wxWindows 2.3: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

December 7th 2001

Contents

Chapter 1 Copyright NOLICE ..cui e XV
(@ aF=T o) (=T b2 | 01 4 o Yo [¥ T o f o] o OSSPSR 1
What iS WXWINAOWS? ... e et e et e e e e et et e e e en e enns 1
Why another cross-platform development tool?..........coooiiiiiiii 1
Changes frOM VEISION L.XX ...iuuiiiiiieiiie e e ettt e e e e e e e e e e e et e et e e e e e e e e eaneens 3
Changes frOM VEISION 2.0.......uu it ettt e e e e e e e 4
WXWINAOWS FEQUINEMENTS ... iue it et e et e e e e e e e e e e e et e e e et e et e et e et eaneeanns 4
Availability and location of WXWINAOWSiiiiiiiiiiie e e e 5
ACKNOWIEAGMENTS ...t et ettt e e et e eeens 5
Chapter 3 Multi-platform development with WxXWindowsccccccecvevieicieennenne 7
INCIUAE FIES .t e ettt e et e et e e e e eens 7
I o 7= T 1 7
(0701101 ¥ = 11T o [8
MAKETIIES ...ttt 8
WINAOWS -SPECITIC fIlESeee e e 9
Allocating and deleting WXWINAOWS ODJECESoiuiiiiieiiii e 9
F (o] o) (= To ([= e (=T o 1= oo [=T o Y 10
Conditional COMPITALIONiei et 11
(08 N LS U1 PP PTPRPRN 11
1 L= = U o |1 o 12
Chapter 4 Programming Strat@giesScccceeeereiereresesesieeeeee e 13
Strategies for reducing pProgramming EITOISiieuueirteeeieiet et e e eeaes 13
Strategies for POrtabilityoooiii 13
Strategies for AebUGING ovu e e 14
Chapter 5 Alphabetical class reference ..., 16
WXACCEIEIALONENTIY .ou.itit ittt e e e e e e e e 16
WXACCEIBIAIOITADIE ... e et 17
WXACHVALEEVENT ... e e e et e e e e e ens 20
111720 Y o o L PP 21
10N 1 - | PP 33
WXATTAY SEIINQ © ettt ettt ettt et et et e et e et e e et et et et e e e et e e e e e ee 45
LD AW | o] = LT @ o= o 50
17172242 11 1= o 55
WXBIMAPHANAIEE ... ettt e e e e 68

CONTENTS

VL2211 0 F=] = 10 1 (o 72
WXBItMAPDAtAOD]ECT.eiiieeii e 77
WXBOOIFOrMVAIIAALONceiiii e e et e e e e e aes 78
WXBOOILISTVAIAALONceeeeei ettt eaa e 78
WXBOXSIZET ...ttt et eas 79
WXBIUSH L. ettt et e aa e 81
WXBPUSHILIST ..ot ettt e e e e e e 87
WXBUSYCUISOL ... et et e e e e e e ens 89
WXBUSY N O L. e e e 90
1117220 101 o] o PP 91
WXBUFFEredINPUESTIEAIMieeiii et et e e e e 95
WXBUFfEredOULPULSTIEAMie e e e e e e e e e e e 95
WXCAlCUIAtELAYOULEVENT ... oo e e e e e e e e aeees 96
2 OF= 1= g To b= 01 1 o PP 98
WXCAlENAAIDAEALLE ...ttt e ettt e e e et e e e eans 104
WXCAIENAAIEVENT ...ttt ettt e e e et e e e e 107
(O 1= PP PPPP 108
L0 g1 Ted 1= T) PP 111
WXCRNECKLISTBOX ...ttt et et et e et e e e ean s 114
WXCNOICE .. e et e e 116
WXCIASSINTO ..t 122
WXCTIEBNTDIC ..ottt et et e et et et et e e e e 123
{2 (O o] oo = o [PPSR 124
WXCIOSEEVENT ...t ettt et e et et e e et e e an e e e e aeans 127
WXCMALINEPAISET ...ttt 129
1122 0] (o T | PPN 138
17O] (o] DX - PP 142
WXCOIOUIDALADASE. ...t 144
WXCOIOUIDIAIOT . ..ottt et e ettt 145
L7200 1] e o] =T) QPP 147
WXCOIMIMANG ...ttt ettt et et et e e et et e e e e e et e e e aa e eeen s 154
WXCOMMANAEVENT ... et e et e e e e e e e e e e e eanaas 156
WXCOMMANAPTOCESSON ...ttt ettt et e ettt e et et e e et e e aa e e eaeaeens 161
WXCONAITION. .t ettt e e e et et et e e e e 164
WXCONTIGBASE. ..ttt 166
L@ o =3 a1 1= o P 180
V0@] a1 (=)t =1] =0 1 (o] o [182
{12 (@de] 1 (o | PPN 183
WXCOUNINGOULPULSIIEAIM ... e e e e e e e e et eaa e aans 184
WXCHIHICAISECTION ...ttt et et e s 185

CONTENTS

WXCHItICAISECHONLOCKET ... it et 186
WXCSCONV ottt ettt et et et e e e 188
WXCUSTOMDAtAODECT. ... i e 189
12 (O U] £ To T PP 191
WXDATADASE. ... e 195
WXDATAFOIMAL ...ttt et et et et e ettt aans 201
T2 = - @ L 1= X 204
112 o T PPN 207
WXDBDCOIDAIAPIE ...ttt 238
WXDIDCOIDET ... et 238
17725 01 @< 1 1o 239
LT o 10 o] | o] PP 240
WXDDCONNECHINT ... et e 241
WXDBIAXDET ... e et et e e 246
WXDIINE L e e e 246
WXDIDTADIE .. e 247
WXD T ADIEINT <. e ettt 283
WXDAtaObhjECtCOMPOSITE ... ittt e 284
D= L= @ o] [T ot A5 4] o] L= 285
WXDAtAINPUEISTIIEAIMo e 287
B o s L@ U1 o UL] (== o PR 289
{2 (PP 291
WXDATESPAN ..o 299
WXDAEETIMIE ..ttt ettt ettt et e et e et e e et e e e et e et e et e e an e e aeans 299
wxDate TIMeHOIdayAUtNOTILY ... e e e e 327
WXDAETIMEWOIKDAYS ... ciiieiiie ettt 327
102 L G PP 327
170 I L@ 1 o 1= 346
T2 T L1 = o | T 347
T B D] =l o] o] o TTox 1 o] o WP 348
WXD D E S BIVET .. e 352
WXDEBUGCONTEXL ..ottt et e e 353
WXDEDUGSTIEAMBUSot e e 358
17702 T oo 359
WXDIBIUPEVENT ..ottt ettt e et e e e 367
LB E 118 o1, = g = Vo =Y P 368
{2 | TSP PP 372
D = V=] T PPN 376
LT 1 0 =1 Yo PP 377
WXDIILOBAEYttt et et et e e e s 379

CONTENTS

V0B Y = U 41 Tod I o =V 382
WXDOCCRIAFTAME ... e et e e 383
T2 d I Lo o =T g = Vo [PP 385
WXDOCMDICHIARTAME ...t 394
WXDOCMDIPAIENTFTAME ...t e e e e 396
WXDOCPAIENTFTAME ...ttt et et e e e eeans 398
{10 q B Lo Yol =1 o] = L (- 399
WXDIOCUIMEBNT ...ttt et et et et et et e et e a et enaeaees 404
L2 = Te | 1= T L= PP 413
AT o] o 1 1= = o | 417
WXDIOPSOUICE ... et e e e e e e e e 419
(V2B T o] &l 1=V 1= S PP 421
(TSt Tedo o 1 aTo [@] £ 1YY o (=] 425
WXETASEEVENL. ... e 427
(=Y o | PP PTPP 428
WXEVEHANAIET ... et e 432
XX T e e 439
WXEXPIDALADASE. ... et it 446
{2 1L RSP UPP TP 449
12 T[T PPN 456
L1 (=T B 1 =@]] 1= o P 460
T2 1 1= -1 (o o S 461
WXFIIEDIOPTANGET. ..ttt et et 466
LTl =Y o 11 o Y 467
V1= N T o U S 1 =T U o 470
WXFIEOULPUESTIEAM ...ttt et e 471
T[S (T Ty PP 473
AT 1 =T g o0 1 =T Vg o 473
WXFFIEOULPULSIIEAIM ... ettt et eena s 474
T 1T (=TT oo D PP 476
WXFTIEINAIME . ettt et e e 476
WXFIENaMELISTVAIIALON. ...t et e e 489
L1 1= YA 1= 1 P 489
WXFIIESYStEMHANAIE ... e e e e e e e eanees 491
2 [1Y o1 TSP 494
WXFIEXGIIOSIZET ...ttt et e e e e et e et e e e e eeens 498
11 0=T 4 T o0 S 1 =T - Vg o 500
WXFIEIOULPULSIIEAIM ... ettt et ettt eena s 500
WXFINADIAIOGEVENL ...t e e e e e e e et e et e aa e anns 501
R Lo 1R U] o] F= ot = I | - 502

CONTENTS

G Lo =T o] F= ol =T - | o T 504
WXFOCUSEVENT .o et e s 506
1o] | PP TPTRPP 506
(oo a1 | - PP 515
WXFONTDIAIOF. ¢+ ettt et 518
WXFONTENUMEIATON.ottt et et e et e e eeans 519
WX ONELIST L. ettt ettt et 521
WXFONIMBPPET ... e e 522
2 =10 1= PP PP 525
WXESIR <.t et 537
1T I 540
LT 2= L o = PP 546
1721 1@ = X 550
WXGENEIICDITCHI. ... e e et e e e 551
WXGENENCVAIAALOT et e e e eeens 555
WXGLCANVAS .. einieiiee ettt ettt e e et e e et e ettt e e 557
112 T o PPN 559
LT [0 [OF=] | FN 1 PP 594
WXGHIACEIEDITON ...ttt e e e e e e e ean s 598
WXGTIACEIRENUEIET ... e ettt e e e e e e e 600
WXGHATADIEBASE. ... et et e e e et e e e e e eens 601
WXGHIASIZE ..ttt et et ettt 606
WXHAASNTADIE. ..o e et 608
LT [T o101 0] L= P 610
WXHEIPCONIOIErHEIPPIOVIAET . .oe e e e 616
WXHEIPEVENT ..o ettt 617
LTt (=1 o] 0 Y7 T Y TP 618
WXHEMICEID ... ettt et et e e e 620
WXHEIMICOIOUICEID ... e et e e e e e e e e 626
WXHEMICONTAINEICEIL. ... et e e e e e eens 626
WXHEMID CRENUEIET ... ettt et et et e e e e 632
WXHEMIEASYPIINTING ...ttt e s 634
WXHEMIFTIEET L e ettt e e e et e e e e e e aeens 638
V0 L] L T o 1O o] o 1= 639
WXHEMIHEIPDALA ...ttt 643
WXHEIMIHEIPFTAME ..o e e e 645
WXHEMILINKINTO ..o et 649
WXHEMIPAISET <. e et et et e e e e e e e e e e e e eanas 650
WXHEMIPTINTOUL ..ot ettt e e e e et e et e e e e aeens 654
17070 L0 1 = T 656

CONTENTS

17000 141 1= Vo =g o 1= 660
WXHEMITAGSMOUUIE ... e 662
WXHEIMIWIAQEICEIL ... e e e e e e aaes 662
WXHEMIWINGOW ..ottt et e e e 663
WXHEIMIWINPAISET ...t ettt e e e e e e e eans 671
G L VAV I Vo | = T To | =Y P 677
1122 L1 =SSOSR 677
WXIAIBEVENL ... e ettt e e e e e eans 679
102 [o] o] o E PP TP 680
WXICONIZEEVENT ... ettt 688
o 4= Lo PP PTUPTPI 689
LT = 1o =] o =g o |1 P 706
171704 =V = = 710
WXINIVIdUAILAYOUTCONSTIAINTiitiiei e 715
WXINIEDIAIOGEVENToete e e e e e e e e e e aans 718
WX M DUE ST AIM ettt et e e e et et et et et e ae e 718
WXINtEGErFOrMVaAlAATON . .ceiiiiie e 721
N g1 C=To [T g IS A=V T - o] P 721
WXIPVABAUIESS ...ttt ettt et e et e e e ean s 722
WXJOYSTICK .. ettt ettt et et e e et 724
LTt L0V 1103 V=T o | P 731
)Y =T o | PP 733
WXLAYOULAIGOITNM ..ot 737
WXLAYOULCONSIIAINTS ...t it e e e e e e e e e e et e e e et e et e aneeanns 740
{2 S PSPPSR 743
IS 1 =T) PR 749
LT] (O £ PP 758
WXLISTEVEINT ..ottt et ettt et et e e e e e e 775
WXLIStOFSErNGSLISTVAlIAALON . .cevniieieii e 778
LT (e o 1= PP 779
1112 o Lo PP 790
WXLOGCNAIN .ot 797
110 o o U P 798
1770 To | [799
2o o 1 (o 1= PSPPI 800
L2 e T 1S 1 == Ut o PR 801
T2 T I = (1 5 802
WXLOGWINAOW ..ottt et e e 802
WXLOGPASSTRIOUQGN ..ot e 804
{112 (o] g To | o] o[PP 805

Vi

CONTENTS

WXIMIBISK . ettt e ettt 808
WXMAXIMIZEEVENT ...ttt e e et e e e et e e e e e e e eanas 810
oY =T Lo |V PP PTRPP 811
WXMBCONVIIIE ...ttt et e e 813
T2 2 0o 1Y U I 814
WXMBCONVUTES. ...ttt et et e et et e et e et e en e eans 815
WXMDICRIHARTAME ..o et e e 816
WXMDICHENTWINAOW ... e et et e e et e e e e e e e eanas 819
WXMDIPAIrENTFIAIME ... ettt et e e e et e e eans 821
WXIMEBMOTYD C ..ot et e e e e e e 828
WXMEMOIYFSHANGIET ...eee e 829
T =T o] g YAl g o101] (f=T= U o PR 831
WXMEMOTY O UL PULSTIEAM ... ettt e et e e e e e e e et e a e aees 832
Y L] o U PP PP 833
WXIMIENUBAL ... ittt ettt et e e et e e e et e et e et e ea e en e aans 843
WXIMBNUITEIM ..ottt e e e et et e e e e e e e e ennees 852
WXMENUENVENT ..ot ettt et et e e e et en e aees 857
WXMESSAGEDIAIOG .. ettt 859
WXIMETAFIIE ... et 860
WXMELATIIEDIC ... e et et e e e e e e e e e e 862
WXMIMETYPESMANAGET . eiiiieii et e e e e e et e e e e e et e e e e e e e et e et e aaeeanns 863
WXIMINIFTAIME ..o ettt e s 866
{121 Lo 11 =PRI 869
WXIMOUSEEVENT ... ettt e e e e e eans 871
WXMOVEEVENLT <. ettt e e 880
WXMUIEIPIECNOICEDIAIOG .. v 881
WUXIMIUTEX . ettt ettt ettt et et et e et etk e e e et e e e e e et e e e e e e et e et e et e e n e en e ea s 881
WXIMUEEXLOCKET ... et 884
WXNOTEDOOKSIZET ... e ettt e e e e eans 885
WXNOGEBASE ... ettt ettt e et e et et e et e et e e et e e et e e e aeans 886
WXNOTEDOOK ...t 887
WXNOTEDOOKEVENT ... e et e e e e e e 894
LT N o 1 4 V7= o | P 896
17702 @ o 1= o 897
WXODJECIRETDALAt ee e 901
(V2@ 1011 0T 1 55 1 L= o PP 902
WXPageSetuUpDIalogData. ccvieiiieiei e e 904
WXPAGESEIUPDIAIOT ... v 909
WXPAINIDC ...ttt ettt et ettt et e e b et a e e eans 910
WXPAINTEVENT ...ttt e e et et et et e e e ean s 911

Vii

CONTENTS

WXPAIETEE ...ttt ettt 912
WP AN <. e e 916
WXPANEITADVIBW ... ettt e et e et e e e e eens 919
WXPAENLIST . .ot ettt 921
L= PP PP PP 922
LT L=t T) PP 929
WXPIOTCUIVE ..ottt ettt et et et e et e e e e eaa s 931
WXPIOTWINAOW ... et e e et e e et e e e e e e e eans 933
WXPOINT ..ottt ettt et et et e et e e e aaans 937
WXPOSESCIIPIDC ..e ettt s e e e et e et e e e e e e e e e e e e e 938
O (V=T G2 T 1Y - 1 PPN 939
WXPTEVIEWCONITOIBAcetiiiit ittt et et e et e et e e e e eeens 940
WXPTEVIEWTAME ..ttt et ettt et et e et e eaa s 942
o 1] 011D = - PPN 943
LT 1 1 I 1 (o o P 949
WXPTINIDIAIOGDALA ... e e e e e e e 951
o] (] PP PTPPRTN 955
1T 11111 4 L O PP 958
{2 o (11 0TV | TSP PP TP PP 958
WXPTINEPTEVIEW ...t ettt et et ettt e e et e e a e e e e e e e eannas 962
N V= (=1 B (o] o] =T (o [PP 966
{0 o (0 1oL T PP 967
WXPTOGIESSDIAIOQ ...ttt 971
WXPTOCESSEVENT ..ottt et et et e et et e et e et e en e eans 973
{2 ad (0] 0 =] 1 Y PP 974
WXPTOPEItYFOrMDIAIOT iiieiii et 977
WXPTOPEIY FOIMETAIME ..ottt et et e e et e e eaeaas 977
WXPTOPEIYFOIMPANEo e e e e e e e e e e eanees 978
WXPTOPertyFOrMValIdatOrc.uuiiiiiiii e e 979
WXPTOPEIYFOIMVIBW ...t e e e e e e e e e e e et eaa e anns 980
AT e o= V4 £S5 4 1 =1 o Yo 983
WXPTOPEIYLISTFEIAME L..iiiii et 983
WXPTOPEIYLISIPANE! ...eeiee e e 984
T (] o T Y IS AV Z= 1o F= o 985
WXPTOPEIYLISTVIBW ...ttt ettt eena s 987
WXPTOPEITY SNEOL ..oe it e 990
(T2 (] o1 YAV £z Lo F= Lo) 992
WXPTropertyValidatorREGISTIYiie it 993
LT o] 0 1= T YAV Z= 10T P 994
LYo 0] o= 1 £ YAV A= 999

viii

CONTENTS

{2 (e (] (o oo | T PP UP PP PPPTPPT 1002
WXQUANTIZE ...ttt ettt e e et e et et e e a ettt e e eas 1004
LT (@ LU T=Y L O o PR 1005
1700 @ U 1= Y =1 o 1008
WXQUETYLAYOULINFOEVENTouiiiiiie et eeas 1010
WXRAIOBOX ...ttt ettt et et e et e et et e e e e et et e eanaae 1013
WXRAAIOBULION ..ttt et et eeens 1019
WXREAIFOIMVAIITALON ... e e ees 1021
WXREAILISTVAITALON et e e e e ean e 1022
WXREAIPOINT ... ettt e et 1022
X R e e e 1023
WXRECOIASEL ...t ettt e e e e et et e e e e e et e e e e eanaaaes 1027
WX R B E X ettt 1040
{2 =T e o] o PP PTPPTI 1044
LT e [ToT 1L (=T - (o SRR PR 1048
WXSBSNEVENT ...ttt ettt et e 1050
WXSASHLAYOUIWINGOWeiiiiiiii ettt et eenes 1052
WXSASNWINTOW ...eetiiie ettt e et et et e e e e e et e e e e eanaaes 1055
WXSCIEENDIC .o e 1060
S 1ot (]| =7 | PP 1062
WXSCIOIVWINEVENT ...t ettt e et et e e e e et e e e e eanaaees 1067
WXSCIOHEVENT ...ttt ettt e e e e e eens 1068
WXSCIOHEAWINUOW ... ettt et e et et e e e e e e e e aens 1070
WXSIMPIEHEIPPIOVIAERTeeii e ettt e e 1078
1100 eS [o | 1104 o T[oT=1 0 = | Lo o 1079
WXSINGIEINSTANCECNECKET ... it 1081
LT S A PSP PPRUPPRRN 1083
WXSIZEEVENT ...ttt 1085
{0 S 174 PP 1086
LTS 1o [= T PSP PPRPPRRN 1091
WXSOCKAAUINESS ...ttt ettt e et e et e et e e e e enns 1099
WXSOCKETBASE ... ettt ettt ettt ettt e et e e eas 1100
WXSOCKEICTBNT ...t et et e et et et e e et e e et e e e e eanaaaes 1118
WXSOCKEEEVENT ...ttt ettt et ettt e et e et e e e eenns 1120
WXSOCKEEISEIVET ...ttt et e et et et e et e et e e e enaaees 1121
WXSOCKEIINPUESTIEAM . .eiiitii et e e e e e e e e e e e e e eaaes 1124
WXSOCKETOULPULSTIEAIM ... ee i it e ettt e e e e e e et et e e e e e e e e eenneens 1124
WXSPINBULION ..ttt et et et e et e et et e e e eenas 1125
1102065 o114 1 PP 1128
1T LT0L ST o111 V7= o 1131

CONTENTS

110 eS] o] F= 1] 1S T YT o 1132
WXSPITEEIEVENT ..ottt et e enas 1134
LTS o] 111 0=T AT To [1 PP 1137
1T LT0 €S 2= LA 00 =102 T o 1146
{0 = UL (o = Lo) PP 1148
WXSTALICBOXSIZEN ... ittt e et et et e e e e e et e e e eanaaae 1150
WXSTALICLINE ..ottt ettt e et e et e e e e e eans 1151
{0 = UL (ol I = PP 1153
WXSTATUSBA ...ttt ettt e et ettt et et e e e e e e e et ea e 1155
170085 (o & YAV o] o 1160
WXSTITEAMBASE ...eiitie e ettt 1161
WXSTIEAMBUITET ... e et eaa e 1163
WXSTIreamMTOTEXIREAINECION .. ieti ittt e eens 1169
WX SEINQ ettt ettt ettt et et anas 1171
WX SN BUI T e e e e 1194
(V0 eS T o o g V=1 T - o T 1195
WX STIINGLIST ettt e e 1195
WXSTHIINGLISTVAlIAAtOr. .. .t 1197
110 T ol o1 (Y] 2] 1197
WXSYSCOIOUrCNANGEAEVENTouniiiieiii ettt e e e 1200
LS A1 (=1 1 0@ 1o 1P 1201
0SS =T 1 DS Y=Y 4] o 3 1203
WXTADDEADIANIOG ... cveveee e 1206
WXTADDEAPANEN et e 1207
WXTADCONIION ...t ettt e e e e e e eens 1208
WXTADVIBW .. e ettt e et et e et e e eas 1212
LT 1= 1 o1 1 PP UPRRRN 1220
WXTADEVENT. ...ttt ettt et et 1226
= TS == T4 (oo] o PP 1227
LT QIO 2O 11T o | PP PRUPRRRN 1229
WXTCPCONNECTHION ..ttt ettt et ettt et et e e e et e et e e e e eenns 1231
WX T P GBIV .t ettt et 1235
LT I=T 1] o 1= PR 1236
1D IS Y £ PP 1238
1 =2 1 ¢ PP 1240
L Q= U D= L L@] o] [Tt SRR 1256
WX T EXIINPUESTIEAIM .. ie it et e e e e e e e ens 1258
WXTEXTOULPULSTIEAIM ... 1260
L Q= =1 a1 1Y DT 1o o PR 1262
WX T EXIDIOP TAIGEE ettt e e e e e e 1264

CONTENTS

10 L 1SS o - o S 1265
Q=Y AV Z= 1o F= o PP 1267
WX TEXEFIIE et e e et e e e e et e e e eaaaae 1270
QI 11 €=T: Lo PP UP PP PPTPPT 1276
1IN 41T PP 1283
LT L1 SO PTPPRPPRRN 1288
WXTIMEIEVENT ...ttt et et et e et e et e et e e e e eenns 1290
WXTIPPTOVILEI ...ttt et et eenas 1291
WXTIPWINAOW .ot e e e e e e e e e e et e et e et e e e e e e e eaneeanes 1292
170 I T T 1 1= =T o o 1293
{0 e o] | 27 | PP 1296
1102 e To | I 1T o PR 1311
{2 (=113 (TP PPTPPT 1313
WXTTEEITEMDALA ... e i ettt e en e e 1330
WXTTEEEVENT ...ttt ettt et et e e e e e e e e et eanes 1332
WX TTEELAYOUL ..ttt et et e e e e et e et e e e e et e n e ens 1334
WXTTEELAYOULSTONEAcevieiiiieiii ettt et ettt e e e e e e eenns 1340
WXUPAAEUIEVENT ...ttt e e e e e e e e e e e e e e e eaa e 1342
WXURL Lottt 1345
{10 V£ 11T = o PP 1348
LTV A= Lo | PP UPPRRN 1350
WXV AEANTDALAttt et et e enas 1359
VWXV BV .. ettt ettt et et e e et et et e e et et e ea et ettt e e eaaens 1360
WXWVBIVE ..ttt et ettt ettt et et et e et ettt e e e ea e e e e et eae 1364
WXWWINOOW ..ttt et e e et et e et e e et et e e e e eenns 1366
WXWINAOWDC ...ttt e e et et e et e et e e e enaaens 1418
WXWINAOWDISADIET et e et e e e eanaaees 1419
WXWVIZAFD oottt et ettt et e aaas 1420
A 2= 1o | Y= o | PP 1423
L AT 4= 1o | o= o = PPN 1425
WXWIZardPage SimMPIe ... e 1427
WXZIPINPUESTIEAIM ...ttt ettt et e e e e e enas 1428
LA 11 o] g o101 53 £ £=T= Uy PR 1429
{07 11 ¢ 1@ 10 1 o] B 5 £ £ Y= U o 1429
Chapter 6 FUNCHIONS ...o.oiiieeeeee et 1431
V2] 651 (0] g I 14 F= T o 1 PP PTPPRPRN 1431
THread fUNCHONS ... ettt et e e et et e eaaeees 1432
1 L= 0 T o) P 1433
NETWOIK FUNCLIONS ...ceeiei ettt et et e e e e e e e eeas 1438

Xi

CONTENTS

USEr IdENIfICALIONuiee et 1439
SHING TUNCLIONS ...t ettt e e et et e eeeeees 1441
(D] F= 1o U o T o) 1= 1443
(€10] I8 (] (ol 1[o] o K- TSP PT PP UPPTRPPN 1451
L E =T AT U1 o o PP PT PP 1452
(O 7o) o o= I {1 Tox 1o T 3 =P 1455
MiISCellanEOoUS FUNCLIONSuiiiii et e e eens 1458
Y= 1o o 1 PP 1477
WXWINAOWS reSOUICe FUNCHIONSiiuiiiiiie et e e eane e 1485
[0 To N 1110 o) 1489
THME FUNCHIONS ..ot e e e et et e e e et e e e e e e e e e e eanes 1492
Debugging macros and fUNCLIONSc.uiiiiiii e 1494
ENvironment acCess fUNCHIONScouuiiieii e 1496
KBYCOUES ...ttt ettt 1497
Chapter 7 Classes DY CAt@QOTY ...t 1499
Chapter 8 TOPIC OVEIVIEWS ...cueeeeceeceeie ettt st ae e ae e e sne e 1511
Notes 0N USING the FEfEreNCecovi i e 1511
Writing a wxWindows application: a rough guidecccoiviiiiiiiiiiiii e 1511
WXWINAOWS "Hello WOot 1512
WXWINAOWS SAIMPIESeeieieiieiet et ettt e e e e ea e enns 1515
WXADP OVEIVIEW ...ttt ettt ettt ettt et et e et e et r et e e e et e e et n et reneeeaneee 1524
Run time class information OVEIVIEWocouuiiiiiiii e 1525
WXSEING OVEIVIEW ..ottt ettt ettt et e et e et e e e e et e e e e eenns 1527
Date and time ClaSSES OVEIVIEWttt e e e e eens 1532
Unicode support in WXWINAOWSiuuiiiiieie e e e e e e e et e e eanes 1536
WXMBCONV ClaSSES OVEIVIEW ... ettt ee ettt e e e e et r et e e e e e e e e eenneens 1539
INTErNALIONALIZATION ...\t e et e e 1542
Writing non-English appliCationsc..iiiniiiii e 1543
CONtAINET ClASSES OVEIVIEWuuiiiiiieeie e et e e e e e e e e e e e e et e een e aneeanns 1545
File classes and fUNCLIONS OVEIVIEW.iuuii i 1546
WXSEIEAIMS OVEIVIEWuiiieiit et e et ettt e et et e et e et e e et et et e e et e e et e e ean e eanaees 1547
WXLOQ ClASSES OVEIVIEWevieiii ettt ettt ettt e et e e e e e enas 1549
DEDUQGGING OVEIVIEW.itie ittt et et ettt et et e eenns 1552
WXCONFIQ ClaSSES OVEIVIEWuiiiiiii i e e e e e 1554
WXEXPE OVEIVIBW ...ttt ettt e et e et e e e eenns 1555
WXFTIESYSTEIM ..ot ettt et et et e e et e eae e ee 1558
Event handling OVEIVIEW.cuuiiiei e e e e ens 1560
WWINAOW SEYIES ...ttt et ettt et e e e et e e e enieee 1567
WiINAOW deIELION OVEIVIEW ...ttt e e e eaes 1568

Xii

CONTENTS

WXDIAIOG OVEIVIEW ...eiiiei ettt e e e e e et e et et n e e e e e e e e enneens 1570
WXV AIAAIOT OVEIVIEW ...ttt ettt et e e et e e e e e e e e e e eanes 1571
CONSEITAINIS OVEIVIBW ... ittt et et e e et et e e et e e et e e e an e eenaaes 1573
The WXWINAOWS rE€SOUICE SYSTEM . .iuuiit i et e e e e e e e e e e e s e r e e eanees 1576
SCIOIING OVEIVIEW ...ttt ettt s e et et e eeneees 1584
Bitmaps and ICONS OVEIVIEWiuiiiiieii et e e e e e e e e eaaeens 1585
DEVICE CONEXE OVEIVIEW ... evieiii ettt ettt et ettt e et e e e e eeens 1589
WXFONE OVEIVIEW ..ottt ettt et e e et et e et e et eea e e e e e et e eannes 1589
(o] =T aToto Lo [T g o 0 1VZ=T A/ = P 1590
WXSPIItEENWINAOW OVEIVIEW ...ttt ettt e e e e e e e e e e e aeees 1592
WXTTEECIIT OVEIVIEW. ...t ettt ettt et e et et e et e e e ea e e e e e e e e eans 1593
WXLISTCHT OVEIVIEW ...ttt ettt e et et e e e e et e e e e e eanaeees 1595
WXIMAGELIST OVEIVIEWeeieiiii e e et e e e e e e et et e e e e e e e e e eneees 1595
ComMMON dIAIOGS OVEIVIEW ...ttt ettt e e et e eeaeees 1595
DOCUMENT/VIEW OVEIVIEW ...t ittt et e et e et et e e et e et e e eaneeeans 1599
WXTAD ClASSES OVEIVIEWcuiiiii et 1605
WXTADVIEW OVEIVIEW... ettt ettt et et et e et e et eea e e e e e e eanaeanns 1609
TOOIDAI OVEIVIBW ...ttt et ettt e et et et e e et e e et e e e e e eanaaes 1610
WXGHIA CIASSES OVEIVIEWcuiiiiiieeii ettt ettt et e eenns 1615
WXTIPPIOVIAEI OVEIVIEW. ... iieiiit ettt ettt et et et e e e et e e e eaeneees 1616
PrINTING OVEIVIBW ..ot e et e e e e e e e e e e eaaeens 1617
I gV == o [T T B0 1Y Z=T Y= 1618
Drag and ArOP OVEIVIEWuiiuteiireeit ettt ettt ettt ettt e et e et e e eenns 1619
B 1= @ o] [=Toa Ao YT o = PR 1620
Database ClaSSES OVEIVIEWiiui ittt e e e eeens 1622
Interprocess COMMUNICALION OVEIVIEWuiveuneieiieii et eai e et e e et e e e e eenns 1646
Chapter 9 WXHTML NOTEScciiciicie ettt st 1650
WXHTML QUICK STAIT. .. et e e e e e e e e e e aeees 1650
HTIML PriNTING ..ttt et e et e e e e eenns 1651
[[T o 1 L= T 0 = 1651
T LU T (= 1653
Cells anNd CONLAINETSc.iieeeeie ettt e e e e e e e et eea e eneeenns 1653
B2 0 = U o 1T P 1655
Tags supported DY WXHTMLiueii e e e e e e e 1657
Chapter 10 Property Sheet ClasSEes ... 1661
Fa 1o To [N Tod 1 To] o N PP 1661
[(=T To [T £ PP TP 1663
TOPIC OVEIVIEBWS ...ttt ettt ettt et et et n e et e et et e e et e e et n e e e ennaeee 1663
ClasSSES DY CAIEYONYvuiiiiiieiie ettt et et et et e e e et et e eaa e ee 1671

xiii

CONTENTS

Chapter 11 WXPYthon NOTES......c.occeiiee e 1673
WAL IS WX PYINON 2. e e e e e e e e e e e e 1673
WHhY USE WXPYINON? ..o e e 1673
Other PYthon GUIScueiei e e e e e aans 1674
L0 £ 1T T3 d € o T o 1675
wxWindows classes implemented in WXPYthon ..., 1678
Where t0 g0 fOor NEIP. ... e e 1682

Chapter 12 Porting from WXWINAOWS L.XX .ccvcoereereeiieseerieeieseesieeseeseeseeeeeens 1683
Preparing fOr VEIrSION 2.0 1683
SR A A= 1] 2] =] o 1685
(0 TSN 1= = (o] o /P 1686
G OBJECES ..t 1686
Dialogs and CONMIOIS. e e e e 1686
Device contexts and PaiNtingceueiririie e 1688
YT ETod =] 1= T =0 U 1688
Backward compatiDilitycouiiiiii 1689
(@ 01Tl Q1 (=] (=1 (=] (o] T PP 1689

Chapter 13 REFEIENCES ..ottt sre e e 1694

ChapPLEr 14 INAEX oot 1696

Xiv

Chapter 1 Copyright notice

(c) 1999 Julian Smart, Robert Roebling, Vadim Zeitlin and other members of the
wxWindows team
Portions (c) 1996 Atrtificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, Igpl.txt, gpl.txt, license.txt,
licendoc.txt) for conditions of software and documentation use.

wxWindows Library License, Version 3
Copyright (C) 1998 Julian Smart, Robert Roebling, Vadim Zeitlin et al.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You should have received a copy of the GNU Library General Public License along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licensed under the
wxWindows Library License, applying either version 3 of the License, or (at your option)
any later version of the License as published by the copyright holders of version 3 of the
License document.

2. The exception is that you may create binary object code versions of any works using
this library or based on this library, and use, copy, modify, link and distribute such binary
object code files unrestricted under terms of your choice.

3. If you copy code from files distributed under the terms of the GNU General Public
License or the GNU Library General Public License into a copy of this library, as this
license permits, the exception does not apply to the code that you add in this way. To

COPYRIGHT

avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

4. If you write modifications of your own for this library, it is your choice whether to
permit this exception to apply to your modifications. If you do not wish that, you must
delete the exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

XVi

COPYRIGHT

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

XVii

COPYRIGHT

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification™.)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an

Xviii

COPYRIGHT

argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

XiX

COPYRIGHT

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the

Library". Such a work, in isolation, is not a derivative work of the Library, and therefore

falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also falll
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no

COPYRIGHT

more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,

COPYRIGHT

link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to

XXii

COPYRIGHT

the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's nane and a brief idea of what it does.>
Copyright (C) <year> <nane of author>

This library is free software; you can redistribute it and/or
nodi fy it under the ternms of the GNU Library General Public

Li cense as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any |ater version.

This library is distributed in the hope that it will be useful,

XXiii

COPYRIGHT

but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the GNU
Li brary General Public License for nore details.

You shoul d have received a copy of the GNU Library General Public
License along with this library; if not, wite to the Free
Sof t ware Foundation, Inc., 675 Mass Ave, Canbridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclainms all copyright interest in the
library "Frob' (a library for tweaking knobs) witten by Janes Random
Hacker .

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

XXiV

Chapter 2 Introduction

What is wxWindows?

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports MS Windows (16-bit,
Windows 95 and Windows NT), Unix with GTK+, Unix with Motif, and Mac. An OS/2 port
is in progress.

wxWindows was originally developed at the Artificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1993.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin and many others.

This manual discusses wxWindows in the context of multi-platform development.

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

low price;

source availability;

simplicity of programming;

support for a wide range of compilers.

PwONPE

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As open source software, wxWindows has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWindows a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

CHAPTER?2

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming
interface than the native APIs. Programmers may find it worthwhile to use wxWindows
even if they are developing on only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

Low cost (free, in fact!)

You get the source.

Available on a variety of popular platforms.

Works with almost all popular C++ compilers and Python.

Over 50 example programs.

Over 1000 pages of printable and on-line documentation.

Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

Simple-to-use, object-oriented API.

Flexible event system.

Graphics calls include lines, rounded rectangles, splines, polylines, etc.
Constraint-based and sizer-based layouts.

Print/preview and document/view architectures.

Toolbar, notebook, tree control, advanced list control classes.

PostScript generation under Unix, normal MS Windows printing on the PC.
MDI (Multiple Document Interface) support.

Can be used to create DLLs under Windows, dynamic libraries on Unix.
Common dialogs for file browsing, printing, colour selection, etc.

Under MS Windows, support for creating metafiles and copying them to the

clipboard.
An API for invoking help from applications.

Ready-to-use HTML window (supporting a subset of HTML).

Dialog Editor for building dialogs.

Network support via a family of socket and protocol classes.

Support for platform independent image processing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

CHAPTER?2

Changes from version 1.xx

These are a few of the major differences between versions 1.xx and 2.0.
Removals:

XView is no longer supported;

all controls (panel items) no longer have labels attached to them;

wxForm has been removed,;

wxCanvasDC, wxPanelDC removed (replaced by wxClientDC, wxWindowDC,
wxPaintDC which can be used for any window);

wxMultiText, wxTextWindow, wxText removed and replaced by wxTextCtrl;
classes no longer divided into generic and platform-specific parts, for efficiency.

Additions and changes:

class hierarchy changed, and restrictions about subwindow nesting lifted:;
header files reorganized to conform to normal C++ standards;

classes less dependent on each another, to reduce executable size;
wxString used instead of char* wherever possible;

the number of separate but mandatory utilities reduced;

the event system has been overhauled, with virtual functions and callbacks

being replaced with MFC-like event tables;

new controls, such as wxTreeCtrl, wxListCtrl, wxSpinButton;

less inconsistency about what events can be handled, so for example mouse
clicks or key presses on controls can now be intercepted;

the status bar is now a separate class, wxStatusBar, and is implemented in
generic wxWindows code;

some renaming of controls for greater consistency;

wxBitmap has the notion of bitmap handlers to allow for extension to new
formats without ifdefing;

new dialogs: wxPageSetupDialog, wxFileDialog, wxDirDialog,
wxMessageDialog, wxSingleChoiceDialog, wxTextEntryDialog;

GDI objects are reference-counted and are now passed to most functions by
reference, making memory management far easier;

wxSystemSettings class allows querying for various system-wide properties
such as dialog font, colours, user interface element sizes, and so on;

better platform look and feel conformance;

toolbar functionality now separated out into a family of classes with the same
API;

device contexts are no longer accessed using wxWindow::GetDC - they are
created temporarily with the window as an argument;

events from sliders and scrollbars can be handled more flexibly;

the handling of window close events has been changed in line with the new
event system;

the concept of validator has been added to allow much easier coding of the
relationship between controls and application data;

CHAPTER?2

the documentation has been revised, with more cross-referencing.
Platform-specific changes:

The Windows header file (windows.h) is no longer included by wxWindows
headers;

wx.dll supported under Visual C++;

the full range of Windows 95 window decorations are supported, such as modal
frame borders;

MDI classes brought out of wxFrame into separate classes, and made more
flexible.

Changes from version 2.0

These are a few of the differences between versions 2.0 and 2.2.
Removals:

GTK 1.0 no longer supported.
Additions and changes:

Corrected many classes to conform better to documented behaviour.
Added handlers for more image formats (Now GIF, JPEG, PCX, BMP, XPM,
PNG, PNM).

Improved support for socket and network functions.

Support for different national font encodings.

Sizer based layout system.

HTML widget and help system.

Added some controls (e.g. wxSpinCtrl) and supplemented many.
Many optical improvements to GTK port.

Support for menu accelerators in GTK port.

Enhanced and improved support for scrolling, including child windows.
Complete rewrite of clipboard and drag and drop classes.

Improved support for ODBC databases.

Improved tab traversal in dialogs.

wxWindows requirements

To make use of wxWindows, you currently need one of the following setups.

(@) MS-Windows:

CHAPTER?2

=

A 486 or higher PC running MS Windows.

2. A Windows compiler: most are supported, but please see i nstal | . t xt for
details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, Metrowerks CodeWatrrior.

3. Atleast 60 MB of disk space.

(b) Unix:

1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).
2. Almost any Unix workstation, and one of: GTK+ 1.2, Motif 1.2 or higher, Lesstif.
3. Atleast 60 MB of disk space.

(c) Mac OS/Mac OS X:

A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.
CodeWarrior 5.3, 6 or 7 for Classic Mac OS.

The Apple Developer Tools (eg. GNU C++) or CodeWarrior 7 for Mac OS X.
At least 60 MB of disk space.

SN

Availability and location of wxWindows

wxWindows is available by anonymous FTP and World Wide Web from
ftp://lwww.remstar.com/pub/wxwin (f t p: / / www. r enst ar . conml pub/ wxwi n) and/or
http://mww.wxwindows.org (ht t p: / / www. wxwi ndows. or g).

You can also buy a CD-ROM using the form on the Web site, or by contacting:

Julian Smart

12 North Street West
Uppingham

Rutland

LE15 9SG
julian.smart@btopenworld.com

Acknowledgments

Thanks are due to AlAl for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,
Alejandro Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.

CHAPTER?2

Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Guillermo Rodriguez Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale,
Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer,
Markus Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Thomas Runge, Tatu Mannisto,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Hernan Otero, lan Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett Potts,
Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton,
Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith, Kari Systa, Arthur
Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, David Webster, Janos Vegh, Andrea
Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

‘Graphplace’, the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Chapter 3 Multi-platform development with
wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is " wx/ wx. h" ; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

/1 For conpilers that support preconpilation, includes "wx.h".
#i ncl ude <wx/wxprec. h>

#i fdef __ BORLANDC_ _
#pragma hdr st op
#endi f

#i f ndef WK_PRECOWP

/1 Include your mninmal set of headers here, or wx.h
#i ncl ude <wx/wx. h>

#endi f

now your other include files ...

The file " wx/ wxpr ec. h" includes " wx/ wx. h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of

"wx/ wxprec. h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

Libraries

CHAPTER3

The GTK and Motif ports of wxWindow can create either a static library or a shared
library on most Unix or Unix-like systems. The static library is called libwx_gtk.a and
libwx_motif.a whereas the name of the shared library is dependent on the system it is
created on and the version you are using. The library name for the GTK version of
wxWindows 2.2 on Linux and Solaris will be libwx_gtk-2.2.50.0.0.0, on HP-UX; it will be
libwx_gtk-2.2.sl, on AIX just libwx_gtk.a etc.

Under Windows, use the library wx.lib (release) or wxd.lib (debug) for stand-alone
Windows applications, or wxdlllib (wxdlld.lib) for creating DLLs.

Configuration

Options are configurable in the file " wx/ XXX/ set up. h" where XXX is the required
platform (such as msw, motif, gtk, mac). Some settings are a matter of taste, some help
with platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and i nstal | . t xt files for details on configuration.

Under Unix (GTK and Motif) the corresponding setup.h files are generated automatically
when configuring the wxWindows using the "configure” script. When using the RPM
packages for installing wxWindows on Linux, a correct setup.h is shipped in the package
and this must not be changed.

Mak efiles

At the moment there is no attempt to make Unix makefiles and PC makefiles compatible,
i.e. one makefile is required for each environment. The Unix ports use a sophisticated
system based on the GNU autoconf tool and this system will create the makefiles as
required on the respective platform. Although the makefiles are not identical in Windows,
Mac and Unix, care has been taken to make them relatively similar so that moving from
one platform to another will be painless.

Sample makefiles for Unix (suffix .unx), MS C++ (suffix .DOS and .NT), Borland C++
(.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos and
utilities.

The controlling makefile for wxWindows is in the MS-Windows directory sr ¢/ msw for the
different Windows compiler and in the build directory when using the Unix ports. The
build directory can be chosen by the user. It is the directory in which the "configure"
script is run. This can be the normal base directory (by running . / conf i gur e there) or
any other directory (e.g. . . / conf i gur e after creating a build-directory in the directory
level above the base directory).

CHAPTER3

Please see the platform-specifici nstal | . t xt file for further details.

Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

rci ncl ude "wx/ msw wx.rc"

which includes essential internal wxWindows definitions. The resource script may also
contain references to icons, cursors, etc., for example:

WXi con icon wx.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Module definition file

A module definition file (extension DEF) is required for 16-bit applications, and looks like

the following:

NANVE Hel | o

DESCRI PTION ' Hell o'

EXETYPE W NDOWS

STUB " W NSTUB. EXE

CODE PRELOAD MOVEABLE DI SCARDABLE
DATA PRELOAD MOVEABLE MULTI PLE
HEAPSI ZE 1024

STACKSI ZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

Allocating and deleting wxWindows objects

CHAPTER3

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWindows, make sure you delete the array explicitly before wxWindows has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxIntl6, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Macros (p. 1477) section.

10

CHAPTER3

Conditional compilation

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS

Windows). The symbols listed in the file synmbol s. t xt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWindows does not use templates since it is a notoriously unportable feature.

RTTI

wxWindows does not use run-time type information since wxWindows provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK port use
an explicit conversion such as

wWxW ndow *ny_wi ndow = (wWwxW ndow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile " wx. h", using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are

1

CHAPTER3

provided (one for normal applications and one for creating DLLS) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes " wx. h"!)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx. h. This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory

information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and

searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

Chapter 4 Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
'defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different

platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

13

CHAPTER 4

Use wxWindows resource files

Use .wrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code. Bitmap resources can be set up to load different
kinds of bitmap depending on platform (see the section on resource files).

Strategies for debugging

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use adebugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

14

CHAPTER 4

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1489).

Using tracing statements may be more convenient than using the debugger in some

circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system
and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1494) as part of a 'defensive programming'’
strategy, scattering WxASSERTS liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1552) for further information.

Check Windows debug messages

Under Windows, it is worth running your program with DbgView

(htt p: // ww. sysi nt er nal s. com running or some other program that shows
Windows-generated debug messages. It is possible it will show invalid handles being
used. You may have fun seeing what commercial programs cause these normally
hidden errors! Microsoft recommend using the debugging version of Windows, which
shows up even more problems. However, | doubt it is worth the hassle for most
applications. wxWindows is designed to minimize the possibility of such errors, but they
can still happen occasionally, slipping through unnoticed because they are not severe
enough to cause a crash.

Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we
could use them. Until then, a common -- if rather irrational -- technique is to just make
arbitrary changes to the code until something different happens. You may have an
intuition why a change will make a difference; otherwise, just try altering the order of
code, comment lines out, anything to get over an impasse. Obviously, this is usually a
last resort.

15

Chapter 5 Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 17).
Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 17), wxWindow::SetAcceleratorTable (p. 1405)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry()

Default constructor.

wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags
One of WxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1497) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorEntry::GetCommand

16

CHAPTERS

int GetCommand() const

Returns the command identifier for the accelerator table entry.

wxAcceleratorEntry::GetFlags

int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)
Sets the accelerator entry parameters.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1497) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

CHAPTERS

Derived from

wxObject (p. 897)

Include files

<wx/accel.h>

Example

wxAccel eratorEntry entries[4];
entries[0].Set (wACCEL_CTRL, (int) "N, | D_NEW W NDOW ;

entries[1].Set (wACCEL_CTRL, (int) "X, wx! D_EXIT);
entries[2].Set(WwACCEL_SHI FT, (int) "A", | D_ABOUT) ;
entries[3].Set (WACCEL_NORMAL, WKK_DELETE, wx| D_CUT) ;

wxAccel erat or Tabl e accel (4, entries);
frame- >Set Accel er at or Tabl e(accel) ;

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK" (but
not in GTK at present).

See also

wxAcceleratorEntry (p. 16), wxWindow::SetAcceleratorTable (p. 1405)

wxAcceleratorTable::wxAcceleratorTable

wxAcceleratorTable()

Default constructor.

wxAcceleratorTable(const wxAcceleratorTable& bitmap)
Copy constructor.

wxAcceleratorTable(int n, wxAcceleratorEntry entries[])

Creates from an array of wxAcceleratorEntry (p. 16) objects.

wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

18

CHAPTERS

Parameters

Number of accelerator entries.

entries
The array of entries.

resource
Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry

objects or references to 3-element arrays (flags, keyCode, cmd), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns TRUE if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel
Accelerator table to assign.

Return value

Returns reference to this object.

19

CHAPTERS

wxAcceleratorTable::operator ==

bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were effectively equal, FALSE otherwise.

wxAcceleratorTable::operator !=

bool operator !=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were unequal, FALSE otherwise.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/event.h>

CHAPTERS

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a WxEVT_ACTIVATE_APP event.
Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows

only)

See also

wxWindow::OnActivate (p. 1388), Event handling overview (p. 1560)

wxActivateEvent::wxActivateEvent

wxActivateEvent(WXTYPE eventType = 0, bool active = TRUE, int id = 0)

Constructor.

wxActivateEvent::m_active

bool m_active

TRUE if the window or application was activated.

wxActivateEvent::GetActive

bool GetActive() const

Returns TRUE if the application or window is being activated, FALSE otherwise.

WXApPP

21

CHAPTERS

The wxApp class represents the application itself. It is used to:

set and get application-wide properties;

implement the windowing system message or event loop;

initiate application processing via wxApp::Onlnit (p. 28);

allow default processing of events not handled by other objects in the

application.
You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 432)
wxObject (p. 897)

Include files
<wx/app.h>

See also

WXApp overview (p. 1524)

WXApPP::WXAPP

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

WXApPP::~WXApPpP

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

WXApp::argc

int argc

CHAPTERS

Number of command line arguments (after environment-specific processing).

WXApp::argv

char ** argv

Command line arguments (after environment-specific processing).

wxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 790)

wxApp::Dispatch

void Dispatch()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.qg.

whil e (app. Pendi ng())
Di spat ch();

See also

wxApp::Pending (p. 29)

WxApp::GetAppName

wxString GetAppName() const

Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::Oninit (p. 28), but the
application can reset it at will.

CHAPTERS

WxApp::GetAuto3D

bool GetAuto3D() const
Returns TRUE if 3D control mode is on, FALSE otherwise.
See also

wxApp::SetAuto3D (p. 30)

wWXApp::GetClassName

wxString GetClassName () const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 30)

wxApp::GetExitOnFrameDelete

bool GetExitFrameOnDelete () const

Returns TRUE if the application will exit when the top-level window is deleted, FALSE
otherwise.

See also

WxApp::SetExitOnFrameDelete (p. 31)

wXxApp::GetTopWindow

virtual wxWindow * GetTopWindow() const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 31), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 31)

24

CHAPTERS

wxApp::GetUseBestVisual

bool GetUseBestVisual() const

Returns TRUE if the application will use the best visual on systems that support different
visuals, FALSE otherwise.

See also

SetUseBestVisual (p. 32)

wXApp::GetVendorName

wxString GetVendorName () const

Returns the application's vendor name.

wxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::Initialized

bool Initialized()

Returns TRUE if the application has been initialized (i.e. if wxApp::Onlinit (p. 28) has
returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).

WXApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

25

CHAPTERS

wxApp::OnAssert

void OnAssert(const wxChar *file, int line, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
WXASSERT (p. 1494) macro evaluated to FALSE. It is only called in debug mode (when
__WKDEBUG ___is defined) as asserts are not left in the release code at all.

The base class version show the default assert failure dialog box proposing to the user
to stop the program, continue or ignore all subsequent asserts.

Parameters

file
the name of the source file where the assert occured

line
the line number in this file where the assert occured

msg
the message specified as argument to WXASSERT_MSG (p. 1494) or
WXFAIL_MSG (p. 1495), will be NULL if just wxASSERT (p. 1494) or wxFAIL (p.
1494) was used

WXApp::OnExit

int OnEXxit()

Provide this member function for any processing which needs to be done as the
application is about to exit.

WXApp::OnCmdLineError

bool OnCmdLineError(wxCmdLineParser& parser)
Called when command line parsing fails (i.e. an incorrect command line option was

specified by the user). The default behaviour is to show the program usage text and
abort the program.

Return TRUE to continue normal execution or FALSE to return FALSE from Oninit (p. 28)
thus terminating the program.

See also

OnlInitCmdLine (p. 28)

26

CHAPTERS

wXApp::OnCmdLineHelp

bool OnCmdLineHelp(wxCmdLineParser& parser)

Called when the help option (- - hel p) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return TRUE to continue normal execution or FALSE to return FALSE from Oninit (p. 28)
thus terminating the program.

See also

OnlInitCmdLine (p. 28)

wxApp::OnCmdLineParsed

bool OnCmdLineParsed(wxCmdLineParser& parser)

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return TRUE to continue normal execution or FALSE to return FALSE from Oninit (p. 28)
thus terminating the program.

See also

OnlInitCmdLine (p. 28)

wXApp::OnFatalException

void OnFatalException()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1468) to enable this.

Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExcetions (p. 1468)

27

CHAPTERS

WXApp::Onlinit

bool Onlnit()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 31).

Notice that if you want to to use the command line processing provided by wxWindows
you have to call the base class version in the derived class Oninit().

Return TRUE to continue processing, FALSE to exit the application.

wWXApp::OninitCmdLine

void OnInitCmdLine(wxCmdLineParser& parser)

Called from Onlnit (p. 28) and may be used to initialize the parser with the command line
options for this application. The base class versions adds support for a few standard
options only.

WXApp::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 128) returns TRUE, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 129). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the
save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 129). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 1373). If not, it is up to you whether you respond by destroying
the window.

The default handler calls wxWindow::Close (p. 1371) on the top-level window, and
vetoes the shutdown if Close returns FALSE. This will be sufficient for many
applications.

Remarks

28

CHAPTERS

Under X, OnQueryEndSession is called in response to the 'save session' event.

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

See also

wxWindow::Close (p. 1371), wxWindow::OnCloseWindow (p. 1391), wxCloseEvent (p.
127)
WxApp::ProcessMessage

bool ProcessMessage (MSG *msgQ)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
TRUE if the message was processed, FALSE otherwise. If you use wxWindows with
another class library with its own message loop, you should make sure that this function
is called to allow wxWindows to receive messages. For example, to allow co-existance
with the Microsoft Foundation Classes, override the PreTranslateMessage function:

/'l Provide wxW ndows nessage | oop conpatibility
BOOL CTheApp:: PreTransl at eMessage(MSG * nsg)

if (wxTheApp && wxTheApp- >Pr ocessMessage(nsg))
return TRUE

el se
return CW nApp: : PreTransl at eMessage(nsg) ;

wxApp::Pending

bool Pending()

Returns TRUE if unprocessed events are in the window system event queue.
See also

wxApp::Dispatch (p. 23)

wxApp::SendldleEvents

bool SendldleEvents()
Sends idle events to all top-level windows.
bool SendldleEvents(wxWindow* win)

Sends idle events to a window and its children.

CHAPTERS

Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If TRUE is returned, more Onldle processing is requested by one or more window.

See also

wxWindow::Onldle (p. 1394), wxldleEvent (p. 679)

WXApp::SetAppName

void SetAppName (const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWindows.

See also

WxApp::GetAppName (p. 23)

WxApp::SetAuto3D

void SetAuto3D(const bool auto3D)
Switches automatic 3D controls on or off.
Parameters

auto3D

If TRUE, all controls will be created with 3D appearances unless overridden for a
control or dialog. The default is TRUE

Remarks

This has an effect on Windows only.

See also

WxApp::GetAuto3D (p. 24)

wxApp::SetClassName

void SetClassName (const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

CHAPTERS

See also

wxApp::GetClassName (p. 24)

wWXApp::SetExitOnFrameDelete

void SetExitOnFrameDelete (bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag
If TRUE (the default), the application will exit when the top-level frame is deleted. If
FALSE, the application will continue to run.

wWXApp::SetTopWindow

void SetTopWindow(wxWindow* window)

Sets the 'top’ window. You can call this from within wxApp::Onlnit (p. 28) to let
wxWindows know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

window
The new top window.

See also

WxApp::GetTopWindow (p. 24), wxApp::Oninit (p. 28)

wxApp::SetVendorName

void SetVendorName (const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWindows.

See also

wxApp::GetVendorName (p. 25)

31

CHAPTERS

wxApp::GetStdicon

virtual wxlcon GetStdlcon(int which) const

Returns the icons used by wxWindows internally, e.g. the ones used for message
boxes. This function is used internally and can be overridden by the user to change the
default icons.

Parameters

which
One of the wxICON_ XXX specifies which icon to return.

See wxMessageBox (p. 1449) for a list of icon identifiers.

wxApp::SetUseBestVisual

void SetUseBestVisual(bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain appications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters
flag

If TRUE, the app will use the best visual.

wxApp::Yield

bool Yield(bool onlylfNeeded = FALSE)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and on systems with
cooperative multitasking, such as Windows 3.1 other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.

32

CHAPTERS

1472) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 795).

Calling Yield() recursively is normally an error and an assert failure is raised in debug
build if such situation is detected. However if the the onlylfNeeded parameter is TRUE,
the method will just silently return FALSE instead.

wxArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1552) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 743)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 36) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY)() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template” names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in

CHAPTERS

terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, itis Index() (p. 42) function execution time is
O(log(N)) instead ofO(N) for the usual arrays but the Add() (p. 41) method is slower: it is
O(log(N)) instead of constant time (neglecting time spent in memory allocation routine).
However, in a usual situation elements are added to an array much less often than
searched inside it, so wxSortedArray may lead to huge performance improvements
compared to wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can
be only used for storing integral types or pointers.

wxObjArray class treats its elements like "objects”. It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxODbjArray arrays is split in two parts: first, you should declare the new wxODbjArray
class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
‘forward’) declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#i ncl ude <wx/dynarray. h>

/1 we nust forward declare the array because it is used inside the
cl ass

/1 decl aration

cl ass MyDirectory;

class MyFil e;

/1 this defines two new types: ArrayOrDirectories and ArrayOrFil es
whi ch can be

/1 now used as shown bel ow

WK_DECLARE_OBJARRAY(MyDi rectory, ArrayOfrDirectories);

WX_DECLARE_OBJARRAY(MyFi | e, ArrayCOf Fil es);
class MyDirectory
{
ArrayOf Directories msubdirectories; // all subdirectories
ArrayOf Fil es mfiles; /1 all files in this directory
1

CHAPTERS

/1 now that we have MyDirectory declaration in scope we may finish the

[l definition of ArrayOfDirectories -- note that this expands into some
C++

/1 code and so should only be conpiled once (i.e., don't put this in

t he

/1 header, but into a source file or you will get linkin errors)
#include <wx/arrinpl.cpp>// this is a magic incantation which nust be
done!

WX_DEFI NE_OBJARRAY(ArrayCf Di rectories);

/1l that's all
It is not as elegant as writing
typedef std::vector<MyDirectory> ArrayCf Di rectories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WK_DEFI NE_ARRAY(MyDi rectory *, ArrayOfDirectories);
WK_DEFI NE_SORTED ARRAY(MWFile *, ArrayOfrFiles);

See also:
Container classes overview (p. 1545), wxList (p. 743)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 37)
WX_DEFINE_EXPORTED_ARRAY (p. 37)
WX_DEFINE_USER_EXPORTED_ARRAY (p. 37)
WX_DEFINE_SORTED_ARRAY (p. 38)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 38)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (p. 38)

CHAPTERS

WX_DECLARE_EXPORTED_OBJARRAY (p. 38)
WX_DECLARE_USER_EXPORTED_OBJARRAY (p. 38)
WX_DEFINE_OBJARRAY (p. 39)
WX_DEFINE_EXPORTED_OBJARRAY (p. 39)
WX_DEFINE_USER_EXPORTED_OBJARRAY (p. 39)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 40)

wxArray copy constructors and assignment operators (p. 40)
~wxArray (p. 40)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_ MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 44) function is provided to unallocate the
extra memory. The Alloc() (p. 41) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 41)
Shrink (p. 44)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 43) method.

Count (p. 42)
GetCount (p. 42)

ISEmpty (p. 43)
Item (p. 43)

CHAPTERS

Last (p. 43)

Adding items

Add (p. 41)
Insert (p. 43)
WX_APPEND_ARRAY (p. 39)

Removing items

WX_CLEAR_ARRAY (p. 40)

Empty (p. 42)
Clear (p. 41)

RemoveAt (p. 44)
Remove (p. 43)

Searching and sorting

Index (p. 42)
Sort (p. 44)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY (T, name)
WX_DEFINE_EXPORTED_ARRAY (T, name)
WX_DEFINE_USER_EXPORTED_ARRAY (T, name, exportspec)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling wxWindows as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:
WK_DEFI NE_ARRAY(i nt, wxArraylnt);

cl ass MyCl ass;
WX_DEFI NE_ARRAY(MyCl ass *, wxArrayOf MyCl ass);

Note that wxWindows predefines the following standard array classes: wxArraylint,
wxArrayLong and wxArrayPtrVoid.

37

CHAPTERS

WX_DEFINE_SORTED_ARRAY

WX_DEFINE_SORTED_ARRAY (T, name)
WX_DEFINE_SORTED_EXPORTED_ARRAY (T, name)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for
exporting an array from a user DLL.

Example:
WK_DEFI NE_SORTED_ARRAY(i nt, wxSortedArraylnt);

cl ass MyCl ass;
WK_DEFI NE_SORTED_ARRAY(MyCl ass *, wxArrayOf MyCl ass);

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int Conmparelnts(int nl, int n2)
{

}

wxSortedArraylnt sorted(Conparelnts);

return nl - n2;

i nt ConpareMyCl assCbj ects(MyCl ass *itenl, MyCl ass *itenR)
{

/1 sort the itens by their address...
return Stricnp(iteml->Cet Address(), itenm2->Cet Address());

}

wxArrayOf MyCl ass anot her (Conpar eMyCl assObj ect s) ;

WX_DECLARE_OBJARRAY

WX_DECLARE_OBJARRAY (T, name)
WX_DECLARE_EXPORTED_OBJARRAY (T, name)
WX_DECLARE_USER_EXPORTED_OBJARRAY (T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for
exporting an array from a user DLL.

CHAPTERS

Example:

cl ass MyCl ass;
WK_DEFI NE_OBJARRAY(MyCl ass, wxArrayOf MyCl ass); // note: not "MC ass

wny

You must use WX_DEFINE_OBJARRAY() (p. 39) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

WX_DEFINE_OBJARRAY (name)
WX_DEFINE_EXPORTED_OBJARRAY (name)
WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p. 38) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called. The latter two forms are merely aliases of the first to satisfy some
people's sense of symmetry when using the exported declarations.

Example of usage:

/|l first declare the cl ass!
cl ass MyCl ass

{

publ i c:
MyCl ass(const MyCl ass&) ;
virtual ~MyC ass();

b

#i ncl ude <wx/arrinpl.cpp>
WK_DEFI NE_OBJARRAY(wxAr rayOf MyCl ass) ;

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

CHAPTERS

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)
This macro may be used to delete all elements of the array before emptying it. It can not

be used with wxObjArrays - but they will delete their elements anyhow when you call
Empty().

Default constructors

wxArray()

wxObjArray()

Default constructor initializes an empty array object.

wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or

positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

wxArray(const wxArray& array)

wxSortedArray(const wxSortedArray& array)

wxObjArray(const wxObjArray& array)

wxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxODbjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer

type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

WxArray::~wxArray

~wxArray()

CHAPTERS

~wxSortedArray()
~wxObjArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 40) macro
for this.

wxArray::Add

void Add(T item)

void Add(T *item)

void Add(T &item)

Appends a new element to the array (where T is the type of the array elements.)

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxODbjArrays because the other array types never take ownership of their
elements.

You may also use WX_APPEND_ARRAY (p. 39) macro to append all elements of one
array to another one.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the

number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for

the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 42) and additionally frees the memory
allocated to the array.

41

CHAPTERS

wxArray::Count

size_t Count() const

Same as GetCount() (p. 42). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach

T * Detach(size_t index)

Removes the element from the array, but, unlike, Remove() (p. 43) doesn't delete it. The
function returns the pointer to the removed element.

wxArray::Empty

void Empty()
Empties the array. For wxODbjArray classes, this destroys all of the array elements. For

wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 41) for this.

wxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index

int Index(T& item, bool searchFromEnd = FALSE)
int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only

42

CHAPTERS

succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

void Insert(T item, size_t n)
void Insert(T *item, size_t n)
void Insert(T &item, size_t n)

Insert a new item into the array before the item n - thus, Insert(something, Ou) will insert
an item in such way that it will become the first array element.

Please see Add() (p. 41) for explanation of the differences between the overloaded
versions of this function.

wxArray::IsEmpty

bool IsEmpty() const

Returns TRUE if the array is empty, FALSE otherwise.

wxArray::ltem

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Last

T& Last() const

Returns the last element in the array, i.e. is the same as Iltem(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

CHAPTERS

Remove(T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()
(p. 42) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item= array[n];
delete item
array. Renove(n)

See also WX_CLEAR_ARRAY (p. 40) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::RemoveAt

RemoveAt(size_t index)

Removes an element from the array by index. When an element is removed from
wxObjArray it is deleted by the array - use Detach() (p. 42) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete it manually if required:

T *item = array[n];
delete item
array. RenoveAt (n)

See also WX_CLEAR_ARRAY (p. 40) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::Shrink

void Shrink()
Frees all memory unused by the array. If the program knows that no new items will be

added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

wxArray::Sort

void Sort(CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

tenplate int CMPFUNC(T *first, T *second);

CHAPTERS

where T is the type of the array elements. l.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wxArrayString

wxArrayString is an efficient container for storing wxString (p. 1171) objects. It has the
same features as all wxArray (p. 33) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 33), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by ltem (p. 49), Last (p. 49) or operator[] (p. 47) are not
constant, so the array elements may be modified in place like this

array. Last (). MakeUpper () ;

There is also a varian of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 48) function
(insteadf of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basicly, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a

CHAPTERS

specialization of wxArray (p. 33) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files
<wx/string.h>
See also

wxArray (p. 33), wxString (p. 1171), wxString overview (p. 1527)

wxArrayString::wxArrayString

wxArrayString()
wxArrayString(const wxArrayString& array)

Default and copy constructors.

Note that when an array is assigned to a sorted array, its contents is automatically
sorted during construction.

wxArrayString::~wxArrayString

~wxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=

wxArrayString & operator =(const wxArrayString& array)

Assignment operator.

wxArrayString::operator==

bool operator ==(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE only if the arrays have the same
number of elements and the same strings in the same order.

wxArrayString::operator!=

CHAPTERS

bool operator !=(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE if the arrays have different
number of elements or if the elements don't match pairwise.

wxArrayString::operator(]

wxString& operator[](size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of ltem (p. 49) method.

wxArrayString::Add

size_t Add(const wxString& str)

Appends a new item to the array and return the index of th new item in the array.
Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 48) - 1 because the item is inserted at the correct position to keep the

array sorted and not appended.

See also: Insert (p. 48)

wxArrayString::Alloc

void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 36)

wxArrayString::Clear

void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 48)

47

CHAPTERS

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 48) instead.

wxArrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 48) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 47) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

wxArrayString::Index

int Index(const char * sz, bool bCase = TRUE, bool bFromEnd = FALSE)

Search the element in the array, starting from the beginning ifbFromEnd is FALSE or
from end otherwise. If bCase, comparison is case sensitive (default), otherwise the case
is ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Ilnsert

void Insert(const wxString& str, size_t nindex)

Insert a new element in the array before the position nindex. Thus, for example, to insert
the string in the beginning of the array you would write

I nsert("foo", 0);

If nindex is equal to GetCount() + 1 this function behaves as Add (p. 47).

CHAPTERS

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 48) would then not work!

wxArrayString::ISEmpty

ISEmpty()

Returns TRUE if the array is empty, FALSE otherwise. This function returns the same
result as GetCount() == 0 but is probably easier to read.

wxArrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator(] (p. 47) for the operator version.

wxArrayString::Last

Last()

Returns the last element of the array. Attempt to access the last element of an empty

array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove(const char * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 48)

void Remove(size_t nindex)

Removes the item at given position.

wxArrayString::Shrink

void Shrink()

49

CHAPTERS

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 47), Dynamic array memory management (p. 36)

wxArrayString::Sort

void Sort(bool reverseOrder = FALSE)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
TRUE.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 48) would then not work!

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than 0 if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.
static int ConpareStringlLen(const wxString& first, const wxString&
second)

{
}

return first.length() - second.length();

WXArrayString array;
array. Add("one");
array. Add("two");
array. Add("three");
array. Add("four");

array. Sort (ConpareStri ngLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 48) would then not work!

wxAutomationObject

CHAPTERS

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1350) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
APl is high-level, and the application can specify multiple properties in a single string.

The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAut omat i onObj ect excel Obj ect ;
if (excel Object.Getlnstance("Excel. Application"))
excel Obj ect. Put Property("ActiveCell.Font.Bold", TRUE);

Note that this class works under Windows only, and currently only for Visual C++.
Derived from

wxObject (p. 897)

Include files

<wx/msw/ole/automtn.h>

See also

wxVariant (p. 1350)

wxAutomationObject::wxAutomationObject

wxAutomationObject(WXIDISPATCH?* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

51

CHAPTERS

wxVariant CallMethod (const wxString& method, int noArgs, wxVariant args[]) const
wxVariant CallMethod (const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res
wxVariant (3.4));
wxVariant res

obj . Cal I Met hod(" Sunt', wxVariant(1.2),

obj . Cal | Met hod("Sum', 1.2, 3.4);
Note that method can contain dot-separated property names, to save the application

needing to call GetProperty several times using several temporary objects. For example:

obj ect. Cal | Met hod(" Acti veCel | . Font. ShowDi al og", "My caption");

wxAutomationObject::Createlnstance

bool Createlnstance (const wxString& classld) const

Creates a new object based on the class id, returning TRUE if the object was
successfully created, or FALSE if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

wxAutomationObject::Getinstance

bool Getinstance (const wxString& classld) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns TRUE if a pointer was succesfully retrieved, FALSE
otherwise.

Note that this cannot cope with two instances of a given OLE object being active

52

CHAPTERS

simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs =0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 53) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 53)

wxAutomationObject::GetProperty

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant args[])
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVari ant res
wxVariant res

obj . Get Property("Range", wxVariant("Al1"));
obj . Get Property("Range", "Al");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other

CHAPTERS

convenience functions.
Parameters

member
The member function or property name.

action
Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.
retValue
Return value (ignored if there is no return value)
NoArgs

Number of arguments in args or ptrArgs.

args
If non-null, contains an array of variants.

ptrArgs
If non-null, contains an array of constant pointers to variants.

Return value

TRUE if the operation was successful, FALSE otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for

efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args[]) const
bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj . Put Property("Val ue", wxVariant(23));
obj . Put Property("Val ue", 23);

CHAPTERS

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr (WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

wxGDIObject (p. 550)
wxObject (p. 897)

Include file
<wx/bitmap.h>
Predefined objects
Objects:
wxNullBitmap

See also

wxBitmap overview (p. 1585),supported bitmap file formats (p. 1587),wxDC::Blit (p.
328),wxlcon (p. 680), wxCursor (p. 191), wxBitmap (p. 55),wxMemoryDC (p. 828)

wxBitmap::wxBitmap

wxBitmap()

Default constructor.

CHAPTERS

wxBitmap(const wxBitmap& bitmap)

Copy constructor.
wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap(const char bits[], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying Cr eat eBi t map() API. Under other

platforms, only monochrome bitmaps may be created using this constructor and
wximage (p. 689) should be used for creating colour bitmaps from static data.

wxBitmap(int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

wxBitmap(const char** bits)
Creates a bitmap from XPM data.
wxBitmap(const wxString& name, long type)

Loads a bitmap from a file or resource.

wxBitmap(const wximage& img, int depth = -1)

Creates bitmap object from the image. This has to be done to actually display an image
as you cannot draw an image directly on a window. The resulting bitmap will use the
provided colour depth (or that of the current system if depth is -1) which entails that a
colour reduction has to take place.

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created
on program start-up to look up colors. This ensures a very fast conversion, but the image
quality won't be perfect (and could be better for photo images using more sophisticated
dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when
creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

CHAPTERS

Parameters

bits

width

Specifies an array of pixel values.

Specifies the width of the bitmap.

height

Specifies the height of the bitmap.

depth

Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.

name

type

img

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

May be one of the following:

wWXBITMAP_TYPE_BMP Load a Windows bitmap file.

WXBITMAP_TYPE_BMP_RESOURCELoad a Windows bitmap from the resource
database.

WXBITMAP_TYPE_GIF Load a GIF bitmap file.
WXBITMAP_TYPE_XBM Load an X bitmap file.
WxBITMAP_TYPE_XPM Load an XPM bitmap file.
WXBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMoaotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wximage (p. 689) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
WXBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wximage handlers loaded.

Platform-independent wximage object.

Remarks

57

CHAPTERS

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybi t map. xpmcontains an XPM array of character pointers called mybitmap:

#i ncl ude "nybi t map. xpnt

wWxBit map *bitmap = new wxBit map(nybit map);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 63)

wxPython note: Constructors supported by wxPython are:
wxBitmap(name, flag) Loads a bitmap from a file

wxEmptyBitmap(width, height, depth =-1) Creates an empty bitmap
with the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM
data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

CHAPTERS

wxBitmapFromlmage(image, depth=-1) Convert a wximage to a
wxBitmap.

wxPerl note: Constructors supported by wxPerl are:
-::Bitmap->new(width, height, depth =-1)
-::Bitmap->new(name, type)

-::Bitmap->new(icon)

wxBitmap::~wxBitmap

~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)
Adds a handler to the end of the static list of format handlers.
handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 68)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers()
Deletes all bitmap handlers.

This function is called by wxWindows on exit.

59

CHAPTERS

wxBitmap::ConvertTolmage

wxImage ConvertTolmage()

Creates an image from a platform-dependent bitmap. This preserves mask information
so that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::Create

virtual bool Create (int width, int height, int depth =-1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create (void* data, int type, int width, int height, int depth = -1)
Creates a bitmap from the given data, which can be of arbitrary type.
Parameters

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmap::wxBitmap (p. 55) for a list of possible
values.

Return value

TRUE if the call succeeded, FALSE otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

CHAPTERS

wxBitmap::wxBitmap (p. 55)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)
Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

Finds the handler associated with the given bitmap type.

name
The handler name.

extension
The file extension, such as "bmp".

bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value
A pointer to the handler if found, NULL otherwise.

See also

wxBitmapHandler (p. 68)

wxBitmap::GetDepth

int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()
Returns the static list of bitmap format handlers.

See also

61

CHAPTERS

wxBitmapHandler (p. 68)

wxBitmap::GetHeight

int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette () const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 912)

wxBitmap::GetMask

wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 66), wxMask (p. 808)

wxBitmap::GetWidth

int GetWidth() const

Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 62)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap(const wxRect&rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the

62

CHAPTERS

bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

wxBitmapHandler (p. 68)

wxBitmap::InsertHandler

static void InsertHandler (wxBitmapHandler* handler)
Adds a handler at the start of the static list of format handlers.
handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 68)

wxBitmap::LoadFile

bool LoadFile(const wxString& name, long type)

Loads a bitmap from a file or resource.

Parameters

name
Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

CHAPTERS

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.
wxBITMAP_TYPE_XBM Load an X bitmap file.
WXBITMAP_TYPE_XPM Load an XPM bitmap file.
The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can read all formats that wxlmage (p. 689) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
WXBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxlmage handlers loaded.)
Return value
TRUE if the operation succeeded, FALSE otherwise.
Remarks
A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using

the GetPalette (p. 62) member.

See also

wxBitmap::SaveFile (p. 65)

wxBitmap::Ok

bool Ok() const

Returns TRUE if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler(const wxString& name)

Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

Return value

TRUE if the handler was found and removed, FALSE otherwise.

CHAPTERS

See also

wxBitmapHandler (p. 68)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)
Saves a bitmap in the named file.
Parameters

name
A filename. The meaning of name is determined by the type parameter.

type
One of the following values:

wWxBITMAP_TYPE_BMP Save a Windows bitmap file.
WxBITMAP_TYPE_GIF Save a GIF bitmap file.
wWXBITMAP_TYPE_XBM Save an X bitmap file.
WXBITMAP_TYPE_XPM Save an XPM bitmap file.
The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can save all formats that wximage (p. 689) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxImage handlers loaded.)

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.

See also

wxBitmap::LoadFile (p. 63)

wxBitmap::SetDepth

CHAPTERS

void SetDepth(int depth)

Sets the depth member (does not affect the bitmap data).
Parameters
depth

Bitmap depth.

wxBitmap::SetHeight

void SetHeight(int height)

Sets the height member (does not affect the bitmap data).
Parameters
height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask(wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.
See also

wxBitmap::GetMask (p. 62), wxMask (p. 808)

wxBitmap::SetPalette

void SetPalette (const wxPalette& palette)
Sets the associated palette.
Parameters

palette
The palette to set.

See also

CHAPTERS

wxPalette (p. 912)

wxBitmap::SetWidth

void SetWidth(int width)

Sets the width member (does not affect the bitmap data).
Parameters
width

Bitmap width in pixels.

wxBitmap::operator =

wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap
Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator ==(const wxBitmap& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap
Bitmap to compare with 'this'

Return value

Returns TRUE if the bitmaps were effectively equal, FALSE otherwise.

67

CHAPTERS

wxBitmap::operator !=

bool operator !=(const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap
Bitmap to compare with 'this’

Return value

Returns TRUE if the bitmaps were unequal, FALSE otherwise.

wxBitmapHandler

Overview (p. 1585)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 59) in your application initialisation.

Derived from

wxObject (p. 897)

Include files

<wx/bitmap.h>

See also

wxBitmap (p. 55), wxlcon (p. 680), wxCursor (p. 191)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

CHAPTERS

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandler()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create (wxBitmap* bitmap, void* data, int type, int width, int height, int
depth =-1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap
The wxBitmap object.

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 55) for a list
of possible values.

Return value

TRUE if the call succeeded, FALSE otherwise (the default).

wxBitmapHandler::GetName

wxString GetName () const

Gets the name of this handler.

69

CHAPTERS

wxBitmapHandler::GetExtension

wxString GetExtension() const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 55) for values this can take.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 63)

wxBitmap::SaveFile (p. 65)
wxBitmapHandler::SaveFile (p. 70)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.

70

CHAPTERS

Parameters

bitmap
The bitmap object which is to be affected by this operation.

name
A filename. The meaning of name is determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 55) for values this can take.

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 63)

wxBitmap::SaveFile (p. 65)
wxBitmapHandler::LoadFile (p. 70)

wxBitmapHandler::SetName

void SetName (const wxString& name)

Sets the handler name.

Parameters

name
Handler name.

wxBitmapHandler::SetExtension

void SetExtension(const wxString& extension)

Sets the handler extension.

Parameters

extension
Handler extension.

wxBitmapHandler::SetType

71

CHAPTERS

void SetType(long type)
Sets the handler type.

Parameters

name
Handler type.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
359) or panel (p. 916), or indeed almost any other window.

Derived from

wxButton (p. 91)
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw alll
button states using this bitmap. If the application needs more control, additional bitmaps
for the selected state, unpressed focused state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32
only.

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. WIN32
only.

72

CHAPTERS

See also window styles overview (p. 1567).

Event handling

EVT_BUTTON(id, func) Process a
WXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 91)

wxBitmapButton::wxBitmapButton

wxBitmapButton()

Default constructor.
wxBitmapButton(wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long

style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.
Parameters

parent
Parent window. Must not be NULL.
id
Button identifier. A value of -1 indicates a default value.

bitmap
Bitmap to be displayed.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 72).

validator

73

CHAPTERS

Window validator.

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 77),
wxBitmapButton::SetBitmapFocus (p. 76), wxBitmapButton::SetBitmapDisabled (p. 75).
Note that the bitmap passed is smaller than the actual button created.

See also

wxBitmapButton::Create (p. 74), wxValidator (p. 1348)

wxBitmapButton::~wxBitmapButton

~wxBitmapButton()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 73).

wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapDisabled() const
Returns the bitmap for the disabled state.
Return value

A reference to the disabled state bitmap.

See also

wxBitmapButton::SetBitmapDisabled (p. 75)

74

CHAPTERS

wxBitmapButton::GetBitmapFocus

wxBitmap& GetBitmapFocus() const
Returns the bitmap for the focused state.
Return value

A reference to the focused state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 76)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const

Returns the label bitmap (the one passed to the constructor).

Return value
A reference to the button's label bitmap.
See also

wxBitmapButton::SetBitmapLabel (p. 76)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected() const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.
See also

wxBitmapButton::SetBitmapSelected (p. 77)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmap& bitmap)

I6)

CHAPTERS

Sets the bitmap for the disabled button appearance.
Parameters

bitmap
The bitmap to set.

See also
wxBitmapButton::GetBitmapDisabled (p. 74), wxBitmapButton::SetBitmapLabel (p. 76),
wxBitmapButton::SetBitmapSelected (p. 77), wxBitmapButton::SetBitmapFocus (p. 76)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmap& bitmap)
Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters

bitmap
The bitmap to set.

See also
wxBitmapButton::GetBitmapFocus (p. 75), wxBitmapButton::SetBitmapLabel (p. 76),

wxBitmapButton::SetBitmapSelected (p. 77), wxBitmapButton::SetBitmapDisabled (p.
75)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmapé& bitmap)
Sets the bitmap label for the button.
Parameters

bitmap
The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 75)

76

CHAPTERS

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmap& bitmap)

Sets the bitmap for the selected (depressed) button appearance.

Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 75), wxBitmapButton::SetBitmapLabel (p. 76),
wxBitmapButton::SetBitmapFocus (p. 76), wxBitmapButton::SetBitmapDisabled (p. 75)

wxBitmapDataObject

wxBitmapDataObiject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 124) or a wxDropSource (p. 419).
A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObject class in wxPython
you should derive the class from wxPyBitmapDataObiject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 78) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 285)
wxDataObject (p. 204)

Include files
<wx/dataobj.h>
See also

Clipboard and drag and drop overview (p. 1619), wxDataObject (p. 204),

CHAPTERS

wxDataObjectSimple (p. 285), wxFileDataObiject (p. 460), wxTextDataObject (p. 1256),
wxDataObject (p. 204)

wxBitmapDataObject(const wxBitmapé& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 78) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap() const

Returns the bitmap associated with the data object. You may wish to override this
method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 124).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap(const wxBitmapé& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBoolFormValidator

This class validates a boolean value for a form view (p. 980). The associated control
must be a wxCheckBox.

See also

Property validator classes (p. 1671)

wxBoolFormValidator::wxBoolFormValidator

void wxBoolFormValidator(long flags=0)

Constructor.

wxBoolListValidator

78

CHAPTERS

This class validates a boolean value for a property list view (p. 987).
See also

Validator classes (p. 1671)

wxBoolListValidator::wxBoolListValidator

void wxBoolListValidator(long flags=0)

Constructor.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

As an example, we will construct a dialog that will contain a text field at the top and two
buttons at the bottom. This can be seen as a top-hierarchy column with the text at the
top and buttons at the bottom and a low-hierarchy row with an OK button to the left and
a Cancel button to the right. In many cases (particularly dialogs under Unix and normal
frames) the main window will be resizable by the user and this change of size will have
to get propagated to its children. In our case, we want the text area to grow with the
dialog, whereas the button shall have a fixed size. In addition, there will be a thin border
around all controls to make the dialog look nice and - to make matter worse - the buttons
shall be centred as the width of the dialog changes.

It is the unique feature of a box sizer, that it can grow in both directions (height and
width) but can distribute its growth in the main direction (horizontal for a row) unevenly
among its children. In our example case, the vertical sizer is supposed to propagate all
its height changes to only the text area, not to the button area. This is determined by the
option parameter when adding a window (or another sizer) to a sizer. It is interpreted as
a weight factor, i.e. it can be zero, indicating that the window may not be resized at all, or
above zero. If several windows have a value above zero, the value is interpreted relative
to the sum of all weight factors of the sizer, so when adding two windows with a value of
1, they will both get resized equally much and each half as much as the sizer owning
them. Then what do we do when a column sizer changes its width? This behaviour is
controlled by flags (the second parameter of the Add() function): Zero or no flag
indicates that the window will preserve it is original size, wxGROW flag (same as
wWXEXPAND) forces the window to grow with the sizer, and wxSHAPED flag tells the
window to change it is size proportionally, preserving original aspect ratio. When
wWxGROW flag is not used, the item can be aligned within available space.
WXALIGN_LEFT, wxALIGN_TOP, wxALIGN_RIGHT, wxALIGN_BOTTOM,

79

CHAPTERS

WXALIGN_CENTER_HORIZONTAL and wxALIGN_CENTER_VERTICAL do what they
say. WXALIGN_CENTRE (same as wxALIGN_CENTER) is defined as
(WXALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_VERTICAL). Default
alignment is wxALIGN_LEFT | wxALIGN_TOP.

As mentioned above, any window belonging to a sizer may have border, and it can be
specified which of the four sides may have this border, using the wxTOP, wxLEFT,
WXRIGHT and wxBOTTOM constants or wxALL for all directions (and you may also use
WXNORTH, wxWEST etc instead). These flags can be used in combination with the
alignment flags above as the second parameter of the Add() method using the binary or
operator |. The sizer of the border also must be made known, and it is the third
parameter in the Add() method. This means, that the entire behaviour of a sizer and its
children can be controlled by the three parameters of the Add() method.

/1 we want to get a dialog that is stretchable because it
/1 has a text ctrl at the top and two buttons at the bottom

MyDi al og: : MyDi al og(wxFrame *parent, wxW ndowl D id, const wxString
&itle)
wxDi al og(parent, id, title, wxDefaultPosition, wxDefaultSize
WXDEFAULT_DI ALOG STYLE | wxRESI ZE_BORDER)

{
wxBoxSi zer *topsizer = new wxBoxSi zer (wWxVERTI CAL);
/1 create text ctrl with mininmal size 100x60
t opsi zer - >Add(
new wxTextCtrl (this, -1, "My text.", wxDefaultPosition
wxSi ze(100, 60), wxTE_MULTI LI NE),
1, /1 make vertically stretchable
WX EXPAND | /1 make horizontally stretchable
WXALL, /1 and nake border all around
10); /'l set border width to 10

wxBoxSi zer *button_sizer = new wxBoxSi zer (wxHORI ZONTAL) ;
button_si zer - >Add(
new wxButton(this, wxlD OK "OK"),

o, /1 make horizontally unstretchable
WXALL, /1 make border all around (inplicit top alignment)
10); /1 set border width to 10

button_sizer->Add(
new wxButton(this, wxlD CANCEL, "Cancel"),

o, /'l make horizontally unstretchable
WXALL, /'l make border all around (inplicit top alignnment)
10); /1l set border width to 10

t opsi zer - >Add(
button_si zer,
0, /1 make vertically unstretchable
WXALI GN_CENTER); // no border and centre horizontally

Set Aut oLayout (TRUE); /1 tell dialog to use sizer
Set Si zer (topsizer); /1 actually set the sizer
topsi zer->Fit(this); /1l set size to mninmumsize as

CHAPTERS

cal cul ated by the sizer
t opsi zer->Set Si zeHints(this); /1 set size hints to honour m ni num
si ze

}

Derived from

wxSizer (p. 1086)
wxObject (p. 897)

wxBoxSizer::wxBoxSizer

wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wxVERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes()
Implements the calculation of a box sizer's dimensions and then sets the size of its its

children (calling wxWindow::SetSize (p. 1413) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

81

CHAPTERS

Derived from

wxGDIODbject (p. 550)
wxObject (p. 897)

Include files
<wx/brush.h>
Predefined objects

Objects:

wxNullBrush

Pointers:

wxBLUE_BRUSH
WXGREEN_BRUSH
WXWHITE_BRUSH
WXBLACK_BRUSH
WXGREY_BRUSH
WXMEDIUM_GREY_BRUSH
WXLIGHT _GREY_BRUSH
WXTRANSPARENT BRUSH
WxCYAN_BRUSH
WXRED_BRUSH

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::Oninit (p. 28) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 87), wxDC (p. 327), wxDC::SetBrush (p. 343)

82

CHAPTERS

wxBrush::wxBrush

wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 85) will return
FALSE.

wxBrush(const wxColour& colour, int style)

Constructs a brush from a colour object and style.

wxBrush(const wxString& colourName, int style)

Constructs a brush from a colour name and style.

wxBrush(const wxBitmap& stippleBitmap)

Constructs a stippled brush using a bitmap.

wxBrush(const wxBrush& brush)

Copy constructor. This uses reference counting so is a cheap operation.
Parameters

colour
Colour object.

colourName
Colour name. The name will be looked up in the colour database.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS HATCH Cross hatch.
WxHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

CHAPTERS

stippleBitmap
A bitmap to use for stippling.

Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 87), wxColour (p. 138), wxColourDatabase (p. 144)

wxBrush::~wxBrush

void ~wxBrush()
Destructor.
Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour() const

Returns a reference to the brush colour.

See also

wxBrush::SetColour (p. 85)

wxBrush::GetStipple

wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 64) returns FALSE).

See also

wxBrush::SetStipple (p. 86)

CHAPTERS

wxBrush::GetStyle

int GetStyle() const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
wWXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 86), wxBrush::SetColour (p. 85), wxBrush::SetStipple (p. 86)

wxBrush::0Ok

bool Ok() const

Returns TRUE if the brush is initialised. It will return FALSE if the default constructor has
been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.

See also

CHAPTERS

wxBrush::GetColour (p. 84)

wxBrush::SetStipple

void SetStipple (const wxBitmapé& bitmap)
Sets the stipple bitmap.

Parameters

bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_ OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 55)

wxBrush::SetStyle

void SetStyle(int style)
Sets the brush style.

style
One of:

WXTRANSPARENT
wxSOLID
wxBDIAGONAL_HATCH
wWXCROSSDIAG_HATCH
wxFDIAGONAL_HATCH
wxCROSS HATCH
WXHORIZONTAL_HATCH
WXVERTICAL_ HATCH

Transparent (no fill).
Solid.

Backward diagonal hatch.
Cross-diagonal hatch.
Forward diagonal hatch.
Cross hatch.

Horizontal hatch.

Vertical hatch.

CHAPTERS

wXxSTIPPLE Stippled using a bitmap.
wWXSTIPPLE_MASK_ OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::GetStyle (p. 85)

wxBrush::operator =

wxBrush& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrush& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

bool operator !'=(const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.

Derived from

wxList (p. 743)
wxObject (p. 897)

Include files

<wx/gdicmn.h>

Remarks

87

CHAPTERS

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of ‘'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
‘copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

wxBrush (p. 81)

wxBrushList::wxBrushList

void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

CHAPTERS

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.
Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database.

style
Brush style. See wxBrush::SetStyle (p. 86) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:
wxBusyCur sor wait;

for (int i = 0; i < 100000; i ++)
DoACal cul ation();

It works by calling wxBeginBusyCursor (p. 1458) in the constructor, and
wxEndBusyCursor (p. 1461) in the destructor.

Derived from

None

CHAPTERS

Include files

<wx/utils.h>

See also

wxBeginBusyCursor (p. 1458), wxEndBusyCursor (p. 1461), wxWindowDisabler (p.
1419)

wxBusyCursor::wxBusyCursor

wxBusyCursor(wxCursor* cursor = wxHOURGLASS CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1458).

wxBusyCursor::~wxBusyCursor

~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1461).

wxBusyInfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusylInfo object on the stack, and within the current scope, a message
window will be shown.

For example:
wxBusyl nfo wait("Please wait, working...");
for (int i = 0; i < 100000; i++)
{

DoACal cul ation();
}

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case
it had been obscured by other windows, for example) like this:

wxW ndowDi sabl er di sabl eAl | ;

CHAPTERS

wxBusyl nfo wait("Please wait, working...");
for (int i = 0; i < 100000; i++)

DoACal cul ation();

if (!'(i % 1000))

wxTheApp->Yi el d();
}

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield()

(p. 32) for more details). The simplest way to do it is to use wxWindowDisabler (p. 1419)
class as illustrated in the above example.

Derived from
None
Include files

<wx/busyinfo.h>

wxBusyInfo::wxBusyInfo

wxBusylInfo(const wxString& msg, wxParent *parent = NULL)
Constructs a busy info window as child of parent and displays msgin it.

NB: If parent is not NULL you must ensure that it is not closed while the busy info is
shown.

wxBusyInfo::~wxBusyInfo

~wxBusyInfo()

Hides and closes the window containing the information text.

wxButton

A button is a control that contains a text string, and is one of the commonest elements of

a GUL. It may be placed on a dialog box (p. 359) or panel (p. 916), or indeed almost any
other window.

Derived from

91

CHAPTERS

wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)
Include files
<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. WIN32 only.

wxBU_TOP Aligns the label to the top of the button. WIN32 only.
wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.
wxBU_BOTTOM Aligns the label to the bottom of the button. WIN32 only.
wxBU_EXACTFIT Creates the button as small as possible instead of making

it of the standard size (which is the default behaviour).

See also window styles overview (p. 1567).
Event handling
EVT_BUTTON(id, func) Process a

wWxXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 72)

wxButton::wxButton

wxButton()

Default constructor.

wxButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button”)

Constructor, creating and showing a button.

Parameters

parent

92

CHAPTERS

Parent window. Must not be NULL.

Button identifier. A value of -1 indicates a default value.

label
Text to be displayed on the button.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style
Window style. See wxButton (p. 91).

validator
Window validator.

name
Window name.

See also

wxButton::Create (p. 93), wxValidator (p. 1348)

wxButton::~wxButton

~wxButton()

Destructor, destroying the button.

wxButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button”)

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p. 92).

wxButton::GetLabel

wxString GetLabel() const

CHAPTERS

Returns the string label for the button.
Return value
The button's label.

See also

wxButton::SetLabel (p. 94)

wxButton::GetDefaultSize

wxSize GetDefaultSize()

Returns the default size for the buttons. It is advised to make all the dialog buttons of the
same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()

This sets the button to be the default item for the panel or dialog box.
Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Matif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1409) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultltem (p. 919).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& label)

Sets the string label for the button.

Parameters

label
The label to set.

CHAPTERS

See also

wxButton::GetLabel (p. 93)

wxBufferedIinputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterInputStream (p. 500)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterInputStream (p. 500)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1163), wxInputStream (p. 718), wxBufferedOutputStream (p. 95)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 500)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from
wxFilterOutputStream (p. 500)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1163), wxOutputStream (p. 902)

95

CHAPTERS

wxBufferedOutputStream::wxBufferedOutputStream

wxBufferedOutputStream(const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

~wxBufferedOutputStream()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

void Sync()

Flushes the buffer and calls Sync() on the parent stream.

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 737) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 428)
wxObject (p. 897)

Include files

<wx/laywin.h>

CHAPTERS

Event table macros
EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT

event, which asks the window to take a 'bite’
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 1010), wxSashLayoutWindow (p. 1052),
wxLayoutAlgorithm (p. 737).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

wxCalculateLayoutEvent(wxWindowID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect(const wxRect& rect)

97

CHAPTERS

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date interactively. For this, it displays a
window containing several parts: the control to pick the month and the year at the top
(either or both of them may be disabled) and a month area below them which shows all
the days in the month. The user can move the current selection using the keyboard and
select the date (generating EVT_CALENDAR event) by pressing <Ret ur n> or double
clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 104)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 103) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not reckognized as
oen by wxDateTime (p. 1535) using SetHoliday (p. 105) method.

As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_MONTH event
handler.

Derived from

wxControl (p. 183)

wxWindow (p. 1366)

wxEvtHandler (p. 432)

wxObject (p. 897)

Include files

<wx/calctrl.h>

Window styles

wXCAL_SUNDAY_FIRST Show Sunday as the first day in the week
wxCAL_MONDAY_FIRST Show Monday as the first day in the week

wxCAL_SHOW_HOLIDAY'S Highlight holidays in the calendar

CHAPTERS

wxCAL_NO_YEAR_CHANGE Disable the year changing

wWXCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

wxCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

wxCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wx CAL_ SHOW HOLI DAYS.

Event table macros

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 107) argument.

EVT_CALENDAR(id, func) A day was double clickedi n the calendar.
EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.
EVT_CALENDAR_DAY(id, func) The selected day changed.
EVT_CALENDAR_MONTH(id, func) The selected month changed.
EVT_CALENDAR_YEAR(id, func) The selected year changed.

EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day
header

Note that changing the selected date will result in either of EVT_CALENDAR DAY, MONTH
or YEAR events and EVT_CALENDAR_SEL CHANGED one.

Constants

The following are the possible return values for HitTest (p. 104) method:

enum wxCal endar Hi t Test Resul t

{

WX CAL_HI TTEST_NOWHERE, /1 outside of anything
wxCAL_HI TTEST_HEADER, /1 on the header (weekdays)
wWxCAL_HI TTEST_DAY /1 on a day in the cal endar
}
See also

CHAPTERS

Calendar sample (p. 1516)
wxCalendarDateAttr (p. 104)
wxCalendarEvent (p. 107)

wxCalendarCtrl::wxCalendarCtrl

wxCalendarCitrl()

Default constructor, use Create (p. 100) after it.

wxCalendarCtrl::wxCalendarCtrl

wxCalendarCtrl(wxWindow* parent, wxWindowlID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 100) method.

wxCalendarCtrl::Create

bool Create (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Creates the control. See wxWindow (p. 1367) for the meaning of the parameters and the
control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl

~wxCalendarCtrl()

Destroys the control.

wxCalendarCitrl::SetDate

void SetDate (const wxDateTime& date)

Sets the current date.

100

CHAPTERS

wxCalendarCtrl::GetDate

const wxDateTime& GetDate () const

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange (bool enable = TRUE)

This function should be used instead of changing wxCAL_NO_YEAR_CHANGESstyle bit
directly. It allows or disallows the user to chaneg the year interactively.

wxCalendarCtrl::EnableMonthChange

void EnableMonthChange (bool enable = TRUE)
This function should be used instead of changing wx CAL_NO_MONTH_CHANGE style bit.

It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay(bool display = TRUE)

This function should be used instead of changing wx CAL_ SHOW HOL| DAYSstyle bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

void SetHeaderColours(const wxColouré& colFg, const wxColouré& colBg)

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg() const
Gets the foreground colour of the header part of the calendar window.
See also

SetHeaderColours (p. 101)

101

CHAPTERS

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg() const

Gets the background colour of the header part of the calendar window.
See also

SetHeaderColours (p. 101)

wxCalendarCtrl::SetHighlightColours

void SetHighlightColours(const wxColour& colFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg() const

Gets the foreground highlight colour.

See also

SetHighlightColours (p. 102)

wxCalendarCitrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg() const

Gets the background highlight colour.

See also

SetHighlightColours (p. 102)

wxCalendarCtrl::SetHolidayColours

void SetHolidayColours(const wxColour& colFg, const wxColouré& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wx CAL_ SHOW HCLI DAYS flag).

wxCalendarCtrl::GetHolidayColourFg

102

CHAPTERS

const wxColour& GetHolidayColourFg() const

Return the foregound colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 102)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg() const

Return the background colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 102)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr(size_t day) const
Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL.

wxCalendarCtrl::SetAttr

void SetAttr(size_t day, wxCalendarDateAttr* attr)
Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCtrl::SetHoliday

void SetHoliday(size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr(size_t day)

103

CHAPTERS

Clears any attributes associated with the given day (in the rangel...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest(const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAL_HI TTEST_XXX constants (p. 98) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 98).

Derived from
No base class
Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCal endar Dat eBor der

{
wx CAL_ BORDER _NONE, /1 no border (default)
wx CAL_ BORDER_SQUARE, /1l a rectangul ar border
wx CAL_ BORDER _ROUND /1 a round border

}

See also

wxCalendarCtrl (p. 98)

wxCalendarDateAttr::wxCalendarDateAttr

wxCalendarDateAttr()

wxCalendarDateAttr(const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER_NONE)

wxCalendarDateAttr(wxCalendarDateBorder border, const wxColour& colBorder =

104

CHAPTERS

wxNullColour)

The constructors.

wxCalendarDateAttr::SetTextColour

void SetTextColour(const wxColouré& colText)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

void SetBackgroundColour(const wxColour& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour(const wxColouré& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont(const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder(wxCalendar DateBorder border)

Sets the border kind (p. 104)

wxCalendarDateAttr::SetHoliday

void SetHoliday(bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

105

CHAPTERS

bool HasTextColour() const

Returns TRUE if this item has a non default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour() const

Returns TRUE if this attribute specifies a non default text background colour.

wxCalendarDateAttr::HasBorderColour

bool HasBorderColour() const

Returns TRUE if this attribute specifies a non default border colour.

wxCalendarDateAttr::HasFont

bool HasFont() const

Returns TRUE if this attribute specifies a non default font.

wxCalendarDateAttr::HasBorder

bool HasBorder() const

Returns TRUE if this attribute specifies a non default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday() const

Returns TRUE if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour() const

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr::GetBackgroundColour

106

CHAPTERS

const wxColour& GetBackgroundColour() const

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour() const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

const wxFont& GetFont() const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder() const

Returns the border (p. 104) to use for the item with this attribute.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 98).
See also

wxCalendarCtrl (p. 98)

wxCalendarEvent::GetDate

wxcalendareventgetdate
const wxDateTime& GetDate () const

Returns the date. This function may be called for all event types except
EVT_CALENDAR_WEEKDAY_CLI CKED one for which it doesn't make sense.

107

CHAPTERS

wxCalendarEvent::GetWeekDay

wxcalendareventgetweekday

wxDateTime::WeekDay GetWeekDay() const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLI CKED
handler. It doesn't make sense to call this function in other handlers.

wxCaret

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1376). The same caret can't be reused in two different
windows.

Derived from

No base class

Include files

<wx/caret.h>

Data structures

wxCaret::wxCaret

wxCaret()

Default constructor: you must use one of Create() functions later.
wxCaret(wxWindow* window, int width, int height)
wxCaret(wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window.

108

CHAPTERS

wxCaret::Create

bool Create (wxWindowBase* window, int width, int height)
bool Create (wxWindowBase* window, const wxSize& size)
Create the caret of given (in pixels) width and height and associates it with the given

window (same as constructor).

wxCaret::GetBlinkTime

static int GetBlinkTime ()

Returns the blink time which is measured in milliseconds and is the time elapsed
between 2 inversions of the caret (blink time of the caret is the same for all carets, so
this functions is static).

wxCaret::GetPosition

void GetPosition(int* x, int* y) const
wxPoint GetPosition() const

Get the caret position (in pixels).
wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list (x, vy)

wxCaret::GetSize

void GetSize(int* width, int* height) const
wxSize GetSize() const

Get the caret size.
wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size

GetSizeWH() Returns a 2-element list (wi dt h,

109

CHAPTERS

hei ght)

wxCaret::GetWindow

wxWindow* GetWindow() const

Get the window the caret is associated with.

wxCaret::Hide

void Hide()

Same as wxCaret::Show(FALSE) (p. 111).

wxCaret::IsOk

bool IsOk() const

Returns TRUE if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible() const
Returns TRUE if the caret is visible and FALSE if it is permanently hidden (if it is is

blinking and not shown currently but will be after the next blink, this method still returns
TRUE).

wxCaret::Move

void Move(intx, inty)
void Move(const wxPoint& pt)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime (int milliseconds)

Sets the blink time for all the carets.

110

CHAPTERS

Remarks

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 109)

wxCaret:: SetSize

void SetSize(int width, int height)
void SetSize(const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show(bool show = TRUE)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown
N times as well to reappear on the screen.

wxCheckBox

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)
Include files
<wx/checkbox.h>
Window styles

There are no special styles for wxCheckBox.

See also window styles overview (p. 1567).

111

CHAPTERS

Event handling

EVT_CHECKBOX(id, func) Process a
WXEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 1019), wxCommandEvent (p. 156)

wxCheckBox::wxCheckBox

wxCheckBox()

Default constructor.
wxCheckBox(wxWindow* parent, wxWindowID id, const wxString& label, const

wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.
Parameters

parent
Parent window. Must not be NULL.

id
Checkbox identifier. A value of -1 indicates a default value.

label
Text to be displayed next to the checkbox.

pos
Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.

size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.

style
Window style. See wxCheckBox (p. 111).

validator
Window validator.

112

CHAPTERS

name
Window name.

See also

wxCheckBox::Create (p. 113), wxValidator (p. 1348)

wxCheckBox::~wxCheckBox

~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p.
112) for details.

wxCheckBox::GetValue

bool GetValue() const

Gets the state of the checkbox.

Return value

Returns TRUE if it is checked, FALSE otherwise.

wxCheckBox::SetValue

void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
WXEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state
If TRUE, the check is on, otherwise it is off.

113

CHAPTERS

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 749).

Derived from

wxListBox (p. 749)
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)
Include files

<wx/checklist.h>

Window styles

See wxListBox (p. 749).

Event handling

EVT_CHECKLISTBOX(id, func) Process a
WXEVT_COMMAND_CHECKLISTBOX_TOGG

LE event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 749), wxChoice (p. 116), wxComboBox (p. 147), wxListCtrl (p. 758),
wxCommandEvent (p. 156)

wxCheckListBox::wxCheckListBox

wxCheckListBox()

Default constructor.

wxCheckListBox(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString

114

CHAPTERS

choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxCheckListBox (p. 114).
validator
Window validator.
name

Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choi ces arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choi ces.

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox()

Destructor, destroying the list box.

wxCheckListBox::Check

115

CHAPTERS

void Check(int item, bool check = TRUE)
Checks the given item.
Parameters

item
Index of item to check.

check
TRUE if the item is to be checked, FALSE otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const
Returns TRUE if the given item is checked, FALSE otherwise.
Parameters

item
Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)
Include files
<wx/choice.h>
Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1567).

Event handling

116

CHAPTERS

EVT_CHOICE(id, func) Process a
WXEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 749), wxComboBox (p. 147), wxCommandEvent (p. 156)

wxChoice::wxChoice

wxChoice()

Default constructor.

wxChoice(wxWindow *parent, wxWindowID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices|], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.
n
Number of strings with which to initialise the choice control.
choices
An array of strings with which to initialise the choice control.
style
Window style. See wxChoice (p. 116).
validator

Window validator.

117

CHAPTERS

name
Window name.

See also
wxChoice::Create (p. 118), wxValidator (p. 1348)

wxPython note: The wxChoice constructor in wxPython reduces the nand choi ces
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choi ces.

wxChoice::~wxChoice

~wxChoice()

Destructor, destroying the choice item.

wxChoice::Append

void Append(const wxString& item)

Adds the item to the end of the choice control.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
String to add.

clientData
Client data to associate with the item.

wxChoice::Clear

void Clear()

Clears the strings from the choice item.

wxChoice::Create

bool Create (wxWindow *parent, wxWindowID id, const wxPoint& pos, const

118

CHAPTERS

wxSize& size, int n, const wxString choices[], long style = 0, const wxString& name
="choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 117).

wxChoice::FindString

int FindString(const wxString& string) const

Finds a choice matching the given string.

Parameters

string
String to find.

Return value

Returns the position if found, or -1 if not found.

wxChoice::GetColumns

int GetColumns() const

Gets the number of columns in this choice item.

Remarks

This is implemented for Motif only.

wxChoice::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxChoice::GetSelection

119

CHAPTERS

int GetSelection() const

Gets the id (position) of the selected string, or -1 if there is no selection.

wxChoice::GetString

wxString GetString(int n) const

Returns the string at the given position.

Parameters

The zero-based position.

Return value

The string at the given position, or the empty string if n is invalid.

wxChoice::GetStringSelection

wxString GetStringSelection() const

Gets the selected string, or the empty string if no string is selected.

wxChoice::Number

int Number() const

Returns the number of strings in the choice control.

wxChoice::SetClientData

void SetClientData(int n, void* data)

Associates the given client data pointer with the given item.

Parameters

The zero-based item.

data
The client data.

120

CHAPTERS

wxChoice::SetColumns

void SetColumns(int n = 1)
Sets the number of columns in this choice item.
Parameters

n
Number of columns.

Remarks

This is implemented for Motif only.

wxChoice::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

The string position to select, starting from zero.

See also

wxChoice::SetStringSelection (p. 121)

wxChoice::SetStringSelection

void SetStringSelection(const wxString& string)

Sets the choice by passing the desired string. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

string
The string to select.

See also

wxChoice::SetSelection (p. 121)

121

CHAPTERS

wxClassInfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS.

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1526), wxObject (p. 897)

wxClassInfo::wxClassInfo

wxClassiInfo(char* className, char* baseClassl, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassiInfo::CreateObject

wxObject* CreateObject()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

wxClassInfo::FindClass

static wxClassInfo * FindClass(char* name)

Finds the wxClassinfo object for a class of the given string name.

wxClassInfo::GetBaseClassNamel

char* GetBaseClassNamel() const

122

CHAPTERS

Returns the name of the first base class (NULL if none).

wxClassInfo::GetBaseClassName?2

char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName

char * GetClassName () const

Returns the string form of the class name.

wxClasslInfo::GetSize

int GetSize() const

Returns the size of the class.

wxClassInfo::InitializeClasses

static void InitializeClasses()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWindows library initialization.

wxClassInfo::IsKind Of

bool IsKindOf(wxClassInfo* info)

Returns TRUE if this class is a kind of (inherits from) the given class.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a

temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 910) object.

123

CHAPTERS

To draw on the whole window including decorations, construct a wxWindowDC (p. 1418)
object (Windows only).

Derived from

wxWindowDC (p. 1418)
wxDC (p. 327)

Include files

<wx/dcclient.h>

See also

wxDC (p. 327), wxMemoryDC (p. 828), wxPaintDC (p. 910), wxWindowDC (p. 1418),
wxScreenDC (p. 1060)

wxClientDC::wxClientDC

wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWindows 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.
See also the wxDataObject overview (p. 1620) for further information.

Call wxClipboard::Open (p. 126) to get ownership of the clipboard. If this operation
returns TRUE, you now own the clipboard. Call wxClipboard::SetData (p. 127) to put
data on the clipboard, or wxClipboard::GetData (p. 126) to retrieve data from the
clipboard. Call wxClipboard::Close (p. 126) to close the clipboard and relinquish
ownership. You should keep the clipboard open only momentarily.

For example:

/1 Wite some text to the clipboard
if (wxTheC i pboard->Q0pen())

/1 This data objects are held by the clipboard,

124

CHAPTERS

/1l so do not delete themin the app.
wxTheCl i pboar d- >Set Dat a(new wxText Dat aCbj ect (" Sone text"));
wxTheCl i pboar d- >Cl ose();

}

// Read sone text
if (wxTheC i pboard->Q0pen())

if (wxThed i pboard->l sSupported(wxDF_TEXT))

{
wxText Dat aObj ect dat a;

wxTheCl i pboar d- >Get Dat a(data);
wxMessageBox(data. Get Text ());

}
wxTheCl i pboar d- >Cl ose() ;
}

Derived from
wxObject (p. 897)
Include files

<wx/clipbrd.h>

See also

Drag and drop overview (p. 1619), wxDataObject (p. 204)

wxClipboard::wxClipboard

wxClipboard()

Constructor.

wxClipboard::~wxClipboard

~wxClipboard()

Destructor.

wxClipboard::AddData

bool AddData(wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 126).

125

CHAPTERS

Atfter this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 127)

wxClipboard::Clear

void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

bool Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
126).

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns TRUE on success.

wxClipboard::IsOpened

bool IsOpened() const

Returns TRUE if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported(const wxDataFormat& format)

Returns TRUE if the format of the given data object is available on the clipboard.

wxClipboard::Open

bool Open()

126

CHAPTERS

Call this function to open the clipboard before calling wxClipboard::SetData (p. 127) and
wxClipboard::GetData (p. 126).

Call wxClipboard::Close (p. 126) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns TRUE on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

Atfter this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 125)

wxClipboard::UsePrimarySelection

void UsePrimarySelection(bool primary = TRUE)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is TRUE.

wxCloseEvent

This event class contains information about window and session close events.
Derived from

wxEvent (p. 428)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member

127

CHAPTERS

functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
WXApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also

wxWindow::OnCloseWindow (p. 1391), wxWindow::Close (p. 1371),
wxApp::OnQueryEndSession (p. 28), Window deletion overview (p. 1568)

wxCloseEvent::wxCloseEvent

wxCloseEvent(WXTYPE commandEventType =0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto()

Returns TRUE if you can veto a system shutdown or a window close event. Vetoing a
window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff() const

Returns TRUE if the user is logging off.

wxCloseEvent::GetSessionEnding

bool GetSessionEnding() const

Returns TRUE if the session is ending.

128

CHAPTERS

wxCloseEvent::GetForce

bool GetForce () const

Returns TRUE if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto(bool canVeto)

Sets the ‘can veto' flag.

wxCloseEvent::SetForce

void SetForce(bool force) const

Sets the 'force’ flag.

wxCloseEvent::SetLoggingOff

void SetLoggingOff(bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto(bool veto = TRUE)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 128) returns TRUE.

wxCmdLineParser

wxCmdLineParser is a class for parsing command line.
It has the following features:

1. distinguishes options, switches and parameters; allows option grouping

129

CHAPTERS

2. allows both short and long options
3. automatically generates the usage message from the command line description
4. does type checks on the options values (number, date, ...).

To use it you should follow these steps:

1. construct (p. 132) an object of this class giving it the command line to parse and
optionally its description or use AddXXX() functions later

2. call Parse()

3. use Found() to retrieve the results

In the documentation below the following terminology is used:

switch This is a boolean option which can be given or
not, but which doesn't have any value. We use
the word switch to distinguish such boolean
options from more generic options like those
described below. For example, - v might be a
switch meaning "enable verbose mode".

option Option for us here is something which comes
with a value 0 unlike a switch. For example, -
o: fi | enanme might be an option which allows
to specify the name of the output file.

parameter This is a required program argument.

Derived from
No base class
Include files
<wx/cmdline.h>
Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 136).
Also, the meanings of parameters of the AddXXX() functions are the same as of the
corresponding fields in this structure:

struct wxCndLi neEnt ryDesc

{
wxCndLi neEntryType ki nd;
const wxChar *short Nane;
const wxChar *| ongNane;
const wxChar *description;
wxCrrdLi nePar anType type;
int flags;

130

CHAPTERS

The type of a command line entity is in the ki nd field and may be one of the following
constants:

enum wxCrrdLi neEnt ryType

{

wxCMD_LI NE_SW TCH,

wxCMD_LI NE_OPTI ON,

wxCMD_LI NE_PARAM

wx CVD_LI NE_NONE // use this to termnate the |ist
}

The field shor t Nane is the usual, short, name of the switch or the option.| ongNan® is
the corresponding long name or NULL if the option has no long name. Both of these
fields are unused for the parameters. Both the short and long option names can contain
only letters, digits and the underscores.

descri pti on is used by the Usage() (p. 137) method to construct a help message
explaining the syntax of the program.

The possible values of t ype which specifies the type of the value accepted by an option
or parameter are:

enum wxCnrdLi nePar anilype
{
wWXCMD LI NE_VAL _STRING, // default
wxCMD_LI NE_VAL_NUMBER,
wxCMD_LI NE_VAL_DATE,
wxCMD_LI NE_VAL_NONE

Finally, the f | ags field is a combination of the following bit masks:

enum

{
wxCMD_LI NE_OPTI ON_MANDATORY
wxCMD_LI NE_PARAM OPTI ONAL
wxCMD_LI NE_PARAM MULTI PLE

0x01, // this option nust be given
0x02, // the parameter may be omtted
0x04, // the paraneter nmay be

r epeat ed

wxCMD_LI NE_OPTI ON_HELP = 0x08, // this optionis a help
request

wxCMD_LI NE_NEEDS_SEPARATOR = 0x10, // must have sep before the
val ue
}

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to

131

CHAPTERS

AddParam() (p. 137) allows one more parameter - this may be changed by giving non-
default flags to it, i.e. use wxCVD_LI NE_COPTI ON_MANDATORY to require that the option
is given and wxCVD_LI NE_PARAM_OPTI ONAL to make a parameter optional. Also,
wxCMVD_LI NE_PARAM MULTI PLE may be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command
line description. If you use this flag, you will probably need to use GetParamCount (p.
138) to retrieve the number of parameters effectively specified after calling Parse (p.
137).

The last flag wx CVD_LI NE_NEEDS _SEPARATOR can be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

wxApp::argc (p. 22) and wxApp::argv (p. 23)
console sample

Construction

Before Parse (p. 137) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and
parameters are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 137).

To specify the command line to parse you may use either one of constructors accepting
it (wxCmdLineParser(argc, argv) (p. 133) or wxCmdLineParser (p. 134) usually) or, if
you use the default constructor (p. 133), you can do it later by calling SetCmdLine (p.
135).

The same holds for command line description: it can be specified either in the
constructor (without command line (p. 134) or together with it (p. 134)) or constructed
later using either SetDesc (p. 136) or combination of AddSwitch (p. 136), AddOption (p.
137) and AddParam (p. 137) methods.

Using constructors or SetDesc (p. 136) uses a (usually const st at i c) table containing

the command line description. If you want to decide which options to acccept during the
run-time, using one of the AddXXX() functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 137).

132

CHAPTERS

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes (" - - ") and look like this: - - ver bose,
i.e. they generally are complete words and not some abbreviations of them. As long
options are used by more and more applications, they are enabled by default, but may
be disabled with DisableLongOptions (p. 136).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,
' -' is always used, but Windows has at least two common choices for this: ' -' and

" /' .Some programs also use ' +' . The default is to use what suits most the current
platform, but may be changed with SetSwitchChars (p. 135) method.

Finally, SetLogo (p. 136) can be used to show some application-specific text before the
explanation given by Usage (p. 137) function.

Parsing command line

After the command line description was constructed and the desired options were set,
you can finally call Parse (p. 137) method. It returns O if the command line was correct
and was parsed, -1 if the help option was specified (this is a separate case as, normally,
the program will terminate after this) or a positive number if there was an error during the
command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWindows logging functions.

Getting results

After calling Parse (p. 137) (and if it returned 0), you may access the results of parsing
using one of overloaded Found() methods.

For a simple switch, you will simply call Found (p. 137) to determine if the switch was
given or not, for an option or a parameter, you will call a version of Found() which also
returns the associated value in the provided variable. All Found() functions return
TRUE if the switch or option were found in the command line or FALSE if they were not
specified.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser()

Default constructor. You must use SetCmdLine (p. 135) later.

wxCmdLineParser::wxCmdLineParser

133

CHAPTERS

wxCmdLineParser(int argc, char** argv)
Constructor specifies the command line to parse. This is the traditional (Unix) command

line format. The parameters argc and argv have the same meaning as for mai n()
function.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of W nMai n() .

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 133), but also specifies the command line description (p.
136).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 133), but also specifies the command line description (p.
136).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc, const wxString& cmdline)

Same as wxCmdLineParser (p. 134), but also specifies the command line description (p.
136).

wxCmdLineParser::ConvertStringToArgs

static wxArrayString ConvertStringToArgs(const wxChar *cmdline)

Breaks down the string containing the full command line in words. The words are
separated by whitespace. The quotes can be used in the input string to quote the white
space and the back slashes can be used to quote the quotes.

134

CHAPTERS

wxCmdLineParser::SetCmdLine

void SetCmdLine(int argc, char** argv)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmdLineParser (p. 133)

wxCmdLineParser::SetCmdLine

void SetCmdLine(const wxString& cmdline)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmdLineParser (p. 134)

wxCmdLineParser::~wxCmdLineParser

~wxCmdLineParser()
Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars(const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is
"-" for Unix, " - /" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions(bool enable = TRUE)

Enable or disable support for the long options.

As long options are not (yet) POSIX-compliant, this option allows to disable them.
See also

Customization (p. 132)

135

CHAPTERS

wxCmdLineParser::DisableLongOptions

void DisableLongOptions()

lentical to EnableLongOptions(FALSE) (p. 135).

wxCmdLineParser::SetLogo

void SetLogo(const wxString& logo)

logo is some extra text which will be shown by Usage (p. 137) method.

wxCmdLineParser::SetDesc

void SetDesc(const wxCmdLineEntryDesc* desc)

Construct the command line description

Take the command line description from the wxCMD_LINE_NONE terminated table.
Example of usage:

static const wxCndLi neEntryDesc cndLi neDesc[] =

{

{ wxCMD_LINE_SWTCH, "v", "verbose", "be verbose" },

{ wxCMD_LINE_SWTCH, "q", "quiet", "be quiet" },

{ wxCVD_LINE_OPTION, "0", "output", "output file" },

{ wxCMD_LINE_OPTION, "i", "input", "input dir" },

{ wxCMD_LI NE_OPTION, "s", "size", "out put bl ock size",
wxCMVD_LI NE_VAL_NUMBER 1},

{ wxCMD_LI NE_OPTION, "d", "date", "output file date",

wxCMVD_LI NE_VAL_DATE },

{ wxCMD_LI NE_PARAM NULL, NULL, "input file",
wxCMD_LI NE_VAL_STRI NG, wxCVD_LI NE_PARAM MULTI PLE },

{ WxCMD_LI NE_NONE }
b

wxCndLi nePar ser parser;

par ser. Set Desc(cndLi neDesc) ;

wxCmdLineParser::AddSwitch

void AddSwitch(const wxString& name, const wxString& Ing = wxEmptyString,

136

CHAPTERS

const wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long name Ing (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption

void AddOption(const wxString& name, const wxString& Ing = wxEmptyString,
const wxString& desc = wxEmptyString, wxCmdLineParamType type =
wxCMD_LINE_VAL_STRING, int flags = 0)

Add an option name with an optional long name Ing (no long name if it is empty, which is
default) taking a value of the given type (string by default) to the command line
description.

wxCmdLineParser::AddParam

void AddParam(const wxString& desc = wxEmptyString, wxCmdLineParamType
type = wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

wxCmdLineParser::Parse

int Parse()

Parse the command line, return O if ok, -1 if "- h" or" - - hel p" option was encountered
and the help message was given or a positive value if a syntax error occured.

wxCmdLineParser::Usage

void Usage()
Give the standard usage message describing all program options. It will use the options

and parameters descriptions specified earlier, so the resulting message will not be
helpful to the user unless the descriptions were indeed specified.

See also

SetLogo (p. 136)

wxCmdLineParser::Found

bool Found(const wxString& name) const

137

CHAPTERS

Returns TRUE if the given switch was found, FALSE otherwise.

wxCmdLineParser::Found

bool Found(const wxString& name, wxString* value) const

Returns TRUE if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, long* value) const

Returns TRUE if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, wxDateTime* value) const

Returns TRUE if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount() const

Returns the number of parameters found. This function makes sense mostly if you had
used wxCVD_LI NE_PARAM MULTI PLE flag.

wxCmdLineParser::GetParam

wxString GetParam(size_t n = Ou) const

Returns the value of Nth parameter (as string only for now).

See also

GetParamCount (p. 138)

wxColour

138

CHAPTERS

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 144) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

Derived from

wxObject (p. 897)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

WXxBLACK

WXWHITE

WXRED

wxBLUE

WXGREEN

WXCYAN

WXLIGHT_GREY

See also

wxColourDatabase (p. 144), wxPen (p. 922), wxBrush (p. 81), wxColourDialog (p. 145)

wxColour::wxColour

wxColour()

Default constructor.

wxColour(const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

wxColour(const wxString& colourNname)

139

CHAPTERS

Constructs a colour object using a colour name listed in wxTheColourDatabase.
wxColour(const wxColour& colour)

Copy constructor.

Parameters

red
The red value.

green
The green value.

blue
The blue value.

colourName
The colour name.

colour
The colour to copy.

See also
wxColourDatabase (p. 144)
wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)
wxNamedColour(name)

wxColour::Blue

unsigned char Blue() const

Returns the blue intensity.

wxColour::GetPixel

long GetPixel() const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

140

CHAPTERS

wxColour::Green

unsigned char Green() const

Returns the green intensity.

wxColour::Ok

bool Ok() const

Returns TRUE if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(const unsigned char red, const unsigned char green, const unsigned char
blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator =(const wxColour& colour)

Assignment operator, taking another colour object.
wxColour& operator =(const wxString& colourName)
Assignment operator, using a colour name to be found in the colour database.

See also

wxColourDatabase (p. 144)

wxColour::operator ==

141

CHAPTERS

bool operator ==(const wxColour& colour)

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator !=

bool operator !'=(const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wxColourData

This class holds a variety of information related to colour dialogs.

Derived from

wxObject (p. 897)
Include files

<wx/cmndata.h>

See also

wxColour (p. 138), wxColourDialog (p. 145), wxColourDialog overview (p. 1596)

wxColourData::wxColourData

wxColourData()

Constructor. Initializes the custom colours to white, the data colour setting to black, and
the choose full setting to TRUE.

wxColourData::~wxColourData

~wxColourData()

Destructor.

wxColourData::GetChooseFull

142

CHAPTERS

bool GetChooseFull() const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Has no meaning under other platforms.

The default value is TRUE.

wxColourData::GetColour

wxColour& GetColour() const
Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour(int i) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are all white.

wxColourData::SetChooseFull

void SetChooseFull(const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is TRUE.

wxColourData::SetColour

void SetColour(const wxColour& colour)
Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetCustomColour(int i, const wxColour& colour)

143

CHAPTERS

Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are all white.

wxColourData::operator =

void operator =(const wxColourData& data)

Assingment operator for the colour data.

wxColourDatabase

wxWindows maintains a database of standard RGB colours for a predefined set of
named colours (such as "BLACK", "LIGHT GREY"). The application may add to this set
if desired by using Append. There is only one instance of this class:
wxTheColourDatabase.

Derived from

wxList (p. 743)
wxObject (p. 897)

Include files

<wx/gdicmn.h>

Remarks

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,
DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

144

CHAPTERS

wxColour (p. 138)

wxColourDatabase::wxColourDatabase

wxColourDatabase()

Constructs the colour database.

wxColourDatabase::FindColour

wxColour* FindColour(const wxString& colourName)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName

wxString FindName (const wxColouré& colour) const

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize

void Initialize()

Initializes the database with a number of stock colours. Called by wxWindows on start-
up.

wxColourDialog

This class represents the colour chooser dialog.

Derived from

wxDialog (p. 359)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

145

CHAPTERS

<wx/colordlg.h>
See also

wxColourDialog Overview (p. 1596), wxColour (p. 138), wxColourData (p. 142)

wxColourDialog::wxColourDialog

wxColourDialog(wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data.

See also

wxColourData (p. 142)

wxColourDialog::~wxColourDialog

~wxColourDialog()

Destructor.

wxColourDialog::Create

bool Create (wxWindow* parent, wxColourData* data = NULL)

Same as constructor (p. 146).

wxColourDialog::GetColourData

wxColourData& GetColourData()

Returns the colour data (p. 142) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

146

CHAPTERS

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.

Derived from

wxChoice (p. 116)
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files
<wx/combobox.h>

Window styles

wxCB_SIMPLE Creates a combobox with a permanently
displayed list. Windows only.

wxCB_DROPDOWN Creates a combobox with a drop-down list.

wxCB_READONLY Same as wxCB_DROPDOWN but only the

strings specified as the combobox choices can
be selected, it is impossible to select (even
from a program) a string which is not in the
choices list.

wxCB_SORT Sorts the entries in the list alphabetically.

See also window styles overview (p. 1567).
Event handling

EVT_COMBOBOX(id, func) Process a
WXEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.

EVT_TEXT(id, func) Process a
WXEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

See also

wxListBox (p. 749), wxTextCtrl (p. 1240), wxChoice (p. 116), wxCommandEvent (p. 156)

147

CHAPTERS

wxComboBox::wxComboBox

wxComboBox()

Default constructor.

wxComboBox(wxWindow* parent, wxWindowID id, const wxString& value =",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n,
const wxString choices|[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "comboBox")

Constructor, creating and showing a combobox.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxComboBox (p. 147).
validator
Window validator.
name
Window name.
See also

wxComboBox::Create (p. 149), wxValidator (p. 1348)

148

CHAPTERS

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choi ces arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choi ces.

wxComboBox::~wxComboBox

~wxComboBox()

Destructor, destroying the combobox.

wxComboBox::Append

void Append(const wxString& item)

Adds the item to the end of the combobox.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
The string to add.

clientData
Client data to associate with the item.

wxComboBox::Clear

void Clear()

Clears all strings from the combobox.

wxComboBox::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& value =", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices[], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 148) for further details.

149

CHAPTERS

wxComboBox::Copy

void Copy()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::Delete

void Delete(int n)
Deletes an item from the combobox.

Parameters

The item to delete, starting from zero.

wxComboBox::FindString

int FindString(const wxString& string)

Finds a choice matching the given string.

Parameters

string
The item to find.

Return value

The position if found, or -1 if not found.

wxComboBox::GetClientData

void* GetClientData(int n) const
Returns a pointer to the client data associated with the given item (if any).

Parameters

150

CHAPTERS

An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxComboBox::GetlnsertionPoint

long GetlnsertionPoint() const

Returns the insertion point for the combobox's text field.

wxComboBox::GetLastPosition

long GetLastPosition() const

Returns the last position in the combobox text field.

wxComboBox::GetSelection

int GetSelection() const

Gets the position of the selected string, or -1 if there is no selection.

wxComboBox::GetString

wxString GetString(int n) const

Returns the string at position n.

Parameters

The item position, starting from zero.

Return value

The string if the item is found, otherwise the empty string.

wxComboBox::GetStringSelection

wxString GetStringSelection() const

Gets the selected string.

151

CHAPTERS

wxComboBox::GetValue

wxString GetValue() const

Returns the current value in the combobox text field.

wxComboBox::Number

int Number() const

Returns the number of items in the combobox list.
wxComboBox::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboBox::Replace

void Replace(long from, long to, const wxString& text)
Replaces the text between two positions with the given text, in the combobox text field.
Parameters

from
The first position.

to
The second position.

text
The text to insert.

wxComboBox::Remove

void Remove(long from, long to)
Removes the text between the two positions in the combobox text field.
Parameters

from
The first position.

152

CHAPTERS

to
The last position.

wxComboBox::SetClientData

void SetClientData(int n, void* data)

Associates the given client data pointer with the given item.

Parameters
The zero-based item.
data

The client data.

wxComboBox::SetinsertionPoint

void SetlnsertionPoint(long pos)

Sets the insertion point in the combobox text field.
Parameters
pos

The new insertion point.

wxComboBox::SetinsertionPointEnd

void SetinsertionPointEnd()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection(int n)

Selects the given item in the combobox list. This does not cause a
WXEVT_COMMAND_COMBOBOX_SELECTED event to get emitted.

void SetSelection(long from, long to)

Selects the text between the two positions, in the combobox text field.

Parameters

153

CHAPTERS

n

The zero-based item to select.
from

The first position.
to

The second position.

wxPython note: The second form of this method is called Set Mar k in wxPython.

wxComboBox::SetValue

void SetValue(const wxString& text)
Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONLY style the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

Parameters

text
The text to set.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObject (p. 897)

Include files

<wx/docview.h>

See also

Overview (p. 1603)

154

CHAPTERS

wxCommand::wxCommand

wxCommand(bool canUndo = FALSE, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependant).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

~wxCommand()

Destructor.

wxCommand::CanUndo

bool CanUndo()

Returns TRUE if the command can be undone, FALSE otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return
TRUE to indicate that the action has taken place, FALSE otherwise. Returning FALSE
will indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName ()

Returns the command name.

wxCommand::Undo

155

CHAPTERS

bool Undo()

Override this member function to un-execute a previous Do. Return TRUE to indicate
that the action has taken place, FALSE otherwise. Returning FALSE will indicate to the
command processor that the action is not redoable and no change should be made to
the command history.

How you implement this command is totally application dependent, but typical strategies
include:

Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.
Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCitrl (p. 1313), have
separate command event classes.

Derived from
wxEvent (p. 428)

Include files

<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

156

CHAPTERS

EVT_BUTTON(id, func)

EVT_CHECKBOX(id, func)

EVT_CHOICE(id, func)

EVT_LISTBOX(id, func)

EVT_LISTBOX_DCLICK(id, func)

EVT_TEXT(id, func)

EVT_TEXT_ENTER(id, func)

EVT_TEXT_MAXLEN(id, func)

EVT_MENU(id, func)

EVT_MENU_RANGE(id1, id2, func)

EVT_SLIDER(d, func)

EVT_RADIOBOX(id, func)

Process a
WXEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

Process a
WXEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

Process a
WXEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

Process a
WXEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

Process a
WXEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

Process a
WXEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCitrl
control.

Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control. Note that you must use
WXTE_PROCESS ENTER flag when creating
the control if you want it to generate such
events.

Process a
WXEVT_COMMAND_TEXT_MAXLEN
command, which is generated by a wxTextCitrl
control when the user tries to enter more
characters into it than the limit previosuly set
with SetMaxLength (p. 1253).

Process a
WXEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.
Process a
WXEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

Process a
WXEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

Process a
WXEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a
wxRadioBox control.

157

CHAPTERS

EVT_RADIOBUTTON(id, func) Process a
WXEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

EVT_SCROLLBAR(id, func) Process a
WXEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be
used instead (see wxScrollEvent (p. 1068)).

EVT_COMBOBOX(id, func) Process a
WXEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

EVT_TOOL(id, func) Process a
WXEVT_COMMAND_TOOL_CLICKED event (a
synonym for
WXEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_TOOL_RANGE(id1, id2, func) Process a
WXEVT_COMMAND_TOOL_CLICKED event
for a range id identifiers. Pass the ids of the
tools.

EVT_TOOL_RCLICKED(id, func) Process a
WXEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
WXEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved

off a tool.
EVT_COMMAND_LEFT_CLICK(id, func) Process a

WXEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).
EVT_COMMAND_LEFT_DCLICK(id, func)Process a
WXEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).
EVT_COMMAND_RIGHT_CLICK(id, func) Process a
WXEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).
EVT_COMMAND_SET FOCUS(id, func) Process a
WXEVT_COMMAND_SET_FOCUS command,
which is generated by a control (Windows 95
and NT only).
EVT_COMMAND_KILL_FOCUS(id, func) Process a

158

CHAPTERS

WXEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT _COMMAND_ENTER
command, which is generated by a control.

wxCommandEvent::m_clientData

void* m_clientData

Contains a pointer to client data for listboxes and choices, if the event was a selection.
Beware, this is not implemented anyway...

wxCommandEvent::m_commandint

int m_commandint
Contains an integer identifier corresponding to a listbox, choice or radiobox selection

(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::m_commandString

char* m_commandString

Contains a string corresponding to a listbox or choice selection.

wxCommandEvent::m_extraLong

long m_extraLong

Extra information. If the event comes from a listbox selection, it is a boolean determining
whether the event was a selection (TRUE) or a deselection (FALSE). A listbox
deselection only occurs for multiple-selection boxes, and in this case the index and
string values are indeterminate and the listbox must be examined by the application.

wxCommandEvent::wxCommandEvent

wxCommandEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

159

CHAPTERS

wxCommandEvent::Checked

bool Checked() const

Deprecated, use IsChecked (p. 160) instead.

wxCommandEvent::GetClientData

void* GetClientData()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtraLong()

Returns the m_extraLong member.

wxCommandEvent::GetInt

int GetInt()

Returns the m_commandInt member.

wxCommandEvent::GetSelection

int GetSelection()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

char* GetString()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked() const

This method can be used with checkbox and menu events: for the checkboxes, the

160

CHAPTERS

method returns TRUE for a selection event and FALSE for a deselection one. For the
menu events, this method indicates if the menu item just has become checked or
unchecked (and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection

bool IsSelection()

For a listbox or choice event, returns TRUE if it is a selection, FALSE if it is a
deselection.

wxCommandEvent::SetClientData

void SetClientData(void* clientData)

Sets the client data for this event.

wxCommandEvent::SetExtraLong

void SetExtraLong(int extraLong)

Sets the m_extraLong member.

wxCommandEvent::Setint

void Setint(int intCommand)

Sets the m_commandint member.

wxCommandEvent::SetString

void SetString(char* string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

161

CHAPTERS

Derived from

wxObject (p. 897)

Include files
<wx/docview.h>
See also

wxCommandProcessor overview (p. 1604), wxCommand (p. 154)

wxCommandProcessor::wxCommandProcessor

wxCommandProcessor(int maxCommands = 100)

Constructor.
maxCommands defaults to a rather arbitrary 100, but can be set from 1 to any integer. If

your wxCommand classes store a lot of data, you may wish the limit the number of
commands stored to a smaller number.

wxCommandProcessor::~wxCommandProcessor

~wxCommandProcessor()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo()

Returns TRUE if the currently-active command can be undone, FALSE otherwise.

wxCommandProcessor::ClearCommands

virtual void ClearCommands()

Deletes all the commands in the list and sets the current command pointer to NULL.

wxCommandProcessor::Do

virtual bool Do()

162

CHAPTERS

Executes (redoes) the current command (the command that has just been undone if
any).

wxCommandProcessor::GetCommands

wxList& GetCommands() const

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands() const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu() const

Returns the edit menu associated with the command processor.

wxCommandProcessor::GetRedoAccelerator

const wxString& GetRedoAccelerator() const

Returns the string that will be appended to the Redo menu item.

wxCommandProcessor::GetUndoAccelerator

const wxString& GetUndoAccelerator() const

Returns the string that will be appended to the Undo menu item.

wxCommandProcessor::Initialize

virtual void Initialize()

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::SetEditMenu

163

CHAPTERS

void SetEditMenu(wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command

operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::SetRedoAccelerator

void SetRedoAccelerator(const wxString&accel)

Sets the string that will be appended to the Redo menu item.

wxCommandProcessor::SetUndoAccelerator

void SetUndoAccelerator(const wxString&accel)

Sets the string that will be appended to the Undo menu item.

wxCommandProcessor::Submit

virtual bool Submit(wxCommand *command, bool storelt = TRUE)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storelt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

virtual bool Undo()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true

164

CHAPTERS

which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. 1282) for the worker thread, but if there are several
worker threads it already makes much more sense).

Once the thread(s) are signaled, the condition then resets to the not signaled state,
ready to fire again.

Derived from
None.
Include files
<wx/thread.h>

See also

wxThread (p. 1276), wxMutex (p. 881)

wxCondition::wxCondition

wxCondition()

Default constructor.

wxCondition::~wxCondition

~wxCondition()

Destroys the wxCondition object.

wxCondition::Broadcast

void Broadcast()

Broadcasts to all waiting objects.

wxCondition::Signal

void Signal()

165

CHAPTERS

Signals the object.

wxCondition::Wait

void Wait()

Waits indefinitely.

bool Wait(unsigned long sec, unsigned long nsec)
Waits until a signal is raised or the timeout has elapsed.
Parameters

sec
Timeout in seconds

nsec
Timeout nanoseconds component (added to sec).

Return value

The second form returns if the signal was raised, or FALSE if there was a timeout.

wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it is an abstract base class) and you will always use one of its derivations:
wxIniConfig, wxFileConfig, wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWindows provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32, wxIniConfig under Win16 and wxFileConfig
otherwise.

See config overview (p. 1554) for the descriptions of all features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a
look at them. (p. 168)

Derived from

166

CHAPTERS

No base class
Include files

<wx/config.h> (to let wxWindows choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)

<wx/fileconf.h> (wxFileconfig class)

<wx/msw/regconf.h> (wxRegConfig class)

<wx/msw/iniconf.h> (wxIniConfig class)

Example

Here is how you would typically use this class:

/'l using wxConfig instead of witing wxFileConfig or wxRegConfig
enhances

/1 portability of the code

wxConfig *config = new wxConfi g(" MyAppNanme");

wxString str;
if (config->Read("LastPronmpt"”, &str)) {
/1 last pronpt was found in the config file/registry and its val ue
i s now

[l in str
}
el se {

/1 no last pronpt...
}

/1 anot her example: using default values and the full path instead of
j ust

/'l key nane: if the key is not found , the value 17 is returned

| ong val ue = confi g->Read("/Last Run/ Cal cul at edVal ues/ MaxVal ue", 17);

/1 at the end of the programwe woul d save everything back
config->Wite("LastPronpt"”, str);
config->Wite("/LastRun/Cal cul at edVal ues/ MaxVal ue", val ue);

/'l the changes will be witten back automatically
del ete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"
for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

167

CHAPTERS

Static functions

These functions deal with the "default” config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Note that
wxWindows will delete this config object for you during the program shutdown (from
WxApp::OnEXit (p. 26) to be precise) but you can also do it yourself earlier if needed.

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWindows library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
522) or Unix version of wxFileDialog (p. 461) have ability to use wxConfig class.

Set (p. 179)

Get (p. 174)

Create (p. 173)
DontCreateOnDemand (p. 173)

Constructor and destructor

wxConfigBase (p. 172)
~wxConfigBase (p. 173)

Path management

As explained in config overview (p. 1554), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion
of the current group, which makes it possible to use the relative paths. To clarify all this,
here is an example (it is only for the sake of demonstration, it doesn't do anything
sensible!):

wxConfig *config = new wxConfi g("FooBar App") ;

/1l right now the current path is '/’
conf->Wite("RootEntry", 1);

/'l go to some other place: if the group(s) don't exist, they will be

168

CHAPTERS

created
conf - >Set Pat h("/ G- oup/ Subgr oup™) ;

/'l create an entry in subgroup
conf->Wite("SubgroupEntry", 3);

[l '.." is understood
conf->Wite("../GoupEntry", 2);
conf->SetPath("..");

WXASSERT(conf - >Read(" Subgr oup/ Subgr oupEntry", 0I) == 3);

/'l use absolute path: it is allowed, too
WXASSERT(conf->Read("/RootEntry", 0l) == 1);

Warning: it is probably a good idea to always restore the path to its old value on function
exit:

voi d foo(wxConfigBase *confi g)

{
wxString strd dPath = config->GetPath();

confi g->Set Pat h("/ Foo/ Dat a") ;

confi g->Set Pat h(strd dPat h) ;
}

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

voi d bar (wxConfi gBase *confi g)

{
config->Wite("Test", 17);

foo(config);
/'l we're reading "/Foo/Datal/ Test"” here! -1 will probably be
returned...

WXASSERT(confi g->Read("Test", -1) == 17);
}

Finally, the path separator in wxConfigBase and derived classes is always '/, regardless
of the platform (i.e. it is not "\\' under Windows).

SetPath (p. 179)
GetPath (p. 176)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return FALSE when there are no more items.

169

CHAPTERS

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it is not the index of the current item (you will have some great surprizes with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

WXArrayString aNanmes

// enuneration vari abl es
wxString str;

| ong dumy;

/1 first enumall entries
bool bCont = config->GetFirstEntry(str, dunmy);
while (bCont) {

aNanes. Add(str);

bCont = Get Config()->Get NextEntry(str, dumy);
}

we have all entry names in aNanes...

/1 now all groups..
bCont = Get Config()->GetFirstGoup(str, dunmy);
while (bCont) {

aNanes. Add(str);

bCont = Get Config()->Get Next G oup(str, dumy);
}

we have all group (and entry) nanes in aNanes..

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 175)
GetNextGroup (p. 176)
GetFirstEntry (p. 175)
GetNextEntry (p. 176)
GetNumberOfEntries (p. 176)
GetNumberOfGroups (p. 176)

Tests of existence

HasGroup (p. 177)
HasEntry (p. 176)
Exists (p. 174)
GetEntryType (p. 175)

170

CHAPTERS

Miscellaneous functions

GetAppName (p. 175)
GetVendorName (p. 176)
SetUmask (p. 180)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that si zeof (bool) ==

si zeof (i nt) == sizeof (|1 ong) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 177)

Write (p. 180)
Flush (p. 174)

Rename entries/groups

The functions in this section allow to rename entries or subgroups of the current group.
They will return FALSE on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 179)
RenameGroup (p. 179)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:

171

CHAPTERS

for example, when you uninstall it.
DeleteEntry (p. 174)

DeleteGroup (p. 174)
DeleteAll (p. 174)

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

config file for my program
User Dat a = $HOVE/ dat a

the followi ng syntax is valud only under W ndows
UserData = 9% ndi r % \ dat a. dat

the call to conf i g- >Read(" User Dat a") will return something
like"/ hone/ zei tl i n/ data" if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(FALSE) just before reading this value and
SetExpandEnvVars(TRUE) just after. Another solution would be to prefix the offending
symbols with a backslash.

The following functions control this option:
IsExpandingEnvVars (p. 177)
SetExpandEnvVars (p. 179)

SetRecordDefaults (p. 179)
IsRecordingDefaults (p. 177)

wxConfigBase::wxConfigBase

wxConfigBase(const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0)

This is the default and only constructor of the wxConfigBase class, and derived classes.
Parameters

appName
The application name. If this is empty, the class will normally use

172

CHAPTERS

wxApp::GetAppName (p. 23) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName
The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

localFilename
Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename
Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style
Can be one of wxCONFIG_USE_LOCAL_FILE and
WXCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logicaly or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths.

Remarks

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase

~wxConfigBase()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create()

Create a new config object: this function will create the "best" implementation of
wxConfig available for the current platform, see comments near the definition of
WXCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

173

CHAPTERS

void DontCreateOnDemand()

Calling this function will prevent Get() from automatically creating a new config object if
the current one is NULL. It might be useful to call it near the program end to prevent new
config object "accidental” creation.

wxConfigBase::DeleteAll

bool DeleteAll()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
desinstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry(const wxString& key, bool bDeleteGrouplfEmpty = TRUE)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

bool DeleteGroup(const wxString& key)

Delete the group (with all subgroups)

wxConfigBase::Exists

bool Exists(wxString& strName) const

returns TRUE if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush(bool bCurrentOnly = FALSE)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

wxConfigBase * Get(bool CreateOnDemand = TRUE)

174

CHAPTERS

Get the current config object. If there is no current object andCreateOnDemand is
TRUE, creates one (using Create) unless DontCreateOnDemand was called previously.

wxConfigBase::GetAppName

wxString GetAppName() const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType(const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:

enum EntryType
{
Unknown,
String,
Bool ean,
I nt eger,
Fl oat

wxConfigBase::GetFirstGroup

bool GetFirstGroup(wxString& str, long& index) const

Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetFirstEntry

bool GetFirstEntry(wxString& str, long& index) const

Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

175

CHAPTERS

wxConfigBase::GetNextGroup

bool GetNextGroup(wxString& str, long& index) const

Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNextEntry

bool GetNextEntry(wxString& str, long& index) const

Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries(bool bRecursive = FALSE) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups(bool bRecursive = FALSE) const

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath

const wxString& GetPath() const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName () const

Returns the vendor name.

wxConfigBase::HasEntry

176

CHAPTERS

bool HasEntry(wxString& strName) const

returns TRUE if the entry by this name exists

wxConfigBase::HasGroup

bool HasGroup(const wxString& strName) const

returns TRUE if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars() const

Returns TRUE if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults() const

Returns TRUE if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString* str) const

Read a string from the key, returning TRUE if the value was read. If the key was not
found, str is not changed.

bool Read(const wxString& key, wxString* str, const wxString& defaultVal) const
Read a string from the key. The default value is returned if the key was not found.
Returns TRUE if value was really read, FALSE if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* I) const

Reads a long value, returning TRUE if the value was found. If the value was not found, |
is not changed.

bool Read(const wxString& key, long* |,long defaultVal) const

177

CHAPTERS

Reads a long value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, long defaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

conf - >Read(" key", 0);

won't work because the call is ambiguous: compiler can not choose between twoRead
functions. Instead, write:

conf - >Read(" key", O0l);

bool Read(const wxString& key, double* d) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, d is not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

Reads a bool value, returning TRUE if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultval) const

Reads a bool value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default="") Returns a string.
ReadInt(key, default=0) Returns an int.
ReadFloat(key, default=0.0) Returns a floating point number.

178

CHAPTERS

wxConfigBase::RenameEntry

bool RenameEntry(const wxString& oldName, const wxString& newName)
Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup(const wxString& oldName, const wxString& newName)
Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::Set

wxConfigBase * Set(wxConfigBase *pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandEnvVars

void SetExpandEnvVars (bool bDolt = TRUE)

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath(const wxString& strPath)

Set current path: if the first character is /', it is the absolute path, otherwise it is a relative
path. '.." is supported. If the strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults(bool bDolt = TRUE)

179

CHAPTERS

Sets whether defaults are written back to the config file.

If on (default is off) all default values are written back to the config file. This allows the
user to see what config options may be changed and is probably useful only for
wxFileConfig.

wxConfigBase::SetUmask

void SetUmask(int mode)

NB: this function is not in the base wxConfigBase class but is only implemented in
wxFileConfig. Moreover, this function is Unix-specific and doesn't do anything on other
platforms.

SetUmask() allows to set the mode to be used for the config file creation. For example,

to create a config file which is not readable by other users (useful if it stores some
sensitive information, such as passwords), you should do Set Urmask(0077) .

wxConfigBase::Write

bool Write(const wxString& key, const wxString& value)

bool Write(const wxString& key, long value)

bool Write(const wxString& key, double value)

bool Write(const wxString& key, bool value)

These functions write the specified value to the config file and return TRUE on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.
Writelnt(key, value) Writes an int.
WriteFloat(key, value) Writes a floating point number.

wxContextHelp

This class changes the cursor to a query and puts the application into a ‘context-
sensitive help mode'. When the user left-clicks on a window within the specified window,
a WXEVT_HELP event is sent to that control, and the application may respond to it by
popping up some help.

180

CHAPTERS

For example:
wx Cont ext Hel p cont ext Hel p(myW ndow) ;
There are a couple of ways to invoke this behaviour implicitly:

Use the wxDIALOG_EX_CONTEXTHELP style for a dialog (Windows only).
This will put a question mark in the titlebar, and Windows will put the application
into context-sensitive help mode automatically, with further programming.
Create a wxContextHelpButton (p. 182), whose predefined behaviour is to
create a context help object. Normally you will write your application so that this
button is only added to a dialog for non-Windows platforms (use
WXDIALOG_EX_CONTEXTHELP on Windows).

Derived from

wxObject (p. 897)

Include files

<wx/cshelp.h>
See also

wxHelpEvent (p. 617), wxHelpController (p. 610), wxContextHelpButton (p. 182)

wxContextHelp::wxContextHelp

wxContextHelp(wxWindow* window = NULL, bool doNow = TRUE)

Constructs a context help object, calling BeginContextHelp (p. 181) if doNow is TRUE
(the default).

If window is NULL, the top window is used.

wxContextHelp::~wxContextHelp

~wxContextHelp()

Destroys the context help object.

wxContextHelp::BeginContextHelp

bool BeginContextHelp(wxWindow* window = NULL)

181

CHAPTERS

Puts the application into context-sensitive help mode. window is the window which will
be used to catch events; if NULL, the top window will be used.

Returns TRUE if the application was successfully put into context-sensitive help mode.
This function only returns when the event loop has finished.

wxContextHelp::EndContextHelp

bool EndContextHelp()

Ends context-sensitive help mode. Not normally called by the application.

wxContextHelpButton

Instances of this class may be used to add a question mark button that when pressed,
puts the application into context-help mode. It does this by creating a wxContextHelp (p.
180) object which itself generates a wxEVT_HELP event when the user clicks on a
window.

On Windows, you may add a question-mark icon to a dialog by use of the
WXDIALOG_EX CONTEXTHELP extra style, but on other platforms you will have to add
a button explicitly, usually next to OK, Cancel or similar buttons.

Derived from

wxBitmapButton (p. 72)
wxButton (p. 91)
wxControl (p. 183)
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

<wx/cshelp.h>

See also

wxBitmapButton (p. 72), wxContextHelp (p. 180)

wxContextHelpButton::wxContextHelpButton

wxContextHelpButton()

182

CHAPTERS

Default constructor.

wxContextHelpButton(wxWindow* parent, wxWindowlID id =
wxID_CONTEXT_HELP, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxBU_AUTODRAW)

Constructor, creating and showing a context help button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. Defaults to wxID_CONTEXT_HELP.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the question mark bitmap.

style
Window style.

Remarks

Normally you need pass only the parent window to the constructor, and use the defaults
for the remaining parameters.

wxControl

This is the base class for a control or ‘widget'.

A control is generally a small window which processes user input and/or displays one or
more item of data.

Derived from
wxWindow (p. 1366)
wxEvtHandler (p. 432)
wxObject (p. 897)

Include files

183

CHAPTERS

<wx/control.h>
See also

wxValidator (p. 1348)

wxControl::Command

void Command(wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 156).

wxControl::GetLabel

wxString& GetLabel()

Returns the control's text.

wxControl::SetLabel

void SetLabel(const wxString& label)

Sets the item's text.

wxCountingOutputStream

wxCountingOutputStream is a specialized output stream which does not write any data
anyway, instead it counts how many bytes would get written if this were a normal
stream. This can sometimes be useful or required if some data gets serialized to a
stream or compressed by using stream compression and thus the final size of the
stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of
memory and the memory has to be allocated before writing to it (which is probably
always the case when writing to a memory stream).

Derived from

wxOutputStream (p. 902) wxStreamBase (p. 1161)

Include files

184

CHAPTERS

<wx/stream .h>

wxCountingOutputStream::wxCountingOutputStream

wxCountingOutputStream()

Creates a wxCountingOutputStream object.

wxCountingOutputStream::~wxCountingOutputStream

~wxCountingOutputStream()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize() const

Returns the current size of the stream.

wxCriticalSection

A critical section object is used for the same exactly purpose as mutexes (p. 881). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

Finally, you should try to use wxCriticalSectionLocker (p. 186) class whenever possible

instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p. 884)
is preferrable to wxMutex (p. 881) - please see wxMutex for an example.

Derived from
None.
Include files

<wx/thread.h>

See also

185

CHAPTERS

wxThread (p. 1276), wxCondition (p. 164), wxMutexLocker (p. 884), wxCriticalSection (p.
185)

wxCriticalSection::wxCriticalSection

wxCriticalSection()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

~wxCriticalSection()

Destructor frees the ressources.

wXxCriticalSection::Enter

void Enter()

Enter the critical section (same as locking a mutex). There is no error return for this
function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

void Leave()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

wxCriticalSectionLocker

This is a small helper class to be used with wxCriticalSection (p. 185) objects. A
wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Example of using it:

voi d Set Foo()

186

CHAPTERS

{
/1l gs_critSect is some (global) critical section guarding access to
t he
/'l object "foo"
wxCritical Secti onLocker | ocker(gs_critSect);
if (...)
{
/1 do sonething
return;
}
/1 do sonething else
return;
}

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each r et ur n.

Derived from
None.
Include files
<wx/thread.h>
See also

wxCriticalSection (p. 185), wxMutexLocker (p. 884)

wXxCriticalSectionLocker::wxCriticalSectionLocker

wxCriticalSectionLocker(wxCriticalSection& criticalsection)

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and
enters it.

wXxCriticalSectionLocker::~wxCriticalSectionLocker

~wxCriticalSectionLocker()

Destuctor leaves the critical section.

187

CHAPTERS

wxCSConv

This class converts between any character sets and Unicode. It has one predefined
instance, wxConvLocal, for the default user character set.

Derived from
wxMBConv (p. 811)
Include files
<wx/strconv.h>
See also

wxMBConv (p. 811), wxEncodingConverter (p. 425), wxMBConv classes overview (p.
1539)

wxCSConv::wxCSConv

wxCSConv(const wxChar* charset)

Constructor. Specify the name of the character set you want to convert from/to.

wxCSConv::~wxCSConv

~wxCSConv ()

Destructor.

wXxCSConv::LoadNow

void LoadNow()

If the conversion tables needs to be loaded from disk, this method will do so. Otherwise,
they will be loaded when any of the conversion methods are called.

wxCSConv::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from the selected character set to Unicode. Returns the size of the destination

188

CHAPTERS

buffer.

wxCSConv::WC2MB

size_t WC2MB (char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to the selected character set. Returns the size of the destination
buffer.

wxCustomDataObject

wxCustomDataObject is a specialization of wxDataObjectSimple (p. 285) for some
application-specific data in arbitrary (either custom or one of the standard ones). The
only restriction is that it is supposed that this data can be copied bitwise (i.e. with
mentpy()), so it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 191) or TakeData (p. 191) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should override GetSize (p. 190), GetData (p. 190)
and SetData (p. 191) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 285)
wxDataObject (p. 204)

Include files
<wx/dataobj.h>

See also

wxDataObject (p. 204)

189

CHAPTERS

wxCustomDataObject::wxCustomDataObject

wxCustomDataObject(const wxDataFormat& format = wxFormatinvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here, SetFormat (p. 286) should be used.

wxCustomDataObject::~wxCustomDataObject

~wxCustomDataObject()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 190) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Fr ee() , you
should override the destructor in your class as well (which would probably just call the
derived class' version of Fr ee()).

wxCustomDataObject::Alloc

virtual void * Alloc(size_t size)

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

virtual void Free()

This function is called when the data is freed, you may override it to anything you want
(or may be nothing at all). The default version calls operator delete[] on the data.

wxCustomDataObject::GetSize

virtual size_t GetSize() const

Returns the data size in bytes.

wxCustomDataObject::GetData

190

CHAPTERS

virtual void * GetData() const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData(size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxCustomDataObject:: TakeData

virtual void TakeData(size_t size, const void *data)

Like SetData (p. 191), but doesn't copy the data - instead the object takes ownership of
the pointer.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxlcon (p. 680) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWindows convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 1452) is also available
for MS Windows use.

Derived from

wxBitmap (p. 55)

wxGDIObject (p. 550)

wxObject (p. 897)

Include files

<wx/cursor.h>

Predefined objects

Objects:

191

CHAPTERS

wxNullCursor

Pointers:

WXSTANDARD_ CURSOR
WXHOURGLASS CURSOR
wXCROSS_CURSOR

See also

wxBitmap (p. 55), wxlcon (p. 680), wxWindow::SetCursor (p. 1407), ::wxSetCursor (p.
1452)

wxCursor::wxCursor

wxCursor()
Default constructor.

wxCursor(const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL)

Constructs a cursor by passing an array of bits (Motif and Xt only). maskBits is used only
under Motif.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

wxCursor(const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)
Constructs a cursor by passing a string resource name or filename.

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

wxCursor(int cursorld)
Constructs a cursor using a cursor identifier.
wxCursor(const wxCursor& cursor)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

bits
An array of bits.

192

CHAPTERS

maskBits

width

Bits for a mask bitmap.

Cursor width.

height

Cursor height.

hotSpotX

Hotspot x coordinate.

hotSpotY

type

Hotspot y coordinate.

Icon type to load. Under Motif, type defaults to wxBITMAP_TYPE_XBM. Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE.

Under X, the permitted cursor types are:

wWXBITMAP_TYPE_XBM Load an X bitmap file.

Under Windows, the permitted types are:

wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).

wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).
wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if

USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.

cursorld

A stock cursor identifier. May be one of:

wWXCURSOR_ARROW A standard arrow cursor.

wXCURSOR_BULLSEYE Bullseye cursor.

wWxXCURSOR_CHAR Rectangular character cursor.

wxCURSOR_CROSS A cross cursor.

wxCURSOR_HAND A hand cursor.

wxCURSOR_IBEAM An Fbeam cursor (vertical line).

WXxCURSOR_LEFT_BUTTON Represents a mouse with the left button
depressed.

wWXCURSOR_MAGNIFIER A magpnifier icon.

wxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button
depressed.

WXCURSOR_NO_ENTRY A no-entry sign cursor.

193

CHAPTERS

wWXCURSOR_PAINT_BRUSH A paintbrush cursor.
wxCURSOR_PENCIL A pencil cursor.
WXCURSOR_POINT_LEFT A cursor that points left.
wWXCURSOR_POINT_RIGHT A cursor that points right.
wWXCURSOR_QUESTION_ARROW An arrow and question mark.
wWxCURSOR_RIGHT_BUTTON Represents a mouse with the right button

depressed.
wWXCURSOR_SIZENESW A sizing cursor pointing NE-SW.
wWXCURSOR_SIZENS A sizing cursor pointing N-S.
wXCURSOR_SIZENWSE A sizing cursor pointing NW -SE.
wWXCURSOR_SIZEWE A sizing cursor pointing W-E.
WXCURSOR_SIZING A general sizing cursor.
wXxCURSOR_SPRAYCAN A spraycan cursor.
WXCURSOR_WAIT A wait cursor.
wxCURSOR_WATCH A watch cursor.
wWXxCURSOR_ARROWWAIT A cursor with both an arrow and an hourglass,

(windows.)

Note that not all cursors are available on all platforms.

cursor
Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:
wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor

from a filename
wxStockCursor(id) Constructs a stock cursor

wxPerl note: Contructors supported by wxPerl are:
-::Cursor->new(name, type, hotSpotX = 0, hotSpotY =0)

-::Cursor->new(id)

wxCursor::~wxCursor

~wxCursor()
Destroys the cursor. A cursor can be reused for more than one window, and does not

get destroyed when the window is destroyed. wxWindows destroys all cursors on
application exit, although it is best to clean them up explicitly.

wxCursor::0k

bool Ok() const

194

CHAPTERS

Returns TRUE if cursor data is present.

wxCursor::operator =

wxCursor& operator =(const wxCursor& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator ==(const wxCursoré& cursor)
Equality operator. Two cursors are equal if they contain pointers to the same underlying

cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor::operator !'=

bool operator !=(const wxCursoré& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxDatabase

Every database object represents an ODBC connection. The connection may be closed
and reopened.

Derived from

wxObject (p. 897)

Include files

<wx/odbc.h>

See also

wxDatabase overview (p. 1642), wxRecordSet (p. 1027)

A much more robust and feature-rich set of ODBC classes is now available and
recommended for use in place of the wxDatabase class.

See details of these classes in:wxDb (p. 207), wxDbTable (p. 247)

195

CHAPTERS

wxDatabase::wxDatabase

wxDatabase()

Constructor. The constructor of the first wxDatabase instance of an application initializes
the ODBC manager.

wxDatabase::~wxDatabase

~wxDatabase()
Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase::BeginTrans

bool BeginTrans()

Not implemented.

wxDatabase::Cancel

void Cancel()

Not implemented.

wxDatabase::CanTransact

bool CanTransact()

Not implemented.

wxDatabase::CanUpdate

bool CanUpdate ()

Not implemented.

196

CHAPTERS

wxDatabase::Close

bool Close()

Resets the statement handles of any associated wxRecordSet objects, and disconnects
from the current data source.

wxDatabase::CommitTrans

bool CommitTrans()

Commits previous transactions. Not implemented.

wxDatabase::ErrorOccured

bool ErrorOccured()

Returns TRUE if the last action caused an error.

wxDatabase::ErrorSnapshot

void ErrorSnapshot(HSTMT statement = SQL_NULL_HSTMT)

This function will be called whenever an ODBC error occured. It stores the error related
information returned by ODBC. If a statement handle of the concerning ODBC action is
available it should be passed to the function.

wxDatabase::GetDatabaseName

wxString GetDatabaseName ()

Returns the name of the database associated with the current connection.

wxDatabase::GetDataSource

wxString GetDataSource ()

Returns the name of the connected data source.

wxDatabase::GetErrorClass

wxString GetErrorClass()

197

CHAPTERS

Returns the error class of the last error. The error class consists of five characters where
the first two characters contain the class and the other three characters contain the
subclass of the ODBC error. See ODBC documentation for further details.

wxDatabase::GetErrorCode

WXRETCODE GetErrorCode()

Returns the error code of the last ODBC function call. This will be one of:

SQL_ERROR General error.

SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.

SQL _NO_DATA FOUND No data was found by this ODBC call.

SQL_SUCCESS The call was successful.

SQL_SUCCESS WITH_INFO The call was successful, but further information can

be obtained from the ODBC manager.

wxDatabase::GetErrorMessage

wxString GetErrorMessage ()

Returns the last error message returned by the ODBC manager.

wxDatabase::GetErrorNumber

long GetErrorNumber()

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase::GetHDBC

HDBC GetHDBC()

Returns the current ODBC database handle.

wxDatabase::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDatabase::GetInfo

198

CHAPTERS

bool Getinfo(long infoType, long *buf)
bool Getinfo(long infoType, const wxString& buf, int bufSize=-1)

Returns requested information. The return value is TRUE if successful, FALSE
otherwise.

infoType is an ODBC identifier specifying the type of information to be returned.

buf is a character or long integer pointer to storage which must be allocated by the
application, and which will contain the information if the function is successful.

bufSize is the size of the character buffer. A value of -1 indicates that the size should be
computed by the Getlnfo function.

wxDatabase::GetPassword

wxString GetPassword()

Returns the password of the current user.

wxDatabase::GetUsername

wxString GetUsername ()

Returns the current username.

wxDatabase::GetODBCVersionFloat

float GetODBCVersionFloat(bool implementation=TRUE)
Returns the version of ODBC in floating point format, e.g. 2.50.

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql . h header file.

This function can return the value 0.0 if the header version number is not defined (for
early versions of ODBC).

wxDatabase::GetODBCVersionString

wxString GetODBCVersionString(bool implementation=TRUE)

Returns the version of ODBC in string format, e.g. "02.50".

199

CHAPTERS

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sqgl . h header file.

This function can return the value "00.00" if the header version number is not defined
(for early versions of ODBC).

wxDatabase::InWaitForDataSource

bool InWaitForDataSource()

Not implemented.

wxDatabase::IsOpen

bool IsOpen()

Returns TRUE if a connection is open.

wxDatabase::Open

bool Open(const wxString& datasource, bool exclusive = FALSE, bool readOnly =
TRUE, const wxString& username = "ODBC", const wxString& password = ")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readOnly are not used.

wxDatabase::OnSetOptions

void OnSetOptions(wxRecordSet *recordSet)

Not implemented.

wxDatabase::OnWaitForDataSource

void OnWaitForDataSource(bool stillExecuting)

Not implemented.

wxDatabase::RollbackTrans

bool RollbackTrans()

Sends a rollback to the ODBC driver. Not implemented.

200

CHAPTERS

wxDatabase::SetDataSource

void SetDataSource(const wxString& s)

Sets the name of the data source. Not implemented.

wxDatabase::SetLoginTimeout

void SetLoginTimeout(long seconds)

Sets the time to wait for an user login. Not implemented.

wxDatabase::SetPassword

void SetPassword(const wxString& s)

Sets the password of the current user. Not implemented.

wxDatabase::SetSynchronousMode

void SetSynchronousMode (bool synchronous)

Toggles between synchronous and asynchronous mode. Currently only synchronous
mode is supported, so this function has no effect.

wxDatabase::SetQueryTimeout

void SetQueryTimeout(long seconds)

Sets the time to wait for a response to a query. Not implemented.

wxDatabase::SetUsername

void SetUsername(const wxString& s)

Sets the name of the current user. Not implemented.

wxDataFormat

201

CHAPTERS

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

On the system level, a data format is usually just a number (CLI PFORMATunder
Windows or At omunder X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wWxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)
wxDF_BITMAP A bitmap (wxBitmap)
wxDF_METAFILE A metafile (wxMetafile, Windows only)
wxDF_FILENAME A list of filenames

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDat aFor mat : : Nat i veFor mat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!

Virtual functions to override
None

Derived from

None

See also

Clipboard and drag and drop overview (p. 1619), DnD sample (p. 1517), wxDataObject
(p. 204)

202

CHAPTERS

wxDataFormat::wxDataFormat

wxDataFormat(NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 204) or Setld (p. 204) later in this case)

wxPerl note: In wxPerl this function is named newNat i ve.

wxDataFormat::wxDataFormat

wxDataFormat(const wxChar *format)
Constructs a data format object for a custom format identified by its name format.

wxPerl note: In wxPerl this function is named newUser .

wxDataFormat::operator ==

bool operator ==(const wxDataFormat& format) const

Returns TRUE if the formats are equal.

wxDataFormat::operator !=

bool operator !'=(const wxDataFormat& format) const

Returns TRUE if the formats are different.

wxDataFormat::Getld

wxString Getld() const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType

NativeFormat GetType() const

Returns the platform-specific number identifying the format.

203

CHAPTERS

wxDataFormat::Setld

void Setld(const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType(NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

wxDataObject

A wxDataObject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObiject is that this is a 'smart' piece of
data unlike usual 'dumb' data containers such as memory buffers or files. Being 'smart’
here means that the data object itself should know what data formats it supports and
how to render itself in each of supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on ‘input’ and 'output’, i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Di rection
{
Get
Set

0x01, /1l format is supported by GetDataHere()
0x02 /]l format is supported by SetData()

b

which allows to distinguish between them. See wxDataFormat (p. 201) documentation
for more about formats.

Not surprizingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWindows has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 285) and wxDataObjectComposite
(p. 284). wxDataObjectSimple (p. 285) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
284) is the simplest way to implement wxDataObject which does support multiple
formats because it achievs this by simply holding several wxDataObjectSimple objects.

204

CHAPTERS

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or
custom if you combine it with the previous solution).

4. Use wxDataObject directly This is the solution for maximal flexibility and
efficiency, but it is also is the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK data transfer mechanisms for the clipboard and drag and
drop, nor the OLE data transfer copy any data until another application actually requests
the data. This is in contrast to the ‘feel' offered to the user of a program who would
normally think that the data resides in the clipboard after having pressed '‘Copy’ - in
reality it is only declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 460), wxTextDataObject (p. 1256) and wxBitmapDataObiject (p.
77) which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 189)
for user-defined types. The format of user-defined data is given as mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows
is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 285) instead.

205

CHAPTERS

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 207).

Derived from

None

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1619), DnD sample (p. 1517),
wxFileDataObject (p. 460), wxTextDataObject (p. 1256), wxBitmapDataObject (p. 77),

wxCustomDataObject (p. 189), wxDropTarget (p. 421), wxDropSource (p. 419),
wxTextDropTarget (p. 1264), wxFileDropTarget (p. 466)

wxDataObject::wxDataObject

wxDataObject()

Constructor.

wxDataObject::~wxDataObject

~wxDataObject()

Destructor.

wxDataObject::GetAllFormats

virtual void GetAllFormats(wxDataFormat *formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.

wxPerl note: In wxPerl this method only takes the di r parameter. In scalar context it
returns the first format, in list context it returns a list containing all the supported formats.

206

CHAPTERS

wxDataObject::GetDataHere

virtual bool GetDataHere(const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return TRUE on
success, FALSE on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize(const wxDataFormat& format) const

Returns the data size of the given format format.

wxDataObject::GetFormatCount

virtual size_t GetFormatCount(Direction dir = Get) const

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

virtual wxDataFormat GetPreferredFormat(Direction dir = Get) const

Returns the preferred format for either rendering the data (if dir is Get , its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData(const wxDataFormat& format, size_t len, const void *buf)
Set the data in the format format of the length len provided in the buffer buf.

Returns TRUE on success, FALSE on failure.

wxDb

A wxDb instance is a connection to an ODBC datasource which may be opened, closed,
and re-opened an unlimited number of times. A database connection allows function to

be performed directly on the datasource, as well as allowing access to any tables/views
defined in the datasource to which the user has sufficient privileges.

207

CHAPTERS

Include files

<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in db.cpp/.h for use with the wxDb class.

wxDbColFor (p. 240)
wxDbColInf (p. 239)
wxDbTablelnf (p. 283)
wxDblnf (p. 246)

Constants

NOTE: In a future release, all ODBC class constants will be prefaced with 'wx'.

wxDB_PATH_MAX

DB_MAX_COLUMN_NAME_LEN

DB_MAX_ERROR_HI STORY

DB_MAX_ERROR MSG LEN
message

DB_MAX_STATEMENT _LEN

DB_MAX_TABLE_NAME_LEN

DB_MAX_WHERE_CLAUSE_LEN

DB_TYPE_NAME_LEN

Enumerated types

Maxi mum path | ength allowed to be passed to
the ODBC driver to indicate where the data
file(s) are | ocated.

Maxi mum supported | ength for the nanme of a
col um

Maxi mum nunber of error nmessages retained

the queue before being overwitten by new
errors.

Maxi mum supported | ength of an error
returned by the ODBC cl asses

Maxi mum supported | ength for a conplete SQ
statement to be passed to the ODBC driver

Maxi mum supported length for the nane of a
tabl e

Maxi mum supported WHERE cl ause | ength that
can be passed to the ODBC driver

Maxi mum | engt h of the name of a columm's
data type

Enumerated types

enum wxDbSglLogState
sqlLogOFF, sqlLogON

208

CHAPTERS

enum wxDBMS

These are the databases currently tested and working with the ODBC classes. A call to
wxDb::Dbms (p. 218) will return one of these enumerated values listed below.

dbrs UNI DENTI FI ED

dbrms ORACLE

dbns SYBASE_ASA /1 Adaptive Server Anywhere
dbns SYBASE_ASE /1 Adaptive Server Enterprise
dbms MS_SQL_SERVER

dbnms MY_SQL

dbns POSTGRES

dbms ACCESS

dbrs DBASE

dbrs| NFORM X

dbms VI RTUGSO

dbns DB2

dbrd| NTERBASE

See the remarks in wxDb::Dbms (p. 218) for exceptions/issues with each of these
database engines.

Public member variables

SWORD wxDb::cbErrorMsg
This member variable is populated as a result of calling wxDb::GetNextError (p.
226). Contains the count of bytes in the wxDb::errorMsg string.

int wxDb::DB_STATUS
The last ODBC error/status that occurred on this data connection. Possible codes

are.
DB_ERR _GENERAL_WARNI NG /1 SqlState = '01000'
DB_ERR DI SCONNECT _ERROR /1 Sql State = '01002'
DB_ERR _DATA_ TRUNCATED /1 SqlState = '01004'
DB_ERR PRI V_NOT_REVOKED /1 Sql State = '01006'
DB_ERR | NVALI D_CONN_STR_ATTR /1 SqlState = '01S00'
DB_ERR_ERROR | N_ROW /1 SglState = '01S01"
DB_ERR_OPTI ON_VALUE_CHANGED /1 Sgl State = '01S02'
DB_ERR NO ROWS_UPD OR_DEL /1 Sgl State = '01S03'
DB_ERR MULTI _ROAS_UPD_OR_DEL /1 SglState = '01S04'
DB_ERR W\RONG NO_OF PARANMS /1 Sql State = '07001"
DB_ERR DATA TYPE_ATTR VI OL /1 Sql State = ' 07006
DB_ERR_UNABLE_TO_CONNECT /1 Sql State = '08001'
DB_ERR_CONNECTI ON_| N_USE /1 Sql State = '08002'
DB_ERR_CONNECTI ON_NOT_OPEN /1 Sql State = '08003'
DB_ERR_REJECTED_CONNECTI ON /1 Sgl State = '08004'
DB_ERR_CONN_FAI L_I N_TRANS /1 Sgl State = ' 08007
DB_ERR_COWM LI NK_FAI LURE /1 SglState = '08S01'
DB_ERR | NSERT_VALUE_LI ST_M SMATCH /1 Sgl State = '21S01"
DB_ERR DERI VED TABLE_M SMATCH /1 Sql State = '21S02'
DB_ERR_STRI NG_RI GHT_TRUNC /1 Sql State = '22001"
DB_ERR NUVERI C_VALUE_OUT_OF_RNG /1 Sql State = '22003'
DB_ERR ERROR | N_ASSI GNVENT /1 Sql State = '22005'

209

CHAPTERS

DB_ERR_DATETI ME_FLD_OVERFLOW
DB_ERR DI VI DE_BY_ZERO

DB_ERR _STR_DATA_LENGTH_M SMATCH
DB_ERR | NTEGRI TY_CONSTRAI NT_VI OL
DB_ERR | NVALI D_CURSOR_STATE
DB_ERR | NVALI D_TRANS_STATE

DB_ERR | NVALI D_AUTH_SPEC

DB_ERR | NVALI D_CURSOR_NANE

DB_ERR _SYNTAX_ERROR OR_ACCESS VI OL
DB_ERR_DUPLI| CATE_CURSOR_NANME
DB_ERR_SERI ALI ZATI ON_FAI LURE
DB_ERR_SYNTAX_ERROR _OR_ACCESS VI OL2
DB_ERR_OPERATI ON_ABORTED
DB_ERR_UNSUPPORTED_FUNCTI ON

DB_ERR _NO DATA_SOURCE

DB_ERR DRI VER_LOAD ERROR

DB_ERR SQLALLOCENV_FAI LED

DB_ERR SQLALLOCCONNECT FAI LED
DB_ERR_SQLSETCONNECTOPTI ON_FAI LED
DB_ERR_NO DATA_SOURCE_DLG PROHI B
DB_ERR DI ALOG_FAI LED

DB_ERR _UNABLE_TO LOAD_TRANSLATI ON_DLL
DB_ERR DATA_ SOURCE_NAME_TOO LONG
DB_ERR DRI VER_NAME_TOO_LONG

DB_ERR DRI VER_KEYWORD_SYNTAX_ERROR
DB_ERR TRACE_FI LE_ERROR

DB_ERR TABLE_OR VI EW ALREADY_EXI STS
DB_ERR_TABLE_NOT_FOUND

DB_ERR_| NDEX_ALREADY_EXI STS

DB_ERR_| NDEX_NOT_FOUND

DB_ERR _COLUMN_ALREADY_EXI STS
DB_ERR_COLUMN_NOT_FOUND

DB_ERR NO DEFAULT_FOR_COLUMWN

DB_ERR GENERAL_ERROR

DB_ERR _MEMORY_ALLOCATI ON_FAI LURE
DB_ERR | NVALI D_COLUVN_NUVBER
DB_ERR_PROGRAM TYPE_OUT_OF RANGE
DB_ERR_SQL_DATA_TYPE_OUT_OF RANGE
DB_ERR_OPERATI ON_CANCELLED

DB_ERR | NVALI D_ARGUVENT _VALUE
DB_ERR_FUNCTI ON_SEQUENCE_ERROR
DB_ERR_OPERATI ON_| NVALI D_AT_THI' S_TI ME
DB_ERR | NVALI D_TRANS_OPERATI ON_CODE
DB_ERR NO CURSOR NAME_AVAI L

DB_ERR | NVALI D_STR OR_BUF_LEN
DB_ERR_DESCRI PTOR_TYPE_OUT_OF RANGE
DB_ERR_OPTI ON_TYPE_OUT_OF RANGE
DB_ERR_| NVALI D_PARAM NO

DB_ERR | NVALI D_SCALE_VALUE
DB_ERR_FUNCTI ON_TYPE_OUT_OF RANGE
DB_ERR | NF_TYPE_OUT_OF_RANGE

DB_ERR COLUWMN_TYPE_OUT_OF RANGE
DB_ERR _SCOPE_TYPE_OUT_OF RANGE
DB_ERR NULLABLE_TYPE_OUT_OF RANGE

DB_ERR_UNI QUENESS_OPTI ON_TYPE_OUT_OF RANGE
DB_ERR_ACCURACY_OPTI ON_TYPE_OUT_OF _RANGE
OF_

DB_ERR_DI RECTI ON_OPTI ON_OUT_OF RANGE

11
11
11
/1
/1
/1
/1
11
11
11
11
11
/1
/1
/1
/1
11
11
11
11
11
/1
/1
/1
/1
11
11
11
11
11
/1
/1
/1
11
11
11
11
11
11
/1
/1
/1
11
11
11
11
11
11
/1
/1
/1
11
11
11
11
11
11

Sql State
Sql State
Sql State
Sql St ate
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql St ate
Sql St ate
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql St ate
Sql St ate
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql St ate
Sql St ate
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql St ate
Sql St ate
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql St ate
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State

22008’
22012
22026’
23000°
24000'
25000'
28000’
34000’
37000’
3C000'
40001'
42000
70100°
| MDO1'
| MDO2'
| MDO3'
| MDO4'
| MDOS5'
| MDOG'
| MOO7'
| MDO8'
| MDO9'
| MD10O'
I MD11'
I MD12'
| MD13'
S0001'
S0002'
S0011'
S0012°
S0021'
S0022'
S0023'
S1000'
S1001'
$1002'
S1003'
$1004'
$1008'
S1009°
S1010°
S1011'
S1012'
S1015'
S1090°
S1091'
$1092'
S1093'
S1094'
S1095'
S1096'
S1097'
$1098'
S1099'
$1100°
S1101'
S1103'

210

CHAPTERS

DB_ERR | NVALI D_PRECI S| ON_VALUE /1 Sgl State = 'S1104'
DB_ERR_| NVALI D_PARAM TYPE /1 Sgl State = ' S1105'
DB_ERR _FETCH_TYPE_OUT_OF RANGE /1 Sgl State = ' S1106'
DB_ERR_ROW VALUE_OUT_OF_RANGE /1 SqlState = 'S1107'
DB_ERR_CONCURRENCY_OPTI ON_OUT_OF _RANGE /1 Sql State = 'S1108'
DB_ERR | NVALI D_CURSOR_PCSI TI ON /1 Sql State = 'S1109'
DB_ERR | NVALI D_DRI VER_COVPLETI ON /1 SqlState = 'S1110'
DB_ERR | NVALI D_BOOKMARK_VALUE /1 SqlState = 'S1111'
DB_ERR DRI VER_NOT_CAPABLE /1 Sql State = ' S1C00'
DB_ERR_TI MEOUT_EXPI RED /1 SglState = ' S1TOO'

struct wxDb::dbInf
This structure is internal to the wxDb class and contains details of the ODBC
datasource that the current instance of the wxDb is connected to in its members.
When the datasource is opened, all of the information contained in the dbinf
structure is queried from the datasource. This information is used almost
exclusively within the ODBC class library. Where there may be a need for
particular portions of this information outside of the class library, member
functions (e.g. wxDbTable::IsCursorClosedOnCommit (p. 268)) have been added

for ease of use.

wxChar dbrmsNane[40]

wxChar dbrsVer [64]

wxChar dri ver Nane[40]
wxChar odbcVer [60]

wxChar drviMyr GdbcVer [60]
wxChar driver Ver[60]
wxChar server Nane[80]
wxChar dat abaseNane[128]
wxChar out er Joi ns[2]
wxChar procedur eSupport|[2]

UWORD maxConnecti ons

UWORD maxStnts

UWORD api Conf Lvl

UWORD cl i Conf Lvl

UWORD sql Conf Lvl

UWORD cur sor Commi t Behavi or

commi t

by

UWORD cur sor Rol | backBehavi or

UWORD support Not Nul | Cl ause
wxChar support | EF[2]

UDWORD t xnl sol ati on

UDWORD t xnl sol ati onOpti ons

UDWORD f et chDi recti ons
UDWORD | ockTypes
UDWORD posQper ati ons

Name of the dbnms product
Version # of the dbms product
Driver nane

ODBC version of the driver

ODBC version of the driver manager
Driver version

Server Nane, typically a connect string
Dat abase fil enane

Does dat asource support outer joins
Does dat asource support stored
procedur es

Maxi mum # of connecti ons datasource
supports

Maxi mum # of HSTMIs per HDBC

ODBC APl conformance |eve

I s datasource SAG conpli ant

SQL conformance | eve

- How cursors are affected on db

- How cursors are affected on db

rol | back
- Does datasource support NOT NULL
cl ause
Integrity Enhancenent Facility (Ref.
Integrity)

Transaction isolation | evel supported

driver

Transaction isolation |evel options
avail abl e

Fetch directions supported

Lock types supported in SQ.Set Pos
Position operations supported in
SQLSet Pos

211

CHAPTERS

UDWORD posSt mnt s - Position statenments supported

UDWORD scr ol | Concurrency - Scrollable cursor concurrency options
supported

UDWORD scrol | Opti ons - Scrollable cursor options supported

UDWORD staticSensitivity - Can additions/del etions/updates be
det ect ed

UWORD t xnCapabl e - Indicates if datasource supports
transacti ons

UDWORD | ogi nTi nmeout - Nunber seconds to wait for a login
request

wxChar wxDb::errorList[DB_ MAX _ERROR_HISTORY][DB_MAX_ERROR_MSG_LEN]
The last n ODBC errors that have occurred on this database connection.

wxChar wxDb::errorMsg[SQL_MAX_MESSAGE_LENGTH]
This member variable is populated as a result of calling wxDb::GetNextError (p.
226). It contains the ODBC error message text.

SDWORD wxDb::nativeError
Set by wxDb::DispAllErrors, wxDb::GetNextError, and wxDb::DispNextError. It
contains the datasource-specific error code returned by the datasource to the
ODBC driver. Used for reporting ODBC errors.

wxChar wxDb::sqlState[20]
Set by wxDb::TranslateSqlState(). Indicates the error state after a failed ODBC
operation. Used for reporting ODBC errors.

Remarks

Default cursor scrolling is defined by wxODBC_FWD_ONLY_CURSORS in setup.h
when the wxWindows library is built. This behavior can be overridden when an instance
of a wxDb is created (see wxDb constructor (p. 214)). Default setting of this value
TRUE, as not all databases/drivers support both types of cursors.

See also

wxDbColFor (p. 240), wxDbColInf (p. 239), wxDbTable (p. 247), wxDbTablelnf (p. 283),
wxDbInf (p. 246)

Associated non-class functions

The following functions are used in conjunction with the wxDb class.
void wxDbCloseConnections()
Remarks

Closes all cached connections that have been made through use of the
wxDbGetConnection (p. 212) function.

NOTE: These connections are closed regardless of whether they are in use or not. This

212

CHAPTERS

function should only be called after the program has finished using the connections and
all wxDbTable instances that use any of the connections have been closed.

This function performs a wxDb::CommitTrans (p. 216) on the connection before closing
it to commit any changes that are still pending, as well as to avoid any function
sequence errors upon closing each connection.

int wxDbConnectionsinUse()
Remarks

Returns a count of how many database connections are currently free (not being used)
that have been cached through use of the wxDbGetConnection (p. 212) function.

bool wxDbFreeConnection(wxDb *pDb)
Remarks

Searches the list of cached database connections connection for one matching the
passed in wxDb instance. If found, that cached connection is freed.

Freeing a connection means that it is marked as available (free) in the cache of
connections, so that a call to wxDbGetConnection (p. 212) is able to return a pointer to
the wxDb instance for use. Freeing a connection does NOT close the connection, it
only makes the connection available again.

wxDb * wxDbGetConnection(wxDbConnectInf *pDbConfig, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Remarks

This function is used to request a "new" wxDb instance for use by the program. The
wxDb instance returned is also opened (see wxDb::Open (p. 231)).

This function (along with wxDbFreeConnection() and wxDbCloseConnection()) maintain
a cached of wxDb instances for user/re-use by a program. When a program needs a
wxDb instance, it may call this function to obtain a wxDb instance. If there is a wxDb
instance in the cache that is currently unused that matches the connection requirements
specified in 'pDbConfig’ then that cached connection is marked as no longer being free,
and a pointer to the wxDb instance is returned.

If there are no connections available in the cache that meet the requirements given in
'‘pDbConfig’, then a new wxDb instance is created to connect to the datasource
specified in 'pDbConfig’ using the userID and password given in ‘pDbConfig'.

NOTE: The caching routine also uses the wxDb::Open (p. 231) connection datatype
copying code. If the call to wxDbGetConnection() requests a connection to a
datasource, and there is not one available in the cache, a new connection is created.
But when the connection is opened, instead of polling the datasource over again for its
datatypes, if a connection to the same datasource (using the same userlD/password)
has already been done previously, the new connection skips querying the datasource

213

CHAPTERS

for its datatypes, and uses the same datatypes determined previously by the other
connection(s) for that same datasource. This cuts down greatly on network traffic,
database load, and connection creation time.

When the program is done using a connection created through a call to
wxDbGetConnection(), the program should call wxDbFreeConnection() to release the
wxDb instance back to the cache. DO NOT DELETE THE wxDb INSTANCE! Deleting
the wxDb instance returned can cause a crash/memory corruption later in the program
when the cache is cleaned up.

When exiting the program, call wxDbCloseConnections() to close all the cached
connections created by calls to wxDbGetConnection().

const wxChar * wxDbLogExtendedErrorMsg(const wxChar *userText, wxDb *pDb,
wxChar *ErrFile, int ErrLine)

Writes a message to the wxLog window (stdout usually) when an internal error situation
occurs. This function only works in DEBUG builds

bool wxDbSqlLog(wxDbSqlLogState state, const wxString&filename =
SQL_LOG_FILENAME)

Remarks

This function sets the sql log state for all open wxDb objects

bool wxDbGetDataSource (HENV henv, wxChar *Dsn, SWORD DsnMax, wxChar
*DsDesc, SWORD DsDescMax, UWORD direction = SQL_FETCH_NEXT)

Remarks

This routine queries the ODBC driver manager for a list of available datasources.
Repeatedly call this function to obtain all the datasources available through the ODBC
driver manager on the current workstation.

wxStringList strList;

while (wxDbGetDataSource(DbConnectinf.GetHenv(), Dsn,
SQL_MAX_DSN_LENGTH+1, DsDesc, 255)) strList.Add(Dsn);

wxDb::wxDb

wxDDb()

Default constructor.

wxDb(const HENV&aHenv, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

214

CHAPTERS

Constructor, used to create an ODBC connection to a datasource.
Parameters

aHenv
Environment handle used for this connection. See wxDConnectinf::AllocHenv (p.
242)

FwdOnlyCursors
Will cursors created for use with this datasource connection only allow forward
scrolling cursors.

Remarks

This is the constructor for the wxDb class. The wxDb object must be created and
opened before any database activity can occur.

Example

wxDbConnect | nf Connect | nf;
....Set values for nenmber vari ables of Connectl|lnf here

wxDb sanpl eDB(Connect | nf. Get Henv()) ;
if (!sanpleDB. Open(Connectlnf. GetDsn(), Connectlnf. GetUserlD(),
Connect | nf. Get Password()))

{
/1 Error opening datasource
}
See also

wxDbGetConnection (p. 212),

wxDb::Catalog

bool Catalog(wxChar * userlD, const wxString&fileName =
SQL_CATALOG_FILENAME)

Allows a data "dictionary” of the datasource to be created, dumping pertinent
information about all data tables to which the user specified in userlD has access.

Parameters

userlD
Database user name to use in accessing the database. All tables to which this
user has rights will be evaluated in the catalog.

fileName
OPTIONAL. Name of the text file to create and write the DB catalog to. Default is

215

CHAPTERS

SQL_CATALOG_FILENAME.
Return value

Returns TRUE if the catalog request was successful, or FALSE if there was some
reason that the catalog could not be generated.

Example

TABLE NAME COLUWN NAME DATA TYPE PRECI SI ON LENGTH
EMPLOYEE RECI D (0008) NUMBER 15 8
EMPLOYEE USER_I D (0012) VARCHAR2 13 13
EMPLOYEE FULL_NANE (0012) VARCHAR2 26 26
EMPLOYEE PASSWORD (0012) VARCHARZ2 26 26
EMPLOYEE START_DATE (0011) DATE 19 16

wxDb::Close

void Close()
Closes the database connection.

Remarks

At the end of your program, when you have finished all of your database work, you must
close the ODBC connection to the datasource. There are actually four steps involved in
doing this as illustrated in the example.

Any wxDbTable instances which use this connection must be deleted before closing the
database connection.

Example

// Commit any open transactions on the datasource
sanpl eDB. Conmi t Trans() ;

/1 Delete any remai ni ng wxDbTabl e objects allocated with new
del ete parts;

/] Close the wxDb connection when finished with it
sanpl eDB. Cl ose();

wxDb::CommitTrans

bool CommitTrans()

Permanently "commits" changes (insertions/deletions/updates) to the database.

216

CHAPTERS

Return value

Returns TRUE if the commit was successful, or FALSE if the commit failed.

Remarks

Transactions begin implicitly as soon as you make a change to the database with an
insert/update/delete, or any other direct SQL command that performs one of these
operations against the datasource. At any time thereafter, to save the changes to disk
permanently, "commit" them by calling this function.

Calling this member function commits ALL open transactions on this ODBC connection.
For example, if three different wxDbTable instances used the same connection to the
datasource, committing changes made on one of those wxDbTable instances commits
any pending transactions on all three wxDbTable instances.

Until a call to wxDb::CommitTrans() is made, no other user or cursor is able to see any
changes made to the row(s) that have been inserted/modified/deleted.

Special Note : Cursors

It is important to understand that different database/ODBC driver combinations handle
transactions differently. One thing in particular that you must pay attention to is cursors,
in regard to transactions. Cursors are what allow you to scroll through records forward
and backward and to manipulate records as you scroll through them. When you issue a
guery, a cursor is created behind the scenes. The cursor keeps track of the query and
keeps track of the current record pointer. After you commit or rollback a transaction, the
cursor may be closed automatically. This is database dependent, and with some
databases this behavior can be controlled through management functions. This means
you would need to requery the datasource before you can perform any additional work
using this cursor. This is only necessary however if the datasource closes the cursor
after a commit or rollback. Use the wxDbTable::IsCursorClosedOnCommit (p. 268)
member function to determine the datasource's transaction behavior. Note, in many
situations it is very inefficient to assume the cursor is closed and always requery. This
could put a significant, unnecessary load on datasources that leave the cursors open
after a transaction.

wxDb::CreateView

bool CreateView(const wxString& viewName, const wxString& colList, const
wxString&pSqlStmt)

Creates a SQL VIEW of one or more tables in a single datasource. Note that this

function will only work against databases which support views (currently only Oracle as
of November 21 2000).

Parameters

viewName

217

CHAPTERS

The name of the view. e.g. PARTS V

colList
OPTIONAL Pass in a comma delimited list of column names if you wish to
explicitly name each column in the result set. If not desired, pass in an empty
string and the column names from the associated table(s) will be used.

pSqlStmt
Pointer to the select statement portion of the CREATE VIEW statement. Must be
a complete, valid SQL SELECT statement.

Remarks

A 'view' is a logical table that derives columns from one or more other tables or views.
Once the view is created, it can be queried exactly like any other table in the database.

NOTE: Views are not available with all datasources. Oracle is one example of a
datasource which does support views.

Example

/'l I nconplete code sanpl e
db. Creat eVi em("PARTS_SD1", "PN, PD, Qry",
"SELECT PART_NO, PART_DESC, QTY_ON HAND * 1.1 FROM
PARTS \
WHERE STORAGE_DEVI CE = 1");

/1 PARTS_SD1 can now be queried just as if it were a data table.
/1 e.g. SELECT PN, PD, QTY FROM PARTS_SD1

wxDb::Dbms

wxDBMS Dbms()
Remarks

The return value will be of the enumerated type wxDBMS. This enumerated type
contains a list of all the currently tested and supported databases.

Additional databases may work with these classes, but the databases returned by this
function have been tested and confirmed to work with these ODBC classes.

Possible values returned by this function can be viewed in the Enumerated types (p.
208) section of wxDb.

There are known issues with conformance to the ODBC standards with several
datasources supported by the wxWindows ODBC classes. Please see the overview for
specific details on which datasource have which issues.

Return value

218

CHAPTERS

The return value will indicate which of the supported datasources is currently connected
to by this connection. In the event that the datasource is not recognized, a value of
'dbmsUNIDENTIFIED' is returned.

wxDb::DispAllErrors

bool DispAllErrors(HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
= SQL_NULL_HSTMT)

Used to log all database errors that occurred as a result of an executed database
command. This logging is automatic and also includes debug logging when compiled in
debug mode via wxLogDebug (p. 1490). If logging is turned on via
wxDb::SetSqglLogging (p. 233), then an entry is also logged to the defined log file.

Parameters

aHenv
Handle to the ODBC environment.

aHdbc
Handle to the ODBC connection. Pass this in if the ODBC function call that erred
required a hdbc or hstmt argument.

aHstmt
Handle to the ODBC statement being executed against. Pass this in if the ODBC
function call that erred out required a hstmt argument.

Remarks

This member function will log all of the ODBC error messages for the last ODBC
function call that was made. This function is normally used internally within the ODBC
class library, but can be used programmatically after calling ODBC functions directly
(i.e. SQLFreeEnv()).

Return value

The function always returns FALSE, so a call to this function can be made in the return
statement of a code block in the event of a failure to perform an action (see the example
below).

See also

wxDb::SetSqlLogging (p. 233), wxDbSqlLog
Example
if (SQLExecDirect(hstn, (UCHAR FAR *) pSqgl Stmt, SQL_NTS) !=

SQL_SUCCESS)
/1 Display all ODBC errors for this stnt

219

CHAPTERS

return(db. Di spAl | Errors(db. henv, db. hdbc, hstmnt));

wxDb::DispNextError

void DispNextError()

Remarks

This function is normally used internally within the ODBC class library. It could be used
programmatically after calling ODBC functions directly. This function works in
conjunction with wxDb::GetNextError (p. 226) when errors (or sometimes informational
messages) returned from ODBC need to be analyzed rather than simply displaying
them as an error. GetNextError() retrieves the next ODBC error from the ODBC error
gueue. The wxDb member variables "sqlState", "nativeError" and "errorMsg" could then
be evaluated. To display the error retrieved, DispNextError() could then be called. The
combination of GetNextError() and DispNextError() can be used to iteratively step
through the errors returned from ODBC evaluating each one in context and displaying
the ones you choose.

Example

// Drop the table before attenpting to create it
sprintf(sqgl Stnt, "DROP TABLE %", tabl eNane);
/'l Execute the drop table statenent
if (SQLExecDirect(hstnt, (UCHAR FAR *)sql Stnt, SQL_NTS) !=
SQL_SUCCESS)
{
/1 Check for sqgl State = S0002, "Table or view not found".
/1 lgnore this error, bonb out on any other error.
pDb- >CGet Next Err or (henv, hdbc, hstnt);
if (wxStrcnp(pDb->sqgl State, "S0002"))
{
pDb- >Di spNext Error(); /1 Displayed error retrieved
pDb- >Di spAl | Errors(henv, hdbc, hstnt); // Display all other
errors, if any

pDb- >Rol | backTrans(); // Rollback the transaction
Cl oseCursor(); /1l Close the cursor
return(FALSE); /1l Return Failure

wxDb::DropView

bool DropView(const wxString&viewName)

Drops the data table view named in 'viewName'.

Parameters

viewName

220

CHAPTERS

Name of the view to be dropped.
Remarks

If the view does not exist, this function will return TRUE. Note that views are not
supported with all datasources.

wxDb::ExecSql

bool ExecSql(const wxString&pSqlStmt)

Allows a native SQL command to be executed directly against the datasource. In
addition to being able to run any standard SQL command, use of this function allows a
user to (potentially) utilize features specific to the datasource they are connected to that
may not be available through ODBC. The ODBC driver will pass the specified command
directly to the datasource.

Parameters

pSqlStmt
Pointer to the SQL statement to be executed.

Remarks

This member extends the wxDb class and allows you to build and execute ANY VALID
SQL statement against the datasource. This allows you to extend the class library by
being able to issue any SQL statement that the datasource is capable of processing.
See also

wxDb::GetData (p. 224), wxDb::GetNext (p. 226)

wxDb::FwdOnlyCursors

bool IsFwdOnlyCursors()

Older form (pre-2.3/2.4 of wxWindows) of the wxDb::IsFwdOnlyCursors (p. 228). This
method is provided for backward compatability only. The method
wxDb::IsFwdOnlyCursors (p. 228) should be used in place of this method.

wxDbInf * GetCatalog(const wxChar *useriD)

wxDb::GetCatalog

wxDbInf * GetCatalog(const wxChar *useriD)

Returns a wxDblnf (p. 246) pointer that points to the catalog (datasource) name,

221

CHAPTERS

schema, number of tables accessible to the current user, and a wxDbTablelnf pointer to
all data pertaining to all tables in the users catalog.

Parameters

userlD
Owner/Schema of the table. Specify a userID when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. userID is evaluated as follows:

userID == NULL ... UserID is ignored (DEFAULT)
userlD == "" ... UserlID set equal to 'this->uid
userID I="" ... UserlD set equal to 'userlD

Remarks

The returned catalog will only contain catalog entries for tables to which the user
specified in 'userID' has sufficient privileges. If no user is specified (NULL passed in), a
catalog pertaining to all tables in the datasource accessible to the connected user
(permissions apply) via this connection will be returned.

wxDb::GetColumnCount

int GetColumnCount(const wxString&tableName, const wxChar *userlID)
Parameters

tableName
The table name you wish to obtain column information about.

userlD
Name of the user that owns the table(s) (also referred to as schema). Required
for some datasources for situations where there may be multiple tables with the
same name in the datasource, but owned by different users. userID is evaluated
in the following manner:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserlID set equal to '"this->uid
userID I="" ... UserlID set equal to 'userlD

Return value

Returns a count of how many columns are in the specified table. If an error occurs
retrieving the number of columns, this function will return a -1.

wxDb::GetColumns

wxDbColInf * GetColumns(const wxString&tableName, UWORD *numCaols, const
wxChar *userID=NULL)

222

CHAPTERS

wxDbColInf * GetColumns(wxChar *tableName[], const wxChar *userID)
Parameters

tableName
The table name you wish to obtain column information about.

numcCols
Pointer to a UWORD which will hold a count of the number of columns returned by
this function

tableName[]
An array of pointers to table names you wish to obtain column information about.
The last element of this array must be a NULL string.

userlD
Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userID is evaluated in the
following manner:

userID == NULL ... UserID is ignored (DEFAULT)
userlD == "" ... UserID set equal to 'this->uid
userID I="" ... UserlD set equal to 'userlD

Return value

This function returns a pointer to an array of wxDbColInf (p. 239) structures, allowing
you to obtain information regarding the columns of the named table(s). If no columns
were found, or an error occurred, this pointer will be NULL.

THE CALLING FUNCTION IS RESPONSIBLE FOR DELETING THE wxDbColinf
MEMORY WHEN IT IS FINISHED WITH IT.

ALL column bindings associated with this wxDb instance are unbound by this function,
including those used by any wxDbTable instances that use this wxDb instance. This
function should use its own wxDb instance to avoid undesired unbinding of columns.

See also

wxDbCollnf (p. 239)

Example
wxChar *tableList[] = {"PARTS", O0};
wxDbCol I nf *col I nf = pDb->Get Col unms(tabl eLi st);
if (collnf)
{

/1 Use the colum inf
)}.I.Dééiroy the nmenory
delete [] colInf;

223

CHAPTERS

wxDb::GetData

bool GetData(UWORD colNo, SWORD cType, PTR pData, SDWORD maxLen,
SDWORD FAR * cbReturned)

Used to retrieve result set data without binding column values to memory variables (i.e.
not using a wxDbTable instance to access table data).

Parameters

colNo
Ordinal number of the desired column in the result set to be returned.
cType
The C data type that is to be returned. See a partial list in
wxDbTable::SetColDefs (p. 275)
pData
Memory buffer which will hold the data returned by the call to this function.
maxLen
Maximum size of the buffer ‘pData’ in characters. NOTE: Not UNICODE safe. If
this is a numeric field, a value of 0 may be passed for this parameter, as the API
knows the size of the expected return value.
cbReturned
Pointer to the buffer containing the length of the actual data returned. If this value
comes back as SQL_NULL_DATA, then the wxDb::GetData (p. 224) call has
failed.

See also

wxDb::GetNext (p. 226), wxDb::ExecSq|l (p. 221)
Example

SDWORD cb;
ULONG reqQy;
wxString sql Stnt;
sql Stm = "SELECT SUM REQUI RED_QTY - PICKED_QTY) FROM ORDER_TABLE
VWHERE \
PART_RECI D = 1450 AND REQUI RED_QTY > PI CKED_QTY";

/1 Performthe query
if (!pDb->ExecSql (sqlStnt.c_str()))

/1 ERROR
return(0);

}

/'l Request the first row of the result set
if (!pDb->Get Next())
{

/1 ERROR

return(0);

224

CHAPTERS

/1 Read columm #1 of the row returned by the call to ::GetNext()
/ and return the value in 'reqQy’
if (!pDb->GetData(l, SQ._C ULONG &reqQy, 0, &cb))

/1 ERROR
return(0);

}

/] Check for a NULL result
if (cb == SQ._NULL_DATA)
return(0);

Remarks
When requesting multiple columns to be returned from the result set (for example, the

SQL query requested 3 columns be returned), the calls to this function must request the
columns in ordinal sequence (1,2,3 or 1,3 or 2,3).

wxDb::GetDatabaseName

const wxChar * GetDatabaseName ()

Returns the name of the database engine.

wxDb::GetDatasourceName

const wxString& GetDatasourceName ()

Returns the ODBC datasource name.

wxDb::GetHDBC

HDBC GetHDBC()

Returns the ODBC handle to the database connection.

wxDb::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDb::GetHSTMT

HSTMT GetHSTMT()

225

CHAPTERS

Returns the ODBC statement handle associated with this database connection.

wxDb::GetKeyFields

int GetKeyFields(const wxString&tableName, wxDbColInf *colinf, UWORD nocols)

Used to determine which columns are members of primary or non-primary indexes on
the specified table. If a column is a member of a foreign key for some other table, that
information is detected also.

This function is primarily for use by the wxDb::GetColumns (p. 222) function, but may be
called if desired from the client application.

Parameters

tableName
Name of the table for which the columns will be evaluated as to their inclusion in
any indexes.

collnf
Data structure containing the column definitions (obtained with wxDb::GetColumns
(p. 222)). This function populates the PkCol, PkTableName, and FkTableName
members of the collnf structure.

nocols
Number of columns defined in the instance of collnf.

Return value

Currently always returns TRUE.

See also

wxDbCollnf (p. 239), wxDb::GetColumns (p. 222)

wxDb::GetNext

bool GetNext()

Called after executing a query, this function requests the next row in the result set after
the current position of the cursor.

See also

wxDb::ExecSql (p. 221), wxDb::GetData (p. 224)

wxDb::GetNextError

226

CHAPTERS

bool GetNextError(HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
= SQL_NULL_HSTMT)

Parameters

aHenv
A handle to the ODBC environment.

aHdbc
OPTIONAL. A handle to the ODBC connection. Pass this in if the ODBC function
call that erred out required a hdbc or hstmt argument.

AHstmt
OPTIONAL.A handle to the ODBC statement being executed against. Pass this in
if the ODBC function call that erred out requires a hstmt argument.

Example
if (SQLExecDirect(hstnt, (UCHAR FAR *) pSql Stnt, SQ._NTS) !=

SQL_SUCCESS)

{
/1 Display all ODBC errors for this stnt

return(db. Di spAl | Errors(db. henv, db. hdbc, hstmt));
}

See also

wxDb::DispNextError (p. 220), wxDb::DispAllErrors (p. 219)

wxDb::GetPassword

const wxString& GetPassword()

Returns the password used to establish this connection to the datasource.

wxDb::GetTableCount

int GetTableCount()

Returns the number of wxDbTable() instances currently using this datasource
connection.

wxDb::GetUsername

const wxString& GetUsername ()

Returns the user name (uid) used to establish this connection to the datasource.

wxDb::Grant

227

CHAPTERS

bool Grant(int privileges, const wxString&tableName, const wxString&userList =
"PUBLIC")

Use this member function to GRANT privileges to users for accessing tables in the
datasource.

Parameters

privileges
Use this argument to select which privileges you want to grant. Pass
DB_GRANT_ALL to grant all privileges. To grant individual privileges pass one or
more of the following OR'd together:

DB_GRANT_SELECT
DB_GRANT_| NSERT
DB_GRANT_UPDATE
DB_GRANT_DELETE

I mnnnn
AN

DB_GRANT_ALL DB_GRANT_SELECT | DB_GRANT_I NSERT |
DB_GRANT_UPDATE | DB_GRANT_DELETE
tableName
The name of the table you wish to grant privileges on.

userList
OPTIONAL. A comma delimited list of users to grant the privileges to. If this
argument is not passed in, the privileges will be given to the general PUBLIC.

Remarks

Some databases require user names to be specified in all capital letters (i.e. Oracle).
This function does not automatically capitalize the user names passed in the comma-
separated list. This is the responsibility of the calling routine.

The currently logged in user must have sufficient grantor privileges for this function to
be able to successfully grant the indicated privileges.

Example

db. Grant (DB_GRANT_SELECT | DB_GRANT_I NSERT, "PARTS", "mary, sue");

wxDb::IsFwdOnlyCursors

bool IsFwdOnlyCursors()

This setting indicates whether this database connection was created as being capable of
using only forward scrolling cursors.

This function does NOT indicate if the ODBC driver or datasource supports backward
scrolling cursors. There is no standard way of detecting if the driver or datasource can
support backward scrolling cursors.

228

CHAPTERS

If a wxDb instance was created as being capable of only forward scrolling cursors, then
even if the datasource and ODBC driver support backward scrolling cursors, tables
using this database connection would only be able to use forward scrolling cursors.

The default setting of whether a wxDb connection to a database allows forward-only or
also backward scrolling cursors is defined in setup.h by the value of
wxODBC_FWD_ONLY_CURSORS. This default setting can be overridden when the
wxDb connection is initially created (see wxDb constructor (p. 214) and
wxDbGetConnection (p. 212)).

Return value

Returns TRUE if this datasource connection is defined as using only forward scrolling
cursors, or FALSE if the connection is defined as being allowed to use backward
scrolling cursors and their associated functions (see note above).

Remarks

Added as of wxWindows v2.4 release, this function is a renamed version of
wxDb::FwdOnlyCursors() to match the normal wxWindows naming conventions for
class member functions.

This function is not available in versions prior to v2.4. You should use
wxDb::FwdOnlyCursors (p. 221) for wxWindows versions prior to 2.4.

See also

wxDb constructor (p. 214), wxDbGetConnection (p. 212)

wxDb::IsOpen

bool IsOpen()
Indicates whether the database connection to the datasource is currently opened.
Remarks

This function may indicate that the database connection is open, even if the call to
wxDb::Open (p. 231) may have failed to fully initialize the connection correctly. The
connection to the database is open and can be used via the direct SQL commands, if
this function returns TRUE. Other functions which depend on the wxDb::Open (p. 231)
to have completed correctly may not function as expected. The return result from
wxDb::Open (p. 231) is the only way to know if complete initialization of this wxDb
connection was successful or not. See wxDb::Open (p. 231) for more details on partial
failures to open a connection instance.

wxDb::LogError

229

CHAPTERS

void LogError(const wxString&errMsg const wxString&SQLState="")

errMsg

Free-form text to display describing the error/text to be logged.
SQLState

OPTIONAL. Native SQL state error. Default is 0.

Remarks

Calling this function will enter a log message in the error list maintained for the database
connection. This log message is free form and can be anything the programmer wants
to enter in the error list.

If SQL logging is turned on, the call to this function will also log the text into the SQL log
file.

See also

wxDb::WriteSqlLog (p. 237)

wxDb::ModifyColumn

void ModifyColumn(const wxString&tableName const wxString&ColumnName int
dataType ULONG columnLength=0 const wxString&optionalParam="")

Used to change certain properties of a column such as the length, or whether a column
allows NULLs or not.

tableName
Name of the table that the column to be modified is in.

columnName
Name of the column to be modified. NOTE: Name of column cannot be changed
with this function.

dataType
Any one of DB_DATA_TYPE_VARCHAR, DB_DATA TYPE_INTEGER,
DB_DATA TYPE_FLOAT, DB_DATA TYPE_DATE.

columnLength
New size of the column. Valid only for DB_DATA_TYPE_VARCHAR dataType
fields. Defaultis O.

optionalParam
Default is ™.

Remarks

Cannot be used to modify the precision of a numeric column, therefore 'columnLength’
is ignored unless the dataType is DB_DATA_TYPE_VARCHAR.

Some datasources do not allow certain properties of a column to be changed if any rows
currently have data stored in that column. Those datasources that do allow columns to

230

CHAPTERS

be changed with data in the rows many handle truncation and/or expansion in different
ways. Please refer to the reference material for the datasource being used for
behavioral descriptions.

Example

ok = pDb->Mbodi f yCol umm(" CONTACTS", " ADDRESS2",
DB , col Defs[j].SzDataObj,
wxT("NOT NULL"));

wxDb::Open

bool Open(const wxString&Dsn, const wxString&Uid, const wxString&AuthStr)
bool Open(wxDb *copyDb)

Opens a connection to the datasource, sets certain behaviors of the datasource to
confirm to the accepted behaviors (e.g. cursor position maintained on commits), and
gueries the datasource for its representations of the basic datatypes to determine the
form in which the data going to/from columns in the data tables are to be handled.

The second form of this function, which accepts a "wxDb *" as a parameter, can be
used to avoid the overhead (execution time, database load, network traffic) which are
needed to determine the data types and representations of data that are necessary for
cross-datasource support by these classes.

Normally the first form of the wxDb::Open() function will open the connection and then
send a series of queries to the datasource asking it for its representation of data types,
and all the features it supports. If one connection to the datasource has already been
made previously, the information gathered when that connection was created can just
be copied to any new connections to the same datasource by passing a pointer to the
first connection in as a parameter to the wxDb::Open() function. Note that this new
connection created from the first connections information will use the same
Dsn/Uid/AuthStr as the first connection used.

Parameters

Dsn
datasource name. The name of the ODBC datasource as assigned when the
datasource is initially set up through the ODBC data source manager.

Uid
User ID. The name (ID) of the user you wish to connect as to the datasource. The
user name (ID) determines what objects you have access to in the datasource and
what datasource privileges you have. Privileges include being able to create new
objects, update objects, delete objects and so on. Users and privileges are
normally administered by the database administrator.

AuthStr
The password associated with the Uid.

copyDb
Already completely configured and opened datasource connection from which all

231

CHAPTERS

Dsn, Uid, AuthStr, and data typing information is to be copied from for use by this
datasource connection.

Remarks

After a wxDb instance is created, it must then be opened. When opening a datasource,
there must be three pieces of information passed. The data source name, user name
(ID) and the password for the user. No database activity on the datasource can be
performed until the connection is opened. This is normally done at program startup and
the datasource remains open for the duration of the program/module run.

It is possible to have connections to multiple datasources open at the same time to
support distributed database connections by having separate instances of wxDb objects
that use either the same or different Dsn/Uid/AuthStr settings.

If this function returns a value of FALSE, it does not necessarily mean that the
connection to the datasource was not opened. It may mean that some portion of the
initialization of the connection failed (such as a datatype not being able to be
determined how the datasource represents it). To determine if the connection to the
database failed, use the wxDb::IsOpen (p. 229) function after receiving a FALSE result
back from this function to determine if the connection was opened or not. If this function
returns FALSE, but wxDb::IsOpen (p. 229) returns TRUE, then direct SQL commands
may be passed to the database connection and can be successfully executed, but use
of the datatypes (such as by a wxDbTable instance) that are normally determined
during open will not be possible.

The Dsn, Uid, and AuthStr string pointers that are passed in are copied. NOT the
strings themselves, only the pointers. The calling routine must maintain the memory for
these three strings for the life of the wxDb instance.

Example

wxDb sanpl eDB(DbConnect | nf. Get Henv()) ;
if (!sanpleDB. Open("Oracle 7.1 HP/UX", "gtasker", "myPassword"))

{
if (sanpl eDb.1sOpen())
{
/1 Connection is open, but the initialization of
/1 datatypes and paraneter settings failed
}
el se
{
/1 Error opening datasource
}
}

wxDb::RollbackTrans

bool RollbackTrans()

Function to "undo” changes made to the database. After an insert/update/delete, the

232

CHAPTERS

operation may be "undone" by issuing this command any time before a
wxDb::CommitTrans (p. 216) is called on the database connection.

Remarks

Transactions begin implicitly as soon as you make a change to the database. The
transaction continues until either a commit or rollback is executed. Calling
wxDb::RollbackTrans() will result in ALL changes done using this database connection
that have not already been committed to be "undone" back to the last commit/rollback
that was successfully executed.

Calling this member function rolls back ALL open (uncommitted) transactions on this
ODBC connection, including all wxDbTable instances that use this connection.

See also

wxDb::CommitTrans (p. 216) for a special note on cursors

wxDb::SetDebugErrorMessages

void SetDebugErrorMessages(bool state)

state
Either TRUE (debug messages are logged) or FALSE (debug messages are not

logged).
Remarks
Turns on/off debug error messages from the ODBC class library. When this function is
passed TRUE, errors are reported to the user/logged automatically in a text or pop-up
dialog when an ODBC error occurs. When passed FALSE, errors are silently handled.
When compiled in release mode (FINAL=1), this setting has no affect.

See also

wxDb constructor (p. 214)

wxDb::SetSqlLogging

bool SetSqglLogging(wxDbSqlLogState state, const wxString&filename =
SQL_LOG_FILENAME, bool append = FALSE)

Parameters
state

Either sqlLogOFF or sglLogON (see enum wxDbSglLogState (p. 240)). Turns
logging of SQL commands sent to the datasource OFF or ON.

233

CHAPTERS

filename
OPTIONAL. Name of the file to which the log text is to be written. Default is
SQL_LOG_FILENAME.

append
OPTIONAL. Whether the file is appended to or overwritten. Default is FALSE.

Remarks

When called with sqlLogON, all commands sent to the datasource engine are logged to
the file specified by filename. Logging is done by embedded wxDb::WriteSqlLog (p.
237) calls in the database member functions, or may be manually logged by adding calls
to wxDb::WriteSqlLog (p. 237) in your own source code.

When called with sqlLogOFF, the logging file is closed, and any calls to
wxDb::WriteSqlLog (p. 237) are ignored.

wxDb::SQLColumnName

const wxString SQLColumnName (const char * colName)

Returns the column name in a form ready for use in SQL statements. In most cases,
the column name is returned verbatim. But some databases (e.g. MS Access, SQL
Server, MSDE) allow for spaces in column names, which must be specially quoted. For
example, if the datasource allows spaces in the column name, the returned string will
have the correct enclosing marks around the name to allow it to be properly included in
a SQL statement for the DBMS that is currently connected to with this connection.

Parameters

colName
Native name of the column in the table that is to be evaluated to determine if any
special quoting marks needed to be added to it before including the column name
in a SQL statement

See also

wxDb::SQLTableName (p. 234)

wxDb::SQLTableName

const wxString SQLTableName (const char * tableName)

Returns the table name in a form ready for use in SQL statements. In most cases, the
table name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in table names, which must be specially quoted. For example,
if the datasource allows spaces in the table name, the returned string will have the
correct enclosing marks around the name to allow it to be properly included in a SQL
statement for the data source that is currently connected to with this connection.

234

CHAPTERS

Parameters

tableName
Native name of the table that is to be evaluated to determine if any special quoting

marks needed to be added to it before including the table name in a SQL
statement

See also

wxDb::SQLColumnName (p. 234)

wxDb::TableExists

bool TableExists(const wxString&tableName, const wxChar *userlID=NULL, const
wxString&path="")

Checks the ODBC datasource for the existence of a table. If a userlID is specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName
Name of the table to check for the existence of.

useriD
Owner of the table (also referred to as schema). Specify a userlD when the
datasource you are connected to allows multiple unique tables with the same
name to be owned by different users. userlDis evaluated as follows:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserlID set equal to '"this->uid
userID I="" ... UserlID set equal to '"userlD

Remarks

tableName may refer to a table, view, alias or synonym.

This function does not indicate whether or not the user has privileges to query or perform
other functions on the table. Use the wxDb::TablePrivileges (p. 235) to determine if the

user has sufficient privileges or not.

See also

wxDb::TablePrivileges (p. 235)

wxDb::TablePrivileges

bool TablePrivileges(const wxString&tableName, const wxString&priv, const

235

CHAPTERS

wxChar *userID=NULL, const wxChar *schema=NULL, const wxString&path="")

Checks the ODBC datasource for the existence of a table. If a userlID is specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters
tableName

Name of the table on which to check privileges. tableName may refer to a table,
view, alias or synonym.

priv

The table privilege being evaluated. May be one of the following (or a datasource

specific privilege):

SELECT . The connected user is pernmitted to retrieve data for
one or nore columms of the table.

| NSERT . The connected user is pernmitted to insert new rows
contai ning data for one or nore colums into the
t abl e.

UPDATE : The connected user is pernmtted to update the data in
one or nore colums of the table.

DELETE . The connected user is permtted to delete rows of
data fromthe table.

REFERENCES : |s the connected user permitted to refer to one or
nore colums of the table within a constraint (for
exanpl e, a unique, referential, or table check
constraint).

userlD
OPTIONAL. User for which to determine if the privilege specified to be checked is
granted or not. Defaultis ™. userlD is evaluated as follows:
userI D == NULL ... NOT ALLOWED!
userl D == "" UserI D set equal to 'this->uid'
userID I="" User| D set equal to 'userlD
schema

OPTIONAL. Owner of the table. Specify a userID when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. Specifying the table owner makes determination of the users
privileges MUCH faster. Default is NULL. userlD is evaluated as follows:

schema == NULL ... Any owner (DEFAULT)
schemp == "" ... Omed by '"this->uid
schema !'= "" Owmed by userID specified in 'scheng'

236

CHAPTERS

path
OPTIONAL. Path to the table. Defaultis ™. Currently unused.

Remarks

The scope of privilege allowed to the connected user by a given table privilege is
datasource dependent.

For example, the privilege UPDATE might allow the connected user to update all
columns in a table on one datasource, but only those columns for which the grantor (the
user that granted the connected user) has the UPDATE privilege on another
datasource.

Looking up a user's privileges to a table can be time consuming depending on the
datasource and ODBC driver. This time can be minimized by passing a schema as a
parameter. With some datasources/drivers, the difference can be several seconds of
time difference.

wxDb::TranslateSqlState

int TranslateSqlState (const wxString&SQLState)
Converts an ODBC sqlstate to an internal error code.
Parameters

SQLState
State to be converted.

Return value

Returns the internal class DB_ERR code. See wxDb::DB_STATUS (p. 207) definition.

wxDb::WriteSqlLog

bool WriteSqlLog(const wxString&logMsg)
Parameters

logMsg
Free form string to be written to the log file.

Remarks
Very useful debugging tool that may be turned on/off during run time (see (see

wxDb::SetSqlLogging (p. 233) for details on turning logging on/off). The passed in
string logMsg will be written to a log file if SQL logging is turned on.

237

CHAPTERS

Return value

If SQL logging is off when a call to WriteSglLog() is made, or there is a failure to write
the log message to the log file, the function returns FALSE without performing the
requested log, otherwise TRUE is returned.

See also

wxDb::SetSqlLogging (p. 233)

wxDbColDataPtr

Pointer to dynamic column definitions for use with a wxDbTable instance. Currently
there are no member functions for this class.

voi d *Pt r Dat aObj ;
i nt SzDat aCbj ;
SWORD Sql Ctype;

wxDbColDef

This class is used to hold information about the columns bound to an instance of a
wxDbTable object.

Each instance of this class describes one column in the wxDbTable object. When
calling the wxDb constructor (p. 214), a parameter passed in indicates the number of
columns that will be defined for the wxDbTable object. The constructor uses this
information to allocate adequate memory for all of the column descriptions in your
wxDbTable object. Private member wxDbTable::colDefs is a pointer to this chunk of
memory maintained by the wxDbTable class (and can be retrieved using the
wxDbTable::GetColDefs (p. 261) function). To access the nth column definition of your
wxDbTable object, just reference wxDbColDefs element [n - 1].

Typically, wxDbTable::SetColDefs (p. 275) is used to populate an array of these data
structures for the wxDbTable instance.

Currently there are no accessor functions for this class, so all members are public.

wxChar Col Name[DB_MAX_COLUMN NAME_LEN+1]: // Col umm Nane

i nt DbDat aType; - Logical Data Type;
e.g. DB _DATA TYPE_| NTEGER
SWORD Sql Ctype; - Cdata type; e.g. SQ_C LONG
voi d *Pt r Dat aQbj ; - Address of the data object
i nt SzDat aCbj ; - Size, in bytes, of the data object
bool KeyFi el d; - Is colum part of the PRI MARY KEY for the

238

CHAPTERS

boo
boo
boo
SDWORD
boo

See also

table? -- Date fields should NOT be

KeyFi el ds
Updat eabl e; - Colum is updateabl e?
Insert All owed; - Columm included in | NSERT statenents?
Deri vedCol ; - Colum is a derived val ue?
CbVal ue; - !lllinternal use only!!
Nul | ; - NOT FULLY | MPLEMENTED

Al l ows NULL values in Inserts and Updates

wxDbTable::GetColDefs (p. 261), wxDb constructor (p. 214)

wxDbColDef::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor

automatically.

wxDbColInf

Used with the wxDb::GetColumns (p. 222) functions for obtaining all retrievable
information about a column's definition.

wx Char
wx Char
wx Char
wx Char
SVWORD
wx Char
SWORD
SVWORD
short

short

short

wx Char
i nt

i nt

wx Char

wx Char

catal og[128+1] ;

schem[128+1] ;

t abl eName[DB_MAX_TABLE_NAME LEN+1];

col Nane[DB_MAX_COLUMN_NAME_LEN+1];

sql Dat aType;

t ypeNane[128+1] ;

col umsSi ze;

buf f er Lengt h;

deci mal Digi ts;

nunPr ecRadi x;

nul | abl e;

remar ks[254+1] ;

dbDat aType; [// conversion of the 'sql DataType
/1l to the generic data type used by
/1 these cl asses

PkCol ; /1 Primary key colum
0 = No
1 = First Key
2 = Second Key, etc...

PkTabl eNane[DB_MAX TABLE NAME LEN+1];
/1 Tables that use this PKey as a FKey
FkCol ; /1 Foreign key colum
0 = No
1 = First Key
2 = Second Key, etc...
FkTabl eNanme[DB_MAX_TABLE NAME_LEN+1] ;
/'l Foreign key table name

239

CHAPTERS

wxDbCol For *pCol For; /1 How should this colum be formatted
The constructor for this class initializes all the values to zero, ™, or NULL.
The destructor for this class takes care of deleting the pColFor member if it is non-

NULL.

wxDbCollInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbColFor

Beginning support for handling international formatting specifically on dates and floats.

WXSt ring s_Fi el d; /1 Formated String for Qutput
WXSt ring s _Format[7]; /1 Formated Objects - TIMESTAMP has
t he biggest (7)
WXSt ring s_Amount [7]; /1 Formated Objects - anount of
t hings that can be formatted
i nt i _Amount[7]; /1l Formated Objects -
TT MM YYYY HH MM SS m
i nt i _Nation; /1 0 = tinmestanp
1 =EU
2 = K
3 = International
4 = US
i nt i __dbDat aType; // conversion of the 'sql DataType

to the generic data type used by
these cl asses
SWORD i _sql Dat aType;

The constructor for this class initializes all the values to zero or NULL.
The destructor does nothing at this time.

Only one function is provided with this class currently:

wxDbColFor::Format

int Format(int Nation, int dbDataType, SWORD sqglDataType, short columnSize, short
decimalDigits)

Work in progress, and should be inter-related with wxLocale eventually.

240

CHAPTERS

wxDbColFor::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectInf

This class is used for holding the data necessary for connecting to the ODBC
datasource. That information includes: SQL environment handle, datasource name,
user ID, password and default directory path (used with dBase). Other optional fields
held in this class are and file type, both for future functions planned to be added for
creating/manipulating datasource definitions.

wxDbConnectinf()

Default constructor.

wxDb(HENV henv, const wxString&dsn, const wxString&userliD=""
wxString&password, const wxString&defaultDir=""

const wxString&fileType="")

, const
, const wxString&description="",

Constructor which allows initial settings of all the classes member variables.

See the special not below on the henv parameter for forcing this constructor to create a
SQL environment handle automatically, rather than needing to pass one in to the
function.

Parameters

henv
Environment handle used for this connection. See wxDConnectinf::AllocHenv (p.
242) for how to create an SQL environment handle. NOTE: Passing in a NULL for
this parameter will inform the constructor that it should create its own SQL
environment handle. If NULL is passed for this parameter, the constructor will call
wxDConnectlnf::AllocHenv (p. 242) internally. A flag is set internally also to
indicate that the HENV was created by the constructor so that when the default
class destructor is called, the destructor will call wxDConnectInf::FreeHenv (p.
243) to free the environment handle automatically.

dsn
Name of the datasource to be used in creating wxDb instances for creating
connection(s) to a datasource.

userlD
OPTIONAL Many datasources allow (or even require) use of a username to
determine privileges that connecting user is allowed to have when accessing the
datasource or the data tables. Default is ™.

password
OPTIONAL Password to be associated with the user ID specified in 'userID'.

241

CHAPTERS

Default is ™.

defaultDir
OPTIONAL Used for datasources which require the path to where the data file is
stored to be specified. dBase is one example of the type of datasource which

requires this information. Default is ™.
description
OPTIONAL FUTURE USE Default is ™.

fileType
OPTIONAL FUTURE USE Default is ™.

Remarks

It is strongly recommended that programs use the longer form of the constructor and
allow the constructor to create the SQL environment handle automatically, and manage
the destruction of the handle.

Example

wxDbConnect | nf *DbConnect | nf;

DbConnect I nf = new wxDbConnect I nf (0, " My_DSN', "MY_USER",
" MY_PASSWORD") ;

....the rest of the program

del et e DbConnect | nf;
See also

wxDConnectiInf::AllocHenv (p. 242), wxDConnectInf::FreeHenv (p. 243)

wxDbConnectInf::~wxDbConnectiInf

~wxDbConnectinf()

Handles the default destruction of the instance of the class. If the long form of the
wxDConnectinf (p. 241) was used, then this destructor also takes care of calling
wxDConnectiInf::FreeHenv (p. 243) to free the SQL environment handle.

wxDbConnectInf::AllocHenv

bool AllocHenv()

Allocates a SQL environment handle that will be used to interface with an ODBC
datasource.

Remarks

This function can be automatically called by the long from of the wxDbConnectinf (p.

242

CHAPTERS

241) constructor.

wxDbConnectInf::FreeHenv

void FreeHenv ()

Frees the SQL environment handle being managed by the instance of this class.

Remarks

If the SQL environment handle was created using the long form of the wxDbConnectinf
(p. 241) constructor, then the flag indicating that the HENV should be destroyed when
the classes destructor is called is reset to be FALSE, so that any future handles created
using the wxDbConnectinf::AllocHenv (p. 242) function must be manually released with
a call to this function.

wxDbConnectInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectinf::GetAuthStr

const wxChar * GetAuthStr()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectinf::GetPassword (p. 244)

wxDbConnectInf::GetDefaultDir

const wxChar * GetDefaultDir()

Accessor function to return the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectInf::GetDescription

const wxChar * GetDescription()

Accessor function to return the description assigned for this class instance.

243

CHAPTERS

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetDsn

const wxChar * GetDsn()

Accessor function to return the datasource name assigned for this class instance.

wxDbConnectinf::GetFileType

const wxChar * GetFileType()

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::GetHenv

const HENV GetHenv ()

Accessor function to return the SQL environment handle being managed by this class
instance.

wxDbConnectInf::GetPassword

const wxChar * GetPassword()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectInf::GetAuthStr (p. 243)

wxDbConnectInf::GetUid

const wxChar * GetUid()

Accessor function to return the user ID assigned for this class instance.

wxDbConnectlInf::GetUserID

const wxChar * GetUserID()

244

CHAPTERS

Accessor function to return the user ID assigned for this class instance.

wxDbConnectInf::SetAuthStr

SetAuthStr(const wxString&authstr)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectinf::SetPassword (p. 246)

wxDbConnectInf::SetDefaultDir

SetDefaultDir(const wxString&defDir)

Accessor function to assign the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access

does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectinf::SetDescription

SetDescription(const wxString&desc)

Accessor function to assign the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectlInf::SetDsn

SetDsn(const wxString&dsn)

Accessor function to assign the datasource name for this class instance.

wxDbConnectInf::SetFileType

SetFileType(const wxString&)

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectInf::SetHenv

245

CHAPTERS

void SetHenv (const HENV henv)

Accessor function to set the SQL environment handle for this class instance.

wxDbConnectInf::SetPassword

SetPassword(const wxString&password)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectInf::SetAuthStr (p. 245)

wxDbConnectlInf::SetUid

SetUid(const wxString&uid)

Accessor function to set the user ID for this class instance.

wxDbConnectlInf::SetUserID

SetUserID(const wxString&useriD)

Accessor function to assign the user ID for this class instance.

wxDbldxDef

Used in creation of non-primary indexes. Currently there are no member functions for
this class.

wxChar Col Name[DB_MAX_COLUWMN_NAME_LEN+1]
/1 Name of colum
bool Ascendi ng /1 1s index nmaintained in
ASCENDI NG sequence?

There are no constructors/destructors as of this time, and no member functions.

wxDbInf

Contains information regarding the database connection (datasource name, number of

246

CHAPTERS

tables, etc). A pointer to a wxDbTablelnf is included in this class so a program can
create a wxDbTablelnf array instance to maintain all information about all tables in the
datasource to have all the datasource's information in one memory structure.

Primarily, this class is used internally by the wxWindows ODBC classes.

wx Char cat al og[128+1] ;
wx Char schemn[128+1]; [// typically neans owner of tabl e(s)
i nt nunirabl es; /1 How many tables does this
dat asour ce have
wxDbTabl el nf *pTabl el nf; /1 Equal s a new

wxDbTabl el nf [nunTabl es] ;
The constructor for this class initializes all the values to zero, ™, or NULL.
The destructor for this class takes care of deleting the pTableInf member if it is non-

NULL.

wxDblInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbTable

A wxDbTable instance provides re-usable access to rows of data in a table contained
within the associated ODBC datasource

Include files

<wx/dbtable.h>
<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in dbtable.cpp/.h for use with the
wxDbTable class.

wxDbColDef (p. 238)
wxDbColDataPtr (p. 238)
wxDbldxDef (p. 246)

Constants

wxDB_DEFAULT_CURSOR Prinmary cursor nornmally used for cursor based
operations.

247

CHAPTERS

wxDB_QUERY_ONLY Used to indicate whether a table that is
opened
is for query only, or if insert/update/deletes
will be performed on the table. Less overhead
(cursors and nmenory) are allocated for query
only tables, plus read access tines are faster
wi th some datasources.

wxDB_ROW D_LEN [Oracl e only] - Used when CanUpdat eByRow D()
is true. Optimzes updates so they are faster
by updating on the Oracle-specific ROND

col um
rather than some ot her index.

wxDB_DI SABLE_VI EW Use to indicate when a database view shoul d
not
be if atable is normally set up to use a
Vi ew.
[Currently unsupported.]

wxDbTable::wxDbTable

wxDbTable(wxDb *pwxDb, const wxString&tbIName, const UWORD numColumns,
const wxString&gryTbIName ="', bool gryOnly = 'wxDB_QUERY_ONLY, const
wxString&tblPath = ™)

Default constructor.

Parameters

pwxDb
Pointer to the wxDb instance to be used by this wxDbTable instance.

tbIName
The name of the table in the RDBMS.

numColumns
The number of columns in the table. (Do NOT include the ROWID column in the
count if using Oracle).

gryTbIName
OPTIONAL. The name of the table or view to base your queries on. This
argument allows you to specify a table/view other than the base table for this
object to base your queries on. This allows you to query on a view for example,
but all of the INSERT, UPDATE and DELETES will still be performed on the base
table for this wxDbTable object. Basing your queries on a view can provide a
substantial performance increase in cases where your queries involve many tables

un

with multiple joins. Default is ™.
gryOnly

OPTIONAL. Indicates whether the table will be accessible for query purposes

only, or should the table create the necessary cursors to be able to insert, update,

248

CHAPTERS

and delete data from the table. Default is 'wxDB_QUERY_ONLY.

tblPath
OPTIONAL. Some datasources (such as dBase) require a path to where the table
is stored on the system. Default is "".

wxDbTable::wxDbTable

virtual ~wxDbTable ()

Virtual default destructor.

wxDbTable::BuildDeleteStmt

void BuildDeleteStmt(wxString&pSqlStmt, int typeOfDel, const
wxString&pWhereClause="")

Constructs the full SQL statement that can be used to delete all rows matching the
criteria in the pWhereClause.

Parameters

pSqlStmt
Pointer to buffer for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_ MAX_STATEMENT_LEN
bytes.
typeOfDel
The type of delete statement being performed. Can be one of three values:
DB_DEL_KEYFIELDS, DB_DEL_WHERE or DB_DEL_MATCHING
pWhereClause
OPTIONAL. If the typeOfDel is DB_DEL_WHERE, then you must also pass in a
SQL WHERE clause in this argument. Default is ™.

Remarks

This member function constructs a SQL DELETE statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

wxDbTable::BuildSelectStmt

void BuildSelectStmt(wxString&pSqlStmt, int typeOfSelect, bool distinct)

Constructs the full SQL statement that can be used to select all rows matching the
criteria in the pWhereClause. This function is called internally in the wxDbTable class
whenever the function wxDbTable::Query (p. 270) is called.

249

CHAPTERS

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 275) statements are
included in the list of columns returned by the SQL statement created by a call to this
function.

Parameters

pSqlStmt
Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_ MAX_STATEMENT _LEN
bytes.

typeOfSelect
The type of select statement being performed. Can be one of four values:
DB_SELECT_KEYFIELDS, DB_SELECT WHERE, DB_SELECT_MATCHING or
DB_SELECT_STATEMENT.

distinct
Whether to select distinct records only.

Remarks

This member function constructs a SQL SELECT statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

wxDbTable::BuildUpdateStmt

void BuildUpdateStmt(wxString&pSqlStmt, int typeOfUpd, const
wxString&pWhereClause="")

Constructs the full SQL statement that can be used to update all rows matching the
criteria in the pWhereClause.

If typeOfUpd is DB_UPD_KEYFIELDS, then the current values in the bound columns are
used to determine which row(s) in the table are to be updated. The exception to this is
when a datasource supports ROW IDs (Oracle). The ROW ID column is used for
efficiency purposes when available.

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 275) statements are
included in the list of columns updated by the SQL statement created by a call to this
function. Any column definitions that were defined as being non-updateable will be
excluded from the SQL UPDATE statement created by this function.

Parameters

pSqlStmt
Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_ MAX_STATEMENT_LEN
bytes.

250

CHAPTERS

typeOfUpd
The type of update statement being performed. Can be one of two values:
DB_UPD_KEYFIELDS or DB_UPD_WHERE.

pWhereClause
OPTIONAL. If the typeOfUpd is DB_UPD_WHERE, then you must also pass in a
SQL WHERE clause in this argument. Default is ™.

Remarks

This member function allows you to see what the SQL UPDATE statement looks like that
the ODBC class library builds. This can be used for debugging purposes if you are
having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

wxDbTable::BuildWhereStmt

void BuildSelectStmt(wxString&pWhereClause, int typeOfWhere, const
wxString&qualTableName="", bool useLikeComparison=FALSE)

Constructs the portion of a SQL statement which would follow the word 'WHERE' in a
SQL statement to be passed to the datasource. The returned string does NOT include
the word 'WHERE'.

Parameters

pWhereClause
Pointer to storage for the SQL statement retrieved. To be sure you have
adequate space allocated for the SQL statement, allocate
DB_MAX_STATEMENT_LEN bytes.

typeOfWhere
The type of where clause to generate. Can be one of two values:
DB_WHERE_KEYFIELDS or DB_WHERE_MATCHING.

gualTableName
OPTIONAL. Prepended to all base table column names. For use when a FROM
clause has been specified with the wxDbTable::SetFromClause (p. 278), to clarify
which table a column name reference belongs to. Default is ™.

useLikeComparison
OPTIONAL. Should the constructed WHERE clause utilize the LIKE comparison
operator. If FALSE, then the '=' operator is used. Default is FALSE.

Remarks

This member function allows you to see what the SQL WHERE clause looks like that
the ODBC class library builds. This can be used for debugging purposes if you are
having problems executing your own SQL statements.

If using 'typeOfWhere' set to DB_ WHERE_MATCHING, any bound columns currently
containing a NULL value are not included in the WHERE clause's list of columns to use

251

CHAPTERS

in the comparison.

wxDbTable::CanSelectForUpdate

bool CanSelectForUpdate()

Use this function to determine if the datasource supports SELECT ... FOR UPDATE.
When the keywords "FOR UPDATE" are included as part of your SQL SELECT
statement, all records retrieved (not just queried, but actually retrieved using
wxDbTable::GetNext (p. 264), etc) from the result set are locked.

Remarks

Not all datasources support the "FOR UPDATE" clause, so you must use this member
function to determine if the datasource currently connected to supports this behavior or
not before trying to select using "FOR UPDATE".

If the wxDbTable instance was created with the parameter wxDB_QUERY_ONLY, then

this function will return FALSE. For all known databases which do not support the FOR
UPDATE clause, this function will return FALSE also.

wxDbTable::CanUpdateByROWID

bool CanUpdateByROWID()
CURRENTLY ONLY POSSIBLE IF USING ORACLE.
--- CURRENTLY DISABLED FOR *ALL* DATASOURCES --- NOV 1 2000 - gt

Every Oracle table has a hidden column named ROWID. This is a pointer to the
physical location of the record in the datasource and allows for very fast updates and
deletes. The key is to retrieve this ROWID during your query so it is available during an
update or delete operation.

Use of the ROWID feature is always handled by the class library except in the case of
wxDbTable::QueryBySqlStmt (p. 271). Since you are passing in the SQL SELECT
statement, it is up to you to include the ROWID column in your query. If you do not, the
application will still work, but may not be as optimized. The ROWID is always the last
column in the column list in your SQL SELECT statement. The ROWID is not a column
in the normal sense and should not be considered part of the column definitions for the
wxDbTable object.

Remarks

The decision to include the ROWID in your SQL SELECT statement must be deferred
until runtime since it depends on whether you are connected to an Oracle datasource or
not.

252

CHAPTERS

Example

/'l I nconpl ete code sanpl e
wxDbTabl e parts;

if (parts.CanUpdByROW D())

// Note that the ROAN D col unm nust al ways be the last columm
sel ected
sql Stmt = "SELECT PART_NO, PART_DESC, ROW D' FROM PARTS";
}
el se
sql Stmt = "SELECT PART_NO, PART_DESC FROM PARTS";

wxDbTable::ClearMemberVar

void ClearMemberVar (UWORD colNo, bool setToNull=FALSE)

Same as wxDbTable::ClearMemberVars (p. 253) except that this function clears only the
specified column of its values, and optionally sets the column to be a NULL column.

colNo
Column number that is to be cleared. This number (between 0 and (noCols-1)) is
the index of the column definition created using the wxDbTable::SetColDefs (p.
275) function.

setToNull
OPTIONAL. Indicates whether the column should be flagged as being a NULL
value stored in the bound memory variable. If TRUE, then any value stored in the
bound member variable is cleared. Defaultis FALSE.

wxDbTable::ClearMemberVars

void ClearMemberVars(bool setToNull=FALSE)

Initializes all bound columns of the wxDbTable instance to zero. In the case of a string,
zero is copied to the first byte of the string.

setToNull
OPTIONAL. Indicates whether all columns should be flagged as having a NULL
value stored in the bound memory variable. If TRUE, then any value stored in the
bound member variable is cleared. Defaultis FALSE.

Remarks

This is useful before calling functions such as wxDbTable::QueryMatching (p. 273) or
wxDbTable::DeleteMatching (p. 258) since these functions build their WHERE clauses
from non-zero columns. To call either wxDbTable::QueryMatching (p. 273) or
wxDbTable::DeleteMatching (p. 258) use this sequence:

1) C earMenber Vars()

253

CHAPTERS

2) Assign columms values you wish to match on
3) Call wxDbTabl e:: QueryMatching() or wxDbTabl e:: Del et eMat chi ng()

wxDbTable::CloseCursor

bool CloseCursor(HSTMTcursor)
Closes the specified cursor associated with the wxDbTable object.
Parameters

cursor
The cursor to be closed.

Remarks

Typically handled internally by the ODBC class library, but may be used by the
programmer if desired.

DO NOT CLOSE THE wxDB_DEFAULT_CURSOR!

wxDbTable::Count

ULONG Count(const wxString&args="*")

Returns the number of records which would be in the result set using the current query
parameters specified in the WHERE and FROM clauses.

Parameters

args
OPTIONAL. This argument allows the use of the DISTINCT keyword against a
column name to cause the returned count to only indicate the number of rows in
the result set that have a unique value in the specified column. An example is
shown below. Default is "*", meaning a count of the total number of rows
matching is returned, regardless of unigueness.

Remarks

This function can be called before or after an actual query to obtain the count of records
in the result set. Count() uses its own cursor, so result set cursor positioning is not
affected by calls to County().

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) ARE used by this function.

Example

USERS TABLE

254

CHAPTERS

FI RST_NAME LAST NAME
John Doe

Ri chard Smith

M chael Jones
John Car pent er

/'l I nconplete code sanpl e
wxDbTabl e users;

users. Set Wher eCl ause("");

/1 This Count() will return 4, as there are four users |listed above
/1 that match the query paraneters
t ot al Nunmber Of Users = users. Count ();

/1 This Count() will return 3, as there are only 3 unique first
names

/1 in the table above - John, Richard, M chael.

t ot al Nunmber OF Uni queFi r st Nanmes = users. Count (" DI STI NCT FI RST_NAME") ;

wxDbTable::Createlndex

bool Createlndex(const wxString&idxName, bool unique, UWORD noldxCols,
wxDbldxDef *pldxDefs, bool attemptDrop=TRUE)

This member function allows you to create secondary (non primary) indexes on your
tables. You first create your table, normally specifying a primary index, and then create
any secondary indexes on the table. Indexes in relational model are not required. You
do not need indexes to look up records in a table or to join two tables together. In the
relational model, indexes, if available, provide a quicker means to look up data in a
table. To enjoy the performance benefits of indexes, the indexes must be defined on
the appropriate columns and your SQL code must be written in such a way as to take
advantage of those indexes.

Parameters

idxName
Name of the Index. Name must be unique within the table space of the
datasource.

unique
Indicates if this index is unique.

noldxCols
Number of columns in the index.

pldxDefs
A pointer to an array wxDbldxDef structures.

attemptDrop
OPTIONAL. Indicates if the function should try to execute a
wxDbTable::Dropindex (p. 260) on the index name provided before trying to
create the index name. Default is TRUE.

255

CHAPTERS

Remarks

The first parameter, index name, must be unique and should be given a meaningful
name. Common practice is to include the table name as a prefix in the index name (e.g.
For table PARTS, you might want to call your index PARTS_IDX1). This will allow you
to easily view all of the indexes defined for a given table grouped together
alphabetically.

The second parameter indicates if the index is unique or not. Uniqueness is enforced at
the RDBMS level preventing rows which would have duplicate indexes from being
inserted into the table when violating a unique index's uniqueness.

In the third parameter, specify how many columns are in your index. This number must
match the number of columns defined in the 'pldxDefs' parameter.

The fourth parameter specifies which columns make up the index using the wxDbldxDef
structure. For each column in the index, you must specify two things, the column name
and the sort order (ascending / descending). See the example below to see how to
build and pass in the wxDbldxDef structure.

The fifth parameter is provided to handle the differences in datasources as to whether
they will automatically overwrite existing indexes with the same name or not. Some
datasources require that the existing index must be dropped first, so this is the default
behavior.

Some datasources (MySQL, and possibly others) require columns which are to be part
of an index to be defined as NOT NULL. When this function is called, if a column is not
defined to be NOT NULL, a call to this function will modify the column definition to
change any columns included in the index to be NOT NULL. In this situation, if a NULL
value already exists in one of the columns that is being modified, creation of the index
will fail.

PostGres is unable to handle index definitions which specify whether the index is
ascending or descending, and defaults to the system default when the index is created.

It is not necessary to call wxDb::CommitTrans (p. 216) after executing this function.
Example

/1l Create a secondary index on the PARTS table
wxDbl dxDef idxDef[2]; [/ 2 columms make up the index

wxSt rcpy(i dxDef[0]. Col Nane, "PART_DESC'); // Columm 1
i dxDef [0] . Ascendi ng = TRUE;

wxStrcpy(idxDef[1]. Col Nane, "SERIAL _NO'); [/ Colum 2
i dxDef[1] . Ascendi ng = FALSE;

/1l Create a name for the index based on the table's nane
wxString i ndexNane;

i ndexName. Printf("%_IDX1", parts->Get Tabl eNane());
parts->Creat el ndex(i ndexNanme, TRUE, 2, idxDef);

256

CHAPTERS

wxDbTable::CreateTable

bool CreateTable (bool attemptDrop=TRUE)

Creates a table based on the definitions previously defined for this wxDbTable instance.

Parameters

attemptDrop
OPTIONAL. Indicates whether the driver should attempt to drop the table before
trying to create it. Some datasources will not allow creation of a table if the table
already exists in the table space being used. Default is TRUE.

Remarks

This function creates the table and primary index (if any) in the table space associated

with the connected datasource. The owner of these objects will be the user id that was
given when wxDb::Open (p. 231) was called. The objects will be created in the default
schemal/table space for that user.

In your derived wxDbTable object constructor, the columns and primary index of the
table are described through the wxDbColDef (p. 238) structure.
wxDbTable::CreateTable (p. 257) uses this information to create the table and to add
the primary index. See wxDbTable (p. 247) ctor and wxDbColDef description for
additional information on describing the columns of the table.

It is not necessary to call wxDb::CommitTrans (p. 216) after executing this function.

wxDbTable::DB_STATUS

bool DB_STATUS()

Accessor function that returns the wxDb private member variable DB_STATUS for the
database connection used by this instance of wxDbTable.

wxDbTable::Delete

bool Delete()

Deletes the row from the table indicated by the current cursor.

Remarks

Use wxDbTable::GetFirst (p. 262), wxDbTable::GetLast (p. 263), wxDbTable::GetNext

(p. 264) orwxDbTable::GetPrev (p. 265) to position the cursor to a valid record. Once
positioned on a record, call this function to delete the row from the table.

257

CHAPTERS

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the deletion.

NOTE: Most datasources have a limited size "rollback” segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

wxDbTable::DeleteCursor

bool DeleteCursor(HSTMT *hstmtDel)
Allows a program to delete a cursor.
Parameters

hstmtDel
Handle of the cursor to delete.

Remarks

For default cursors associated with the instance of wxDbTable, it is not necessary to
specifically delete the cursors. This is automatically done in the wxDbTable destructor.

NOTE: If the cursor could not be deleted for some reason, an error is logged indicating
the reason. Even if the cursor could not be deleted, the HSTMT that is passed in is
deleted, and the pointer is set to NULL.

DO NOT DELETE THE wxDB_DEFAULT_CURSOR!

wxDbTable::DeleteMatching

bool DeleteMatching()

This member function allows you to delete records from your wxDbTable object by
specifying the data in the columns to match on.

Remarks

To delete all users with a first name of "JOHN", do the following:

1) Cdear all "columms" using wxDbTabl e:: Cl ear Menber Vars().
2) Set the FIRST_NAME columm equal to "JOHN".
3) Call wxDbTabl e:: Del et eMat chi ng() .

258

CHAPTERS

The WHERE clause is built by the ODBC class library based on all non-NULL columns.
This allows deletion of records by matching on any column(s) in your wxDbTable
instance, without having to write the SQL WHERE clause.

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the deletion.

NOTE: Row(s) should be locked before deleting them to make sure they are not already
in use. This can be achieved by calling wxDbTable::QueryMatching (p. 273), and then
retrieving the records, locking each as you go (assuming FOR UPDATE is allowed on
the datasource). After the row(s) have been successfully locked, call this function.

NOTE: Most datasources have a limited "rollback” segment. This means that it is only
possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

Example

/1l Inconplete code sanple to delete all users with a first nane
/1 of "JOHN'

users. Cl ear Menber Vars() ;

wxSt rcpy(users. First Name, "JOHN") ;

users. Del et eMat chi ng();

wxDbTable::DeleteWhere

bool DeleteWhere(const wxString&pWhereClause)

Deletes all rows from the table which match the criteria specified in the WHERE clause
that is passed in.

Parameters

pWhereClause
SQL WHERE clause. This WHERE clause determines which records will be
deleted from the table interfaced through the wxDbTable instance. The WHERE
clause passed in must be compliant with the SQL 92 grammar. Do not include the
keyword 'WHERE'

Remarks

This is the most powerful form of the wxDbTable delete functions. This function gives
access to the full power of SQL. This function can be used to delete records by passing
a valid SQL WHERE clause. Sophisticated deletions can be performed based on
multiple criteria using the full functionality of the SQL language.

259

CHAPTERS

A wxDb::CommitTrans (p. 216) must be called after use of this function to commit the
deletions.

Note: This function is limited to deleting records from the table associated with this
wxDbTable object only. Deletions on joined tables is not possible.

NOTE: Most datasources have a limited size "rollback" segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

Example

/1l Delete parts 1 thru 10 fromcontainers 'X, 'Y and 'Z that
/1l are magenta in color
parts. Del et eWher e(" (PART_NUMBER BETWEEN 1 AND 10) AND \
CONTAINER IN ("X, "Y', "Z'") AND\
UPPER(COLOR) = ' MAGENTA' ") ;

wxDbTable::Droplndex

bool DroplIndex(const wxString&idxName)

Allows an index on the associated table to be dropped (deleted) if the user login has
sufficient privileges to do so.

Parameters

idxName
Name of the index to be dropped.

Remarks

If the index specified in the 'idxName' parameter does not exist, an error will be logged,
and the function will return a result of FALSE.

It is not necessary to call wxDb::CommitTrans (p. 216) after executing this function.

wxDbTable::DropTable

bool DropTable()

Deletes the associated table if the user has sufficient privileges to do so.

260

CHAPTERS

Remarks

This function returns TRUE if the table does not exist, but only for supported databases
(see wxDb::Dbms (p. 218)). If a datasource is not specifically supported, and this
function is called, the function will return FALSE.

Most datasources/ODBC drivers will delete any indexes associated with the table
automatically, and others may not. Check the documentation for your database to
determine the behavior.

It is not necessary to call wxDb::CommitTrans (p. 216) after executing this function.

wxDbTable::From

const wxString& From()
void From(const wxString&From)

Accessor function for the private class member wxDbTable::from. Can be used as a
synonym for wxDbTable::GetFromClause (p. 263) (the first form of this function) or
wxDbTable::SetFromClause (p. 278) (the second form of this function).

Parameters

From
A comma separated list of table names that are to be outer joined with the base
table's columns so that the joined table's columns may be returned in the result
set or used as a portion of a comparison with the base table's columns. NOTE
that the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::from.

The second form of the function has no return value, as it will always set the from
clause successfully.

See also

wxDbTable::GetFromClause (p. 263), wxDbTable::SetFromClause (p. 278)

wxDbTable::GetColDefs

wxDbColDef * GetColDefs()

261

CHAPTERS

Accessor function that returns a pointer to the array of column definitions that are bound
to the columns that this wxDbTable instance is associated with.

To determine the number of elements pointed to by the returned wxDbColDef (p. 238)
pointer, use the wxDbTable::GetNumberOfColumns (p. 264) function.

Remarks

These column definitions must not be manually redefined after they have been set.

wxDbTable::GetCursor

HSTMT GetCursor()

Returns the HSTMT value of the current cursor for this wxDbTable object.

Remarks

This function is typically used just before changing to use a different cursor so that after
the program is finished using the other cursor, the current cursor can be set back to

being the cursor in use.

See also

wxDbTable::SetCursor (p. 277), wxDbTable::GetNewCursor (p. 263)

wxDbTable::GetDb

wxDb * GetDb()

Accessor function for the private member variable pDb which is a pointer to the
datasource connection that this wxDbTable instance uses.

wxDbTable::GetFirst

bool GetFirst()

Retrieves the FIRST row in the record set as defined by the current query. Before
retrieving records, a query must be performed using wxDbTable::Query (p. 270),
wxDbTable::QueryOnKeyFields (p. 274), wxDbTable::QueryMatching (p. 273) or
wxDbTable::QueryBySqlStmt (p. 271).

Remarks
This function can only be used if the datasource connection used by the wxDbTable

instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained

262

CHAPTERS

in the bound columns will be undefined.
See also

wxDb::IsFwdOnlyCursors (p. 228)

wxDbTable::GetFromClause

const wxString& GetFromClause()

Accessor function that returns the current FROM setting assigned with the
wxDbTable::SetFromClause (p. 278).

See also

wxDbTable::From (p. 261)

wxDbTable::GetLast

bool GetLast()

Retrieves the LAST row in the record set as defined by the current query. Before
retrieving records, a query must be performed using wxDbTable::Query (p. 270),
wxDbTable::QueryOnKeyFields (p. 274), wxDbTable::QueryMatching (p. 273) or
wxDbTable::QueryBySqlStmt (p. 271).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 228)

wxDbTable::GetNewCursor

HSTMT * GetNewCursor(bool setCursor=FALSE, bool bindColumns=TRUE)

This function will create a new cursor that can be used to access the table being
referenced by this wxDbTable instance, or to execute direct SQL commands on without
affecting the cursors that are already defined and possibly positioned.

Parameters

263

CHAPTERS

setCursor
OPTIONAL. Should this new cursor be set to be the current cursor after
successfully creating the new cursor. Default is FALSE.

bindColumns
OPTIONAL. Should this new cursor be bound to all the memory variables that the
default cursor is bound to. Default is TRUE.

Remarks
This new cursor must be closed using wxDbTable::DeleteCursor (p. 258) by the calling

program before the wxDbTable instance is deleted, or both memory and resource leaks
will occur.

wxDbTable::GetNext

bool GetNext()

Retrieves the NEXT row in the record set after the current cursor position as defined by
the current query. Before retrieving records, a query must be performed using
wxDbTable::Query (p. 270), wxDbTable::QueryOnKeyFields (p. 274),
wxDbTable::QueryMatching (p. 273) or wxDbTable::QueryBySqlStmt (p. 271).

Return value

This function returns FALSE when the current cursor has reached the end of the result
set. When FALSE is returned, data in the bound columns is undefined.

Remarks
This function works with both forward and backward scrolling cursors.

See alsowxDbTable::++ (p. 283)

wxDbTable::GetNumberOfColumns

UWORD GetNumberOfColumns()

Accessor function that returns the number of columns that are statically bound for
access by the wxDbTable instance.

wxDbTable::GetOrderByClause

const wxString& GetOrderByClause()

Accessor function that returns the current ORDER BY setting assigned with the
wxDbTable::SetOrderByClause (p. 279).

264

CHAPTERS

See also

wxDbTable::OrderBy (p. 269)

wxDbTable::GetPrev

bool GetPrev()

Retrieves the PREVIOUS row in the record set before the current cursor position as
defined by the current query. Before retrieving records, a query must be performed
using wxDbTable::Query (p. 270), wxDbTable::QueryOnKeyFields (p. 274),
wxDbTable::QueryMatching (p. 273) or wxDbTable::QueryBySqlStmt (p. 271).

Return value

This function returns FALSE when the current cursor has reached the beginning of the
result set and there are now other rows prior to the cursors current position. When
FALSE is returned, data in the bound columns is undefined.

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 228), wxDbTable::-- (p. 283)

wxDbTable::GetQueryTableName

const wxString& GetQueryTableName ()

Accessor function that returns the name of the table/view that was indicated as being
the table/view to query against when this wxDbTable instance was created.

See also

wxDbTable constructor (p. 248)

wxDbTable::GetRowNum

UWORD GetRowNum()

Returns the ODBC row number for performing positioned updates and deletes.

265

CHAPTERS

Remarks

This function is not being used within the ODBC class library and may be a candidate
for removal if no use is found for it.

Row number with some datasources/ODBC drivers is the position in the result set, while

in others it may be a physical position in the database. Check your database
documentation to find out which behavior is supported.

wxDbTable::GetTableName

const wxString& GetTableName ()

Accessor function that returns the name of the table that was indicated as being the
table that this wxDbTable instance was associated with.

wxDbTable::GetTablePath

const wxString& GetTablePath()

Accessor function that returns the path to the data table that was indicated during
creation of this wxDbTable instance.

Remarks

Currently only applicable to dBase and MS-Access datasources.

wxDbTable::GetWhereClause

const wxString& GetWhereClause ()

Accessor function that returns the current WHERE setting assigned with the
wxDbTable::SetWhereClause (p. 280)

See also

wxDbTable::Where (p. 282)

wxDbTable::Insert

int Insert()

Inserts a new record into the table being referenced by this wxDbTable instance. The
values in the member variables of the wxDbTable instance are inserted into the
columns of the new row in the database. Return value

266

CHAPTERS

DB_SUCCESS Record inserted successfully (value = 1)
DB_FAI LURE Insert failed (value = 0)

DB_ERR_| NTEGRI TY_CONSTRAI NT_VI OL
The insert failed due to an integrity
constraint violation (duplicate non-unique
i ndex entry) is attenpted.

Remarks

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the insertion.

Example

/1 I nconpl ete code sni ppet

wxSt r cpy(parts->Part Name, "10");

wxSt rcpy(parts->Part Desc, "Part #10");
parts->Qy = 1000;

RETCODE retcode = parts.lnsert();
switch(retcode)

{
case DB_SUCCESS:
parts->Get Db()->Comi t Trans();
return(TRUE);
case DB _ERR | NTEGRI TY_CONSTRAI NT_VI OL:
/1 Current data would result in a duplicate key
/'l on one or nore indexes that do not allow duplicates
parts->Get Db() - >Rol | backTrans();
return(FALSE);
defaul t:
/1l Insert failed for sone unexpected reason
parts->Get Db()->Rol | backTrans();
return(FALSE) ;
}

wxDbTable::IsColNull

bool IsColNull(UWORD colNo) const

Used primarily in the ODBC class library to determine if a column value is set to
"NULL". Works for all data types supported by the ODBC class library.

Parameters

colNo
The column number of the bound column as defined by the
wxDbTable::SetColDefs (p. 275) calls which defined the columns accessible to
this wxDbTable instance.

Remarks

267

CHAPTERS

NULL column support is currently not fully implemented as of wxWindows 2.4

wxDbTable::IsCursorClosedOnCommit

bool IsCursorClosedOnCommit()

Accessor function to return information collected during the opening of the datasource
connection that is used by this wxDbTable instance. The result returned by this function
indicates whether an implicit closing of the cursor is done after a commit on the
database connection.

Return value

Returns TRUE if the cursor associated with this wxDbTable object is closed after a
commit or rollback operation. Returns FALSE otherwise.

Remarks

If more than one wxDbTable instance used the same database connection, all cursors
which use the database connection are closed on the commit if this function indicates
TRUE.

wxDbTable::IsQueryOnly

bool IsQueryOnly()

Accessor function that returns a value indicating if this wxDbTable instance was created
to allow only queries to be performed on the bound columns. If this function returns
TRUE, then no actions may be performed using this wxDbTable instance that would
modify (insert/delete/update) the table's data.

wxDbTable::Open

bool Open(bool checkPrivileges=FALSE, bool checkTableExists=TRUE)

Every wxDbTable instance must be opened before it can be used. This function checks
for the existence of the requested table, binds columns, creates required cursors,
(insert/select and update if connection is not wxDB_QUERY_ONLY) and constructs the
insert statement that is to be used for inserting data as a new row in the datasource.

Parameters

checkPrivileges
Indicates whether the Open() function should check whether the current
connected user has at least SELECT privileges to access the table to which they
are trying to open. Default is FALSE.

268

CHAPTERS

checkTableExists
Indicates whether the Open() function should check whether the table exists in the
database or not before opening it. Default is TRUE.

Remarks

If the function returns a FALSE value due to the table not existing, a log entry is
recorded for the datasource connection indicating the problem that was detected when
checking for table existence. Note that it is usually best for the calling routine to check
for the existence of the table and for sufficent user privileges to access the table in the
mode (wxDB_QUERY_ONLY or 'wxDB_QUERY_ONLY) before trying to open the table
for the best possible explanation as to why a table cannot be opened.

Checking the user's privileges on a table can be quite time consuming during the open
phase. With most applications, the programmer already knows that the user has
sufficient privileges to access the table, so this check is normally not required.

For best performance, open the table, and then use the wxDb::TablePrivileges (p. 235)
function to check the users privileges. Passing a schema to the TablePrivileges()
function can significantly speed up the privileges checks.

See also

wxDb::TableExists (p. 235), wxDb::TablePrivileges (p. 235)

wxDbTable::OrderBy

const wxString& OrderBy()

void OrderBy(const wxString&OrderBy)

Accessor function for the private class member wxDbTable::orderBy. Can be used as a
synonym for wxDbTable::GetOrderByClause (p. 264) (the first form of this function) or
wxDbTable::SetOrderByClause (p. 279) (the second form of this function).

Parameters

OrderBy
A comma separated list of column names that indicate the alphabetized/numeric
sorting sequence that the result set is to be returned in. If a FROM clause has
also been specified, each column name specified in the ORDER BY clause should
be prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::orderBy.

269

CHAPTERS

The second form of the function has no return value.
See also

wxDbTable::GetOrderByClause (p. 264), wxDbTable::SetFromClause (p. 278)

wxDbTable::Query

virtual bool Query(bool forUpdate=FALSE, bool distinct=FALSE)
Parameters

forUpdate
OPTIONAL. Gives you the option of locking records as they are retrieved. If the
RDBMS is not capable of the FOR UPDATE clause, this argument is ignored.
See wxDbTable::CanSelectForUpdate (p. 252) for additional information regarding
this argument. Default is FALSE.

distinct
OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is FALSE.

Remarks

This function queries records from the datasource based on the three wxDbTable
members: "where", "orderBy", and "from". Use wxDbTable::SetWhereClause (p. 280) to
filter on records to be retrieved (e.g. All users with a first name of "JOHN"). Use
wxDbTable::SetOrderByClause (p. 279) to change the sequence in which records are
returned in the result set from the datasource (e.g. Ordered by LAST_NAME). Use
wxDbTable::SetFromClause (p. 278) to allow outer joining of the base table (the one
being associated with this instance of wxDbTable) with other tables which share a
related field.

After each of these clauses are set/cleared, call wxDbTable::Query() to fetch the result
set from the datasource.

This scheme has an advantage if you have to requery your record set frequently in that
you only have to set your WHERE, ORDER BY, and FROM clauses once. Then to
refresh the record set, simply call wxDbTable::Query() as frequently as needed.

Note that repeated calls to wxDbTable::Query() may tax the database server and make
your application sluggish if done too frequently or unnecessarily.

The base table name is automatically prepended to the base column names in the
event that the FROM clause has been set (is non-null) using
wxDbTable::SetFromClause (p. 278).

The cursor for the result set is positioned before the first record in the result set after the
query. To retrieve the first record, call either wxDbTable::GetFirst (p. 262) (only if
backward scrolling cursors are available) or wxDbTable::GetNext (p. 264). Typically, no

270

CHAPTERS

data from the result set is returned to the client driver until a request such as
wxDbTable::GetNext (p. 264) is performed, so network traffic and database load are not
overwhelmed transmitting data until the data is actually requested by the client. This
behavior is solely dependent on the ODBC driver though, so refer to the ODBC driver's
reference material for information on its behaviors.

Values in the bound columns' memory variables are undefined after executing a call to
this function and remain that way until a row in the result set is requested to be
returned.

The wxDbTable::Query() function is defined as "virtual" so that it may be overridden for
application specific purposes.

Be sure to set the wxDbTable's "where", "orderBy", and "from" member variables to ™ if
they are not to be used in the query. Otherwise, the results returned may have
unexpected results (or no results) due to improper or incorrect query parameters
constructed from the uninitialized clauses.

Example

/'l I nconpl ete code sanpl e
parts->Set Wher eCl ause(" DESCRI PTION = ' FOOD' ") ;
parts->Set Order ByCl ause(" EXPI RATI ON_DATE") ;
parts->Set FronCl ause("");
/1 Query the records based on the where, orderBy and from cl auses
/1 specified above
parts->Query();
/'l Display all records queried
whi | e(parts->Get Next ())
di spPart (parts); [/ user defined function

wxDbTable::QueryBySqlStmt

bool QueryBySqlStmt(const wxString&pSqlStmt)

Performs a query against the datasource by accepting and passing verbatim the SQL
SELECT statement passed to the function.

Parameters

pSqlStmt
Pointer to the SQL SELECT statement to be executed.

Remarks

This is the most powerful form of the query functions available. This member function
allows a programmer to write their own custom SQL SELECT statement for requesting
data from the datasource. This gives the programmer access to the full power of SQL
for performing operations such as scalar functions, aggregate functions, table joins, and
sub-queries, as well as datasource specific function calls.

271

CHAPTERS

The requirements of the SELECT statement are the following:

1. Must return the correct nunmber of colums. In the derived
wxDbTabl e constructor, it is specified how many columms are in
t he wxDbTabl e object. The SELECT statenent nust return exactly
t hat many col ums.

2. The colums must be returned in the sane sequence as specified
when defining the bounds col ums usi ng wxDbTabl e: : Set Col Def s(),
and the colums returned nust be of the proper data type. For
exanple, if colum 3 is defined in the wxDbTabl e bound col unmm
definitions to be a float, the SELECT statenment must return a
float for columm 3 (e.g. PRICE * 1.10 to increase the price by
109 .

3. The ROWND can be included in your SELECT statenent as the {\Dbf
| ast}
colum selected, if the datasource supports it. Use
wxDbTabl e: : CanUpdByROW D() to deternine if the ROND can be

sel ected fromthe datasource. |f it can, much better
performance can be achi eved on updates and del etes by incl udi ng
the ROND in the SELECT statenent.

Even though data can be selected from multiple tables (joins) in your select statement,
only the base table associated with this wxDbTable object is automatically updated
through the ODBC class library. Data from multiple tables can be selected for display
purposes however. Include columns in the wxDbTable object and mark them as non-
updateable (See wxDbColDef (p. 238) for details). This way columns can be selected
and displayed from other tables, but only the base table will be updated automatically
when performed through the wxDbTable::Update (p. 281) function after using this type of
query. To update tables other than the base table, use the wxDbTable::Update (p. 281)
function passing a SQL statement.

After this function has been called, the cursor is positioned before the first record in the
record set. To retrieve the first record, call either wxDbTable::GetFirst (p. 262) or
wxDbTable::GetNext (p. 264).

Example

/1 I nconpl ete code sanpl es
wxString sql Stnt;
sql Stnmt = "SELECT * FROM PARTS WHERE STORAGE DEVI CE = ' SD98' \
AND CONTAI NER = 12";
/1 Query the records using the SQL SELECT statenment above
parts->QueryBySql Stnt (sql Stnt);
/1 Display all records queried
whi | e(parts->Cet Next ())
di spPart (&parts);

Exanpl e SQL statenents

/1 Table Join returning 3 colums

272

CHAPTERS

SELECT part_no, part_desc, sd_nane
fromparts, storage_devices
where parts.storage_device_id =
st orage_devi ces. storage_device_id

/1 Aggregate function returning total nunber of
/1 parts in container 99
SELECT count (*) from PARTS where contai ner = 99

/1 Order by clause; ROND, scalar function

SELECT part_no, substring(part_desc, 1, 10), qty_on_hand + 1, ROND
fromparts
wher e war ehouse = 10
order by part_no desc /1 descendi ng order

/1 Subquery
SELECT * from parts
where container in (select container
from storage_devi ces
where device_id = 12)

wxDbTable::QueryMatching

virtual bool QueryMatching(bool forUpdate=FALSE, bool distinct=FALSE)

QueryMatching allows querying of records from the table associated with the
wxDbTable object by matching "columns" to values.

For example: To query the datasource for the row with a PART_NUMBER column value
of "32", clear all column variables of the wxDbTable object, set the PartNumber variable
that is bound to the PART_NUMBER column in the wxDbTable object to "32", and then

call wxDbTable::QueryMatching().

Parameters

forUpdate
OPTIONAL. Gives you the option of locking records as they are queried
(SELECT ... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE
clause, this argument is ignored. See wxDbTable::CanSelectForUpdate (p. 252)
for additional information regarding this argument. Default is FALSE.

distinct
OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is FALSE.

Remarks

The SQL WHERE clause is built by the ODBC class library based on all non-zero/non-
NULL columns in your wxDbTable object. Matches can be on one, many or all of the
wxDbTable's columns. The base table name is prepended to the column names in the
event that the wxDbTable's FROM clause is non-null.

273

CHAPTERS

This function cannot be used to perform queries which will check for columns that are 0
or NULL, as the automatically constructed WHERE clause only will contain comparisons
on column member variables that are non-zero/non-NULL.

The primary difference between this function and wxDbTable::QueryOnKeyFields (p.
274) is that this function can query on any column(s) in the wxDbTable object. Note
however that this may not always be very efficient. Searching on non-indexed columns
will always require a full table scan.

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either
wxDbTable::GetFirst (p. 262) or wxDbTable::GetNext (p. 264).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

Example

/1 I nconplete code sanpl e

parts->Cl ear Menber Var s() ; /1 Set all colums to zero
wxSt r cpy(parts->Part Nunber, " 32"); /!l Set colums to query on
parts->0OnHol d = TRUE;

parts->QueryMat ching(); /'l Query

/1 Display all records queried
whi | e(parts->Cet Next ())
di spPart (parts); [/ Some application defined function

wxDbTable::QueryOnKeyFields

bool QueryOnKeyFields(bool forUpdate=FALSE, bool distinct=FALSE)

QueryOnKeyFields provides an easy mechanism to query records in the table
associated with the wxDbTable object by the primary index column(s). Simply assign
the primary index column(s) values and then call this member function to retrieve the
record.

Note that since primary indexes are always unique, this function implicitly always
returns a single record from the database. The base table name is prepended to the
column names in the event that the wxDbTable's FROM clause is non-null.

Parameters

forUpdate
OPTIONAL. Gives you the option of locking records as they are queried
(SELECT ... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE
clause, this argument is ignored. See wxDbTable::CanSelectForUpdate (p. 252)
for additional information regarding this argument. Default is FALSE.

distinct
OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned

274

CHAPTERS

in the result set, not individual columns. Default is FALSE.
Remarks

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either
wxDbTable::GetFirst (p. 262) or wxDbTable::GetNext (p. 264).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 280) and
wxDbTable::SetFromClause (p. 278) are ignored by this function.

Example

/'l I nconplete code sanpl e
wWxSt rcpy(parts->Part Nunber, "32");
parts->Quer yOnKeyFi el ds();
/1 Display all records queried
whi | e(parts->Cet Next ())
di spPart (parts); [// Some application defined function

wxDbTable::Refresh

bool Refresh()

This function re-reads the bound columns into the memory variables, setting them to the
current values stored on the disk.

The cursor position and result set are unaffected by calls to this function. (The one
exception is in the case where the record to be refreshed has been deleted by some
other user or transaction since it was originally retrieved as part of the result set. For
most datasources, the default behavior in this situation is to return the value that was
originally queried for the result set, even though it has been deleted from the database.
But this is datasource dependent, and should be tested before relying on this behavior.)

Remarks
This routine is only guaranteed to work if the table has a unique primary index defined
for it. Otherwise, more than one record may be fetched and there is no guarantee that

the correct record will be refreshed. The table's columns are refreshed to reflect the
current data in the database.

wxDbTable::SetColDefs

void SetColDefs(UWORD index, const wxString&fieldName, int dataType, void
*pData, SWORD cType, int size, bool keyField = FALSE, bool upd = TRUE, bool
insAllow = TRUE, bool derivedCol = FALSE)

wxDbColDataPtr * SetColDefs(wxDbColInf *collnfs, UWORD numCols)

275

CHAPTERS

Parameters

index
Column number (0 to n-1, where n is the number of columns specified as being
defined for this wxDbTable instance when the wxDbTable constructor was called.
fieldName
Column name from the associated data table.
dataType
Logical data type. Valid logical types include:

DB_DATA_TYPE_VARCHAR . strings
DB_DATA_TYPE_| NTEGER : non-floating point numbers
DB _DATA TYPE_FLOAT : floating point nunbers
DB_DATA_TYPE_DATE : dates

pData

Pointer to the data object that will hold the column's value when a row of data is
returned from the datasource.

cType
SQL C Type. This defines the data type that the SQL representation of the data is
converted to to be stored in pData. Other valid types are available also, but these
are the most common ones:

SQ._C CHAR /'l strings
SQL_C LONG

SQL_C ULONG

SQL_C_SHORT

SQL_C_USHORT

SQL_C FLOAT

SQL_C _DOUBLE

SQL_C_NUMERI C

SQL_C_TI MESTAWP

SQL_C BOOLEAN // defined in db.h
SQL_C _ENUM /1 defined in db.h

size
Maximum size in bytes of the pData object.
keyField
OPTIONAL. Indicates if this column is part of the primary index. Default is
FALSE.
upd
OPTIONAL. Are updates allowed on this column? Default is TRUE.
insAllow
OPTIONAL. Inserts allowed on this column? Default is TRUE.
derivedCol
OPTIONAL. Is this a derived column (non-base table column for query only)?
Default is FALSE.

colinfs
Pointer to an array of wxDbCollnf instances which contains all the information
necessary to create numcCols column definitions.

276

CHAPTERS

numCols
Number of elements of wxDbColInf type that are pointed to by colinfs, which are
to have column definitions created from them.

Remarks

If pData is to hold a string of characters, be sure to include enough space for the NULL
terminator in pData and in the byte count of size.

Both forms of this function provide a shortcut for defining the columns in your
wxDbTable object. Use this function in any derived wxDbTable constructor when
describing the column/columns in the wxDbTable object.

The second form of this function is primarily used when the wxDb::GetColumns (p. 222)
function was used to query the datasource for the column definitions, so that the column
definitions are already stored in wxDbColInf form. One example use of using
wxDb::GetColumns (p. 222) then using this function is if a data table existed in one
datasource, and the table's column definitions were to be copied over to another
datasource or table.

Example

/1 Long way not using this function
wxSt rcpy(col Def s[0] . Col Nane, "PART_NO');
col Def s[0] . DbDat aType DB _DATA TYPE_VARCHAR,

col Def s[0] . Pt r Dat aQbj = Part Nunber ;

col Def s[0] . Sgl Ctype = SQL_C CHAR;

col Def s[0] . SzDat aOnj = PART_NUMBER_LEN;
col Def s[0] . KeyFi el d = TRUE;

col Def s[0] . Updat eabl e = FALSE;

col Defs[0]. I nsert Al | owned= TRUE;

col Def s[0] . Deri vedCaol = FALSE;

/1 Shortcut using this function
Set Col Def s(0, "PART_NUMBER', DB DATA TYPE VARCHAR, Part Nunber,
SQL_C CHAR, PART_NUMBER LEN, TRUE, FALSE, TRUE, FALSE);

wxDbTable::SetCursor

bool SetCursor(HSTMT *hstmtActivate = (void **) wxDB_DEFAULT_CURSOR)
Parameters

hstmtActivate
OPTIONAL. Pointer to the cursor that is to become the current cursor. Passing
no cursor handle will reset the cursor back to the wxDbTable's default (original)
cursor that was created when the wxDbTable instance was first created. Default
is wxDB_DEFAULT_CURSOR.

Remarks

277

CHAPTERS

When swapping between cursors, the member variables of the wxDbTable object are
automatically refreshed with the column values of the row that the current cursor is
positioned at (if any). If the cursor is not positioned, then the data in member variables
is undefined.

The only way to return back to the cursor that was in use before this function was called
is to programmatically determine the current cursor's HSTMT BEFORE calling this
function using wxDbTable::GetCursor (p. 262) and saving a pointer to that cursor.

See also

wxDbTable::GetNewCursor (p. 263), wxDbTable::GetCursor (p. 262),
wxDbTable::SetCursor (p. 277)

wxDbTable::SetFromClause

void SetFromClause(const wxString&From)

Accessor function for setting the private class member wxDbTable::from that indicates
what other tables should be outer joined with the wxDbTable's base table for access to
the columns in those other tables.

Synonym to this function is one form of wxDbTable::From (p. 261)

Parameters

From
A comma separated list of table names that are to be outer joined with the base
table's columns so that the joined table's columns may be returned in the result
set or used as a portion of a comparison with the base table's columns. NOTE
that the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Remarks

Used by the wxDbTable::Query (p. 270) and wxDbTable::Count (p. 254) member
functions to allow outer joining of records from multiple tables.

Do not include the keyword "FROM" when setting the FROM clause.

If using the FROM clause when performing a query, be certain to include in the
corresponding WHERE clause a comparison of a column from either the base table or
one of the other joined tables to each other joined table to ensure the datasource knows
on which column values the tables should be joined on.

Example

}}.Base table is the "LOCATION' table, and it is being
/1 outer joined to the "PART" table via the the field "PART_NUMBER'

278

CHAPTERS

// that can be rel ated between the two tables.
| ocat i on- >Set Wher eCl ause(" LOCATI ON. PART_NUMBER = PART. PART_NUMBER")
| ocati on->Set FronCl ause(" PART") ;

See also

wxDbTable::From (p. 261), wxDbTable::GetFromClause (p. 263)

wxDbTable::SetColNull

bool SetColNull(UWORD colNo, bool set=TRUE)
bool SetColNull(const wxString&colName, bool set=TRUE)

Both forms of this function allow a member variable representing a column in the table
associated with this wxDbTable object to be set to NULL.

The first form allows the column to be set by the index into the column definitions used
to create the wxDbTable instance, while the second allows the actual column name to

be specified.
Parameters
colNo
Index into the column definitions used when first defining this wxDbTable object.
colName
Actual data table column name that is to be set to NULL.
set
Whether the column is set to NULL or not. Passing TRUE sets the column to
NULL, passing FALSE sets the column to be non-NULL. Defaultis TRUE.
Remarks

No database updates are done by this function. It only operates on the member
variables in memory. Use and insert or update function to store this value to disk.

wxDbTable::SetOrderByClause

void SetOrderByClause(const wxString&OrderBy)

Accessor function for setting the private class member wxDbTable::orderBy which
determines sequence/ordering of the rows returned in the result set of a query.

A synonym to this function is one form of the function wxDbTable::OrderBy (p. 269)
Parameters

OrderBy

279

CHAPTERS

A comma separated list of column names that indicate the alphabetized sorting
sequence that the result set is to be returned in. If a FROM clause has also been
specified, each column name specified in the ORDER BY clause should be
prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks

Do not include the keywords "ORDER BY" when setting the ORDER BY clause.

Example

parts->Set Order ByCl ause(" PART_DESCRI P, QUANTI TY");

| ocati on->Set Or der ByCl ause(" LOCATI ON. POSI TI ON, PART. PART_NUMBER) ;

See also

wxDbTable::OrderBy (p. 269), wxDbTable::GetOrderByClause (p. 264)

wxDbTable::SetQueryTimeout

bool SetQueryTimeout(UDWORD nSeconds)
Allows a time period to be set as the timeout period for queries.

Parameters

nSeconds
The number of seconds to wait for the query to complete before timing out.

Remarks

Neither Oracle or Access support this function as of yet. Other databases should be
evaluated for support before depending on this function working correctly.

wxDbTable::SetWhereClause

void SetWhereClause (const wxString&Where)

Accessor function for setting the private class member wxDbTable::where that
determines which rows are returned in the result set by the datasource.

A synonym to this function is one form of the function wxDbTable::Where (p. 282)

280

CHAPTERS

Parameters

Where
SQL "where" clause. This clause can contain any SQL language that is legal in
standard where clauses. If a FROM clause has also been specified, each column
name specified in the ORDER BY clause should be prefaced with the table name
to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks

Do not include the keywords "WHERE" when setting the WHERE clause.

Example

/1 Sinmple where clause
parts->Set Wer eCl ause(" PART_NUMBER = ' 32'");

/1 Any conpari son operators

parts- >Set Wher eCl ause(" PART_DESCRI P LI KE ' HAMVER% ") ;
/1 Miultiple comparisons, including a function call
parts->Where("QIY > 0 AND {fn UCASE(PART_DESCRI P)} LIKE

"OORILLY% ") ;

/1 Using paraneters and nultiple | ogical conbinations
parts->Where(" ((QTY > 10) OR (ON_ORDER > 0)) AND ON_HOLD = 0");

/1 This query uses an outer join (requiring a FROM cl ause al so)
/1 that joins the PART and LOCATI ON table on he conmon field
/1 PART_NUMBER.
parts->Where(" PART. ON_ HOLD = 0 AND \
PART. PART_NUMBER = LOCATI ON. PART_NUMBER AND \
LOCATI ON. PART_NUMBER > 0");

See also

wxDbTable::Where (p. 282), wxDbTable::GetWhereClause (p. 266)

wxDbTable::Update

bool Update()

bool Update(const wxString&pSqlStmt)

The first form of this function will update the row that the current cursor is currently
positioned at with the values in the memory variables that are bound to the columns.
The actual SQL statement to perform the update is automatically created by the ODBC
class, and then executed.

The second form of the function allows full access through SQL statements for updating

281

CHAPTERS

records in the database. Write any valid SQL UPDATE statement and submit it to this
function for execution. Sophisticated updates can be performed using the full power of
the SQL dialect. The full SQL statement must have the exact syntax required by the
driver/datasource for performing the update. This usually is in the form of:

UPDATE t abl ename SET col 1=X, col 2=Y, ... where ...

Parameters

pSqlStmt
Pointer to SQL UPDATE statement to be executed.

Remarks

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the update.

Example
wxString sql Stnt;
sql Stnt = "update PART set QTY = 0 where PART_NUMBER = '32'";

wxDbTable::UpdateWhere

bool UpdateWhere(const wxString&pWhereClause)

Performs updates to the base table of the wxDbTable object, updating only the rows
which match the criteria specified in the pWhereClause.

All columns that are bound to member variables for this wxDbTable instance that were
defined with the "updateable” parameter set to TRUE will be updated with the
information currently held in the memory variable.

Parameters

pWhereClause
Pointer to a valid SQL WHERE clause. Do not include the keyword 'WHERE'.

Remarks

Care should be used when updating columns that are part of indexes with this function
S0 as not to violate an unique key constraints.

A wxDb::CommitTrans (p. 216) or wxDb::RollbackTrans (p. 232) must be called after use
of this function to commit or rollback the update(s).

wxDbTable::Where

const wxString& Where()

282

CHAPTERS

void Where(const wxString&Where)

Accessor function for the private class member wxDbTable::where. Can be used as a
synonym for wxDbTable::GetWhereClause (p. 266) (the first form of this function) to
return the current where clause or wxDbTable::SetWhereClause (p. 280) (the second
form of this function) to set the where clause for this table instance.

Parameters

Where
A valid SQL WHERE clause. Do not include the keyword 'WHERE'.

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::where.

The second form of the function has no return value, as it will always set the where
clause successfully.

See also

wxDbTable::GetWhereClause (p. 266), wxDbTable::SetWhereClause (p. 280)

wxDbTable::operator ++

bool operator ++()
Synonym for wxDbTable::GetNext (p. 264)
See also

wxDbTable::GetNext (p. 264)

wxDbTable::operator --

bool operator ()

Synonym for wxDbTable::GetPrev (p. 265)

See also

wxDbTable::GetPrev (p. 265)

wxDbTablelnf

283

CHAPTERS

t abl eName[0]

t abl eType][0]

t abl eRemar ks[0]
nuntCol s

pCol I nf

0
0
0.
0
NULL;

Currently only used by wxDb::GetCatalog (p. 221) internally and wxDbinf (p. 246) class,
but may be used in future releases for user functions. Contains information describing
the table (Name, type, etc). A pointer to a wxDbCollnf array instance is included so a
program can create a wxDbColInf (p. 239) array instance (using wxDb::GetColumns (p.
222)) to maintain all information about the columns of a table in one memory structure.

Eventually, accessor functions will be added for this class

wxDbTablelnf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDataObjectComposite

wxDataObjectComposite is the simplest wxDataObject (p. 204) derivation which may be
sued to support multiple formats. It contains several wxDataObjectSimple (p. 285)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 285)) and its format determines the preferred format of the
composite data object as well.

See wxDataObiject (p. 204) documentation for the reasons why you might prefer to use
wxDataObiject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.
Derived from

wxDataObject (p. 204)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1619), wxDataObject (p. 204),

284

CHAPTERS

wxDataObjectSimple (p. 285), wxFileDataObiject (p. 460), wxTextDataObject (p. 1256),
wxBitmapDataObject (p. 77)

wxDataObjectComposite::wxDataObjectComposite

wxDataObjectComposite()

The default constructor.

wxDataObjectComposite::Add

void Add(wxDataObjectSimple *dataObject, bool preferred = FALSE)

Adds the dataObiject to the list of supported objects and it becomes the preferred object
if preferred is TRUE.

wxDataObjectSimple

This is the simplest possible implementation of the wxDataObject (p. 204) class. The
data object of (a class derived from) this class only supports one format, so the number
of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 286) and
GetDataHere (p. 286) while the objects which may be set must override SetData (p.
287). Of course, the objects supporting both operations must override all threee
methods.

Derived from

wxDataObject (p. 204)

Include files

<wx/dataobj.h>

285

CHAPTERS

See also

Clipboard and drag and drop overview (p. 1619), DnD sample (p. 1517),
wxFileDataObject (p. 460), wxTextDataObject (p. 1256), wxBitmapDataObject (p. 77)

wxDataObjectSimple::wxDataObjectSimple

wxDataObjectSimple(const wxDataFormat& format = wxFormatinvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 286).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat() const

Returns the (one and only one) format supported by this object. It is supposed that the
format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat(const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize() const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere(void *buf) const

Copy the data to the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

286

CHAPTERS

wxDataObjectSimple::SetData

virtual bool SetData(size_t len, const void *buf)

Copy the data from the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDatalnputStream

This class provides functions that read binary data types in a portable way. Data can be

read in either big-endian or litte-endian format, little-endian being the default on all
architectures.

If you want to read data from text files (or streams) use wxTextInputStream (p. 1258)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:

wxFi | el nput Stream i nput("nytext.dat");
wxDat al nput St ream store(input);

wxuint8 il

float f2;

wxString line;

store >> i1, /1 read a 8 bit integer.

store >> i1 >> f2; // read a 8 bit integer followed by float.
store >> |ine; /1l read a text line

See also wxDataOutputStream (p. 289).
Derived from

None

Include files

<wx/datstrm.h>

287

CHAPTERS

wxDatalnputStream::wxDatalnputStream

wxDatalnputStream(wxInputStream& stream)

Constructs a datastream object from an input stream. Only read methods will be
available.

Parameters

stream
The input stream.

wxDatalnputStream::~wxDatalnputStream

~wxDatalnputStream()

Destroys the wxDatalnputStream object.

wxDatalnputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_order is TRUE, all data will be read in big-endian order, such as written by
programs on a big endian architecture (e.g. Sparc) or written by Java-Streams (which
always use big-endian order).

wxDatalnputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

wxDatalnputStream::Read16

wxUint1l6 Read16()

Reads a 16 bit integer from the stream.

wxDatalnputStream::Read32

wxUint32 Read32()

Reads a 32 bit integer from the stream.

288

CHAPTERS

wxDatalnputStream::ReadDouble

double ReadDouble()

Reads a double (IEEE encoded) from the stream.

wxDatalnputStream::ReadString

wxString ReadString()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

wxDataOutputStream

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or litte-endian format, little-endian being the default on all
architectures.

If you want to w