160
ResetTime, 310
Resource file, 9
Resource format design issues , 1574
Restore, 814
RestoreState, 1102
Resume, 789, 967, 1155, 1274
right, 738
Right, 1182
RightDClick, 874
RightDown, 874
RightIsDown, 874

INDEX

1722

RightOf, 713
RightUp, 874
Rmdir, 483
RmDir, 539
RmFile, 539
RollbackTrans, 199, 231
Rotate, 698
Rotate sample, 1513
Rotate90, 698
RTTI, 11
Run, 1274
RunWizard, 1415

—S—

SameAs , 483, 713
Save, 408, 466
SaveAs , 408
SaveEditControlValue, 573
SaveFile, 64, 70, 696, 704, 1245
SaveObject, 408
SaveState, 1103
Scale, 698
ScanParam, 655
ScreenToClient, 1396
Scroll, 1070
Scroll subwindow sample, 1513
ScrollLines, 1396
ScrollList, 766
ScrollPages, 1397
ScrollTo, 1319
ScrollWindow, 1397
SearchEventTable, 433
Searching and replacing, 1167
Searching and sorting, 37
Seek, 451, 456, 1160
SeekEnd, 451, 456
SeekI, 716
SeekO, 95, 898
Select, 1636
SelectAll, 573
SelectBlock, 573
SelectCol, 574
SelectDocumentPath, 389
SelectDocumentType, 390
Selected, 751
Selection functions, 556
SelectionToDeviceRect, 583
SelectItem, 1320
SelectObject, 824
SelectRow, 574

SelectViewType, 390
SendCommand, 538
SendIdleEvents, 29
Service, 718
Set, 17, 140, 178, 293, 309, 310, 615, 713, 751,

1078
SetAcceleratorTable, 1398
SetActiveTarget, 789
SetActualColor, 670
SetAlign, 624, 671
SetAlignHor, 624
SetAlignment, 592, 1006, 1049
SetAlignVer, 624
SetAllModified, 986
SetAllowSymbols, 513
SetAppName, 30
SetAscii, 539
SetAttr, 103, 602
SetAttrProvider, 601
SetAuthStr, 243
SetAuto3D, 30
SetAutoLayout, 1398
SetBackground, 339
SetBackgroundColour, 104, 591, 625, 766,

851, 1211, 1398
SetBackgroundMode, 339
SetBellOnError, 1343
SetBezelFace, 545
SetBinary, 539
SetBitmap, 77, 851, 1142
SetBitmapDisabled, 75
SetBitmapFocus, 75
SetBitmapLabel, 76
SetBitmaps, 851
SetBitmapSelected, 76
SetBlinkTime, 110
SetBorder, 105, 625
SetBorderColour, 104
SetBorders, 664
SetBrush, 340
SetBufferIO, 1160, 1161
SetButtonsImageList, 1320
SetCanvas, 960
SetCanVeto, 128
SetCap, 922
SetCapture, 726
SetCaret, 1399
SetCellAlignment, 574
SetCellBackgroundColour, 587
SetCellBitmap, 588
SetCellEditor, 574

INDEX

1723

SetCellFont, 574
SetCellRenderer, 575
SetCellTextColour, 575
SetCellTextFont, 587
SetCellValue, 575
SetChar, 1182
SetCheckpoint, 353
SetCheckPrevious, 354
SetChooseFull, 142
SetChosenFont, 513
SetClassName, 30
SetClientData, 120, 152, 160, 434, 441, 752,

1103, 1335
SetClientSize, 1399
SetClipboard, 856
SetClippingRegion, 339
SetCmdLine, 134
SetColAttr, 575, 602
SetColDefs, 273
SetColFormatBool, 576
SetColFormatCustom , 576
SetColFormatFloat, 576
SetColFormatNumber, 576
SetColLabelAlignment, 576
SetColLabelSize, 577
SetColLabelValue, 577, 601
SetCollate, 941, 948
SetColMinimalWidth, 577
SetColNull, 276
SetColour, 85, 142, 513, 554, 922, 941
SetColPosition, 1204
SetCols, 603
SetColSize, 577
SetColumn, 766
SetColumns, 120
SetColumnWidth, 585, 766
SetCommandProcessor, 408
SetConcurrency, 1275
SetConfig, 521
SetConfigPath, 521
SetConnectCommand, 369
SetConstraints, 1400
SetContainer, 671
SetCountry, 307
SetCurrent, 554, 930
SetCurrentPage, 960
SetCursor, 275, 1400
SetCustomColour, 143
SetCwd, 484
SetDashes, 922
SetData, 126, 190, 206, 284, 417, 699, 882,

1002, 1004, 1349
SetDataObject, 421
SetDataSource, 199
SetDate, 100
SetDay, 310
SetDC, 628, 671
SetDebugErrorMessages, 231
SetDebugMode, 354
SetDefAttr, 593
SetDefault, 93
SetDefaultCellAlignment, 577
SetDefaultCellBackgroundColour, 578
SetDefaultCellFont, 578
SetDefaultColSize, 578
SetDefaultDir, 243
SetDefaultEditor, 578
SetDefaultEncoding, 508
SetDefaultExtension, 400
SetDefaultInfo, 902
SetDefaultItem, 913
SetDefaultMinMargins, 902
SetDefaultPath, 551
SetDefaultProxy, 1340
SetDefaultRenderer, 578
SetDefaultRowSize, 578
SetDefaultSize, 1049
SetDefaultSQL, 1033
SetDefaultStyle, 1245
SetDelay, 1305
SetDepth, 65, 681
SetDesc, 135
SetDescription, 243, 400
SetDeviceOrigin, 339
SetDialogParent, 521
SetDialogTitle, 521
SetDimension, 1084
SetDirectory, 400, 461
SetDirty, 1004
SetDispatchPtr, 54
SetDividerPen, 588
SetDocument, 382, 393, 1357
SetDocumentManager, 401
SetDocumentName, 408
SetDocumentTemplate, 409
SetDropTarget, 1400
SetDsn, 243
SetDuplex, 941
SetEditable, 587, 1246
SetEditInPlace, 588
SetEditMenu, 163
SetEditor, 592

INDEX

1724

SetEndY, 927
SetEnlargeAroundWindowCentre, 932
SetEventHandler, 1103, 1401
SetEventObject, 427
SetEventType, 428
SetEvtHandlerEnabled, 434
SetExcludeList, 1262
SetExitOnFrameDelete, 31
SetExpandEnvVars, 178
SetExt, 484
SetExtension, 71, 705
SetExtraLong, 160
SetExtraStyle, 1401
SetFaceName, 508
SetFamily, 508
SetFieldDirty, 1002, 1033
SetFieldNull, 1033
SetFieldsCount, 1152
SetFile, 354
SetFileFilter, 401
SetFilename, 409, 461
SetFileType, 243
SetFilter, 551
SetFilterIndex, 462, 551
SetFindString, 500
SetFirstItem, 752
SetFlags, 97, 401, 500, 1007, 1104
SetFocus, 1402
SetFont, 104, 340, 591, 851, 1204, 1402
SetFontBold, 671
SetFontFace, 671
SetFontFixed, 671
SetFontItalic, 672
SetFonts, 664, 672
SetFontSize, 672
SetFontUnderlined, 672
SetFooter, 633, 650
SetForce, 128
SetForegroundColour, 1402
SetFormat, 283, 293, 1279
SetFrame, 960, 1357
SetFrameParameters, 611
SetFromClause, 275
SetFromPage, 948
SetFS, 650
SetFullName, 484
SetGridCursor, 579
SetGridLineColour, 579
SetHeader, 632, 651, 674
SetHeaderColours, 101
SetHeight, 65, 682, 1020, 1078

SetHelp, 852
SetHelpController, 613
SetHelpString, 836, 845
SetHelpText, 1403
SetHenv, 243
SetHGap, 603
SetHighlightColour, 1211
SetHighlightColours, 101
SetHoliday, 103, 105
SetHolidayColours, 102
SetHorizontalTabOffset, 1212
SetHour, 311
SetHtmlFile, 651
SetHtmlText, 629, 651
SetIcon, 530, 1222
SetId , 202, 428, 621, 961, 1204, 1324, 1403
SetImageList, 767, 888, 1218, 1320
SetIncludeList, 1262
SetIndent, 625, 1320
SetInitialFont, 513
SetInputEncoding, 672
SetInsertionPoint, 152, 1246
SetInsertionPointEnd, 152, 1246
SetInt, 160
SetIntPosition, 1162
SetItem, 767, 768
SetItemBackgroundColour, 1320
SetItemBold, 1320
SetItemCount, 768
SetItemData, 768, 1218, 1321
SetItemFont, 1321
SetItemHasChildren, 1321
SetItemImage, 769, 1218, 1322
SetItemMinSize, 1085
SetItemPosition, 769
SetItemSelectedImage, 1322
SetItemSize, 1218
SetItemState, 769
SetItemText, 769, 1218, 1322
SetItemTextColour, 1322
SetJoin, 923
SetLabel, 94, 183, 836, 846, 1011, 1149, 1204
SetLabelAlignment, 586
SetLabelBackgroundColour, 579
SetLabelFont, 579
SetLabelSize, 586
SetLabelTextColour, 579
SetLabelTop, 846
SetLabelValue, 587
SetLastDirectory, 390
SetLevel, 354

INDEX

1725

SetLineSize, 1091
SetLink, 621, 672
SetLinkColor, 672
SetLog, 793
SetLoggingOff, 128
SetLogicalFunction, 340
SetLoginTimeout, 200
SetLogo, 135
SetManagedWindow, 977, 984
SetMapMode, 341
SetMarginBottomRight, 902
SetMargins, 584, 652, 1301, 1333
SetMarginWidth, 852
SetMask, 66, 699
SetMaskColour, 699
SetMaskFromImage, 699
SetMaxDocsOpen, 391
SetMaximumSizeX, 1053
SetMaximumSizeY, 1053
SetMaxLength, 1246
SetMaxPage, 948
SetMenuBar, 531
SetMessage, 375, 462
SetMillisecond, 311
SetMimeType, 705
SetMinHeight, 626, 1153
SetMinimumPaneSize, 1137
SetMinimumSizeX, 1053
SetMinimumSizeY, 1053
SetMinMarginBottomRight, 903
SetMinMarginTopLeft, 903
SetMinPage, 948
SetMinSize, 1084
SetMinute, 311
SetModal, 362
SetModified, 993
SetMonth, 310
SetMovementThreshold, 726
SetName, 71, 484, 705, 852, 971, 986, 1002,

1403
SetNext, 621, 1421
SetNextHandler, 435
SetNoCopies, 941, 948
SetNodeName, 1332
SetNodeX, 1332
SetNodeY, 1332
SetNotify, 1105
SetNullable, 1002
SetOffsetY, 927
SetOk, 682
SetOldSelection, 891

SetOnlineStatus, 368
SetOptimization, 341
SetOption, 294, 700, 1196
SetOptions, 1033
SetOrCalcColumnSizes , 589
SetOrCalcRowSizes, 589
SetOrderByClause, 277
SetOrientation, 941, 1007, 1049, 1333
SetOwner, 1283
SetPadding, 888, 1219
SetPage, 665
SetPageImage, 889
SetPageSize, 888, 1091, 1416
SetPageText, 889
SetPalette, 66, 339, 700, 1404
SetPaperId , 903, 941
SetPaperSize, 903
SetParent, 621
SetParser, 657
SetPassword, 200, 244, 540, 998
SetPath, 178, 376, 462, 551
SetPen, 342
SetPid, 969
SetPointSize, 509
SetPos, 621
SetPosition, 614, 1126, 1205
SetPrev, 1420
SetPreviousHandler, 435
SetPrintData, 903, 949
SetPrinterName, 943
SetPrintout, 961
SetPrintToFile, 949
SetPriority, 1274
SetProperty, 986
SetPropertySheet, 996
SetProxy, 1341
SetQuality, 943
SetQueryTimeout, 200, 277
SetRange, 513, 546, 1090, 1122, 1125
SetReadOnly, 579, 592
SetRecordDefaults, 178
SetRect, 97
SetRedoAccelerator, 163
SetRefData, 895
SetRelatedFrame, 665
SetRelatedStatusBar, 665
SetRenderer, 592
SetReplaceString, 501
SetRequestedLength, 1007
SetResolution, 934
SetReturnCode, 362

INDEX

1726

SetRGB, 701
SetRole, 971
SetRowAttr, 580, 602
SetRowHeight, 586
SetRowLabelAlignment, 580
SetRowLabelSize, 580
SetRowLabelValue, 580, 600
SetRowMinimalHeight, 580
SetRowPosition, 1205
SetRows, 603
SetRowSize, 580
SetSashBorder, 1054
SetSashPosition, 1130, 1137
SetSashVisible, 1053
SetScrollbar, 1060, 1404
SetScrollbars, 1071
SetScrollOnThumbRelease, 931
SetScrollPos, 1405
SetScrollX, 585
SetScrollY, 585
SetSecond, 311
SetSelected, 1205
SetSelectedTabFont, 1212
SetSelection, 120, 153, 752, 889, 891, 949,

1012, 1075, 1092, 1219, 1247
SetSelectionBackground, 583
SetSelectionForeground, 583
SetSelectionMode, 581
SetSetupDialog, 949
SetShadowColour, 1212
SetShadowWidth, 546
SetShowHelp, 514
SetSingleStyle, 769
SetSize, 110, 594, 629, 1004, 1007, 1205,

1405, 1406
SetSizeHints, 1085, 1407
SetSizer, 1408
SetSpacing, 1333
SetSplitMode, 1138
SetSqlLogging, 231
SetStandardError, 355
SetStartY, 928
SetStateImageList, 1322
SetStatusBar, 531
SetStatusText, 532, 1153
SetStatusWidths, 532, 1153
SetStipple, 85, 923
SetStream, 355
SetString, 160, 753, 1193
SetStringSelection, 121, 753, 1012
SetStringSeparators, 1253

SetStyle, 86, 376, 462, 509, 923, 1247, 1262
SetSwitchChars, 134
SetSynchronousMode, 200
SetTabFont, 1212
SetTable, 581
SetTableName, 1033
SetTabSelection, 1213
SetTabSelectionHeight, 1212
SetTabSize, 1212
SetTabStyle, 1212
SetTabView, 1200, 1201
SetTargetWindow, 1072
SetTempDir, 638, 640
SetText, 1251, 1338
SetTextBackground, 342
SetTextColour, 104, 591, 769, 852, 1213
SetTextForeground, 342
SetThumbLength, 1092
SetThumbPosition, 1059
SetTick, 1093
SetTickFreq, 1091
SetTimeout, 1105
SetTimes, 484
SetTimestamp, 428, 791
SetTip, 1305
SetTitle, 363, 409, 533, 837, 1408
SetTitleFormat, 638, 644
SetToCurrent, 309
SetToLastMonthDay, 321
SetToLastWeekDay, 321
SetToNextWeekDay, 319
SetToolBar, 533, 822
SetToolBitmapSize, 1302
SetToolLongHelp, 1302
SetToolPacking, 1303
SetToolSeparation, 1304
SetToolShortHelp, 1303
SetToolTip, 1408, 1409
SetToPage, 949
SetTopMargin, 1213
SetTopNode, 1333
SetToPrevWeekDay, 320
SetTopWindow, 31
SetToTheWeek, 321
SetToWeekDay, 320
SetToWeekDayInSameWeek, 319
SetToYearDay, 322
SetTraceMask, 791
SetTransferMode, 539
SetType, 71, 203, 706, 1002, 1004, 1034
SetUid, 244

INDEX

1727

SetUmask, 179
SetUnderlined, 510
SetUndoAccelerator, 163
SetUnitsPerValue, 930
Setup, 952
SetUseBestVisual, 32
SetUser, 540, 998
SetUserID, 244
SetUsername, 200
SetUserScale, 342
SetValidator, 971, 1408
SetValidatorProperty, 987
SetValue, 113, 153, 546, 598, 970, 1015, 1093,

1122, 1124, 1248, 1257, 1288
SetValueAsBool, 599
SetValueAsCustom, 599
SetValueAsDouble, 599
SetValueAsLong, 599
SetVendorName, 31
SetVerbose, 791
SetVerticalTabTextSpacing, 1213
SetVGap, 603
SetView, 382, 393, 599
SetViewer, 611
SetViewName, 1357
SetViewRect, 1213
SetVolume, 484
SetWeight, 510
SetWellKnownHost, 368
SetWhereClause, 278
SetWidth, 66, 682, 923, 1020, 1079
SetWidthFloat, 627
SetWildcard, 462
SetWindow, 971, 1213, 1343
SetWindowMenu, 822
SetWindowStyle, 1322, 1409
SetWindowStyleFlag, 769, 1409
SetX, 1021
SetY, 1021
SetYear, 310
SetZoom, 931, 961
SetZoomControl, 936
ShiftDown, 733, 875
Show, 110, 363, 413, 594, 798, 1012, 1409
ShowCellEditControl, 581
ShowFullScreen, 533
ShowHelp, 615
ShowModal, 146, 364, 376, 462, 515, 855,

905, 945, 1075, 1257
ShowPosition, 1248
ShowView, 996

ShowWindowForTab, 915
Shrink, 44, 49, 1182
Signal, 165
Simplify the problem, 14
Skip, 428
Sleep, 1274
SockAddrLen, 1094
Socket state, 1096
Sockets sample, 1514
Some advice about using wxString, 1521
Sort, 44, 49, 50, 744, 1190
SortChildren, 1322
SortItems, 770
SplitHorizontally, 1138
SplitPath, 484
SplitVertically, 1139
sprintf, 1182
SQLColumnName, 232
SQLTableName, 232
Start, 1154, 1283
StartAdvise, 349, 1228
StartDoc, 342
StartDrawingOnTop, 1055
StartingClick, 595
StartingKey, 595
StartPage, 343
StartsWith, 1182
Statbar sample, 1515
Static functions, 167, 299, 786, 1259
std::string compatibility functions, 1169
Stop, 1283
StopAdvise, 349, 1228
Stream, 1163
String length, 1165
Strings, 1679
StringValue, 441, 993
StringValuePtr, 993
Strip, 1182
Submit, 163
SubString, 1182
Substring extraction, 1167
Subtract, 316, 1041
Supported bitmap file formats, 1578
Supported languages, 775
Suspend, 789
SwapBuffers, 555
Sync, 96

—T—

TableExists, 233

INDEX

1728

TablePrivileges, 234
TakeData, 190
Tell, 452, 456, 1160
TellI, 716
TellO, 898
Templates, 11
TestDestroy, 1275
Tests, 1259
Tests of existence, 169
Text sample, 1515
Thaw, 1410
The appearance and behaviour of a

property list view, 1652
The data provider (source) duties, 1612
The data receiver (target) duties, 1612
The format of a .WXR file, 1568
This, 1275
Thread sample, 1515
Tile, 823
Time, 1155
Time zone and DST support, 303
Time zone considerations, 1527
Today, 307
ToDouble, 1183
Toggle, 1323
ToggleTool, 1304
ToGMT, 323
ToLong, 802, 1183
Toolbar sample, 1516
top, 738
ToString, 802
ToTimezone, 323
Touch, 485
ToULong, 1183
TransferDataFromWindow, 1410
TransferDataToWindow, 1410
TransferFromWindow, 1262
TransferToDialog, 977
TransferToPropertySheet, 977
TransferToWindow, 553, 1262, 1343
TranslateSqlState, 235
Traverse, 372
Treectrl sample, 1516
Trim, 1184
Truncate, 1184
TryLock, 878
Tuning wxString for your application,

1523
Type, 441, 993
Type of NULL, 11

—U—

Unconstrained, 712
Undo, 155, 163, 1248
Ungetch, 716
UngetWriteBuf, 1184
Unicode and ANSI modes, 1529
Unicode and the outside world, 1531
Unicode support in wxWindows, 1530
Unicode-related compilation settings,

1531
Union, 1041
Unload, 379
UnloadLibrary, 378
Unlock, 879
UNow, 307
Unread, 1107
UnRef, 895
Unselect, 1323
UnselectAll, 1323
Unsplit, 1140
Update, 279, 967, 1034, 1636
UpdateAllViews, 409
UpdateAttrCols, 601
UpdateAttrRows, 601
UpdateBackingFromWindow, 413
UpdateDimensions, 584
UpdatePropertyDisplayInList, 984
UpdatePropertyList, 984
UpdateUI, 837
UpdateWhere, 279
Upper, 1184
UpperCase, 1184
Usage, 136
Use a debugger, 14
Use ASSERT, 13
Use logging functions, 14
Use of const, 1680
Use relative positioning or constraints, 13
Use the wxWindows debugging

facilities, 15
Use wxString in preference to character

arrays, 13
Use wxWindows resource files, 14
UseConfig, 638, 644
UseMenu, 467
UsePrimarySelection, 126
Using the toolbar library, 1602
Using wxExpr, 1550

INDEX

1729

—V—

Validate, 1262, 1343, 1410
Validator classes, 1662
Validator classes overview, 1658
ValidHost, 345, 1224
Veto, 129, 892
View classes, 1662
View classes overview, 1660

—W—

Wait, 165, 1108, 1109, 1275
WaitForAccept, 1117
WaitForRead, 1109
WaitForWrite, 1110
WaitOnConnect, 1113
WarpPointer, 1411
WC2MB, 187, 807, 809, 810, 811
What is Unicode?, 1528
Where, 280
width, 738, 1018
Window classes , 1663
Window identifiers, 1556
Window layout examples, 1567
Wizard sample, 1516
WordValue, 441
Write, 179, 446, 452, 456, 457, 898, 1110,

1159, 1231, 1268, 1353
Write16, 287
Write32, 288
Write8, 287
WriteClause, 442
WriteCustomization, 639, 644, 666
WriteDouble, 288
WriteExpr, 442
WriteMsg, 1111
WriteSqlLog, 235
WriteString, 288
WriteText, 1248
Writing values into the string, 1168
WX_APPEND_ARRAY, 39
WX_CLEAR_ARRAY, 39
WX_DECLARE_EXPORTED_OBJARR

AY, 38
WX_DECLARE_OBJARRAY, 38
WX_DECLARE_USER_EXPORTED_O

BJARRAY, 38
WX_DEFINE_ARRAY, 37
WX_DEFINE_EXPORTED_ARRAY, 37
WX_DEFINE_EXPORTED_OBJARRAY

, 39

WX_DEFINE_OBJARRAY, 39
WX_DEFINE_SORTED_ARRAY, 37
WX_DEFINE_SORTED_EXPORTED_A

RRAY, 37
WX_DEFINE_SORTED_USER_EXPOR

TED_ARRAY, 38
WX_DEFINE_USER_EXPORTED_ARR

AY, 37
WX_DEFINE_USER_EXPORTED_OBJ

ARRAY, 39
wxAcceleratorEntry, 16
wxAcceleratorEntry::GetCommand, 16
wxAcceleratorEntry::GetFlags, 17
wxAcceleratorEntry::GetKeyCode, 17
wxAcceleratorEntry::Set, 17
wxAcceleratorEntry::wxAcceleratorEntry

, 16
wxAcceleratorTable, 18
wxAcceleratorTable::~wxAcceleratorTab

le, 19
wxAcceleratorTable::Ok, 19
wxAcceleratorTable::operator !=, 20
wxAcceleratorTable::operator =, 19
wxAcceleratorTable::operator ==, 20
wxAcceleratorTable::wxAcceleratorTabl

e, 18
wxActivateEvent, 21
wxActivateEvent::GetActive, 21
wxActivateEvent::m_active, 21
wxActivateEvent::wxActivateEvent, 21
wxALIGN_CENTRE, 1147
wxALIGN_LEFT, 1147
wxALIGN_RIGHT, 1147
wxApp, 22
wxApp definition, 1683
wxApp::~wxApp, 22
wxApp::argc, 22
wxApp::argv, 23
wxApp::CreateLogTarget, 23
wxApp::Dispatch, 23
wxApp::ExitMainLoop, 25
wxApp::GetAppName, 23
wxApp::GetAuto3D, 24
wxApp::GetClassName, 24
wxApp::GetExitOnFrameDelete, 24
wxApp::GetStdIcon, 32
wxApp::GetTopWindow, 24
wxApp::GetUseBestVisual, 25
wxApp::GetVendorName, 25
wxApp::Initialized, 25
wxApp::MainLoop, 25

INDEX

1730

wxApp::OnAssert, 26
wxApp::OnCmdLineError, 26
wxApp::OnCmdLineHelp, 27
wxApp::OnCmdLineParsed, 27
wxApp::OnExit, 26
wxApp::OnFatalException, 27
wxApp::OnInit, 28
wxApp::OnInitCmdLine, 28
wxApp::OnQueryEndSession, 28
wxApp::Pending, 29
wxApp::ProcessMessage, 29
wxApp::SendIdleEvents, 29
wxApp::SetAppName, 30
wxApp::SetAuto3D, 30
wxApp::SetClassName, 30
wxApp::SetExitOnFrameDelete, 31
wxApp::SetTopWindow, 31
wxApp::SetUseBestVisual, 32
wxApp::SetVendorName, 31
wxApp::wxApp, 22
wxApp::Yield, 32
wxArray, 40
wxArray copy constructor and

assignment operator, 40
wxArray::~wxArray, 40
wxArray::Add, 40
wxArray::Alloc, 41
wxArray::Clear, 41
wxArray::Count, 41
wxArray::Empty, 42
wxArray::GetCount, 42
wxArray::Index, 42
wxArray::Insert, 42
wxArray::IsEmpty, 43
wxArray::Item, 43
wxArray::Last, 43
wxArray::Remove, 43
wxArray::RemoveAt, 44
wxArray::Shrink, 44
wxArray::Sort, 44
wxArrayString, 46
wxArrayString::~wxArrayString, 46
wxArrayString::Add, 47
wxArrayString::Alloc, 47
wxArrayString::Clear, 47
wxArrayString::Count, 47
wxArrayString::Empty, 47
wxArrayString::GetCount, 48
wxArrayString::Index, 48
wxArrayString::Insert, 48
wxArrayString::IsEmpty, 48

wxArrayString::Item, 48
wxArrayString::Last, 49
wxArrayString::operator!=, 46
wxArrayString::operator[], 46
wxArrayString::operator=, 46
wxArrayString::operator==, 46
wxArrayString::Remove, 49
wxArrayString::Shrink, 49
wxArrayString::Sort, 49
wxArrayString::wxArrayString, 45
wxASSERT, 1487
wxASSERT_MSG, 1487
wxAutomationObject, 51
wxAutomationObject::~wxAutomationOb

ject, 51
wxAutomationObject::CallMethod, 51
wxAutomationObject::CreateInstance, 52
wxAutomationObject::GetDispatchPtr, 52
wxAutomationObject::GetInstance, 52
wxAutomationObject::GetObject, 52
wxAutomationObject::GetProperty, 53
wxAutomationObject::Invoke, 53
wxAutomationObject::PutProperty, 54
wxAutomationObject::SetDispatchPtr, 54
wxAutomationObject::wxAutomationObj

ect, 51
wxBeginBusyCursor, 1451
wxBell, 1452
wxBitmap, 55, 56
wxBITMAP, 1475
wxBitmap::~wxBitmap, 58
wxBitmap::AddHandler, 59
wxBitmap::CleanUpHandlers, 59
wxBitmap::ConvertToImage, 59
wxBitmap::Create, 59
wxBitmap::FindHandler, 60
wxBitmap::GetDepth, 61
wxBitmap::GetHandlers, 61
wxBitmap::GetHeight, 61
wxBitmap::GetMask, 62
wxBitmap::GetPalette, 61
wxBitmap::GetSubBitmap, 62
wxBitmap::GetWidth, 62
wxBitmap::InitStandardHandlers, 62
wxBitmap::InsertHandler, 62
wxBitmap::LoadFile, 63
wxBitmap::Ok, 64
wxBitmap::operator !=, 67
wxBitmap::operator =, 66
wxBitmap::operator ==, 67
wxBitmap::RemoveHandler, 64

INDEX

1731

wxBitmap::SaveFile, 64
wxBitmap::SetDepth, 65
wxBitmap::SetHeight, 65
wxBitmap::SetMask, 66
wxBitmap::SetPalette, 66
wxBitmap::SetWidth, 66
wxBitmap::wxBitmap, 55
wxBITMAP_TYPE_ANY, 687
wxBITMAP_TYPE_BMP, 57, 686
wxBITMAP_TYPE_BMP_RESOURCE,

57
wxBITMAP_TYPE_CUR, 192
wxBITMAP_TYPE_CUR_RESOURCE,

192
wxBITMAP_TYPE_GIF, 57, 678, 686
wxBITMAP_TYPE_ICO, 192, 678, 687
wxBITMAP_TYPE_ICO_RESOURCE,

678
wxBITMAP_TYPE_JPEG, 686
wxBITMAP_TYPE_PCX, 686
wxBITMAP_TYPE_PNG, 686
wxBITMAP_TYPE_PNM, 687
wxBITMAP_TYPE_RESOURCE, 57
wxBITMAP_TYPE_TIF , 687
wxBITMAP_TYPE_XBM, 57, 192, 678
wxBITMAP_TYPE_XPM, 57, 678, 687
wxBitmapButton, 72, 73
wxBitmapButton::~wxBitmapButton, 73
wxBitmapButton::Create, 74
wxBitmapButton::GetBitmapDisabled, 74
wxBitmapButton::GetBitmapFocus, 74
wxBitmapButton::GetBitmapLabel, 74
wxBitmapButton::GetBitmapSelected, 75
wxBitmapButton::SetBitmapDisabled, 75
wxBitmapButton::SetBitmapFocus, 75
wxBitmapButton::SetBitmapLabel, 76
wxBitmapButton::SetBitmapSelected, 76
wxBitmapButton::wxBitmapButton, 72
wxBitmapDataObject, 77
wxBitmapDataObject::GetBitmap, 77
wxBitmapDataObject::SetBitmap, 77
wxBitmapHandler, 68
wxBitmapHandler::~wxBitmapHandler,

68
wxBitmapHandler::Create, 68
wxBitmapHandler::GetExtension, 69
wxBitmapHandler::GetName, 69
wxBitmapHandler::GetType, 69
wxBitmapHandler::LoadFile, 69
wxBitmapHandler::SaveFile, 70
wxBitmapHandler::SetExtension, 71

wxBitmapHandler::SetName, 71
wxBitmapHandler::SetType, 71
wxBitmapHandler::wxBitmapHandler, 68
wxBMPHandler, 685
wxBoolFormValidator, 78
wxBoolFormValidator::wxBoolFormValid

ator, 78
wxBoolListValidator, 78
wxBoolListValidator::wxBoolListValidato

r, 78
wxBoxSizer, 80
wxBoxSizer::CalcMin, 81
wxBoxSizer::GetOrientation, 81
wxBoxSizer::RecalcSizes, 80
wxBoxSizer::wxBoxSizer, 80
wxBrush, 82
wxBrush::~wxBrush, 83
wxBrush::GetColour, 84
wxBrush::GetStipple, 84
wxBrush::GetStyle, 84
wxBrush::Ok, 84
wxBrush::operator !=, 86
wxBrush::operator =, 86
wxBrush::operator ==, 86
wxBrush::SetColour, 85
wxBrush::SetStipple, 85
wxBrush::SetStyle, 86
wxBrush::wxBrush, 82
wxBrushList, 88
wxBrushList::AddBrush, 88
wxBrushList::FindOrCreateBrush, 88
wxBrushList::RemoveBrush, 88
wxBrushList::wxBrushList, 88
wxBU_AUTODRAW , 72
wxBU_BOTTOM, 72, 91
wxBU_EXACTFIT , 91
wxBU_LEFT, 72, 91
wxBU_RIGHT, 72, 91
wxBU_TOP, 72, 91
wxBufferedOutputStream, 95
wxBufferedOutputStream::~wxBuffered

OutputStream, 95
wxBufferedOutputStream::SeekO, 95
wxBufferedOutputStream::Sync, 95
wxBufferedOutputStream::wxBufferedO

utputStream, 95
wxBusyCursor, 89
wxBusyCursor::~wxBusyCursor, 89
wxBusyCursor::wxBusyCursor, 89
wxBusyInfo, 90
wxBusyInfo::~wxBusyInfo, 91

INDEX

1732

wxBusyInfo::wxBusyInfo, 90
wxButton, 92, 1683
wxButton::~wxButton, 93
wxButton::Create, 93
wxButton::GetDefaultSize, 93
wxButton::GetLabel, 93
wxButton::SetDefault, 93
wxButton::SetLabel, 94
wxButton::wxButton, 92
wxCAL_MONDAY_FIRST, 98
wxCAL_NO_MONTH_CHANGE, 98
wxCAL_NO_YEAR_CHANGE, 98
wxCAL_SEQUENTIAL_MONTH_SELE

CTION, 98
wxCAL_SHOW_HOLIDAYS, 98
wxCAL_SHOW_SURROUNDING_WEE

KS, 98
wxCAL_SUNDAY_FIRST, 98
wxCalculateLayoutEvent, 96
wxCalculateLayoutEvent::GetFlags, 96
wxCalculateLayoutEvent::GetRect, 97
wxCalculateLayoutEvent::SetFlags, 97
wxCalculateLayoutEvent::SetRect, 97
wxCalculateLayoutEvent::wxCalculateL

ayoutEvent, 96
wxCalendarCtrl, 99
wxCalendarCtrl::~wxCalendarCtrl, 100
wxCalendarCtrl::Create, 99
wxCalendarCtrl::EnableHolidayDisplay,

100
wxCalendarCtrl::EnableMonthChange,

100
wxCalendarCtrl::EnableYearChange, 100
wxCalendarCtrl::GetAttr, 102
wxCalendarCtrl::GetDate, 100
wxCalendarCtrl::GetHeaderColourBg,

101
wxCalendarCtrl::GetHeaderColourFg,

101
wxCalendarCtrl::GetHighlightColourBg,

101
wxCalendarCtrl::GetHighlightColourFg,

101
wxCalendarCtrl::GetHolidayColourBg,

102
wxCalendarCtrl::GetHolidayColourFg,

102
wxCalendarCtrl::HitTest, 103
wxCalendarCtrl::ResetAttr, 103
wxCalendarCtrl::SetAttr, 102
wxCalendarCtrl::SetDate, 100
wxCalendarCtrl::SetHeaderColours, 101

wxCalendarCtrl::SetHighlightColours,
101

wxCalendarCtrl::SetHoliday, 103
wxCalendarCtrl::SetHolidayColours, 102
wxCalendarCtrl::wxCalendarCtrl, 99
wxCalendarDateAttr, 104
wxCalendarDateAttr::GetBackgroundCol

our, 106
wxCalendarDateAttr::GetBorder, 106
wxCalendarDateAttr::GetBorderColour,

106
wxCalendarDateAttr::GetFont, 106
wxCalendarDateAttr::GetTextColour, 106
wxCalendarDateAttr::HasBackgroundCo

lour, 105
wxCalendarDateAttr::HasBorder, 105
wxCalendarDateAttr::HasBorderColour,

105
wxCalendarDateAttr::HasFont, 105
wxCalendarDateAttr::HasTextColour, 105
wxCalendarDateAttr::IsHoliday, 106
wxCalendarDateAttr::SetBackgroundCol

our, 104
wxCalendarDateAttr::SetBorder, 105
wxCalendarDateAttr::SetBorderColour,

104
wxCalendarDateAttr::SetFont, 104
wxCalendarDateAttr::SetHoliday, 105
wxCalendarDateAttr::SetTextColour, 104
wxCalendarDateAttr::wxCalendarDateAt

tr, 104
wxCalendarEvent::GetDate, 107
wxCalendarEvent::GetWeekDay, 107
wxCanvas, 1683
wxCAPTION, 357, 522, 811, 816, 862
wxCaret, 108
wxCaret::Create, 108
wxCaret::GetBlinkTime, 108
wxCaret::GetPosition, 108
wxCaret::GetSize, 109
wxCaret::GetWindow, 109
wxCaret::Hide, 109
wxCaret::IsOk, 109
wxCaret::IsVisible, 109
wxCaret::Move, 110
wxCaret::SetBlinkTime, 110
wxCaret::SetSize, 110
wxCaret::Show, 110
wxCaret::wxCaret, 108
wxCB_DROPDOWN, 146
wxCB_READONLY, 146

INDEX

1733

wxCB_SIMPLE, 146
wxCB_SORT, 146
wxCHECK, 1487
wxCHECK_MSG, 1488
wxCHECK_RET, 1488
wxCHECK_VERSION, 1424
wxCHECK2, 1488
wxCHECK2_MSG, 1488
wxCheckBox, 111
wxCheckBox::~wxCheckBox, 112
wxCheckBox::Create, 112
wxCheckBox::GetValue, 112
wxCheckBox::SetValue, 113
wxCheckBox::wxCheckBox, 111
wxCheckListBox, 114
wxCheckListBox::~wxCheckListBox, 115
wxCheckListBox::Check, 115
wxCheckListBox::IsChecked, 115
wxCheckListBox::wxCheckListBox, 114
wxChoice, 116
wxChoice::~wxChoice, 117
wxChoice::Append, 117
wxChoice::Clear, 118
wxChoice::Create, 118
wxChoice::FindString, 118
wxChoice::GetClientData, 118
wxChoice::GetColumns, 118
wxChoice::GetSelection, 119
wxChoice::GetString, 119
wxChoice::GetStringSelection, 119
wxChoice::Number, 119
wxChoice::SetClientData, 120
wxChoice::SetColumns, 120
wxChoice::SetSelection, 120
wxChoice::SetStringSelection, 121
wxChoice::wxChoice, 116
wxClassInfo, 121, 1519
wxClassInfo::CreateObject, 121
wxClassInfo::FindClass, 122
wxClassInfo::GetBaseClassName1, 122
wxClassInfo::GetBaseClassName2, 122
wxClassInfo::GetClassName, 122
wxClassInfo::GetSize, 122
wxClassInfo::InitializeClasses , 122
wxClassInfo::IsKindOf, 123
wxClassInfo::wxClassInfo, 121
wxClientDC, 123
wxClientDC::wxClientDC, 123
wxClientDisplayRect, 1444
wxCLIP_CHILDREN, 1360
wxClipboard, 124

wxClipboard::~wxClipboard, 125
wxClipboard::AddData, 125
wxClipboard::Clear, 125
wxClipboard::Close, 125
wxClipboard::GetData, 125
wxClipboard::IsOpened, 125
wxClipboard::IsSupported, 126
wxClipboard::Open, 126
wxClipboard::SetData, 126
wxClipboard::UsePrimarySelection, 126
wxClipboard::wxClipboard, 124
wxClipboardOpen, 1448
wxCloseClipboard, 1448
wxCloseEvent, 127
wxCloseEvent::CanVeto, 127
wxCloseEvent::GetForce, 128
wxCloseEvent::GetLoggingOff, 128
wxCloseEvent::GetSessionEnding, 128
wxCloseEvent::SetCanVeto, 128
wxCloseEvent::SetForce, 128
wxCloseEvent::SetLoggingOff, 128
wxCloseEvent::Veto, 128
wxCloseEvent::wxCloseEvent, 127
wxCmdLineParser, 133
wxCmdLineParser::~wxCmdLineParser,

134
wxCmdLineParser::AddOption, 136
wxCmdLineParser::AddParam, 136
wxCmdLineParser::AddSwitch, 136
wxCmdLineParser::ConvertStringToArg

s, 134
wxCmdLineParser::DisableLongOptions,

135
wxCmdLineParser::EnableLongOptions,

135
wxCmdLineParser::Found, 137
wxCmdLineParser::GetParam, 137
wxCmdLineParser::GetParamCount, 137
wxCmdLineParser::Parse, 136
wxCmdLineParser::SetCmdLine, 134
wxCmdLineParser::SetDesc, 135
wxCmdLineParser::SetLogo, 135
wxCmdLineParser::SetSwitchChars, 134
wxCmdLineParser::Usage, 136
wxCmdLineParser::wxCmdLineParser,

133
wxColour, 139
wxColour::Blue, 139
wxColour::GetPixel, 140
wxColour::Green, 140
wxColour::Ok, 140

INDEX

1734

wxColour::operator !=, 141
wxColour::operator =, 140
wxColour::operator ==, 141
wxColour::Red, 140
wxColour::Set, 140
wxColour::wxColour, 138
wxColourData, 141
wxColourData::~wxColourData, 142
wxColourData::GetChooseFull, 142
wxColourData::GetColour, 142
wxColourData::GetCustomColour, 142
wxColourData::operator =, 143
wxColourData::SetChooseFull, 142
wxColourData::SetColour, 142
wxColourData::SetCustomColour, 143
wxColourData::wxColourData, 141
wxColourDatabase, 144
wxColourDatabase::FindColour, 144
wxColourDatabase::FindName, 144
wxColourDatabase::Initialize, 144
wxColourDatabase::wxColourDatabase,

144
wxColourDialog, 145
wxColourDialog overview, 1587
wxColourDialog::~wxColourDialog, 145
wxColourDialog::Create, 145
wxColourDialog::GetColourData, 145
wxColourDialog::ShowModal, 146
wxColourDialog::wxColourDialog, 145
wxColourDisplay, 1444
wxComboBox, 147
wxComboBox::~wxComboBox, 148
wxComboBox::Append, 148
wxComboBox::Clear, 148
wxComboBox::Copy, 149
wxComboBox::Create, 148
wxComboBox::Cut, 149
wxComboBox::Delete, 149
wxComboBox::FindString, 149
wxComboBox::GetClientData, 150
wxComboBox::GetInsertionPoint, 150
wxComboBox::GetLastPosition, 150
wxComboBox::GetSelection, 150
wxComboBox::GetString, 150
wxComboBox::GetStringSelection, 151
wxComboBox::GetValue, 151
wxComboBox::Number, 151
wxComboBox::Paste, 151
wxComboBox::Remove, 151
wxComboBox::Replace, 151
wxComboBox::SetClientData, 152

wxComboBox::SetInsertionPoint, 152
wxComboBox::SetInsertionPointEnd, 152
wxComboBox::SetSelection, 152
wxComboBox::SetValue, 153
wxComboBox::wxComboBox, 147
wxCommand, 154
wxCommand overview, 1595
wxCommand::~wxCommand, 154
wxCommand::CanUndo, 154
wxCommand::Do, 154
wxCommand::GetName, 155
wxCommand::Undo, 155
wxCommand::wxCommand, 154
wxCommandEvent, 159
wxCommandEvent::Checked, 159
wxCommandEvent::GetClientData, 159
wxCommandEvent::GetExtraLong, 159
wxCommandEvent::GetInt, 159
wxCommandEvent::GetSelection, 159
wxCommandEvent::GetString, 159
wxCommandEvent::IsChecked, 160
wxCommandEvent::IsSelection, 160
wxCommandEvent::m_clientData, 158
wxCommandEvent::m_commandInt, 158
wxCommandEvent::m_commandString,

158
wxCommandEvent::m_extraLong, 158
wxCommandEvent::SetClientData, 160
wxCommandEvent::SetExtraLong, 160
wxCommandEvent::SetInt, 160
wxCommandEvent::SetString, 160
wxCommandEvent::wxCommandEvent,

159
wxCommandProcessor, 161
wxCommandProcessor overview, 1595
wxCommandProcessor::~wxCommandP

rocessor, 161
wxCommandProcessor::CanUndo, 161
wxCommandProcessor::ClearCommand

s, 161
wxCommandProcessor::Do, 162
wxCommandProcessor::GetCommands,

162
wxCommandProcessor::GetEditMenu,

162
wxCommandProcessor::GetMaxComma

nds, 162
wxCommandProcessor::GetRedoAccele

rator, 162
wxCommandProcessor::GetUndoAccele

rator, 162

INDEX

1735

wxCommandProcessor::Initialize, 162
wxCommandProcessor::SetEditMenu,

163
wxCommandProcessor::SetRedoAccele

rator, 163
wxCommandProcessor::SetUndoAccele

rator, 163
wxCommandProcessor::Submit, 163
wxCommandProcessor::Undo, 163
wxCommandProcessor::wxCommandPr

ocessor, 161
wxConcatFiles, 1428
wxCondition, 164
wxCondition::~wxCondition, 164
wxCondition::Broadcast, 164
wxCondition::Signal, 165
wxCondition::Wait, 165
wxCondition::wxCondition, 164
wxConfigBase, 171
wxConfigBase::~wxConfigBase, 172
wxConfigBase::Create, 172
wxConfigBase::DeleteAll, 173
wxConfigBase::DeleteEntry, 173
wxConfigBase::DeleteGroup, 173
wxConfigBase::DontCreateOnDemand,

172
wxConfigBase::Exists, 173
wxConfigBase::Flush, 173
wxConfigBase::Get, 173
wxConfigBase::GetAppName, 174
wxConfigBase::GetEntryType, 174
wxConfigBase::GetFirstEntry, 174
wxConfigBase::GetFirstGroup, 174
wxConfigBase::GetNextEntry, 175
wxConfigBase::GetNextGroup, 174
wxConfigBase::GetNumberOfEntries,

175
wxConfigBase::GetNumberOfGroups,

175
wxConfigBase::GetPath, 175
wxConfigBase::GetVendorName, 175
wxConfigBase::HasEntry, 175
wxConfigBase::HasGroup, 176
wxConfigBase::IsExpandingEnvVars,

176
wxConfigBase::IsRecordingDefaults, 176
wxConfigBase::Read, 176
wxConfigBase::RenameEntry, 177
wxConfigBase::RenameGroup, 178
wxConfigBase::Set, 178
wxConfigBase::SetExpandEnvVars, 178
wxConfigBase::SetPath, 178

wxConfigBase::SetRecordDefaults, 178
wxConfigBase::SetUmask, 179
wxConfigBase::Write, 179
wxConfigBase::wxConfigBase, 171
wxConstCast, 1475
wxContextHelp, 180
wxContextHelp::~wxContextHelp, 180
wxContextHelp::BeginContextHelp, 180
wxContextHelp::EndContextHelp, 181
wxContextHelp::wxContextHelp, 180
wxContextHelpButton, 181, 182
wxContextHelpButton::wxContextHelpB

utton, 181
wxControl::Command, 183
wxControl::GetLabel, 183
wxControl::SetLabel, 183
wxCopyFile, 1428
wxCountingOutputStream, 184
wxCountingOutputStream::~wxCounting

OutputStream, 184
wxCountingOutputStream::GetSize, 184
wxCountingOutputStream::wxCounting

OutputStream, 184
wxCreateDynamicObject, 1452
wxCreateFileTipProvider, 1436
wxCriticalSection, 185
wxCriticalSection::~wxCriticalSection,

185
wxCriticalSection::Enter, 185
wxCriticalSection::Leave, 185
wxCriticalSection::wxCriticalSection, 185
wxCriticalSectionLocker, 186
wxCriticalSectionLocker::~wxCriticalSec

tionLocker, 186
wxCriticalSectionLocker::wxCriticalSecti

onLocker, 186
wxCSConv, 187, 1533
wxCSConv::~wxCSConv, 187
wxCSConv::LoadNow, 187
wxCSConv::MB2WC, 187
wxCSConv::WC2MB, 187
wxCSConv::wxCSConv, 187
wxCurrentTipProvider::GetCurrentTip,

1285
wxCursor, 191
wxCursor::~wxCursor, 193
wxCursor::Ok, 193
wxCursor::operator !=, 194
wxCursor::operator =, 193
wxCursor::operator ==, 194
wxCursor::wxCursor, 191

INDEX

1736

wxCustomDataObject, 188
wxCustomDataObject::~wxCustomData

Object, 189
wxCustomDataObject::Alloc, 189
wxCustomDataObject::Free, 189
wxCustomDataObject::GetData, 189
wxCustomDataObject::GetSize, 189
wxCustomDataObject::SetData, 189
wxCustomDataObject::TakeData, 190
wxCustomDataObject::wxCustomDataO

bject, 188
wxDatabase, 195
wxDatabase class overview

[DEPRECATED], 1633
wxDatabase ODBC class overview

[DEPRECATED], 1631
wxDatabase::~wxDatabase, 195
wxDatabase::BeginTrans, 195
wxDatabase::Cancel, 195
wxDatabase::CanTransact, 195
wxDatabase::CanUpdate, 195
wxDatabase::Close, 195
wxDatabase::CommitTrans, 196
wxDatabase::ErrorOccured, 196
wxDatabase::ErrorSnapshot, 196
wxDatabase::GetDatabaseName, 196
wxDatabase::GetDataSource, 196
wxDatabase::GetErrorClass, 196
wxDatabase::GetErrorCode, 196
wxDatabase::GetErrorMessage, 197
wxDatabase::GetErrorNumber, 197
wxDatabase::GetHDBC, 197
wxDatabase::GetHENV, 197
wxDatabase::GetInfo, 197
wxDatabase::GetODBCVersionFloat, 198
wxDatabase::GetODBCVersionString,

198
wxDatabase::GetPassword, 198
wxDatabase::GetUsername, 198
wxDatabase::InWaitForDataSource, 199
wxDatabase::IsOpen, 199
wxDatabase::OnSetOptions, 199
wxDatabase::OnWaitForDataSource, 199
wxDatabase::Open, 199
wxDatabase::RollbackTrans, 199
wxDatabase::SetDataSource, 199
wxDatabase::SetLoginTimeout, 200
wxDatabase::SetPassword, 200
wxDatabase::SetQueryTimeout, 200
wxDatabase::SetSynchronousMode, 200
wxDatabase::SetUsername, 200

wxDatabase::wxDatabase, 194
wxDataFormat, 201, 202
wxDataFormat::GetId , 202
wxDataFormat::GetType, 202
wxDataFormat::operator !=, 202
wxDataFormat::operator ==, 202
wxDataFormat::SetId, 202
wxDataFormat::SetType, 203
wxDataFormat::wxDataFormat, 201, 202
wxDataInputStream, 285
wxDataInputStream::~wxDataInputStrea

m, 285
wxDataInputStream::BigEndianOrdered,

285
wxDataInputStream::Read16, 286
wxDataInputStream::Read32, 286
wxDataInputStream::Read8, 285
wxDataInputStream::ReadDouble, 286
wxDataInputStream::ReadString, 286
wxDataInputStream::wxDataInputStrea

m, 285
wxDataObject, 205
wxDataObject::~wxDataObject, 205
wxDataObject::GetAllFormats, 205
wxDataObject::GetDataHere, 205
wxDataObject::GetDataSize, 206
wxDataObject::GetFormatCount, 206
wxDataObject::GetPreferredFormat, 206
wxDataObject::SetData, 206
wxDataObject::wxDataObject, 205
wxDataObjectComposite, 282
wxDataObjectComposite::Add, 282
wxDataObjectComposite::wxDataObject

Composite, 282
wxDataObjectSimple, 283
wxDataObjectSimple::GetDataHere, 284
wxDataObjectSimple::GetDataSize, 284
wxDataObjectSimple::GetFormat, 283
wxDataObjectSimple::SetData, 284
wxDataObjectSimple::SetFormat, 283
wxDataObjectSimple::wxDataObjectSim

ple, 283
wxDataOutputStream, 287
wxDataOutputStream::~wxDataOutputSt

ream, 287
wxDataOutputStream::BigEndianOrdere

d, 287
wxDataOutputStream::Write16, 287
wxDataOutputStream::Write32, 287
wxDataOutputStream::Write8, 287
wxDataOutputStream::WriteDouble, 288

INDEX

1737

wxDataOutputStream::WriteString, 288
wxDataOutputStream::wxDataOutputStr

eam, 287
wxDate, 288, 289, 1279
wxDate::~wxDate, 289
wxDate::AddMonths, 289
wxDate::AddWeeks, 290
wxDate::AddYears, 290
wxDate::FormatDate, 290
wxDate::GetDay, 290
wxDate::GetDayOfWeek, 290
wxDate::GetDayOfWeekName, 290
wxDate::GetDayOfYear, 291
wxDate::GetDaysInMonth, 291
wxDate::GetFirstDayOfMonth, 291
wxDate::GetJulianDate, 291
wxDate::GetMonth, 291
wxDate::GetMonthEnd, 291
wxDate::GetMonthName, 291
wxDate::GetMonthStart, 292
wxDate::GetWeekOfMonth, 292
wxDate::GetWeekOfYear, 292
wxDate::GetYear, 292
wxDate::GetYearEnd, 292
wxDate::GetYearStart, 292
wxDate::IsLeapYear, 292
wxDate::operator -, 294
wxDate::operator --, 295
wxDate::operator !=, 296
wxDate::operator +, 294
wxDate::operator ++, 295
wxDate::operator +=, 294
wxDate::operator <, 295
wxDate::operator <<, 296
wxDate::operator <=, 295
wxDate::operator -=, 295
wxDate::operator ==, 296
wxDate::operator >, 295
wxDate::operator >=, 295
wxDate::operator wxString, 294
wxDate::Set, 293
wxDate::SetFormat, 293
wxDate::SetOption, 293
wxDate::wxDate, 288
wxDateTime, 308, 309
wxDateTime and Holidays, 1528
wxDateTime characteristics, 1525
wxDateTime::Add, 315, 316
wxDateTime::ConvertYearToBC, 304
wxDateTime::Format, 318
wxDateTime::FormatDate, 318

wxDateTime::FormatISODate, 319
wxDateTime::FormatISOTime, 319
wxDateTime::FormatTime, 318
wxDateTime::GetAmPmStrings, 304
wxDateTime::GetBeginDST, 304
wxDateTime::GetCentury, 305
wxDateTime::GetCountry, 304
wxDateTime::GetCurrentMonth, 305
wxDateTime::GetCurrentYear, 304
wxDateTime::GetDay, 312
wxDateTime::GetDayOfYear, 313
wxDateTime::GetEndDST, 305
wxDateTime::GetHour, 312
wxDateTime::GetJDN, 322
wxDateTime::GetJulianDayNumber, 322
wxDateTime::GetLastMonthDay, 321
wxDateTime::GetLastWeekDay, 321
wxDateTime::GetMillisecond, 313
wxDateTime::GetMinute, 312
wxDateTime::GetMJD, 322
wxDateTime::GetModifiedJulianDayNu

mber, 322
wxDateTime::GetMonth, 312
wxDateTime::GetMonthName, 305
wxDateTime::GetNextWeekDay, 319
wxDateTime::GetNumberOfDays, 305
wxDateTime::GetPrevWeekDay, 320
wxDateTime::GetRataDie, 323
wxDateTime::GetSecond, 313
wxDateTime::GetTicks, 312
wxDateTime::GetTm, 311
wxDateTime::GetWeek, 321
wxDateTime::GetWeekDay, 312, 320
wxDateTime::GetWeekDayInSameWee

k, 319
wxDateTime::GetWeekDayName, 306
wxDateTime::GetWeekOfMonth, 313
wxDateTime::GetWeekOfYear, 313
wxDateTime::GetYear, 312
wxDateTime::GetYearDay, 322
wxDateTime::IsBetween, 315
wxDateTime::IsDST, 323
wxDateTime::IsDSTApplicable, 306
wxDateTime::IsEarlierThan, 314
wxDateTime::IsEqualTo, 314
wxDateTime::IsEqualUpTo, 315
wxDateTime::IsGregorianDate, 314
wxDateTime::IsLaterThan, 314
wxDateTime::IsLeapYear, 306
wxDateTime::IsSameDate, 315
wxDateTime::IsSameTime, 315

INDEX

1738

wxDateTime::IsStrictlyBetween, 314
wxDateTime::IsValid, 311
wxDateTime::IsWestEuropeanCountry,

306
wxDateTime::IsWorkDay, 314
wxDateTime::MakeGMT , 323
wxDateTime::MakeTimezone, 323
wxDateTime::Now, 306
wxDateTime::operator=, 311
wxDateTime::ParseDate, 318
wxDateTime::ParseDateTime, 317
wxDateTime::ParseFormat, 317
wxDateTime::ParseRfc822Date, 316
wxDateTime::ParseTime, 318
wxDateTime::ResetTime, 310
wxDateTime::Set, 309, 310
wxDateTime::SetCountry, 307
wxDateTime::SetDay, 310
wxDateTime::SetHour, 310
wxDateTime::SetMillisecond, 311
wxDateTime::SetMinute, 311
wxDateTime::SetMonth, 310
wxDateTime::SetSecond, 311
wxDateTime::SetToCurrent, 309
wxDateTime::SetToLastMonthDay, 321
wxDateTime::SetToLastWeekDay, 320
wxDateTime::SetToNextWeekDay, 319
wxDateTime::SetToPrevWeekDay, 320
wxDateTime::SetToTheWeek, 321
wxDateTime::SetToWeekDay, 320
wxDateTime::SetToWeekDayInSameW

eek, 319
wxDateTime::SetToYearDay, 322
wxDateTime::SetYear, 310
wxDateTime::Subtract, 315, 316
wxDateTime::Today, 307
wxDateTime::ToGMT , 323
wxDateTime::ToTimezone, 323
wxDateTime::UNow, 307
wxDateTime::wxDateTime, 308, 309
wxDb, 213, 239
wxDb/wxDbTable wxODBC Overview,

1613
wxDb::Catalog, 214
wxDb::Close, 214
wxDb::CommitTrans, 215
wxDb::CreateView, 216
wxDb::Dbms, 216
wxDb::DispAllErrors, 217
wxDb::DispNextError, 218
wxDb::DropView, 219

wxDb::ExecSql, 219
wxDb::FwdOnlyCursors, 219
wxDb::GetCatalog, 220
wxDb::GetColumnCount, 220
wxDb::GetColumns, 221
wxDb::GetData, 222
wxDb::GetDatabaseName, 223
wxDb::GetDatasourceName, 223
wxDb::GetHDBC, 223
wxDb::GetHENV, 223
wxDb::GetHSTMT, 224
wxDb::GetKeyFields, 224
wxDb::GetNext, 224
wxDb::GetNextError, 225
wxDb::GetPassword, 225
wxDb::GetTableCount, 225
wxDb::GetUsername, 225
wxDb::Grant, 226
wxDb::IsFwdOnlyCursors, 226
wxDb::IsOpen, 227
wxDb::LogError, 228
wxDb::ModifyColumn, 228
wxDb::Open, 229
wxDb::RollbackTrans, 231
wxDb::SetDebugErrorMessages, 231
wxDb::SetSqlLogging, 231
wxDb::SQLColumnName, 232
wxDb::SQLTableName, 232
wxDb::TableExists, 233
wxDb::TablePrivileges, 234
wxDb::TranslateSqlState, 235
wxDb::WriteSqlLog, 235
wxDb::wxDb, 213
wxDbCloseConnections, 211
wxDbColDef::Initialize, 237
wxDbColFor::Format, 238
wxDbColFor::Initialize, 238
wxDbColInf::Initialize, 238
wxDbConnectInf, 239
wxDbConnectInf::~wxDbConnectInf, 240
wxDbConnectInf::AllocHenv, 240
wxDbConnectInf::FreeHenv, 240
wxDbConnectInf::GetAuthStr, 241
wxDbConnectInf::GetDefaultDir, 241
wxDbConnectInf::GetDescription, 241
wxDbConnectInf::GetDsn, 241
wxDbConnectInf::GetFileType, 242
wxDbConnectInf::GetHenv, 242
wxDbConnectInf::GetPassword, 242
wxDbConnectInf::GetUid, 242
wxDbConnectInf::GetUserID, 242

INDEX

1739

wxDbConnectInf::Initialize, 241
wxDbConnectInf::SetAuthStr, 242
wxDbConnectInf::SetDefaultDir, 243
wxDbConnectInf::SetDescription, 243
wxDbConnectInf::SetDsn, 243
wxDbConnectInf::SetFileType, 243
wxDbConnectInf::SetHenv, 243
wxDbConnectInf::SetPassword, 244
wxDbConnectInf::SetUid, 244
wxDbConnectInf::SetUserID, 244
wxDbConnectionsInUse, 211
wxDbFreeConnection, 211
wxDbGetConnection, 211
wxDbGetDataSource, 212
wxDbInf::Initialize, 245
wxDbLogExtendedErrorMsg, 212
wxDbSqlLog, 212
wxDbTable, 246
wxDbTable::BuildDeleteStmt, 247
wxDbTable::BuildSelectStmt, 247
wxDbTable::BuildUpdateStmt, 248
wxDbTable::BuildWhereStmt, 249
wxDbTable::CanSelectForUpdate, 249
wxDbTable::CanUpdateByROWID, 250
wxDbTable::ClearMemberVar, 251
wxDbTable::ClearMemberVars, 251
wxDbTable::CloseCursor, 251
wxDbTable::Count, 252
wxDbTable::CreateIndex, 253
wxDbTable::CreateTable, 254
wxDbTable::DB_STATUS, 255
wxDbTable::Delete, 255
wxDbTable::DeleteCursor, 255
wxDbTable::DeleteMatching, 256
wxDbTable::DeleteWhere, 257
wxDbTable::DropIndex, 258
wxDbTable::DropTable, 258
wxDbTable::From, 258
wxDbTable::GetColDefs, 259
wxDbTable::GetCursor, 259
wxDbTable::GetDb, 260
wxDbTable::GetFirst, 260
wxDbTable::GetFromClause, 260
wxDbTable::GetLast, 261
wxDbTable::GetNewCursor, 261
wxDbTable::GetNext, 261
wxDbTable::GetNumberOfColumns, 262
wxDbTable::GetOrderByClause, 262
wxDbTable::GetPrev, 262
wxDbTable::GetQueryTableName, 263
wxDbTable::GetRowNum, 263

wxDbTable::GetTableName, 263
wxDbTable::GetTablePath, 264
wxDbTable::GetWhereClause, 264
wxDbTable::Insert, 264
wxDbTable::IsColNull, 265
wxDbTable::IsCursorClosedOnCommit,

265
wxDbTable::IsQueryOnly, 266
wxDbTable::Open, 266
wxDbTable::operator --, 281
wxDbTable::operator ++, 280
wxDbTable::OrderBy, 267
wxDbTable::Query, 267
wxDbTable::QueryBySqlStmt, 269
wxDbTable::QueryMatching, 270
wxDbTable::QueryOnKeyFields, 272
wxDbTable::Refresh, 272
wxDbTable::SetColDefs, 273
wxDbTable::SetColNull, 276
wxDbTable::SetCursor, 275
wxDbTable::SetFromClause, 275
wxDbTable::SetOrderByClause, 277
wxDbTable::SetQueryTimeout, 277
wxDbTable::SetWhereClause, 278
wxDbTable::Update, 279
wxDbTable::UpdateWhere, 279
wxDbTable::Where, 280
wxDbTable::wxDbTable, 246
wxDbTableInf::Initialize, 281
wxDC, 325
wxDC::~wxDC, 325
wxDC::BeginDrawing, 325
wxDC::Blit, 325
wxDC::CalcBoundingBox, 327
wxDC::Clear, 327
wxDC::CrossHair, 327
wxDC::DestroyClippingRegion, 327
wxDC::DeviceToLogicalX, 328
wxDC::DeviceToLogicalXRel, 328
wxDC::DeviceToLogicalY, 328
wxDC::DeviceToLogicalYRel, 328
wxDC::DrawArc, 328
wxDC::DrawBitmap, 328
wxDC::DrawCheckMark, 329
wxDC::DrawEllipse, 329
wxDC::DrawEllipticArc, 329
wxDC::DrawIcon, 329
wxDC::DrawLine, 330
wxDC::DrawLines, 330
wxDC::DrawPoint, 331
wxDC::DrawPolygon, 330

INDEX

1740

wxDC::DrawRectangle, 331
wxDC::DrawRotatedText, 331
wxDC::DrawRoundedRectangle, 331
wxDC::DrawSpline, 332
wxDC::DrawText, 332
wxDC::EndDoc , 332
wxDC::EndDrawing, 332
wxDC::EndPage, 333
wxDC::FloodFill, 333
wxDC::GetBackground, 333
wxDC::GetBackgroundMode, 333
wxDC::GetBrush, 333
wxDC::GetCharHeight, 334
wxDC::GetCharWidth, 334
wxDC::GetClippingBox, 334
wxDC::GetFont, 334
wxDC::GetLogicalFunction, 334
wxDC::GetMapMode, 334
wxDC::GetOptimization, 335
wxDC::GetPen, 335
wxDC::GetPixel, 335
wxDC::GetSize, 335
wxDC::GetTextBackground, 336
wxDC::GetTextExtent, 336
wxDC::GetTextForeground, 337
wxDC::GetUserScale, 337
wxDC::LogicalToDeviceX, 337
wxDC::LogicalToDeviceXRel, 337
wxDC::LogicalToDeviceY, 337
wxDC::LogicalToDeviceYRel, 337
wxDC::MaxX, 338
wxDC::MaxY, 338
wxDC::MinX, 338
wxDC::MinY, 338
wxDC::Ok, 338
wxDC::ResetBoundingBox, 338
wxDC::SetBackground, 339
wxDC::SetBackgroundMode, 339
wxDC::SetBrush, 340
wxDC::SetClippingRegion, 339
wxDC::SetDeviceOrigin, 339
wxDC::SetFont, 340
wxDC::SetLogicalFunction, 340
wxDC::SetMapMode, 341
wxDC::SetOptimization, 341
wxDC::SetPalette, 339
wxDC::SetPen, 342
wxDC::SetTextBackground, 342
wxDC::SetTextForeground, 342
wxDC::SetUserScale, 342
wxDC::StartDoc , 342

wxDC::StartPage, 343
wxDC::wxDC, 325
wxDCClipper, 343
wxDCClipper::~wxDCClipper, 343
wxDCClipper::wxDCClipper, 343
wxDDECleanUp, 1452
wxDDEClient, 344
wxDDEClient::MakeConnection, 344
wxDDEClient::OnMakeConnection, 345
wxDDEClient::ValidHost, 345
wxDDEClient::wxDDEClient, 344
wxDDEConnection, 346
wxDDEConnection::Advise, 346
wxDDEConnection::Disconnect, 347
wxDDEConnection::Execute, 347
wxDDEConnection::OnAdvise, 347
wxDDEConnection::OnDisconnect, 347
wxDDEConnection::OnExecute, 347
wxDDEConnection::OnPoke, 348
wxDDEConnection::OnRequest, 348
wxDDEConnection::OnStartAdvise, 348
wxDDEConnection::OnStopAdvise, 348
wxDDEConnection::Poke, 348
wxDDEConnection::Request, 348
wxDDEConnection::StartAdvise, 349
wxDDEConnection::StopAdvise, 349
wxDDEConnection::wxDDEConnection,

346
wxDDEInitialize, 1452
wxDDEServer, 350
wxDDEServer::Create, 350
wxDDEServer::OnAcceptConnection,

350
wxDDEServer::wxDDEServer, 350
WXDEBUG_NEW, 1475
wxDebugContext overview, 1546
wxDebugContext::Check, 351
wxDebugContext::Dump, 351
wxDebugContext::GetCheckPrevious,

351
wxDebugContext::GetDebugMode, 351
wxDebugContext::GetLevel, 352
wxDebugContext::GetStream, 352
wxDebugContext::GetStreamBuf, 352
wxDebugContext::HasStream, 352
wxDebugContext::PrintClasses, 353
wxDebugContext::PrintStatistics, 353
wxDebugContext::SetCheckpoint, 353
wxDebugContext::SetCheckPrevious,

354
wxDebugContext::SetDebugMode, 354

INDEX

1741

wxDebugContext::SetFile, 354
wxDebugContext::SetLevel, 354
wxDebugContext::SetStandardError, 355
wxDebugContext::SetStream, 355
wxDebugMsg, 1453
wxDEFAULT_DIALOG_STYLE, 357
wxDEFAULT_FRAME_STYLE, 522, 811,

816, 862
wxDialog, 357, 358
wxDialog::~wxDialog, 358
wxDialog::Centre, 358
wxDialog::Create, 359
wxDialog::EndModal, 359
wxDialog::GetReturnCode, 359
wxDialog::GetTitle, 359
wxDialog::Iconize, 360
wxDialog::IsIconized, 360
wxDialog::IsModal, 360
wxDialog::OnApply, 361
wxDialog::OnCancel, 361
wxDialog::OnCharHook, 360
wxDialog::OnOK, 361
wxDialog::OnSysColourChanged, 362
wxDialog::SetModal, 362
wxDialog::SetReturnCode, 362
wxDialog::SetTitle, 363
wxDialog::Show, 363, 1683
wxDialog::ShowModal, 364
wxDialog::wxDialog, 357
wxDIALOG_EX_CONTEXTHELP, 357
wxDIALOG_MODAL, 357
wxDIALOG_NO_PARENT , 357
wxDialogBox, 1683
wxDialUpEvent, 364
wxDialUpEvent::IsConnectedEvent, 364
wxDialUpEvent::IsOwnEvent, 365
wxDialUpEvent::wxDialUpEvent, 364
wxDialUpManager::~wxDialUpManager,

366
wxDialUpManager::CancelDialing, 367
wxDialUpManager::Create, 366
wxDialUpManager::Dial, 366
wxDialUpManager::DisableAutoCheckO

nlineStatus, 368
wxDialUpManager::EnableAutoCheckO

nlineStatus, 368
wxDialUpManager::GetISPNames, 366
wxDialUpManager::HangUp, 367
wxDialUpManager::IsAlwaysOnline, 367
wxDialUpManager::IsDialing, 367
wxDialUpManager::IsOk, 366

wxDialUpManager::IsOnline, 368
wxDialUpManager::SetConnectComma

nd, 369
wxDialUpManager::SetOnlineStatus, 368
wxDialUpManager::SetWellKnownHost,

368
wxDir, 370
wxDir::~wxDir, 370
wxDir::Exists, 370
wxDir::GetAllFiles, 372
wxDir::GetFirst, 371
wxDir::GetNext, 371
wxDir::HasFiles, 371
wxDir::HasSubDirs, 371
wxDir::IsOpened, 371
wxDir::Open, 371
wxDir::Traverse, 372
wxDir::wxDir, 370
wxDIRCTRL_3D_INTERNAL , 548
wxDIRCTRL_DIR_ONLY, 548
wxDIRCTRL_SELECT_FIRST, 548
wxDIRCTRL_SHOW_FILTERS, 548
wxDirDialog, 374
wxDirDialog overview, 1590
wxDirDialog::~wxDirDialog, 375
wxDirDialog::GetMessage, 375
wxDirDialog::GetPath, 375
wxDirDialog::GetStyle, 375
wxDirDialog::SetMessage, 375
wxDirDialog::SetPath, 376
wxDirDialog::SetStyle, 376
wxDirDialog::ShowModal, 376
wxDirDialog::wxDirDialog, 374
wxDirExists, 1426
wxDirSelector, 1436
wxDirTraverser::OnDir, 374
wxDirTraverser::OnFile, 373
wxDisplayDepth, 1444
wxDisplaySize, 1444, 1453
wxDisplaySizeMM, 1444
wxDllLoader::GetDllExt, 377
wxDllLoader::GetProgramHandle, 377
wxDllLoader::GetSymbol, 378
wxDllLoader::LoadLibrary, 378
wxDllLoader::UnloadLibrary, 378
wxDocChildFrame, 381
wxDocChildFrame::~wxDocChildFrame,

381
wxDocChildFrame::GetDocument, 381
wxDocChildFrame::GetView, 381
wxDocChildFrame::m_childDocument,

INDEX

1742

380
wxDocChildFrame::m_childView, 380
wxDocChildFrame::OnActivate, 381
wxDocChildFrame::OnCloseWindow, 381
wxDocChildFrame::SetDocument, 381
wxDocChildFrame::SetView, 382
wxDocChildFrame::wxDocChildFrame,

381
wxDocManager, 383
wxDocManager overview, 1594
wxDocManager::~wxDocManager, 384
wxDocManager::ActivateView, 384
wxDocManager::AddDocument, 384
wxDocManager::AddFileToHistory, 384
wxDocManager::AssociateTemplate, 384
wxDocManager::CreateDocument, 384
wxDocManager::CreateView, 385
wxDocManager::DisassociateTemplate,

385
wxDocManager::FileHistoryAddFilesTo

Menu, 385
wxDocManager::FileHistoryLoad, 385
wxDocManager::FileHistoryRemoveMen

u, 386
wxDocManager::FileHistorySave, 386
wxDocManager::FileHistoryUseMenu,

386
wxDocManager::FindTemplateForPath,

386
wxDocManager::GetCurrentDocument,

386
wxDocManager::GetCurrentView, 387
wxDocManager::GetDocuments, 387
wxDocManager::GetFileHistory, 387
wxDocManager::GetLastDirectory, 387
wxDocManager::GetMaxDocsOpen, 387
wxDocManager::GetNoHistoryFiles, 387
wxDocManager::Initialize, 387
wxDocManager::m_currentView, 382
wxDocManager::m_defaultDocumentNa

meCounter, 382
wxDocManager::m_docs, 383
wxDocManager::m_fileHistory, 383
wxDocManager::m_flags, 383
wxDocManager::m_lastDirectory, 383
wxDocManager::m_maxDocsOpen, 383
wxDocManager::m_templates, 383
wxDocManager::MakeDefaultName, 388
wxDocManager::OnCreateFileHistory,

388
wxDocManager::OnFileClose, 388
wxDocManager::OnFileNew, 388

wxDocManager::OnFileOpen, 388
wxDocManager::OnFileSave, 388
wxDocManager::OnFileSaveAs , 389
wxDocManager::OnMenuCommand, 389
wxDocManager::RemoveDocument, 389
wxDocManager::SelectDocumentPath,

389
wxDocManager::SelectDocumentType,

390
wxDocManager::SelectViewType, 390
wxDocManager::SetLastDirectory, 390
wxDocManager::SetMaxDocsOpen, 391
wxDocManager::wxDocManager, 383
wxDocMDIChildFrame, 392
wxDocMDIChildFrame::~wxDocMDIChil

dFrame, 392
wxDocMDIChildFrame::GetDocument,

392
wxDocMDIChildFrame::GetView, 392
wxDocMDIChildFrame::m_childDocume

nt, 391
wxDocMDIChildFrame::m_childView, 391
wxDocMDIChildFrame::OnActivate, 392
wxDocMDIChildFrame::OnCloseWindo

w, 392
wxDocMDIChildFrame::SetDocument,

393
wxDocMDIChildFrame::SetView, 393
wxDocMDIChildFrame::wxDocMDIChild

Frame, 392
wxDocMDIParentFrame::~wxDocMDIPa

rentFrame, 394
wxDocMDIParentFrame::OnCloseWindo

w, 394
wxDocMDIParentFrame::wxDocMDIPar

entFrame, 393
wxDocParentFrame, 394, 395
wxDocParentFrame::~wxDocParentFra

me, 395
wxDocParentFrame::OnCloseWindow,

395
wxDocParentFrame::wxDocParentFram

e, 395
wxDocTemplate, 398
wxDocTemplate overview, 1593
wxDocTemplate::~wxDocTemplate, 398
wxDocTemplate::CreateDocument, 398
wxDocTemplate::CreateView, 399
wxDocTemplate::GetDefaultExtension,

399
wxDocTemplate::GetDescription, 399
wxDocTemplate::GetDirectory, 399

INDEX

1743

wxDocTemplate::GetDocumentManager
, 399

wxDocTemplate::GetDocumentName,
399

wxDocTemplate::GetFileFilter, 400
wxDocTemplate::GetFlags, 400
wxDocTemplate::GetViewName, 400
wxDocTemplate::IsVisible, 400
wxDocTemplate::m_defaultExt, 396
wxDocTemplate::m_description, 396
wxDocTemplate::m_directory, 396
wxDocTemplate::m_docClassInfo, 396
wxDocTemplate::m_docTypeName, 397
wxDocTemplate::m_documentManager,

397
wxDocTemplate::m_fileFilter, 397
wxDocTemplate::m_flags, 397
wxDocTemplate::m_viewClassInfo, 397
wxDocTemplate::m_viewTypeName, 397
wxDocTemplate::SetDefaultExtension,

400
wxDocTemplate::SetDescription, 400
wxDocTemplate::SetDirectory, 400
wxDocTemplate::SetDocumentManager,

401
wxDocTemplate::SetFileFilter, 401
wxDocTemplate::SetFlags, 401
wxDocTemplate::wxDocTemplate, 397
wxDocument, 403
wxDocument overview, 1592
wxDocument::~wxDocument, 403
wxDocument::AddView, 403
wxDocument::Close, 403
wxDocument::DeleteAllViews, 403
wxDocument::GetCommandProcessor,

403
wxDocument::GetDocumentManager,

404
wxDocument::GetDocumentName, 404
wxDocument::GetDocumentTemplate,

404
wxDocument::GetDocumentWindow, 404
wxDocument::GetFilename, 404
wxDocument::GetFirstView, 404
wxDocument::GetPrintableName, 405
wxDocument::GetTitle, 405
wxDocument::GetViews, 405
wxDocument::IsModified, 405
wxDocument::LoadObject, 405
wxDocument::m_commandProcessor,

402
wxDocument::m_documentFile, 402

wxDocument::m_documentModified, 402
wxDocument::m_documentTemplate,

402
wxDocument::m_documentTitle, 402
wxDocument::m_documentTypeName,

402
wxDocument::m_documentViews, 403
wxDocument::Modify, 406
wxDocument::OnChangedViewList, 406
wxDocument::OnCloseDocument, 406
wxDocument::OnCreate, 406
wxDocument::OnCreateCommandProce

ssor, 406
wxDocument::OnNewDocument, 407
wxDocument::OnOpenDocument, 407
wxDocument::OnSaveDocument, 407
wxDocument::OnSaveModified, 407
wxDocument::RemoveView, 407
wxDocument::Save, 408
wxDocument::SaveAs , 408
wxDocument::SaveObject, 408
wxDocument::SetCommandProcessor,

408
wxDocument::SetDocumentName, 408
wxDocument::SetDocumentTemplate,

408
wxDocument::SetFilename, 409
wxDocument::SetTitle, 409
wxDocument::UpdateAllViews, 409
wxDocument::wxDocument, 403
wxDos2UnixFilename, 1426
wxDOUBLE_BORDER, 1359
wxDragImage, 410, 411
wxDragImage::BeginDrag, 411
wxDragImage::DoDrawImage, 412
wxDragImage::EndDrag, 412
wxDragImage::GetImageRect, 413
wxDragImage::Hide, 413
wxDragImage::Move, 413
wxDragImage::Show, 413
wxDragImage::UpdateBackingFromWin

dow, 413
wxDragImage::wxDragImage, 410
wxDragResult, 416, 418
wxDROP_ICON, 1450
wxDropFilesEvent, 415
wxDropFilesEvent::GetFiles, 415
wxDropFilesEvent::GetNumberOfFiles,

415
wxDropFilesEvent::GetPosition, 415
wxDropFilesEvent::m_files, 415
wxDropFilesEvent::m_noFiles, 415

INDEX

1744

wxDropFilesEvent::m_pos, 415
wxDropFilesEvent::wxDropFilesEvent,

415
wxDropSource, 416
wxDropSource::~wxDropSource, 417
wxDropSource::DoDragDrop, 417
wxDropSource::GiveFeedback, 417
wxDropSource::SetData, 417
wxDropSource::wxDropSource, 416
wxDropTarget, 419
wxDropTarget::~wxDropTarget, 419
wxDropTarget::GetData, 419
wxDropTarget::OnData, 419
wxDropTarget::OnDragOver, 420
wxDropTarget::OnDrop, 419
wxDropTarget::OnEnter, 420
wxDropTarget::OnLeave, 421
wxDropTarget::SetDataObject, 421
wxDropTarget::wxDropTarget, 419
wxDynamicCast, 1475, 1476
wxDynamicCastThis, 1476
wxDynamicLibrary, 379
wxDynamicLibrary::GetSymbol, 380
wxDynamicLibrary::IsLoaded, 379
wxDynamicLibrary::Load, 379
wxDynamicLibrary::Unload, 379
wxDynamicLibrary::wxDynamicLibrary,

379
wxEdge, 711
wxEmptyClipboard, 1449
wxEnableTopLevelWindow, 1453
wxEncodingConverter, 422
wxEncodingConverter::Convert, 422
wxEncodingConverter::GetAllEquivalent

s, 423
wxEncodingConverter::GetPlatformEqui

valents, 423
wxEncodingConverter::Init, 422
wxEncodingConverter::wxEncodingCon

verter, 422
wxEndBusyCursor, 1454
wxEntry, 1454
wxEnumClipboardFormats, 1449
wxEraseEvent, 424
wxEraseEvent::GetDC, 425
wxEraseEvent::m_dc, 425
wxEraseEvent::wxEraseEvent, 424
wxError, 1455
wxEvent, 425
wxEvent::Clone, 426
wxEvent::GetEventObject, 427

wxEvent::GetEventType, 427
wxEvent::GetId , 427
wxEvent::GetObjectType, 427
wxEvent::GetSkipped, 427
wxEvent::GetTimestamp, 427
wxEvent::m_eventObject, 425
wxEvent::m_eventType, 426
wxEvent::m_id, 426
wxEvent::m_skipped, 426
wxEvent::m_timeStamp, 426
wxEvent::SetEventObject, 427
wxEvent::SetEventType, 428
wxEvent::SetId, 428
wxEvent::SetTimestamp, 428
wxEvent::Skip, 428
wxEvent::wxEvent, 425
wxEvtHandler, 429
wxEvtHandler::~wxEvtHandler, 429
wxEvtHandler::AddPendingEvent, 429
wxEvtHandler::Connect, 430
wxEvtHandler::Disconnect, 430
wxEvtHandler::GetClientData, 431
wxEvtHandler::GetEvtHandlerEnabled,

431
wxEvtHandler::GetNextHandler, 432
wxEvtHandler::GetPreviousHandler, 432
wxEvtHandler::ProcessEvent, 432
wxEvtHandler::SearchEventTable, 433
wxEvtHandler::SetClientData, 434
wxEvtHandler::SetEvtHandlerEnabled,

434
wxEvtHandler::SetNextHandler, 435
wxEvtHandler::SetPreviousHandler, 435
wxEvtHandler::wxEvtHandler, 429
wxExecute, 1455
wxExit, 1456
wxExpr, 436
wxExpr compilation, 1549
wxExpr for data file manipulation, 1548
wxExpr::~wxExpr, 437
wxExpr::AddAttributeValue, 437
wxExpr::AddAttributeValueString, 437
wxExpr::AddAttributeValueStringList, 437
wxExpr::AddAttributeValueWord, 438
wxExpr::Append, 438
wxExpr::Arg, 438
wxExpr::AttributeValue, 439
wxExpr::Copy, 439
wxExpr::DeleteAttributeValue, 439
wxExpr::Functor, 439
wxExpr::GetAttributeValue, 438

INDEX

1745

wxExpr::GetAttributeValueStringList, 439
wxExpr::GetClientData, 440
wxExpr::GetFirst, 440
wxExpr::GetLast, 440
wxExpr::GetNext, 440
wxExpr::Insert, 438
wxExpr::IntegerValue, 440
wxExpr::Nth, 440
wxExpr::RealValue, 441
wxExpr::SetClientData, 441
wxExpr::StringValue, 441
wxExpr::Type, 441
wxExpr::WordValue, 441
wxExpr::WriteClause, 442
wxExpr::WriteExpr, 442
wxExpr::wxExpr, 436
wxExprCleanUp, 442
wxExprDatabase, 443
wxExprDatabase::~wxExprDatabase,

443
wxExprDatabase::Append, 444
wxExprDatabase::BeginFind, 444
wxExprDatabase::ClearDatabase, 444
wxExprDatabase::FindClause, 444
wxExprDatabase::FindClauseByFunctor,

445
wxExprDatabase::GetErrorCount, 445
wxExprDatabase::HashFind, 445
wxExprDatabase::Read, 445
wxExprDatabase::ReadFromString, 445
wxExprDatabase::Write, 446
wxExprDatabase::wxExprDatabase, 443
wxExprIsFunctor, 442
wxFAIL, 1487
wxFAIL_MSG, 1487
wxFatalError, 1456
wxFFile, 453
wxFFile::~wxFFile, 453
wxFFile::Attach, 454
wxFFile::Close, 454
wxFFile::Detach, 454
wxFFile::Eof, 454
wxFFile::Flush, 454
wxFFile::fp, 454
wxFFile::IsOpened, 455
wxFFile::Length, 455
wxFFile::Open, 455
wxFFile::Read, 455
wxFFile::Seek, 456
wxFFile::SeekEnd, 456
wxFFile::Tell, 456

wxFFile::Write, 456, 457
wxFFile::wxFFile, 453
wxFFileInputStream, 470
wxFFileInputStream::~wxFFileInputStre

am, 470
wxFFileInputStream::Ok, 471
wxFFileInputStream::wxFFileInputStrea

m, 470
wxFFileOutputStream, 471, 472
wxFFileOutputStream::~wxFFileOutputS

tream, 472
wxFFileOutputStream::Ok, 472
wxFFileOutputStream::wxFFileOutputStr

eam, 471
wxFFileStream, 472
wxFFileStream::wxFFileStream, 472
wxFile, 447, 448
wxFile::~wxFile, 448
wxFile::Access, 448
wxFile::Attach, 448
wxFile::Close, 448
wxFile::Create, 449
wxFile::Detach, 449
wxFile::Eof, 449
wxFile::Exists, 449
wxFile::fd, 449
wxFile::Flush, 450
wxFile::IsOpened, 450
wxFile::Length, 450
wxFile::Open, 450
wxFile::Read, 450
wxFile::Seek, 451
wxFile::SeekEnd, 451
wxFile::Tell, 451
wxFile::Write, 452
wxFile::wxFile, 447
wxFileDataObject, 457, 458
wxFileDataObject::AddFile, 458
wxFileDataObject::GetFilenames, 458
wxFileDialog, 459
wxFileDialog overview, 1589
wxFileDialog::~wxFileDialog, 460
wxFileDialog::GetDirectory, 460
wxFileDialog::GetFilename, 460
wxFileDialog::GetFilenames, 460
wxFileDialog::GetFilterIndex, 460
wxFileDialog::GetMessage, 460
wxFileDialog::GetPath, 461
wxFileDialog::GetPaths, 461
wxFileDialog::GetStyle, 461
wxFileDialog::GetWildcard, 461

INDEX

1746

wxFileDialog::SetDirectory, 461
wxFileDialog::SetFilename, 461
wxFileDialog::SetFilterIndex, 462
wxFileDialog::SetMessage, 462
wxFileDialog::SetPath, 462
wxFileDialog::SetStyle, 462
wxFileDialog::SetWildcard, 462
wxFileDialog::ShowModal, 462
wxFileDialog::wxFileDialog, 459
wxFileDropTarget, 463
wxFileDropTarget::OnDrop, 463
wxFileDropTarget::OnDropFiles, 463
wxFileDropTarget::wxFileDropTarget,

463
wxFileExists, 1426
wxFileHistory, 465
wxFileHistory overview, 1595
wxFileHistory::~wxFileHistory, 465
wxFileHistory::AddFilesToMenu, 465
wxFileHistory::AddFileToHistory, 465
wxFileHistory::GetHistoryFile, 465
wxFileHistory::GetMaxFiles, 466
wxFileHistory::GetNoHistoryFiles, 466
wxFileHistory::Load, 466
wxFileHistory::m_fileHistory, 464
wxFileHistory::m_fileHistoryN, 464
wxFileHistory::m_fileMaxFiles, 465
wxFileHistory::m_fileMenu, 465
wxFileHistory::RemoveMenu, 466
wxFileHistory::Save, 466
wxFileHistory::UseMenu, 467
wxFileHistory::wxFileHistory, 465
wxFileInputStream, 467
wxFileInputStream::~wxFileInputStream,

468
wxFileInputStream::Ok, 468
wxFileInputStream::wxFileInputStream,

467
wxFileModificationTime, 1426
wxFileName, 475, 476
wxFileName::AppendDir, 476
wxFileName::Assign, 476
wxFileName::AssignCwd, 476
wxFileName::AssignDir, 476
wxFileName::AssignHomeDir, 477
wxFileName::AssignTempFileName, 477
wxFileName::Clear, 477
wxFileName::CreateTempFileName, 477
wxFileName::DirExists, 477
wxFileName::DirName, 478
wxFileName::FileExists, 478

wxFileName::FileName, 478
wxFileName::GetCwd, 478
wxFileName::GetDirCount, 478
wxFileName::GetDirs, 478
wxFileName::GetExt, 479
wxFileName::GetFormat, 479
wxFileName::GetFullName, 479
wxFileName::GetFullPath, 479
wxFileName::GetHomeDir, 479
wxFileName::GetLongPath, 479
wxFileName::GetModificationTime, 479
wxFileName::GetName, 479
wxFileName::GetPath, 480
wxFileName::GetPathSeparators, 480
wxFileName::GetPathWithSep, 480
wxFileName::GetShortPath, 480
wxFileName::GetTimes, 480
wxFileName::GetVolume, 480
wxFileName::GetVolumeSeparator, 480
wxFileName::HasExt, 481
wxFileName::HasName, 481
wxFileName::HasVolume, 481
wxFileName::InsertDir, 481
wxFileName::IsAbsolute, 481
wxFileName::IsCaseSensitive, 481
wxFileName::IsOk, 481
wxFileName::IsPathSeparator, 481
wxFileName::IsRelative, 482
wxFileName::IsWild, 482
wxFileName::MakeRelativeTo, 482
wxFileName::Mkdir, 482
wxFileName::Normalize, 483
wxFileName::operator=, 485
wxFileName::operator==, 485
wxFileName::PrependDir, 483
wxFileName::RemoveDir, 483
wxFileName::Rmdir, 483
wxFileName::SameAs , 483
wxFileName::SetCwd, 484
wxFileName::SetExt, 484
wxFileName::SetFullName, 484
wxFileName::SetName, 484
wxFileName::SetTimes, 484
wxFileName::SetVolume, 484
wxFileName::SplitPath, 484
wxFileName::Touch, 485
wxFileName::wxFileName, 475
wxFileNameFromPath, 1426
wxFilenameListValidator, 485
wxFilenameListValidator::wxFilenameLi

stValidator, 485

INDEX

1747

wxFileOutputStream, 469
wxFileOutputStream::~wxFileOutputStre

am, 469
wxFileOutputStream::Ok, 469
wxFileOutputStream::wxFileOutputStrea

m, 468
wxFileSelector, 1437
wxFileStream, 469
wxFileStream::wxFileStream, 469
wxFileSystem, 486
wxFileSystem::AddHandler, 486
wxFileSystem::ChangePathTo, 486
wxFileSystem::FindFirst, 487
wxFileSystem::FindNext, 487
wxFileSystem::GetPath, 487
wxFileSystem::OpenFile, 488
wxFileSystem::wxFileSystem, 486
wxFileSystemHandler, 488
wxFileSystemHandler::CanOpen, 489
wxFileSystemHandler::FindFirst, 490
wxFileSystemHandler::FindNext, 490
wxFileSystemHandler::GetAnchor, 489
wxFileSystemHandler::GetLeftLocation,

489
wxFileSystemHandler::GetMimeTypeFr

omExt, 489
wxFileSystemHandler::GetProtocol, 489
wxFileSystemHandler::GetRightLocation

, 490
wxFileSystemHandler::OpenFile, 490
wxFileSystemHandler::wxFileSystemHa

ndler, 488
wxFileType, 493
wxFileType::~wxFileType, 493
wxFileType::ExpandCommand, 494
wxFileType::GetDescription, 494
wxFileType::GetExtensions, 493
wxFileType::GetIcon, 493
wxFileType::GetMimeType, 493
wxFileType::GetMimeTypes, 493
wxFileType::GetOpenCommand, 494
wxFileType::GetPrintCommand, 494
wxFileType::wxFileType, 492
wxFilterInputStream, 496
wxFilterInputStream::wxFilterInputStrea

m, 496
wxFilterOutputStream, 497
wxFilterOutputStream::wxFilterOutputStr

eam, 497
wxFindDialogEvent, 498
wxFindDialogEvent::GetDialog, 498

wxFindDialogEvent::GetFindString, 498
wxFindDialogEvent::GetFlags, 498
wxFindDialogEvent::GetReplaceString,

498
wxFindDialogEvent::wxFindDialogEvent,

498
wxFindFirstFile, 1427
wxFindMenuItemId, 1456
wxFindNextFile, 1427
wxFindReplaceData, 500
wxFindReplaceData::GetFindString, 500
wxFindReplaceData::GetFlags, 500
wxFindReplaceData::GetReplaceString,

500
wxFindReplaceData::SetFindString, 500
wxFindReplaceData::SetFlags, 500
wxFindReplaceData::SetReplaceString,

500
wxFindReplaceData::wxFindReplaceDat

a, 500
wxFindReplaceDialog, 501
wxFindReplaceDialog::~wxFindReplace

Dialog, 501
wxFindReplaceDialog::Create, 501
wxFindReplaceDialog::GetData, 502
wxFindReplaceDialog::wxFindReplaceD

ialog, 501
wxFindWindowAtPoint, 1457
wxFindWindowAtPointer, 1457
wxFindWindowByLabel, 1457
wxFindWindowByName, 1457
wxFlexGridSizer, 495
wxFlexGridSizer::AddGrowableCol, 495
wxFlexGridSizer::AddGrowableRow, 495
wxFlexGridSizer::RemoveGrowableCol,

496
wxFlexGridSizer::RemoveGrowableRow

, 496
wxFlexGridSizer::wxFlexGridSizer, 495
wxFocusEvent, 502
wxFocusEvent::wxFocusEvent, 502
wxFont, 504, 505
wxFont::~wxFont, 506
wxFont::GetDefaultEncoding, 506
wxFont::GetFaceName, 506
wxFont::GetFamily, 506
wxFont::GetFontId, 507
wxFont::GetPointSize, 507
wxFont::GetStyle, 507
wxFont::GetUnderlined, 507
wxFont::GetWeight, 508
wxFont::operator !=, 511

INDEX

1748

wxFont::operator =, 510
wxFont::operator ==, 510
wxFont::SetDefaultEncoding, 508
wxFont::SetFaceName, 508
wxFont::SetFamily, 508
wxFont::SetPointSize, 509
wxFont::SetStyle, 509
wxFont::SetUnderlined, 510
wxFont::SetWeight, 510
wxFont::wxFont, 504
wxFontData, 511
wxFontData::~wxFontData, 511
wxFontData::EnableEffects, 511
wxFontData::GetAllowSymbols, 512
wxFontData::GetChosenFont, 512
wxFontData::GetColour, 512
wxFontData::GetEnableEffects, 512
wxFontData::GetInitialFont, 512
wxFontData::GetShowHelp, 513
wxFontData::operator =, 514
wxFontData::SetAllowSymbols, 513
wxFontData::SetChosenFont, 513
wxFontData::SetColour, 513
wxFontData::SetInitialFont, 513
wxFontData::SetRange, 513
wxFontData::SetShowHelp, 514
wxFontData::wxFontData, 511
wxFontDialog, 514
wxFontDialog overview, 1588
wxFontDialog::~wxFontDialog, 515
wxFontDialog::GetFontData, 515
wxFontDialog::ShowModal, 515
wxFontDialog::wxFontDialog, 514
wxFontEnumerator::EnumerateEncodin

gs, 516
wxFontEnumerator::EnumerateFacena

mes, 516
wxFontEnumerator::GetEncodings, 516
wxFontEnumerator::GetFacenames, 516
wxFontEnumerator::OnFacename, 517
wxFontEnumerator::OnFontEncoding,

517
wxFontList, 518
wxFontList::AddFont, 518
wxFontList::FindOrCreateFont, 518
wxFontList::RemoveFont, 518
wxFontList::wxFontList, 517
wxFontMapper, 519
wxFontMapper::~wxFontMapper, 520
wxFontMapper::CharsetToEncoding, 520
wxFontMapper::GetAltForEncoding, 520

wxFontMapper::GetEncodingDescription
, 521

wxFontMapper::GetEncodingName, 520
wxFontMapper::IsEncodingAvailable, 520
wxFontMapper::SetConfig, 521
wxFontMapper::SetConfigPath, 521
wxFontMapper::SetDialogParent, 521
wxFontMapper::SetDialogTitle, 521
wxFontMapper::wxFontMapper, 519
wxForm, 1683
wxFrame, 523
wxFrame::~wxFrame, 524
wxFrame::Centre, 524
wxFrame::Command, 524
wxFrame::Create, 524
wxFrame::CreateStatusBar, 525
wxFrame::CreateToolBar, 525
wxFrame::GetClientAreaOrigin, 526
wxFrame::GetMenuBar, 526
wxFrame::GetStatusBar, 527
wxFrame::GetTitle, 527
wxFrame::GetToolBar, 527
wxFrame::Iconize, 527
wxFrame::IsFullScreen, 527
wxFrame::IsIconized, 528
wxFrame::IsMaximized, 528
wxFrame::Maximize, 528
wxFrame::OnActivate, 528
wxFrame::OnCreateStatusBar, 529
wxFrame::OnCreateToolBar, 529
wxFrame::OnMenuCommand, 530
wxFrame::OnMenuHighlight, 530
wxFrame::OnSize, 530
wxFrame::SetIcon, 530
wxFrame::SetMenuBar, 531
wxFrame::SetStatusBar, 531
wxFrame::SetStatusText, 532
wxFrame::SetStatusWidths, 532
wxFrame::SetTitle, 533
wxFrame::SetToolBar, 533
wxFrame::ShowFullScreen, 533
wxFrame::wxFrame, 523
wxFRAME_EX_CONTEXTHELP, 522
wxFRAME_FLOAT_ON_PARENT, 522
wxFRAME_NO_TASKBAR, 522
wxFRAME_NO_WINDOW_MENU, 817
wxFRAME_TOOL_WINDOW, 522
wxFSFile, 534
wxFSFile::GetAnchor, 535
wxFSFile::GetLocation, 535
wxFSFile::GetMimeType, 535

INDEX

1749

wxFSFile::GetModificationTime, 536
wxFSFile::GetStream, 536
wxFSFile::wxFSFile, 534
wxFTP, 537
wxFTP::~wxFTP, 538
wxFTP::ChDir, 538
wxFTP::CheckCommand, 538
wxFTP::GetDirList, 540
wxFTP::GetFilesList, 541
wxFTP::GetInputStream, 541
wxFTP::GetLastResult, 538
wxFTP::GetOutputStream, 541
wxFTP::MkDir, 538
wxFTP::Pwd, 539
wxFTP::Rename, 539
wxFTP::RmDir, 539
wxFTP::RmFile, 539
wxFTP::SendCommand, 538
wxFTP::SetAscii, 539
wxFTP::SetBinary, 539
wxFTP::SetPassword, 540
wxFTP::SetTransferMode, 539
wxFTP::SetUser, 540
wxFTP::wxFTP, 537
wxGA_HORIZONTAL, 543
wxGA_PROGRESSBAR, 543
wxGA_SMOOTH, 543
wxGA_VERTICAL, 543
wxGauge, 543
wxGauge::~wxGauge, 544
wxGauge::Create, 544
wxGauge::GetBezelFace, 544
wxGauge::GetRange, 545
wxGauge::GetShadowWidth, 545
wxGauge::GetValue, 545
wxGauge::SetBezelFace, 545
wxGauge::SetRange, 546
wxGauge::SetShadowWidth, 546
wxGauge::SetValue, 546
wxGauge::wxGauge, 543
wxGDIObject, 547
wxGDIObject::wxGDIObject, 547
wxGenericDirCtrl, 548
wxGenericDirCtrl::~wxGenericDirCtrl,

549
wxGenericDirCtrl::Create, 549
wxGenericDirCtrl::ExpandPath, 549
wxGenericDirCtrl::GetDefaultPath, 549
wxGenericDirCtrl::GetFilePath, 550
wxGenericDirCtrl::GetFilter, 550
wxGenericDirCtrl::GetFilterIndex, 550

wxGenericDirCtrl::GetFilterListCtrl, 550
wxGenericDirCtrl::GetPath, 550
wxGenericDirCtrl::GetRootId, 550
wxGenericDirCtrl::GetTreeCtrl, 550
wxGenericDirCtrl::Init, 549
wxGenericDirCtrl::SetDefaultPath, 551
wxGenericDirCtrl::SetFilter, 551
wxGenericDirCtrl::SetFilterIndex, 551
wxGenericDirCtrl::SetPath, 551
wxGenericDirCtrl::wxGenericDirCtrl, 548
wxGenericValidator, 552
wxGenericValidator::~wxGenericValidat

or, 553
wxGenericValidator::Clone, 553
wxGenericValidator::TransferFromWind

ow, 553
wxGenericValidator::TransferToWindow,

553
wxGenericValidator::wxGenericValidator

, 552
wxGetActiveWindow, 1458
wxGetClientDisplayRect, 1444
wxGetClipboardData, 1449
wxGetClipboardFormatName, 1449
wxGetColourFromUser, 1437
wxGetCwd, 1429
wxGetDiskSpace, 1427
wxGetDisplayName, 1458
wxGetDisplaySize, 1444
wxGetDisplaySizeMM, 1444
wxGetElapsedTime, 1485
wxGetEmailAddress, 1432
wxGetenv, 1489
wxGetEnv, 1489
wxGetFreeMemory, 1458
wxGetFullHostName, 1431
wxGetHomeDir, 1458
wxGetHostName, 1432
wxGetLocalTime, 1485
wxGetLocalTimeMillis, 1485
wxGetMousePosition, 1459
wxGetMultipleChoice, 1440
wxGetMultipleChoices, 1438
wxGetNumberFromUser, 1439
wxGetOsDescription, 1459
wxGetOSDirectory, 1428
wxGetOsVersion, 1459
wxGetPrinterCommand, 1446
wxGetPrinterFile, 1446
wxGetPrinterMode, 1446
wxGetPrinterOptions, 1446

INDEX

1750

wxGetPrinterOrientation, 1446
wxGetPrinterPreviewCommand, 1446
wxGetPrinterScaling, 1446
wxGetPrinterTranslation, 1447
wxGetResource, 1460
wxGetSingleChoice, 1440, 1441
wxGetSingleChoiceData, 1442
wxGetSingleChoiceIndex, 1441
wxGetTempFileName, 1429
wxGetTextFromUser, 1439
wxGetTranslation, 1435
wxGetUserHome, 1461
wxGetUserId, 1432, 1461
wxGetUserName, 1433, 1461
wxGetUTCTime, 1486
wxGetWorkingDirectory, 1429
wxGIFHandler, 685
wxGLCanvas, 554
wxGLCanvas::SetColour, 554
wxGLCanvas::SetCurrent, 554
wxGLCanvas::SwapBuffers, 555
wxGLCanvas::wxGLCanvas, 554
wxGrid, 556, 584
wxGrid::~wxGrid, 556
wxGrid::AppendCols, 557
wxGrid::AppendRows, 557
wxGrid::AutoSize, 557
wxGrid::AutoSizeColOrRow, 590
wxGrid::AutoSizeColumn, 557
wxGrid::AutoSizeColumns, 557
wxGrid::AutoSizeRow, 558
wxGrid::AutoSizeRows, 558
wxGrid::BeginBatch, 558
wxGrid::BlockToDeviceRect, 582
wxGrid::CanDragColSize, 558
wxGrid::CanDragGridSize, 559
wxGrid::CanDragRowSize, 559
wxGrid::CanEnableCellControl, 559
wxGrid::CanHaveAttributes, 590
wxGrid::CellToRect, 559
wxGrid::ClearGrid, 559
wxGrid::ClearSelection, 560
wxGrid::CreateGrid, 560
wxGrid::DeleteCols, 560
wxGrid::DeleteRows, 560
wxGrid::DisableCellEditControl, 560
wxGrid::DisableDragColSize, 561
wxGrid::DisableDragGridSize, 561
wxGrid::DisableDragRowSize, 561
wxGrid::DoGetBestSize, 588
wxGrid::EnableCellEditControl, 561

wxGrid::EnableDragColSize, 561
wxGrid::EnableDragGridSize, 561
wxGrid::EnableDragRowSize, 562
wxGrid::EnableEditing, 562
wxGrid::EnableGridLines, 562
wxGrid::EndBatch, 562
wxGrid::Fit, 588
wxGrid::ForceRefresh, 562
wxGrid::GetBatchCount, 563
wxGrid::GetCellAlignment, 563
wxGrid::GetCellBackgroundColour, 563
wxGrid::GetCellEditor, 563
wxGrid::GetCellFont, 563
wxGrid::GetCellRenderer, 563
wxGrid::GetCellTextColour, 564
wxGrid::GetCellTextFont, 587
wxGrid::GetCellValue, 564
wxGrid::GetColLabelAlignment, 564
wxGrid::GetColLabelSize, 564
wxGrid::GetColLabelValue, 565
wxGrid::GetColLeft, 589
wxGrid::GetColMinimalWidth, 590
wxGrid::GetColRight, 589
wxGrid::GetCols, 584
wxGrid::GetColSize, 565
wxGrid::GetColumnWidth, 586
wxGrid::GetColWidth, 589
wxGrid::GetCursorColumn, 585
wxGrid::GetCursorRow, 585
wxGrid::GetDefaultCellAlignment, 565
wxGrid::GetDefaultCellBackgroundColo

ur, 565
wxGrid::GetDefaultCellFont, 565
wxGrid::GetDefaultCellTextColour, 565
wxGrid::GetDefaultColLabelSize, 566
wxGrid::GetDefaultColSize, 566
wxGrid::GetDefaultEditor, 566
wxGrid::GetDefaultEditorForCell, 583
wxGrid::GetDefaultEditorForType, 584
wxGrid::GetDefaultRenderer, 566
wxGrid::GetDefaultRendererForCell, 583
wxGrid::GetDefaultRendererForType,

584
wxGrid::GetDefaultRowLabelSize, 566
wxGrid::GetDefaultRowSize, 566
wxGrid::GetDividerPen, 588
wxGrid::GetEditable, 587
wxGrid::GetEditInPlace, 587
wxGrid::GetGridCursorCol, 566
wxGrid::GetGridCursorRow, 567
wxGrid::GetGridLineColour, 567

INDEX

1751

wxGrid::GetLabelAlignment, 586
wxGrid::GetLabelBackgroundColour, 567
wxGrid::GetLabelFont, 567
wxGrid::GetLabelSize, 586
wxGrid::GetLabelTextColour, 567
wxGrid::GetLabelValue, 587
wxGrid::GetNumberCols, 567
wxGrid::GetNumberRows, 568
wxGrid::GetOrCreateCellAttr, 590
wxGrid::GetRowBottom, 589
wxGrid::GetRowHeight, 589
wxGrid::GetRowLabelAlignment, 568
wxGrid::GetRowLabelSize, 568
wxGrid::GetRowLabelValue, 568
wxGrid::GetRowMinimalHeight, 590
wxGrid::GetRows, 584
wxGrid::GetRowSize, 568
wxGrid::GetRowTop, 589
wxGrid::GetScrollPosX, 585
wxGrid::GetScrollPosY, 585
wxGrid::GetSelectionBackground, 583
wxGrid::GetSelectionForeground, 583
wxGrid::GetTable, 568
wxGrid::GetViewHeight, 586
wxGrid::GetViewWidth, 586
wxGrid::GridLinesEnabled, 567
wxGrid::HideCellEditControl, 569
wxGrid::InitColWidths, 588
wxGrid::InitRowHeights, 588
wxGrid::InsertCols, 569
wxGrid::InsertRows, 569
wxGrid::IsCellEditControlEnabled, 569
wxGrid::IsCurrentCellReadOnly, 570
wxGrid::IsEditable, 570
wxGrid::IsInSelection, 582
wxGrid::IsReadOnly, 570
wxGrid::IsSelection, 570
wxGrid::IsVisible, 570
wxGrid::MakeCellVisible, 570
wxGrid::MoveCursorDown, 571
wxGrid::MoveCursorDownBlock, 571
wxGrid::MoveCursorLeft, 571
wxGrid::MoveCursorLeftBlock, 572
wxGrid::MoveCursorRight, 571
wxGrid::MoveCursorRightBlock, 572
wxGrid::MoveCursorUp, 571
wxGrid::MoveCursorUpBlock, 572
wxGrid::MovePageDown, 573
wxGrid::MovePageUp, 573
wxGrid::OnActivate, 588
wxGrid::RegisterDataType, 583

wxGrid::SaveEditControlValue, 573
wxGrid::SelectAll, 573
wxGrid::SelectBlock, 573
wxGrid::SelectCol, 574
wxGrid::SelectionToDeviceRect, 583
wxGrid::SelectRow, 574
wxGrid::SetCellAlignment, 574
wxGrid::SetCellBackgroundColour, 587
wxGrid::SetCellBitmap, 588
wxGrid::SetCellEditor, 574
wxGrid::SetCellFont, 574
wxGrid::SetCellRenderer, 575
wxGrid::SetCellTextColour, 575
wxGrid::SetCellTextFont, 587
wxGrid::SetCellValue, 575
wxGrid::SetColAttr, 575
wxGrid::SetColFormatBool, 576
wxGrid::SetColFormatCustom, 576
wxGrid::SetColFormatFloat, 576
wxGrid::SetColFormatNumber, 576
wxGrid::SetColLabelAlignment, 576
wxGrid::SetColLabelSize, 576
wxGrid::SetColLabelValue, 577
wxGrid::SetColMinimalWidth, 577
wxGrid::SetColSize, 577
wxGrid::SetColumnWidth, 585
wxGrid::SetDefaultCellAlignment, 577
wxGrid::SetDefaultCellBackgroundColo

ur, 578
wxGrid::SetDefaultCellFont, 578
wxGrid::SetDefaultColSize, 578
wxGrid::SetDefaultEditor, 578
wxGrid::SetDefaultRenderer, 578
wxGrid::SetDefaultRowSize, 578
wxGrid::SetDividerPen, 588
wxGrid::SetEditable, 587
wxGrid::SetEditInPlace, 588
wxGrid::SetGridCursor, 579
wxGrid::SetGridLineColour, 579
wxGrid::SetLabelAlignment, 586
wxGrid::SetLabelBackgroundColour, 579
wxGrid::SetLabelFont, 579
wxGrid::SetLabelSize, 586
wxGrid::SetLabelTextColour, 579
wxGrid::SetLabelValue, 587
wxGrid::SetMargins, 584
wxGrid::SetOrCalcColumnSizes, 589
wxGrid::SetOrCalcRowSizes, 589
wxGrid::SetReadOnly, 579
wxGrid::SetRowAttr, 580
wxGrid::SetRowHeight, 586

INDEX

1752

wxGrid::SetRowLabelAlignment, 580
wxGrid::SetRowLabelSize, 580
wxGrid::SetRowLabelValue, 580
wxGrid::SetRowMinimalHeight, 580
wxGrid::SetRowSize, 580
wxGrid::SetScrollX, 585
wxGrid::SetScrollY, 585
wxGrid::SetSelectionBackground, 583
wxGrid::SetSelectionForeground, 583
wxGrid::SetSelectionMode, 581
wxGrid::SetTable, 581
wxGrid::ShowCellEditControl, 581
wxGrid::UpdateDimensions, 584
wxGrid::wxGrid, 556, 584
wxGrid::XToCol, 582
wxGrid::XToEdgeOfCol, 582
wxGrid::YToEdgeOfRow, 582
wxGrid::YToRow, 582
wxGridCellAttr, 591
wxGridCellAttr::Clone, 591
wxGridCellAttr::DecRef, 591
wxGridCellAttr::GetAlignment, 593
wxGridCellAttr::GetBackgroundColour,

593
wxGridCellAttr::GetEditor, 593
wxGridCellAttr::GetFont, 593
wxGridCellAttr::GetRenderer, 593
wxGridCellAttr::GetTextColour, 593
wxGridCellAttr::HasAlignment, 592
wxGridCellAttr::HasBackgroundColour,

592
wxGridCellAttr::HasEditor, 593
wxGridCellAttr::HasFont, 592
wxGridCellAttr::HasRenderer, 593
wxGridCellAttr::HasTextColour, 592
wxGridCellAttr::IncRef, 591
wxGridCellAttr::IsReadOnly, 593
wxGridCellAttr::SetAlignment, 592
wxGridCellAttr::SetBackgroundColour,

591
wxGridCellAttr::SetDefAttr, 593
wxGridCellAttr::SetEditor, 592
wxGridCellAttr::SetFont, 591
wxGridCellAttr::SetReadOnly, 592
wxGridCellAttr::SetRenderer, 592
wxGridCellAttr::SetTextColour, 591
wxGridCellAttr::wxGridCellAttr, 591
wxGridCellEditor, 594
wxGridCellEditor::~wxGridCellEditor, 596
wxGridCellEditor::BeginEdit, 595
wxGridCellEditor::Clone, 596

wxGridCellEditor::Create, 594
wxGridCellEditor::Destroy, 596
wxGridCellEditor::EndEdit, 595
wxGridCellEditor::HandleReturn, 595
wxGridCellEditor::IsCreated, 594
wxGridCellEditor::PaintBackground, 595
wxGridCellEditor::Reset, 595
wxGridCellEditor::SetSize, 594
wxGridCellEditor::Show, 594
wxGridCellEditor::StartingClick, 595
wxGridCellEditor::StartingKey, 595
wxGridCellEditor::wxGridCellEditor, 594
wxGridCellRenderer::Clone, 597
wxGridCellRenderer::Draw, 596
wxGridCellRenderer::GetBestSize, 597
wxGridSizer, 602
wxGridSizer::GetCols, 602
wxGridSizer::GetHGap, 602
wxGridSizer::GetRows, 603
wxGridSizer::GetVGap, 603
wxGridSizer::SetCols, 603
wxGridSizer::SetHGap, 603
wxGridSizer::SetRows, 603
wxGridSizer::SetVGap, 603
wxGridSizer::wxGridSizer, 602
wxGridTableBase, 597
wxGridTableBase::~wxGridTableBase,

597
wxGridTableBase::AppendCols, 600
wxGridTableBase::AppendRows, 600
wxGridTableBase::CanGetValueAs , 598
wxGridTableBase::CanHaveAttributes,

601
wxGridTableBase::CanSetValueAs , 598
wxGridTableBase::Clear, 599
wxGridTableBase::DeleteCols, 600
wxGridTableBase::DeleteRows, 600
wxGridTableBase::GetAttr, 601
wxGridTableBase::GetAttrProvider, 601
wxGridTableBase::GetColLabelValue,

600
wxGridTableBase::GetNumberCols, 598
wxGridTableBase::GetNumberRows, 597
wxGridTableBase::GetRowLabelValue,

600
wxGridTableBase::GetTypeName, 598
wxGridTableBase::GetValue, 598
wxGridTableBase::GetValueAsBool, 599
wxGridTableBase::GetValueAsCustom,

599
wxGridTableBase::GetValueAsDouble,

598

INDEX

1753

wxGridTableBase::GetValueAsLong, 598
wxGridTableBase::GetView, 599
wxGridTableBase::InsertCols, 600
wxGridTableBase::InsertRows, 600
wxGridTableBase::IsEmptyCell, 598
wxGridTableBase::SetAttr, 601
wxGridTableBase::SetAttrProvider, 601
wxGridTableBase::SetColAttr, 602
wxGridTableBase::SetColLabelValue,

601
wxGridTableBase::SetRowAttr, 602
wxGridTableBase::SetRowLabelValue,

600
wxGridTableBase::SetValue, 598
wxGridTableBase::SetValueAsBool, 599
wxGridTableBase::SetValueAsCustom,

599
wxGridTableBase::SetValueAsDouble,

599
wxGridTableBase::SetValueAsLong, 599
wxGridTableBase::SetView, 599
wxGridTableBase::UpdateAttrCols, 601
wxGridTableBase::UpdateAttrRows, 601
wxGridTableBase::wxGridTableBase,

597
wxHandleFatalExceptions, 1461
wxHashTable, 604
wxHashTable::~wxHashTable, 605
wxHashTable::BeginFind, 605
wxHashTable::Clear, 605
wxHashTable::Delete, 605
wxHashTable::DeleteContents, 605
wxHashTable::Get, 605
wxHashTable::GetCount, 606
wxHashTable::MakeKey, 606
wxHashTable::Next, 606
wxHashTable::Put, 606
wxHashTable::wxHashTable, 604
wxHelpController, 608
wxHelpController::~wxHelpController,

608
wxHelpController::DisplayBlock, 608
wxHelpController::DisplayContents, 609
wxHelpController::DisplayContextPopup

, 609
wxHelpController::DisplaySection, 609
wxHelpController::DisplayTextPopup,

610
wxHelpController::GetFrameParameters

, 610
wxHelpController::Initialize, 608
wxHelpController::KeywordSearch, 610

wxHelpController::LoadFile, 611
wxHelpController::OnQuit, 611
wxHelpController::Quit, 612
wxHelpController::SetFrameParameters,

611
wxHelpController::SetViewer, 611
wxHelpController::wxHelpController, 608
wxHelpControllerHelpProvider, 612
wxHelpControllerHelpProvider::GetHelp

Controller, 613
wxHelpControllerHelpProvider::SetHelp

Controller, 613
wxHelpControllerHelpProvider::wxHelpC

ontrollerHelpProvider, 612
wxHelpEvent, 614
wxHelpEvent::GetPosition, 614
wxHelpEvent::SetPosition, 614
wxHelpEvent::wxHelpEvent, 614
wxHelpProvider::~wxHelpProvider, 615
wxHelpProvider::AddHelp, 615
wxHelpProvider::Get, 615
wxHelpProvider::GetHelp, 615
wxHelpProvider::Set, 615
wxHelpProvider::ShowHelp, 615
wxHF_BOOKMARKS, 636, 641
wxHF_CONTENTS, 636, 641
wxHF_DEFAULT_STYLE, 636, 642
wxHF_FLAT_TOOLBAR, 636, 641
wxHF_ICONS_BOOK, 636, 641
wxHF_ICONS_BOOK_CHAPTER, 636,

642
wxHF_ICONS_FOLDER, 636, 642
wxHF_INDEX, 636, 641
wxHF_MERGE_BOOKS, 636, 641
wxHF_OPEN_FILES, 636, 641
wxHF_PRINT, 636, 641
wxHF_SEARCH, 636, 641
wxHF_TOOLBAR, 636, 641
wxHSCROLL, 817, 1234, 1360
wxHtmlCell, 616
wxHtmlCell::AdjustPagebreak, 616
wxHtmlCell::Draw, 617
wxHtmlCell::DrawInvisible, 617
wxHtmlCell::Find, 618
wxHtmlCell::GetDescent, 618
wxHtmlCell::GetHeight, 618
wxHtmlCell::GetId , 619
wxHtmlCell::GetLink, 619
wxHtmlCell::GetNext, 619
wxHtmlCell::GetParent, 619
wxHtmlCell::GetPosX, 619

INDEX

1754

wxHtmlCell::GetPosY, 620
wxHtmlCell::GetWidth, 620
wxHtmlCell::Layout, 620
wxHtmlCell::OnMouseClick, 620
wxHtmlCell::SetId, 621
wxHtmlCell::SetLink, 621
wxHtmlCell::SetNext, 621
wxHtmlCell::SetParent, 621
wxHtmlCell::SetPos, 621
wxHtmlCell::wxHtmlCell, 616
wxHtmlColourCell, 622
wxHtmlColourCell::wxHtmlColourCell,

622
wxHtmlContainerCell, 623
wxHtmlContainerCell::GetAlignHor, 623
wxHtmlContainerCell::GetAlignVer, 623
wxHtmlContainerCell::GetFirstCell, 623
wxHtmlContainerCell::GetIndent, 623
wxHtmlContainerCell::GetIndentUnits,

623
wxHtmlContainerCell::InsertCell, 624
wxHtmlContainerCell::SetAlign, 624
wxHtmlContainerCell::SetAlignHor, 624
wxHtmlContainerCell::SetAlignVer, 624
wxHtmlContainerCell::SetBackgroundC

olour, 625
wxHtmlContainerCell::SetBorder, 625
wxHtmlContainerCell::SetIndent, 625
wxHtmlContainerCell::SetMinHeight, 626
wxHtmlContainerCell::SetWidthFloat, 627
wxHtmlContainerCell::wxHtmlContainer

Cell, 623
wxHtmlDCRenderer, 628
wxHtmlDCRenderer::GetTotalHeight, 630
wxHtmlDCRenderer::Render, 629
wxHtmlDCRenderer::SetDC, 628
wxHtmlDCRenderer::SetHtmlText, 629
wxHtmlDCRenderer::SetSize, 629
wxHtmlDCRenderer::wxHtmlDCRender

er, 628
wxHtmlEasyPrinting, 631
wxHtmlEasyPrinting::GetPageSetupDat

a, 633
wxHtmlEasyPrinting::GetPrintData, 633
wxHtmlEasyPrinting::PageSetup, 632
wxHtmlEasyPrinting::PreviewFile, 631
wxHtmlEasyPrinting::PreviewText, 631
wxHtmlEasyPrinting::PrinterSetup, 632
wxHtmlEasyPrinting::PrintFile, 631
wxHtmlEasyPrinting::PrintText, 632
wxHtmlEasyPrinting::SetFooter, 633

wxHtmlEasyPrinting::SetHeader, 632
wxHtmlEasyPrinting::wxHtmlEasyPrintin

g, 630
wxHtmlFilter, 634
wxHtmlFilter::CanRead, 634
wxHtmlFilter::ReadFile, 634
wxHtmlFilter::wxHtmlFilter, 634
wxHtmlHelpController, 635
wxHtmlHelpController::AddBook, 636
wxHtmlHelpController::CreateHelpFram

e, 637
wxHtmlHelpController::Display, 637
wxHtmlHelpController::DisplayContents,

637
wxHtmlHelpController::DisplayIndex, 637
wxHtmlHelpController::KeywordSearch,

637
wxHtmlHelpController::ReadCustomizati

on, 638
wxHtmlHelpController::SetTempDir, 638
wxHtmlHelpController::SetTitleFormat,

638
wxHtmlHelpController::UseConfig, 638
wxHtmlHelpController::WriteCustomizati

on, 639
wxHtmlHelpController::wxHtmlHelpCont

roller, 635
wxHtmlHelpData, 639
wxHtmlHelpData::AddBook, 639
wxHtmlHelpData::FindPageById, 639
wxHtmlHelpData::FindPageByName, 640
wxHtmlHelpData::GetBookRecArray, 640
wxHtmlHelpData::GetContents, 640
wxHtmlHelpData::GetContentsCnt, 640
wxHtmlHelpData::GetIndex, 640
wxHtmlHelpData::GetIndexCnt, 640
wxHtmlHelpData::SetTempDir, 640
wxHtmlHelpData::wxHtmlHelpData, 639
wxHtmlHelpFrame, 641
wxHtmlHelpFrame::AddToolbarButtons,

644
wxHtmlHelpFrame::Create, 642
wxHtmlHelpFrame::CreateContents, 642
wxHtmlHelpFrame::CreateIndex, 642
wxHtmlHelpFrame::CreateSearch, 642
wxHtmlHelpFrame::Display, 642
wxHtmlHelpFrame::DisplayContents, 643
wxHtmlHelpFrame::DisplayIndex, 643
wxHtmlHelpFrame::GetData, 643
wxHtmlHelpFrame::KeywordSearch, 643
wxHtmlHelpFrame::ReadCustomization,

643

INDEX

1755

wxHtmlHelpFrame::RefreshLists, 644
wxHtmlHelpFrame::SetTitleFormat, 644
wxHtmlHelpFrame::UseConfig, 644
wxHtmlHelpFrame::WriteCustomization,

644
wxHtmlHelpFrame::wxHtmlHelpFrame,

641
wxHtmlLinkInfo, 645
wxHtmlLinkInfo::GetEvent, 645
wxHtmlLinkInfo::GetHref, 645
wxHtmlLinkInfo::GetHtmlCell, 645
wxHtmlLinkInfo::GetTarget, 645
wxHtmlLinkInfo::wxHtmlLinkInfo, 645
wxHtmlParser, 646
wxHtmlParser::AddTag, 646
wxHtmlParser::AddTagHandler, 647
wxHtmlParser::AddText, 647
wxHtmlParser::DoneParser, 647
wxHtmlParser::DoParsing, 647
wxHtmlParser::GetFS, 648
wxHtmlParser::GetProduct, 648
wxHtmlParser::GetSource, 648
wxHtmlParser::InitParser, 648
wxHtmlParser::Parse, 648
wxHtmlParser::PopTagHandler, 649
wxHtmlParser::PushTagHandler, 649
wxHtmlParser::SetFS, 650
wxHtmlParser::wxHtmlParser, 646
wxHtmlPrintout, 650
wxHtmlPrintout::SetFooter, 650
wxHtmlPrintout::SetHeader, 651
wxHtmlPrintout::SetHtmlFile, 651
wxHtmlPrintout::SetHtmlText, 651
wxHtmlPrintout::SetMargins, 652
wxHtmlPrintout::wxHtmlPrintout, 650
wxHtmlTag, 652
wxHtmlTag::GetAllParams, 652
wxHtmlTag::GetBeginPos, 652
wxHtmlTag::GetEndPos1, 653
wxHtmlTag::GetEndPos2, 653
wxHtmlTag::GetName, 653
wxHtmlTag::GetParam, 653
wxHtmlTag::GetParamAsColour, 654
wxHtmlTag::GetParamAsInt, 654
wxHtmlTag::HasEnding, 654
wxHtmlTag::HasParam, 655
wxHtmlTag::IsEnding, 655
wxHtmlTag::ScanParam, 655
wxHtmlTag::wxHtmlTag, 652
wxHtmlTagHandler, 656
wxHtmlTagHandler::GetSupportedTags,

656
wxHtmlTagHandler::HandleTag, 656
wxHtmlTagHandler::m_Parser, 656
wxHtmlTagHandler::ParseInner, 657
wxHtmlTagHandler::SetParser, 657
wxHtmlTagHandler::wxHtmlTagHandler,

656
wxHtmlTagsModule::FillHandlersTable,

658
wxHtmlWidgetCell, 658
wxHtmlWidgetCell::wxHtmlWidgetCell,

658
wxHtmlWindow, 659
wxHtmlWindow::AddFilter, 660
wxHtmlWindow::AppendToPage, 660
wxHtmlWindow::GetInternalRepresentat

ion, 660
wxHtmlWindow::GetOpenedAnchor, 660
wxHtmlWindow::GetOpenedPage, 660
wxHtmlWindow::GetOpenedPageTitle,

661
wxHtmlWindow::GetRelatedFrame, 661
wxHtmlWindow::HistoryBack, 661
wxHtmlWindow::HistoryCanBack, 661
wxHtmlWindow::HistoryCanForward, 661
wxHtmlWindow::HistoryClear, 661
wxHtmlWindow::HistoryForward, 662
wxHtmlWindow::LoadPage, 662
wxHtmlWindow::OnCellClicked, 662
wxHtmlWindow::OnCellMouseHover, 663
wxHtmlWindow::OnLinkClicked, 663
wxHtmlWindow::OnSetTitle, 663
wxHtmlWindow::ReadCustomization, 663
wxHtmlWindow::SetBorders, 664
wxHtmlWindow::SetFonts, 664
wxHtmlWindow::SetPage, 665
wxHtmlWindow::SetRelatedFrame, 665
wxHtmlWindow::SetRelatedStatusBar,

665
wxHtmlWindow::WriteCustomization, 666
wxHtmlWindow::wxHtmlWindow, 659
wxHtmlWinParser, 667
wxHtmlWinParser::AddModule, 667
wxHtmlWinParser::CloseContainer, 667
wxHtmlWinParser::CreateCurrentFont,

667
wxHtmlWinParser::GetActualColor, 667
wxHtmlWinParser::GetAlign, 667
wxHtmlWinParser::GetCharHeight, 668
wxHtmlWinParser::GetCharWidth, 668
wxHtmlWinParser::GetContainer, 668
wxHtmlWinParser::GetDC, 668

INDEX

1756

wxHtmlWinParser::GetEncodingConvert
er, 668

wxHtmlWinParser::GetFontBold, 669
wxHtmlWinParser::GetFontFace, 669
wxHtmlWinParser::GetFontFixed, 669
wxHtmlWinParser::GetFontItalic, 669
wxHtmlWinParser::GetFontSize, 669
wxHtmlWinParser::GetFontUnderlined,

669
wxHtmlWinParser::GetInputEncoding,

669
wxHtmlWinParser::GetLink, 670
wxHtmlWinParser::GetLinkColor, 670
wxHtmlWinParser::GetOutputEncoding,

670
wxHtmlWinParser::GetWindow, 670
wxHtmlWinParser::OpenContainer, 670
wxHtmlWinParser::SetActualColor, 670
wxHtmlWinParser::SetAlign, 670
wxHtmlWinParser::SetContainer, 671
wxHtmlWinParser::SetDC, 671
wxHtmlWinParser::SetFontBold, 671
wxHtmlWinParser::SetFontFace, 671
wxHtmlWinParser::SetFontFixed, 671
wxHtmlWinParser::SetFontItalic, 671
wxHtmlWinParser::SetFonts , 672
wxHtmlWinParser::SetFontSize, 672
wxHtmlWinParser::SetFontUnderlined,

672
wxHtmlWinParser::SetInputEncoding,

672
wxHtmlWinParser::SetLink, 672
wxHtmlWinParser::SetLinkColor, 672
wxHtmlWinParser::wxHtmlWinParser,

667
wxHtmlWinTagHandler::m_WParser, 673
wxHTTP::GetHeader, 674
wxHTTP::GetInputStream, 673
wxHTTP::SetHeader, 674
wxICOHandler, 685
wxIcon, 677
wxICON, 1476
wxIcon::~wxIcon, 680
wxIcon::CopyFromBitmap, 679
wxIcon::GetDepth, 680
wxIcon::GetHeight, 680
wxIcon::GetWidth, 680
wxIcon::LoadFile, 680
wxIcon::Ok, 681
wxIcon::operator !=, 683
wxIcon::operator =, 682
wxIcon::operator ==, 683

wxIcon::SetDepth, 681
wxIcon::SetHeight, 682
wxIcon::SetOk, 682
wxIcon::SetWidth, 682
wxIcon::wxIcon, 677
wxICONIZE, 522, 811, 817, 862
wxIconizeEvent, 684
wxIconizeEvent::Iconized, 684
wxIconizeEvent::wxIconizeEvent, 684
wxID, 1556
wxIdleEvent, 675
wxIdleEvent::MoreRequested, 676
wxIdleEvent::RequestMore, 675
wxIdleEvent::wxIdleEvent, 675
wxImage, 685, 686
wxImage::~wxImage, 687
wxImage::AddHandler, 687
wxImage::CleanUpHandlers, 688
wxImage::ConvertToBitmap, 688
wxImage::ConvertToMono, 688
wxImage::Copy, 688
wxImage::Create, 688
wxImage::Destroy, 689
wxImage::FindFirstUnusedColour, 689
wxImage::FindHandler, 689
wxImage::GetBlue, 690
wxImage::GetData, 690
wxImage::GetGreen, 691
wxImage::GetHandlers, 691
wxImage::GetHeight, 691
wxImage::GetMaskBlue, 691
wxImage::GetMaskGreen, 691
wxImage::GetMaskRed, 692
wxImage::GetOption, 692
wxImage::GetOptionInt, 693
wxImage::GetPalette, 692
wxImage::GetRed, 691
wxImage::GetSubImage, 692
wxImage::GetWidth, 692
wxImage::HasMask, 692
wxImage::HasOption, 693
wxImage::InitStandardHandlers, 693
wxImage::InsertHandler, 693
wxImage::LoadFile, 694
wxImage::Mirror, 697
wxImage::Ok, 695
wxImage::operator !=, 701
wxImage::operator =, 701
wxImage::operator ==, 701
wxImage::RemoveHandler, 695
wxImage::Replace, 697

INDEX

1757

wxImage::Rescale, 698
wxImage::Rotate, 698
wxImage::Rotate90, 698
wxImage::SaveFile, 696
wxImage::Scale, 698
wxImage::SetData, 699
wxImage::SetMask, 699
wxImage::SetMaskColour, 699
wxImage::SetMaskFromImage, 699
wxImage::SetOption, 700
wxImage::SetPalette, 700
wxImage::SetRGB, 701
wxImage::wxImage, 685
wxIMAGE_LIST_NORMAL , 760
wxIMAGE_LIST_SMALL, 760
wxIMAGE_LIST_STATE, 760
wxImageHandler, 702
wxImageHandler::~wxImageHandler, 703
wxImageHandler::GetExtension, 703
wxImageHandler::GetImageCount, 703
wxImageHandler::GetMimeType, 703
wxImageHandler::GetName, 703
wxImageHandler::GetType, 703
wxImageHandler::LoadFile, 704
wxImageHandler::SaveFile, 704
wxImageHandler::SetExtension, 705
wxImageHandler::SetMimeType, 705
wxImageHandler::SetName, 705
wxImageHandler::SetType, 705
wxImageHandler::wxImageHandler, 702
wxImageList, 706
wxImageList::Add, 707
wxImageList::Create, 708
wxImageList::Draw, 708
wxImageList::GetImageCount, 709
wxImageList::GetSize, 709
wxImageList::Remove, 709
wxImageList::RemoveAll, 709
wxImageList::Replace, 709
wxImageList::wxImageList, 706
wxIndividualLayoutConstraint, 711
wxIndividualLayoutConstraint::Above,

711
wxIndividualLayoutConstraint::Absolute,

712
wxIndividualLayoutConstraint::AsIs , 712
wxIndividualLayoutConstraint::Below,

712
wxIndividualLayoutConstraint::LeftOf,

712
wxIndividualLayoutConstraint::PercentO

f, 712
wxIndividualLayoutConstraint::RightOf,

713
wxIndividualLayoutConstraint::SameAs ,

713
wxIndividualLayoutConstraint::Set, 713
wxIndividualLayoutConstraint::Unconstr

ained, 712
wxIndividualLayoutConstraint::wxIndivid

ualLayoutConstraint, 711
wxInitAllImageHandlers, 1462
wxInitDialogEvent, 714
wxInitDialogEvent::wxInitDialogEvent,

714
wxInitialize, 1462
wxInputStream, 714
wxInputStream::~wxInputStream, 714
wxInputStream::Eof, 715
wxInputStream::GetC, 715
wxInputStream::LastRead, 715
wxInputStream::Peek, 715
wxInputStream::Read, 715
wxInputStream::SeekI, 716
wxInputStream::TellI, 716
wxInputStream::Ungetch, 716
wxInputStream::wxInputStream, 714
wxINT16_SWAP_ALWAYS, 1470
wxINT16_SWAP_ON_BE, 1470
wxINT16_SWAP_ON_LE, 1470
wxINT32_SWAP_ALWAYS, 1470
wxINT32_SWAP_ON_BE, 1470
wxINT32_SWAP_ON_LE, 1470
wxIntegerFormValidator, 717
wxIntegerFormValidator::wxIntegerForm

Validator, 717
wxIntegerListValidator, 717
wxIntegerListValidator::wxIntegerListVali

dator, 717
wxINTXX_SWAP_ALWAYS, 1470
wxINTXX_SWAP_ON_BE, 1470
wxINTXX_SWAP_ON_LE, 1470
wxIPCFormat, 346, 1225
wxIPV4address::AnyAddress, 719
wxIPV4address::Hostname, 718
wxIPV4address::LocalHost, 719
wxIPV4address::Service, 718
wxIsAbsolutePath, 1428
wxIsBusy, 1462
wxIsClipboardFormatAvailable, 1450
wxIsEmpty, 1434
wxIsWild, 1429

INDEX

1758

wxJoystick, 720
wxJoystick::~wxJoystick, 720
wxJoystick::GetButtonState, 720
wxJoystick::GetManufacturerId, 720
wxJoystick::GetMovementThreshold, 720
wxJoystick::GetNumberAxes, 720
wxJoystick::GetNumberButtons, 720
wxJoystick::GetNumberJoysticks, 721
wxJoystick::GetPollingMax, 721
wxJoystick::GetPollingMin, 721
wxJoystick::GetPosition, 721
wxJoystick::GetPOVCTSPosition, 722
wxJoystick::GetPOVPosition, 721
wxJoystick::GetProductId, 721
wxJoystick::GetProductName, 721
wxJoystick::GetRudderMax, 722
wxJoystick::GetRudderMin, 722
wxJoystick::GetRudderPosition, 722
wxJoystick::GetUMax, 722
wxJoystick::GetUMin, 722
wxJoystick::GetUPosition, 722
wxJoystick::GetVMax, 723
wxJoystick::GetVMin, 723
wxJoystick::GetVPosition, 723
wxJoystick::GetXMax, 723
wxJoystick::GetXMin, 723
wxJoystick::GetYMax, 723
wxJoystick::GetYMin, 723
wxJoystick::GetZMax, 724
wxJoystick::GetZMin, 724
wxJoystick::GetZPosition, 724
wxJoystick::HasPOV, 724
wxJoystick::HasPOV4Dir, 724
wxJoystick::HasPOVCTS, 724
wxJoystick::HasRudder, 724
wxJoystick::HasU, 725
wxJoystick::HasV, 725
wxJoystick::HasZ, 725
wxJoystick::IsOk, 725
wxJoystick::ReleaseCapture, 725
wxJoystick::SetCapture, 725
wxJoystick::SetMovementThreshold, 726
wxJoystick::wxJoystick, 720
wxJoystickEvent, 727
wxJoystickEvent::ButtonDown, 727
wxJoystickEvent::ButtonIsDown, 727
wxJoystickEvent::ButtonUp, 727
wxJoystickEvent::GetButtonChange, 728
wxJoystickEvent::GetButtonState, 728
wxJoystickEvent::GetJoystick, 728
wxJoystickEvent::GetPosition, 728

wxJoystickEvent::GetZPosition, 728
wxJoystickEvent::IsButton, 729
wxJoystickEvent::IsMove, 729
wxJoystickEvent::IsZMove, 729
wxJoystickEvent::wxJoystickEvent, 727
wxJPEGHandler, 685
wxKeyEvent, 731
wxKeyEvent::AltDown, 732
wxKeyEvent::ControlDown, 732
wxKeyEvent::GetKeyCode, 732
wxKeyEvent::GetPosition, 732
wxKeyEvent::GetX, 732
wxKeyEvent::GetY, 732
wxKeyEvent::HasModifiers, 733
wxKeyEvent::m_altDown, 730
wxKeyEvent::m_controlDown, 731
wxKeyEvent::m_keyCode, 731
wxKeyEvent::m_metaDown, 731
wxKeyEvent::m_shiftDown, 731
wxKeyEvent::m_x, 731
wxKeyEvent::m_y, 731
wxKeyEvent::MetaDown, 732
wxKeyEvent::ShiftDown, 733
wxKeyEvent::wxKeyEvent, 731
wxKill, 1463
wxLayoutAlgorithm, 735
wxLayoutAlgorithm::~wxLayoutAlgorith

m, 735
wxLayoutAlgorithm::LayoutFrame, 735
wxLayoutAlgorithm::LayoutMDIFrame,

736
wxLayoutAlgorithm::LayoutWindow, 736
wxLayoutAlgorithm::wxLayoutAlgorithm,

735
wxLayoutConstraints, 737
wxLayoutConstraints::bottom, 737
wxLayoutConstraints::centreX, 737
wxLayoutConstraints::centreY, 737
wxLayoutConstraints::height, 738
wxLayoutConstraints::left, 738
wxLayoutConstraints::right, 738
wxLayoutConstraints::top, 738
wxLayoutConstraints::width, 738
wxLayoutConstraints::wxLayoutConstrai

nts, 737
wxLB_ALWAYS_SB, 745
wxLB_EXTENDED, 745
wxLB_HSCROLL, 745
wxLB_MULTIPLE, 745
wxLB_NEEDED_SB, 745
wxLB_SINGLE, 745

INDEX

1759

wxLB_SORT, 745
wxLC_ALIGN_LEFT, 754
wxLC_ALIGN_TOP, 754
wxLC_AUTOARRANGE , 754
wxLC_EDIT_LABELS, 754
wxLC_HRULES, 754
wxLC_ICON, 754
wxLC_LIST, 754
wxLC_NO_HEADER, 754
wxLC_REPORT, 754
wxLC_SINGLE_SEL, 754
wxLC_SMALL_ICON, 754
wxLC_SORT_ASCENDING, 754
wxLC_SORT_DESCENDING, 754
wxLC_USER_TEXT, 754
wxLC_VIRTUAL, 754
wxLC_VRULES, 755
wxLI_HORIZONTAL, 1145
wxLI_VERTICAL, 1145
wxList, 741
wxList::~wxList, 741
wxList::Append, 741
wxList::Clear, 741
wxList::DeleteContents, 742
wxList::DeleteNode, 742
wxList::DeleteObject, 742
wxList::Find, 742
wxList::GetCount, 742
wxList::GetFirst, 742
wxList::GetLast, 743
wxList::IndexOf, 743
wxList::Insert, 743
wxList::Item, 743
wxList::Member, 743
wxList::Nth, 743
wxList::Number, 744
wxList::Sort, 744
wxList::wxList, 741
wxListBox, 746
wxListBox::~wxListBox, 747
wxListBox::Append, 747
wxListBox::Clear, 747
wxListBox::Create, 747
wxListBox::Delete, 748
wxListBox::Deselect, 748
wxListBox::FindString, 748
wxListBox::GetClientData, 749
wxListBox::GetSelection, 749
wxListBox::GetSelections, 749
wxListBox::GetString, 750
wxListBox::GetStringSelection, 750

wxListBox::InsertItems, 750
wxListBox::Number, 751
wxListBox::Selected, 751
wxListBox::Set, 751
wxListBox::SetClientData, 752
wxListBox::SetFirstItem, 752
wxListBox::SetSelection, 752
wxListBox::SetString, 753
wxListBox::SetStringSelection, 753
wxListBox::wxListBox, 746
wxListCtrl, 755, 756
wxListCtrl::~wxListCtrl, 756
wxListCtrl::Arrange, 756
wxListCtrl::AssignImageList, 757
wxListCtrl::ClearAll, 757
wxListCtrl::Create, 757
wxListCtrl::DeleteAllItems, 757
wxListCtrl::DeleteColumn, 757
wxListCtrl::DeleteItem, 758
wxListCtrl::EditLabel, 758
wxListCtrl::EnsureVisible, 758
wxListCtrl::FindItem, 758
wxListCtrl::GetColumn, 759
wxListCtrl::GetColumnWidth, 759
wxListCtrl::GetCountPerPage, 759
wxListCtrl::GetEditControl, 759
wxListCtrl::GetImageList, 760
wxListCtrl::GetItem, 760
wxListCtrl::GetItemCount, 760
wxListCtrl::GetItemData, 760
wxListCtrl::GetItemPosition, 760
wxListCtrl::GetItemRect, 761
wxListCtrl::GetItemSpacing, 761
wxListCtrl::GetItemState, 761
wxListCtrl::GetItemText, 761
wxListCtrl::GetNextItem, 761
wxListCtrl::GetSelectedItemCount, 762
wxListCtrl::GetTextColour, 762
wxListCtrl::GetTopItem, 763
wxListCtrl::HitTest, 763
wxListCtrl::InsertColumn, 763
wxListCtrl::InsertItem, 764
wxListCtrl::OnGetItemAttr, 765
wxListCtrl::OnGetItemImage, 765
wxListCtrl::OnGetItemText, 765
wxListCtrl::ScrollList, 766
wxListCtrl::SetBackgroundColour, 766
wxListCtrl::SetColumn, 766
wxListCtrl::SetColumnWidth, 766
wxListCtrl::SetImageList, 767
wxListCtrl::SetItem, 767

INDEX

1760

wxListCtrl::SetItemCount, 768
wxListCtrl::SetItemData, 768
wxListCtrl::SetItemImage, 768
wxListCtrl::SetItemPosition, 769
wxListCtrl::SetItemState, 769
wxListCtrl::SetItemText, 769
wxListCtrl::SetSingleStyle, 769
wxListCtrl::SetTextColour, 769
wxListCtrl::SetWindowStyleFlag, 769
wxListCtrl::SortItems, 770
wxListCtrl::wxListCtrl, 755
wxListEvent, 771
wxListEvent::Cancelled, 772
wxListEvent::GetCacheFrom, 772
wxListEvent::GetCacheTo, 772
wxListEvent::GetCode, 772
wxListEvent::GetColumn, 772
wxListEvent::GetData, 773
wxListEvent::GetImage, 773
wxListEvent::GetIndex, 772
wxListEvent::GetItem, 773
wxListEvent::GetLabel, 773
wxListEvent::GetMask, 773
wxListEvent::GetPoint, 772
wxListEvent::GetText, 773
wxListEvent::wxListEvent, 771
wxListOfStringsListValidator, 774
wxListOfStringsListValidator::wxListofStr

ingsListValidator, 774
wxLoadUserResource, 1463
wxLocale, 780
wxLocale::~wxLocale, 781
wxLocale::AddCatalog, 781
wxLocale::AddCatalogLookupPathPrefix

, 781
wxLocale::AddLanguage, 781
wxLocale::GetCanonicalName, 782
wxLocale::GetLanguage, 782
wxLocale::GetLocale, 782
wxLocale::GetName, 782
wxLocale::GetString, 783
wxLocale::GetSysName, 783
wxLocale::GetSystemEncoding, 783
wxLocale::GetSystemEncodingName,

783
wxLocale::GetSystemLanguage, 783
wxLocale::Init, 784
wxLocale::IsLoaded, 785
wxLocale::IsOk, 785
wxLocale::wxLocale, 780
wxLOCALE_CONV_ENCODING, 784

wxLOCALE_LOAD_DEFAULT, 784
wxLog::AddTraceMask, 788
wxLog::ClearTraceMasks, 788
wxLog::DoLog, 789
wxLog::DoLogString, 790
wxLog::DontCreateOnDemand, 790
wxLog::Flush, 790
wxLog::FlushActive, 790
wxLog::GetActiveTarget, 789
wxLog::GetTimestamp, 791
wxLog::GetTraceMask, 791
wxLog::GetVerbose, 791
wxLog::HasPendingMessages, 790
wxLog::IsAllowedTraceMask, 791
wxLog::OnLog, 788
wxLog::RemoveTraceMask, 792
wxLog::Resume, 789
wxLog::SetActiveTarget, 789
wxLog::SetTimestamp, 791
wxLog::SetTraceMask, 791
wxLog::SetVerbose, 791
wxLog::Suspend, 789
wxLogChain, 793
wxLogChain::~wxLogChain, 793
wxLogChain::GetOldLog, 793
wxLogChain::IsPassingMessages, 793
wxLogChain::PassMessages, 793
wxLogChain::SetLog, 793
wxLogChain::wxLogChain, 792
wxLogDebug, 1483
wxLogError, 1482
wxLogFatalError, 1482
wxLogGui, 794
wxLogGui::wxLogGui, 794
wxLogMessage, 1482
wxLogNull, 795
wxLogNull::~wxLogNull, 795
wxLogNull::wxLogNull, 795
wxLogPassThrough::wxLogPassThroug

h, 800
wxLogStatus, 1482, 1483
wxLogStderr, 796
wxLogStderr::wxLogStderr, 796
wxLogStream, 797
wxLogStream::wxLogStream, 796
wxLogSysError, 1483
wxLogTextCtrl, 797
wxLogTextCtrl::wxLogTextCtrl, 797
wxLogTrace, 1483
wxLogVerbose, 1482
wxLogWarning, 1482

INDEX

1761

wxLogWindow, 798
wxLogWindow::GetFrame, 798
wxLogWindow::OnFrameClose, 799
wxLogWindow::OnFrameCreate, 799
wxLogWindow::OnFrameDelete, 799
wxLogWindow::Show, 798
wxLogWindow::wxLogWindow, 798
wxLongLong, 800, 801
wxLongLong::Abs, 801
wxLongLong::Assign, 801
wxLongLong::GetHi, 801
wxLongLong::GetLo, 801
wxLongLong::GetValue, 802
wxLongLong::operator-, 802, 803
wxLongLong::operator--, 803
wxLongLong::operator+, 802
wxLongLong::operator++, 802
wxLongLong::operator+=, 802
wxLongLong::operator=, 801
wxLongLong::operator-=, 803
wxLongLong::ToLong, 802
wxLongLong::ToString, 802
wxLongLong::wxLongLong, 800, 801
wxMakeMetafilePlaceable, 1445
wxMask, 804
wxMask::~wxMask, 804
wxMask::Create, 805
wxMask::wxMask, 804
wxMatchWild, 1429
wxMAXIMIZE, 522, 811, 817, 862
wxMAXIMIZE_BOX, 522, 811, 817, 862
wxMaximizeEvent, 806
wxMaximizeEvent::wxMaximizeEvent,

806
wxMBConv, 806
wxMBConv classes, 1532
wxMBConv objects, 1532
wxMBConv::cMB2WC, 807
wxMBConv::cMB2WX, 807
wxMBConv::cWC2MB, 807
wxMBConv::cWC2WX, 808
wxMBConv::cWX2MB, 807
wxMBConv::cWX2WC, 808
wxMBConv::MB2WC, 806
wxMBConv::WC2MB, 807
wxMBConv::wxMBConv, 806
wxMBConvFile::MB2WC, 809
wxMBConvFile::WC2MB, 809
wxMBConvUTF7::MB2WC, 809
wxMBConvUTF7::WC2MB, 810
wxMBConvUTF8::MB2WC, 811

wxMBConvUTF8::WC2MB, 811
wxMDIChildFrame, 812
wxMDIChildFrame::~wxMDIChildFrame,

813
wxMDIChildFrame::Activate, 813
wxMDIChildFrame::Create, 813
wxMDIChildFrame::Maximize, 814
wxMDIChildFrame::Restore, 814
wxMDIChildFrame::wxMDIChildFrame,

812
wxMDIClientWindow, 815
wxMDIClientWindow::~wxMDIClientWin

dow, 815
wxMDIClientWindow::CreateClient, 815
wxMDIClientWindow::wxMDIClientWind

ow, 815
wxMDIParentFrame, 817
wxMDIParentFrame::~wxMDIParentFra

me, 818
wxMDIParentFrame::ActivateNext, 818
wxMDIParentFrame::ActivatePrevious,

819
wxMDIParentFrame::ArrangeIcons, 819
wxMDIParentFrame::Cascade, 819
wxMDIParentFrame::Create, 819
wxMDIParentFrame::GetActiveChild, 820
wxMDIParentFrame::GetClientSize, 819
wxMDIParentFrame::GetClientWindow,

821
wxMDIParentFrame::GetToolBar, 821
wxMDIParentFrame::GetWindowMenu,

821
wxMDIParentFrame::OnCreateClient,

821
wxMDIParentFrame::SetToolBar, 822
wxMDIParentFrame::SetWindowMenu,

822
wxMDIParentFrame::Tile, 823
wxMDIParentFrame::wxMDIParentFram

e, 817
wxMemoryDC, 824
wxMemoryDC::SelectObject, 824
wxMemoryDC::wxMemoryDC, 824
wxMemoryFSHandler, 825
wxMemoryFSHandler::AddFile, 825
wxMemoryFSHandler::RemoveFile, 826
wxMemoryFSHandler::wxMemoryFSHa

ndler, 825
wxMemoryInputStream, 826
wxMemoryInputStream::~wxMemoryInp

utStream, 826
wxMemoryInputStream::wxMemoryInput

INDEX

1762

Stream, 826
wxMemoryOutputStream, 827
wxMemoryOutputStream::~wxMemoryO

utputStream, 827
wxMemoryOutputStream::CopyTo, 827
wxMemoryOutputStream::wxMemoryOu

tputStream, 827
wxMenu, 828, 829
wxMenu::~wxMenu, 829
wxMenu::Append, 829
wxMenu::AppendSeparator, 830
wxMenu::Break, 831
wxMenu::Check, 831
wxMenu::Delete, 831
wxMenu::Destroy, 831
wxMenu::Enable, 832
wxMenu::FindItem, 832
wxMenu::GetHelpString, 833
wxMenu::GetLabel, 834
wxMenu::GetMenuItemCount, 834
wxMenu::GetMenuItems, 834
wxMenu::GetTitle, 834
wxMenu::Insert, 835
wxMenu::IsChecked, 835
wxMenu::IsEnabled, 835
wxMenu::Remove, 836
wxMenu::SetHelpString, 836
wxMenu::SetLabel, 836
wxMenu::SetTitle, 837
wxMenu::UpdateUI, 837
wxMenu::wxMenu, 828
wxMenuBar, 838
wxMenuBar::~wxMenuBar, 839
wxMenuBar::Append, 839
wxMenuBar::Check, 839
wxMenuBar::Enable, 840
wxMenuBar::EnableTop, 840
wxMenuBar::FindItem, 841
wxMenuBar::FindMenu, 841
wxMenuBar::FindMenuItem, 841
wxMenuBar::GetHelpString, 842
wxMenuBar::GetLabel, 842
wxMenuBar::GetLabelTop, 842
wxMenuBar::GetMenu, 843
wxMenuBar::GetMenuCount, 843
wxMenuBar::Insert, 843
wxMenuBar::IsChecked, 844
wxMenuBar::IsEnabled, 844
wxMenuBar::Refresh, 844
wxMenuBar::Remove, 845
wxMenuBar::Replace, 845

wxMenuBar::SetHelpString, 845
wxMenuBar::SetLabel, 846
wxMenuBar::SetLabelTop, 846
wxMenuBar::wxMenuBar, 838
wxMenuEvent, 853
wxMenuEvent::GetMenuId, 853
wxMenuEvent::m_menuId, 853
wxMenuEvent::wxMenuEvent, 853
wxMenuItem, 847
wxMenuItem::~wxMenuItem, 848
wxMenuItem::Check, 848
wxMenuItem::DeleteSubMenu, 848
wxMenuItem::Enable, 848
wxMenuItem::GetBackgroundColour, 848
wxMenuItem::GetBitmap, 848
wxMenuItem::GetFont, 849
wxMenuItem::GetHelp, 849
wxMenuItem::GetId , 849
wxMenuItem::GetLabel, 849
wxMenuItem::GetLabelFromText, 849
wxMenuItem::GetMarginWidth, 850
wxMenuItem::GetName, 850
wxMenuItem::GetSubMenu, 850
wxMenuItem::GetText, 850
wxMenuItem::GetTextColour, 850
wxMenuItem::IsCheckable, 850
wxMenuItem::IsChecked, 851
wxMenuItem::IsEnabled, 851
wxMenuItem::IsSeparator, 851
wxMenuItem::SetBackgroundColour, 851
wxMenuItem::SetBitmap, 851
wxMenuItem::SetBitmaps, 851
wxMenuItem::SetFont, 851
wxMenuItem::SetHelp, 852
wxMenuItem::SetMarginWidth, 852
wxMenuItem::SetName, 852
wxMenuItem::SetTextColour, 852
wxMenuItem::wxMenuItem, 847
wxMessageBox, 1442
wxMessageDialog, 854
wxMessageDialog overview, 1590
wxMessageDialog::~wxMessageDialog,

855
wxMessageDialog::ShowModal, 855
wxMessageDialog::wxMessageDialog,

854
wxMetafile, 856
wxMetafile::~wxMetafile, 856
wxMetafile::Ok, 856
wxMetafile::Play, 856
wxMetafile::SetClipboard, 856

INDEX

1763

wxMetafile::wxMetafile, 856
wxMetafileDC, 857
wxMetafileDC::~wxMetafileDC, 857
wxMetafileDC::Close, 858
wxMetafileDC::wxMetafileDC, 857
wxMimeTypesManager, 860
wxMimeTypesManager::~wxMimeTypes

Manager, 860
wxMimeTypesManager::AddFallbacks,

860
wxMimeTypesManager::GetFileTypeFro

mExtension, 860
wxMimeTypesManager::GetFileTypeFro

mMimeType, 860
wxMimeTypesManager::IsOfType, 860
wxMimeTypesManager::ReadMailcap,

861
wxMimeTypesManager::ReadMimeType

s, 861
wxMimeTypesManager::wxMimeTypes

Manager, 860
wxMiniFrame, 862, 863
wxMiniFrame::~wxMiniFrame, 863
wxMiniFrame::Create, 864
wxMiniFrame::wxMiniFrame, 862
wxMINIMIZE, 522, 811, 817, 862
wxMINIMIZE_BOX, 522, 811, 817, 862
wxMkdir, 1429
wxModule, 865
wxModule::~wxModule, 865
wxModule::CleanupModules, 865
wxModule::Exit, 865
wxModule::Init, 865
wxModule::InitializeModules, 865
wxModule::OnExit, 865
wxModule::OnInit, 866
wxModule::RegisterModule, 866
wxModule::RegisterModules, 866
wxModule::wxModule, 865
wxMouseEvent, 869
wxMouseEvent::AltDown, 869
wxMouseEvent::Button, 869
wxMouseEvent::ButtonDClick, 870
wxMouseEvent::ButtonDown, 870
wxMouseEvent::ButtonUp, 870
wxMouseEvent::ControlDown, 870
wxMouseEvent::Dragging, 870
wxMouseEvent::Entering, 870
wxMouseEvent::GetLinesPerAction, 871
wxMouseEvent::GetLogicalPosition, 871
wxMouseEvent::GetPosition, 871

wxMouseEvent::GetWheelDelta, 871
wxMouseEvent::GetWheelRotation, 871
wxMouseEvent::GetX, 872
wxMouseEvent::GetY, 872
wxMouseEvent::IsButton, 872
wxMouseEvent::Leaving, 872
wxMouseEvent::LeftDClick, 872
wxMouseEvent::LeftDown, 872
wxMouseEvent::LeftIsDown, 873
wxMouseEvent::LeftUp, 873
wxMouseEvent::m_altDown, 867
wxMouseEvent::m_controlDown, 867
wxMouseEvent::m_leftDown, 867
wxMouseEvent::m_linesPerAction, 869
wxMouseEvent::m_metaDown, 868
wxMouseEvent::m_middleDown, 868
wxMouseEvent::m_rightDown, 868
wxMouseEvent::m_shiftDown, 868
wxMouseEvent::m_wheelDelta, 869
wxMouseEvent::m_wheelRotation, 868
wxMouseEvent::m_x, 868
wxMouseEvent::m_y, 868
wxMouseEvent::MetaDown, 873
wxMouseEvent::MiddleDClick, 873
wxMouseEvent::MiddleDown, 873
wxMouseEvent::MiddleIsDown, 873
wxMouseEvent::MiddleUp, 874
wxMouseEvent::Moving, 874
wxMouseEvent::RightDClick, 874
wxMouseEvent::RightDown, 874
wxMouseEvent::RightIsDown, 874
wxMouseEvent::RightUp, 874
wxMouseEvent::ShiftDown, 874
wxMouseEvent::wxMouseEvent, 869
wxMoveEvent, 875
wxMoveEvent::GetPosition, 875
wxMoveEvent::wxMoveEvent, 875
wxMultipleChoiceDialog overview, 1591
wxMutex, 878
wxMutex::~wxMutex, 878
wxMutex::IsLocked, 878
wxMutex::Lock, 878
wxMutex::TryLock, 878
wxMutex::Unlock, 879
wxMutex::wxMutex, 877
wxMutexGuiEnter, 1425
wxMutexGuiLeave, 1425
wxMutexLocker, 879
wxMutexLocker::~wxMutexLocker, 880
wxMutexLocker::IsOk, 880
wxMutexLocker::wxMutexLocker, 879

INDEX

1764

wxNB_BOTTOM, 883
wxNB_FIXEDWIDTH, 883
wxNB_LEFT, 883
wxNB_RIGHT, 883
wxNewId, 1451
wxNO_3D, 357, 1360
wxNO_FULL_REPAINT_ON_RESIZE,

1360
wxNodeBase::GetData, 881
wxNodeBase::GetNext, 882
wxNodeBase::GetPrevious, 882
wxNodeBase::IndexOf, 882
wxNodeBase::SetData, 882
wxNotebook, 883
wxNotebook::~wxNotebook, 884
wxNotebook::AddPage, 884
wxNotebook::AdvanceSelection, 885
wxNotebook::AssignImageList, 885
wxNotebook::Create, 885
wxNotebook::DeleteAllPages, 885
wxNotebook::DeletePage, 886
wxNotebook::GetImageList, 886
wxNotebook::GetPage, 886
wxNotebook::GetPageCount, 886
wxNotebook::GetPageImage, 886
wxNotebook::GetPageText, 886
wxNotebook::GetRowCount, 886
wxNotebook::GetSelection, 887
wxNotebook::InsertPage, 887
wxNotebook::OnSelChange, 888
wxNotebook::RemovePage, 888
wxNotebook::SetImageList, 888
wxNotebook::SetPadding, 888
wxNotebook::SetPageImage, 888
wxNotebook::SetPageSize, 888
wxNotebook::SetPageText, 889
wxNotebook::SetSelection, 889
wxNotebook::wxNotebook, 883
wxNotebookEvent, 890
wxNotebookEvent::GetOldSelection, 890
wxNotebookEvent::GetSelection, 890
wxNotebookEvent::SetOldSelection, 891
wxNotebookEvent::SetSelection, 891
wxNotebookEvent::wxNotebookEvent,

890
wxNotebookSizer, 881
wxNotebookSizer::GetNotebook, 881
wxNotebookSizer::wxNotebookSizer, 881
wxNotifyEvent, 892
wxNotifyEvent::IsAllowed, 892
wxNotifyEvent::Veto, 892

wxNotifyEvent::wxNotifyEvent, 892
wxNow, 1464
wxObjArray, 40
wxObjArray::Detach, 41
wxObject, 893
wxObject::~wxObject, 893
wxObject::CopyObject, 893
wxObject::Dump, 893
wxObject::GetClassInfo, 894
wxObject::GetRefData, 894
wxObject::IsKindOf, 894
wxObject::m_refData, 893
wxObject::operator delete, 896
wxObject::operator new, 895
wxObject::Ref, 894
wxObject::SetRefData, 895
wxObject::UnRef, 895
wxObject::wxObject, 893
wxObjectRefData, 896, 897
wxObjectRefData::~wxObjectRefData,

897
wxObjectRefData::m_count, 896
wxObjectRefData::wxObjectRefData, 896
wxODBC - Basic Step-By-Step Guide,

1619
wxODBC - Compiling, 1618
wxODBC - Configuring your system for

ODBC use, 1617
wxODBC - Known Issues, 1627
wxODBC - Sample Code 1, 1629
wxODBC Where To Start, 1614
wxOnAssert, 1486
wxOpenClipboard, 1450
wxOutputStream, 897
wxOutputStream::~wxOutputStream, 897
wxOutputStream::LastWrite, 897
wxOutputStream::PutC, 897
wxOutputStream::SeekO, 898
wxOutputStream::TellO, 898
wxOutputStream::Write, 898
wxOutputStream::wxOutputStream, 897
wxPageSetupDialog, 904
wxPageSetupDialog::~wxPageSetupDia

log, 905
wxPageSetupDialog::GetPageSetupDat

a, 905
wxPageSetupDialog::ShowModal, 905
wxPageSetupDialog::wxPageSetupDial

og, 904
wxPageSetupDialogData, 899
wxPageSetupDialogData::~wxPageSetu

INDEX

1765

pDialogData, 899
wxPageSetupDialogData::EnableHelp,

899
wxPageSetupDialogData::EnableMargin

s, 899
wxPageSetupDialogData::EnableOrient

ation, 899
wxPageSetupDialogData::EnablePaper,

900
wxPageSetupDialogData::EnablePrinter,

900
wxPageSetupDialogData::GetDefaultInf

o, 901
wxPageSetupDialogData::GetDefaultMi

nMargins, 900
wxPageSetupDialogData::GetEnableHel

p, 901
wxPageSetupDialogData::GetEnableMa

rgins, 900
wxPageSetupDialogData::GetEnableOri

entation, 900
wxPageSetupDialogData::GetEnablePa

per, 900
wxPageSetupDialogData::GetEnablePri

nter, 900
wxPageSetupDialogData::GetMarginBot

tomRight, 901
wxPageSetupDialogData::GetMarginTo

pLeft, 901
wxPageSetupDialogData::GetMinMargin

BottomRight, 901
wxPageSetupDialogData::GetMinMargin

TopLeft, 901
wxPageSetupDialogData::GetPaperId ,

901
wxPageSetupDialogData::GetPaperSize

, 902
wxPageSetupDialogData::GetPrintData,

902
wxPageSetupDialogData::operator =,

903
wxPageSetupDialogData::SetDefaultInf

o, 902
wxPageSetupDialogData::SetDefaultMin

Margins, 902
wxPageSetupDialogData::SetMarginBot

tomRight, 902
wxPageSetupDialogData::SetMarginTop

Left, 902
wxPageSetupDialogData::SetMinMargin

BottomRight, 903
wxPageSetupDialogData::SetMinMargin

TopLeft, 903
wxPageSetupDialogData::SetPaperId,

903
wxPageSetupDialogData::SetPaperSize

, 903
wxPageSetupDialogData::SetPrintData,

903
wxPageSetupDialogData::wxPageSetup

DialogData, 899
wxPaintDC, 906
wxPaintDC::wxPaintDC, 906
wxPaintEvent, 906
wxPaintEvent::wxPaintEvent, 906
wxPalette, 907
wxPalette::~wxPalette, 908
wxPalette::Create, 908
wxPalette::GetPixel, 909
wxPalette::GetRGB , 909
wxPalette::Ok, 910
wxPalette::operator !=, 910
wxPalette::operator =, 910
wxPalette::operator ==, 910
wxPalette::wxPalette, 907
wxPanel, 911
wxPanel::~wxPanel, 912
wxPanel::Create, 912
wxPanel::GetDefaultItem, 912
wxPanel::InitDialog, 913
wxPanel::OnSysColourChanged, 913
wxPanel::SetDefaultItem, 913
wxPanel::wxPanel, 911
wxPanelTabView, 914
wxPanelTabView::~wxPanelTabView,

914
wxPanelTabView::AddTabWindow, 915
wxPanelTabView::ClearWindows, 915
wxPanelTabView::GetCurrentWindow,

915
wxPanelTabView::GetTabWindow, 915
wxPanelTabView::ShowWindowForTab,

915
wxPanelTabView::wxPanelTabView, 914
wxPaperSize, 941
wxPathList, 916
wxPathList::Add, 916
wxPathList::AddEnvList, 916
wxPathList::EnsureFileAccessible, 916
wxPathList::FindAbsoluteValidPath, 916
wxPathList::FindValidPath, 917
wxPathList::Member, 917
wxPathList::wxPathList, 916
wxPathOnly, 1428

INDEX

1766

wxPCXHandler, 685
wxPen, 918, 919
wxPen::~wxPen, 920
wxPen::GetCap, 920
wxPen::GetColour, 920
wxPen::GetDashes, 921
wxPen::GetJoin, 921
wxPen::GetStipple, 921
wxPen::GetStyle, 921
wxPen::GetWidth, 922
wxPen::Ok, 922
wxPen::operator !=, 924
wxPen::operator =, 924
wxPen::operator ==, 924
wxPen::SetCap, 922
wxPen::SetColour, 922
wxPen::SetDashes, 922
wxPen::SetJoin, 923
wxPen::SetStipple, 923
wxPen::SetStyle, 923
wxPen::SetWidth, 923
wxPen::wxPen, 918
wxPenList, 925
wxPenList::AddPen, 925
wxPenList::FindOrCreatePen, 925
wxPenList::RemovePen, 926
wxPenList::wxPenList, 925
wxPLOT_BUTTON_ALL, 929
wxPLOT_BUTTON_ENLARGE, 928
wxPLOT_BUTTON_MOVE, 928
wxPLOT_BUTTON_ZOOM, 928
wxPLOT_DEFAULT, 929
wxPLOT_X_AXIS, 929
wxPLOT_Y_AXIS, 929
wxPlotCurve, 926
wxPlotCurve::GetEndX, 926
wxPlotCurve::GetEndY, 926
wxPlotCurve::GetOffsetY, 927
wxPlotCurve::GetStartX, 927
wxPlotCurve::GetStartY, 927
wxPlotCurve::GetY, 927
wxPlotCurve::SetEndY, 927
wxPlotCurve::SetOffsetY, 927
wxPlotCurve::SetStartY, 928
wxPlotCurve::wxPlotCurve, 926
wxPlotWindow, 929
wxPlotWindow::~wxPlotWindow, 929
wxPlotWindow::Add, 929
wxPlotWindow::Delete, 930
wxPlotWindow::Enlarge, 930
wxPlotWindow::GetAt, 929

wxPlotWindow::GetCount, 929
wxPlotWindow::GetCurrent, 930
wxPlotWindow::GetUnitsPerValue, 930
wxPlotWindow::GetZoom, 931
wxPlotWindow::Move, 930
wxPlotWindow::RedrawEverything, 931
wxPlotWindow::RedrawXAxis, 931
wxPlotWindow::RedrawYAxis, 931
wxPlotWindow::SetCurrent, 929
wxPlotWindow::SetEnlargeAroundWind

owCentre, 932
wxPlotWindow::SetScrollOnThumbRele

ase, 931
wxPlotWindow::SetUnitsPerValue, 930
wxPlotWindow::SetZoom, 931
wxPlotWindow::wxPlotWindow, 929
wxPNGHandler, 685
wxPNMHandler, 685
wxPoint, 932, 1683
wxPoint::wxPoint, 932
wxPoint::x, 932
wxPoint::y, 933
wxPostDelete, 1464
wxPostEvent, 1464
wxPostScriptDC, 933
wxPostScriptDC::GetResolution, 934
wxPostScriptDC::SetResolution, 933
wxPostScriptDC::wxPostScriptDC, 933
wxPreviewCanvas, 934
wxPreviewCanvas::~wxPreviewCanvas,

934
wxPreviewCanvas::OnPaint, 935
wxPreviewCanvas::wxPreviewCanvas,

934
wxPreviewControlBar, 935
wxPreviewControlBar::~wxPreviewContr

olBar, 936
wxPreviewControlBar::CreateButtons,

936
wxPreviewControlBar::GetPrintPreview,

936
wxPreviewControlBar::GetZoomControl,

936
wxPreviewControlBar::SetZoomControl,

936
wxPreviewControlBar::wxPreviewContro

lbar, 935
wxPreviewFrame, 937
wxPreviewFrame::~wxPreviewFrame,

937
wxPreviewFrame::CreateCanvas, 937
wxPreviewFrame::CreateControlBar, 937

INDEX

1767

wxPreviewFrame::Initialize, 938
wxPreviewFrame::OnCloseWindow, 938
wxPreviewFrame::wxPreviewFrame, 937
wxPrintData, 939
wxPrintData::~wxPrintData, 939
wxPrintData::GetCollate, 939
wxPrintData::GetColour, 939
wxPrintData::GetDuplex, 940
wxPrintData::GetNoCopies, 940
wxPrintData::GetOrientation, 940
wxPrintData::GetPaperId , 940
wxPrintData::GetPrinterName, 940
wxPrintData::GetQuality, 940
wxPrintData::operator =, 943
wxPrintData::SetCollate, 941
wxPrintData::SetColour, 941
wxPrintData::SetDuplex, 941
wxPrintData::SetNoCopies, 941
wxPrintData::SetOrientation, 941
wxPrintData::SetPaperId, 941
wxPrintData::SetPrinterName, 943
wxPrintData::SetQuality, 943
wxPrintData::wxPrintData, 939
wxPrintDialog, 944
wxPrintDialog overview, 1589
wxPrintDialog::~wxPrintDialog, 944
wxPrintDialog::GetPrintDC, 945
wxPrintDialog::GetPrintDialogData, 944
wxPrintDialog::ShowModal, 945
wxPrintDialog::wxPrintDialog, 944
wxPrintDialogData, 899, 945, 946
wxPrintDialogData::~wxprintdialogdata,

946
wxPrintDialogData::EnableHelp, 946
wxPrintDialogData::EnablePageNumber

s, 946
wxPrintDialogData::EnablePrintToFile,

946
wxPrintDialogData::EnableSelection, 946
wxPrintDialogData::GetAllPages, 946
wxPrintDialogData::GetCollate, 947
wxPrintDialogData::GetFromPage, 947
wxPrintDialogData::GetMaxPage, 947
wxPrintDialogData::GetMinPage, 947
wxPrintDialogData::GetNoCopies, 947
wxPrintDialogData::GetPrintData, 947
wxPrintDialogData::GetPrintToFile, 947
wxPrintDialogData::GetSelection, 948
wxPrintDialogData::GetToPage, 948
wxPrintDialogData::operator =, 949
wxPrintDialogData::SetCollate, 948

wxPrintDialogData::SetFromPage, 948
wxPrintDialogData::SetMaxPage, 948
wxPrintDialogData::SetMinPage, 948
wxPrintDialogData::SetNoCopies, 948
wxPrintDialogData::SetPrintData, 949
wxPrintDialogData::SetPrintToFile, 949
wxPrintDialogData::SetSelection, 949
wxPrintDialogData::SetSetupDialog, 949
wxPrintDialogData::SetToPage, 949
wxPrintDialogData::wxPrintDialogData,

945
wxPrinter, 950
wxPrinter::~wxPrinter, 950
wxPrinter::Abort, 950
wxPrinter::CreateAbortWindow, 951
wxPrinter::GetLastError, 951
wxPrinter::GetPrintDialogData, 951
wxPrinter::Print, 951
wxPrinter::PrintDialog, 951
wxPrinter::ReportError, 952
wxPrinter::Setup, 952
wxPrinter::wxPrinter, 950
wxPrinterDC, 953
wxPrinterDC::wxPrinterDC, 953
wxPrintout, 953
wxPrintout::~wxPrintout, 954
wxPrintout::GetDC, 954
wxPrintout::GetPageInfo, 954
wxPrintout::GetPageSizeMM, 954
wxPrintout::GetPageSizePixels, 954
wxPrintout::GetPPIPrinter, 955
wxPrintout::GetPPIScreen, 955
wxPrintout::HasPage, 955
wxPrintout::IsPreview, 956
wxPrintout::OnBeginDocument, 956
wxPrintout::OnBeginPrinting, 956
wxPrintout::OnEndDocument, 956
wxPrintout::OnEndPrinting, 956
wxPrintout::OnPreparePrinting, 957
wxPrintout::OnPrintPage, 957
wxPrintout::wxPrintout, 953
wxPrintPreview, 957
wxPrintPreview::~wxPrintPreview, 958
wxPrintPreview::DrawBlankPage, 958
wxPrintPreview::GetCanvas, 958
wxPrintPreview::GetCurrentPage, 958
wxPrintPreview::GetFrame, 958
wxPrintPreview::GetMaxPage, 959
wxPrintPreview::GetMinPage, 959
wxPrintPreview::GetPrintData, 959
wxPrintPreview::GetPrintout, 959

INDEX

1768

wxPrintPreview::GetPrintoutForPrinting,
959

wxPrintPreview::Ok, 959
wxPrintPreview::PaintPage, 959
wxPrintPreview::Print, 960
wxPrintPreview::RenderPage, 960
wxPrintPreview::SetCanvas, 960
wxPrintPreview::SetCurrentPage, 960
wxPrintPreview::SetFrame, 960
wxPrintPreview::SetPrintout, 961
wxPrintPreview::SetZoom, 961
wxPrintPreview::wxPrintPreview, 957
wxPrivateDropTarget, 961
wxPrivateDropTarget::GetId, 962
wxPrivateDropTarget::SetId , 961
wxPrivateDropTarget::wxPrivateDropTar

get, 961
wxProcess, 962
wxProcess::~wxProcess, 963
wxProcess::CloseOutput, 963
wxProcess::Detach, 963
wxProcess::GetErrorStream, 963
wxProcess::GetInputStream, 963
wxProcess::GetOutputStream, 964
wxProcess::Kill, 964, 965
wxProcess::OnTerminate, 965
wxProcess::Redirect, 965
wxProcess::wxProcess, 962
wxProcessEvent, 968
wxProcessEvent::GetPid, 968
wxProcessEvent::m_pid, 968
wxProcessEvent::SetPid, 969
wxProcessEvent::wxProcessEvent, 968
wxProgressDialog, 966
wxProgressDialog::~wxProgressDialog,

967
wxProgressDialog::Resume, 967
wxProgressDialog::Update, 967
wxProgressDialog::wxProgressDialog,

966
wxProperty, 969
wxProperty::~wxProperty, 969
wxProperty::GetName, 970
wxProperty::GetRole, 970
wxProperty::GetValidator, 970
wxProperty::GetValue, 970
wxProperty::GetWindow, 970
wxProperty::operator =, 971
wxProperty::SetName, 970
wxProperty::SetRole, 971
wxProperty::SetValidator, 971

wxProperty::SetValue, 970
wxProperty::SetWindow, 971
wxProperty::wxProperty, 969
wxPropertyFormDialog, 971
wxPropertyFormDialog::~wxPropertyFor

mDialog, 972
wxPropertyFormDialog::wxPropertyFor

mDialog, 971
wxPropertyFormFrame, 972
wxPropertyFormFrame::~wxPropertyFor

mFrame, 972
wxPropertyFormFrame::GetPropertyPan

el, 972
wxPropertyFormFrame::Initialize, 972
wxPropertyFormFrame::OnCreatePanel,

973
wxPropertyFormFrame::wxPropertyFor

mFrame, 972
wxPropertyFormPanel, 973
wxPropertyFormPanel::~wxPropertyFor

mPanel, 973
wxPropertyFormPanel::wxPropertyForm

Panel, 973
wxPropertyFormValidator, 974
wxPropertyFormValidator overview, 1659
wxPropertyFormValidator::~wxProperty

FormValidator, 974
wxPropertyFormValidator::OnCheckVal

ue, 974
wxPropertyFormValidator::OnCommand

, 974
wxPropertyFormValidator::OnDisplayVal

ue, 974
wxPropertyFormValidator::OnDoubleCli

ck, 974
wxPropertyFormValidator::OnRetrieveV

alue, 975
wxPropertyFormValidator::wxPropertyF

ormValidator, 974
wxPropertyFormView, 975
wxPropertyFormView overview, 1660
wxPropertyFormView::~wxPropertyForm

View, 975
wxPropertyFormView::AssociateNames,

975
wxPropertyFormView::Check, 975
wxPropertyFormView::GetManagedWin

dow, 976
wxPropertyFormView::GetPanel, 976
wxPropertyFormView::OnCancel, 976
wxPropertyFormView::OnHelp, 976

INDEX

1769

wxPropertyFormView::OnOk, 976
wxPropertyFormView::OnRevert, 976
wxPropertyFormView::OnUpdate, 977
wxPropertyFormView::SetManagedWin

dow, 977
wxPropertyFormView::TransferToDialog

, 977
wxPropertyFormView::TransferToProper

tySheet, 977
wxPropertyFormView::wxPropertyForm

View, 975
wxPropertyListDialog, 978
wxPropertyListDialog::~wxPropertyListD

ialog, 978
wxPropertyListDialog::wxPropertyListDi

alog, 977
wxPropertyListFrame, 978
wxPropertyListFrame::~wxPropertyListF

rame, 978
wxPropertyListFrame::GetPropertyPanel

, 978
wxPropertyListFrame::Initialize, 979
wxPropertyListFrame::OnCreatePanel,

979
wxPropertyListFrame::wxPropertyListFr

ame, 978
wxPropertyListPanel, 979
wxPropertyListPanel::~wxPropertyListP

anel, 979
wxPropertyListPanel::wxPropertyListPa

nel, 979
wxPropertyListValidator, 980
wxPropertyListValidator overview, 1659
wxPropertyListValidator::~wxPropertyLis

tValidator, 980
wxPropertyListValidator::OnCheckValue

, 980
wxPropertyListValidator::OnClearContro

ls, 980
wxPropertyListValidator::OnClearDetail

Controls, 980
wxPropertyListValidator::OnDisplayValu

e, 980
wxPropertyListValidator::OnDoubleClick,

980
wxPropertyListValidator::OnEdit, 981
wxPropertyListValidator::OnPrepareCon

trols, 981
wxPropertyListValidator::OnPrepareDet

ailControls, 981
wxPropertyListValidator::OnRetrieveVal

ue, 981

wxPropertyListValidator::OnSelect, 981
wxPropertyListValidator::OnValueListSel

ect, 982
wxPropertyListValidator::wxPropertyList

Validator, 980
wxPropertyListView, 982
wxPropertyListView overview, 1660
wxPropertyListView::~wxPropertyListVie

w, 982
wxPropertyListView::AssociatePanel, 982
wxPropertyListView::BeginShowingProp

erty, 983
wxPropertyListView::DisplayProperty,

983
wxPropertyListView::EndShowingProper

ty, 983
wxPropertyListView::GetManagedWindo

w, 983
wxPropertyListView::GetPanel, 983
wxPropertyListView::GetWindowCancel

Button, 983
wxPropertyListView::GetWindowCloseB

utton, 984
wxPropertyListView::GetWindowHelpBu

tton, 984
wxPropertyListView::SetManagedWindo

w, 984
wxPropertyListView::UpdatePropertyDis

playInList, 984
wxPropertyListView::UpdatePropertyList

, 984
wxPropertyListView::wxPropertyListVie

w, 982
wxPropertySheet, 985
wxPropertySheet overview, 1661
wxPropertySheet::~wxPropertySheet,

985
wxPropertySheet::AddProperty, 985
wxPropertySheet::Clear, 985
wxPropertySheet::GetName, 985
wxPropertySheet::GetProperties, 985
wxPropertySheet::GetProperty, 985
wxPropertySheet::HasProperty, 986
wxPropertySheet::RemoveProperty, 986
wxPropertySheet::SetAllModified, 986
wxPropertySheet::SetName, 986
wxPropertySheet::SetProperty, 986
wxPropertySheet::wxPropertySheet, 985
wxPropertyValidator, 987
wxPropertyValidator overview, 1658
wxPropertyValidator::~wxPropertyValida

INDEX

1770

tor, 987
wxPropertyValidator::GetFlags, 987
wxPropertyValidator::GetValidatorPrope

rty, 987
wxPropertyValidator::SetValidatorProper

ty, 987
wxPropertyValidator::wxPropertyValidat

or, 987
wxPropertyValidatorRegistry, 988
wxPropertyValidatorRegistry::~wxProper

tyValidatorRegistry, 988
wxPropertyValidatorRegistry::Clear, 988
wxPropertyValidatorRegistry::GetValidat

or, 988
wxPropertyValidatorRegistry::RegisterV

alidator, 988
wxPropertyValidatorRegistry::wxPropert

yValidatorRegistry, 988
wxPropertyValue, 989, 990
wxPropertyValue::~wxPropertyValue,

990
wxPropertyValue::Append, 990
wxPropertyValue::BoolValue, 990
wxPropertyValue::BoolValuePtr, 990
wxPropertyValue::ClearList, 991
wxPropertyValue::Delete, 991
wxPropertyValue::GetFirst, 991
wxPropertyValue::GetLast, 991
wxPropertyValue::GetModified, 991
wxPropertyValue::GetNext, 991
wxPropertyValue::GetStringRepresentat

ion, 992
wxPropertyValue::Insert, 992
wxPropertyValue::IntegerValue, 992
wxPropertyValue::IntegerValuePtr, 992
wxPropertyValue::Nth, 992
wxPropertyValue::Number, 992
wxPropertyValue::operator =, 993
wxPropertyValue::RealValue, 992
wxPropertyValue::RealValuePtr, 993
wxPropertyValue::SetModified, 993
wxPropertyValue::StringValue, 993
wxPropertyValue::StringValuePtr, 993
wxPropertyValue::Type, 993
wxPropertyValue::wxPropertyValue, 989
wxPropertyView, 994
wxPropertyView overview, 1660
wxPropertyView::~wxPropertyView, 994
wxPropertyView::AddRegistry, 994
wxPropertyView::FindPropertyValidator,

995

wxPropertyView::GetPropertySheet, 995
wxPropertyView::GetRegistryList, 995
wxPropertyView::OnCancel, 995
wxPropertyView::OnClose, 995
wxPropertyView::OnHelp, 996
wxPropertyView::OnOk, 995
wxPropertyView::OnPropertyChanged,

996
wxPropertyView::OnUpdateView, 996
wxPropertyView::SetPropertySheet, 996
wxPropertyView::ShowView, 996
wxPropertyView::wxPropertyView, 994
wxProtocol::Abort, 997
wxProtocol::GetContentType, 998
wxProtocol::GetError, 998
wxProtocol::GetInputStream, 997
wxProtocol::Reconnect, 997
wxProtocol::SetPassword, 998
wxProtocol::SetUser, 998
wxQuantize, 999
wxQuantize::DoQuantize, 999
wxQuantize::Quantize, 999
wxQuantize::wxQuantize, 999
wxQueryCol, 1000
wxQueryCol class overview

[DEPRECATED], 1633
wxQueryCol::~wxQueryCol, 1000
wxQueryCol::AppendField, 1002
wxQueryCol::BindVar , 1000
wxQueryCol::FillVar, 1001
wxQueryCol::GetData, 1001
wxQueryCol::GetName, 1001
wxQueryCol::GetSize, 1001
wxQueryCol::GetType, 1001
wxQueryCol::IsNullable, 1001
wxQueryCol::IsRowDirty, 1001
wxQueryCol::SetData, 1002
wxQueryCol::SetFieldDirty, 1002
wxQueryCol::SetName, 1002
wxQueryCol::SetNullable, 1002
wxQueryCol::SetType, 1002
wxQueryCol::wxQueryCol, 1000
wxQueryField, 1003
wxQueryField class overview

[DEPRECATED], 1633
wxQueryField::~wxQueryField, 1003
wxQueryField::AllocData, 1003
wxQueryField::ClearData, 1003
wxQueryField::GetData, 1003
wxQueryField::GetSize, 1003
wxQueryField::GetType, 1004

INDEX

1771

wxQueryField::IsDirty, 1004
wxQueryField::SetData, 1004
wxQueryField::SetDirty, 1004
wxQueryField::SetSize, 1004
wxQueryField::SetType, 1004
wxQueryField::wxQueryField, 1003
wxQueryLayoutInfoEvent, 1005
wxQueryLayoutInfoEvent::GetAlignment

, 1005
wxQueryLayoutInfoEvent::GetFlags,

1006
wxQueryLayoutInfoEvent::GetOrientatio

n, 1006
wxQueryLayoutInfoEvent::GetRequeste

dLength, 1006
wxQueryLayoutInfoEvent::GetSize, 1006
wxQueryLayoutInfoEvent::SetAlignment,

1006
wxQueryLayoutInfoEvent::SetFlags, 1006
wxQueryLayoutInfoEvent::SetOrientatio

n, 1007
wxQueryLayoutInfoEvent::SetRequeste

dLength, 1007
wxQueryLayoutInfoEvent::SetSize, 1007
wxQueryLayoutInfoEvent::wxQueryLayo

utInfoEvent, 1005
wxRA_SPECIFY_COLS, 1008
wxRA_SPECIFY_ROWS, 1007
wxRadioBox, 1008
wxRadioBox::~wxRadioBox, 1009
wxRadioBox::Create, 1009
wxRadioBox::Enable, 1010
wxRadioBox::FindString, 1010
wxRadioBox::GetLabel, 1010
wxRadioBox::GetSelection, 1011
wxRadioBox::GetString, 1013
wxRadioBox::GetStringSelection, 1011
wxRadioBox::Number, 1011
wxRadioBox::SetLabel, 1011
wxRadioBox::SetSelection, 1012
wxRadioBox::SetStringSelection, 1012
wxRadioBox::Show, 1012
wxRadioBox::wxRadioBox, 1008
wxRadioButton, 1014
wxRadioButton::~wxRadioButton, 1015
wxRadioButton::Create, 1015
wxRadioButton::GetValue, 1015
wxRadioButton::SetValue, 1015
wxRadioButton::wxRadioButton, 1014
wxRAISED_BORDER, 1359
wxRB_GROUP, 1014

wxRealFormValidator, 1016
wxRealFormValidator::wxRealFormValid

ator, 1016
wxRealListValidator, 1016
wxRealListValidator::wxRealListValidato

r, 1016
wxRealPoint, 1017
wxRealPoint::wxRealPoint, 1017
wxRecordSet, 1022
wxRecordSet overview

[DEPRECATED], 1634
wxRecordSet::~wxRecordSet, 1022
wxRecordSet::AddNew, 1022
wxRecordSet::BeginQuery, 1022
wxRecordSet::BindVar, 1023
wxRecordSet::CanAppend, 1023
wxRecordSet::Cancel, 1023
wxRecordSet::CanRestart, 1023
wxRecordSet::CanScroll, 1023
wxRecordSet::CanTransact, 1023
wxRecordSet::CanUpdate, 1024
wxRecordSet::ConstructDefaultSQL,

1024
wxRecordSet::Delete, 1024
wxRecordSet::Edit, 1024
wxRecordSet::EndQuery, 1024
wxRecordSet::ExecuteSQL, 1024
wxRecordSet::FillVars, 1024
wxRecordSet::GetColName, 1025
wxRecordSet::GetColType, 1025
wxRecordSet::GetColumns, 1025
wxRecordSet::GetCurrentRecord, 1026
wxRecordSet::GetDatabase, 1026
wxRecordSet::GetDataSources, 1026
wxRecordSet::GetDefaultConnect, 1026
wxRecordSet::GetDefaultSQL, 1026
wxRecordSet::GetErrorCode, 1027
wxRecordSet::GetFieldData, 1027
wxRecordSet::GetFieldDataPtr, 1027
wxRecordSet::GetFilter, 1028
wxRecordSet::GetForeignKeys, 1028
wxRecordSet::GetNumberCols, 1029
wxRecordSet::GetNumberFields, 1029
wxRecordSet::GetNumberParams, 1029
wxRecordSet::GetNumberRecords, 1029
wxRecordSet::GetOptions, 1029
wxRecordSet::GetPrimaryKeys, 1029
wxRecordSet::GetResultSet, 1030
wxRecordSet::GetSortString, 1030
wxRecordSet::GetSQL, 1030
wxRecordSet::GetTableName, 1030

INDEX

1772

wxRecordSet::GetTables, 1030
wxRecordSet::GetType, 1030
wxRecordSet::GoTo, 1031
wxRecordSet::IsBOF, 1031
wxRecordSet::IsColNullable, 1031
wxRecordSet::IsDeleted, 1032
wxRecordSet::IsEOF, 1031
wxRecordSet::IsFieldDirty, 1031
wxRecordSet::IsFieldNull, 1031
wxRecordSet::IsOpen, 1032
wxRecordSet::Move, 1032
wxRecordSet::MoveFirst, 1032
wxRecordSet::MoveLast, 1032
wxRecordSet::MoveNext, 1032
wxRecordSet::MovePrev, 1032
wxRecordSet::Query, 1032
wxRecordSet::RecordCountFinal, 1033
wxRecordSet::Requery, 1033
wxRecordSet::SetDefaultSQL, 1033
wxRecordSet::SetFieldDirty, 1033
wxRecordSet::SetFieldNull, 1033
wxRecordSet::SetOptions, 1033
wxRecordSet::SetTableName, 1033
wxRecordSet::SetType, 1034
wxRecordSet::Update, 1034
wxRecordSet::wxRecordSet, 1022
wxRect, 1018
wxRect::GetBottom, 1019
wxRect::GetHeight, 1019
wxRect::GetLeft, 1019
wxRect::GetPosition, 1019
wxRect::GetRight, 1019
wxRect::GetSize, 1019
wxRect::GetTop, 1019
wxRect::GetWidth, 1020
wxRect::GetX, 1020
wxRect::GetY, 1020
wxRect::height, 1018
wxRect::Inflate, 1020
wxRect::operator !=, 1021
wxRect::operator =, 1021
wxRect::operator ==, 1021
wxRect::SetHeight, 1020
wxRect::SetWidth, 1020
wxRect::SetX, 1020
wxRect::SetY, 1021
wxRect::width, 1018
wxRect::wxRect, 1018
wxRect::x, 1018
wxRect::y, 1018
wxRectangle, 1683

wxRegEx, 1036
wxRegEx::~wxRegEx, 1036
wxRegEx::Compile, 1036
wxRegEx::GetMatch, 1036
wxRegEx::IsValid, 1036
wxRegEx::Matches, 1037
wxRegEx::Replace, 1037
wxRegEx::ReplaceAll, 1037
wxRegEx::ReplaceFirst, 1038
wxRegEx::wxRegEx, 1036
wxRegion, 1038, 1039
wxRegion::~wxRegion, 1039
wxRegion::Clear, 1039
wxRegion::Contains, 1039
wxRegion::GetBox, 1040
wxRegion::Intersect, 1040
wxRegion::IsEmpty, 1040
wxRegion::operator =, 1042
wxRegion::Subtract, 1040
wxRegion::Union, 1041
wxRegion::wxRegion, 1038
wxRegion::Xor, 1041
wxRegionIterator, 1043
wxRegionIterator::GetH, 1043
wxRegionIterator::GetHeight, 1044
wxRegionIterator::GetRect, 1044
wxRegionIterator::GetW, 1043
wxRegionIterator::GetWidth, 1043
wxRegionIterator::GetX, 1043
wxRegionIterator::GetY, 1043
wxRegionIterator::HaveRects, 1044
wxRegionIterator::operator ++, 1044
wxRegionIterator::operator bool, 1044
wxRegionIterator::Reset, 1044
wxRegionIterator::wxRegionIterator, 1043
wxRegisterClipboardFormat, 1450
wxRegisterId, 1451
wxRelationship, 711
wxRemoveFile, 1430
wxRenameFile, 1430
wxRESIZE_BORDER, 357, 522, 811, 817,

862
wxResourceAddIdentifier, 1478
wxResourceClear, 1478
wxResourceCreateBitmap, 1478
wxResourceCreateIcon, 1479
wxResourceCreateMenuBar, 1479
wxResourceGetIdentifier, 1479
wxResourceParseData, 1480
wxResourceParseFile, 1480
wxResourceParseString, 1480

INDEX

1773

wxResourceRegisterBitmapData, 1481
wxRETAINED, 1065
wxRmdir, 1430
wxSafeYield, 1465
wxSashEvent, 1046
wxSashEvent::GetDragRect, 1046
wxSashEvent::GetDragStatus, 1046
wxSashEvent::GetEdge, 1046
wxSashEvent::wxSashEvent, 1046
wxSashLayoutWindow, 1047
wxSashLayoutWindow::~wxSashLayout

Window, 1048
wxSashLayoutWindow::GetAlignment,

1048
wxSashLayoutWindow::GetOrientation,

1048
wxSashLayoutWindow::OnCalculateLay

out, 1048
wxSashLayoutWindow::OnQueryLayoutI

nfo, 1049
wxSashLayoutWindow::SetAlignment,

1049
wxSashLayoutWindow::SetDefaultSize,

1049
wxSashLayoutWindow::SetOrientation,

1049
wxSashLayoutWindow::wxSashLayout

Window, 1047
wxSashWindow, 1051
wxSashWindow::~wxSashWindow, 1051
wxSashWindow::GetMaximumSizeX,

1052
wxSashWindow::GetMaximumSizeY,

1052
wxSashWindow::GetMinimumSizeX,

1052
wxSashWindow::GetMinimumSizeY,

1052
wxSashWindow::GetSashVisible, 1052
wxSashWindow::HasBorder, 1052
wxSashWindow::SetMaximumSizeX,

1053
wxSashWindow::SetMaximumSizeY,

1053
wxSashWindow::SetMinimumSizeX,

1053
wxSashWindow::SetMinimumSizeY,

1053
wxSashWindow::SetSashBorder, 1054
wxSashWindow::SetSashVisible, 1053
wxSashWindow::wxSashWindow, 1051
wxSB_HORIZONTAL , 1056
wxSB_SIZEGRIP, 1149

wxSB_VERTICAL , 1056
wxScreenDC, 1055
wxScreenDC::EndDrawingOnTop, 1055
wxScreenDC::StartDrawingOnTop, 1055
wxScreenDC::wxScreenDC, 1055
wxScrollBar, 1057, 1684
wxScrollBar::~wxScrollBar, 1058
wxScrollBar::Create, 1058
wxScrollBar::GetPageSize, 1059
wxScrollBar::GetRange, 1058
wxScrollBar::GetThumbLength, 1059
wxScrollBar::GetThumbPosition, 1059
wxScrollBar::SetScrollbar, 1060
wxScrollBar::SetThumbPosition, 1059
wxScrollBar::wxScrollBar, 1057
wxScrolledWindow, 1066
wxScrolledWindow::~wxScrolledWindow

, 1066
wxScrolledWindow::CalcScrolledPositio

n, 1067
wxScrolledWindow::CalcUnscrolledPosit

ion, 1067
wxScrolledWindow::Create, 1067
wxScrolledWindow::EnableScrolling,

1068
wxScrolledWindow::GetScrollPixelsPer

Unit, 1068
wxScrolledWindow::GetViewStart, 1072
wxScrolledWindow::GetVirtualSize, 1069
wxScrolledWindow::IsRetained, 1069
wxScrolledWindow::OnDraw, 1070
wxScrolledWindow::PrepareDC, 1069
wxScrolledWindow::Scroll, 1070
wxScrolledWindow::SetScrollbars, 1071
wxScrolledWindow::SetTargetWindow,

1072
wxScrolledWindow::wxScrolledWindow,

1066
wxScrollEvent, 1064
wxScrollEvent::GetOrientation, 1064
wxScrollEvent::GetPosition, 1064
wxScrollEvent::wxScrollEvent, 1064
wxScrollWinEvent, 1062
wxScrollWinEvent::GetOrientation, 1062
wxScrollWinEvent::GetPosition, 1062
wxScrollWinEvent::wxScrollWinEvent,

1062
wxSetClipboardData, 1450
wxSetCursor, 1445
wxSetDisplayName, 1465
wxSetEnv, 1489
wxSetPrinterCommand, 1447

INDEX

1774

wxSetPrinterFile, 1447
wxSetPrinterMode, 1447
wxSetPrinterOptions, 1447
wxSetPrinterOrientation, 1447
wxSetPrinterPreviewCommand, 1448
wxSetPrinterScaling, 1448
wxSetPrinterTranslation, 1448
wxSetWorkingDirectory, 1430
wxShell, 1466
wxShowTip, 1443
wxSIMPLE_BORDER, 522, 1359
wxSingleChoiceDialog, 1074
wxSingleChoiceDialog overview, 1590
wxSingleChoiceDialog::~wxSingleChoic

eDialog, 1074
wxSingleChoiceDialog::GetSelection,

1075
wxSingleChoiceDialog::GetSelectionClie

ntData, 1075
wxSingleChoiceDialog::GetStringSelecti

on, 1075
wxSingleChoiceDialog::SetSelection,

1075
wxSingleChoiceDialog::ShowModal,

1075
wxSingleChoiceDialog::wxSingleChoice

Dialog, 1073
wxSingleInstanceChecker, 1076
wxSingleInstanceChecker::~wxSingleIns

tanceChecker, 1077
wxSingleInstanceChecker::Create, 1076
wxSingleInstanceChecker::IsAnotherRu

nning, 1077
wxSingleInstanceChecker::wxSingleInst

anceChecker, 1076
wxSize, 1078
wxSize::GetHeight, 1078
wxSize::GetWidth, 1078
wxSize::operator =, 1079
wxSize::Set, 1078
wxSize::SetHeight, 1078
wxSize::SetWidth, 1079
wxSize::wxSize, 1078
wxSizeEvent, 1079
wxSizeEvent::GetSize, 1080
wxSizeEvent::wxSizeEvent, 1079
wxSizer, 1081
wxSizer::~wxSizer, 1081
wxSizer::Add, 1081
wxSizer::CalcMin, 1082
wxSizer::Fit, 1082

wxSizer::GetMinSize, 1083
wxSizer::GetPosition, 1083
wxSizer::GetSize, 1083
wxSizer::Layout, 1083
wxSizer::Prepend, 1083
wxSizer::RecalcSizes , 1084
wxSizer::Remove, 1084
wxSizer::SetDimension, 1084
wxSizer::SetItemMinSize, 1085
wxSizer::SetMinSize, 1084
wxSizer::SetSizeHints, 1085
wxSizer::wxSizer, 1080
wxSL_AUTOTICKS, 1086
wxSL_HORIZONTAL, 1085
wxSL_LABELS, 1086
wxSL_LEFT, 1086
wxSL_RIGHT, 1086
wxSL_SELRANGE, 1086
wxSL_TOP, 1086
wxSL_VERTICAL, 1086
wxSleep, 1466
wxSlider, 1086, 1087
wxSlider::~wxSlider, 1087
wxSlider::ClearSel, 1087
wxSlider::ClearTicks, 1088
wxSlider::Create, 1088
wxSlider::GetLineSize, 1088
wxSlider::GetMax, 1088
wxSlider::GetMin, 1089
wxSlider::GetPageSize, 1089
wxSlider::GetSelEnd, 1089
wxSlider::GetSelStart, 1089
wxSlider::GetThumbLength, 1090
wxSlider::GetTickFreq, 1090
wxSlider::GetValue, 1090
wxSlider::SetLineSize, 1091
wxSlider::SetPageSize, 1091
wxSlider::SetRange, 1090
wxSlider::SetSelection, 1092
wxSlider::SetThumbLength, 1092
wxSlider::SetTick, 1093
wxSlider::SetTickFreq, 1091
wxSlider::SetValue, 1093
wxSlider::wxSlider, 1086
wxSnprintf, 1435
wxSockAddress, 1094
wxSockAddress::~wxSockAddress, 1094
wxSockAddress::Clear, 1094
wxSockAddress::SockAddrLen, 1094
wxSockAddress::wxSockAddress, 1094
wxSocketBase, 1097

INDEX

1775

wxSocketBase::~wxSocketBase, 1098
wxSocketBase::Callback, 1098
wxSocketBase::CallbackData, 1098
wxSocketBase::Close, 1099
wxSocketBase::Destroy, 1099
wxSocketBase::Discard, 1099
wxSocketBase::Error, 1100
wxSocketBase::GetClientData, 1100
wxSocketBase::GetFlags, 1100
wxSocketBase::GetLocal, 1100
wxSocketBase::GetPeer, 1100
wxSocketBase::InterruptWait, 1101
wxSocketBase::IsConnected, 1101
wxSocketBase::IsData, 1101
wxSocketBase::IsDisconnected, 1101
wxSocketBase::LastCount, 1101
wxSocketBase::LastError, 1102
wxSocketBase::Notify, 1102
wxSocketBase::Ok, 1102
wxSocketBase::Peek, 1105
wxSocketBase::Read, 1106
wxSocketBase::ReadMsg, 1107
wxSocketBase::RestoreState, 1102
wxSocketBase::SaveState, 1103
wxSocketBase::SetClientData, 1103
wxSocketBase::SetEventHandler, 1103
wxSocketBase::SetFlags, 1104
wxSocketBase::SetNotify, 1105
wxSocketBase::SetTimeout, 1105
wxSocketBase::Unread, 1107
wxSocketBase::Wait, 1108
wxSocketBase::WaitForLost, 1109
wxSocketBase::WaitForRead, 1109
wxSocketBase::WaitForWrite, 1110
wxSocketBase::Write, 1110
wxSocketBase::WriteMsg, 1111
wxSocketBase::wxSocketBase, 1097
wxSocketClient, 1112
wxSocketClient::~wxSocketClient, 1112
wxSocketClient::Connect, 1112
wxSocketClient::WaitOnConnect, 1113
wxSocketClient::wxSocketClient, 1112
wxSocketEvent, 1115
wxSocketEvent::GetClientData, 1115
wxSocketEvent::GetSocket, 1115
wxSocketEvent::GetSocketEvent, 1115
wxSocketEvent::wxSocketEvent, 1115
wxSocketInputStream, 1118, 1119
wxSocketInputStream::wxSocketInputSt

ream, 1118
wxSocketOutputStream::wxSocketOutp

utStream, 1118
wxSocketServer, 1116
wxSocketServer::~wxSocketServer, 1116
wxSocketServer::Accept, 1116
wxSocketServer::AcceptWith, 1117
wxSocketServer::WaitForAccept, 1117
wxSocketServer::wxSocketServer, 1116
wxSortedArray, 40
wxSP_3D, 1131
wxSP_3DBORDER, 1131
wxSP_3DSASH, 1131
wxSP_ARROW_KEYS, 1119, 1123
wxSP_BORDER, 1131
wxSP_FULLSASH, 1131
wxSP_HORIZONTAL , 1119
wxSP_LIVE_UPDATE, 1131
wxSP_NOBORDER, 1131
wxSP_PERMIT_UNSPLIT , 1131
wxSP_SASH_AQUA, 1131
wxSP_VERTICAL , 1119
wxSP_WRAP, 1119, 1123
wxSpinButton, 1120
wxSpinButton::~wxSpinButton, 1121
wxSpinButton::Create, 1121
wxSpinButton::GetMax, 1121
wxSpinButton::GetMin, 1121
wxSpinButton::GetValue, 1121
wxSpinButton::SetRange, 1122
wxSpinButton::SetValue, 1122
wxSpinButton::wxSpinButton, 1120
wxSpinCtrl, 1123
wxSpinCtrl::Create, 1124
wxSpinCtrl::GetMax, 1125
wxSpinCtrl::GetMin, 1125
wxSpinCtrl::GetValue, 1124
wxSpinCtrl::SetRange, 1125
wxSpinCtrl::SetValue, 1124
wxSpinCtrl::wxSpinCtrl, 1123
wxSpinEvent, 1126
wxSpinEvent::GetPosition, 1126
wxSpinEvent::SetPosition, 1126
wxSpinEvent::wxSpinEvent, 1125
wxSplashScreen, 1127
wxSplashScreen::~wxSplashScreen,

1127
wxSplashScreen::GetSplashStyle, 1127
wxSplashScreen::GetSplashWindow,

1127
wxSplashScreen::GetTimeout, 1128
wxSplashScreen::OnCloseWindow, 1127
wxSplashScreen::wxSplashScreen, 1127

INDEX

1776

wxSplitPath, 1430
wxSplitterEvent, 1129
wxSplitterEvent::GetSashPosition, 1129
wxSplitterEvent::GetWindowBeingRemo

ved, 1130
wxSplitterEvent::GetX, 1129
wxSplitterEvent::GetY, 1130
wxSplitterEvent::SetSashPosition, 1130
wxSplitterEvent::wxSplitterEvent, 1129
wxSplitterWindow, 1132
wxSplitterWindow::~wxSplitterWindow,

1133
wxSplitterWindow::Create, 1133
wxSplitterWindow::GetMinimumPaneSiz

e, 1134
wxSplitterWindow::GetSashPosition,

1134
wxSplitterWindow::GetSplitMode, 1134
wxSplitterWindow::GetWindow1, 1134
wxSplitterWindow::GetWindow2, 1134
wxSplitterWindow::Initialize, 1135
wxSplitterWindow::IsSplit, 1135
wxSplitterWindow::OnDoubleClickSash,

1135
wxSplitterWindow::OnSashPositionCha

nge, 1136
wxSplitterWindow::OnUnsplit, 1136
wxSplitterWindow::ReplaceWindow, 1136
wxSplitterWindow::SetMinimumPaneSiz

e, 1137
wxSplitterWindow::SetSashPosition,

1137
wxSplitterWindow::SetSplitMode, 1138
wxSplitterWindow::SplitHorizontally, 1138
wxSplitterWindow::SplitVertically, 1139
wxSplitterWindow::Unsplit, 1140
wxSplitterWindow::wxSplitterWindow,

1132
wxST_NO_AUTORESIZE, 1147
wxStartTimer, 1486
wxSTATIC_BORDER, 1360
wxStaticBitmap, 1141
wxStaticBitmap::Create, 1142
wxStaticBitmap::GetBitmap, 1142
wxStaticBitmap::SetBitmap, 1142
wxStaticBitmap::wxStaticBitmap, 1141
wxStaticBox, 1143
wxStaticBox::~wxStaticBox, 1144
wxStaticBox::Create, 1144
wxStaticBox::wxStaticBox, 1143
wxStaticBoxSizer, 1145
wxStaticBoxSizer::GetStaticBox, 1145

wxStaticBoxSizer::wxStaticBoxSizer,
1145

wxStaticCast, 1477
wxStaticLine, 1146
wxStaticLine::Create, 1146
wxStaticLine::GetDefaultSize, 1147
wxStaticLine::IsVertical, 1146
wxStaticLine::wxStaticLine, 1146
wxStaticText, 1148
wxStaticText::Create, 1148
wxStaticText::GetLabel, 1149
wxStaticText::SetLabel, 1149
wxStaticText::wxStaticText, 1148
wxStatusBar, 1150
wxStatusBar::~wxStatusBar, 1151
wxStatusBar::Create, 1151
wxStatusBar::GetFieldRect, 1151
wxStatusBar::GetFieldsCount, 1151
wxStatusBar::GetStatusText, 1152
wxStatusBar::SetFieldsCount, 1152
wxStatusBar::SetMinHeight, 1152
wxStatusBar::SetStatusText, 1153
wxStatusBar::SetStatusWidths, 1153
wxStatusBar::wxStatusBar, 1150
wxSTAY_ON_TOP, 357, 522, 811, 817, 862
wxStopWatch, 1154
wxStopWatch::Pause, 1154
wxStopWatch::Resume, 1155
wxStopWatch::Start, 1154
wxStopWatch::Time, 1155
wxStopWatch::wxStopWatch, 1154
wxStreamBase, 1155
wxStreamBase::~wxStreamBase, 1155
wxStreamBase::GetSize, 1157
wxStreamBase::IsOk, 1156
wxStreamBase::LastError, 1156
wxStreamBase::OnSysRead, 1156
wxStreamBase::OnSysSeek, 1156
wxStreamBase::OnSysTell, 1156
wxStreamBase::OnSysWrite, 1157
wxStreamBase::wxStreamBase, 1155
wxStreamBuffer, 1157, 1158
wxStreamBuffer::~wxStreamBuffer, 1158
wxStreamBuffer::FillBuffer, 1163
wxStreamBuffer::Fixed, 1162
wxStreamBuffer::Flushable, 1162
wxStreamBuffer::FlushBuffer, 1163
wxStreamBuffer::GetBufferEnd, 1161
wxStreamBuffer::GetBufferPos, 1162
wxStreamBuffer::GetBufferStart, 1161
wxStreamBuffer::GetChar, 1159

INDEX

1777

wxStreamBuffer::GetDataLeft, 1163
wxStreamBuffer::GetIntPosition, 1162
wxStreamBuffer::GetLastAccess, 1162
wxStreamBuffer::PutChar, 1159
wxStreamBuffer::Read, 1158
wxStreamBuffer::ResetBuffer, 1160
wxStreamBuffer::Seek, 1160
wxStreamBuffer::SetBufferIO, 1160
wxStreamBuffer::SetIntPosition, 1162
wxStreamBuffer::Stream, 1163
wxStreamBuffer::Tell, 1160
wxStreamBuffer::Write, 1159
wxStreamBuffer::wxStreamBuffer, 1157
wxStreamToTextRedirector, 1164
wxStreamToTextRedirector::~wxStream

ToTextRedirector, 1164
wxStreamToTextRedirector::wxStreamT

oTextRedirector, 1164
wxStricmp, 1434
wxString, 1172
wxString::~wxString, 1172
wxString::AfterFirst, 1173
wxString::AfterLast, 1173
wxString::Alloc, 1172
wxString::Append, 1173
wxString::BeforeFirst, 1173
wxString::BeforeLast, 1174
wxString::c_str, 1174
wxString::Clear, 1174
wxString::Cmp, 1174
wxString::CmpNoCase, 1174
wxString::CompareTo, 1175
wxString::Contains, 1175
wxString::Empty, 1175
wxString::Find, 1175
wxString::First, 1175
wxString::Format, 1176
wxString::FormatV, 1176
wxString::Freq, 1176
wxString::GetChar, 1176
wxString::GetData, 1176
wxString::GetWritableChar, 1177
wxString::GetWriteBuf, 1177
wxString::Index, 1177
wxString::IsAscii, 1177
wxString::IsEmpty, 1177
wxString::IsNull, 1178
wxString::IsNumber, 1178
wxString::IsSameAs , 1178
wxString::IsWord, 1178
wxString::Last, 1179

wxString::Left, 1179
wxString::Len, 1179
wxString::Length, 1179
wxString::Lower, 1179
wxString::LowerCase, 1179
wxString::MakeLower, 1180
wxString::MakeUpper, 1180
wxString::Matches, 1180
wxString::Mid, 1180
wxString::operator (), 1186
wxString::operator [], 1185
wxString::operator +, 1185
wxString::operator +=, 1185
wxString::operator <<, 1186
wxString::operator =, 1185
wxString::operator >>, 1186
wxString::operator const char*, 1186
wxString::operator!, 1184
wxString::Pad, 1180
wxString::Prepend, 1180
wxString::Printf, 1180
wxString::PrintfV, 1181
wxString::Remove, 1181
wxString::RemoveLast, 1181
wxString::Replace, 1181
wxString::Right, 1181
wxString::SetChar, 1182
wxString::Shrink, 1182
wxString::sprintf, 1182
wxString::StartsWith, 1182
wxString::Strip, 1182
wxString::SubString, 1182
wxString::ToDouble, 1183
wxString::ToLong, 1183
wxString::ToULong, 1183
wxString::Trim, 1184
wxString::Truncate, 1184
wxString::UngetWriteBuf, 1184
wxString::Upper, 1184
wxString::UpperCase, 1184
wxString::wxString, 1172
wxStringBuffer, 1188
wxStringBuffer::~wxStringBuffer, 1188
wxStringBuffer::operator wxChar *, 1188
wxStringBuffer::wxStringBuffer, 1188
wxStringEq, 1434
wxStringFormValidator, 1189
wxStringFormValidator::wxStringFormV

alidator, 1188
wxStringList, 1189
wxStringList::~wxStringList, 1189

INDEX

1778

wxStringList::Add, 1189
wxStringList::Clear, 1190
wxStringList::Delete, 1190
wxStringList::ListToArray, 1190
wxStringList::Member, 1190
wxStringList::Sort, 1190
wxStringList::wxStringList, 1189
wxStringListValidator, 1191
wxStringListValidator::wxStringListValid

ator, 1191
wxStringMatch, 1434
wxStringTokenizer, 1192
wxStringTokenizer::CountTokens, 1192
wxStringTokenizer::GetNextToken, 1193
wxStringTokenizer::GetPosition, 1193
wxStringTokenizer::GetString, 1193
wxStringTokenizer::HasMoreTokens,

1192
wxStringTokenizer::SetString, 1193
wxStringTokenizer::wxStringTokenizer,

1192
wxStripMenuCodes, 1466
wxStrlen, 1435
wxSUNKEN_BORDER, 1359
wxSW_3D , 1050
wxSW_3DBORDER, 1050
wxSW_3DSASH, 1050
wxSW_BORDER, 1050
wxSysColourChanged, 1194
wxSysColourChangedEvent::wxSysColo

urChanged, 1194
wxSysErrorCode, 1484
wxSysErrorMsg, 1484
wxSYSTEM_MENU, 357, 522, 811, 817, 862
wxSystemOptions, 1195
wxSystemOptions::GetOption, 1195
wxSystemOptions::GetOptionInt, 1195
wxSystemOptions::HasOption, 1195
wxSystemOptions::SetOption, 1196
wxSystemOptions::wxSystemOptions,

1195
wxSystemSettings, 1196
wxSystemSettings::GetSystemColour,

1197
wxSystemSettings::GetSystemFont, 1198
wxSystemSettings::GetSystemMetric,

1198
wxSystemSettings::wxSystemSettings,

1196
wxTAB_TRAVERSAL, 1360
wxTabbedDialog, 1200
wxTabbedDialog::~wxTabbedDialog,

1200
wxTabbedDialog::GetTabView, 1200
wxTabbedDialog::SetTabView, 1200
wxTabbedDialog::wxTabbedDialog, 1200
wxTabbedPanel, 1201
wxTabbedPanel::GetTabView, 1201
wxTabbedPanel::SetTabView, 1201
wxTabbedPanel::wxTabbedPanel, 1201
wxTabControl, 1202
wxTabControl::GetColPosition, 1202
wxTabControl::GetFont, 1202
wxTabControl::GetHeight, 1202
wxTabControl::GetId, 1203
wxTabControl::GetLabel, 1203
wxTabControl::GetRowPosition, 1203
wxTabControl::GetSelected, 1203
wxTabControl::GetWidth, 1203
wxTabControl::GetX, 1203
wxTabControl::GetY, 1203
wxTabControl::HitTest, 1204
wxTabControl::OnDraw, 1204
wxTabControl::SetColPosition, 1204
wxTabControl::SetFont, 1204
wxTabControl::SetId, 1204
wxTabControl::SetLabel, 1204
wxTabControl::SetPosition, 1204
wxTabControl::SetRowPosition, 1205
wxTabControl::SetSelected, 1205
wxTabControl::SetSize, 1205
wxTabControl::wxTabControl, 1202
wxTabCtrl, 1214
wxTabCtrl::~wxTabCtrl, 1215
wxTabCtrl::Create, 1215
wxTabCtrl::DeleteAllItems, 1215
wxTabCtrl::DeleteItem, 1215
wxTabCtrl::GetCurFocus, 1215
wxTabCtrl::GetImageList, 1215
wxTabCtrl::GetItemCount, 1216
wxTabCtrl::GetItemData, 1216
wxTabCtrl::GetItemImage, 1216
wxTabCtrl::GetItemRect, 1216
wxTabCtrl::GetItemText, 1216
wxTabCtrl::GetRowCount, 1216
wxTabCtrl::GetSelection, 1216
wxTabCtrl::HitTest, 1217
wxTabCtrl::InsertItem, 1217
wxTabCtrl::SetImageList, 1218
wxTabCtrl::SetItemData, 1218
wxTabCtrl::SetItemImage, 1218
wxTabCtrl::SetItemSize, 1218
wxTabCtrl::SetItemText, 1218

INDEX

1779

wxTabCtrl::SetPadding, 1219
wxTabCtrl::SetSelection, 1219
wxTabCtrl::wxTabCtrl, 1214
wxTabEvent, 1220
wxTabEvent::wxTabEvent, 1220
wxTabView, 1206
wxTabView::AddTab, 1206
wxTabView::CalculateTabWidth, 1206
wxTabView::ClearTabs, 1207
wxTabView::Draw, 1207
wxTabView::FindTabControlForId, 1207
wxTabView::FindTabControlForPosition,

1207
wxTabView::GetBackgroundBrush, 1207
wxTabView::GetBackgroundColour, 1207
wxTabView::GetBackgroundPen, 1208
wxTabView::GetHighlightColour, 1208
wxTabView::GetHighlightPen, 1208
wxTabView::GetHorizontalTabOffset,

1208
wxTabView::GetNumberOfLayers, 1208
wxTabView::GetSelectedTabFont, 1208
wxTabView::GetShadowColour, 1208
wxTabView::GetShadowPen, 1210
wxTabView::GetTabFont, 1209
wxTabView::GetTabHeight, 1209
wxTabView::GetTabSelectionHeight,

1209
wxTabView::GetTabStyle, 1209
wxTabView::GetTabWidth, 1209
wxTabView::GetTextColour, 1209
wxTabView::GetTopMargin, 1209
wxTabView::GetVerticalTabTextSpacing

, 1210
wxTabView::GetViewRect, 1210
wxTabView::GetWindow, 1210
wxTabView::LayoutTabs, 1210
wxTabView::OnCreateTabControl, 1210
wxTabView::OnEvent, 1211
wxTabView::OnTabActivate, 1211
wxTabView::OnTabPreActivate, 1211
wxTabView::SetBackgroundColour, 1211
wxTabView::SetHighlightColour, 1211
wxTabView::SetHorizontalTabOffset,

1211
wxTabView::SetSelectedTabFont, 1212
wxTabView::SetShadowColour, 1212
wxTabView::SetTabFont, 1212
wxTabView::SetTabSelection, 1213
wxTabView::SetTabSelectionHeight,

1212
wxTabView::SetTabSize, 1212

wxTabView::SetTabStyle, 1212
wxTabView::SetTextColour, 1213
wxTabView::SetTopMargin, 1213
wxTabView::SetVerticalTabTextSpacing

, 1213
wxTabView::SetViewRect, 1213
wxTabView::SetWindow, 1213
wxTabView::wxTabView, 1206
wxTaskBarIcon, 1221
wxTaskBarIcon::~wxTaskBarIcon, 1221
wxTaskBarIcon::IsIconInstalled, 1221
wxTaskBarIcon::IsOK, 1221
wxTaskBarIcon::OnLButtonDClick, 1221
wxTaskBarIcon::OnLButtonDown, 1221
wxTaskBarIcon::OnLButtonUp, 1221
wxTaskBarIcon::OnMouseMove, 1222
wxTaskBarIcon::OnRButtonDClick, 1222
wxTaskBarIcon::OnRButtonDown, 1222
wxTaskBarIcon::OnRButtonUp, 1222
wxTaskBarIcon::RemoveIcon, 1222
wxTaskBarIcon::SetIcon, 1222
wxTaskBarIcon::wxTaskBarIcon, 1221
wxTB_3DBUTTONS, 1290
wxTB_DOCKABLE, 1290
wxTB_FLAT, 1290
wxTB_HORIZONTAL , 1290
wxTB_VERTICAL, 1290
wxTCPClient, 1223
wxTCPClient::MakeConnection, 1223
wxTCPClient::OnMakeConnection, 1224
wxTCPClient::ValidHost, 1224
wxTCPClient::wxTCPClient, 1223
wxTCPConnection, 1225
wxTCPConnection::Advise, 1225
wxTCPConnection::Disconnect, 1226
wxTCPConnection::Execute, 1226
wxTCPConnection::OnAdvise, 1226
wxTCPConnection::OnDisconnect, 1226
wxTCPConnection::OnExecute, 1226
wxTCPConnection::OnPoke, 1227
wxTCPConnection::OnRequest, 1227
wxTCPConnection::OnStartAdvise, 1227
wxTCPConnection::OnStopAdvise, 1227
wxTCPConnection::Poke, 1227
wxTCPConnection::Request, 1227
wxTCPConnection::StartAdvise, 1228
wxTCPConnection::StopAdvise, 1228
wxTCPConnection::wxTCPConnection,

1225
wxTCPServer, 1229
wxTCPServer::Create, 1229

INDEX

1780

wxTCPServer::OnAcceptConnection,
1229

wxTCPServer::wxTCPServer, 1229
wxTE_AUTO_URL, 1234
wxTE_MULTILINE, 1234
wxTE_NOHIDESEL, 1234
wxTE_PASSWORD, 1234
wxTE_PROCESS_ENTER, 1233
wxTE_PROCESS_TAB, 1234
wxTE_READONLY, 1234
wxTE_RICH, 1234
wxTempFile, 1230
wxTempFile::~wxTempFile, 1231
wxTempFile::Commit, 1231
wxTempFile::Discard, 1231
wxTempFile::IsOpened, 1230
wxTempFile::Open, 1230
wxTempFile::Write, 1231
wxTempFile::wxTempFile, 1230
wxText, wxMultiText, wxTextWindow,

1684
wxTextAttr, 1232
wxTextAttr::GetBackgroundColour, 1232
wxTextAttr::GetFont, 1232
wxTextAttr::GetTextColour, 1232
wxTextAttr::HasBackgroundColour, 1232
wxTextAttr::HasFont, 1233
wxTextAttr::HasTextColour, 1233
wxTextAttr::IsDefault, 1233
wxTextAttr::wxTextAttr, 1232
wxTextCtrl, 1236
wxTextCtrl::~wxTextCtrl, 1237
wxTextCtrl::AppendText, 1237
wxTextCtrl::CanCopy, 1238
wxTextCtrl::CanCut, 1238
wxTextCtrl::CanPaste, 1238
wxTextCtrl::CanRedo, 1238
wxTextCtrl::CanUndo, 1238
wxTextCtrl::Clear, 1238
wxTextCtrl::Copy, 1239
wxTextCtrl::Create, 1239
wxTextCtrl::Cut, 1239
wxTextCtrl::DiscardEdits, 1239
wxTextCtrl::GetDefaultStyle, 1239
wxTextCtrl::GetInsertionPoint, 1239
wxTextCtrl::GetLastPosition, 1240
wxTextCtrl::GetLineLength, 1240
wxTextCtrl::GetLineText, 1240
wxTextCtrl::GetNumberOfLines, 1241
wxTextCtrl::GetSelection, 1241
wxTextCtrl::GetStringSelection, 1241

wxTextCtrl::GetValue, 1242
wxTextCtrl::IsModified, 1242
wxTextCtrl::LoadFile, 1242
wxTextCtrl::OnChar, 1242
wxTextCtrl::OnDropFiles, 1243
wxTextCtrl::operator <<, 1249
wxTextCtrl::Paste, 1243
wxTextCtrl::PositionToXY, 1243
wxTextCtrl::Redo, 1244
wxTextCtrl::Remove, 1244
wxTextCtrl::Replace, 1244
wxTextCtrl::SaveFile, 1245
wxTextCtrl::SetDefaultStyle, 1245
wxTextCtrl::SetEditable, 1246
wxTextCtrl::SetInsertionPoint, 1246
wxTextCtrl::SetInsertionPointEnd, 1246
wxTextCtrl::SetMaxLength, 1246
wxTextCtrl::SetSelection, 1247
wxTextCtrl::SetStyle, 1247
wxTextCtrl::SetValue, 1248
wxTextCtrl::ShowPosition, 1248
wxTextCtrl::Undo, 1248
wxTextCtrl::WriteText, 1248
wxTextCtrl::wxTextCtrl, 1236
wxTextCtrl::XYToPosition, 1249
wxTextDataObject, 1250
wxTextDataObject::GetText, 1251
wxTextDataObject::GetTextLength, 1250
wxTextDataObject::SetText, 1251
wxTextDataObject::wxTextDataObject,

1250
wxTextDropTarget, 1257
wxTextDropTarget::OnDrop, 1258
wxTextDropTarget::OnDropText, 1258
wxTextDropTarget::wxTextDropTarget,

1257
wxTextEntryDialog, 1256
wxTextEntryDialog overview, 1590
wxTextEntryDialog::~wxTextEntryDialog

, 1256
wxTextEntryDialog::GetValue, 1257
wxTextEntryDialog::SetValue, 1257
wxTextEntryDialog::ShowModal, 1257
wxTextEntryDialog::wxTextEntryDialog,

1256
wxTextFile, 1264
wxTextFile::~wxTextFile, 1264
wxTextFile::AddLine, 1264
wxTextFile::Close, 1264
wxTextFile::Create, 1265
wxTextFile::Eof, 1266

INDEX

1781

wxTextFile::Exists, 1265
wxTextFile::GetCurrentLine, 1266
wxTextFile::GetEOL, 1266
wxTextFile::GetFirstLine, 1266
wxTextFile::GetLastLine, 1267
wxTextFile::GetLine, 1265
wxTextFile::GetLineCount, 1265
wxTextFile::GetLineType, 1267
wxTextFile::GetName, 1268
wxTextFile::GetNextLine, 1267
wxTextFile::GetPrevLine, 1267
wxTextFile::GoToLine, 1266
wxTextFile::GuessType, 1267
wxTextFile::InsertLine, 1268
wxTextFile::IsOpened, 1265
wxTextFile::Open, 1268
wxTextFile::operator[], 1265
wxTextFile::RemoveLine, 1268
wxTextFile::Write, 1268
wxTextFile::wxTextFile, 1264
wxTextInputStream, 1252
wxTextInputStream::~wxTextInputStrea

m, 1252
wxTextInputStream::Read16, 1252
wxTextInputStream::Read32, 1252
wxTextInputStream::Read8, 1252
wxTextInputStream::ReadDouble, 1252
wxTextInputStream::ReadLine, 1253
wxTextInputStream::ReadString, 1253
wxTextInputStream::ReadWord, 1253
wxTextInputStream::SetStringSeparator

s, 1253
wxTextInputStream::wxTextInputStream

, 1252
wxTextOutputStream, 1254
wxTextOutputStream::~wxTextOutputStr

eam, 1254
wxTextOutputStream::GetMode, 1254
wxTextOutputStream::SetMode, 1254
wxTextOutputStream::Write16, 1255
wxTextOutputStream::Write32, 1255
wxTextOutputStream::Write8, 1255
wxTextOutputStream::WriteDouble, 1255
wxTextOutputStream::WriteString, 1255
wxTextOutputStream::wxTextOutputStre

am, 1254
wxTextValidator, 1260
wxTextValidator::~wxTextValidator, 1261
wxTextValidator::Clone, 1261
wxTextValidator::GetExcludeList, 1261
wxTextValidator::GetIncludeList, 1261

wxTextValidator::GetStyle, 1261
wxTextValidator::OnChar, 1262
wxTextValidator::SetExcludeList, 1262
wxTextValidator::SetIncludeList, 1262
wxTextValidator::SetStyle, 1262
wxTextValidator::TransferFromWindow,

1262
wxTextValidator::TransferToWindow,

1262
wxTextValidator::Validate, 1262
wxTextValidator::wxTextValidator, 1260
wxTHICK_FRAME, 357, 811, 817, 862
wxThread, 1269
wxThread::~wxThread, 1270
wxThread::Create, 1270
wxThread::Delete, 1270
wxThread::Entry, 1271
wxThread::Exit, 1271
wxThread::GetCPUCount, 1271
wxThread::GetId , 1272
wxThread::GetPriority, 1272
wxThread::IsAlive, 1272
wxThread::IsDetached, 1272
wxThread::IsMain, 1272
wxThread::IsPaused, 1273
wxThread::IsRunning, 1273
wxThread::Kill, 1273
wxThread::OnExit, 1273
wxThread::Pause, 1274
wxThread::Resume, 1274
wxThread::Run, 1274
wxThread::SetConcurrency, 1275
wxThread::SetPriority, 1274
wxThread::Sleep, 1274
wxThread::TestDestroy, 1275
wxThread::This, 1275
wxThread::Wait, 1275
wxThread::wxThread, 1269
wxThread::Yield, 1275
wxTIFFHandler, 685
wxTime, 1276, 1277
wxTime::FormatTime, 1278
wxTime::GetDay, 1277
wxTime::GetDayOfWeek, 1277
wxTime::GetHour, 1277
wxTime::GetHourGMT, 1277
wxTime::GetMinute, 1277
wxTime::GetMinuteGMT, 1277
wxTime::GetMonth, 1278
wxTime::GetSecond, 1278
wxTime::GetSecondGMT, 1278

INDEX

1782

wxTime::GetSeconds, 1278
wxTime::GetYear, 1278
wxTime::IsBetween, 1278
wxTime::Max, 1279
wxTime::Min, 1279
wxTime::operator -, 1281
wxTime::operator !=, 1280
wxTime::operator +, 1280
wxTime::operator +=, 1281
wxTime::operator <, 1280
wxTime::operator <=, 1280
wxTime::operator =, 1279
wxTime::operator -=, 1281
wxTime::operator ==, 1280
wxTime::operator >, 1280
wxTime::operator >=, 1280
wxTime::operator char*, 1279
wxTime::operator wxDate, 1279
wxTime::SetFormat, 1279
wxTime::wxTime, 1276
wxTimer, 1282
wxTimer::~wxTimer, 1282
wxTimer::GetInterval, 1282
wxTimer::IsOneShot, 1282
wxTimer::IsRunning, 1282
wxTimer::Notify, 1282
wxTimer::SetOwner, 1283
wxTimer::Start, 1283
wxTimer::Stop, 1283
wxTimer::wxTimer, 1282
wxTimerEvent::GetInterval, 1284
wxTimeSpan::Format, 1259
wxTINY_CAPTION_HORIZ, 862
wxTINY_CAPTION_VERT, 862
wxTipProvider, 1285
wxTipProvider::GetTip, 1285
wxTipProvider::wxTipProvider, 1285
wxTipWindow, 1286
wxTipWindow::Adjust, 1286
wxTipWindow::wxTipWindow, 1286
wxToggleButton, 1287
wxToggleButton::~wxToggleButton, 1288
wxToggleButton::Create, 1288
wxToggleButton::GetValue, 1288
wxToggleButton::SetValue, 1288
wxToggleButton::wxToggleButton, 1287
wxToLower, 1466
wxToolBar, 1291, 1684
wxToolBar::~wxToolBar, 1292
wxToolBar::AddControl, 1292
wxToolBar::AddSeparator, 1292

wxToolBar::AddTool, 1292
wxToolBar::DeleteTool, 1293
wxToolBar::DeleteToolByPos, 1294
wxToolBar::EnableTool, 1294
wxToolBar::FindToolForPosition, 1295
wxToolBar::GetMargins, 1296
wxToolBar::GetToolBitmapSize, 1295
wxToolBar::GetToolClientData, 1296
wxToolBar::GetToolEnabled, 1296
wxToolBar::GetToolLongHelp, 1296
wxToolBar::GetToolPacking, 1297
wxToolBar::GetToolSeparation, 1297
wxToolBar::GetToolShortHelp, 1297
wxToolBar::GetToolSize, 1295
wxToolBar::GetToolState, 1298
wxToolBar::InsertControl, 1298
wxToolBar::InsertSeparator, 1298
wxToolBar::InsertTool, 1299
wxToolBar::OnLeftClick, 1299
wxToolBar::OnMouseEnter, 1299
wxToolBar::OnRightClick, 1300
wxToolBar::Realize, 1300
wxToolBar::RemoveTool, 1301
wxToolBar::SetMargins, 1301
wxToolBar::SetToolBitmapSize, 1302
wxToolBar::SetToolClientData, 1302
wxToolBar::SetToolLongHelp, 1302
wxToolBar::SetToolPacking, 1303
wxToolBar::SetToolSeparation, 1304
wxToolBar::SetToolShortHelp, 1303
wxToolBar::ToggleTool, 1304
wxToolBar::wxToolBar, 1291
wxToolTip, 1305
wxToolTip::Enable, 1305
wxToolTip::GetTip, 1305
wxToolTip::GetWindow, 1305
wxToolTip::SetDelay, 1305
wxToolTip::SetTip, 1305
wxToolTip::wxToolTip, 1305
wxToUpper, 1467
wxTR_DEFAULT_STYLE, 1307
wxTR_EDIT_LABELS, 1306
wxTR_EXTENDED, 1307
wxTR_HAS_BUTTONS, 1306
wxTR_HAS_VARIABLE_ROW_HEIGHT

, 1306
wxTR_HIDE_ROOT, 1306
wxTR_LINES_AT_ROOT, 1306
wxTR_MULTIPLE, 1306
wxTR_NO_BUTTONS, 1306
wxTR_NO_LINES, 1306

INDEX

1783

wxTR_ROW_LINES, 1306
wxTR_SINGLE, 1306
wxTR_TWIST_BUTTONS, 1306
wxTrace, 1467
WXTRACE, 1477
wxTraceLevel, 1467
WXTRACELEVEL, 1477
wxTransferFileToStream, 1431
wxTransferStreamToFile, 1431
wxTRANSPARENT_WINDOW, 1360
wxTrap, 1467
wxTreeCtrl, 1308, 1310
wxTreeCtrl::~wxTreeCtrl, 1308
wxTreeCtrl::AddRoot, 1309
wxTreeCtrl::AppendItem, 1309
wxTreeCtrl::AssignButtonsImageList,

1309
wxTreeCtrl::AssignImageList, 1309
wxTreeCtrl::AssignStateImageList, 1310
wxTreeCtrl::Collapse, 1310
wxTreeCtrl::CollapseAndReset, 1310
wxTreeCtrl::Create, 1310
wxTreeCtrl::Delete, 1310
wxTreeCtrl::DeleteAllItems, 1310
wxTreeCtrl::EditLabel, 1311
wxTreeCtrl::EndEditLabel, 1311
wxTreeCtrl::EnsureVisible, 1311
wxTreeCtrl::Expand, 1311
wxTreeCtrl::GetBoundingRect, 1311
wxTreeCtrl::GetButtonsImageList, 1312
wxTreeCtrl::GetChildrenCount, 1312
wxTreeCtrl::GetCount, 1312
wxTreeCtrl::GetEditControl, 1312
wxTreeCtrl::GetFirstChild, 1312
wxTreeCtrl::GetFirstVisibleItem, 1313
wxTreeCtrl::GetImageList, 1313
wxTreeCtrl::GetIndent, 1313
wxTreeCtrl::GetItemData, 1313
wxTreeCtrl::GetItemImage, 1314
wxTreeCtrl::GetItemSelectedImage, 1316
wxTreeCtrl::GetItemText, 1314
wxTreeCtrl::GetLastChild, 1314
wxTreeCtrl::GetNextChild, 1315
wxTreeCtrl::GetNextSibling, 1315
wxTreeCtrl::GetNextVisible, 1315
wxTreeCtrl::GetParent, 1316
wxTreeCtrl::GetPrevSibling, 1316
wxTreeCtrl::GetPrevVisible, 1316
wxTreeCtrl::GetRootItem, 1316
wxTreeCtrl::GetSelection, 1316
wxTreeCtrl::GetSelections, 1317

wxTreeCtrl::GetStateImageList, 1317
wxTreeCtrl::HitTest, 1317
wxTreeCtrl::InsertItem, 1318
wxTreeCtrl::IsBold, 1318
wxTreeCtrl::IsExpanded, 1318
wxTreeCtrl::IsSelected, 1318
wxTreeCtrl::IsVisible, 1319
wxTreeCtrl::ItemHasChildren, 1319
wxTreeCtrl::OnCompareItems, 1319
wxTreeCtrl::PrependItem, 1319
wxTreeCtrl::ScrollTo, 1319
wxTreeCtrl::SelectItem, 1319
wxTreeCtrl::SetButtonsImageList, 1320
wxTreeCtrl::SetImageList, 1320
wxTreeCtrl::SetIndent, 1320
wxTreeCtrl::SetItemBackgroundColour,

1320
wxTreeCtrl::SetItemBold, 1320
wxTreeCtrl::SetItemData, 1321
wxTreeCtrl::SetItemFont, 1321
wxTreeCtrl::SetItemHasChildren, 1321
wxTreeCtrl::SetItemImage, 1321
wxTreeCtrl::SetItemSelectedImage, 1322
wxTreeCtrl::SetItemText, 1322
wxTreeCtrl::SetItemTextColour, 1322
wxTreeCtrl::SetStateImageList, 1322
wxTreeCtrl::SortChildren, 1322
wxTreeCtrl::Toggle, 1323
wxTreeCtrl::Unselect, 1323
wxTreeCtrl::UnselectAll, 1323
wxTreeCtrl::wxTreeCtrl, 1308
wxTreeEvent, 1326
wxTreeEvent::GetCode, 1326
wxTreeEvent::GetItem, 1326
wxTreeEvent::GetKeyEvent, 1326
wxTreeEvent::GetLabel, 1326
wxTreeEvent::GetOldItem, 1326
wxTreeEvent::GetPoint(), 1326
wxTreeEvent::wxTreeEvent, 1326
wxTreeItemData, 1324
wxTreeItemData::~wxTreeItemData,

1324
wxTreeItemData::GetId, 1324
wxTreeItemData::SetId, 1324
wxTreeItemData::wxTreeItemData, 1324
wxTreeLayout, 1328
wxTreeLayout::ActivateNode, 1328
wxTreeLayout::CalcLayout, 1329
wxTreeLayout::DoLayout, 1329
wxTreeLayout::Draw, 1329
wxTreeLayout::DrawBranch, 1329

INDEX

1784

wxTreeLayout::DrawBranches, 1329
wxTreeLayout::DrawNode, 1329
wxTreeLayout::DrawNodes, 1329
wxTreeLayout::GetChildren, 1330
wxTreeLayout::GetLeftMargin, 1331
wxTreeLayout::GetNextNode, 1330
wxTreeLayout::GetNodeName, 1330
wxTreeLayout::GetNodeParent, 1330
wxTreeLayout::GetNodeSize, 1330
wxTreeLayout::GetNodeX, 1330
wxTreeLayout::GetNodeY, 1331
wxTreeLayout::GetOrientation, 1331
wxTreeLayout::GetTopMargin, 1331
wxTreeLayout::GetTopNode, 1331
wxTreeLayout::GetXSpacing, 1331
wxTreeLayout::GetYSpacing, 1332
wxTreeLayout::Initialize, 1332
wxTreeLayout::NodeActive, 1332
wxTreeLayout::SetMargins, 1333
wxTreeLayout::SetNodeName, 1332
wxTreeLayout::SetNodeX, 1332
wxTreeLayout::SetNodeY, 1332
wxTreeLayout::SetOrientation, 1332
wxTreeLayout::SetSpacing, 1333
wxTreeLayout::SetTopNode, 1333
wxTreeLayout::wxTreeLayout, 1328
wxTreeLayoutStored, 1334
wxTreeLayoutStored::AddChild, 1334
wxTreeLayoutStored::GetClientData,

1334
wxTreeLayoutStored::GetNode, 1334
wxTreeLayoutStored::GetNodeCount,

1334
wxTreeLayoutStored::GetNumNodes,

1334
wxTreeLayoutStored::HitTest, 1334
wxTreeLayoutStored::NameToId, 1335
wxTreeLayoutStored::SetClientData,

1335
wxTreeLayoutStored::wxTreeLayoutStor

ed, 1333
wxUINT16_SWAP_ALWAYS , 1470
wxUINT16_SWAP_ON_BE, 1470
wxUINT16_SWAP_ON_LE, 1470
wxUINT32_SWAP_ALWAYS , 1470
wxUINT32_SWAP_ON_BE, 1470
wxUINT32_SWAP_ON_LE, 1470
wxUninitialize, 1468
wxUnix2DosFilename, 1428
wxUnsetEnv, 1489
wxUpdateUIEvent, 1336

wxUpdateUIEvent::Check, 1337
wxUpdateUIEvent::Enable, 1337
wxUpdateUIEvent::GetChecked, 1337
wxUpdateUIEvent::GetEnabled, 1337
wxUpdateUIEvent::GetSetChecked, 1337
wxUpdateUIEvent::GetSetEnabled, 1338
wxUpdateUIEvent::GetSetText, 1338
wxUpdateUIEvent::GetText, 1338
wxUpdateUIEvent::m_checked, 1336
wxUpdateUIEvent::m_enabled, 1336
wxUpdateUIEvent::m_setChecked, 1336
wxUpdateUIEvent::m_setEnabled, 1336
wxUpdateUIEvent::m_setText, 1337
wxUpdateUIEvent::m_text, 1337
wxUpdateUIEvent::SetText, 1338
wxUpdateUIEvent::wxUpdateUIEvent,

1336
wxURL, 1339
wxURL::~wxURL, 1339
wxURL::ConvertToValidURI, 1341
wxURL::GetError, 1340
wxURL::GetInputStream, 1340
wxURL::GetPath, 1339
wxURL::GetProtocol, 1339
wxURL::GetProtocolName, 1339
wxURL::SetDefaultProxy, 1340
wxURL::SetProxy, 1341
wxURL::wxURL, 1339
wxUsleep, 1468
wxValidator, 1342
wxValidator::~wxValidator, 1342
wxValidator::Clone, 1342
wxValidator::GetWindow, 1342
wxValidator::SetBellOnError, 1342
wxValidator::SetWindow, 1343
wxValidator::TransferFromWindow, 1343
wxValidator::TransferToWindow, 1343
wxValidator::Validate, 1343
wxValidator::wxValidator, 1342
wxVariant, 1344, 1345
wxVariant::~wxVariant, 1345
wxVariant::Append, 1345
wxVariant::ClearList, 1346
wxVariant::Delete, 1346
wxVariant::GetBool, 1346
wxVariant::GetChar, 1346
wxVariant::GetCount, 1346
wxVariant::GetData, 1346
wxVariant::GetDate, 1346
wxVariant::GetDouble, 1347
wxVariant::GetLong, 1347

INDEX

1785

wxVariant::GetName, 1347
wxVariant::GetString, 1347
wxVariant::GetTime, 1347
wxVariant::GetType, 1347
wxVariant::GetVoidPtr, 1348
wxVariant::Insert, 1348
wxVariant::IsNull, 1348
wxVariant::IsType, 1348
wxVariant::MakeNull, 1348
wxVariant::MakeString, 1348
wxVariant::Member, 1348
wxVariant::NullList, 1349
wxVariant::operator !=, 1350
wxVariant::operator [], 1351
wxVariant::operator =, 1349
wxVariant::operator ==, 1349
wxVariant::operator char, 1351
wxVariant::operator double, 1351
wxVariant::operator void*, 1352
wxVariant::operator wxDate, 1351
wxVariant::operator wxString, 1351
wxVariant::operator wxTime, 1351
wxVariant::SetData, 1349
wxVariant::wxVariant, 1344
wxVariantData, 1352
wxVariantData::Copy, 1352
wxVariantData::Eq, 1352
wxVariantData::GetType, 1353
wxVariantData::Read, 1353
wxVariantData::Write, 1353
wxVariantData::wxVariantData, 1352
wxView, 1354
wxView overview, 1593
wxView::~wxView, 1354
wxView::Activate, 1354
wxView::Close, 1355
wxView::GetDocument, 1355
wxView::GetDocumentManager, 1355
wxView::GetFrame, 1355
wxView::GetViewName, 1355
wxView::m_viewDocument, 1354
wxView::m_viewFrame, 1354
wxView::m_viewTypeName, 1354
wxView::OnActivateView, 1355
wxView::OnChangeFilename, 1356
wxView::OnClose, 1356
wxView::OnCreate, 1356
wxView::OnCreatePrintout, 1356
wxView::OnUpdate, 1357
wxView::SetDocument, 1357
wxView::SetFrame, 1357

wxView::SetViewName, 1357
wxView::wxView, 1354
wxVSCROLL, 817, 1360
wxVsnprintf, 1435
wxWakeUpIdle, 1469
wxWANTS_CHARS, 1360
wxWave, 1358
wxWave::~wxWave, 1358
wxWave::Create, 1358
wxWave::IsOk, 1359
wxWave::Play, 1359
wxWave::wxWave, 1358
wxWindow, 1360
wxWindow::~wxWindow, 1361
wxWindow::AddChild, 1361
wxWindow::CaptureMouse, 1361
wxWindow::Center, 1362
wxWindow::CenterOnParent, 1362
wxWindow::CenterOnScreen, 1362
wxWindow::Centre, 1362
wxWindow::CentreOnParent, 1363
wxWindow::CentreOnScreen, 1363
wxWindow::Clear, 1363
wxWindow::ClientToScreen, 1364
wxWindow::Close, 1364
wxWindow::ConvertDialogToPixels, 1365
wxWindow::ConvertPixelsToDialog, 1366
wxWindow::Destroy, 1366
wxWindow::DestroyChildren, 1367
wxWindow::Disable, 1367
wxWindow::DragAcceptFiles, 1367
wxWindow::Enable, 1367
wxWindow::FindFocus, 1368
wxWindow::FindWindow, 1368
wxWindow::Fit, 1368
wxWindow::Freeze, 1369
wxWindow::GetBackgroundColour, 1369
wxWindow::GetBestSize, 1369
wxWindow::GetCaret, 1369
wxWindow::GetCharHeight, 1370
wxWindow::GetCharWidth, 1370
wxWindow::GetChildren, 1370
wxWindow::GetClientSize, 1370
wxWindow::GetConstraints, 1371
wxWindow::GetDropTarget, 1371
wxWindow::GetEventHandler, 1371
wxWindow::GetExtraStyle, 1371
wxWindow::GetFont, 1371
wxWindow::GetForegroundColour, 1372
wxWindow::GetGrandParent, 1372
wxWindow::GetHandle, 1372

INDEX

1786

wxWindow::GetHelpText, 1372
wxWindow::GetId , 1372
wxWindow::GetLabel, 1373
wxWindow::GetName, 1373
wxWindow::GetParent, 1373
wxWindow::GetPosition, 1374
wxWindow::GetRect, 1374
wxWindow::GetScrollPos, 1375
wxWindow::GetScrollRange, 1375
wxWindow::GetScrollThumb, 1374
wxWindow::GetSize, 1375
wxWindow::GetSizer, 1376
wxWindow::GetTitle, 1377
wxWindow::GetToolTip, 1409
wxWindow::GetUpdateRegion, 1377
wxWindow::GetValidator, 1377
wxWindow::GetWindowStyleFlag, 1377
wxWindow::InitDialog, 1377
wxWindow::IsEnabled, 1378
wxWindow::IsRetained, 1378
wxWindow::IsShown, 1378
wxWindow::IsTopLevel, 1379
wxWindow::Layout, 1379
wxWindow::LoadFromResource, 1379
wxWindow::Lower, 1379
wxWindow::MakeModal, 1380
wxWindow::Move, 1380
wxWindow::OnActivate, 1381
wxWindow::OnChar, 1381
wxWindow::OnCharHook, 1382
wxWindow::OnClose, 1383
wxWindow::OnCloseWindow, 1383
wxWindow::OnCommand, 1383
wxWindow::OnDropFiles, 1384
wxWindow::OnEraseBackground, 1385
wxWindow::OnIdle, 1387
wxWindow::OnInitDialog, 1387
wxWindow::OnKeyDown, 1385
wxWindow::OnKeyUp, 1386
wxWindow::OnKillFocus , 1386
wxWindow::OnMenuCommand, 1388
wxWindow::OnMenuHighlight, 1388
wxWindow::OnMouseEvent, 1389
wxWindow::OnMove, 1389
wxWindow::OnPaint, 1390
wxWindow::OnScroll, 1391
wxWindow::OnSetFocus, 1391
wxWindow::OnSize, 1392
wxWindow::OnSysColourChanged, 1392
wxWindow::PopEventHandler, 1393
wxWindow::PopupMenu, 1393

wxWindow::PushEventHandler, 1394
wxWindow::Raise, 1395
wxWindow::Refresh, 1395
wxWindow::ReleaseMouse, 1395
wxWindow::RemoveChild, 1395
wxWindow::Reparent, 1395
wxWindow::ScreenToClient, 1396
wxWindow::ScrollLines, 1396
wxWindow::ScrollPages, 1397
wxWindow::ScrollWindow, 1397
wxWindow::SetAcceleratorTable, 1398
wxWindow::SetAutoLayout, 1398
wxWindow::SetBackgroundColour, 1398
wxWindow::SetCaret, 1399
wxWindow::SetClientSize, 1399
wxWindow::SetConstraints, 1400
wxWindow::SetCursor, 1400
wxWindow::SetDropTarget, 1400
wxWindow::SetEventHandler, 1401
wxWindow::SetExtraStyle, 1401
wxWindow::SetFocus , 1402
wxWindow::SetFont, 1402
wxWindow::SetForegroundColour, 1402
wxWindow::SetHelpText, 1403
wxWindow::SetId, 1403
wxWindow::SetName, 1403
wxWindow::SetPalette, 1404
wxWindow::SetScrollbar, 1404
wxWindow::SetScrollPos, 1405
wxWindow::SetSize, 1405
wxWindow::SetSizeHints, 1407
wxWindow::SetSizer, 1408
wxWindow::SetTitle, 1408
wxWindow::SetToolTip, 1408
wxWindow::SetValidator, 1408
wxWindow::SetWindowStyle, 1409
wxWindow::SetWindowStyleFlag, 1409
wxWindow::Show, 1409
wxWindow::Thaw, 1410
wxWindow::TransferDataFromWindow,

1410
wxWindow::TransferDataToWindow,

1410
wxWindow::Validate, 1410
wxWindow::WarpPointer, 1411
wxWindow::wxWindow, 1360
wxWindow:IsExposed, 1378
wxWindowDC, 1412
wxWindowDC::wxWindowDC, 1412
wxWindowDisabler, 1412
wxWindowDisabler::~wxWindowDisable

INDEX

1787

r, 1413
wxWindowDisabler::wxWindowDisabler,

1412
wxWindows 1.xx compatibility functions,

1169
wxWindows predefined command

identifiers, 1596
wxWizard, 1414
wxWizard::Create, 1415
wxWizard::GetCurrentPage, 1416
wxWizard::GetPageSize, 1416
wxWizard::RunWizard, 1415
wxWizard::SetPageSize, 1416
wxWizard::wxWizard, 1414
wxWIZARD_EX_HELPBUTTON, 1414
wxWizardEvent, 1417
wxWizardEvent::GetDirection, 1417
wxWizardEvent::GetPage, 1417
wxWizardEvent::wxWizardEvent, 1417
wxWizardPage, 1418
wxWizardPage::GetBitmap, 1419
wxWizardPage::GetNext, 1419
wxWizardPage::GetPrev, 1419
wxWizardPage::wxWizardPage, 1418
wxWizardPageSimple, 1420
wxWizardPageSimple::Chain, 1421
wxWizardPageSimple::SetNext, 1421
wxWizardPageSimple::SetPrev, 1420
wxWizardPageSimple::wxWizardPageSi

mple, 1420

wxWriteResource, 1468
wxWS_EX_BLOCK_EVENTS, 1401
wxWS_EX_TRANSIENT, 1402
wxWS_EX_VALIDATE_RECURSIVELY,

1401
wxXPMHandler, 685
wxYield, 1469
wxZipInputStream, 1421
wxZipInputStream::wxZipInputStream,

1421
wxZlibOutputStream, 1423
wxZlibOutputStream::wxZlibOutputStrea

m, 1422

—X—

x, 1017
x, 932, 1018
Xor, 1041, 1042
XToCol, 582
XToEdgeOfCol, 582
XYToPosition, 1249

—Y—

y, 933, 1017
y, 1018
Yield, 32, 1275
YToEdgeOfRow, 582
YToRow, 582

